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Télécommunications, Signal

présentée et soutenue publiquement

par

Salem SAID
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avec moi sa longue et impressionnante expérience de chercheur en mathématiques pures. Je continue
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2.3 Rotation Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Definition and characteristic functions . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Compound Poisson processes in SO(3) . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3 Rotation Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3.1 Rotation Brownian motion as a multiplicative integral . . . . . . . . . 34

2.3.3.2 The characteristic function of rotation Brownian motion . . . . . . . . 36

2.3.4 Interlacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Application to multiple scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 The compound Poisson model of multiple scattering . . . . . . . . . . . . . . . 40

2.4.2 The problem of decompounding . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2.1 A characteristic function method . . . . . . . . . . . . . . . . . . . . . 44

2.4.2.2 Convergence of parametric and nonparametric estimates . . . . . . . 45

2.4.2.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

i



TABLE OF CONTENTS

3 Filtering of matrix processes under nonlinear constraints 53

3.1 Filtering of rotation time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Local linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1.1 Dynamics of rotation time series . . . . . . . . . . . . . . . . . . . . . 54

3.1.1.2 Stability of local linearization . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.2.1 Geodesic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.2.2 Deterministic filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.3 Invariance properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.4 Relation to continuous time processes . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Filtering of Brownian matrix processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Multiplicative integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.2 Multiplicative structure of E(X) . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.2.1 Increments and their properties . . . . . . . . . . . . . . . . . . . . . 70

3.2.2.2 Application to geodesic regression . . . . . . . . . . . . . . . . . . . . 72

3.2.3 Inversion of dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.4 Invariance properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.5 Stability properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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Chapter 1

Introduction

This thesis addresses estimation and filtering problems stated in terms of stochastic processes with

their values in matrix Lie groups. Our interest in these processes is due to direct applications as well

as to their general importance in modelling. The thesis is divided into Chapters 2 and 3. Chapter 2

only considers processes with their values in the rotation group, to which we refer shortly as rotation

processes. The main problem solved in this chapter is the problem of decompounding, which is a

nonparametric estimation problem –see Subsection 2.4.2. Chapter 3 more generally considers processes

with their values in any matrix Lie group. It examines a new approach for the filtering of these

processes, based on the notion of local linearization. This approach is given its final formulation in

Subsection 3.2.5.

Chapter 2 is based on our two papers [63, 66]. It is devoted to those parts of our work which

relate to direct applications, namely in the field of wave physics. Section 2.2 presents a new statistical

formalism for polarization statistics [63]. Section 2.4 formulates the problem of decompounding as

a statistical alternative to the physical problem of inverse scattering. In a more general form, this

problem was considered and solved in [66] –to our knowledge, this is the first consideration of this

problem.

The necessary mathematical background for Sections 2.2 and 2.4 is given in Sections 2.1 and 2.3.

This is essentially based on the theory of characteristic functions of rotation random variables. The use

of these characteristic functions is increasingly popular in the literature and they have been especially

useful in nonparametric estimation problems –see [67] and discussion in Section 2.1. Our presentation

introduces certain new aspects which are important to the applications of Sections 2.2 and 2.4. For

example, Paragraph 2.1.2.2 characterizes the symmetry properties of rotation random variables, which

are in turn a main ingredient in our solution of the problem of decompounding. Section 2.3 studies

an important class of rotation processes, rotation Lévy processes.

Section 2.2 considers a problem of recent relevance in polarization statistics. The classical Stokes

formalism of polarization is only based on second order statistics of the optical wavefield and our aim

is to generalize this formalism to higher order statistics. The experiments of Ellis and Dogariu which

we describe in Subsection 2.2.2 can be seen as our main motivation. In Subsection 2.2.3 we propose

a new statistical formalism which generalizes the classical Stokes formalism to higher order statistics.

This formalism succeeds in clarifying the contradictions raised by the experiments of Subsection 2.2.2.

In Subsection 2.2.3, it is compared to other attempts made in the literature to include higher order

statistics in the description of polarization. In Subsection 2.2.4 it is used to study the physical problem

of depolarization.

Section 2.4 formulates and solves the problem of decompounding. Subsection 2.4.1 discusses this
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CHAPTER 1. Introduction

problem as a statistical alternative to the physical inverse problem of multiple scattering. Subsection

2.4.2 studies the problem of decompounding in itself. The problem of decompounding is a nonpara-

metric estimation problem stated in terms of rotation compound Poisson processes and interlaced

processes, which were introduced in Subsections 2.3.2 and 2.3.4. We propose to solve the problem

of decompounding using a characteristic function method. While the use of characteristic function

methods for nonparametric estimation with rotation random variables is already well-established, the

problem of decompounding presents an essential new difficulty in view of these methods. More pre-

cisely, it starts from indirect observations and we will see that its solution requires specific tools from

matrix analysis as well as a more detailed statistical treatment. Paragraph 2.4.2.2 provides the math-

ematical proof for the convergence of our characteristic function method. Paragraph 2.4.2.3 discusses

this convergence using numerical simulations.

Chapter 3 is of a more exploratory nature than Chapter 2. It considers processes with their

values in any matrix Lie group, rather than only the rotation group. In this general case, there is

no useful definition of characteristic functions as in Chapter 2. As such, the processes at hand are

considered using a class of defining stochastic differential equations. We are interested in processes

with values in matrix Lie groups as a general model for processes subject to nonlinear constraints

which express symmetry considerations. Such processes appear in a wide variety of fields: Motion

capture, DNA dynamics, medical imaging. We wish to address the applied problem of filtering under

nonlinear constraints. The main difficulty to be dealt with is the impossibility of applying linear signal

processing operations while at the same time respecting nonlinear constraints.

In practice, this difficulty is often dealt with using so-called global linearization methods. Such

methods are quite easy to implement but suffer from many limitations –this has been discussed by

Xavier and Manton [75] and Lee and Shin [38]. Motivated by its successful application in motion

capture [16, 38], we are interested in the notion of local linearization. Our goal in Chapter 3 is to

give a general formulation of the use of local linearization for filtering under nonlinear constraints and

to justify the resulting performances. Section 3.1 is based on our paper [64] and takes a practical

approach to this goal. Local linearization is considered in the special case of discrete time rotation

processes. We study the stability and invariance properties of local linearization as defined in this case.

In Subsection 3.1.2 we consider two numerical examples of filtering problems for which we discuss our

approach in comparison to other recent works, namely based on optimization.

Section 3.2 corresponds to the main goal of this chapter. We consider processes which can be

represented as the solutions of linear stochastic differential equations

dYt = YtdXt Y0 = Id

Our unknown process Y and the driving process X have their values in the space of d×d real matrices

for some d ≥ 1. Moreover, X is a Brownian process with independent increments and the equation

is considered as a Stratonovich equation. For the initial condition, Id denotes the d × d identity

matrix. We refer to processes of the form Y as Brownian matrix processes. Section 3.2 develops the

mathematical background needed in order to formulate correctly and in all generality the use of local

linearization for Brownian matrix processes.

Subsection 3.2.1 shows that Brownian matrix processes naturally have their values in matrix Lie

groups, so that they verify the general type of nonlinear constraints we have in mind. In Subsection

3.2.3, the correspondence Y 7→ X for a Brownian matrix process Y defined as above is considered.

This is a well-defined transformation which we show to transform the process Y subject to nonlinear

constraints to the process X subject only to linear constraints. Local linearization of a Brownian

matrix process Y refers precisely to the application of the transformation Y 7→ X . This can be

2



computed in a causal way –based only on current values of Y – and eliminates the nonlinear constraints

imposed on Y . Subsection 3.2.5 finally formulates our approach for the filtering of Brownian matrix

processes and states the related stability properties. These are considered as the main justification of

this approach. Note finally that Chapter 3 has the limited goal of formulating and studying in general

the use of local linearization for Brownian matrix processes. While this is realized to a certain extent

in Section 3.2, concrete application and detailed study of our approach remain open goals for future

work.

The general philosophy of this thesis has been to rely on mathematical tools from Fourier analysis

and stochastic calculus to study from an intrinsic point of view processes which have their values in

matrix Lie groups. These tools lead to a closer understanding of the dynamics of these processes and

a more detailed description of their statistics. This has allowed us to deal correctly with parametric

and nonparametric estimation problems and to develop a filtering technique adapted to the specific

structure of these processes.
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Chapter 2

Rotation processes with

applications in wave physics

This chapter is concerned with those parts of our work that were motivated by applications in wave

physics, namely in polarization statistics and multiple scattering. It corresponds to our papers [63,66].

Our contribution has been to adapt for these applications a consistent mathematical development

based on rotation Lévy processes.

The mathematical content of this chapter is organized into Sections 2.1 and 2.3. Sections 2.2 and

2.4 detail applications based on Sections 2.1 and 2.3, respectively. We have chosen to present our

mathematical development independently of applications. Section 2.1 reviews the extension of the

notion of characteristic function to rotation random variables. This is made possible by the formalism

of Fourier analysis on the rotation group. Section 2.3 introduces rotation Lévy processes. It studies

the two essential kinds of such processes, rotation compound Poisson processes and rotation Brownian

motion. As such, there is a thematic separation between Sections 2.1 and 2.3. The former studies

rotation random variables while the latter studies rotation processes.

Section 2.2 applies Section 2.1 to polarization statistics. Motivated by an experimental setting

which shows the deficiency of the classical Stokes formalism of polarization, this section applies the

results of Subsection 2.1.3 in order to generalize this formalism to higher order statistics. Within this

new generalized formalism, the physical problem of depolarization is addressed using the results of

Subsection 2.1.4.

Section 2.4 is based on Section 2.3. It is mainly devoted to the inverse problem of multiple scatter-

ing. A stochastic model of multiple scattering is considered within which this inverse problem can be

identified with a nonparametric estimation problem. This is the so-called problem of decompounding

on the rotation group. A solution of this problem is presented in Subsection 2.4.2.

Each section in the following will contain corresponding references, intended to place it in the

context of recent mathematical and applied work. Sufficient background for our mathematical Sections

2.1 and 2.3 can be found in the books of Grenander [21] and Liao [40]. For prerequisite knowledge of

fundamental probability we refer to Kallenberg’s monograph [27]. Although Section 2.1 is grounded

in Fourier analysis on the rotation group, it only requires a working knowledge of this topic. This is

provided by the discussion of Subsection 2.1.1. For a detailed rigorous presentation see [74] or [50].

For general reference on Section 2.2, it is possible to use Brosseau’s book [7]. For Section 2.4

see Ishimaru [25] or Chandrasekhar’s classic [9]. We would like to point out the following two recent

contributions which we find complementary to the point of view of this chapter. The paper [6] proposes
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CHAPTER 2. Rotation processes with applications in wave physics

a spinor formalism of polarization. This goes beyond the usual Jones formalism, as it introduces a

spinor quantity capable of determining the state of polarization of an electromagnetic wave in arbitrary

directions. The thesis [58] indicates the importance of rotation Brownian motion to applications in

biology and wave physics. Remarkably, the Riemannian geometry of Brownian paths is used to

characterize several applications.

2.1 Characteristic functions of rotation random variables

An effective analysis of the probabilistic and algebraic properties of rotation random variables can

be achieved using the corresponding characteristic functions. This section gives a self-contained pre-

sentation of the characteristic functions of rotation random variables. It is modelled on the recent

paper [39]. Basic facts from Fourier analysis on the rotation group are recalled in Subsection 2.1.1.

Characteristic functions are introduced in Subsection 2.1.2 where their relation to the symmetry

properties of rotation random variables is specified. Subsection 2.1.3 considers the action of rotation

random variables on spherical random variables. Subsection 2.1.4 reviews what is perhaps the most

famous application of characteristic functions, the asymptotic properties of products of i.i.d. rotation

random variables.

Currently, the characteristic functions of rotation random variables form an influential new tool in

many engineering applications. This is illustrated in the book [67] which catalogues such applications

in a wide range of engineering problems. The applications of characteristic functions considered here

for rotation random variables are only a special case of similar methods for random variables with

values in compact Lie groups. Such methods can be traced back to the work of Grenander [21] and

were extensively developed by Heyer [24]. For their recent use in probability see [40].

2.1.1 Fourier analysis on SO(3)

Subsection 2.1.2 is based on the formalism of Fourier analysis on the rotation group. In practice,

all that will be required is a straightforward application of Theorem 1 which we state in Paragraph

2.1.1.3. This is the Peter-Weyl theorem in the special case of the rotation group. Paragraphs 2.1.1.1

and 2.1.1.2 are intended to place this theorem in an adequate context. For the terminology and

expressions introduced in Paragraphs 2.1.1.2 and 2.1.1.3, see [74].

The group of proper rotations of space can be identified with the matrix group SO(3) consisting of

all 3×3 real matrices R verifying the following conditions of orthogonality and orientation preservation

RRT = I detR = 1 (2.1)

where T stands for the transpose and I is the identity matrix. We have that SO(3) is a compact subset

of the vector space of 3×3 real matrices. This is an essential condition for Theorem 1. It follows from

the fact that SO(3) is closed and bounded. That SO(3) is closed can be seen from the continuity of

the matrix operations in (2.1). From the orthogonality condition in (2.1) we have |R| =
√

3, where

|R| is the Euclidean matrix norm of R. This shows that SO(3) is bounded.

The action of SO(3) on R3 is determined if a canonical basis is chosen. A vector s ∈ R3 is then

expressed by its coordinates [s1, s2, s3] in the canonical basis. Let e1, e2, e3 ∈ R3 have the respective

coordinates [1, 0, 0], [0, 1, 0] and [0, 0, 1]. For all R ∈ SO(3) we have a linear transformation s 7→ Rs.

This is determined by the following transformation rules for coordinates and vectors

[s′1, s
′
2, s

′
3] = R[s1, s2, s3] [Re1, Re2, Re3] = [e1, e2, e3]

T R (2.2)

6



2.1. Characteristic functions of rotation random variables

where square brackets are taken to denote column matrices. Here [s′1, s
′
2, s

′
3] are the coordinates of

Rs. We define a scalar product on R3 by 〈ei, ej〉 = δij for 1 ≤ i, j ≤ 3, with the Kronecker delta

notation. From (2.2), the orthogonality condition in (2.1) is equivalent to 〈Rei, Rej〉 = δij .

2.1.1.1 The Euler angles parameterization

We here consider the parameterization of SO(3) by ZYZ Euler angles. An important drawback of this

parameterization is the fact that it is not defined at the identity I ∈ SO(3). However, it will lead in

Paragraph 2.1.1.2 to expressions with separated variables. This is desirable for practical computations

as in Section 2.4. Note that the choice of ZYZ over ZXZ is the standard one in quantum mechanics [1].

For 1 ≤ i ≤ 3 and −π < θ ≤ π it is straightforward to check in (2.3) below that Ri(θ) ∈ SO(3).

Geometrically, Ri(θ) is identified with a rotation of counterclockwise angle θ about the axis ei. The

parameterization of SO(3) by means of ZYZ Euler angles decomposes all R ∈ SO(3) into a product

R(α, β, γ) = R3(α)R2(β)R3(γ) where −π < α, γ ≤ π and 0 ≤ β ≤ π. These three angles will be

referred to as Euler angles of R.

R1(θ) =







1 0 0

0 cos θ − sin θ

0 sin θ cos θ






R2(θ) =







cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ






R3(θ) =







cos θ − sin θ 0

sin θ cos θ 0

0 0 1






(2.3)

The mapping (α, β, γ) 7→ R(α, β, γ) defined for −π < α, γ ≤ π and 0 ≤ β ≤ π is clearly a continuous

one. We will state in Proposition 1 below that all R ∈ SO(3) is of the form R = R(α, β, γ). In

particular, this recovers the result that SO(3) is connected, being the continuous image of a connected

set. Proposition 1 can be extended to see the following. The mapping (α, β, γ) 7→ R(α, β, γ) gives a

homeomorphism between the set −π < α, γ < π and 0 < β < π and the set of R ∈ SO(3) verifying

the three conditions |R33| 6= 1, R13 6= −1 and |R31| 6= 1.

Proposition 1 Let R ∈ SO(3). The equation R = R(α, β, γ) for unknown −π < α, γ ≤ π and

0 ≤ β ≤ π has at least one solution. This solution is unique iff |R33| 6= 1.

The main step in proving this proposition is to note that R = R(α, β, γ) for −π < α, γ ≤ π and

0 ≤ β ≤ π only if

R33 = cosβ R23 = sin β sin α R13 = sinβ cosα

R32 = sin β sin γ R31 = − sinβ cos γ
(2.4)

This results by matrix multiplication from (2.3).

Let −π < α, γ ≤ π and 0 ≤ β ≤ π and note R = R(α, β, γ). The angles α, β and γ give a geometric

construction of R. By replacing (2.4) for R and using (2.2) we have

Re3 = cosα sin βe1 + sin α sin βe2 + cosβe3

〈Re2, R3(α)e2〉 = cos γ
(2.5)

From the first formula β and α are the spherical angles, respectively the elevation and azimuth, of

Re3 with respect to the canonical basis. From the second formula γ is the counterclockwise angle

from R3(α)e2 to Re2 about the axis Re3. Note that the vector R3(α)e2 is orthogonal to the plane of

e3 and Re3.

To end this paragraph, we mention an additional aspect of (2.3). This will only be used in

Subsection 2.3.3. For 1 ≤ i ≤ 3 and −π < θ ≤ π the matrices Ri(θ) satisfy the following identities

[

d

dθ
Ri(θ)

]

θ=0

= Ji Ri(θ) = exp(θJi) (2.6)
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CHAPTER 2. Rotation processes with applications in wave physics

where exp denotes the matrix exponential and the matrices J1, J2 and J3 are given by

J1 =







0 0 0

0 0 −1

0 1 0






J2 =







0 0 1

0 0 0

−1 0 0






J3 =







0 −1 0

1 0 0

0 0 0






(2.7)

These matrices are said to define infinitesimal rotations around e1, e2 and e3, respectively. For all real

numbers a1, a2 and a3 if J = a1J1 +a2J2 +a3J3 and R = exp(θJ) where −π < θ ≤ π then R ∈ SO(3)

and R is identified with a rotation of counterclockwise angle θ about the axis a1e1 +a2e2 +a3e3. This

follows from elementary properties of the matrix exponential, using the fact that the matrices J1, J2

and J3 are antisymmetric.

2.1.1.2 Irreducible representations of SO(3)

The most natural statement of Theorem 1 is in terms of the irreducible representations of SO(3). We

here review this concept, state Theorem 1 and discuss its proof. We will consider the realization of

the irreducible representations of SO(3) in spaces of polynomial functions on the sphere S2. Another

usual realization involves spaces of symmetric tensors [1].

The sphere S2 ⊂ R3 is the set of points s ∈ R3 such that s2
1 + s2

2 + s2
3 = 1. We note σ the

area measure on S2. This is a rotation invariant measure given in spherical angles −π ≤ ϕ ≤ π and

0 ≤ ϑ ≤ π by dσ = sin ϑdϕdϑ. Let E ≡ L2(S2, σ) be the Hilbert space of functions f : S2 → C which

are square integrable with respect to σ. This is equipped with the scalar product –since there is no

risk of confusion, we use the same notation as for the scalar product on R3.

〈f, g〉 =
1

4π

∫

S2

fg∗dσ (2.8)

for f, g ∈ E, where ∗ stands for complex conjugation. The action of SO(3) on E is defined as follows.

For all R ∈ SO(3) we have a unitary operator U(R), where for f ∈ E the function U(R)f ∈ E is

defined by

U(R)f(s) = f(RT s) (2.9)

for s ∈ S2. The unitarity of U(R) for all R ∈ SO(3) follows from the rotation invariance of σ. It is

straightforward to verify the homomorphism property

U(R1R2) = U(R1)U(R2) (2.10)

for all R1, R2 ∈ SO(3).

An invariant subspace T ⊂ E is a linear subspace T of E such that for all R ∈ SO(3) and f ∈ T

we have U(R)f ∈ T . If T ⊂ E is an invariant subspace then the orthogonal complement T⊥ is also

invariant. This follows from the fact that U(R) is unitary for all R ∈ SO(3). Consider the following

example. Let Ee ⊂ E and Eo ⊂ E be respectively the space of even and odd functions f ∈ E. Recall

their definition. For f ∈ E we have that f ∈ Ee if f(−s) = f(s) and f ∈ Eo if f(−s) = −f(s), for

s ∈ S2. We have that E⊥
e = Eo. Each of these subspaces is invariant. For example, for R ∈ SO(3)

and f ∈ Eo we have

U(R)f(−s) = f(−RT s) = −f(RT s) = −U(R)f(s)

for s ∈ S2, so that U(R)f ∈ Eo. It is easily verified that Ee is a closed subspace of E. It follows that

E = Ee ⊕ Eo. In other words, E is an orthogonal sum of these two invariant subspaces.

By a representation of SO(3) we mean a finite dimensional invariant subspace T ⊂ E. A repre-

sentation T is said to be reducible if there exists an invariant subspace T ′ ⊂ T . If a representation

8



2.1. Characteristic functions of rotation random variables

T is not reducible, it is said to be irreducible. If T is a reducible representation and T ′ ⊂ T is an

invariant subspace then T ′ is a representation. Also, the orthogonal complement T ′′ of T ′ in T is

a representation. A simple recursive reasoning shows that all representation T is a finite orthogonal

sum of irreducible representations.

We now introduce a complete family (T l)l≥0 of representations of SO(3). This means that all

representation T is a finite orthogonal sum

T = Slmin ⊕ . . . ⊕ Sl ⊕ . . . ⊕ Slmax (2.11)

where for 0 ≤ lmin ≤ l ≤ lmax we have that Sl is a representation in linear isomorphism with T l.

Define the functions u, z ∈ E by the following expressions for s ∈ S2

u(s) = s1 + is2 z(s) = s3 (2.12)

For l ≥ 0 the representation T l is of dimension dl = 2l + 1. An orthonormal basis of T l can be given

in terms of spherical harmonics. These are the functions Y l
m ∈ E where −l ≤ m ≤ l and for s ∈ S2

Y l
m(s) = i

m+|m|
[

(l − |m|)!
(l + |m|)!

]
1
2

um(s)
(

P
(m)
l ◦ z

)

(s) (2.13)

Here Pl is the Legendre polynomial of degree l and P
(m)
l denotes its derivative of order |m|. In

particular, this is a real-valued polynomial of degree l − |m|. It follows from (2.12) and (2.13) that

Y l
m is a polynomial of degree l in s1, s2 and s3. Moreover, Y l

m is even or odd according to wether l is

even or odd. We have the following orthogonality relations. For all l, s ≥ 0 and corresponding m, p

〈Y l
m, Y s

p 〉 =
1

dl

δlsδmp (2.14)

The following relation (2.15) results using (2.12). For all l ≥ 0 and −l ≤ m ≤ l we have

Y l∗

m = (−1)mY l
−m (2.15)

The usual proof of the affirmation that (T l)l≥0 is a complete family of representations proceeds by an

analysis of the infinitesimal action of SO(3) in each subspace T l. This is made tractable by the fact

that for all l ≥ 0 the spherical harmonics Y l
m for −l ≤ m ≤ l are eigenfunctions of rotations about

e3. Clearly the action (2.9) of a rotation R3(θ) as in (2.3) is to multiply Y l
m by the factor e−imθ. By

Proposition 1 it is then enough to consider rotations about e2.

For l ≥ 0 and −l ≤ m, n ≤ l let U l
mn : SO(3) → C be given by

U l
mn(R) = dl〈U(R)Y l

n, Y l
m〉 (2.16)

Since Tl is invariant we have by (2.14)

U(R)Y l
m =

l
∑

n=−l

U l
nm(R)Y l

n (2.17)

for all R ∈ SO(3) and all l ≥ 0 and −l ≤ m ≤ l.

For l ≥ 0 the functions U l
mn of (2.16) are called the matrix elements of T l. For l ≥ 0 and R ∈ SO(3)

let U l(R) be the matrix with elements U l
mn(R). The matrix function R 7→ U l(R) satisfies the following

identities, which can be shown from (2.16) and (2.17) using the fact that U(R) is unitary.

U l(R1R2) = U l(R1)U
l(R2) [U l(R)]−1 = U l(RT ) = [U l(R)]† (2.18)

for all R, R1, R2 ∈ SO(3). Here † stands for the Hermitian transpose. The first identity gives the

homomorphism property of U l. The second one states that for all R ∈ SO(3) the matrix U l(R) is

unitary.
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CHAPTER 2. Rotation processes with applications in wave physics

2.1.1.3 The Peter-Weyl theorem

Theorem 1 below is a version of the Peter-Weyl theorem in the special case of SO(3). In particular,

this theorem will state that all continuous function h : SO(3) → C is a uniform limit of finite linear

combinations of the matrix elements U l
mn defined in (2.16) of the last paragraph. This property, along

with identities (2.18), will give rise to the properties of characteristic functions studied in Subsection

2.1.2. For all continuous h : SO(3) → C the coefficients of the linear combinations of the U l
mn used

to approximate h are given in terms of a scalar product for functions on SO(3). This is defined as in

(2.8) by introducing a rotation invariant measure on SO(3). This is the Haar measure µ of SO(3).

We will define µ in terms of the Euler angles. Let h : SO(3) → C be continuous. By Paragraph

2.1.1.1, the expression h(α, β, γ) = h(R(α, β, γ)) defines a continuous function of −π ≤ α, γ ≤ π and

0 ≤ β ≤ π. The Haar measure µ is defined by the following formula

∫

SO(3)

hdµ =
1

8π2

∫ π

−π

∫ π

0

∫ π

−π

h(α, β, γ) sin βdαdβdγ (2.19)

for all continuous h : SO(3) → C. For P ∈ SO(3) let LP : SO(3) → SO(3) be the mapping given by

LP (R) = PR. The left rotation invariance of µ consists in the following property

∫

SO(3)

(h ◦ LP )dµ =

∫

SO(3)

hdµ (2.20)

for all P ∈ SO(3) and h as above. An intuitive discussion of the validity of (2.19) and (2.20) can be

found in [50]. The Haar measure µ has other important properties which we recover in Proposition 4

of the following subsection. Let H ≡ L2(SO(3), µ) be the Hilbert space of functions h : SO(3) → C

which are square integrable with respect to µ. As in (2.8) define a scalar product on H

〈h, k〉 =

∫

SO(3)

hk∗dµ (2.21)

for h, k ∈ H . We have that the matrix elements (2.16) are in H and satisfy the following orthogonality

relations. For all l, s ≥ 0 and corresponding m, p, n, q

〈U l
mn, Us

pq〉 =
1

dl

δslδmpδnq (2.22)

For f ∈ E and l ≥ 0 define the dl × 1 column matrices f̂l and Y l as follows

f̂l =
[

〈f, Y l
−l〉, . . . , 〈f, Y l

l 〉
]

Y l =
[

Y l
−l, . . . , Y

l
l

]

(2.23)

Similarly, for h ∈ H and l ≥ 0 define ĥl the dl × dl matrix with elements

ĥl
mn = 〈h, U l∗

mn〉 (2.24)

In the following statement of Theorem 1 we will use (2.23) and (2.24). We call f̂l and ĥl the Fourier

coefficients of functions f and h respectively. The series (2.25) and (2.26) are called the Fourier series

of f and h. For two different proofs of Theorem 1 see [5, 74] and [50]. The proof in [74] or [5] uses

the spectral theory of compact operators. It applies in general when SO(3) is replaced by some other

compact group. The proof in [50] uses the Stone-Weierstrass theorem and is specific to the case of

SO(3) where it shows that the matrix elements U l
mn are actually polynomial functions in the elements

of the matrix R ∈ SO(3).
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2.1. Characteristic functions of rotation random variables

Theorem 1 (Peter-Weyl) The following hold

(i) For all f ∈ E the following series (2.25) converges to f in E. If f is continuous, then (2.25)

converges to f uniformly.

f =
∑

l≥0

dlf̂
T
l Y l =

∑

l≥0

dl

l
∑

m=−l

f̂m
l Y l

m (2.25)

(ii) For all h ∈ H the following series (2.26) converges to h in H. If h is continuous, then (2.26)

converges to h uniformly.

h =
∑

l≥0

dl tr
(

ĥlU l†
)

=
∑

l≥0

dl

l
∑

m,n=−l

ĥl
mnU l∗

mn (2.26)

where tr denotes the trace of a matrix.

To conclude this paragraph we express the matrix elements U l
mn ∈ H in terms of the Euler angles.

By Proposition 1 of Paragraph 2.1.1.1 we have that all R ∈ SO(3) can be written R = R(α, β, γ) for

some Euler angles α, β and γ. Using the homomorphism property (2.18) we have for all l ≥ 0 that

U l(R) = U l(R(α, β, γ)) = U l(R3(α))U l(R2(β))U l(R3(γ)) (2.27)

We have already noted in Paragraph 2.1.1.1 that for all l ≥ 0 and −l ≤ m ≤ l the function Y l
m ∈ E is

an eigenfunction of U l(R3(θ)) with corresponding eigenvalues e−imθ, where −π < θ ≤ π. Replacing

in (2.16) and then in (2.27) we obtain for all l ≥ 0 and −1 ≤ m, n ≤ l

U l
mn(R(α, β, γ)) = e−imαU l

mn(R2(β))e−inγ

We refer to [74] for the fact that the factor U l
mn(R2(β)) above can be written

U l
mn(R2(β)) = P l

mn(cosβ)

where the functions P l
mn can be expressed in terms of Jacobi polynomials. In particular, for all l ≥ 0

we have P l
00 = Pl the Legendre polynomial of degree l. We will use the following expression for (2.27)

U l
mn(α, β, γ) = e−imαP l

mn(cos β)e−inγ (2.28)

where we have put U l
mn(R(α, β, γ)) = U l

mn(α, β, γ).

As an application of (2.28) it is possible for l ≥ 0 to calculate the function χl ∈ H given by

(2.29) below. The functions χl for l ≥ 0 are known as the irreducible characters corresponding to the

representations T l of Paragraph 2.1.1.2.

χl(R) = tr(U l(R)) (2.29)

Note that if R = R3(θ) for some −π < θ ≤ π we have by (2.28)

χl(R) = χl(R3(θ)) =

l
∑

m=−l

e−imθ =
sin(l + 1

2 )θ

sin θ
2

where it should be understood that χl(R) = dl when θ = 0.

For all R ∈ SO(3) we have that if 0 ≤ θ ≤ π is such that tr(R) = 2 cos θ + 1 then there exists

P ∈ SO(3) satisfying PRPT = R3(θ). It follows that for l ≥ 0

χl(R) = tr
(

U l(P )U l(R3(θ))U
l(PT )

)

= tr(U l(R3(θ))) =
sin(l + 1

2 )θ

sin θ
2

(2.30)
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note that θ is uniquely determined by R. It is possible to replace θ in the above expression by the

continuous function

a(R) = arccos

(

tr(R) − 1

2

)

(2.31)

For R ∈ SO(3) we have that a(R) is the angle of the proper rotation R. Formula (2.30) will be useful

in Proposition 6 of the following subsection.

2.1.2 Characteristic functions

The characteristic functions of rotation random variables are the main object of the current section.

In order to study rotation random variables we need to assume given a complete probability space

(Ω,A, P). A rotation random variable is then understood as a random matrix X which takes its values

in SO(3). Let X be a rotation random variable, the characteristic function of X is the sequence

φX = {φX(l)}l≥0 of dl × dl complex matrices given by

φX(l) = E[U l(X)] (2.32)

where E denotes expectation with respect to P. Paragraph 2.1.2.1 starts by considering the relation

of characteristic functions to fundamental probabilistic concepts. Paragraph 2.1.2.2 specifies the sym-

metry properties of rotation random variables in terms of their characteristic functions. As stated

before, only a general understanding of Subsection 2.1.1 is needed. Namely, we will mostly refer to

the identities (2.18) of Paragraph 2.1.1.2 and to Theorem 1 of Paragraph 2.1.1.3.

2.1.2.1 General properties

Proposition 2 below ensures that the characteristic function φX of a rotation random variable X as

introduced in formula (2.32) is well-defined. This proposition also generalizes the so-called Glivenko’s

theorem for vector-valued random variables to rotation random variables. Proposition 3 does the

same for Kac’s theorem. For these two theorems in the case of vector-valued random variables see

for instance [3]. Note that by vector-valued we mean Rd-valued for some d ≥ 1. Proposition 4 uses

characteristic functions to study the Haar measure. For the results of the current paragraph we refer

to [21].

Proposition 2 The following hold

(i) Let X and Y be rotation random variables. X
d
= Y iff φX = φY .

(ii) Let (Xn)n≥1 be rotation random variables. Xn
d→ X for some rotation random variable X iff

φXn
→ φX .

Proof: We start by proving (i). Remember that X
d
= Y denotes equality in distribution of X and

Y . This means that for all continuous h : SO(3) → C we have

E[h(X)] = E[h(Y )] (2.33)

Suppose X
d
= Y . For all l ≥ 0 we have that U l is a continuous matrix function. In particular, for all

l ≤ m, n ≤ l the matrix element U l
mn : SO(3) → C is continuous. It follows by applying (2.33) that

for all l ≥ 0 we have

φX(l) = E[U l(X)] = E[U l(Y )] = φY (l)

that is, φX = φY .
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2.1. Characteristic functions of rotation random variables

Suppose now φX = φY . Let h : SO(3) → C be a continuous function. We have the uniform limit

(2.26) for h. It follows by dominated convergence that

E[h(X)] =
∑

l≥0

dl tr
(

ĥlφX(l)
†
)

=
∑

l≥0

dl tr
(

ĥlφY (l)
†
)

= E[h(Y )]

This shows that X
d
= Y .

The proof of (ii) can be carried out similarly. Remember that Xn
d→ X denotes limit in distribution.

This means that for all continuous h : SO(3) → C we have

E[h(X)] = lim
n

E[h(Xn)] (2.34)

Compared to the proof of (i), we have the additional difficulty of exchanging limits in distribution

and infinite sums. This can again be treated using dominated convergence.N

Proposition 3 The following hold

(i) Let X be a rotation random variable and F ⊂ A a σ-subalgebra. We have that X is independent

of F iff for all l ≥ 0

E[U l(X)|F ] = φX(l) (2.35)

(ii) Let X and Y be independent rotation random variables and note Z = XY . We have for all l ≥ 0

φZ(l) = φX(l)φY (l) (2.36)

Proof: We start with (i). Remember that X is independent of F iff for all continuous h : SO(3) → C

we have

E[h(X)|F ] = E[h(X)] (2.37)

It is clear that the proof can be carried out as for (i) of Proposition 2, using the dominated convergence

property of conditional expectation.

We now turn to (ii). For rotation random variables X and Y note Z = XY and F = σ(Y ). By

the homomorphism property (2.18), we have for l ≥ 0

φZ(l) = E[U l(Z)] = E[U l(X)U l(Y )]

Noting φ̃X(l) = E[U l(X)|F ] and replacing in the last equality we have for l ≥ 0

φZ(l) = E[φ̃X(l)U l(Y )]

If X and Y are independent we have by (i) that φ̃X(l) = φX(l) for l ≥ 0. The proof can be completed

immediately.N

Proposition 4 recovers certain properties of the Haar measure using characteristic functions. Indeed

replacing X by a constant R ∈ SO(3) we have in (ii) of this proposition that µ is invariant by left and

right rotations. Moreover, it results by comparing (i) to Proposition 5 of the next Paragraph 2.1.2.2

that µ is invariant by inversion. In addition to its invariance properties, µ is especially important due

to its role in Subsection 2.1.4.

We will say that a rotation random variable U is uniformly distributed if the probability law of U

is the Haar measure µ. In other words, if for all continuous h : SO(3) → C we have

E[h(U)] =

∫

SO(3)

hdµ (2.38)
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Proposition 4 The following hold

(i) A rotation random variable U is uniformly distributed iff for all l > 0 we have φU (l) = 0.

(ii) Let U be a uniformly distributed rotation random variable. If X is a rotation random variable

independent of U then XU
d
= U and UX

d
= U .

Proof: We start with (i). The if part follows easily using (2.38) and the uniform limit (2.26) for h.

For the only if part the proof can be carried out by contradiction. Suppose U is uniformly distributed

and for some l > 0 we have φU (l) 6= 0. We have that there exists a dl × 1 column matrix fl 6= 0 such

that

φU (l)fl =

(

∫

SO(3)

U ldµ

)

fl 6= 0

where we have used (2.38). Let f̂l = φU (l)fl 6= 0, for all R ∈ SO(3) we have

U l(R)f̂l =

(

∫

SO(3)

(U l ◦ LR)dµ

)

fl =

(

∫

SO(3)

U ldµ

)

fl = f̂l (2.39)

as follows from the left invariance of µ as expressed by condition (2.20). Consider now the function

f ∈ T l given by

f = f̂T
l Y l =

l
∑

m=−l

f̂m
l Y l

m (2.40)

We have by (2.17) and (2.39) that for all R ∈ SO(3)

U(R)f =

l
∑

m,n=−l

U l
mn(R)f̂n

l Y l
m =

l
∑

m=−l

f̂m
l Y l

m = f

Thus f ∈ T l is nonzero and invariant by the action of SO(3) as in (2.9). This contradicts the fact

that T l is an irreducible representation. We have achieved our contradiction and it follows that we

have φU (l) = 0 for all l > 0.

We turn to the proof of (ii). This is an immediate application of (i). Suppose X is independent of

U and note Z = XU . We have by (ii) of Proposition 3 and (i) of the current proposition that for all

l > 0

φZ(l) = φX(l)φU (l) = φU (l)

It follows by (i) of Proposition 2 that Z
d
= U . It is shown in the same way that UX

d
= U .N

2.1.2.2 Symmetries of rotation random variables

The symmetries of a rotation random variable X refer to the invariance properties of its distribution

under certain algebraic operations. We have seen in Proposition 2 that the distribution of X is

completely determined by its characteristic function φX . Here we specify certain symmetry properties

of X in terms of φX . The properties of inverse invariance and conjugate invariance are considered

in Propositions 5 and 6, respectively. These two properties are considered in [39, 40]. In Proposition

7 we introduce the property of zonal invariance which we will find useful in the multiple scattering

problems considered in Section 2.4.

A rotation random variable X is said to be inverse invariant if X
d
= XT . It is said to be conjugate

invariant if RXRT d
= X for all R ∈ SO(3). We will say that X is zonal invariant if X

d
= R3(α)XR3(γ)

for all −π < α, γ ≤ π. When referring to the probability density of X , we mean a probability density
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with respect to µ. This is a real-valued function p ∈ H such that for all continuous h : SO(3) → C

we have

E[h(X)] =

∫

SO(3)

phdµ (2.41)

If X has a probability density p then the Fourier series (2.26) of p is given by φX as follows

φX(l) =

∫

SO(3)

pU ldµ p =
∑

l≥0

dl tr
(

φX(l)U l†
)

(2.42)

Note that (iii) of Proposition 5 leads to a practical way of generating an inverse invariant rotation

random variable X from a general rotation random variable Z. The following development is possible

using (i) of this proposition. Suppose a rotation random variable X has a probability density p. We

have that X is inverse invariant iff p = p ◦ J in H . Here J : SO(3) → SO(3) denotes the inverse map

J(R) = RT . Indeed, replacing in (2.42) the fact that φX(l) is Hermitian for all l ≥ 0 we have

p =
∑

l≥0

dl

2
tr
[

φX(l)
(

U l + U l†
)]

(2.43)

The required property of p can be checked by replacing the unitarity property (2.18) in this expression.

Proposition 5 (Inverse invariance) Let X, Z be rotation random variables. The following hold

(i) X is inverse invariant iff for all l ≥ 0 we have that φX(l) is Hermitian.

(ii) Suppose X is inverse invariant. If X1, . . . , Xn are independent copies of X then their product

X1 . . . Xn is inverse invariant.

(iii) If Y
d
= Z and Y is independent of Z then ZY T is inverse invariant.

Proof: The proof of (i) is as follows. Note Y = XT . By (i) of Proposition 2 we have that X is

inverse invariant iff φX = φY . We have by the unitarity property (2.18) for l ≥ 0

φY (l) = E[U l(XT )] = E[U l(X)]† = φ†
X(l)

It follows that X is inverse invariant iff for all l ≥ 0 we have φX(l) = φ†
X(l). This is precisely the

condition that φX(l) is Hermitian.

For the proof of (ii) note Y = X1 . . . Xn. By (ii) of Proposition 3 we have that

φY (l) = φX1
(l) . . . φXn

(l)

for all l ≥ 0. It is enough to use (i) after noticing that the powers of a Hermitian matrix are Hermitian.

The proof of (iii) uses a similar argument.N

Proposition 6 (Conjugate invariance) Let X be a rotation random variable. The following hold

(i) X is conjugate invariant iff for all l ≥ 0 we have φX(l) = alIl where al ∈ R and Il is the dl × dl

identity matrix.

(ii) X is conjugate invariant iff XZ
d
= ZX for all rotation random variable Z independent of X.

(iii) Let Z be a rotation random variable independent of X. If X and Z are conjugate invariant then

XZ is conjugate invariant.

(iv) Suppose X has probability density p. X is conjugate invariant iff

p =
∑

l≥0

dlalχ
l (2.44)
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Proof: (ii) and (iii) result from (i) using (i) of Proposition 2 and (ii) of Proposition 3. Also, (iv)

results from (i) and (2.42). We give the proof of (i).

By definition, X is conjugate invariant iff for all R ∈ SO(3) and all l ≥ 0 we have

U l(R)φX(l) = φX(l)U l(R) (2.45)

this results from (i) of Proposition 2 using the homomorphism property (2.18). For all R ∈ SO(3)

and all l ≥ 0 (2.45) states that φX(l) commutes with U l(R). It follows from Schur’s lemma that

φX(l) = alIl where al ∈ C. It remains to see that for l ≥ 0 we have al ∈ R. Note that from (2.29)

and (2.32)

dlal = E[χl(X)] (2.46)

The proof is complete, since by (2.30) the function χl is real-valued.N

For Proposition 7 below, we use the following notation. Let X be a fixed rotation random variable,

we write

φl
mn = E[U l

mn(X)] (2.47)

for l ≥ 0 and −l ≤ m, n ≤ l. For all l ≥ 0 we thus have that the complex numbers φl
mn are the

elements of the matrix φX(l). Note that (i) of Proposition 7 states that X is zonal invariant iff for

all l ≥ 0 the only nonzero element of φX(l) is φl
00. Suppose X has a probability density p. It follows

from (2.42) that X is zonal invariant iff the expression of p in Euler angles is given by –remember

from Paragraph 2.1.1.3 that P l
00 = Pl.

p ≡ p(cosβ) =
∑

l≥0

dlxlPl(cosβ) (2.48)

where for l ≥ 0 we note xl = φl
00. We will return to formula (2.48) in Section 2.4.

Proposition 7 (Zonal invariance) Let X, Z be rotation random variables. The following hold

(i) X is zonal invariant iff for all l ≥ 0 and −l ≤ m, n ≤ l we have φl
mn = xlδm0δn0 where xl ∈ R.

(ii) If X and Z are zonal invariant and independent then XZ is zonal invariant.

Proof: Note that (ii) follows from (i) and (ii) of Proposition 3. The proof of (i) is as follows. By

definition, X is zonal invariant iff for all −π < α, γ ≤ π and all l ≥ 0 we have

U l(R3(α))φX (l)U l(R3(γ)) = φX(l)

this results from (i) of Proposition 2 using the homomorphism property (2.18). Using expression

(2.28) we obtain for the matrix elements φl
mn defined in (2.47)

e−imαφl
mne−inγ = φl

mn

for all l ≥ 0 and −l ≤ m, n ≤ l. Since this relation must be verified for all −π < α, γ ≤ π we have

φl
mn = xlδm0δn0 where xl ∈ C. In order to show that xl ∈ R for l ≥ 0 it is enough to note by (2.47)

that xl = E[U l
00(X)] and that U l

00 is real-valued.N

2.1.3 Action on spherical random variables

The current subsection considers the action of rotation random variables on spherical random variables.

Its results will be applied in Section 2.2. By a spherical random variable we mean a random vector
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S which takes its values in S2. If S is a spherical random variable and X a rotation random variable

then it is natural to consider the spherical random variable S′ given by

S′ = XS (2.49)

We are interested in characterizing the relation between the distributions of these three random

variables. As in Subsection 2.1.2, the distribution of the rotation random variable X will be studied

using its characteristic function φX . In order to obtain the distributions of the spherical random

variables S and S′ the current subsection will introduce the characteristic function of a spherical

random variable. This will be noted as in Subsection 2.1.2. For example, in relation to (2.49) we

will write φS or φS′ . The following development concerning the characteristic functions of spherical

random variables contains many similarities to the development of Subsection 2.1.2.

The characteristic function of a spherical random variable S is the sequence φS = {φS(l)}l≥0 of

dl × 1 column matrices given by

φS(l) = E[Y l∗(S)] (2.50)

remember that the column matrices Y l were defined in (2.23) of Paragraph 2.1.1.3. The probability

density of a spherical random variable S is a real-valued function p ∈ E such that for all continuous

f : SO(3) → C we have

E[f(S)] =
1

4π

∫

S2

pfdσ (2.51)

If S has a probability density p then the Fourier series (2.25) of p is given by φS as follows

φS(l) =
1

4π

∫

S2

pY l∗dσ p =
∑

l≥0

dlφ
T
S (l)Y l (2.52)

Our main result in relation to (2.49) is Proposition 9. Proposition 10 is concerned with uniformly

distributed spherical random variables, while Proposition 11 introduces the notion of zonal invariant

spherical random variable. We start by stating Proposition 8 which ensures that (2.50) leads to a

correct definition. The proof of this proposition is identical to that of Proposition 2 of Paragraph

2.1.2.1, using (2.25) instead of (2.26).

Proposition 8 The following hold

(i) Let S and S′ be spherical random variables. S
d
= S′ iff φS = φ′

S .

(ii) Let (Sn)n≥1 be spherical random variables. Sn
d→ S for some spherical random variable S iff we

have φSn
→ φS .

Proposition 9 Let S, S′ and X be as in (2.49). If S and X are independent then for l ≥ 0 we have

φS′(l) = φX(l)φS(l) (2.53)

Proof: We start by rewriting identity (2.17). Replacing R by RT and conjugating both members of

this identity we have for all l ≥ 0 and −l ≤ m ≤ l

U(RT )Y l∗

m (s) = Y l∗

m (Rs) =

l
∑

n=−l

U l
mn(R)Y l∗

n (s) (2.54)

where R ∈ SO(3) and s ∈ S2. Using (2.54) in matrix form we have from (2.49)

Y l∗(S′) = U l(X)Y l∗(S) (2.55)
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Note F = σ(S) and φ̃X(l) = E[U l(X)|F ]. We have from (2.55)

φS′(l) = E[φ̃X(l)Y l∗(S)] (2.56)

If X and S are independent then by (i) of Proposition 3 we have φ̃X(l) = φX(l). Replacing in (2.56),

the proof can be completed.N

In the current subsection, the following Proposition 10 can be seen as the counterpart of Proposition

4 of Subsection 2.1.2. Uniformly distributed spherical random variables are defined in a similar way to

(2.38) using the area measure σ on S2. We will say that a spherical random variable W is uniformly

distributed if the probability law of W is the normalized area measure (1/4π)σ. In other words, if for

all continuous f : S2 → C we have

E[f(W )] =
1

4π

∫

S2

fdσ (2.57)

In Proposition 10 we will see that a uniformly distributed spherical random variable can be obtained

from a uniformly distributed rotation random variable using (2.49).

Proposition 10 The following hold

(i) A spherical random variable W is uniformly distributed iff for all l > 0 we have φW (l) = 0.

(ii) Let S be a spherical random variable and U be a rotation random variable such that S and U are

independent. If U is uniformly distributed then US is uniformly distributed.

Proof: The proof of (i) will use the same idea as for (i) of Proposition 4. The if part follows from

(2.57) and the uniform limit (2.25) for f . The only if part can be proved by contradiction. Suppose

for some l > 0 we have φW (l) 6= 0 and note φl
m for −l ≤ m ≤ l the elements of φW (l) –remember that

this is a dl × 1 column matrix. For all R ∈ SO(3) and −l ≤ m ≤ l we have by (2.57) and (2.54)

l
∑

n=−l

U l
mn(R)φl

n =
1

4π

∫

S2

l
∑

n=−l

U l
mn(R)Y l∗

n dσ =
1

4π

∫

S2

U(RT )Y l∗

m dσ =
1

4π

∫

S2

Y l∗

m dσ = φl
m (2.58)

where for the last step we have used the rotation invariance of σ. Let f ∈ T l be given by f = φT
W (l)Y l.

We have by (2.17) and (2.58) for all R ∈ SO(3)

U(R)f =

l
∑

m,n=−l

U l
mn(R)φl

nY l
m =

l
∑

m=−l

φl
nY l

m = φT
W (l)Y l = f

That is, f ∈ T l is nonzero and invariant by the action of SO(3) as in (2.9). Since T l is an irreducible

representation, we have the desired contradiction.

We now prove (ii). Note W = US. Since U and S are independent, it is possible to apply

Proposition 9. We have for l > 0

φW (l) = φU (l)φS(l) = 0

It follows by (i) that W is uniformly distributed.N

Proposition 11 introduces the property of zonal invariance for spherical random variables. A

spherical random variable S is said to be be zonal invariant if for all −π < θ ≤ π we have R3(θ)S
d
= S.

This property is closely related to the zonal invariance of rotation random variables. In particular, we

will see in Proposition 11 that zonal invariant spherical random variables can be obtained from zonal

invariant rotation random variables using (2.49). We will use the following notation. If S is a fixed

spherical random variable, we will note for l ≥ 0 and −l ≤ m ≤ l

φl
m = E[Y l∗

m (S)] (2.59)
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For all l ≥ 0, we thus have that the complex numbers φl
m are the elements of the column matrix

φS(l). From (i) of Proposition 11 we have a formula similar to (2.48). Indeed, (i) below states that S

is zonal invariant iff for all l ≥ 0 the only nonzero element of φS(l) is φl
0. Suppose S has a probability

density p. It follows from (2.52) that S is zonal invariant iff the expression of p in spherical angles

−π ≤ ϕ ≤ π and 0 ≤ ϑ ≤ π is given by –remember from (2.13) that Y l
0 = Pl ◦ z.

p ≡ p(cosϑ) =
∑

l≥0

dlxlPl(cos ϑ) (2.60)

where for l ≥ 0 we note xl = φl
0.

Proposition 11 Let S, S′ and X be as in (2.49) with X and S independent. The following hold

(i) S is zonal invariant iff for all l ≥ 0 and −l ≤ m ≤ l we have φl
m = xlδm0 where xl ∈ R.

(ii) If X is zonal invariant then S′ is zonal invariant.

Proof: Note that (ii) is an application of (i) and of Proposition 9. In order to prove (i) note that

by (2.54) and expression (2.28) we have for all −π < θ ≤ π

Y l∗

m (R3(θ)S) =

l
∑

n=−l

U l
mn(R3(θ))Y

l∗

n (S) = e−imθY l∗

m (S)

for all l ≥ 0 and −l ≤ m ≤ l. It follows from (i) of Proposition 8 that S is zonal invariant iff

φl
m = e−imθφl

m

for all l ≥ 0 and −l ≤ m ≤ l, where we use the notation (2.59). Since this relation must be verified

for all −π < θ ≤ π it follows that φl
m = xlδm0, where by (2.13) we have xl = E[Y l

0 (S)] ∈ R. The proof

of (i) is complete.N

2.1.4 Products of i.i.d. rotation random variables

Here we are interested in the asymptotic behavior of products of i.i.d. rotation random variables.

While this is a vast subject, we only present its most elementary aspect. Theorem 2 gives a necessary

and sufficient condition for the convergence in distribution of such products. This will be applied in

Section 2.2 in order to address the physical problem of depolarization.

The Haar measure µ plays an important role in the study of products of i.i.d. rotation random

variables. Based on [21], we consider in the current paragraph a partial result which will occur in

Section 2.2. This is stated below in the form of Theorem 2. Let (Yn)n≥1 be i.i.d. rotation random

variables. Note (Xn)n≥1 their cumulative products

Xn = Y1 . . . Yn (2.61)

For a uniformly distributed rotation random variable U , Theorem 2 states a general algebraic condition

necessary and sufficient for Xn
d→ U . Remember that U is uniformly distributed if the probability

law of U is the Haar measure µ.

Using (ii) of Proposition 2, the convergence Xn
d→ U is equivalent to that of the characteristic

functions φXn
. For n ≥ 1 we will note φn ≡ φXn

. Since (Yn)n≥1 have the same distribution, it

follows by (i) of Proposition 2 that they have the same characteristic function. This will be noted

φ ≡ φY1
. Applying Proposition 3 to (2.61), it is possible to obtain the following relation in terms of

characteristic functions

φn(l) = [φ(l)]n (2.62)
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for all n ≥ 1 and l ≥ 0. In order to derive (2.62) from (2.61) note that for all n > 1 we have that Yn

is independent of Xn−1. Thus, it is enough to apply (ii) of Proposition 3 after writing Xn = Xn−1Yn.

Using (2.62), the study of (2.61) now reduces to that of the matrix powers of φ(l) for l > 0.

The rotation random variable Y1 is said to be supported by a closed set B ⊂ SO(3) if P(Y1 ∈ B) =

1. Clearly, this depends only on the distribution of Y1. If Y1 is supported by a closed set B ⊂ SO(3)

then this also holds for all Yn. For l ≥ 1 note λ(l) ⊂ C the spectrum of φ(l). Theorem 2 is based on

a characterization of the spectra λ(l) in terms of the closed sets supporting Y1. For clarity, this fact

will be stated separately in Proposition 12.

Theorem 2 Let U be a uniformly distributed rotation random variable. Xn
d→ U iff Y1 is not sup-

ported by any closed proper subgroup of SO(3) or by any coset of such a subgroup.

Proof: We only give a sketch of the proof. A detailed version can be found in [21]. Consider the

only if part. Suppose Y1 is supported by a closed proper subgroup G ⊂ SO(3). For all n ≥ 1 we have

P(Xn ∈ G) = 1. Indeed,

P(Xn /∈ G) ≤ P[∪n
m=1(Ym /∈ G)] ≤

n
∑

m=1

P(Ym /∈ G) = 0

If the Xn converge in distribution to U then U is also supported by G. Note that

P(U /∈ G) = lim
n

P(Xn /∈ G) = 0

This contradicts the hypothesis that U is uniformly distributed. Suppose now Y1 is supported by a

coset of G. This is the closed set RG = {RP |P ∈ G} where R ∈ SO(3). The treatment of this case

is similar but more complicated. We refer to [21].

We now turn to the if part. It follows from Proposition 12 that for all l > 0 we have λ(l) ⊂ D

where D = {z ∈ C||z| < 1}. In other words, for all l > 0 all the eigenvalues of φ(l) are < 1 in

absolute value. It follows by (2.62) and by a classical application of the Jordan decomposition that

limn φn(l) = 0. Using (ii) of Proposition 2 and (i) of Proposition 4 we can conclude that Xn
d→ U .

This completes the proof.N

Proposition 12 If Y1 is not supported by any closed proper subgroup of SO(3) or by any coset of

such a subgroup then for all l > 0 we have λ(l) ⊂ D.

Proof: We here copy the proof given in [21]. Let l > 0 and note U ≡ U l(Y1). The random matrix

U is unitary. Let λ ∈ λ(l) and let f be a nonzero dl × 1 column matrix such that φ(l)f = λf .

Remembering that φ(l) = E[U ], we have by Jensen’s inequality

|λ|2f †f = f †
E[U †]E[U ]f ≤ f †

E[U †U ]f = f †f (2.63)

It follows that |λ| ≤ 1. In order to prove the proposition we will show that |λ| 6= 1. We proceed by

contradiction. If |λ| = 1, the inequality in (2.63) is replaced by an equality. This is only possible

if Y1 is supported by the set G ⊂ SO(3) defined as follows. G is the set of P ∈ SO(3) such that

U l(P )f = λf . Suppose λ = 1. In this case, it can be checked immediately that G is a closed proper

subgroup of SO(3). This is a contradiction.

Suppose λ = eia where 0 < a < 2π. Let G0 = {P ∈ SO(3)|U l(P )f = f}. We have seen that G0

is a closed proper subgroup of SO(3). It is clear that for all R ∈ G we have G = RG0. It follows

that G is a coset of the closed proper subgroup G. This is a contradiction. Since our reasoning is

independent of l and λ, the proof is complete.N
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Theorem 2 gives a sufficient and necessary condition for the convergence Xn
d→ U . This condition

excludes the case where Y1 is supported by a closed proper subgroup of SO(3) or by a coset of such a

subgroup. This can be interpreted as follows. In order for the Xn to converge in distribution to U , the

values of Y1 must be sufficient to generate the whole group SO(3) by multiplication. When this is the

case, then independently of the precise distribution of Y1 the products Xn converge in distribution to

U . The convergence of the Xn leads to a uniformization of the distribution of Y1 and has no memory

regarding this distribution.

2.2 Application to polarization statistics

The current section is based on our paper [63]. Applying the mathematical development of Subsection

2.1.3, Subsection 2.2.3 introduces a new formalism for the polarization statistics of lightwaves. This

formalism is seen to generalize the classical Stokes formalism of polarization to higher order statistics.

It leads to a new definition of the notion of degree of polarization. In Subsection 2.2.4, this is used along

with the results of Subsection 2.1.4 in order to characterize the physical problem of depolarization.

The state of polarization of a lightwave reflects the joint statistics of the components of the fluctu-

ating transverse electric field. Classically, this is assumed to be contained in the so-called coherence

matrix of the lightwave which only contains second order statistics. This assumption relies on a hy-

pothesis of Gaussian fluctuations of the transverse electric field and on the close relation between

second order statistics and the physical observables of the wavefield. This approach is equivalent to

the classical Stokes formalism which we recall in Subsection 2.2.1. In many situations of interest,

the hypothesis of Gaussian fluctuations is broken due to a particular type of interaction between the

lightwave and a certain physical medium. While second order statistics contain information as to the

observables of the wavefield, they fail to account for the properties of the underlying physical medium.

This is illustrated by the experimental setting proposed by Ellis and Dogariu [12,13], which we present

in Subsection 2.2.2.

Many approaches have been proposed for including higher order statistics of the transverse electric

field into a consistent formalism. These are often driven by an effort to redefine the notion of degree

of polarization in a way appropriate to specific applications. In [60, 62], Réfrégier gives a measure of

the degree of polarization based on the Kullback relative entropy. Ellis and Dogariu [12] propose to

differentiate unpolarized lightwaves using fourth order statistics of the electric field. Mathematically,

the definition of degree of polarization which we will obtain in Subsection 2.2.3 is very close to the

one derived by Luis in [42]. We will compare our definition to [12] and [42] in Subsection 2.2.3.

Let us here note that all these approaches emphasize two aspects. That it is important to include

higher order statistics and that this should be done in accordance with the symmetry properties of

the wavefield. This is realized in Subsection 2.2.3 using the development of Subsection 2.1.3. After a

slight modification, it will be possible to interpret this developmet as giving a decomposition of the

higher order statistics of the transverse electric field along the irreducible representations of SO(3).

When considering the interaction of a lightwave with a physical medium, the formalism of Sub-

section 2.2.3 allows a perspective that is closer to statistical signal processing. The medium can be

regarded as a system determined by input/output states of polarization. In general, the response of

this system is random and depends on the physical parameters of the medium. Extraction of such

parameters from observed reflected or transmitted lightwaves reduces to parametric estimation of the

response of the system from sample input/output. This is briefly illustrated in Subsection 2.2.4.
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2.2.1 The classical Stokes formalism

We here recall the main features of the classical Stokes formalism of polarization. A thorough presen-

tation of this and other classical polarization descriptions can be found in [7]. We prefer to follow [31]

which has a greater emphasis on statistical effects. The Stokes formalism for the state of polarization

of a lightwave requires knowledge of the direction of propagation. Let E1 and E2 be the complex ana-

lytic signals representing the components of the electric field in a plane perpendicular to the direction

of propagation. If the electric field is fluctuating, E1 and E2 are considered random. The coherence

matrix of the lightwave contains the joint second order statistics of the couple (E1, E2). Consider the

following matrices

J =

[

E1E
∗
1 E1E

∗
2

E2E
∗
1 E2E

∗
2

]

〈J〉 =

[

〈E1E
∗
1 〉 〈E1E

∗
2 〉

〈E2E
∗
1 〉 〈E2E

∗
2 〉

]

(2.64)

The construction of the matrix J can be understood in terms of spinor algebra [6]. We are not

interested in this aspect here. For the matrix 〈J〉, the angular brackets denote averaging over the

fluctuations of the electric field. This matrix is known as the coherence matrix of the lightwave. The

linear invariants of 〈J〉 give the observables of the wavefield. In the following formula I is the average

light intensity and P is the degree of polarization.

I = tr 〈J〉 P =
[

1 − 4 det 〈J〉/[tr 〈J〉]2
]

1
2 (2.65)

The Stokes formalism can be obtained by decomposing J along a basis of Pauli matrices. These are

here chosen to be the following

σ0 =

[

1 0

0 1

]

σ1 =

[

−1 0

0 1

]

σ2 =

[

0 1

1 0

]

σ3 =

[

0 i

−i 0

]

Since J and 〈J〉 are Hermitian, there exist unique real Ji where 0 ≤ i ≤ 3 such that (2.66) holds. The

Ji are given in (2.67).

J = J0σ0 + J1σ1 + J2σ2 + J3σ3 〈J〉 = 〈J0〉σ0 + 〈J1〉σ1 + 〈J2〉σ2 + 〈J3〉σ3 (2.66)

J0 = E1E
∗
1 + E2E

∗
2 J1 = E1E

∗
1 − E2E

∗
2 J2 = E1E

∗
2 + E2E

∗
1 J3 = i(E2E

∗
1 − E1E

∗
2 ) (2.67)

In particular, it follows from formula (2.65) that 〈J0〉 = I. In describing the state of polarization, it

will be convenient to discard the role of I. One considers the so-called Stokes vector S and average

Stokes vector 〈S〉. These are given by (2.68). Note that it is a abuse of notation to write 〈S〉 since

this is actually not the average of S over fluctuations.

S = [S1, S2, S3] = (1/J0)[J1, J2, J3] 〈S〉 = [〈S1〉, 〈S2〉, 〈S3〉] = (1/〈J0〉)[〈J1〉, 〈J2〉, 〈J3〉] (2.68)

These ”vectors” have simply been defined as triplets of parameters related to E1 and E2. Their laws

of transformation (2.71) can be seen to give further justification to this terminology. The matrix 〈J〉
determines the second order statistics of the electric field. In case the fluctuations of this field are

Gaussian, they are completely determined by 〈J〉. The average Stokes vector 〈S〉 is a normalized

version of 〈J〉. In particular, it determines the eigendirections of 〈J〉 which are related to the ellipse

of polarization. When the fluctuations of the electric field are Gaussian, 〈S〉 is taken to determine the

state of polarization. The degree of polarization P defined in (2.65) is simply given in terms of 〈S〉 as

P =
[

〈S1〉2 + 〈S2〉2 + 〈S3〉2
]

1
2

(2.69)
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Clearly, in the case of non Gaussian fluctuations, 〈J〉 and 〈S〉 are not sufficient. Subsection 2.2.3 is

precisely concerned with this problem. It introduces the higher order average Stokes vectors 〈Sl〉 as

in (2.75). These contain higher order statistics and transform according to (2.76) which immediately

generalizes (2.71).

In terms of its state of polarization, the interaction of a lightwave with a physical medium can be

characterized by the Mueller matrix of the medium. This formulation does not consider the propa-

gation of the wavefield in the medium. Rather, it is assumed that incident and reflected/transmitted

states of polarization are related by a linear transformation characterizing the medium. If we refer

to these as input and output states of polarization given then the effect of the medium is given by a

complex 2 × 2 matrix T as follows

Jout = TJinT † (2.70)

here the subscripts in and out refer to the input and output states of polarization and T is known as

the Jones matrix. In order to write (2.70) as a transformation of the Stokes vector, we need to impose

a restriction on the matrix T . Namely, that T must be unitary. In this case, T preserves the trace

of Jin. Physically, this means that the average intensity is preserved, Iin = Iout. Thus a unitary T

represents a medium with no polarization related losses. In optics, such a medium is referred to as a

birefringent medium. Under this restriction, relation (2.70) is equivalent to

Sout = MSin 〈Sout〉 = 〈M〉〈Sin〉 (2.71)

The equivalence between (2.70) and (2.71) is proved in [31]. Here, M is a 3 × 3 matrix known as the

Mueller matrix of the medium. In fact, M arises from T by a tensor operation and it follows from

the fact that T is unitary that M ∈ SO(3). In particular, the terminology Stokes ”vector” seems

to be justified by the fact that in (2.71) the input Sin transforms into the output Sout by a proper

rotation. In general, the matrix M is also fluctuating. This is indeed the case when lightwaves are

transmitted by the atmosphere or by certain particle suspensions. The second relation in (2.71) is

based on the hypothesis that the fluctuations of the medium are uncoupled from those of the wavefield.

This justifies the following replacement –see discussion of relation (2.73) in Subsection 2.2.3.

〈Sout〉 = 〈MSin〉 = 〈M〉〈Sin〉

In Subsection 2.2.3 the formalism of the current subsection will be generalized to higher order statistics.

2.2.2 Experimental characterization of unpolarized light

Fluctuations of the transverse electric field of a lightwave arise in many situations. Of special impor-

tance to imaging applications are speckle phenomena. These arise from the coherent illumination of a

scattering medium or rough surface. Speckles appear as random intensity patterns due to interference.

Each speckle is considered as a realization of the fluctuating electric field. To each such realization

corresponds a realization of a Stokes vector defined as in (2.68). A statistical analysis of the state

of polarization of the lightwave requires observation of individual speckles. In principle, a sufficient

number of such observations gives access to the distribution of an underlying random Stokes vector S.

In fact, Ellis and Dogariu have shown this to hold using the experimental setting which we describe

in the current subsection. We refer to their paper [13].

In order to visualize the realizations of the random Stokes vector S, we consider the Poincaré

sphere [7]. Returning to equations (2.67) and (2.68), it is easy to check that individual realizations
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of S are restricted to the surface of a unit sphere. On the other hand, the average Stokes vector 〈S〉
takes its values inside this unit sphere,

S2
1 + S2

2 + S2
3 = 1 0 ≤ P =

[

〈S1〉2 + 〈S2〉2 + 〈S3〉2
]

1
2 ≤ 1 (2.72)

As explained in Subsection 2.2.1, S is a ”vector” in a parameter space. In the same way, one speaks

of the unit sphere in this parameter space as the Poincaré sphere. Note in (2.72) that the degree of

polarization satisfies 0 ≤ P ≤ 1. When P = 1, we have that S is constant, in the sense that S = 〈S〉.
This is referred to as a pure state of polarization. When P < 1, one speaks of a partially polarized

state. In particular, P = 0 is said to correspond to an unpolarized state. Thus, the surface of the

Poincaré sphere consists of pure states of polarization, while partially polarized states lie inside the

Poincaré sphere.

The average Stokes vector 〈S〉 corresponds to second order statistics of the fluctuating electric

field. As mentioned before, 〈S〉 is closely related to physical observables of the wavefield. These are

sufficient in the case of Gaussian fluctuations but provide no information as to the properties of the

physical system which has led to the formation of our individual observations. In order to obtain such

information, it is necessary to start from observations of individual speckles and obtain higher order

statistics or even the whole distribution of the random Stokes vector S. Clearly, these correspond to

higher order statistics of the fluctuating electric field. Non Gaussian fluctuations have been observed

in several applications, such as surface roughness measurements [19,52,59], detection of particles on a

surface [53], scattering from small particles and particle shape determination [26]. In all these cases,

pertinent information is to be found in the higher order statistics of S.

The experimental setting proposed in [13] gives access to the higher order statistics and the dis-

tribution of S and illustrates their pertinence to the properties of an underlying physical medium.

The aim is to characterize experimentally the statistics of unpolarized lightwaves. The situation is

considered which consists in coherent illumination of a thin layer of small –with respect to the incident

wavelength– independent scattering particles. Light is incident on this layer within a solid angle of 2π

and transmitted speckle patterns are observed along the optical axis of the layer. Various constitutions

for the layer are used, defined in terms of particle shape and orientation. Thus, the layer is either

constituted of spherical particles or of cylindrical particles distributed uniformly in a plane or a certain

family of planes. In order to prepare observations of individual speckles a Stokes polarimeter is used.

This is made up of a rotating quarter-wave plate, a fixed polarizer and a high-resolution CCD camera.

A realization of the random Stokes vector S can be obtained for each pixel within a speckle. These

realizations belong to the surface of the Poincaré sphere. They can be used to construct empirically

the distribution of S or to estimate its higher order statistics.

Resulting states of polarization are close to unpolarized and it is possible to consider that we always

have P = 0. However, depending on the constitution of the scattering layer, three types of states of

polarization were observed. These are differentiated by their higher order statistics. In particular,

they have different values of the correlations of the elements of S and for each type the distribution of

S has different symmetry properties. These were labelled type I, II and III unpolarized light [12, 13].

• The distribution of S on the Poincaré sphere is invariant by any rotation as well as symmetric

about any plane. Thus S is uniformly distributed on the Poincaré sphere. This is called type I

unpolarized light.

• The distribution of S is invariant by any rotation preserving S3 and symmetric about the plane

of S1 and S2. This is called type II unpolarized light.
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• The state of polarization is not of type II but the distribution of S is symmetric about the plane

of S1 and S2. This is called type III unpolarized light.

This classification cannot be given a physical justification within our limited presentation of the Stokes

formalism in Subsection 2.2.1. In fact, the symmetries required for each type correspond to a state of

polarization which is invariant under the effect of certain optical devices or physical transformation.

For example, symmetry about the plane of S1 and S2 implies that the state of polarization is invariant

by inversion of the direction of propagation.

A theoretical study of these three types is given in [12]. We will consider them within the gener-

alized Stokes formalism of Subsection 2.2.3. From the experimental results, it is possible to make the

following conclusions. It is clear that the average Stokes vector 〈S〉 fails to give any information on the

scattering layer. Such information appears to be contained in the correlations of the elements of the

random Stokes vector S. Moreover, the definition of unpolarized state seems to be incorrect. Indeed,

unpolarized states are obtained which in fact correspond to different distributions of S. In Subsection

2.2.3 we remove this ambiguity by proposing a stronger definition of the degree of polarization.

2.2.3 A generalized Stokes Formalism

Motivated by the discussion and experimental results presented in the last Subsection 2.2.2, the current

subsection uses the mathematical development of Subsection 2.1.3 to generalize the classical Stokes

formalism given in Subsection 2.2.1 to higher order statistics. The aim is to preserve the general form of

the classical Stokes formalism while avoiding its restriction to second order statistics. By decomposing

the higher order statistics of the random Stokes vector along the irreducible representations of SO(3)

a new formalism will be obtained which is based on definition (2.75) and relation (2.76) below. These

are similar to (2.68) and (2.71) of Subsection 2.2.1. However, they fully include higher order statistics

which provide information as to the properties of the underlying physical medium. As an application

of this new formalism, a definition of the degree of polarization will be proposed. This definition will

be used in characterizing the three types of unpolarized light encountered in the experimental setting

of Subsection 2.2.2. It will also be compared to other definitions of the degree of polarization proposed

in the literature with the aim of including higher order statistics.

Consider a standard situation consisting in the interaction of a lightwave with a physical medium.

The incident and reflected/transmitted states of polarization correspond to random Stokes vectors

Sin and Sout related by the Mueller matrix M of the medium as in (2.71). In general, the matrix M

is fluctuating and takes its values in SO(3). For convenience, relation (2.71) is copied here

Sout = MSin (2.73)

The analogy between relation (2.73) and (2.49) of Subsection 2.1.3 is clear. In order to apply the

results of Subsection 2.1.3 to (2.73) the following understanding is needed1. This was until now kept

implicit in the current section. We understand that fluctuating quantities such as Sin, Sout and M

are equivalent to random variables on some fixed probability space. The operation of averaging over

fluctuations, denoted for example by 〈M〉 in (2.71), is considered to be equivalent to mathematical

expectation on this probability space. Moreover, Sin and M are treated as independent random

variables. With this understanding, Proposition 9 of Subsection 2.1.3 will be applied to (2.73).

In order to apply Proposition 9 note that by identity (2.55) it follows from (2.73) that

Y l∗(Sout) = U l(M)Y l∗(Sin)

1While rigorously justifying such a convention is no simple matter, note that it corresponds to a usual mode of

operation in statistical physics. See for instance the textbook [37].
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for all l ≥ 0. Using the independence of Sin and M , it is possible to write as in Proposition 9

〈Y l∗(Sout)〉 = 〈U l(M)〉〈Y l∗(Sin)〉 (2.74)

Our formalism will result from a modification of the averaged relation (2.74) leading to an equivalent

real-valued relation. For l ≥ 0, the dl × 1 column matrices Y l are defined by (2.13) and (2.23). In the

above relation (2.74), the elements of Y l(Sin) and Y l(Sout) are polynomials of degree l in the elements

of Sin and Sout. While these polynomials are complex-valued, they can be replaced by real-valued

polynomials using (2.15) of Paragraph 2.1.1.2. Let S denote either one of the random Stokes vectors

Sin and Sout. For l ≥ 0 define Sl as the dl × 1 column matrices

Sl = [Sl
−l, . . . , S

l
l ]

where for −l ≤ m ≤ l the elements Sl
m of Sl are given by

Sl
m =











−1√
2

(

(−1)mY l
−m(S) + Y l

m(S)
)

for m > 0

Y l
0 (S) for m = 0
i√
2

(

(−1)−mY l
m(S) − Y l

−m(S)
)

for m < 0

(2.75)

For all l ≥ 0, it follows from (2.15) that Sl is real-valued. Moreover, it can be checked from (2.75)

that Sl and Y l(S) are related by a unitary linear transformation. It follows from (2.74) that for all

l ≥ 0 there exists a real orthogonal dl × dl matrix 〈M l〉 such that

〈Sl
out〉 = 〈M l〉〈Sl

in〉 (2.76)

where 〈M l〉 is related to 〈U l(M)〉 by a similarity transformation given by (2.75).

Definition (2.75) and relation (2.76) are the main equations of our formalism. For l ≥ 0, the vector

〈Sl〉 will be called the average Stokes vector of order l. The elements of Sl are real-valued polynomials

of order l in the elements of S. Thus, 〈Sl〉 gives the statistics of order l of S. These correspond to

statistics of order 2l of the fluctuating electric field. The transformation given by (2.76) is of the same

form as (2.71). However, it gives the laws of transformation of the statistics of order l of S for all

l ≥ 0.

Let us now apply (2.75) and (2.76) to the definition of the degree of polarization and to the

experimental results of Subsection 2.2.2. By analogy with (2.69) consider for l ≥ 0 the following

quantity P l

P l =

[

l
∑

m=−l

〈Sl
m〉2

]

1
2

(2.77)

This generalizes the degree of polarization to statistics of order l of the random Stokes vector S. As

in (2.72) we have for all l ≥ 0 that 0 ≤ P l ≤ 1 and P l = 1 implies Sl = 〈Sl〉. This results from the

following identity which holds for l ≥ 0

l
∑

m=−l

(Sl
m)2 =

l
∑

m=−l

|Y l
m(S)|2 = 1 (2.78)

Here, the first equality follows from (2.15) and (2.75). The second equality can be shown using (2.54)

and the definition of spherical harmonics (2.13). For all l ≥ 0, the quantity P l will be called the

degree of polarization of order l.

Let us give an example of average Stokes vectors and degree of polarization of order l = 1 and

l = 2. This is based on a direct calculation from (2.13) and (2.75). For l = 1 it follows that
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〈S1〉 = [−〈S2〉, 〈S3〉, 〈S1〉] and P 1 = P . In other words, the classical Stokes formalism of Subsection

2.2.1 is recovered using 〈S1〉. The average Stokes vector of order l = 2 is given by

〈S2〉 = [−
√

3

4
〈2S1S2〉,−

√
3〈S2S3〉, 〈

3

2
S2

3 − 1

2
〉,
√

3〈S1S3〉,
√

3

4
〈S2

1 − S2
2〉] (2.79)

Clearly, 〈S2〉 completely determines the second order statistics of S. In [12] it was suggested that

types I, II and III of unpolarized light could be differentiated by the correlations of the elements of S.

Consider the three following distributions for S. (i) S is uniformly distributed on the Poincaré sphere.

This corresponds to type I unpolarized light. (ii) S takes the values [0, 0,±1] with equal probability

1/2. This corresponds to type II unpolarized light. (ii) S is uniformly distributed on the great circle

of the Poincaré sphere belonging to the plane S1 = 0. This corresponds to type III unpolarized light.

In each of these three cases, 〈S1〉 = [0, 0, 0] and P 1 = 0. They are however physically different, as can

be seen from the average Stokes vector of order l = 2. In case (i) the vector 〈S2〉 is zero and P 2 = 0.

In case (ii), 〈S2〉 = [0, 0, 1, 0, 0] and P 2 = 1. In case (iii), 〈S2〉 = [0, 0, 1/4, 0,−
√

3/4] and P 2 = 1/2.

From the above example, it is clear that the degree of polarization P used in the classical Stokes

formalism fails to correctly characterize unpolarized light. Indeed, cases (ii) and (iii) verify P = 0.

Thus, in terms of the classical Stokes formalism, they are to be considered identical and correspond

to an unpolarized state. However, these cases display selection against certain states of polarization.

Moreover, case (ii) only allows two values of S. These two values in fact correspond to so-called left

and right circular polarization. In this sense, this case corresponds to a specific kind of pure state of

polarization and cannot be termed unpolarized. In order to avoid such ambiguities, we propose the

following stronger definition of the degree of polarization. For l ≥ 0, we have introduced in (2.77) the

state of polarization of order l, noted P l. We will say that S determines a totally unpolarized state

of polarization if for all l > 0 we have P l = 0. If for some l > 0 we have P l = 0, we will say that S

determines a state of polarization which is unpolarized at order l. With this terminology, types I, II

and III of unpolarized light can be characterized as follows.

• The distribution of S corresponds to type I unpolarized light iff S determines a totally unpo-

larized state of polarization. That is, iff P l = 0 for all l > 0.

• The distribution of S corresponds to type II unpolarized light iff for all l > 0 and m 6= 0 we

have 〈Sl
m〉 = 0 and for all l > 0 such that l is odd we have P l = 0.

• The distribution of S corresponds to type III unpolarized light iff P 1 = P = 0 and for all l > 0

and −l ≤ m ≤ l we have 〈Sl
m〉 = 0 whenever l + m is odd.

Our characterization of type I unpolarized light follows from Proposition 10. For type II and III

unpolarized light, we have used Proposition 11 and the fact that for all l > 0 and −l ≤ m ≤ l

Y l
m(S′) = (−1)l+mY l

m(S)

where S′ = [S1, S2,−S3] is the image of S by symmetry about the plane of S1 and S2.

Other definitions of the degree of polarization have been proposed in the literature with the aim

of including higher order statistics. In [42], the degree of polarization is considered in the context

of quantum optics. Mathematically, the definition thus obtained is quite similar to ours. Under the

assumption that

L =
∑

l>0

(P l)2 < ∞
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the following definition of the degree of polarization P is introduced in [42]

0 ≤ P =
L

1 + L
≤ 1 (2.80)

This is consistent with our terminology for a totally unpolarized state of polarization. Indeed, P = 0

in (2.80) iff we have in (2.77) that P l = 0 for all l > 0. In [60, 62], a different approach is taken to

the definition of the degree of polarization. A definition is proposed which is based on the Kullback

relative entropy between the distribution of the wavefield and the distribution of a completely isotropic

wavefield with the same intensity distribution. Unlike our definition in (2.77) and that of [42] in (2.80),

this definition takes into account the intensity distribution of the wavefield and not only the Stokes

vector S.

2.2.4 Depolarization

This subsection uses the results of Subsection 2.1.4 to address the physical problem of depolarization.

Depolarization will appear as a physical obstacle to the application of relations (2.76) of the last

Subsection 2.2.3.

Consider the situation described by relation (2.73). From the point of view of statistical signal

processing, this relation describes a random linear system. The response of this system is given by the

fluctuating Mueller matrix M . Suppose we seek to infer the physical parameters determining M from

observed input/output states of polarization. Information as to such physical parameters is contained

in the higher order statistics of Sout. Relations (2.76) give the higher order statistics of Sout in terms

of the matrices 〈M l〉. This indicates that our goal should be parametric estimation of the matrices

〈M l〉 from sample Sin and Sout.

This goal seems practically realisable. In many situations, Sin is known. The experimental setting

of Subsection 2.2.2 gives access to the higher order statistics of Sout when the output state of polar-

ization is observed. In the current subsection we will see how depolarization can lead to a breakdown

of relations (2.76) so that estimation of the matrices 〈M l〉 is not exploitable.

Depolarization appears as a loss of information due to interaction between Sin and the physical

medium. In particular, the distribution of Sout on the Poincaré sphere is made closer to a uniform

distribution. This can be quantified in terms of the definition of degree of polarization proposed in

the last Subsection 2.2.3. Rather than attempt to do this in general, we will be interested in a specific

kind of situation. Namely, we assume that the Mueller matrix M can be written as a product

M = M1 . . . Mn (2.81)

where n ≥ 1 and M1, . . . , Mn are Mueller matrices with values in SO(3). Such a decomposition holds

for many important applications. We will shortly consider a precise example from fiber optics. The

decomposition (2.81) corresponds to the physical medium being modelled as a succession of uncoupled

identical layers. The matrices M1, . . . , Mn are then treated as i.i.d. random variables. This recovers

the context of Subsection 2.1.4. For l > 0, note P l
in and P l

out the degree of polarization of order l

obtained as in (2.77) for Sin and Sout. By a reasoning similar to the one of inequality (2.63) in the

proof of Proposition 12, we have the following general estimation for P l
out

P l
out ≤ (λl)

nP l
in ≤ (λl)

n (2.82)

where λl ≤ 1 for l > 0. If the common distribution of the Mueller matrices M1, . . . , Mn satisfies the

condition of Theorem 2 then λl < 1 for l > 0. In the limit of large n we have P l
out = 0 for l > 0.
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The output state of polarization approaches a totally unpolarized state independently of the input

state. Thus, the output state contains no information as to the input state. It is important to observe

here that depolarization only takes place when the Mueller matrix M is fluctuating. Indeed, if M is

constant the condition of Theorem 2 is not satisfied.

We now consider the example of optical fibers with polarization mode dispersion. We refer to [20]

for a detailed introduction to this topic and to [73] for this particular example. Polarization mode

dispersion is a linear propagation effect in optical fibres which leads to a random mixture between

different polarizations. Consider a length Z of optical fiber and note the corresponding Mueller matrix

MZ . In our paper [63], it was shown that the corresponding matrices 〈M l
Z〉 as in (2.76) are given by

–compare to Subsection 2.3.3.

〈M l
Z〉 = e−

µ2

2
l(l+1)ZIl (2.83)

for l ≥ 0, where Il is the dl × dl identity matrix. Here µ ≥ 0 is a physical parameter characterizing

the fiber. For this example, the decomposition (2.81) corresponds to a partition of the length Z into

n successive intervals of equal length. This decomposition is discussed in [20]. From relations (2.76)

and definition (2.77) we now have

P l
out = e−

µ2

2
l(l+1)ZP l

in (2.84)

In particular, if the input state of polarization is pure, we have for Pout = P 1
out

Pout = e−µ2Z (2.85)

From formula (2.84) it is clear that the output state of polarization approaches a totally unpolarized

state in the limit of large Z. As for (2.82), information as to the input state of polarization is

lost. This is clearly an undesirable effect in optical fiber telecommunications. The importance of the

physical parameter µ stems from the fact that it determines the rate of convergence P l
out ↓ 0 for l > 0.

Equations (2.84) give the relation between this physical parameter and the higher order statistics of

Sout. Let us use (2.85) to estimate µ from observations of Sout. Remember that P is given by (2.69).

If samples S1, . . . , SN for some N ≥ 1 are available of Sout then empirical estimates P̂ and µ̂ of P and

µ can be formed

P̂ 2 =
1

N2

N
∑

i,j=1

ST
i Sj µ̂2 = − 1

Z
log(P̂ ) (2.86)

As an alternative to the empirical estimate P̂ , note that P can be estimated from intensity mea-

surements [61]. Depolarization poses two problems in using the estimates (2.86). First, when the

distribution of Sout is closer to a uniform distribution, a higher number N of samples becomes neces-

sary to obtain a good estimated value of P . Second, depolarization implies that P ↓ 0. In this limit,

the logarithm in (2.86) is divergent and can lead to numerical problems.

2.3 Rotation Lévy processes

Rotation Lévy processes will be defined as rotation processes with independent stationary increments

and which are stochastically continuous. This section studies the two essential kinds of such processes,

rotation compound Poisson processes and rotation Brownian motion.

In Subsection 2.3.1, the definition of rotation Lévy processes is given and the resulting expression

of their characteristic functions is recalled. Subsection 2.3.2 is devoted to the symmetry properties and

asymptotic behavior in distribution of rotation compound Poisson processes. Subsection 2.3.3 carries

out a similar objective in the case of rotation Brownian motion. Finally, Subsection 2.3.4 considers
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the interlacing construction used to obtain general Lévy processes from rotation compound Poisson

processes and Brownian motion. In particular, these two kinds of processes appear as the building

blocks of rotation Lévy processes. The main application of the current section will be to the solution

of the problem of decompounding in Subsection 2.4.2. In Section 2.4, this problem will be formulated

in terms of rotation compound Poisson processes.

Rotation Lévy processes are a special case of Lévy processes in compact Lie groups. A general

reference on Lévy processes with values in Lie groups is [40]. The paper [39] details the application

of characteristic functions to the study of Lévy processes in compact Lie groups. Compound Poisson

processes in Lie groups were introduced by Applebaum in [2]. In Subsection 2.3.3, our approach to

rotation Brownian motion will be different from that of [39, 40]. Indeed, we propose to start from

the definition of rotation Brownian motion as a multiplicative integral. This choice is discussed in

Subsection 2.3.3.

2.3.1 Definition and characteristic functions

This subsection states Proposition 13. This proposition is a direct result of the definition of rotation

Lévy processes. It gives a general expression of their characteristic functions. Note that Proposition

13 holds for a general rotation Lévy process, while propositions obtained in the rest of this section

concern specific rotation Lévy processes.

As in Section 2.1, we assume a complete probability space (Ω,A, P). By a rotation process Y we

mean a family of rotation random variables Yt indexed by t ≥ 0. In short, we write Y = (Yt)t≥0. The

following notation will be used. For 0 ≤ s ≤ t, note Y(s|t) ≡ Y T
s Yt. The rotation random variables

Y(s|t) are called the increments of Y . This is in the sense that Yt = YsY(s|t). Lévy processes will be

defined in terms of their increments. More precisely, Y will be called a rotation Lévy process if it

verifies the following conditions

(L1) Y0 = I almost surely.

(L2) For n ≥ 1 and 0 ≤ t1 ≤ . . . ≤ tn the rotation random variables Y(0|t1), . . . , Y(tn−1|tn) are

independent.

(L3) For 0 ≤ s ≤ t we have Y(s|t)
d
= Yt−s.

(L4) Yt
d→ I when t ↓ 0.

Conditions (L2) and (L3) respectively state that the increments of Y are independent and station-

ary. It follows from conditions (L3) and (L4) that Y is stochastically continuous. Strictly speaking,

conditions (L1) to (L4) define a left Lévy process. In particular, for t ≥ 0 and n ≥ 1 the following

product is ordered from left to right and is a product of i.i.d. rotation random variables

Yt = Y(0|t1) . . . Y(tn−1|tn)

where for 1 ≤ m ≤ n we have tm = (m/n)t. Right Lévy processes are defined by putting Y(s|t) ≡ YtY
T
s

so that for 0 ≤ s ≤ t we have Yt = Y(s|t)Ys. It can be seen easily that if Y is a left Lévy process then

Y T = (Y T
t )t≥0 is a right Lévy process. In the following we only consider left Lévy processes and the

adjective left will be dropped.

We now state Proposition 13 and give its proof. Let Y be a rotation Lévy process. For t ≥ 0 we

will note φt ≡ φYt
. Formula (2.87) gives the general expression of φt in terms of the matrices {Al}l≥0.

The precise form of these matrices in the case of rotation compound Poisson processes and Brownian

motion is obtained in Propositions 14 and 19 below. In Subsection 2.3.4 we will discuss the form of

{Al}l≥0 for a general rotation Lévy process Y .
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Proposition 13 For all l ≥ 0 there exists a dl × dl matrix Al such that for t ≥ 0

φt(l) = exp(tAl) (2.87)

Proof: For all 0 ≤ s ≤ t we have Yt = YsY(s|t). It follows from condition (L2) that Ys and Y(s|t) are

independent. Moreover, by condition (L2) we have Y(s|t)
d
= Yt−s. Applying (i) of Proposition 2 and

(ii) of Proposition 3 it follows for l ≥ 0

φt(l) = φs(l)φt−s(l) (2.88)

For l ≥ 0, the matrix function t 7→ φt(l) is continuous. Indeed, by (2.88) we have for 0 ≤ s ≤ t

|φt(l) − φs(l)| ≤ |φs(l)||φt−s(l) − Il| ≤ [2l + 1]
1
2 |φt−s(l) − Il|

where Il is the dl×dl identity matrix. By condition (L4) and (ii) of Proposition 2 we have φt−s(l) → Il

when t− s ↓ 0. It follows for t ≥ 0 that φs(l) → φt(l) when s ↑ t. The case where s ↓ t can be treated

similarly.

We now have that for l ≥ 0 the matrix function t 7→ φt(l) is continuous and satisfies (2.88). It

follows that there exists a dl × dl matrix Al such that for t ≥ 0 the expression (2.87) holds for φ(l)t.

This completes the proof.N

2.3.2 Compound Poisson processes in SO(3)

After recalling the definition of rotation compound Poisson processes, the current subsection will

consider their symmetry properties and asymptotic behavior in distribution. These are obtained

in Propositions 15 and 16, respectively. Both can be seen as results of Proposition 14 which gives

the characteristic function of a rotation compound Poisson process. Propositions 15 and 16 will be

important to the solution of the problem of decompounding in Subsection 2.4.2.

Rotation compound Poisson processes naturally generalize real-valued compound Poisson pro-

cesses. Let N = (Nt)t≥0 be a Poisson process with parameter λ > 0. Suppose (xn)n≥1 are i.i.d.

real-valued random variables and the family (xn)n≥1 is itself independent of N . Noting x0 = 0, the

following process y = (yt)t≥0 is said to be a real-valued compound Poisson process

yt =

Nt
∑

n=0

xn (2.89)

Rotation compound Poisson processes are defined by analogy to this formula. We continue with the

process N . Let (Xn)n≥1 be i.i.d. rotation random variables and suppose as before that the family

(Xn)n≥1 is independent of N . Noting X0 = I, the following process Y = (Yt)t≥0 is said to be a

rotation compound Poisson process

Yt =

Nt
∏

n=0

Xn (2.90)

We understand that products are ordered from left to right, in accord with Subsection 2.3.1 which

used the definition of left rotation Lévy processes. As in the classical case of the process y, the rotation

process Y is a pure jump process. This means that its paths consist of sequences of jumps. Note that,

by the definition of N , the paths of Y are càdlàg –right continuous with left limits.

Proposition 14 establishes that our definition of rotation compound Poisson processes is correct.

Formula (2.91) gives the expression (2.87) of the characteristic function of a rotation compound Poisson

process. The notation φt ≡ φYt
is used as for Proposition 13.
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Proposition 14 Let the process Y = (Yt)t≥0 be defined as above. Y is a rotation Lévy process.

Moreover, for t ≥ 0 we have

φt(l) = exp[λt(φ(l) − Il)] (2.91)

for l ≥ 0, where φ ≡ φX1
.

Proof: In order to see that Y is a Lévy process, we check conditions (L1) to (L4). Condition (L1)

follows immediately from the fact that N0 = 0. For condition (L2), we will prove that for all 0 ≤ s ≤ t

we have that Ys and Y(s|t) are independent. A complete proof of (L2) can be carried out similarly.

Let 0 ≤ s ≤ t and note that

Y(s|t) =

Nt−Ns
∏

r=1

XNs+r (2.92)

with the understanding that the product is equal to I if Nt − Ns = 0. Suppose h1, h2 : SO(3) → C

are continuous functions. Note Y1 ≡ Ys and Y2 ≡ Y(s|t). It is clear that

E[h1(Y1)h2(Y2)] =
∑

n≥0

∑

m≥0

E [h1(Y1)h2(Y2)1(Ns = n)1(Nt − Ns = m)] (2.93)

where the notation 1(A) stands for the indicator of an event A ∈ A. For all n, m ≥ 1, it follows from

the independence of (Xn)n≥1 and N and from the fact that N has independent increments that

E [h1(Y1)h2(Y2)1(Ns = n)1(Nt − Ns = m)] =

E[h1(X1 . . . Xn)]E[h2(Xn+1 . . .Xn+m)]P(Ns = n)P(Nt − Ns = m)

where we have used (2.92). Since the (Xn)n≥1 are i.i.d., the last equality can be written

E [h1(Y1)h2(Y2)1(Ns = n)1(Nt − Ns = m)] =

E[h1(X1 . . . Xn)]E[h2(X1 . . .Xm)]P(Ns = n)P(Nt − Ns = m)

The case where n = 0 or m = 0 can be treated similarly. It is now possible to evaluate the sum (2.93).

This decomposes into a product of two sums as follows

E[h1(Y1)h2(Y2)] =
∑

n≥0

P(Ns = n)E[h1(X0 . . . Xn)]
∑

m≥0

P(Nt − Ns = m)E[h1(X0 . . . Xm)]

The first sum is clearly equal to E[h1(Y1)] and the second sum can be identified with E[h2(Y2)] using

(2.92). It follows that

E[h1(Y1)h2(Y2)] = E[h1(Y1)]E[h2(Y2)]

This shows that Y1 ≡ Ys and Y2 ≡ Y(s|t) are independent for all 0 ≤ s ≤ t. Condition (L3) can also

be proved using (2.92).

We now prove (2.91). For t ≥ 0 and l ≥ 0

φt(l) = E[U l(Yt)] =
∑

n≥0

E[U l(X0 . . . Xn)]P(Nt = n)

where we have used the independence of (Xn)n≥1 and N . Using the fact that the (Xn)n≥1 are i.i.d.

we have

φt(l) =
∑

n≥0

[φ(l)]nP(Nt = n) = e−λt
∑

n≥0

(λt)n

n!
[φ(l)]n

and (2.91) follows from the Taylor series formula for the matrix exponential. To complete the proof,

we must obtain condition (L3) for Y . From (2.91) we have for l ≥ 0

lim
t↓0

φt(l) = Il
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using (ii) of Proposition 2 it follows that Yt
d→ I when t ↓ 0. This completes the proof.N

We now summarize the symmetry properties of the random variables Yt for t ≥ 0. Note first that

for all t ≥ 0, Yt does not have a probability density. Indeed, for all t ≥ 0 we have P(Yt = I) ≥ P(Nt =

0) = e−λt. It follows that Yt has an atom at I. We study Yt for t ≥ 0 using its characteristic function

which was given in Proposition 14. Combining formula (2.91) and the results of Paragraph 2.1.2.2 we

have the following proposition. It states that for all t ≥ 0 the symmetry properties of Yt are the same

as those of the (Xn)n≥1.

Proposition 15 Let t ≥ 0. If X1 is inverse (respectively, conjugate, zonal) invariant then Yt is

inverse (respectively, conjugate, zonal) invariant.

Proposition 16 gives the asymptotic behavior in distribution of Y . This is similar to the behavior of

products of i.i.d. rotation random variables described in Theorem 2. Proposition 20 of Subsection

2.3.3 gives the same result for rotation Brownian motion. A general version of this proposition which

holds for Lévy processes in compact Lie groups is given in [40]. We prove Proposition 16 using

Propositions 12 of Subsection 2.1.4 and Proposition 14. Another proof using only Proposition 12 is

possible.

Proposition 16 Let U be a uniformly distributed rotation random variable. If X1 is not supported

by any closed proper subgroup of SO(3) or by any coset of such a subgroup then Yt
d→ U when t ↑ ∞.

Proof: Using (ii) of Proposition 2, it is enough to prove that φt(l) → 0 for all l > 0 when t ↑ ∞.

This can be done using formula (2.91). By Proposition 12 we have for l > 0 that the eigenvalues

of φ(l) are all less than unity in absolute value. It follows that the eigenvalues of φ(l) − Il all have

negative real parts. Replacing in (2.91) we have for l > 0 that φt(l) → 0 when t ↑ ∞. This completes

the proof.N

2.3.3 Rotation Brownian motion

In the last subsection, rotation compound Poisson processes were introduced as pure jump rotation

Lévy processes. This subsection studies the essential continuous path rotation Lévy process, rotation

Brownian motion. The results obtained here are similar to those of the last subsection. Proposition

18 gives the symmetry properties of rotation Brownian motion. Proposition 20 obtains its asymptotic

behavior in distribution. We will study rotation Brownian motion using its definition as a multiplica-

tive integral. In Paragraph 2.3.3.1 we recall this definition and discuss that it does indeed lead to a

continuous path rotation Lévy process. In Paragraph 2.3.3.2 we will apply the definition of Paragraph

2.3.3.1 to Propositions 18 and 20. Proposition 19 of Paragraph 2.3.3.2 gives the characteristic function

of conjugate invariant rotation Brownian motion.

The first consideration of rotation Brownian motion is due to Perrin in 1928 [56]. Rotation Brown-

ian motion was then approached indirectly, using the heat equation on the rotation group. Stochastic

calculus makes possible a direct study of rotation Brownian motion, based on its stochastic differential

equation. This is the so-called Euler-Langevin equation. A simplified version of the Euler Langevin

equation was considered informally by Debye in 1913 [11]. Both [11, 56] consider rotation Brownian

motion as a model for the rotational motion of molecules.

The Euler-Langevin equation is a linear stochastic differential equation driven by a R3-valued

Brownian motion process B with coordinates [B1, B2, B3]. In matrix form, it is expressed as the

following Stratonovich stochastic differential equation [67]

dYt = YtdJt Y0 = I (2.94)
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Here Y = (Yt)t≥0 is the unknown process. The process J is an embedding of B in the space of

antisymmetric 3× 3 matrices. More precisely, for t ≥ 0 we have Jt = B1
t J1 + B2

t J2 + B3
t J3 where the

matrices J1, J2, J3 were given in (2.7) of Paragraph 2.1.1.1. Equation (2.94) is a matrix equation. It

is equivalent to the following system of linear stochastic differential equations, verified for 1 ≤ i, j ≤ 3

dY ij
t =

3
∑

l=1

[

3
∑

k=1

Y ikJkj
l

]

dBl
t (2.95)

where superscripts have been used to denote matrix elements. We will shortly see that (2.94) defines

a left rotation Brownian motion, in the sense explained in Subsection 2.3.1.

From (2.95), it is straightforward to derive the Itô stochastic differential equation equivalent to

(2.94). This is given in terms of the shifted process J̃ = (J̃t)t≥0 as follows

dYt = YtJ̃t J̃t = Jt +
1

2
E[J2

t ] (2.96)

2.3.3.1 Rotation Brownian motion as a multiplicative integral

The definition of rotation Brownian motion as a multiplicative integral was proposed by McKean in

1960 [47]. The use of multiplicative integrals has since evolved into a powerful and very general tool

for studying processes with values in Lie groups and even Riemannian manifolds [4, 15]. It will offer

us two advantages. First, multiplicative integrals support a simple and intuitive interpretation of

rotation Brownian motion. Second, it allows a straightforward probabilistic treatment avoiding more

complicated analytical methods.

Equation (2.94) is a linear stochastic differential equation driven by a Brownian motion B. We

know from elementary stochastic analysis that it has a solution Y with almost surely continuous

paths. This solution is moreover unique. Multiplicative integrals refer to the following technique for

approximating Y .

For n, m ≥ 0 let tnm = m/2n. For n ≥ 0 define the processes Jn and Y n on each interval

tnm ≤ t < tnm+1 by

Jn
t = Jtn

m
+ (Jtn

m+1
− Jtn

m
)
t − tnm
2−n

Y n
t = Ytn

m
exp

(

Jn
t − Jn

tn
m

)

(2.97)

with the initial condition Y n
0 = I.

The processes (Jn)n≥0 perform a linear interpolation of J . For all n, m ≥ 0 we have Jn
tn
m

= Jtn
m

and Jn is affine in t on each interval tnm ≤ t < tnm+1. Since J has almost surely continuous paths,

the processes (Jn)n≥0 converge to J almost surely uniformly. For n ≥ 0 the process Y n solves the

ordinary differential equation

dY n
t = Y n

t dJn
t Y n

0 = I (2.98)

which is equation (2.94) with Jn instead of J .

In order to approximate Y the sequence (2.98) of ordinary differential equations was introduced.

Formally, these equations approximate (2.94). The following Proposition 17 states that the solutions

Y n of the equations (2.98) do in fact converge to the solution Y of (2.94). This leads to the desired

definition of rotation Brownian motion. Our aim is here to interpret this proposition and to discuss

that the resulting process Y is indeed a continuous path rotation Lévy process.

Proposition 17 The processes (Y n)n≥0 converge locally uniformly in the square mean to the solution

Y of (2.94). In other words, for all T ≥ 0 we have

lim
n

E

[

sup
t≤T

|Y n
t − Yt|2

]

= 0 (2.99)
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Proposition 17 is here stated without proof. In Chapter 3, it will be considered in a stronger form

which applies to processes in matrix groups in general.

The approximation of Proposition 17 defines Y as a multiplicative integral. This terminology can

be justified as follows. Let n ≥ 0 and t ≥ 0 and define N = ⌈2nt⌉ –the upper integer part. For

0 ≤ m < N let tm = tnm and note tN = t. Expression (2.97) can be rewritten

Y n
t =

N−1
∏

m=0

exp
(

Jn
tm+1

− Jn
tm

)

(2.100)

where the product is ordered from left to right. From Proposition 17 we have the limit in the square

mean Y n
t → Yt. Thus, Proposition 17 gives Yt as a limit of products which correspond to regular

partitions of the interval [0, t]. The number of factors in the product (2.100) increases to infinity with

n while each individual factor converges to I. This is in clear analogy with the usual definition of an

integral in terms of Riemann sums. In the same way, the products (2.100) are referred to as Riemann

products.

Returning to expression (2.97), we have that on each interval tnm ≤ t < tnm+1 the evolution of the

process Y n is given by the exponential factor exp
(

Jn
t − Jn

tn
m

)

. The argument of the exponential is an

antisymmetric matrix which is a linear function of t. It follows that these exponential factors describe

uniform rotations connecting Y n
tn
m

to Y n
tn
m+1

. While the processes Jn are piecewise affine, the processes

Y n are piecewise uniform rotations. Thus Proposition 17 approximates Y by a sequence of piecewise

uniform rotation processes Y n. As seen before, the number of such uniform rotations up to a time t

increases to infinity while the time during which each uniform rotation is considered decreases to zero.

To end this paragraph, we would like to discuss that Proposition 17 does indeed define Y as a

continuous path rotation Lévy process. The fact that Y has continuous paths is already a result of

equation (2.94), since this equation is a stochastic differential equation driven by a Brownian motion.

The same result can be obtained from Proposition 17. Indeed, for n ≥ 0 the paths of the process Y n

are clearly continuous. According to Proposition 17, the paths of Y are uniform limits of continuous

paths. It follows that they are themselves continuous.

Two things remain to be seen. First that Y is indeed a rotation process. Second, that Y is a Lévy

process. That Y is a rotation process can be seen from equation (2.94). Indeed, this equation can

be used to check that almost surely Yt verifies conditions (2.1) for all t ≥ 0. Consider the process

Y T = (Y T
t )t≥0. By transposing equation (2.94) we have

dY T
t = −dJtY

T
t (2.101)

where we have used the fact that the values of the process J are antisymmetric matrices. Clearly,

Y0Y
T
0 = I, using integration by parts we have –remembering that equation (2.94) is a Stratonovich

equation

d(Y Y T )t = YtdJtY
T − YtdJtY

T
t = 0

so that YtY
T
t = I for all t ≥ 0. Note that integration by parts was here carried out for matrix

processes. This can be justified by writing down this operation in terms of matrix elements, as in

equation (2.95). Since det(Y0) = 1 and Y has almost surely continuous paths, it now follows that

det(Yt) = 1 almost surely for all t ≥ 0. Thus, conditions (2.1) are verified.

Proposition 17 leads quite directly to the fact that Y is a rotation Lévy process. For t ≥ 0 consider

the following sequences of rotation random variables

En
t =

∏

tn
m≤t

exp
(

Jn
tn
m
− Jn

tn
m−1

)

(2.102)
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on each interval tnm ≤ t < tnm+1 we have from (2.97) that

Y n
t = En

t exp
(

Jn
t − Jn

tn
m

)

Since Y n
t → Yt in the square mean, we also have En

t → Yt in the square mean. Indeed, the exponential

factor on the right hand side converges to I when n ↑ ∞. Let 0 ≤ s ≤ t and define for n ≥ 0 the

rotation random variables En
1 and En

2 as follows

En
1 =

∏

tn
m≤s

exp
(

Jn
tn
m
− Jn

tn
m−1

)

En
2 =

∏

s<tn
m≤t

exp
(

Jn
tn
m
− Jn

tn
m−1

)

By the approximation (2.102) we have the limits in the square mean En
1 → Ys and En

2 → Y(s|t). Note

that for n ≥ 0 the random variables En
1 and En

2 are independent. This follows from the fact that

the factors in each of these products depend on the increments of the Brownian process J which are

independent. Since independence is preserved by limits in the square mean, we have that Ys and

Y(s|t) are independent. In this way, condition (L2) can be checked for Y . A similar reasoning leads

to condition (L3). Condition (L1) is already clear in (2.94) and condition (L4) is verified since Y has

almost surely continuous paths.

We now have that Y is a left rotation Lévy process. In order to obtain a right rotation Lévy process

from Y , it is enough to consider the process Y T . We have seen that this is the solution of equation

(2.101). It is also possible to define Y T as a multiplicative integral. Indeed, such an approximation

simply follows from Proposition 17 by transposing the processes Y n.

2.3.3.2 The characteristic function of rotation Brownian motion

The current paragraph obtains the symmetry properties and the asymptotic behavior in distribution

of rotation Brownian motion. These are given in Propositions 18 and 20, respectively. Proposition 18

will be obtained directly from the definition of rotation Brownian motion as a multiplicative integral,

given in Proposition 17. Proposition 20 will result from Proposition 19 which gives the characteristic

function of conjugate invariant rotation Brownian motion. In order to obtain Proposition 19, we will

apply Proposition 18 and equation (2.96). Note that we have already met with expression (2.103) of

Proposition 19 in formula (2.83) of Subsection 2.2.4.

The symmetry properties of the solution Y of the Euler-Langevin equation are determined by the

covariance matrix C of the driving Brownian motion process B. We have the following proposition.

Proposition 18 Let Y be the solution of (2.94). For t ≥ 0 we have that Yt is inverse invariant.

Moreover, if the covariance matrix C of B is of the form a2I where a ∈ R then for t ≥ 0 we have that

Yt is conjugate invariant.

Proof: We start with the proof of inverse invariance. Given t ≥ 0, we will note En
t ≡ En where for

n ≥ 0 the rotation random variable En
t is given in (2.102). For t ≥ 0, we have the limits in the square

mean limn En = Yt and limn ET
n = Y T

t . For n ≥ 0 we will prove that En
d
= ET

n .

By (2.102) we have for n ≥ 0

En =
∏

tn
m≤t

exp
(

Jn
tn
m
− Jn

tn
m−1

)

From the definition of J and (2.97), it can be seen that this is a product of i.i.d. rotation random

variables. Note that for n, m ≥ 1

[

exp
(

Jn
tn
m
− Jn

tn
m−1

)]T

= exp
[

−
(

Jn
tn
m
− Jn

tn
m−1

)]
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Since Jt
d
= −Jt for t ≥ 0, it follows that each factor in the product for En is inverse invariant. By (ii)

of Proposition 5, we now have that En is inverse invariant. In other words En
d
= ET

n . Since equality

in distribution is preserved by limits in the square mean, we have Yt
d
= Y T

t , so that Yt is inverse

invariant.

The proof of conjugate invariance follows the same steps. If C = a2I with a ∈ R then for all

R ∈ SO(3) and t ≥ 0 we have RJtR
T d

= Jt. Using the following identity for n, m ≥ 1 and R ∈ SO(3)

R
[

exp
(

Jn
tn
m
− Jn

tn
m−1

)]

RT = exp
[

R
(

Jn
tn
m
− Jn

tn
m−1

)

RT
]

it follows that each factor in the product for En is conjugate invariant. Applying (iii) of Proposition

6, we now have that En is conjugate invariant. That is, REnRT d
= En for R ∈ SO(3). The proof can

be completed as before by taking limits in the square mean.N

Proposition 19 Let Y be the solution of (2.94) and suppose the covariance matrix C of B is of the

form a2I where a ∈ R. For t ≥ 0 we have

φt(l) = e−
a2

2
l(l+1)tIl (2.103)

for l ≥ 0, where φt ≡ φYt
.

Proof: By Proposition 18 we have that for t ≥ 0 the rotation random variable Yt is conjugate

invariant. It follows by (i) of Proposition 6 that for t ≥ 0 and l ≥ 0 we have φt(l) = al(t)Il where

al(t) ∈ R. From expression (2.28) of Paragraph 2.1.1.3 and definition (2.32) we have for t ≥ 0 and

l ≥ 0 that –again superscripts are used to denote matrix elements.

al(t) = E[U l
00(Yt)] = E[Pl(Y

33
t )]

we will compute this by replacing equation (2.96) in Itô’s formula. Note first that we now have in

(2.96) J̃t = Jt − a2tI for t ≥ 0. It follows that

dY 33
t = Y 31

t dB2
t − Y 32dB1

t − a2Y 33dt Y 33
0 = 1

and Itô’s formula can now be written down

dPl(Y
33
t ) =

a2

2
[(1 − (Y 33

t )2)P ′′
l (Y 33

t ) − 2Y 33
t P ′

l (Y
33
t )]dt + P ′

l (Y
33
t )[Y 31

t dB2
t − Y 32dB1

t ] (2.104)

where the prime stands for derivation. The second term only contains Brownian differentials and has

no influence on E[Pl(Y
33
t )]. By discarding this term we obtain

d

dt
al(t) =

a2

2
E[(1 − (Y 33

t )2)P ′′
l (Y 33

t ) − 2Y 33
t P ′

l (Y
33
t )] (2.105)

Note the differential equation for the Legendre polynomial Pl –see for instance [67].

(1 − x2)P ′′
l (x) − 2xP ′

l (x) = −l(l + 1)Pl(x)

Replacing this in (2.105) we have

d

dt
al(t) = −a2

2
l(l + 1)al(t) (2.106)

which immediately leads to (2.103) given the initial conditions.N

Based on Proposition 19, we can now give the asymptotic behavior in distribution of conjugate

invariant rotation Brownian motion. This is done in Proposition 20 below which gives for conjugate

invariant rotation Brownian motion the same result obtained in Proposition 16 for rotation compound

Poisson processes. The proof of Proposition 20 is an immediate application of (2.103) and (ii) of

Proposition 2. Indeed, it is clear from (2.103) that φt(l) → 0 for all l > 0 if a 6= 0.
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Proposition 20 Let U be a uniformly distributed rotation random variable. If Y is the solution of

(2.94) where C = a2I with real a 6= 0 then Yt
d→ U when t ↑ ∞.

2.3.4 Interlacing

Rotation compound Poisson processes and rotation Brownian motion are the essential rotation Lévy

processes. General rotation Lévy processes can be obtained from these two kinds of processes using the

interlacing construction. Given a rotation compound Poisson process (Yt)t≥0 and a rotation Brownian

motion (Wt)t≥0 we will see in the current subsection how the interlacing construction can be used

to obtain a new rotation Lévy process Z = (Zt)t≥0 from Y and W . We also consider the problem

of calculating the characteristic function of Z when W is a conjugate invariant rotation Brownian

motion. This is given in Proposition 21. This can be used to determine the symmetry properties and

asymptotic behavior in distribution of Z in the case where W is conjugate invariant. The interlacing

construction is well-known in the theory of Lévy processes with values in Lie groups [40]. It plays the

same role we have described in the case of rotation processes, leading to the construction of general

Lévy processes.

The current subsection has been included for completeness of our presentation of rotation Lévy

processes. However, very little use will be made of its content in the following. All that is required

for Section 2.4 is a general understanding of Proposition 21. For reasons of space, we do not include

a complete proof of this proposition. It is discussed below that such a proof can be obtained by

generalizing that of Proposition 19.

We start by describing the interlacing construction. Suppose we have processes Y and W as above.

Note N = (Nt)t≥0 and (Xn)n≥1 the Poisson process and i.i.d. rotation random variables used to define

Y as in Subsection 2.3.2. Let T0 = 0 and suppose (Tn)n≥1 are the jump times of N . The interlacing

construction gives the process Z defined as follows. We have the initial condition Z0 = I. For t > 0

and n ≥ 1

Zt = ZTn−1
W−1

Tn−1
Wt for Tn−1 ≤ t < Tn (2.107)

where the following formula holds at each time Tn –note that ZTn− stands for the left limit at Tn.

ZTn
= ZTn−Xn (2.108)

This definition is sufficient since Tn ↑ ∞ almost surely. The term interlacing comes from the fact

that the paths of Z are obtained by introducing the jumps of Y into the paths of W as these jumps

occur. The paths of W are thus interlaced with the jumps of Y . We refer to processes of the form Z

as interlaced processes.

Under the assumption that the processes W and N and the family (Xn)n≥1 are independent,

it can be shown that the process Z is a rotation Lévy process with càdlàg paths. With this same

assumption, Proposition 21 obtains the characteristic function of Z in the case where W is conjugate

invariant. The main difficulty in the definition of Z is that it is defined by pieces, on each stochastic

interval Tn−1 ≤ t < Tn.

Proposition 21 Let λ be the parameter of the Poisson process N and suppose W is conjugate in-

variant with its characteristic function given as in formula (2.103) of Proposition 19. For t ≥ 0 the

characteristic function φt ≡ φZt
is given by

φt(l) = exp

[

tλφ(l) − tIl

(

λ +
l(l + 1)a2

2

)]

(2.109)

for l ≥ 0, where φ ≡ φX1
.
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2.3. Rotation Lévy processes

In order to prove this proposition, it is possible to follow the same steps as for Proposition 19. Given

a stochastic differential equation satisfied by Z, Itô’s formula can be applied to obtain (2.109). Note

that Z is a discontinuous process and one must accordingly apply the so-called discontinuous Itô

formula.

The process Z verifies equation (2.111) below. In order to state this equation consider the following

processes J = (Jt)t≥0 and X = (Xt)t≥0.

Jt = B1
t J1 + B2

t J2 + B3
t J3 Xt =

∑

n≥0

1[0,t](Tn)[Xn − I] (2.110)

Here [B1, B2, B3] are the coordinates of a R
3-valued Brownian motion B with covariance matrix

C = a2I, for some a ∈ R. Moreover, we continue to use the notation X0 = I. The process J

corresponds to the rotation Brownian motion process W as in equation (2.94). The process X appears

in (2.111) in order to account for the jumps of Z as in (2.108). Equation (2.111) is stated in terms of

these two processes. In the absence of the second term on the right hand side, this is exactly equation

(2.94).

dZt = Zt−[dJt + dXt] Z0 = I (2.111)

The differential dJt of the Brownian process J is to be understood as a Stratonovich differential. On

the other hand, the differential dXt is an ordinary differential since the process X is of finite variation.

The proof that Z does indeed verify (2.111) is straightforward but contains several lengthy technical

steps. We do not consider it here.

For l ≥ 0 we are interested in the process Zl where for t ≥ 0 we have Z l
t = U l(Zt). Admitting

that Z is a rotation Lévy process it can be shown immediately that Zl has similar properties. For

example, we have for all 0 ≤ s ≤ t that

[Z l
s]

†Z l
t

d
= Z l

t−s

which results immediately from the property (L3) of Z and the homomorphism property (2.18) of U l.

Generally speaking, we have for l ≥ 0 that the process Z l has independent and stationary increments

and that Z l
0 = Il almost surely. Moreover, since Z is stochastically continuous, Z l is also stochastically

continuous.

For l ≥ 0, Itô’s discontinuous formula can be used to give a stochastic differential equation verified

by the process Z l. This is a linear stochastic differential equation similar to (2.111). Without giving

this equation explicitly, it is possible to infer (2.109). Indeed, it results from the discontinuous Itô

formula that the equation for Z l is of the form

dZ l
t = Z l

t−[dJ l
t + dX l

t] Z l
0 = Il (2.112)

Where J l = (J l
t)t≥0 is a Brownian process given by [B1, B2, B3] and X l = (X l

t)t≥0 is the process

X l
t =

∑

n≥0

1[0,t](Tn)[U l(Xn) − I]

Formula (2.109) can be obtained directly from (2.112). It is enough to average both sides of this

equation and to remember that the Brownian part of this equation yields formula (2.106) as in

Proposition 19.

It is important that we end with the following clarification. As we have stated, the interlacing

construction can be used to describe any rotation Lévy process. It should not however be thought

that any rotation Lévy process is an interlaced process. In all generality, a rotation Lévy process can

be obtained as a uniform limit of interlaced processes and there is no guarantee that it will be itself

an interlaced process.
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CHAPTER 2. Rotation processes with applications in wave physics

2.4 Application to multiple scattering

The current section is based on our paper [66]. The main focus is a stochastic approach to the inverse

problem of multiple scattering. This is treated throughout Subsections 2.4.1 and 2.4.2.

The inverse problem of multiple scattering aims to infer the properties of complex, e.g. geophysical

or biological, media by considering multiple scattering of mechanical or electromagnetic waves by these

media. In general, this problem can be formulated within the framework of various approximations of

the exact equations of radiative transfer [25]. The equations of radiative transfer are concerned with

the macroscopic intensity of the wavefield. However, in multiple scattering situations, these equations

admit of a straightforward microscopic interpretation. Considering a specific example, we will use

this interpretation to introduce a stochastic model of multiple scattering based on rotation compound

Poisson processes, which we have developed in Subsection 2.3.2. Within this model, the physical in-

verse problem of multiple scattering is reformulated as a statistical nonparametric estimation problem,

namely the problem of decompounding. Subsection 2.4.1 presents our stochastic model of multiple

scattering. The inverse problem of multiple scattering is identified with a special case of the problem

of decompounding. In Subsection 2.4.2 this problem is considered independently of its applications.

We provide a solution using a characteristic function method and apply this solution to numerical

simulations related to Subsection 2.4.1.

Characteristic function methods for nonparametric estimation on compact Lie groups have received

special attention in the engineering community. Many applications of such methods are reviewed

in [67]. Recent contributions include [76] and [36]. The same methods were studied in the case of

the rotation group and other related settings in [32,33]. An essential difference between the problems

treated in these works and the problem of decompounding treated in Subsection 2.4.2 is the fact

that decompounding proceeds from indirect observations. We will return to this aspect in Paragraph

2.4.2.2.

2.4.1 The compound Poisson model of multiple scattering

Using rotation compound Poisson processes, which were introduced in Subsection 2.3.2, leads to a

model of multiple scattering which is sufficiently precise as well as amenable to statistical treatment.

This model will be seen to recover the results of the small angles approximation of radiative transfer.

It also allows the formulation of the physical inverse problem of multiple scattering as the statistical

nonparametric estimation problem of decompounding. Let us note that a compound Poisson model for

the direct problem of multiple scattering was considered in [51]. However, this is based on real-valued

compound Poisson processes.

We consider a specific example. The development of Subsection 2.3.2 is converted into the termi-

nology of radiative transfer –see [25]. A scalar plane wave is perpendicularly incident upon a plane

parallel multiple scattering layer of thickness H . The global properties of multiple scattering in this

layer are determined by the mean free time τ and the mean free path ℓ. Normalizing the velocity of

the wave we have τ = ℓ. The individual properties of scatterers are determined by the power spectrum

of heterogenities which we introduce below. Suppose coordinates and time origin are chosen so that

the wave enters the layer at time 0 with direction of propagation s0 whose coordinates are [0, 0, 1].

The geometry of the layer suggests that the wave is transmitted uniformly in every plane section.

If 0 ≤ z ≤ H denotes the distance along s0 into the layer, then the direction of propagation s at

any point in the layer is given by sz with coordinates [s1
z, s

2
z, s

3
z]. Since sz represents a direction of

propagation, we have sz ∈ S2 for 0 ≤ z ≤ H .
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2.4. Application to multiple scattering

Although s0 is a determined quantity, sz for 0 < z ≤ H should be treated as random. Indeed,

the interaction of the wave with the layer takes place in the form of a succession of scattering events.

These are understood as interaction of the wave with individual scatterers. Both the time between

scattering events and the effect of scatterers on sz are subject to fluctuations and random physical

effects. The distribution of the random variable sH will be noted IH . We will identify IH with the

normalized angular pattern of intensity transmitted by the layer. We return below to the validity

of this identification. Let us already mention that it will recover the results of the small angles

approximation of radiative transfer.

Note Nz the random number of scattering events occurring through the distance 0 ≤ z ≤ H .

Suppose the nth scattering event takes place at a distance 0 ≤ Tn ≤ H . This affects the direction of

propagation as follows

sTn
= sTn−Xn (2.113)

here Xn is a rotation random variable and we will identify s with a line matrix of coordinates. From

(2.113) and the definition of Nz we have –the product is ordered from left to right.

sz = s0

(

Nz
∏

n=0

Xn

)

(2.114)

A certain number of standard physical hypotheses can be replaced in (2.114). This will allow for the

random product to be exhibited as a zonal invariant rotation compound Poisson process.

Under the condition ℓ ≪ H it is possible to make the hypothesis that the free path between

successive scattering events has an exponential distribution [69]. This allows us to model Nz as a

Poisson process with parameter 1/ℓ. Moreover, we suppose the scatterers identical and scattering

events independent. This amounts to taking the rotation random variables Xn to be i.i.d.. If the

additional assumption is accepted that the number of scattering events is independent of the whole

outcome of these events then formula (2.114) can be rewritten 0 ≤ z ≤ H

sz = s0Yz (2.115)

Where Y is a rotation compound Poisson process. It is usual to assume that the random variables

Xn have a common probability density p. In the theory of radiative transfer, p is known as the phase

function of the layer [25].

In order to simplify p we profit from the physical hypothesis of statistical isotropy. This implies

that scattering events in the layer as given by (2.113) are symmetric around the direction of propa-

gation sTn−. Statistical isotropy is a valid assumption in many concrete situations. It is verified by

analytical models such as Gaussian and Henyey-Greenstein phase functions, commonly used to de-

scribe scattering in geophysical and biological media [34]. Under the hypothesis of statistical isotropy

the rotation random variables Xn are zonal invariant and p is given by (2.48)

p(cosβ) =
∑

l≥0

dlxlPl(cosβ)

where the coefficients xl for l ≥ 0 are said to form the power spectrum of heterogenities [25]. If p is

the Henyey-Greenstein phase function then the power spectrum of heterogenities is given by xl = gl

for ≥ 0 and p can be expressed in the closed form [34,35]

p(cos β) =
1 − g2

(1 + g2 − 2g cosβ)
3
2

(2.116)
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CHAPTER 2. Rotation processes with applications in wave physics

The Euler angle 0 ≤ β ≤ π gives the scattering angle for a single scatterer interacting with the wave

whose direction of propagation is s0. The parameter g ∈ [0, 1[ is called the anisotropy or asymmetry

parameter. It can be shown to give the average cosine of the scattering angle β. For the scattering of

light waves by water clouds and blood we have respectively g = 0.85 and g = 0.95, see [35].

Propositions 14 and 15 can be used to give the angular transmitted pattern of intensity IH in terms

of the power spectrum of heterogenities. This is expressed in the following equation (2.117). The

hypothesis of statistical isotropy implies that the Xn are zonal invariant. It follows by Proposition

15 that YH is zonal invariant. The characteristic function of YH is then given by Proposition 14

with nonzero elements determined by Proposition 7 of Paragraph 2.1.2.2. The distribution of sH is

immediately related to that of YH due to equation (2.115). Indeed, both distributions depend only

on the scattering angle 0 ≤ β ≤ π between s0 and sH . We have

IH(β)

2π
=
∑

l≥0

(2l + 1)e
H
ℓ

(xl−1)

∫ β

0

Pl(cos t) sin tdt (2.117)

For the ratio IH(β) of intensity transmitted within a pencil of angle 2β around s0.

Equation (2.117) is well-known in the small angles approximation of radiative transfer where it

is derived under the assumption of strong forward scattering [25]. Mathematically, this translates

into a phase function p with a sharp peak around β = 0. This assumption was not explicitly made

in our development of equation (2.117) using rotation compound Poisson processes. However, the

identification of IH with the angular pattern of transmitted intensity implicitly requires for all the

intensity of the wave entering the layer to be transmitted. This precludes an important deviation

between s0 and sH . This identification is justified in situations with strong forward scattering where

most of the intensity will be measured in the forward direction. The domain of its validity has been

studied using Monte Carlo simulations of the exact equations of radiative transfer developed in [45].

In general, this interpretation of IH is not valid when scattering angles β appear which are close to

the so-called grazing angle β = π/2.

Equation (2.117) relates a directly observable outcome of multiple scattering by the layer to the

microscopic properties of the layer. This constitutes an interesting starting point for the formulation

of the inverse problem of multiple scattering. Our stochastic model of multiple scattering reformu-

lates this physical inverse problem as a statistical nonparametric estimation problem. The key to this

reformulation is the idea that attention should be shifted from the intensity of the wavefield to the

direction of propagation characterized as a spherical random variable. Supposing a situation where

(2.117) holds, being able to invert it implies access to the power spectrum of heterogenities or alter-

natively the phase function from direct intensity measurements. This implies inference of physical

parameters such as the parameter g of the Henyey-Greenstein phase function or determination of

microscopic properties such as the shape of individual scatterers [35].

Our statistical reformulation of this inverse problem consists in considering (2.115) in addition

to (2.117). Instead of carrying out measurements of transmitted intensity, we propose to recover

the microscopic properties of the layer from observations of sH . Such observations are equivalent to

observations of YH . According to the discussion before (2.117), both amount to observations of the

scattering angle β between s0 and sH . Instead of a physical inverse problem considering only (2.117) we

propose a nonparametric estimation problem formulated in terms of the rotation compound Poisson

process Y . This is the problem of decompounding which we consider in the following Subsection

2.4.2. Its aim is to estimate the probability density p of the rotation random variables Xn appearing

in (2.114) from observations of YH . This nonparametric estimation problem can be replaced by a

parametric problem if the objective is to infer the power spectrum of heterogenities or the parameter
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2.4. Application to multiple scattering

g of the Henyey-Greenstein phase function (2.116).

2.4.2 The problem of decompounding

We give a precise formulation of the problem of decompounding as identified in the last subsection. Al-

though this problem was motivated by the inverse problem of multiple scattering, it is here considered

independently of any applications. In Paragraph 2.4.2.1 a characteristic function method is proposed

for the solution of the problem of decompounding. The convergence of the estimates given by this

method is proved in Paragraph 2.4.2.2. Finally, Paragraph 2.4.2.3 applies the method of Paragraph

2.4.2.1 to numerical simulations related to the physical situation of Subsection 2.4.1.

In existing literature, decompounding refers to a set of nonparametric estimation problems involving

scalar compound Poisson processes [8, 72] –the definition of such processes was reminded in (2.89).

The main application of these problems is in queuing problems and risk theory [8]. Our paper [66]

considered the generalization of these problems to compact Lie groups. According to the general

theme of this chapter, the current subsection considers the problem of decompounding for rotation

compound Poisson processes. The solution presented here is simply a special case of the general

solution considered in [66]. It can be seen as a generalization of the approached used in [72] for scalar

compound Poisson processes.

Consider a rotation compound Poisson process Y defined as in (2.90). In particular, λ denotes

the parameter of the Poisson process N used to define Y . The problem of decompounding consists

in estimation of the common probability density (supposed to exist) of the rotation random variables

Xn from observations of the process Y . The unknown probability density will be noted p. Several

versions of the problem of decompounding can be stated, depending on the nature of observations

made of Y , compare to [66, 72]. We are interested in the following version which corresponds to the

analysis of the inverse problem of multiple scattering given in Subsection 2.4.1. We fix T ≥ 0 and

suppose that i.i.d. observations (Zn)n≥1 are available of a noisy version Z of YT . We aim to estimate

p from these observations. Z is related to YT according to a multiplicative noise model

Z = MYT (2.118)

where M and YT are independent. By (ii) of Proposition 3 we have for the characteristic function of

Z

φZ = φMφY (T )

The noise model is equivalent to replacing the initial condition Y0 = I with Y0 = M which has a

general distribution. We consider the case of Brownian noise. The characteristic function of M is

then given by (2.103) of Proposition 19

φM (l) = e−
σ2

2
l(l+1)Il

where σ2 is a variance parameter. Note that this corresponds to a conjugate invariant rotation

Brownian motion. In particular, by (ii) of Proposition 6, left and right multiplication of YT by the

noise M are indifferent, as far as the distribution of Z is concerned. It is possible to interpret the

noise model (2.118) in terms of the interlacing construction of Subsection 2.3.4. Using the notation

of Proposition 21 we have that ZT
d
= Z if Ta2 = σ2. Accordingly, the observations (Zn)n≥1 are

equivalent to i.i.d. observations of the interlaced process (Zt)t≥0 at time T . This process can be

seen as a noisy version of the process Y . In relation to the stochastic model of Subsection 2.4.1

we interpret the process (Zt)t≥0 as follows. This process includes in addition to the process Y which
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CHAPTER 2. Rotation processes with applications in wave physics

models the effect of multiple scattering a conjugate invariant Brownian motion W which we understand

as corresponding to local fluctuations taking place between scattering events.

The following Paragraphs 2.4.2.1 and 2.4.2.2 give our solution to the problem of decompounding

as stated here. This solution will reflect a difficulty which does not appear in the case of scalar

decompounding. Under the conditions of Proposition 16, if the observations (Zn)n≥1 correspond to

a sufficiently large time T then these observations will be uniformly distributed and will have no

memory of the random variables Xn.

2.4.2.1 A characteristic function method

We present a characteristic function method for the problem of decompounding. This is a special case

of the method proposed in [66] in the case of compact Lie groups. We proceed from the observations

(Zn)n≥1 defined according to the noise model (2.118). The unknown density p is given by the following

Fourier series

p =
∑

l≥0

dl tr
(

φX(l)U l†
)

(2.119)

where φX ≡ φX1
. This is simply rewriting formula (2.42) of Paragraph 2.1.2.2. A characteristic

function method consists in constructing nonparametric estimates for p from parametric estimates for

its Fourier coefficients φX(l) given for l ≥ 0.

We suppose λ and σ2 are known. As in Proposition 21, the characteristic function of Z defined in

(2.118) is given for l ≥ 0 by

φZ(l) = exp[TλφX(l) − T λ̄Il] (2.120)

where λ̄ is a constant determined by λ and σ2. We refer to this transformation φX 7→ φZ as the

compounding transformation. Decompounding will involve local inversion of the compounding trans-

formation. This is clearly related to inversion of the matrix exponential in a neighborhood of φZ(l) for

l ≥ 0. Rather than deal with this problem in general, we make the following simplifying hypothesis.

Hypothesis: X1 is inverse invariant.

For all l ≥ 0 we have from (i) of Proposition 5 of Paragraph 2.1.2.2 and by Proposition 15 of Subsection

2.3.2 that both φX(l) and φZ(l) are Hermitian. Moreover, it is clear from (2.120) that φZ(l) is positive

definite. Note Log the unique Hermitian matrix logarithm of a Hermitian positive definite matrix.

We can now express the inverse of the compounding transformation. From equation (2.120) it follows

that

φX(l) =
1

Tλ
log[φZ(l)] + (λ̄/λ)Il (2.121)

Let l ≥ 0. It follows from the definition (2.32) of the characteristic function that empirical estimates

of φZ(l) based on the observations (Zn)n≥1 are unbiased and consistent. This is a simple consequence

of the strong law of large numbers. See for example [27]. In order to estimate φX(l) using (2.121) it is

then important to ensure that the empirical estimates of φZ(l) are asymptotically Hermitian positive

definite.

We start by defining the empirical estimates φ̂n
Z(l) for l ≥ 0 and n ≥ 1

φ̂n
Z(l) =

1

2n

n
∑

m=1

(

U l(Zm) + U l(Zm)†
)

Hermitian symmetrization of empirical estimates is necessary for the application of (2.121). Since it is

a projection operation, this symmetrization moreover contributes to a faster convergence of the φ̂n
Z(l)

to φZ(l).
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Continuous dependence of the spectrum of a matrix on its coefficients is a classical result in

matrix analysis. Several more or less sophisticated versions of this result exist [41]. For a remarkably

straightforward statement see [71]. The spectrum of a complex matrix C will be noted λ(C). For each

l ≥ 0 and n ≥ 1 define the event Rn
l by

Rn
l = {λ(φ̂n

Z(l)) ⊂]0,∞[}

For l ≥ 0, the sequence (Rn
l )n≥1 controls the convergence of the spectra of the empirical estimates

φ̂n
Z(l). In particular,

P(∪n≥1 ∩m≥n Rn
l ) = lim

n
P(∩m≥nRn

l ) = 1

Using the events Rn
l we can write down well-defined estimates of φX . These are noted φ̂n

X(l) for l ≥ 0

and n ≥ 1

φ̂n
X(l) = 0 on Ω − Rn

l

φ̂n
X(l) = 1

Tλ
Log

[

φ̂n
Z(l)

]

+
(

λ̄/λ
)

Il on Rn
l

This expression gives our parametric estimates for the Fourier coefficients of p. We use them to

construct nonparametric estimates based on the Fourier series (2.119). Let K ≥ 0 and for l ≥ 0 note

fl = dle
−Kl(l+1)

For n ≥ 1 and L ≥ 0 our nonparametric estimate p̂n
L is given by

p̂n
L =

L
∑

l=0

fl tr
(

φ̂n
X(l)U l†

)

(2.122)

The subscript L corresponds to a cutoff or smoothing parameter. Indeed, infinitely many values of l

are excluded from the sum (2.122). When K > 0 the coefficients fl form a convolution mask ensuring

that the estimates p̂n
L can be taken to converge to a smooth probability density, see Paragraph 2.4.2.2.

It is usual to write expressions similar to (2.122) in terms of a rotation invariant kernel. See [32,36].

Such a transformation is not possible here due to the indirect nature of our observations. This is in

particular related to the more involved form of the φ̂n
X(l) as given above.

2.4.2.2 Convergence of parametric and nonparametric estimates

Here we discuss the convergence of the parametric and nonparametric estimates given in Paragraph

2.4.2.1. Our argument is presented in the form of Propositions 22 and 23 below. Proposition 22 gives

the consistency of the parametric estimates φ̂n
X(l). Proposition 23 states a subsequent result for the

nonparametric estimates p̂n
L.

For Proposition 22 we will need inequalities (2.123) and (2.124). These express stability results

for the eigenvalues of Hermitian matrices and for the Hermitian matrix function Log. Let A and B

be Hermitian d× d matrices, for some d ≥ 1. For 1 ≤ i ≤ d let αi and βi be the eigenvalues of A and

B respectively. Suppose they are arranged in nondecreasing order. We have

d
∑

i=1

(βi − αi)
2 ≤ |B − A|2 (2.123)

This inequality is known as the Wielandt-Hoffman theorem. In [41], it is stated for A and B real

symmetric. The general case of Hermitian A and B can be obtained from this statement using a

canonical realification isomorphism.
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Suppose A and B are positive definite. For our purpose it is suitable to assume both λ(A) and

λ(B) are contained in an interval [k, 1] for some k > 0. Under this assumption we have the following

Lipschitz property

|Log(B) − Log(A)| ≤
√

dk−2|B − A| (2.124)

In order to obtain (2.124) it is possible to start by expressing Log(A) as follows

Log(A) =

∫ 1

0

(A − Id)[t(A − Id) + Id]−1dt

This expression results from a similar one for the real logarithm applied to each eigenvalue of A.

Subtracting the same expression for Log(B), (2.124) follows by simple calculations.

Proposition 22 For all l ≥ 0 we have the limit in probability limn φ̂n
X(l) = φX(l).

Proof: We only need to consider l > 0. Indeed, φ̂n
X(0) = φX(0) = 1 for all n ≥ 1. Let l > 0, for all

n ≥ 1 we have

|φ̂n
Z(l)|op ≤ 1

2n

n
∑

m=1

|U l(Zm)|op + |U l(Zm)†|op = 1

where |.|op is the operator matrix norm. Passing to the limit, it follows from the strong law of

large numbers that the same inequality holds for φZ(l). In other words, all the eigenvalues of φ̂n
X(l)

and of φX(l) are less than unity. Since φZ(l) is positive definite, there exists kl > 0 such that

λ(φZ (l)) ⊂ [kl, 1]. For n ≥ 1 note R̃n
l the event

R̃n
l = {λ(φ̂n

Z (l)) ⊂ [kl/2, 1]}

from inequality (2.123) we have

P(Ω − R̃n
l ) ≤ P(|φ̂n

Z(l) − φZ(l)| > kl/2)

Since R̃n
l ⊂ Rn

l , it follows from inequality (2.124) that

P(|φ̂n
X(l) − φX(l)| > ε ∩ R̃n

l ) ≤ P(|φ̂n
Z(l) − φZ(l)| > k2

l ε/M)

for all ε > 0, where M = 4
√

dl/Tλ.

The proof can be completed by a usual application of Chebychev’s inequality,

P(|φ̂n
X(l) − φX(l)| > ε) ≤

(

8 + 2M2/ε2

n

)(√
dl

k2
l

)2

(2.125)

for all ε > 0.N

Proposition 23 relies on Proposition 22 and the Peter-Weyl theorem –Theorem 1 of Paragraph

2.1.1.3. It implies the existence of sequences (p̂k)k≥1 of nonparametric estimates given by (2.122)

converging to p in probability in L2(SO(3), µ). Convergence in probability in L2(SO(3), µ) means

that the following limit in probability holds

lim
k

‖p̂k − p‖ = 0

where ‖.‖ is the L2(SO(3), µ) norm given by the scalar product (2.21) of Paragraph 2.1.1.3

‖p‖2 = 〈p, p〉 =

∫

SO(3)

p2dµ
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Proposition 23 Putting K = 0 in (2.122), we have the limit in probability

lim
L

lim
n

‖p̂n
L − p‖ = 0

Proof: For L ≥ 1 let pL ∈ L2(SO(3), µ) be given by

pL =

L
∑

l=0

dl tr
(

φX(l)U l†
)

By the Peter-Weyl theorem, limL ‖pL−p‖ = 0. By (2.122) and Proposition 22 we have limn ‖p̂n
L−pL‖ =

0 in probability for all L ≥ 1. This follows since for all n, L ≥ 1

‖p̂n
L − pL‖2 =

L
∑

l=0

dl|φ̂n
X(l) − φX(l)|2

To conclude it is enough to observe that

‖p̂n
L − p‖2 = ‖p̂n

L − pL‖2 + ‖pL − p‖2 (2.126)

for all n, L ≥ 1.N

Proposition 22 obtained convergence in probability of the parametric estimates φ̂n
X(l) for all l ≥ 0.

These parametric estimates depend only on the observations. In particular, they can be evaluated

without any a priori knowledge of p. By introducing such knowledge, it is possible to define parametric

estimates φ̃n
X(l) converging in the square mean to the same limits φX(l). For l ≥ 0 and n ≥ 1 the

φ̃n
X(l) are given by

φ̃n
X(l) = 0 on Ω − R̃n

l

φ̃n
X(l) = 1

Tλ
Log

[

φ̂n
Z(l)

]

+
(

λ̄/λ
)

Idl
on R̃n

l

where the events R̃n
l are as in the proof of Proposition 22 and we assume known a priori constants

kl necessary for their definition. As in (2.122), we can define nonparametric estimates p̃n
L where for

n, L ≥ 1

p̃n
L =

L
∑

l=0

fl tr
(

φ̃n
X(l)U l†

)

For all l ≥ 0 and n ≥ 1 we have

E|φ̃n
X(l) − φX(l)|2 ≤ M ′

n

(

dl

k2
l

)2

(2.127)

where M ′ is a constant depending on the product Tλ. This follows by a reasoning similar to the proof

of Proposition 22. Moreover, for all n, L ≥ 1 we have after putting K = 0

E‖p̃n
L − p‖2 ≤ M ′

n

L
∑

l=0

(d3
l /k4

l ) + ‖pL − p‖2 (2.128)

for the functions pl defined in the proof of Proposition 23. This follows from formula (2.126).

We have characterized the convergence of parametric estimates using (2.125) and (2.127) and the

convergence of nonparametric estimates using (2.126) and (2.128). We make the following remarks

on these formulae. Inequalities (2.125) and (2.127) only give gross bounds for the rate of convergence

of parametric estimates. The quality of these bounds improves when the constants kl are greater,
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(a) Histogram of cos β under density p
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(b) Histogram of cos β under distribution of Y (T )

Figure 2.1: Compounding transformation of p (histograms)

i.e. closer to the value 1. This is equivalent to the L2(SO(3), µ) distance between p and the constant

function 1 being greater. This last point can be appreciated in relation to the example of figure 2.3 in

Paragraph 2.4.2.3. In Proposition 23 and inequality (2.128) we have ignored the role of the constant

K. This is discussed in our paper [66].

Inequalities (2.125) and (2.127) describe the convergence of nonparametric estimates in a way

similar to the one used in standard works on characteristic function methods [32, 36]. Indeed, the

nonparametric estimation error is decomposed into two terms. One is given by the parametric esti-

mation error and the other depends only on p. This second term is given by the convergence of the

Fourier series of p. This is determined by the smoothness properties of p. We note the two following

differences with [32, 36], both related to the indirect nature of our observations. First, the first and

second terms in (2.128) cannot be identified as the ”variance” and ”bias” of p̃n
L. Second, (2.128)

characterizes the nonparametric estimation error as depending on the whole spectrum of p –through

the constants kl– rather than just its smoothness properties.

2.4.2.3 Numerical simulations

The characteristic function method of Paragraph 2.4.2.1 is here illustrated for a numerical example.

In terms of the stochastic model for multiple scattering given in Subsection 2.4.1, this numerical

example corresponds to an application of the problem of decompounding to the inference of the

Henyey-Greenstein phase function p and anisotropy parameter g given in (2.116). Our example is of

a rotation compound Poisson process Y expressed as in (2.90) of Subsection 2.3.2

Yt =

Nt
∏

n=0

Xn

for t ≥ 0. Where the Poisson process N has parameter λ = 0.3 and the rotation random variables Xn

are zonal invariant with the common probability density p given by expression (2.116). Four values

will be considered for the parameter g in this expression: 0.85, 0.9, 0.95 and 0.99. We will put T = 10

for the time at which observations of Y are taken. We simulate a number n of i.i.d. observations of

Y (T ). The following values of n are used: 500, 5000 and 50000. Note that on average the number

N(T ) of factors involved in the random product Y (T ) is equal to 3.

Before going on, we confirm that the method of Paragraph 2.4.2.1 can be applied for this example.

Since the rotation random variables Xn are zonal invariant, they are also inverse invariant. Indeed,
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Figure 2.2: Influence of n (� = 5 ∗ 102; ◦ = 5 ∗ 103; △ = 5 ∗ 104)

by (i) of Proposition 7 we have for l ≥ 0 that the only nonzero element of the matrix φX(l) is φl
00 = xl

with xl ∈ R –see definition (2.47). It follows that for l ≥ 0 the matrix φX(l) is diagonal and real.

That the Xn are inverse invariant results immediately by (i) of Proposition 5. We have noted before

expression (2.116) that xl = gl for l ≥ 0 where g ∈ [0, 1[.

We will present three sets of figures. Figure 2.1 is concerned with the compounding transformation

of p. Figure 2.2 illustrates the influence of n on the estimation error for the Fourier coefficients xl of p

and for the parameter g. Figure 2.3 studies the influence of g on the estimation error for the Fourier

coefficients xl given a fixed n. For figures 2.1 and 2.2 we have g = 0.9. For figures 2.1 and 2.3 we have

n = 50000. We now comment on each of these figures.

Figure 2.1 illustrates the relation between the distribution of the Xn as given by the density p

and the distribution of Y (T ). Both these distributions are studied using histograms. The histogram

in figure 2.1(a) is for the cosine of the Euler angle 0 ≤ β ≤ π associated with the rotation random

variable X1. The histogram in figure 2.1(b) is for the cosine of β associated with Y (T ). Figure 2.1

is concerned with the direct compounding transformation rather than the inverse decompounding

transformation. It is meant to show the histogram in figure 2.1(b) as function of the one in 2.1(a). As

expected, the latter histogram appears as a more heavy-tailed version of the former. This corresponds

to the content of Proposition 16 of Subsection 2.3.2. Note also that the dominant value in figure 2.1(b)

has moved away from β = 0.

For figure 2.2, the observations made of Y (T ) are used to carry out the decompounding approach

of Paragraph 2.4.2.1. The estimation error for the Fourier coefficients xl and for the parameter g is

given graphically for different values of n. Figure 2.2(a) compares the estimated Fourier coefficients

of p to their theoretical values xl = gl. In figure 2.2(b), a priori knowledge of the analytical form of

the xl is supposed. This is used to estimate g. A different parametric estimate is obtained from each

estimated Fourier coefficient. In figures 2.2(a) and 2.2(b) theoretical values are represented by a thick

solid line.

In figure 2.2(a) we have estimated the first L = 31 Legendre coefficients for each value of n. Let

us note these estimated coefficients x̂n
l for 0 ≤ l < L and the corresponding value of n. They can be

used to evaluate a nonparametric estimate of p as in formula (2.122). This is done by replacing them

in a truncated Fourier series (2.48). We have the nonparametric estimate of p which we note p̂n
L

p̂n
L(cosβ) =

L−1
∑

l=0

dlx̂
n
l Pl(cosβ)
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Figure 2.3: Influence of g (◦ = 0.85; � = 0.9; △ = 0.95; ∇ = 0.99)

Depending on n, the random nonparametric estimation error from p̂n
L is given by

∑

l<L

dl(x̂
n
l − xl)

2 +
∑

l≥L

dlx
2
l

this is the squared L2(SO(3), µ) distance between p̂n
L and p. In figure 2.2(a) the sum over l < L

appears as a weighted quadratic deviation between estimated and theoretical values.

In figure 2.2(b) the estimates x̂n
l are used to give naive estimates ĝn

l of g based on the analytical

form of the xl from expression (2.116). The error in each of these estimates ĝn
l is directly related to

the error in the estimate x̂n
l . This latter error is shown for each l and n in figure 2.2(a). The influence

of n is not important for small values of l. Visually, the x̂n
l in figure 2.2(a) agree independently of n for

0 ≤ l ≤ 5. For n = 50000 the x̂n
l appear to have a regular dependence on l. For n = 500 we have an

irregular dependence of the x̂n
l on l, especially for l ≥ 10. Moreover, for l ≥ 20 there appear negative

values of x̂n
l , clearly inconsistent with the form xl = gl. These values do not allow the evaluation of

corresponding parametric estimates ĝn
l .

For figure 2.3 we have n = 50000. For each value of g we simulated n observations of Y (T ) and

calculated estimates of the Fourier coefficients of p as for figure 2.2(a). Estimated and theoretical

Fourier coefficients are respectively represented by empty and filled-in symbols. It is clear from this

figure that the nonparametric estimation error is smaller for larger values of g.

In order to understand this behavior we note that g in (2.116) gives the concentration of p near

the value β = 0. Indeed, when g = 0 the function p is constant and the rotation random variables Xn

are uniformly distributed. In the limit g ↑ 1 we have that each random variable Xn is almost surely

equal to the identity matrix. Conditionally on the event {N(T ) > 0}, the distribution of Y (T ) is a

mixture of distributions with Henyey-Greenstein density. More precisely, for all m > 0 we have the

conditional probability density for the Euler angle β associated with Y (T )

p(β|N(T ) = m) =
1 − g2m

(1 + g2m − 2gm cosβ)
3
2

In particular, in the limit g ↑ 1 we have that Y (T ) is almost surely equal to the identity matrix.

Conditionally on {N(T ) > 0}, we have in the limit g ↓ 0 that Y (T ) is uniformly distributed.

Let us note that in our example P(N(T ) > 0) ≃ 0.96. Figure 2.3 can be understood in light of

the above discussion. For greater values of g, observations of Y (T ) are concentrated near the identity

matrix. This leads to fast convergence of our estimates for the Fourier coefficients of p. For smaller
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values of g, observations of Y (T ) are more dispersed and the convergence of estimates is slower. In

the limit g ↓ 0 the observations are close to uniformly distributed and our approach breaks down due

to numerical problems.

2.5 Conclusions

Thic chapter has presented the results of two completed papers [63, 66]. We have dealt with direct

applications in wave physics, namely in polarization statistics and multiple scattering. Our motivation

was to adapt a consistent probabilistic formalism which could include the more geometric aspects of

problems arising in these two fields. This was realized by considering rotation random variables and

rotation processes, especially rotation Lévy processes. Consequently, applications to wave physics

including both modelling and estimation problems were carried out completely. The main estimation

problem dealt with in this chapter is the problem of decompounding, Subsection 2.4.2.

Sections 2.1 and 2.3 offer a self-contained introduction on rotation random variables and rotation

Lévy processes. Section 2.1 is mainly devoted to the theory of characteristic functions of rotation

random variables. While these are already used in many engineering problems, Section 2.1 presents

certain differences with the corresponding literature. Paragraph 2.1.2.2, for example, characterizes

the symmetry properties of rotation random variables in terms of their characteristic functions. These

properties proved highly important to our applications both in Sections 2.2 and 2.4. Subsection 2.1.4

considers the asymptotic properties of products of i.i.d. rotation random variables. This is a classical

mathematical problem which we have found to have important implications for estimation problems.

Section 2.3 presents a basic introduction to rotation Lévy processes. We have sought to use only

the tools of Section 2.1 and some elementary tools of Brownian stochastic calculus. As such, our

presentation is based on the examples of rotation compound Poisson processes and rotation Brownian

motion. However, in Subsection 2.3.4 we briefly describe the interlacing construction which can be

used to give general rotation Lévy processes from rotation compound Poisson processes and rotation

Brownian motion.

Section 2.2 is based on our paper [63]. It is concerned with a general modelling problem in

polarization statistics and uses the mathematical tools of Section 2.1. The aim is to develop a statistical

formalism which generalizes the classical Stokes formalism in optics to higher order statistics. This

problem has been considered in several works in the optics literature and different solutions have been

proposed, depending on target applications. Section 2.2 takes as its starting point the experiments of

Ellis and Dogariu [12,13]. These experiments show the insufficiency of the classical Stokes formalism

which is only based on second order statistics. The formalism developed in Section 2.2 is consistent

with these experimental results and also compares favorably to other solutions considered in the

literature.

Section 2.4 is based on our paper [66]. It solves the problem of decompounding and presents this

problem as a statistical alternative to the physical inverse problem of multiple scattering. The prob-

lem of decompounding is a nonparametric estimation problem stated in terms of rotation compound

Poisson processes. We solve this problem using a characteristic function method, based on Section 2.1.

The decompounding problem presents an essential difficulty in comparison to similar nonparametric

estimation problems. Indeed, this problem uses indirect observations. As a result, it involves an

additional nonlinearity and does not have the usual invariance properties. In order to overcome this

difficulty, application of our characteristic function method to the problem of decompounding requires

specific tools from matrix analysis as well as a more detailed statistical treatment. We provide a
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theoretical proof of the convergence of our method and discuss it using numerical simulations.
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Chapter 3

Filtering of matrix processes under

nonlinear constraints

This chapter considers linear filtering problems subject to nonlinear constraints. Filtering is here

understood in its wider sense. A signal process is to be inferred or approximated from an observation

process. Casting linear filtering problems in matrix form is a standard procedure. It will be seen

to lead to a consice expression of nonlinear constraints. While we are interested in continuous time

filtering for general matrix processes, we start in Section 3.1 by illustrating the general structure of

our approach for discrete time rotation processes –this section is based on our paper [64].

Nonlinear constraints are inherent to a significant class of processes with linear dynamics. These

constraints express symmetry considerations related to the nature of target applications. For exam-

ple, signals subject to orthogonality or unitarity constraints include phase signals, signals from wave

physics [63,66], DNA dynamics [58] and motion capture [38]. A major difficulty arising for such con-

strained signals is that it is impossible to apply linear signal processing operations while respecting

nonlinear constraints. In the case of phase signals, this is dealt with using the extended Kalman

filter, as in the example of the PLL –phase locking loop. Geometrically, this is a very simple case and

the equations of the extended Kalman filter do not seem to be tractable in the case of, for example,

rotation signals.

Most existing work applies so-called global linearization methods for dealing with this difficulty.

Applications have included filtering and analysis of variance [18, 75]. In [75], Xavier and Manton

explain the setbacks of these methods which attempt to map constrained processes pointwise into

unconstrained processes or processes with only linear constraints. Our approach is completely different

as it is based on local linearization. As opposed to the pointwise transformations involved in global

linearization methods, local linearization is essentially a functional transformation.

Our approach is first presented for the case of discrete time rotation signals in Section 3.1. Local

linearization is defined in Subsection 3.1.1 based on a dynamical representation of these signals. Section

3.2 is concerned with continuous time Brownian matrix processes. We consider these processes to give

the general setting for the definition of our filtering problems. In this section, local linearization

is defined in Subsection 3.2.3. As presented in Section 3.1, our approach to the filtering of matrix

processes under nonlinear constraints is the following. One starts from the observation process which

is subject to nonlinear constraints. Using local linearization this process as a whole is transformed into

a process with only linear constraints. This new process can be treated using linear signal processing

operations. An inverse transformation is then applied to recover a process respecting the nonlinear
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CHAPTER 3. Filtering of matrix processes under nonlinear constraints

constraints. This process is expected to infer more directly or to approximate the signal process.

The aim of this chapter is to formulate and justify this approach. Local linearization consists in

transforming a process from a constrained domain to a linear domain. The main point in the following

will be that this is a stable functional transformation. The stability properties of local linearization

imply that the approximation realized by filtering in the linear domain is preserved in the constrained

domain. Our approach is formulated and studied in a general setting in Section 3.2. This section

requires closer knowledge of Brownian stochastic analysis. The importance of such mathematical

techniques to signal processing is well-known. See the survey paper [23] by Haykin et al. and the

many references therein.

3.1 Filtering of rotation time series

The current section is based on our paper [64]. It illustrates our approach based on local linearization

in the special case of discrete time rotation processes. We refer to these as rotation time series. In

addition to the difficulty related to nonlinear constraints, rotation time series display problems related

to noncommutativity. Local linearization deals with such problems as it preserves the order in time

of the samples of a rotation time series –see Paragraph 3.1.1.1 below. Lee and shin [38] and Fang

et al. [16] have proposed methods based on local linearization for real-time filtering and smoothing

applications. They evaluate the performance of these methods through examples. In this section, we

aim to gain a theoretical understanding of this aspect by showing that the applied local linearization

is stable. This is the object of Paragraph 3.1.1.2.

The plan of the current section is the following. Subsection 3.1.1 defines local linearization and

obtains its stability properties. Subsection 3.1.2 gives two examples of our approach to the filtering

of rotation time series. Subsection 3.1.3 considers the invariance properties of local linearization. In

particular, invariance by time shift is used to consider the notion of a filter for rotation time series.

Finally Subsection 3.1.4 prepares the following Section 3.2 by considering an example of a filtering

problem for continuous time rotation processes.

3.1.1 Local linearization

Rotation time series are considered to be made up of a fixed number N ≥ 1 of recordings of rotations

On ∈ SO(3) where 1 ≤ n ≤ N . We note O the N -tuple of the On. In Paragraph 3.1.1.1 local

linearization of a rotation time series O is defined in terms of a mapping O 7→ o where o is a time

series of N antisymmetric 3× 3 matrices on where 1 ≤ n ≤ N . Paragraph 3.1.1.2 obtains the stability

properties of the inverse mapping o 7→ O.

It will be seen that local linearization has a much wider range of applicability than global lin-

earization. In particular, it can always be applied to rotation time series O arising from a continuous

process Y : R+ → SO(3). Global linearization imposes strong conditions on the rotation times series

O. This is necessary to avoid the problems of distortion and singularities which do not arise with local

linearization. This was discussed in [38] and we return to it in Paragraph 3.1.1.1.

3.1.1.1 Dynamics of rotation time series

Let O be a rotation time series. By considering a dynamical representation of O it will be possible

to introduce a local linearization mapping O 7→ o where o is a time series of antisymmetric 3 × 3
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3.1. Filtering of rotation time series

matrices. Such a representation is given by

On+1 = OnΩn+1 (3.1)

for 1 ≤ n ≤ N − 1, where Ωn+1 = OT
n On+1. In the language of solid body kinematics, right

multiplication by Ωn+1 in (3.1) corresponds to a body rather than to a space representation. Consider

the N -tuple Ω where Ω1 = O1 and Ωn+1 is given by (3.1) for 1 ≤ n ≤ N − 1. It is clear that O and

Ω are equivalent. More precisely, for 1 ≤ n ≤ N

On =

n
∏

i=1

Ωi = Ω1 . . . Ωn (3.2)

where the product is ordered from left to right. Due to the fact that the matrix group SO(3) is

noncommutative, the order in time of the samples On of O takes on an additional importance. This

is taken into account in (3.2) as a similar order is assigned to the elements of Ω. The construction of

Ω as in (3.1) is the first step of the local linearization mapping O 7→ o.

In order to apply local linearization to the time series O we need to assume it satisfies the following

mild regularity condition

ϕn = arccos[(tr(Ωn) − 1)/2] < π (3.3)

for 1 ≤ n ≤ N , where arccos is taken so that0 ≤ ϕn ≤ π. The angle ϕn given in (3.3) is the angle of

the rotation Ωn. Condition (3.3) imposes an upper bound on the angular distance between successive

samples On and On+1 for 1 ≤ n ≤ N −1. Under this condition we have that for 1 ≤ n ≤ N the matrix

Ωn has a uniquely defined matrix logarithm ωn = log(Ωn) which is a real antisymmetric matrix. We

note ω the N -tuple of the ωn. For 1 ≤ n ≤ N we have –see [1].

ωn =
ϕn

2 sinϕn

(On − OT
n ) (3.4)

when ϕn 6= 0 and ωn = 0 when ϕn = 0. Local linearization consists in the mapping O 7→ o where o is

a time series of antisymmetric matrices on for 1 ≤ n ≤ N given by

on =
n
∑

i=1

ωi (3.5)

This is similar to (3.2) with the additive structure of antisymmetric matrices replacing the multiplica-

tive structure of SO(3). It is important to note two properties of the mapping O 7→ o. First, this is a

mapping of the whole rotation time series O. This is in the sense that for 1 ≤ n ≤ N the matrix on

depends on O1 . . .On. Second, this mapping does realize the first goal of local linearization. Indeed,

the rotation time series O is subject to nonlinear constraints while the time series of antisymmetric

matrices o is only subject to linear constraints.

Again, the time series o is equivalent to O since we have

On =
n
∏

i=1

exp(oi − oi−1) (3.6)

with the convention o0 = 0. The following Paragraph 3.1.1.2 is concerned with the stability properties

of the mapping o 7→ O of (3.6). We do not impose any conditions on o, apart from being a time series

of N antisymmetric matrices. Thus, the transformation o 7→ O is not invertible, since condition (3.3)

is not guaranteed.

Condition (3.3) is essential for methods based on local linearization. It should be noted that this

conditions is far less restrictive than what is needed to perform global linearization. Let us admit
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that the time series O arises from a continuous time rotation process Y : R+ → SO(3). It is clear

that if Y is continuous then (3.3) can always be satisfied by sampling Y with a sufficiently high

frequency. This remains true of Y has jumps but that these jumps have angles bounded by some

a < π. Global linearization requires that condition (3.3) be satisfied by each On. This is a condition

referring directly to Y . On the contrary, we have discussed that condition (3.3) merely refers to the

way Y is sampled. Generally speaking, local linearization has a much wider range of applicability

than global linearization.

Imposing condition (3.3) on each On, global linearization attempts to eliminate nonlinear con-

straints by individually transforming the sample On. A time series of antisymmetric matrices õn =

log(On) is proposed as a linearization of O –see for example [18]. The mapping thus obtained suffers

from important distortion problems and is moreover not coordinate invariant. In spite of such set-

backs global linearization methods remain quite popular in practice [38]. This is in part due to their

simplicity.

3.1.1.2 Stability of local linearization

The current paragraph is concerned with the stability properties of the mapping o 7→ O defined in

(3.6). The mapping O 7→ o of (3.5) obtains a time series o subject only to linear constraints from the

rotation time series O. Linear signal processing operations can be applied to o. It must be ensured

that the approximation realized by such operations in the linear domain is preserved by the mapping

o 7→ O. The following discussion will ensure that this is indeed the case. However, the mapping

o 7→ O seems to suffer from ”drifting” problems due to propagation of errors in formula (3.6). This

was pointed out in [38].

Note that the mapping o 7→ O can be calculated as o 7→ ω 7→ Ω 7→ O. The first step o 7→ ω is an

invertible linear transformation

ωn = on − on−1 (3.7)

for 1 ≤ n ≤ N . The only effect of this step on stability is a scale factor. We consider the two following

steps in the following Propositions 24 and 25.

Note that ω 7→ Ω is calculated elementwise, Ωn = exp(ωn) for 1 ≤ n ≤ N . The stability of this

mapping is directly given by that of the matrix exponential. Let ω and ω′ be N -tuples of antisymmetric

matrices noted ωn and ω′
n. For 1 ≤ n ≤ N let Ωn = exp(ωn) and Ω′

n = exp(ω′
n). We have the following

proposition.

Proposition 24 For 1 ≤ n ≤ N the following order of magnitude holds

Ω′
n − Ωn = Ωn

∫ 1

0

Ω−s
n (ω′

n − ωn)Ωs
nds + o(|ω′

n − ωn|) (3.8)

where |.| is the Euclidean matrix norm and matrix exponents are understood as in Ωs = exp(sωn) for

−1 ≤ s ≤ 1.

Proof: Let us fix 1 ≤ n ≤ N . The following reasoning is independent of n. Consider the function

D defined by

D(t) = exp(tω′
n) − exp(tωn)

for 0 ≤ t ≤ 1. By direct calculation, we have that for 0 ≤ t ≤ 1

d

dt
D(t) = ωnD(t) + (ω′

n − ωn) exp(tω′
n) (3.9)
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3.1. Filtering of rotation time series

This is a first order linear ordinary differential equation for D. It can be solved by variation of

constants which leads to the following formula

D(t) =

∫ t

0

exp[(t − s)ωn](ω′
n − ωn) exp(sω′

n)ds (3.10)

Putting t = 1 we have with our notation for matrix exponents

Ω′
n − Ωn = Ωn

∫ 1

0

Ω−s
n (ω′

n − ωn)Ω′s
n ds (3.11)

In order to prove (3.8) we must estimate the following difference

Ω′
n − Ωn − Ωn

∫ 1

0

Ω−s
n (ω′

n − ωn)Ωs
nds

Replacing Ω′
n − Ωn from (3.11) we have that this is equal to

Ωn

∫ 1

0

∫ s

0

Ω−s
n (ω′

n − ωn)Ωs−r
n (ω′

n − ωn)Ω′r
n drds

which is clearly of second order in ω′
n − ωn. The order of magnitude (3.8) can now be checked using

usual norm inequalities.N

The last step in the mapping o 7→ O is Ω 7→ O. This is not an elementwise transformation as each

On depends on Ωi for 1 ≤ i ≤ n –see (3.2). Consequently, this step plays a more important role in

drifting problems. Retaining the notation of Proposition 24, note O′ the time series obtained from

the N -tuple Ω′ as in (3.2). We have the following proposition.

Proposition 25 For 1 ≤ n ≤ N the following order of magnitude holds

O′
n − On =

n
∑

i=1

∏

1≤j<i

Ωj(Ω
′
i − Ωi)

∏

i<j≤n

Ωj + o(|Ω′ − Ω|) (3.12)

where |Ω′ − Ω| = maxn |Ω′
n − Ωn| and the products are ordered from left to right.

Proof: For all 1 ≤ n ≤ N we have the following identity

O′
n − On =

n
∑

i=1

∏

1≤j<i

Ω′
j(Ω

′
i − Ωi)

∏

i<j≤n

Ωj (3.13)

In order to prove (3.13), note that the following sum is telescopic and factorize (Ω′
i −Ωi) in each term

of the sum

O′
n − On =

n
∑

i=1

∏

1≤j≤i

Ω′
j

∏

i<j≤n

Ωj −
∏

1≤j<i

Ω′
j

∏

i≤j≤n

Ωj (3.14)

Subtracting (3.12) from (3.13) it is possible to estimate the difference

O′
n − On −

n
∑

i=1

∏

1≤j<i

Ωj(Ω
′
i − Ωi)

∏

i<j≤n

Ωj

This is equal to
n
∑

i=1

i−1
∑

j=1

j−1
∏

k=1

Ω′
k(Ω′

j − Ωj)

i−1
∏

k=j+1

Ωk(Ω′
i − Ωi)

n
∏

j=i+1

Ωj

which is of second order in each Ω′
i − Ωi. The proof can be completed as for the last proposition.N
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CHAPTER 3. Filtering of matrix processes under nonlinear constraints

Relations (3.8) and (3.12) respectively imply that the mappings ω 7→ Ω and Ω 7→ O are dif-

ferentiable. Furthermore, it can be inferred from these relations that these transformation are C1.

Accepting this, we have by composition of C1 transformations that o 7→ O is C1. Applying usual

norm inequalities to (3.10) and (3.13) it is possible to obtain the following Lipschitz inequality

|O′ − O| ≤ 3N |o′ − o| (3.15)

The bound established by this inequality is a gross estimation, especially for larger values of N . We

will see in the following Subsection 3.1.2 that it can be considerably improved for certain specific

examples.

Condition (3.3) is equivalent to the condition that

(1/
√

2)|on − on−1| = (1/
√

2)|ωn| < π (3.16)

for 1 ≤ n ≤ N . Under this condition, we have the following result which will be considered again in

Subsection 3.1.2. The derivative of the transformation o 7→ O has full rank –i.e. it is an invertible

linear transformation– at every o such that (3.3) is verified. We do not prove this result here. It

follows from the two following assertions. First, that under (3.16) the derivative of ω 7→ Ω has full

rank. This follows from a classical result on the Riemannian geometry of the three sphere S3 ⊂ R
4

–see [10]. Second, that the derivative of Ω 7→ O has full rank at every Ω. This can be proved directly

from (3.12).

3.1.2 Applications

The current subsection gives two examples of our approach to the filtering of rotation time series.

A discrete time variant of the so-called problem of geodesic regression is presented in Paragraph

3.1.2.1. Paragraph 3.1.2.2 treats a similar problem with a different noise model. Geodesic regression

is central to principal geodesic analysis which generalizes the concepts of analysis of variance to

rotation data [18,65]. In relation to principal geodesic analysis, geodesic regression was considered as

an optimization problem in our paper [65]. In Paragraph 3.1.2.1, this is discussed in comparison to

our current approach based on local linearization.

Paragraph 3.1.2.2 does not use the term filtering in the wide sense suggested in the introduction.

More precisely, this paragraph refers to filtering in the sense of a causal operation supposing only

real-time observations. This is in opposition with the smoothing situation of Paragraph 3.1.2.1 which

requires full knowledge of the observed time series. The examples of Paragraphs 3.1.2.1 and 3.1.2.2

thus differ by the considered noise models as well as by the nature of observations. Clearly, these two

examples are directed towards substantially different applications.

In Paragraphs 3.1.2.1 and 3.1.2.2 a vocabulary is used which is specific to data analysis problems

involving orientation and rotation data. See [17,18]. Consider a differentiable curve Y : R+ → SO(3).

For t ≥ 0 let

ω(t) = Y T (t)
d

dt
Y (t) (3.17)

Let us remind that ω(t) is called the body angular velocity corresponding to the rotational motion of

a solid body as described by the curve Y . It is straightforward to show that ω(t) is an antisymmetric

matrix. This follows by differentiating the condition Y T (t)Y (t) = I, which holds for t ≥ 0. We will

say that Y is a geodesic if for some antisymmetric matrix ω

Y (t) = exp(ωt) (3.18)
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3.1. Filtering of rotation time series

for t ≥ 0. From the point of view of kinematics, (3.18) is a uniform rotation with angular velocity

ω. This is called a geodesic since the curve Y : R+ → SO(3) given in this way is a geodesic for

the biinvariant Riemannian metric of SO(3). This vocabulary is more common in the literature. It

is adapted to geometric approaches to the analysis of orientation and rotation data, often based on

optimization.

The noncommutativity of matrix multiplication is expressed in the case of the matrix group SO(3)

by the Baker-Campbell-Hausdorff formula. This will be used in Paragraph 3.1.2.1 to evaluate the error

from our approach based on local linearization.

exp(ω1) exp(ω2) = exp

(

ω1 + ω2 +
1

2
[ω1, ω2] + O(|ω1|3 + |ω2|3)

)

(3.19)

for all antisymmetric matrices ω1 and ω2 and where O(|ω1|3 + |ω2|3) is also antisymmetric. The

notation [ω1, ω2] stands for the commutator of ω1 and ω2. That is, [ω1, ω2] = ω1ω2 −ω2ω1. Note that

when [ω1, ω2] = 0 we have

exp(ω1) exp(ω2) = exp(ω1 + ω2)

as can easily be verified from the fact that [ω1, ω2] = 0 iff ω2 = kω1 for some k ∈ R.

For the noise model used in Paragraph 3.1.2.1 we have chosen a Gaussian law on SO(3). We say

that a rotation random variable N has Gaussian law if there exists a Gaussian vector B ∈ R3 of

coordinates [B1, B2, B3] such that [17, 54]

N = exp[B1J1 + B2J2 + B3J3] (3.20)

where the matrices J1, J2, J3 were given in (2.7) of Paragraph 2.1.1.1. This approximates a law arising

from rotation Brownian motion –compare to Paragraph 2.3.3.1– and can be dealt with directly using

the Baker-Campbell-Hausdorff formula.

3.1.2.1 Geodesic regression

Here a smoothing problem is addressed. This problem is a discrete time version of the problem of

geodesic regression. See [49]. The problem is stated in terms of an observed rotation time series O∗

for which there is a priori knowledge that O∗ is a noisy geodesic. More precisely, it is known that

there exists an antisymmetric matrix ω verifying (3.16) such that for all 1 ≤ n ≤ N

O∗
n = exp(nω)Nn (3.21)

where the Nn are independent observations of a Gaussian law on the rotation groups SO(3). See

formula (3.20). The time series N models the noise involved in the problem. A multiplicative noise

model is considered. The choice of multiplicative noise on the right is an arbitrary one in the current

context. The goal here is to estimate ω from an observation of the whole time series O∗. Geodesic

regression is the core ingredient in data analysis methods such as principal geodesic analysis. See [18].

Principal geodesic analysis is usually applied using global linearization methods, in which case only

approximative results are obtained. Exact principal geodesic analysis has been attempted in our

paper [65]. It has a high computational cost. It is possible that local linearization can constitute a

good compromise between the two.

In order to follow the local linearization methods prescribed in the introduction, one must start

by applying local linearization to O∗. This is only feasible if O∗ verifies (3.3). This is indeed the

case, with probability 1, since for 1 ≤ n ≤ N the random variable O∗
n has an absolutely continuous
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(a) Local linearization of a noisy geodesic
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Figure 3.1: Local linearization for geodesic regression

distribution, with respect to the Haar measure of SO(3). This follows from the absolute continuity of

the Gaussian law.

Figures 3.1(a) and 3.1(b) illustrate the result of applying local linearization to O∗. In order to

obtain O∗, the noise N was generated according to [54]. The blue curve in figure 3.1(a) gives the

result of local linearization of O∗. For figure 3.1(a), antisymmetric matrices are identified with vectors

in R
3.

A ↔ Â = [a1, a2, a3] where A = a1J1 + a2J2 + a3J3 (3.22)

for all antisymmetric matrix A. The vector Â of coordinates [a1, a2, a3] is directed along the axis of

rotation and its length is equal to the angle of rotation of exp(A) ∈ SO(3). The red line in figure

3.1(a) gives the vector ω̂ in R3 corresponding to ω as in (3.22). In figure 3.1(b) the blue and red curves

represent the trajectory of a point of the sphere S2 ⊂ R3 under the effect of the successive rotations

O∗
n and exp(nω) for 1 ≤ n ≤ N , respectively. These trajectories do not completely determine the

corresponding rotation time series but they constitute a simple means of visualization. Figure 3.1(a)

shows that by applying local linearization to the noisy geodesic O∗, a noisy version of the ”straight

line” nω̂ for 1 ≤ n ≤ N is obtained. A simple linear regression then allows the recovery of ω, thus

solving the geodesic regression problem. Our goal is to understand this result.

Note Ω∗ the rotation time series where Ω∗
1 = O∗

1 and for 1 ≤ n ≤ N−1 we have Ωn+1 = O∗
n
−1O∗

n+1.

According the Baker-Campbell-Hausdorff formula (3.19)

log(Ω∗
1) = ω + ν1 + O(|ν1|)

log(Ω∗
n) = ω + νn + O(|νn|)

(3.23)

where ν1 = log(N1) and for 1 ≤ n ≤ N − 1 we have νn+1 = log(N−1
n Nn+1). The reminder O(|νn|)

for 1 ≤ n ≤ N in (3.23) can be estimated more precisely. We have |O(|νn|)| ≤ π|νn| + o(|νn|2) for all

1 ≤ n ≤ N .

It follows that by applying local linearization to O∗ a time series of antisymmetric matrices o∗ is

obtained that is given by

o∗n = nω +

n
∑

i=1

νi + O(|ν|) (3.24)

for 1 ≤ n ≤ N . The error term O(|ν|) in formula (3.24) is small with a high probability. Indeed, the

samples of a Gaussian law are near the identity I with a high probability and their logarithms should

be small, in the same way. Under this result, formula (3.24) explains what is obtained experimentally
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3.1. Filtering of rotation time series

in figure (3.1(a)). Namely, that applying local linearization to the noisy geodesic O∗, a noisy version

of the time series with samples nω is obtained.

In order to retrieve ω by linear regression, one calculates the estimate ω∗ given by

ω∗
n =

∑N

n=1 no∗n
∑N

n=1 n2
(3.25)

This estimate is optimal in a mean square sense. It incurres an error given by the following formula

|ω − ω∗
n| =

∣

∣

∣

∣

∣

∑N

n=1 n (
∑n

i=1 νi + O(|ν|))
∑N

n=1 n2

∣

∣

∣

∣

∣

(3.26)

from which it follows

|ω − ω∗
n| ≤ (1 + π)|ν| + o(|νn|2) (3.27)

If one uses ω∗ to estimate a geodesic exp(nω∗), then by formula (3.10)

| exp(nω) − exp(nω∗)| ≤ 3(1 + π)|ν| + o(|νn|2) (3.28)

for all 1 ≤ n ≤ N . This bound gives an order of greatness of the error made in using local linearization

to solve a geodesic regression problem. In the approximation considered here, it is possible to assume

that ν has a Gaussian distribution of a certain variance σ2 corresponding to the dispersion of the

samples of N away from I on the group manifold of SO(3). Up to third order terms, the root mean

square error from using local linearization is thus roughly 4πσ.

A synthesis of the approach of the current subsection is now possible. Methods based on local

linearization have been advanced in the literature due to their successful application. These methods

are based on the prescription of applying local linearization in order to retrieve a linear time series

which can be processes in a classical way. This has a clear practical advantage but lacks general

foundation. It is not immediately visible that these methods are optimal, even for a limited range

of problems, in a usual sense. In the example studied here, it is possible to conclude that local

linearization yields satisfactory results thanks to i) The statistics of the multiplicative Gaussian noise.

In particular that its distribution is concentrated near I. ii) The stability of the transformation

of equation (3.6). This implies that the error made in the linear domain is propagated to the non

linear domain with a reasonabe linear scale factor, inequality (3.28). By contrast to the use of

local linearization, it is possible to consider a least square solution to geodesic regression using the

derivative of the exponential map as obtained in formula (3.8), noting that this derivative has full rank

under condition (3.16) –see Paragraph 3.1.1.2. This optimization-based approach leads to a nonlinear

matrix equation. The numerical solution of such an optimal approach is possibly less stable than the

application of the suboptimal approach of local linearization.

3.1.2.2 Deterministic filtering

The problem considered here is similar to that of Paragraph 3.1.2.1. In both cases, the signal we seek

to recover is a geodesic. However, here the problem is considered as a filtering problem, as opposed to

the smoothing situation proposed in the last subsection. In other words, the solution proposed here

is causal and is compatible with a real-time situation. This notion of causality and the definition of

filters for rotation time series are considered in more detail in Subsection 3.1.3. The observed rotation

time series is O∗ given by

O∗
n =

n
∏

i=1

exp (ω + [sin(2πfn) − sin(2πf(n − 1))]ω′) (3.29)
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Figure 3.2: Additive trigonometric noise

ω and ω′ being antisymmetric matrices and f a frequency. Our goal is to recover ω, so that the

presence of the trigonometric term in the exponential factors in (3.29) corresponds to noise. This is

a different noise model than the one of the last subsection, where the noise affected the observations

multiplicatively. Applying local linearization to O∗ one obtains a time series o∗ given by

o∗n = nω + sin(2πfn)ω′ (3.30)

from which ω can be recovered after derivation and low pass filtering, both operations expressible in

terms of convolution masks –see Section 3.1.3. An example of the current problem is given in figure

3.2. Figure 3.2(a) gives the result of local linearization of O∗, using the same convention as for figure

3.1(a). ω is given by the red line in this figure. Figure 3.2(b) gives the trajectory of a point of S2

under the rotations O∗
n.

In the current subsection, additive noise affected ω directly, in the linear domain. This is different

from the multiplicative noise of the last subsection, which was directly related to the observations.

When additive noise appears in the linear domain, local linearization methods have higher perfor-

mances than in other cases. In fact, they can be –theoretically– exact. This is the case in equation

(3.30) where it is possible, in principle, to recover ω exactly. The noise model of the current subsec-

tion, that of additive noise in the linear domain, is a realistic one for applications dealing directly

with rotations from mechanical motions. In these applications, what is related to fluctuating outside

conditions is the ”angular velocity” time series o in the linear domain and not the actual motion O.

Remarkably, figure 3.2 shows that local linearization of a seemingly complicated time series can yield a

simple representation. This shows the potential of local linearization as a method for motion analysis.

3.1.3 Invariance properties

Certain important properties of local linearization can be grouped together under the general name

of invariance properties. We here give a general formulation of such properties and consider briefly

invariance by left multiplication and by time shift. Using the properties of invariance by time shift,

we consider the notion of a filter for rotation time series.

Let T be a mapping of the set of rotation time series such that for all time series O the time series

T (O) satisfies condition (3.3). T then defines a mapping t of the set of time series of antisymmetric

matrices. Indeed, for all time series o of antisymmetric matrices, let O correspond to o according to
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3.1. Filtering of rotation time series

(3.6). Note t(o) the time series of antisymmetric matrices obtained by applying local linearization to

T (O). In particular, t(o) verifies (3.16). This defines the required mapping. The relation between T

and t is expressed in the following diagram. Upward arrows denote the application of equation (3.6)

and downward arrows denote the application of equation (3.5).

O
T−→ T (O)

↑ ↓
o

t−→ t(o)

(3.31)

Invariance refers to a set of cases where a simple relationship is obtained between T and t. We now

present invariance by multiplication and time shift. Other cases are considered in [38].

For invariance by multiplication, consider for the mapping T the following transformation. K ∈
SO(3) is fixed and for all rotation time series O its image T (O) is defined by T (O)n = KOn for

1 ≤ n ≤ N . It is necessary to limit the domain of T to the set of time series O such that KO1 verifies

(3.3). Note that for all 1 ≤ n ≤ N − 1 we have

T (O)−1
n T (O)n+1 = O−1

n K−1KOn+1 = Ωn+1 (3.32)

Note o the time series obtained from O by local linearization. It follows from equation (3.5) that local

linearization of T (O) gives the time series t(o) defined as follows

t(o)1 = log(KO1)

t(o)n = (t(o)1 − o1) + on

(3.33)

In other words, o and t(o) differ by an initial condition. In the same way, (3.32) shows that the

dynamics of O is the same as that of T (O). It is important here to emphasize that (3.32) and (3.33)

were obtained in the case where T is defined by left and not right multiplication by K. In particular

(3.32) obtains because the product in (3.1) is ordered from left to right. Formula (3.33) tells us that

local linearization is essentially independent from any choice of initial reference base. This is different

from global linearization which always refers to a choice of K ∈ SO(3) to be used as reference base

for projecting data onto some vector space.

Invariance by time shift is an important property in relation to signal processing. It indicates that

local linearization is a causal operation. This means that it is compatible with filtering and other

real-time applications. See [16]. Loosely speaking, what is to be expressed by this property is that for

all 1 ≤ n ≤ N the antisymmetric matrix on obtained in (3.5) depends only on the samples Oi with

1 ≤ i ≤ n. This follows immediately if one notes that for all 1 < n ≤ N the rotation Ωn depends only

on On−1 and On, while Ω1 = O1.

Consider the mapping T where for every rotation time series O verifying (3.3) we have T (O)n =

On−τ where 1 ≤ τ and where the convention is made that Om = I for all m ≤ 0. The mapping t

corresponding to T in this case is defined in the same way. For all o verifying (3.16), t(o)n = on−τ ,

with the convention that om = 0 for all m ≤ 0. Both T and t are time shift (delay) operators. In

other words, the operation of local linearization commutes with time shift.

Let f denote the operation of applying a convolution mask to o. We write f(o) for the time series

f(o)n =

n
∑

i=0

aion−i (3.34)

where ai ∈ R for 0 ≤ i ≤ N . It is a celebrated fact in signal processing that

f(t(o)) = t(f(o)) (3.35)
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whenever t is a time shift as above. Define the operation F for rotation time series according to the

following diagram, which runs in the opposite direction to diagram (3.31).

O
F−→ F (O)

↓ ↑
o

f−→ f(o)

(3.36)

By following the arrows of diagrams (3.31) and (3.36), it is possible to prove that

F (T (O)) = T (F (O)) (3.37)

whenever T is a time shift as above. The operation F thus has the same property of invariance by

time shift as the convolution mask f . Diagram (3.36) was applied in Paragraph 3.1.2.2, where the

operation F was thought of as a filter for rotation time series. This is an adequate terminology if one

considers the defining property of a filter to be invariance by time shift. However, there is a difference

between operations f and F in that F is more liable to drifting problems.

Of an interest similar to that of multiplication invariance is coordinate invariance. This is a

property of a different kind than the two properties we have presented here. What it means is that

local linearization is independent of any choice of coordinate system on SO(3) used to express the

samples of rotation time series. Certain approaches to the processing of rotations consist in processing

their representation in terms of some coordinates, e.g. Euler angles. These approaches suffer from

distortion problems and singularities. See [68].

3.1.4 Relation to continuous time processes

There exists a close correspondence between the discrete time formalism of the current section and the

general continuous time formalism of the following section. Through this correspondence, it will be

possible in the following section to formulate our approach based on local linearization for the general

setting of continuous time Brownian matrix processes. As a typical example and in order to prepare

the following section, we here study a continuous time version of the problem of geodesic regression

of Paragraph 3.1.2.1. For the current subsection see [29]. More detailed references are given in the

following section. We are now concerned with the two following differential equations

dY i
t = Y i

t dX i
t Y i

0 = I (3.38)

Here i = 1, 2 and the unknown processes Y 1 and Y 2 are 3 × 3 matrix processes. The processes X1

and X2 are given by

X1
t = ωt X2

t = Jt + X1
t (3.39)

for t ≥ 0. Where ω is an antisymmetric matrix and J is a Brownian process Jt = B1
t J1 +B2

t J2 +B3
t J3

for [B1, B2, B3] the coordinates of a R3-valued Brownian motion B. For i = 1, equation (3.38) is a

first order ordinary linear differential equation. Its solution is Y 1
t = exp(ωt) for t ≥ 0. For i = 2,

equation (3.38) is a linear stochastic differential equation driven by the diffusion process X2. This

is understood as a Stratonovich equation, so that when ω = 0 we have the equation of rotation

Brownian motion, equation (2.94) of Subsection 2.3.3. In general, the solution of (3.38) for i = 2 is

called rotation Brownian motion with drift. The equivalent Itô equation is the following

dY 2
t = Y 2

t dX̃2
t X̃2

t = Jt +

(

X1
t +

E[J2
t ]

2

)

(3.40)
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which is again linear. It follows that equation (3.40) has a unique solution which moreover has almost

surely continuous paths defined for all t ≥ 0. We note this solution Y 2 = (Y 2
t )t≥0. The problem of

geodesic regression can be posed in continuous time as follows. For some fixed T ≥ 0, a path of the

process Y 2 is observed over the interval 0 ≤ t ≤ T . From this continuous time set of observations, the

aim is to estimate ω or equivalently to recover the process Y 1. As mentioned in Subsection 3.1.2, Y 1

is referred to as a geodesic on SO(3).

The process Y 2 is a rotation process. As for rotation Brownian motion in Paragraph 2.3.3.1, the

integration by parts rule of Stratonovich calculus can be used to show that for all t ≥ 0 we have

Y 2
t ∈ SO(3) almost surely. In general, this property is not preserved by linear operations. The

simplest example is that of the average E(Y 2
t ) for t ≥ 0. Calculating this average, when it is possible

to do so, can be seen as a rudimentary way of obtaining a deterministic process from Y 2. This is a

pertinent estimate of the process Y 1 in as much as Y 1 is itself deterministic. Suppose for simplicity

that the covariance matrix C of B is of the form a2I with a ∈ R. In this case for t ≥ 0

X̃2
t = Jt +

(

ω − a2I
)

t

For t ≥ 0, the average E(Y 2
t ) can be obtained by discarding the term Jt from the expression of X̃2

t in

equation (3.40). Indeed, this Brownian term has no influence on the average of Y 2
t . We have

E(Y 2
t ) = exp

[(

ω − a2I
)

t
]

(3.41)

Clearly, if t > 0 then E(Y 2
t ) /∈ SO(3) unless a = 0. Noting moreover that the dynamics of Y 2 is

not stationary we have that averaging of Y 2
t is not directly applicable for our problem of geodesic

regression. We will see in Subsection 3.2.2 how to overcome this difficulty in order to take advantage

of the special analytical form of (3.41).

In order to follow the approach already applied for the two examples of Subsection 3.1.2, it is

necessary to generalize the local linearization transformations (3.5) and (3.6) of Subsection 3.1.1 to

the context of continuous time processes. This is done using the pair of approximations (3.42) below.

Let Y denote either one of the processes Y 1 and Y 2. In the same way, let X denote X1 or X2. For

n ≥ 0 define processes Y n = (Y n
t )t≥0 and Xn = (Xn

t )t≥0 as follows1

Xn
t =

∑

m≥0

log (Y −1
t∧tn

m
Yt∧tn

m+1
) Y n

t =
∏

m≥0

exp (Xt∧tn
m+1

− Xt∧tn
m

) (3.42)

where tnm = m/2n for n, m ≥ 0. We have that the Xn converge to X and the Y n to Y locally

uniformly in the square mean. Starting from the observed process Y 2 it is possible to use (3.42) to

approximate X2. This satisfies the general aim of local linearization. Indeed, while Y 2 is constrained

to SO(3) the process X2 is an antisymmetric matrix process subject to no nonlinear constraints. The

approximations (3.42) are similar in their structure to the transformations (3.5) and (3.6).

The approximation result for the Y n will be given in Subsection 3.2.1 and the reciprocal result for

the Xn in Subsection 3.2.3. For n ≥ 0, the processes Xn can be obtained pathwise from Y . The same

is true for the Y n and X as it is clear in (3.42). It follows that (3.42) can be applied to perform local

linearization for the continuous time geodesic regression problem studied here. Indeed, this problem

assumes given a path of Y 2 over the interval 0 ≤ t ≤ T and this is sufficient for computation of the

processes Xn. These processes approximate X2 from which ω can be obtained in an elementary way.

1We use the notation a ∧ b = min{a, b}. Accordingly, in (3.42) we have that for t ≥ 0 sums and products run only

over points tnm < t and are in particular finite. This is a concise way of writing integrals and also multiplicative integrals

such as the ones considered for rotation Brownian motion in Paragraph 2.3.3.1.
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As for the discrete time setting considered in the current section, application of an approach based

on local linearization is justified by the invariance and stability properties of the transformations

(3.42). In the following section, invariance by time shift will be formulated in terms of a Markov

property of Brownian matrix processes, see Subsection 3.2.4. Also in the general case of Brownian

matrix processes, Subsection 3.2.5 will consider the stability of the transformation X 7→ Y .

It is possible to study the stability of the transformation X 7→ Y using integration by parts. This

point of view was developed in general in [29, 30]. It is moreover readily generalizable to processes

with values in any Lie group. Unfortunately, it falls outside the scope of Section 3.2 and will not be

developed in Subsection 3.2.5. We here try to indicate it using a brief example. Consider the deviation

between Y 2 and Y 1. By the integration by parts rule of Stratonovich calculus we have for t ≥ 0

dEt = Y 2
t dJtY

1
t

T E0 = I (3.43)

where E = (Et)t≥0 is defined by Et = Y 2
t Y 1

t

T
and we have used the fact that Y 1T

t = exp(−ωt). The

integral form of (3.43) is the following

Et = I +

∫ t

0

Y 2
s dJsY

1
s

T
(3.44)

This can be used to estimate the deviation between Y 2 and Y 1 in terms of the difference J between

X2 and X1. The angular distance between Y 2
t and Y 1

t is immediately given by Et. Indeed, This

angular distance is the following quantity

arccos [(tr(Et) − 1)/2] (3.45)

which can also be used to measure the deviation between Y 2 and Y 1.

3.2 Filtering of Brownian matrix processes

Here we formulate in general the approach based on local linearization outlined in the last section.

This is done for Brownian matrix processes. By gaining a closer understanding of the dynamics of

these processes it will be possible to deal with them correctly in statistical estimation problems and

in particular to study the performances of our approach. Given d ≥ 1, we will note in this section

L(d) the space of d× d real matrices and GL(d) ⊂ L(d) the subset of invertible matrices. We suppose

given a complete probability space (Ω,A, P).

We have already met two examples of Brownian matrix processes. More precisely, Subsection

2.3.3 studied rotation Brownian motion and Subsection 3.1.4 considered rotation Brownian motion

with drift. Both processes were given by Stratonovich linear stochastic differential equations of the

form

dYt = YtdXt Y0 = I (3.46)

where Y is a rotation process and X is a driving process of the form Xt = X1
t J1 + X2

t J2 + X3
t J3

for t ≥ 0 where [X1, X2, X3] are the coordinates of a R
3-valued diffusion process. In this section the

driving process X is more generally a L(d)-valued diffusion process for some d ≥ 1. For t ≥ 0, the

matrix elements of Xt are as follows. The stochastic integral here is an Itô integral.

X ij
t = fij(t) +

∫ t

0

Qij(s)dBij
s (3.47)

for 1 ≤ i, j ≤ d, where fij and Qij are functions R+ → R. The processes Bij are the matrix elements

of a L(d)-valued Brownian motion process. For 1 ≤ i, j ≤ d, we consider that fij is continuous and of
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3.2. Filtering of Brownian matrix processes

finite variation, e.g. a C1 function, and that Qij is continuous. Under these conditions, it is simply

seen that the following Stratonovich equation is well-defined

Yt = Id +

∫ t

0

YsdXs Y ij
t = δij +

d
∑

k=1

∫ t

0

Y ik
s dXkj

s (3.48)

where Id is the d × d identity matrix. We have written equation (3.48) both in matrix form and for

each matrix element Y ij where 1 ≤ i, j ≤ d. This equation is an integral form of equation (3.46) and

only differs from it by the fact that we now consider general matrix processes rather than rotation

processes. In Subsection 3.2.3 equations of the form (3.48) will be identified as a general model for

Brownian matrix processes. This result is based on a general form of the pair of approximations (3.42)

of Subsection 3.1.4.

The solution of (3.48) for a given process X will be noted E(X) = (E(X)t)t≥0. Subsection 3.2.1

below will show that E(X) is subject to nonlinear constraints. However, these nonlinear constraints

are specified in terms of linear constraints on X . In Subsection 3.2.2 the multiplicative structure

of E(X) is exhibited. This is applied in solving the continuous time problem of geodesic regression

discussed in Subsection 3.1.4. Subsections 3.2.3 and 3.2.5 correspond to the main goal of the current

section. Subsection 3.2.3 considers the inverse of the transformation X 7→ E(X). We will consider this

inverse transformation as a local linearization transformation used to overcome nonlinear constraints.

The stability of the transformation X 7→ E(X) is studied in Subsection 3.2.5. As in Section 3.1, these

are used to justify the application of a local linearization based approach. Subsection 3.2.4 gives the

invariance properties of the transformation X 7→ E(X). A recurrent idea in the following will be

the equivalence of the two processes X and E(X). Proposition 27 of Subsection 3.2.1 states that the

distribution of E(X) is completely determined by that of X . Similarly, Proposition 31 of Subsection

3.2.3 states that the natural filtrations of X and E(X) are identical –we interpret this result in terms

of filtering applications in Subsection 3.2.3.

For a process X as in (3.47) note F = (Ft)t≥0 the natural filtration of X . For t ≥ 0 we have

Ft = σ{Xs, 0 ≤ s ≤ t}. Existence and uniqueness of the solution of (3.48) can be shown using the

Picard approximation. This approximation for equations of the form (3.48) where X is a continuous

semimartingale was given by Karandikar [28]. Another approximation for these equations is by multi-

plicative integrals. This was considered by the same author [28,29] and we give it in Subsection 3.2.1

for the case where X is of the form (3.47). A comprehensive theory of multiplicative integration can

be found in Emery’s paper [14] which includes the case where the driving process X is a discontinuous

semimartingale. The Picard approximation states that if X0 is the constant process X0 = Id and for

n ≥ 1 the process Xn = (Xn
t )t≥0 is given by

Xn
t = Id +

∫ t

0

Xn−1
s dXs (3.49)

then the processes (Xn)n≥0 converge locally uniformly in the square mean to a solution of (3.48)

which is moreover unique. Remember that the definition of local uniform convergence in the square

mean was mentioned in equation (2.99), Paragraph 2.3.3.1. It results from this approximation that

the solution E(X) of (3.48) is F -adapted with almost surely continuous paths [28].

Approximation of equation (3.46) by multiplicative integrals will play the more important role in

the following. It will be seen in Subsection 3.2.1 that this approximation is more adapted to the study

of the nonlinear constraints inherent to (3.48). We have already met an example of approximation by

multiplicative integrals in Paragraph 2.3.3.1. This was McKean’s approximation of rotation Brownian

motion. We also gave a somewhat different approximation by multiplicative integrals for rotation
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Brownian motion with drift in Subsection 3.1.4 –see approximations (3.42). We briefly discuss the

difference between the two approximations in Subsection 3.2.1. In addition to its important role in the

following, approximation by multiplicative integrals has been extensively used in order to implement

stochastic optimization or sampling techniques for subspace tracking and estimation applications.

See [48, 70] or the recent reference by Grenander and Miller [22].

Note that Subsections 3.2.1 to 3.2.4 in the following present a more mathematical content. In

Subsection 3.2.5 we finally formulate our approach to the filtering of Brownian matrix processes and

consider its performances. The overall mathematical content of the current section is reflected in the

references cited here, all of which belong to the mathematical literature. We do not require more

knowledge of nonlinear filtering than is given in a general reference such as [23].

3.2.1 Multiplicative integrals

Solutions of equations of the form (3.48) are a general model for Brownian matrix processes under non-

linear constraints. For a given X of the form (3.47), the current subsection will clarify the constraints

verified by the solution E(X) of (3.48). We have already seen in Paragraph 2.3.3.1 and in Subsec-

tion 3.1.4 that solutions of equations of the form (3.48) have their values in the group SO(3). This

particular type of nonlinear constraint was discussed in Section 3.1. Proposition 26 below states that

E(X) has its values in a matrix Lie group, in fact a subgroup of GL(d). This proposition, along with

Proposition 30 of Subsection 3.2.3 formulates the following important point. Although the solution

E(X) of equation (3.48) is subject to nonlinear constraints, these constraints can be reduced to linear

constraints on the driving process X . Moreover, given any process Y subject to this type of nonlinear

constraint, i.e. having its values in a matrix Lie group, then we can identify the dynamics of Y as

given by an equation of the form (3.48). Let us emphasize that from the point of view of applications

the constraints we have described are quite general as they correspond to symmetry considerations

important to a wide range of applied problems.

Theorem 3 below establishes the approximation of E(X) as a multiplicative integral. We apply

this theorem in the proof of Propositions 26 and 27. As already noted, the multiplicative integrals

considered in Paragraph 2.3.3.1 and in Subsection 3.1.4 are essentially different. The current subsection

closes with a comparison of these two approximations. Theorem 3 is here accepted without proof. We

refer to [28] for a general discussion of the proof.

To express the multiplicative integral of Theorem 3 we remind the elementary notion of a decreasing

sequence of partitions. By a partition of R+ we mean an increasing sequence (tm)m≥0 with t0 = 0

such that tm ↑ ∞ and that supm≥1 |tm − tm−1| < ∞. A decreasing sequence of partitions of R+ is

said to be given if for all N ≥ 1 a partition (tNm)m≥0 of R+ is given and we have |tN | ↓ 0, where

|tN | = supm≥1 |tNm − tNm−1| for N ≥ 1.

Theorem 3 Let X be given by (3.47) and suppose (tNm)m≥0 for N ≥ 1 gives a decreasing sequence of

partitions of R+. For N ≥ 1 consider the process Y N given for t ≥ 0 by

Y N
t =

∏

m≥0

exp(Xt∧tN
m+1

− Xt∧tN
m

) (3.50)

We have that the processes Y N converge to E(X) locally uniformly in the square mean.

Note that formula (3.50) generalizes the multiplicative integral in (3.42) of Subsection 3.1.4. Formula

(3.52) below generalizes the multiplicative integral (2.100) of Paragraph 2.3.3.1.

We now apply Theorem 3 to Propositions 26 and 27. Proposition 26 states that E(X) has its

values in a matrix Lie group. This amounts to a set of nonlinear constraints satisfied by E(X), e.g.
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conditions (2.1) of Subsection 2.1.1. These constraints reduce to linear constraints on X . Proposition

30 of Subsection 3.2.3 will give the converse of Proposition 26. Let us specify our use of the term

matrix Lie group in the following. Remember that GL(d) is an open subset of the vector space L(d).

By a matrix Lie group we mean a subgroup G ⊂ GL(d) such that G is a submanifold of GL(d). We

deal with this definition through the following fact –see for instance [46].

Fact: A subgroup G ⊂ GL(d) is a matrix Lie group iff G is closed in GL(d).

Let G be a matrix Lie group and note TIG its Lie algebra. Remember that TIG ⊂ L(d) is a vector

space of matrices and that for all J ∈ TIG we have that exp(J) ∈ G. We have the following proposition.

Proposition 26 If for t ≥ 0 we have Xt ∈ TIG almost surely then for t ≥ 0 we have E(X)t ∈ G

almost surely.

Proof: We start by proving that E(X)t ∈ GL(d) almost surely for t ≥ 0. Note Y ≡ E(X). We

construct a process Ȳ = (Ȳt)t≥0 such that for t ≥ 0 we have YtȲt = Id. Let X̄ be the process where

X̄t = −XT
t for t ≥ 0 and define Ȳt =

[

E(X̄)t

]T
. It is checked by simple manipulation of equation

(3.48) that Ȳ satisfies the Stratonovich stochastic differential equation

Ȳt = Id −
∫ t

0

dXsȲs Ȳ ij
t = δij −

d
∑

k=1

∫ t

0

Ȳ kj
s dX ik

s (3.51)

which we have again written both in matrix form and for each matrix element Ȳ ij where 1 ≤ i, j ≤ d.

Using the integration by parts rule of Stratonovich we have for t ≥ 0

YtȲt − Y0Ȳ0 =

∫ t

0

YsdXsȲs −
∫ t

0

YsdXsȲs = 0

since Y0Ȳ0 = Id we can conclude that E(X)t ∈ GL(d) almost surely for t ≥ 0.

We now prove that for t ≥ 0 we have E(X)t ∈ G almost surely. Let (tNm)m≥0 for N ≥ 1 give a

decreasing sequence of partitions of R+. For t ≥ 0 Theorem 3 states that E(X)t is the limit in the

square mean of the random variables Y N
t given by (3.50). It follows that there exists a subsequence

Y Nk

t –for k ≥ 1– such that limk Y Nk

t = E(X)t almost surely. Note that for a fixed t ≥ 0 the product

in (3.50) only involves a finite number of factors. It follows that Y Nk

t ∈ G for k ≥ 1. From the fact

that E(X)t ∈ GL(d) almost surely and that G is closed in GL(d) we now have that E(X)t ∈ G almost

surely.N

The following Proposition 27 states that the distribution of E(X) depends only on that of X . In

Paragraph 2.3.3.2, Proposition 18 established the symmetry properties of rotation Brownian motion.

This proposition is in fact a special case of Proposition 27. Note that the following proof is similar to

that of Proposition 18.

Proposition 27 Let X1 and X2 be processes of the form (3.47) and suppose X1 and X2 have identical

finite dimensional distributions. We have that E(X1) and E(X2) have identical finite dimensional

distributions.

Proof: We will only prove that E(X1)t
d
= E(X2)t for t ≥ 0. This can be used along with (i) of

Proposition 29 of the next subsection in order to give a complete proof of the proposition.

Let t ≥ 0 and consider for N ≥ 1 the random products πN
1 and πN

2 given as in (3.50)

πN
1 =

∏

m≥0

exp(X1
t∧tN

m+1

− X1
t∧tN

m
) πN

2 =
∏

m≥0

exp(X2
t∧tN

m+1

− X2
t∧tN

m
)
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Where (tNm)m≥0 give a decreasing sequence of partitions of R+. Note that each of these products only

involves a finite number of factors. More precisely

πN
1 =

∏

tN
m≤t

exp(X1
t∧tN

m+1

− X1
t∧tN

m
) πN

2 =
∏

tN
m≤t

exp(X2
t∧tN

m+1

− X2
t∧tN

m
)

The factors in each of these products πN
1 and πN

1 are independent. This follows immediately from the

fact that the processes X1 and X2 have independent increments. Moreover, for all N ≥ 1 and m ≥ 0

we have by hypothesis

X1
t∧tN

m+1

− X1
t∧tN

m

d
= X2

t∧tN
m+1

− X2
t∧tN

m

It follows that for N ≥ 1 the factors in the products πN
1 and πN

2 which correspond to the same value

of m are equal in distribution. Finally, for N ≥ 1 we have πN
1

d
= πN

2 . We now have E(X1)t
d
= E(X2)t,

since equality in distribution is preserved by limits in the square mean.N

Consider the multiplicative integral (2.100) of Paragraph 2.3.3.1. In order to generalize it to

equation (3.48) we consider the following processes Ỹ N for N ≥ 1. These are based on a linear

interpolation of the driving process X of equation (3.48). Using the notation of Theorem 3, let

∆XN
m = XtN

M+1
−XtN

m
and ∆tNm = tNm+1− tNm for N ≥ 1 and m ≥ 0. For N ≥ 1 and t ≥ 0 the processes

Ỹ N is given in formula (3.52). We have that these processes converge locally uniformly in the square

mean to E(X).

Ỹ N
t =

∏

m≥0

exp((∆XN
m/∆tNm)(t ∧ tNm+1 − t ∧ tNm)) (3.52)

There are important differences between the approximations (3.50) and (3.52) of equation (3.48).

Note first that the construction of the processes Ỹ N from X is anticipative. For tNm ≤ t < tNm+1 the

value of Ỹ N
t depends on XtN

m+1
through ∆XN

m . On the contrary, the process Y N for N ≥ 1 is clearly

F -adapted and can be constructed from X in a causal way. The anticipativeness of the processes Ỹ N

reflects the fact that they are based on a linear interpolation of X between the points of the partition

(tNm)m≥0. This construction has the advantage of leading to processes Y N which satisfy ordinary

differential equations and which can be interpreted in a simple way –compare to Paragraph 2.3.3.1.

The paths of the processes Y N inherit the irregular nature of the Brownian paths of X and can only

be described in terms of stochastic differential equations.

3.2.2 Multiplicative structure of E(X)

The solution E(X) of equation (3.48) is a nonstationary process. It will be seen in the current

subsection that E(X) has a multiplicative structure defined in terms its increments E(X)(s|t) which

are GL(d)-valued random variables for 0 ≤ s ≤ t. This multiplicative structure corresponds to the

definition of Lévy processes given by conditions (L1) to (L4) of Subsection 2.3.1. Under a simple

condition on the driving process X , the increments of E(X) will be found to be stationary. In this

way, a stationary structure is identified within the nonstationary process E(X). This is applied in

Paragraph 3.2.2.2 below to give a solution of the problem of geodesic regression presented in Subsection

3.1.4. We start in Paragraph 3.2.2.1 by proving Propositions 28 and 29 which give the main properties

of the increments of E(X).

3.2.2.1 Increments and their properties

In the case of rotation Lévy processes, increments were defined in Subsection 2.3.1 and were required

to verify conditions (L1) to (L4). It is possible to start with a similar definition of the increments
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of E(X). It was seen in the proof of Proposition 26 that E(X)t ∈ GL(d) almost surely for all t ≥ 0.

Accordingly, we can define for 0 ≤ s ≤ t

E(X)(s|t) = [E(X)s]
−1E(X)t (3.53)

Our main goal in the current paragraph will be to prove Proposition 29. This proposition states that

the increments of E(X) as defined by (3.53) are independent and gives a condition under which they

are stationary. Thus, the increments of E(X) are seen to verify conditions similar to conditions (L1)

to (L4) of Subsection 2.3.1. It is not straightforward to establish Proposition 29 from definition (3.53).

We will start by proving Proposition 28 which gives a dynamical definition of the increments of E(X).

Proposition 29 will follow directly from Proposition 28.

Before stating Proposition 28, let us note the following. Suppose given a process X as in (3.47).

For s ≥ 0 define the process Xs = (Xs
t )t≥0 by Xs

t = Xs+t −Xs. We admit that Xs can be expressed

in the form (3.47), so that the process E(Xs) is defined as above –using for instance the Picard

approximation.

Proposition 28 For all 0 ≤ s ≤ t we have

E(X)(s|t) = E(Xs)t−s (3.54)

Proof: Let s ≥ 0 be fixed. Note Y 1 = (Y 1
t )t≥0 the process given by Y 1

t = E(X)t∧s. Let Y 2 = (Y 2
t )t≥0

be the process Y 2
t = E(Xs)(t−s)+ –for a ∈ R we write a+ = max{a, 0}. We will prove that for t ≥ 0

E(X)t = Y 1
t Y 2

t (3.55)

By replacing for some s ≤ t and comparing to (3.53) the proposition is proved. Let X1 and X2 be

the processes defined for t ≥ 0 by X1
t = Xt∧s and X2

t = Xt − X1
t . Note that Y 1 solves the following

Stratonovich stochastic differential equation

Y 1
t = Id +

∫ t

0

Y 1
u X1

u (3.56)

for t ≥ 0. We will prove that Y 2 solves the additional equation

Y 2
t = Id +

∫ t

0

Y 2
u X2

u (3.57)

for t ≥ 0. This follows from the definition of E(Xs)

E(Xs)t = Id +

∫ t

0

E(Xs)udXs
u

by applying the change of time t 7→ (t − s)+. It is now possible to prove (3.55) by checking that the

product on the right hand side of this formula verifies equation (3.48). This is done by integration by

parts using (3.56) and (3.57).N

For Proposition 29 we will say that X of the form (3.47) is stationary if there exists h ∈ L(d) such

that for t ≥ 0 we have fij(t) = hijt and Qij(t) = 1 for 1 ≤ i, j ≤ d.

Proposition 29 The following hold for all 0 ≤ s ≤ t

(i) E(X)(s|t) is independent of Fs.

(ii) If X is stationary then E(X)(s|t)
d
= E(X)t−s.
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Proof: (ii) follows using Proposition 27 of Subsection 3.2.1. If X is stationary then for s ≥ 0 the

processes X and Xs have identical finite dimensional distributions. It follows that for s ≤ t we have

E(X)t−s
d
= E(Xs)t−s. By Proposition 28 we have E(X)(s|t) = E(Xs)t−s.

We prove (i) using Theorem 3. For u ≥ 0 we have that the the following products πN converge in

the square mean to E(Xs)u

πN =
∏

tN
m≤u

exp(Xs
u∧tN

m+1

− Xs
u∧tN

m
)

where (tNm)m≥0 for N ≥ 1 give a decreasing sequence of partitions of R+. Using the fact that X has

independent increments we can show that πN for N ≥ 1 is independent of Fs. Since independence is

preserved by limits in the square mean, we have that E(Xs)u is independent of Fs. Now, (i) follows

by putting u = t − s and using Proposition 28.N

To end this paragraph we make the following remark in relation to Subsection 3.2.4. The increments

of E(X) are defined in (3.53) using left multiplication. That is

E(X)t = E(X)sE(X)(s|t)

for 0 ≤ s ≤ t. It is possible to define increments using right multiplication by considering the quantities

E(X)t[E(X)s]
−1 (3.58)

for 0 ≤ s ≤ t. The choice of expression (3.53) over (3.58) is essential. It is only with this definition

that Proposition 29 holds. In Subsection 3.2.4, we will see how to construct a process similar to E(X)

but for which increments defined as in (3.58) verify Proposition 29. This situation is parallel to the

discussion in Subsection 2.3.1 of left and right rotation Lévy processes.

3.2.2.2 Application to geodesic regression

The problem of geodesic regression stated in Subsection 3.1.4 can now be considered as a parametric

estimation problem. This is made possible by of Proposition 29 of the last paragraph. Let us start by

reminding this problem and explaining the role of Proposition 29.

The observed process satisfies the Stratonovich stochastic differential equation (3.38) which we

copy here.

dYt = YtdXt Y0 = I

The driving process X is made up of the unknown angular velocity ω and an additive Brownian noise

process J . For t ≥ 0 we have Jt = B1
t J1 + B2

t J2 + B3
t J3 where [B1, B2, B3] are the coordinates of a

R3-valued Brownian motion process B.

X = ωt + Jt

Let us remind that ω is an antisymmetric matrix. We can write ω = ω1J1 + ω2J2 + ω3J3. It follows

that the driving process X is equivalent to a R3-valued Brownian motion with drift. Note that in

Subsection 3.1.4 we noted Y 1 the signal process and Y 2 the observed process. Accordingly, these two

processes were related to driving processes X1 and X2 –see equation (3.38). Here we will not consider

Y 1 and X1 directly and so we have written Y and X instead of Y 2 and X2.

Our observations consist in a trajectory of the process Y taken over an interval 0 ≤ t ≤ T , T ≥ 0

being fixed. For simplicity we will make the hypothesis that the covariance matrix C of B is of the

form C = a2I where a ∈ R. This will be essential for formula (3.60) below. For all t ≥ 0 we have

found in formula (3.41) of Subsection 3.1.4

E(Yt) = exp
[(

ω − a2I
)

t
]

(3.59)
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As noted before, the stochastic differential equation (3.38) for Y is of the form (3.48). Moreover, it is

driven by a stationary process X . According to Proposition 29, the process Y ≡ E(X) has independent

and stationary increments. This is essential to our estimation approach. While the process Y itself

is nonstationary and cannot be used in estimation, its increments taken over equal time intervals are

i.i.d. and offer a standard starting point for estimation problems.

Suppose there exists N ≥ 1 such that T ≥ N . Concretely, let us choose in this case N = ⌊T ⌋ the

lower integer part of T . We will be interested in the matrix E(Y1) = M . This is a constant matrix

depending on the unknown ω and on the variance parameter a2 as in (3.59). These two quantities can

be separated by carrying out a polar decomposition of the matrix M . Indeed M can be decomposed

into a symmetric positive definite factor P depending only on a2 and an orthogonal factor O depending

only on ω.

P = MMT = e−2a2

I O = P− 1
2 M = exp(ω) (3.60)

where the square root of a symmetric positive definite matrix is taken as the unique symmetric positive

definite matrix square root.

It is now possible to consider an estimation approach similar to that of Paragraph 2.4.2.1. For

1 ≤ n ≤ N let Zn be the rotation random variable2

Zn = Y T
n−1Yn ≡ Y(n−1|n)

We have by Proposition 29 that the Zn are i.i.d. rotation random variables. Consider the following

estimate of M

M̂N =
1

N

N
∑

n=1

Zn (3.61)

We consider the convergence of the estimates M̂N when T ↑ ∞. That is, when the time over which

the process Y is observed becomes large. In this limit we have by the definition of N that N ↑ ∞.

By the strong law of large numbers limN M̂N = M almost surely.

The problem of estimating ω can now be approached as for the problem of decompounding con-

sidered in Section 2.4.2. Formulae (3.59) and (3.60) play a similar role to (2.120) and (2.121) of

Paragraph 2.4.2.1, respectively. Indeed, (3.59) relates the unknown ω to the average quantity M

while (3.60) gives the inverse transformation leading to an expression of ω. As in Paragraph 2.4.2.1,

we are interested in local inversion of (3.59) using (3.60) and the empirical estimates M̂N which con-

verge to M almost surely. Given the special form of M in (3.59), the following simplification can be

made in (3.60). We have that

O =

√
3

|M |M (3.62)

For N ≥ 1 define ÔN as in (3.63) below. It is clear that ÔN is well-defined. Moreover, a simple

continuity argument shows that limN ÔN = O almost surely. We consider the random variables ÔN

as our estimates for O which depends immediately on ω. Note that the correspondence O ↔ ω is

unique when O verifies condition (3.3) of Paragraph 3.1.1.1. If this condition is not verified then ω is

only determined up to sign. For N ≥ 1 we put

ÔN = 0 if MN = 0 ÔN =

√
3

|M̂N |
M̂N otherwise (3.63)

2remember that since Yn−1 ∈ SO(3) we have Y −1

n−1
= Y T

n−1
.
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CHAPTER 3. Filtering of matrix processes under nonlinear constraints

While the convergence of the ÔN to O is clearly ensured, this is a surprising result. These estimates

are calculated according to an apparently naive recepie. Indeed, one starts by averaging the i.i.d. ob-

servations Z1, . . . , ZN to obtain MN . The mapping (Z1, . . . , ZN) 7→ MN consists in a linear operation

applied to observations which are subject to a nonlinear constraint, in particular that Zn ∈ SO(3) for

1 ≤ n ≤ N . To recapture this nonlinear constraint, one finally performs a renormalization step as in

(3.63).

The success of (3.63) is due to the fact that it arises from (3.59) which includes a priori knowledge

of the distribution of the observations Z1, . . . , ZN . It is thus interesting to compare our use of (3.63)

to a method which required no a priori knowledge on the observations.

Such a purely geometric method can be defined in terms of the center of mass or Fréchet mean of

the observations. This is given a precise mathematical formulation by Manton in [43]. Its applications

include blind source separation [44] and medical image processing [55]. The center of mass ÕN of

the observations Z1, . . . , ZN is defined in terms of a nonlinear optimization problem. More precisely,

ÕN ∈ SO(3) is a minimiser of the function f : SO(3) → R+ given as in [43]

f(X) =
1

2

N
∑

n=1

d2(Zn, X) (3.64)

for X ∈ SO(3). Here, for 1 ≤ n ≤ N the notation d2(Zn, X) stands for the squared angular distance

between Zn and X . The definition of the function f in (3.64) implies that ÕN estimates O based

on a criterion of least square angular distance from the observations Z1, . . . , ZN . In [43], it is shows

that while ÕN always exists it is not always uniquely defined. When it is well-defined, ÕN can be

calculated using an intrinsic Newton method.

For the geodesic regression problem at hand, our estimates ÔN have important advantages over

the center of mass ÕN . They are simple to calculate and well-defined while the center of mass can

only be calculated using an iterative algorithm and is possibly not well-defined.

3.2.3 Inversion of dynamics

This subsection defines our local linearization transformation for Brownian matrix processes. In

Subsection 3.2.5, this will be used in generalizing the filtering approach outlined in Subsection 3.1.

The precise form of this transformation will be given in Theorem 4. This theorem identifies for any

given Brownian matrix process Y a process X of the form (3.47) such that Y ≡ E(X). This consists in

an inversion of the transformation X 7→ E(X) defined by equation (3.48). Formally, Theorems 3 and

4 can be considered in analogy with the discrete time transformations defined in Paragraph 3.1.1.1.

Proposition 30 establishes an important property of local linearization. Suppose the Brownian

matrix process Y has its values in a matrix Lie group, so that it is subject to nonlinear constraints.

The corresponding process X is of the form (3.47) and subject only to linear constraints. Proposition

31 gives the equivalence of the natural filtrations of Y and X . We will discuss this result in terms of

filtering applications. We now give Proposition 30. Although it uses Theorem 4, the first part of this

proposition can be proved directly.

We start from the following observation. Let X be a process of the form (3.47). It is straightforward

from equation (3.48) that X can be recovered from E(X). Indeed, for t ≥ 0

Xt =

∫ t

0

Y −1
s dYs (3.65)

where we have put Y ≡ E(X). After specifying the class of processes Y for which Proposition 30 will

apply, we will simply use the same formula (3.65) to obtain the required process X .
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3.2. Filtering of Brownian matrix processes

Let the process Y = (Yt)t≥0 have its values in GL(d) and in particular Y0 = Id. Suppose also Y is

a continuous semimartingale. For 0 ≤ s ≤ t define the increment of Y as

Y(s|t) = Y −1
s Yt

We assume Y has independent increments. Let H be the natural filtration of Y . That is, Ht =

σ{Ys, s ≤ t} for t ≥ 0. For 0 ≤ s ≤ t we have that Y(s|t) is independent of Hs. The following process

X = (Xt)t≥0 is well-defined

Xt =

∫ t

0

Y −1
s dYs (3.66)

Proposition 30 Let Y be as above and X be given by (3.66). Let G be a matrix Lie group with Lie

algebra TIG. The following hold

(i) X is of the form (3.47) and Y ≡ E(X).

(ii) If for t ≥ 0 we have Yt ∈ G almost surely then for t ≥ 0 we have Xt ∈ TIG almost surely.

Proof: We start by proving (i). The proof of (ii) uses Theorem 4 below.

From its definition (3.66), X is a continuous semimartingale. By equation (3.48) it follows that

for t ≥ 0

Yt = I +

∫ t

0

YsY
−1
s dYs = I +

∫ t

0

YsdXs

this proves that Y ≡ E(X). In order to show that X is of the form (3.47) it is enough to show that

X has independent increments. It is clear from (3.66) that X is H-adapted. For 0 ≤ s ≤ t we have

the limit in probability

Xt − Xs =

∫ t

s

Y −1
s dYs = lim

n

M
∑

m=1

Y −1
tn
m−1

(Ytn
m
− Ytn

m−1
)

where the step of the partitions s = tn1 < . . . < tnM = t of the interval [s, t] defined for n ≥ 1 decreases

to zero with n. It is possible to transform the sum in the last expression to obtain

Xt − Xs = lim
n

M
∑

m=1

Y(tn
m−1

|tn
m) − I (3.67)

By hypothesis for all n ≥ 1 and m ≥ 0 we have that Y(tn
m−1

|tn
m) is independent of Htn

m
. By using the fact

that independence is preserved by limits in probability we can conclude that Xt − Xs is independent

of Hs. It follows in particular that X has independent increments. Since X is a continuous process

with independent increments, we have that it is of the form (3.47). This is an immediate result of the

Lévy-Itô representation –see [27].

The proof of (ii) follows immediately from Theorem 4. For t ≥ 0 we have by this theorem the limit

in probability limN XN
t = Xt. Here the processes XN for N ≥ 1 are given in expression (3.68). It is

clear that for N ≥ 1 we have XN
t ∈ TIG almost surely. It follows that for t ≥ 0 we have Xt ∈ TIG

almost surely.N

The following Proposition 31 states that the natural filtrations of the processes X and E(X) are

identical. While the proof of this proposition is simple, it is of general significance to the approach

presented in the current chapter. Given a process X of the form (3.47), it is clear that the processes

X and E(X) are of different geometric natures. While E(X) is subject to nonlinear constraints X is

only subject to linear constraints. Proposition 31 tells us that in spite of this difference, X and E(X)

have the same content in terms of information. In particular, filtering with respect to observations of

either X or E(X) leads to the same posterior knowledge.
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CHAPTER 3. Filtering of matrix processes under nonlinear constraints

Proposition 31 In the notation of Proposition 30, let F = (Ft)t≥0 and H = (Ht)t≥0 be the natural

filtrations of X and Y respectively. We have that Ft = Ht for t ≥ 0.

Proof: The proof is immediate. By (i) of Proposition 30 we have Y ≡ E(X). It follows that Y is

F -adapted. In particular, for t ≥ 0 we have Ht ⊂ Ft. By (3.66) we have that X is H-adapted so that

for t ≥ 0 we have Ft ⊂ Ht. Finally, Ft = Ht for t ≥ 0.N

We finally give Theorem 4. In the current continuous time setting, local linearization is given as a

limiting process. Such a limiting process has already been stated in the special case of formulae (3.42)

of Subsection 3.1.4. While the use of a limiting process raises an additional technical difficulty, the

corresponding local linearization transformation retains the desirable properties of local linearization

as discussed in Section 3.1. In order to state Theorem 4, we need the following notation. Let

log : GL(d) → L(d) be the mapping where for y ∈ GL(d) we have log(y) = x where x is the unique

x ∈ L(d) such that y = exp(x) when |Id − y| < 1 and log(y) = 0 otherwise.

Theorem 4 In the notation of Proposition 31, let (tNm)m≥0 for N ≥ 1 give a decreasing sequence of

partitions of R+, we have that the following processes XN = (XN
t )t≥0 are continuous H-adapted and

converge locally uniformly in probability to X.

XN
t =

∑

m≥0

log
[

Y(tN
m∧t|tN

m+1
∧t)

]

(3.68)

We do not detail the proof of Theorem 4 here. It can be seen to follow by a development of formula

(3.67) in the proof of Proposition 30. Indeed, from the definition of X in (3.66) we have for t ≥ 0

Xt = lim
N

∑

m≥0

Y −1
tN
m

(YtN
m+1

− YtN
m

) = lim
N

∑

m≥0

Y(tN
m∧t|tN

m+1
∧t) − I

Remember now that for y ∈ GL(d) such that |I − y| < 1 we have the following approximation.

log(y) = (y − 1) + O(|y − 1|2) (3.69)

Replacing in the expression for Xt we have

Xt = lim
N

∑

m≥0

log
[

Y(tN
m∧t|tN

m+1
∧t)

]

+ lim
N

∑

m≥0

O(|Y(tN
m∧t|tN

m+1
∧t) − I|2)

The processes defined for N ≥ 1 by the second sum on the right hand side converge locally uniformly

in probability to the zero process when N ↑ ∞.

3.2.4 Invariance properties

In the above development on matrix Brownian processes, certain choices were made in an arbitrary

fashion. By adopting formula (3.53) in Subsection 3.2.2 we considered left rather than right increments.

In general, we have also worked with an arbitrary time parameter attached to the driving process X

of equation (3.48). In the current subsection, we will try to apprehend these choices by considering

related invariance properties.

In relation to our general aim of using local linearization for the filtering of Brownian matrix

processes, invariance properties will clarify the range of applicability of local linearization as defined

in the last Subsection 3.2.3. Proposition 32 below will state the invariance by multiplication of local

linearization. It is seen that our choice of formula (3.53) leads to invariance by left multiplication.

76



3.2. Filtering of Brownian matrix processes

Invariance by right multiplication obtains when increments can be defined as in formula (3.58). In-

variance by time shift is considered in Proposition 33 in the form of a Markov property of Brownian

matrix processes.

For a process X of the form (3.47), Y ≡ E(X) has the property of invariance by left multiplication.

Given any random variable K which is F0-measurable and has its values in GL(d), the process Z ≡
(KE(X)t)t≥0 is the unique solution of the following Stratonovich stochastic differential equation

Zt = K +

∫ t

0

ZsdXs (3.70)

The left increments of Z are the same as those of Y and have the same properties given by Proposition

29. Indeed, note that for all 0 ≤ s ≤ t we have

Z−1
s Zt = Y −1

s Yt = E(X)(s|t)

Local linearization as in formula (3.68) leads to the same process X when applied to either one of the

processes Y or Z. We thus have that local linearization is invariant by left multiplication for processes

whose increments are defined by formula (3.53).

In order to obtain a similar property of invariance by right multiplication we consider the following

process Ȳ where for t ≥ 0 we have

Ȳt =
[

E(XT )t

]T
(3.71)

which is defined in the same way as Y , since the process XT = (XT
t )t≥0 is of the form (3.47). For

the process Ȳ we consider right increments given by formula (3.58). More precisely, for 0 ≤ s ≤ t the

increment Ȳ(s|t) is defined as

Ȳ(s|t) = ȲtȲ
−1
s (3.72)

For the process Ȳ , we have the following proposition. It states that Ȳ is invariant by right multipli-

cation and can be proved immediately from (3.71).

Proposition 32 The following hold

(i) Let K be as in (3.70). The process Z̄ ≡ (ȲtK)t≥0 is the unique solution of the following Stratonovich

stochastic differential equation

Z̄t = K +

∫ t

0

dXsZ̄s (3.73)

The straightforward relation (3.71) between Y and Ȳ allows for the properties of Y seen in Subsections

3.2.2 and 3.2.3 to be proved for Ȳ . We have by (3.71) that for all 0 ≤ s ≤ t

Ȳ(s|t) = [E(XT )(s|t)]
T

It follows from this identity that the right increments of Ȳ verify Proposition 29. More precisely, we

have for all 0 ≤ s ≤ t

(i) Ȳ(s|t) is independent of Fs.

(ii) If X is stationary then Ȳ(s|t)
d
= Ȳt−s.

Formula (3.68) can be used immediately to apply local linearization to Ȳ . It is enough to replace

the left increments in this formula by right increments as defined in (3.72). Retaining the notation of

Theorem 4 we have the processes XN given for t ≥ 0 below converge locally uniformly in the square

mean to X

XN
t =

∑

m≥0

log
[

Ȳ(tN
m∧t|tN

m+1
∧t)

]
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where the increments of Ȳ are given by (3.72). Note again that local linearization leads to the same

process X when applied to Ȳ or to any process of the form Z̄ as in Proposition 32. This expresses

the invariance by right multiplication of local linearization.

The following Proposition 33 considers the invariance by time shift of local linearization. Note that

item (i) of this proposition can be interpreted as follows. A time shift in the driving process X leads

to a similar time shift in the process E(X). For the driving process X time shift is defined in terms

of the linear structure of L(d), while for E(X) it is defined in terms of the multiplicative structure of

GL(d).

Proposition 33 Suppose X is of the form (3.47) and note Y ≡ E(X). Consider the process Y s =

(Y s
t )t≥0 where Y s

t = Y(s|s+t). The following hold

(i) Y s ≡ E(Xs) where Xs = (Xs
t )t≥0 is given by Xs

t = Xs+t − Xs.

(ii) Y s is independent of Fs.

(iii) If X is stationary then Y and Y s have identical finite dimensional distributions.

Proof: Note that (i) follows immediately from formula (3.54) of Proposition 28. Moreover, (iii)

follows from (ii) of Proposition 29. Indeed, when X is stationary then X and Xs have identical finite

dimensional distributions, for all s ≥ 0. The proof of (ii) follows using (i) of Proposition 29.

In order to prove (ii) we must prove that for all N ≥ 1 and all 0 ≤ t1 ≤ . . . ≤ tN we have that the

random variable V = [Y s
t1

, . . . , Y s
tN

] which takes its values in [GL(d)]N is independent of Fs. It is clear

that for all such N and t1, . . . , tN the [GL(d)]N -valued random variable W = [Y s
(t1|t2), . . . , Y

s
(tN−1|tN )]

is independent of Fs. Indeed, this can be seen to follow by (i) of Proposition 29. To complete the

proof, we express V in the form V = f(W ) where f is a continuous mapping of [GL(d)]N . To this

effect, let f be given for w = [v1, . . . vN ] ∈ [GL(d)]N by v = f(w) = [v1, . . . vn] where for 1 ≤ n ≤ N

vn =

n
∏

i=1

wi

where the product is ordered from left to right.N

Let us finally note that the invariance properties given in the current subsection can be seen

as continuous time counterparts of the properties given in Subsection 3.1.3 for the case of discrete

time rotation processes. The role of these properties in filtering applications can be discussed as in

Subsection 3.1.3 –compare to [64] where we discuss continuous time rotation processes.

3.2.5 Stability properties

The current subsection formulates our approach to the filtering of matrix processes under nonlinear

constraints. This is done within the framework of Brownian matrix processes, which was developed in

Subsections 3.2.1 to 3.2.4 above. As explained in the introduction of the current chapter, we seek to

study for Brownian matrix processes a similar use of local linearization to what was done for discrete

time rotation processes in Section 3.1. Local linearization is now implemented according to Theorem

4 of Subsection 3.2.3. The stability properties related to our local linearization transformation play

the main role in justifying our approach.

Our main results is Proposition 35. This states the stability of the transformation X 7→ E(X).

Of course, this proposition is intended in the context of our application of local linearization which

we start by describing more precisely. Let d ≥ 1 and suppose G ⊂ GL(d) is a matrix Lie group and

note TIG its Lie algebra. Consider a filtering problem that can be stated as follows. A signal process

Y 1 is assumed, to which we do not have direct access. On the other hand, we have observations of
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3.2. Filtering of Brownian matrix processes

another process Y 2 which we call the observation process. Both these processes have their values in

G and our problem is to infer the signal process Y 1 using the information available in the observation

process Y 2. A solution consists in a process Ŷ 1 verifying the following two requirements.

• Ŷ 1 should be optimal. This process is constructed only from available observations of Y 2. It

should make complete use of the information available in these observations.

• Ŷ 1 verifies the same nonlinear constraints as Y 1 and Y 2. Namely, it should have its values in

G.

In general, these two requirements are not compatible. It is well known from the theory of optimal

filtering that the process Ŷ 1 verifying the first requirement of optimality is the conditional expectation

process [23]

Ŷ 1
t = E[Y 1|Ft] (3.74)

for t ≥ 0, where F = (Ft)t≥0 is the natural filtration of Y 2. This process is moreover the best

approximation of Y 1 in the sense of the pointwise square mean. Since conditional expectation is a

linear operation, it is clear that Ŷ 1 does not in general verify the second requirement of nonlinear

constraints.

Suppose Y 1 and Y 2 verify the conditions of Proposition 30. In this case we know that there

exist processes X1 and X2 of the form (3.47) with values in TIG such that Y i ≡ E(X i) for i = 1, 2.

Moreover, X1 and X2 are given by Theorem 4. It seems desirable to deal with the two requirements

stated above through the process X2 rather than the observation process Y 2. Note that

• By Proposition 31 the natural filtration of X2 is also equal to F . In other words, X2 contains

the same information as Y 2.

• X2 is only subject to linear constraints.

The main idea of our approach is to seek Ŷ 1 of the form E(X̂1) where X̂1 is a process of the form

(3.47) with values in TIG. By proposition 26 we have that Ŷ 1 then has its values in G, i.e. it verifies

our second requirement related to nonlinear constraints. The process X̂1 is to be constructed from X2

and should be a good approximation of X1. We can describe this approach using a diagram similar

to (3.36) of Subsection 3.1.3.

Y 2 F−→ Ŷ 1 ≈ Y 1

↓ ↑
X2 f−→ X̂1 ≈ X1

(3.75)

Here, downward arrows correspond to the application of Theorem 4 while upward arrows correspond to

the application of Theorem 3. Theorem 4 is thought of as giving a local linearization transformation.

Note that both these theorems involve a limiting process and thus we do not have X2 or Ŷ 1 exactly.

We will neglect this difficulty in the following. Let us just mention that Karandikar [28] discusses how

the convergence rate in these theorems can be improved to an exponential rate.

We have formulated our use of local linearization in the filtering of matrix processes under nonlinear

constraints. The resulting approach is not optimal in any clear sense and we have not yet given it any

justification. At this stage, this approach is only a plausible prescription for approximating Y 1 given

Y 2. It is precisely the stability of the transformation X 7→ E(X) that justifies our approach. Assume

we have the necessary a priori knowledge on X1 and X2 to realize a good approximation X̂1 ≈ X1

as in diagram (3.75). Proposition 35 ensures that this approximation will be preserved by application

of the upward arrow in the diagram and we should obtain an accordingly acceptable approximation
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Ŷ 1 ≈ Y 1. We will see however that we have –as in Paragraph 3.1.1.2 for the case of rotation time

series– the appearance of drifting problems. As a result, obtaining a good approximation Ŷ 1 ≈ Y 1

may turn out to be highly costly even if possible in principle.

We now turn to Proposition 35. This proposition states the stability of the transformation X 7→
E(X). It is not intended to give a sharp estimate of this stability but rather to provide a qualitative

appreciation of the roles of stability and drifting as mentioned above. Mathematically, Proposition 35

is concerned with the stability of the stochastic differential equation (3.48) with respect to the driving

process X . The statement of this proposition is chosen in view of obtaining a straightforward proof

and is thus somewhat restricted. It should be noted that a variety of more general stability results of

the same type are known in the literature. See the comprehensive book by Protter [57].

Let X1 and X2 be any two processes of the form (3.47). Proposition 35 gives an upper bound on

the distance between Y 1 ≡ E(X1) and Y 2 ≡ E(X2) in terms of the distance between X1 and X2.

For the distance between E(X1) and E(X2) we have in mind the square mean uniform distance. The

adequate distance between X1 and X2 is precised in the intermediate Proposition 34 below. The

matrix elements of the processes X1 and X2 are as follows

X1ij

t = f1
ij(t) +

∫ t

0

Q1
ij(s)dBij

s X2ij

t = f2
ij(t) +

∫ t

0

Q2
ij(s)dBij

s (3.76)

for 1 ≤ i, j ≤ d and t ≥ 0. Here, the functions f1
ij , f

2
ij and Q1

ij , Q
2
ij are as in (3.47). In order

to simplify the proof of Proposition 35 the following two assumptions are made. First, note that

expressions (3.76) impose that X1 and X2 are defined in terms of the same L(d)-valued Brownian

motion B. This restricts the range of problems for which we can consider the approach of diagram

(3.75) but is for instance sufficient for denoising problems. Second, although the stochastic integral

in equation (3.48) is a Stratonovich integral, all stochastic integrals appearing in Propositions 34 and

35 will be treated as Itô integrals. To see that this can be done without any loss of generality, note

the following. Transforming equation (3.48) into an Itô equation does not change its general form but

simply adds a new term to the driving process X . This new term is an increasing function and can

be absorbed into the functions fij of formula (3.47).

The following Proposition 34 is a technical lemma to be used in the proof of Proposition 35.

Readers who prefer to skip its proof may do so after familiarizing themselves with its statement. For

all process X of the form (3.47), Proposition 34 exhibits an increasing function AX : R+ → R+ which

dominates stochastic integrals with respect to X . This proposition introduces the following notation.

Let Z be a L(d)-valued continuous process. For T ≥ 0 we note Z∗
T the L(d)-valued random variable

whose matrix elements are Z∗ij
T = supt≤T |Zij

T |.

Proposition 34 Let X be a process of the form (3.47) and note F its natural filtration. There exists

an increasing function AX : R+ → R+ such that for all L(d)-valued process Y which is continuous,

square integrable and F-adapted we have

E|Z∗
T |2 ≤

∫ T

0

E|Yt|2dAX(t) (3.77)

for T ≥ 0. Where Z is the stochastic integral process, Zt =
∫ t

0
YsdXs for t ≥ 0.

Proof: In the proof, the notation of (3.47) is used. For T ≥ 0 we have by direct calculation

E|Z∗
T |2 ≤ 2d

d
∑

i,j,k=1

E sup
t≤T

∣

∣

∣

∣

∫ t

0

Y ik
s dfkj(s)

∣

∣

∣

∣

2

+ E sup
t≤T

∣

∣

∣

∣

∫ t

0

Y ik
s Qkj(s)dBkj

s

∣

∣

∣

∣

2

(3.78)
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For the first term under the sum we have by the Cauchy-Schwarz inequality
∣

∣

∣

∣

∣

∫ T

0

|Y ik
t |d|fkj |(t)

∣

∣

∣

∣

∣

2

≤
∫ ∞

0

d|fkj |(t)
(1 + |fkj |2(t))

∫ T

0

|Y ik
t |2(1 + |fkj |2(t))d|fkj |(t)

where |fkj | : R+ → R+ denotes the variation of the function fkj . It follows that

E sup
t≤T

∣

∣

∣

∣

∫ t

0

Y ik
s dfkj(s)

∣

∣

∣

∣

2

≤ π

2

∫ T

0

E|Y ik
t |2(1 + |fkj |2(t))d|fkj |(t)

For the second term we have by Doob’s quadratic martingale inequality

E sup
t≤T

∣

∣

∣

∣

∫ t

0

Y ik
s Qkj(s)dBkj

s

∣

∣

∣

∣

2

≤ 4E|B1|2
∫ T

0

E|Y ik
t |2Q2

kj(t)dt

Replacing these two inequalities in (3.78) and summing over i, j, k we have that (3.77) holds for the

following function AX

AX(t) = 12d2
d
∑

i,j=1

[

|fij |(t) +
|fij |2(t)

3
+ E|B1|2

∫ t

0

Q2
ij(s)ds

]

(3.79)

for t ≥ 0, which is indeed a positive increasing function.N

We now give Proposition 35. For the processes X1 and X2 of (3.76), note X the process where

Xt = X1
t −X2

t for t ≥ 0. It follows from (3.76) that X is also of the form (3.47). Let AX be the positive

increasing function associated to X as in Proposition 34. Proposition 35 will bound the uniform mean

square distance between Y 1 and Y 2 in terms of the function AX . Note that this function is a strong

measure of the distance between X1 and X2. Indeed, it follows from Proposition 34 that

E|X∗
T |2 ≤ AX(T )

for all T ≥ 0. After proving Proposition 35, we will discuss it in terms of the approach of diagram

(3.75).

Proposition 35 Note D = (Dt)t≥0 the process where Dt = Y 1
t −Y 2

t . For T ≥ 0 we have the following

inequality

E|D∗
T |2 ≤ 4d exp[2AX1(T ) + 2AX2(T )]AX(T ) (3.80)

where AX1 and AX2 are the positive increasing functions associated to X1 and X2 as in Proposition

34.

Proof: Before considering the process D, let us start by obtaining bounds on the processes Y 1 and

Y 2. We do this using Proposition 34. Letting i = 1, 2, and applying Proposition 34 to equation (3.48)

for Y i we have for T ≥ 0

E|Y i∗
T |2 ≤ 2d + 2

∫ T

0

E|Y i∗
t |2dAXi(t)

It results by elementary calculus

E|Y i∗
T |2 ≤ 2d exp[2AXi(T )] (3.81)

Turning to the process D, note that we can write3

DT =

∫ T

0

Y 1
t dXt +

∫ T

0

DtdX2
t

3These two integrals are well-defined since all processes are adapted to the natural filtration of the underlying

Brownian motion B of (3.76). For the same reason, it is possible to use Proposition 34 for these integrals.
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for T ≥ 0. By applying Proposition 34 to both integrals we have

E|D∗
T |2 ≤ 4d exp[2AX1(T )]AX(T ) + 2

∫ T

0

E|D∗
T |2dAX2

(T )

where we have used inequality (3.81) for the first term. It now follows as for (3.81) that

E|D∗
T |2 ≤ 4d exp[2AX1(T )] exp[2AX2(T )]AX(T )

which completes the proof.N

Let us now return to the notation of diagram (3.75). We wish to discuss the approximation

Ŷ 1 ≈ Y 1 using Proposition 35. In order to do so we must assume that the processes X̂1 and X1

verify the conditions of this proposition. We emphasize that while these conditions contain strong

restrictions they were only introduced to simplify the proof. The general behavior which we describe

remains effective in a considerably more general range of problems.

Note E = (Et)t≥0 the process Et = Ŷ 1
t − Y 1

t . This process gives the error arising from our use of

diagram (3.75) to approximate Y 1 from Y 2. Note also e = (et)t≥0 the process et = X̂1
t −X1

t . According

to the diagram, we control directly the process e as we construct the approximation X̂1 ≈ X1. The

performance of our approach depends on the possibility of dominating the process E using only

the process e. Proposition 35 provides the following bound (3.82) on E. Let A
X̂1 , AX1

and Ae the

positive increasing functions associated to the processes X̂1, X1 and e as in Proposition 34. We rewrite

inequality (3.80) for these processes.

E|E∗
T |2 ≤ 4d exp[2A

X̂1(T ) + 2AX1(T )]Ae(T ) (3.82)

Inequality (3.82) illustrates the roles of stability and drifting in determining the performances of the

approach of diagram (3.75). Note that this can be rewritten

E|E∗
T |2 ≤ K(T )Ae(T )

for T ≥ 0. Clearly, the error E is dominated by the function Ae associated with the process e.

Fixing T ≥ 0, any improvement in the approximation X̂1 ≈ X1 thus leads to an improvement in

the approximation Ŷ 1 ≈ Y 1, modulated by a multiplicative factor K. Drifting is precisely related

to the exponential growth of the factor K in relation with the time T . For larger values of T , in

order to obtain a fixed performance of the approximation Ŷ 1 ≈ Y 1 a much higher quality of the

approximation X̂1 ≈ X1 might be required. We have described drifting problems in the discrete

time setting of Paragraph 3.1.1.2. Here, we have used Proposition 35 to display these problems

mathematically in the case of Brownian matrix processes. Thus, drifting appears a general limitation

to the performances of methods based on local linearization.

3.3 Conclusions

In comparison to Chapter 2, the current chapter is of a more exploratory nature. The aim is to give

a general formulation of the use of local linearization for filtering under nonlinear constraints and to

examine the resulting performances. Our interest in local linearization is due to its consistent and rich

mathematical structure in addition to its relative simplicity of use. In the literature, filtering problems

involving nonlinear constraints are either solved using ad hoc global linearization methods or compli-

cated nonlinear optimization techniques. While there have been isolated instances of applications of

local linearization in filtering, e.g. in motion capture, we do not know of any general study of such
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applications. From the outset, we identify the stability and invariance properties of local linearization

as essential to its successful application and wish to gain a theoretical understanding of their role.

Section 3.1 takes a practical approach to this goal, while Section 3.2 attempts a more general and

theoretical study.

Section 3.1 is based on our paper [64]. This Section 3.1 restricts itself to rotation time series for

which it develops in detail the stability properties of local linearization. These properties are applied

to the study of two examples of filtering problems. In particular, the problem of geodesic regression

in considered in Paragraph 3.1.2.1. We had considered this same problem from an optimization point

of view in the paper [65]. Although [65] considers geodesic regression in relation to a data analysis

application, the papers [64] and [65] provide a first basis for the comparison of our local linearization

based approach to optimization methods. Paragraph 3.1.1.2 includes the main mathematical develop-

ment of this section. The stability of local linearization is given in the form of both global Lipschitz

properties and local differentiability results. This development is a necessary step for any systematic

study of local linearization based methods for rotation time series.

Section 3.2 attempts to generalize the approach of Section 3.1 to Brownian matrix processes. These

processes are described by a class of linear stochastic differential equations of which we had already

met an example in Chapter 2 –namely, rotation Brownian motion in Subsection 2.3.3. Brownian

matrix processes constitute a general model for processes with values in matrix Lie groups which have

independent increments and continuous paths. Using their defining stochastic differential equations,

Subsection 3.2.3 naturally introduces a local linearization transformation for Brownian matrix pro-

cesses. Section 3.2 is devoted to providing a self-contained background on the underlying mathematical

formalism. In doing so, we establish the main results which allow the formulation of our approach in

Subsection 3.2.5. Concrete application and a more detailed study of this approach remain open goals

for future work.

In terms of this approach, Propositions 26 and 30 establish the use of local linearization in dealing

with nonlinear constraints. Proposition 29 characterizes the properties of independence and station-

arity of the increments of Brownian matrix processes. As seen in Paragraph 3.1.2.1, these properties

are important to estimation problems stated in terms of these processes. Proposition 35 is used in

Subsection 3.2.5 to illustrate the performances of our approach based on local linearization. Although

we only provide a general discussion, Proposition 35 already clarifies the importance of the stability

properties related to local linearization and allows us to describe the role of drifting problems.

Let us end by noting a remarkable result obtained in Paragraph 3.1.2.1. In the presence of a

nontrivial noise model, this paragraph shows that a problem of averaging on the rotation group can

be solved using a straightforward analytical formula. In current literature, this type of averaging

problem is considered through optimization techniques and its solution is obtained using a gradient

algorithm. We have obtained this considerable simplification thanks to our formalism of Brownian

matrix processes.
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Appendix A

Résumé en Français

La présente annexe contient un résumé en Français des résultats les plus importants de cette thèse.

Ainsi, nous reprenons en les condensant les parties correspondantes dans le corps de la thèse. Les

sections A.2 et A.3 ci-dessous sont respectivement issues des chapitres 2 et 3. La section A.1 commence

par rappeler l’objectif général de la thèse ainsi que les problèmes les plus importants qu’elle a résolu.

C’est en fait une traduction directe de l’introduction Anglaise.

A.1 Introduction

Cette thèse considère des problèmes d’estimation et de filtrage posés en termes de processus ayant

leurs valeurs dans des groupes de Lie matriciels. Notre intérêt pour ces processus est motivé par des

applications directes mais aussi par leur importance générale pour la modélisation. La thèse a été

divisée en deux chapitres. Le chapitre 2 se restreint aux processus ayant leurs valeurs dans le groupe

des rotations. Nous parlons, pour plus de concision, de processus de rotation. Le problème principal

résolu dans ce chapitre est le problème du decompounding1, qui est un problème d’estimation non

paramétrique. La solution en est réalisée dans la sous-section 2.4.2. Le chapitre 3 considère de façon

plus générale les processus avec leurs valeurs dans un groupe de Lie matriciel quelconque. Ce chapitre

étudie une nouvelle approche du filtrage de ces processus, basée sur la notion de linéarisation locale.

La formulation précise de cette approche est réalisée à la sous-section 3.2.5.

Le chapitre 2 est basé sur nos deux articles [63,66]. Il est consacré à la partie du travail de thèse qui

relève d’applications directes, notamment en physique des ondes. La section 2.2 présente un nouveau

formalisme pour la polarisation statistique [63]. La section 2.4 pose le problème du decompounding

en tant qu’alternative statistique au problème inverse de la diffusion multiple. Sous une forme plus

générale, ce problème fut considéré et résolu dans [66] –A notre connaissance, il s’agit de la première

fois que ce problème est considéré.

Le outils mathématiques nécessaires aux sections 2.2 et 2.4 sont donnés aux sections 2.1 et 2.3.

Nous devons essentiellement présenter la théorie des fonctions caractéristiques de variables aléatoires

de rotation. L’utilisation de ces fonctions caractéristiques connait récemment une popularité crois-

sante, tout particulièrement pour l’estimation non paramétrique –voir [67] et la discussion faite à la

section 2.1. Notre présentation en introduit certains nouveaux aspects importants aux applications

des sections 2.2 et 2.4. Par exemple, le paragraphe 2.1.2.2 caractérise les propriétés de symétrie des

variables aléatoires de rotation, qui sont à leur tour un ingrédient principal dans notre solution du

1Nous ne connaisons pas de nom Français pour ce problème et garderons tout le long son nom Anglais.
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problème du decompounding. La section 2.3 étudie une classe importante de processus de rotation:

Les processus de Lévy de rotation.

La section 2.2 considère un problème d’importance récente en polarisation statistique. Le formal-

isme de Stokes classique en polarisation est basé seulement sur les statistiques d’ordre deux du champ

d’onde optique et notre but est de le généraliser aux statistiques d’ordre supérieur. Les expériences

d’Ellis et Dogariu que nous décrivons à la section 2.2.2 peuvent être vues comme notre motivation

principale. A la sous-section 2.2.3 nous proposons un nouveau formalisme qui généralise le formalisme

de Stokes classique aux statistiques d’ordre supérieur. Ce formalisme réussit à clarifier les contradic-

tions levées par les expériences de la sous-section 2.2.2. Nous comparons ce formalisme à d’autres

tentatives faites dans la littérature pour inclure les statistiques d’ordre supérieur dans la description

de la polarisation. La section 2.2.4 utilise notre formalisme afin d’étudier le problème physique de la

dépolarisation.

La section 2.4 pose et résout le problème du decompounding. La sous-section 2.4.1 discute de ce

problème en tant qu’alternative au problème inverse de la diffusion multiple. La sous-section 2.4.2

étudie le problème du decompounding en lui même. C’est un problème d’estimation non paramétrique

posé en termes des processus de Poisson composés de rotation et des processus entrelacés, qui ont été

introduits aux sous-sections 2.3.2 et 2.3.4. Nous proposons une solution du problème du decompound-

ing utilisant une méthode de fonction caractéristique. Alors que l’utilisation de telles méthodes pour

l’estimation paramétrique des variables aléatoires de rotation est déjà bien établie, le problème du

decompounding présente une nouvelle difficulté essentielle en vue de ces méthodes. Plus précisément,

ce problème part d’observations indirectes et sa solution exige en conséquence des outils spécifiques

en analyse matricielle ainsi qu’un traitement probabiliste plus détaillé. Le paragraphe 2.4.2.2 fournit

les preuves mathématiques pour la convergence de notre méthode de fonction caractéristique. Le

paragraphe 2.4.2.3 illustre cette convergence à l’aide de simulations numériques.

Le chapitre 3 est d’une nature plus exploratoire que le chapitre 2. Ce chapitre considère les pro-

cessus ayant leurs valeurs dans un groupe de Lie matriciel quelconque. Dans ce cas général, il n’existe

pas de définition utile de la fonction caractéristique comme au chapitre 2. Ainsi, les processus en

question sont considérés à l’aide des équations différentielles stochastiques qui les définissent. Nous

nous intéressons aux processus à valeurs dans les groupes de Lie matriciels en tant que modèle général

pour les processus sous contraintes non linéaires, ces contraintes exprimant des considérations de

symétrie. De tels processus apparaissent dans une grande variété de domaines : Capture de mouve-

ment, dynamique de l’ADN, imagerie médicale. Nous nous adressons au problème appliqué du filtrage

sous contraintes non linéaires. La difficulté principale à surmonter est l’impossibilité d’appliquer les

opérations de traitement du signal linéaires tout en respectant les contraintes non linéaires.

En pratique, cette difficulté est souvent contournée à l’aide des méthodes dite de linéarisation

globale. De telles méthodes permettent une implémentation facile mais souffrent de plusieurs limi-

tations –ceci a été discuté par Xavier et Manton [75] et Lee et Shin [38]. Motivés par la réussite de

son application en capture de mouvement [16, 38], nous nous intéressons à la notion de linéarisation

locale. Le but du chapitre 3 est de donner une formulation générale de l’utilisation de la linéarisation

locale pour le filtrage sous contraintes non linéaires et de justifier les performances résultantes. La

section 3.1 est basée sur notre article [64] et suit une approche pratique de ce but. La linéarisation

locale est considérée pour le cas spécial des processus de rotation en temps discret. Nous étudions,

pour ce cas précis, les propriétés de stabilité et d’invariance de la linéarisation locale. A la sous-section

3.1.2 nous donnons deux exemples numériques de problèmes de filtrage pour lesquels nous présentons

notre méthode en comparaison avec d’autres travaux récents, notamment basés sur l’optimisation.
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La section 3.2 correspond au but principal de ce chapitre. Nous considérons des processus qui

peuvent être représentés comme solutions d’équations stochastiques différentielles linéaires de la forme

suivante.

dYt = YtdXt Y0 = Id

Notre processus inconnu Y et le processus dirigeant X ont leurs valeurs dans l’espace des matrices d×d

réelles, pour un certain d ≥ 1. De plus, X est un processus Brownien à accroissements indépendants et

l’équation est considérée comme un équation de Stratonovich. Pour la condition initiale, Id dénote la

matrice identité d× d. Nous appelons les processus de la forme Y des processus matriciels Brownien.

La section 3.2 développe le formalisme mathématique nécessaire à la formulation correcte et générale

de l’utilisation de la linéarisation locale pour les processus matriciels Brownien.

La sous-section 3.2.1 montre que les processus matriciels Browniens ont de façon naturelle leurs

valeurs dans les groupes de Lie matriciels. Ainsi, ils vérifient le type général des contraintes non

linéaire que nous voulons exprimer. A la sous-section 3.2.3, la correspondance Y 7→ X pour un

processus matriciel Brownien Y défini comme ci-dessus est considérée. C’est une transformation bien

définie dont nous montrons qu’elle transforme le processus Y sujet à des contraintes non linéaires en

le processus X sujet uniquement à des contraintes linéaires. La linéarisation locale d’une processus

matriciel Brownien Y consiste précisément en l’application de la transformation Y 7→ X . Elle peut

être calculée de façon causale –en se servant seulement des valeurs courantes de Y – et élimine les

contraintes non linéaires imposées sur Y . La sous-section 3.2.5 donne finalement la formulation précise

de notre approche du filtrage des processus matriciels Brownien et énonce les propriétés de stabilité

sous-jacentes. Ces propriétés constituent la justification principale de notre approche. Il est important

de rappeler que la chapitre 3 a le but limité de formuler et d’étudier de façon générale l’utilisation de

la linéarisation locale pour les processus matriciels Browniens. Bien que nous réalisions ce but à la

section 3.2, l’application concrète et l’étude détaillée de notre approche reste un objectif ouvert pour

des travaux futurs.

A.2 Problème du decompounding

Le problème principal résolu dans le chapitre 2 est le problème du decompounding. Nous allons ici

poser ce problème et en présenter la solution qui a été proposée à la sous-section 2.4.2. En passant

nous rappellerons au A.2.1 quelques bases sur les fonctions caractéristiques des variables aléatoires

de rotation. Au A.2.2 nous reverrons rapidement la définition des processus de Poisson composés de

rotation. C’est là un exemple de processus de Lévy de rotation et nous renvoyons à la section 2.3 pour

une étude plus complète de ce type de processus. A la section 2.4 le problème du decompounding a

été appliqué au problème inverse de la diffusion multiple –voir plus précisément la sous-section 2.4.1.

Nous n’allons pas ici rendre compte de cet aspect, et le résumé suivant est consacré au problème du

decompounding en lui même.

A.2.1 Fonctions caractéristiques des variables aléatoires de rotation

Les fonctions caractéristiques de variables aléatoires scalaires ou vectorielles sont définies grâce à la

transformée de Fourier classique. Leur généralisation aux variables aléatoires de rotation se fait grâce

à l’analyse de Fourier sur le groupe des rotations. Notre présentation sur les fonctions caractéristiques

est basée sur [21, 40] et reprend aussi certains travaux récents [36, 76].
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Le groupe des rotations de l’espace est identifié avec le groupe matriciel SO(3). Une matrice 3× 3

réelle R appartient à SO(3) si elle vérifie les deux conditions suivantes

RRT = I detR = 1 (A.1)

où I est la matrice identité. Une variable aléatoire de rotation X est une matrice aléatoire 3× 3 réelle

tel que en plus X appartient à SO(3). Par densité de probabilité d’une variable aléatoire de rotation

X , nous entendons toujours une densité de probabilité carré intégrable par rapport à la mesure de

Haar de SO(3). La mesure de Haar est notée µ et sa forme explicite est donnée au paragraphe 2.1.1.3.

C’est l’unique mesure normalisée sur SO(3) qui soit invariante par multiplication. Si p est la densité

de probabilité de X alors p est carré intégrable par rapport à µ et pour toute fonction continue

h : SO(3) → C

E[h(X)] =

∫

SO(3)

phdµ

Ici E est l’espérance par rapport à une probabilité sous-jacente P.

Pour définir la fonction caractéristique de X nous devons introduire les représentations irréductibles

du groupe SO(3) et énoncer le théorème de Peter-Weyl. C’est le théorème 5 ci-dessous. Ces

représentations forment en faite une famille d’homomorphismes U l indexée par l ≥ 0. Pour l ≥ 0

nous avons une application R 7→ U l(R) continue et définie pour R ∈ SO(3) vérifiant la propriété

suivante. Pour R ∈ SO(3) l’image U l(R) est une matrice dl × dl complexe. Ici dl = 2l + 1, par

convention. De plus, pour tout R1, R2, R ∈ SO(3) nous avons

U l(R1R2) = U l(R1)U
l(R2) [U l(R)]−1 = U l(RT ) = [U l(R)]† (A.2)

où † dénote la transposée Hermitienne. La première identité est la propriété d’homomorphisme de U l,

alors que la deuxième implique que U l est à valeurs unitaires. Les formes explicites des applications

U l, pour l ≥ 0, sont données au paragraphe 2.1.1.3, au moyen des angles d’Euler.

Bien entendu, étant donné l ≥ 0 nous pouvons considérer d2
l fonctions sur SO(3) et à valeurs

complexes données par les éléments de la matrice U l(R). Il est habituel d’indexer ces fonctions par

−l ≤ m, n ≤ l en les notant U l
mn : SO(3) → C. Le théorème de Peter-Weyl nous dit que la famille de

fonctions ainsi définie et indexée par l ≥ 0 et −l ≤ m, n ≤ l est complète dans l’espace des fonctions

carré intégrables par rapport à la mesure de Haar. La série (A.3) est dite série de Fourier de la fonction

h en question.

Theorem 5 Pour toute fonction h carré intégrable par rapport à µ la série suivante (A.3) converge

vers h. Si h est continue, alors (A.3) converge vers h uniformément.

h =
∑

l≥0

dl tr
(

ĥlU l†
)

=
∑

l≥0

dl

l
∑

m,n=−l

ĥl
mnU l∗

mn (A.3)

où tr dénote la trace d’une matrice.

Bien que le théorème de Peter-Weyl n’intervienne pas dans la définition de la fonction caractéristique

d’une variable aléatoire de rotation, elle est à la base de ses propriétés les plus importantes. Soit X

une variable aléatoire de rotation. La fonction caractéristique de X est la suite φX = {φX(l)}l≥0 de

matrices dl × dl complexes données par

φX(l) = E[U l(X)] (A.4)
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La proposition 36 suivante condense les propositions 2 et 3 du paragraphe 2.1.2.1. De même, la propo-

sition 37 reprend les propositions 5 et 6 du paragraphe 2.1.2.2. Les démonstrations des propositions

36 et 37 se font de façon directe grâce au théorème de Peter-Weyl et aux propriétés (A.2).

La proposition 36 rappelle la relation entre les fonctions caractéristiques et les notions de con-

volution et de convergence en distribution. C’est une généralisation de propriétés classiques pour

les variables aléatoires scalaires. Rappelons qu’une suite (Xn)n≥1 de variables aléatoires de rota-

tion et dite convergente en distribution vers une variable aléatoire X si pour toute fonction continue

h : SO(3) → C nous avons

lim
n

E(h(Xn)) = E(h(X))

Cette propriété s’écrit Xn
d→ X .

Proposition 36 Nous avons les propriétés suivantes

(i) Soient X et Y des variables aléatoires de rotation indépendantes et Z = XY . Nous avons pour

l ≥ 0

φZ(l) = φX(l)φY (l)

(i) Une suite (Xn)n≥1 de variables aléatoires de rotation converge en distribution vers une variable

aléatoire X ssi pour tout l ≥ 0

lim
n

φXn
(l) = φX(l)

Afin de résoudre le problème du decompounding nous imposerons certaines conditions de symétrie

sur les variables aléatoires considérées. Nous détaillons ces propriétés ici en utilisant les fonctions

caractéristiques, l’analyse suivante est adaptée à partir de [40].

Nous dirons qu’une variable aléatoire de rotation X est invariante pas inversion si X
d
= XT .

De même, nous dirons que X est invariante par conjugaison si pour tout R ∈ SO(3) nous avons

X
d
= RXRT . Comme d’habitude,

d
= dénote l’égalité en distribution. Rappelons que pour deux

variables aléatoires de rotation X et Y nous avons X
d
= Y ssi φX = φY . Cette caractérisation est un

résultat immédiat du théorème de Peter-Weyl. Elle peut être utilisée pour démontrer la proposition

suivante.

Proposition 37 Soient X et Y des variables aléatoires de rotation indépendantes. Nous avons les

propriétés suivantes

(i) X est invariante par inversion ssi pour tout l ≥ 0 nous avons que φX(l) est Hermitienne.

(ii) Si X est invariante par inversion et X1, . . . , Xn sont des copies indépendantes de X alors le

produit X1 . . . Xn est invariant par inversion.

(iii) X est invariante par conjugaison ssi pour tout l ≥ 0 nous avons φX(l) = alIl où al ∈ R et Il est

la matrice identité dl × dl.

(iv) Si X et Y sont invariantes par conjugaison alors XY est invariante par conjugaison.

(v) X est invariante par conjugaison ssi XY
d
= Y X.

A.2.2 Processus de Poisson composés

Les processus de Poisson composés de rotation généralisent naturellement les processus de Poisson

composés scalaires. Ils ont été introduits dans [2]. Rappelons d’abord la définition d’un processus de

Poisson composé scalaire. Soit N = (Nt)t≥0 un processus de Poisson de paramètre λ > 0. Soient

(xn)n≥1 des variables aléatoires réelles et i.i.d.. Si la famille (xn)n≥1 est elle même indépendante de
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N alors le processus y suivant est un processus de Poisson composé

yt =

Nt
∑

n=0

xn

où nous posons x0 = 0. Les processus de Poisson de rotation se définissent de façon identique.

Replaçons la famille (xn)n≥1 par une famille (Xn)n≥1 de variables aléatoires de rotation i.i.d. et qui

soit elle aussi indépendante de N . Le processus Y suivant est un processus de Poisson composé de

rotation

Yt =

Nt
∏

n=0

Xn

Par convention, le produit est ici ordonné de gauche à droite et X0 = I. Il est possible d’obtenir un

processus de Poisson composé droit en considérant le processus Y T . Les deux notions sont équivalentes.

Voir [2, 40].

Nous résumons maintenant les propriétés de symétrie de la variable aléatoire Yt pour un t ≥ 0

fixé. Notons d’abord que Yt n’a pas de densité de probabilité par rapport à µ. En effet, quelque soit t

nous avons P(Yt = I) ≤ P(Nt = 0) = e−λt. Il suit que Yt a un atome en I. En l’absence de densité de

probabilité, nous étudions Yt à l’aide de sa fonction caractéristique. Ceci est fait dans la proposition

38 suivante qui est une généralisation immédiate de la formule connue pour les processus de Poisson

composés scalaires.

Proposition 38 Soit le processus Y = (Yt)t≥0 défini comme ci-dessus. Pour t ≥ 0 nous avons

φt(l) = exp[λt(φ(l) − Il)] (A.5)

pour l ≥ 0, où φt ≡ φYt
et φ ≡ φX1

.

Démonstration : La démonstration est basée sur un calcul classique. L’idée est de conditionner

sur les valeurs de Nt. Comme N et les (Xn)n≥1 sont indépendants, on peut écrire pour l ≥ 0

φt(l) = e−λt
∑

n≥0

(λt)n

n!
E

n
∏

m=0

U l(Xm)

Comme les (Xn)n≥1 sont i.i.d. il est possible de remplacer

E

n
∏

m=0

U l(Xm) =
n
∏

m=0

E(U l(Xm)) = φ(l)n

la proposition s’obtient en réarrangeant la somme.N

En se servant des propositions 37 et 38 nous avons la proposition suivante. Elle stipule que pour

t ≥ 0 les propriétés de symétrie de Yt sont les mêmes que celles des Xn.

Proposition 39 Soit le processus Y = (Yt)t≥0 défini comme ci-dessus. Pour t ≥ 0 nous avons

(i) Si X1 est invariante par inversion alors Yt est invariante par inversion. (ii) Si X1 est invariante

par conjugaison alors Yt est invariante par conjugaison.

Pour finir notre présentation des processus de Poisson composés de rotation, donnons la proposition

40. Cette proposition concerne l’uniformisation de la distribution de Yt quand t ↑ ∞. Cette propriété

est similaire au comportement des produits X1 . . . Xn quand n ↑ ∞ qui a été étudié à la sous-section

2.1.4. Nous disons qu’une variable aléatoire de rotation X est supportée par un ensemble mesurable
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B ⊂ SO(3) si P(X ∈ B) = 1. Si X et X ′ sont des variables aléatoires de rotation telles que X
d
= X ′

alors X est supportée par B ssi X ′ est supportée par B. Pour la proposition 40, U sera une variable

aléatoire de rotation de densité de probabilité constante égale à 1. Autrement dit, U est uniformément

distribuée sur SO(3).

Proposition 40 Si X1 n’est supportée par aucun sous-groupe propre fermé G de SO(3) ou classe

RG, R ∈ SO(3) d’un tel sous-groupe alors Yt
d→ U quand t ↑ ∞.

La démonstration de la proposition 40 est immédiate en utilisant le (ii) de la proposition 36 et la

proposition 38.

A.2.3 Le problème du decompounding

Dans la littérature existante le mot decompounding fait référence à un ensemble de problèmes d’estimation

non paramétrique concernant les processus de Poisson composés scalaires [8, 72]. L’application prin-

cipale de ces problèmes concerne les problèmes de fils d’attente et à la théorie du risque [8]. Nous

allons formuler le problème du decompounding pour les processus de Poisson composés de rotation et

en présenter une solution complète. Cette solution est la même que nous avons donné dans [66]. Elle

est basée sur une méthode de fonction caractéristique.

Soit Y un processus de Poisson composé de rotation défini comme au A.2.2. En particulier, λ

est le paramètre du processus de Poisson N définissant Y . Le problème du decompounding con-

siste en l’estimation de la densité de probabilité commune des variables aléatoires de rotation Xn.

Nous supposons que cette densité existe en effet et la notons p. L’estimation doit se faire à partir

d’observations du processus Y . Plusieurs versions du problème du decompounding existent, selon le

type d’observations faites du processus Y , voir [66]. Nous sommes intéressés par la version suivante

qui correspond au problème physique de la sous-section 2.4.1. Nous fixons T ≥ 0 et supposons données

des observations i.i.d (Zn)n≥1 d’une version bruitée Z de YT . Notre but est d’estimer p à partir des

(Zn)n≥1. Z est lié à Y par un modèle de bruit multiplicatif

Z = MYT (A.6)

où M et YT sont indépendantes. Par le (i) de la proposition 36 nous avons la fonction caractéristique

de Z

φZ = φMφY (T )

Ce modèle de bruit est équivalent à une condition initiale Y0 = M au lieu de Y0 = I. Nous considérons

le cas d’un bruit Brownien. La fonction caractéristique de M est donné comme à la proposition 19 de

la sous-section 2.3.3

φM (l) = exp−σ2

2
l(l + 1)Il

où σ2 est un paramètre de variance. Ceci correspond à un mouvement Brownien invariant par conju-

gaison. En particulier, grâce au (v) de la proposition 37, la multiplication à gauche ou à droite par

M a le même effet quant à la distribution de Z. Il est aussi possible de faire une interprétation de ce

modèle de bruit basée sur la construction d’entrelacement décrite à la sous-section 2.3.4.

Nous allons donner dans A.2.4 et A.2.5 notre solution du problème du decompounding posé ici.

Cette solution reflète une difficulté qui n’existe pas pour les processus de Poisson composés scalaires.

Sous les conditions de la proposition 40, si les observations (Zn)n≥1 correspondent à un temps T

suffisamment grand alors ces observations seront uniformément distribuées et donc sans mémoire des

variables aléatoires de rotation Xn.
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A.2.4 Une méthode de fonction caractéristique

Nous présentons une méthode de fonction caractéristique pour le problème du decompounding. La

solution procède des observations (Zn)n≥1 définies par le modèle de bruit (A.6). La densité inconnue

p est donnée par la série de Fourier suivante

p =
∑

l≥0

dl tr
(

φX(l)U l†
)

(A.7)

où φX ≡ φX1
. Une méthode de fonction caractéristique consiste en la construction d’une estimée non

paramétrique de p à partir d’estimées paramétriques pour les φX(l), l ≥ 0.

Nous supposons connus λ et σ2. La proposition 38 avec le (i) de la proposition 36 donnent pour

la fonction caractéristique de Z définie dans (A.6)

φZ(l) = exp[TλφX(l) − T λ̄Il] (A.8)

pour l ≥ 0. Ici λ̄ est une constante déterminée par λ et σ2. Nous appelons cette transformation

φX 7→ φZ la transformation de compounding2. Le decompounding consistera en une inversion locale

de la transformation de compounding. Ceci est clairement lié à l’inversion locale de l’exponentielle de

matrice au voisinage de φZ(l) pour l ≥ 0. Plutôt que de traiter ce problème de façon générale, nous

le simplifions en faisant l’hypothèse suivante

Hypothèse: X1 est invariante par inversion.

Pour tout l ≥ 0 nous avons par le (i) de la proposition 37 et par la proposition 15 que φX(l) et φZ(l)

sont toutes les deux Hermitiennes. De plus, il est claire par (A.8) que φZ(l) est définie positive. Nous

noterons Log l’unique logarithme de matrice Hermitien d’une matrice Hermitienne définie positive.

Nous pouvons maintenant exprimer l’inverse de la transformation de compounding. De l’équation

(A.8) il suit que

φX(l) =
1

Tλ
log[φZ(l)] + (λ̄/λ)Il (A.9)

Soit l ≥ 0. Il suit de la définition (A.4) de la fonction caractéristique que les estimées empiriques

de φZ(l) basées sur les observations (Zn)n≥1 sont non biaisées et consistentes. Ceci est une simple

conséquence de la loi forte des grands nombres. Voir par exemple [27]. Afin d’estimer φX(l) à partir de

(A.9) il est alors important de s’assurer que les estimées empiriques de φZ(l) soient asymptotiquement

Hermitiennes définies positives.

Commençons en définissant les estimées empiriques φ̂n
Z(l) pour l ≥ 0 et n ≥ 1

φ̂n
Z(l) =

1

2n

n
∑

m=1

(

U l(Zm) + U l(Zm)†
)

La symétrisation Hermitienne des estimées empiriques est nécessaire pour l’application de (A.9).

Comme c’est en plus une opération de projection, elle contribue à une convergence plus rapide des

φ̂n
Z(l) vers φZ(l).

La dépendance continue du spectre d’une matrice par rapport à ses coefficients est un résultat clas-

sique en analyse matricielle. Plusieurs énoncés plus ou moins sophistiqués de ce résultat existent [41].

Pour une version particulièrement simple, voir [71]. Le spectre d’une matrice complexe C sera noté

λ(C). Pour chaque l ≥ 0 et n ≥ 1 définissons l’évènement Rn
l par

Rn
l = {λ(φ̂n

Z(l)) ⊂]0,∞[}
2Encore une fois, par défaut d’un terme Français connu.
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Pour l ≥ 0, la séquence (Rn
l )n≥1 contrôle la convergence des spectres des estimées empiriques φ̂n

Z(l).

En particulier,

P(∪n≥1 ∩m≥n Rn
l ) = lim

n
P(∩m≥nRn

l ) = 1

En utilisant les évènements Rn
l nous pouvons écrire des estimées bien définies de φX . Nous les notons

φ̂n
X(l) pour l ≥ 0 et n ≥ 1

φ̂n
X(l) = 0 sur Ω − Rn

l

φ̂n
X(l) = 1

Tλ
Log

[

φ̂n
Z(l)

]

+
(

λ̄/λ
)

Il sur Rn
l

Cette expression donne nos estimées paramétriques pour les coefficients de Fourier de p. Nous les

utilisons pour construire des estimées non paramétriques sous la forme de séries de Fourier (A.7). Soit

K ≥ 0 et notons pour l ≥ 0

fl = dle
−Kl(l+1)

Pour n ≥ 1 et L ≥ 0 nos estimées non paramétriques p̂n
L sont données par

p̂n
L =

L
∑

l=0

fl tr
(

φ̂n
X(l)U l†

)

(A.10)

L’indice L correspond à un paramètre de coupure ou de lissage. En effet, un nombre infini de valeurs

de l est exclu de la somme (A.10). Lorsque K > 0 les coefficients fl forment un masque de convo-

lution assurant que les estimées p̂n
L convergeront vers une densité de probabilité différentiable. Nous

préciserons davantage le rôle de K au A.2.5.

Il est usuel d’écrire les expressions similaires à (A.10) en termes de noyaux invariants par rotation.

Voir [32, 36]. Une telle transformation n’est pas possible ici à cause de la nature indirecte de nos

observations. Ceci est en particulier lié à la forme plus compliquée des φ̂n
X(l) ci-dessus.

A.2.5 Convergence des estimées paramétriques et non paramétriques

Nous allons ici discuter de la convergence des estimées paramétriques et non paramétriques définies

au A.2.4. Notre argument se présentera sous la forme des propositions 41 et 42 ci-dessous. La

proposition donne la consistance des estimées paramétriques φ̂n
X(l). La proposition 23 en conclut le

résultat correspondant pour les estimées non paramétriques p̂n
L.

Pour la proposition 41 nous aurons besoin des inégalités (A.11) et (A.12). Ces deux inégalités

expriment des résultats de stabilité pour les valeurs propres de matrices Hermitiennes et pour la

fonction de matrice Hermitienne Log. Soient A et B des matrices Hermitiennes d×d, pour un certain

d ≥ 1. Pour 1 ≤ i ≤ d soit αi et βi les valeurs propres de A et B respectivement. Supposons qu’elles

soient rangées dans un ordre croissant. Nous avons

d
∑

i=1

(βi − αi)
2 ≤ |B − A|2 (A.11)

où |.| est la norme Euclidienne pour les matrices. C’est inégalité est connue sous le nom du théorème

de Wielandt-Hoffman. Dans [41], elle est donnée pour A et B réelles et symétriques. Le cas général

de A et B Hermitiennes peut être obtenu de ce résultat en utilisant un isomorphisme de réelification.

Supposons que A et B soient définies positives. Pour notre but il sera convenable de supposer que

λ(A) et λ(B) sont tous les deux contenus dans un intervalle [k, 1] pour un certain k > 0. Nous avons

alors la propriété de Lipschitz suivante

|Log(B) − Log(A)| ≤
√

dk−2|B − A| (A.12)
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Pour obtenir (A.12) il est possible d’exprimer Log(A) comme suit

Log(A) =

∫ 1

0

(A − Id)[t(A − Id) + Id]−1dt

Cette expression résulte d’une expression similaire pour le logarithme réel appliqué à chaque valeur

propre de A. En soustrayant la même expression pour Log(B), (A.12) s’obtient par des calculs simples.

Proposition 41 Pour tout l ≥ 0 nous avons la limite en probabilité limn φ̂n
X(l) = φX(l).

Démonstration : Il suffit de considérer l > 0. En effet, φ̂n
X(0) = φX(0) = 1 pour tout n ≥ 1. Soit

l > 0, pour tout n ≥ 1 nous avons

|φ̂n
Z(l)|op ≤ 1

2n

n
∑

m=1

|U l(Zm)|op + |U l(Zm)†|op = 1

où |.|op est la norme d’opérateur pour les matrices. Passant à la limite, il suit de la loi forte des grands

nombres que la même inégalité est vérifiée pour φZ(l). En d’autres termes, toutes les valeurs propres

de φ̂n
X(l) et de φX(l) sont inférieures à l’unité. Comme φZ(l) est définie positive, il existe kl > 0 tel

que λ(φZ (l)) ⊂ [kl, 1]. Pour n ≥ 1 notons R̃n
l l’évènement

R̃n
l = {λ(φ̂n

Z (l)) ⊂ [kl/2, 1]}

Par l’inégalité (A.11) nous avons

P(Ω − R̃n
l ) ≤ P(|φ̂n

Z(l) − φZ(l)| > kl/2)

Comme R̃n
l ⊂ Rn

l , il suit de l’inégalité (A.12) que

P(|φ̂n
X(l) − φX(l)| > ε ∩ R̃n

l ) ≤ P(|φ̂n
Z(l) − φZ(l)| > k2

l ε/M)

pour tout ε > 0, où M = 4
√

dl/Tλ.

La preuve peut être complétée par une application usuelle de l’inégalité de Chebychev,

P(|φ̂n
X(l) − φX(l)| > ε) ≤

(

8 + 2M2/ε2

n

)(√
dl

k2
l

)2

(A.13)

pour tout ε > 0.N

La proposition 42 utilise la proposition 41 et le théorème de Peter-Weyl –théorème 5 du A.2.1. Elle

implique l’existence de suites (p̂k)k≥1 d’estimées non paramétriques données par (A.10) convergeant

vert p en probabilité dans l’espace des fonctions carré intégrables sur SO(3). Cette convergence en

probabilité signifie que la limite suivante en probabilité a lieu

lim
k

‖p̂k − p‖ = 0

où ‖.‖ est la norme

‖p‖2 =

∫

SO(3)

p2dµ

Proposition 42 En remplaçant K = 0 dans (A.10), nous avons la limite en probabilité

lim
L

lim
n

‖p̂n
L − p‖ = 0
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Démonstration : Pour L ≥ 1 soit pL la fonction suivante

pL =
L
∑

l=0

dl tr
(

φX(l)U l†
)

D’après le théorème de Peter-Weyl, limL ‖pL − p‖ = 0. Par (A.10) et la proposition 41 nous avons

limn ‖p̂n
L − pL‖ = 0 en probabilité pour tout L ≥ 1. Ceci résulte du fait que pour tout n, L ≥ 1

‖p̂n
L − pL‖2 =

L
∑

l=0

dl|φ̂n
X(l) − φX(l)|2

Pour conclure il suffit d’observer que

‖p̂n
L − p‖2 = ‖p̂n

L − pL‖2 + ‖pL − p‖2 (A.14)

pour tous n, L ≥ 1.N

Nous avons caractérisé la convergence des estimées paramétriques en utilisant (A.13) et la con-

vergence des estimées non paramétriques en utilisant (A.14). Faisons les remarques suivantes sur ces

formules. L’inégalité (A.13) donne seulement une estimation grossière pour le taux de convergence des

estimées paramétriques. La qualité de ces estimations est meilleur quand les constantes kl sont plus

grandes, c’est à dire proches de la valeur 1. Ceci est équivalent à une plus grande distance au sens de

la norme ‖.‖ entre p et la fonction constante 1. Il faut interpréter ce dernier point en relation avec la

figure 2.3 du paragraphe 2.4.2.3. Dans la proposition 42 nous avons ignoré le rôle de la constante K.

Il est discuté dans notre papier [66].

A.3 Filtrage des processus matriciels sous contraintes non

linéaires

Cette section correspond au chapitre 3 dans le corps de la thèse. Rappelons que ce chapitre est

constitué des deux sections, 3.1 et 3.2. La section 3.2 correspond au but principal de ce chapitre, alors

que la 3.1 ne fait que l’illustrer. Pour cette raison, nous avons choisi de reproduire la section 3.1.

Cette section donne la formulation générale de l’approche basée sur la linéarisation locale. Ceci

est fait pour les processus matriciels Browniens. En réalisant une compréhension plus poussée de la

dynamique de ces processus, il sera possible de les considérer de façon correcte dans les problèmes

d’estimation et en particulier d’étudier les performances de notre approche. Fixons d ≥ 1, nous

allons noter L(d) l’espace des matrices réelles d × d et GL(d) ⊂ L(d) le sous-ensemble des matrices

inversibles. Nous supposons donné un espace de probabilité complet (Ω,A, P). Considérons une

équation différentielle stochastique linéaire de Stratonovich de la forme suivante

dYt = YtdXt Y0 = I (A.15)

où le processus inconnu Y et le processus dirigeant X sont à valeurs dans L(d) et Id est la matrice

identité dans L(d). Pour t ≥ 0 les éléments de matrice de Xt sont comme suit, l’intégrale étant une

intégrale d’Itô

X ij
t = fij(t) +

∫ t

0

Qij(s)dBij
s (A.16)

pour 1 ≤ i, j ≤ d, où fij et Aij sont des fonctions R+ → R+. Les processus Bij sont les éléments de

matrice d’une mouvement Brownien B à valeurs dans L(d). Pour 1 ≤ i, j ≤ d nous considérons que
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fij est continue et à variations finies, par exemple une fonction C1, et que Qij est continue. Avec ces

conditions, il est directe de voir que l’équation (A.15) est bien définie. Nous la recopions sous forme

intégrale et pour les éléments de matrice Y ij , où 1 ≤ i, j ≤ d.

Yt = Id +

∫ t

0

YsdXs Y ij
t = δij +

d
∑

k=1

∫ t

0

Y ik
s dXkj

s (A.17)

La solution de (A.17) pour un processus donnée X de la forme (A.16) est notée E(X) = (E(X)t)t≥0.

Au A.3.1 nous montrerons que E(X) est sujet à des contraintes non linéaires. Cependant, ces con-

traintes non linéaires se réduisent à des contraintes linéaires sur X . La structure multiplicative de

E(X) est exhibée au A.3.2. Les A.3.3 et A.3.4 correspondent au but principal de cette section. Le

A.3.3 considère l’inversion de la transformation X 7→ E(X). Nous utiliserons cette transformation

inverse comme transformation de linéarisation locale utilisée pour se débarrasser des contraintes non

linéaires. La stabilité de la transformation X 7→ E(X) est considérée au A.3.4. Ce sont ces propriétés

de stabilité et d’invariance qui justifieront l’utilisation de la linéarisation locale. Une idée récurrente

par la suite sera l’équivalence entre les processus X et E(X). La proposition 44 du A.3.1 stipule que la

distribution de E(X) est complètement déterminée par celle de X . De façon similaire, la proposition

48 montre que le contenu en information des processus E(X) et X est en fait le même.

Pour un processus X de la forme (A.16) notons F = (Ft)t≥0 la filtration naturelle de X . L’existence

et l’unicité de E(X) peuvent être montrées à l’aide de l’approximation de Picard [28]. L’équation (A.17)

peut également être approximée à l’aide d’intégrales multiplicatives [14]. L’approximation de Picard

est définie de façon itérative. Étant donné le processus constant X0 = Id soit pour n ≥ 1 le processus

Xn donné pour t ≥ 0 comme suit

Xn
t = Id +

∫ t

0

Xn−1
s dXs (A.18)

alors les processus (Xn)n≥1 convergent localement uniformément en moyenne quadratique vers E(X).

Il résulte de cette approximation que E(X) est un processus F -adapté et continu [28].

Un rôle plus important sera par la suite dévolu à l’approximation de l’équation (A.17) par des

intégrales multiplicatives. Cette approximation est plus adaptée à l’étude des contraintes non linéaires

imposées à E(X), comme nous verrons au A.3.1. En plus de leur importance pour la suite, les intégrales

multiplicatives ont été utilisées dans la littérature pour implémenter des techniques d’optimisation

stochastique et d’échantillonnage pour des applications de poursuite et d’estimation de sous-espaces.

Voir le livre récent de Miller et Grenander [22].

A.3.1 Intégrales multiplicatives

Les solutions d’équations de la forme (A.17) constituent un modèle général des processus matriciels

Browniens sous contraints non linéaires. Pour un X donné de la forme (A.16), nous allons préciser

les contraintes vérifiées par la solution E(X) de (A.17). La proposition 43 ci-dessous stipule que E(X)

a ses valeurs dans un groupe de Lie matriciel, en effet un sous-groupe de GL(d). Cette proposition,

avec la proposition 47 du A.3.3, permet de formuler un résultat important. Bien que E(X) soit sujet

à des contraintes non linéaires, ces contraintes se réduisent à des contraintes linéaires sur X . De plus,

étant donné un processus matriciel Brownien Y sujet au même type de contraintes non linéaires, c’est

à dire à valeurs dans un groupe de Lie matriciel, nous pouvons identifier la dynamique de Y comme

étant donnée par une équation de la forme (A.17). Précisons que du point de vue des applications

les contraintes que nous considérons sont d’une grande généralité. En effet, elles correspondent à des

considérations de symétrie connues dans une grande variété de problèmes appliqués.
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Le théorème 6 ci-dessous établit l’approximation de E(X) par des intégrales multiplicatives. Il sera

appliqué à la démonstration des propositions 43 et 44. Ce théorème est ici accepté sans démonstration.

Une discussion générale de la démonstration est faite dans [28]. Rappelons avant d’énoncer le théorème

6 ce que nous entendons par suite décroissante de subdivisions. Une subdivision de R+ est une suite

croissante (tm)m≥0 où t0 = 0 et de plus tm ↑ ∞ et
∑

m≥1 |tm − tm−1| < ∞. Une suite décroissante

de subdivisions de R+ est donnée si pour tout N ≥ 1 une subdivision (tNm)m≥0 de R+ est donnée et

nous avons |tN | ↓ 0, où |tN | =
∑

m≥1 |tNm − tNm−1| pour N ≥ 1.

Theorem 6 Soit X donné par (A.16) et (tNm)m≥0 qui donne pour N ≥ 1 une suite décroissante de

subdivisions de R+. Pour N ≥ 1 soit Y N le processus tel que pour t ≥ 0 nous avons

Y N
t =

∏

m≥0

exp(Xt∧tN
m+1

− Xt∧tN
m

) (A.19)

Alors les processus Y N convergent vers E(X) localement uniformément en moyenne quadratique.

Appliquons ce théorème aux propositions 43 et 44. La proposition 43 stipule que E(X) a ses valeurs

dans un groupe de Lie matriciel. Ceci est équivalent à un ensemble de contraintes non linéaires

imposées à E(X). La proposition 47 du A.3.3 est la contraposée de cette proposition. Rappelons la

notion de groupe de Lie matriciel. C’est un sous-groupe G ⊂ GL(d) tel que G soit une sous-variété de

GL(d) dans l’espace Euclidien L(d). Il nous suffira de connaitre la caractérisation suivante [46]: Un

sous-groupe G ⊂ GL(d) est un groupe de Lie matriciel ssi G est fermé dans GL(d).

Soit maintenant G un groupe de Lie matriciel et TIG son algèbre de Lie. Rappelons que TIG ⊂ L(d)

est un espace vectoriel de matrices et que pour tout J ∈ TIG nous avons exp(J) ∈ G. Nous avons la

proposition suivante.

Proposition 43 Si pour t ≥ 0 nous avons Xt ∈ TIG presque sûrement alors pour t ≥ 0 nous avons

E(X)t ∈ G presque sûrement.

Démonstration : Commençons par montrer que E(X)t ∈ GL(d) presque sûrement pour t ≥ 0.

Utilisons la notation Y ≡ E(X). Nous allons construire un processus Ȳ = (Ȳt)t≥0 tel que pour t ≥ 0

nous avons YtȲt = Id. Soit X̄ le processus tel que X̄t = −XT pour t ≥ 0 et posons Ȳt =
[

E(X̄)t

]T
.

Il peut être vérifié par des manipulations simples de l’équation (A.17) que Ȳ satisfait à l’équation de

Stratonovich suivante

Ȳt = Id −
∫ t

0

dXsȲs Ȳ ij
t = δij −

d
∑

k=1

∫ t

0

Ȳ kj
s dX ik

s (A.20)

que nous avons encore une fois écrit sous forme matricielle et pour les éléments de matrice Ȳ ij pour

1 ≤ i, j ≤ d. Par intégration par partie nous avons

YtȲt − Y0Ȳ0 =

∫ t

0

YsdXsȲs −
∫ t

0

YsdXsȲs = 0

Comme Y0Ȳ0 = Id nous avons que E(X) ∈ GL(d) presque sûrement pour t ≥ 0.

Montrons maintenant que pour t ≥ 0 nous avons E(X) ∈ G presque sûrement. Soient Y N pour

N ≥ 1 des processus de la forme (A.19). Il suit du théorème 6 que E(X)t est la limite en moyenne

quadratique des variables aléatoires Y N
t . Notons que pour tout t ≥ 0 le produit (A.19) contient

seulement un nombre fini de facteurs. Il suit que Y N
t ⊂ G, chacun de ces facteurs étant dans G. Par

passage à la limite, et comme E(X)t ∈ GL(d) et G est fermé dans GL(d), nous avons que E(X)t ∈ G

presque sûrement.N

La proposition 44 suivante stipule que la distribution de E(X) ne dépend que de celle de X . La

démonstration est une application directe du théorème 6. Et nous l’omettons ici.
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Proposition 44 Soient X1 et X2 des processus de la forme (A.16) et supposons que X1 et X2 aient

les mêmes distributions en dimension finie. Nous avons alors que E(X1) et E(X2) ont les mêmes

distributions en dimension finie.

A.3.2 Structure multiplicative de E(X)

La solution E(X) de l’équation (A.17) est un processus non stationnaire. Nous allons ici voir que

E(X) possède une structure multiplicative définie en termes de ses incréments E(X)(s|t) qui sont pour

0 ≤ s ≤ t des variables aléatoires dans GL(d). La structure multiplicative de E(X) correspond à

la définition des processus de Lévy grâce aux conditions (L1) à (L4) de la section 2.3. Sous une

condition simple sur X , les incréments de E(X) sont stationnaires. Ainsi, une structure stationnaire

est identifiée au sein du processus non stationnaire E(X). Ceci est d’une grande valeur pour les

problèmes d’estimation à partir d’observations des trajectoires de E(X). Les propositions 45 et 46

donnent les propriétés principales des incréments de E(X).

Nous avons vu à la démonstration de la proposition 43 que E(X)t ∈ GL(d) presque sûrement pour

tout t ≥ 0. Il est donc possible de définir pour 0 ≤ s ≤ t

E(X)(s|t) = [E(X)s]
−1E(X)t (A.21)

notre but principal sera ici de démontrer la proposition 46. Cette proposition affirme que les incréments

de E(X) donnés par (A.21) sont indépendants et précise une condition sur X garantissant leur sta-

tionnarité. Ainsi, les incréments de E(X) vérifient des conditions similaires aux (L1) à (L4) de la

section 2.3. Il n’est pas aisé d’établir la proposition 46 à partir de la définition A.21 des incréments.

Nous commençons dans la proposition 45 par donner une définition dynamique de ces incréments. La

proposition 46 pourra alors suivre directement.

Pour la proposition 45 nous avons besoin de la notation suivante. Soit donné X de la forme (A.16).

Pour s ≥ 0 nous définissons le processus Xs = (Xs
t )t≥0 où Xs

t = Xs+t −Xs. Nous admettons que Xs

peut s’écrire sous la forme (A.16), de façon que le processus E(Xs) soit défini comme ci-dessus.

Proposition 45 Pour tout 0 ≤ s ≤ t nous avons

E(X)(s|t) = E(Xs)t−s (A.22)

Démonstration : Soit s ≥ 0. Notons Y 1 = (Y 1
t )t≥0 le processus donné par Y 1

t = E(X)t∧s. Soit

Y 1 = (Y 2
t )t≥0 le processus où Y 2

t = E(Xs)(t−s)+ . Nous allons montrer pour t ≥ 0 que

E(X)t = Y 1
t Y 2

t (A.23)

En remplaçant pour s ≤ t et en comparant à (A.21) la proposition sera ainsi prouvée. Soient X1 et

X2 les processus définis pour t ≥ 0 par X1
t = Xt∧s et X2

t = Xt−X1
t . Notons que Y 1 résout l’équation

de Stratonovich suivante

Y 1
t = Id +

∫ t

0

Y 1
u X1

u (A.24)

pour t ≥ 0. Nous allons montrer que Y 2 résout l’équation associée

Y 2
t = Id +

∫ t

0

Y 2
u X2

u (A.25)

pour t ≥ 0. Ceci résulte en effet de la définition de E(Xs)

E(Xs)t = Id +

∫ t

0

E(Xs)udXs
u
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en appliquant le changement de temps t 7→ (t − s)+. Il est maintenant possible de montrer (A.23) en

vérifiant que le produit du membre droit de cette formule est bien une solution de l’équation (A.17).

Ceci se fait par intégration par partie et en utilisant (A.24) et (A.25).N

Pour la proposition 46 nous dirons que X de la forme (A.16) est stationnaire s’il existe h ∈ L(d)

tel que pour t ≥ 0 nous avons fij(t) = hijt et Qij(t) = 1 for 1 ≤ i, j ≤ d.

Proposition 46 Pour tout 0 ≤ s ≤ t nous avons les propriétés suivantes

(i) E(X)(s|t) est indépendant de Fs.

(ii) Si X est stationnaire alors E(X)(s|t)
d
= E(X)t−s.

Démonstration : (ii) suit de la proposition 44 du A.3.1. Si X est stationnaire alors pour tout

s ≥ 0 les processus X et Xs ont les mêmes distributions en dimension finie. Il suit que pour s ≤ t

nous avons E(X)t−s
d
= E(Xs)t−s. Par la proposition 45 nous avons que E(X)(s|t) = E(Xs)t−s.

Nous allons démontrer (i) à l’aide du théorème 6. Pour u ≥ 0 nous avons que les produits πN

suivants convergent en moyenne quadratique vers E(Xs)u

πN =
∏

tN
m≤u

exp(Xs
u∧tN

m+1

− Xs
u∧tN

m
)

où (tNm)m≥0 donne pour N ≥ 1 une suite décroissante de subdivisions de R+. Comme X est à

accroissements indépendants il est possible de montrer que πN pour N ≥ 1 est indépendant de

Fs. Cette propriété est préservée par les limites en moyenne quadratique et il suit que E(Xs)u est

indépendant de Fs. Il suffit de prendre u = t − s et d’utiliser la proposition 45 pour compléter la

démonstration.N

A.3.3 Inversion de la dynamique

Nous définissons ici notre transformation de linéarisation locale pour les processus matriciels Brown-

iens. Au A.3.4, nous l’utiliserons pour formuler notre approche pour le filtrage de ces signaux. La

forme précise de cette transformation est donnée au théorème 7. Ce théorème identifie pour tout pro-

cessus matriciel Brownien Y un processus X de la forme (A.16) tel que Y ≡ E(X). Ainsi est réalisée

une inversion de la transformation X 7→ E(X) définie par l’équation (A.17).

La proposition 47 établit une propriété importante de la linéarisaion locale. Supposons que le

processus matriciel Brownien Y ait ses valeurs dans un groupe de Lie matriciel, de façon à ce qu’il soit

sujet à des contraintes non linéaires. Le processus X correspondant est alors de la forme (A.16) et n’est

sujet qu’à des contraintes linéaires. La proposition 48 donne l’équivalence des filtrations naturelles

de Y et X . Ce résultat sera discuté en termes d’applications de filtrage. Donnons maintenant la

proposition 47. Bien qu’il utilise le théorème 7, ce théorème peut dans sa première partie être démontré

directement.

Partons de l’observation suivante. Si X est de la forme (A.16), il est claire d’après l’équation

(A.17) que X peut être retrouvé à partir de E(X). En effet, pour t ≥ 0

Xt =

∫ t

0

Y −1
s dYs (A.26)

où nous avons mis Y ≡ E(X). Après avoir précisé la classe de processus Y pour lesquels la proposition

47 aura lieu, nous utiliserons la même formule (A.26) pour obtenir le processus X désiré.

Soit le processus Y = (Yt)t≥0 ayant ses valeurs dans GL(d), en particulier Y0 = Id. Nous supposons

que Y est de plus une semimartingale continue. Pour 0 ≤ s ≤ t définissons l’incrément de Y comme
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suit

Y(s|t) = Y −1
s Yt

Nous supposons que Y a des incréments indépendants. Soit H la filtration naturelle de Y . Pour

0 ≤ s ≤ t nous avons que Y(s|t) est indépendant de Hs. Le processus X suivant est bien défini

Xt =

∫ t

0

Y −1
s dYs (A.27)

Proposition 47 Soit Y comme ci-dessus et X donné par (A.27). Soit G un groupe de Lie matriciel

et TIG son algèbre de Lie. Nous avons les propriétés suivantes

(i) X est de la forme (A.16) et Y ≡ E(X).

(ii) Si pour t ≥ 0 nous avons Yt ∈ G presque sûrement alors pour t ≥ 0 nous avons Xt ∈ TIG presque

sûrement.

Démonstration : Nous ne donnons que la démonstration de (i). Celle de (ii) utilise le théorème 7

ci-dessous. Elle est analogue à la dernière partie de la démonstration de la proposition 43.

De part sa définition (A.27), X est une semimartingale continue. Par l’équation (A.17) il suit que

pour t ≥ 0

Yt = I +

∫ t

0

YsY
−1
s dYs = I +

∫ t

0

YsdXs

ceci montre que Y ≡ E(X). Afin de montrer que X est de la forme (A.16) il suffit de montrer que X

est à accroissements indépendants. I est claire de (A.27) que X est H-adapté. Pour 0 ≤ s ≤ t nous

avons la limite en probabilité

Xt − Xs =

∫ t

s

Y −1
s dYs = lim

n

M
∑

m=1

Y −1
tn
m−1

(Ytn
m
− Ytn

m−1
)

où le pas de la partition s = tn1 < . . . < tnM = t de l’intervalle [s, t] définie pour n ≥ 1 décroit vers 0

avec n. Il est possible de transformer la somme dans la dernière expression pour obtenir

Xt − Xs = lim
n

M
∑

m=1

Y(tn
m−1

|tn
m) − I (A.28)

Par hypothèse, pour n ≥ 1 et m ≥ 0 nous avons que Y(tn
m−1

|tn
m) est indépendant de Htn

m
. En utilisant le

fait que l’indépendance est préservée par les limites en probabilité nous pouvons conclure que Xt−Xs

est indépendant de Hs. En particulier, X est donc à accroissements indépendants. Il suit donc de la

décomposition de Lévy-Itô que X est de la forme (A.16). Voir [27].N

La proposition 48 suivante stipule que l’es filtration naturelles des processus X et E(X) sont

identiques. Alors que sa preuve est simple, cette proposition est d’une signification générale pour

notre approche. Étant donné un processus X de la forme (A.16), il est claire que les processus X

et E(X) sont de natures géométriques différentes. Alors que E(X) est sujet à des contraintes non

linéaires X est seulement sujet à des contraintes linéaires. La proposition 48 nous dit qu’en dépit de

cette différence, X et E(X) ont le même contenu en information. En particulier, le filtrage par rapport

à des observations de X ou de E(X) donne lieu à la même connaissance a posteriori.

Proposition 48 Dans la notation de la proposition 47, soient F = (Ft)t≥0 et H = (Ht)t≥0 les

filtrations naturelles de X et de Y respectivement. Nous avons que Ft = Ht pour t ≥ 0.
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Passons maintenant au théorème 7. Pour nos processus qui sont définis en temps continu, la linéarisation

locale est donnée par un passage à la limite. Pour énoncer ce théorème, nous avons besoin de la no-

tation suivante. Soit log : GL(d) → L(d) l’application qui associe à y ∈ GL(d) l’unique x tel que

exp(x) = y dans le cas où |Id − y| < 1 et qui lui associe 0 sinon. Pour la démonstration du théorème

7 voir [30].

Theorem 7 Dans la notation de la proposition 48, supposons que (tNm)m≥0 pour N ≥ 1 donne une

suite décroissante de subdivisions de R+, nous avons que les processus suivants XN = (XN
t )t≥0 sont

continus, H-adaptés et convergent localement uniformément en probabilité vers X.

XN
t =

∑

m≥0

log
[

Y(tN
m∧t|tN

m+1
∧t)

]

(A.29)

A.3.4 Propriétés de stabilité

Nous allons finalement donner une formulation générale de notre approche du filtrage des processus

matriciels sous contraintes non linéaires. Ceci sera fait pour les processus matriciels Browniens dont

les propriétés ont été développées ci-dessus. La transformation linéarisation locale est implémentée

grâce au théorème 7 et ce sont les propriétés de stabilité liées à cette transformation qui justifieront

notre approche.

Notre résultat principal est la proposition 50. Cette proposition obtient la stabilité de la trans-

formation X 7→ E(X). Bien entendu, cette proposition est à comprendre dans le contexte de notre

application de la linéarisation locale que nous commençons ici par décrire. Fixons d ≥ 1 et soit

G ⊂ GL(d) un groupe de Lie matriciel avec TIG son algèbre de Lie. Soit le problème de filtrage

suivant. Un processus signal Y 1 est supposé auquel nous n’avons pas accès directement. Au contraire,

nous avons des observations d’un autre processus Y 2 que nous appelons le processus observation. Ces

deux processus ont leurs valeurs dans G et notre problème est d’inférer le processus signal Y 1 en

utilisant l’information disponibles grâce au processus observation Y 2. Une solution consiste en un

processus Ŷ 1 vérifiant les deux conditions suivantes.

• Ŷ 1 doit être optimal. Ce processus se construit uniquement à partir des observations disponibles

de Y 2. Il devra en faire l’usage le plus complet possible.

• Ŷ 1 vérifie les mêmes contraintes non linéaires que Y 1 et Y 2. Notamment, il a ses valeurs dans

G.

En général, ces deux conditions ne sont pas compatibles. Il est bien connu en théorie du filtrage

optimal que le processus Ŷ 1 vérifiant la première condition d’optimalité est le processus d’espérance

conditionnelle [23]

Ŷ 1
t = E[Y 1|Ft] (A.30)

pour t ≥ 0, où F = (Ft)t≥0 est la filtration naturelle de Y 2. Ce processus est de plus la meilleure

approximation de Y 1 au sens de la moyenne quadratique. Comme l’espérance conditionnelle est une

opération linéaire, il est claire que Ŷ 1 ne satisfait pas en général à la deuxième condition de contraintes

non linéaires.

Supposons que Y 1 et Y 2 vérifient les conditions de la proposition 47. Dans ce cas nous savons

qu’il existe des processus X1 et X2 de la forme (A.16) à valeurs dans TIG tels que Y i = E(X i) pour

i = 1, 2. De plus X1 e X2 sont donnés par le théorème 7. Il parait désirable de répondre aux deux

conditions ci-dessus en considérant le processus X2 plutôt que le processus d’observation Y 2. Faisons

les deux remarques suivantes
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• Par la proposition 48 la filtration naturelle de X2 est aussi égale à F . En d’autres termes, X2

contient la même information que Y 2.

• X2 est seulement sujet à des contraintes linéaires.

L’idée principale de notre approche est de chercher Ŷ 1 sous la forme E(X̂1) où X̂1 est un processus de

la forme (A.16) à valeurs dans TIG. Par la proposition 43 nous aurons que Ŷ 1 a ses valeurs dans G et

vérifie donc la deuxième condition liée aux contraintes non linéaires. Le processus X̂1 sera construit

à partir de X2 et devra être une bonne approximation de X1. Nous pouvons décrire cette approche

à l’aide du diagramme suivant

Y 2 F−→ Ŷ 1 ≈ Y 1

↓ ↑
X2 f−→ X̂1 ≈ X1

(A.31)

Ici, les flèches descendantes correspondent à l’application du théorème 7 et les flèches montantes à

l’application du théorème 6. Le théorème 7 donne notre transformation de linéarisation locale. Notons

que ces deux théorèmes contiennent des passages à la limite et nous n’avons ainsi pas les processus X2

et Ŷ 1 de façon exacte. Pour l’instant, nous négligeons cette difficulté. Il est discuté dans [28] comment

la convergence dans ces deux théorèmes peut être améliorée jusqu’à atteindre un taux exponentiel.

Nous avons formulé l’utilisation de la linéarisation locale pour le filtrage des processus matriciels

sous contraintes non linéaires. Il n’est pas clair que l’approche ainsi définie soit optimale en un

quelconque sens habituel et nous ne l’avons toujours pas justifiée. A ce stade, ce n’est donc qu’une

préscription plausible pour approximer Y 1 à partir de Y 2. C’est précisément la stabilité de la trans-

formation X 7→ E(X) qui justifiera notre approche. En effet, supposons que nous ayons les connais-

sances a priori nécessaires sur X1 et X2 pour obtenir une bonne approximation X̂1 ≈ X1 comme

dans le diagramme (A.31). La proposition 50 nous garantit que cette approximation sera conservée

par l’application des flèches montantes et nous devrions ainsi obtenir une approximation acceptable

Ŷ 1 ≈ Y 1. Nous verrons cependant que nous avons des problèmes de dérive. Plus précisément, une

bonne approximation Ŷ 1 ≈ Y 1 pourrait s’avérer très coûteuse, même si elle est possible en principe.

Donnons maintenant la proposition 50. Cette proposition décrit la stabilité de la transformaton

X 7→ E(X). Sans donner une estimation très forte de cette stabilité, elle permet une compréhension

qualitative des rôles de la stabilité et de la dérive mentionnés ci-dessus. D’un point de vu mathématique

la proposition 50 est concernée par la stabilité de l’équation (A.17) par rapport au processus dirigeant

X . L’énoncé de cette proposition a été choisi afin de rendre accessible sa démonstration et il est

naturel qu’il paraisse relativement restreint –voir sous-section 3.2.5. Remarquons que des résultats

de stabilité du même type mais beaucoup plus généraux sont connus dans la littérature. Voir en

particulier [57].

Soient X1 et X2 deux processus quelconques de la forme (A.16). La proposition 50 borne par le

haut la distance entre Y 1 ≡ E(X1) et Y 2 ≡ E(X2) à l’aide de la distance entre X1 et X2. Pour la

distance entre E(X1) et E(X2) nous envisageons la distance uniforme en moyenne quadratique. La

distance entre X1 et X2 est précisée par la proposition intermédiaire 49 ci-dessous. Les éléments de

matrice des processus X1 et X2 sont comme suit

X1ij

t = f1
ij(t) +

∫ t

0

Q1
ij(s)dBij

s X2ij

t = f2
ij(t) +

∫ t

0

Q2
ij(s)dBij

s (A.32)

pour 1 ≤ i, j ≤ d et t ≥ 0. Les fonctions f1
ij , f

2
ij et Q1

ij , Q
2
ij sont comme dans (A.16). Afin de simplifier

la démonstration de la proposition 50 les deux hypothèses suivantes sont faites. Premièrement, les
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expressions (A.32) imposent que X1 et X2 sont définis pour le même mouvement Brownien B dans

L(d). Cela place une restriction sur les problèmes envisageables mais reste par exemple suffisant

pour les problèmes de débruitage. Deuxièmement, bien que l’intégrale stochastique dans l’équation

(A.17) soit une intégrale de Stratonovich, toutes les intégrales stochastiques dans les propositions 49

et 50 seront traitées comme des intégrales d’Itô. Pour voir que nous pouvons le faire sans perdre de

généralité, faisons la remarque suivante. Le fait de transformer l’équation (A.17) en équation d’Itô

ne change pas sa forme générale mais rajoute simplement un terme correctif au processus dirigeant

X . Ce nouveau terme est une fonction croissante qui pourra être absorbée dans les fonctions fij de

la formule (A.16).

La proposition 49 est un lemme technique utilisé dans la preuve de la proposition 50. Pour tout

processus X de la forme (A.16), la proposition 49 exhibe une fonction croissante AX : R+ → R+ qui

domine les intégrales stochastiques par rapport à X . Pour cette proposition nous avons la notation

suivante. Soit Z un processus continu à valeurs dans L(d). Pour T ≥ 0 notons Z∗
T la variable

aléatoire dans L(d) dont les éléments de matrice sont Z∗ij
T = supt≤T |Zij

T |. Pour les démonstrations

des propositions 49 et 50, voir la sous-section 3.2.5.

Proposition 49 Soit X un processus de la forme (A.16) dont la filtration naturelle est notée F . Il

existe une fonction croissante AX : R+ → R+ telle que pour tout processus Y à valeurs dans L(d) qui

est continu, carré intégrable et F-adapté nous ayons

E|Z∗
T |2 ≤

∫ T

0

E|Yt|2dAX(t) (A.33)

pour T ≥ 0. Ici Z est le processus d’intégrale stochastique, Zt =
∫ t

0
YsdXs pour t ≥ 0.

Pour les processus X1 et X2 de (A.32), soit X le processus où Xt = X1
t − X2

t pour t ≥ 0. Il suit de

(A.32) que X est également de la forme (A.16). Soit AX la fonction positive croissante associée à X

comme dans la proposition 49. La proposition 50 donne une borne supérieure sur la distance uniforme

en moyenne quadratique entre Y 1 et Y 2 au moyen de la fonction AX . Cette fonction est une mesure

forte de la distance entre X1 et X2. En effet, nous avons par la proposition 49

E|X∗
T |2 ≤ AX(T )

pour tout T ≥ 0. Nous allons donner l’énoncé de la proposition 35 et la discuter en termes de

l’approche du diagramme (A.31).

Proposition 50 Soit D = (Dt)t≥0 le processus où Dt = Y 1
t −Y 2

t . Pour T ≥ 0 nous avons l’inégalité

suivante

E|D∗
T |2 ≤ 4d exp[2AX1(T ) + 2AX2(T )]AX(T ) (A.34)

où AX1 et AX2 sont les fonctions positives croissantes associées à X1 et X2 comme dans la proposition

34.

Pour notre discussion nous reprenons l’inégalité (A.34) avec la notation du diagramme (A.31). Nous

voulons discuter de l’approximation Ŷ 1 ≈ Y 1 d’après la proposition 50. Nous devons donc supposer

que les processus X̂1 et X1 vérifient les conditions de cette proposition. Rappelons que les restrictions

contenues dans ces conditions ont été introduites dans l’unique but de simplifier la démonstration

faite à la sous section 3.2.5. Le comportement que nous allons décrire reste vrai pour des situations

beaucoup plus générales.
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CHAPTER A. Résumé en Français

Soit E = (Et)t≥0 le processus Et = Ŷ 1 − Y 1. Ce processus donne l’erreur due à notre utilisation

du diagramme (A.31) pour approximer Y 1 à partir de Y 2. Soit de plus e = (et)t≥0 le processus

et = X̂1 − X1. D’après le diagramme nous contrôlons directement le processus e en construisant

l’approximation X̂1 ≈ X1. Les performances de notre approche dépendent de la possibilité de dominer

le processus E en utilisant le processus e. La proposition 50 fournit la borne suivante (A.35) sur le

processus E. Soient A
X̂1 , AX1

et Ae les fonctions positives croissantes associées aux processus X̂1, X1

et e comme dans la proposition 34. Nous pouvons récrire l’inégalité (A.34) pour ces processus.

E|E∗
T |2 ≤ 4d exp[2A

X̂1(T ) + 2AX1(T )]Ae(T ) (A.35)

Nous avons ici une illustration des rôles de la stabilité et de la dérive en ce qui concerne les performances

de l’approche du diagramme (A.31). La dernière inégalité peut être récrite

E|E∗
T |2 ≤ K(T )Ae(T )

pour T ≥ 0. Il est clair que l’erreur E est domniée par la fonction Ae associée au processus e.

Pour T ≥ 0 fixé, toute amélioration dans l’approximation X̂1 ≈ X1 conduit à une amélioration

dans l’approximation Ŷ 1 ≈ Y 1, modulée par un facteur multiplicatif K. Les problèmes de dérive

sont précisément liés à la croissance exponentielle du facteur K en relation avec le temps T . Pour

des valeurs plus grandes de T , afin d’obtenir un niveau donné de performance de l’approximation

Ŷ 1 ≈ Y 1 une qualité beaucoup plus grande de l’approximation X̂1 ≈ X1 pourrait être requise. Les

problème de dérive sont ainsi de façon générale une limitation fondamentale des méthodes basées sur

la linéarisation locale.

A.4 Conclusions

De façon générale, cette thèse a été guidée par une approche donnant une plus grande place aux outils

mathématiques. L’utilisation de l’analyse de Fourier et du calcul stochastique a permis d’étudier

d’un point de vue intrinsèque les processus ayant leurs valeurs dans les groupes de Lie matriciels.

Nous avons ainsi réalisé une compréhension plus poussée de la dynamique de ces processus et une

description plus détaillée de leurs statistiques. C’était là notre point de départ pour résoudre des

problèmes d’estimation paramétrique et non paramétrique et pour formuler une méthode de filtrage

spécifique à la structure de ces processus.

Au chapitre 2 nous avons résolu le problème du decompounding. C’est un problème d’estimation

non paramétrique posé en termes des processus de Poisson composés de rotation. Notre solution est

basée sur une méthode de fonction caractéristique et a du faire face à une nouvelle difficulté essentielle

à ce problème. En effet, partant d’observations indirectes une méthode de fonction caractéristique

perd ses propriétés de linéarité et d’invariance. En plus de la solution du problème du decompounding,

le chapitre 2 a présenté des applications concrètes en polarisation statistique et en diffusion multiple.

Ce chapitre s’est borné aux processus de rotation pour lesquels nous disposons des outils puissants de

l’analyse de Fourier.

Le chapitre 3 avait pour but de formuler de façon générale et de commencer à étudier l’utilisation

de la linéarisation locale pour le filtrage des processus à valeurs dans les groupes de Lie matriciels. A

la section 3.1, nous avons appliqué avec succès la linéarisation locale au filtrage des séries temporelles

de rotation. La section 3.2 a établi les résultats théoriques nécessaires à une formulation générale de

notre approche. Une étude plus détaillée de cette méthode reste un objectif pour des travaux futurs.
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