
HAL Id: tel-00449856
https://theses.hal.science/tel-00449856

Submitted on 22 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Radio Mesh Networks and the Round Weighting
Problem

Cristiana Gomes

To cite this version:
Cristiana Gomes. Radio Mesh Networks and the Round Weighting Problem. Networking and Internet
Architecture [cs.NI]. Université Nice Sophia Antipolis, 2009. English. �NNT : �. �tel-00449856�

https://theses.hal.science/tel-00449856
https://hal.archives-ouvertes.fr


���������	
��
����������
���������
	����
���������
����

��������
��
������������
��
������ !∀����
��
��
�∀
��!!#���∀����

���������
∃�# 
�%���� 
��
��� �
��

��	
��������������
��
�����&� ���∋
��
������∃��∀
����∃����

(������
)
��∗��(���+��

∃ ∋����∋�
��
��#���#�
∃∀ 

���
�������������	����
�������
���∀��∋�
∃∀ 
�∀
����∀����
�����

���������	
�	��
�������	
�	�������	�����	������	����	��������	�	��
��� �!����	������

�������������
���������

��������������
���� �!∀��

��,��
�� ��∋�
∃∀ 
���������	�
������
��
������
������

��	∀��∀����	��	����	
�	∀��#��	�∃%�&∋∋	(	)∗%(�+,%−.+%∃/	!	)+,)∃	/

��#���#�
��
�
	�������
��� 

#�∃�%
�0
 −� !��� .�∀���∀#�� �� ����# 
��
 ���� ���
���� �� ����# 
�0
 �∀!��∀�∀ ���/∀�� � � ������# 
�0
−���� �
(���%∋��∀ � �∀∃∃� ��# 
�0
 ��  1∀ ���∀ �� � ������# 
�0
∗��� ∀�
��
��∀ 2
�0
 3∀���� .∋ 4!�
 ���∋���# 
� ∀���
�∀%� ���� ����# 
�0
 3�# ��� � �� ���∋���# 
� ∀���
�∀%�
�0
 5�∀���� �∀�� ��∀ �∋
��
 ���� ���
����
�0
 (∀��6 �����∃∃� � ������# 
�0
−�∀���
�∀��∀� �∀∃∃� ��# 
�0
 (∀��#� 3� ∀���
�0 � ������# 
�0
∗��� ∀�
��
(��∀�
30 �∀∃∃� ��# 
�0
 �∋ ����� ��∋∃�∀��
 ��∀ �∋
��
����� ���
���� ��&��∋





To my father (in memoriam).

i



ii



Remerciement
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Merci à celui qui m’a fait arriver là où je voulais aller. Il ne m’a pas seulement

pris par la main, il a eu aussi la patience de m’apprendre à marcher avec mes
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Abstract

In this thesis, we address the joint routing and slot assignment problem
between the routers and the gateways in a radio mesh access networks. We
model the problem as a Round Weighting Problem (RWP) in which the objective
is to minimize the overall period of slot activations providing enough capacity
to satisfy the bandwidth requirements of the routers.

Solving the full problem means generating an exponential set of simultaneous
transmission rounds which is intractable even for small networks. To cope with
this issue, we implement a mathematical multi-objective model to solve the
problem using a column generation method. We observe that the bottleneck is
usually located in a limited region around a gateway.

We propose a method to obtain lower bounds (considering only a limited
probable bottleneck region) and upper bounds for general graphs. Our methods
are applied to grid graphs providing closed formulae for the case of uniform
demands, and also optimal routing strategies considering non-uniform demands.

Motivated by the results of the existence of a limited (bottleneck) region
capable of representing the whole network, we consider a variant of the RWP
dealing also with bandwidth allocation, but considering SINR conditions in a
CDMA network. We give sufficient conditions for the whole network to be
reduced to a single-hop around the gateway. It is due to the fact that the
problem is convex under some conditions that are often met. We are interested
in optimal solutions in which each flow going through a bottleneck receives a
fair share of the available bandwidth.
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Résumé

Dans cette thèse, nous étudions le problème joint du routage et de l’attribution
des “slots” entre les routeurs et les points d’accès dans les réseaux radio maillés.
Nous le modélisons comme un problème de “Round weighting” dont l’objectif
est de minimiser la période d’activation des “slots” en assurant une capacité
suffisante pour répondre aux demandes de bande passante des routeurs.

Résoudre le problème dans son intégralité nécessite la génération d’un en-
semble exponentiel de “rounds”, ce qui est hors de portée même pour des petits
réseaux. Par conséquent, nous développons un modèle mathématique mul-
ticritère qui résout le problème en utilisant une méthode de génération de
colonnes. Nous observons que le goulot d’étranglement est en général situé
autour d’un point d’accès.

Nous proposons une méthode pour obtenir des bornes inférieures et des
bornes supérieures pour les graphes généraux. Nous appliquons ces méthodes
aux grilles obtenant des formules closes pour des demandes uniformes et des
stratégies optimales de routage pour des demandes non-uniformes.

Motivé par les résultats sur l’existence d’une région limitée capable de représen-
ter le réseau dans sa totalité, on considère une variante du RWP qui traite aussi
de l’allocation de bande mais en considérant le SINR dans un réseau CDMA.
Nous donnons des conditions suffisantes pour qu’un réseau puisse être réduit à
un réseau mono-saut autour du point d’accès. Cela est dû au fait que le prob-
lème est convexe. Nous nous intéressons aux solutions optimales pour lesquelles
chaque flot dans le goulot reçoit une partie juste de la bande passante disponible.
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Chapter 1

Introduction

In radio networks, the communication channels are shared among the ter-
minals. Thus, one of the major problems faced is the reduction of capacity due
to interferences caused by simultaneous transmissions [1]. Due to low power or
poor propagation conditions the radio range of the nodes is limited and there-
fore it may be necessary in many cases to relay messages (packets) over multiple
nodes before the final destination is reached. In such multi-hop packet radio net-
works, a message may travel long distances by means of the store-and-forward
mechanism: a node transmits a packet on the radio link to another node, which
in turn forwards the packet.

A Radio Mesh Network (RMNs) is composed of radio gateways, routers and
clients as shown in figure 1.1. The gateways interconnect the RMN with the
backbone network (e.g. Internet). The routers constitute a multi-hop radio
network that serves as backhaul providing network access for the mobile clients.
This thesis considers only the radio mesh network backhaul: routers and gate-
ways.

We consider the problem of exchanging data between stationary routers and
gateways in the radio network backhaul. A router can access to the backbone
network by using any gateway. This problem was also proposed by France

Telecom (now Orange Labs) under the name of “how to bring Internet in
the villages” where there is no high speed access everywhere. The houses of the
village are equipped with radio devices and have access to a central node having
high speed access to Internet (e.g. using a satellite).

We address a special case of the Round Weighting Problem (RWP) in Ra-
dio Mesh Networks. The original RWP was introduced in [2] and deals with a
multicommodity flow as each source has a specific destination. In this thesis, a
special case of RWP is considered as the source nodes (routers) are not asso-
ciated with a specific destination (gateway). In both approaches, the RWP is
composed of two sub-problems: the routing and the slot assignment problems.

We explain these two subproblems in the next paragraphs. Before that, let
us describe our network modeling. The network topology is represented by a
communication graph G = (V,E), where the nodes V represent the sources and
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Figure 1.1: Radio Mesh Network.

destinations, and the edges E represent the links (possible calls). Two nodes can
communicate directly if they are connected by an edge of the communication
graph.

In general this graph is directed and a call implies a sender and a receiver.
However, motivated by reliable protocols in which the nodes send an acknowl-
edgment (confirmation of reception), we assume the communication graph is
undirected (if a node is able to send to another node the converse is true). Do-
ing so, we consider that an edge activation can allow communication in both
directions. For instance, if the edge {u, v} is activated the node u can send data
to the node v, and v can send an acknowledgment to u with the same activa-
tion. On the contrary, it can be that node v sends data to u, and u sends an
acknowledgment to v. Figure 1.2 shows an example of a communication graph
where node 1 can send data to nodes 2 and 4 but cannot receive data from any
other node.

We have to take into account some incompatibility constraints among the
links, as it is not possible that all links communicate at the same time. Let
R ⊆ 2|E| be the sets of links that can communicate at the same time. For
instance the links {e1, e2} can be possibly activated at the same time if and
only if {e1, e2} ∈ R. Each set in R will be called a round. To define the set of
valid rounds R, we use a given set of validation rules. Let us explain that on a
simple example, consider the communication graph in figure 1.2.

2



8 9

654

1 2 3

7

Figure 1.2: A communication graph showing the nodes that can communicate
directly.

On this graph the set of possible simultaneous communications (a round)
are described in figure 1.3 by a simple rule, that is a round is simply defined by
any set of edges pairwise at distance at least 2 (number of hops). For example,
the edge {1, 2} can be in the same round with either {7, 8}, {8, 9} or {6, 9},
but these 3 edges cannot be in the same round. So the rounds containing {1, 2}
are {{1, 2}}, {{1, 2},{7, 8}}, {{1, 2},{8, 9}} and {{1, 2},{6, 9}}. Note that the
edge {2, 5} cannot be activated with any other edge, and so do the edges {4, 5},
{5, 6}, {5, 8}. Note also that it is not possible to define a round with 3 edges in
this example.

Figure 1.3: All the rounds with two edges are depicted here. There is more 12
possible rounds with one edge. The adopted validation rule is the following:
activated edges have to be pairwise at distance at least 2.

Now we describe the two subproblems mentioned before, we start with the
routing subproblem. It was modeled as a network flow problem and deals with
flow relaying over multiple source nodes before the final destinations are reached.
As we consider a continuous flow transmission, it defines in fact a bandwidth
reservation with the flow representing the bandwidth requirements of the source
nodes.

3



In this thesis, a special case of RWP is considered as the source nodes
(routers) are not associated with a specific destination (gateway). It can then
be turned into a single-commodity flow problem as follows. The set of gateways
can be connected to a super-sink node draining all the flow by cost-free links
(cost-free = without causing interferences). A super-source can also be created
to feed all the routers. The router requirements of bandwidth are assigned to the
capacity of each cost-free edge that leaves the super-source to the corresponding
source node.

The other subproblem is the slot assignment subproblem. It is modeled as
a labeling problem: each link in a round receives the same slot represented by
a label. In this work, we consider a slot as an interval of time (see section 1.1
for other possible interpretations). For this specific case the nodes must have
synchronized clocks. Each pair of nodes (an edge of the communication graph)
will only communicate during their time-slots. In order to allow continuous flow
transmission, the overall interval of slot activations is repeated periodically, each
period satisfying the total demand requirements. In fact, several pair of nodes
(set of links) can actually receive the same time-slot (label) under the condition
they define a round. Note that each round is identified by a time-slot, which
has an activation time implying a link capacity (bandwidth).

The RWP objective is to minimize the overall period of slot activations
providing enough capacity to satisfy the routers requirements of bandwidth. The
input of the RWP problem are the communication graph, the set of validation
rules describing the possible rounds, and the network bandwidth requirements
for each router. The output is a positive flow for each edge representing the edge
bandwidth from the routing problem solution. At the same time, we have to
find a set of rounds with their activation times (weights) satisfying the routers
bandwidth.

In figure 1.4, we give a simple example of RWP solving. Consider the grid in
the left side of the figure. The nodes 1, 3 and 8 require a bandwidth of 1 to the
gateway node 4 and all the other nodes do not require bandwidth. The RWP

solution gives the paths followed by the flow and the selected rounds to cover
it. In this example, the validation rules define a round as a set of edges which
are pairwise at distance at most 2. The right side of the figure shows the used
rounds (layers): round Ra = {{1, 4}} with activation time equals to 2, round
Rb = {{1, 2}, {7, 8}} with activation time equals to 1 and Rc = {{2, 3}, {4, 7}}
with activation time equals to 1.

So, we have a bandwidth of 1 reserved to the node 1 using the path P1 =
{{1, 4}}, a bandwidth of 1 to the node 3 using the path P2 = {{2, 3}, {1, 2}, {1, 4}},
and a bandwidth of 1 to the node 8 using the path P3 = {{7, 8}, {7, 4}}.

Figure 1.5 shows the rounds activations, for example the slot for the round
Ra starts at the time t1 and finishes at the time t3. Note that we use a period
of 4 for the activations of this sequence of rounds: Ra Ra Rb Rc. This period is
repeated continuously guaranteeing the bandwidth requirements for the nodes
1, 3 and 8 by period. Note that the order of the round activations does not
matter.

Considering a given integer demand we want to obtain for some applications

4
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a solution where the activation times (weights) are integers. This problem will
be called Integer Round Weighting Problem (IRWP). Thus it deals with integer
flow (as consequence of the integer round weigths) and each flow of x (not
divisible) will be considered a packet. Integer round activation times (weights)
allow to consider a fixed time-slot size (e.g. multiple of x) as defined in several
real protocols. We consider the simplest case when a flow of x = 1 represents a
packet, and the time-slot (round) has a fixed size (weight) of 1 that we consider
enough to send 1 packet. Note that a node can use several paths (splittable
flow) to route its packets to the gateway.

It might be useful, instead of finding simply an integer flow, to find a unique
path for each node. It is known as unsplittable flow or mono-routing. It avoids
dealing with the packet-reordering problem, as the packets arrive at the desti-
nation in the same order they were sent. The demands being integer, it can be
considered a special case of the IRWP.

1.1 Wireless media access

A multiple access method allows several devices to share the capacity of
the same communication medium. The multiple access control mechanisms are
provided by the MAC (Media Access Control) layer. The MAC-layer is a sub-
layer of the Link Layer of the TCP/IP model. The access coordination can be
accomplished via several ways: by multiplexing the various signals, by allowing
the signals to contend for the access (without pre-coordination), or by combining
these two approaches.

In the contention-based multiple access techniques, the medium access policy
is based on competition and the main concern is to avoid collisions. Whenever
a node needs to transmit a packet, it tries to get access to the medium. The
advantage of this method is the simplicity in the sense that it does not deal with
pre-allocations. On the other hand, it is difficult to provide QoS since access to
the network cannot be guaranteed. Due to a conflict free access, the contention-
free multiple access protocols have the advantage of using the medium efficiently
considering high-load traffic. Instead, system with bursty traffic typically use
contention-based multiple access techniques due to its dynamicity.

In figure 1.6 we can see the three main contention-free multiple access tech-
nologies which are used by the wireless networks: frequency division multiple
access (FDMA), time division multiple access (TDMA), and code division mul-
tiple access (CDMA). The resource available is split into non-overlapping slots
(frequency slot, time slot, and code slot) and each signal receives a slot. In the
case of the CDMA, this notion can be applied only if orthogonal codes (non-
interfering codes) are considered. Usually, the users receive a different instance
of the noise carrier that are not strictly orthogonal, that is different codes may
interfere with each other. All links are allowed to communicate at the same time
consequently, each rate of communication is limited by the others. The power
transmitted by each user is defined to maintain the SINR (Signal to Interference
plus Noise Ratio) above a given threshold (we deal with this case in chapter 7).
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The slot allocation problem in wireless networks is done classically by a
vertex coloring of the graph induced by the interference relations. This keeps the
length of a schedule small and thus helps to improve the throughput and reduce
overhead. Schedules are based on pairwise link compatibility. More realistic
models taking SINR conditions have been proposed. We have considered both
models.

Interference models

There are two widely used models of interference for wireless network defin-
ing the rounds, the physical model and the protocol model (also called binary
model). These models give the conditions (validation rules) for a successful
transmission, that will occur if there is sufficiently small interference. The
physical model treats interference as noise, thus a transmission is successful
if the SINR at the receiver exceeds a threshold. This model takes into account
interference due to simultaneous transmissions by other nodes. As SINR cal-
culation is a non-convex function with respect to the transmission powers, the
computational complexity is very high for large-sized networks.

Under the protocol model, a successful transmission occurs when a node
falls inside the transmission range of its intended transmitter and falls outside
the interference ranges of other non-intended transmitters. Under the protocol
model, the impact of interference from a transmitting node is binary and is
solely determined by whether or not a receiver falls within the interference range
of this transmitting node. That is, if a node falls in the interference range
of a non-intended transmitter, then this node is considered to be interfered
and thus cannot receive correctly from its intended transmitter; otherwise, the
interference is assumed to be negligible. Due to the simplification, the protocol
model has been widely used in developing algorithms and protocols in wireless
networks and can be easily applied to analyze large-sized wireless networks.

Note that the definition of round is flexible and permits the utilization of
either binary models or physical models, it only depends of the adopted valida-
tions rules. In this thesis, in order to obtain precise results, we will use a model
based on distance in the graph of communication called the distance-d model.
In this model a round consists of edges pairwise at distance > d (see section 2.1
for precise definition).

Protocol model versus physical model

The arguments against the protocol model is that a binary decision of whether
or not interference exists (based on interference range) does not accurately cap-
ture physical layer characteristics. For the case when a node falls in the inter-
ference range of a non-intended transmitter, the protocol model assumes that
this node cannot receive correctly from its intended transmitter (due to inter-
ference). But this is overly conservative, based on capacity formula, as there
could still be some capacity even with interference. On the other hand, for
the case when a node falls outside the interference range of each non-intended

8



transmitter, the protocol model assumes that there is no interference. But this
is somewhat optimistic as small interferences from different transmitters can
aggregate and may not be negligible in capacity calculation [3].

The reality check method [3] derives an achievable result for a given protocol
model solution. In reality check, it is only needed to re-compute capacities
and adjust flow rates. They use the same capacity formula as that in physical
model, this formula is only used for simple calculations instead of being part of
a complex optimization problem as under the physical model. Therefore, the
complexity of the reality check mechanism is very small.

According to [3], the efficacy of the protocol model depends on the perfor-
mance gap between its reality check result and the result obtained under the
physical model. If this performance gap is small, then the protocol model is
a good approximation and can be used as an effective tool for analyzing wire-
less networks. Reality check result cannot exceed the optimal result under the
physical model since that both solutions employ the same accurate link capac-
ity computation and the final results (i.e. objective function values) are both
feasible.

1.2 Outline of the thesis

We address the round weighting problem (RWP) that was introduced in [2].
We now give a brief description of the main results of this thesis.

In Chapter 2, we present a RWP definition as a joint flow (routing) and
coloring problem (slot assignment). We discuss each sub-problem separately.
For a given flow satisfying the flow constraints, the RWP becomes a coloring
problem. Otherwise, for a given set of rounds, a solution for RWP can be
obtained solving such a minimum cost flow problem with a dynamic cost function
c(u, v) that depends of the weight assigned to the rounds covering each edge
{u, v} and the classical simple flow constraints. Of course, the optimal solution
for the RWP can only be obtained by considering the flow and the coloring
problems together.

We present also a cross-layer formulation of the problem that jointly com-
putes the routing and slot allocation. We use a column generation algorithm
with a simple flow model to solve the problem.

In Chapter 3, we propose a multi-objective study for the RWP. The first one
is to balance the load in the routers (MinMaxLoad). It increases the security
in case of failure. The second objective is to minimize the communication time
(MinTime), that is the original objective of the RWP. This multi-objective
formulation uses the model of Chapter 2; both the model and the multi-objective
study are published in [4].

Chapter 4 gives a superficial introduction to methods to find lower bounds
derived from a probable bottleneck region for a general graph. Our objective is
to define good limited regions in G where we can look for lower bounds for RWP.
Our analyses are based on the study of the flow cutting across these regions. We
use the model of Chapter 2 to run experiments on networks from the literature,
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with different numbers of gateways. We compare the results for IRWP, RWP

and our lower bound.
Chapter 5 presents formally methods to obtain lower bounds (inspired by

Chapter 4) for general graphs. We present lower bounds independent of the
adopted binary interference model. Then we give more precise lower bounds
for the distance-d model (with any value of d). Our methods are applied to
grid graphs (using distance-d model) providing closed formulae (as proved in
Chapter 6) for the case considering uniform demand. A preliminary version of
this case was published in [5] in which we give a lower bound considering d = 2
by using duality.

Chapter 6 presents upper bounds (given by feasible routings) for the RWPand
IRWP. We show several routing strategies for grids reaching optimal solution
equal to the lower bound (Chapter 5). We consider different cases according to
the position of the gateway and demands.

Motivated by the results of the existence of a limited (bottleneck) region
capable to represent the whole network, in Chapter 7, we consider a variant of
the RWP that also deals with bandwidth allocation, but using the interference
model with SINR (Signal to Interference plus Noise Ratio) conditions. In this
case, we do not attempt to allocate a separate slot to each link. Instead the
links are allowed to communicate at the same time; consequently the rate of the
communication is limited by the others.

The power transmitted by each user is defined to maintain the SINR above a
given threshold. The model presented here is valid for UMTS and other systems
that tolerate interferences. In this context, we give sufficient conditions for the
multi-hop problem to be reduced to a single-hop problem by only changing the
utility functions. These conditions are represented by our description of utility
functions. This work was published in [6].
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Chapter 2

RWP definition and a
mathematical formulation

Recall that the RWP was introduced in [2], where they show that the prob-
lem is NP-hard for gathering. Furthermore, they give a 4-approximation algo-
rithm for general topologies and show that RWP is polynomial for paths. They
also asked the question of finding simple efficient algorithms and the complexity
of the problem for grids.

The RWP can be seen as a relaxation of the Round Scheduling Problem
(RSP) (or Minimum Time Gathering problem) where each node has some data
to send to the gateway and we want to minimize the completion time of the
gathering. The RSP is also important for sensor networks (see example in [7])
where we wants to collect data (alerts) in a Base Station. This problem admits
a 4-approximation algorithm [8, 9]; polynomial or 1-approximation algorithms
are also given for specific topologies like paths, trees (see the survey in [10] for
more details). It has been solved for grids in case of unitary traffic (each node
has one unit of traffic to send to the gateway), for the asymmetrical model for
d odd [11] and for even and also hexagonal grids [12].

The RWP and the RSP have similar behavior when the network links are
completely filled from the source to the destination (steady state). They differ
by the additional time to “fill” and “drain” the network (transient states) that
is only taken into account by RSP.

In this chapter we introduce some notation and the RWP solving method
that is based on column generation [4].

Recall that the network is represented by a communication graph G = (V,E).
The bandwidth should be allocated between the routers in Vr and the gateways
in Vg, with V = Vr ∪ Vg and Vr ∩ Vg = ∅.

Each router has a demand of bandwidth b(v) that will be treated as a flow,
then the flow in an edge represents the bandwidth associated with this edge.
The flow can be split on several paths reaching one or more gateways. Let B be
the sum of all the router demands, B =

∑

v b(v). The set of edges E ⊆ V × V
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corresponds to the communication links of the network. If a router u is located
within the transmission range of a router v, considering distance, obstacles,
directional antennas, and so on, then there is an edge {u, v} ∈ E.

The set of validation rules for the rounds is here modeled as follows. The
set Iu,v is composed by all the links interfering with the link {u, v}. Each edge
{u, v} in G corresponds to a node vu,v in a conflict graph C(G) = (Vc, Ec). An
edge {vu,v, vx,y} ∈ Ec,∀{u, v}, {x, y} ∈ E means that {x, y} ∈ Iu,v.

Notice that this set permits the use of several interference models. We
can consider a symmetric model or an asymmetric model. The distance of
interference may be based on the number of hops, on a propagation model, or
on the geometric distance between the nodes, etc. As our analysis is based
on flow contention (bottleneck) similar results to these ones presented in this
work should be obtained independently of the adopted model. To put it in a
nutshell, any binary interference model can be used as it can be modeled by a
conflict graph. Considering the conflict graph as an input of the problem, we
are completely independent of the way it is generated.

Note that the definition of round is flexible and permits the utilization of
either binary models or physical models, it depends only the validations rules
adopted. It is easy to adapt our model to generate rounds taking into account
the SINR constraints (see [13]).

For the sake of simplicity, our tests and examples consider a symmetric
interference model defined in the next subsection.

2.1 Distance-d model of interference

To give precise results, we will specify the binary model of interference by us-
ing distances in graphs. The model can be viewed as a symmetric variant of the
interference model used for example in [2, 14] where a node causes interference
in all the nodes at distance at most dI from it (nodes in its zone of interference);
in their model, two directed calls (s,r) and (s’,r’) interfere if the distance between
the nodes s and r′ is d(s, r′) 6 dI or d(s′, r) 6 dI (asymmetrical interference
model).

Here we suppose that both calls (u, v) and (v, u) can be done. In particular
when u sends something to v, v sends an acknowledgement (confirmation of
reception) to u; that is used in reliable protocols. In our model, two symmetrical
calls interfere if one node of a call is in the interference zone of a node of the
other call.

Let us define the distance between two edges (calls) e = {u, v}, e′ = {u′, v′}
as the minimum distance d(e, e′) = minx∈{u,v},y∈{u′,v′} d(x, y) between their end
vertices. So, two calls (or edges) interfere if d(e, e′) 6 dI . For several reasons,
we will use the parameters d = dI + 1 (d can be seen as the minimum distance
of reuse of the same frequency for two calls during a time-slot).

Definition 1 In the distance-d model, two calls (edges) e and e′ interfere if
their distance d(e, e′) < d.
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(a) Forbidden arcs with the ac-
tivation of the bold arc (call)
with an asymmetrical interfer-
ence model and dI = 1.

−3 −2 −1 0 1 2 3

(b) Forbidden arcs with the activation of the
bold arc (call) with an asymmetrical inter-
ference model and dI = 2.

−1 0 1 2−2

(c) Forbidden arcs with the ac-
tivation of the bold arcs (call)
with a symmetrical interference
model and d = 1.

−3 −2 −1 0 1 2 3

(d) Forbidden arcs with the activation of the
bold arcs (call) with a symmetrical interfer-
ence model and d = 2.

Figure 2.1: Symmetrical versus asymmetrical models.

Consequently, a round consists of edges which are pairwise at distance at most
d. The particular case d = 1 is nothing else than the primary node interfer-
ence model or node-exclusive interference model [15]. In that case, a round
is a matching. In the case d = 2 we get the so called distance-2 interference
model [16, 17, 18, 19]. In this case, a round is an induced matching.

One of the reasons to use d (and not dI) is to be coherent with these two par-
ticular models. Furthermore let the conflict graph be the graph whose vertices
represent the edges (calls) of G, two vertices being joined if the corresponding
calls interfere.

Then, in the case d = 1, the conflict graph is nothing else than the line graph
L(G) of G. (The vertices of L(G) represent the edges of G and two vertices are
joined in L(G) if their corresponding edges intersect). More generally, for any
d, the conflict graph is the d-th power of L(G) (The k-th power of a graph being
the graph with two vertices joined if their distance is less than or equal to k).

The differences between the symmetrical and the asymmetrical models are
shown in Figure 2.1 on a path, where are indicated the arcs can not be activated
if we want the call (the bold arc(s)) to be successful. For a given d the set of
arcs in the symmetrical model is smaller than that for the asymmetrical model
with dI = d but bigger than dI = d−1. Consequently, any RWP solution using
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the distance-d symmetrical interference model represents a lower bound for the
RWP using the asymmetrical model with dI = d for general graphs. It is as if
the RWP with symmetrical model “relaxes” some interfering arcs.

Finally, notice that the solution for grid graphs we obtain in the distance-d
model with symmetrical model is very close to the solution of the asymmetrical
model with dI = d. As our problem deal with a gathering, the solution is a flow
toward a unique node so the additional interference of the asymmetrical model
does not make an important difference. The formulae that we obtain are then
similar to that of [11, 12] that uses the asymmetrical model.

When a round Ri is active, a set of edges with activation time of w(Ri) is
available. The RWP minimizes the overall period W =

∑

i w(Ri) to allow a
routing from Vr to Vg of a flow of B. Consider Wmin the minimum period, this

time interval is repeated periodically providing a throughput of b(v)
Wmin

,∀v ∈ Vr.
Recall that the flows on the edges of the problem solution represent the allocated
bandwidth.

2.2 A simple example

In figure 2.2, we recall the example of RWP solving in the introduction
chapter (now, using the formal notation). We consider a distance of interference
d = 2. The nodes 1, 3 and 8 require a bandwidth connection of b(v) = 1 to
the gateway node 4. As b(v) = 0 for the other nodes of Vr, we obtain B = 3.
The example shows two different routings. The left routing needs a total time
of W = 5. Note that the right routing is better because it also admits a routing
of B using only W = 4. This is the optimal solution to RWP. It means that at
each period of Wmin the nodes 1, 3 and 8 can send a flow of 1, thus we obtain

a throughput for each node of b(v)
W = 1

4 (flow/time).

Figure 2.3 shows the paths followed by the nodes and the selected rounds
to cover them, round Ra = {{1, 4}} with capacity w(Ra) = 2, round Rb =
{{2, 1}, {8, 7}} with capacity w(Rb) = 1 and Rc = {{3, 2}, {7, 4}} with capacity
w(Rc) = 1.

It is interesting from a practical point of view to know the paths used by
the source nodes to reach the gateways. It allows to configure routing tables, to
permit the use of the same path for response from the gateway, to provide QoS,
and so on. These paths can be deduced using a MSSD (Multiple Source-Single
Destination) flow model getting as input the capacities computed by the SSSD
(Single Source-Single Destination) model.

We can extract the paths followed by the nodes because the flow variable (in
MSSD) contains the information about the source node using each link. The
SSSD models does not have such information. For example, in a SSSD model
we can not know if the packet transmitted by the node 1 in the slot a1 (of the
round Ra) is from itself or from the node 3.
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Figure 2.2: Deciding the best routing.
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Figure 2.3: Path deduction from a set of rounds.

The problem can be defined as follows:

Problem: Round weighting problem (RWP)
Input: The communication graph G(Vr∪Vg, E), the conflict

graph C(G) representing the edge interferences, and
the network bandwidth b(v) for each router v ∈ Vr.

Solution: Each edge {i, j} ∈ E receives a positive flow φ(i, j)
that represents the edge bandwidth from the routing
problem solution. At the same time, we have to find
a set of rounds R with their weights w(Ri) achieving
the routers bandwidth (

∑

Ri∋(i,j) w(Ri) > φ(i, j)).

Objective: Minimize the overall period W of round activations
providing edge capacities c(u, v) enough to achieve
the routers requirements of bandwidth. We call
Wmin the minimum period.

Considering a given integer demand we want to obtain for some applications
a solution where the activation times (weights) are integers. This problem will
be called Integer Round Weighting Problem (IRWP).

The RWP is a joint flow and coloring problem. To contextualize the problem
in the next subsections, we describe each sub-problem separately. Suppose that,
by some means, we could know the solution of each sub-problem that gives the
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optimal solution for the RWP. We call simply optimal sub-problem solution.
Thus, if we consider a given optimal sub-problem flow solution, the RWP is
reduced to a coloring problem. Otherwise, if we consider a given optimal solution
for the coloring sub-problem, the RWP is reduced to a flow problem. Of course,
the optimal solution for the sub-problems can only be obtained from the RWP

solution, that is considering the flow and the coloring problems together.

2.3 RWP with fixed flow: a coloring problem

If we consider a given optimal sub-problem flow solution, the RWP becomes
a weighted coloring problem. Let the graph G′ represent G with edge weights
given by the optimal flow solution. Let the graph C(G)′ represent C(G) with
node weights derived from G′. Thus a node v in C(G)′ has a weight determined
by the quantity of flow crossing the corresponding link in G′.

We need the following definitions to understand the RWP as a weighted col-
oring problem. A k-coloring of a graph H = (V,E) is a partition I = (I1, ..., Ik)
of the vertex set V of H into independent sets Ii. The classical coloring problem
looks for the vertex coloring minimizing k, that is the chromatic number χ(H).
A generalization of this problem is obtained by the weighted coloring, that con-
siders a strictly positive weight w(v) for any vertex v ∈ V , and defines the
weight of the independent set I of H as w(I) = max w(v) : v ∈ I. The objective
is to define a vertex coloring I = (I1, ..., In) of H minimizing

∑n
i=1 w(Ii).

For any graph H, let ∆(H) be the maximum degree, ω(H) be the clique num-
ber (i.e. the size of the largest clique), and χf (H) be the fractional chromatic
number of H (defined later). The most known bounds are ω(H) 6 χf (H) 6

χ(H) 6 ∆(H) + 1 for any graph H.
A known upper-bound defined as a function of the graph weights is χ(H,w) 6

1 + |W|(χ(H)− 1) [20], where |W| represents the number of different weights w
used in the nodes of H, W = w(v) : v ∈ V .

Considering each class of color a round, the RWP can be seen as a weighted
coloring and Wmin = χ(C(G)′). For example, we describe how RWP solves the
slot allocation problem with a coloring problem using a symmetric interference
model. Given a network graph G, its line graph L(G) is a graph such that each
vertex of L(G) represents an edge of G; and two vertices of L(G) are adjacent
if and only if their corresponding edges share a common endpoint in G. The
conflict graph C(G) is the line graph power d, (L(G))d. The dth power of the
graph L(G) is the graph with the same set of vertices as L(G) and an edge
between two vertices if and only if there is a path of length at most d between
them.

In a symmetric model, the RWP is then a distance-d coloring in which any
two edges within distance d of each other must get different colors. The most
basic case is d = 1 where the set of roundsR is simply the set of the matchings of
G, that is a set of edges without common vertices. If d = 2, a round represents
an induced matching in G. An induced matching is a matching in which no two
edges are linked by an edge of G.
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Considering that the rounds can be active for a fractional time interval
(fractional rounds weight), RWP can be seen as a weighted fractional coloring
of C(G)′. Grotschel and al. [21] proved that the weighted fractional coloring
problem is NP-hard for general graphs. They showed that if the problem of
computing the weight of the largest weighted independent set is NP-hard, so
the weighted fractional coloring problem is also NP-hard. See [22] for further
information about fractional coloring.

To be generic and independent of an interference model, a round is a set of
edges in G that correspond to an independent set of C(G). At first, we describe
the RWP as a weighted fractional coloring of the C(G)′.

We present a linear program for the weighted fractional coloring problem. Let
I denote the family of all independent sets of a graph H. The graph H has a
weight f(v) for each vertex v ∈ V (H). The weighted fractional coloring problem
consists of assigning a non-negative real capacity w(I) to each independent set
in I. The value w(I) has to be greater or equal to the weight f(v) for each
vertex v ∈ I. The objective is to minimize

∑

I∈I w(I). The minimum weighted
fractional coloring can be formulated as follows:

χf = min
∑

I∈I
w(I) (2.1)

∑

I:v∈I

w(I) > f(v),∀v ∈ V (H) (2.2)

w(I) > 0,∀I ∈ I (2.3)

The dual problem is the maximum weighted fractional clique that asks for a
vector x ∈ RV (H)+ subject to the constraints 2.5, such that

∑

v∈V (H) x(v)f(v)

is as large as possible, given the weight function f ∈ RV (H)+ . The dual problem
can be expressed as:

ωf = max
∑

v∈V (H)

x(v)f(v) (2.4)

∑

v∈I

x(v) 6 1,∀I ∈ I (2.5)

x(v) > 0,∀v ∈ V (H) (2.6)

A fractional clique can be seen as a non-negative real-valued function on V
such that the sum of the values of the function on the vertices of any independent
set is at most one. Notice that a fractional clique is a relaxation of the integer
clique. It is simple to understand, consider a function that assigns 1 to the
vertices of a clique in a graph H and zero otherwise. It respects the condition
that each independent set weight in G is 1 (each independent set intersects the
clique in at most one vertex). Thus this function is a fractional clique, whose
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weight is the number of vertices in the clique. As a clique with n vertices can
be seen as a fractional clique of weight n, for any graph H, ω(H) 6 ωf (H).

By the strong duality theorem of Linear Programming [22], the optimum
solution for the weighted fractional coloring problem equals to the optimum
solution for the weighted fractional clique problem, that is χf = ωf .

Now, we show the same model in the context of RWP to be more clear. So
I (independent nodes) is replaced by the set of rounds R (independent set in
C(G)) in RWP.

The weighted fractional coloring problem consists of assigning a non-negative
real capacity w(R) to each round in R. The capacity w(R) has to be enough
to support the flow φ(i, j) for each edge (i, j) ∈ R. The objective is to min-
imize

∑

R∈R w(R). The primal problem for RWP given an optimal routing
(φ(i, j),∀(i, j) ∈ E) can be expressed as:

min
∑

R∈R
w(R) (2.7)

∑

R:(i,j)∈R

w(R) > φ(i, j),∀(i, j) ∈ E(G) (2.8)

w(R) > 0,∀R ∈ R (2.9)

The dual version of the problem is:

max
∑

(i,j)∈E(G)

d(i, j)φ(i, j) (2.10)

∑

(i,j)∈R

d(i, j) 6 1,∀R ∈ R (2.11)

d(i, j) > 0,∀(i, j) ∈ E(G) (2.12)

As we consider fractional round weights w(R), the RWP becomes a weighted
fractional coloring problem as we discuss above. If we consider integer round
weights w(R), RWP becomes a (integer) weighted coloring problem. It means
that when the nodes are activated they must remain active continuously for an
integer duration of time. The fractional coloring may provide a shorter W due
to the utilization of the fractional activation times, thus there is an integrality
gap. We compare W i

min (Wmin with integer w(R)) with W f
min (Wmin with

fractional w(R)) in chapter 2.

2.4 RWP with fixed rounds: a flow problem

The RWP becomes a flow problem if the optimal solution for the coloring
sub-problem (rounds) is known. In this subsection we discuss about flow prob-
lems in the literature that can be related to our problem. At first, we recall the
basic notions of flow according to [23].
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Definition 2 (Flow) Suppose G(V,E) is a finite directed graph in which every
edge (u, v) ∈ E has a non-negative, real-valued capacity c(u, v). If (u, v) 6∈ E,
we assume that c(u, v) = 0. We distinguish two vertices: a source s and a sink
t. A flow network is a real function φ : V × V → R with the following three
properties for all nodes u and v:

• Capacity constraints: φ(u, v) ≤ c(u, v). The flow from one vertex to an-
other must not exceed the capacity.

• Skew symmetry: φ(u, v) = −φ(v, u). It is a notational convenience that
says that the flow from a vertex u to a vertex v is the negative of the flow
in the reverse direction.

• Flow conservation:
∑

w∈V φ(u,w) = 0, unless u = s or u = t. It says that
the total flow out of a vertex other that a source or sink is 0.

We recall the classical definitions in the context of the related problems.

2.4.1 Maximum-flow (min-cut) problem

Given a directed graph G(V,E), where each edge u, v has a capacity c(u, v),
the maximum flow problem is to find a feasible flow (see Definition 2) from
some given single-source to a given single-sink that is maximum. The maximum
source-to-sink flow in a network is equal to the minimum source-to-sink cut in
the network, as stated in the Max-flow min-cut theorem.

The RWP considers the capacity c(u, v) as a variable representing the edge
activation time. While the maximum flow problem considers a given fixed ca-
pacity c(u, v). Let Ru,v be the subset of rounds in R containing the edge (u, v).
In RWP, the capacity of an edge is defined as c(u, v) =

∑

R∈Ru,v
w(R) and it

is optimal if W =
∑

R∈R w(R) is minimum. Thus, our objective is not to find
the maximal flow. Our objective is to find an optimal network capacity c(u, v)
in a way to admit a maximum flow of B, so B is fixed and it is an input of our
problem.

Now, considering a given optimal capacity c(u, v) (rounds and also their
weights), the RWP becomes a flow problem (without objective). We need only
to check that the flow B can goes through the network links respecting the
given c(u, v). Of course, if we can put more flow than B means that the given
capacity is not optimal implying a W > Wmin. In other words, if we solve the
maximum flow problem in a network with a given optimal capacity we have to
find a maximum flow equals to B.

2.4.2 Minimum-cost flow problem

Given a flow network G(V,E) with source s ∈ V and sink t ∈ V , where
edge (u, v) ∈ E has capacity c(u, v), flow φ(u, v) and cost q(u, v). The cost of
sending this flow is φ(u, v)q(u, v). The objective is to minimize the total cost
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of the flow
∑

u,v∈V q(u, v)φ(u, v), subject to a required flow
∑

w∈V φ(s, w) = B
and the flow constraints in Definition 2.

Both problems are flow problems and they have to respect the flow con-
straints in Definition 2. They have also a given fixed amount of flow B as an
input of the problem.

Both objective functions want to minimize the cost of the flow. But our
cost function is more complicated. The minimum cost flow problem considers a
fixed cost q(u, v) as input of the problem. In our problem, we consider such a
dynamic cost that is dependent of the flow.

Given optimal rounds (without their weights), our objective is to find a net-
work capacity c(u, v) of minimum cost Wmin = min

∑

i w(Ri) that admits a flow
of B. So, our cost depends of the capacity definition c(u, v) =

∑

R∈Ru,v
w(R)

that consequently depends of the flow due to the capacity constraints c(u, v) >

φ(u, v) in Definition 2.
Let f(u, v,R) be the flow in the edge (u, v) that is transmitted during the

time interval w(R). If we want to reuse the same objective function that is
min

∑

u,v∈V q(u, v)φ(u, v), the edge cost can be defined as the following q(u, v) =
∑

R∈Ru,v
f(u, v,R)M(u, v,R)/φ(u, v). The binary variable M(u, v,R) is 1 if

f(u, v,R) = max(i,j)∈E f(i, j, R), and 0 otherwise; with
∑

(u,v)∈R M(u, v,R) =
1,∀R ∈ R.

According to [23], many of the asymptotically fastest maximum-flow algo-
rithms are push-relabel algorithms, and the fastest actual implementations of
maximum-flow algorithms are based on the push-relabel method. Other flow
problems, such as the minimum-cost flow problem, can be solved efficiently by
push-relabel methods. The Goldberg’s “generic”maximum-flow algorithm has a
simple implementation that runs in O(V 2E) time, thereby improving upon the
O(V E2) bound of the Edmonds-Karp algorithm. This generic algorithm can be
refined to obtain another push-relabel algorithm that runs in O(V 3) time.

Notice that, if all the round weights are integer we have integer edge capac-
ities. Then, by the Integrality theorem, there is an optimum flow φ(e) whose
values are all integers (φ : E → Z). It was proved by [24] and follows from the
observation that the constraints matrix respects the property of total unimodu-
larity, i.e., every subdeterminant of this matrix is 0, 1, or -1.

An analysis of the combinatorial meaning of the Integrality theorem is given
by [25]: Let φ be any (s, t) − flow with value v(φ) > 0. It is easy to find a
directed (s, t) − path P such that φ(e) > 0 for all e ∈ P . Let XP denote the
incidence vector of P , then XP is a special kind of (s, t) − flow with value 1.
Set λP = min{φ(e) : e ∈ P}, then φ′ = φ − λP .XP is a (s, t) − flow with
value v(φ′) = v(φ)− λP . Going on similarly, we can decompose f into directed
(s, t)− paths and possibly into a flow with value 0:

φ = λP1
XP1 + ... + λPm

XPm + φ0,

where v(φ0) = 0. So v(φ) = λP1
+ ... + λPm

. Now if φ(e) is integral then so are
the λP , and we may view this decomposition as a collection of (s, t) − paths,
in which Pi occurs with multiplicity λPi

. The condition that φ(e) 6 c(e) can
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then be translated into the condition that this family of paths uses each edge
e at most c(e) times. The objective is then just the number of paths in the
collection.

2.5 Column generation method

Since the number of rounds is exponential, a column generation (CG) al-
gorithm is used to avoid dealing with the complete set of rounds. Our CG
algorithm has an exponential complexity (in the number of links) as well. Nev-
ertheless, in most of the practical cases CG algorithm is efficient. It has only
worst-case exponential complexity, whereas the brute force enumerating algo-
rithms have average-case exponential complexity.

An algorithm enumerating a tractably large subset of simultaneous transmis-
sion rounds has been developed in order to compute an approximated solution
for maximum throughput using linear programming (LP) in [26]. Solving the
full LP problem means generating an exponential set of scenarios which is in-
tractable even for small networks as seen in [27]. To cope with this issue,
column generation methods have been considered, e.g. [28], [4], [13], [29] and
[30]. The work in [28] and [4] present mathematical models for RWP, based
on cut constraints and flow constraints respectively. Similar problems can be
found in works dealing with CG algorithms for graph coloring (see section 2.3
to know the relation to our problem), see [31] for more details.

The mathematical model is decomposed into a master problem and a sub-
problem models. We solve the master problem with a small subset of columns
(rounds) R′ ⊆ R, which serves as an initial basis. The sub-problem is then
solved to check the optimality of the solution under the current master basis and
to generate new columns for the master problem. This procedure repeats until
the master problem contains all columns necessary to find the optimal solution
of the original problem. Considering the RWP, each column corresponds to one
round.

In each iteration, if the sub-problem can find a new column that may improve
the master solution, this column is inserted in the master basis and a new master
solution is computed. If the sub-problem can not find, linear programming and
duality theory ensure that the solution of the problem is optimal. This algorithm
is represented in figure 2.4.

The master problem (that has a set of rounds as input) is a linear program-
ming problem that is known be solved in polynomial time using, for example,
Ellipsoid method [Yudin, Nemirovski and Shor,1972], randomized polynomial-
time Simplex algorithm [32] (polynomial time with high probability), etc. The
complexity is solving the sub-problem which is combinatorial, and finding the
optimal solution is NP-hard.

We will see in section 4.2 that in our tests this complexity is delimited to
only a small part of the graph, the bottleneck region.
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Figure 2.4: Column generation algorithm and data flow diagram.

2.5.1 Master problem formulation

In this subsection we define some variables of the master model. Let the
variable φ(i, j) be the flow over link (i, j). The demand from each router v
is represented by the integer parameter b(v). Recall that B =

∑

v b(v). Let
the binary parameter aR

i,j be 1 if the link (i, j) is active in the round R, and 0
otherwise.

Recall that set Iu,v is composed by all links interfering with (u, v). We define

F
(i,j)
(u,v) = 0 if (i, j) ∈ Iu,v and 1, otherwise. We define w(R) as the fraction of

time that round R ∈ R′ is active. Consequently, there is an induced edges
capacity c(i, j) =

∑

R∈R aR
i,jw(R),∀ (i, j) ∈ E.

The master problem can be defined as follow: Given a graph G(Vr ∪ Vg, E),
a set of routers demand b(v) and a set of rounds R′ ⊆ R, the problem is to
assign a weight w(R) to each round R ∈ R′. The weights represent the amount
of time a round will be active. The total amount of time needed to satisfy all
demand will be W =

∑

R∈R′ w(R). The master problem expressed as a linear
programming model is the following:

Wmin = min
∑

R∈R′

w(R) (2.13)
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∑

i∈V/(v,i)∈E

φ(v, i) = b(v),∀v ∈ Vr (2.14)

∑

j∈Vg

∑

i∈Vr/(i,j)∈E

φ(i, j) = B (2.15)

φ(i, j) = −φ(j, i),∀(i, j) ∈ E (2.16)
∑

R∈R′

aR
i,j .w(R) > φ(i, j),∀(i, j) ∈ E (2.17)

Constraints (2.14-2.16) correspond to the flow constraints in Definition 2
based in [23] (see section 2.4). Constraints (2.14) define the flow leaving its
source router. Constraints (2.15) define the flow arriving in the gateway set.
Constraints (2.16) represent the skew symmetry (responsible for the opposite
flow cancellation). Constraints (2.14), (2.15) and (2.16) correspond to the flow
conservation. See example of the use of the flow constraints in figure 2.5. Con-
straints (2.17) assign weights to the rounds to satisfy the flow in the edges.

1 2

1 2
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41 2 3

1 2 3 4

1 2 3 4

Constraints (2.16) for the arc (2,3).

Constraints (2.14) for the node 2.

Constraints (2.16) for the arc (1,2).

Constraints (2.14) for the node 1.

Constraints (2.16) for the arc (3,4).

Constraints (2.14) for the node 3.

Constraints (2.15).

b(1)

−b(1)

−b(1) b(1) + b(2)

−(b(1) + b(2))b(1)

b(1) B

−Bb(1)

b(1) + b(2)

b(1) + b(2)

−(b(1) + b(2))b(1) b(1) + b(2) + b(3) = B

43

43

43

Figure 2.5: Example of flow problem using the formulation presented.

2.5.2 Sub-problem formulation

To express the sub-problem as a integer linear programming model, we have
to define some additional notations. Let the parameter p(i,j) be given by the dual
variable associated with the constraints (2.17) of the master problem. Consider
the binary variable u(i,j) = 1 indicating if the edge (i, j) enters the round to be
added to R′, u(i,j) = 0 otherwise.

The sub-problem model generates a round R with the minimal reduced cost
(

1−∑(i,j)∈E p(i,j).a
R
i,j

)

to enter the master basis. It can be seen as the max-

imum weighted independent set problem which is NP-hard [33]. The parameter
p(i,j) corresponds to the weight of the edges. The objective function is to max-
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imize the sum of the weights of all active edges respecting interferences. The
formulation of the sub-problem is the following:

max
∑

(i,j)∈E

p(i,j)u(i,j) (2.18)

u(i,j) + u(k,l) 6 1 + F
(k,l)
(i,j) ,∀ (i, j) ∈ E,∀ (k, l) ∈ E (2.19)

The objective function (2.18) searches the maximum weight, which is equiv-
alent to the minimum reduced cost. The parameter p(i,j) guides the column
generation to select the best round. Constraints (2.19) avoid interferences ac-
cording to the interference model in F .

If the value of the objective function in the sub-problem is strictly greater
than 1 (e.g. the reduced cost is negative), a new column u(i,j) is found and
the master basis is expanded. Otherwise, the master problem already gives the
optimal solution to the original problem.

2.5.3 Cases solved in polynomial time

There are some cases of RWP that can be solved in polynomial time with
the proposed CG formulation, as proved in theorem 1.

Theorem 1 Consider a linear model with exponential number of variables and
a fixed number of constraints. If the pricing problem for this linear model can
be solved in polynomial time then the linear model can be solved in polynomial
time.

Proof: The pricing problem of our CG model is the separation problem, as the
CG algorithm corresponds to the dual of the cutting plane method. According
to Grötschel, Lovász, and Schrijver on the ellipsoid method [34], a cutting plane
algorithm runs in polynomial time if and only if the separation problem can be
solved in polynomial time. �

Corollary 1 The RWP can be solved in polynomial time if the maximum
weighted independent set can be solved in polynomial time for C(G).

An example for the corollary 1 is the RWP considering the distance-d model
and d = 1. In this case, the pricing problem is the maximum weight matching
problem, that is known to be solved in polynomial time.
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Chapter 3

Load versus time: a
multi-objective analysis

In this chapter we present the results of the work in [4]. We propose a multi-
objective approach for the RWP, considering two objectives. The first one is
to balance the load in the routers (MinMaxLoad). It increases the security in
case of failure. The second objective is to minimize the communication time
(MinTime). It corresponds to the time required to route all router demands.
We observe that the worst bottleneck is located around the gateway in the
instances of test.

Multi-objective optimization does not compute a unique solution, but a set of
“best” solutions, called the Pareto optimal set, capturing the trade-offs between
the different metrics. Solving a multi-objective problem consists in finding the
Pareto optimal set, from which the decision maker choose the solution that fits
the best his needs. In this work, each point of the Pareto set is obtained by
solving an optimization problem.

The main contribution of this work is to give a multicriteria vision of the
Round Weighting Problem. As far as we know there is no multi-objective anal-
ysis in this subject.

This chapter is organized as follows. The section 3.1 presents our multi-
objective approach with ǫ-restricted technique that uses the model presented
in chapter 2. In section 3.1.2 are presented some of the experimental results
obtained. We conclude the chapter and give the future directions in section 3.2.

3.1 Multi-objective formulation

To evaluate the overall quality of our solutions, we use the following metrics:

• MinMaxLoad (f1): Balancing the quantity of flow in the routers. The
rounds are chosen in a way to minimize the maximum load lv in the
routers Vr.
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• MinTime (f2): Minimizing the time of the communication. It chooses the
rounds in a way that the round activations time will be minimum, that is,
it minimizes the total weight w(R) of the schedule.

The objective function of the master problem with objective MinMaxLoad
and MinTime are the following, respectively

min(f1 = max
v∈Vr

(lv)) (3.1)

min(f2 = w(R)) (3.2)

To study the trade-offs between these two metrics, we consider the problem
as a multi-objective one. The main idea of multi-objective optimization is to
find out all the possible non-dominated solutions of an optimization problem. A
solution is dominated if there is another solution improving simultaneously all
the metrics. A solution is non-dominated if there is no other solution dominat-
ing it. Informally speaking, it means that if a solution is non-dominated within
the whole solution space, it is not possible to improve one of the metrics with-
out worsening at least one of the other metrics. The set of all non-dominated
solutions is the Pareto set [35].

In multi-objective optimization, the solution space is a part of Rm where m
is the number of metrics. In our case m = 2. The optimization is performed on
the plane and as there is no total order relation in R2, there is not a single but
many “best solutions”.

A multi-objective optimization problem can be defined in the following way:

F̄=

{

minx F (x)
x ∈ P where F :







P → R2

x 7→
(

f1(x)
f2(x)

)

(3.3)

P is the set of feasible solutions, defined by constraints (2.14) to (2.17).

3.1.1 ǫ-restricted technique

The idea of the ǫ-restricted technique is to add additional constraints pre-
venting the solver to return one of the optimum solution of one of the induced
mono-objective problems, as described in [36] and [37]. More precisely, the
ǫ−restricted technique corresponds to generating and solving mono-objective
problems under the form:







minx f i

x ∈ P
f j 6 ǫj ; j 6= i

(3.4)

The ǫi are chosen such that f̄ i 6 ǫi, where f̄ i corresponds to the optimum
value of the mono-objective problem minimizing objective f i. Figure 3.1 il-
lustrates the key idea of the ǫ−method: Solving the classical mono-objective
problem minimizing f1 gives f̄1. If the restriction f2(x) 6 ǫ2 is added to the
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problem, minimizing f1 will not return f̄1 anymore but another points of the
Pareto optimal set. The same can be applied when minimizing f2.

Figure 3.1: ǫ based method minimizing f1

The Pareto set provides to the decision maker the trade-offs, allowing him
to choose the solution that he considers as the best one.

3.1.2 Min time versus min-max load

The model was coded using the AMPL modeling language and it was solved
using the commercial software Cplex version 10, on a desktop PC with one
gigabyte of RAM. We used the mesh networks instances from [38]. We defined
a simple interference model where each edge interferes with another one if the
distance between them in graph G is lower than 2.

We represent some of the obtained results on figures 3.2 to 3.4. The results
are represented in the solution space: The x axis represents the communication
time, and the y axis represents the maximum load. Each point corresponds to
a solution.

This approach using column generation and multi-objective optimization
appears to be quite efficient, as the computation time to solve any instance
is low, of the order of tenths of seconds. The overall time f1 as well as the
maximum load f2 decrease as the number of gateways increases.

As it was expected, the routing generates bottlenecks located around the
gateway(s), because all the flow goes toward them. We observe that when the
routing use distinct paths to route the flow, it allows to activate different edges
in the same round, reducing the overall transmission time. Informally speaking,
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(a) 1 gateway (b) 2 gateways

(c) 3 gateways (d) 5 gateways

Figure 3.2: 39 nodes mesh network (giul69 instance)

(a) 1 gateway (b) 2 gateways

(c) 3 gateways (d) 5 gateways

Figure 3.3: 65 nodes mesh network (ta2 65 instance)
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(a) 1 gateway (b) 2 gateways

(c) 3 gateways (d) 5 gateways

Figure 3.4: 54 nodes mesh network (zib54 instance)

it may be more efficient to follow different routes that do not interfere one with
another than following shorter routes resulting in more interferences.

Minimizing the time increases the maximum load of the routers. We observe
that the relation between the maximum load and the transmission time seems
convex and piecewise linear. The linear parts corresponds to the following situ-
ations: As we make tighter the value of the maximum load, an amount of flow
is deported on another path. Using this other path results in an increase of
the overall transmission time. Hence, for each unit of flow following the second
path, the overall transmission time increases by a given value (the difference of
time between the first path and the second one).

Each disruption in the graphs is due to the happening of a new saturated
node (bottleneck), forcing a flow transfer on a path that is not the best possi-
bility. This can happen, for example, due to a transfer of flow from a gateway
to another one having the neighbor nodes less saturated. It may activate some
path that was not in use. As a consequence, the rate of time per flow increases.

A disruption situation is illustrated on figure 3.5, where routers 2,4 and 5
send data to gateway 1. We assume that each router has only one unit of traffic
to send, b(v) = 1. For clarity reason, we consider that the time unit is the
second (s) and the flow unit is the Gigabit (Gb), even if the formulation is
independent from the unit chosen. Let us consider only the flow from router
4, because routers 2 and 5 send directly their flow to the gateway. The flow
from router 4 follows three different paths p1 = 4 − 5 − 1, p2 = 4 − 3 − 2 − 1
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and p3 = 4 − 3 − 7 − 8 − 6 − 1 to reach the gateway. When the maximum
authorized load is 1.25Gb, the flow from router 4 is divided the following way:
0.25Gb follow p1, 0.17Gb follow p2 and 0.58Gb follow p3. Router 5 is the only
bottleneck of the network. With a tighter maximum load of 1.2Gb, 0.05Gb of
flow are deported from path p1 to paths p2 and p3, resulting in an increase of
required time of 0.02s, that is, with a rate of −0.05/0.02 = −2.5Gb/s. But now
there are two bottlenecks: routers 2 and 5. With a tighter maximum load of
1.15Gb, flow from paths p1 and p2 are deported to the path p3, resulting in an
increase of required time of 0.1s, that is, with a rate of −0.05/0.1 = −0.5Gb/s.
The overall results obtained with this example are represented on figure 3.6.

Maximum load = 1.25Gb
Time = 3.58s

Maximum load = 1.2Gb
Time = 3.6s

Maximum load = 1.15Gb
Time = 3.7s

Maximum load = 1.175Gb
Time = 3.65s
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Path p1

Path p2
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1Gb

0.8Gb

1.2Gb0.6Gb

1.2Gb

1Gb

0.85Gb

1.15Gb0.70Gb

1.15Gb

1Gb

0.825Gb

1.175Gb0.65Gb
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Load on p2

Load on p3

Load on p1

0.175Gb
0.175Gb 0.15Gb

0.15Gb

0.58Gb

0.17Gb
0.25Gb 0.2Gb

0.2Gb

0.65Gb 0.70Gb

0.6Gb

Bottleneck

load(Gb)
Router

Figure 3.5: Small example for piecewise linear functions.
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Figure 3.6: Result obtained with the example from figure 3.5.

3.2 Conclusion

In this chapter, we propose a multi-objective approach relating the overall
transmission time, expressed in number of rounds, and the maximum load for
the RWP. The problem is solved using a column generation approach.

We make experiments with some networks with different number of gateways.
The multi-objective approach allows us to obtain results about the relationship
between the maximum load and the overall transmission time. This relationship
corresponds to a convex piecewise linear function. Each linear parts corresponds
to the increase of time resulting by transferring part of the load from a path to
another. Each disruption is due to the happening of a new bottleneck, forcing
a flow transfer from a path to another.
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Chapter 4

Extracting information of
bottlenecks

In this chapter, we present a method which computes lower bounds for RWP.
First we explain how to identify bottleneck regions (also called critical regions)
in G. Then the method checks if these regions can give good lower bounds
for RWP by studying the flow cutting across these regions. Of course, the
maximum lower bound found among the selected regions is the best one.

A probable bottleneck is defined as a function of the topology of the graph,
demand distribution and routing conditions. For example, a probable bottle-
neck can be a subgraph containing edges in narrow areas (e.g. min-cut of G)
or edges concentrating a high demand (close to B) of flow going through it.
Thus, depending on the topology of the graph and the demand distribution, a
bottleneck can be located anywhere in the network.

Solving RWP in a subgraph of C(G) gives a lower bound for the problem
independently of how this subgraph is defined. In general, solving RWP even
in such a delimited region (see definition 3) remains NP-hard.

Definition 3 (Localized RWP) Solving RWP in a bottleneck region means
to solve RWP for the graph G computing the rounds only to cover the flow
cutting across this given bottleneck region. Note that part of the flow may avoid
(if it is possible) this region using then zero rounds. For the unavoidable flow,
there are several ways of cutting across the given region. The objective is the
same: Finding the rounds and their activation times giving a minimum period
length Wmin. The rounds have to provide edge capacities c(u, v) only for the
bottleneck region admitting an unavoidable flow B′ 6 B crossing this region.

Figure 4.1(a) shows a first simple case, where we study the bottleneck region
considering the incoming edges of the gateway. In this case B′ will be the total
flow B. It is also true for the case considering multiple gateways in figure 4.1(b).
Figure 4.1(c) shows the bottleneck region of a relay node v, considering its
outgoing and incoming edges. Thus there is a flow of B′ crossing the region
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and, a flow of B′ plus the node demand b(v) leaving. The same thing happens
for the bottleneck region considering the outgoing and incoming edges of several
relay nodes together as illustrated in figure 4.1(d). It can represent a min-cut
in G or, any other cut that will be very charged due to the demand distribution
and routing conditions.

Figure 4.1(e) shows a special case considering a unique source (see example
in figure 4.6), when we study the bottleneck region considering the outgoing
edges of a node v. In this case B′ will be b(v). Similarly, we can also consider
several sources together. These cases are reserved for big demand concentrations
(close to B) in these nodes, and we do not need consider the other nodes of the
network.
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  g

(a) Bottleneck in the destination.

B
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 g2

 g3

(b) Bottleneck in the destinations.
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(c) Bottleneck located in the middle
of the network with one node.
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B’+b(v)+b(u)+b(x)
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(d) Bottleneck located in the middle
of the network with several nodes.
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(e) Bottleneck in the source.

Figure 4.1: Types of bottlenecks and positions.
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In the next section, we discuss a specific region defined by some cliques in
C(G).

4.1 Minimum maximal weighted clique

We saw that we can derive a lower bound by solving RWP in any bottleneck
region. In this section, we introduce definition 4 that describes how to find lower
bounds taking into account a region covered by a set of cliques. Let a clique
represent a set of nodes in C(G) representing edges in G pairwise interfering.

Definition 4 (Min-Max weighted clique) The weight of a clique is repre-
sented by the sum of the weight (or flow) of its edges. The min-max weighted
clique is obtained by computing the routing problem of RWP (without the rounds
computation) that minimizes the weight of the maximal weighted clique among
the given cliques into a bottleneck region.

The definition of clique is important because all flow (weight) on the edges
of a clique will be considered in the rounds. In fact, they are added together
as all edges in a clique interfere one with each other. That is why the objective
is to minimize the weight of the maximal weighted clique. We will see that in
our results and examples, some cliques are often enough to obtain a tight lower
bound. This bottleneck region is composed by the closest maximal cliques to
a probable bottleneck in G. We call LBc the lower bound obtained with the
maximal weighted clique given by definition 4.

Minimizing the maximal weighted clique means paralleling more activations,
thus it minimizes the total number of colors needed. So we deduce a lower bound
that is LBc 6 ω(C(G)′). Using the graph transformation of Mycielski [39], it
was already proved in [40] that the difference between the fractional chromatic
number χf and ω can be large. In our case, the weights given by a flow seem to
make χf (C(G)′) getting close to ω(C(G)′) hence to LBc (see next subsection).

Consider the example of a grid graph with the gateway (black node) in the
middle and d = 2. Figures 4.2(a), 4.2(b), 4.2(c) and 4.2(d) depict the selected
cliques around the gateway.

Figure 4.2(e) shows an example of a bad routing (the clique has not the
minimum weight) giving a worse result. Figure 4.2(f) gives the best routing.
The best configuration shows that the 4 gray nodes close to the gateway have to
go backwards and then use the central axes to reach the gateway. In fact, this
strange routing minimizes the maximal weighted clique of weight LBc = B 5

4 −1
instead of LBc = B 5

4 − 1
2 (with the non-MinMax weighted cliques). We improve

the time of 1
2 , and it corresponds to the optimal solution as proved by the

work in [5]. Figures 4.3(a) and 4.3(b) depict the selected cliques around the
gateway. Figure 4.3(c) shows a bad routing for a grid graph with the gateway
in the corner. Figure 4.3(d) shows a flow routing giving the minimum maximal
weighted clique of weight LBc = B 3

2 − 1
2 . This lower bound was also proved

optimal by the work in [5].
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(a) Clique 1. (b) Clique 2. (c) Clique 3. (d) Clique 4.
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Figure 4.2: Looking for the best routing in a grid graph with the gateway in the
middle with uniform demand (d=2).
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Figure 4.3: Looking for the best routing in a grid graph with the gateway in the
corner with uniform demand (d=2).
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fA = 2

fD = 2 fB = 1

fC = 0

fE = 1

dD = 1

dA = 1

dB = 0

dC = 0

dE = 0

(a) Weighted graph G′, Wmin =
min

P

R∈R
w(R) = 4 (with distance d = 1).
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fE = 1

fB = 1

dA = 1
2

dB = 1
2

dC = 1
2

dE = 1
2

dD = 1
2

(b) A weighted Graph without flow conservation,
Wmin = min

P

R∈R
w(R) = 5

2
(with distance d =

1).

Figure 4.4: LBc (cliques) formation from the dual weights.

The duality principle

In this subsection, we explain why the bottleneck regions are so important
for the quality of the lower bound. Indeed the non-zero variables of the dual
problem for RWP (defined in section 2.3) are concentrated in a delimited region,
the bottleneck region.

This is illustrated by the following example. G is a small graph with 5 nodes.
Figure 4.4.a depicts the case in which the weights on the edges are obtained by
a routing (i.e. with flow conservation), while the weights in figure 4.4.b are
uniform (no flow conservation). Recall that the graph G′ represents the graph
G with the flow φ(i, j) on its edges (i, j) given by an optimal routing.

Note that when the variables φ(i, j) represent real flows the dual weights di,j

concentrate in the bottleneck around the gateway as shown in figure 4.4.a. When
the variables φ(i, j) represent uniform weights, the dual weights di,j spread to
other areas of the network.

We now explain why the dual values are concentrated in the bottleneck
region. We notice that the closer the node is to the gateway, the bigger is the
load due to the relaying. The links outside this region have slacks of activation.
An edge has a slack when it has several possible options to get activated forming
a round with edges on the bottleneck region. It is easy to assign time slots
(colors) to the edges outside this region because once this critical region covered
they will have several possibilities to get activated without modifying the total
routing time Wmin.
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Suppose (i, j) is an edge in G′ with a weight φ(i, j). Consider M the sum
of the weights of the heaviest edges (u, v) 6= (i, j) from each round containing
(i, j). If φ(i, j) > M , then it is more interesting to assign d(i, j) = 1. We
can write M =

∑

(u,v)∈R|(i,j)∈R,(i,j) 6=(u,v) φ(u, v)hu,v,∀R ∈ R, where hu,v = 1 if

φ(u, v) = max(k,l)∈R\(i,j) φ(k, l), and hu,v = 0 otherwise. To be clearer, for the
cases where χf = ω, all these edges (i, j) compose the clique and no more than
the colors already used by them are needed. Moreover, each round contains at
least one edge of the clique.

In figure 4.4(a), there is a graph with a given routing. The edge A gets a
weight of 2 therefore max

∑

(i,j)∈V (G′) di,jφ(i, j) = 2dA + 1dB + 0dC + 2dD +
1dE = 4. It implies dA = 1 and dD = 1. It means that we only need to analyze
the min-max weighted clique formed by the edges A and D (in bold) to obtain
the optimum solution, as explained above. We observe that the bottleneck
makes χf get close to ω and consequently, to the LBc.

4.2 Experimental results

In this section, we confirm the validity of our bounds experimentally. We use
the model presented in section 2.51 that is implemented using the AMPL mod-
eling language. The instances are solved using the mathematical programming
engine CPLEX version 10, on a desktop PC with two gigabyte of RAM. We use
the public network graph representation from [38], so that our experiments can
be reproduced. We make also some experiments with grid graphs.

In our experiments, we consider many gateways randomly selected, a sym-
metric interference model with d = 2, and equal bandwidth requirements b(v) =
1,∀v ∈ Vr (uniform bandwidth).

Table 4.1 [38] gives the network topology characteristics. The solutions W i
min

represent Wmin with integer round weights, that is the optimal solution for the
IRWP. Table 4.1 also shows the solutions W f

min that are Wmin considering frac-
tional round weights, that is the optimal solution for the RWP. Both solutions
are computed using only the CG algorithm; for W i

min we set as integer the vari-
ables w(Ri). Our integer results are guaranteed to be optimal only because we

have a feasible solution that respects W i
min = ⌈W f

min⌉ as shown in Table 4.1.
Of course, to deal with general graphs we would need a Branch and Price al-
gorithm [41]. The computation time to solve any of these instances was low, of
the order of seconds.

If there are 2 or more gateways, Wmin is not exactly divided by the number
of gateways because they have different absorption rates or because they are
close and their critical regions interfere one with another, as seen in table 4.1.

Figure 4.5 shows the giul network with W f
min = 49 that is equal to ω(C(G)′)

and to LBc (the weight of a min-max clique around the gateway). It means that
the colors from this clique are enough to cover the paths from all 38 nodes to

1The source code can be found at http://www-sop.inria.fr/members/Cristiana.Gomes
/implementations.html
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Table 4.1: Networks topologies and results

Network Gateways Nodes Edges W f
min W i

min

pdh 1 11 34 16 16
pdh 2 11 34 9.5 10

polska 1 12 18 15 15
atlanta 1 15 22 17.67 18
atlanta 3 15 22 7.71 8
newyork 1 16 49 18.5 19
newyork 3 16 49 6.67 7
france 1 25 45 54 54
france 3 25 45 14.5 15
nobel 1 28 41 38 38
giul 1 39 172 49 49

Table 4.2: Results to Grids with gateway in a corner

Network Nodes Edges W f
min W i

min

Grid3x3 9 12 11.5 12
Grid4x4 16 24 22 22
Grid5x5 25 40 35.5 36
Grid7x7 49 84 71.5 72
Grid8x8 64 112 94 94

Grid10x10 100 180 148 148

the gateway. The cliques are composed by the edges containing the numerical
values representing the flow arriving in the gateway.

Usually the ω(C(G)′) is derived from the bottleneck in the gateway as in all
our tests. But sometimes it may exist a clique larger than the one at the gateway
that can not be avoided by the routing. When such clique exists, ω(C(G)′) can
be derived from bottlenecks in other parts of the network. Figure 4.6 shows a
unique source node at the corner that sends its traffic to the gateway node at
the center of the grid, then B = b(v). The ω(C(G)′) can be derived by the min-

max weighted clique at the corner, so LBc = 3b(v)
2 . Analyzing only the cliques

around the gateway node at the center, we get a lower value of LBc = 5b(v)
4 .

Table 4.2 (respectively 4.3) provides the results for grid graphs with the
gateway in a corner (respectively with the gateway in the middle). The same
phenomenon is observed: The lower bound given by the LBc around the gateway
is tight (see section 4.1). It is known that the coloring of perfect graphs2 present
the clique number ω tight, but our conflict graphs are not perfect.

2A perfect graph has the chromatic number of every induced subgraph equals the clique
number of that subgraph.

39



Figure 4.5: Giul network (B = 38), solution W f
min = 49 (d=2).
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Figure 4.6: Bottleneck at the source node W f
min = 3

2 (d=2).

40



Table 4.3: Results to Grids with gateway in the middle

Network Nodes Edges W f
min W i

min

Grid3x3 9 12 10 10
Grid4x4 16 24 20 20
Grid5x5 25 40 29 29
Grid7x7 49 84 59 59
Grid8x8 64 112 77.75 78

Grid10x10 100 180 122.75 123

Integer RWP

In this section we discuss the results for the Integer RWP. Table 4.1, 4.2
and 4.3 show that W i

min = ⌈W f
min⌉. It usually happens due to the fact that

there is a huge concentration of traffic in the critical region.
The traffic around the gateway is well distributed between the cliques (min-

imizing the maximum weighted clique) which results in cliques of the same size
(or almost the same size for the integer result when B is not exactly divisible by
the number of cliques). Figure 4.7 shows the cliques (represented by the bold
edges) for fractional and integer cases on the Newyork network. Their sizes are
respectively 18.5 and 19. The letters represent the rounds/colors.

Figure 4.7: Newyork network (B = 15) with solution W f
min = 18.5 and W i

min =
19 (d=2).

Figure 4.8(a) shows one of the min-max cliques with size of only 12 (the
other cliques are given by rotation of this one). Figure 4.8(b) shows a fractional

solution with W f
min = 12.5 and Figure 4.8(c) shows an integer solution with

W i
min = 13. This example shows that Wmin can be greater than the min-max

clique. This result is not surprising if we consider that the conflict graph has
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a C5 = {v1,9, v2,8, v3,7, v4,6, v5,10} (cycle of length 5). The C5 has the largest
clique of size 2, but needs 3 colors to be covered.
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Figure 4.8: Example of lower bound with Wmin 6= ω(C(G)′) (d = 2).

Although according to our tests W i
min = ⌈W f

min⌉ seems to be true for our
problem, a counter-example on Figure 4.9 shows that we can achieve W i

min >

⌈W f
min⌉ considering uniform demand. Notice that considering integer round

weights we obtain a clique of weigh 2. The W i
min = 3 because considering d = 2

we need 3 colors to cover a simple path. W f
min = 3b(v)

2 as shown in Figure 4.6,

thus we have W i
min > ⌈W f

min⌉.
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Figure 4.9: Example of W i
min 6= ⌈W f

min⌉ for RWP (d=2). W i
min = 3 and

⌈W f
min⌉ = 3

2 (see figure 4.6).

4.3 Conclusion

In this chapter, we presented a method to compute lower bounds derived
from a probable bottleneck region. We made experiments with networks with
different numbers of gateways. In our experimental results only some cliques in
the bottleneck region was enough to find the optimal solution for RWP.

Although experimentally W i
min = ⌈W f

min⌉ seems to be true for our problem,
we showed a counter-example.
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Chapter 5

General lower bound
methods and application to
grid graphs

This chapter presents formally methods to obtain lower (inspired by chap-
ter 4) for general graphs. We present lower bounds independent of the adopted
binary interference model. Then we give more precise lower bound (LB) for the
distance-d model (with any value of d). Our methods are applied to grid graphs.

5.1 Definitions

In this section we will present some definitions that will be useful in future
sections. We recall some definitions from Chapter 2 in a way to concentrate all
definitions in the same place.

Definitions related to the edges of G

• G(V,E): Transmission graph with V as set of nodes (vertices) E the set
of edges (calls).

• L(G): A graph whose vertices represent the edges of G and two vertices
are joined in L(G) if their corresponding edges intersect.

• d(u, v): distance between u and v, that is the length of the shortest path
between u and v (e.g. the neighbors of g are at distance 1 of g).

• d(e, e′): distance between edges e = (u, v) and e′ = (u′, v′) which corre-
sponds to minx∈{u,v},y∈{u′,v′} d(x, y).

• El: set of edges at level l, i.e. edges joining a node at distance l from the
gateway to a node l − 1. More precisely, El = {e = (u, v) ∈ E | d(g, u) =
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l and d(g, v) = l − 1}. Thus for example, E1 are all the edges which are
adjacent to the gateway g.

• K0: set of edges in G at level at most ⌈d
2⌉ of the gateway g, K0 =

⋃

16l6⌈ d
2 ⌉

El.

• VK0
: set of nodes in G at distance at most ⌈d

2⌉ of the gateway g.

Definitions related to the cliques

• C(G): conflict graph of G, that is the graph whose vertices represent
the edges of G, two vertices are joined if the corresponding edges (which
represent calls) interfere.

• Distance-d model. Two edges (calls) e and e′ interfere in the distance-d
model if d(e, e′) < d. (See definition in section 2.1). The conflict graph is
the d-th power of the line graph L(G).

• call-clique: set of pairwise interfering edges. The corresponding vertices
form a clique in C(G). For example in the distance-d model, K0 is a
call-clique.

Definitions related to the flow and admissible rounds

• b(v): demand due to node v.

• φ : In what follows, φ will always denote a feasible flow satisfying the
demand b(v) defined by

∑

i∈V|(v,i)∈E

φv(v, i) = b(v),∀v ∈ Vr

∑

j∈Vg

∑

i∈Vr|(i,j)∈E

φv(i, j) = b(v),∀v ∈ Vr

∑

i∈Vr|(i,j)∈E

φv(i, j) =
∑

k∈V |(j,k)∈E

φv(j, k),∀j, v ∈ Vr.

• φv(e): flow sourced at node v traversing the edge e.

• φ(e): flow traversing the edge e. φ(e) =
∑

v∈V φv(e).

• R (Round): set of non-interfering edges. It corresponds to an independent
set in C(G) (See definition in section 2.1).

• R: set of all rounds R.

• Re ⊂ R: set of all the rounds containing the edge e.

• w(R): weight of the round R.

46



• cw(e): the capacity of the edge e in function of the rounds weight in Re,
cw(e) =

∑

R∈Re
w(R) =

∑

R∈R w(R)|R ∩ {e}|.
We will say that the weights w(R) assigned to the rounds R ∈ Re are
admissible for the flow φ if

cw(e) > φ(e) ∀e (5.1)

A weight function w is admissible if there exists a flow for which it is
admissible.

• φ(E′):
∑

e∈E′ φ(e). Sum of the flow on a set of edges E′.

• cw(E′):
∑

e∈E′ cw(e) =
∑

e∈E′
∑

R∈Re
w(R) =

∑

R∈R w(R)|R ∩ E′|, the
capacity of the edges E′ ⊆ E is a measure derived of the rounds weight
covering these edges.

Our objective is to minimize W =
∑

R∈R w(R) on all the admissible weight
functions. The minimum will be denoted Wmin. Now, we will show how to use
call-cliques (in particular those centered at the gateway) to obtain lower bounds.

Definitions related to grids
We will study in more details the grid topology. We consider the rectangular

p × q grid with N = pq vertices. We will use a coordinate system (x, y) where
−p1 6 x 6 p2 with p1 + p2 + 1 = p and −q1 6 y 6 q2 with q1 + q2 + 1 = q
(p1, p2, q1, q2 being integers). The gateway will always have coordinate (0, 0).
The result will strongly depend of the position of the gateway in the grid. We
will mainly consider two extremal cases to illustrate the results:

• Gateway in the corner, that is p1 = 0, q1 = 0.

• Gateway in the middle, which means that the gateway is far enough of the
borders. In the distance-d model, we will express that by supposing that
min(p1, p2, q1, q2) > f(g) > d+1

2 , where f(g) is a function which associates
to g its minimum distance to the borders.

-Rotation: we define the function rotation ρ as the one to one map-
ping ρ((x, y)) = (−y, x) which corresponds to a rotation in the plane of
π
2 around the central node (0, 0). This definition works perfectly when
p1 = p2 = q1 = q2. We can extend it to any grid by doing the rotation in
a super grid with size (2p′ + 1, 2p′ + 1) with p′ = max(p1, p2, q1, q2) and
ignoring the vertices not in the original grid.

5.2 Lower bounds: general results

In this section, we present lower bounds for the problem of RWP considering
the distance-d model. We give more precise results for grid graphs.
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5.2.1 Lower bounds using one call-clique

Recall that a call-clique is a set of edges pairwise interfering. It means
that, if two transmissions occurs in a call-clique, then they cannot be performed
simultaneously. Thus, the sum of the capacities of the edges in a call-clique sets
up a lower bound for the RWP as we will see in the following lemma.

Lemma 1 Let K ⊆ E a call-clique. Then cw(K) 6 W .

Proof: We know that cw(K) =
∑

R∈R w(R)|R ∩K|. As each round R is a set
of independent edges, R contains at most one edge of K. Then |R∩K| 6 1 and
consequently cw(K) 6

∑

R∈R w(R) = W . �

For F a set of edges, and a path Pv,g between v and g, let LB(Pv,g, F ) denote
the number of edges that Pv,g and F have in common. Therefore, LB(Pv,g, F ) =
|Pv,g ∩ F |. We define LB(v, F ) as the minimum LB(Pv,g, F ) over all the paths
Pv,g between v and g.

Lemma 2 cw(F ) >
∑

v∈V b(v) LB(v, F ).

Proof: For any flow φ and any node v, φv(F ) > b(v) LB(v, F ). �

The first idea consists in choosing particular sets F . A natural candidate is
the set El (of edges at level l). The nodes outside El, i.e. the nodes at distance
to the gateway at least l, must cross the edges El to reach the gateway. So, if
d(v, g) > l, then LB(v,El) > 1 and we have the following corollary.

Corollary 2 cw(El) >
∑

v;d(v,g)>l b(v).

We will use corollary 2 to give a lower bound for cw(K0) where we recall
that K0 is the set of edges around the gateway at level at most ⌈d

2⌉.
First, we introduce the following definition that will be useful later.

Definition 5 S0 =
∑

v∈VK0
d(v, g)b(v) +

⌈

d
2

⌉
∑

v/∈VK0
b(v).

It enables us to get a lower bound on cw(K0) which will be useful in the
distance-d model.

Lemma 3 In the distance-d model cw(K0) > S0.

Proof: As K0 =
⋃

l6⌈ d
2 ⌉

El and the levels El for 1 6 l 6 ⌈d
2⌉ are pairwise

disjoints, then cw(K0) =
∑

l6⌈ d
2 ⌉

cw(El) >
∑

l6⌈ d
2 ⌉
∑

v;d(v,g)>l b(v) = S0. �

Note that the value S0 is independent of the function w. Therefore,

Proposition 1 In the distance-d model Wmin > S0.

In some cases, the lower bound S0 is attained. It happens for the grid with
the gateway in the middle and d odd (see theorem 8). The figure 5.1 shows an
example of a clique in this case.

In some other cases we use lemma 2 with a maximum call-clique K containing
K0. For example, for the grid with d odd and the gateway in the corner, the
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g

Figure 5.1: Clique for d odd with g in the middle. In this scheme, d = 3.

maximum call-clique is larger than K0 (see figure 5.7) and gives a better bound
than S0 (Theorem 2). We will show that the bound is attained for uniform
demand. However, using only one call-clique does not necessary give a tight
bound.

5.2.2 Lower bounds using many call-cliques

We present a result similar to lemma 2 but improved for multiple sets of
edges. We denote Pv,g the set of all the paths between v and g.

Lemma 4 Given F1, . . . , Fq sets of edges, then

q
∑

i=1

cw(Fi) >
∑

v

b(v) min
Pv,g∈Pv,g

(

q
∑

i=1

LB(Pv,g, Fi)

)

Proof: For any flow φ and any node v,
∑q

i=1 φv(Fi) > b(v)minPv,g

∑q
i=1 LB(Pv,g, Fi).

�

Consider the example of a grid with the gateway at the corner and the
distance-2 model (d = 2) depicted in figure 5.2. We have two maximum call-
cliques containing K0: K1 and K2 which also contain the four edges leaving
vertex (1, 1). Furthermore K1 contains the edge e1 = ((1, 0), (2, 0)) and K2

contains the edge e2 = ((0, 1), (0, 2)). For vertex v∗ = (1, 1) both LB(v∗,K1) =
LB(v∗,K2) = 2. For any vertex v different from (0, 1), (1, 0) and (1, 1) any path
Pv,g from v to g must use one edge at level 2 either e1 or e2, then LB(v,E2) > 1.
That implies that LB(Pv,g,K1)+LB(Pv,g,K2) > 2LB(Pv,g, E1)+LB(Pv,g, E2) >

3. In this way, one of the call-clique will carry at least 3/2 of the flow of the
vertices different from (0, 1), (1, 0) and (1, 1). Using lemma 4, we get that

cw(K1) + cw(K2) >
∑

v

b(v) min
Pv,g∈Pv,g

(LB(Pv,g,K1) + LB(Pv,g,K2))

> 2b((0, 1)) + 2b((1, 0)) + 4b((1, 1)) + 3
∑

v/∈{(0,1),(1,0),(1,1)}
b(v)

and so, one of this two call-cliques is greater than 1
2 of this value. Therefore,

we have the following bound and we will see after that this bound is attained.
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g = (0, 0)
e1

(a) Call-clique K1.

g = (0, 0)

e2

(b) Call-clique K2.

Figure 5.2: Two maximum call-cliques K1 and K2 for the case d = 2.

Proposition 2 For the grid with the gateway in the corner in the distance-2
model (d = 2)

Wmin > b(0, 1) + b(1, 0) + 2b(1, 1) +
3

2

∑

v/∈{(0,1),(1,0),(1,1)}
b(v)

In general we have the following lemma.

Lemma 5 Let K1, . . . ,Kq be a family of call-cliques. Then one of the call-
cliques K∗ satisfy cw(K∗) > 1

q

∑

v∈V b(v)minPv,g

∑q
i=1 LB(Pv,g,Ki)

Proof: By lemma 4,
∑

i cw(Ki) >
∑

v∈V b(v)minPv,g

∑q
i=1 LB(Pv,g,Ki) and

so one of the call-cliques, denoted K∗, has value cw(K∗) greater than or equal
to the mean. �

Corollary 3 Let K1, . . . ,Kq be a family of call-cliques such that each edge of El

appears at least λl times in the call-cliques, then Wmin >
∑

l

∑

v;d(v,g)>l
λl

q b(v).

Proposition 3 Let G be the grid with the gateway in the middle and d = 2k be
even. Then

Wmin > S0 +
1

4

∑

v;d(v,g)>k

b(v)

Proof: Consider the 4 following call-cliques (see figure 5.3 for d = 2): They all
contain the edges of K0. Furthermore, K1 contains the edge ((k + 1, 0), (k, 0))
and the edges at level k + 1 with positive coordinates: ((k + 1− i, i), (k − i, i))
and ((k + 1 − i, i), (k + 1 − i, i − 1)) for 1 6 i 6 k. The call-cliques K2, K3

and K4 are obtained by successive rotation of π
2 the previous call-clique. In this

way the edges in El, 1 6 l 6 k are covered 4 times and the edges in Ek+1 are
covered once. �

We will see after that this lower bound is attained.
In some cases, we have to use the lemma with call-cliques which are not

easy to find and do not necessary contain the gateway. An example of that is
the case of the grid for d = 4 with the gateway at the corner and the demand
concentrated only in one node: the node (3, 2). A lower bound consists in
considering two call-cliques containing Kmax.

A better lower bound for the same example consists in using call-cliques
which do not all cover the gateway. The new lower bound uses the call-cliques
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g

(a) call-clique K1.

g

(b) call-clique K2.

g

(c) call-clique K3.

g

(d) call-clique K4.

Figure 5.3: Case d even and g in the middle. The 4 call-cliques combined covers
Ei, 1 6 i 6 k + 1 for d = 2k. In this scheme, d = 4.

d = 4

g

(a) call-clique Ka

d = 4

g

(b) call-clique Kb

Figure 5.4: Example of a specific lower bound when the demand is concentrated
in one node. In this example, d = 4 and the demand is concentrated in node
(3, 2). A lower bound of 5

2b((3, 2)) is attained using the two call-cliques Ka and
Kb.
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d = 4

g

(a) call-clique K1

d = 4

g

(b) call-clique K2 (re-
peated 2x)

d = 4

g

(c) call-clique K3.
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(d) Dual Values for K1, 2xK2

and K3.

Figure 5.5: Example with d = 4 and the demand is concentrated in node (3, 2).
Four call-cliques are needed to obtain a tight lower bound of 11

4 b((3, 2)) which
is higher than 5

2b((3, 2)).
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Table 5.1: Possible Paths from (3, 2) to the gateway (0, 0) cost less than 11.
v5 v4 v3 v2 K1 K2(×2) K3 Total
- (4, 0) (3, 0) - 3 4 - 11
- (3, 1) (3, 0) - 5 3 - 11
- - (2, 1) - 5 3 - 11
- (2, 2) (1, 2) (1, 1) 5 3 - 11
- (2, 2) (1, 2) (0, 2) 5 2 2 11
- (1, 3) (1, 2) (1, 1) 4 3 2 12
- (1, 3) (1, 2) (0, 2) 4 2 4 12
- (0, 4) (0, 3) - 2 2 5 11

(1, 4) (1, 3) (0, 3) - 2 2 5 11
(2, 3) (1, 3) (0, 3) - 3 2 4 11

depicted in figure 5.5. The call-clique K2 (see figure 5.5(b)) is used twice and
K1 (see figure 5.5(a)) and K3 (see figure 5.5(c)) once. Consider a path from
(3, 2) to the gateway (0, 0).

We consider different cases according the way the path arrives in g. More
precisely, we consider the last vertex vi at distance i from g used by the path
with i ∈ {2 . . . 5}. We indicate in the following table the number of edges of K1,
K2 (repeated twice) and K3 the path uses.

It is simple to check in figure 5.5(d) that we do not have path from (3, 2) to
the gateway (0, 0) that costs less than 11 (see the table 5.1). Then minP∈P(3,2),g

(LB(P,K1)+
2LB(P,K2)+LB(P,K3)) > 11. Then, one of the call-clique K∗ satisfy cw(K∗) >
11
4 b((3, 2)).

5.2.3 Lower bounds using Critical Edges

Lemma 5 does not attain the best lower bounds in all cases. Consider the
example of figure 5.6 with d = 2. We have 5 maximal call-cliques all containing
the edges at level 1 plus two consecutive edges at level 2. Then, applying
corollary 3 and noting that each edge at level 2 appears exactly in two call-
cliques we get W >

∑

v;d(v,g)>1 b(v) + 2
5

∑

v;d(v,g)>2 b(v).

In the particular case where b(v) = 1 for the 10 vertices of the figure we get
a lower bound W > 10 + 2

5 · 5 = 12.
Figure 5.6(c) shows an integer solution for IRWP with W i

min = 13 and
figure 5.6(b) a fractional solution with Wmin = 12.5. In fact 12.5 is the exact
value. Indeed each round R can contain at most 2 edges at level 2 and so the best
we can do is to transmit at level 2 a flow of value 2w(R). The flow contribution
to W from vertices at level 2 is at least 5

2 and so W > 10 + 2.5 = 12.5.
This result is not surprising if we consider the conflict graph. Indeed the

subgraph of the conflict graph induced by the edges at level 2 form a cycle of
length 5 and a maximal independent set is of size 2. But, we need 3 labels
implying in the integer case a lower bound of 3 and so W i

min > 13. In the
fractional case, it is known that we can use a fractional coloring with 5

2 labels.
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Figure 5.6: Example of lower bound calculation. In this case d = 2.
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For a set of edges F , let us denote by α(F ) the maximum number of in-
dependent edges. It corresponds to the independent (stability) number of the
subgraphs of the conflict graph generated by F .

Definition 6 Let K be a call-clique. An edge e /∈ K is said to be critical for K
if K ∪ {e} is a call-clique.

Lemma 6 Let K be a call-clique and F a set of edges all critical for K, then

W > cw(K) + cw(F )
α(F ) .

Proof: As K ∪ {e} is a call-clique for any e in F a round can contain at
most one edge of K ∪ {e}. Then

W =
∑

R∈R
w(R) >

∑

R;R∩K 6=φ

w(R) +
∑

R;R∩F 6=φ

w(R) (5.2)

and
∑

R;R∩K 6=φ w(R) > cw(K). But, by definition R contains independent
edges, then |R∩F | 6 α(F ) and cw(F ) =

∑

R w(R)|R∩F | =∑R;|R∩F |6=φ w(R)|R∩
F | 6 α(F )

∑

R;|R∩F |6=φ w(R). Finally, by (5.2), we have that W > cw(K) +
cw(F )
α(F ) . �

By taking K = K0 and F the set of edges at level
⌈

d+1
2

⌉

and noting that

any path from a vertex at distance at least
⌈

d+1
2

⌉

should use an edge of E⌈ d+1
2 ⌉,

we get the following result.

Corollary 4 If all the edges of E⌈ d+1
2 ⌉ are critical for K0, then

W > S0 +
1

α
(

E⌈ d+1
2 ⌉

)

∑

v;d(v,g)>⌈ d+1
2 ⌉

b(v)

For example, if we apply corollary 4 for the grid with the gateway in the
middle and d = 2k, as all the edges of Ek+1 are critical for K0 and the 4 edges
((k + 1, 0), (k, 0)), ((0, k + 1), (0, k)), ((0,−k− 1), (0,−k)), ((−k− 1, 0), (−k, 0))
are independent, we have a new proof of Proposition 3.

5.2.4 Relationship with duality

In the following, we show that a set of call-cliques may be associated with a
dual solution.

The dual formulation of RWP has been studied in [2]. A dual solution for
the RWP for gathering instances can be described with the following property.

Property 1 ([2]) The dual problem of round weighting consists of finding a
metric m : E → R

+ onto the edge set maximizing the total distance that the
traffic needs to travel (W =

∑

v∈V dm(g, v)b(v)) and such that the maximum
length of a round is 1 ((∀R ∈ R) w(R) =

∑

e∈R dm(e) ≤ 1).
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Now, we will show that it is possible to construct a feasible dual solution for
RWP starting from the call-cliques.

Let K a set of call-cliques. First, for each edge e in a call-cliqueof K we
define Ke = {K ∈ K | e is an edge of K}. Let us define a metric m : E → R

+ is

such that m(e) = |Ke|
|K| . Let us now check that m is a feasible dual solution. To

check this, we need to know that for any non–interfering set of edges E′ ⊆ E,
the sum

∑

e∈E′ m(e) must be less than (or equal to) 1. In fact, as E′ is a
set of non-interfering edges, the sets {Ke}e∈E′ are pairwise disjoint. Thus,
∑

e∈E′ m(e) =
∑

e∈E′
|Ke|
|K| 6 1.

5.3 Lower bound for grids

5.3.1 Gateway in the middle: a lower bound

In the following, we consider the case of uniform demand (b(v) = b,∀v) in
a grid of size p × q and N vertices. In this case, the total demand is N − 1.
We derive formulas only in function of the d that compute a lower bound for
grid graphs. In subsection 6.2.2, we prove that these formulas give the optimal
solution.

Recall that by definition (see section 5.1) gateway in the “middle” means a
gateway far from the borders. In this section, we suppose min(p1, p2, q1, q2) >

⌈d+1
2 ⌉.
By proposition 1 a lower bound is S0 =

∑

v∈VK0
d(v, g)b(v)+

⌈

d
2

⌉
∑

v/∈VK0
b(v).

For d even, this lower bound can be improved to S0+ 1
4

∑

v;d(v,g)>k b(v) as shown
in proposition 3.

In the particular case of uniform demand we can obtain closed formula. In
the proofs we will denote by Ni the number of vertices at distance i to the
gateway. For i 6 min(p1, p2, q1, q2), in particular for i 6 k + 1 we have Ni = 4i.

Proposition 4 Given a grid p × q with min(p1, p2, q1, q2) > ⌈d+1
2 ⌉ and N

vertices with the gateway in the middle. Considering uniform demand and
d = 2k − 1 odd, then Wmin > (k(N − 1)− 4

6k(k + 1)(k − 1))b.

Proof: By proposition 1, Wmin > S0 =
∑

v∈VK0
d(v, g)b(v) +

⌈

d
2

⌉
∑

v/∈VK0
b(v).

Consider b(v) = 1 for all v, then
∑

v∈VK0
d(v, g)b(v) =

∑

v∈VK0
d(v, g) =

∑

i6k iNi and
⌈

d
2

⌉
∑

v/∈VK0
b(v) = k((N − 1)−∑i6k Ni). Then we have:

Wmin >
∑

i6k

iNi + k((N − 1)−
∑

i6k

Ni)

=
∑

i6k

4i2 + k(N − 1)− k
∑

i6k

4i

= k(N − 1)− 4[k
k(k + 1)

2
− k(k + 1)(2k + 1)

6
]
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= k(N − 1)− 4k(k + 1)(k − 1)

6
.

Making b(v) = b, then Wmin > (k(N − 1)− 4
6k(k + 1)(k − 1))b. �

Proposition 5 Given a grid p× q with min(p1, p2, q1, q2) > ⌈d+1
2 ⌉ and N ver-

tices with the gateway in the middle. Considering uniform demand and d = 2k

even, then Wmin > ((k + 1
4 )(N − 1)− k(k+1)(4k−1)

6 )b.

Proof: Consider b(v) = 1 for all v, by proposition 3, Wmin > S0+
1
4

∑

v;d(v,g)>k b(v) =

S0+ 1
4 ((N−1)−∑i6k Ni). From proposition 4, S0 = k(N−1)− 4

6k(k−1)(k+1)
and

Wmin > (k +
1

4
)(N − 1)− k(k + 1)(4k − 1)

6
.

Making b(v) = b, then Wmin > ((k + 1
4 )(N − 1)− k(k+1)(4k−1)

6 )b. �

In section 6.2.2, we will prove that these formulas give the optimal solution.

5.3.2 Gateway in the corner: a lower bound

Case d odd

In this section, we study the case when d = 2k−1 is odd. Notice that, when
the gateway is placed at the corner, we can construct call-cliques bigger than
K0. In fact, the maximum call-clique Kmax containing K0 is strictly bigger than
K0 for d > 3. In this way, we will use call-cliques bigger than K0 and we obtain
better lower bounds (which will be attained).

We define Kmax as the call-clique composed by the edges delimited by the
vertices VK0

∪ Sod where Sod = {v | d(v, g) 6 2k and d(v, v∗) 6 k} and v∗

denotes the node (k, k). An example of Kmax for d = 9 (k = 5) is depicted in
figure 5.7. Another example for d = 15 (k = 8) is depicted in Figure 5.8 where
the values of the lower bound, given in the next lemma, are also indicated.

Lemma 7 For the grid with the gateway at the corner and d = 2k − 1, then

LB(v,Kmax) >

{

d+1
2 if v /∈ K0 ∪ Sod

min{d(v, g); 3d+1
2 − d(v, g); 2d+1

2 − d(v, v∗)} if v ∈ K0 ∪ Sod

Proof: If v ∈ VK0
any path from v to g uses d(v, g) edges in K0 (and

so in Kmax). Note that, in that case, 2k − d(v, v∗) = d(v, g) as d(v∗, g) = 2k.
Otherwise, any path has to use k edges in K0 giving the lower bound for v /∈ Sod.
If v ∈ Sod any path from v to g will use k edges in K0 plus certain edges in
Sod. The number of edges used in Sod is either d(v, g) − k needed to attain a
vertex of K0; or 2k − d(v, g) to attain the diagonal bordering Sod composed by
the vertices at distance 2k from g (x + y = 2k) ; or k − d(v, v∗) to attain the
diagonals bordering Sod below (y = x + k) or above (x = y + k). �

Theorem 2 For the grid with the gateway at the corner and d = 2k − 1,

Wmin >
∑

v

b(v) LB(v,Kmax)
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g = (0, 0)

v∗

l

d
2

m

(0, k)

(k, 0)

Figure 5.7: Call-clique Kmax for d odd with g at the corner. In this scheme,
d = 9. The call-clique K0 consists in all the bold edges.
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Figure 5.8: Lower bound per node in uniform demand case. The black nodes in-
dicate the nodes whose lower bound correspond to their distance to the gateway.
In this scheme, d = 15.
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Proof: W > cw(Kmax) > φ(Kmax) >
∑

v φv(Kmax) >
∑

v b(v) LB(v,Kmax) �

Using Theorem 2 we can derive an explicit formula for the lower bound when
the demand is uniform and when the grid is far enough to contain the vertices
of Kmax. That is min(p, q) = 3k

2 .

Proposition 6 For the grid with N = pq nodes (min(p, q) > k +
⌈

k
2

⌉

) with the
gateway at the corner and d = 2k − 1, if b(v) = 1 for all v, then

W >
d

2
(N − 1) + f(d)

where f(d) = λ
12 (λ − 1)(λ − 5)) if d = 4λ − 1; and f(d) = λ−1

12 λ(λ − 5) if
d = 4λ + 1.

Proof:
We have to count

∑

v LB(v,Kmax). For all the vertices not in VK0
∪ Sod,

LB(v,Kmax) = k (Recall that Sod is defined as {v | d(v, g) 6 2k−1 and d(v, v∗) 6

k − 1}). For the vertices in VK0
, LB(v,Kmax) = d(v, g) 6 k and for v ∈

Int(Sod),LB(v,Kmax) > k. In K0 we have i + 1 vertices at distance i from g
giving a difference compared to k of k − i; so for the vertices of K0 we have a

total loss of Ak =
∑k−1

i=1 (i + 1)(k − i) = (k−1)k(k+4)
6 . The vertices (x, y) in Sod

give an excess for those at distance i > 0 from one of the 4 diagonals delimiting
Sod namely x+y = k; x+y = 2k; x = y+k; y = x+k. We distinguish two cases
depending on the parity of k. For the case even k = 2λ, the number of vertices
in Sod with an excess of i (that is a value k + i) is 3k − 4i for 1 6 i 6 λ − 1,
and λ + 1 for i = λ. For the case odd k = 2λ + 1, they are in number 3k − 4i
for 1 6 i 6 λ.

All together they give an excess Bk. For the case k = 2λ, Bk =
∑λ−1

i=1 i(3k−
4i) + λ(λ + 1) = k

6 (5λ2 + 1). For the case k = 2λ + 1, Bk =
∑λ

i=1 i(3k − 4i) =
k
6 (5λ(λ + 1)).

Finally, we get Bk − Ak in order to obtain the total excess. For the case
k = 2λ, Bk−Ak = k

6 (λ−1)(λ−5). For the case k = 2λ+1, Bk−Ak = k
6λ(λ−5).

�

Case d even.

As we have seen in the example of figure 5.2, we have to consider in that case
two cliques K1 and K2. These two cliques contain a clique Kmax consisting of
the vertices of VK0

∪Sev where Sev = {v ∈ V | d(v, g) 6 2k+1 and d(v, v∗) 6 k}
and v∗ = (k, k). Furthermore, K1 contains the ⌊k

2 ⌋+ 1 vertices v = (x, y) such

that x+y 6 2k +1 and x = y +k +1. In the same way, K2 contains the ⌊k
2 ⌋+1

vertices v such that x + y 6 2k + 1 and y = x + k + 1.

Theorem 3 For the grid with the gateway at the corner and d = 2k,

Wmin >
∑

v∈K0∪Sev

min[d(v,g),
3(d+1)

2 −d(v,g),d+1−d(v,v∗)]b(v) +
d + 1

2

∑

v/∈VK0
∪Sev

b(v)
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g = (0, 0)

v∗

l

d
2

m

(k, 0)

(0, k)

Figure 5.9: Two overlapped cliques for d even with g at the corner. In this
scheme, d = 8. Edges in dash belongs to K1 and in dots belongs to K2.

Proof: We use lemma 5 with the two cliques K1 and K2. If v ∈ VK0
any path

from v to g uses d(v, g) edges in Kmax. If v /∈ VK0
∪ Sev, any path from v to g

use k edges in Kmax and at least one in K1 or one in K2 giving the lower bound
k + 1/2 = d+1

2 .
If v ∈ Sev, we distinguish 3 cases depending on the number of edges needed

to attain the border of Sev:

• d(v, g)− k to attain a vertex x + y = k, and so d(v, g) edges in Kmax

• 2k+1−d(v, g) to attain the diagonal composed by the vertices at distance
2k +1 (i.e, x+ y = 2k +1) but then we need at least k edges in Kmax and
one in K1 or K2 so altogether 3k + 1 + 1/2− d(v, g) = 3(d+1

2 )− d(v, g).

• k−d(v, v∗) to attain the diagonal below (i.e, y = x+k) or above (x = y+k).
Then we use k edges in Kmax and either 2 in K1 (vertices above) or 2 in
K2 (vertices below) so altogether 2k− d(v, v∗) + 1/2 · 2 = d + 1− d(v, v∗).

�

Note that the formula is identical to that of the case d odd. When the
demand is uniform and the grid large enough to contain the vertices in K1 and
K2 that is min(p, q) > 3k

2 +1, computation analog to that of proposition 6 gives
the following result.

Proposition 7 For the grid with N = pq nodes (min(p, q) > k +
⌈

k
2

⌉

) with the
gateway at the corner and d = 2k, if b(v) = 1 for all v, then

W >
d + 1

2
(N − 1) + f(d),

where f(d) = λ
12 (4λ2− 2(λ− 1)) if d = 4λ; and f(d) = − 1

2 + λ
12 (λ + 1)(4λ− 19)

if d = 4λ + 2.
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5.4 Conclusion

In this chapter, we presented formally methods to obtain lower bounds for
general graphs. Our methods are applied to grid graphs (using distance-d model)
providing closed formulae (as proved in chapter 6) for the case considering uni-
form demand. It was considered the gateway placed either in the middle or in
the corner.
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Chapter 6

General upper bound
methods and application to
grid graphs

This chapter presents several routing methods for grids reaching optimal
solution equals to our lower bound. It was considered different cases (changing
gateway position and demand characteristics) considering fractional and integer
solutions.

6.1 Upper bounds: general results

To find upper bounds we will propose routing strategies giving a small total
weight W . For that, to each vertex v, we will associate π(v) paths from v to
g carrying the demand b(v). More precisely, each path Pi(v, g) will carry some
flow φi

v and
∑

i φi
v = b(v).

Furthermore, we will assign to the paths labels (or colors) cj . Each label cj

corresponds to a round Rj and so we have to insure that the edges with the
same label do not interfere. Therefore we introduce the notion of interference
free γ-labeled paths (cycles).

6.1.1 Interference free γ-labeled paths (cycles)

Definition 7 (Interference free γ-labeled paths) A set of paths (or cycles)
are said to be interference free γ-labeled if we can assign to the edges γ labels
such that two edges with the same label do not interfere.

In order to obey the inequalities in (5.1), cw(e) > φ(e), we will give to each
round Rj a weight w(Rj) equal to the maximum of the flow on each arc with
label cj . With this strategy we get the following proposition.
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(a) Routing one node
with 2 paths.

(b) Routing 2 nodes with
2 paths.

Figure 6.1: Main routing strategies.

Proposition 8 Let G = (V,E) and V ′ = {v1, ..., vπ} a family of nodes (not
necessarily distinct). If there exist π pairwise interference free γ-labeled paths
from V ′ to g, then we can satisfy a demand of π with a total weight γ.

Proof: We send a flow of 1 in each path. After that, each edge labeled with
one of the γ labels cj is associated with a round Rj with weight 1. The set of
edges used by Rj are non-interfering, as the paths are interference free γ-labeled.
Furthermore, the inequalities in (5.1) are respected. �

We will use Proposition 8 mainly in two cases: all vi distinct and all vi equal
to the same vertex v. In the latter case proposition 8 gives the following.

Corollary 5 If there exists π pairwise interference free γ-labeled paths from
v to g, then we can route the demand b(v) with rounds having a total weight
W = γ

π b(v).

Proof: By proposition 8, with all vi = v, we can route a flow of π in γ rounds

of weight 1 and so a flow of b(v) in γ rounds of weight b(v)
π each. �

We will use two main routing strategies. Either we route the total demand
b(v) of a vertex v by finding interference free paths from v to g and applying
corollary 5; or we combine paths issued from v with paths issued from other
nodes. We might have to do different combinations to be able to route all the
demands (see Figure 6.1).

6.1.2 Distance-d model of interference and the Width

We will present results concerning the distance-d model of interference. In
some applications, we need to route the demand from v via a single path. If we
use a shortest path and we give to each edge a different label, we obtain:

Proposition 9 We can route the demand b(v) of a node v using a single path
with a weight W 6 b(v)d(v, g).

The particular case of a node v ∈ K0 has W > b(v)d(v, g) by corollary 2,
then we obtain:

Corollary 6 In the distance-d model of interference, the demand b(v) of a node
v of K0 can be satisfied with Wmin = b(v)d(v, g) with a single shortest path.
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If v /∈ K0 the lower bound is Wmin >
⌈

d
2

⌉

b(v) and so cannot be attained
using a single path. In fact, in the case of a single path considering the distance-
d model, if the path is of length > d + 1, we need at least d + 1 labels as d + 1
consecutive edges always interfere. If we want to have an interference free path
with d+1 labels, the only way is to repeat a sequence of d+1 different labels in
order that d + 1 consecutive edges have different labels. This construction does
not always work (see later an example in figure 6.2 in which the path in a grid
turns back at distance shorter than d making a “short U”).

In that case, there are two edges far away (that are at distance > d on the
path), but at distance < d in the graph. Thus, the path can not be interference-
free d + 1-labeled if these two edges receive the same label. Therefore, we
introduce the following definition:

Definition 8 (Width d) A path (or a cycle) has width d, if two edges at dis-
tance > d in the path (or cycle) are also at distance > d in the graph.

Proposition 10 In the distance-d model of interference, a path of width d can
be interference free (d + 1)-labeled.

Proof: We can label the edges of the path by repeating a chain of d + 1 labels.
If two edges have the same label, then they are necessarily at distance > d in
the path and, by definition of the width, they are also at distance > d in the
graph and so do not interfere. �

Proposition 11 In the distance-d model of interference, a shortest path can be
interference free (d + 1)-labeled.

Proof: By proposition 10, it suffices to prove that a shortest path has width d.
But two edges at distance > d in the path are also at distance > d in G, otherwise
we will have a shortcut creating a shortest path, that is a contradiction. �

Corollary 7 Considering the distance-d model of interference and a general
graph, we can route the demand b(v) using a shortest path with weight W 6

(d + 1)b(v).

Consequently, if we route the demand of each node with a shortest path we
obtain the following approximation.

Theorem 4 In the distance-d model with d > 1, there exists a d+1
⌈ d+1

2 ⌉ -approximation

for the RWP problem.

Proof: We have, by proposition 1, a lower bound of d+1
⌈ d+1

2 ⌉b(v) and by corollary 7

an upper bound of d + 1. �

Note that, it gives for d odd a 2-approximation and for d even an α
d -

approximation with α
d = 2

d+2 and so is the worst case (d = 2) a 3-approximation.
We can also use proposition 11 to design 2 interference free d + 1-labeled

paths in the following case.
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Corollary 8 If d(v1, v2) = d(v1, g)+d(g, v2) then we can send a flow of 1 from
v1 and a flow of 1 from v2 with d + 1 rounds.

Proof: The path formed by the union of a shortest path from v1 to g and the
shortest path from v2 to g is a shortest path between v1 and v2, then it can be
d + 1-labeled by proposition 11. �

Cycles play an important rule and illustrate the routing strategies in fig-
ure 6.1. Indeed, a cycle containing g induces for any vertex v two paths from
v to g and, for any pair of vertices v1 and v2 two paths, one from v1 to g and
another from v2 to g.

Proposition 12 In the distance-d model of interference, a cycle of width d can
be interference free (d + 1)-labeled if and only if its length is a multiple of d + 1.

Proof: Let us start from some edge e1 of the cycle and label the path with
repetitions of the chain C = c1...cd+1 of labels. If the length is a multiple of
d + 1, then the edges labeled ci are at a distance multiple of d on the cycle, and
so by definition of the width at distance > d in the graph. If the length is not
a multiple of d + 1 then the last edge of the path labeled c1 is at distance < d
of the first edge e1 also labeled c1, therefore these edges interfere. �

From proposition 12, we obtain:

Corollary 9 In the distance-d model of interference, if there exists a cycle con-
taining v and g of width d and multiple of d+1 then the demand b(v) of a node
v can be satisfied with a weight W 6 d+1

2 b(v).

Proof: We have two interference free (d+1)-labeled paths from v to g. We can
route then half of the demand in each path obtaining, by corollary 5, Wmin 6
γ
π b(v) = d+1

2 b(v). �

Our objective is to find upper bounds that consists in interference free paths
with a number of labels corresponding to the lower bounds. If d is odd, we have
a lower bound equal to d+1

2 and so by corollary 9 we obtain:

Theorem 5 In the distance-d model of interference with d odd, if there exists
a cycle containing v and g (two paths from v to g) of width d and multiple of
d + 1 then the demand b(v) can be satisfied with a weight Wmin = d+1

2 b(v).

We can also use two paths interference free (d + 1)-labeled issued from two
different vertices, as shown in the next theorem.

Theorem 6 Let G be a 2-connected graph and let d = 1. If
∑

v/∈K0
b(v) is

even and, b(v) 6 1
2

∑

v/∈K0
b(v), ∀v /∈ K0, Wmin =

∑

v∈VK0
d(v, g)b(v) +

d+1
2

∑

v/∈VK0
b(v) is solution for IRWP.

Proof: For vertices in K0, we use corollary 6. For the other vertices, we can
always route together a remaining demand of two nodes as b(v) 6 1

2

∑

v/∈K0
b(v).

For that, we need a pair of disjoint paths (so interference free as d = 1) from u
to g and from v to g, that exist as G is 2-connected. �
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As we will see later, in some cases we will also need more complicated routing
(like 4 paths or 2 cycles). In the section 6.2 we give solutions for the case of
grids as example of application of the presented methodology. The following
definition will be usefull to find interference free paths.

Definition 9 (Path distance d(P,Q)) The distance d(P,Q) between two paths
P and Q is the minimum of the distance between any edge of P and any edge
of Q, d(P,Q) > mine1∈P,e2∈Q d(e1, e2).

Proposition 13 In the distance-d model of interference, two paths P and Q at
distance > d do not interfere.

6.2 Upper bounds for grids

In a grid the paths or cycles have a specific structure. Indeed they are formed
by a succession of horizontal and vertical subpaths. To describe such a path or
cycle, we will only give the vertices where there is a change of direction. So be-
tween two vertices (x, y0)−−(x′, y0), we have an horizontal path consisting of all
the vertices (u, y0) with x 6 u 6 x′ if x < x′, or x′ 6 u 6 x if x > x′. Similarly
between two vertices (x0, y)(x0, y

′) we have a vertical path (x0, y) −−(x0, y
′).

We introduce the following definitions that will be necessary to describe our
methods of routing in the next sections.

Definition 10 (Monotonic path) We will say that a path is monotonic (has
a “stair” shape), if the first and second coordinates of the vertices where there is
a change of direction are ordered in a monotonic way.

We have 2 types of monotonic paths according to xi and yi vary in the same
way or not. For example, a monotonic path P = (x0, y0)−−(x1, y0)−−(x1, y1)−
−(x1, y2) −−(x2, y2) −−(x2, y3)... −−(xm, yn) −−(xm, yn+1) is a monotonic of
negative type +- (or -+), if the xi are increasing x0 6 x1 < x2... < xm and the yi

are decreasing y1 > y2... > yn > yn+1 (as the path is undirected by considering
the vertices in the opposite order we have decreasing x and increasing y). See
figure 6.3(b) for an example of this case. When the vertices have both increasing
(resp. decreasing) x and y, the path is said to be monotonic of positive type ++
(resp. --).

Proposition 14 Let G be a monotonic path in a 2-dimensional grid. It can be
interference free (d + 1)-labeled.

Proof: The x and y in this path are monotonic, then it has width d as the
distance in the path is exactly that in the graph. Thus, proposition 10 says it
can be interference free (d + 1)-labeled. �

The figure 6.2 gives an example with a unique non monotonic path showing
that the path can make interference with itself (“short U”).
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Figure 6.2: To turn back, a path needs to maintain a width > d to be interference
free (d + 1)-labeled. In this example, d = 3.

Definition 11 (Diagonal of an edge) The positive (resp. negative) diago-
nal of an edge e, denoted S+

e (resp. S−
e ) consists of the edges of a monotonic

positive (resp. negative) path where all the subpaths are of length 1 (stairs of step
1). Figure 6.3(a) shows the negative diagonal associated with the edges labeled
2 and Figure 6.3(b), positive diagonal associated with the edges labeled 4.

Now we define relations between monotonic paths.

Definition 12 (d-Parallel paths) Two monotonic paths P and Q are said
d-parallel, if they are of the same type negative (respectively positive) and, if
e′ ∈ Q and e ∈ S+

e (respectively S−
e ) with e ∈ P , then d(e, e′) > d.

See figure 6.3(b) for an example with two parallel negative paths.

Property 1 Given two d-parallel paths P and Q in a 2-dimensional grid G,
they can be interference free (d + 1)-labeled.

Proof: We start labeling the path P with d + 1 labels. Each edge of Q, that is
in a diagonal set Se of an edge e in P , receives the same label of e. If there exist
edges in Q that are not in a diagonal set of P , they receive the continuation
of the sequence of labels derivated from the edges in diagonal sets of P . There
is no interference between the edges with the same label as, by definition of
d-parallel paths, two edges in the same diagonal are at distance > d. �

In figure 6.3, we illustrate the property 1 with two pair of parallel paths.
In particular two horizontal (or vertical) paths P and Q at distance d(P,Q) >

⌈d+1
2 ⌉ are d-parallel. Indeed in that case the distance between two edges of P

and Q in the same diagonal is 2d(P,Q) − 1 > d (see figure 6.3(a) for d = 3).
Similarly if two general monotonic paths have their horizontal and vertical sub-
paths at distance > ⌈d+1

2 ⌉ the distance between two edges at the same diagonal
is > d. It is the case when one path is obtained from the other by translation
of vector (⌈d+1

2 ⌉,⌈d+1
2 ⌉), see figure 6.3(b).

Paths uniquely horizontal or vertical can be considered of any type, either
++ or +- (see example in figure 6.3(a)).
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diagonals associated with the edges labeled
4. In this example, d = 4.

Figure 6.3: Interference free (d + 1)-labeled paths.

6.2.1 Gateway in the middle: routing the demand of a
single node

We consider here the first strategy where a demand of b(v) in a single node
v is routed, we call single routing.

Definition 13 (Regions of the grid) We split the grid in 4 regions: RA,RB,RC

and RD, as shown in Figure 6.2.1.

Note that we could chose different splittings. The results will be valid as soon
as the regions are obtained by rotation of π

2 of the first one. For the presentation
we choose as first region RA containing the vertices (x, y) with x > 0, y > 1
and x + y > ⌈d+1

2 ⌉ to exclude the vertices of K0. Indeed for the vertices of K0,
as we have seen in corollary 6, we can route their demand b(v) in b(v)d(v, g)
rounds by using the shortest path with d(v, g) different labels.

Case d odd

Theorem 7 Let G be a 2-dimensional grid with min(p1, p2, q1, q2) > d and
gateway g in the middle, and let d be odd (d = 2k−1). Considering the demand
b(v) of a single node v, we have Wmin = d(v, g)b(v) if v ∈ K0 using one shortest
path from v to g. If v /∈ K0, there exist 2 paths from v to g that can be (d + 1)-
labeled, therefore Wmin = kb(v) for the single routing of v.

Proof: If v ∈ K0, by corollary 6, Wmin = b(v)d(v, g). If v /∈ K0, the lower
bound is S0 = kb(v). To prove the theorem we will construct for any x a
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Figure 6.4: The grid regions and K0.

generic cycle containing all the vertices of the column x, y > 0 and satisfying
the hypothesis of the theorem 5 (length multiple of d + 1 and width > d). So
Wmin 6 kb(v) for all nodes (x, y). The cycle consists of the following subdipaths
(we indicate the vertices where there is a change of direction).

(0, 0)−−(x, 0)−−(x, q2)−−(−d, q2)−−(−d,−α)−−(0,−α)−−(0, 0).

See Figure 6.5 for an example with d = 3 (k = 2), x = 5 and q2 = 5. The
length of the cycle is 2(x + d) + 2(q2 + α). We chose α as the smallest possible
integer 0 6 α < k, such that 2(x + d) + 2(q2 + α) ≡ 0 (mod 2k). So the length
of the cycle is a multiple of d + 1. In the example in Figure 6.5, the length of
the cycle is 26 + 2α so we chose α = 1 (length 28 ≡ 0 (mod 4)). As q2 > d
the horizontal paths are at distance > d and as we chose the vertical line at −d
(choice possible, as we have p1 > d), the vertical paths are also at distance > d.
�

Using for each node v a routing as described above, we have by theorem 7
the following.

Theorem 8 Let G be a 2-dimensional grid with min(p1, p2, q1, q2) > d and
gateway in the middle, and let d be odd. We have Wmin = S0.

Case d even

When the distance d is even the situation is more complex if we want to route
the demand of a single node. For vertices in K0 we have a lower bound of d(v, g)
attained by using a shortest path. But for v /∈ K0 we have by proposition 3
a lower bound of k + 1

4 . Based on the proof of the proposition 3 and more
precisely on corollary 5, the only way to reach the bound is to find 4 paths from
v to g crossing Ek+1 using the 4 edges which do not interfere (0, k + 1)(0, k),
(k +1, 0)(k, 0), (0,−(k +1)(0,−k) and (−(k +1), 0)(−k, 0); then we need to use
the shortest path from (0, k) and its rotated (−k, 0), (0,−k), (k, 0) to g.
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g = (0, 0)

(−d, q2)

d + x0

(x0, q2)

α + q2

(x0, 0)

(0,−α)(−d,−α)

Figure 6.5: Routing method for a node v with a cycle and d odd (d=3).

Let us call a cross this set of 4 edges plus the shortest paths. More generally,
a cross centered in v = (x, y) will consist of the 4k+4 edges (x, y+i)(x, y+i+1),
(x− i, y)(x− i− 1, y), (x, y− i)(x, y− i− 1),(x + i, y)(x + i+ 1, y) for 0 6 i 6 k.

The situation is the same around v where the 4 paths leaving v should use
the edges of the cross centered in v, using 4k + 1 labels, with the same label
being given for the 4 edges (x + k, y)(x + (k + 1), y), (x− k, y)(x− (k + 1), y),
(x, y +k)(x, y +(k +1) and (x, y−k)(x, y− (k +1). If v is too close from g, it is
not possible to find two compatible labeling for the two crosses (see Figure 6.7).
That happens if d(v, g) 6 d + 1 and v = (x, y) with x 6= 0, y 6= 0. When x = 0
(or y = 0) the clique regions may overlap, but, as we will see later, we can reuse
the labels and all together use 4k+1 labels (see example of Figure 6.10). Figure
6.6 shows the zones considering an even d.

• ZB: Zone composed by all nodes at distance 6 d + 1 and > k + 1 (except
these in the axes).

• ZC : Zone composed by all nodes that are at distance at most k of the
vertical and horizontal borders.

• ZD: Zone composed by all nodes that are at distance at most k of the
border not including the nodes of ZC .

• ZA: All other positions that are not considered in ZB , ZC and ZD. These
nodes have Wmin > k + 1

4 . We will prove that the nodes in this region
can reach the gateway with four (4k + 1)-labeled paths with 1

4 of weight
each one. There exist special zones in ZA, they are Z ′

A (y > 2k and
1 6 x 6 k + 1 in ZA) and Z ′′

A (x > 2k and 1 6 y 6 k + 1 in ZA) that have
a more complicated routing.

For nodes in ZB , ZC , ZD the lower bound is > k + 1
4 (see Figure 6.7) but it

is not easy to be precise. The case of v in one corner can be done with a cycle
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Figure 6.6: Lower bound obtained for each single routing (b(v) = 1) from the
depicted grid parts, considering d even (k = d

2 ).

as shown in theorem 7 and has lower bound k + 1
2 . Note that, zone ZA covers

the majority of nodes for grids with large p1,p2,q1 and q2. For the single routing
of a node in ZA, theorem 9 shows that Wmin = k + 1

4 . By similar methods, we
can give an upper bound of k+ 1

3 for nodes in ZD and k+ 1
2 for the other nodes,

so obtaining a 1 + 1
4k+1 -approximation.

Theorem 9 Let G be a 2-dimensional grid with gateway g in the middle and
v ∈ ZA, and let d be even. There exist 4 paths from v to g that can be (4k + 1)-
labeled. Therefore, Wmin = 2d+1

4 b(v) for the single routing of v.

Proof: We distinguish three cases according to the node position:

• case 1: node v ∈ ZA \ {Z ′
A ∪ Z ′′

A}. We consider the following paths:

P1: (−k, 0)−−(0, 0)−−(0,−k);

P2: (0, y)−−(x, y)−−(x, 0);

P3: (−(k + 1), y + (k + 1)) −−(x + (k + 1), y + (k + 1)) −−(x + (k +
1),−(k + 1)).
To label these paths, we follow the steps below:

1. We first label P2 = (0, y)−−(x, y)−−(x, 0) with the sequence Ce′ (see
scheme in Figure 6.8 and example in Figure 6.9).

Furthermore (to respect the labeling of the cross in (x, y)), we
assign to the edges (x, y + k)(x, y + k +1) and (x+ k, y)(x+ k +1, y)
the same label as that of the edge (x − (k + 1), y)(x − k, y) (label
identical to that of (x, y + k)(x, y + k + 1)).
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Figure 6.7: Routing the demand of the node (1, 8) in ZB, it is impossible to
assign a label to the bold edge without use a new label. In this example, d = 8.

g = (0, 0)

(x, 0)
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(−(k + 1), y + (k + 1))
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−→
C

Figure 6.8: labeling paths for the nodes in ZA.
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Figure 6.9: Routing the demand of the node (10, 10) in ZA. In this example,
d = 8.
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g = (0, 0)
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Figure 6.11: labeling paths for the nodes in Z
′

A.
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We assign to the edge (1, 0) the same label e′ given to the edge
(x, y − 1)(x, y).

2. Now, we label the paths P1 = (−k, 0) −−(0, 0) −−(0,−k) with C by
giving to the first edge (−k, 0)(−k + 1, 0) the same label as the edge
of P2 on its positive diagonal. That is possible as we have d labels
and P1 is of length d.

3. Then we label the paths P3 = (−(k + 1), y + (k + 1)) −−(x + k +
1, y + k + 1) −−(x + k + 1,−(k + 1)) with Ce′. We do the labeling
in such a way the label given to (x − 1, y + k + 1)(x, y + k + 1) is
the one preceding the label given to (x, y + k + 1)(x, y + k) in step
1. There is no interference as the paths P1, P2 and P3 are d-parallel
and the labels are these given in the proof of property 1 (same being
translated by one).

4. We also label the reflected paths:

P ′
1 = (x, y + k)−−(x, y)−−(x + k, y);

P ′
2 = (0, y)−−(0, 0)−−(x, 0);

P ′
3 = (−(k + 1), y + k + 1) −−(−(k + 1),−(k + 1)) −−(x + k +

1,−(k + 1)).

We use the sequence C ′e′ that works perfectly except for the
edges of the P ′

j labeled e′ at distance < d from the path P1, P2 and
P3.

For these edges in P ′
j , we give as label the one just before or after

the label of the last edge of the path Pi. For example, if the edge
(x + k + 1,−k)(x + k + 1,−(k + 1)) has label β − 1 in the sequence
Ce′, the edge initially labeled e′ in P ′

3 near that one will get label β
(see example in Figure 6.9).

• case 2: node v = (0, y) on the axis. The proof is similar to the case 1, but
we consider the following paths (see example in Figure 6.8 for d = 8):

P1: (−(k + 1), y)−−(0, y)−−(0, 0)−−(k + 1, 0);

P2: (0, y + (k + 1))−−(2(k + 1), y + (k + 1))−−(2k + 1,−(k + 1)).

To label these paths, we use the sequence Ce′. We also label the
reflected paths:

P ′
1: (0, y)−−(k + 1, y)−−(k + 1, 0);

P ′
2: (−(k + 1), y)−−(−(k + 1), 0)−−(0, 0)−−(0,−(k + 1))−−(−2(k +

1),−(k + 1)).

To label these paths, we use C ′e′ (with the edges e′ labeled with labels
in C as a continuation from P1 or P2).

• case 3: node v in Z ′
A. The proof is similar to the case 1, but we consider

the following paths and reflected paths (see example in Figure 6.12 for
d = 8):

P1: (−k, 0)−−(0, 0)−−(0,−k);
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P2: (−(k+1), y)−−(x, y)−−(x, y− (k+1))−−(x+(k+1), y− (k+1));

P3: (−2(k + 1), y + (k + 1))−−(x + (k + 1), y + (k + 1))−−(x + (k +
1), y)−−(x + 2(k + 1), y).

�

6.2.2 Gateway in the middle: routing the demand of a
combination of nodes

In this section, we present the second routing strategy, which enables to
route simultaneously the same flow (less than or equal to the smallest demand)
from 2 (for d odd) or 4 vertices (for d even).

Case d odd

As we saw, this case is solved for the demand of a single node with a cycle.
That is, we can attain the lower bound for the problem, but not necessarily with
integer round weights. Here, we present solutions that deal with this require-
ments. In our method, it suffices to find one path for each of the two selected
vertices. They can be in the same region, in two adjacent regions, or in two
opposite regions.

Theorem 10 Let G be a 2-dimensional grid with min(p1, p2, q1, q2) > 3d
2 , gate-

way g in the middle and a pair of vertices v1 and v2 not in K0, and let d be
odd (d = 2k− 1). There exist 2 paths that can be (d + 1)-labeled, one from each
node vi to the gateway.

Proof: To prove that, we use the splitting in 4 regions introduced in Defi-
nition 13 and distinguish 3 cases:

• case 1: the two nodes are in opposite regions RA and RC (or RB and
RD). Let v1 = (x1, y1) with x1 > 0, y1 > 0; and v2 = (x2, y2) with x2 6 0,
y2 > 0. In that, we use corollary 8 with the shortest path (x1, y1) −
−(0, y1)−−(0, 0)−−(0, y2)−−(x2, y2).

• case 2: the two nodes are in adjacent regions RA and RB (or RB and
RB,or RC and RD,or RD and RA). Let v1 = (x1, y1) with x1 > 0, y1 > 0;
and v2 = (x2, y2) with x2 < 0, y2 > 0.

In that case, the node with the smallest distance to the gateway uses the
shortest path and the other node makes a detour guaranteeing a d + 1-
labeling of the two paths (see Figure 6.13 and 6.14). We suppose that
d(v2, g) 6 d(v1, g) as in Figure 6.13. Let P2 = (x2, y2) −−(x2, 0) −−(0, 0)
and label it with a chain c = {1, 2, ...2k} (so |c| = d+1) starting at (x2, y2).

For v1, we use the path P1 from g to v1:

P1 = (0, 0)−−(0,−α)−−(p2,−α)−−(p2, y1)−−(x1, y1)
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We label P1 with the colors C starting at the edge (0, 0)(0,−1) with the
label following that of the edge (−1, 0)(0, 0). We chose α in such way the
last edge of P1 receives the label 2k or 2k− 1 according to the parity. α is
chosen as the smallest possible integer such that 2α+2p2−x1 + y1−x2 +
y2 ≡ β (mod 2k) where β = 0 if −x1 + y1 − x2 + y2 ≡ 0 (mod 2) or β = 1
otherwise. In the example x1 = 0, y1 = 6 − x2 = −1, y2 = 5, p2 = 7, so
2α + 26 ≡ 0 (mod 8) gives α = 3.
There exist such an α, as an increase of α by 1 increases the length of P1

by 2. The two paths are interference free.

• case 3: two nodes in the same region. We suppose the region is RA and let
v1 = (x1, y1) with x1 > 0, y1 > 0; and v2 = (x2, y2) with x2 > 0, y2 > 0.
This case is not complicated and we subdivide it into 3 subcases, but give
the formal proof only for the first subcase.

– subcase 1:
Consider P1 = (0, 0)−−(0,−α)−−(p2,−α)−−(p2, y1)−−(x1, y1) and
P2 = (0, 0) −−(x2, 0) −−(x2, y2) (see Figure 6.13). We start labeling
the inverse of P2 that is (x2, y2) −−(x2, 0) −−(0, 0) with the chain
C+ = 1, 2...2k. Note that the size of |P2| = x2 + y2 is fixed, so we
label the path P1 with the same chain C+ = 1, 2...2k but starting
with the label used in the edge (−1, 0) of P2 plus one. We choose
the value of α in order to obtain the last edge of P1 receiving the
label 2k or 2k − 1. This configuration is possible as |P1| + |P2| =
2α + 2p2 − x1 + y1 + x2 + y2. The α is chosed the smallest possible
such that 2α+2p2−x1 + y1 +x2 + y2 ≡ k−β (mod 2k) where β = 0
if −x1 + y1 + x2 + y2 ≡ k (mod 2) and β = 1 otherwise. That is
possible as an increase of α of 1 increases the length of the path P1

by 2. The paths are then interference free.

– subcase 2 (x1 < x2 and y1 < y2): with y2−x2 > y1−x1 or y2−x1 <
y1 − x1.

�

Note that when y1 = y2 (similarly x1 = x2) we can apply the method
presented in the subsection 6.2.1 (case d odd) that is able to route a complete
column (or a complete line) of a region. Applying theorem 10 we obtain:

Theorem 11 Let G be a 2-dimensional grid with gateway g in the middle, and
let d be odd (d = 2k− 1). If

∑

v/∈K0
b(v) is even then Wmin = S0 is solution for

IRWP.

Proof: For vertices in K0, we use corollary 6. For v /∈ K0, if b(v) is an even
integer, we send the demand in d+1

2 b(v) rounds by theorem 7. If b(v) is an odd

integer, we send a flow of b(v) − 1 using d+1
2 (b(v) − 1) rounds by theorem 7.

An even number of vertices remains with a demand of 1, as the total demand
∑

v/∈K0
b(v) is even. Then, we use theorem 10 to send the demand of each two

nodes in d + 1 rounds. �
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Figure 6.15: Case 3 (x1 < x2 and y1 > y2). In this example, d = 7.

Case d even

In what follows, we consider only nodes in the region RA (see Definition 13).
Without loss of generality, we give the labels only for the path that is com-
pletely contained in RA, connecting a node in this region to the gateway. The
constructions can be done for the 3 other regions by rotating the paths of π

2 for
RB, π for RC and 3π

2 for RD (see figures 6.16(a) and 6.16(b)).
We will use 4k + 1 labels a1...ak, b1...bk, c1...ck, d1...dk and e to label

the paths. In fact, we use chains of labels, for example the chain A+ repre-
sents the sequence of labels a1, a2...ak and A− represents the inverted chain
(ak, ak−1...a1), similarly for B−, B+, C−, C+, D− and D+. We use also con-
catenation of these chains, for example A+eC− means a1, a2...ak, e, ck, ck−1...c1.

Let m(l1) = l2 denotes the mapping of a given label l1 into another label l2.
We define m(ai) = bi, m(bi) = ci, m(ci) = di and m(di) = ai. So m2(ai) = ci,
m3(ai) = di and m4(ai) = ai. If an edge e in a path P is labeled l, the edge ρ(e)
of ρ(P ) is labeled m(l). For example, if we use an horizontal path (0, a)−−(p2, a)
in RA, the rotated path in RB will be a vertical path (−a, 0) −−(−a, q2), it is
the path (0,−a)−−(−p1,−a) in RC and (a, 0)−−(a,−q1) in RD.

Theorem 12 Let G be a 2-dimensional grid with min(p1, p2, q1, q2) > k + 1,
gateway g in the middle and vA ∈ RA, vB ∈ RB, vC ∈ RC and vD ∈ RD, and
let d be even (d = 2k). There exist 4 paths that can be (4k+1)-labeled, one from
each node vi to the gateway.

Proof: We start showing that two edges on a path in RA with the same label
do not interfere (as their distance is > d). We distinguish three cases according
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to the vertex (x, y) ∈ RA position:

• Case 1: For a vertex (0, y) (in the axis), we use the vertical path (0, y)−
−(0, 0);
We start from (0, 0) using the repetition of chain A+eC−A+eC−.... Doing
so, edges (0, i − 1 + λ(d + 1))(0, i + λ(d + 1)) are labeled ai and edges
(0,−i + (λ + 1)(d + 1))(0,−(i− 1) + (λ + 1)(d + 1)) are labeled ci. Edges
(0, k +λ(d+1))(0, k +1+λ(d+1)) are labeled e, for 1 6 i 6 k and λ > 0.

• Case 2: For a vertex (x, y) with x > 0,y > k + 1, we use a shortest path
that goes first horizontally and then vertically: (x, y)−−(0, y)−−(0, 0).
We start from (0, y) labeling the part (0, y)−−(x, y) of the path by repeating
the chain B−D+e. So edges (i−1+λ(d+1), y)(i+λ(d+1), y) are labeled
bi, edges (−i + (λ + 1)(d + 1), y)(−(i− 1) + (λ + 1)(d + 1), y) are labeled
di, and edges (2k + λ(d + 1), y0)(2k + 1 + λ(d + 1), y0) are labeled e. The
rest of the path, that is (0, y)−−(0, 0), is labeled as explained in the case
1 (i.e. for the vertex (0, y)).

• Case 3: For a vertex (x, y) with x > 0,0 < y < k + 1, we do not use a
shortest path. It goes first vertically to (x, k + 1) then goes horizontally
and vertically: (x, y)−−(x, k + 1)−−(0, k + 1)−−(0, 0).
We use the chain C− to label the part (x, y) −−(x, k + 1) of the path. If
x > k the chain starts from y = 1 till y = k+1 so edge (x, k−i)(x, k−i+1)
is labeled ci; If 0 6 x < k, edge (x, i)(x, i+1) is labeled ci, for k +1−x 6

i 6 k. The rest of the path, that is (x, k + 1) −−(0, k + 1) −−(0, 0), is
labeled as explained in the case 2 (i.e. for the vertex (x, k + 1)).

It remains to show that, two edges with the same label in different paths (in
RA, RB, RC and RD) are also at distance > d. As the labels are obtained by
rotation, it suffices to verify the property for the edges labeled, for example, ai.
They are of four types of edges labeled ai:

• Type 1 (in region RA): (0, i− 1 + λ1(d + 1))(0, i + λ1(d + 1));

• Type 2 (in region RB, that is m(di)): (−y,−i + (λ + 1)(d + 1))(−y,−(i−
1) + (λ + 1)(d + 1)) with y > 0, x 6 −(k + 1);

• Type 3 (in region RC , that is m2(ci)):

-With x 6 0, −(k + 1) < y < 0,
If x 6 −k, the edges are (−x, i − k)(−x, i − k − 1) . If −k < x 6 0, the
edges are (−x,−i)(−x,−i− 1) that we call type 3’.

-With x = 0, the edges are in the axis. They are (0, i − (λ + 1)(d +
1))(0, i− 1− (λ + 1)(d + 1)).

• Type 4 (in region RD, that is m3(bi)): (y, 1− i−λ(d+1))(y,−i−λ(d+1))
with y 6 0,x > k + 1.

81



In all the cases the distance between two edges of different type is > d. The
distance between an edge type 1 and 2 is > x + k − 1 > d as x > k + 1 (in
the case x = k + 1 it corresponds to the proposition 1). For type 1 and 3 the
distance is > 2d with λ1 = 1, the distance is clearly > d for an edge of type 3.
For the type 3′ the distance is > x+k, if x1 > k and x > 2d or exactly 2d when
x1 < k. For type 4 it is > x2 + k − 1 > d as x2 > k + 1.

Edges of type 2, 3 or 4 are far apart (at least 2d). For the type 2 and 3
the distance is > |x − xr| + 2d. For the type 3 and 4 the distance is more
than x2 + d − 1 > d as x2 > k + 1 (the case x2 = k + 1 corresponds to the
proposition 1). Finally the distance between an edge of type 3′ and 4 is > 2d
(2d when x1 6 k).

In summary, if we take 4 vertices one in each region and use the described
paths and labeling, these 4 paths are (4k + 1)-labeled and, we can satisfy a
demand of 1 in each vertex with 4k + 1 rounds. �

If
∑

v∈R1
b(v) =

∑

v∈R2
b(v), ∀R1, R2 ∈ {RA, RB , RC , RD}, we say the re-

gions are balanced.

Corollary 10 Let G be a 2-dimensional grid with gateway g in the middle, and
let d be even. If the regions are balanced, Wmin = 2d+1

4

∑

v/∈K0
b(v).

Let Z ′
R be the union of the nodes in ZB, ZC and ZD of the region R.

Theorem 13 Let G be a 2-dimensional grid with gateway g in the middle, and
let d be even. If

∑

v/∈K0
b(v) is multiple of 4 and

∑

v∈Z′
R

b(v) 6 1
4

∑

v∈R b(v),

∀R ∈ {RA, RB , RC , RD}, there exist 4 paths from 4 nodes to g that can be
(2d + 1)-labeled. Therefore, Wmin = 2d+1

4

∑

v/∈K0
b(v) is solution for IRWP.

Proof: We can always route together a remaining demand of four nodes as
∑

v∈Z′
R

b(v) 6 1
4

∑

v∈R b(v). For that, we need four interference free paths, that

exist as proved in theorem 12. �

6.2.3 Gateway in the corner: routing the demand of a
single node

Now we consider the case where the sink is in the corner. Recall that we
suppose that the gateway g is placed at vertex (0, 0) and we consider a p × q
grid with vertices (x, y) where 0 6 x 6 p and 0 6 y 6 q. In view of the example
in Figure 5.4 and 5.5 (vertex (3, 2) for d = 4), determining Wmin when the
demand is concentrated in a node can be very difficult for specific vertices.

In the next proposition, we show that for the vertices of the axis plus those
vertices of the square {0, d− 1} × {0, d− 1} the lower bound d+1

2 is attained.

Theorem 14 Let G be a 2-dimensional grid p×q with p > 3(d+1), q > 2(d+1)
and gateway g in the corner. Considering the demand b(v) of a single node
v = (x, y) with x = 0, y = 0, or {x > d and y > d}, we have Wmin = d(v, g)b(v)
if v ∈ K0 using one shortest path from v to g. If v /∈ K0, there exist 2 paths
from v to g that can be (d + 1)-labeled, therefore Wmin = kb(v) for the single
routing of v.
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Figure 6.16: Routing 4 nodes (one in each region) with 4 paths.
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Proof: If v ∈ K0, by corollary 6, Wmin = b(v)d(v, g). If v /∈ K0, the lower
bound is S0 = kb(v). To prove the theorem we will construct for any x a
generic cycle containing all the vertices of the column x, y > 0 and satisfying
the hypothesis of the theorem 5 (length multiple of d + 1 and width > d). So
Wmin 6 kb(v) for all nodes (x, y). The cycle consists of the following subdipaths
(we indicate the vertices where there is a change of direction).

(0, 0)−−(x, 0)−−(x, q2)−−(−d, q2)−−(−d,−α)−−(0,−α)−−(0, 0).

Let p′ be the largest integer p′ 6 p such that p′ + q is a multiple of d + 1.
Let C be the following cycle of width d and length 2(p′ + q) (multiple of d + 1):

(0, 0)−−(p′, 0)−−(p′, q)−−(0, q)−−(0, 0).

Note that C already contains all the vertices of the vertical lines x = 0 and
x = p′. We will use variant of this cycle, all of length multiple of d+1 and with
width d, to deal with all vertices (x, y). We distinguish five cases according to
the node position:

• case 1: d > x > p′ and y > d. We use the cycle:

(0, 0)−−(p′, 0)−−(p′, y)−−(x, y)−−(x, q)−−(0, q)−−(0, 0).

• case 2: x < d and y > d. We use the cycle:

(0, 0)−−(p′, 0)−−(p′, q)−−(x, q)−−(x, y)−−(0, y)−−(0, 0).

• case 3: x > d and y < d. We use the cycle:

(0, 0)−−(x, 0)−−(x, y)−−(p′, y)−−(p′, q)−−(0, q)−−(0, 0).

• case 4: p′ < x 6 p and p > y > q − (x− p′). We use the cycle:

(0, 0)−−(x, 0)−−(x, q − (x− p′))−−(0, q − (x− p′))−−(0, 0).

• case 5: p′ < x 6 p and y > q − (x− p′). this is the most difficult case as
we have to add a detour. We use the cycle:

(0, 0)−−(x, 0)−−(x, q)−−(2d, q)−−(2d, q−β)−−(d, q−β)−−(d, q)−−(0, q)−−(0, 0).

See Figure 6.17 for an example with d = 3 (k = 2), x = 14 and q = 8.
The length of the cycle is 2(x + q + β). We chose β such that 2(x + q +
β) ≡ 0 (mod (d + 1)). As p′ + q ≡ 0 (mod (d + 1)) it suffices to chose
β = d + 1 − (x − p′). In the example in Figure 6.17, the length of the
cycle is 40 + 2(d + 1 − α) + 2α so length 40 + 2(d + 1) ≡ 0 (mod 4). As
d+1−α 6 d+1 and q > 2(d+1) the horizontal paths are at distance > d
and, as we chose the vertical line at d+1 and 2(d+1) (choice possible, as
we have p > 3(d + 1)), the vertical paths are also at distance > d.

�
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Figure 6.17: Routing method for a node v with a cycle and d odd (d=3).

6.2.4 Gateway in the corner: routing the demand of a
combination of nodes

We start with the following remark.

Remark 1 In order to attain the lower bound given in 5.3.2, there are some
nodes of which demand cannot be routed independently. Then, its demand must
be routed together (sharing rounds) with the demand of some other nodes.

An example of one of these nodes is shown in figure 5.5 for the case of the
gateway in the corner.

We present a solution with takes into account these nodes in order to attain
the lower bound in 5.3.2.

In the following, we will suppose that the demand is uniform, it means that
b(v) = c > 0 for all v 6= g. We will consider c = 1, however the following routing
can be directly applied for any c > 0.

We define the individual lower bound of a node v, denoted by lb(v), as the
lower bound given in 5.3.2 considering the demand as b(v) = 1 and b(u) = 0
for all u 6= v. In other words, lb(v) is the contribution of v to the lower bound
given in 5.3.2.

We will suppose that the grid is large enough to construct the routings
presented below.

We will show a way of routing the demand which attains the lower bound
given in 5.3.2. We will route the demand by different methods depending on
the position in the grid. In figure 6.18, we can see a scheme of how the nodes
are grouped according to the method of routing proposed.

For the case where a node is routed independently, the idea is to obtain a
routing such that the total weight of the rounds would be equal to the individual
lower bound of this node. But, as seen in remark 1, there are zones of the grid
whose demand cannot be routed independently. In this case, the idea is to route
a group of nodes in such a way that the sum of their individual lower bounds
would be equal to the total weight of the rounds involved.
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We will define 1odd(d) or simply 1odd as the function with value 1 when d is
odd and 0 when d is even. In the same way, we define 1even the function which
is 1 when d is even and 0 if d is odd.

Let us define the set of nodes ZSP as the nodes v such that d(v, g) = lb(v).
Note that ZSP corresponds to {v = (x, y) ∈ V | x, y 6

⌈

d
2

⌉

and d(v, g) 6

⌊ 3(d+1odd)
4 ⌋}. For a node v in ZSP such that x 6 y we will route its demand by

the path v−−(0, y)−−g. Inversely, if y < x we will use the path v−−(x, 0)−−g.
In both cases, each path have d(v, g) edges, with d(v, g) 6 d. Then, for any
node v in ZSP we use a path covered with d(v, g) rounds with weight b(v) = 1
each. Then, the total weight for routing each node v in ZSP is d(v, g) = lb(v).

Moreover, it is possible to move the demand due to the nodes in ZD shar-
ing the same rounds used to route the demand of ZSP. An scheme of that is
presented in figure 6.19. We can see that the rounds needed to route the nodes
(0, i),(i, 0) and (⌈d

2⌉, j), (j, ⌈d
2⌉) with i 6 ⌈d

2⌉ and j 6 ⌊d
4⌋ are enough to move

the all demand due to the zone ZD. In this way, the displaced demand is moved
to nodes located out of the zone {1, d − 1} × {1, d − 1}. We will see after that
each unit of relocated demand can be routed with cost d+1

2 . Thus, each node v
of ZD is routed using a weight of lb(v).

The nodes in ZC are the nodes v in {0, v∗(d)}×{0, v∗(d)} such that lb(v) >
d(v, g). Then, ZC corresponds to {v = (x, y) ∈ V | x, y 6 ⌈d

2⌉ and d(v, g) >

⌊ 3(d+1odd)
4 ⌋}. In this zone, nodes satisfy that lb(v) = d(v, v∗(d)) + d+1

2 . The
routing will be done in two parts. The first part is to move the demand from the
node v to the v∗(d) with cost d(v, v∗(d)). The second part is to move the demand
from v∗(d) to the gateway with cost d+1

2 . For the first part, we will route the
demand via a shortest path between v and v∗(d). We will use d(v, v∗(d)) rounds,
therefore it costs d(v, v∗(d)). For the second part, as the demand is already in
ZE , we will route the normal routing of ZE which attains a cost of d+1

2 as we
will see later.

The nodes in ZB correspond to the nodes in {v = (x, y) | d(v, g) 6 d with x >
⌈d

2⌉ and y > ⌊d+2
4 ⌋} ∪ {v = (x, y) | d(v, g) 6 d with y > ⌈d

2⌉ and x > ⌊d+2
4 ⌋}.

Note that, for any node v in ZB , the lb(v) is determined by d+1
2 + l + 1even =

⌊d+2
2 ⌋ + l, with l the distance between v and the zone ZD. We will route the

nodes by pairs: each node of ZB will be routed together with one node of ZExt.
Let us suppose that v = (x, y) is such that x > y. The path to do that is shown
in figure 6.23(a). Note that the node chosen in ZExt must be a node that does
not interfere with the current path (For example, any node in ZExt placed in the
upper border of the grid). Now, we will route the node obtained by swapping
the coordinates of v, i.e, the node (y, x). This node will be also routed together
with a node in ZExt. We will use a path as shown in figure 6.23(b). Now, we can
see that it is possible to reuse some rounds of the path that routes v = (x, y).
In fact, the reused rounds are the l + 1even rounds needed to move the demand
out of the zone ZB . Now, in total, 2(d + 1 + l + 1even) rounds have been used in
these two paths there is been routed the demand due to 4 nodes. Two of these
nodes, the nodes in ZExt, have a lb of d+1

2 . The two nodes in ZB have a lb of
d+1
2 + l + 1even each. Therefore, the group of 4 nodes attains a cost equivalent
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Figure 6.18: Scheme of the grid separated by method of routing.

to the sum of their 4 lb.
The nodes in ZA correspond to the nodes in {v = (x, y) | d(v∗, v) 6 ⌊d

2⌋ +

1even and x > ⌈d
2⌉ and y 6 ⌊d+2

4 ⌋}∪{v = (x, y) | d(v∗, v) 6 ⌊d
2⌋+1even and y >

⌈d
2⌉ and x 6 ⌊d+2

4 ⌋} Each node (x, y) in ZA with x > y will be routed together
with the node (y, d+1odd+y−x), also in ZA. Note that lb(x, y) = d+1odd+y−x
and lb(y, d + 1odd + y − x) = x. The path used is constructed in the same way
that the path shown in figure 6.22. To route the demand through the path,
d+1odd + y rounds are needed which is exactly lb(x, y)+ lb(y, d+1odd + y−x).

The nodes in ZE are the nodes contained in the square delimited by the
nodes v∗ and (d − 1, d − 1). Each node will be routed using 2 cycles following
the idea depicted in figure 6.24. Each cycle routes half of the demand and it
shares ⌊d+1

2 ⌋ rounds with the second cycle. The total number of rounds used
is 2(d + 1) and each round has a capacity of 1/4. Then, the weight needed for
routing the demand of each node v in ZE is d+1

2 = lb(v).
The remaining nodes v with non-zero demand are all placed outside the

zone {1, d − 1} × {1, d − 1}. Applying theorem 14, each node can be routed
independently with cost d+1

2 which is the value of lb(v).
As the sum of lb(v) over all the nodes in the grid attains the lower bound

given in 5.3.2, we conclude the result.

6.3 Conclusion

In this chapter, it is proved that for d odd our lower bound is tight for grids
considering fractional round weights (the demand of each node can always be
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Figure 6.19: Example of moving the demand in ZD using the routing of ZB . In
this example, d = 9.
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Figure 6.20: Example for ZC with d odd. In this example, the demand.
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Figure 6.21: Example for ZC with d even. In this example, the demand...
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Figure 6.22: Example for ZA with d odd. In this example, the demand. The
even case is similar.
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(b) Second pair of nodes.

Figure 6.23: Example for ZB with d odd. In this example, the demand...
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(a) First cycle.
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(b) Second cycle.

Figure 6.24: Example of routing with 2 cycles with rounds of weight 1/4 for
v = (d− 1, d− 1). The weight needed to route the demand is d+1

2 b(v).

routed using one cycle) and integer round weights (a flow from any 2 nodes
can always be routed with 2 paths at each iteration). It is also proved that for
balanced opposite partitions the lower bound is tight and moreover, the solution
admits mono-routing and minimum energy routing (using shortest paths).

For d even, we proved that the flow from the majority of the nodes in the grid
p×q can be routed (each node using 4 paths at each iteration) with optimal time
equals to our lower bound. Moreover, if the 4 quadrants (called simply regions)
of the grid have balanced load, Our lower bound is optimal with integer round
weights (an equal flow from any 4 nodes can always be routed with 4 paths at
each iteration).
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Chapter 7

Bottleneck region and
physical interference model

Motivated by the results of the existence of a limited (bottleneck) region
capable to represent the entire network, in this chapter we consider a variant of
the RWP, that also deal with bandwidth allocation but using the interference
model with SINR (Signal to Interference plus Noise Ratio) conditions. In this
case, we do not attempt to allocate a separate slot to each link. Instead the
links are allowed to communicate at the same time consequently, the rate of the
communication is limited by the others. The power transmitted by each user is
defined to maintain the SINR above a given threshold. The model presented here
is valid for UMTS and other systems that tolerate interferences (see chapter 1.1).

We give sufficient conditions to the multi-hop problem to be reduced to a
single-hop problem by only changing the utility functions. These conditions are
represented by our description of utility functions. This work was published
in [6]. We present the problem in a multi-hop cellular network but it could be
a radio mesh network as well.

Multi-hop Cellular Network preserves the benefit of conventional single-hop
cellular networks where the service infrastructure is provided by fixed bases, and
also incorporates the flexibility of ad-hoc networks where wireless transmissions
through mobile stations in multiple hops is allowed [42].

In ad-hoc networks, nodes communicate with each other in a peer-to-peer
way and no infrastructure is required. If direct communication is not feasible,
the simplest solution is to replace a single long-range link with a chain of short
range links by using a series of nodes between the source and the destination:
this is known as multi-hop communication [43]. The cooperation between these
two networks can be interesting as ad-hoc networks can expand the covered area
without the high cost of cellular networks infrastructure.

We address in this chapter a bottleneck problem that summarizes the situ-
ation of many multi-hop cellular networks, as illustrated in Figure 7.1. In our
work, a gateway - or base station (BS) - has entire access to the rest of the world
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Free zone

(BS)

Critical zone

Figure 7.1: Multi-hop cellular network.

(BS)

Critical zone

Free zone

Figure 7.2: Multi-hop cellular network
reduced in single-hop.

and provides this service in a more privileged way to some specific nodes, the
relay nodes (the white ones in Figure 7.1). Those nodes are themselves relaying
the service to the nodes in the free zone, called the terminal nodes (the gray
ones in Figure 7.1). It can happen that nodes in the free zone relay one another
to get the final service. In our model, the relay nodes and the gateway form a
single-hop cellular network (the critical zone) that constrains the system.

Each node has a utility function representing its degree of satisfaction based
on the assigned rate transmission. The whole system is governed by the opti-
mization of the sum of utility functions over all the nodes, as in [44, 45]. We
give a model that allows to transform the multi-hop network (Figure 7.1) into
a single-hop network (Figure 7.2), by eventually modifying the utility functions
on the relay nodes, as depicted in Figure 7.1.

The rest of this chapter is organized as follows. In the next section we discuss
the related works. In section 7.1, we define the problem, the adopted notation
and the considered hypotheses. The section 7.2 shows how the problem can
be reduced to a single-hop network. That is how the complete network utility
functions can be replaced by a small set of different functions assigned to the
relay nodes, in the context of a fair and optimal optimization. We push forward
our results in section 7.3 by applying them to specific cases of fairness.

This described scenario occurs in multi-hop networks as considered in [42,
43]. Indeed, it is observed that often in these networks the bandwidth is con-
strained specifically by a bottleneck around the gateway [46], confirming the fact
that it is a representative area. Many real networks deal with this situation.
For instance, using UMTS technology for the single-hop network [47, 45, 48],
while the free zone is covered by WiFi or Bluetooth systems.

We show that there exists a set of utility functions that can be assigned to
the relay nodes replacing the complete set of utility functions. It is due to the
fact that the problem is convex under some conditions that are often met.

Convex optimization techniques are important in engineering applications
because a local optimum is also a global optimum in a convex problem. Rigor-
ous optimality conditions and a duality theory also exist to check the solution
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optimality. Consequently, when a problem is cast into a convex form, the struc-
ture of the optimal solution, which often reveals design insights, can often be
identified. Furthermore, powerful numerical algorithms exist to solve convex
problems efficiently.

We are interested in Pareto-optimal solutions, that is solutions where the
utility of an individual cannot be improved without decreasing the utility of one
or more other nodes. The fairness is a key issue in wireless networks, since the
medium is shared among the nodes. In our problem, it implies that each flow
going through a bottleneck receives a fair share of the available bandwidth. Our
work admits the generalized fairness criterion as defined in [44] that can assume
several criteria (see section 7.3 for more details), for example, the proportional
fairness one.

The proportional fairness has been studied in the context of the Internet flow
due the similarity to the congestion control mechanism of the TCP/IP protocols,
where each TCP’s throughput is adapted as a function of the congestion. The
work in [49] addresses the question of how the available bandwidth within the
network should be shared between competing streams of elastic traffic1.

7.1 Model definition

We distinguish here three main types of nodes. The BS that is unique in our
case, the relay nodes in R that have a limited link to the BS and the terminal
nodes in Tr that are connected to the BS through a unique relay node r at the
single-hop network. Note that multi-hops are allowed as long as connections
between terminal nodes are given for free, that is the relay node has bandwidth
enough for itself and its relayed terminals. The terminal nodes are considered
sparsely distributed around the cell, thus interference is not a problem at the
free zone.

We focus on the downlink channel (from the BS to the relay nodes) consid-
ering a given fixed bandwidth. Let αr be the rate of the downlink channel from
the BS to relay node r. Let ρt be the downlink rate at each node t ∈ Tr. We
consider the following hypotheses.

Hypothesis 1 All terminal nodes in Tr use a unique relay node r ∈ R.

Hypothesis 2 We only consider interferences between the relay nodes in R.

Note that the first hypothesis allows multiple hops and routes in the free
zone but imposes to gather all the traffic of an individual node to a unique relay
in the critical zone. The second hypothesis means also that the bandwidth is
not limited in the free zone.

We summarize the important definitions below.

1The elastic traffic tolerates packet delays and losses and permits the nodes to adjust their
rates in order to fill available bandwidth.
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Nodes Set

• BS: node representing the base station. We consider a unique BS.

• R: set of relay nodes, directly connected to the BS by a limited link.

• Tr: set containing the node r ∈ R and the set of terminal nodes relayed
by r.

Variables

• pb,r: power of the signal emitted by the BS to the router r.

• ρt: downlink rate for each node t ∈ Tr.

• αr: downlink rate for each node r ∈ R, enough to attend all nodes t ∈ Tr.
αr =

∑

t∈Tr
ρt.

Utility Functions

• Ut(ρt): utility function at the node t ∈ Tr representing its degree of satis-
faction. This function is non-decreasing with ρt.

• Ur(αr): cumulative utility function at the node r ∈ R representing the
maximum degree of satisfaction of the nodes in Tr. Given that the band-
width is αr, it is defined Ur(αr) = max{∑t∈Tr

Ut(ρt);
∑

t∈Tr
ρt = αr}.

We deal with the optimal and fair transmission rate allocation prob-
lem (problem (P) ), we have to find a vector of the relay rates α that maximizes
∑

r∈R Ur(αr) with a fair sharing among the terminals, guarantying the existence
of a vector of transmissions powers p = (pb,1, pb,2, ..., pb,|R|).

In order to model interference in the critical zone, we focus on a commonly
used definition of feasible rates which depends on both a target γ and a target
interference level K. The packet sent by the BS is received by the relay node
if the SINR (Signal to Interference plus Noise Ratio) is above a given threshold
γ. The constants No and gb,r are given considering the network environment.
Let No be the thermal noise and gb,r is the channel gain between the BS and
the relay r. The variables pb,r represent the power of the signal emitted by the
BS to the relay r.

A vector of rates α = (α1, α2, ..., α|R|) is considered a feasible solution if
there exists a vector of transmissions powers p = (pb,1, pb,2, ..., pb,|R|) that sat-
isfies the following conditions for the SINR that a node connected to the BS
experiences: αrγ 6

pb,rgb,r

No+gb,r

P

s 6=r pb,s
= SINRr,∀r ∈ R and

∑

r∈R pb,r 6 KNo.

A vector of rates α is an optimal rate allocation if it is a solution to the following
model on variables α and p:
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Problem (P’)

max
∑

r∈R
Ur(αr) (7.1)

subject to

αrγ 6
pb,rgb,r

No + gb,r

∑

s 6=r pb,s
,∀r ∈ R (7.2)

∑

r∈R
pb,r 6 KNo. (7.3)

Since utility functions are non-decreasing, an optimal solution verifies:

αrγ =
pb,rgb,r

No + gb,r

∑

s 6=r pb,s
,∀r ∈ R

which gives pb,r = αrγ
gb,r

(No + gb,r

∑

s 6=r pb,s), thus

pb,r =
αrγ

gb,r
(No + gb,r

∑

s∈R
pb,s − gb,rpb,r),∀r ∈ R. (7.4)

Moreover, increasing all the powers by the same factor allows to tighten
constraints (7.3) while relaxing constraints (7.2). By optimality we have

∑

r∈R
pb,r = KNo

which, put into equation (7.4) gives pb,r = αrγ
gb,r

(No(1+ gb,rK)− gb,rpb,r) and

we obtain:

pb,r =
αrγNo(1 + Kgb,r)

gb,r(1 + αrγ)
,∀r ∈ R. (7.5)

Like in [47], we use the substitution
αrγ(1+Kgb,r)
gb,r(1+αrγ) = dr. As

∑

r∈R dr 6
∑

r∈R
pb,r

No
6 K, we can say:

αr =
drgb,r

γ(1 + gb,r(K − dr))
,∀r ∈ R.

So, we obtain the following equivalent problem on variables dr:
Problem (P)

max
∑

r∈R
Ur

(

drgb,r

γ(1 + gb,r(K − dr))

)

(7.6)

subject to

{
∑

r∈R dr 6 K
dr > 0,∀r ∈ R.

(7.7)
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7.2 Theoretical approach with fairness and op-
timality

In this section, the problem is how to define the cumulative utility functions
Ur(αr) for each relay node r ∈ R in a way to represent the utility functions
Ut(ρt) of all nodes t ∈ Tr. Moreover, the available bandwidth of each relay node
has to be shared with fairness among the nodes in Tr.

Indeed, we prove that there exists a set of utility functions Ur(αr) (cumula-
tive functions) that can be assigned to the relay nodes replacing the complete set
of utility functions and, it can be expressed analytically in most cases. More-
over, we show that for any fixed available bandwidth αr at each relay node,
if the sum

∑

t∈Tr
Ut(βtαr) is maximized it converges to a fairness equilibrium.

Thus, it is always possible to share αr fairly among the nodes in Tr. The fairness
equilibrium point is defined by the utility function adopted. We consider the
following technical assumption.

Tecnical Assumption 1 The nodes’ utility functions Ut(.) are assumed to be
strictly increasing concave functions and satisfy the condition U

′′
t (x) 6 −1

x2 .

As said before the particular utility function Ur(αr) is defined as follows:
Problem (Pr)

Ur(αr) = max
∑

t∈Tr

Ut(ρt) (7.8)

subject to

αr =
∑

t∈Tr

ρt,∀r ∈ R. (7.9)

We need the following lemma regarding how the rate αr assigned to a relay
r ∈ R can be shared by all terminals it relays. Our objective is that given αr

we can assign a fraction βt of αr for each terminal t ∈ Tr in a fair way.

Lemma 8 Given the vector ρ∗ = (ρ
′
1, ..., ρ

′

|Tr|) being the optimal solution for

the problem Pr, we consider a variable β
′
t ∈ [0, 1], a fixed feasible relay rate αr

and we define ρ
′
t = αrβ

′
t. We obtain

U
′

t1(β
′

t1αr) = U
′

t2(β
′

t2αr),∀t1, t2 ∈ Tr.

Proof: Letting βt = ρt

αr
, we consider the following subproblem with a fixed αr

for a r ∈ R:
Problem (P ′

r)

max
∑

t∈Tr

Ut(βtαr) (7.10)

subject to
{

βt > 0,∀t ∈ Tr
∑

t∈Tr
βt = 1.

(7.11)
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We can say that it is a local version of the problem Pr, in a way that an optimal
solution for P ′

r considering the optimal value for α∗
r = arg maxαr

Ur(αr) can be
translated into a locally optimal solution for Pr. We can rewrite the constraints
as:







−βt 6 0,∀t ∈ Tr
∑

t∈Tr
βt 6 1

∑

t∈Tr
−βt 6 −1

(7.12)

Based on [50], the Lagrangian of this subproblem can be written as follow:

L(β) =
∑

t∈Tr

Ut(βtαr)−
∑

t∈Tr

λt (−βt)− µ

(

∑

t∈Tr

βt − 1

)

− ν

(

∑

t∈Tr

−βt + 1

)

with the Lagrange multipliers λi > 0, µ > 0 and ν > 0. As β∗ = (
ρ
′
t

αr
, ...,

ρ
′
|Tr|
αr

)
is necessarily a vector of optimal solutions for the Lagrangian. So it verifies
KKT’s optimality conditions: ∂L

∂βt
= 0 in β∗,∀t ∈ Tr, which gives

αrU
′

t (β
′

tαr) + λt − µ + ν = 0,∀t ∈ Tr.

Moreover, by KKT complementary slackness conditions λtβ
′
t = 0,∀t ∈ Tr. Note

that under technical assumption 1, we have U
′′
t (ρt) → −∞ when ρt → 0+ for

all t. We can deduce that U
′
t (ρt) → +∞ and Ut(ρt) → −∞ when ρt → 0+ for

all t, making impossible the case where ρt = 0. So βt 6= 0, that gives λt = 0.
Hence αrU

′
t (β

′
tαr)− µ + ν = 0,∀t ∈ Tr. We obtain

U
′

t1(β
′

t1αr) = U
′

t2(β
′

t2αr),∀t1, t2 ∈ Tr

As neither −µ nor ν depends on t, it means that U
′
t (ρ

′
t) = C,∀t ∈ Tr where C

is a constant. �

We have then the following theorem regarding the maximum point of the
function Ur.

Theorem 15 The function Ur(αr) for each r ∈ R is obtained as follows. Let
ht = (U

′
t )

−1 and hr =
∑

t∈Tr
ht, then Ur(αr) =

∑

t∈Tr
Ut ◦ht ◦h−1

r (αr),∀r ∈ R.

Proof: By Technical Assumption 1, we have U
′′
t (x) < 0,∀t ∈ Tr then

U
′
t ,∀t ∈ Tr are strictly monotonic decreasing functions. So these inverse func-

tions ht,∀t ∈ Tr exist. We set hr =
∑

t∈Tr
ht. By Lemma 8 and reusing the

notation for C, we have

hr(C) = β
′

1αr + ... + β
′

|Tr|αr = αr. (7.13)

Now, we can have Ur expressed by functions Ut. Indeed, we have from
equation (7.13), C = h−1

r (αr) and ρ
′
t = ht(C) = ht ◦ h−1

r (αr). We derive
Ut(ρ

′
t) = Ut ◦ ht ◦ h−1

r (αr) and
∑

t∈Tr
Ut(ρ

′
t) =

∑

t∈Tr
Ut ◦ ht ◦ h−1

r (αr). So, we
can consider

Ur(αr) =
∑

t∈Tr

Ut ◦ ht ◦ h−1
r (αr),∀r ∈ R.

Making αr = α∗
r we obtain hr(C) = β

′
1α

∗
r + ... + β

′

|Tr|α
∗
r = α∗

r and the solution

for P ′
r is already optimal for Pr. �
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7.3 Method usage example

In this section we show some results using our model for the problem P .
To solve the model, we use a software library for nonlinear optimization of
continuous systems, the Interior Point OPTimizer (IPOPT) that is part of the
COIN-OR project. We used the modeling environment AMPL (A Mathematical
Programming Language).

We show examples of utility functions and their cumulative representations.
For sake of simplicity of presentation, our examples consider a small network
with 5 nodes: 2 relays and 3 terminals, as shown in Figure 7.3. Of course our
method can be applied to more complex networks.

3

5

4

1

2

Figure 7.3: Example with 5 nodes.

We consider the utility functions described below. The graphs in Figures 7.4,
7.6 and 7.8 show the cumulative functions, that is using Ur(αr) =

∑

t∈Tr
Ut ◦

ht ◦ h−1
r (αr),∀r ∈ R. Figures in 7.5, 7.7 and 7.9 consider all utility functions

and Ur(αr) =
∑

t∈Tr
Ut(ρt).

We study the obtained rate ρt varying gain gb,r (with fixed target interference
level K = 2). The graphs below show the evolution of the node rates as we
increase the gain of the nodes. We consider the same gain for all relay nodes.
Recall that ht = (U

′
t )

−1, hr =
∑

t∈Tr
ht and Ur(αr) =

∑

t∈Tr
Ut ◦ ht ◦ h−1

r (αr).
Consider ρt > 0 and ρt < 1.

• Ut(ρt) = ctln(ρt)

U
′
t = ct

ρt
= yt, ρt = ct

U
′
t

= ct

yt
. So, ht(yt) = ρt = ct

yt
. Consider x = hr(y) =

1
y

∑

t∈Tr
ct that implies y = 1

x

∑

t∈Tr
ct = h−1

r (x). It gives the cumulative
utility function:

Ur(αr) =
∑

t∈Tr
ctln

(

ct
1

αr

P

t∈Tr
ct

)

=
∑

t∈Tr
ctln(αr)+

∑

t∈Tr
ctln

(

ct
P

t∈Tr
ct

)

.

100



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  1  2  3  4  5  6  7

R
at

e 
tr

an
sm

is
si

on
 fr

ac
tio

n

Gain

Relay 1
Relay 4

Figure 7.4: Aggregated function Ur(αr) =
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Figure 7.5: Considering multi-hop with Ur(αr) =
∑

t∈Tr
Ut(ρt) and Ut(ρt) =

ctln(ρt).

• Ut(ρt) = ct
√

ρt

U
′
t (ρt) = − ct

2
√

ρt
= yt, ρt =

c2
t

4y2
t
. So, ht(yt) = ρt =

c2
t

4y2
t
. Consider

x = hr(y) = 1
4y2

∑

t∈Tr
c2
t that implies y = 1

2
√

x

√

∑

t∈Tr
c2
t = h−1

r (x). It

gives the cumulative utility function:

Ur(αr) =
∑

t∈Tr
ct

√

c2
t

4
“

1
2
√

αr

√
P

t∈Tr
c2

t

”2 =
√

∑

t∈Tr
c2
t

√
αr.

101



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  1  2  3  4  5  6  7

R
at

e 
tr

an
sm

is
si

on
 fr

ac
tio

n

Gain

Relay 1
Relay 4

Figure 7.6: Aggregated function Ur(αr) =
√

∑

t∈Tr
c2
t

√
αr.
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Figure 7.7: Considering multi-hop with Ur(αr) =
∑

t∈Tr
Ut(ρt) and Ut(ρt) =

ct
√

ρt.

• Ut(ρt) = −ct

ρt

U
′
t (ρt) = ct

ρ2
t

= yt, ρt =
√

ct

yt
. So, ht(yt) = ρt =

√

ct

yt
. Consider x =

hr(y) = 1√
y

∑

t∈Tr

√
ct that implies y =

(
P

t∈Tr

√
ct

x

)2

= h−1
r (x). It gives

the cumulative utility function:
Ur(αr) =

∑

t∈Tr

−ct
v

u

u

t

ct
 

P

t∈Tr
√

ct
αr

!2

= −(
∑

t∈Tr

√
ct)

2 1
αr

.
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Figure 7.8: Aggregated function Ur(αr) = −(
∑

t∈Tr

√
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Figure 7.9: Considering multi-hop with Ur(αr) =
∑

t∈Tr
Ut(ρt) and Ut(ρt) =

−ct

ρt
.

Generalized fairness utility function

Previously we saw some options of utility function respecting technical as-
sumption 1. An interesting function was proposed by [44]:

Ut(ρt) = ct
ρ1−κ

t

1− κ
(7.14)

This function is interesting because it generalizes all the following important
cases of fairness:

• The globally optimal allocation: when κ = 0, that is max
∑

t∈Tr
ρt.
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• The harmonic mean fairness: when κ = 2.

• The MaxMin fairness: when κ→∞, max mint∈Tr
ρt.

• The proportional fairness: when κ→ 1, max
∑

t∈Tr
limκ→1

ρ1−κ
t

1−κ =
∑

t∈Tr
limκ→1

e(1−κ)ln(ρt)
1−κ ∼∑t∈Tr

1+(1−κ)ln(ρt)
1−κ , that is max

∑

t∈Tr
ln(ρt).

It is equivalent to max
∏

t∈Tr
ρt that in a convex framework represents the

Nash Equilibrium.

The previous utility functions are in fact the utility function in (7.14) with
a given κ (respectively κ = 1, κ = 1

2 and κ = 2). Considering directly the

function Ut(ρt) = ct
ρ1−κ

t

1−κ , we have: U
′
t (ρt) = ctρ

−κ
t = yt, ρt = yt

ct

− 1
κ . So,

ht(yt) = ρt = ct

yt

1
κ . Consider x = hr(y) =

∑

t∈Tr
ht =

P

t∈Tr
c

1
κ
t

y
1
κ

that im-

plies h−1
r (x) =

(

P

t∈Tr
c

1
κ
t

x

)κ

. Thus Ur(αr) =
∑

t∈Tr

ct

1−κ





c
1
κ
t

P

t∈Tr
c

1
κ
t

x





1−κ

=

1
„

P

t∈Tr
c

1
κ
t

«1−κ

∑

t∈Tr

ct

1−κc
1−κ

κ
t x1−κ, therefore we can derive a generalized fair-

ness utility function:

Ur(αr) =

(

∑

t∈Tr

c
1
κ
t

)κ
x1−κ

1− κ
. (7.15)

We show an example of our problem using the utility function in (7.14) for
all nodes considering different values of κ.
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Figure 7.11: Considering multi-hop with Ur(αr) =
∑

t∈Tr
Ut(ρt) and Ut(ρt) =

ct
ρ1−κ

t

1−κ .

Figures 7.10 and 7.11 show the obtained rate ρt varying κ (with fixed chan-
nel gain gb,r = 2,∀r). Figure 7.10 shows the rates considering the cumulative
function in (7.15). Figure 7.11 shows the rates of all the nodes using the utility
function in (7.14), note that each node has a different value for the constant
ct. The figures in this section show that we obtain the same graph for the relay
nodes in both approaches as we proved.

7.4 Conclusion

We have considered in this chapter the transmission rate allocation problem
for multi-hop cellular networks in a way to reach an optimal and fair solution.
We show that it can be reduced to a single-hop problem by only changing the
utility functions.

Reducing multi-hop problems into problems with a unique cell (single-hop)
has many advantages for the optimization problem. First we can reuse tech-
niques that were designed basically for the one-cell case [47, 45, 51]. Second,
we can identify bottlenecks, and in particular see if a congestion is due to the
particular situation of a relay node, or to the specific utility function of the
terminals it relays.

Of course the question on implementing distributed algorithms based on
those results remains open. We can wonder if a pricing strategy is achievable.
Another question is what kind of intermediate capacity restrictions on the second
(or more) hop(s) can be added if we want to keep the same good properties.
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Chapter 8

Conclusion and perspectives

We address a special case of the Round Weighting Problem (RWP) in Radio
Mesh Networks as the source nodes are not associated with a specific destination
(single-commodity). The RWP is composed of two sub-problems: the routing
and the slot assignment problems. The objective is to minimize the overall
period of slot activations providing enough capacity to satisfy the routers re-
quirements of bandwidth.

In Chapter 2, we present a cross-layer formulation for the problem. Since
the number of rounds is exponential, a column generation (CG) algorithm was
used to avoid dealing with the complete set of rounds.

We present a multi-objective study for the RWP in Chapter 3. The first
objective is to balance the load in the routers (MinMaxLoad). The second
objective is to minimize the communication time (MinTime), that is the origi-
nal objective of the RWP. This multi-objective formulation uses the model of
Chapter 2.

We show that these two objectives are contradictory as minimizing the time
increases the maximum load of the routers. The experimental results of our tests
indicate that the relation between the maximum load and the transmission time
seems to be convex and piecewise linear. It would be interesting to prove that
the curves relating these two specific objectives are indeed convex and piecewise
linear.

It will also be interesting to study other objectives, for example minimizing
the network utilization, that is important in resource restricted networks (e.g.
sensor networks). We make several tests with grid graphs showing that usually
the Pareto frontier has one or two points indicating that both objectives are
almost the same in grids (with non-sparse demand).

Then, we identify situations that are responsible for the difference between
these two objectives considering a node close to the gateway, as shown in Fig-
ure 8.1(a). In fact, the demand has to go backwards (to avoid interference with
the gateway) and then use the central axes to reach the gateway with minimum
time. The fact of going backwards increases the utilization of the network. We
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d = 4

g

(a) Example with d = 4 and
the demand is concentrated in
node (3, 2).
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(b) We obtain a Wmin = 11

4
b((3, 2))

if the node does not use the shortest
paths. The shortest path solution costs
Wmin = 5b((3, 2)).

Figure 8.1: Trade-off between minimum network utilization and minimum time.

gives the curve describing the pareto frontier for this node in Figure 8.1(b) (see
subsection 5.2.2 for more details).

Some ideas to find lower bounds for RWP derived from a probable bottleneck
region for a general graph and using a general binary interference model are
presented in Chapter 4. We use the model of Chapter 2 to run experiments
on networks from the literature, with different numbers of gateways. Our tests
show that the optimal solution for the RWP is usually equal to the weight of
a min-max clique (see definition in 4) around the gateway, that is our lower
bound. However, we give an example that shows that the Wmin can be greater
than that.

Although the solution for IRWP seems to be the round-up of the solutions
for RWP according to our tests, we give a counter-example to that. We explain
the usual frequency of these round-up results with dual studies. In fact, the
links out of this bottleneck region have slacks of activation. An edge has a slack
when it has several possible options to get activated forming a round with edges
on the bottleneck region.

Table 8.1 summarizes the known results and our main contributions pre-
sented according the following categories:

• Problem: 1- The RWP; 2- IRWP (consider integer round weights);

• Traffic: 1- Multi-commodity flow; 2- Single-commodity flow.

• Demand: 1- Non-uniform; 2- Uniform (i.e. every node has the same
demand); 3- Balanced, when the “partitions” contain the same amount of
demands;

• Interference: 1- Binary, representing any binary interference model; 2-
Asymmetrical interference model (see section 2.1); 3- d (any, even or odd),
representing the distance-d interference model.
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Table 8.1: Results.

Problem Traffic Demand Interference Graph Complexity Reference

01 RWP Multi Non-uniform Binary General NP-hard [2]
02 RWP Single Non-uniform Asymmetrical General 4-approx. [2]
03 RWP Multi Non-uniform Binary P-pricing1 Polynomial Corollary 1
04 IRWP Single Non-uniform d Odd General 2-approx. Theorem 4
05 IRWP Single Non-uniform d Even General 3-approx. Theorem 4
06 RWP Multi Non-uniform d=1 General Polynomial Corollary 1
07 IRWP Single Non-uniform2 d=1 2Connected3 Polynomial Theorem 6
08 RWP Single Non-uniform d Odd Grid4 Polynomial Theorem 7
09 IRWP Single Non-uniform5 d Odd Grid4 Polynomial Theorem 11
10 RWP Single ZA Non-unif. d Even Grid4 Polynomial Theorem 9
11 IRWP Single Balanced d Even Grid4 Polynomial Theorem 12
12 RWP Single Uniform d Any Grid Closed Form. Section 5.3

Recall that the RWP was introduced in [2], where they show that the prob-
lem is NP-hard for single-commodity, called gathering (Table 8.1, line 01). Fur-
thermore, they give a 4-approximation algorithm for general topologies and
asymmetrical interference model (Table 8.1, line 02) and show that RWP is
polynomial for paths. They asked about finding simple efficient algorithms and
the complexity of the problem for grids. They also asked about purely combi-
natorial approximation algorithms that do not use linear programming. In this
thesis, we answer these questions considering the distance-d interference model.

We prove that if the pricing-problem (or sub-problem) of the CG algorithm
can be solved in polynomial time then RWP can be solved in polynomial time
(Table 8.1, line 03). An example of that is the RWP with d = 1 in which the
pricing-problem is to find a maximal edge matching that is known polynomial
(Table 8.1, line 06).

Methods to obtain lower bounds (inspired by Chapter 4) for general graphs
are presented formally in Chapter 5. We present several ways to obtain lower
bounds considering the distance-d model. For example, we derive a lower bound
for any d using one or many call-cliques (a set of pairwise interfering edges). Our
methods are applied to grid graphs (with gateway in the middle or corner).

Upper bounds (given by feasible routings) for the RWP are presented in
Chapter 6. We use two main routing strategies. Either we route the total
demand of a vertex v by finding interference free paths from v to g; or we
combine paths issued from v with paths issued from other nodes at each iteration
of the period. We might have to do different combinations to be able to route
all the demands at the end of the period.

1Valid for a graph G having the maximum weighted independent set problem (pricing-problem
for RWP) solved in polynomial time for its C(G).

2If
P

v /∈K0
b(v) is even and b(v) 6 1

2

P

v /∈K0
b(v), ∀v /∈ K0.

3Valid for a 2-connected graph.
4Consider the gateway in the middle.
5If
P

v /∈K0
b(v) is even.
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With the first strategy, we prove that the nodes in K0 (the set of edges
in G at distance at most ⌈d

2⌉ of the gateway g) have optimal routing if they
are individually routed using simply a shortest path at each iteration. For the
other nodes v /∈ K0, shortest path routing gives a d+1

⌈ d
2 ⌉

approximation, that is a 2-

approximation for the case with d odd (Table 8.1, line 04) and a 3-approximation
for the case with d even (Table 8.1, line 05).

In the case of a grid with d odd, we are able to find two interference free
paths (d+1)-labeled from v to g, proving that the demand b(v) of a node v /∈ K0

can be optimally satisfied with a weight W 6 d+1
2 b(v) (Table 8.1, line 07).

With the second strategy, we first use two interference free (d + 1)-labeled
paths issued from two different vertices. It enables us to find optimal solutions
for IRWP in a 2-connected planar graph with d = 1 (Table 8.1, line 08) with
some constraints on the demand and in grids with d odd, when the total demand
is even (Table 8.1, line 09).

For grids with d even, we prove that the flow from the majority of the nodes
in the grid (v ∈ ZA) can be routed using 4 paths at each iteration, with optimal
time equals to our lower bound (Table 8.1, line 10). For the other regions
6= ZA, we know it is not possible to define 4 paths. A challenge will be to solve
completely the case d even by founding the exact values for the routing of each
node; but that appears to be difficult.

Using the second strategy, we also consider four interference free (d + 1)-
labeled paths issued from four vertices, each one from different quadrants (called
simply regions). Therefore, if the regions are balanced, our lower bound is also
optimal for IRWP (Table 8.1, line 11). We provide closed formulae for grid
graphs considering uniform demand and any d (Table 8.1, line 12).

An attractive challenge will be to consider multiple gateways. Our methods
can be applied if they are far enough and evenly distributed; but if the gateways
are near the problem becomes very difficult.

As future work, we intend to consider an extension of our methods to other
graphs (e.g. grid-like graphs). For that, we are interested in graph partitionings
that separates the graph in several non-interfering partitions. Thus, we can
define interference free paths according the partition containing it. We consider
two types of partitioning: the pizza partitioning (see examples in figure 8.2(a)
and 8.2(b)) and the block partitioning (see examples in figure 8.2(c) and 8.2(d)).

With a pizza partitioning, it is possible to route a flow of π from a combina-
tion of π nodes from non-interfering partitions. We can use the same path that
guarantees mono-routing. If each slice contains a shortest path for all nodes of
the slice, we can guarantees also minimum energy routing.

With a block partitioning, we can have more flexibility for the demand dis-
tribution as we have more (smaller) interference free regions. It is easy to define
blocks for regular graphs because the blocks will consist of a copy of the same
subgraph.

To a partition of G, we associate a graph H, where vertices represent in-
duced subgraphs of G (blocks or slices), two vertices being connected if the
corresponding subgraphs are at distance < d. The problem reduces to finding
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(a) Pizza partitioning
with 6 slices.

(b) Pizza partitioning
with 4 slices.

g g

(c) Simple example of new graph parti-
tioned in hexagonal blocks of side d = 3
for the graph in figure 8.2(a).

g g

(d) Simple example o new graph partitioned
in square blocks of side 2d for the graph in
figure 8.2(b).

Figure 8.2: Reduction to the critical region. In these examples d = 3.
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only paths at distance > 2 (in number of edges) in H, and it is easy if H is
planar (see work in [52]).

For that, we define a π-graph G as a graph that can be partitioned in induced
subgraphs with diameter enough to admit the definition of a new graph H. The
graph H has to be planar, with the nodes representing the subgraphs of G and
an edge connects two nodes representing two subgraphs at distance < d (that
contain two edges from different regions that are at distance < d).

The critical region corresponds to the subgraph that contains g. The idea is
given a lower bound of γ

π B (based on the critical region) we can find π paths that
can be γ-labeled to send at each iteration a flow of π to the critical region. The
larger the number of regions the less uniform can be the traffic because we have
more non-interfering regions. The demand distribution conditions guarantees
the fact that the interference free combinations exist (e.g. balanced regions).

Motivated by the results of the existence of a limited (bottleneck) region
capable to represent the whole network, in Chapter 7 we consider a variant of
the RWP that also deals with bandwidth allocation, but using the interference
model with SINR (Signal to Interference plus Noise Ratio) conditions. In this
case, we do not attempt to allocate a separate slot to each link. Instead the
links are allowed to communicate at the same time; consequently the rate of
the communication is limited by the others. The power transmitted by each
user is defined to maintain the SINR above a given threshold. The model
presented here is valid for UMTS and other systems that tolerate interferences
(see Chapter 1.1).

We give sufficient conditions to the multi-hop problem to be reduced to a
single-hop problem by only changing the utility functions. These conditions are
represented by our description of utility functions. In fact, we present an analytic
formula for the aggregated utility function for each relay node, that represents
all its terminals. We give results in the case of the generalized fairness criterion
of Mo and Walrand [44].

Reducing multi-hop problems into problems with a unique cell (single-hop)
has many advantages for the optimization problem. For example, we can reuse
techniques that were designed basically for the one-cell case. The question on
implementing distributed algorithms based on those results remains open. We
can wonder if a pricing strategy is achievable. Another question is what kind of
intermediate capacity restrictions on the second (or more) hop(s) can be added
if we want to keep the same good properties.
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[50] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis.
Springer-Verlag New York, LLC, 2001.

[51] J. Galtier, “Adaptive power and transmission rate control in cellular CDMA
networks,” in Globecom, 2006.

[52] Y. Kobayashi, “Induced disjoint paths problem in a planar digraph,” Dis-
crete Appl. Math., vol. 157, no. 15, pp. 3231–3238, 2009.

117


