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1.1 Introduction 
 
 
Ce mémoire est une synthèse, sous forme de sélection d’articles, des travaux développés 
depuis la soutenance de ma thèse en 2001. De nombreuses lignes de recherche se sont 
dégagées dans les années qui ont suivi ma thèse et mes activités scientifiques se sont 
développées en suivant différentes directions.  
 
Le domaine de la physique nucléaire, et notamment la réflexion autour des propriétés 
des noyaux instables, est l’activité qui absorbe prioritairement mes intérêts 
scientifiques ; elle se situe en continuité thématique par rapport à une partie de mon 
travail de thèse. Le noyau atomique est un système quantique composé par N fermions 
qui nécessite un traitement théorique basé sur des modèles microscopiques. Les travaux 
développés et l’expérience acquise dans ce domaine se prêtent donc de manière très 
naturelle à des extensions interdisciplinaires pour l’étude d’autres systèmes quantiques 
formés par N fermions comme, par exemple, les agrégats métalliques ou les gaz 
d’atomes fermioniques piégés. J’ai exploré quelques-uns de ces liens interdisciplinaires 
et je me suis intéressée aux propriétés de l’état fondamental et des états excités des gaz 
atomiques et des agrégats métalliques en utilisant des méthodes analogues à celles 
adoptées en physique nucléaire.  
 
En ce qui concerne les gaz d’atomes, je me suis intéressée surtout aux propriétés liées à 
la superfluidité et à ses effets sur l’état fondamental (gap d’appariement et température 
critique) et sur les modes d’excitation (modes de respiration). La superfluidité analysée 
dans ces systèmes est celle de la phase BCS dans la région où la longueur de diffusion 
est négative. La formation de paires de Cooper dans ce régime est tout à fait analogue 
au phénomène de superfluidité qui se manifeste dans certains noyaux atomiques.  
 
Les agrégats métalliques ont été choisis comme systèmes où effectuer des tests des 
nouvelles méthodes introduites pour améliorer et étendre l’approximation des phases 
aléatoires (random-phase approximation, RPA). Ces systèmes présentent une structure 
en couches avec des nombres magiques correspondants aux fermetures des couches 
[Kn84] comme les noyaux. À la différence des noyaux, l’interaction entre leurs 
constituants est bien connue, c’est l’interaction coulombienne. Avec  l’approximation 
du jellium, leur structure ionique est gelée et décrite avec un fond de densité constante 
positivement chargé. Dans ce cadre simplifié, les N corps à traiter microscopiquement 
sont les électrons de valence délocalisés.  Les états collectifs, dits plasmons dipolaires, 
ont été analysés avec des extensions de la RPA. D’autres applications dans des modèles 
de Lipkin à deux ou trois niveaux ont été aussi  effectuées pour réaliser des tests des 
extensions de la RPA introduites.  
 
L’ensemble de ces activités a contribué à former ma vision générale du problème à N 
corps. Les études des propriétés et des analogies qui existent entre des systèmes en 
principe très différents les uns des autres par taille, composition, échelles d’énergie et 
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techniques d’analyse expérimentale ont fait mûrir la compréhension et la maîtrise d’un 
certain nombre de modèles et approches théoriques utilisés dans différents domaines de 
la physique. Cela a par ailleurs enrichi et élargi mes perspectives de recherche en 
physique nucléaire.  
 
Dans la suite, je décrirai quelques études réalisées dans les trois domaines d’activités, 
que je regrouperai en trois chapitres.  
 
La première et la plus longue partie de ce mémoire, le Chapitre 2, sera consacrée à la 
réflexion autour des noyaux exotiques effectuée avec des modèles de champ moyen 
pour étudier : l’évolution de la structure loin de la stabilité et les phénomènes exotiques 
liés à cette évolution comme les structures à bulle, les corrélations d’appariement et les 
vibrations d’appariement, les halos, l’effet sur les propriétés de l’état fondamental du 
terme tenseur et d’autres termes non standards dans l’interaction de Skyrme. Des 
applications dans les domaines des réactions et de l’astrophysique nucléaire seront aussi 
discutées.  
 
Le Chapitre 3 sera consacré à la présentation de quelques extensions de la méthode RPA. 
L’objectif de ces travaux sera détaillé : cet objectif est formel et vise à une formulation 
complètement auto-consistante de la méthode pour un meilleur traitement des 
corrélations dans l’état fondamental des systèmes à N corps. Des applications dans des 
modèles de Lipkin exactement solubles seront discutées. Récemment, nous avons par 
ailleurs commencé à réaliser des applications de ces méthodes à l’étude des systèmes 
nucléaires faiblement liés où le traitement des corrélations pourrait se révéler 
particulièrement important. Ce sera discuté à la fin du mémoire et fait partie de mes 
travaux en cours.  
 
Le Chapitre 4 collecte et décrit quelques analyses autour des gaz atomiques ultra-froids 
piégés, particulièrement fascinants parce qu’ils sont les seuls systèmes à N corps qui 
permettent, entre autres, l’observation et l’étude des corrélations associées à la 
superfluidité en fonction de l’intensité de l’interaction, de la température et de la taille 
du système. Les méthodes microscopiques de champ moyen, amplement utilisées en 
physique nucléaire, sont les outils théoriques que j’ai adoptés pour analyser ces 
systèmes. 
 
Un dernier chapitre de conclusions et perspectives dans le cadre de la physique 
nucléaire clôture cette collection de publications. Les limites de validité de 
l’approximation de champ moyen sont mises en évidence dans ce chapitre et un certain 
nombre de possibilités d’amélioration du pouvoir prédictif et de raffinement des 
modèles sont présentées et discutées.     
 
Les articles présentés sont précédés et reliés les uns aux autres par des sections qui 
définissent la trame et le fil logique de chaque chapitre.          
 
Dans la suite de ce premier chapitre, j’introduis le problème à N corps de manière 
générale en mentionnant très brièvement quelques-unes des étapes fondamentales qui 
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ont rendu possible, au cours du siècle dernier, sa formulation et son traitement dans le 
cadre de la physique quantique (Section 1.1). Quelques modèles basés sur 
l’approximation de champ moyen sont présentés de manière très générale dans la 
Section 1.2. Les équations Hartree-Fock-Bogoliubov sont dérivées dans la Section 1.3. 
                
 
1.2 Le problème à N corps  
 
 
La compréhension d’un système quantique à N corps est un des problèmes les plus 
riches et complexes face auxquels nous sommes confrontés en physique et offre la 
possibilité de tisser des liens interdisciplinaires entre différents domaines scientifiques 
comme ceux de la physique des solides, de la physique nucléaire, de la physique 
atomique et de la chimie quantique [Ma67, FW71, RS80]. Le monde qui nous entoure 
présente, à différentes échelles, une variété énorme de systèmes à N corps de 
composition et propriétés diverses, noyaux, atomes, molécules, systèmes atomiques, 
nanoparticules, agrégats, solides, systèmes planétaires, galaxies, etc. Notre observation 
et notre compréhension des phénomènes physiques doivent donc se baser très souvent 
sur l’analyse des propriétés de ces systèmes ayant un nombre incroyablement élevé de 
degrés de liberté. Le problème se complique ultérieurement pour les systèmes dont la 
nature quantique ne peut pas être négligée. À l’exception de très peu de cas triviaux, la 
solution exacte du problème à N corps n’est pas accessible.  
 
En principe, la fonction d’onde Ψ qui décrit un système à N corps et contient toutes les 
informations sur ses degrés de liberté, peut être déterminée comme solution (dans les 
cas non-relativistes) de l’équation de Schroedinger, 
 

,EH Ψ=Ψ                                                            (1.1)                            
                           

où l’Hamiltonien s’écrit, en seconde quantification, comme 
 

...aaVaa
2
1aTaH +γδαβ+βα= ∑∑
αβγδ

γδ
+
β

+
α

αβ
β

+
α  ,                (1.2)                             

 
où α

+
α a,a  sont les opérateurs de création et d’annihilation d’une particule dans un état 

α. Le premier terme de cette équation décrit la partie cinétique et un éventuel potentiel 
externe à 1 corps qui agit sur le système, tandis que le deuxième terme, à 2 corps, 
représente l’interaction entre les particules. En principe, l’Hamiltonien devrait contenir 
aussi des termes à 3, 4, …, N corps, mais il s’avère que, dans la plupart des cas qui nous 
intéressent, l’interaction entre les constituants est suffisamment bien décrite par le terme 
à 2 (et éventuellement à 3) corps. A cause de l’énorme complexité du problème due à la 
présence de ce terme d’interaction dans l’Hamiltonien, la solution de l’équation de 
Schroedinger peut se réaliser seulement en ayant recours à des approximations.   
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Les approches semiclassiques ont l’avantage de simplifier de manière importante le 
problème à traiter. Cependant, cela se fait en négligeant complètement ou partiellement 
la nature quantique du système et, pour cette raison, ces approches ne sont pas adaptées 
à l’étude de certains systèmes et de certaines propriétés, lorsque les aspects quantiques 
sont la clé pour les décrire.  
Dans certains cas, il est raisonnable de fixer des échelles d’énergies, de masses, etc., qui 
permettent d’établir une hiérarchie entre les degrés de liberté et de réduire ainsi le 
nombre de constituants pour lesquels un traitement quantique est nécessaire. Les autres 
constituants sont décrits avec des approches semiclassiques. Tel est le cas, par exemple, 
de l’approximation adiabatique de Born-Oppenheimer [AM76] utilisée couramment 
dans la physique des systèmes à N électrons comme les agrégats métalliques.    
 
La formulation des méthodes pour traiter le problème à N corps quantique a commencé 
à se développer très tôt, pendant les premières années où la physique quantique elle-
même était en train de se bâtir, dans la première moitié du siècle dernier. Dans la suite, 
je mentionne, à titre d’exemples, deux méthodes introduites au cours du siècle dernier et 
amplement utilisées dans la physique des systèmes à N corps : le modèle microscopique 
de champ moyen Hartree-Fock (HF) et la théorie de la fonctionnelle de la densité (DFT).  
 
En 1927, à Cambridge, Hartree introduisait pour  la première fois le concept innovateur 
de champ moyen appuyé sur l’approximation des particules indépendantes. Dans les 
années qui suivirent, Slater et Fock complétèrent ce modèle variationnel avec un ansatz 
sur la fonction d’onde d’état fondamental dans les systèmes fermioniques, qui incluait 
correctement le Principe de Pauli. L’état fondamental était choisi comme produit 
antisymétrisé de fonctions d’onde à 1 particule, un déterminant de Slater (Slater, 1929 ; 
Fock, 1930). La méthode d’HF était formalisée mais il fallut attendre les années 50 pour 
pouvoir effectuer en pratique les premières applications numériques. Cette méthode, qui 
a vu le jour dans le cadre de la physique des systèmes à N électrons, se diffusa bientôt 
dans d’autres domaines de la physique. A la fin des années 50 et dans les années qui 
suivirent, des applications en physique nucléaire furent possibles grâce aux avancées 
dans la compréhension des propriétés de l’interaction nucléaire. L’introduction 
d’interactions effectives phénoménologiques permettait de réaliser les premiers calculs 
numériques [Sk56, Sk59, VB72, Go75, Ne82]. Entre-temps, l’accès au problème à N 
corps quantique avait été grandement facilité grâce à l’introduction du formalisme de 
seconde quantification et à l’utilisation des fonctions de Green. Il ne faut pas oublier, 
par ailleurs, que le formalisme de seconde quantification est essentiel pour la 
formulation relativiste du problème à N corps nucléaire qui a été abordée pour la 
première fois par Walecka en 1974 [Wa74].      
 
Dans les années 60, la théorie de la DFT était introduite, elle aussi dans le cadre de la 
physique des systèmes à N électrons où la structure électronique était traitée dans 
l’approximation de Born-Oppenheimer. Cette approche variationnelle s’appuie sur deux 
théorèmes démontrés par Hohenberg et Kohn en 1964 [HK64]. Très peu après, les 
équations de Kohn et Sham furent proposées [KS65]. Dans les fonctionnelles de la 
densité utilisées, il y a typiquement deux termes : une partie directe d’Hartree et une 
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partie d’échange-corrélation qui décrit de manière approximée le terme d’échange et la 
présence de quelques corrélations dans l’état fondamental. La DFT est couramment 
appliquée, par exemple, pour calculer les énergies de liaison des molécules en chimie et 
la structure à bandes en physique des solides [DR90, Ko06]. 
 
Ces dernières années, en physique nucléaire, beaucoup d’efforts sont consacrés à 
l’application des concepts de la DFT aux études de structure nucléaire [Do07, Be08, 
Ca08, Du08, Ko08, Be09, La09].  
Les fonctionnelles de la densité sont d’ailleurs bien connues en physique nucléaire. 
Dans le cadre du champ moyen non relativiste avec des interactions de type Skyrme, par 
exemple, la densité d’Hamiltonien H  (qui est dérivée de manière variationnelle à partir 
de l’interaction de Skyrme et qui, intégrée, donne l’énergie de l’état fondamental) est 
une fonctionnelle de la densité locale (fonctionnelle de Skyrme). Comme ces 
fonctionnelles permettent d’accéder à l’énergie de l’état fondamental, on parle souvent 
en physique nucléaire de EDFT (Energy Density Functional Theory). Dans le cadre des 
théories relativistes, un certain nombre de travaux sont également orientés vers l’analyse 
des fonctionnelles EDF [Ni08]. Des modèles de EDF relativiste inspirés de la QCD de 
basse énergie ont été introduits assez récemment [Fi03, Fi04, Fi06, Fi07]. De manière 
générale, les efforts sont orientés vers la recherche et la formulation d’une fonctionnelle 
universelle, qui puisse reproduire les propriétés de l’état fondamental de tous les noyaux 
de la charte, stables ou instables, jusqu’aux drip lines nucléoniques.   
 
 
1.3 Modèles basés sur le champ moyen 
 
 
Les modèles employés dans mes travaux sont basés sur l’approximation de champ 
moyen qui s’inspire à son tour de l’approximation de particules indépendantes. 
L’approximation de particules indépendantes est valable lorsque, dans un système à N 
corps, le libre parcours moyen des constituants est au moins comparable à la taille du 
système. Dans ces conditions, qui sont très bien vérifiées, par exemple, dans les noyaux 
et dans les gaz atomiques dilués et piégés, il est raisonnable de simuler l’interaction de 
la particule i avec les autres N-1 particules par un potentiel moyen qui agit sur la 
particule i et décrit de manière effective la présence des autres N-1 particules. Le 
problème est équivalent à celui d’un système de particules indépendantes soumises à un 
potentiel externe et le terme à 2 corps de l’éq. (1.2) est approximé par un terme à 1 
particule. En termes de diagrammes de Feynman, cette approximation correspond à 
considérer le premier ordre dans l’auto-énergie propre Σ*,  
 
 
 
 
                                            ~ Σ*(1) =                              +                   ,        
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où les lignes solides représentent la fonction de Green non perturbée G0 et les tirets 
l’interaction. Le premier diagramme décrit le terme direct et le deuxième le terme 
d’échange pour l’auto-énergie propre.  
 
Sur l’approximation des particules indépendantes sont fondés, par exemple, la méthode 
de champ moyen d’HF et le modèle en couches nucléaire. Comme déjà mentionné dans 
la Section 1.1, le potentiel moyen HF est construit de manière variationnelle en 
imposant que l’état fondamental soit un déterminant de Slater,  
 

∏
=

+ −=
N

1i
iaHF ,                                                   (1.3) 

 
où −  est l’état du vide et N le nombre de constituants dans le système.       
La procédure pour la construction de ce potentiel moyen est auto-consistante et le 
problème est résolu de manière itérative jusqu’à l’obtention de la solution. Cela signifie 
que l’auto-énergie propre est exprimée par les diagrammes suivants : 
 
 
 
 
                                          ~                                      +                  ,                                                                
 
 
 
 
où les lignes plus épaisses représentent la fonction de Green exacte G. Avec cette auto-
énergie propre, l’équation de Dyson pour G est résolue : 
 
 
 
 
                                              =                         +                             , 
 
 
ce qui peut s’écrire comme,  
 

∫ ϕε=ϕΓ+ϕ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Γ+Δ− )r()'r()'r,r('rd)r()r(
m2 kkkExkH
2 rrrrrrrh ,             (1.4) 

 
où  
 

( ) ( )∫ ρ=Γ 'r'r,rv'rd)r(H
rrrrr ,                                               (1.5) 
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et  
 

( ) ( ) ( )'r,r'r,rv'r,rEx
rrrrrr

ρ−=Γ ,                                                  (1.6) 
 
( )rrρ  et ( )'r,r rr

ρ  étant les densités locale et non locale. Les équations (1.4) sont les 
équations HF et ΓH et ΓEx sont respectivement les potentiels directs et d’échange. Les 
équations (1.4) sont écrites, pour simplicité de notation, dans le cas d’un potentiel à 
deux corps local qui ne dépend pas du spin et de l’isospin. 
 

**** 
 
Dans l’état fondamental HF, qui est un déterminant de Slater, les corrélations sont 
complètement absentes par construction. Une première extension naturelle d’HF est la 
méthode Hartree-Fock-Bogoliubov (HFB) ou Bogoliubov-de Gennes [dG66, RS80], où 
les corrélations d’appariement sont introduites dans le même schéma autoconsistant. 
Ces corrélations, responsables de la formation des paires de Cooper dans les systèmes 
superfluides, sont prises en compte formellement en définissant le concept de 
quasiparticule à travers les transformations unitaires de Bogoliubov. Avec ces 
transformations, les opérateurs de quasiparticule β sont définis comme des 
combinaisons d’opérateurs γ+ et γ  de création et d’annihilation de particules, 
 

( )
( )∑

∑
+
↑↓↓

+
↓↑↑

γ+γ=β

γ−γ=β

n
n

*
nknnkk

n
n

*
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,vu

,vu
                                                  (1.7)                             

 
où les symboles ↑ et ↓ indiquent génériquement deux états renversés par rapport au 
temps.  
L’état fondamental n’est plus un déterminant de Slater de particules indépendantes, 
mais un déterminant de Slater de quasi-particules indépendantes. Cette extension permet 
donc de considérer dans l’état fondamental un certain type de corrélations liées à la 
superfluidité. Cependant, comme le modèle HF, cette méthode néglige tout autre type 
de corrélations et elle est basée, encore une fois, sur une procédure variationnelle qui 
permet de dériver un potentiel moyen effectif en simulant le terme d’interaction à 2 
corps dans l’Hamiltonien par un terme à 1 particule. Les équations HFB, qui décrivent 
l’état fondamental, ont la forme compacte suivante : 
 

⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛⎟
⎠
⎞⎜

⎝
⎛

−Δ
Δ

v
uEv

u
W

W ,                                                  (1.8) 

 
où W contient la partie cinétique, le champ moyen et un éventuel potentiel externe à 1 
corps et Δ représente le champ d’appariement, qui est supposé réel. Les solutions de ces 
équations sont les énergies de quasiparticule E et les fonctions d’onde à deux 
composantes u et v, introduites par les transformations de Bogoliubov. Ces équations 
seront dérivées dans un cadre simplifié dans la section suivante.   
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Si on impose que le champ d’appariement couple seulement des états reliés par 
renversement du temps, une simplification de HFB est obtenue qui correspond 
exactement au modèle BCS introduit par Bardeen, Cooper et Schrieffer pour décrire les 
paires de Cooper d’électrons dans les supraconducteurs [BCS57]. Dans cette 
simplification, les quasiparticules de Bogoliubov ont l’expression suivante : 
 

 
.vu

vu

n
*
nnnnnn

,n
*
nnnnnn

+
↑↓↓

+
↓↑↑

γ+γ=β

γ−γ=β
                                                 (1.9) 

 
**** 

 
Une autre extension naturelle pour le champ moyen est son application à l’étude de 
l’évolution dynamique des systèmes à N corps à travers les théories de champ moyen 
dépendant du temps. Les équations HF ou HFB dépendantes du temps (TDHF ou 
TDHFB) doivent être résolues dans ce cas. Ces équations peuvent être simplifiées  dans 
le cadre de la théorie de la réponse linéaire, et des équations du mouvement peuvent être 
dérivées qui décrivent les modes d’excitation du système dans la limite d’oscillations de 
petite amplitude. Cette procédure correspond à l’approximation des phases aléatoires 
(Random Phase Approximation, RPA). Les équations de la RPA (QRPA si on inclut 
l’appariement), furent introduites il y a quelques décennies et leurs premières 
applications furent réalisées dans les années 50 par  Bohm et Pines pour étudier les 
oscillations d’un gaz d’électrons [BP52]. Les équations (Q)RPA peuvent être dérivées à 
partir des équations TDHF(B) en ajoutant une faible perturbation externe au champ 
moyen et en considérant des variations de la densité ρ (HF), ou de la densité généralisée 
R (HFB), linéaires dans la perturbation externe. Ces méthodes pour la description des 
états excités sont donc basées, elles aussi, sur l’approximation de champ moyen.  
 
Les limites de validité de l’approximation de champ moyen sont mises en évidence dans 
le Chapitre 5 de ce mémoire. Par ailleurs, dans le Chapitre 3, des pistes d’amélioration 
et la formulation d’approches qui vont au-delà du champ moyen sont explorées : sont 
proposés des extensions de la RPA où l’approximation de quasiboson n’est pas 
appliquée et des corrélations sont introduites explicitement dans l’état fondamental.  
 
 
1.4 Les équations Hartree-Fock-Bogoliubov ou 
Bogoliubov-de Gennes 
 
 
Je montre dans cette section une des manières possibles d’introduire les équations HFB 
(mieux connues en physique atomique comme équations Bogoliubov-de Gennes). Une 
procédure très élégante pour dériver ces équations peut se réaliser dans un cas 
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simplifié : (i) symétrie sphérique ; (ii) deux états de spin schématiquement indiqués 
comme ↑ et ↓ ; (iii) interaction de portée nulle qui agit seulement entre deux spins 
opposés. Si l’intensité de l’interaction est V et si nous supposons que l’interaction est 
suffisamment bien décrite par un terme à deux corps, l’Hamiltonien du système est écrit 
comme la somme d’un terme à un corps : 
 

( ) ( )∫ ∑
α

+ αΨαΨ= rUrrdH 1
3

1
rrr ,                                       (1.10) 

 
et d’un terme à deux corps : 
 

( ) ( ) ( ) ( )∫ ∑
αβ

++ αΨβΨβΨαΨ= rrrrrdV
2
1H 3

2
rrrrr ,                           (1.11) 

 
où α et β décrivent les deux états de spin ↑ et ↓. U1 est la somme de la contribution 
cinétique et d’un éventuel potentiel externe à un corps.  
L’approximation de champ moyen correspond à introduire un Hamiltonien effectif 
ayant la forme suivante : 
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              (1.12) 

 
où He est défini par la relation :  
 

( ) ( )∑ ∫
α

+ αΨαΨ=λ− rHrrdNH e
3

1
rrr .                              (1.13) 

 
N est l’opérateur nombre de particules : 
 

( ) ( )∑ ∫
α

+ αΨαΨ≡ rrrdN 3 rrr                                        (1.14) 

 
et λ est le potentiel chimique.  
Puisque l’Hamiltonien Heff est une forme quadratique en Ψ et Ψ+, il peut être 
diagonalisé par une transformation unitaire, comme les transformations de Bogoliubov,   
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du même type que les équations (1.7). Les transformations de Bogoliubov diagonalisent 
Heff : 
 

∑
α

α
+
αγγε+ε=

n
nnn0effH ,                                       (1.16) 

 
où ε0 et εn sont, respectivement, les énergies de l’état fondamental et de l’état excité n . 
L’équation (1.16) peut être écrite de manière équivalente comme, 
 

[ ]

[ ] .,H

,,H

nnneff

nnneff

+
α

+
α

αα

γε=γ

γε−=γ
                                         (1.17) 

 
Nous calculons maintenant [ ]effH,Ψ  en utilisant l’expression de Heff, Eq. (1.12), et les 
propriétés d’anticommutation des opérateurs Ψ : 
 

( )[ ] ( ) ( ) ( ) ( )
( )[ ] ( ) ( ) ( ) ( ).rr*r)r(WHH,r

,rrr)r(WHH,r

eeff

eeff
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+

rrrrr
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               (1.18) 

 
Si maintenant nous utilisons les transformations de Bogoliubov et les éqs. (1.17), nous 
obtenons les équations HFB à partir des équations (1.18) : 
 

( ) ( )[ ] ( ) ( ) ( )
( ) ( )[ ] ( ) ( ) ( ).rur*rvrW*Hrv

,rvrrurWHru
e

e rrrrr
rrrrr

Δ++−=ε
Δ++=ε                         (1.19) 

 
Dans ces équations, W est le champ moyen et Δ le champ d’appariement qui sont 
évalués avec une procédure variationnelle. Nous imposons que l’énergie libre F soit 
stationnaire : 
 

,STHF0 δ−δ=δ=                                     (1.20) 
 
où la moyenne de H est définie comme : 
 

( )
( ) TK

1,
Eexp

EexpH
H

B
=β

β−

β−φφ
≡

∑
∑

φ φ

φ φ
.                       (1.21) 

 
En calculant 21 HHH +=  (Eqs. (1.10) et (1.11)) et en utilisant le théorème de 
Wick, nous obtenons : 
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Nous imposons que TSHF eff1 −= soit stationnaire par rapport aux variations δu et 
δv puisque nous supposons que l’énergie libre F1 calculée avec les états qui 
diagonalisent Heff est stationnaire :  
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En comparant les équations (1.22) et (1.23) nous concluons que F est stationnaire si : 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) .rrVrrVr
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Cela nous mène à définir les densités de particule,  
 

( ) ( ) ( ) ( ) ( ) ( )[ ]∑ +−=αΨαΨ≡ρ +

n

2
nn

2
nn rufrvf1rrr rrrr ,                      (1.25) 

 
et d’appariement, 
 

( ) ( ) ( ) ( ) ( ) ( )[ ]∑ −−=↑Ψ↓Ψ≡ρ
n

n
*
nn rurvf21rrr~ rrrr ,                          (1.26) 

 
où : 
 

( ) 1exp
1f

n
n +βε
=                                                (1.27) 

 
est la fonction de Fermi qui décrit la dépendance en température.  
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La procédure variationnelle a donc permis de dériver les expressions suivantes pour le 
champ moyen et le champ d’appariement écrits en fonction des densités de particule et 
d’appariement : 
 

( ) ( )rVrW rr
ρ= ,                                                  (1.28) 

 
( ) ( )r~Vr rr

ρ=Δ .                                                   (1.29) 
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Chapitre 2 
  

Les noyaux exotiques décrits par 
les modèles de champ moyen 
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2.1 Introduction 
 
 
Les noyaux instables sont des systèmes quantiques faiblement liés qui n’existent pas 
naturellement sur Terre. Leur étude systématique a débuté il y a une quinzaine d’années 
quand leur production a été rendue possible grâce à l’exploitation des faisceaux 
radioactifs dans les accélérateurs. Dans quelques cas, des régions de la carte des noyaux 
situées loin de la vallée de la stabilité ont été explorées et les  drip lines nucléoniques 
ont été approchées. Alors que les drip lines protoniques se situent près de la vallée de 
stabilité, l’interaction coulombienne répulsive ne permettant pas de lier des noyaux trop 
riches en protons, les drip lines neutroniques sont prévues très loin des noyaux stables. 
Cela explique pourquoi les drip lines ont pu être approchées et parfois atteintes 
expérimentalement seulement pour certains noyaux riches en protons ou pour des 
noyaux légers riches en neutrons.  
 
Les modèles théoriques prévoient pour les noyaux faiblement liés des propriétés assez 
différentes de celles des noyaux stables : des structures à halo pour les noyaux légers, 
des peaux de neutrons pour les noyaux plus lourds, des changements dans la séquence 
des nombres magiques et donc de la structure en couches, des modes d’excitation 
nouveaux, … Certains de ces phénomènes, comme les halos dans les noyaux légers 
[Ta85], la modification des nombres magiques [So08] ou l’existence de nouveaux 
modes d’excitation de basse énergie (excitations pygmées) [Ad05], ont été mis en 
évidence expérimentalement. Cela crée un scénario exotique où les théoriciens sont 
impliqués dans le choix et la formulation des méthodes les mieux adaptées. Ce cadre de 
travail pour les théoriciens se situe dans un contexte très dynamique lié aux projets de 
construction d’accélérateurs de nouvelle génération dans différents laboratoires dans le 
monde. Ces installations vont permettre bientôt la production de faisceaux radioactifs 
avec des intensités plus élevées que les intensités disponibles dans les accélérateurs 
actuels. RIBF à Riken commence déjà à fonctionner. Spiral2 à Ganil et FAIR au GSI 
seront disponibles dans quelques années et, à plus long terme, le projet européen 
EURISOL va démarrer. Cela permettra d’une part de mieux connaître les propriétés de 
noyaux qui ont déjà été observés et, d’autre part, d’explorer de nouvelles régions de la 
carte des noyaux.  
 
Un jeu subtil de différents types de corrélations détermine le comportement des noyaux 
exotiques. Les corrélations d’appariement, entre autres, qui dans les noyaux stables ne 
donnent pas un apport très important à l’énergie de liaison, se révèlent être, dans les 
noyaux faiblement liés, une contribution parfois fondamentale pour la description des 
drip lines. Les noyaux situés à proximité d’une drip line sont très faiblement liés : 
l’énergie de Fermi des neutrons ou des protons est voisine de zéro et, pour ces systèmes, 
l’interaction attractive d’appariement peut jouer un rôle fondamental pour les maintenir 
liés. De plus, les corrélations d’appariement peuvent faire diffuser très facilement des 
paires de neutrons ou de protons vers les états du continuum qui sont assez proches des 
derniers états occupés. Le traitement correct des corrélations d’appariement et 
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l’inclusion des états du continuum sont donc deux aspects très importants pour une 
bonne description de ces systèmes [Gr01].  
 
 
2.2 L’interaction nucléaire 
 
 
Une des difficultés majeures dans le problème à N corps nucléaire réside dans le fait 
que l’interaction nucléaire dans le noyau n’est pas connue, bien qu’un certain nombre de 
ses propriétés aient été analysées et soient maintenant bien comprises.  
 
Le point de départ dans une démarche complètement microscopique est l’interaction 
nucléon-nucléon nue. Des interactions réalistes sont obtenues avec des ajustements 
phénoménologiques pour reproduire à la fois les déphasages dans les collisions nucléon-
nucléon et la spectroscopie des systèmes très légers. La grande difficulté est le passage 
du système nucléon-nucléon libre au système composé par des nucléons dans un milieu. 
L’existence d’un cœur dur infiniment répulsif rend le problème impossible à résoudre. 
Une manière de surmonter cette difficulté est proposée par la méthode de Brueckner-HF 
(ou Dirac-Brueckner-HF dans le cas relativiste), où l’interaction est remplacée par une 
interaction effective à travers l’utilisation de la matrice G de Brueckner. Des 
applications sont faites surtout dans la matière nucléaire [Ba99]. Pour le traitement des 
noyaux légers, les interactions réalistes sont amplement utilisées dans les méthodes ab-
initio, telles que l’approche ‘No-Core Shell Model’ [Fo05, Ro09], le modèle de 
‘Coupled Cluster’ [Ha08] ou la méthode de ‘Green’s function MonteCarlo’ [Wi02].   
 
Comme déjà mentionné, les interactions réalistes sont ajustées en imposant des 
contraintes sur les déphasages dans les collisions nucléon-nucléon. Ces interactions ont 
des composantes de haut moment. En employant des techniques issues des théories des 
groupes de renormalisation, une interaction ‘universelle’ de bas moment (Vlow-k) peut 
être introduite à partir de ces interactions réalistes [Bo01, Bo03a, Bo03b]. Les 
composantes de haut moment sont intégrées et seulement des composantes jusqu’à un 
cutoff Λ sont présentes. L’interaction nucléon-nucléon Vlow-k peut être utilisée 
directement dans la matière ou les noyaux sans devoir recourir à des resommations avec 
une matrice G et cela ouvre d’intéressantes perspectives pour des applications dans des 
systèmes nucléaires. Il faut mentionner, cependant, que l’inclusion de l’interaction à 3N 
est indispensable pour obtenir un point de saturation raisonnable dans la matière 
nucléaire avec Vlow-k.         
 
La dérivation naturelle de l’interaction nucléon-nucléon et la compréhension profonde 
de ses propriétés devraient se faire en considérant la nature sous-jacente du problème et 
en partant donc de la structure en quarks des nucléons. Cependant, les liens avec la 
QCD sont très difficiles à tisser puisque la physique qui nous intéresse est à basse 
énergie. Aux échelles typiques de la physique nucléaire, la constante de couplage fort 
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est ∼ 1 et le problème est non perturbatif. À travers l’introduction d’une théorie des 
champs effective, toutefois, il est toujours possible de baser la formulation du problème 
(par exemple, dans le cadre de l’introduction d’un Lagrangien dans une théorie 
relativiste) sur certaines symétries de la QCD, comme la symétrie chirale. Ces pistes 
sont de plus en plus explorées depuis quelques années [Ep08].  
 
Les calculs de QCD sur réseau bénéficient par ailleurs des avancées formidables de ces 
dernières années qui ont fait augmenter énormément la puissance de calcul. Des 
premières tentatives de calculer des potentiels nucléaires ont été réalisées avec ces 
calculs ab initio à partir du Lagrangien de la QCD [La08]. 
 
Une manière complémentaire d’attaquer le problème est l’utilisation d’interactions 
phénoménologiques qui permettent de réaliser beaucoup plus facilement des calculs 
numériques sophistiqués pour des noyaux de masses intermédiaires ou lourdes. Les 
interactions phénoménologiques, comme celle de Gogny [Go75] ou celle de Skyrme 
[Sk56, Sk59], sont en effet amplement utilisées dans le cadre des applications des 
modèles de champ moyen à l’étude des noyaux de masses intermédiaires et lourdes. 
Elles sont construites à travers des ajustements phénoménologiques globaux d’un 
certain nombre de paramètres, de manière à reproduire les propriétés de quelques 
noyaux sphériques (énergies de liaison et rayons) et de la matière nucléaire.  
 
Le fondement de l’interaction de Gogny est plus microscopique que celui de 
l’interaction de Skyrme, puisque la première a été introduite à partir d’une matrice G 
réaliste. Dans le même esprit, d’autres travaux ont été effectués dans les années 70 
visant à construire des interactions phénoménologiques à partir d’une matrice G. Je 
mentionne l’étude de Negele et Vautherin de 1972 [NV72] où les techniques 
d’expansion de la matrice densité (DME) sont utilisées pour déduire une interaction 
phénoménologique (une densité d’Hamiltonien) à partir d’une matrice G réaliste. Ces 
auteurs ont montré que la densité d’Hamiltonien H, qui est dérivée avec les techniques 
de DME, est analogue à celle obtenue avec une interaction de Skyrme. De plus, la 
plupart des paramètres ajustés pour les interactions de Skyrme ne sont pas très différents 
de ceux qu’on obtient avec une linéarisation de la densité d’Hamiltonien DME autour 
de la densité de saturation. Cette étude permet donc de baser l’interaction de Skyrme sur 
des fondements formels plus microscopiques.  
 
 
2.3 La fonctionnelle de Skyrme 
 
 
Dans le cadre du champ moyen non relativiste, les interactions effectives 
phénoménologiques se regroupent en deux catégories, les interactions de portée finie 
comme celle de Gogny, et les interactions de portée nulle comme les interactions de 
Skyrme.  
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La forme standard de l’interaction de Skyrme est :  
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avec un terme central, un terme qui simule une portée finie avec une dépendance en 
moments, un terme dépendant de la densité et un terme qui représente la partie de spin-
orbite. La notation est celle habituellement rencontrée dans la littérature (voir par 
exemple [Me03]). 
La densité d’Hamiltonien qui est dérivée à partir de cette interaction en supposant un 
modèle de champ moyen est : 
 

                      H=H0+H3+Heff+Hfin+Hso,                                             (2.2) 
 
où H0 et H3 proviennent des termes en t0 et t3, respectivement, Heff et Hfin sont les 
termes de masse effective et de taille finie et Hso décrit le couplage de spin-orbite. Un 

dernier terme en 2J
t

 est souvent omis, où ∑
μν

μνμν= JJJ 2t est le tenseur courant de spin. 

Dans tout ce qui suit, nous travaillons en symétrie sphérique. Dans ce cas, le tenseur 
courant de spin est facilement écrit en fonction de la densité de spin-orbite dont 
l’expression est : 
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où φ est la fonction d’onde radiale.  
Le terme de la densité d’Hamiltonien provenant des contributions en 2J

t
 est égal à : 
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où :  
 

TC ααα +=  et TC β+β=β  ;                                                (2.5) 
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αC et βC décrivent la contribution centrale non-locale et sont écrits en fonction des 
autres paramètres de la force de Skyrme,  
 

( ) ( )221121C xtxt
8
1tt

8
1

+−−=α ,                                             (2.6) 

( )2211C xtxt
8
1

+−=β .                                                  (2.7) 

 
Ces termes ont été inclus lors des ajustements de certaines paramétrisations de Skyrme 
comme SLy5 [Ch98] ; αT et βT sont les paramètres qui décrivent la contribution 
tensorielle, qui a été prise en compte dans des paramétrisations plus récentes [Le07].  
D’autres termes non standards peuvent être ajoutés. Un exemple en est donné dans la 
section 2.7 où des termes dépendant de la densité de spin sont introduits et leur effet est 
analysé.  
 
 
2.4 Les équations Skyrme-HFB en symétrie sphérique 
 
 
Dans le cas où la symétrie sphérique est imposée et que l’interaction de Skyrme est 
utilisée, les équations HFB ont la forme suivante : 
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où ui sont les parties radiales multipliées par r des fonctions d’onde ϕi : 
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Dans l’équation (2.8) : 
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Les expressions des paramètres d’inerties M et M~ , des potentiels U et U~ , et des 
facteurs de forme de spin-orbite B et B~  sont données dans l’Appendice A de l’article 
[Do84]. Nous reportons ici les expressions pour M, U et B dans le cas où les termes en 
J2 sont négligés dans la densité d’Hamiltonien : 
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où τ est la densité d’énergie cinétique, q distingue entre neutrons et protons et les 
quantités sans q dénotent les densités totales.  
 
 
2.5 Évolution de la structure en couches et noyaux-
bulle (effets du terme tenseur) 
 
 
Si l’étude des noyaux se révèle un exercice complexe à cause de la difficulté de traiter 
ces systèmes à N corps et de détailler la nature de l’interaction nucléaire, le problème se 
complique ultérieurement lorsqu’on s’éloigne de la vallée de stabilité et que l’on veut 
traiter les noyaux exotiques situés dans des régions inexplorées de la carte.  
C’est un défi très important : d’une part, les données expérimentales concernant les 
noyaux exotiques sont encore très peu nombreuses et, d’autre part, les extrapolations 
aux noyaux instables, à partir des propriétés bien connues pour les noyaux stables, 
peuvent être trompeuses. Une réflexion s’impose pour comprendre quel est actuellement 
le pouvoir prédictif des modèles couramment utilisés et comment, éventuellement, nous 
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pourrions améliorer ce pouvoir de prédiction par leur raffinement ou par la conception 
de nouveaux modèles. Ces considérations seront discutées dans le Chapitre 5.  
À la fin de cette Section, j’inclus les articles [Gr07a], [Gr09] et [Be06] que je décris 
brièvement dans la suite.  
 

**** 
 
[Gr07a] Évolution des états individuels (terme tenseur) 
 
Une première étude systématique que nous avons effectuée concerne l’évolution de la 
structure en couches dans les isotopes de Ca [Gr07a]. Nous avons analysé, dans le cadre 
du modèle HF non relativiste et Hartree relativiste (que nous appellerons RMF dans la 
suite), l’évolution des états protoniques 2s1/2 et 1d3/2. Les différentes contributions aux 
énergies individuelles de ces états, cinétique, centrale, spin-orbite et tensorielle, ont été 
isolées. Le rôle joué par le spin-orbite dans l’évolution de la structure était déjà bien 
connu : le développement d’une peau de neutrons dans les isotopes riches en neutrons 
génère une modification du potentiel spin-orbite qui est lié à la dérivée de la densité 
(voir Eqs. 2.15) [Do94]. Nous avons voulu analyser aussi les autres contributions de 
manière systématique.  
Analogies et différences entre différents modèles ont été mises en évidence. Une 
propriété commune qui a été observée avec tous les modèles utilisés est la tendance à 
une inversion entre les deux états individuels autour du 48Ca et dans les isotopes très 
riches en neutrons. En particulier, nous avons montré que, autour du 48Ca, cette 
tendance est due au terme central et est favorisée par le terme tenseur. Dans cette 
analyse, un accent spécial est mis justement sur la contribution tensorielle, très discutée 
depuis les travaux d’Otsuka dans le contexte du modèle en couches [Ot05]. Dans le 
cadre du champ moyen, l’effet du tenseur provient des contributions π–nucléon et ρ–
nucléon au terme d’échange [Lo06]. Il peut être pris en compte dans les interactions 
phénoménologiques comme celles de Skyrme [Sk59, St77]. Des analyses de ses effets 
et des paramétrisations pour le champ moyen avec Skyrme ont été proposées récemment 
[Br07, Co07, Le07]. 
 
Pour illustrer quelques résultats de notre travail, je montre dans la Figure 2.1 la 
différence des énergies individuelles des états protoniques 2s1/2 et 1d3/2 obtenue avec 
différents modèles non relativistes (sans contribution tensorielle). On observe la 
tendance commune à tous les modèles qui prédisent un rapprochement des deux états 
autour du 48Ca et pour les isotopes plus riches en neutrons. Dans certains cas, les deux 
états se croisent et une inversion a lieu. Des résultats tout à fait analogues sont obtenus 
avec les modèles relativistes.  
L’effet du terme tensoriel, qui favorise l’inversion entre les deux états, peut être estimé 
dans la Figure 2.2, où la même différence d’énergies est montrée avec le modèle SLy5-
HF qui contient les termes en J2. Les valeurs des deux paramètres αT et βT, Eq. (2.5), 
sont les mêmes que dans l’article [Co07]. 
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Fig. 2.1. Différence des énergies individuelles des états protoniques 2s1/2 et 1d3/2 
obtenue avec différents modèles Skyrme-HF pour les isotopes de Ca. 
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Fig. 2.2. Différence des énergies individuelles des états protoniques 2s1/2 et 1d3/2 
obtenue avec SLy5-HF pour les isotopes de Ca avec (carrés) et sans (cercles) tenseur. 

 
 

**** 
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[Gr09] Noyaux-bulles 
 
Le même comportement qui se manifeste autour du 48Ca et pour les isotopes de Ca très 
riches en neutrons est prédit aussi dans les isotopes d’Ar (autour du 46Ar et pour les 
isotopes très riches en neutrons). Dans les noyaux d’Ar, l’inversion éventuelle entre les 
deux états protoniques de particule individuelle (prédite par certains modèles) 
favoriserait la formation de structures qu’on appelle ‘à bulle’ caractérisées par des 
densités protoniques fortement creusées à l’intérieur du noyau [To04, Kh08]. Ces 
profils creusés au centre sont reliés au dépeuplement de  l’orbitale 2s1/2. Les résultats 
obtenus pour les isotopes d’Ar restent toutefois difficiles à interpréter. Les structures à 
bulles pour ces noyaux sont prédites seulement par les modèles où les corrélations 
d’appariement sont négligées. En effet, ces corrélations peuvent atténuer très fortement 
le phénomène des bulles en promouvant le peuplement de l’état s. À cause du fait que 
les états 2s1/2 et 1d3/2 sont très proches en énergie, presque dégénérés [Ga06c], nous 
nous attendons à ce que les corrélations d’appariement ne soient pas négligeables dans 
le noyau 46Ar. Par ailleurs, les isotopes d’Ar plus exotiques, où les modèles théoriques 
prévoient que l’appariement soit moins actif parce que les deux états individuels sont 
plus éloignés l’un de l’autre, ne pourront pas être produits dans un futur proche. 
       
À  la suite de ce travail nous avons voulu analyser plus en détail les prédictions 
théoriques sur l’existence éventuelle d’autres candidats pour des structures à bulles. 
Nous nous sommes concentrés sur le noyau 34Si qui semblerait être un excellent 
candidat grâce à la fermeture de sous-couche Z=14 très marquée qui le caractérise. Ce 
noyau se comporte pratiquement comme un noyau magique et les corrélations sont 
presque absentes. Les résultats de cette analyse sont illustrés dans l’article [Gr09].  
Dans ce travail, la quantité qui est utilisée pour définir une bulle est : 
 

max

CmaxF
ρ

ρ−ρ
≡ ,                                                   (2.16) 

 
où ρmax et ρC sont, respectivement, les valeurs maximum et centrale de la densité. En 
s’appuyant sur le modèle en couches et sur différents modèles de champ moyen 
relativiste et non relativiste, une valeur de F de ∼ 25 % est prédite pour la densité de 
charge dans le noyau 34Si.   
 
A titre d’exemple, dans la figure 2.3 le profil radial de la densité de charge calculée avec 
SLy4-HF pour 34Si est présenté. Dans la même figure, on dessine aussi, pour 
comparaison, la densité de charge du noyau 36S (où l’état s est rempli).  
 
La preuve expérimentale directe sur l’existence éventuelle de ces structures à bulle pour 
les densités devrait se réaliser en principe avec de la diffusion d’électrons qui 
permettrait de sonder directement la distribution de charge. Cependant, le noyau 34Si est 
un noyau instable et cette diffusion peut se réaliser seulement dans des anneaux de 
stockage qui ne sont pas disponibles à l’heure actuelle.  
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Une manière moins directe d’accéder à cette information serait de mesurer le facteur 
spectroscopique (pourcentage d’occupation) de l’état s. Une valeur proche de zéro serait 
un signal très fort de la présence d’une structure à bulle dans le noyau.   
Une expérience de knockout de protons pour sonder le facteur spectroscopique de l’état 
s dans le noyau 34Si a été acceptée au MSU et sera réalisée l’année prochaine.  
 
 

0 1 2 3 4 5 6 7 8
r (fm)

0

0.02

0.04

0.06

0.08

0.1

P
ro

to
n 

de
ns

it
y

36S

34Si

 
 

Fig. 2.3. Densités de charge de 34Si et 36S calculées avec SLy4-HF 
 
 

**** 
 
[Be06] Nouvelle fermeture de couche N=14 
 
Le noyau 34Si est un candidat idéal pour une structure à bulle grâce à son comportement 
comparable à celui d’un noyau magique. Si la fermeture N=20 pour les neutrons est 
attendue selon la structure en couches habituelle, la fermeture Z=14 est un nouveau 
phénomène qui caractérise certains noyaux exotiques [So08]. Je mentionne à ce propos 
un travail où l’existence de ce nouveau nombre magique 14 dans les noyaux instables a 
été mise en évidence expérimentalement pour le noyau 22O [Be06]. Dans ce cas, la 
nouvelle fermeture de couche se manifeste pour les neutrons. Dans ce travail, j’ai 
contribué à l’analyse microscopique effectuée dans le cadre du modèle Skyrme-HFB 
avec continuum. Les densités de particule obtenues dans HFB avec continuum ont été 
utilisées pour l’évaluation du potentiel optique microscopique avec un modèle de 
folding. 
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We analyze the evolution with increasing isospin asymmetry of the proton single-particle states 2s1/2 and
1d3/2 in Ca isotopes, using nonrelativistic and relativistic mean-field approaches. Both models give similar
trends and it is shown that this evolution is sensitive to the neutron shell structure, the two states becoming more
or less close depending on the neutron orbitals that are filled. In the regions where the states get closer some
parametrizations lead to an inversion between them. This inversion occurs near 48Ca as well as very far from
stability where the two states systematically cross each other if the drip line predicted in the model is located far
enough. We study in detail the modification of the two single-particle energies by using the equivalent potential
in the Schroedinger-like Skyrme-Hartree-Fock equations. The role played by central, kinetic, and spin-orbit
contributions is discussed. We finally show that the effect of a tensor component in the effective interaction
considerably favors the inversion of the two proton states in 48Ca.
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I. INTRODUCTION

Novel properties and new scenarios are expected for nuclei
situated far from stability. The new generation of radioactive
beam facilities will allow us to answer many open questions
about the pecularities of these unstable systems. One of the
major issues in the physics of exotic nuclei is the study
of shell structure and magicity evolution when approaching
the drip lines [1,2]. From a theoretical point of view, two
aspects have been underlined as mainly responsible for the
evolution of single-particle energies far from stability, the
one-body spin-orbit potential that is strongly modified when
the surface becomes more diffuse [1] and the tensor force
between neutrons and protons in valence subshells [3].

Recently, the N = 28 shell closure has been experimentally
analyzed in the 46Ar(d, p)47Ar transfer reaction [4]. A strong
reduction of the neutron p spin-orbit splitting has been
observed in 47Ar with respect to the isotone 49Ca. Because
p states are mainly localized in the interior of the nucleus,
this strong reduction cannot be justified by the presence of
a diffuse surface that would affect only high-l states mainly
concentrated at the surface. A theoretical analysis based on
the relativistic mean field (RMF) approach has been proposed
by Todd-Rutel et al. [5]. A strong reduction of the spin-orbit
splitting for neutron 2p states is found in 46Ar as compared to
48Ca. At Z = 20, the state 2s1/2 is usually located between
1d5/2 and 1d3/2. In the RMF calculations of Ref. [5],
however, 2s1/2 is less bound than 1d3/2 in both 46Ar and 48Ca
(2s1/2-1d3/2 inversion). In this scenario, 2s1/2 is empty in
46Ar and occupied in 48Ca: thus, the proton density profile
in 46Ar presents a strong depletion in the interior of the

nucleus. This reduction of the charge density in the center
would be responsible for the modification of the spin-orbit in
the nuclear interior and, hence, for the reduction of the neutron
2p splitting.

This problem of 2s1/2-1d3/2 inversion of the proton states
has been already analyzed by Campi and Sprung [6] within the
Hartree-Fock (HF) + BCS model with an interaction derived
from a G matrix [7]. 36Ar was found as a candidate for this
inversion. Skyrme forces do not lead to any inversion in this
nucleus. It is thus worthwhile to revisit the problem for other
nuclei in this region of the nuclear chart in the framework of
the Skyrme-HF model.

In this work, we analyze the evolution of the s-d pro-
ton single-particle states in Ca isotopes and the possible
2s1/2-1d3/2 inversions. We also present some comparisons
with the corresponding results obtained within RMF. We
neglect pairing in our treatment because Ca isotopes are proton
closed-shell nuclei. We have checked that, within RMF the
inclusion of neutron pairing does not modify in a significant
way the evolution of the proton states we are interested in. The
only important effect due to pairing is the shift of the drip line
toward heavier isotopes (for example, the drip line is shifted
from 60Ca to 76Ca with the parametrization NL3 [8]). However,
this aspect is not relevant in the present analysis, which is not
intended to make any prediction on the drip line position.
We choose the Ca isotopes because experimental signals for
the inversion phenomena have been found at least in one of
these isotopes, 48Ca: the ground state of 47K (one proton less
than 48Ca) is 1/2+ with a large spectroscopic factor [9] and
the single-particle spectrum of 48Ca has been measured, the
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proton state 1d3/2 being more bound than 2s1/2 by about
300 keV [10]. We mention that proton centroids extracted
from (d, 3H ) reactions show that the two states are almost de-
generate [11]. In our analysis, we explore all the contributions,
kinetic, central, spin-orbit, and tensor, which can modify the
single-particle energies with increasing A and we show that
not only the spin-orbit and tensor terms are determinant. The
role of the central mean-field term is in particular discussed.
Within the models that lead to the crossing between the two
states, we show that this inversion occurs near 48Ca as well as
in very neutron-rich nuclei close to the drip line.

The article is organized as follows. In Sec. II we study
the evolution with increasing A of the difference �ε between
the 2s1/2 and 1d3/2 energies obtained within nonrelativistic
and relativistic approaches. In Sec. III we concentrate on
the nonrelativistic case and perform a detailed analysis of
the results. The different contributions to �ε are isolated
by analyzing them with the equivalent potential in the
Schroedinger-like HF equations. In Sec. IV the effect of the
tensor force is estimated in the framework of the SLy5-HF [12]
model. Finally, conclusions are drawn in Sec. V.

II. EVOLUTION OF 2s1/2 AND 1d3/2 PROTON STATES
WITHIN SKYRME-HF AND RMF

We first perform a preliminary study with HF calculations of
48Ca using different Skyrme interactions. We then choose three
representative forces: SkI5 [13], which gives a 2s1/2-1d3/2
inversion with an energy difference �ε of ∼800 keV; SGII
[14], which also reproduces the inversion (�ε ∼ 200 keV);
and SLy4 [12] for which there is no inversion. With the three
selected parametrizations we have systematically analyzed the
Ca isotopes from 40Ca up to the HF two-neutron drip line. We
recall that, in the three considered Skyrme parametrizations
there is no explicit tensor force.

We show in Fig. 1 the difference �ε between the energies of
the proton states 2s1/2 and 1d3/2 for the three Skyrme forces.
The inversion takes place where �ε is positive. Corrections to
the individual energies due to the coupling of single-particle
motion with collective vibrations, which are neglected in our
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FIG. 1. Difference between the energies of the 2s1/2 and 1d3/2
proton states calculated with the Skyrme interactions SkI5, SGII, and
SLy4 for Ca isotopes.

treatment, should be expected (see, for instance, Ref. [15]).
However, by considering the energy difference instead of
the individual single-particle energies the effects of these
corrections should be reduced, the coupling to vibrations
having the tendency of shifting upward the energies of both
occupied states.

We observe that the SLy4-HF calculations never lead to the
2s1/2-1d3/2 inversion. However, both SkI5-HF and SGII-HF
models present this inversion around 48Ca as well as for
more neutron-rich isotopes starting from 58Ca up to the drip
line. The HF two-neutron drip line is located at 82Ca, 78Ca,
and 60Ca with SkI5, SGII, and SLy4, respectively. The two
experimental points for 40Ca and 48Ca are also included in the
figure. These points represent the energy splitting between the
1/2+ and 3/2+ states in 39K and 47K, respectively. The three
sets of results globally present the same behavior. Indeed,
in all three cases the quantity �ε starts from a negative
value and increases from A = 40 to A = 48. This generates
a 2s1/2-1d3/2 inversion with SkI5 (in 46Ca, 48Ca, and 50Ca)
and with SGII (in 48Ca). Going from 48Ca up to 52Ca the
states cross again with SkI5 and SGII, whereas the distance
between them increases with SLy4. These results agree with
the experimental indications related to first-forbidden β-decay
measurements [16]: the ground state of 50K has been assigned
as Jπ = 0− and low-energy levels in 50K are dominated by
the (πd3/2)−1 (νp3/2)1 configuration. This is an indication
that the inversion is not present at N = 31 in the K chain and,
thus, at N = 32 in the Ca chain. Beyond 52Ca �ε increases
again with the three parametrizations. This generates another
inversion with SkI5 and SGII starting from 58Ca. We notice
also that the nuclei for which �ε presents maxima or minima
are the same for the three Skyrme forces.

A natural question to ask is whether the above general trends
are specific of the Skyrme-HF approach. It is well known that
the RMF approach gives a spin-orbit potential whose (N-Z)
dependence is somewhat different from that of Skyrme-HF
models [17]. We have performed RMF calculations with
different parametrizations for the same set of Ca isotopes
using the parametrizations DDME1 [18], NL3 [8], and NLB2
[19]. The latter one is chosen as an example of RMF model
that does not lead to a 2s1/2-1d3/2 level inversion. The
calculated values of �ε are shown in Fig. 2 up to 60Ca which
is the two-neutron drip line isotope predicted by DDME1
and NL3. Globally, we observe for �ε the same trend as
that obtained within the nonrelativistic HF, with maxima and
minima corresponding to the same nuclei, 48Ca and 52Ca.
Because comparable trends are obtained in both nonrelativistic
and relativistic approaches we conclude that the calculated
evolution of 2s1/2 and 1d3/2 states is a generic behavior. We
can thus explore more in detail the results by considering only
the nonrelativistic case.

III. ANALYSIS OF THE CONTRIBUTIONS TO �ε

We now concentrate on the maxima and minima of �ε.
They correspond to nuclei with neutron closed shells or
subshells: the maximum at 48Ca corresponds to the closure
of the neutron 1f 7/2 orbital, whereas the minimum at 52Ca

044319-2
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FIG. 2. Difference between the energies of the 2s1/2 and 1d3/2
proton states in Ca isotopes calculated in RMF with the parametriza-
tions DDME1, NL3, and NLB2.

corresponds to the filling of the neutron 2p3/2 state. In the
nonrelativistic Skyrme-HF model the radial HF equations
can be expressed in terms of an energy-dependent equivalent
potential V

lj
eq :

h̄2

2m

[
− d2

dr2
ψ(r) + l(l + 1)

r2
ψ(r)

]
+ V lj

eq (r, ε)ψ(r) = εψ(r),

(1)

where

V lj
eq (r, ε) = V centr.

eq + m∗(r)

m
Ulj

so(r) +
[

1 − m∗(r)

m

]
ε, (2)

with U
lj
so(r) = Uso(r) × [j (j + 1) − l(l + 1) − 3/4]. Uso(r) is

the spin-orbit HF potential and V centr.
eq is

V centr.
eq = m∗(r)

m
U0(r) − m∗2(r)

2mh̄2

[
h̄2

2m∗(r)

]′2

+ m∗(r)

2m

[
h̄2

2m∗(r)

]′′
, (3)

where U0(r) is the central HF potentials and m∗(r) is the
effective mass [12]. For protons U0 includes the Coulomb
potential. Up to a normalization factor the HF radial wave
function φ of energy ε is related to the solution ψ of Eq. (1)
by the relation ψ = (m∗/m)1/2φ. From Eqs. (1)–(3) we can
write �ε as

�ε =
[ 〈T 〉s
〈m∗/m〉s − 〈T 〉d

〈m∗/m〉d

]
+

[ 〈
V centr.

eq

〉
s

〈m∗/m〉s −
〈
V centr.

eq

〉
d

〈m∗/m〉d

]

−
〈
(m∗/m)Ud3/2

so

〉
〈m∗/m〉d , (4)

where T is the kinetic contribution. The three terms of the
right-hand side of Eq. (4)—kinetic, central, and spin-orbit—
are plotted in Fig. 3 for the force SkI5 and the nuclei 40Ca,
48Ca, 52Ca, and 70Ca. Similar results are obtained with SLy4
and SGII. We mention that the mean value of the effective mass
in the denominators of Eq. (4) has very little A dependence
from 40Ca to70Ca. From Fig. 3, one notices that the spin-orbit
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FIG. 3. Kinetic, central, and spin-orbit contributions of Eq. (4)
for SkI5 in 40Ca, 48Ca, 52Ca, and 70Ca.

and kinetic terms present a regular behavior as a function of A.
Both of them are weakened with increasing isospin asymmetry
favoring the inversion in very neutron-rich isotopes. The spin-
orbit term is weakened because the neutron surface becomes
more diffuse with increasing A. In general, the kinetic energy
of an orbital depends on the mean distance between its single-
particle energy and the bottom of the potential in the region
where the wave function is localized. For the two states 2s1/2
and 1d3/2 we can look at the difference εlj − V

lj
eq (r0), where

r0 is the rms radius of the corresponding wave function. The
evolution of V

lj
eq with increasing A is governed by two effects:

(i) the lowering of the proton potential due to the symmetry
term and (ii) the formation of a neutron skin that modifies
the proton distribution by pulling it toward larger radii. The
intensity of these two effects depends on the quantum numbers
of the neutron orbitals that are filled and of the proton wave
function under study. As an illustration, we consider 52Ca and
70Ca. The rms radii r0 and the values εlj − V

lj
eq (r0) are shown in

Table I for the 2s1/2 and 1d3/2 states. From 52Ca to 70Ca the
difference εlj − V

lj
eq (r0) is reduced more for 1d3/2 (4.9%) than

for 2s1/2 (0.4%). This analysis is confirmed by the evolution
of the two rms radii. It is evident that, going from 52Ca to
70Ca, the 1d3/2 wave function is more affected than 2s1/2
by the enlarging of the potential due to the formation of a
thick neutron skin. This explains the increase of the kinetic
contribution to �ε with the neutron number. We consider now
the central term of Eq. (4) that is responsible for the maxima
and minima of �ε, and concentrate on the maximum at 48Ca.
We mention that the major role played by the central term in

TABLE I. The values of r0 and ε − V lj
eq (r0), for

the states 2s1/2 and 1d3/2 in 52Ca and 70Ca. The
interaction is SkI5.

A r0

(fm)
r0

(fm)
ε − V lj

eq (r0)
(MeV)

ε − V lj
eq (r0)

(MeV)

2s1/2 1d3/2 2s1/2 1d3/2
52 3.71 3.70 23.11 19.73
70 3.81 3.89 23.01 18.76
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FIG. 4. V0, V1, and V2 calculated with SkI5 in 40Ca, 48Ca, and 52Ca.

modifying the single-particle energies has been also underlined
by Gaudefroy et al. [4]. We introduce the quantities V0, V1, and
V2 that correspond to the contributions of the three terms of
Eq. (3). They are plotted in Fig. 4 for 40Ca, 48Ca, and 52Ca.
It turns out that the term mainly affected by the neutron shell
structure is V0, which contains the Hartree-Fock potential.

We can separate the energy contributions of the N = Z =
20 core from those of the excess neutrons. For instance, the
total nucleon density ρ is a sum of ρcore and ρexcess, and
similarly for the other types of densities. Then, for any HF
quantity the core contribution is obtained by replacing in its
expression the total densities by core densities, whereas the
neutron excess contribution corresponds to the rest. We show
in Fig. 5 the core and neutron excess contributions to V0. It
is clear that the change of slope at 48Ca is mainly due to the
neutron excess contribution. We have further verified that the
term mainly responsible is the t0 term of the Skyrme force.
The density-dependent term (t3 term) is also sensitive to the
neutron shell structure but with an opposite behavior reducing
the effect due to the t0 term. Hence, the main parameters that
influence the behavior of �ε are x0 and t0 as well as x3, t3, and
α. We have checked that the role played by the other terms of
the HF potential is negligible.
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FIG. 5. Core and neutron excess contributions to V0 for SkI5 in
40Ca, 48Ca, and 52Ca.
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FIG. 6. (Color online) Potential PHF (see text) (top), square of
1d3/2 and 2s1/2 radial wave functions times r2 (middle) and their
product (bottom) calculated with SkI5 in 44Ca, 48Ca, and 52Ca.

To complete our analysis we consider separately the two
single-particle energies 2s1/2 and 1d3/2. We have verified
that the maximum of �ε at 48Ca is mostly due to the energy
of the 1d3/2 state that decreases less rapidly from 48Ca to
52Ca than from 40Ca to 48Ca. This behavior is explained in
Fig. 6. In the top panels the neutron excess contribution PHF

to the HF potential due to the t0 and t3 terms is plotted for
44Ca, 48Ca, and 52Ca (see, e.g., Ref. [12] for the expressions
in terms of the Skyrme force parameters). In the middle
panels we show the squares of the 1d3/2 and 2s1/2 radial
wave functions multiplied by r2. In the bottom panels the
products PHF|φ|2r2 are shown. Because PHF is negative (the t0
contribution is negative and the largest in absolute value) the
proton single-particle energies are lowered with increasing
N -Z, as expected. We observe that in 44Ca and 48Ca the
potential related to the neutron excess (1f 7/2 neutron orbital)
is concentrated in the region where the 1d3/2 wave function
is localized. The overlap with this wave function is thus the
largest and this explains why the filling of the neutron 1f 7/2
orbital has an important effect on the proton 1d3/2 energy that
is strongly lowered. However, when the neutron 2p3/2 orbital
is filled (from 48Ca to 52Ca) the potential changes very little
in the region where the 1d3/2 wave function is appreciable.
This explains why the 1d3/2 energy decreases more from
A = 44 to 48 than from A = 48 to 52. The energy of the 2s1/2
proton state is much less sensitive to the neutron shell structure
in these isotopes and it decreases rather monotonically from
A = 44 to 52.

IV. TENSOR FORCE EFFECT

The tensor force plays certainly a role in the evolution of
single-particle states. This is discussed, e.g., in the framework
of the shell model in Ref. [3]. In a mean-field approach, the
tensor effect originates from the π -nucleon and ρ-nucleon
contributions to the Fock terms [20,21], and it can be
introduced phenomenologically in the parametrizations of
effective interactions built for HF models [22–24]. Recent
progress have been made in determining the tensor terms of
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FIG. 7. Difference between the energies of 2s1/2 and 1d3/2
proton states in 40Ca, 48Ca, 52Ca, and 70Ca calculated with SLy5
with and without the tensor contribution.

Skyrme interactions [25,26] by adjusting the single-particle
spectra measured in N = 82 isotones and Z = 50 isotopes
[27].

When this force is included the spin-orbit potential presents
an additional term depending on the spin density J , namely,

Uq
so = W0

2

(∇ρ + ∇ρq

) + αJq + βJq′, (5)

where q stands for neutrons (protons) and q ′ for protons
(neutrons), α and β consist of a sum of central and tensor
contributions: α = αC + αT , β = βC + βT . The central con-
tributions depend only on the velocity-dependent part of the
Skyrme force, whereas the tensor contributions are generated
by the tensor component of the Skyrme force [23,26]. To
estimate the effect of the tensor force in our case we use
the Skyrme force SLy5 that already contains in the fitting
protocol the terms αC and βC . For αT and βT we adopt the
values determined in Ref. [25] by comparing the Skyrme-HF
predictions with the data of Ref. [27]. These values are
αT = −170 MeV fm5 and βT = 100 MeV fm5. We expect
that the tensor force favors the inversion in 48Ca (see, for
instance, Fig. 4 of Ref. [3]). Actually, from 40Ca to 48Ca the
1f 7/2 neutron orbital is filled. The interaction between the
proton orbital 1d3/2 and the neutron orbital 1f 7/2 is attractive
and its effect is to lower the energy of 1d3/2, thus favoring
the crossing with 2s1/2. As an illustration we performed
SLy5-HF calculations for 40Ca, 48Ca, 52Ca, and 70Ca (70Ca
is still bound within SLy5-HF). We show in Fig. 7 the values
of �ε obtained with and without the tensor contribution. As
expected, the tensor force increases the slope going from 40Ca
to 48Ca, bringing the two states close together and improving
the agreement with the experimental data. The improvement
is quite strong because the value of �ε in 48Ca is equal to
−0.26 MeV and −1.41 MeV with and without the tensor
contribution, respectively. We can also expect that, by adding
the tensor contribution within, for instance, the SkI5 model, the

value of �ε at 48Ca (Fig. 1) would be further increased and this
result would be more similar to the relativistic case DDME1 or
NL3 (Fig. 2). However, a precise conclusion cannot be drawn
because, to perform a proper calculation, including the tensor
effect in the SkI5 model, all the other parameters of the force
should be also readjusted.

V. SUMMARY

In this article we have analyzed the modification of the
proton single-particle states 2s1/2 and 1d3/2 in Ca isotopes
within the nonrelativistic Skyrme-HF and the relativistic
RMF models. Pairing effects have been neglected because
Ca isotopes are proton closed-shell. We are interested in the
evolution of proton states and the inclusion of neutron pairing
does not affect significantly the global trend of our results.
Both models, HF and RMF, lead to the same evolution with
increasing A for the difference �ε of the energies of the two
states. This evolution depends on the neutron orbitals that
are filled, �ε presenting maxima and minima corresponding
to neutron shell or subshell closures. In particular, going from
40Ca to 48Ca the two proton states come closer to each other and
they can sometimes cross in some models. By performing an
analysis based on the equivalent potential in the nonrelativistic
Skyrme-HF approach, we have shown that the kinetic and
spin-orbit contributions present quite a regular behavior with
increasing A. They both strongly favor the inversion of the two
states in very neutron-rich nuclei. We have also verified that
the contribution that is mostly responsible for the maximum
of �ε at 48Ca (and leading to an inversion for some models) is
the central HF potential and, in particular the t0 and t3 terms.
The former term favors the crossing of the two states near
48Ca, whereas the latter acts against it. The net effect is that
the two states get closer and can cross each other in some
models.

We have finally analyzed the role of the tensor force within
the SLy5-HF model and found that its contribution goes in the
same direction as the t0 term of the HF potential, favoring the
inversion of the states near 48Ca.

Our analysis was restricted to a purely mean-field picture.
Work should be done to include effects beyond mean field. For
instance, particle-phonon coupling, which has been neglected
here, is expected to improve the quality of the theoretical
results in the study of single-particle states evolution.

ACKNOWLEDGMENTS

The authors thank K. Bennaceur, A. Bhagwat, G. Colò,
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Bubble nuclei are characterized by a depletion of their central density. Their existence is examined within
three different theoretical frameworks: the shell model and nonrelativistic and relativistic microscopic mean-field
approaches. We analyze 34Si and 22O as possible candidates for proton and neutron bubble nuclei, respectively. In
the case of 22O, we observe a significant model dependence, thereby calling into question the bubble structure of
22O. In contrast, an overall agreement among the models is obtained for 34Si. Indeed, all models predict a central
proton density depletion of about 40% and a central charge density depletion of 25%–30%. This result provides
strong evidence in favor of a proton bubble in 34Si.

DOI: 10.1103/PhysRevC.79.034318 PACS number(s): 21.10.Ft, 21.60.−n, 25.30.Bf, 27.30.+t

I. INTRODUCTION

The “bubble” structure of atomic nuclei is characterized by
a depleted central density. Although it is somewhat unexpected
that a “hole” can be made in a nuclear system where nuclear
forces generate a saturation density (ρ0 ∼ 0.16 fm−3), this
phenomenon has been discussed for many decades. Indeed,
the possibility of bubble nuclei started with the pioneering
work of Wilson in the 1940s [1], who studied the low-energy
excitations of a thin spherical shell, up to the first microscopic
calculations of Campi and Sprung in the 1970s [2]. More
recently, bubbles have been discussed in superheavy and
hyperheavy nuclei [3,4]. The promise of producing more exotic
nuclei with the new generation of RIB facilities has revived
interest in this subject.

Owing to the absence of a centrifugal barrier, s orbitals have
radial distributions peaked in the interior of the nucleus, with
their corresponding wave function extending further into the
surface depending on the number of nodes. In contrast, orbitals
with nonzero angular momenta are suppressed in the nuclear
interior and do not contribute to the central density. Therefore,
any vacancy of s orbitals is expected to produce a depletion of
the central density. By using electron scattering from 206Pb and
205Tl up to large momentum transfers, the radial distribution of
the 3s proton orbital was experimentally mapped and shown to
closely resemble the one predicted by an independent particle
model. The agreement extends from the center of the 206Pb
nucleus all the way to the surface and reproduces accurately
the nodal structure of the wave function [5,6]. Differences in
the charge density between 206Pb and 205Tl revealed that about
80% of the proton removal strength came from the 3s state,
thereby leading to a depletion of the proton density in the
nuclear interior. Specifically, the depletion fraction, defined
as

F ≡ ρmax−ρc

ρmax
, (1)

amounts to F =11(2)%. In this equation ρc and ρmax represent
the values of the central and maximum charge density in 205Tl,
respectively. Yet the small energy difference between the 3s1/2

and the 2d3/2 proton orbitals plus the coupling of the 3s1/2

proton to collective excitations in 206Pb yield a proton hole
strength in 205Tl that is shared among the 3s1/2 and 2d3/2

orbitals, with the former carrying about 70% of the strength
and the latter the remaining 30%. Consequently, the central
depletion in 205Tl relative to 206Pb is not as large as if the
full hole strength would have been carried by the 3s orbital.
Using similar arguments, one can conclude that the depletion
at the center of 204Hg is not expected to be very large, as the
two-proton hole strength will be again shared among the 3s1/2

and 2d3/2 orbitals. Therefore, the search for the best bubble
candidates should be oriented toward nuclei with an s orbital
well separated from its nearby single-particle states and where
correlations are weak. This latter feature arises mainly for
nuclei located at major shell closures.

Recently, the formation of a proton bubble resulting from
the depletion of the 2s1/2 orbital was investigated in 46Ar [7,
8] and in the very neutron rich Ar isotopes [8]. In 46Ar the
proton 2s1/2 and 1d3/2 orbitals are almost degenerate: As in
the case of 206Pb, pairing correlations will lead to a significant
occupancy of the 2s1/2 orbital [9], thus weakening the bubble
effect. This weakening will continue to hold for any N = 28
isotone between Z = 20 and Z = 14 as long as the 2s1/2 and
1d3/2 orbitals remain degenerate, as shown for instance in
Fig. 3 of Ref. [10]. For very neutron rich Ar isotopes, such as
68Ar, the s1/2 proton orbital is predicted to move significantly
above the d3/2 state, hindering the role of pairing correlations
[8,11]. Unfortunately, the production of this exotic nucleus
is far beyond the present and near-future capabilities of RIB
facilities.

A more suitable region of the chart of the nuclides to search
for a proton bubble is that of the N = 20 isotones. Between
Z = 20 and Z = 16 the s1/2 orbital is located about 6.5 MeV
above the d5/2 orbital and about 2.5 MeV below the d3/2 orbital,
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thereby forming two subshell closures at Z = 14 and Z = 16,
respectively [12]. In addition, the N = 20 shell closure is rigid
enough to hinder significant coupling to collective states. If
one assumes a sequential filling of proton orbitals, the 2s1/2

orbital should be completely empty in 34Si but fully filled
in 36S. This may lead to an important change in the proton
density distribution between 36S and 34Si, making 34Si an
excellent candidate for a bubble nucleus. Concomitantly, both
Skyrme and Gogny Hartree-Fock-Bogoliubov models predict
a spherical shape for 34Si [13,14]. Other possible candidates in
the Si-isotopic chain, such as 28Si and 42Si, are not optimal as
they are deformed [15,16]. For these nuclei several correlations
hinder the development of a bubble. The mirror system of (36S,
34Si), (36Ca, 34Ca), could not be studied at present because the
34Ca nucleus has not been observed so far.

A neutron bubble may be found in the oxygen chain, where
large N = 14 (between d5/2 and s1/2) and N = 16 (between
s1/2 and d3/2) subshell gaps of about 4.2 MeV [17,18] and
4 MeV [19], respectively, have been determined. Combined
with the large proton gap at Z = 8, 22O [17,20,21] and 24O
[18,19,22] therefore behave as doubly magic nuclei. In this
case the change in the occupancy of the 2s1/2 neutron orbital
will occur between 22O and 24O, making 22O a good candidate
for a neutron bubble nucleus.

The present article aims at determining whether 34Si and
22O could be considered as good proton and neutron bubble
nuclei, respectively. Various theoretical approaches will be
employed to test the robustness of the results. In Sec. II
these nuclei are analyzed in terms of shell-model calculations
and the occupancies of the proton and neutron orbitals are
determined. In Sec. III we first address the role of pairing
correlations in mean-field approaches and then show results
on microscopic nucleon density profiles obtained from (i) non-
relativistic Hartree-Fock (HF) and Hartree-Fock-Bogoliubov
(HFB) and (ii) relativistic mean-field (RMF) and relativistic
Hartree-Bogoliubov (RHB) microscopic calculations. Com-
parisons to experimental data will be made whenever possible.
Conclusions are drawn in Sec. IV.

II. SHELL-MODEL PREDICTIONS

The occurrence of bubbles in nuclei, as previously defined,
is directly linked to the occupancy of s1/2 orbitals. For both
bubble candidates under study in this article, 22O and 34Si,
experimental values for the occupancies are not yet available.
Thus, we rely hereafter on shell-model (SM) calculations to
estimate the occupation numbers of interest. Calculations have
been performed with the ANTOINE code [23,24] using the USD
interaction [25]. The full sd valence space was considered for
protons and neutrons to study the ground-state configuration
of the nuclei under consideration.

Special care should be taken concerning the contamination
of the physical states of interest by spurious states originating
from the center-of-mass (CM) translation. The internal struc-
ture of a nucleus with N nucleons is described by 3N − 3
coordinates giving the relative positions of its constituents.
The three remaining degrees of freedom describe the CM
motion of the whole nucleus and give rise to spurious CM

effects that modify the properties of the physical states such as
binding energies and occupation numbers, as already shown
by Dieperink and de Forest [26]. Following the work presented
in Ref. [26], it is possible to obtain CM-corrected occupation
numbers, referred to as S ′ in the following, from the occupation
numbers S calculated within the SM framework. For the
2s1/2 and 1d3/2,5/2 orbits, the relation S ′

sd = (
A

A−1

)2
Ssd holds,

where A is the mass number of the considered nucleus. The
corrected occupation numbers for 1p orbits are defined as
S ′

1p = A
A−1 (S1p − 2Ssd

A−1 ) for the nuclei under consideration in
this article. Finally, the sum rule on occupation numbers allows
us to deduce the CM-corrected value for the deeply bound 1s1/2

orbit as

S ′
1s = M −

∑
α �=1s

S ′
α,

where M is either the neutron or the proton number of the
considered nucleus.

The nucleon densities presented in the following have
been evaluated by using the wave functions of a Woods-
Saxon potential (without spin-orbit term), with parameters
V0 = −50 MeV, a = 0.65 fm, and r0 = 1.25 fm [27], and
the SM occupation numbers corrected for CM effects. One
notices that not considering the spin-orbit interaction leads to
the same radial dependence for wave functions of nucleons
occupying orbits with the same principal quantum number (n)
and orbital angular momentum (�), but with different total
angular momentum (J ), as for the 1p3/2 and 1p1/2 orbitals.

A. Neutron bubble: 24O and 22O

The mean occupation numbers S and S ′ of neutron orbits
deduced from SM calculations are reported in Table I. The
difference of the neutron 2s1/2 occupancy between 24O to 22O
amounts to 1.69, where a value of 2 was expected without
nuclear correlations. The remaining neutron strength is mainly
taken from the νd5/2 and to a lesser extent from the νd3/2

orbital. As a result of the depletion of the 1s1/2 and 1p inner
shells, the S ′ occupation numbers for the ν1d5/2 and ν2s1/2

orbits in 24O slightly exceed the standard value of (2J + 1)
(see Table I).

The neutron densities of 22,24O shown in Fig. 1 include the
CM correction just discussed. The effect of the removal of
two neutrons between 24O and 22O is clearly visible from the
comparison of their densities. The effect of the CM correction

TABLE I. Ground-state occupation numbers S of neutron orbits
obtained in the present SM calculations for 24O and 22O. The
corresponding values S ′, corrected for CM effects, are also reported.

Orbital S(24O) S ′(24O) S(22O) S ′(22O)

ν1s1/2 2.00 1.75 2.00 1.73
ν1p3/2 4.00 3.69 4.00 3.79
ν1p1/2 2.00 1.85 2.00 1.90
ν1d5/2 5.75 6.26 5.38 5.91
ν2s1/2 1.89 2.06 0.34 0.37
ν1d3/2 0.36 0.39 0.28 0.31
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FIG. 1. Neutron densities of 24O and 22O (open squares and
triangles, respectively) obtained using the occupation numbers
corrected for CM motion and Woods-Saxon wave functions. The
density of 22O without CM correction is also shown (black triangles).

is to slightly deepen the density profile at small radial distances
(r < 2 fm). Indeed the depletion fraction in 22O, as defined in
Eq. (1), is found to be 28% for the CM-corrected density (open
triangles on Fig. 1) and 24% for the uncorrected density (filled
triangles).

In lighter oxygen isotopes this central depletion should not
persist as the neutron 1d5/2 orbital, located at the surface of
the nucleus, is depleted in concert with the 2s1/2. It follows
that the relative difference of the density in the vicinity of the
surface and at the interior of the nucleus is also reduced.

B. Proton bubble: 36S and 34Si

The mean occupation numbers of the proton 1d3/2 (0.31),
2s1/2 (1.63), and 1d5/2 (5.95) orbitals in 36S have been
obtained from the 36S(d, 3He)35P experiment [28]. The small
occupancy of the 1d3/2 state is due to correlations. The sum
of the deduced spectroscopic factors from the proton pickup
reaction from the whole sd states amounts to

∑
C2S ≈ 7.9.

Within the 20% uncertainties of the method, this is compatible
with

∑
C2S = 8. The mean calculated occupation numbers

S for the proton orbitals, as well as those corrected for CM
motion, S ′, are reported in Table II. The agreement with the
experimental values for 36S is very good, lending confidence
to the SM predictions for 34Si. The mean occupation number
in 34Si, summed over the 1s and 2s orbits, is smaller than in
22O. Moreover, a larger mean occupation number of the d5/2

orbital is predicted in 34Si as compared to 22O. Both effects,

TABLE II. Same as Table I for proton orbits in 36S and 34Si.
Experimental occupancies obtained in Ref. [28] for 36S and SExp(36S)
are also reported.

Orbital S(36S) S ′(36S) SExp(36S) S(34Si) S ′(34Si)

π1s1/2 2.00 1.84 2.00 1.82
π1p3/2 4.00 3.80 4.00 3.87
π1p1/2 2.00 1.90 2.00 1.94
π1d5/2 5.85 6.19 6.0(12) 5.76 6.11
π2s1/2 1.88 1.99 1.63(32) 0.08 0.09
π1d3/2 0.27 0.29 0.31(6) 0.16 0.17
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FIG. 2. Same as Fig. 1 but for charge densities in 36S and 34Si
(see text).

that is, weaker (larger) occupancy at the center (surface),
account for the depletion fraction in the proton density of
34Si found to be F = 44% (F = 41%) with (without) the CM
corrections. The charge densities displayed on Fig. 2 for 34Si
and 36S are obtained by including CM and proton finite-size
corrections. The resulting value of F for 34Si is F = 28%. It
has been shown in the previous section that the effect of the
CM correction is to increase the bubble; this means that the
proton finite-size correction acts in the opposite way: When
both effects are taken into account in the charge density, the
net result is a bubble weakening in 34Si. In the case of the
stable nucleus 36S, the experimental charge distribution is
available [29] and is reported on Fig. 2 as a set of black squares.
The agreement with the SM profile is satisfactory.

It is interesting to note that the proton density depletion
between the N = 20 isotones 34Si and 36S is stronger than the
one reported for the N = 16 isotones 30Si and 32S derived from
Ref. [30]. As seen on Fig. 4 of Ref. [30], the measured charge
density for 30Si does not present a significant dip at the interior
of the nucleus and looks similar to that of 32S. This feature
comes from the modest change in occupancy of the π2s1/2

between 32S(1.35) and 30Si(0.65), which is ascribed to the large
nuclear correlations existing in the N = 16 isotones. These
experimental occupation numbers are in excellent agreement
with the presently calculated ones, reinforcing the reliability
of the SM description to model the nuclei of interest.

The reduction of proton correlations between the N = 16
and N = 20 isotones can be ascribed to the increase of
the Z = 14 shell gap formed between the proton d5/2 and
s1/2 orbits. While growing in size, excitations across it are
progressively hampered. This results in calculated occupancies
of the π2s1/2 orbit of 0.65 in 30Si16 and 0.09 in 34Si20.
The driving mechanism to increase the Z = 14 gap is likely
the strongly attractive πd5/2-νd3/2 proton-neutron interaction.
Adding four neutrons from N = 16 to N = 20 into the νd3/2

orbit strongly binds the πd5/2 orbit in 34Si, thus increasing the
size of the Z = 14 shell gap.

To conclude this section, using SM calculations we have
determined occupation numbers of the proton and neutron
2s1/2 shells in the (36S, 34Si) and (24O, 22O) nuclei, respectively.
From these values, proton or neutron density distributions
have been derived using Woods-Saxon wave functions. The
large depletion of the 2s1/2 orbit gives rise to a central
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density depletion and the appearance of bubble phenomena.
We stress the good agreement between experimental and
calculated occupation numbers for the known nuclei 36S, 32S,
and 30Si. This gives us confidence in the results obtained for
the other nuclei under study. Even though the present method
to derive density distributions is approximate, a reasonable
agreement is found with experimental results for 36S. The
density profiles will be examined in the following section
within a self-consistent microscopic treatment.

III. MEAN-FIELD CALCULATIONS

Self-consistent mean-field approaches enable us to de-
termine microscopically the density distributions of nuclei.
We solve the self-consistent mean-field equations directly in
coordinate space. As in the previous section, we consider
neutron densities for 22O and proton densities for 34Si. These
densities should be corrected for CM effects inherent to the
mean-field procedure. Since we calculate the point proton
and neutron densities directly in coordinate space, we can
use the Campi and Sprung procedure (see Eqs. (3.1) and
(3.2) of Ref. [31]) to obtain the CM-corrected charge density
of 34Si, the finite proton size being treated by a Gaussian
form factor as in Ref. [31]. The Fourier transform of the
CM-corrected charge densities could eventually be compared
with the form factors measured by electron scattering (not
available so far), but accurate predictions for this kind of
comparison are beyond the scope of this article. For this
reason, we keep using the Gaussian finite-size form factor of
Ref. [31] rather than adopting more sophisticated form factors.
To obtain the radial profiles of the CM-corrected neutron
densities in 22O we should transform to k-space the mean-field
point neutron densities, correct them with the proper CM
factor, and transform back to r-space. However, the strongly
model dependent results that we have obtained for 22O with
our mean-field treatments indicate that further refinements of
the mean-field neutron densities will not help us to reach a
conclusion on the issue of a possible neutron bubble in this
nucleus.

For the calculation of nucleon occupation factors, pairing
correlations have to be eventually taken into account. As a first
step before describing the density distributions, we discuss
whether pairing correlations are expected to play some role in
the development of proton and neutron bubbles in 34Si and 22O
nuclei, respectively.

A. Pairing effects

As already alluded to in Sec. I, 22O is expected to
behave almost as a doubly-magic nucleus, being that the
N = 14 subshell closure has been experimentally determined.
However, as shown in the previous section, SM calculations
predict an 18% occupancy of the 2s neutron state, suggesting
that pairing correlations are likely to have some effect on this
nucleus. Pairing correlations will be then included and their
effect on the neutron density profile of 22O will be shown in
the following for both the nonrelativistic and the relativistic
mean-field cases.

Let us now consider the case of 34Si. As an illustration,
we discuss the role of pairing in the nonrelativistic case.
Pairing correlations can be modeled in the Skyrme-Hartree-
Fock-Bogoliubov (Skyrme-HFB) framework by adopting the
following zero-range density-dependent pairing interaction:

Vpair = V0

[
1 − η

(
ρ(r)

ρ0

)α]
δ (r1 − r2) , (2)

with η = 0.5 (mixed surface-volume interaction), α = 1, and
ρ0 = 0.16 fm−3. In the particle-hole channel, we employ the
SLy4 Skyrme parametrization, which is well suited to describe
neutron-rich nuclei. We fix the parameter V0 in Eq. (2) to
reproduce the two-proton separation energy in 34Si. Note that
the two-proton separation energy is defined as

S2p = E(N,Z) − E(N,Z − 2), (3)

where E(N,Z) is the total binding energy of the (N,Z)
nucleus. It should be noted that the experimental value of
S2p = 33.74 MeV is already reasonably well reproduced
without pairing: The HF value is equal to 35.19 MeV. Moreover
the HFB calculations—which include the pairing interaction—
yield negligible corrections, as Z = 14 is predicted by the HFB
approach to be a robust subshell closure in agreement with the
shell-model spectroscopic factors (see Table II where the SM
occupation of the s state is only 4.5%). Our conclusion is that
we can safely perform the analysis of this nucleus by neglecting
pairing since the associated correlations are expected to be
practically zero.

B. Nonrelativistic mean-field approach

Figure 3 displays neutron density profiles in 22O (full line)
and 24O (dashed line) calculated self-consistently within the
SLy4-HF approach. The depletion of the central density in 22O
relative to 24O is clearly visible. However, the bubble profile
is not obvious: Since the central neutron density in 24O is
strongly enhanced, the depletion in 22O does not lead to the
development of a significant central hole. The central depletion
fraction F is ∼13%, much weaker than the SM result. As one
switches on pairing and chooses the same parameters as in
Ref. [32] for the pairing interaction, the central hole is seen
to be partially washed out (dotted line in Fig. 3; F = 3.4%).
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FIG. 3. HF neutron densities (in units of fm−3) of 22O (full line)
and 24O (dashed line) calculated with the Skyrme interaction SLy4.
The dotted line represents the SLy4-HFB neutron density of 22O.
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FIG. 4. HF charge densities (in units of fm−3) of 36S (dashed line)
and 34Si (solid line) calculated with the Skyrme interaction SLy4.

Note that the density profile of 24O remains unchanged when
pairing is switched on.

The SLy4-HF charge density profiles calculated in 34Si
and 36S (where the s state is fully occupied) are shown in
Fig. 4. One observes that the bubble is more prominent in
this case than in 22O. The depletion fraction F is ∼23%
(38% for the proton density without CM and proton finite-size
corrections). The confidence in this result is enhanced by the
good agreement between the predicted density profile for 36S
and the experimental one shown in Fig. 2. We should mention
that pairing is expected to modify the density profile of 36S.
By comparing the HF proton point density in 34Si (F = 38%)
with the HF neutron density in 22O (F = 13%), one observes
that the central value in 34Si is much lower than in 22O. The
contribution to the central value of the density is entirely
due to the first s wave function (i.e., the 1s). The difference
between the two central values may be related to the presence
of a neutron excess at the surface of 34Si. The effect of this
neutron skin on the proton 1s1/2 wave function is to attract
and push it toward the surface, thereby lowering its value at
the center. This effect is obviously absent for the neutron 1s

wave function in 22O because the proton density in this nucleus
is well concentrated in the interior. This can be observed in
Fig. 5 where the neutron (proton) 1s contribution to the HF
density is plotted for 22O (34Si).

C. Relativistic mean-field approach

As in the previous section, calculations are performed for
the two oxygen isotopes 22O and 24O as well as for the two N =
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FIG. 5. Neutron (proton) 1s contributions to the density (in units
of fm−3) for 22O (34Si).

TABLE III. Binding energy per nucleon, charge radii, and
neutron skin thickness for 34Si (upper block) and 36S (lower block) as
predicted by the two RMF models used in this work. When available,
experimental data are provided for comparison.

Model B/A (MeV) Rch (fm) Rn − Rp (fm)

NL3 8.36 3.13 0.25
FSUGold 8.28 3.13 0.21
Experiment 8.34 – –
NL3 8.50 3.26 0.12
FSUGold 8.42 3.26 0.09
Experiment 8.58 3.28 –

20 isotones 34Si and 36S, but now using an RMF approach.
Pairing effects are evaluated within the RHB model. In one
particular realization of the relativistic formalism the dynamics
of the system is dictated by an interacting Lagrangian density
of the following form:

Lint = ψ̄
[
gsφ −

(
gvVµ + gρ

2
τ · bµ + e

2
(1 + τ3)Aµ

)
γ µ

]
ψ

− κ

3!
(gsφ)3 − λ

4!
(gsφ)4 + ζ

4!

(
g2

vVµV µ
)2

+�v
(
g2

ρ bµ · bµ
)(

g2
vVµV µ

)
, (4)

where ψ represents an isodoublet nucleon field interacting
via the exchange of two isoscalar mesons—a scalar (φ) and
a vector (V µ), one isovector meson (bµ), and the photon
(Aµ) [33,34]. In addition to meson-nucleon interactions, the
Lagrangian density is supplemented by nonlinear meson
interactions with coupling constants denoted by κ, λ, ζ , and
�v that are responsible for a softening of the nuclear-matter
equation of state, both for symmetric and pure-neutron matter.
For the RMF case we consider two parametrizations: the very
successful NL3 parameter set [35,36] and a more recent set
known as FSUGold [37]. The main difference between these
two models lies in the prediction of the density dependence
of the symmetry energy. This difference manifests itself in
significantly larger neutron skins for NL3 than for FSUGold
[37]. Neutron skins for the two isotones of interest in the
present work, alongside other ground-state properties, have
been listed in Table III for 34Si and 36S.

RMF neutron densities for the two neutron-rich isotopes
22O and 24O are displayed in Fig. 6. Whereas the RMF results
show a mild model dependence, differences between the
relativistic and nonrelativistic models are significant. Indeed,
in contrast to the nonrelativistic case, the relativistic results
display no enhancement of the central neutron density in
24O. Moreover, the removal of both 2s1/2 neutrons from 24O
yields a strong depletion of the interior neutron density in
22O. As a result, central depletion fractions of F = 34%
F = 28% are predicted for 22O by the FSUGold and NL3
models, respectively. These values are significantly larger
than the 13% depletion fraction obtained with the SLy4-HF
parametrization.
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FIG. 6. RMF neutron densities of 22O and 24O calculated with the
two RMF models described in the text.

In the case of 34Si and 36S one observes, now in agreement
with the nonrelativistic results, how the charge density of 34Si
is significantly depleted in the nuclear interior and how the
proton bubble disappears as soon as the 2s1/2 proton orbital
is filled in 36S (see Fig. 7). This behavior results in central
depletion factors for 34Si of F = 29% and F =25% for the
FSUGold and NL3 parameter sets, respectively. For the proton
densities of 34Si the values of F are 42% and 37% for FSUGold
and NL3, respectively.

Let us quantify now the effects of pairing correlations
within the RHB model. A medium dependence for a relativistic
mean-field interaction can either be introduced by including
nonlinear meson self-interaction terms in the Lagrangian, as
in the case of NL3 and FSUGold, or by assuming an explicit
density dependence for the meson-nucleon couplings. This is
the case of the DD-ME2 model [38] that we adopt to perform
RHB calculations. The couplings of the σ meson and ω meson
to the nucleon are assumed to be of the form

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω, (5)
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FIG. 7. RMF charge densities of 36S and 34Si calculated with the
two RMF models described in the text.
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FIG. 8. Neutron density profiles of 22O and 24O calculated in the
RHB model with the density-dependent interaction DD-ME2 and
Gogny pairing.

where

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(6)

is a function of x = ρ/ρsat, and ρsat denotes the nucleon
density at saturation in symmetric nuclear matter. Constraints
at nuclear matter saturation density and at zero density are used
to reduce the number of independent parameters in Eq. (6) to
three. Three additional parameters in the isoscalar channel are
gσ (ρsat), gω(ρsat), and mσ —the mass of the phenomenological
σ meson. For the ρ meson coupling the functional form
of the density dependence is suggested by Dirac-Brueckner
calculations of asymmetric nuclear matter:

gρ(ρ) = gρ(ρsat) exp[−aρ(x − 1)], (7)

and the isovector channel is parametrized by gρ(ρsat) and aρ .
Bare values are used for the masses of the ω and ρ mesons:
mω = 783 MeV and mρ = 763 MeV. DD-ME2 is determined
by eight independent parameters, adjusted to the properties of
symmetric and asymmetric nuclear matter, binding energies,
charge radii, and neutron radii of spherical nuclei [38]. The
interaction has been tested in the calculation of ground-state
properties of a large set of spherical and deformed nuclei.
When used in the relativistic RPA, DD-ME2 reproduces
with high accuracy data on isoscalar and isovector collective
excitations [38].

In Figs. 8 and 9 we display, respectively, the neutron and
charge density profiles for 22,24O (34Si and 36S) calculated in

0 2 4 6 8
r (fm)

0.02

0.04

0.06

0.08

0.10

0.12

ρ p (
fm

-3
)

34
Si 

36
S (no pairing)

DDME2

FIG. 9. Charge densities of 36S and 34Si calculated in the RHB
model with the DD-ME2 interaction plus Gogny D1S pairing. The
charge density of 36S has been calculated by neglecting pairing.
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TABLE IV. Central fraction of depletion F for neutron densities in 22O (first line) and proton and
charge densities in 34Si (second and third lines, respectively).

Nucleus SM SLy4 SLy4 NL3 FSUGold DDME2 DDME2
HF HFB RMF RMF RMF RHB

22O 24% 13% 3.4% 28% 34% 29% 10%
34Si 41% 38% 38% 37% 42% 36% 36%
34Si (ch.) 28% 23% 23% 25% 29% 25% 25%

the RHB model [39] with the DD-ME2 effective interaction in
the particle-hole channel, and with the Gogny interaction [40]
in the pairing channel,

V pp(1, 2) =
∑
i=1,2

e−[(r1−r2)/µi ]2

× (Wi + BiP
σ − HiP

τ − MiP
σ P τ ), (8)

with the set D1S [41] for the parameters µi,Wi, Bi,Hi , and
Mi (i = 1, 2).

For 24O and 34Si the RHB calculation with the DD-ME2
interaction predicts neutron and charge density profiles similar
to those calculated with NL3 and FSUGold. Because of the
large gaps between νs1/2 and νd3/2 in 24O, and between πd5/2

and πs1/2 in 34Si, we find a pairing collapse in these nuclei,
in agreement with nonrelativistic predictions. However, the
inclusion of pairing correlations has a pronounced effect on
the neutron density profile in 22O. When pairing is set to zero
(dash-dot curve in Fig. 8) the νs1/2 orbital is empty in 22O.
The resulting DD-ME2 density profile is again very similar to
that calculated with the two other RMF interactions. However,
the pairing interaction in the RHB model calculation modifies
the occupancy of the two 2s1/2 orbitals, thus reducing the
pronounced bubble in the neutron density of 22O. For an easier
and coherent comparison between Figs. 4 and 9, the charge
density of 36S shown in Fig. 9 has been calculated by neglecting
pairing.

In the DD-ME2 model the F values are found equal to 29%,
10%, and 25% for 22O (without pairing), 22O (with pairing),
and charge density of 34Si (giving the same result with and
without pairing), respectively. For the proton density of 34Si
F = 36%.

IV. SUMMARY AND CONCLUSIONS

The occurrence of proton and neutron bubbles in 34Si and
22O, respectively, has been investigated using three different
theoretical approaches: (i) the shell model, (ii) the Skyrme
mean-field model, and (iii) the relativistic mean-field model.
This occurrence can be quantified by the values of the depletion
fraction F, which we have evaluated in these different
approaches and which are summarized in Table IV.

For the 22O nucleus the CM correction has been performed
only in the SM framework. The strongly model dependent
results that we have obtained for this nucleus with our

mean-field treatments indicate that further refinements of
the mean-field neutron densities will not help us to reach
a conclusion on the issue of a possible neutron bubble. To
compare in a coherent way all the values of F for 22O in
Table IV, the SM values without CM correction have been
used. Indeed, a very significant model dependence has been
found for this nucleus. Moreover, in both nonrelativistic and
relativistic cases, pairing correlations have been shown to
weaken the bubble phenomenon. It would be worth having
experimental confirmation of this prediction. In contrast, for
34Si an overall agreement exists: A central depletion fraction of
∼40% is predicted by all the models for the proton densities.
In the last line of Table IV, the values of F for the charge
density are shown (F ∼ 25%–30%).

The strong model dependence for 22O and the overall
agreement for 34Si are easy to explain. For both nuclei
the single-particle spectra are sensibly model dependent.
However, the gap N = 14 is predicted by all the models to
be much smaller than the gap Z = 14. The very large gap
Z = 14 prevents pairing and other correlations from being
active in 34Si, providing thus density profiles that are not
sensible to the differences of the models. In contrast, for 22O,
pairing plays some role and, consequently, the density profiles
show a dependence on the model (based on single-particle
spectra and intensity of pairing interaction). This reinforces
the conclusion that 34Si is indeed a good candidate for a bubble
density profile. The measurement of the charge density in 34Si
could be undertaken, for instance, by electron scattering in an
exotic beam collider, such as EXL in FAIR and RIBF in Riken.
The bubble impact on the momentum distribution in these
experiment has been investigated in Ref. [8]. The fraction F

for the charge densities is equal to ∼25%–30%. The effect is
reduced with respect to what is found for the proton densities,
but it is still important and could be observed experimentally.
The study of 34Si, either by high-energy proton scattering (to
focus on the matter distribution) or by direct reactions (to
determine whether the occupancy of the 2s1/2 proton orbit has
dropped to nearly zero, thus confirming the SM predictions
shown in Sec. II.), is already feasible [8].
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[38] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev.

C 71, 024312 (2005).
[39] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,

Phys. Rep. 409, 101 (2005).
[40] J. F. Berger, M. Girod, and D. Gogny, Nucl. Phys. A428, 23

(1984).
[41] J. F. Berger, M. Girod, and D. Gogny, Comput. Phys. Commun.

63, 365 (1991).

034318-8
43



PRL 96, 012501 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JANUARY 2006
N � 14 Shell Closure in 22O Viewed through a Neutron Sensitive Probe

E. Becheva,1 Y. Blumenfeld,1 E. Khan,1 D. Beaumel,1 J. M. Daugas,2 F. Delaunay,1 Ch-E. Demonchy,3 A. Drouart,4

M. Fallot,1 A. Gillibert,4 L. Giot,3 M. Grasso,1,5 N. Keeley,4 K. W. Kemper,6 D. T. Khoa,7 V. Lapoux,4 V. Lima,1

A. Musumarra,5 L. Nalpas,4 E. C. Pollacco,4 O. Roig,2 P. Roussel-Chomaz,3 J. E. Sauvestre,2

J. A. Scarpaci,1 F. Skaza,4 and H. S. Than7
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To investigate the behavior of the N � 14 neutron gap far from stability with a neutron-sensitive probe,
proton elastic and 2�1 inelastic scattering angular distributions for the neutron-rich nucleus 22O were
measured using the MUr à STrip detector array at the Grand Accélérateur National d’Ions Lourds facility.
A deformation parameter �p;p0 � 0:26� 0:04 is obtained for the 2�1 state, much lower than in 20O,
showing a weak neutron contribution to this state. A microscopic analysis was performed using matter and
transition densities generated by continuum Skyrme-Hartree-Fock-Bogoliubov and quasiparticle random
phase approximation calculations, respectively. The ratio of neutron to proton contributions to the 2�1 state
is found close to the N=Z ratio, demonstrating a strong N � 14 shell closure in the vicinity of the neutron
drip line.

DOI: 10.1103/PhysRevLett.96.012501 PACS numbers: 21.10.Re, 25.40.Cm, 25.40.Ep, 27.30.+t
Shell structure is a distinctive feature of many-body
fermionic systems, such as metallic clusters, atoms, and
nuclei [1–3]. Such structure is characterized by the exis-
tence of magic numbers. Nuclei are composed of two types
of interacting fermions, giving rise to a specific degree of
freedom, isospin. Therefore, there are magic numbers for
both neutrons and protons, which are, in principle, the
same if charge independence holds. An important question,
specific to nuclear physics, is the robustness of the shell
closures as a function of neutron to proton asymmetry: An
eventual modification of magic numbers far from stability
could have major implications on our understanding of
nucleosynthesis through the r and rp processes, as nuclear
structure is an important input to the models of explosive
astrophysical scenarios [4]. Theoretical predictions for the
disappearance of well-known magic numbers and the ap-
pearance of new shell gaps far from stability have recently
been given [5,6]. With the advent of radioactive beams
during the past decade, experimental indications of such a
behavior have emerged (see, e.g., [7]) for neutron magic
numbers. However, the neutron gap is usually measured
with an exclusively proton sensitive probe, such as
Coulomb excitation. Only indirect information on the neu-
tron gap evolution is obtained, through the neutron-proton
interaction. Complementary probes are, therefore, neces-
sary to investigate the neutron behavior. The purpose of
this Letter is to give, for the first time, experimental evi-
dence for a new neutron magic number using a probe
mainly sensitive to neutrons.
06=96(1)=012501(4)$23.00 01250
In this context, one of the most studied areas is the
neutron-rich part of the oxygen isotopic chain which has
a well-established proton magic number Z � 8: Many
experimental [8–11] and theoretical [5,12–14] efforts
have been devoted to the 18–24O isotopes, showing possible
N � 14 and N � 16 shell closures, which would make
both 22O and 24O doubly magic nuclei. The energy of the
first 2�1 state of 22O has been measured at 3199(8) keV [9],
compared to 1670 keV in 20O, and its small B�E2� value of
21�8�e2 � fm4 [10] indicates a strengthening of the N � 14
shell gap. Even though the 2�1 state of 24O has not been
directly observed, its energy has been shown to lie above
3.8 MeV, indicating an N � 16 shell closure [11].
Conversely, 28O, which is doubly magic in the standard
shell model, was found to be unbound [15], contrary to
most theoretical predictions. Theoretically, both quasipar-
ticle random-phase approximation (QRPA) [8] and shell
model [16] calculations predict a decrease of B�E2� from
20O to 22O. Moreover, shell model calculations [6] show a
strong gap of 4.3 MeV between the 1d5=2 and 2s1=2 sub-
shells, making 22O a magic nucleus.

However, all above mentioned experimental indications
of the N � 14 magicity in 22O are partial, since they do not
probe separately the proton and the neutron contribution to
the 2�1 excitation. In Ref. [10], the B�E2� value is obtained
from inelastic scattering of 22O from 197Au at an energy of
50 MeV=nucleon. The deduced B�E2� value provides the
proton transition matrix element Mp, but, since both
Coulomb and nuclear interactions were important in the
1-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.012501


PRL 96, 012501 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JANUARY 2006
reaction, the authors had to rely on theoretical predictions
to isolate the neutron and proton contributions to the
excitation. In other words, in the absence of data from a
second experimental probe, the B�E2� value is model-
dependent. Moreover, it is somewhat delicate to interpret
the neutron gap behavior using the B�E2� values, which
depend only on the proton contribution to the excitation:
As stated above, the neutron gap is probed through the
neutron-proton interaction, the knowledge of which is
subject to debate close to the neutron drip line [5,17].

The neutron and proton transition matrix elements
Mn;p � h2

�jr2Y20j0
�i of a quadrupole operator are ob-

tained by integrating the corresponding transition densities
��n;p�r� over r. In this case, the proton transition matrix
element Mp is related to the reduced transition probability
by B�E2� � M2

p. B�E2� must be measured through an
electromagnetic experiment. To disentangle the proton
(Mp) and the neutron (Mn) transition matrix elements of
the 2�1 excitation in 22O, we make use of a (p; p0) scattering
experiment on 22O. This second experimental probe, com-
plementary to the 197Au target, should allow us to deduce a
model-independent value of B�E2� and to evaluate the
neutron contribution to the excitation. The combined data
probe more directly the possible N � 14 shell closure.

Protons at a few tens of MeV are known to interact
3 times more strongly with neutrons than with protons in
the nucleus [18], whereas Coulomb excitation or lifetime
measurements probe directly only the proton density dis-
tributions. The combination of the two types of measure-
ments can, therefore, disentangle proton and neutron
contributions to excited states. With the development of
radioactive beams, proton scattering data can now be ob-
tained for unstable nuclei. Elastic and inelastic proton
scattering experiments on 20O were recently performed
[8,19], indicating a large isovector component in the exci-
tation of the 2�1 state, which is driven by the excitation of
neutrons. This behavior is characteristic for a single
closed-shell nucleus with, in this case, a partially filled
1d5=2 subshell.

Direct reactions on short-lived unstable nuclei must
be performed in inverse kinematics, where a secondary
beam of the radioactive nucleus of interest bombards
a target containing the light particles [20]. Here the
secondary beam was produced by fragmentation of a
0125045
77 MeV=nucleon 36S primary beam delivered by the
Accélérateur National d’Ions Lourds (GANIL) facility
with a power of 1.5 kW on a 540 mg=cm2 12C target
located between the solenoids of the superconducting in-
tense source for secondary ions device. The secondary
beam was selected and purified using the beam analysis
spectrometer, equipped with a 150 mg=cm2 Al achromatic
degrader, as a fragment separator. The average intensity on
target of the 46:6 MeV=nucleon 22O beam was only
1200 pps with a large contamination of 25Na and 23F,
which made up 88% of the beam. The incident nuclei
were tracked event-by-event using two low pressure multi-
wire proportional chambers (CATS) [21]. The recon-
structed position resolution on the target was approxi-
mately 1 mm. The secondary beam impinged on a
5 mg=cm2 polypropylene �CH2�n target. In order to select
the elastic and inelastic reaction channels, the scattered
heavy nuclei were identified in the focal plane of the
Spectromètre à Perte d’Energie du GANIL (SPEG) spec-
trometer [22]. To gain access to the excitation energy and
the scattering angle characterizing the reaction, the energy
and angle of the recoiling protons were measured using the
MUr à STrip (MUST) array [23], consisting of eight
silicon-strip detectors, backed by Si(Li) diodes and CsI
crystals. Protons were unambiguously identified through a
combination of energy, energy-loss, and time-of-flight
measurements. The coincidence between the SPEG plastic
detector and the MUST array effectively reduced the back-
ground from the carbon component of the target.

Figure 1(a) shows the scatter plot of the proton labora-
tory angle vs energy for 22O, where kinematic lines corre-
sponding to the ground and 2�1 states are very well sepa-
rated. Figure 1(b) displays the resulting excitation energy
spectrum, where the 2�1 state is clearly visible at the energy
of 3:2� 0:2 MeV. No indication for higher lying states is
observed. The angular distributions could be obtained
directly by selecting the corresponding events in energy.
The background is very low, as is shown by the absence of
significant background to the left of the elastic peak. The
absolute normalization was deduced from the number of
incident nuclei measured with the CATS detectors and the
target thickness. The error on the normalization is esti-
mated to be 10% including the background effect. Figure 2
displays the measured elastic and 2�1 angular distributions.
The error bars are purely statistical.
FIG. 1 (color online). (a) Scatter plot
of recoiling proton energy versus scat-
tering angle in the laboratory frame for
the 22O beam. (b) 22O excitation energy
spectrum deduced from the proton kine-
matics.
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A first approach to understand the results is the so-called
phenomenological analysis, which makes use of optical
potential systematics. The most recent nucleon-nucleus
global potential is the parametrization elaborated by
Koning and Delaroche (KD) [24] for 24 � A � 209 nuclei
with reaction energies ranging from 2 keV to 200 MeV. We
have also performed the analysis using the more familiar
Becchetti-Greenlees [25] and CH89 [26] potentials, which
yield the same conclusions. Coupled channel calculations
using standard vibrational form factors were performed
with the ECIS97 [27] code to obtain inelastic cross sections.
The normalization of the inelastic angular distribution to
the data leads to the value of the (p; p0) deformation
parameter ��p;p0�.

The calculated elastic and inelastic angular distributions
are displayed in Fig. 2. An overall good agreement with the
data is observed. The extracted deformation parameter is
��p;p0� � 0:26� 0:04. We have chosen to normalize on the
forward data up to 30�. Normalizing to the entire angular
distribution reduces the� value by less than 0.01. The error
bars correspond to the minimum and maximum ��p;p0�
values which allow the measured angular distributions to
be reproduced within the error bars. The ��p;p0� value of
22O is much smaller than the one measured for 20O
(��p;p0� � 0:55� 0:06) and also smaller than for 18O
(��p;p0� �0:37�0:03) [8]. Since proton scattering is much
more sensitive to neutron than to proton excitation, this
result clearly indicates a weak neutron contribution to the
2�1 excitation in 22O, compared to less neutron-rich
isotopes.

Such a simple analysis is valuable for comparison pur-
poses between isotopes, but a more detailed understanding
of proton scattering calls for a fully microscopic analysis,
totally independent of the phenomenological approach. In
the microscopic study performed here, neutron and proton
ground state densities are calculated using Skyrme
Hartree-Fock-Bogoliubov (HFB) in coordinate space,
0125046
with the very recently developed exact quasiparticle con-
tinuum treatment, the inclusion of which is expected to be
important for weakly bound nuclei [28]. The HFB equa-
tions are solved in coordinate space assuming spherical
symmetry. In the present continuum-HFB calculations, the
mean field quantities are evaluated using the Skyrme in-
teraction SLy4 [29], while for the pairing interaction we
take a zero-range density-dependent force [12].

To describe nuclear transitions, continuum-QRPA cal-
culations are performed using the HFB single quasiparticle
spectra. QRPA equations are derived in coordinate space
using the linear response theory. For the first time, the
residual interaction is taken from the second derivative of
the HFB energy functional with respect to the matter and
pairing densities, together with exact continuum treatment
(see [12]).

A measurement of the cross section of the first 2�1 state
of 22O was obtained by Thirolf et al. [10] using inelastic
scattering from 197Au at 50 MeV=nucleon. However, due
to the range of scattering angles covered, both Coulomb
and nuclear components are involved in the excitation. We
have reanalyzed the data of the 22O� 197Au reaction using
the same optical potentials as in Ref. [10]. We found that,
for a given B�E2� value, the calculated excitation cross
sections vary very little with respect to the nuclear defor-
mation parameter �N . Destructive interference between
nuclear and Coulomb amplitudes implies that, when the
rather large error bar on the cross section [10] is taken
into account, the B�E2� value extracted is not sensitive to
the nuclear contribution as long as �N is less than 0.4.
The experimental B�E2� from this study is equal to 21�
8e2 � fm4. The calculated B�E2� value from QRPA is
22e2 � fm4, which agrees well with the measured value,
showing that the magnitude of the proton transition density
is faithfully reproduced by the theory.

In order to directly compare the model with the proton
scattering data, microscopic optical potentials are gener-
ated from the HFB and QRPA densities using two different
methods: the folding model [30] and a microscopic optical
model potential (OMP) parametrization using the
Jeukenne, Lejeune, and Mahaux (JLM) interaction [31].
The folding model analysis uses the CDM3Y6 interaction
folded with the HFB densities to generate the isoscalar and
isovector parts of the OMP. The spin-orbit potential as well
as the transition potentials are obtained from the folding of
the QRPA transition densities with the nucleon-nucleon
interaction. The imaginary part of the OMP is generated
with the Koning and Delaroche [24] phenomenological
parametrization, already used in our phenomenological
analysis above. Cross sections are calculated using
distorted-waves Born approximation (DWBA) with the
ECIS97 [27] code.

The 22O�p; p0� angular distributions are displayed in
Fig. 2. The elastic angular distribution is well described,
even at large angles. Since the B�E2� is well reproduced by
the proton transition density, we renormalize the neutron
1-3
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transition density in order to fit the data. This procedure
assumes that QRPA reliably describes the shape of the
transition density for collective states [32]. It provides an
experimental value of the Mn=Mp ratio for the 2�1 state,
deduced from the combination of the electromagnetic and
the (p; p0) measurements [8]. We obtain Mn=Mp � 2:5�
1:0, or �Mn=Mp�=�N=Z� � 1:4� 0:5. This is to be com-
pared to the value for 20O, �Mn=Mp�=�N=Z� � 2:2� 0:5,
significantly different from 1 [8]. Incidentally, in the case
of 22O, the error coming from the heavy ion measurement
is greater than from our experiment.

In order to check the dependence on the potential used,
complex optical and transition potentials were also ob-
tained by injecting the calculated ground state and transi-
tion densities into the JLM density-dependent optical
potential [31], which was derived from Brückner-
Hartree-Fock nuclear matter calculations. Cross sections
were then calculated in a DWBA approach with the
TAMURA code [33]. We have tested that coupling to (p; d)
pickup, which can have a significant effect on (p; p0)
scattering of very weakly bound nuclei [34], can be ne-
glected in the present case. Renormalizing the neutron
transition density in order to reproduce the inelastic data
leads to the same value of the Mn=Mp ratio as when the
folding potential is used. Two optical potentials which are
known to be reliable yield the same result, which gives
confidence that the matter and transition densities are being
critically tested here.

The phenomenological analysis points to a small neu-
tron deformation in 22O. The microscopic analysis indi-
cates that protons (Z � 8 closed shell) and neutrons
contribute in a balanced way to the first 2� excitation.
This is different from the case of 20O, where the excitation
is driven by the neutrons, as expected due to the Z � 8
shell closure. The result here, combined with the high
energy of the 2� state, points to a strong N � 14 (sub)shell
closure in neutron-rich nuclei. Shell model calculations
reported by [10] predict strong N � 14 and N � 16 gaps
in oxygen isotopes. This calculation predicts Mn=Mp �

2:6, in agreement with the experimental result.
In summary, the angular distributions for elastic and

inelastic scattering to the 2�1 state of 22O have been mea-
sured using a secondary radioactive beam of only 1200 pps
coupled to a highly efficient particle detection system.
Proton and neutron contributions to the excitation are
disentangled through the comparison of the present results
with a heavy ion scattering experiment dominated by
electromagnetic excitation. This method is shown to be a
general tool to search for neutron shell closures which are
only indirectly observed through Coulomb excitation. In
the present case, evidence for a strong N � 14 shell clo-
sure is obtained from several independent analyzes. This
effect has been predicted by recent shell model calcula-
tions. Attention should now turn to 24O and the N � 16
subshell closure. A successful 24O�p; p0� experiment will
have to wait for the next generation radioactive beam
0125047
facilities, but the generality of the present method should
allow us to enhance our knowledge of neutron shell closure
far from stability in regions of heavy nuclei.
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2.6 Halos dans les noyaux de masse intermédiaire 
 
 
Si les halos pour les noyaux légers et les peaux pour les noyaux plus lourds sont des 
phénomènes exotiques désormais bien connus pour les systèmes riches en neutrons, 
certains modèles indiqueraient l’existence d’autres types de profils de densités très 
étendus : des halos appelés géants sont prédits dans quelques noyaux de masse 
intermédiaire ou lourds. Dans ces systèmes très riches en neutrons, l’extension de la 
surface est bien plus importante que dans une peau. Les premiers travaux qui ont mis en 
évidence ce phénomène ont été réalisés dans le cadre des modèles relativistes 
Relativistic-Hartree-Bogoliubov (voir, par exemple, [MR98, Me02]).  
 
Nous avons abordé ce problème pour les isotopes de Ca et Zr avec le modèle Skyrme-
HFB [Gr06,Gr07b]. Nous avons montré que les résultats dépendent assez fortement du 
modèle : la présence des halos dépend essentiellement de la position de la drip line, qui 
est à son tour liée au spectre d’états individuels que chaque modèle fournit. À cause de 
la position de la drip line prédite avec les modèles choisis dans notre travail (SLy4-HFB 
et SkI4-HFB), nous n’avons pas prévu de halos pour les isotopes de Ca. Pour les 
isotopes de Zr, nous prévoyons des halos avec le modèle SkI4-HFB parce que la drip 
line est placée au-delà du noyau 122Zr. C’est la présence d’orbitales de petit l faiblement 
liés (3p1/2 et 3p3/2 pour les isotopes de Zr au-delà du 122Zr) qui  génère ces densités 
très étendues. 
 
Je montre dans la Figure 2.4 les rayons neutroniques des isotopes de Ca et Zr obtenus 
avec SLy4-HFB (triangles noirs) et SkI4-HFB (cercles rouges). Les résultats obtenus 
avec les modèles relativistes présentés dans les articles [Me02, MR98] sont aussi 
montrés pour comparaison. Les points correspondent aux rayons calculés avec r0A1/3 (r0 
= 1 fm).  
Le changement de pente à N=82 pour les rayons neutroniques des isotopes de Zr est 
clairement visible dans la figure. 
L’article qui suit [Gr06] décrit en détail les résultats de cette analyse.    
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Fig. 2.4. Rayons neutroniques calculés avec SLy4-HFB (triangles noirs) et SkI4-HFB 
(cercles rouges). Les résultats relativistes présentés dans les articles [Me02, MR98] 
sont aussi montrés pour comparaison. Les points correspondent aux rayons calculés 

avec r0A1/3 (r0 = 1 fm).   
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1Institut de Physique Nucléaire, 15 rue Georges Clémenceau, F-91406 Orsay Cedex, France

2Dipartimento di Fisica e Astronomia, Via Santa Sofia 64, I-95123 Catania, Italy
3INFN, Sezione di Catania, Via Santa Sofia 64, I-95123 Catania, Italy

4Science Research Center, Hosei University, 2-17-1 Fujimi, Chiyoda, Tokyo 102-8160, Japan
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Giant neutron halos in medium-heavy nuclei are studied in the framework of the Hartree-Fock-Bogoliubov
(HFB) approach with Skyrme interactions. The appearance of such structures depends sensitively on the effective
interaction adopted. This is illustrated by comparing the predictions of SLy4 and SkI4 in the Ca and Zr isotopic
chains. The latter force predicts a neutron halo in the Zr chain with A > 122 due to the weakly bound orbitals
3p1/2 and 3p3/2. It is found that the energies of states near the separation threshold depend sensitively on
effective mass values. The structure of the halo is analyzed in terms of the occupation probabilities of these
orbitals and their partial contributions to the neutron density. The antihalo effect is also discussed in the case of
124Zr by comparing the occupation probabilities and wave functions of the Hartree-Fock neutron single-particle
states near the Fermi energy with the corresponding HFB quasiparticle states.
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I. INTRODUCTION

Currently, several projects for the construction of a new
generation of radioactive beam facilities are in progress (see,
e.g., Ref. [1]). Such facilities will permit researchers to
investigate the properties of unstable nuclei situated close to
drip-line regions. From the theoretical side, many efforts are
devoted to performing accurate predictions to locate the proton
and neutron drip lines as well as to describe the behavior of
unstable nuclei. Unfortunately, theoretical predictions in exotic
regions of the nuclear chart can be rather model dependent.

Self-consistent mean field methods are well-suited theo-
retical tools for describing medium and heavy nuclei. There
are two main lines of investigation based on the mean
field approach, namely, the relativistic mean field (RMF)
method, which treats effective Lagrangians in the Hartree
approximation, and the nonrelativistic Hartree-Fock (HF)
method, which uses effective interactions such as the Gogny
and Skyrme forces. Recent reviews can be found in Refs. [2,3].
When approaching the drip lines, one deals with open-shell
nuclei for which the effects of pairing correlations become
quite important, especially for such properties as the tails of
matter distributions. The pairing correlations can be described
by the nonrelativistic Hartree-Fock-Bogoliubov (HFB) theory
[4,5] or by the relativistic Hartree-Bogoliubov (RHB) theory.
The most widely used choice is to add a phenomenological
pairing interaction acting in the particle-particle channel [6].
Alternatively, one can use the same meson-nucleon Lagrangian
to generate the particle-particle interaction, then make a zero-
range approximation, and finally readjust the particle-particle
interaction by an overall factor [7].

Furthermore, the chemical potential λ becomes close to
zero in the vicinity of drip lines, and it is necessary to
treat properly the contributions of the quasiparticle continuum
when evaluating the pairing correlations [5]. Thus, the most

appropriate approach for such cases is to solve the self-
consistent mean field equations in coordinate space, and this
is the method we use to obtain the results of this work.

A very interesting phenomenon has been recently predicted
within the RHB approach: the formation of a neutron giant halo
(with up to six neutrons involved) in some very neutron-rich
isotopes. The radius of the neutron distribution as a function of
A shows a kink at the nucleus where the halo structure starts to
be formed. This effect has been found to be particularly strong
in Ca (with A > 60) [8] and Zr (with A > 122) [9] isotopes.
These predictions are based on the NLSH parametrization,
and similar results are obtained with the TM1 parametrization
[10]. The giant halo phenomenon is also found in the near-
drip-line Zr isotopes if one uses the NL3 parametrization in
an RMF plus resonant continuum BCS [11]. The giant halo
effect in medium-heavy nuclei has been much less investigated
within the nonrelativistic mean field approach, apart from Ref.
[12], where the halo phenomenon is studied in Ni and Sn, and
Ref. [13] for Ca isotopes. The purpose of the present work
is to investigate the giant halo effect in Ca and Zr isotopes
within the nonrelativistic Skyrme-Hartree-Fock-Bogoliubov
mean field approach. This effect may appear in the vicinity of
drip lines, if at all, and therefore it is probably still out of reach
of the next generation facilities.

Important discrepancies are often found in the position
of the neutron drip line predicted by different models. For
instance, these differences clearly appear in the neutron
drip line of Ni isotopes calculated in relativistic [14] and
nonrelativistic [5] approaches. Even among parametrizations
of the Skyrme force used in HFB calculations, one can obtain
different drip-line predictions. It is found in Ref. [13] that
drip lines in Ca isotopes occur for heavier systems if one uses
SkM∗ rather than the widely used SLy4. In this work, we find
that the parametrization SkI4 [15] also leads to bound Ca and
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Zr isotopes with a larger neutron excess than SLy4. Thus, it
is foreseen that giant halo predictions based on the Skyrme-
HFB approach will suffer from some model dependences.
While waiting for new experimental data that will help dis-
criminate among the available models, it would be interesting
to analyze the reasons for some of these discrepancies.

For our analysis, we choose two Skyrme parametriza-
tions, namely, SLy4, which is commonly adopted to treat
neutron-rich systems since it includes constraints coming from
the neutron matter equation of state, and the SkI4 energy
functional of Reinhard and Flocard [15]. The reason for the
latter choice is simply that it leads to bound Zr isotopes having
more neutrons than the SLy4 force, and, hence, the giant halo
phenomenon can take place. As for the Ca isotopes, neither
SLy4 nor SkI4 can produce bound Ca isotopes that are neutron
rich enough to lead to a halo effect.

The present calculations include pairing correlation effects,
and these correlations can induce an antihalo effect, as pointed
out in Ref. [16]. We discuss this effect in the case of the
124Zr nucleus by comparing the HFB results with the corre-
sponding HF ones.

The article is organized as follows. In Sec. II, we briefly
describe the theoretical framework. In Sec. III A, we present
the two-neutron separation energies, neutron radii, and HF
single-particle spectra for neutron-rich Ca and Zr isotopes, and
we compare our nonrelativistic results with the corresponding
RHB results obtained with the NLSH parametrization [8,9].
We discuss the differences found in the HF spectra with
the adopted Skyrme parametrizations by analyzing, in some
cases, the mean field and spin-orbit contributions to the total
potential. In Sec. III B, we consider in more detail the case of
Zr isotopes and investigate giant halo and antihalo effects by
analyzing occupation probabilities, neutron density profiles,
and wave function tails. In Sec. IV, our conclusions are drawn.

II. THEORETICAL FRAMEWORK

The theoretical framework used in this paper is the HFB
approach. For zero-range two-body forces, the HFB equations
have the form

[h(r) − λ]u(E, r) + �(r)v(E, r) = Eu(E, r),
(1)

�(r)u(E, r) − [h(r) − λ]v(E, r) = Ev(E, r),

where λ is the Fermi energy, h is the sum of the kinetic
energy and the HF mean field potential, and � is the pairing
potential; u and v are the upper and lower components of the
quasiparticle wave function associated with the quasiparticle
energy E, which we choose to be positive. In this work,
we assume spherical symmetry as in the RHB approach, so
that the HFB equations depend only on the radial coordinate r

and they can be solved directly in r space.
We shall only consider bound systems, i.e., cases in which

λ is negative. The reason is that, if λ becomes positive, there
are states with 0 � E � λ whose wave functions u, v do not
decrease exponentially at large distances [4]. Then, the matter
density built with v2 does not vanish asymptotically, and the
nucleus is unbound. For negative λ, the spectrum consists

of a discrete part for E less than −λ and a continuous
part for E above −λ. To calculate the continuum spectrum,
the HFB equations should be solved with scattering type
boundary conditions for the upper components of the HFB
wave functions [5]. Since the continuum-HFB calculations are
rather heavy, the continuum spectrum is usually discretized
by imposing box boundary conditions, i.e., the condition that
the HFB wave functions vanish at a given distance from the
nucleus. This is sufficient for our present purpose provided
that the box radius is properly chosen. We have checked that
our results obtained with a box radius of 20 fm are very close
to those of a full continuum calculation. Thus, most of the
results presented here have been obtained by imposing box
boundary conditions. Only the results discussed in Sec. III B
are obtained with scattering-type boundary conditions.

In the present HFB calculations, the mean field is calculated
with a Skyrme-type force, while for the pairing channel,
we use a zero-range interaction with the following density
dependence:

V (r1 − r2) = V0

[
1 − x

(
ρ(r)

ρ0

)γ ]
δ(r1 − r2). (2)

The value of ρ0 is 0.16 fm−3, corresponding approximately
to the nuclear matter saturation density given by SLy4 and
SkI4. We choose x = 0.5 to represent a pairing force half-way
between a pure volume and pure surface interaction. As
for γ, we simply take γ = 1, a choice compatible with
the conclusions of the study made in Ref. [17] about the
influence of γ on the asymptotics of nucleon distributions.
The quasiparticle energy cutoff is equal to 70 MeV, and
the maximum value of j is 15/2. The strength V0 is chosen
so as to reproduce the gaps extracted from the odd-even
mass differences (in the regions where such experimental
data are available), i.e., V0 is adjusted to be −365 and
−290 MeV fm3(−350 and −300 MeV fm3) for the Ca and
Zr isotopes calculated with SLy4 (SkI4).

III. RESULTS OF HFB CALCULATIONS

A. Separation energies, neutron radii, and HF results

The two-neutron separation energy is defined as

S2n(N,Z) = E(N,Z) − E(N − 2, Z), (3)

where E(N,Z) is the total energy of the isotope with
N neutrons and Z protons. The two-neutron separation
energies for Ca and Zr isotopes are shown in Figs. 1 and 2.
We display in these figures only the separation energies for the
bound nuclei, i.e., those having a negative chemical potential
in the HFB calculations. For instance, the separation energy
is still positive in 64Ca with SkI4-HFB (S2n = 0.2 MeV)
but the chemical potential is already positive and equal to
0.24 MeV. We thus define as the drip-line nucleus the last
isotope having both positive separation energy and negative
chemical potential. The shown results correspond to box-HFB
calculations, which give practically the same S2n values as
continuum-HFB calculations.

The most important fact we can observe in Fig. 1 is the
large difference between the drip-line location predicted by
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FIG. 1. Two-neutron separation energies for Ca isotopes cal-
culated with SLy4-HFB (triangles), SkI4-HFB (circles), and RHB
(diamonds). The RHB results correspond to Ref. [8].

the Skyrme-HFB with SLy4 and SkI4 and that predicted by
the RHB calculations of Ref. [8] for the Ca isotopes. It can
be seen that for Skyrme forces, the drip line is located at 62Ca
(60Ca) with SkI4 (SLy4), while for RHB calculations, the drip
line extends up to 72Ca. It must be noted that in Ref. [13], the
two-neutron separation energy was found to be still positive
in 78Ca with the interaction SkM∗. In any case, with the two
Skyrme parametrizations adopted here, the region in which a
giant halo could exist in Ca isotopes cannot be explored, since
the last bound nucleus is reached before.

In the Zr isotopes, differences also occur among the model
predictions. As seen in Fig. 2, for the force SLy4, the drip line
is located at 122Zr, whereas for SkI4, it is at 138Zr. The latter
result is similar to the RHB prediction in which the drip line
is located at 140Zr.

We check now whether our nonrelativistic model can
predict a giant neutron halo structure by analyzing the neutron
radii, which are shown in Fig. 3. As mentioned before, for
Ca isotopes, the neutron drip line is reached before the halo
structure starts to be formed for both the adopted Skyrme
parametrizations. The same is happening for Zr isotopes if one
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FIG. 2. Same as Fig. 1, but for Zr isotopes. RHB results
correspond to Ref. [9].
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FIG. 3. Neutron radii for Ca and Zr isotopes. Symbols same as
in Fig. 1; RHB results correspond to Refs. [8,9]. Radii calculated as
r0A

1/3 (r0 = 1 fm) are shown by a dotted line.

uses the SLy4 force. However, in the case of SkI4, the situation
is very different, with a change in the slope of neutron radii
around A = 122 and values close to those of RHB.

To understand better why the drip line is so model depen-
dent, Figs. 4 and 5 show the HF energies of the bound states
close to the Fermi level in Ca and Zr isotopes, respectively. For
Ca isotopes, we can see that apart from a different splitting of
the 1f and 2p states, the two Skyrme forces give a rather
similar pattern for the bound spectrum. The HF drip-line
nucleus is 60Ca with both SLy4 and SkI4; 62Ca is not bound
since the state 1g9/2 remains slightly unbound with the two
forces, at variance with the RMF calculations in which this
state becomes weakly bound at A = 62 [8]. Because of this
fact, the drip line in the RHB calculations is extended up to
the region where the giant halo can be formed, in contrast with
the HFB calculations of Ca isotopes based on SLy4 or SkI4.
It must be noted, however, that this tendency is not obeyed by
the Skyrme SkM∗ parametrization, which gives a bound 1g9/2
orbital in the Ca isotopes with A � 60 resulting in a drip line
located at higher A [13].

For Zr isotopes, the structure of the HF bound spectrum is
not the same for the two adopted Skyrme parametrizations. We
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particle energies for bound states in Ca isotopes.
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FIG. 5. Same as Fig. 4, but for Zr isotopes.

can observe that at A = 122, the state 3p3/2 becomes weakly
bound with SkI4, while it remains slightly unbound with SLy4.
This allows one to shift the drip line with SkI4, the states
2f 7/2 and 3p1/2 becoming then weakly bound at A = 124
and 126, respectively. This is similar to what happens in the
RMF calculations and explains why both the SkI4-HFB and the
RHB calculations provide a halo structure in Zr isotopes. How
these weakly bound HF states contribute to the halo structure
in the presence of pairing correlations is discussed in the next
subsection.

Let us now analyze the elements responsible for the
differences found in the single-particle spectra and in the
drip-line predictions. We can write the HF equation as

h̄2

2m

[
− d2

dr2
ψ(r) + l(l + 1)

r2
ψ(r)

]
+ Veq(r,ε)ψ(r) = εψ(r),

(4)

where the equivalent potential Veq reads

Veq(r, ε) = m∗(r)

m
U0(r) + m∗(r)

m
Uso,lj (r)

− m∗2(r)

2mh̄2

(
h̄2

2m∗(r)

)′2
+ m∗(r)

2m

(
h̄2

2m∗(r)

)′′

+
[

1 − m∗(r)

m

]
ε. (5)

with Uso,lj (r) = Uso(r) × [j (j + 1) − l(l + 1) − 3/4]. The
local equivalent potential Veq takes into account the effects of
the Skyrme-HF effective mass, and the exact HF wave function
φ(lj ) of energy ε is related (up to a normalization factor) to
the solution ψ of Eq. (4) by the relation ψ = (m∗/m)1/2φ.
The functions U0(r) and Uso(r) are the central and spin-orbit
HF potentials, whereas m∗(r) is the effective mass [18]. The
first two terms of Eq. (5) are the main contributions, the next
two terms are small corrections, and the last term has a small
contribution for states in the vicinity of zero energy.

We first consider the Ca isotopes, as illustrated by the
nucleus 60Ca and the single-particle state 1g9/2. For this
nucleus, the state 1g9/2 is bound with the force SkM∗
(ε ∼ −1.3 MeV) [13], whereas it is a single-particle resonance
with SLy4 (ε ∼ 0.3 MeV) and with SkI4 (ε ∼ 1 MeV). We
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FIG. 6. Square of the 1g9/2 wave function with the forces SkM∗,
SLy4, and SkI4 in 60Ca.

display in Fig. 6 the square of the HF 1g9/2 wave functions
in 60Ca calculated with SkM∗, SLy4, and SkI4. Their general
behaviors are quite similar up to more than twice the nuclear
radius.

The four functions (a) the mean field U0(r), (b) the
mean field multiplied by the effective mass, U0m∗ (r) =
U0(r)[m∗(r)/m], (c) the spin-orbit term Uso,lj (r), and (d) the
spin-orbit term multiplied by the effective mass, Uso,lj∗ (r),
are calculated with the three parametrizations and displayed
in Fig. 7. They are shown in the radial region around 4.5 fm
where the square of the single-particle wave function 1g9/2
has its maximum. In this region, one sees that the potentials
U0m∗ (r) and Uso,lj∗ (r) of SkM∗ are deeper than those of SkI4
and SLy4. One can observe that the effective mass m∗(r) plays
an important role in shifting down the 1g9/2 single-particle
energy of SkM∗ to below the values of SkI4 and SLy4. In the
nucleus 60Ca, the values of the neutron effective mass m∗

n/m at
r = 0 are 0.788, 0.680, and 0.606 for SkM∗, SLy4, and SkI4,
respectively; whereas at r = 4.6 fm, they are 0.946, 0.842, and
0.814. This explains why U0m∗ is deepest for SkM∗, although
U0(SkM∗) itself is the least attractive.

We perform a similar analysis for Zr isotopes. We consider
the case of 122Zr and the HF wave function of the state 3p3/2
calculated with the two parametrizations SLy4 and SkI4. This
state is bound in the HF spectrum with SkI4 (ε ∼ −0.02 MeV),
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FIG. 7. Four functions defined in text calculated with the three
parametrizations in 60Ca for l = 4 and j = 9/2.
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FIG. 8. Square of the 3p3/2 wave function with forces SLy4 and
SkI4 in 122Zr.

but it is unbound with SLy4 (ε ∼ 0.6 MeV). We show in
Fig. 8 the square of the wave function 3p3/2 calculated with
the two forces.

Figure 9 shows the four functions U0(r), U0m∗ (r), Uso,lj (r),
and Uso,lj∗ (r) calculated with SLy4 and SkI4. They are plotted
in the radial region around 8 fm where the square of the
single-particle wave function has its highest maximum. The
differences between the top and bottom panels are negligible,
reflecting the fact that around r = 8 fm, the effective mass
m∗

n/m in 122Zr is 0.994 and 0.990 for SLy4 and SkI4,
respectively. Furthermore, one can see that the mean field
potential is sizably deeper with SkI4, while the differences in
the spin-orbit potentials are much less important.

From this study, we can see the decisive role of the effective
mass upon the energy of single-particle states when their wave
functions are around the surface region. In the example of
the 1g9/2 state in 60Ca, the relative positions of the central
and spin-orbit potentials are much affected by the m∗/m

factor. When the states are outside the surface region and
the m∗/m factor becomes close to unity, the single-particle
energies are directly governed by the mean field U0(r), which
in turn depends on neutron-proton symmetry properties such
as the symmetry energy coefficient.
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FIG. 9. Four functions calculated with the forces SLy4 and SkI4
in 122Zr for l = 1 and j = 3/2.
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FIG. 10. Occupation profiles W (E) (in MeV−1) for three states
in 132Zr, calculated with SkI4-HFB.

B. Structure of the giant halo in Zr isotopes

In the presence of pairing correlations, the bound single-
particle states shown in Fig. 5 are becoming quasiparticle
resonances. To describe them properly, we solved the HFB
equations with scattering-type boundary conditions. To re-
duce the numerical effort, we employed scattering boundary
conditions only for the quasiparticle states with the energy
−λ < E < 15 MeV because they are the most affected by
pairing correlations, while for the other states we used box
boundary conditions.

With the continuum HFB solutions, we can calculate how
the occupation probability changes in the region around a
resonance. This information is provided by the quantity

W (E) =
∫ R

0
drr2v2

E(r), (6)

where v is the lower component of the HFB wave function,
and R is taken equal to 20 fm. As an example, we show
in Fig. 10 the values of W(E) corresponding to the states
3p1/2, 3p3/2, and 2f 7/2 in the nucleus 132Zr. In this nucleus,
the quasiparticle continuum starts at the energy E = −λ =
0.251 MeV.

By integrating the function W(E) over an energy interval
in which it has a significant value, we can associate to each
resonance an occupation probability n, i.e.,

n =
∫ E2

E1

W (E)dE. (7)

The occupation probabilities of the relevant resonant states
in Zr isotopes are shown in Fig. 11. It can be seen that
the occupation probabilities corresponding to the weakly
bound states increase progressively when going from 124Zr to
138Zr. Thus, these states contribute significantly to the pairing
correlations.

To analyze the structure of the halo, we plot in Fig. 12 the
quantity

Rlj (r) = ρlj (r)

ρ(r)
, (8)
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FIG. 11. Occupation probabilities for Zr isotopes, calculated with
SkI4-HFB.

where ρ and ρlj are the total neutron density and the
density corresponding to the channel (l, j ), respectively. From
Fig. 12, we can clearly see that at large distances, the dominant
contribution to the neutron density is given by the p states,
which are less confined by the centrifugal barrier than are the
other states with higher (l, j ) values. This structure of the giant
halo obtained by using the SkI4-HFB model is very similar to
that given by the relativistic calculations [9,11].

By comparing the neutron densities of 124,138Zr with that
of the reference nucleus 122Zr we can estimate the number of
neutrons involved in the outer skin and halo regions. We thus
find that this number is 1.15 neutrons (14.27 neutrons) in the
region beyond 6.8 fm (5.4 fm) in 124Zr (138Zr). Alternatively,
one can evaluate the number of neutrons in the weakly bound
orbitals and the resonant continuum as suggested in Ref. [13],
which gives 1.97 and 15.92 neutrons in 124Zr and 138Zr,
respectively.

C. Antihalo effect

We turn now to the analysis of the so-called antihalo effect,
which was mainly discussed in light nuclei close to the neutron
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FIG. 12. Contributions of different (l, j ) channels to the total
neutron density for 124Zr (top), 132Zr (middle), and 138Zr (bottom).
The interaction is SkI4.

drip line [16]. This effect is associated with a reduction of the
neutron radii by the pairing correlations.

In Zr isotopes, the pairing correlations affect the neutron
halo through the p and f states. We take as an illustration
the case of 124Zr for which the neutron radius is equal to
5.08 (5.01) fm in HF (HFB). We adopt a spherical symmetry
scheme for the present discussion since it is found in RMF
calculations that Zr isotopes are predicted to be spherical
beyond A = 122 [9]. In 124Zr, the 3p3/2 state is half occupied,
while 2f 7/2 (weakly bound) is empty in HF. When pairing
correlations are switched on within HFB, the occupancy of
the 3p3/2 state is much reduced and that of the 2f 7/2 is
enhanced, as one can observe in Fig. 11.

Bennaceur et al. [16] analyzed the antihalo effect in terms
of the asymptotic behavior of the neutron densities calculated
in HF and in HFB. In the latter case, the existence of a finite
pairing gap due to pairing correlations gave a faster decaying
tail in the neutron density. The states responsible for this effect
were those close to the Fermi energy, i.e., those with single-
particle energies ε ∼ λ. We plot in Fig. 13 the neutron wave
function tails of the states 3p3/2 (top) and 2f 7/2 (bottom)
calculated in HF and HFB for 124Zr. To compare the HF and
HFB wave functions, we plotted in the HFB case the lower
component of the quasiparticle wave functions, normalized
to unity. In the two insets of the figure, we display the tails
of the wave functions in logarithmic scale. One can observe
that at large distances, the HFB wave functions decay faster
than the corresponding HF ones in both cases. This confirms
the argument given by Bennaceur et al. [16] and explains in
part why the HFB neutron radius is smaller than the HF one.
However, it should be noted that the antihalo effect is not
only due to the slope of the wave functions at large distances.
Another contribution to this effect is related to the occupancies
of the states in HF and HFB. As mentioned before, when
pairing correlations are taken into account, the occupancy of
the 3p3/2 state is reduced while that of 2f 7/2 is enhanced.
Since 2f 7/2 has a smaller radial extension than 3p3/2 due to
the centrifugal barrier, the HFB radius is less than the HF one.
We can thus say that a stronger effect of the pairing correlations
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FIG. 13. HF (full lines) and HFB (dotted lines) neutron wave
functions for the states 3p3/2 (top) and 2f 7/2 (bottom) in 124Zr.
Insets show the tails of the wave functions plotted in logarithmic
scale. The interaction is SkI4.
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upon the reduction of the neutron radius is expected when close
to the Fermi level one finds a weakly bound low-l state (3p3/2
in our case) together with states with higher angular momenta
(2f 7/2 in our case).

We conclude, however, by stressing that the antihalo effect
caused by pairing is not strong enough to prevent the formation
of a neutron giant halo close to the drip line for Zr isotopes, as
we have shown in the previous sections.

IV. CONCLUSIONS

In this work, we have examined the evolution of the nuclear
structure of Zr isotopes at large neutron excess, giving special
attention to the far out region of neutron densities. This is
motivated by the predictions of the RHB approach which
indicate the presence of a giant neutron halo in these nuclei.
We have used a different approach, namely, the Skyrme-HFB
model. We find that in this isotopic chain, the presence or
absence of giant halos depends essentially on the location of
the predicted neutron drip line. Thus, there is a strong model
dependence in this type of study, as illustrated by the results
obtained with the Skyrme forces SLy4 and SkI4.

For the drip line to be displaced toward heavier isotopes,
a necessary condition is that some HF orbitals become bound
when A increases. In this case, additional bound neutrons can

be accommodated, and bound nuclei of heavier mass can be
formed. An illustration of this situation is provided by the
Zr isotopes, for which this necessary condition is fulfilled by
some model like SkI4 but not by SLy4. Once the necessary
condition is realized, a neutron halo may exist if some of the
weakly bound HF orbitals correspond to low angular momenta
(3p3/2 and 3p1/2 in the case of Zr) so that the centrifugal
barrier is weak enough to let the wave functions extend far out.

Thus, the decisive factor is the HF mean field which governs
the HF single-particle spectrum, while the pairing correlations
play a lesser role. For states that are relatively outside the
nuclear surface, the single-particle energies depend mostly
on the HF mean field, i.e., on the neutron-proton symmetry
properties of the energy functional. On the other hand, the
states located near the nuclear surface have their single-particle
energies influenced by the value of the effective mass in that
region. Actually, experimental determination of neutron drip
lines in some nuclei would help place bounds on the values of
effective masses.

We have also seen that the pairing correlations can lead to
the antihalo effect. This can be understood by analyzing the
occupation probabilities and the wave function tails of the least
bound (lj ) orbitals. Finally, we note that this antihalo effect is
not strong enough to prevent the formation of a neutron giant
halo structure in neutron-rich Zr isotopes.
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2.7 Interaction d’appariement et vibrations 
d’appariement 
 
 
Après la formulation du modèle HFB avec continuum [Gr01], les travaux sur le 
traitement du continuum ont été poursuivis dans notre groupe avec la formulation de la 
méthode QRPA avec continuum qui a été appliquée à l’étude des excitations dans les 
Oxygènes riches en neutrons pour le canal particule-trou [Kh02] et le canal particule-
particule [Kh04]. Cette dernière analyse, en particulier, nous a permis d’aborder l’étude 
des vibrations d’appariement que nous poursuivons actuellement. Ces dernières années, 
d’autres équipes ont effectué des études microscopiques de ces vibrations [Av08, Ma05, 
Ma09]. Les sections efficaces qui sont calculées pour les réactions de transfert de paires 
dépendent de l’interaction d’appariement choisie dans le modèle théorique [Br73, DV87, 
OV01]. Nous avons donc décidé de regarder de manière systématique les liens entre les 
prédictions microscopiques sur les vibrations d’appariement et les propriétés et le choix 
de l’interaction d’appariement.  
 
Un certain nombre de travaux visant à analyser les propriétés de l’interaction 
d’appariement ont été réalisés récemment. Dans le cadre du modèle de champ moyen 
Skyrme-HFB, différentes stratégies peuvent être suivies pour contraindre les 
fonctionnelles qui décrivent l’appariement. Mentionnons quelques exemples :  
 
(i) fonctionnelles non empiriques ;  
(i.a) dérivées des interactions réalistes avec des techniques issues de la théorie des 
perturbations à N corps (Many-Body perturbation theory) [He09, Le09] ;  
(i.b) en ajustant les paramètres de manière à reproduire les gaps d’appariement obtenus 
avec une interaction réaliste dans la matière symétrique et neutronique. Dans cette 
procédure, la validité de l’approximation de densité locale (LDA) a été supposée 
[Ma08] ;  
 
(ii) fonctionnelles phénoménologiques ajustées sur quelques propriétés des noyaux 
(gaps et/ou énergies de séparation). Des fonctionnelles d’appariement dépendant de la 
densité isoscalaire et de portée nulle sont souvent utilisées. La possibilité d’enrichir la 
fonctionnelle avec une dépendance linéaire et quadratique en la densité isovectorielle a 
été aussi analysée [Ya08].  
 
Nous choisissons une fonctionnelle phénoménologique et voulons vérifier si le fit des 
paramètres peut être amélioré en considérant les vibrations d’appariement comme 
observables additionnelles dans la procédure d’ajustement. L’interaction d’appariement 
adoptée dans notre travail est celle usuelle de portée nulle et dépendante de la densité 
isoscalaire : 
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Les isotopes de Sn ont été considérés et les paramètres de l’interaction d’appariement 
ont été fixés pour reproduire les valeurs expérimentales disponibles pour les énergies de 
séparation de deux neutrons dans ces isotopes. Différentes valeurs de η ont été 
considérées pour modifier le caractère volume/surface de l’interaction et l’effet de ces 
choix sur les fonctions de réponse et les densités de transition associées aux vibrations 
d’appariement a été montré [Gr09a, Kh09]. Je fais suivre l’article [Kh09] où nous 
montrons que des différences existent, surtout pour les noyaux plus riches en neutrons, 
dans les fonctions de réponse et les densités de transition.  
Ce travail va être poursuivi en collaboration avec des collègues expérimentateurs (D. 
Beaumel, IPN-Orsay) pour calculer, avec les différentes interactions d’appariement, les 
sections efficaces associées aux réactions de transfert de paires de neutrons. Nous 
voulons établir si des mesures de sections efficaces pourraient éventuellement nous 
aider à mieux comprendre les propriétés de l’interaction d’appariement et indiquer quel 
est le meilleur choix pour cette interaction.  
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Constraining the nuclear pairing gap with pairing vibrations
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Pairing interactions with various density dependencies (surface/volume mixing) are constrained
with the two-neutron separation energy in the Tin isotopic chain. The response associated with
pairing vibrations in very neutron-rich nuclei is sensitive to the density dependence of the pairing
interaction. Using the same pairing interaction in nuclear matter and in Tin nuclei, the optimal
range of densities relevant for the pairing channel is also studied.
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I. INTRODUCTION

Studies on pairing effects in both nuclear matter and fi-
nite nuclei have known intensified interests in the recent
years [1]. There are two main approaches for pairing,
depending whether the mean field is based on Gogny fi-
nite range interaction or on Skyrme interaction. In the
first approach, a similar functional is used in both the
particle-hole channel and the pairing channel, although
interactions are not exactly the same due to the den-
sity dependence of the pairing interaction: the density-
dependent term of the Gogny interaction is omitted in
the pairing channel due to its spin-isospin structure not
contributing to the T=1, S=0 pairing. In the Skyrme
approach, the functionals are meant to be different in
the two channels, as witnessed for instance by their den-
sity dependence. The use of a different interaction in the
particle-hole channel and in the pairing channel has been
justified a decade ago [2]; this is for instance the case
of employing the Skyrme interaction in the particle-hole
channel and a zero range density dependent interaction
in the pairing channel. We shall focus on the Skyrme
approach: in this case the pairing density functional is
difficult to constrain and it has not been possible to de-
rive an universal pairing interaction during past decades,
using for instance the odd-even mass staggering on fi-
nite nuclei (see e.g. [3, 4]). This may indicate the need
for another approach, using additional constrains: should
the pairing density functional be extended, and are there
additional relevant observables to constrain it ?

Nuclear matter could help in constraining the pairing
functional. This requires however to bridge nuclei and
nuclear matter through LDA in the pairing channel: its
condition of validity should be more systematically anal-
ysed. It has been recently shown that the two paired neu-
trons are spatially localised in low density medium which
corresponds to the surface of the nucleus [5]. The same
conclusion is drawn by analysing the di-neutron config-
uration in the excited states [6, 7], and also performing
calculations in low density matter in [8, 9], mainly renew-
ing the possibility to link in some cases the nuclear matter
and nuclei in the pairing channel through the LDA.

Concomitantly the pairing functional has been ex-
tended in order to study the condensation of the Cooper
pairs (BEC-BCS crossover) in both symmetric and neu-

tron matter. In nuclear matter the medium polarization
increases the pairing gap at low densities in symmetric
matter, whereas it reduces the gap in neutron matter, in-
dicating an isospin dependence of the pairing functional
[10]. The application to finite nuclei of extended pairing
density functional have shown the relevance of the LDA
in the pairing channel [11].

The pairing functional studies may thus enter in a new
era, renewing the method to design the pairing interac-
tion: i) using an isospin dependence of the pairing inter-
action ii) using eventually the nuclear matter as an addi-
tional constrain for the pairing interaction iii) looking for
additional observables in nuclei than the odd-even mass
staggering to constrain the pairing interaction. Point i)
has been investigated in [10, 11]. Point ii) requires the
validity of the LDA in the pairing channel.

In the case of point iii) an interesting observable is
pairing vibrations, measured through two-particle trans-
fer. It is well known that the transfer cross section cru-
cially depends on the pairing interaction at work in the
transferred pair [12, 13]. However in the 70-80’s the form
factor of the transition has never been calculated fully
microscopically. The first microscopic calculations has
been performed only recently [14], allowing for a strong
link between the pairing interaction and pairing vibra-
tions. Several calculations followed [6, 15], showing the
renewed interest for such studies.

It is therefore meaningful to use pairing vibrations as
a complementary observable to the masses, in order to
constrain the pairing interaction, and study the implica-
tions to the nuclear matter. One purpose of this work
is to evaluate if pairing vibrations could play this role
(Section III).

The method is to analyse the sensitivity of pairing vi-
brations to various pairing interactions which provide the
same two-neutron separation energy in Tin isotopes, and
evaluate the consequences on the pairing gap in symmet-
ric and neutron matter. On this purpose it is necessary
to determine the range of density where pairing gaps are
strongly sensitive to the pairing interaction (Section II).
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II. DENSITY DEPENDENCE OF THE PAIRING
OBSERVABLES

After many years of study, there is still no unambigu-
ous universal pairing functional ranging on the whole
nuclear chart, and current efforts are aiming in that di-
rection. The problem may be due to the method used
to constrain it, namely comparing the pairing gap with
odd-even mass differences, or evaluating the separation
energies along a given isotopic chain. It therefore may be
useful to consider a more general context: the evaluation
of several pairing interactions constrained by odd-even
mass difference, on nuclear matter on one side, and on
additional observables on the other side, should shed a
renewed light on the problem. To achieve this goal it is
first necessary to determine the range of density which is
relevant for pairing studies.

A. Method to determine the functional

The method is the following: we first consider surface
and various mixed paring interactions. The parameters
are determined so as to describe the two neutron sepa-
ration energy. Then pairing vibrations are used in order
to disentangle between the various pairing interactions
(Section III). We choose 124Sn and 136Sn nuclei: these
are spherical nuclei where pairing vibrations are likely
to occur [13]. One is stable and the second has a large
neutron excess.

The microscopic calculations for the ground state are
based on the Hartree-Fock-Bogoliubov (HFB) model.
The Skyrme interaction SLy4 [16] is chosen for the
particle-hole channel of the HFB equations. The adopted
pairing interaction is the usual zero-range density-
dependent interaction

Vpair = V0

[

1 − η

(

ρ(r)
ρ0

)α]

δ (r1 − r2) (1)

where η provides the surface/volume character of the
interaction. We set α = 1 and ρ0 = 0.16 fm−3. The nu-
merical cutoff for the microscopic calculations is given by
Emax = 60 MeV (in quasiparticle energies) and jmax=
15/2. For each value of η, V0 is chosen to fit the known ex-
perimental two-neutron separation energies for even-even
114−134Sn isotopes. The typical r.m.s. value obtained on
this observable, compared to the experimental data is
several hundreds of keV. Surface and mixed interactions
have been considered in this work and the used values
of (η,V0) are listed in Table I. It should be noted that
there is no ideal method to adjust this strength. Using
the pairing gap could also be considered. However only
even-even nuclei are calculated, and one cannot directly
compare the pairing gap to the experimental odd-even
mass difference. Therefore only the trend of the exper-
imental pairing gaps has to be reproduced, as well as
their overall magnitude. Using S2n is just an alterna-
tive method and we have checked that the corresponding

TABLE I: Values of η and V0 of the pairing interaction.

η V0 (MeV fm−1)

0.35 -285
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FIG. 1: (a) Matter densities calculated with the HFB model
for 124Sn and 136Sn. The vertical lines indicate the radius
corresponding the density at which all the pairing interactions
converge in uniform matter (see text). (b) Pairing field of
124Sn calculated with a surface η = 1 (top) and a mixed
η = 0.35 (bottom) pairing interaction.

average pairing gaps are of the expected magnitude, typ-
ically between 1 and 2 MeV in the Sn isotopes.

As an illustration to visualize the features of the cal-
culated pairing effects, we display in Fig. 1 the neutron
pairing field for 124Sn corresponding to the surface η = 1
and the mixed η = 0.35 interactions.

B. Pairing gap in uniform matter

The relation between the pairing gap in uniform matter
at a given density and the pairing field at a given radius
in nuclei has been explored in Ref. [11]. It has been found
that in the case of mixed interactions, the LDA is in good
agreement with the full microscopic HFB calculation (dif-
ferences less than 15% on the pairing field). This might
be related to the extension of the Cooper pair which is
getting smaller at the surface of nuclei (about 2 fm) com-
pared to that in the interior (about 5-6 fm) [5]. Close to
the surface, pairing properties shall not be very differ-
ent from that of a uniform piece of matter at the same
density. It is then interesting to explore the low density
properties of the different pairing interactions listed in
Table I.

Fig. 2 displays the pairing gap in uniform matter for
various pairing interactions. It is observed that the differ-
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FIG. 2: (Color online) Pairing gap versus the density for uni-
form matter for different pairing interactions.

ent interactions leads to very different pairing gap at low
density while around saturation density, there is a den-
sity (ρ=0.11 fm−3) at which the pairing gap and pairing
strength coincide for the three pairing interactions.

From Fig. 2, two conclusions can be drawn: i) the two-
neutron separation energy used to adjust the parameters
of the pairing interaction is an observable which provides
a strong constrain on the pairing gap localized at the sur-
face of the nuclei: the pairing gap in nuclear matter has
been constrained for ρ=0.11 fm−3, which corresponds to
R � 5 fm in Tin nuclei, as shown by the 124Sn densities
displayed on Fig. 1 ii) to better constrain the value of the
parameter η, one shall find another observable sensitive
to the pairing strength at low density (large radius, ex-
perimentally easier to probe). Indeed, in the very exter-
nal part of the nuclei the pairing strength is very different
from one interaction to another. The pure surface pair-
ing interaction predicts a pairing gap as high as 8 MeV at
low density while the various mixed pairing interactions
are grouped below 3 MeV (see Fig. 2).

Therefore, one might expect that properties of collec-
tive modes sensitive to the external part of the nuclei
could be changed by the properties of the pairing inter-
action at low density. Pair transfer reaction mechanisms
like (p,t) or (α, 6He) which are very surface peaked shall
also help in extracting the value of the pairing gap in the
external part of nuclei or equivalently at low density.

III. PAIRING VIBRATIONS

As stated above, it may be useful to consider an addi-
tional observable than the separation energy, in order to
constrain the pairing interaction, namely its density de-
pendence. There are only few observables which could be
relevant to constrain pairing effects. It has been shown
that the first 2+ state in nuclei is sensitive to the pairing

interaction [17]: both its position and strength depend
of the pairing interaction. However this is mainly related
to the pairing gap value, which is the same observable
extracted from odd-even mass difference. It should be
noted than none of these two observables (the first 2+

state and the odd-even mass staggering) can be directly
linked to predictions. On one side there is the difficulty to
modelize excited states. On the other side, the difficulty
is to describe odd nuclei.

Pairing vibrations may be a more adequate observable.
They can be probed for instance with two neutrons trans-
fer in nuclei close to shell closure. We refer to [12, 13] for
details on pairing vibrations. Basically, these modes cor-
respond to the (collective) filling of subshells, in a tran-
sition from an A to A+2 nuclei.

With pairing vibrations, pairing effects are probed by
3 ways. The first one is the magnitude of the pairing
gap Δ (average of the pairing field): a large pairing gap
implies strength at larger energies, following the formula
E2 �(ε − λ)2+ Δ2. This component is also present in
the first 2+ state in the ph response as well as in the
odd-even mass staggering. But in the case of the pairing
vibrations, there are two additional contributions: first,
the transition densities generating the strength are the
pairing one, which means that the unperturbed response
as well as the perturbed response are sensitive to the im-
pact of the pairing on the wave functions. Finally, the
residual interaction, generating the Quasiparticle Ran-
dom Phase Approximation (QRPA) response, is also sen-
sitive to pairing. Therefore using both the unperturbed
and the QRPA response functions, the relative pairing
dependence of the wave functions and the residual inter-
action can be probed.

Pairing vibrations are therefore expected to be very
sensitive to the pairing interaction. On the other hand,
it may also be difficult to disentangle between the three
above mentioned effects. However, the first one can be
evaluated using the energies of the unperturbed response,
the second one by studying the pairing transition densi-
ties, and the last one by comparing the unperturbed and
the QRPA responses. It should be noted that a related
study will also be performed in [18].

A. Method: QRPA in the pp channel

The method is described in [14, 17]. Namely the
QRPA equations are solved in coordinate space, using
the Green’s functions formalism. The variation of the
generalized density R’ is expressed in term of 3 quanti-
ties, namely ρ′, κ′ and κ̄′, which are written as a column
vector:

ρ′ =

⎛

⎜

⎝

ρ′

κ′

κ̄′

⎞

⎟

⎠
, (2)
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where ρ′ij =
〈

0|c†jci|′
〉

is the variation of the parti-

cle density, κ′
ij = 〈0|cjci|′〉 and κ̄′

ij =
〈

0|c†jc
†
i |′

〉

are the
fluctuations of the pairing tensor associated to the pair-
ing vibrations and |′〉 denotes the change of the ground
state wavefunction |0 > due to the external field. In con-
trast with the RPA where one needs to know only the
change of the ph density (ρ′), the variation of the three
quantities (2) have to be calculated in the QRPA. In the
three dimensional space introduced in Eq. (2), the first
dimension represents the particle-hole (ph) subspace, the
second the particle-particle (pp) one, and the third the
hole-hole (hh) one. The response matrix has therefore 9
coupled elements in QRPA, compared to one in the RPA
formalism.

The variation of the HFB Hamiltonian is given by:

H ′ = Vρ′, (3)

where V is the matrix of the residual interaction ex-
pressed in terms of the second derivatives of the HFB
energy functional, namely:

Vαβ(rσ, r′σ′) =
∂2E

∂ρβ(r′σ′)∂ρᾱ(rσ)
, α, β = 1, 2, 3. (4)

In the above equation the notation ᾱ means that when-
ever α is 2 or 3 then ᾱ is 3 or 2.

The QRPA Green’s function G can be used for cal-
culating the strength function associated with the two-
particle transfer from the ground state of a nucleus with
A nucleons to the excited states of a nucleus with A+2
nucleons. This strength function is :

S(ω) = − 1
π

Im

∫

F ∗(r)G22(r, r′; ω)F (r′)dr dr′ (5)

where G22 denotes the (pp,pp) component of the Green’s
function and F is the external perturbating field associ-
ated with the addition of two particles.

The residual interaction in the pp,pp channel is the
pairing interaction. However, when solving the Bethe-
Salpeter (BS) equation, the Green’s functions G and the
residual interaction are 3x3 matrices, with ph, pp and hh
dimensions (Eq. (4)). Solving the BS equation couples
these dimensions. Therefore, there is for instance an ef-
fect of the ph,pp component of the residual interaction
on the pp,pp channel.

In the QRPA calculations the full HFB quasiparticle
spectrum up to 60 MeV is included. These states are
used to construct the unperturbed Green’s function G0.
The residual interaction is derived from the two-body
force used in HFB according to Eq. (4). The con-
tribution given by the velocity-dependent terms of the
Skyrme force to the residual interaction is calculated in
the Landau-Migdal approximation, which is shown to be
accurate [19]. The strength function for the two-neutron

transfer is calculated using Eq. (5). The unperturbed
Green’s function is calculated with an averaging interval
equal to 0.15 MeV. All details can be found in Ref. [14].

The response function is calculated for the pp chan-
nel. All the calculations are performed in a box of size
22.5 fm. It should be noted that exact continuum treat-
ment is heavy, especially for nuclei such as Sn isotopes.
Moreover the aim is not to study the impact of the con-
tinuum treatment (see [14] for such a study). Finally the
Sn isotopes under study are far from the drip line, and
continuum effects are expected to play a negligible role.

B. Unperturbed response results

The HFB solutions are used in the QRPA scheme to
analyze self-consistently the excitation modes associated
to the pair transfer reactions. Since we study here two-
neutron transfers, we focus on the neutron HFB quasipar-
ticle states that are used to construct the elementary con-
figurations of the excited modes. We work with positive-
energy quasiparticle states. Once calculated the quasi-
particle spectrum, it is possible to deduce some proper-
ties of the unperturbed response function.

The quasiparticle states with energy less than 6 MeV
and an occupation probability ≤ 80 % are presented in
Tables II and III for 124Sn and 136Sn, respectively. Let
us discuss the two cases η = 0.35 and η = 1 (for η = 0.65,
results are similar to those obtained with η = 0.35). For
124Sn, in the case of a mixed pairing interaction, η = 0.35,
all the quasiparticle states with energy lower than 5 MeV
are totally occupied with the exception of a h11/2 state
at 1.5 MeV which is 42% occupied. This is the only low-
energy state that can contribute to some extent to the ex-
citation mode. The states that are completely empty and
can thus contribute more to the excitation are located at
higher energies. The first is an f7/2 state at 5.8 MeV.
The others have larger energies (at least 1 MeV more).
One can thus expect that the unperturbed response pro-
file starts with a peak at twice 5.8 MeV, i.e. at ∼ 11.6
MeV (with some small contribution at 3 MeV). In the
case of a surface interaction, η = 1, again, all the states
between 0 and 5 MeV are occupied with the exception of
a h11/2 state at 2.2 MeV (42% of occupation). This time
there are several unoccupied states just above 5 MeV, the
lowest energy being at 5.4 MeV (p3/2 state). Hence, the
unperturbed response is expected to have some structure
starting from ∼ 10.8 MeV with a small contribution at
∼ 4.4 MeV.

For the nucleus 136Sn the situation is different: there
are several low-lying unoccupied states. For η = 0.35 the
lowest energy for a completely unoccupied state is 1.9
MeV (p3/2 state). At 0.8 MeV one also finds a f7/2 state
with 45% of occupation. In the case η = 1 the lowest
energy for a totally unoccupied state is 1.7 MeV (p3/2

state) and a f7/2 state is found at 1.6 MeV with 32%
of occupation. The unperturbed response is expected to
start at ∼ 3.8 and 3.2 MeV for η = 0.35 and 1, respec-

62



5

TABLE II: Neutron quasiparticle states with E ≤ 6 MeV and
occupation less than 80%. The nucleus is 124Sn.

η State E (MeV) occ

0.35 h11/2 1.5 0.42

f7/2 5.8 0.01

0.65 h11/2 1.7 0.42

f7/2 5.7 0.01

1 h11/2 2.2 0.42

p3/2 5.4 0.003

f7/2 5.5 0.02

p1/2 5.6 0.002

s1/2 5.7 0.002

TABLE III: Same as in Table II but for 136Sn.

η State E (MeV) occ

0.35 f7/2 0.8 0.45

p3/2 1.9 0.01

p1/2 2.4 0.006

f5/2 2.9 0.01

s1/2 3.3 0.0005

d5/2 4.0 0.0002

d3/2 4.1 0.0005

g9/2 5.6 0.0001

g7/2 5.6 0.0001

0.65 f7/2 0.9 0.43

p3/2 1.9 0.02

p1/2 2.4 0.008

f5/2 2.9 0.02

s1/2 3.2 0.0004

d5/2 3.9 0.0001

d3/2 3.9 0.0003

g9/2 5.4 0.0001

g7/2 5.5 0.00003

1 f7/2 1.6 0.32

p3/2 1.7 0.02

p1/2 1.9 0.01

s1/2 1.9 0.0004

d5/2 2.6 0.0003

d3/2 2.6 0.0002

f5/2 3.0 0.01

g9/2 4.1 0.0002

g7/2 4.1 0.0001

tively. In the former case a small contribution at ∼ 1.6
MeV is also expected.

In order to disentangle between the various pairing ef-
fects, the unperturbed response in the two neutrons ad-
dition mode is first shown on Fig. 3 for 124Sn. The un-
perturbed response is built on the HFB single quasipar-
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FIG. 3: Unperturbed response function for 124Sn in the two
neutrons 0+ addition mode. The pure surface mode is in solid
line, the η=0.65 mode is in dotted line, and the η=0.35 mode
in dashed-dotted lines

ticle (QP) spectrum, for the three pairing interactions.
It should be noted that the spectrum is shown above 10
MeV, because there is only the h11/2 subshell which can
welcome two neutrons to make a low energy state: all
the other configurations belong to the next major shell
(see Table II), explaining this high energy feature of the
spectrum, as stated above. For all the mixed pairing in-
teraction, the unperturbed spectrum is similar, showing
that both the single quasiparticle energy and wave func-
tions are close to each other in that case. However, in the
case of the pure surface pairing, the spectrum is changed.
The energies are shifted to lower values, and the overall
strength is increased. The lower energy shift can be un-
derstood by more single QP states located at low energy.
This can be explained by a lower pairing gap and a dif-
ferent energy spectrum found in the HFB self-consistent
procedure. The larger magnitude comes from the wave
functions, and will be studied with the QRPA response.
It can already be stated that the QRPA response will also
have more strength at lower energy, due to this peculiar
feature of the unperturbed spectrum for the pure surface
pairing force.

Fig. 4 shows the unperturbed response for the two
neutron addition mode in 136Sn. In this case, at the
beginning of an open neutron shell several low energies
configurations can welcome the two neutrons (see Table
III). As in the case of 124Sn, the response exhibits larger
strength at low energy in the specific case of the pure
surface pairing interaction, compared to others pairing
interaction. This is related to the pairing field profile as
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FIG. 4: Unperturbed response function for 136Sn in the two
neutrons 0+ addition mode. The pure surface mode is in solid
line, the η=0.65 mode is in dotted line, and the η=0.35 mode
in dashed-dotted lines.

shown on Fig. 1. It should be noted that in order to
clearly see the effect due to the surface pairing, not only
the first 0+ state, but also the energy area of a few MeV
above should be explored since the results are different
from 0 to 4 MeV on Fig. 4.

C. Perturbed response results

Fig. 5 shows the QRPA response for 124Sn, with a pure
surface and the two mixed interactions. As expected the
residual interaction plays a similar role in all the cases,
gathering strength and shifting it to lower energy. In the
case of 124Sn, a peak around 9 MeV is the strongest for
the surface pairing interaction, to be compared with the
one around 10 MeV for the other interactions. Hence it
is expected that the pairing vibration transition strength
should be larger in the case of a pure surface force. How-
ever it is known that it is difficult to accurately describe
the magnitude of these transitions, especially for absolute
cross section calculations [20]: one-step or sequential two-
step process, triton wave function, zero-range or finite-
range DWBA have to be considered. The main elements
of such a calculation are the optical potentials in both
the entrance and the exit channel: they can be either
phenomenological such as the Becchetti and Greenlees
optical potential [21], or microscopic by using a double
folding approach. The other relevant element is the form
factor related to the reaction, which includes the informa-
tion on nuclear structure: it is expected that the relative
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FIG. 5: QRPA response function for 124Sn in the two neutrons
0+ addition mode. The pure surface mode is in solid line,
the η=0.65 mode is in dotted line, and the η=0.35 mode in
dashed-dotted lines.

magnitude of the angular distributions of two 0+ states
remains mainly sensitive to the form factor, related itself
to the pairing transition density (Eq. (41) of [13]). It
should be noted that in the case of zero-range DWBA,
the pairing transition density directly provides the form
factor.

The pairing transition density is defined as:

κν (r, σ) = 〈0|c (r, σ̄) c (r, σ) |ν〉 (6)

where c† (r, σ̄)= −2σc† (r, −σ) is its time reversed coun-
terpart.

It allows to calculate the form factor in the zero-range
DWBA approximation. The pairing transition densities
of Fig. 6 show, in the case of 124Sn, a difference, go-
ing from surface to other modes: the transition density
decreases at the surface. However the difference is not
dramatic and may be overruled by the experimental un-
certainties. The larger strength of the 9 MeV peak in the
pure surface pairing interaction is due to a larger transi-
tion density at the surface.

For the 136Sn neutron-rich nucleus, the low energy
spectrum displayed on Fig. 7 is dramatically changed
from using surface to other interactions, on a several MeV
area. A three peaks structure appears in the surface case,
compared to the two peaks structure of the other cases.
The integrated strength is also larger in the surface case.

Fig. 8 and 9 show the corresponding transition den-
sities. They exhibit very different shapes, comparing re-
sults with the pure surface pairing interaction and the
mixed pairing interaction. Hence 136Sn is a good test
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FIG. 6: Neutron transition density in the two neutrons addi-
tion mode for 124Sn for the first peak located at 9-10 MeV.
The pure surface mode is in solid line, the η=0.65 mode is in
dotted line, and the η=0.35 mode in dashed-dotted lines.
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FIG. 7: QRPA response function for 136Sn in the two neutrons
0+ addition mode. The pure surface mode is in solid line,
the η=0.65 mode is in dotted line, and the η=0.35 mode in
dashed-dotted lines.
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FIG. 8: Neutron transition density in the two neutrons addi-
tion mode for 136Sn for the first two peaks of the strength, in
the case of the mixed η=0.65 interaction

case to probe the pairing interaction through pairing vi-
brations. For instance in the case of the most intense
peak, the central part is dominant in the transition den-
sity for the mixed case, whereas the surface part of the
transition density dominates in the pure surface interac-
tion. Hence a measurement of the angular distributions
associated with the pairing vibration strength in very
neutron rich-nuclei such as 136Sn seems more decisive to
disentangle between the pairing interactions than with
124Sn. This may be due to the larger neutron skin in
136Sn, consisting of low density neutron-rich matter.

It has been shown in a previous work how the pairing
transition densities allow to calculate the two neutron
form factor in order to predict angular distributions for
pairing vibrations [14]. Work along these lines should
be undertaken in order to bring additional constrains on
the pairing interaction. Recently dynamical approaches
related to pairing have been developed, such as time-
dependent HFB model [15]. They can also be tested
using pairing vibrations, through their calculated transi-
tions densities, in a similar way than the present method.

IV. CONCLUSIONS

The impact of various pairing interactions on pairing
vibrations predictions has been analysed for the first time
using a HFB+QRPA approach. They should provide
a good sensitivity from a pure surface interaction com-
pared to mixed interactions, especially in the case of very
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FIG. 9: Neutron transition density in the two neutrons addi-
tion mode for 136Sn for the first 3 peaks of the strength, in
the case of the pure surface interaction

neutron-rich nuclei such as 136Sn. Moreover nuclear mat-
ter gap calculations show that the low density range is
sensitive to the surface/volume character of the pairing
interaction. In the case of exotic nuclei, pairing vibra-
tions are also found more sensitive to the surface/volume
type of the pairing interaction, than in the case of stable
nuclei. This may be due to the larger extension of the
neutron density in very neutron-rich nuclei.

The same study using an isospin dependent pairing in-
teraction will be undertaken. The hope is to come one
step closer to a more global pairing interaction, using
odd even mass staggering, pairing vibrations, and nu-
clear matter as constraints. Experimentally, the pairing
transition densities can be tested through the form factor
used to calculate the two neutrons transfer cross section.
This implies to use a adequate reaction model. Work
along these lines will be undertaken in an near future.
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2.8 Termes non standard dans l’interaction de 
Skyrme : termes dépendant de la densité de spin.  
 
 
Les canaux de spin et de spin-isospin de l’interaction nucléaire sont difficiles à explorer 
dans l’état fondamental des noyaux parce que les noyaux pairs ne sont pas polarisés en 
spin et les noyaux impairs sont polarisés au plus par les derniers nucléons impairs. Les 
modes d’excitation de spin et de spin-isospin comme le dipôle magnétique M1 et le 
mode de Gamow-Teller (GT) permettent de sonder ces canaux de l’interaction nucléaire. 
Le paramètre de Landau G’0 a été déduit par l’étude de ces modes [Bo84, Os92, Su99, 
Wa05, Bo06, Ic06, Fr07]. Les composantes de spin et de spin-isospin se manifestent 
aussi dans les termes du champ moyen impairs par renversement du temps (time-odd). 
Ces termes sont très mal connus parce que les ajustements phénoménologiques de la 
plupart des interactions effectives se font sur des noyaux pairs qui contraignent 
seulement les termes pairs par rapport au temps (time-even). L’étude des bandes 
superdéformées des noyaux en rotation rapide pourrait apporter des informations sur les 
termes impairs [Do95, Do97].  
 
Margueron et collaborateurs [Ma09a] ont introduit dans l’interaction de Skyrme de 
nouveaux termes dépendant de la densité de spin pour traiter les instabilités 
ferromagnétiques présentes dans toutes les paramétrisations de Skyrme [Ma02]. En 
définissant les densités de spin ρs et de spin-isospin ρst comme ↓↑ ρ−ρ≡ρs  et 

↓↑↓↑ ρ+ρ−ρ−ρ≡ρ ppnnst , les nouveaux termes introduits dans l’interaction de 

Skyrme sont égaux à : 
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                              (2.10) 

 
Dans l’article [Ma09a], les effets de ces termes sont étudiés dans la matière nucléaire et 
les six nouveaux paramètres sont ajustés pour reproduire dans la matière les paramètres 
de Landau réalistes extraits d’une matrice G. Comme les densités de spin sont égales à 
zéro dans les noyaux pairs-pairs, les nouveaux termes peuvent être ajoutés de manière 
perturbative dans la plupart des interactions de Skyrme qui sont ajustées pour reproduire 
les propriétés de noyaux pairs.  
 
Nous avons voulu estimer combien ces nouveaux termes affectent les propriétés des 
états fondamentaux des noyaux impairs et notamment les masses. Pour traiter les 
noyaux impairs et calculer les densités de spin sans briser la symétrie par renversement 
du temps, deux approximations sont faites : 
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1) le noyau impair est calculé dans l’approximation de remplissage égal (equal 
filling) ; 

2) dans ce cadre, les densités de spin seraient identiquement égales à zéro. Donc, 
quand les densités de spin sont construites avec les fonctions d’onde des 
nucléons impairs, nous supposons que, entre les deux états de spin possibles ↑ et 
↓, l’état ↑ est complètement rempli et l’état ↓ est vide (ou le contraire). Cette 
approximation, que nous appelons ‘one-spin polarized approximation’, fournit 
une estimation de l’effet maximal de ces nouveaux termes.  

 
Dans le travail [Ma09b] que je fais suivre :  

(i) nous avons analysé en détail l’effet de ces nouveaux termes sur les énergies 
de liaison des noyaux impairs ;  

(ii) nous avons aussi introduit ces termes dans la formule de masse HFB [Go09], 
réajusté les paramètres et estimé la qualité du fit de masse.  

(iii) Nous avons enfin analysé les propriétés de l’état fondamental de la matière 
nucléaire.  
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Abstract. We study the effect of time-odd components of the Skyrme energy density

functionals on the ground state of finite nuclei and in nuclear matter. The spin-density

dependent terms, which have been recently proposed as an extension of the standard

Skyrme interaction, are shown to change the total binding energy of odd-nuclei by only

few tenths of keV, while the time-odd components of standard Skyrme interactions give

an effect that is larger by one order of magnitude. The HFB-17 mass formula based on

a Skyrme parametrization is adjusted including the new spin-density dependent terms.

A comprehensive study of binding energies in the whole mass table of 2149 nuclei gives

a root mean square (rms) deviation of 0.575 MeV between experimental data and

the calculated results, which is as good as the original HFB-17 mass formula. From

the analysis of the spin instabilities of nuclear matter, restrictions on the parameters

governing the spin-density dependent terms are evaluated. We conclude that with the

extended Skyrme interaction, the Landau parameters G0 and G′
0 could be tuned with

a large flexibility without changing the ground-state properties in nuclei and in nuclear

matter.

PACS numbers: 21.30.Fe, 21.10.Dr, 21.65.-f , 26.60.-c

Submitted to: J. Phys. G: Nucl. Phys.

1. Introduction

Despite many theoretical and experimental investigations, the spin and the spin-isospin

channels in either the ground and the excited states of nuclei are still widely open for

future study [1, 2, 3, 4, 5, 6]. It is indeed difficult to probe the spin and the spin-isospin

channels of nuclear interaction since the ground states of nuclei are non-spin polarized
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in the case of even-even nuclei and at most polarized by the last unpaired nucleons in

odd nuclei.

The analysis of spin and spin-isospin collective modes such as magnetic dipole

(M1) and Gamow-Teller (GT) states gives access to the nuclear interaction in these

channels. The Landau parameter G′
0 has been deduced from the analysis of the GT

mode: a model based on Woods-Saxon single-particle states plus one-pion and rho

meson exchange interactions gives G′
0 = 1.3±0.2 (see Ref. [2, 3] and references therein).

A slightly different value G′
0 = 1.0±0.1 was derived from observed GT and M1 strength

distributions using the phenomenological energy density functionals DF3 [1, 7]. Anyway,

in both cases empirical single-particle energies are used (that is, for states close to the

Fermi energy the effective mass m∗/m is ≈ 1).

Self-consistent Hartree-Fock (HF) plus Random Phase Approximation (RPA)

calculations constitute a somewhat different framework, in which the density of states

around the Fermi energy is lower (or, equivalently, the effective mass is about 30%

smaller). As compared with the empirical case, the unperturbed particle-hole transitions

have larger energies and as a consequence one needs a smaller residual repulsive effect to

fit the observed GT peak. It is not surprising, therefore, that self-consistent calculations

of the GT resonance, performed using different Skyrme interactions in Ref. [6], point

to G′
0 ∼ 0.6. Skyrme interactions are characterized by a spin-isospin G′

1 parameter as

well, and specific terms of the effective mean field, like the spin-orbit potential, may

also break the simple correlation between the GT properties and the parameter G′
0.

However, as widely used interaction like SLy5 have unrealistic (negative) values of G′
0,

it is undeniable that adding more flexibility to the spin-isospin part of Skyrme forces is

useful.

The spin and spin-isospin component of the nuclear interaction is also reflected

into the time-odd component of the mean field. The properties of even nuclei give

constraints to the time-even component of the mean field while very little is known

about properties of the time-odd mean fields. Time-odd components of the mean field

compete with pairing correlations in determining the odd-even mass staggering [8]. Fast

rotation induces time-odd components in the mean field [9] which could be probed from

the measurement of the dynamical moments of superdeformed bands.

In Ref. [10], new spin-density dependent terms have been introduced on top of

standard Skyrme forces in order to remove the ferromagnetic instability associated with

all Skyrme parameterizations [5]. The new terms retain the simplicity and the good

properties of Skyrme interactions for nuclear matter and the ground states of even-

even nuclei. However, these new terms slightly change the properties of odd systems.

This work aims at studying quantitatively the effects of these new terms on the ground

state properties of odd nuclei, in particular the total binding energy and the density

distribution. Since these terms contribute only in odd nuclei, both odd-even and odd-

odd nuclei are considered in the present study. To provide an approximate maximal

estimate of the effects while keeping our model simple, we perform HF calculations with

the following approximation to treat odd nuclei. We use the equal filling approximation,
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so that the time-reversal symmetry is not broken, but with an additional ansatz.

As within this scheme the spin-densities would be by definition equal to zero, when

constructing the spin-densities with the wave function of the odd nucleon, we assume

that the spin-up state is completely filled while the spin-down state is empty between

the two possible spin orientations (or, equivalently, the opposite). We call this procedure

for the construction of spin-densities the one-spin polarized approximation (OSPA). The

OSPA gives an upper value of the contribution of the new terms.

The article is organized as follows: in Sec. II we remind the newly proposed spin-

density dependent terms as in Ref. [10]. In Sec. III, we estimate how much these new

spin-density dependent terms affect the total binding energy of odd nuclei. In Sec. IV,

it will be shown that, introducing these terms in the most predictive HF-Bogoliubov

(HFB) mass formula [11], the quality of the mass fit can be recovered with an optimal

renormalization of the Skyrme parameters. In Sec. V we will analyze the ground state

properties of infinite nuclear matter with respect to spin-polarization and give a range

for the parameter of newly introduced spin-density xs
3. Finally, conclusions and outlook

are given in Sec. VI.

2. Extended Skyrme interactions

As described in Ref. [10], the new spin-density dependent terms added to the

conventional Skyrme force are of the following form:

V s,st(r1, r2) =
1

6
ts3(1 + xs

3Pσ)[ρs(R)]γsδ(r) +
1

6
tst3 (1 + xst

3 Pσ)[ρst(R)]γstδ(r)

(1)

where Pσ = (1+σ1 ·σ2)/2 is the spin-exchange operator, r = r1−r2 and R = (r1+r2)/2.

In Eq. (1), we have introduced the spin-density ρs ≡ ρ↑−ρ↓ and the spin-isospin-density

ρst ≡ ρn↑ − ρn↓ − ρp↑ + ρp↓. Spin symmetry is satisfied if the power of the density-

dependent terms γs and γst is even.

The total energy ETOT in finite nuclei is related to the (local) energy density H(r)

through

ETOT ≡

∫

d3r H(r) . (2)

In the following, we adopt the notation of Ref. [12] where H is expressed as the sum

of a kinetic term K, a zero-range term H0, a density-dependent term H3, an effective-

mass term Heff , a finite-range term Hfin, spin-orbit and spin-gradient terms (Hso and

Hsg), and eventually the Coulomb term HCoul. However, the expression for the energy

density provided in [12] holds in the case of time-reversal symmetry; in odd nuclei, the

energy density H acquires also a dependence on the spin-densities ρs and ρst, hereafter

named Hodd, even without additional terms in the force depending on these densities.

Expressions for Hodd have been derived for instance in Refs. [9, 13] or in Appendix I of

Ref. [14]. For the reader’s convenience we repeat here, in Appendix A, the expression

for Hodd.
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The additional terms (1) modify the standard H3 contribution to be H3 +Hs
3 +Hst

3 ,

where the last two terms read

Hs
3 =

ts3
12

ργs

s

[

(1 +
xs

3

2
)ρ2 +

xs
3

2
ρ2

s − (xs
3 +

1

2
)(ρ2

n + ρ2
p) −

1

2
(ρ2

sn + ρ2
sp)

]

, (3)

Hst
3 =

tst3
12

ργst

st

[

(1 +
xst

3

2
)ρ2 +

xst
3

2
ρ2

s − (xst
3 +

1

2
)(ρ2

n + ρ2
p) −

1

2
(ρ2

sn + ρ2
sp)

]

,(4)

with ρsn = ρn↑ − ρn↓ and ρsp = ρp↑ − ρp↓.

The additional terms to the mean field coming from Hs
3 and Hst

3 are (q = n, p)

U s,st
q =

ts3
12

ργs

s

[

(2 + xs
3)ρ − (1 + 2xs

3)ρq

]

+
tst3
12

ργst

st

[

(2 + xst
3 )ρ − (1 + 2xst

3 )ρq

]

.

(5)

where the small contribution of the time-odd component has not been considered.

As already mentioned, the additional contributions to the mean field are zero in

even-even nuclei. Since most of the Skyrme interactions are adjusted on (few) even-

even nuclei, it is thus possible to add for these interactions the new terms (1) in a

perturbative manner. The new four parameters ts3, xs
3, tst3 and xst

3 in Eq. (1) have been

adjusted in Ref. [10] in order to reproduce the Landau parameters extracted from a G-

matrix calculation in uniform matter, while γs = γst = 2 is imposed by spin symmetry.

Some other interactions, in particular those produced by the Brussels-Montréal

group, are globally adjusted by fitting the properties (essentially the nuclear masses) of

both even and odd nuclei. In this case, when including the new spin-density terms, a

global re-adjustment of the interaction might be necessary.

In the following, we first analyze the effect of the new spin-density dependent

terms for a few selected nuclei using the SLy5 Skyrme interaction for which the new

spin-density dependent terms are added perturbatively. Later, on the basis of the

latest BSk17 Skyrme parameter set, we study the global impact of our new terms on

nuclear masses and show that the Skyrme parameters can be refitted to provide almost

equivalent properties.

3. Ground states of Ca nuclei

According to the OSPA, we define the densities ρs(r) and ρst(r) in odd nuclei as

ρs(r) =
1

4πr2

∑

i

ϕ2
i (r)ms(i) , (6)

ρst(r) =
1

4πr2

∑

i

ϕ2
i (r)ms(i)mt(i), (7)

where ms(i) and mt(i) are the spin and isospin z-component for each single nucleon

having the wave function ϕi(r). The last occupied state fully contributes to the spin-

density. It is then clear that the OSPA corresponds to maximizing the spin-density and

its effects.

Note that if the time-reversal symmetry is not broken (in the filling approximation,

for instance) both spin-up and spin-down states must be degenerate and the densities
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ρs and ρst are zero. Since in this work we aim at an approximate and maximal estimate

and not at a precise prediction of the effects, we use the HF method with the OSPA to

treat odd nuclei.

All calculations in this Section are performed with the SLy5 parameterization for

the conventional Skyrme force and the additional parameters for the spin-density terms

given in Table 2 of [10]. We choose two systems: 41Ca and 49Ca. Being built on top

of double magic nuclei, pairing is neglected for these nuclei in this section. Both nuclei

are odd-even, then the proton spin-density is zero and the spin-isospin-density is equal

to the spin-density for neutrons. For the nucleus 41Ca the spin-density is built with

the neutron 1f7/2 wave function while in 49Ca it is constructed with the neutron 2p3/2

wave function. The choice of these nuclei has been driven by the fact that one of the

nuclei, 41Ca, has a spin-density which probes the external region of the nucleus, while

for the other nucleus, 49Ca, the spin-density may probe more the central part. We could

not use the OSPA if the single-particle wave functions changed when adding one or two

nucleons. Therefore, as a necessary step to proceed with the evaluation of the impact

of spin-density dependent terms within the OSPA, we have first checked that the wave

function of the neutron state 1f7/2 does not change appreciably when passing from the

even nucleus 40Ca to the next even isotope with N + 2 neutrons, 42Ca. An analogous

check has been made for the wave function of the proton state 1f7/2 in 40Ca and in

the Z + 2 isotone 42Ti. Also, the spin-density calculated with the OSPA for 41Ca has

been compared with half the difference of the neutron densities of 42Ca and 40Ca, where

effects coming from the rearrangement of the deeper state are also included. Very small

differences are found, mainly in the central region. Analogous results are obtained for
48Ca, 49Ca and 50Ca.

The spin-densities in 41Ca and 49Ca are plotted in the two panels of Fig. 1 together

with the neutron densities of both nuclei. For comparison, the neutron densities of

the nearest even-even nuclei 42Ca and 50Ca are also displayed. The spin-densities

and the neutron densities have been calculated in the two odd-even systems. Two

independent calculations have been actually performed with and without the new spin-

density dependent terms (1) and only negligible differences have been found so that they

are not appreciable in the figures.

Since the contributions to the total energy ETOT coming from the spin-density

dependent terms (3) and (4) are proportional to the square of the spin densities

represented in Fig. 1, these contributions are expected to be negligible as compared

to the usual density dependent term H3. To be more quantitative, we have made

several calculations for the ground-state energies that are summarized in Tables 1

and 2. The partial contributions to the ground-state energy (2) are written EMF ≡
∫

d3r (H0 + H3 + Heff + Hfin + Hsg), Eso ≡
∫

d3r Hso, ECoul ≡
∫

d3r HCoul and

Ekin ≡
∫

d3r Hkin, using the notations of Ref. [12]. In Table 1 the total energy, the mean

field, the spin-orbit, the Coulomb and the kinetic contributions to the total energy and

the single-particle energy (for the neutron states 1f7/2 or 2p3/2) are provided for the odd

nuclei 41Ca and 49Ca and for the nearest even-even nuclei 42Ca and 50Ca. The calculation
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for the odd nuclei are performed either with or without the spin-density dependent

interaction (1). The difference between the total energy, and its contributions, without

and with the corrections ∆E is shown to be less than 50 keV in both odd nuclei 41Ca

and 49Ca. It is interesting to notice that the kinetic energy contributes to reduce the

impact of the spin-dependent interaction (1). The spin-orbit and the Coulomb energies

are very weakly affected by the spin-density terms.

In Table 2 the total and separate contributions coming from the time-odd terms

of the Skyrme interaction (see Eqs. (A.2)-(A.5) in Appendix A) are provided, in the

case of the odd nuclei 41Ca and 49Ca: these contributions are calculated perturbatively

within the OSPA. These terms are classified according to the standard notations and

labeled as Eodd
0 , Eodd

eff+fin+sg and Eodd
3 which are the contributions from the central, the

momentum dependent and the density dependent terms, respectively. The corrections

Eodd
0 and Eodd

3 give a dominant and repulsive contribution which increases the total

energy while the correction Eodd
eff+fin+sg is smaller and attractive. The total correction

remains quite small, that is, of the order of 0.15-0.3 MeV for both nuclei. Note that

the sign of these corrections could change from one Skyrme interaction to another, but

such corrections in Table 2 remain larger than ∆ETOT in Table 1. From the quantitative

comparison shown in Tables 1 and 2, we can infer, as expected, that the new spin-density

dependent terms (1) modify the ground state energies of odd nuclei much smaller than

those coming from the time-odd terms of the standard Skyrme interaction.

4. Global adjustment on the nuclear chart

Some Skyrme interactions have been determined by fitting the parameters to essentially

all of the available mass data and therefore are constrained to even as well as odd

systems. In this case, the new spin-density dependent terms (1) added to the standard

Skyrme interaction may modify the quality of the fit. To study the impact of the new

terms on the prediction of nuclear masses, we consider now the latest and most accurate

HFB-17 mass formula (with a rms deviation of 0.581 MeV on the 2149 measured masses

of [17]) obtained with the BSk17 Skyrme force [11].

If we consider the parameters of the additional spin-density dependent

interaction (1) determined in Ref. [10], namely ts3 = 2 × 104 MeV fm4, tst3 = 1.5 ×

104 MeV fm4, xs
3 = −2, xst

3 = 0 and γs = γst = 2, we find that the impact of the new

terms on nuclear masses are relatively small, as already discussed in Sect. III. Fig. 2

shows the mass difference obtained by a spherical HFB calculation when the spin terms

are added or not. The nuclear masses of odd-A and odd-odd nuclei are globally increased

by a value of the order of 100 keV. For light nuclei this correction is the largest and

can reach at most 350 keV. As already shown in Ref. [10], the spin-density terms are

repulsive and leads to an increase of the rms deviation with respect to all the 2149

measured masses from 0.581 MeV to 0.591 MeV, keeping the good quality of the mass

fit. Deterioration can potentially be avoided if the force parameters are re-adjusted to

the nuclear mass data.
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We have determined a new BSk17st Skyrme force which essentially corresponds to

the BSk17 force, but for which the Skyrme as well as the pairing parameters have been

slightly renormalized by a new fit on the whole set of mass data. The new parameter

set has been built with the idea of evaluating a maximum effect of the new spin-density

dependent term (in the same spirit of the OSPA discussed above). The values adopted

for the parameters are ts3 = 4 × 104 MeV fm4, tst3 = 3 × 104 MeV fm4, xs
3 = −0.5,

xst
3 = 0 and γs = γst = 2. ts3 and tst3 are twice larger than in Ref. [10] and this leads

to Landau parameters G0 = −0.03 and G′
0 = 0.99 in symmetric matter at saturation

density, whereas the parameter set of Ref. [10] is associated with lower values, namely

G0 = −0.36 and G′
0 = 0.75. As explained in the Introduction, the value of G′

0 may

be considered large in keeping with the effective mass 0.8 of BSk17, yet still quite

acceptable for the purpose of the present study. With a value of ts3 twice larger than

BSk16st, the value of xs
3 = −2 in Ref. [10] has been modified consistently to be −0.5

to keep the contribution to the Landau parameter G0 in spin-saturated infinite neutron

matter identical to the one determined in Ref. [10] [see Eq. (11) of Ref. [10]]. As far

as the parameter xst
3 is concerned, there is so far no constraint that could guide us in

fixing its value. For this reason the zero value was assumed in Ref. [10]. However, as

shown in Sec V, the value of xst
3 influences the stability of the partially polarized neutron

matter, i.e., the lower its value, the higher the barrier between the S = 0 and S = 1

configuration. For this reason, as discussed in Sec. V, the value of xst
3 is set to −3.

The strategy of the mass fit is the same as the one described in Ref. [11, 16].

In particular, the mass model is given from deformed HFB and the pairing force

is constructed from the microscopic pairing gaps of symmetric nuclear matter and

neutron matter calculated from realistic two- and three-body forces, with medium-

polarization effects included. To accelerate the fit, a first estimation of the energy

gained by deformation is performed and subtracted to the experimental masses. A

first series of parameters are then obtained from the comparison of spherical HFB mass

model with the corrected experimental masses. The corrections due to deformation

are then reevaluated and a new fit is performed. This fast procedure is repeated until

convergence. The isoscalar effective mass m∗
s/m is constrained to 0.80 and the symmetry

energy at saturation J to be 30 MeV in order to reproduce at best the energy-density

curve of neutron matter [15] from realistic two- and three-nucleon forces. Note that the

parameters of the additional spin-density interaction are not fitted in this procedure.

The final force parameters labeled BSk17st and resulting from a fit to essentially all

mass data are given in Table 3. It can be seen that there is little difference between the

parameters of the BSk17 and BSk17st forces; note that the parameters of the rotational

and vibrational corrections [16], are identical for both forces. The same holds for the

parameters of infinite matter with the incompressibility coefficient Kv = 241.7 MeV,

the volume energy coefficient av = −16.053 MeV and the isovector effective mass of

m∗
v/m = 0.784, as in Ref. [11].

The rms residuals for the BSk17 and BSk17st sets are compared in Table 4. The

inclusion of the new spin-density dependent terms (1) which slightly deteriorated the
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accuracy of the BSk17 force leads now even to a small improvement of the predictions

by about 6 keV, with the BSk17st force parameters. Both forces have been used to

estimate the mass of the 8508 nuclei with 8 ≤ Z ≤ 110 and lying between the proton

and neutron drip lines. Differences of no more than roughly ±0.5 MeV are found on the

entire set. The new spin-density dependent interaction does not destroy the good fit

obtained by the original interaction BSk17, and the effect on the masses is rather small.

Finally note that the nuclear binding energies remain extremely insensitive to the

value adopted for the parameters xs
3 and xst

3 . In particular, setting xs
3 = −2 instead of

−0.5 decreases the binding energy by no more than 10 keV. Similarly, a change of xst
3

from zero to −3 impact the masses by maximum 8 keV. Therefore, these two parameters

should be constrained rather by stability conditions of polarized or non-polarized infinite

nuclear matter, as shown in the next Section.

5. Ground state of infinite nuclear matter

In Ref. [10], it has been shown that the new spin-density dependent interaction (1)

stabilize non-polarized matter with respect to spin-fluctuations. As shown in Fig. 3,

with the new terms, the Landau parameters G0 and G′
0 remains larger than −1 at

all densities for SLy5st, LNSst [19] (which include the new terms as parametrized in

Ref. [10]) and the BSk17st forces

However, it has not been checked if the true ground state is really that of non-

polarized matter. To do so, the energy for different spin-polarizations should be

compared with that of non-polarized matter. This is done in the next two subsections

for both symmetric nuclear matter and neutron matter

5.1. Symmetric nuclear matter

The difference of the binding energy of spin-polarized matter to that of spin-symmetric

matter, E/A(δS, ρ) − E/A(δS = 0, ρ), is represented in Fig. 4 as a function of the

polarization δS = (ρ↑− ρ↓)/ρ. In the left panel, we have represented the binding energy

of the BSk17 Skyrme interaction without the new spin-density dependent terms (1).

The instability occurs between ρ=0.18 and 0.2 fm−3. At ρ=0.2 fm−3 the minimum

energy is obtained for a polarization δS=0.76.

The binding energy of BSk17st which includes the spin-density dependent terms

is represented in the right panel of Fig. 4. As expected, the energy of non-polarized

matter is convex around δS = 0, but there is a change of convexity for large values

of δS ∼ 0.8. We have indeed observed a large influence of the parameter xs
3 on the

binding energy of fully polarized matter. In Fig. 5 are represented the binding energies

E/A(δS, ρ)−E/A(δS = 0, ρ) for the three modified Skyrme interactions BSk17st, LNSst

and SLy5st for which we changed the values of the parameter xs
3. Its values are indicated

in the legend of Fig. 5. We fixed the density ρ=0.6 fm−3 to be the highest value where the

nuclear Skyrme interaction is applied. For values of the parameter xs
3=-3 the ground
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state of nuclear matter is fully polarized (δS = 1) for the interactions BSk17st and

LNSst. Increasing the value of the parameter xs
3 from -3 to 0, the binding energy of

fully polarized matter is going up in Fig. 5. There is then a critical value above which

non-polarized matter is the ground-state of nuclear matter.

One could obtain an estimate of this critical value by analyzing the contribution of

the new spin-density terms (1) in spin-polarized symmetric matter. It reads

Hs
3(sym.) =

ts3
16

ρ2ργs

s

[

1 +
2xs

3 − 1

3
δ2
S

]

, (8)

and Hst
3 (sym.) = 0 since ρst = 0. The term (8) is zero for the spin-symmetric matter

with ρs = 0 and is always positive for δS = 1 if one chooses xs
3 > −1. It is thus clear

that one necessary condition for the spin-symmetric matter to be the absolute ground

state at all densities is xs
3 > −1. This is the case for the adopted value of xs

3 = −0.5

for BSk17st. Nevertheless, as shown in Fig. 5 for instance for SLy5st, the stability of

spin-symmetric matter could be obtained even if xs
3 < −1 at the density ρ=0.6 fm−3.

At lower density, SLy5st is also stable, but not at higher density.

We remind that from the analysis of the Landau parameters the stability around

spin-symmetric matter requires that xs
3 < 1 (see Eq. (11) of Ref. [10]). As a conclusion,

one could adjust the parameter xs
3 inside the range −1 . xs

3 < 1.

5.2. Neutron matter

The case of pure neutron matter is somehow very peculiar. The correction due to the

spin-density dependent terms reads

Hs
3(neut.) =

ts3
24

ρ2ργs

s (1 − xs
3)

[

1 − δ2
S

]

. (9)

It is then clear that the correction is zero for δS = 0 and also for δS = 1. This property is

related to the anti-symmetrization of the interacting nucleons. Indeed, in fully polarized

neutron matter, the quantum numbers for spin and isospin are S = 1 and T = 1 while

the new spin-density dependent interaction (1) act in the L = 0 channel. The new

spin-density dependent interaction (1) have thus no effect at all in the purely spin-

polarized neutron matter. Only odd L terms could play a role in the fully polarized

neutron matter. This property has been used to provide a necessary condition to remove

the spin instabilities and lead to the condition −5/4 < x2 < −1 [20]. This condition

has been used in the fitting procedure of SLy5 [12] and it explains the robustness of

the spin-symmetric ground state for this interaction. However if more flexibility in the

Skyrme parameters is necessary, it might be interesting to introduce an interaction of

the following form

ts5(1 + xs
5Pσ) k′ρs(R) · δ(r)k . (10)

This L = 1 term will not contribute to spin-symmetric matter and could be adjusted to

fit the energy of fully polarized matter.

In Fig. 6, it is shown that the new spin-density terms (1) contribute to the binding

energy for partially polarized matter and tend to stabilize the state δS = 0. After the
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ferromagnetic transition, the state δS = 0 is not any more the absolute ground state in

pure neutron matter. However, the new spin-density terms generate a potential barrier

between the non-polarized and fully polarized states. The height of the barrier depends

on the chosen parameters of the new spin terms (1) as well as on the neutron matter

density. In the right panel of Fig. 6, the top of the barrier at the ferromagnetic transition

is located around the polarization δS = 1/
√

2 with a height (in MeV per nucleon) of

1

96

(

ts3(1 − xs
3) + tst3 (1 − xst

3 )
)

ρ3 . (11)

So, the higher the density, the higher the barrier. This barrier height is always positive

since the curvature of the binding energy around δS = 0 is related to the Landau

parameter G0,NM in neutron matter which is larger than -1 at all densities (see Fig. 3).

For the BSk17st force, at ρ ≃ ρf = 0.19 fm−3 this barrier amounts to about 10 MeV

per nucleon.

From Eq. (11), it can also be seen that the parameter xst
3 influences the height of

the barrier. The lower xst
3 , the larger the barrier. For BSk17st, we set xst

3 = −3 to

get a barrier above the non-polarized ground state of the order of 10 MeV per nucleon.

This condition is chosen with respect to the theoretical predictions [21, 22, 23, 24]

that nuclear matter is spin-symmetric up to reasonable high densities (see for instance

discussion in the introduction of Ref. [10]). With a barrier height of the order of 10 MeV

per nucleon, newly born neutron stars with typical temperature going from 1 to 5 MeV

might not be the site of a ferromagnetic phase transition. The transition towards a

non-polarized cold neutron star shall then be stable and the remaining neutron star

spin-symmetric. Notice however that despite the theoretical predictions that dense

matter is not spin-polarized [21, 22, 23, 24], there are no strong evidences against the

occurrence of ferromagnetic phase transition from observation of neutron stars. Indeed,

a spin-polarized phase in the core of neutron stars might induce the very huge magnetic

fields 1015−16 G yet unexplained that have been proposed as the driving force for the

braking of magnetars [25].

6. Conclusions

The occurrence of the spin instability beyond the saturation density is a common feature

shared by different effective mean-field approaches such as Skyrme HF, Gogny HF [26]

or relativistic HF [27]. The analysis of the spin component of the Skyrme interaction as

well as its extensions might thus guide us to a wider understanding of the spin channel in

general for nuclear interaction. There are many reason for looking at this channel. For

instance for its competition with pairing correlations in the odd-even-mass staggering [8],

for rotating superdeformed nuclei [9], for a better description of GT response, and for all

applications in astrophysics such as for instance predictions of β-decay half-lives of very

neutron rich nuclei produced during the r-process nucleosynthesis [7], reliable calculation

of neutron star crust properties such as ground-states and collective motion [28], for 0ν−
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and 2ν double beta decay processes, for URCA fast cooling, and also for neutrino mean

free path in proto-neutron stars.

In this paper we have carefully analyzed the ground state properties of finite nuclei

and infinite matter obtained by the extended Skyrme interactions with the spin-density

terms proposed in Ref. [10]. In finite even nuclei, the new spin-density interaction (1)

are simply zero and from the OSPA we have shown that these terms has only negligible

contributions to the ground-state of odd nuclei. These results has been obtained either

by introducing the new spin-density dependent terms in a perturbative way to existing

Skyrme interactions such as SLy5st or performing a global adjustment of the parameter

set on the nuclear chart. A new mass formula HFB-17st adjusted in the whole isotope

chart (2149 nuclei) is obtained with the rms deviation of about 575 keV. From the

analysis of the ground state of nuclear matter, a range for the parameter xs
3 is restricted

to −1 . xs
3 < 1 in order to stabilize the spin-symmetric matter. The case of neutron

matter is also discussed and it is shown that the new terms (1) with the relative angular

momentum L = 0 have no contribution to fully polarized neutron matter. Thus, it has

been shown that by using the extended Skyrme interactions [10], the Landau parameters

G0 and G′
0 could be tuned to realistic values without altering the ground-state properties

in odd nuclei as well as of nuclear matter.
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Appendix A. Time-odd components in the mean field of the Skyrme

interaction

In odd nuclei, the energy density H acquires a dependence on the spin-densities ρs and

ρst [9, 13]. Respecting the decomposition of the Skyrme energy functional proposed in

Ref. [12], the components of Hodd are

Hodd
0 =

1

4
t0

[

(x0 −
1

2
)ρ2

s −
1

2
ρ2

st

]

, (A.1)

Hodd
3 =

1

24
t3ρ

γ
[

(x3 −
1

2
)ρ2

s −
1

2
ρ2

st

]

, (A.2)

Hodd
fin =

1

32
[3t1(1 − x1) + t2(1 + x2)]

(

ρsn∇
2ρsn + ρsp∇

2ρsp

)

+
1

32
[t2x2 − 3t1x1]

(

ρsn∇
2ρsp + ρsp∇

2ρsn

)

, (A.3)

Hodd
eff =

1

16
[−t1(1 − 2x1) + t2(1 + 2x2)]ρsτs +

1

16
[t2 − t1]ρstτst , (A.4)

Hodd
sg =

1

16
[t1(1 − 2x1) − t2(1 + 2x2)]j

2
s +

1

16
[t1 − t2]j

2
st, (A.5)
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where τs (τst) is the spin (spin-isospin) kinetic density energy defined as τs = τ↑ − τ↓
(τst = τn↑ − τn↓ − τp↑ + τp↓) and j2s (j2st) is the spin (spin-isospin) current.
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Extended Skyrme interaction (II): ground state of nuclei and of nuclear matter 13

Table 1. Total energy, mean field, spin-orbit, Coulomb and kinetic contributions to

the total energy (third column) and single-particle energy of the neutron state 1f7/2

for 41−42Ca and 2p3/2 for 49−50Ca calculated, for the nearest even nuclei and for the

odd nuclei, without/with the spin-dependent terms (1) in the mean field. ∆E is the

difference of energy with and without the spin-dependent terms (1).

Nucleus ETOT EMF Eso ECoul Ekin s.p. energy

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

42Ca -362.591 -1111.434 -9.173 72.023 685.993 -9.66
41Ca -352.942 -1081.395 -5.259 72.116 661.596 -9.64

41Ca with (1) -352.918 -1081.359 -5.259 72.115 661.584 -9.64

∆E 0.024 0.036 0.000 -0.001 -0.012

50Ca -429.654 -1326.381 -33.958 70.905 859.779 -5.84
49Ca -423.876 -1305.865 -33.639 71.105 844.523 -5.70

49Ca with (1) -423.825 -1305.754 -33.634 71.102 844.461 -5.70

∆E 0.051 0.111 0.005 -0.003 -0.062

Table 2. Total and separate contributions to the energy from the time-odd (spin

symmetry breaking) terms of the SLy5 Skyrme interaction [14, 13].

Nucleus Eodd
TOT Eodd

0 Eodd
eff+fin+sg

Eodd
3

(MeV) (MeV) (MeV) (MeV)

41Ca 0.329 0.196 -0.007 0.140
49Ca 0.151 0.187 -0.176 0.140
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Extended Skyrme interaction (II): ground state of nuclei and of nuclear matter 14

Table 3. Parameter sets for BSk17 and BSk17st: the first 15 lines give the Skyrme

and additional spin parameters, the 16th the spin-orbit term, the 17th to 20th lines

the pairing parameters and the last 4 lines the Wigner correction [16]. See the text

and Ref. [11] for more details

BSk17 BSk17st

t0 -1837.33 -1837.19

t1 389.102 388.916

t2 -3.1742 -5.3076

t3 11523.8 11522.7

ts3 0 40000

tst
3 0 30000

x0 0.411377 0.410279

x1 -0.832102 -0.834832

x2 49.4875 29.0669

x3 0.654962 0.655322

xs
3 0 -0.5

xst
3 0 -3

γ 0.3 0.3

γs - 2

γst - 2

W0 145.885 146.048

f+
n 1.000 1.000

f−
n 1.044 1.045

f+
p 1.055 1.059

f−
p 1.050 1.059

VW -2.00 -2.06

λ 320 410

V ′
W 0.86 084

A0 28 28

Table 4. Rms (σ) deviations between experimental data [17] and HFB-17 or HFB17st

predictions. The first line refers to all the 2149 measured masses M , the second to the

masses Mnr of the subset of 185 neutron-rich nuclei with Sn ≤ 5.0 MeV, the third to

the 1988 measured neutron separation energies Sn and the fourth to 1868 measured

beta-decay energies Qβ . The fifth line shows the comparison with the 782 measured

charge radii [18]. Note that units for energy and radius are MeV and fm, respectively.

HFB-17 HFB-17st

σ(2149 M) 0.581 0.575

σ(Mnr) 0.729 0.738

σ(Sn) 0.506 0.495

σ(Qβ) 0.583 0.585

σ(Rc) 0.0300 0.0302
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Figure 1. Top panel: neutron density of 42Ca (solid line) and 41Ca (dashed line)

and spin-density in 41Ca (squares). The densities are given in units of fm−3. Bottom

panel: the same as top panel, but for 50Ca and 49Ca.
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Extended Skyrme interaction (II): ground state of nuclei and of nuclear matter 16

Figure 2. Difference between the nuclear mass of odd-A and odd-odd nuclei obtained

with the BSk17 force with and without the additional spin-density dependent terms.

The calculation is made here assuming spherical symmetry.
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 2.9 Les résultats microscopiques de champ moyen : 
ingrédients importants dans les études de réactions 
 
 
Une manière différente d’utiliser et de tester les résultats microscopiques de champ 
moyen est de faire des applications dans le domaine des réactions nucléaires, 
notamment, par exemple, pour l’évaluation des sections efficaces.  
Les densités neutroniques et protoniques sont des ingrédients nécessaires dans les 
modèles de folding pour la construction des potentiels optiques. Dans un des articles 
reportés dans la Section 2.4 [Be06], un modèle de folding utilisant un potentiel optique 
microscopique (avec une interaction nucléon-nucléon dépendante de la densité et basée 
sur l’interaction M3Y) a été adopté. L’expérience effectuée à Ganil pour tester le 
rapport des contributions neutronique et protonique au premier état 2+ de 22O a été 
analysée avec ce potentiel microscopique. J’ai souligné que ce travail a montré 
l’existence de la fermeture de couche N=14 dans 22O.  
 
Dans la Section 2.6, j’ai présenté une analyse des modes de transfert de paires et j’ai 
mentionné un travail en cours dans lequel nous sommes en train de calculer les sections 
efficaces associées aux transferts de paires pour analyser l’effet du choix de l’interaction 
d’appariement sur les distributions angulaires.  
 
Je mentionne ici un autre travail où un modèle de folding avec un potentiel optique 
microscopique a été utilisé [Kho03, Kho04]. Les densités des isotopes de O et de C 
calculées avec HFB (avec inclusion des états du continuum comme états de diffusion) 
ont été les ingrédients microscopiques provenant du champ moyen. Dans l’article 
[Kho04], dans le cadre de la DWIA (distorted wave impulse approximation), les 
sections efficaces d’interaction σI et totales de réaction σR ont été calculées en utilisant 
des potentiels optiques microscopiques obtenus avec un modèle de folding. Une cible de 
12C  et des projectiles stables et instables de He, Li, C et O ont été considérés. Dans le 
modèle de folding, les densités nucléoniques obtenues microscopiquement pour la cible 
et les projectiles de C et O ont été utilisées. Dans le même modèle, la matrice T de 
Franey et Love [Fr85] (paramétrisation de l’interaction nucléon-nucléon libre) a été 
choisie. Ce choix est justifié par l’énergie très élevée en jeu (Elab ∼ 0.8 et 1 GeV). Les 
sections efficaces σI, calculées pour les noyaux stables, reproduisent bien  les résultats 
expérimentaux correspondants (différences de 1-2 %). Je fais suivre l’article [Kho04].  

87



Microscopic calculation of the interaction cross section for stable and unstable nuclei based on
the nonrelativistic nucleon-nucleon t matrix

Dao T. Khoa* and Hoang Sy Than
Institute for Nuclear Science & Technique, VAEC, P. O. Box 5T-160, Nghia Do, Hanoi, Vietnam

Tran Hoai Nam
Department of Physics, Hanoi University of Natural Sciences, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam

Marcella Grasso and Nguyen Van Giai
Institut de Physique Nucléaire, IN2P3-CNRS, 91406 Orsay Cedex, France

(Received 1 August 2003; published 19 April 2004)

Fully quantal calculations of the total reaction cross sections �R and interaction cross sections �I, induced by
stable and unstable He, Li, C, and O isotopes on 12C target at Elab�0.8 and 1 GeV/nucleon have been
performed, for the first time, in the distorted wave impulse approximation (DWIA) using the microscopic
complex optical potential and inelastic form factors given by the folding model. Realistic nuclear densities for
the projectiles and 12C target as well as the complex t-matrix parametrization of free nucleon-nucleon inter-
action by Franey and Love were used as inputs of the folding calculation. Our parameter-free folding � DWIA
approach has been shown to give a very good account (within 1–2 %) of the experimental �I measured at these
energies for the stable, strongly bound isotopes. With the antisymmetrization of the dinuclear system properly
taken into account, this microscopic approach is shown to be more accurate than the simple optical limit of
Glauber model that was widely used to infer the nuclear radii from the measured �I. Therefore, the results
obtained for the nuclear radii of neutron-rich isotopes under study can be of interest for further nuclear
structure studies.
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I. INTRODUCTION

Since 1980s the radioactive ion beams have been used
intensively to measure the total reaction cross sections and
interaction cross sections induced by unstable nuclei on
stable targets (see a recent review in Ref. [1]) which serve as
an important data bank for the determination of nuclear
sizes. The discovery of exotic structures of unstable nuclei,
such as neutron halos or neutron skins, are among the most
fascinating results of this study.

The theoretical tool used dominantly by now to analyze
the interaction cross sections measured at energies of several
hundred MeV/nucleon is the Glauber model [2,3] which is
based on the eikonal approximation. This approach provides
a simple connection between the ground state densities of the
two colliding nuclei and the total reaction cross section of
the nucleus-nucleus system, and has been used, in particular,
to deduce the nuclear density parameters for the neutron-rich
halo nuclei [4].

In general, the total reaction cross section �R, which mea-
sures the loss of flux from the elastic channel, must be cal-
culated from the transmission coefficient Tl as

�R =
�

k2�
l

�2l + 1�Tl, �1�

where k is the relative momentum �or wave number�. The
summation is carried over all partial waves l with Tl deter-
mined from the elastic S matrix as

Tl = 1 − �Sl�2. �2�

In the standard optical model �OM�, the quantal S-matrix
elements Sl are obtained from the solution of the Schrödinger
equation for elastic nucleus-nucleus scattering using a com-
plex optical potential. At low energies, the eikonal approxi-
mation is less accurate and, instead of Glauber model, the
OM should be used to calculate �R for a reliable comparison
with the data. At energies approaching 1 GeV/nucleon re-
gion, there are very few elastic scattering data available
and the choice of a realistic optical potential becomes
technically difficult, especially for unstable nuclei. Per-
haps, this is the reason why different versions of Glauber
model are widely used to calculate �R at high energies.
Depending on the structure model for the nuclear wave
functions used in the calculation, those Glauber model
calculations can be divided into two groups: the calcula-
tions using a simple optical limit of Glauber model �see
Ref. �1� and references therein� and the more advanced
approaches where the few-body correlation and/or
breakup of a loosely bound projectile into a core and va-
lence �halo� nucleons are treated explicitly �3,5,6�.

In the present work, we explore the applicability of the
standard OM to calculate the total reaction cross section (1)
induced by stable and unstable beams at high energies using
the microscopic optical potential predicted by the folding
model. The basic inputs of a folding calculation are the den-
sities of the two colliding nuclei and the effective nucleon-
nucleon (NN) interaction [7]. At low energies, a realistic
density-dependent NN interaction [8] based on the M3Y in-*Electronic address: khoa@vaec.gov.vn
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teraction [9] has been successfully used to calculate the
�-nucleus and nucleus-nucleus optical potential [10]. This
interaction fails, however, to predict the shape of the
�-nucleus optical potential as the bombarding energy in-
creases to about 340 MeV/nucleon [11]. On the other hand,
at incident energies approaching a few hundred MeV/
nucleon the t-matrix parametrization of free NN interaction
was often used in the folding analysis of proton-nucleus scat-
tering [12,13]. The use of the t-matrix interaction corre-
sponds to the so-called impulse approximation (IA), where
the medium modifications of the NN interaction are ne-
glected [14].

In the present folding calculation we adopt a local repre-
sentation of the free NN t matrix developed by Franey and
Love [13] based on the experimental NN phase shifts. The
folded optical potentials and inelastic form factors are used
further in the distorted wave impulse approximation (DWIA)
to calculate �R and interaction cross section �I, induced by
stable and unstable He, Li, C, and O isotopes on 12C target at
bombarding energies around 0.8 and 1 GeV/nucleon. Since
relativistic effects are significant at high energies, the relativ-
istic kinematics are taken into account properly in both the
folding and DWIA calculations. To clarify the adequacy and
possible limitation of the present folding model, we also dis-
cuss the main approximations made in our approach and
compare them with those usually assumed in the Glauber
model.

Given the realistic nuclear densities and validity of IA, the
folding approach presented below in Sec. II is actually
parameter-free and it is necessary to test first the reliability of
the model by studying the known stable nuclei before going
to study unstable nuclei. Such a procedure is discussed
briefly in Sec. III. Then, �I measured for the neutron-rich He,
Li, C, and O isotopes are compared with the results of cal-
culation and the sensitivity of nuclear radii to the calculated
�I is discussed. The discrepancy between �I

calc and �I
expt

found for some light halo nuclei is discussed in detail to
indicate possible effects caused by the dynamic few-body
correlation. Conclusions are drawn in Sec. IV.

II. FOLDING MODEL FOR THE COMPLEX
NUCLEUS-NUCLEUS OPTICAL POTENTIAL

The details of the latest double-folding formalism are
given in Ref. [10] and we only recall briefly its main fea-
tures. In general, the projectile-target interaction potential
can be evaluated as an energy-dependent Hartree-Fock-type
potential of the dinuclear system:

U = �
i�a,j�A

�	ij�vD�ij
 + 	ij�vEX�ji
� = VD + VEX, �3�

where the nuclear interaction V is a sum of effective NN
interactions vij between nucleon i in the projectile a and
nucleon j in the target A. The antisymmetrization of the di-
nuclear system is done by taking into account the single-
nucleon knock-on exchanges.

The direct part of the potential is local (provided that the
NN interaction itself is local), and can be written in terms of
the one-body densities,

VD�E,R� =� �a�ra��A�rA�vD�E,�,s�d3rad3rA,

where s = rA − ra + R . �4�

The exchange part is, in general, nonlocal. However, an ac-
curate local approximation can be obtained by treating the
relative motion locally as a plane wave �15�:

VEX�E,R� =� �a�ra,ra + s��A�rA,rA − s�

� vEX�E,�,s�exp� iK�E,R� · s

M

d3rad3rA.

�5�

Here �a�ra���a�ra ,ra� and �a�ra ,ra+s� are the diagonal and
nondiagonal parts of the one-body density matrix for the
projectile, and similarly for the target. K�E ,R� is the local
momentum of relative motion determined as

K2�E,R� =
2�

	2 �Ec.m. − Re U�E,R� − VC�R�� , �6�

� is the reduced mass, M =aA / �a+A� with a and A the mass
numbers of the projectile and target, respectively. Here,
U�E ,R�=VD�E ,R�+VEX�E ,R� and VC�R� are the total
nuclear and Coulomb potentials, respectively. More de-
tails on the calculation of the direct and exchange poten-
tials �4� and �5� can be found in Refs. �10,16�. The folding
inputs for mass numbers and incident energies were taken
as given by the relativistically corrected kinematics �17�.

To calculate consistently both the optical potential and
inelastic form factor one needs to take into account explicitly
the multipole decomposition of the nuclear density that en-
ters the folding calculation [10]:

�JM→J�M��r� = �

�

	JM
��J�M�
C
�
�r��i
Y
��r̂��*, �7�

where JM and J�M� are the nuclear spin and its projection in
the initial and final states, respectively, and �
�r� is the
nuclear transition density for the corresponding 2
-pole ex-
citation. In the present work, we adopt the collective-model
Bohr-Mottelson prescription �18� to construct the nuclear
transition density for a given excitation in the 12C target as

�
�r� = − �


d�0�r�
dr

. �8�

Here �0�r� is the total ground state �g.s.� density and �
 is the
deformation length of the 2
-pole excitation in the 12C tar-
get.

A. Impulse approximation and the t-matrix interaction

If the total spin and isospin are zero for one of the two
colliding nuclei (12C in our case) only the spin- and isospin-
independent components of the central NN forces are neces-
sary for the folding calculation. We discuss now the choice
of vD�EX��E ,� ,s� for the two bombarding energies of 0.8 and
1 GeV/nucleon. At these high energies, one can adopt the IA

KHOA, THAN, NAM, GRASSO, AND GIAI PHYSICAL REVIEW C 69, 044605 (2004)
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which reduces the effective NN interaction approximately to
that between the two nucleons in vacuum [14]. Conse-
quently, the microscopic optical potential and inelastic form
factors can be obtained by folding the g.s. and transition
densities of the two colliding nuclei with an appropriate
t-matrix parametrization of the free NN interaction.

In the present work, we have chosen the nonrelativistic
t-matrix interaction which was developed by Franey and
Love [13] based on experimental NN phase shifts at bom-
barding energies of 0.8 and 1 GeV. The spin- and isospin-
independent direct �vD� and exchange �vEX� parts of the cen-
tral NN interaction are then determined from the singlet- and
triplet-even (SE and TE) and singlet- and triplet-odd (SO and
TO) components of the local t-matrix interaction (see Table I
of Ref. [13]) as

vD�EX��s� =
kakA

16
�3tTE�s� + 3tSE�s� ± 9tTO�s� ± 3tSO�s�� .

�9�

Here ka and kA are the energy-dependent kinematic modifi-
cation factors of the t-matrix transformation �19� from the
NN frame to the Na and NA frames, respectively. ka and kA
were evaluated using Eq. �19� of Ref. �12�. The explicit,
complex strength of the finite-range central t-matrix interac-
tion �9� is given in terms of four Yukawas �13�. Since the
medium modifications of the NN interaction are neglected in
the IA �14�, the t-matrix interaction �9� does not depend on
the nuclear density.

B. Main steps in the calculation of �I

With properly chosen g.s. densities for the two colliding
nuclei, the elastic scattering cross section and �R are ob-
tained straightforwardly in the OM calculation using the mi-
croscopic optical potential (4)–(6). We recall that the inter-
action cross section �I is actually the sum of all particle
removal cross sections from the projectile [1] and accounts,
therefore, for all processes when the neutron and/or proton
number in the projectile is changed. As a result, �I must be
smaller than the total reaction cross section �R which in-
cludes also the cross section of inelastic scattering to excited
states in both the target and projectile as well as cross section
of nucleon removal from the target. At energies of several
hundred MeV/nucleon, the difference between �R and �I was
found to be a few percent [3,20,21] and was usually ne-
glected to allow a direct comparison of the calculated �R
with the measured �I. Since the experimental uncertainty in
the measured �I is very small at the considered energies
(around 1% for stable projectiles such as 4He, 12C, and 16O
[1]) neglecting the difference between �R and �I might be
too rough an approximation in comparing the calculated �R
with the measured �I and testing nuclear radius at the accu-
racy level of ±0.05 fm or less [1,22]. In the present work, we
try to estimate �I as accurately as possible by subtracting
from the calculated �R the total cross section of the main
inelastic scattering channels; namely, we have calculated in
DWIA, using the complex folded optical potential and in-
elastic form factors, the integrated cross sections �2+ and �3−

of inelastic scattering to the first excited 2+ and 3− states of

12C target at 4.44 and 9.64 MeV, respectively. These states
are known to have the largest cross sections in the inelastic
proton and heavy ion scattering on 12C at different energies.
The deformation lengths used to construct transition densi-
ties (8) for the folding calculation were chosen so that the
electric transition rates measured for these states are repro-
duced with the proton transition density as

B�E
↑� = e2��
0

�

�

p�r�r
+2dr�2

. �10�

Using a realistic Fermi distribution for the g.s. density of 12C
�see the following section� to generate the transition den-
sities, we obtain �2�1.54 fm and �3�2.11 fm which re-
produce the experimental transition rates B�E2↑�
�41 e2 fm4 �23� and B�E3↑��750 e2 fm6 �24�, respec-
tively, via Eq. �10�. Since inelastic scattering to excited
states of the unstable projectile is suppressed by a much
faster breakup process, �I can be approximately obtained
as

�I = �R − �Inel��R − �2+ − �3−. �11�

All the OM and DWIA calculations were made using the
code ECIS97 [25] with the relativistic kinematics properly
taken into account. At the energies around 1 GeV/nucleon
the summation (1) is usually carried over up to 800–1000
partial waves to reach the full convergence of the S-matrix
series for the considered nucleus-nucleus systems.

C. Adequacy and limitation of the folding approach

Since the measured �I have been analyzed extensively by
different versions of Glauber model and its optical limit (OL)
is sometimes referred to as the folding model [6,26], we find
it necessary to highlight the distinctive features of the present
folding approach in comparison with the OL of Glauber
model before going to discuss the results of calculation.

On the level of the nucleus-nucleus optical potential (OP),
the present double-folding approach evaluates OP using fully
finite-range NN interaction and taking into account the ex-
change effects accurately via the Fock term in Eq. (3). There-
fore, individual nucleons are allowed to scatter after the col-
lision into unoccupied single-particle states only. Sometimes,
one discusses these effects as the exchange NN correlation.
An appropriate treatment of the exchange NN correlation is
indispensable not only in the folding calculation of OP and
inelastic form factor, but also in the Hartree-Fock (HF) cal-
culations of nuclear matter [27] and of the finite nuclei [28].

To obtain from the double-folding model presented above
the simple expression of nucleus-nucleus OP used in the OL
of Glauber model one needs to make a “double-zero” ap-
proximation which reduces the complex finite-range t-matrix
interaction (9) to a zero-range (purely imaginary) NN scat-
tering amplitude at zero NN angle tNN�
=0°���s� that can be
further expressed through the total NN cross section �NN,
using the optical theorem. As a result, one needs to evaluate
in the OL of Glauber model only a simple folding integral
over local densities of the two colliding nuclei [6]:
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U�R� → VOL�R� =
i�NN

2
� �a�R��A�R − rA�d3rA. �12�

The prescription (12) is also known as the t�� approxima-
tion [29] which neglects the off-shell part of the t matrix.
Besides the inaccuracy caused by the use of zero-range ap-
proximation [30], the zero-angle approximation takes into
account only the on-shell t-matrix at zero momentum trans-
fer [see Eq. (3) in Ref. [12]]. Since the antisymmetrization of
tNN requires an accurate estimation of the NN knock-on ex-
change term which is strongest at large momentum transfers
(q�6 fm−1 at energies around 0.8 GeV [12,13]), the zero-
angle approximation could strongly reduce the strength of
the exchange term. A question remains, therefore, whether
the NN antisymmetry is properly taken into account when
one uses the empirical �NN in the Glauber folding integral
(12). A similar aspect has been raised by Brandan et al. [31]
who found that an overestimated absorption in the nucleus-
nucleus system (by the t�� model) is due to the effects of
Pauli principle. To illustrate the importance of the knock-on
exchange term, we have plotted in Fig. 1 the direct and ex-
change components of the microscopic OP for 6He+12C sys-
tem at 790 MeV/nucleon predicted by our double-folding
approach using realistic g.s. densities (see the following sec-
tion) of the two colliding nuclei. One can see that the ex-
change term of the real OP is repulsive and much stronger
than the (attractive) direct term, which makes the total real
OP repulsive at all internuclear distances [see panel (a) of
Fig. 1]. The exchange term of the imaginary OP is also re-
pulsive but its relative strength is much weaker compared to
that of the real OP, and the total imaginary OP remains at-
tractive or absorptive at all distances. As a result, the direct
part of the imaginary OP is about 10% more absorptive than
the total imaginary OP [see panel (b) of Fig. 1]. The total
reaction cross section predicted by the complex OP shown in
Fig. 1 is �R�727 mb. This value increases to �R�750 mb
when the exchange potential VEX is omitted in the OM cal-
culation. Consequently, the relative contribution by the ex-
change term in �R is about 3%. This difference is not small
because it can lead to a difference of up to 7% in the ex-
tracted nuclear rms radii. Due to an overwhelming contribu-
tion by the exchange part of the real OP, the exchange po-
tential affects the calculated elastic scattering cross section
(see Fig. 2) much more substantially compared to �R, which
is determined mainly by the imaginary OP.

We will show below a slight (but rather systematic) dif-
ference in �R values obtained in our approach and the OL of
Glauber model that might be due to the exchange effect. We
note further that the elastic S matrix is obtained in our ap-
proach rigorously from the quantal solution of the
Schrödinger equation for elastic scattering wave, while the
elastic S matrix used in the Glauber model is given by the
eikonal approximation which neglects the second-derivative
term of the same Schrödinger equation.

A common feature of the present folding approach and the
OL of Glauber model is the use of single-particle nuclear
densities of the projectile and target as input for the calcula-
tion, leaving out all few-body correlations to the structure
model used to construct the density. This simple ansatz has
been referred to as “static density approximation” [5,6]

which does not take into account explicitly the dynamic few-
body correlation between the core and valence nucleons in a
loosely bound projectile while it collides with the target. In
the Glauber model, this type of few-body correlation can be
treated explicitly [3,5,6] using simple assumptions for the
wave functions of the core and valence nucleons as well as
that of their relative motion. For unstable nuclei with a well-
extended halo structure, such as 11Li or 6He, such an explicit
treatment of the dynamic few-body correlation leads consis-
tently to a smaller �R, i.e., to a larger nuclear radius com-
pared to that given by the OL of Glauber model [3,5,6]. On
the level of the HF-type folding calculation (3), an explicit
treatment of the core and valence nucleons would result in a
much more complicated triple-folding formalism which in-
volves the antisymmetrization not only between the projec-
tile nucleons and those of the target, but also between the
nucleons of the core and the valence nucleons. Such an ap-

FIG. 1. Radial shape of the direct VD and exchange VEX parts of
the total optical potential U for 6He+ 12C system at
790 MeV/nucleon. The real and imaginary part of U are shown in
panels (a) and (b), respectively.
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proach would clearly end up with a nonlocal OP which will
not be easily used with the existing direct reaction codes.
The lack of an appropriate treatment of the dynamic few-
body correlations remains, therefore, the main limitation of
the present folding approach in the calculation of the OP for
systems involving unstable nuclei with halo-type structure.

Note that an effective way of taking into account the loose
binding between the core and valence nucleons is to add a
higher-order contribution from breakup (dynamic polariza-
tion potential) to the first-order folded potential [21,32] or
simply to renormalize the folded potential to fit the data.
However, validity of the IA implies that higher-order mul-
tiple scattering or contribution from the dynamic polarization
potential is negligible, and the folded OP and inelastic form
factor based on the t-matrix interaction (9) should be used in
the calculations without any further renormalization. There-
fore, we will discuss below only results obtained with the

unrenormalized folded potentials, keeping in mind possible
effects due to the few-body correlation.

III. RESULTS AND DISCUSSION

A. Results for stable „N=Z… isotopes

An important step in any experimental or theoretical re-
action study with unstable beams is to gauge the method or
model by the results obtained with stable beams. Therefore,
we have considered first the available data of �I induced by
stable 4He, 6Li, 12C, and 16O beams on 12C target [1]. These
�N=Z� nuclei are strongly bound, and the rms radius of the
(point) proton distribution inferred from the elastic electron
scattering data [33] can be adopted as the “experimental�
nuclear radius if the proton and neutron densities are as-
sumed to be the same. To show the sensitivity of the calcu-
lated �I to the nuclear radius, we present in Table I results
obtained with different choices for the projectile density in
each case. We use for the g.s. density of 12C target a realistic
Fermi (FM) distribution [16]

�0�r� = �0/�1 + exp��r − c�/a�� , �13�

where �0=0.194 fm−3, c=2.214, and a=0.425 fm were cho-
sen to reproduce the shape of shell model density and
experimental radius of 2.33 fm for 12C.

4He is a unique case where a simple harmonic oscillator
(HO) model can reproduce quite well its ground state den-
sity. If one chooses the HO parameter to give 	r2
1/2

=1.461 fm (close to the experimental radius of
1.47±0.02 fm), then one obtains the Gaussian form adopted
in Ref. [7] for � density. This choice of 4He density has been
shown in the folding analysis of elastic �-nucleus scattering
[16] to be the most realistic. By comparing the calculated �I
with the data, we find that this same choice of 4He density
gives the best agreement between �I

calc and �I
expt. Similar

situation was found for 12C and 16O isotopes, where the best
agreement with the data is given by the densities which re-
produce the experimental nuclear radii. Besides a simple
Fermi distribution [16], microscopic g.s. densities given by
the Hartree-Fock-Bogoliubov (HFB) calculation that takes
into account the continuum [34] were also used. The agree-
ment with the data for 12C and 16O given by the HFB den-
sities is around 2%, quite satisfactory for a fully microscopic
structure model. We have further used sp-shell HO wave
functions to construct the g.s. densities of 6Li, 12C, and 16O.
For 12C and 16O, the best agreement with the �I data is again
reached when the HO parameter is tuned to reproduce the
experimental radii.

The agreement is slightly worse for 6Li compared to 4He,
12C, and 16O cases if 6Li density distribution reproduces the
experimental radius. We have first used 6Li density given by
the independent particle model (IPM) developed by Satchler
[7,35] which generates realistic wave function for each
single-particle orbital using a Woods-Saxon (WS) potential
for the bound state problem. The IPM density gives 	r2
1/2

�2.40 fm for 6Li, rather close to the experimental radius of
2.43±0.02 fm inferred from �e ,e� data [33]. The HO density
gives the same �I as that given by the IPM density if the HO

FIG. 2. Three versions of 6He g.s. density used in the folding
calculation [panel (a)] and elastic 6He+ 12C scattering cross sections
at 790 MeV/nucleon obtained with the corresponding complex
folded optical potentials [panel (b)]. The dotted curve in panel (b) is
obtained without the exchange part of the OP.
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parameter is chosen to give the same radius of 2.40 fm.
These two versions of 6Li density overestimate the �I data by
about 4%. If the HO parameter is chosen to give 	r2
1/2

�2.32 fm, then the agreement with the �I data improves to
around 2%. This result indicates that our folding � DWIA
analysis slightly overestimates the absorption in 6Li+12C sys-
tem. Since 6Li is a loosely bound �+d system, this few
percent discrepancy with the �I data might well be due to the
dynamic correlation between the � core and deuteron cluster
in 6Li during the collision which is not taken into account by
our approach. Note that a few-body Glauber calculation [6]
(which takes into account explicitly the dynamic correlation
between � and d) ends up, however, with about the same
discrepancy (see Fig. 4 in Ref. [6]). 6Li remains, therefore,
an interesting case for the reaction models to improve their
ingredients. For 7Li, the IPM density [7] gives 	r2
p

1/2

�2.28 fm (close to the experimental value of 2.27±0.01 fm
[33]) and 	r2
n

1/2�2.43 fm which make the matter radius
	r2
1/2�2.37 fm. As a result, �I calculated with the IPM den-
sity for 7Li agrees with the data within less than 1%. In the
HO model for 7Li density, we have chosen the HO parameter
for protons to reproduce the experimental radius of 2.27 fm
and that for neutrons adjusted by the best agreement with the
�I data. The best-fit 	r2
1/2 radius then becomes around
2.33 fm.

We conclude from these results that the present folding �
DWIA approach and local t-matrix interaction by Franey and
Love [13] are quite suitable for the description of the
nucleus-nucleus interaction cross section at energies around
1 GeV/nucleon, with the prediction accuracy as fine as
1–2% for the stable and strongly bound nuclei.

B. Results for neutron-rich isotopes

Our results for neutron-rich He, Li, C, and O isotopes are
presented in Table II. Since 6He beams are now available

with quite a good resolution, this nucleus is among the most
studied unstable nuclei. In the present work we have tested
three different choices for 6He density in the calculation of
�I. The microscopic 6He density obtained in a HF calculation
[30] has a rather small radius 	r2
1/2�2.20 fm and the cal-
culated �I underestimates the data by about 5%. A larger
radius of 2.53 fm is given by the density obtained in a con-
sistent three-body formalism [5] and the corresponding �I
agrees better with the data. Given an accurate 7Li density
obtained in the IPM [7] as shown above and the fact that 6He
can be produced by a proton-pickup reaction on 7Li, we have
constructed the g.s. density of 6He in the IPM (with the
recoil effect properly taken into account [35]) using the fol-
lowing WS parameters for the single-particle states: r0
=1.25 fm, a=0.65 fm for the s1/2 neutrons and protons
which are bound by Sn=25 MeV and Sp=23 MeV, respec-
tively; r0=1.35 fm, a=0.65 fm for the p3/2 halo neutrons
which are bound by Sn=1.86 MeV. The WS depth is ad-
justed in each case to reproduce the binding energy. The
obtained IPM density gives the proton, neutron, and total
nuclear radii of 6He as 1.755, 2.746, and 2.460 fm, respec-
tively. This choice of 6He density also gives the best agree-
ment with the �I data. We note that a Glauber model analysis
of the elastic 6He+p scattering at 0.7 GeV/nucleon [37],
which takes into account higher-order multiple-scattering ef-
fects, gives a best-fit 	r2
1/2�2.45 fm for 6He, very close to
our result. Since elastic 6He+12C scattering has recently been
measured at lower energies [38], we found it interesting to
plot the three densities and elastic 6He+12C scattering cross
sections at 790 MeV/nucleon predicted by the correspond-
ing complex folded OP (the radial shape of the OP obtained
with the IPM density for 6He is shown in Fig. 1). As can be
seen from Fig. 2, the IPM density has the neutron-halo tail
very close to that of the density calculated in the three-body
model [5] and they both give a good description of �I. The

TABLE I. The total reaction cross section �R and interaction cross section �1 calculated for stable 4He, 6,7Li, 12C, and 16O nuclei in
comparison with �I

expt taken from the data compilation in Ref. [1]. ��I= ��I
calc−�I

expt� /�I
expt.

Nucleus Energy Density model 	r2
calc
1/2 Reference 	r2
expt

1/2 �R
calc �I

calc �I
expt ��I

(MeV/nucleon) (fm) (fm) (mb) (mb) (mb) (%)

4He 790 HO 1.461 [7] 1.47±0.02a 513 504 503±5 0.2

HO 1.550 [16] 523 515 2.4

HO 1.720 [36] 543 536 6.6
6Li 790 IPM 2.401 [35] 2.43±0.02a 722 717 688±10 4.2

HO 2.401 This work 723 718 4.4

HO 2.320 This work 709 703 2.2
7Li 790 IPM 2.367 [35] 2.33±0.02b 746 741 736±6 0.7

HO 2.334 This work 744 739 0.4
12C 950 FM 2.332 [16] 2.33±0.02a 854 844 853±6 1.1

HO 2.332 [16] 853 843 1.1

HFB 2.446 This work 881 872 2.2
16O 970 FM 2.618 [16] 2.61±0.01a 992 981 982±6 0.1

HO 2.612 [16] 988 978 0.4

HFB 2.674 This work 1006 997 1.4

arms radius of the proton density given by the experimental charge density [33] unfolded with the finite size of proton.
bNuclear rms radius deduced from the Glauber model analysis of the same �I data in the OL approximation [1].
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predicted elastic cross section is strongly forward peaked and
the difference in densities begins to show up after the first
diffractive maximum. Such a measurement should be fea-
sible at the facilities used for elastic 6He+p scattering at
0.7 GeV/nucleon [37] and would be very helpful in testing
finer details of 6He density. As already discussed in the pre-
ceding section, the exchange part of the microscopic OP af-
fects the elastic cross section very strongly [see dotted curve
in panel (b) of Fig. 2] and the elastic 6He+12C scattering

measurement would be also a very suitable probe of the ex-
change effects in this system.

Since 6He is a loosely bound halo nucleus with a well
established three-body �+n+n structure, the dynamic corre-
lation between the � core and dineutron is expected to be
important during the collision. Our folding � DWIA ap-
proach using three-body density for 6He (version FC [5])
gives �I�733 mb compared to about 720 mb given by the
few-body calculation by Tostevin et al. (see Fig. 4 in Ref.

TABLE II. The same as Table I but for neutron-rich He, Li, C, and O isotopes. Note that 	r2
calc
1/2 given by the HO densities should have

about the same uncertainties as those deduced for 	r2
expt
1/2 by the OL of Glauber model.

Nucleus Energy Density model 	r2
calc
1/2 Reference 	r2
expt

1/2 �R
calc �I

calc �I
expt ��I

(MeV/nucleon) (fm) (fm) (mb) (mb) (mb) (%)

6He 790 HF 2.220 [30] 2.48±0.03a 691 686 722±6 5.0

3-BODY 2.530 [5] 738 733 1.5

IPM 2.460 This work 2.45±0.10b 727 722 0.0
8He 790 COSMA 2.526 [39] 2.52±0.03a 816 812 817±6 0.6
8Li 790 HO 2.371 This work 2.37±0.02a 782 775 768±9 0.9
9Li 790 HO 2.374 This work 2.32±0.02a 809 802 796±6 0.7
11Li 790 HO�halo 3.227 This work 3.12±0.16 a 1066 1061 1060±10c 0.1

HF 2.868 [30] 971 967 8.8
13C 960 IPM 2.389 [35] 2.28±0.04a 887 877 862±12 1.7

HO 2.355 This work 875 866 0.5
14C 965 HFB 2.585 This work 2.30±0.07a 951 941 880±19 6.9

IPM 2.417 [35] 910 900 2.3

HO 2.386 This work 899 888 0.9
15C 740 HO 2.481 This work 2.40±0.05a 961 952 945±10 0.7
16C 960 HFB 2.724 This work 2.70±0.03a 1026 1018 1036±11 1.7

HO 2.782 This work 1039 1030 0.6
17C 965 HO 2.831 This work 2.72±0.03a 1069 1060 1056±10 0.4
18C 955 HFB 2.860 This work 2.82±0.04a 1102 1094 1104±15 0.9

HO 2.900 This work 1107 1098 0.5
19C 960 HO 3.238 This work 3.13±0.07a 1234 1227 1231±28 0.3
20C 905 HFB 2.991 This work 2.98±0.05a 1186 1179 1187±20 0.7

HO 3.061 This work 1196 1187 0.0
17O 970 IPM 2.766 [35] 2.59±0.05a 1026 1016 1010±10 0.6

HO 2.672 This work 1021 1011 0.1
18O 1050 HFB 2.763 This work 2.61±0.08a 1053 1042 1032±26 1.0

IPM 2.768 [35] 1057 1048 1.6

HO 2.742 This work 1046 1036 0.4
19O 970 HO 2.774 This work 2.68±0.03a 1076 1066 1066±9 0.0
20O 950 HFB 2.849 This work 2.69±0.03a 1122 1112 1078±10 3.1

HO 2.786 This work 1100 1089 1.0
21O 980 HO 2.811 This work 2.71±0.03a 1116 1105 1098±11 0.6
22O 965 HFB 2.919 This work 2.88±0.06a 1170 1159 1172±22 1.1

HO 2.956 This work 1178 1168 0.3
23O 960 HO 3.286 This work 3.20±0.04a 1310 1302 1308±16 0.5
24O 965 HFB 3.050 This work 3.19±0.13a 1248 1238 1318±52 6.1

HO 3.280 This work 1319 1311 0.5

aNuclear rms radius deduced from the Glauber model analysis of the �I data in the OL approximation [1].
bNuclear rms radius deduced from the Glauber model analysis of elastic 6He+p scattering data at 0.7 GeV/nucleon [37].
c�I data taken from Ref. [41].
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[6]) based on the same three-body wave function for 6He.
The difference in the calculated �I leads to an increase of
about 2–3% in the 	r2
1/2 value. It is likely that such a dif-
ference is, in part, due to the dynamic correlation between
the � core and dineutron which was not considered in our
folding � DWIA approach. For 8He nucleus, the OL of
Glauber analysis of �I data [1], and the multiple-scattering
Glauber analysis of elastic 8He+p data at 0.7 GeV/nucleon
[38] give 	r2
1/2 around 2.52 and 2.53 fm, respectively. By
using the microscopic 8He density obtained in a four-body
(COSMA) model [39], which gives 	r2
1/2=2.526 fm, our
folding � DWIA approach reproduces the measured �I data
within less than 1%. Note that a (multiple scattering)
Glauber model analysis of the elastic 6,8He+p scattering at
0.7 GeV/nucleon which takes into account the dynamic few-
body correlation explicitly was done by Al-Khalili and
Tostevin [40], and they have obtained the best-fit nuclear
radii of about 2.5 and 2.6 fm for 6He and 8He, respectively,
around 2% larger than our results.

1. Parameters of HO densities deduced from �I data

Although the HO model is a very simple approach, the
HO densities were shown above to be useful in testing the
nuclear radii for stable �N=Z� nuclei. Moreover, the HO-type
densities (with the appropriately chosen HO lengths) for the
sd-shell nuclei have been successfully used in the analysis of
�e ,e� data, measurements of isotope shift, and muonic atoms
[1]. Therefore, it is not unreasonable to use simple HO pa-
rametrization for the g.s. densities of neutron-rich nuclei to
estimate the nuclear radii, based on our folding � DWIA

analysis of �I data. For a N�Z nucleus, one needs to gen-
erate proton and neutron densities separately as

���r� =
2

�3/2b�
3�1 + P�

r2

b�
2 + D�

r4

b�
4
exp�−

r2

b�
2
 , �14�

where �=n or p, parameters P� and D� are determined from
the nucleon occupation of the p and d harmonic oscillator
shells, respectively.

To generate the g.s. densities of 8,9Li isotopes, we have
assumed the proton density of these nuclei to be approxi-
mately that of 7Li and the neutron HO length bn is adjusted
in each case to reproduce the measured �I (see Tables II and
III). While the obtained 	r2
1/2 for 8Li is rather close to that
given by the OL of Glauber model [1], results obtained for
9Li are different and we could reproduce the �I data only if
the neutron HO length is chosen to give 	r2
calc

1/2 �2.37 fm or
about 2% larger than that given by the OL of Glauber model.
For the halo nucleus 11Li, a 9Li core � two-neutron halo
model was used to generate its density; namely, we have
used HO density of 9Li that reproduces the measured �I for
9Li and a Gaussian tail for the two-neutron halo density. To
reach the best agreement between �I

expt taken from Ref. [41]
and �I

calc, the Gaussian range was chosen to give 	r2
calc
1/2

�3.23 fm which is about 0.1 fm larger than that given by
the OL of Glauber model [1]. A microscopic density for 11Li
obtained in the HF calculation [30] (which gives 	r2
1/2

=2.868 fm) has also been used in our folding analysis. The
agreement with the data becomes much worse in this case
(see Table II) and we conclude that the radius given by the
HF density is somewhat too small. To show the sensitivity of

TABLE III. The HO-density parameters (14) for neutron-rich Li, C, and O isotopes.

Nucleus Pn Pp Dn Dp bn bp 	r2
n
1/2 	r2
p

1/2 	r2
1/2

(fm) (fm) (fm) (fm) (fm)

7Li 2/3 1/3 0.0 0.0 1.684 1.6766 2.382 2.270 2.334
8Li 1.0 1/3 0.0 0.0 1.6770 1.6776 2.430 2.270 2.371
9Li 4/3 1/3 0.0 0.0 1.6470 1.6766 2.424 2.270 2.374
13C 5/3 4/3 0.0 0.0 1.6058 1.5722 2.389 2.314 2.355
14C 2.0 4/3 0.0 0.0 1.6226 1.5762 2.434 2.320 2.386
15C 2.0 4/3 2/15 0.0 1.6630 1.5898 2.570 2.340 2.481
16C 2.0 4/3 4/15 0.0 1.8512 1.7128 2.927 2.521 2.782
17C 2.0 4/3 2/5 0.0 1.8552 1.7128 2.986 2.521 2.831
18C 2.0 4/3 8/15 0.0 1.8752 1.7297 3.062 2.546 2.900
19C 2.0 4/3 2/3 0.0 2.1252 1.7297 3.512 2.546 3.238
20C 2.0 4/3 4/5 0.0 1.9462 1.7467 3.248 2.571 3.061
17O 2.0 2.0 2/15 0.0 1.7775 1.7232 2.747 2.585 2.672
18O 2.0 2.0 4/15 0.0 1.7601 1.7935 2.783 2.690 2.742
19O 2.0 2.0 2/5 0.0 1.7601 1.7935 2.833 2.690 2.774
20O 2.0 2.0 8/15 0.0 1.7401 1.8005 2.842 2.701 2.786
21O 2.0 2.0 2/3 0.0 1.7401 1.8005 2.876 2.701 2.811
22O 2.0 2.0 4/5 0.0 1.8498 1.8081 3.087 2.712 2.956
23O 2.0 2.0 14/15 0.0 2.1118 1.8081 3.555 2.712 3.286
24O 2.0 2.0 16/15 0.0 2.0758 1.8261 3.520 2.739 3.280
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our analysis to the nuclear radius, we have plotted in Fig. 3
�I predicted by three versions of 11Li density with the Gauss-
ian range of the 2n-halo adjusted to give 	r2
1/2=3.15, 3.23,
and 3.30 fm, respectively, compared to �I

expt=1060±10 mb
[41]. It is easily to infer from Fig. 3 an empirical rms radius
of 3.23±0.05 fm for 11Li. Note that �I measurement for
11Li+12C system at 790 MeV/nucleon has been reported in
several works with �I

expt=1040±60 [42], 1047±40 [43], and
1060±10 mb [41]. If we adjust Gaussian range of the
2n-halo in 11Li density to reproduce these �I

expt values, the
corresponding 	r2
1/2 radii of 11Li are 3.13, 3.15, and
3.23 fm, respectively. Since �I data obtained in Ref. [41]
have a much better statistics and less uncertainty, we have
adopted 	r2
1/2=3.23±0.05 fm as the most realistic rms ra-
dius of 11Li given by our folding � DWIA analysis.

The total reaction cross section for 11Li+12C system at
790 MeV/nucleon has been studied earlier in the few-body
Glauber formalism by Al-Khalili et al. [5], where 	r2
1/2 ra-
dius for 11Li was shown to increase from 3.05 fm (in the OL)
to around 3.53 fm when the dynamic correlation between
9Li-core and 2n-halo during the collision is treated explicitly.
This is about 9% larger than 	r2
1/2 radius obtained in our
folding � DWIA approach based on the same �I data. Al-
though various structure calculations for 11Li give its rms
radius around 3.1–3.2 fm (see Refs. [1,4] and references
therein), a very recent coupled-channel three-body model for
11Li by Ikeda et al. [44,45] shows that its rms radius is rang-
ing from 3.33 to 3.85 fm if the 2n-halo wave function con-
sists of 21–39% mixture from �s1/2�2 state, respectively. A
comparison of the calculated Coulomb breakup cross section
with the data [45] suggests that this s-wave mixture is around
20–30%. Thus, the nuclear radius of 11Li must be larger
than that accepted so far [1,4] and be around 3.3–3.5 fm,
closer to the result of the few-body calculation [5] and the
upper limit of rms radius given by our folding � DWIA
analysis.

For most of neutron-rich C and O isotopes considered
here, we have first fixed the proton HO lengths bp to repro-

duce the proton 	r2
p
1/2 radii predicted by the microscopic

IPM and HFB densities (as described below). The neutron
HO lengths bn are then adjusted to the best agreement with
�I data, and the obtained HO parameters are summarized in
Table III.

2. Microscopic HFB densities

Before discussing the results obtained for the neutron-rich
C and O isotopes, we give here a brief description of the
microscopic HFB approach used to calculate the g.s. densi-
ties of even C and O isotopes. More details about this ap-
proach can be found in Ref. [34].

We solve the HFB equations in coordinate representation
and in spherical symmetry with the inclusion of continuum
states for neutron-rich nuclei. As the neutron Fermi energies
of these nuclei are typically quite close to zero, pairing cor-
relations can easily scatter pairs of neutrons from the bound
states towards continuum states. For this reason, the inclu-
sion and the treatment of continuum states in the calculation
are very important. In our calculation the continuum is
treated exactly, i.e., with the correct boundary conditions for
continuum wave functions and by taking into account the
widths of the resonances. Resonant states are localized by
studying the behavior of the phase shifts with respect to the
quasiparticle energy for each partial wave �l , j�.

The calculations were done with the Skyrme interaction
SLy4 for the mean field channel and with the following zero-
range density-dependent interaction

V = V0�1 − ���r�
�0


����r1 − r2� �15�

for the pairing channel. In Eq. �15�, �0 is the saturation den-
sity and � is chosen equal to 1. We have adapted the pre-
scription of Refs. �46,47� to finite nuclei in order to fix V0
together with the quasiparticle energy cutoff. This prescrip-
tion, requiring that the free neutron-neutron scattering length
has to be reproduced in the truncated space, allows us to
deduce a relation between the parameter V0 and the quasi-
particle energy cutoff.

3. Nuclear radii of carbon and oxygen isotopes

The �I data for neutron-rich C and O isotopes are com-
pared in Table II with �I predicted by different choices of
nuclear densities. We have tested first the IPM density for
13C [35] based on the single-particle spectroscopic factors
obtained in the shell model by Cohen and Kurath [48]. This
IPM density gives 	r2
1/2�2.39 fm for 13C and the predicted
�I agrees with the data within less than 2%. We have further
made IPM calculation for 14C based on the same single-
particle configurations, with the WS parameters for sp shells
appropriately corrected for the recoil effects and experimen-
tal nucleon separation energies Sn,p of 14C. This IPM density
gives 	r2
1/2�2.42 fm for 14C and the predicted �I also
agrees with the data within 2%. The HO densities were also
parametrized for 13,14C with the proton HO lengths bp chosen
to reproduce 	r2
p

1/2 values predicted by the IPM. The best-fit
neutron HO lengths bn result in 	r2
1/2=2.36 and 2.39 fm for

FIG. 3. �I
calc obtained with three versions of 11Li g.s. density,

where Gaussian range of the 2n-halo was adjusted to give 	r2
1/2

=3.15, 3.23, and 3.30 fm for 11Li, in comparison with �I
expt

=1060±10 mb [41].

MICROSCOPIC CALCULATION OF THE INTERACTION… PHYSICAL REVIEW C 69, 044605 (2004)

044605-9
96



13C and 14C, respectively. These values agree fairly with
those given by the IPM densities. The microscopic HFB den-
sity gives for 14C a significantly larger 	r2
1/2 radius of
2.59 fm and the calculated �I overestimates the data by
nearly 7%. Note that the OL of Glauber model gives smaller
radius of 2.28 and 2.30 fm for 13C and 14C, respectively,
based on the same �I data [1]. This means that the absorption
given by the OL of Glauber model is indeed stronger than
that given by our approach, as expected from discussion in
Sec. II.

For the neutron-rich even 16–20C isotopes, the HFB densi-
ties give a remarkably better agreement with the data and it
is, therefore, reasonable to fix the proton HO lengths of the
HO densities for each of 15–20C isotopes to reproduce 	r2
p

1/2

radius predicted by the HFB calculation for the nearest even
neighbor. The best-fit neutron HO lengths result in the
nuclear radii quite close to those given by the HFB densities
(see Tables II and III). We emphasize that the nuclear radii
given by our analysis, using the HO densities for C isotopes,
are about 0.1 fm larger than those deduced from the OL of
Glauber model [1]. Given a high sensitivity of �I data to the
nuclear size, a difference of 0.1 fm is not negligible.

To illustrate the mass dependence of the nuclear radius,
we have plotted in Fig. 4(a) the rms radii given by the two
sets (HFB and HO) of the g.s. densities for C isotopes to-
gether with those deduced from the OL of Glauber model
based on the same �I data [1]. One can see that our result
follows closely the trend established by the OL of Glauber
model, although the absolute 	r2
1/2 radii obtained with the
HO densities are in most cases larger than those deduced
from the OL of Glauber model. With the exception of the 14C
case, the radii of even C isotopes given by the microscopic
HFB densities agree reasonably well with the empirical HO
results. We have also plotted in Fig. 4 the lines representing
r0A1/3 dependence with r0 deduced from the experimental
radii of 12C and 16O given in Table I. One can see that the
behavior of nuclear radius in C isotopes is quite different
from the r0A1/3 law. While 	r2
1/2 radii found for 12–15C agree
fairly with the r0A1/3 law, those obtained for 16–20C are sig-
nificantly higher. In particular, a jump in the 	r2
1/2 value was
found in 16C compared to those found for 12–15C. This result
seems to support the existence of a neutron halo in 16C as
suggested from the �R measurement for this isotope at
85 MeV/nucleon [49]. We have further obtained a nuclear
radius of 3.24 fm for 19C which is significantly larger than
that found for 20C. This result might also indicate to a neu-
tron halo in this odd C isotope.

Situation is a bit different for O isotopes, where the
best-fit 	r2
1/2 radii follow roughly the r0A1/3 law up to 22O.
For the stable 17,18O isotopes, the IPM densities [35] provide
a very good description of the �I data (within 1–2%). The
best-fit HO densities give 	r2
1/2 radii of 2.67 and 2.74 fm for
17O and 18O, respectively, which are rather close to those
given by the IPM densities. Predictions given by the micro-
scopic HFB densities are also in a good agreement with the
data for even O isotopes excepting the 24O case, where the
HFB density gives obviously a too small 	r2
1/2 radius. Since
the HFB calculation already takes into account the con-
tinuum effects [34], such a deficiency might be due to the

static deformation of 24O. A jump in the 	r2
1/2 value was
found for 23O which could indicate to a neutron halo in this
isotope. Behavior of 	r2
1/2 radii given by the best-fit HO
densities agrees with the trend established by the OL of
Glauber model [1] but, like the case of C isotopes, they are
about 0.1 fm larger than those deduced from the OL of
Glauber model. Thus, the OL of Glauber model seems to
consistently overestimate �R for the neutron-rich C and O
isotopes under study in comparison with our approach.

One clear reason for the difference between our results
and those given by the OL of Glauber model analysis is that
one has matched directly the calculated �R with the mea-
sured �I in the Glauber model analysis [1] to deduce the
nuclear radius. If we proceed the same way with the HO

FIG. 4. Mass dependence of the nuclear rms radius for carbon
[panel (a)] and oxygen [panel (b)] isotopes given by the two choices
(HFB and HO) of the g.s. densities compared to that deduced from
the Glauber model analysis in the OL approximation [1]. The lines
represent r0A1/3 dependence with r0 deduced from the experimental
radii of 12C and 16O given in Table I.
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densities for the considered nuclei, the best-fit 	r2
1/2 radii
decrease slightly but are still larger than those given by the
OL of Glauber model. As already discussed in Sec. II, the
zero-angle approximation for the NN scattering amplitude
used in the Glauber model might reduce significantly the
strength of the exchange part of the imaginary OP given by
Eq. (12) and could overestimate, therefore, the absorption in
the dinuclear system. This effect should be much stronger if
one uses a realistic finite-range representation of the NN scat-
tering amplitude. Bertsch et al. have shown [30] that the
zero-range approximation for the NN scattering amplitude
leads to a reduction of the calculated �R or an enhancement
of the nuclear radius by a few percent (see Figs. 2 and 3 in
Ref. [30]). Owing to such a cancellation of the exchange
effects by the zero-range approximation for NN scattering
amplitude, the simple OL of Glauber model was able to de-
liver reasonable estimates of nuclear radii for many stable
and unstable isotopes [1]. It should be noted that the eikonal
approximation for the scattering wave function used in the
Glauber model was introduced in the past to avoid large
numerical calculations. With the computing power available
today, there is no problem to perform the OM and DWIA
calculations for different nucleus-nucleus systems involving
large numbers of partial waves, and the folding � DWIA
method presented here can be recommended as a reliable
microscopic approach to predict the elastic scattering cross
section and to deduce the nuclear radius from the measured
�I.

IV. CONCLUSION

In this work we have explored the reliability of the optical
model � DWIA approach as a tool for extracting important
information on nuclear sizes from interaction cross section
measurements. We concentrate on the energy region of
0.8–1 GeV/nucleon where interaction cross section data ex-
ist for various combinations of stable as well as unstable
projectiles on different targets. At these bombarding energies
our knowledge of the empirical optical potential is scarce,
especially for unstable systems, and we have used, therefore,
the folding model to calculate the microscopic (complex)
optical potential and inelastic form factors necessary for our
analysis.

We have chosen for the folding input the fully finite-range
t-matrix interaction developed by Franey and Love [13]. The
folded optical potentials and inelastic form factors are used
further as inputs for the standard optical model and DWIA
calculations of total reaction cross sections and interaction
cross sections induced by stable and unstable He, Li, C, and
O isotopes on 12C target. By using the well tested nuclear
g.s. densities for the stable 4He, 12C, and 16O isotopes, we
found that the Franey and Love t matrix gives extremely
good account of the measured �I for these nuclei.

We have further used the nuclear g.s. densities obtained in
various structure models to calculate �I and have made real-
istic estimate for the nuclear radii of (still poorly known)
neutron-rich isotopes based on the comparison between �I

calc

and �I
expt. For the chains of C and O isotopes, our results

agree reasonably well with the empirical trend established by
the OL of Glauber model [1], but give consistently larger
	r2
1/2 radii for these nuclei. Such an effect could be due to
the unsatisfactory treatment of the exchange part of the
nucleus-nucleus OP in the Glauber model calculation.

Although the nuclear radii deduced by our approach for
some light halo nuclei might be a few percent smaller than
realistic values because the dynamic few-body correlation
was not considered explicitly in the present folding � DWIA
formalism, this fully microscopic approach was shown to be
more accurate than the OL of Glauber model. Given realistic
nuclear densities, it can give a reliable (parameter-free) pre-
diction of the nucleus-nucleus optical potential at energies
around 1 GeV/nucleon. Therefore, it provides the necessary
link to relate the calculated �I to the nuclear density and rms
radius.
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2.10 Applications d’intérêt astrophysique.  
        Les étoiles à neutrons 
 
 
Les étoiles à neutrons sont des objets qui se forment à la suite des explosions 
(supernovae) des étoiles très massives ayant typiquement au moins 10 fois la masse 
solaire. À la fin de ces processus d’explosion extrêmement violents, qui fixent la fin de 
la vie de l’étoile, l’objet qui se forme est très compact avec un rayon d’environ 10 km et 
une masse autour de 1.4 masses solaires. Cette étoile a une asymétrie d’isospin 
particulièrement élevée et, sous cet aspect, elle peut être vue comme l’objet nucléaire le 
plus exotique qui existe dans l’Univers.  
L’impact de la physique nucléaire dans le domaine de l’astrophysique est très profond et 
la physique des étoiles à neutrons représente un des exemples typiques d’application où 
les données et les prédictions provenant de la physique nucléaire sont indispensables 
pour réaliser des modélisations et interpréter les propriétés de ces astres.    
 
Nous nous sommes intéressés aux liens que l’on peut établir entre la physique nucléaire 
et la physique des étoiles à neutrons. Dans l’article qui suit, [Fa07], après une 
introduction où les propriétés générales des étoiles à neutrons sont décrites, nous 
mentionnons et décrivons quelques-uns de ces liens.  
 
La réflexion autour des étoiles à neutrons et notamment autour des propriétés de leurs 
écorces (densité baryonique inférieure à la densité de saturation) nous a motivés à 
réaliser des modélisations dans ces systèmes en employant les outils théoriques de 
champ moyen dont nous disposons pour les noyaux. Les modèles théoriques prédisent 
l’existence de noyaux exotiques dans l’écorce externe des étoiles à neutrons, immergés 
dans une mer d’électrons relativistes et organisés dans une structure cristalline. La 
densité baryonique augmente en allant vers l’intérieur de l’étoile et, à la densité dite de 
‘drip’, des neutrons commencent à s’échapper et à former un gaz qui remplit l’espace 
entre les sites du réseau cristallin. C’est à cette densité que commence l’écorce interne 
qui est donc formée par un réseau coulombien de systèmes nucléaires riches en neutrons 
immergés dans une mer d’électrons et un gaz de neutrons superfluides. Si on modélise 
le réseau par des cellules de Wigner-Seitz (WS), on peut imaginer de traiter le système à 
N corps fini contenu dans une cellule de WS en faisant l’approximation que ces cellules 
ne sont pas en relation les unes avec les autres. Le système à N corps défini ainsi aura 
une densité, un rayon et un nombre de protons et de neutrons donnés. Le modèle peut 
être ultérieurement simplifié en assumant une forme sphérique pour les cellules de WS.  
 
En utilisant cette modélisation, nous avons effectué des calculs HFB et QRPA pour 
certaines cellules de WS dans l’écorce interne [Kh07, Gr08]. Le spectre d’excitation a 
été analysé. La chaleur spécifique dans l’écorce et donc le temps de refroidissement de 
l’étoile sont deux quantités étroitement liées au spectre des états excités et à la présence 
de corrélations d’appariement (la superfluidité modifie le spectre d’excitation). Je fais 
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donc suivre un travail sur l’étude des états excités dans certaines cellules de WS de 
l’écorce [Gr08]. 
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Introduction: Neutron Stars, Nuclei, and Nuclear 

Matter 

Neutron stars are the remnants of core collapse superno-

vae [1,2]. They are the most compact stellar objects after

black holes. Some of their properties, such as masses, rota-

tion frequencies, and emission of radiations are measurable,

whereas other signals like gravitational wave emission are

planned to be in the next years. The properties that are not

directly linked to observations, such as the internal compo-

sition or temperature, require the development of theoreti-

cal models. Fortunately, some of the missing information

can be obtained from the study of the other dense nuclear

systems, atomic nuclei, which are accessible to experimen-

tal facilities. Traditionally, the link between neutron stars

and bulk nuclei is made via the nuclear matter: an ideal infi-

nite system equally composed of interacting neutrons and

protons where Coulomb interaction has been switched off.

For instance, the central density of heavy nuclei is very

close to the equilibrium density of nuclear matter, called

the saturation density ρ0. Moreover, the nuclear matter con-

cept can be extended to isospin asymmetries. Asymmetric

nuclear matter is rather similar to the nuclear matter found

in neutron stars. Coulomb potential energy at those densi-

ties is usually small compared to kinetic energy and the

main interaction between particles is driven by the nuclear

force. Recently, more direct relations between neutron-rich

nuclei and neutron star matter have been proposed. Indeed,

some of the exotic neutron-rich nuclei produced in nuclear

facilities are also located in the outer crust of neutron stars,

while the inner crust is composed by drip-line nuclei

immersed in a neutron gas. Before entering into this discus-

sion, we should present in more detail the physics of neu-

tron stars. 

Discovery and Observation of a Large Variety of 

Neutron Star Systems 

Landau as well as Baade and Zwicky suggested the

existence of neutron stars in the early 1930s. Their exist-

ence remained conjectural until 1968 when Jocelyn Bell

and her thesis advisor Anthony Hewish discovered radio

pulsars, characterized by radio emission with a periodicity

that lies between a few seconds and few tens of millisec-

onds. Radio pulsars are interpreted as spinning neutron

stars with an intense magnetic field misaligned with the

rotation axis. Radio waves are thought to be emitted by the

electrons accelerated along the polar magnetic fields.

Hence, the radio waves are not isotropically emitted but

focussed and the rotating neutron star is emitting a pulsed

signal like the lighthouses that guide the boats along the

coasts (Figure 1). The vast majority of radio pulsars are iso-

lated neutron stars because in binary systems the accretion

disk tends to screen the signal. In addition to radio emis-

sion, neutron stars are also found in interacting binary sys-

tems that emit intense X-rays. In such binaries, a neutron

star closely orbits a normal optically visible star and draws

gas away from it. The infalling accreted gas is heated to

millions of degrees and emits X-rays. Rapidly rotating and

relatively young radio pulsars are also found in the visible

spectrum (Crab pulsar, Vela pulsar). Some neutron stars are

also strong high-energy (greater than tens of MeV) gamma-

ray sources. Besides, the strongest known magnetic fields

of the present Universe have been found in neutron stars

where surface magnetic fields are of the order of 107 T. In

few young neutron stars, much more intense magnetic

fields have been observed and may exceed 1011 T. The

usual dynamo effect is here unable to produce such intense

Figure 1. Rotating pulsar with its magnetic fields and the

focussed radio beams. 
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magnetic fields. A possible phase transition to strongly spin

polarised matter could be responsible, but this is still a

speculation in dense matter. From time to time, probably

due to the twist of its magnetic field, magnetars emit a giant

flare like the one that reached the Earth on December 27,

2004 and has interrupted all radio broadcasts for a few

seconds. 

Measurements of masses and radii of neutron stars still

represent an observational challenge. The most accurate

measurements of masses are obtained in binaries of neutron

stars applying the Kepler laws. Observed values are typi-

cally around 1.4 solar masses. The time derivative of the

rotation velocity, associated to the luminosity, provides an

estimate of the moment of inertia that, combined with the

value of the mass, gives a measure of the radius. This leads

to a typical radius of a tenth of kilometers. These measure-

ments cannot reach the accuracy required to disentangle

between the models used to describe neutron stars. Other

methods are then proposed, like the one based on black

body radiation but it has been found that neutron stars may

have a non-uniformly distributed surface temperature. This

complicates the interpretation of the black body emission. 

Up to now, about 1,500 neutron stars have been identi-

fied so far and, as shown, they participate to a large variety

of observed systems that are characterized by their electro-

magnetic emission going from visible spectrum to gamma

rays. Could those emission processes provide information

about the internal composition of neutron stars? 

The Equation of State of Dense Stellar Matter 

On the theoretical side, the mass and the radius are

determined by solving the hydrostatic equilibrium

equation. In the framework of the general relativity the

equilibrium of a spherical object is described by the

Tolman-Oppenheimer-Volkov equations, and for complete-

ness, the equation of state (EoS) is required. The density

increases from 106 g/cm3 at the surface (starting point of the

crust), to several times the saturation density (ρ0 is 3·1014 g/

cm3) in the core. The number of neutrons in neutron stars

exceeds by far that of protons. The net isospin asymmetry

δ = (N − Z)/(N + Z) can reach 0.95 in the interior of the stars.

The equation of state relies on the composition of dense

matter in the star for which very scarce information are

available: Where are localized the phase transitions

between matter composed of neutrons, protons, and elec-

trons, and more massive hadrons such has hyperons? There

is a global consensus that nuclear matter will convert to quark

matter, but at which density? Does mesons (pions, kaons)

condensation occur? Several equations of state have been

derived in order to investigate the observational conse-

quences of the composition of dense matter. The maximum

masses and the radii predicted by those models can be quite

different (Figure 2). 

On the experimental side, investigations on the atomic

nuclei like the measurement of giant monopole resonances,

masses, and central densities allow one to probe the equa-

tion of state around the saturation density. Heavy ion colli-

sions, hot giant resonances, and exotic nuclei properties,

attempt to explore more extreme regions of the phase dia-

gram. However, the improvement of EoS’s at lower and

higher densities than ρ0 and for strong isospin asymmetries

is still required (Figure 3). In the latter case, the density

dependence of the symmetry energy is convenient to

explore the relation between isospin symmetric and asym-

metric equation of state: it can be shown that the density

dependence of the symmetry energy is equivalent to the

isospin dependence of the incompressibility modulus. The

symmetry energy therefore plays a central role in determin-

ing the structure and the evolution (cooling) of the stars.

The future facilities producing exotic nuclei will allow one

to test this isospin dependency for values of the asymmetry

parameter, δ, larger than 0.2. This asymmetry is smaller

than the asymmetry in neutron star, but may provide at least

additional constraints for the theoretical models. 

Figure 2. Mass-radius diagram for typical EoS, depicted

with observational constraints (see J. M. Lattimer and M.

Prakash, Ap. J. 550 (2001) 426 for notations and further

explanations). 
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Anatomy of the Star 

Neutron stars are quasi-spherical objects composed of

six major regions: the inner and outer cores (~99% of the

mass) where nuclear matter is homogeneous and that are

usually sufficient to understand the main properties of neu-

tron stars; the inner and outer crust (1–2 km width) com-

posed of inhomogeneous nuclear matter (nuclei or nuclear

clusters), which screens the core from observations (even

from neutrinos), the envelope (few meters), which influ-

ences the transport and the release of thermal energy from

the surface, and finally the atmosphere (few centimeters),

which plays an important role in shaping the emergent pho-

ton spectrum (Figure 4). 

At the surface defined by the interface between the

outer crust and the envelope, 56Fe atoms are arranged as in a

solid. Going toward the interior, the atoms are ionized and

in the outer part of the crust one can find nuclei with num-

bers of nucleons up to A = 200 arranged in a Coulomb lat-

tice in the presence of an electron gas. Due to electron

capture processes, these nuclei become richer in neutrons

with increasing density (109 to 1011 g/cm3). Neutrons start

to leak out of nuclei at densities above the neutron drip den-

sity—the equivalent of the neutron drip line in a stellar

environment (finite pressure, beta-equilibrium): 4 1011g/cm3 in

the inner crust. Nuclei are located at the sites of a crystal

immersed in a super-fluid of neutrons and relativistic

leptons. The lattice can be modelized by its elementary

constituents, the Wigner-Seitz (WS) cells, each of them

containing the most probable nuclear cluster, the neutron

and the electron gases. For densities higher than 1013g/cm3,

the nuclear clusters are close enough to begin a dissolution

process and deformed structures appear. They are com-

monly called the pasta phases because the matter is

arranged in noodle shapes like lasagne or spaghetti, or

Swiss cheese. At this stage, the proton fraction has

decreased down to 0.1. This process results in the formation

of homogeneous nuclear matter. 

In the inner core, where the density is greater than the

saturation density, exotic particles such as strange hyperons

and/or Bose condensates (pions or kaons) may become

abundant. It is possible that a transition to a mixed phase of

hadronic and deconfined quark matter develops. 

Cooling, Glitches, and Vortices: The Life of a Neutron 

Star 

With time neutron stars evolve and new phenomena

occur. In the following we report on some of those phe-

nomena that are directly related to the properties of nuclear

matter and in particular to the pairing properties of nuclear

matter. 

Being at the end point of stellar evolution, neutron stars

do not produce energy but lose the gravitational energy

gained during the core collapse by neutrino emission.

Figure 3. Equation of state for various values of the isospin

d (from D. T. Khoa etal. Nucl. Phys. A602 (1996) 98). 

Figure 4. The basic structure of a neutron star (from G.

Röpke, Univ. Rostock).
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Indeed, because of their very weak coupling with matter,

neutrinos and anti-neutrinos mainly produced by beta decay

and inverse beta decay could carry out the energy of the

core and cool down the temperature. This is called the

URCA process [3], by reference to the name of a casino

existing in the mid 1950s in Rio di Janeiro, known by the

promoter of this process, G. Gamow. According to him, the

efficiency of this casino in spoiling the money of the gam-

blers was comparable to the URCA process in cooling

down the star. Later on, it was discovered that the URCA

process is strongly suppressed by energy and momentum

conservation unless a minimum amount of proton, around

11% of the baryonic density, is present [4]. This minimal

amount is strongly correlated with the symmetry energy as.

Relativistic models, having large values of as, satisfy this

criterion around the saturation density while most non-rela-

tivistic models, with a lower as value, do not. The differ-

ence between non-relativistic and relativistic models

predictions should then be investigated. Anyhow, the

URCA process is too efficient to explain the slowing down

of the surface temperature with time that is observed for a

dozen of stars: neutron stars are visible by thermal emission

during a few millions of years. Several improvements have

been proposed: superfluidity leading to the presence of a

neutron gap may quench cooling from the URCA process.

A modified URCA process is also considered where adding

an additional nucleon as a spectator of the process allows

momentum and energy conservation. Other processes are

also considered like neutrino bremsstrahlung, pair breaking

emission, and so on. It should be noted that the specific heat

in the crust is also important in cooling modelization. It

depends on the excitation spectrum, which is different in

the super-fluid phase than in the normal phase [5]. 

Neutron stars are also fast rotating stellar objects and we

know, from Earth laboratory experiments on Helium 4 for

instance, that a rotating super-fluid produces vortices. In

the case of finite nuclei, surface effects forbid the formation

of vortices. In other words the rotational energy needed is

too high and nuclei vaporize at lower energies. In the case

of neutron stars, gravitational pressure maintains the nucle-

ons together and vortices can be formed in the core as well

as in the inner crust. Those vortices link together two layers

of the star (core and crust) and impose a rigid rotation. As

the neutron star releases energy, the vortex must be

destroyed from time to time and this is the possible origin

of observed “giant glitches.” A “giant glitch” is a brutal

variation of the rotation period of the star. One possible

scenario that explains the existence of the glitches is that

the neutron fluid forms vortices that can pin on the nuclear

clusters in the crust. The unpinning would generate the

angular momentum transfer from the core to the crust,

which is at the origin of the glitches. The pinning force

depends on the neutron pairing gap in the crust. 

Hence, cooling and giant glitches require accurate mod-

elization of the pairing gap in the crust of neutron stars

made of non-homogeneous matter. Most of the actual mod-

els are based on the Wigner-Seitz approximation since the

seminal work of Negele and Vautherin [6]. This allows

straightforward application of the Hartree-Fock BCS or

Hartree-Fock-Bogoliubov models built for the description

of atomic nuclei. It has recently been shown that those

models are valid if the density of states around the Fermi

surface is averaged over a few 100 keV by temperature

effects or energy exchanged during reaction processes [7].

For temperature below a few 100 keV, it is necessary to

improve the modelization of the continuum states. For that,

based on the ideas developed in condensed matter, first

band theory type approaches have been built [8] and repre-

sent certainly the new generation of models. Nevertheless,

experimental probes of the pairing gap in nuclei are neces-

sary but still very difficult. With respect to the importance

of such knowledge, nuclear physics investigations should

be pushed in this direction. 

Nuclei: A Possible Laboratory for Neutron Stars 

Recently, several empirical relationships have been

found that are directly correlated to some properties of

nuclei to neutron star physics. For instance, the neutron

skin thickness nuclei has been linked to the pressure of pure

neutron matter at sub-nuclear densities [9] and conse-

quently to the neutron star radius [10]. Indeed, the pressure

is related to the derivative of the symmetry energy [11] and

the neutron skin thickness of nuclei is an observable that

yields some information about low-density neutron-rich

matter and, in particular, about the density dependence of

the symmetry energy. In neutron stars, this question is

essential: the density dependence of the symmetry energy

determines the proton fraction and the threshold density at

which direct URCA process occurs, as discussed in the pre-

vious section. Moreover, it governs the threshold densities

of other particles such as hyperons, pions, kaons, quark,

and so on, which trigger phase transitions and cooling pro-

cesses. 

This example illustrates that articulations can be drawn

in which nuclear physics experiments could bring useful
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constraints. The perspectives offered by the next generation

of radioactive beam facilities are in this sense very attrac-

tive. Identifying the experimental methods and choosing

the relevant observables for the future exotic beam facilities

is a strong challenge and requires an important interplay

between experimental and theoretical fields. This is the

motivation of a series of workshops called Exotic Nuclei

and Neutron Stars [12]. These workshops associate nuclear

experimentalists, theoreticians, and astrophysicists in five

working groups. The aim is to draw physics cases for the

experiments relevant to neutron star properties. After the

second meeting, held in May 2007 at the Institut de Phy-

sique Nucléaire d’Orsay, some tasks have already been

defined. We briefly mention some of them. 

• Working group 1: collective excitations in exotic

nuclei. Among the different ways to measure neutron

skins, collective vibrational modes furnish very effi-

cient constraints on the models used to compute the

neutron skins. Some of them are even more directly

related to the neutron skin thickness such as the spin

dipole mode. In GSI a pioneering work has been

recently performed relating the neutron skin thickness

to soft dipole modes [13]. The study of collective

modes in exotic nuclei is also relevant because the

excitation spectra of neutron-rich nuclei in the crust of

the stars can influence the cooling of the star. Further-

more, the incompressibility modulus of nuclear matter

can be deduced from Isoscalar Giant Monopole Reso-

nance and Giant Dipole Resonance properties; their

study in exotic nuclei will constitute essential piece of

information to constraint the symmetry energy and its

isospin dependence. As a complementary constraint on

the models, charge radius measurements using laser

spectroscopy in very neutron rich nuclei will be per-

formed accurately. 

• Working group 2: pairing in exotic nuclei. The main

question lies on the pairing interaction itself [14]. How

is pairing generated? What is the contribution of phonon

coupling to the pairing? How do medium effects such as

isoscalar or isovector densities influence the pairing

field? The answer may come from a global and unique

description of pairing effects going from halo nuclei to

heavy nuclei via low density neutron matter in the crust

of neutron stars. The experimental study of two-neutron

transfer would constitute an interesting tool, but theoret-

ical developments are required to analyze such data.

For instance, to check the dependence of the results

(energies and cross-sections for the rotation and vibra-

tion pairing modes) on the properties of the chosen pair-

ing interaction. 

• Working group 3: EoS dependence on density and tem-

perature. Probing the phase diagram away from standard

nuclei constitute the Graal of experimental investigations

such as fusion-evaporation and multi-fragmentation

experiments. Those are also privileged tools to access to

level densities at finite temperature. Experiments are

already conducted in this aim, but future facilities will

allow to probe the nuclear EoS in more asymmetric mat-

ter, together with 4π arrays such as FAZIA [15]. Nuclear

models predict different isospin dependence and further

theoretical investigations are required in the coming

year(s). 

• Working group 4: nucleosynthesis in neutron star merg-

ers. Both type II supernovae and neutron star mergers

are candidates to be the location of nucleosynthesis

through rapid neutron capture process [16]. The paths

are known to be dependent on nuclear inputs such as the

symmetry energy. Again, the density dependence of

symmetry energy is fundamental to furnish precise and

reliable predictions. A lot of measurements and theoret-

ical calculations are required for r-process study. Opti-

cal potential determinations should be performed at

very low energy. From the theoretical point of view

many topics are of relevant importance, such as the

determination of neutron capture and beta-decay rates

and the study of fission processes. 

• Working group 5: hyper-nuclei. The presence of

hyperons in dense matter softens the EoS. Hyperons

contribute more to the energy density than to the pres-

sure because they have larger masses and smaller

Fermi momenta. Their presence also enhances the neu-

trino cooling of the core because they can participate

in rapid URCA reactions such as λ�p + e + ve. Fur-

thermore, they increase proton to neutron ratio and

trigger the URCA process involving nucleons. Unfor-

tunately, very few experimental data exist in this field

to discriminate the different theoretical predictions.

Many data are expected in the future thanks to experi-

ments such as HyPhi in GSI or J-PARC in Japan.

Among those data is expected the production of a large

variety of σ hyper-nuclei as well as hyper-nuclei hav-

ing several hyperons. Together with mean-field mod-

els, those data should help in understanding the

difference between σ-N and λ-N interaction as well as

the λ-λ interaction. 
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The next stage of the working groups is to propose con-

crete experiments on present or future facilities, which will

be discussed during the next workshop. In order to prepare

these proposals, predictions are needed to investigate the

relevance of future measurements. For instance, the sensi-

tivity of two neutron transfer cross-sections on the pairing

functional has to be established. Both experimental and the-

oretical contributions are necessary. Any interested physi-

cist is encouraged to contact the authors of this article, in

order to join the next workshop. 

We would like to stress that the activity of these work-

shops and working groups relies on the important contribu-

tions of our speakers and group coordinators: Didier

Beaumel (IPN, Orsay, France), Brandon Carter (LUTH,

Meudon, France), François De Oliveira (Ganil, France),

Hans Emling (GSI, Germany), Lydie Giot (Subatech,

France), Stephane Goriely (IAA ULB, Brussels, Belgium),

Francesca Gulminelli (LPC, France), François Le Blanc

(IPN, Orsay, France), Nicolas Le Neindre (IPN, Orsay,

France), Marek Lewitowicz (Ganil, France), Patricia

Roussel-Chomaz (Ganil, France), Alan Shotter (TRIUMF,

Vancoucver, Canada), Take Saito (GSI, Germany), and

Heinrich Johannes Wörtche (KVI, The Netherlands). 
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Abstract

We study the evolution of low-lying quadrupole modes as a function of the neutron excess, from neutron-
rich nuclei to the nuclear systems located in the crust of a neutron star. The microscopic analysis is
performed within the Hartree–Fock–Bogoliubov + quasiparticle random-phase approximation framework.
The Wigner–Seitz approximation is adopted to describe the lattice of nuclear clusters embedded in neutron
star crusts. A systematic analysis of Z = 50 nuclear systems, performed by increasing the isospin asym-
metry, reveals that a low-energy 2+ mode is found in all the systems. However, the nature of the relevant
configurations that construct this mode drastically changes when the drip line is crossed. This result is con-
firmed by the study of the transition density associated to the mode in the inner crust system with Z = 40
and N = 1460. It is shown that the transition density profile is different with respect to typical profiles
found for 2+ low-lying modes in nuclei: the excitation is mostly constructed with neutrons belonging to the
cluster surface and the external free gas.
© 2008 Elsevier B.V. All rights reserved.

PACS: 21.10.Re; 21.60.Jz; 26.60.Gj

1. Introduction

Neutron stars provide a unique and fascinating stage where the evolution from finite to infinite
systems can be analyzed [1,2]. If semiclassical models permit a qualitative picture and work well
to describe some general features, the proper treatment of quantum effects is still required to
analyze in a more accurate way, for instance, the properties of the inner crust where nuclear clus-
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0375-9474/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.nuclphysa.2008.04.003
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ters are present together with a neutron gas. The modern modelization of neutron star crusts has
been proposed in the 1970s in the pioneering works of Baym et al. [3] and Negele and Vautherin
(NV) [4]; the two analysis have been performed, respectively, within a semiclassical Thomas–
Fermi and a microscopic Hartree–Fock framework. To briefly summarize, an outer and an inner
part can be distinguished in the crust of a neutron star. In the outer crust exotic nuclei form a
Coulomb lattice in the presence of an electron gas. More deeply in the interior of the crust, den-
sity increases and nuclei are more and more neutron-rich up to the drip point ρ ∼ 4×1011 g/cm3.
Beyond, neutrons drip out and exotic structures of clusters surrounded by relativistic electrons
and superfluid neutrons form a Coulomb lattice (inner crust). These structures can be regarded
as a bridge between a finite nucleus and an infinite nuclear gas. The properties of the crystal of
nuclei or clusters have a strong impact on the behavior of the star. For instance, superfluidity of
neutrons affects the specific heat of the crust as it has been shown in Ref. [5]. Also dynamic prop-
erties, such as the excitation modes, influence the cooling time [6] by modifying the specific heat
of the crust [7,8] and the neutrino propagation [9]. The role of the low-lying collective modes,
the so-called supergiant resonances, has been underlined in Ref. [7] in connection with the evalu-
ation of the specific heat and the cooling time: by modelizing the Coulomb lattice with spherical
Wigner–Seitz (WS) cells [10] of radius RWS, each cell has been studied as independent of all
the others within the Hartree–Fock–Bogoliubov [11,12] + quasiparticle random-phase approx-
imation [13] (HFB + QRPA) approach. The analysis has been limited to the innermost layers
of the crust. A detailed analysis, performed within the HFB framework and extended also to the
external lower-density regions, has shown that the cooling time depends strongly on the pairing
gap [8], and that the largest contribution comes from the intermediate and low-density parts of
the inner crust [8,14] where the central cluster is most probably spherical.

All the studies mentioned above have been done within the WS modelization of NV, i.e., by
adopting their (Z,RWS) values determined for each baryonic density in the different layers of
the crust, where Z is the number of protons. Baldo and collaborators have recently performed a
work analogous to that of NV, but including also pairing correlations within a semi-microscopic
approach [15]. Differences with respect to NV have been found and the most important discrep-
ancies are obtained for the charge Z of the cells (lower values of Z are typically preferred). These
differences appear both in the innermost layers of the crust, where pairing is indeed expected to
play a crucial role, as well as in the outermost layers, where pairing is negligible. This means
that the result of the minimization procedure employed to evaluate the most stable configurations
depends on the density functional that is adopted in the model. A recent work has pointed out
that the minimization is also influenced by spurious shell effects coming from the discretization
procedure introduced to treat the free neutron gas [16].

The inner crust is formed of nuclear systems with very high isospin asymmetries at densities
lower than the saturation density ρ0 = 0.16 fm−3 (the maximum density in the innermost layers
of the crust is ∼ 0.5ρ0). The challenge to properly treat these systems is thus the formulation of
microscopic models that have to be well adapted: (i) for very neutron-rich systems, (ii) at den-
sities ρ � ρ0. It is however worthwhile to perform some systematic analysis with the presently
available models to understand at least qualitatively which phenomena should be expected by
increasing the isospin asymmetry: the aim of this work is to study the evolution of low-lying
quadrupole excitations with respect to neutron excess, passing from exotic nuclei to the nuclear
systems located in the inner crust. We treat the low-lying modes of neutron-rich isotopes as
well as the supergiant resonances of a WS cell with the microscopic and self-consistent approach
HFB + QRPA. The Skyrme interaction SLy4 [17] is chosen in the particle–hole channel, whereas
a zero-range density-dependent interaction is chosen to describe pairing correlations. For conve-
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nience, in what follows we refer to the nuclear systems contained in WS cells with the nuclear
symbols corresponding to their number of protons. For each density we adopt the values of (Z,
RWS) determined by NV.

The article is organized as follows: in Section 2 the theoretical model is introduced and details
on the numerical calculations are provided. In Section 3 a systematic study with respect to isospin
asymmetry is presented for nuclear systems with Z = 50. In Section 4 the transition density
associated to the supergiant mode in 1500Zr is analyzed. Conclusions are drawn in Section 5.

2. Theoretical framework

We work at zero temperature and in spherical symmetry. The employed model is the same as
described in Ref. [7]. We first solve the HFB equations in coordinate representation,

H(r)uνljq(r) + Δ(r)vνljq(r) = Eνljquνljq(r),

Δ(r)uνljq(r) − H(r)vνljq(r) = Eνljqvνljq(r), (1)

where H(r) contains the kinetic term and the Hartree–Fock mean field while Δ(r) represents
the pairing field; u and v are the upper and lower components of the wave function and E the
corresponding quasiparticle energy; q stands for n (neutrons) or p (protons) and ν, l, j are the
quantum numbers associated to the wave function. For the nuclei, the HFB equations are solved
by imposing box boundary conditions whereas for the nuclear systems enclosed in a WS cell
the usual Dirichlet (Von Neumann) boundary conditions for the even-(odd-)l wave functions are
adopted [4]. We solve the HFB equations for positive quasiparticle energies. In this case, the
particle and anomalous densities are defined as:

ρq(r) =
∑
νlj

2j + 1

4π
v∗
νljq(r)vνljq(r), (2)

ρ̃q(r) = −
∑
νlj

2j + 1

4π
u∗

νljq(r)vνljq(r), (3)

where the sum is carried over the bound and the unbound states. For a contact pairing interaction
the anomalous density, Eq. (3), is known to diverge. An energy cut-off of 60 MeV is thus adopted.

The QRPA equations are solved in coordinate representation [13]. The Bethe–Salpeter-type
equation is integrated for the QRPA Green function G,

G = (1 − G0V )−1G0, (4)

where G0 is the unperturbed Green function and V the residual interaction. In this work the
response function S,

S(ω) = − 1

π
Im

∫
d�r d�r ′ F ∗(�r)G(�r, �r ′;ω)F(�r ′), (5)

is evaluated for a quadrupole excitation operator F = r2Y20. For the graphical representation of
the results a Lorentzian smearing parameter η = 150 keV is used.

In the particle–hole channel, we adopt the Skyrme interaction SLy4 [17], that is well adapted
to treat neutron-rich systems because it has been constructed to reproduce neutron matter prop-
erties. For the particle–particle channel, a zero-range density dependent interaction is chosen,

V (�r − �r ′) = V0

[
1 − η

(
ρ(r)

)α]
δ(�r − �r ′). (6)
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Fig. 1. Normal (dashed line) and anomalous (full line) neutron densities, Eqs. (2) and (3), in units of fm−3.

The parameters of the pairing interaction have been set as in Refs. [7] and [8] to reproduce
approximately the same results as the bare potentials or the effective Gogny interaction D1S
[18] for pure neutron matter, i.e., a maximum gap of ∼ 3 MeV at kFn ∼ 0.87 fm−1. It has to be
mentioned that, when medium polarization effects are introduced in the BCS gap equations, the
maximum gap of neutron matter can be lowered down to about 1.8 MeV (see, e.g., Ref. [19]). The
cooling time is strongly sensitive to the pairing gap and important differences are actually found
when the parameters of the pairing interaction are fixed to reproduce the gap with or without
screening effects [8,20].

3. Systematic analysis: Nuclear systems with Z = 50

In the work of NV, the nuclear systems with Z = 40 and Z = 50 (with different values of RWS)
are found several times as the most stable configurations, for all the baryonic densities considered
in the inner crust. We thus choose Z = 40 and Z = 50 systems for the analysis discussed in the
present and next sections. First, we analyze the systematic evolution of the low-lying 2+ mode
in Z = 50 nuclear systems. We start with neutron-rich Sn nuclei. When the drip line (176Sn
in our model) is crossed we progressively increase the neutron number up to N = 1750, that
represents the innermost Z = 50 configuration predicted in the crust by NV. We use a box radius
of 27.4 fm, that is the WS radius associated to the configuration Z = 50, N = 1750. This means
that, by increasing the neutron number, the baryonic density of the system grows up and reaches
the value of ∼ 0.02 fm−3 for 1800Sn.

We plot in Fig. 1 the normal (dashed line) and anomalous (full line) neutron densities, Eqs. (2)
and (3), for the nuclei 120Sn, 140Sn and 160Sn (first row) and for the unbound systems from 180Sn
up to 550Sn. As expected, one observes the development of a neutron gas when the neutron num-
ber is increased. Furthermore, the anomalous density is practically negligible both inside and
outside the cluster in 180Sn and 200Sn. It starts increasing for 250Sn. Pairing correlations are ac-
tually expected to be small in 180Sn because this system is located close to the magic nucleus
176Sn. For the other nuclear systems up to 250Sn, the weakness of pairing is due to the density
dependence of the pairing gap in nuclear matter. The pairing gap obtained from the BCS equa-
tions goes to zero [21,22] when the density goes to zero. This explains why pairing correlations
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Fig. 2. QRPA strength distributions for the quadrupole mode in units of fm4 MeV−1.

are so weak in the low-density neutron gas present for instance in 200Sn. Moreover, the Pip-
pard’s coherence length, ξP = h̄2kFn/(m

∗
nπΔn), is very large for a low-density neutron gas (see

Ref. [23] for a detailed discussion). As a consequence, the pairing features of the gas affect the
whole nuclear system and modify also the pairing inside the nuclear cluster (pairing correlations
are weak also inside the cluster). By increasing the density, the pairing gap becomes larger and
the coherence length is reduced. The bell-shape dependence of the pairing gap on the density in-
dicates that pairing correlations in the neutron gas are expected to be the strongest approximately
at the baryonic density of the crust 0.02 fm−3 where the system 1800Sn is predicted, as discussed
in Refs. [7,24].

The evolution of the quadrupole response can be observed in Fig. 2, from the nucleus 140Sn
up to 1800Sn. A low-lying 2+ mode as well as a giant resonance are found in all the systems. The
giant resonance is clearly visible in 140Sn and 180Sn. For the other systems the giant resonance
has a much lower strength with respect to the low-energy supergiant mode and is located in the
5–7 MeV region as expected by the 65A−1/3 MeV systematics [25]. We concentrate on the low-
lying mode that will mainly influence both the specific heat in the crust and the neutrino cross
sections. We perform a first analysis of the evolution of the low-lying mode with respect to the
neutron excess by checking which are the most important configurations that contribute to the
excitation. Since the residual interaction acts in an analogous way in all the systems (pushing
downwards the energy and promoting collectivity), we consider the unperturbed spectrum and
compare the nucleus 176Sn and the unbound system 180Sn that is located just beyond the drip line.
Pairing correlations are not present in the nucleus 176Sn because it is closed-shell; in Fig. 1 it has
been shown that pairing correlations are weak also in 180Sn. We can thus consider just particle–
hole configurations constructed with the single-particle states. In 176Sn, that is the last bound
nucleus in our model, all the occupied states are bound; 2+ particle–hole configurations are thus
constructed with bound negative energy hole states. Passing to 180Sn four neutrons are added
giving an unbound system. The four additional neutrons are placed in the unbound states 4p1/2
and 4p3/2, with an occupation of 54% and 73%, respectively. The occupations are partial (and
not strictly 0 and 1) because pairing correlations are not completely absent in the system and the
two single-particle states are practically degenerate. We have checked that the low-lying mode
is mainly composed of a few single-particle configurations where the hole states are 4p1/2 and
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Fig. 3. Determinant D calculated for the systems 120Sn, 180Sn, 600Sn, 1000Sn and 1750Sn.

4p3/2 (both single-particle energies are ∼ 0.2 MeV) and the particle states are the empty states
3f 5/2 and 3f 7/2 (both single-particle energies are ∼ 0.65 MeV). By looking at the composition
of the low-energy mode at the drip line and just beyond, it thus comes out that the most relevant
configurations are completely different in the two cases. In the latter case, in particular, both
states of the most important configurations are unbound. It is clear that the transition amplitude
of the quadrupole operator r2Y20 between two unbound single-particle states is much larger than
in the case where one of the single-particle is bound and its wave function is localized in the
interior region.

Let us now perform a qualitative test. We calculate the denominator of the RPA response
function in asymmetric nuclear matter at the hydrodynamical limit (zero transferred energy and
momentum) which is related to the determinant of the polarization in the 2×2 isospin space [26],

D = Det

(
1 + Nn

0 f nn
0 Nn

0 f
np
0

N
p
0 f

pn
0 1 + N

p
0 f

pp
0

)
, (7)

where Nτ
0 = m∗

τ kFτ /π
2h̄2 is the density of states of the Fermi gas and f ττ ′

0 is the monopolar
Landau parameter in the density-density channel (see, for instance, Ref. [27]). The zeros of the
determinant correspond to the poles of the strength and are induced by an attractive residual in-
teraction. We display in Fig. 3 the determinant D, Eq. (7), calculated within the local density
approximation for the systems 120Sn, 180Sn, 600Sn, 1000Sn and 1750Sn. The determinant is repre-
sented as a function of the radial distance. One observes that, for all the systems situated before
and after the drip line, the determinant goes to zero at the surface of the cluster. Moreover, for the
systems situated beyond the neutron drip, the determinant is close to zero, on the positive side,
in the region of the neutron gas located out of the cluster. When the neutron number increases,
the determinant progressively approaches zero (more and more attractive residual interaction in
the neutron gas region). One can thus conclude that the nature of the low-lying mode is strongly
modified when the drip line is crossed. In nuclei it is constructed with nucleons located at the
surface, while in the unbound systems it is built with both nucleons located at the surface and
neutrons belonging to the low-density free gas region. This conclusion will be microscopically
confirmed in the next section.
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4. Transition density in the inner crust system with Z = 40, N = 1460

For our analysis of the transition density, we consider the inner crust system with Z = 40
and N = 1460 predicted by NV at the baryonic density ρ = 0.041 fm−3 and with the WS radius
RWS = 19.6 fm.

In Fig. 4 we show the neutron (full lines) and proton (dotted lines) density profiles for 1500Zr.
A very diffuse surface going from 4.5 to 10 fm can be viewed as analogous to a neutron skin in
a nucleus. Outside this region a uniform pure neutron gas fills the volume of the WS cell.

We present in Fig. 5 the QRPA quadrupole strength distribution for 1500Zr. The strength is
concentrated around the very collective low-lying supergiant mode at about 3.5 MeV. In the
spectrum the giant resonance region is also present at about 8–10 MeV as shown in the inset. As
in the Sn case discussed in the previous section, its associated strength is negligible with respect
to the strength of the supergiant mode. This is due to the fact that the giant resonance is built only
with the contribution of particles bound to the central cluster while a huge number of particles
belonging to both the cluster surface and the free gas participate to the low-energy supergiant

Fig. 4. Neutron (full lines) and proton (dotted lines) density profiles for the inner crust system 1500Zr in units of fm−3.

Fig. 5. Neutron quadrupole QRPA strength distributions for 1500Zr in units of fm4 MeV−1.
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Fig. 6. Neutron transition density in units of fm−3 for the low-energy mode in 1500Zr.

mode, as it was argued in the previous section. To confirm this microscopically, we evaluate
now the transition density δρ(r) associated to the supergiant resonance in 1500Zr. The analysis
of the radial profile of the transition density gives indications on the location of the particles
which mainly participate to the excitation. The neutron transition density is plotted in Fig. 6 and
its profile confirms what expected: a strong contribution is coming from the cluster surface and
from the external neutron gas. The internal part of the neutron transition density is weaker and
very similar to typical transition densities in nuclei [13]. This is a precise confirmation of the
result already found in the previous section: the nature of the 2+ mode in the system 1500Zr is
strongly different with respect to what is typically found in nuclei.

We have verified that the low-lying 2+ state in 1500Zr is constructed with many configura-
tions, as confirmed by the profile of its transition density that presents only a few nodes: two
configurations, with quantum numbers l = 17, j = 35/2 (hole), l = 19, j = 39/2 (particle) and
l = 17, j = 33/2 (hole), l = 19, j = 37/2 (particle), are the most important and contribute ∼ 5%
and 4% to the collectivity, respectively. Each of the other many configurations constructing the
mode contributes less than 4%. This means that, going from just beyond the drip line (see the
case of 180Sn discussed in the previous section) to systems like 1500Zr or 1800Sn, the collectivity
of the low-lying mode increases.

5. Conclusions

We have discussed the evolution of low-lying 2+ modes starting with neutron-rich nuclei
and increasing the isospin asymmetry up to the corresponding nuclear systems (having the same
number of protons) predicted by NV in the inner crust of neutron stars. We have first performed
a systematic study in nuclear systems having Z = 50, up to 1800Sn. Low-lying 2+ modes are
found in the same energy region both in nuclei and in the unbound nuclear systems. They are
characterized by a huge strength in the unbound systems and for this reason they are called
supergiant modes. Our analysis reveals that the nature of the most relevant configurations that
construct the low-lying modes is very different before and after the drip line. Moreover, the study
of the denominator of the RPA response function in asymmetric nuclear matter, evaluated within
the local density approximation, shows that the nucleons mostly participating to the excitation,
in the systems situated after the drip line, are located at the cluster surface and in the external
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gas region. In particular, when increasing the neutron number, the determinant progressively
approaches zero from positive values in the radial region r greater than ∼ 12 fm. This is due
to the fact that the residual interaction becomes more and more attractive in the low-density
pure neutron gas region. It means that the contribution coming from the gas to the collectivity
of the low-lying mode becomes more important. This result is confirmed by the analysis of the
microscopic transition density associated to the supergiant 2+ mode obtained within the QRPA
in the inner crust system 1500Zr: the transition density has a different radial profile with respect
to what is typically found in nuclei. A strong contribution coming from the cluster surface and
the external neutron gas is found. As a general conclusion of these results, the nature of the
low-lying 2+ mode is strongly modified when the neutron drip line is crossed by increasing the
isospin asymmetry. However, a strong link still remains through the theoretical model that is
used to describe both nuclei and nuclear systems in the crust of neutron stars. The improvement
of the theoretical models is an important challenge; as mentioned in the introduction, the results
found for the nuclear systems situated in neutron star crusts are sensitively dependent on the
used density functional [15]. First, effective interactions have not yet been validated in very
asymmetric systems and the isospin dependence of the interaction is of crucial importance to
properly describe neutron star crusts. Also the pairing interaction, which in principle should be
derived from the bare potential, is under debate and the role played by medium polarization
effects is not yet clarified. Furthermore, a proper theoretical description of the lattice present in
the crust should not rely on the Wigner–Seitz approximation but on the band theory [28]. As
a consequence, an extensive work is demanded to better set a suitable theoretical model and to
constrain a density functional that could reliably describe both types of nuclear systems. The
next generation Radioactive Nuclear Beam facilities will allow to explore more systematically
regions closer to the nuclear drip lines. In this framework nuclei with diffuse neutron skins,
i.e. low-density diffuse surfaces, shall be more easily accessible. The impact of strong neutron
excess on low-lying excitations will also be investigated in some cases. These new experimental
data will permit to better constrain the effective interactions and, consequently, to improve the
theoretical models that are applied to neutron stars.
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 Chapitre 3 

  
Extensions de la méthode des 

phases aléatoires. Corrélations 
dans l’état fondamental 
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3.1 Introduction. Nécessité d’aller au-delà de 
l’approximation de quasiboson (QBA)   
 
 
Tous les travaux présentés dans le chapitre précédent sont basés sur des approches de 
champ moyen. Ces dernières années et depuis le développement de la physique des 
noyaux exotiques, l’évidence s’est imposée de l’importance d’améliorer et d’étendre les 
outils théoriques actuellement disponibles. La nécessité d’aller au-delà du champ moyen 
s’impose face à l’existence de phénomènes nouveaux qui caractérisent certains noyaux 
exotiques. Par exemple, les prédictions sur l’évolution de la structure en couches loin de 
la stabilité nécessitent une évaluation plus sophistiquée des énergies des états 
individuels avec l’introduction du couplage particule-vibration dont nous parlerons à la 
fin de ce mémoire. Par ailleurs, l’existence des modes d’excitation dipolaires pygmées 
de basse énergie indiquerait que les noyaux exotiques sont des systèmes plus complexes 
que les noyaux stables et les corrélations y jouent un rôle peut-être plus important. Ce 
contexte motive nos travaux sur des extensions de la RPA.    
 
La RPA est une approche très couramment utilisée pour la description des états excités 
d’un système à N corps. Cette approche est plus raffinée que la méthode de Tamm-
Dancoff où les états excités sont de simples combinaisons de configurations particule-
trou construites sur l’état fondamental de HF. L’état fondamental RPA est défini comme 
l’état du vide des opérateurs Qν ,   
 

0RPAQ =ν ,                                                   (3.1) 
 
où les +

νQ  sont les opérateurs de créations des phonons RPA : 
 

( )∑ +
ν

+
ν

+
ν −≡

ph
ph

ph
hp

ph aaYaaXQ .                                      (3.2) 

 
Nous utilisons la notation habituelle : p et h désignent les nombres quantiques des états 
de particule et de trou par rapport à l’état fondamental d’HF. L’opérateur +

νQ  construit 
l’état excité ν  en agissant sur l’état fondamental : 
 

ν=+
ν RPAQ .                                                  (3.3) 

 
La présence du second terme en Y dans l’expression de +

νQ  garantit que, en principe, 
l’état fondamental |RPA> est corrélé et différent de l’état HF puisque 0HFa p = . Les 
amplitudes Y mesurent donc la présence de corrélations dans l’état fondamental.  
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Une des procédures pour dériver les équations RPA est basée sur la méthode des 
équations du mouvement [RS80] qui permet d’introduire de manière schématique les 
équations RPA,  
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10
01EE

Y
X

*A*B
BA

0 ,                            (3.4) 

 
et de définir les matrices A et B : 
 

[ ]
[ ] ,RPAaa,H,aaRPAB

,RPAaa,H,aaRPAA

'p'hph'h'p,ph

'h'pph'h'p,ph
++

++

−≡

≡
                                   (3.5) 

 
avec : 
 

[ ] [ ][ ] [ ][ ]( )C,B,AC,B,A
2
1C,B,A +≡ .                                      (3.6) 

 
Les solutions des équations (3.4) sont les énergies d’excitation 0EE −ν  et les 
amplitudes X et Y. Pour résoudre plus facilement les équations RPA, l’approximation 
de Quasiboson (QBA) est faite dans le calcul des matrices A et B. Cette approximation 
peut être écrite comme : 
 

[ ]
[ ] .HFaa,aaHFRPAaaRPA

RPAaaRPARPAaa,aaRPA

'hh'pp'h'pphp'p'hh

h'h'pp'pp'hh'h'pph

δδ=≈δ−

δ−δδ=

+++

+++

       (3.7)                                 

    
L’introduction de cette approximation génère deux problèmes : 
  
(i) le Principe de Pauli est violé puisque des termes sont négligés dans l’évaluation de la 
valeur moyenne du commutateur ; l’expression (3.7) serait valable exactement si la 
paire d’opérateurs a+a était un opérateur bosonique (de là dérive le nom de 
l’approximation).  
 
(ii) Un problème de consistance formelle est introduit : la méthode RPA se propose en 
principe de tenir compte de la présence de corrélations dans l’état fondamental. D’autre 
part, en pratique, la violation du Principe de Pauli correspond à calculer les valeurs 
moyennes qui définissent les matrices A et B en utilisant l’état de HF au lieu de l’état 
corrélé. Par conséquent, la violation du Principe de Pauli est plus importante dans les 
systèmes où l’état fondamental est très corrélé : dans ce cas, les amplitudes Y 
deviennent typiquement très grandes (elles sont normalement petites devant les  
amplitudes X).  
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3.2 Les règles de somme. Inclusion des configurations 
particule-particule et trou -trou 
 
 
Pour résoudre le problème de la violation du Principe de Pauli dans le contexte de la 
RPA, deux directions ont été explorées :  
 

(i) développement de techniques basées sur des méthodes d’expansion 
bosonique [Ca89, Be92, Sa95, Sa97, Sa99, Vo99, Gr02,Ga06a] ;  

(ii) extensions de la RPA dans l’espace fermionique [Du90, Kl91, Ka93, Du96, 
Ca98, Kr98, Ra98, Ta04, Ga06b, To07].  

 
La plupart de ces approches sont basées sur la RPA renormalisée introduite par Hara et 
Rowe [Ha64, Ro68]. Dans le cadre de la RPA renormalisée, le Principe de Pauli est 
satisfait et l’état fondamental est explicitement corrélé avec des nombres d’occupation 
différents de 0 et 1 qui apparaissent dans des facteurs de renormalisation. Cependant, 
toutes les méthodes basées sur la RPA renormalisée ont une très forte limitation due au 
fait qu’elles ne respectent pas les règles de somme pondérées en énergie Energy 
Weighted Sum Rules (EWSR),  
 

( ) [ ][ ]∑
ν

ν =ν− 0F,H,F0
2
10FEE

2
0 ,                            (3.8) 

où F est un opérateur à un corps hermitique et 0  l’état fondamental exact. Les 
violations peuvent atteindre 20-30% dans certains cas [Ca98].  
 
Dans l’article [Gr00], nous avons proposé une manière de résoudre le problème et nous 
avons montré que, en élargissant l’espace des configurations pour inclure aussi les 
configurations particule-particule et trou-trou (en plus des configurations particule-trou), 
les EWSR sont parfaitement satisfaites.  
 
Dans un travail plus récent [Ga09], que je fais suivre, cette extension a été améliorée. 
Le problème généré par l’introduction des configurations pp et hh est que des états non 
physiques apparaissent dans le spectre d’excitation, comme il a été montré dans [Gr00] 
où une application dans un modèle de Lipkin à trois niveaux a été réalisée. Ces états ne 
correspondent à aucun des états du spectre exact du modèle de Lipkin. En général, leur 
probabilité de transition est assez faible, mais non nulle, et dans un calcul réaliste il 
serait difficile de les séparer de manière non ambigüe du spectre exact. Ce problème a 
été résolu dans [Ga09] où les équations de type RPA ont une matrice de la norme 
définie par les matrices G :  
 

[ ]0aa,aa0G '''', β
+
αα

+
ββααβ = ,                                          (3.9) 
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où α et β indiquent deux états individuels génériques. En diagonalisant la matrice de la 
norme et en évaluant le recouvrement entre les états excités et l’état fondamental, les 
états non physiques peuvent être isolés et éliminés du spectre. 
Cette extension, présentée plus en détail dans l’article qui suit, ouvre des perspectives 
intéressantes pour des applications dans des cas réalistes, comme les noyaux atomiques.  
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I. INTRODUCTION

One of the common features characterizing finite-size
many-body systems is the existence of collective modes
of excitations. Low-lying and giant resonances in nuclei
[1], dipole plasmons in clusters [2], and breathing modes
in atomic gases [3] are some examples of many-particle
coherent motion generating a collective excitation mode. The
microscopic approach that is most currently used to analyze
collective excitations in many-body systems is the random-
phase approximation (RPA) [4], where the modes are described
as superpositions of particle-hole and hole-particle individual
configurations. This method is extensively used in different
domains and, in general, successfully describes the energies
and transition probabilities associated to the excitations.

In its standard version, it is a single-reference approach
[5], where the reference state is the uncorrelated Hartree-
Fock (HF) Slater determinant characterized by 1 and 0
occupation numbers in the single-particle states that construct
it (quasiboson approximation (QBA) [4] based approach). The
replacement of the correlated ground state with the HF one is
justified only if ground state correlations are not too strong,
otherwise a better and, if possible self-consistent, treatment
of these correlations become important. For example, it has
been shown in the context of metal clusters that correlations
in the ground state can be quite strong and induce important
deviations from 1 and 0 in the occupation numbers of hole
and particle states, respectively [6]. On the other side, in
nuclear physics, new measurements on weakly bound nuclei
start revealing relevant changes in shell structure far from
stability [7] and novel properties such as, for example, the
existence of pygmy excited modes [8]. The behavior of exotic
nuclei presents a more complex scenario with respect to the
physics of stable nuclei and the introduction of correlations

beyond standard mean field approaches may be expected to
provide an important contribution in this case.

One possible direction is the use of a multireference
approach [5]: the generator coordinate method (GCM) [9],
for instance, is a multireference approach where the reference
state is no longer a single state but a superposition of
wave functions associated to some collective coordinates.
Another possible way to explicitly introduce correlations in
the ground state consists in constructing a RPA-like formalism
where the violations of the Pauli principle related to the use
of the QBA are cured. Two main lines have been developed in
the past decades using either boson expansion methods [10]
or extensions in the fermionic space [11]. Many of these
approaches are based on the so-called renormalized RPA
(RRPA) method starting from the early works of Hara and
Rowe in the 1960s [12]. In all these RRPA models: (i) the
ground state is explicitly correlated with occupation numbers
different from 1 and 0 appearing in some renormalization
factors; (ii) the Pauli principle is satisfied because the QBA
is not adopted.

A very important feature of standard RPA is that it pre-
serves energy weighted sum rules (EWSR) [9]. This property
guarantees that spurious excitations corresponding to broken
symmetries (as, for example, the translational invariance)
separate out and are orthogonal to the physical states. On the
contrary, the common limitation of all the approaches aimed
to overcome QBA is that EWSR are not satisfied [13] and
can be strongly violated (up to 20–30% in some cases [14]).
Such violations are related to the fact that only particle-hole
excitations are considered in such approaches.

An attempt to overcome this problem has been discussed
in Ref. [15]. A RRPA approach has been introduced where
particle-particle and hole-hole configurations have been added
to the standard particle-hole configurations. The method has
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been applied to a three-level Lipkin model [16] with one hole
and two particle levels and it has been shown that the EWSR
result exactly satisfied.

However, a new problem arises related to the existence
of a so called ‘spurious’ mode that does not correspond to
any level in the exact excitation spectrum of the model. In
this work, we will call this mode more properly ‘additional’ or
‘nonphysical’ instead of ‘spurious’ because it does not actually
correspond to any broken symmetry. Since the transition
probability associated to this mode becomes non-negligible at
some value of the interaction strength in the Hamiltonian [15],
an application of this method to a realistic case would result
as unfeasible: various additional modes would be generated
and it would be impossible to isolate them from the physical
spectrum by simply looking at their transition probabilities.

The appearance of these nonphysical states can be traced
back to the use of the enlarged configuration space that,
from the other hand, allows to exactly preserve EWSR (see
also [17]). Although, in some realistic calculations carried out
in extended RPA approaches, it has been discussed that the
transition probabilities associated to these modes are quite
small (see for example [18]), an approach that allows to
identify a priori these modes should be very useful.

In this work, we present a new and more general method
with respect to that of Ref. [15], where the renormalization
scheme is not adopted and, in the range of the existence of
RPA and, to some extent, beyond the RPA collapse, the EWSR
are satisfied and the separation of the additional modes is
unambiguously done.

The proposed approach is a generalization of the self-
consistent RPA introduced in Ref. [19] in the context of
metal clusters. The generalization with respect to [19] consists
in enlarging the space including also particle-particle and
hole-hole configurations following the line suggested in
Ref. [15]. Similarly to what is done in Ref. [19], the operators
Qν are non-renormalized and the one-body density matrix
(OBDM) is not assumed diagonal.

The paper is organized as follows. In Sec. II we discuss
the problem of EWSR and the origin of the violation of
EWSR when only particle-hole excitations are considered
in the phonon operators within generalized RPA approaches
aimed to overcome QBA. In Sec. III we discuss how this
problem is solved within the present approach. In Sec. IV we
apply it to a solvable three-level Lipkin model and we compare
the results obtained within this approach with the RPA and
exact ones. Finally, in Sec. V, the main conclusions are drawn.

II. GENERALIZED RPA APPROACHES AND EWSR

Let us briefly recall how the problem of the EWSR raises
when generalizations of RPA are considered, still remaining in
the space of particle-hole elementary excitations. Within such
space, the excited states of the system are written as

|ν〉 = Q†
ν |0〉, (1)

where

Q†
ν =

∑
ph

(
Xν

pha
†
pah − Y ν

pha
†
hap

)
(2)

with a† and a denoting creation and annihilation operators and
|0〉 is the correlated ground state, defined as the vacuum of the
Qν operators

Qν |0〉 = 0. (3)

.
The equations of motion method [9] leads to(

A B

B∗ A∗

) (
X(ν)

Y (ν)

)
= ων

(
G 0
0 −G∗

)(
X(ν)

Y (ν)

)
(4)

with

Aph,p′h′ = 〈0|[a†
hap,H, a

†
p′ah′]|0〉, (5)

Bph,p′h′ = −〈0|[a†
hap,H, a

†
h′ap′ ]|0〉, (6)

Gph,p′h′ = 〈0|[a†
hap, a

†
p′ah′]|0〉, (7)

where the symmetrized double commutators are defined as

[A,B,C] = 1
2 {[A, [B,C]] + [[A,B], C]}. (8)

The X and Y amplitudes satisfy the orthonormality
conditions∑

ph,p′h′

(
Xν

phX
ν ′
p′h′ − Y ν

phY
ν ′
p′h′

)
Gph,p′h′ = δνν ′ . (9)

The standard RPA equations can be obtained by replacing,
in the evaluation of the matrices (5)–(7), the state |0〉 with
the (uncorrelated) HF one. In particular the norm matrix G

acquires the simpler form

G
(HF)
ph,p′h′ = 〈HF|[a†

hap, a
†
p′ah′]|HF〉 = δhh′δpp′ , (10)

the matrices A and B are easily evaluated since

a
†
h|HF〉 = ap|HF〉 = 0 (11)

and the RPA X and Y amplitudes satisfy the orthonormality
conditions ∑

ph

(
Xν

phX
ν ′
ph − Y ν

phY
ν ′
ph

) = δνν ′ . (12)

A very important feature of standard RPA is that it preserves
EWSR [9,20]. It is well known that, if |0〉 and |ν〉 are a complete
set of exact eigenstates of the Hamiltonian, with eigenvalues
E0 and Eν , the following identity holds:∑

ν

ων |〈ν|F |0〉|2 = 1

2
〈0|[F, [H,F ]]|0〉, (13)

where ων = Eν − E0 and F is any Hermitian single particle
operator. The above equality is in general violated to some
extent when |0〉, |ν〉 and ων are calculated with some approx-
imation. To which extent it is satisfied is a measure of the
adequacy of the approximation.

Transition amplitudes 〈ν|F |0〉 induced by a one-body
operator

F =
∑
α,β

〈α|F |β〉a†
αaβ (14)

between the ground state |0〉 and excited states |ν〉 when these
are described within RPA and RPA-like approaches

〈ν|F |0〉 = 〈0|[Qν, F ]|0〉, (15)

014303-2
125



SELF-CONSISTENT EXTENSION OF RANDOM-PHASE . . . PHYSICAL REVIEW C 80, 014303 (2009)

where the definition (1) and the vacuum property (3) have
been used. The above expression is general and it is valid
independently of the explicit form of the Q operators. Within
standard RPA, where the latter have the form (2), only the p-h
components of the transition operator F are selected, obtaining

〈ν|F |0〉 =
∑
ph

{
Xν∗

ph〈p|F |h〉 + Y ν∗
ph〈h|F |p〉}. (16)

A very important feature of RPA, known as Thouless theorem
[20], can be described as follows. When the left hand side
of Eq. (13) is evaluated by using the energies and the X and
Y amplitudes of RPA, one finds the same result as when the
right hand side of the same equation is calculated by replacing
the exact ground |0〉 with the |HF〉 state. This result is very
important also because it guarantees that spurious excitations
corresponding to broken symmetries (as, for example, the
translational invariance) separate out and are orthogonal to the
physical states. We remark that, when the r.h.s. is evaluated
in the HF state, only the p-h components of the transition
operator F appear in it. The same happens in the l.h.s. but it is
essentially related to the p-h nature of the Q operators. In fact,
when the correlated |0〉 is maintained, it is still true that only
the p-h components of the transition operator F appear in the
l.h.s. and one has

〈ν|F |0〉 =
∑

php′h′

{
Xν∗

ph〈p′|F |h′〉 + Y ν∗
ph〈h′|F |p′〉}Gph,p′h′ ,

(17)

while this is no more the case in the r.h.s., where the whole
structure of F appears. This is the reason why all extension of
RPA, with only p-h excitations, violate Eq. (13). On the other
hand, the use of the HF state in place of the correlated one,
and thus the use of the QBA, is a well known limit of RPA and
many efforts have been done in order to overcome this limit
by taking into account ground state correlations neglected in
standard RPA.

III. FORMULATION OF THE APPROACH

In the following we present an extension of RPA aimed
to overcome the QBA, by taking into account ground state
correlations and, at the same time, to obtain a scheme in which
EWSR are preserved. As discussed above, the violations of
the EWSR in extended RPA approaches are mainly due to the
use of phonon operators containing only p-h excitations. In
our approach the excited states |ν〉 of the system are generated
by more general operators

Q†
ν =

∑
α>β

(
Xν

αβa†
αaβ − Y ν

αβa
†
βaα

)
, (18)

where α and β are single-particle states and α > β means
that nα < nβ (n being the occupation number of the state).
The equations to solve are similar to RPA equations with a
different norm matrix:(

A B

B∗ A∗

) (
X(ν)

Y (ν)

)
= ων

(
G Ḡ

−Ḡ∗ −G∗

)(
X(ν)

Y (ν)

)
. (19)

The norm matrix is defined by the matrices G which read

Gαβ,α′β ′ = 〈0|[a†
βaα, a

†
α′aβ ′ ]|0〉

= δαα′ρ(β,β ′) − δββ ′ρ(α′,α), (20)

where ρ is the OBDM

ρ(α, β) ≡ 〈0|a†
αaβ |0〉 (21)

and

Ḡαβ,α′β ′ = Gαβ,β ′α′ . (22)

The new A and B matrices have the same expressions
defined in Eqs. (5) and (6) but the p′s and h′s indices are
replaced now by the α′s and β ′s ones, respectively.

All the matrix elements appearing in Eqs. (19) are cal-
culated in the correlated ground state, which is defined as
the vacuum of the operators Q. The explicit expressions of
the A and B matrices is calculated by using the method
of linearization of equations of motion [15,19]. It amounts
to contract with respect to the correlated ground state |0〉
the two-body terms coming out from the inner commutators
appearing in Eqs. (5) and (6). In a loose notations, this means

[H, a†a] → a†a + a†a†aa ∼ a†a + 〈0|a†a|0〉a†a. (23)

In such a way also, the A and B matrices are expressed in
terms of the OBDM.

By using the number operator method [19,21] the ρ matrix
is expressed in terms of the X and Y amplitudes:

ρ(p, p′) =
∑
νν ′

∑
h

⎛
⎝δνν ′ − 1

2

∑
p1h1

Rν ′
h1p1

Rν∗
p1h1

⎞
⎠ Rν

phR
ν ′∗
hp′ ,

(24)

ρ(h, h′) = δhh′ −
∑
νν ′

∑
p

⎛
⎝δνν ′ − 1

2

∑
p1h1

Rν ′
h1p1

Rν∗
p1h1

⎞
⎠

×Rν
phR

ν ′∗
h′p, (25)

ρ(p, h) =
∑
νν ′

∑
h2

⎛
⎝δνν ′ − 1

2

∑
p1h1

Rν ′
h1p1

Rν∗
p1h1

⎞
⎠ Rν

ph2
Rν ′∗

h2h
,

(26)

where

Rν
ij =

∑
α>β

(
Xν

αβGij,αβ − Y ν
αβGij,βα

)
. (27)

Therefore Eqs. (19) are nonlinear and in order to solve
them we use an iterative procedure. At the nth iterative step
we compute the ρ matrix, and thus the A,B, and G matrices,
by using the X and Y amplitudes of the (n − 1)th step. As
starting point, we use the HF OBDM, i.e.,

ρ(0)(h,h′) = δh,h′ ; ρ(0)(p,p′) = 0; ρ(0)(p,h) = 0, (28)

obtaining thus the standard RPA solutions, which are used in
the next step. The procedure is carried out until convergence is
reached, namely, until the maximum relative difference in the
excitation energies between two successive iterations is less
than a chosen limit (10−7 in the following calculations).
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Equations (19) are a generalized eigenvalue problem and
can be solved directly by using, for example, QR or QZ

algorithms [22]. Alternatively, one can extract a set of linear
independent states by diagonalizing the norm matrix(

G Ḡ

−Ḡ∗ −G∗

)
, (29)

and make thus a unitary transformation which allows to
transform the generalized eigenvalue problem into a standard
one [23]. We have used this second way for the following
reason. Since, in the enlarged phonon operator (18) the α and
β indices denote generic single particle states, both occupied
and unoccupied in the HF ground state, particle-particle,
particle-hole, and hole-hole configurations are included. This
implies that nonphysical additional states come into play.
The strong advantage of this method with respect to that of
Ref. [15] is that by diagonalizing the norm matrix and by
looking at the overlaps of the excited states with the ground
state the nonphysical states can be isolated and eliminated from
the spectrum. The implications of the above approach on the
description of the collective states in realistic system will be
studied in forthcoming works. In the next section we show the
advantages of the method within a three-level Lipkin model.

IV. AN APPLICATION TO THE LIPKIN MODEL

The three-level Lipkin model consists of three energy
levels, each of them is 2�-fold degenerate, in which the total
number of fermions N = 2� is distributed. The Hamiltonian
of the model is

H =
∑
i �=0

εiKii + V0

∑
i,j �=0

Ki0K0j + V1

∑
i,j �=0

(Ki0Kj0 + h.c.)

+V2

∑
i,j,k �=0

(Ki0Kjk + h.c.) + V3

∑
i,j,k,l,�=0

KijKkl (30)

where ε are the energies of the levels and the coefficients V

represent the strengths of the various interaction terms. The
operators K have the following form:

Kij =
∑
m

a
†
imajm (31)

and satisfy the commutation relations

[Kij ,Kkl] = δjkKil − δilKkj . (32)

The indices i and j indicate the three levels and m denotes the
2� degenerate states of each level. The operators K define a
SU(3) algebra. The exact excitation spectrum of the model can
be calculated and compared with the obtained results.

We present the results for two choices of the parameters ε

and V in the Hamiltonian.
As a first set we have

ε0 = 0, ε1 = ε, ε2 = 2.5ε, V0 = −χ,
(33)

V1 = χ, V2 = −χ/2, V3 = χ/10.

In Fig. 1 the excitation spectrum (a) and the eigenvalues of
the norm matrix (b) are displayed as a function of the strength
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FIG. 1. (Color online) First set of parameters (33). (a): Excitation
energies of the states (1), (2), and (3) and the eigenvalues of the
norm matrix (b) as a function of the strength parameter τ = χ/ε.
The energies in the Y axis are expressed in units of ε. In (c) the
corresponding overlaps [Eq. (34)] of the three states with the ground
state are shown. See the text for more details.

parameter τ = χ/ε for the first set of parameters. The present
calculation is denoted in the figure with the acronym EERPA
(extended and enlarged RPA). EERPA results (solid lines) are
compared with the exact corresponding values (dashed lines)
and with the standard RPA energies (dotted lines). The first
two RPA excited states are indicated with (1) and (3). A much
better agreement with the exact results is found for EERPA
with respect to RPA. This is mostly evident for the first RPA
excited state already before the RPA collapse point, τ = 0.026.
With EERPA the collapse point is located much further and
the good agreement with the exact values is kept in the whole
region where the EERPA results exist. The state (2), whose
energy is equal to ε2 − ε1 when τ approaches 0, does not
correspond to any exact solution. Thus it is nonphysical. This
straightforward identification would not be possible when the
EERPA is applied to the study of realistic systems since exact
results are not available in that case. Quite in general, however,
one can proceed as follows.

The eigenvalues of the norm matrix Eq. (29), are plotted in
panel (b) of the figure. One can observe that even beyond the
RPA collapse point one eigenvalue is much smaller than the
others, its value being equal to 0.03 at the RPA collapse. At
τ = 0.035, that is far beyond the collapse, the three eigenvalues
are still well separated: 0.09, 0.69, and 0.84, respectively. This
tells us that one of the three solutions is nonphysical. One
condition that the three excited states should satisfy in order
to be acceptable as physical states is their orthogonality with

014303-4
127



SELF-CONSISTENT EXTENSION OF RANDOM-PHASE . . . PHYSICAL REVIEW C 80, 014303 (2009)

the ground state. In panel (c) of Fig. 1 we show the overlaps

〈0|ν〉 = 〈0|Q†
ν |0〉 =

∑
α>β

Xν
αβρ(α,β) − Y ν

αβρ(β,α) (34)

between the ground state and the states of panel (a). As it is
very clearly visible, such overlap for the state labeled as (2)
is strongly different from zero, while for the others it is much
smaller. Thus we can conclude that indeed such state is the
nonphysical one. Of course, in the case of a schematic, exactly
solvable model such identification can be done directly by
looking at the exact energy spectrum while this is not possible
in realistic cases. On the other hand, the appearance of a
(almost) zero eigenvalue of the norm matrix does not allow
to identify the nonphysical state. On the contrary, looking at
the values of the overlaps Eq. (34) is an unambiguous criterion
to single out the states to be eliminated and it is viable also
in realistic systems. The fact that the overlaps of the physical
states with the ground state are not exactly zero, especially for
large values of the strength, is related to the approximations
present in the approach. For example, the OBDM is evaluated
by using the number operator method truncated at a certain
order, which probably is not enough for values of the strength
well beyond the RPA collapse point. However, in physical
cases we expect to be in situations corresponding to smaller
values of the strength or, in worst cases, around the RPA
collapse point. We remark that the above discussed criterion,
to disentangle physical from nonphysical states, could not be
applied in the previous approach [15] where, since the OBDM
is assumed diagonal, the overlaps (34) are zero by construction
for all the states |ν〉 and thus the fulfillment of the orthogonality
condition is not achievable.

It is worthwhile to underline that even when only particle-
hole excitations are included in the phonon operators (18), the
self-consistent treatment of the ground state correlations used
in our approach leads to a better agreement with the exact
results with respect to RPA, as we have checked. However,
in this case, violations of EWSR are found. For example,
near the RPA collapse point, deviations of the order of 30%
are present. When instead the enlarged configuration space is
used, EWSR are exactly satisfied, as shown in [15]. This has
been numerically verified in the present calculations.

The first set of parameters allows to modelize the case
where, in a realistic system, two particle (or hole) states which
construct an elementary configuration are quite well separated
in energy: the unperturbed energy of the corresponding
configuration is then finite and greater than zero. It can happen,
however, that a realistic single-particle spectrum presents
some very close single-particle states. If a particle-particle or
hole-hole configuration can be formed with two of these states,
the associated unperturbed energy would be very close to zero.
It has been shown in Ref. [18] for a realistic nuclear system
that these additional states (that would contribute in the low-
energy part of the excitation spectrum) have actually very low
transition probabilities and do not contribute in practice to the
strength distribution of the excitation mode. The second set of
parameters in our Lipkin model has been chosen to mimic such
a situation by using the same strength parameters V of (33)
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FIG. 2. (Color online) Same parameters of Eq. (33) but with ε1 =
ε, ε2 = 1.2ε.

and as single particle energies:

ε0 = 0, ε1 = ε, ε2 = 1.2ε. (35)

In Fig. 2, where we show the same quantities of Fig. 1 for
this second choice, we can see that EERPA results are again in
better agreement with the exact ones with respect to the RPA,
whose collapse point is now at τ = 0.019. The energy of the
nonphysical state, labeled as (1) in the figure, starts from a
value equal to ε2 − ε1 when τ is near to 0 and then decreases
by increasing τ . Indeed, the collapse of EERPA (τ = 0.036),
that we did not observe in Fig. 1, in this second case happens
just because the energy of the nonphysical state approaches 0.
However, the EERPA collapse is far beyond the RPA one. In
panels (b) and (c) of Fig. 2, we plot the eigenvalues of the norm
matrix (29) and the overlaps (34), respectively, which, as in the
previous case, allow to disentangle physical from nonphysical
states in a very clear way.

V. CONCLUSIONS

In conclusion, we have presented an extension of RPA in
which ground state correlations are treated in a self-consistent
way and no use of the quasiboson approximation is made.
The method has been applied to a three-level Lipkin model
and a better agreement with the exact results than in RPA
has been found. By using an enlarged configuration space,
with respect to that commonly used (particle-hole excitations),
EWSR are exactly preserved. This means that the problem
of spurious excitations corresponding to broken symmetries
which arises in many, if not all, extensions of RPA is not
present in this method. In a previous paper [15], an extension
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of RPA with an enlarged basis of elementary excitations within
the renormalized RPA framework was introduced and studied
in the same three level Lipkin model. A serious problem
of that approach is the appearance of a nonphysical state,
having no counterpart in the exact spectrum. The strong and
innovative advantage of the here presented approach is that by

diagonalizing the norm matrix and by looking at the overlaps of
the excited states with the ground state, nonphysical states can
be isolated and eliminated from the spectrum. The obtained
results strongly encourage the application of the present
approach to more realistic systems. Work in this direction
is in progress.

[1] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,
New York, 1975), Vol. II; M. N. Harakeh and A. van der Woude,
Giant Resonances (Clarendon, Oxford, 2001).

[2] W. Ekardt, Phys. Rev. B 31, 6360 (1985); W. Ekardt, ibid. 32,
1961 (1985); M. Brack, Rev. Mod. Phys. 65, 677 (1993).

[3] M. A. Baranov and D. S. Petrov, Phys. Rev. A 62, 041601(R)
(2000); G. M. Bruun and B. R. Mottelson, Phys. Rev. Lett.
87, 270403 (2001); M. Bartenstein, A. Altmeyer, S. Riedl,
S. Jochim, C. Chin, J. H. Denschlag, R. Grimm, ibid. 92, 203201
(2004); J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and
J. E. Thomas, ibid. 92, 150402 (2004).

[4] A. Fetter and J. D. Walecka, Quantum Theory of Many-Particle
Systems (Dover Publications, Inc., Mineola, NY, 1971).

[5] D. Lacroix, T. Duguet, and M. Bender, Phys. Rev. C 79, 044318
(2009).

[6] F. Catara, G. Piccitto, M. Sambataro, and N. Van Giai, Phys.
Rev. B 54, 17536 (1996).

[7] O. Sorlin and M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602
(2008).

[8] P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005).
[9] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, Berlin/Heidelberg/New York, 1980).
[10] F. Catara, Ph. Chomaz, and N. Van Giai, Phys. Lett. B233, 6

(1989); D. Beaumel and Ph. Chomaz, Ann. Phys. (NY) 213,
405 (1992); M. Sambataro and F. Catara, Phys. Rev. C 51,
3066 (1995); M. Sambataro and J. Suhonen, ibid. 56, 782
(1997); C. Volpe, Ph. Chomaz, M. V. Andres, F. Catara, and
E. G. Lanza, Nucl. Phys. A647, 246 (1999); M. Sambataro and
N. Dinh Dang, Phys. Rev. C 59, 1422 (1999); M. Grasso,
F. Catara, and M. Sambataro, ibid. 66, 064303 (2002);
D. Gambacurta, M. Sambataro, and F. Catara, ibid. 73, 014310
(2006).

[11] J. Dukelsky and P. Schuck, Nucl. Phys. A512, 466 (1990);
D. Janssen and P. Schuck, Z. Phys. A 339, 43 (1991); A. Klein,

N. R. Walet, and G. Do Dang, Nucl. Phys. A535, 1 (1991);
D. Karadjov, V. V. Voronov, and F. Catara, Phys.
Lett. B306, 197 (1993); F. Catara, N. Dinh Dang, and
M. Sambataro, Nucl. Phys. A579, 1 (1994); J. Dukelsky and
P. Schuck, Phys. Lett. B387, 233 (1996); F. Catara, M. Grasso,
G. Piccitto, and M. Sambataro, Phys. Rev. B 58, 16070 (1998);
A. A. Raduta, C. M. Raduta, A. Faessler, and W. A. Kaminski,
Nucl. Phys. A634, 497 (1998); F. Krmpotić, E. J. V. de Passos,
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3.3 Les états à multiphonons 
 
 
Une des propriétés de la RPA est que les états à multiphonons, obtenus par l’action 
multiple des opérateurs d’excitation Q+ sur l’état fondamental, forment un spectre 
harmonique. Les états à deux ou trois phonons ont donc des énergies égales à deux ou 
trois fois l’énergie du phonon individuel, respectivement. En physique nucléaire, 
l’existence d’états à multiphonons (deux et trois phonons) construits sur des états de 
basse énergie ou sur des résonances géantes a été montrée expérimentalement [Ch95, 
Fa03, Fa06, Ha01, Bo03]. Des déviations du cadre harmonique ont été observées et 
différents modèles théoriques qui vont au-delà de la RPA ont été proposés pour 
expliquer et décrire ces anharmonicités [Ca89, Ha97, La97, Po97, Vo99, Ga00, Pa01, 
An02, La06].  
 
En ce qui concerne les agrégats métalliques, une première mesure expérimentale publiée 
en 1998 [Sc98] semblait démontrer l’existence d’excitations multiples du plasmon 
dipolaire avec des anharmonicités négligeables. Cependant, l’interprétation de ces 
résultats a été mise en question par la suite et jusqu’à nos jours des conclusions sur ce 
sujet n’ont toujours pas été établies. Un consensus manque aussi en ce qui concerne les 
prédictions théoriques sur le spectre de multiphonons dans les agrégats, avec des 
prédictions assez différentes les unes des autres [Ca93, Ha99, Ge02, Ca06].   
 
Dans la suite, je fais suivre deux articles où nous avons analysé des spectres à 
multiphonons avec deux approches différentes, une extension de la RPA [Gr02] et un 
modèle basé sur la seconde RPA (SRPA) [Ga06b]. Les deux approches sont testées 
dans un modèle de Lipkin à trois niveaux.  
 
Dans le premier article, une procédure de mapping bosonique est effectuée et 
l’expansion de l’Hamiltonien dans l’espace bosonique est coupée aux termes à quatre 
bosons. Les équations de la RPA sont écrites et résolues en utilisant cet Hamiltonien. 
Elles ont la même forme que celles de la RPA standard mais sont non linéaires et sont 
donc résolues de manière itérative. Pour l’étude des anharmonicités du spectre, 
l’Hamiltonien bosonique est diagonalisé dans l’espace contenant jusqu’à quatre 
phonons. 
 
Dans le deuxième article, un schéma de type SRPA [RS80, Ya86] est adopté. Le modèle 
est ultérieurement enrichi avec une extension qui permet d’éviter d’utiliser la QBA. En 
effet, la QBA dans le cadre de la SRPA est une approximation encore plus sévère que 
dans le cas RPA [Ta88, La90, Ma94]. 
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2Dipartimento di Fisica e Astronomia, Università di Catania Corso Italia 57, I-95129 Catania, Italy

3Istituto Nazionale di Fisica Nucleare, Sezione di Catania Corso Italia 57, I-95129 Catania, Italy
�Received 13 March 2002; revised manuscript received 16 September 2002; published 4 December 2002�

Working within an exactly solvable three level model a boson Hamiltonian is defined via a mapping
procedure and its expansion truncated at four-boson terms. The resulting spectrum is found in good agreement
with the exact one. We discuss an extension of the random-phase approximation �RPA� based on this boson
formalism. Nonlinear RPA-type equations are constructed and solved iteratively. The new solutions gain in
stability with respect to the RPA ones. We perform diagonalizations of the boson Hamiltonian in restricted
spaces; approximate spectra exhibit an improved quality with increasing the size of these spaces. Special
attention is addressed to the problem of the anharmonicity of the spectrum.

DOI: 10.1103/PhysRevC.66.064303 PACS number�s�: 21.60.Jz, 21.10.Pc, 21.10.Re

I. INTRODUCTION

The most commonly used microscopic approach for the
study of collective vibrational states in many-fermion sys-
tems is the random-phase approximation �RPA� �1�. In this
theory the lowest collective excitations result from the action
of phonon operators Q�

† on a state �RPA� which is defined by
the condition that Q��RPA��0. This state represents the
ground state of the system. It is a distinctive feature of RPA
that multiphonon states, i.e., states obtained by repeated ac-
tions of phonon operators on the ground state, are eigenstates
of the Hamiltonian with energies forming a harmonic spec-
trum. The existence of states which can be approximately
described as corresponding to the multiple excitation of low-
lying and/or high-lying phonons is well established in atomic
nuclei. However, deviations from the harmonic picture are
also observed and their influence on several processes has
been analyzed �2�.

In a standard derivation of the RPA equations a crucial
point is represented by the so called quasiboson approxima-
tion �QBA�. This is a rather crude approximation which
causes the operators Q�

† to behave as boson operators in spite
of their �composite� fermionic structure. Overcoming this ap-
proximation has represented the starting point of many at-
tempts aiming at improving RPA �3–22�. One of the line of
research in such a context has been based on a reformulation
of the whole theory in a boson formalism �16–22�. In other
words, the operators Q�

† have been defined from the begin-
ning in terms of true boson operators and all the fermion
operators of interest have been replaced by their boson im-
ages via a mapping procedure. The RPA-type equations that
one constructs in this formalism depend on the degree of
expansion of the boson Hamiltonian. Truncating this expan-
sion at the lowest order, i.e. at two-boson terms only, gives
the boson counterpart of RPA. Including higher-order terms

in the boson image of the Hamiltonian provides a natural
way to reach a higher level of approximation. In addition to
that, the inclusion of these terms has another important ef-
fect: it leads to a coupling among multiphonon states. States
which result from a diagonalization in a m-phonon space are
therefore superpositions of zero-, one-, . . . , m-phonon
states. Such a diagonalization is expected to lead to a further
improved degree of approximation as well as to cause anhar-
monicities in the spectrum.

Calculations in this boson formalism have been per-
formed in the recent past for atomic nuclei �19,20� consider-
ing a Hamiltonian truncated at four-boson terms and diago-
nalizing it in the space of one- and two-phonon states. The
resulting anharmonicities have not been found large espe-
cially in 208Pb. In particular, the anharmonicity associated
with states whose main component is a double giant reso-
nance has been found of the order of a few hundred keV.
This is certainly related to the fact that RPA gives a good
description of giant resonances especially in heavy closed
shell nuclei.

In metallic clusters the dipole plasmon is a strongly col-
lective state which corresponds to the oscillation of the de-
localized electrons of the cluster against the positively
charged ions. The experimental evidence for states corre-
sponding to the double excitation of the plasmon has not
been confirmed �23�. From the theoretical point of view the
situation is also quite unclear. On the one hand, in Ref. �24�
a purely harmonic spectrum for the multiple excitation of the
plasmon has been predicted. On the other hand, by using the
same approach as in Refs. �19,20� huge anharmonicities in
the two-plasmon states have been found �25�. An important
difference with respect to the case of atomic nuclei is that in
metallic clusters the two-body interaction is very long
ranged. This is probably the main reason why the RPA
ground state is very different from the Hartree-Fock one and
the RPA backward amplitudes are quite large. Of course, this
may cause that the same level of truncation in the boson
expansion is not adequate both in the case of nuclei and of
metal clusters.

In principle, configuration mixing calculations can give a
clear, model independent, indication on the existence of such
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two-phonon states and on their degree of anharmonicity. Un-
fortunately, since the states one looks for are quite high in
energy, the number of configurations required to get stable
results is huge. In Ref. �26� such a study has been performed
for a very simple case: two interacting electrons moving in a
uniform positive charge distribution. This is a kind of pre-
cursor of a metal cluster in the jellium approximation and
allows for a numerically exact calculation. Important devia-
tions from the harmonic limit have been found. More spe-
cifically, in addition to an almost perfectly harmonic vibra-
tional band based on the ground state, other states appear
which have a much lower degree of harmonicity.

In this paper we will analyze the anharmonicities present
in the low-lying spectrum of a three-level solvable model
�27� by providing at the same time an interesting test for a
boson-mapping-based extension of RPA. We will shed some
light on the limits of the approach adopted in Refs. �20� and
�25�. The analysis we are going to present is very similar to
that made in Ref. �21� where a two-level model was consid-
ered and the parameters were adjusted in such a way to mim-
ick the multiple excitation of giant resonance. Of course, the
three-level model is richer. In particular, since there are two
single particle states above the Fermi surface �particle states�
and one below �hole�, two different elementary p-h configu-
rations and, correspondingly, two different phonons can be
excited. Therefore, one can better simulate the situation en-
countered in nuclei which generally present one high-lying
and one low-lying collective modes for each multipolarity.
Also, matrix elements of the interaction connecting a
particle-hole state with a two-particle one can be included in
a natural way as well as those involving four-particle states
or four-hole states. These terms are present in a generic two-
body interaction and are very important since the former
couple states having numbers of phonons differing by one
while the latter couple states having the same number of
phonons.

The paper is organized as follows. In Sec. II we will de-
scribe the model and analyze the anharmonicities of its exact
excitation spectrum. In Sec. III we will introduce the boson-
mapping technique and construct the image of the fermion
Hamiltonian. In Sec. IV we will present an extension of RPA
and show the results obtained by diagonalizing the boson
hamiltonian. Finally, in Sec. V we will draw some conclu-
sions.

II. THE MODEL AND THE EXACT SPECTRUM

The model �27� consists of three 2�-fold degenerate
single-particle shells which are occupied by 2� particles.
Therefore, in the absence of interaction, the lowest level is
completely filled while the others are empty. This lowest
state represents the ‘‘Hartree-Fock’’ �HF� state of the system
and is denoted by �0� . A single-particle state is specified by
a set of quantum numbers ( j ,m), where j stands for the shell
( j�0,1,2) and m specifies the 2� substates within the shell.
The creation and annihilation operators of a fermion in a
state ( j ,m) are defined by a jm

† and a jm , respectively.
Let us define the operators

Ki j	 

m�1

2�

aim
† a jm � i , j�0,1,2 �. �2.1�

These operators satisfy the commutation relations

�Ki j ,Kkl��� jkKil�� ilKk j �2.2�

thus forming a U�3� algebra. With the additional constraint
that fixes the total number of particles, the operators K be-
come the generators of the algebra SU�3�.

The Hamiltonian of the model is written in terms of the
generators Ki j only and contains up to two-body interactions.
Its most general form is

HF� 

i�1,2

�� i �Kii� 

i , j�1,2

V0� i , j �Ki0K0 j

� 

i , j�1,2

V1� i , j ��Ki0K j0�K0 jK0i�

� 

i , j ,k�1,2

V2� i , j ,k ��Ki0K jk�Kk jK0i�

� 

i , j ,k ,l�1,2

V3� i , j ,k ,l �Ki jKkl�V4K00K00 , �2.3�

with real coefficients. The eigenstates and the eigenvalues of
HF can be constructed either by using the properties of the
algebra SU�3� or by diagonalizing HF in the following space:

F�� �n1n2��
1

�Nn1n2

�K10�
n1�K20�

n2�0��
0
n1�n2
2�

,

�2.4�

where Nn1n2
are normalization factors.

We simplify the calculations by assuming the coefficients
of the interaction terms independent of the levels, i.e.,
V0(i , j)�V0 , V1(i , j)�V1 , V2(i , j ,k)�V2 , V3(i , j ,k ,l)
�V3, and proportional to one parameter � which is ex-
pressed in units of energy. We have chosen all the coeffi-
cients negative, assuming in this way that all the interation
terms are attractive. We set the first two coefficients V0 and
V1, which involve only particle-hole excitations, equal to a
common value �� . For the remaining coefficients we have
considered smaller values: in a first case they have been set
all equal to ��/10 and in a second case they have been
doubled. We have chosen the energies of the three levels
equal to 0, � and 2.5� where � is expressed in units of en-
ergy. Therefore the two sets of parameters used in the calcu-
lations are

��0 ��0, ��1 ��� , ��2 ��2.5� ,

V0��� , V1��� , V2���/10,

V3���/10, V4���/10 �2.5�

and
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��0 ��0, ��1 ��� , ��2 ��2.5� ,

V0��� , V1��� , V2���/5,

V3���/5, V4���/5. �2.6�

For both sets of parameters we have chosen 2��20.
We show in the upper part of Figs. 1 and 2 some excita-

tion energies calculated by diagonalizing the fermion hamil-
tonian HF in the space F, Eq. �2.4�, with the two sets of
parameters �2.5� and �2.6�, respectively, as function of the
parameter �	2��/� . We report only the energies of those
states which are pure 1p�1h and 2p�2h states at ��0; in
this way, we simplify our analysis looking only at those
states that in RPA are pure one-phonon (���) and two-
phonon (��1�2�) states. One can observe that the two re-
ported spectra are slightly different. In the second case, the
stronger attractive interaction terms in the three-particle–

one-hole (V2), four particle (V3), and four hole (V4) chan-
nels have the general effect �except for the state �2�) of
pushing the excitation energies towards higher values. We
observed that the results do not depend on the sign of V2,
due to the structure of the matrix to be diagonalized. Chang-
ing the signs of the interaction terms V3 and V4 we got a
lowering of the excitation energies; in particular, the term
with strength V3 starts to be important at high values of the
strength � , while the term with strength V4 is important al-
ready at low values of � . This is related to the fact that the
four hole term affects the ground state energy also when the
correlations are absent or small, while the other term is ef-
fective only when the correlations are well developed.

Although not clearly visible at a first glance, the spectra
of Figs. 1 and 2 show marked anharmonicities. In order to
quantify these, in the lower part of Figs. 1 and 2 we show, for
the two sets of parameters, respectively, the following ratios:

R�1�2
�

E�1�2
��E�1

�E�2
�

E�1
�E�2

, �2.7�

where by E� and E�1�2
we mean the exact excitation ener-

gies of the states ��� and ��1�2�. One notices a well different
behavior of the plotted ratios. In both figures the ratio R is
very small for the states �12� and �22� showing that the cor-
responding exact states can be quite well described as pure
two-phonon states for all the considered values of the param-
eter � . On the contrary, the ratio R11 changes rapidly with
increasing � showing stronger anharmonicities for the state
�11�. Thus, for both sets of parameters the spectrum is found
to exhibit some levels with a clear harmonic nature and other
levels which do not display this nature and whose anharmo-
nicities depend on the strength of the interaction terms of the
Hamiltonian. These results resemble to some extent those of
Ref. �26� where a realistic two-electron system was exam-
ined. The existence of anharmonicities represents an evident
limit to the harmonic picture of RPA that cannot be a good
approximation to reproduce the multiphonon spectrum of the
model.

III. THE BOSON MAPPING

Let us define the space

B	� �n1n2)�
1

�n1!n2!
�b1

†�n1�b2
†�n2�0)�

0
n1�n2
2�

,

�3.1�

where the operators bi
† obey the standard boson commutation

relations

�bi ,b j
†��� i j , �bi ,b j��0 �3.2�

and �0) is the vacuum of the bi’s operators. A one-to-one
correspondence exists between the states of F and B, the
boson operators bi

† playing the role of the excitation opera-
tors Ki0 and the boson vacuum �0) replacing the HF state
�0�.

FIG. 1. Top: exact excitation energies in units of � for the one-
phonon and two-phonon states as function of the strength � for the
set of parameters �2.5�. Bottom: ratios R�1�2

, Eq. �2.7�, for the
two-phonon states and the same set of parameters.

FIG. 2. Same as in Fig. 1 for the set of parameters �2.6�.

BOSON-MAPPING-BASED EXTENSION OF THE . . . PHYSICAL REVIEW C 66, 064303 �2002�

064303-3
133



The mapping procedure to construct boson images of fer-
mion operators is the same discussed in previous works �see,
for instance, Ref. �18�� and, due to the orthonormality of
both sets of states �n1 ,n2� and �n1 ,n2), it is simply based on
the requirement that corresponding matrix elements in F and
B be equal. Therefore, the procedure is of Marumori type.
We refer to Refs. �18,28� for more details. Here, we simply
say that, in correspondence with the Hamiltonian HF �2.3�,
we introduce a hermitian boson Hamiltonian HB which con-
tains up to four-boson terms and whose general form is

HB���

i

� i�bi
†�H.c.��


i j
� i jbi

†b j

�

i
 j

� i j�bi
†b j

†�H.c.��

i
 j



k

� i jk�bi
†b j

†bk�H.c.�

�

i
 j



k
l

� i jklbi
†b j

†bkbl

� 

i
 j
k



l

� i jkl�bi
†b j

†bk
†bl�H.c.�, �3.3�

with the coefficients depending on the parameters
�(i),V0 ,V1 ,V2 , V3 , V4 of Eq. �2.3�.

For the two sets of parameters, Eqs. �2.5� and �2.6�, we
show in Figs. 3 and 4, respectively, the comparison between
the exact excitation energies and those obtained by diagonal-
izing HB in the space B in order to check the validity of the
four-boson truncation of the boson Hamiltonian. We can ob-
serve that the agreement between the two spectra is rather
good for both sets of parameters. Differences between boson
and fermion spectra start to be significant only for rather
large values of � (�0.35) and are more evident for the set
�2.6�. This means that in the chosen range of values of � the
considered truncation of the Hamiltonian is sufficient. We

have also verified that the inclusion of an additional five-
boson term of the type b†b†b†bb considerably reduces the
above differences in the spectra but we have nevertheless
preferred to keep the boson Hamiltonian in the form �3.3�
since this more closely reflects a realistic case �where the
evaluation of the five-boson term would likely become rather
difficult and would therefore be avoided�.

In the next section we will show and comment some re-
sults obtained by diagonalizing HB in restricted spaces, con-
taining up to two, three, and four bosons. The quality of the
results will be judged by comparing them with those ob-
tained by diagonalizing HB in the full boson space B. We
will denote the latter as reference spectrum.

IV. EXTENSION OF RPA AND DIAGONALIZATION OF HB

IN RESTRICTED SPACES

The calculation in the full bosonic space B is not feasible
for realistic many-body systems and one has to resort to re-
stricted spaces where only states containing up to a certain
number of bosons are considered. In Fig. 5 we compare the
reference spectrum for the set of parameters �2.5� with those
obtained by limiting the number of bosons to two, three, and
four. These calculations correspond to diagonalizations in
spaces constructed by acting with two-particle–two-hole,
three-particle–three-hole, and four-particle–four-hole excita-
tion operators on the Hartree-Fock state �0� . We see that the
results obtained by limiting the number of bosons to two are
very poor even for those states which at zero interaction
strength are pure 1 boson states. Enlarging the space the
quality of the results improves. However, even for the largest
space it is satisfactory only for strength �
0.25. One may
expect that by introducing collective bosons �phonons� the
agreement becomes better.

Let us now introduce the operators

Q�
†�


i
�Xi

(�)bi
†�Y i

(�)bi�, �4.1�

and let the state ��0) satisfy the condition

FIG. 3. Comparison between the exact one-phonon and two-
phonon spectrum and the corresponding one obtained by diagonal-
izing HB in the whole boson space B for the set of parameters �2.5�.
The energies are expressed in units of � .

FIG. 4. Same as in Fig. 3 for the set of parameters �2.6�.
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Q���0)�0. �4.2�

By using the equations of motion method �29� one finds that
the amplitudes X and Y are solutions of

� A B

�B* �A*� � X (�)

Y (�)� �� (�)� X (�)

Y (�)� , �4.3�

where

Ai j���0��bi ,�HB ,b j
†����0�, �4.4�

Bi j����0��bi ,�HB ,b j����0�. �4.5�

As anticipated in Sec. I, the form of Eqs. �4.3� is strictly
related to the degree of truncation of the boson Hamiltonian.
In the hypothesis that HB contains up to two-boson terms,
the double commutators in Eqs. �4.4� and �4.5� are just num-
bers which, therefore, are also the values of the matrices A
and B. This is the simplest case which can be realized in this
formalism and represents the boson counterpart of the stan-
dard RPA. One limitation of RPA is that it collapses at a
given strength of the interaction and imaginary energies are
found. This problem is not present in spherical closed shell
nuclei, while it shows up in other many-body systems as, for
example, in metallic clusters. This degree of approximation
can be improved by introducing a Hamiltonian with higher-
order terms such as, for instance, Eq. �3.3�. These terms
originate on one hand from those parts of the fermionic

Hamiltonian, proportional to V2 , V3, and V4, which do not
enter in the RPA equations. On the other hand, they take into
account some corrections to the violation of the Pauli prin-
ciple. In this case the double commutators are operators. In
order to calculate their expectation values in ��0), as re-
quired in Eqs. �4.4� and �4.5�, one can express the operators
b and b† in terms of Q and Q†, by reversing Eq. �4.1� �and
its adjoint� and using the orthonormality conditions

�����

i j

�Xi
�X j

���Y i
��Y j

��. �4.6�

This procedure gives, however, matrices A and B which de-
pend on the X and Y amplitudes and, consequently, equations
of motion �4.3� which are nonlinear. In what follows this
nonlinear extension of RPA will be called ERPA �16�.

Having determined the amplitudes X and Y within RPA or
ERPA, one can express the Hamiltonian HB in terms of the
operators Q and Q†. In the case of RPA, namely, when the
boson Hamiltonian Eq. �3.3� is truncated at two-boson terms
only, HB can be rewritten simply as

HB�E0�

�

� (�)Q�
†Q� , �4.7�

where � (�) are the energies solutions of the RPA equations
�4.3�. This Hamiltonian obviously does not mix states with
different phonon numbers and so its eigenstates are pure
zero-, one-, . . . , m-phonon states. For a higher-level trunca-
tion in the boson Hamiltonian, such as for instance, that of
Eq. �3.3�, HB acquires instead the more general form

HB�E0�H10�Q†�H.c.��H11Q
†Q�H20�Q†Q†�H.c.�

�H21�Q†Q†Q�H.c.��H30�Q†Q†Q†�H.c.�

�H22Q
†Q†QQ�H31�Q†Q†Q†Q�H.c.�

�H40�Q†Q†Q†Q†�H.c.�, �4.8�

FIG. 6. Excitation energies of the states ��� and ��1�2� calcu-
lated within RPA �dotted lines� and ERPA �dashed lines� compared
with the corresponding reference states �full lines� for the set of
parameters �2.5�. The energies are in units of � .

FIG. 5. Comparison between the reference spectrum and those
obtained by limiting the bosonic space up to two, three, and four
bosons b for the set of parameters �2.5�. The energies are expressed
in units of � .
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where the coefficients Hi j are functions of X and Y �for sim-
plicity, we have dropped all the indices�. Also in this case, as
in RPA, the term H20 as well as the nondiagonal terms H11
vanish, as can be easily shown using the fact that the ampli-
tudes X and Y are solutions of the ERPA equations. However,
the remaining terms of Eq. �4.8� mix different multiphonon
states so that the eigenstates of the full Hamiltonian become
combinations of these states. This fact introduces an evident
difference with RPA since the energies which result from the

ERPA equations are not eigenvalues of the boson Hamil-
tonian in the phonon space as it is in the case of RPA �where
they provide the excitation energies of the one-phonon eigen-
states�.

With the chosen parameters RPA collapses at ��0.24. On
the contrary, we found real solutions of the ERPA equations
of motion in the whole considered strength range. Moreover,
the so obtained energies for the states �1� and �2� are in good
agreement with the reference ones for strength up to �
�0.3. This shows that these states can be quite well de-
scribed as pure one-phonon states. However, we want to
stress that this does not imply a harmonic spectrum. Indeed,
as already shown in Figs. 1 and 2, anharmonicities are
present for ��0.2. We show in Figs. 6 and 7, for the two sets
of parameters �2.5� and �2.6�, respectively, the excitation en-
ergies of the states ��� and ��1�2� calculated within RPA and
ERPA. They are compared with the corresponding reference
states.

In Figs. 8 and 9 we show the spectra obtained by diago-
nalizing HB in spaces containing up to two, three, and four
ERPA phonons. By comparing them with the reference re-
sults �shown as full lines� one sees that the agreement im-
proves by enlarging the space and is satisfactory in the whole
range of the interaction strength when the mixing of states up
to four phonons is taken into account. It is worthwhile noting
that the results with the phonons Q are much better than
those obtained with the bosons b. The comparison is shown
in Fig. 10 in the case of the largest spaces and with the
parameters �2.5�.

V. CONCLUSIONS

In this paper we have analyzed some of the lowest excited
states of the spectrum of a solvable three-level model,

FIG. 7. Same as in Fig. 6 for the set of parameters �2.6�.

FIG. 8. Comparison between the reference spectrum and those
obtained by diagonalizing HB in the spaces containing up to two,
three and four ERPA phonons for the set of parameters �2.5�. The
energies are expressed in units of � .

FIG. 9. Same as in Fig. 8 for the set of parameters �2.6�.
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namely, those that in RPA would be described as one- and
two-phonon states. We have worked in a boson formalism.
As a preliminary step we have constructed a boson image of
the fermion Hamiltonian whose expansion has been trun-
cated at four-boson terms. The procedure followed in such a

derivation has been of Marumori type. The quality of the
boson Hamiltonian has been tested by comparing its eigen-
values with the exact ones. Within the considered range of
variation of the interaction strength the agreement between
fermion and boson energies has always been found rather
good.

By making use of this boson Hamiltonian we have intro-
duced an extension of the RPA. The resulting equations of
motion have the same form as the RPA ones but are nonlin-
ear. They have been solved iteratively. The new solutions
have gained in stability with respect to the RPA ones and, in
particular, around the RPA collapse point the new energies
have exhibited a good agreement with the exact ones. This
extension of RPA, while introducing corrections to the Pauli
principle violations present in RPA, naturally leads to a
Hamiltonian which mixes states with a different number of
phonons. We have performed diagonalizations in spaces con-
taining up to two-, three-, and four-phonon states and ob-
served an improved quality of the approximate spectra with
increasing the size of the spaces.

Special attention has also been addressed to the problem
of the anharmonicity of the spectrum. This has been found
relevant for the state which, in RPA, is described as the
double excitation of the lowest one-phonon state. On the
contrary, for the other states, a less pronounced anharmonic-
ity has been found. These findings agree with those of Ref.
�26� and point to the necessity of considering together all the
possible elementary excitations of a many-body system when
discussing the anharmonicity of its spectrum.
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The second random-phase approximation (SRPA) is the simplest and most natural extension of the RPA. It
enlarges the space of the elementary modes introduced to describe the collective states by adding 2 particle -
2 hole excitations to the 1 particle - 1 hole ones of the RPA. In deriving the SRPA equations, use is made, as in
the RPA, of the so-called quasi-boson approximation (QBA) where expectation values in the ground state of the
system are approximated by their values in the uncorrelated reference state. This, however, has been shown to
imply a degree of approximation worse than that in the RPA. It is, therefore, necessary to improve the QBA by
considering a reference state which contains some correlations. Having in mind to perform such calculations for
realistic systems, we consider a simple extension of the SRPA in which the reference state contains 2 particle -
2 hole correlations. The quality of such an extension is tested by applying it to a solvable three-level model and
found to be good.

DOI: 10.1103/PhysRevC.73.024319 PACS number(s): 21.60.Jz, 21.10.Re

I. INTRODUCTION

Collective excitations are one of the most common and
interesting features of many-body systems. Of particular
interest are the collective modes which can be interpreted
in terms of vibrations. Nuclei show a large variety of such
vibrations, both low lying and high lying [1]. In particular, the
giant dipole resonance is due to the coherent motion of protons
against neutrons. The analog of the giant dipole resonance in
metal clusters is the dipole plasmon excitation which is well
known [2,3] and is interpreted as the collective vibration of the
electrons against the ions. The random-phase approximation
(RPA) has been extensively used as a microscopic theory to
study the basic properties of these collective excitations. In this
framework, one introduces a set of phonon operators Q†

ν whose
action on the ground state |0〉, defined as the vacuum of the
Qν operators, creates the collective states |ν〉. The excitation
energies Eν are solutions of a system of equations which can
be derived by using the equations of motion method [4,5].
In the derivation of the standard RPA, use is made of the
quasi-boson approximation (QBA), which entails replacing the
expectation value in the ground state |0〉 of any operators with
the corresponding value in the uncorrelated reference state.
Strictly related to the QBA is the RPA property of predicting a
harmonic spectrum with regularly spaced multiphonon states.
On the other hand, the existence of anharmonicities in the
multiphonon spectra of nuclei and their influence on various
physical processes are well established [1,6–8]. Overcoming
the QBA has been the starting point of many attempts aimed
at improving the RPA.

One line of investigation in such a direction has been
based on the reformulation of the whole theory in a boson
formalism [9,10]. Along this line, an extension of RPA was
presented in Ref. [10] within a three-level Lipkin model [11].
The phonon operators Q†

ν were defined from the beginning in
terms of true boson operators, and all the fermion operators
of interest were replaced by their boson images via a mapping
procedure. The RPA-type equations that one constructs in this

formalism depend on the degree of the expansion of the boson
Hamiltonian. Standard RPA is obtained when the expansion
of the boson image of the Hamiltonian is truncated at the
lowest order, i.e., at the two boson terms only. Considering
higher-order terms provides a natural way to reach a higher
level of approximation and so go beyond the standard RPA. In
Ref. [10], the boson Hamiltonian was diagonalized within the
space containing up to two, three, and four phonon excitations.
An important conclusion of such a study was that in order
to reproduce the energies of states which in the harmonic
limit correspond to two quanta excitations, it is necessary to
diagonalize the Hamiltonian in the space of the states including
up to four phonons. Such a calculation would not be feasible
for a realistic system. Therefore, one has to look for a more
affordable approach.

A natural extension of the RPA for the study of two-phonon
states is the second RPA (SRPA). However, in its derivation,
QBA is still used [12]; and as shown in Refs. [13,14], this
is an even more severe approximation than that in the RPA.
In the present paper, we introduce an extension of the RPA
and SRPA obtained by improving the QBA along the lines
indicated in Refs. [13–15]. The quality of the corresponding
results is studied by performing calculations within the three-
level Lipkin model. We calculate several physical quantities
such as excitation and ground state correlation energies,
occupation numbers, strength functions, and sum rules. From
the comparison of our results with the exact ones, we conclude
that the present approach gives a good description of the
ground state and of those excited states which in the harmonic
limit would correspond to one and two phonon excitations.
This approach does not require a very heavy computational
effort, and we plan to apply it to the study of realistic systems.
Work in this direction is in progress.

The paper is organized as follows. In Sec. II, the formalism
associated with the RPA and SRPA is shortly reviewed
and the extensions of the two approaches are presented. In
Sec. III, the exact and approximate results are compared
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and in Sec. IV, our conclusions are drawn. In Appendix A,
we show the explicit form of some matrices used in the
calculations.

II. FORMALISM

In this section, we present the derivation of the extensions of
the RPA and SRPA mentioned in the Introduction and obtained
by improving on the QBA. Let us define the operators Q†

ν and
Qν such that

Qν |0〉 = 0, (1)

|ν〉 = Q†
ν |0〉, (2)

where |0〉 and |ν〉 are, respectively, the ground state and a
generic excited state of the Hamiltonian H. It is easy to show
[4,5] that the following equations hold for an arbitrary operator
δQ

〈0|[δQ, [H,Q†
ν]]|0〉 = ων〈0|[δQ,Q†

ν]|0〉, (3)

with ων = Eν − E0.
Let |HF〉 be the Hartree-Fock (HF) ground state of the

system where the hole states below the Fermi energy are filled
and the particle states above are empty. In the following, we
use the indices m, n, p, q and i, j, k, l to indicate, respectively,
particle and hole states. To derive the RPA equations, two
approximations are made. The first one restrics the operators
Q†

ν to the space of 1 particle - 1 hole (1p1h) operators, i.e.,

Q†
ν =

∑
pi

(
X

(ν)
pi a

†
pai − Y

(ν)
pi a

†
i ap

)
. (4)

The second one is the QBA which amounts to substituting
the ground state |0〉 in Eq. (3) with the uncorrelated state
|HF〉. An evident inconsistency is introduced since Eq. (3) is
obtained assuming that |0〉 is the vacuum of Qν . By using the
QBA, the system of Eq. (3), with the elementary excitations
δQε{a†

i ap, a
†
pai}, becomes(

A B

B∗ A∗

) (
X(ν)

Y (ν)

)
= ων

(
G 0
0 −G∗

)(
X(ν)

Y (ν)

)
, (5)

where X(ν) and Y (ν) is a short-hand notation for the vectors
X

(ν)
pi and Y

(ν)
pi ; the RPA matrices are

Ami,pk = 〈HF|[a†
i am, [H, a†

pak]]|HF〉, (6)

Bmi,pk = −〈HF|[a†
i am, [H, a

†
kap]]|HF〉, (7)

and the elements of the norm matrix G are

Gmi,pk = 〈HF|[a†
i am, a†

pak]|HF〉 = δikδmp. (8)

A well-known feature of the RPA is that it predicts a
harmonic spectrum. It is therefore clear that the RPA is not able
to explain the existence of anharmonicities in multiphonon
spectra.

One way to obtain a better description of the double
excitations of the system is to use the SRPA, where the

excitation operators also contain 2p2h terms

Q†
ν =

∑
pi

(
X

(ν)
pi a

†
pai − Y

(ν)
pi a

†
i ap

)

+
∑
pimj

(
X

(ν)
pimja

†
paia

†
maj − Y

(ν)
pimja

†
i apa

†
j am

)
. (9)

Starting from the equations of motion (3) and using the QBA,
one gets in this case( A B

B∗ A∗

) (X (ν)

Y (ν)

)
= ων

(G 0
0 −G∗

) (X (ν)

Y (ν)

)
, (10)

where

A =
(

Ami,pk Ami,pqkl

Amnij,pk Amnij,pqkl

)
,

B =
(

Bmi,pk Bmi,pqkl

Bmnij,pk Bmnij,pqkl

)
,

G =
(

Gmi,pk 0
0 Gmnij,pqkl

)
,

and

X (ν) =
(

X
(ν)
mi

X
(ν)
mnij

)
, Y (ν) =

(
Y

(ν)
mi

Y
(ν)
mnij

)
.

The elements Ami,pk, Bmi,pk , and Gmi,pk of A,B, and G are
equal to those defined in Eqs. (6), (7), and (8), while the others
are

Ami,pqkl = 〈HF|[a†
i am, [H, a†

pa†
qalak]]|HF〉, (11)

Amnij,pk = 〈HF|[a†
i a

†
j anam, [H, a†

pak]]|HF〉, (12)

Amnij,pqkl = 〈HF|[a†
i a

†
j anam, [H, a†

pa†
qalak]]|HF〉, (13)

Bmi,pqkl = −〈HF|[a†
i am, [H, a

†
ka

†
l aqap]]|HF〉, (14)

Bmnij,pk = −〈HF|[a†
i a

†
j anam, [H, a

†
kap]]|HF〉, (15)

Bmnij,pqkl = −〈HF|[a†
i a

†
j anam, [H, a

†
ka

†
l aqap]]|HF〉, (16)

Gmnij,pqkl = 〈HF|[a†
i a

†
j anam, a†

pa†
qalak]|HF〉. (17)

One can show that

Gmnij,pqkl = U (ij )U (mn)δikδjlδmpδnq, (18)

where U (ij ) is the antisymmetrizer for the indices i, j and

Bmi,pqkl = Bmnij,pk = Bmnij,pqkl = 0. (19)

It has been shown in Refs. [13,14] that QBA is even more
severe in SRPA than in RPA. In this work, in order to improve
on QBA, we have searched for a correlated state to replace
|HF〉 in Eqs. (6), (7), and (11)–(16).

In order to get indications on how to improve the QBA, we
notice that the standard form of the RPA ground state [i.e., the
vacuum of the operators Qν of Eq. (4)] is derived under the
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approximation that the particle-hole operators a
†
mai behave as

ideal boson operators, namely,

[a†
i ap, a†

naj ] ≈ δij δpn, (20)

and has the form

|RPA〉 ∝ exp

⎛
⎝1

2

∑
minj

Zminj a
†
maia

†
naj

⎞
⎠ |HF〉, (21)

where the coefficients Z are determined by∑
mi

X
(ν)∗
mi Zminj = Y

(ν)∗
nj . (22)

An explicit expression of the vacuum |RPA〉 cannot be
found without resorting to Eq. (20). Wishing to avoid such
a bosonic approximation while keeping the correlated state
simple enough to be used in realistic calculations, we consider
the approximation

|RPA〉 ≈ N
⎛
⎝1 + 1

2

∑
minj

Zminj a
†
maia

†
naj

⎞
⎠ |HF〉, (23)

where N is a normalization factor, and the operators a
†
mai are

treated without any bosonic approximation of the type (20).
Equation (23) can be viewed as a truncation of Eq. (21). In
such a spirit, we make the ansatz that the coefficients Z in
Eq. (23) are still determined by Eq. (22). The matrices A,B,
and G of both the RPA equations (5) and the SRPA ones (10)
are evaluated, in this approximation, by replacing the |HF〉
state with the |RPA〉 state (23) in Eqs. (6)–(8) and (11)–(17).
We notice that when this is done, Eq. (19) is no longer valid.
Furthermore, since the matrices A,B, and G depend on Z,
i.e., on X and Y, the problem is nonlinear. The procedure we
adopt entails solving self-consistently the RPA equations (5)
and (22), and keeping the so obtained Z coefficients when we
solve the SRPA equations (10).

The present extension of the SRPA shares some similarities
with those discussed in Refs. [13,15]. However, in Ref. [13]
the Z-coefficients were calculated using the X and Y solutions
of the standard RPA, and the matrix elements of A and B con-
necting 1p1h and 2p2h configurations were neglected. Further-
more, bosonic-type approximations were made when evaluat-
ing the matrices A,B, and G. The main difference with respect
to Ref. [15] is, that there the Z coefficients were evaluated
in first-order Rayleigh-Schrödinger perturbation theory, i.e.,

Z
(per)
minj = 〈HF|V̂ a

†
maia

†
naj |HF〉

−Eminj

, (24)

where Eminj are the unperturbed energies of the 2p2h excita-
tions and V̂ is the residual interaction.

III. MODEL AND RESULTS

In this section, we apply the extensions of the RPA and
SRPA discussed in the previous section to an exactly solvable
three-level model [11,16]. We check the quality of the results
obtained within such extensions by comparing them with the
exact ones. Our main aim is to judge to what extent the

extended SRPA is adequate to reproduce the anharmonicities
present in the two-phonon spectrum. The model consists of
three levels of energy ε0, ε1, and ε2. Each of them is 2�-fold
degenerate, and N = 2� is the total number of fermions in
the system. Therefore, in the absence of interaction, the lowest
level is fully occupied while the others are empty. This lowest
level represents the HF ground state of the system |HF〉. A
single-particle state is denoted by two quantum numbers j and
m, where j labels the shells (j = 0, 1, 2) and m specifies the
2� substates within each shell. Let us define the operators

Kij =
2�∑

m=1

a
†
imajm (i, j = 0, 1, 2), (25)

where a
†
jm and ajm are, respectively, the creation and annihi-

lation operators of a fermion in the state (jm).
The operators K satisfy the relations

[Kij ,Kkl] = δjkKil − δilKkj , (26)

N =
∑

i

Kii, (27)

thus forming an SU(3) algebra.
We introduce the Hamiltonian of the system as

Hf =
∑
i �=0

εiKii + V0

∑
i,j �=0

Ki0K0j

+V1

∑
i,j �=0

(Ki0Kj0 + K0jK0i)

+V2

∑
i,j,k �=0

(Ki0Kjk + KkjK0i)

+V3

∑
i,j,k,l �=0

KijKkl. (28)

The eigenstates and the eigenvalues of the system can be
obtained either by using the properties of the SU(3) algebra or
by diagonalizing H in the space{

|n1n2〉 = 1√Nn1n2

(K10)n1 (K20)n2 |HF〉
}

0 � n1+n2 � 2�

, (29)

where Nn1n2 are normalization factors.
The results presented in this paper refer to the same set of

parameters used in Ref. [16], that is,

ε0 = 0 ε1 = ε ε2 = 2.5ε

V0 = −χ V1 = χ V2 = −χ/2 (30)

V3 = χ/10 2� = 10.

In this model, the excitation operators of the RPA and SRPA
are, respectively (in all formulas below, i and j are greater than
zero),

Q†
ν =

∑
i

(
X

(ν)
i Ki0 − Y

(ν)
i K0i

)
, (31)

Q†
ν =

∑
i

(
X

(ν)
i Ki0 − Y

(ν)
i K0i

)
+

∑
i� j

(
X

(ν)
ij Ki0Kj0 − Y

(ν)
ij K0iK0j

)
. (32)
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FIG. 1. Excitation energies of the states |ν〉 as functions of the
strength τ for the set of parameters (30). The results obtained within
RPA-SRPA, ERPA, and ESRPA are compared with the exact ones.
Energies are expressed in units of ε. Also shown are the energies of
the state |111〉 discussed in the text.

In the following, we indicate with the RPA and SRPA the
results obtained by using the QBA, namely, by evaluating the
matrices in Eqs. (5) and (10) in the |HF〉 state. In the present
approximation, these matrices are calculated instead in the
state

|RPA〉 = N
⎛
⎝1 + 1

2

∑
ij

ZijKi0Kj0

⎞
⎠ |HF〉. (33)

The corresponding extensions of the RPA and SRPA that we
introduce in this way will be denoted in the following by ERPA
and ESRPA, respectively.

In Figs. 1 and 2 we show the excitation energies as
functions of the parameter τ = χ/ε, calculated within RPA,
ERPA, SRPA, and ESRPA. They are compared with the exact
excitation energies. It is worth noticing that the exact excitation
spectrum in the range of energy considered in Figs. 1 and 2 is
actually richer than that shown in these figures. For simplicity,
however, with the exception of the state |111〉 defined below,
we only show those states which at τ = 0 are pure 1p1h (|1〉
and |2〉) and 2p2h (|11〉, |12〉, and |22〉). In the following, we
will refer to them just as 1p1h and 2p2h states. The state
|111〉 of Fig. 1 is instead a state which, at τ = 0, is a pure
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FIG. 2. Same as Fig. 1, but for the states |ν1ν2〉. RPA energies
are calculated as the sum of the energies of the states |ν1〉 and |ν2〉,
namely Eν1ν2 = Eν1 + Eν2 .

3p3h state. For increasing values of τ , this state gets closer
and closer to the 1p1h state |2〉 up to almost crossing it at
τ ∼ 0.025. Although not shown in Fig. 2 in order not to make
the figure too confusing, several other states lie quite close in
energy to the 2p2h states |11〉, |12〉, and |22〉. The presence
of these extra states of a more complex nature “perturbs”
these 2p2h states by leading, for large values of τ , to a more
relevant contribution of higher-order ph components. This
makes the theoretical description of these states in a RPA-like
or SRPA-like formalism more difficult.

As a first result, we notice that going from RPA to SRPA,
the energies of the 1p1h states change very little. In Fig. 2,
these energies are indistinguishable, and we have plotted them
by using the same symbol. Both RPA and SRPA, therefore, are
seen to collapse at τ ∼ 0.026; but already for τ > 0.02, the
energies predicted for the lowest 1p1h state |1〉 start to deviate
significantly from the exact values. A better agreement is found
instead in the case of the state |2〉. As far as the 2p2h states are
concerned, we have evaluated the RPA energies of the states
|ν1ν2〉 as the sum of the energies of the states |ν1〉 and |ν2〉,
namely Eν1ν2 = Eν1 + Eν2 . In these cases, RPA and SRPA
show marked differences, the latter approximation leading to
a better agreement with the exact results.

Turning now to the extended versions of RPA and SRPA
discussed in Sec. II, we notice that both ERPA and ESRPA
improve significantly the quality of the approximated results.
In particular, the collapse point 16 now shifted to a consider-
ably larger value of τ (0.047 for ERPA and 0.039 for ESRPA),
and the energy of the first excited state is reproduced much
better than in RPA (SRPA). With reference to this state, we
show in Fig. 3 a comparison with the results obtained by the
perturbative approach of Ref. [15], both in the case of RPA-like
(ERPA-PER) and SRPA-like (ESRPA-PER) calculations. In
this approximation, the Z coefficients are evaluated using
(24). Similar to what was found in the case of standard RPA
and SRPA calculations, the difference between ERPA-PER
and ESRPA-PER results for the state |1〉 is very small and
cannot be appreciated in the figure (where we explicitly show
only the ERPA-PER results). One observes in this case that
the perturbative calculation improves upon RPA (SRPA) by
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FIG. 3. Excitation energies of the |1〉 state as functions of the
strength τ for the set of parameters (30). The results obtained within
RPA (SRPA), ERPA, ESRPA, and ERPA-PER are compared with the
exact ones. Energies are expressed in units of ε.
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exhibiting, in particular, a collapse point at τ ∼ 0.028 without
reaching, however, the quality of our results. As far as the
remaining 1p1h and 2p2h states are concerned, the difference
between our approach and the perturbative one is less evident
(it is well understood that our calculations extend over a wider
range of τ ).

It is of interest to look also at the energy weighted sum rules
(EWSR). Let us recall that if |ν〉 and |0〉 are exact eigenstates
of the Hamiltonian H with energies Eν and E0, then for any
one-body operator F the following identity holds:∑

ν

(Eν − E0)|〈ν|F |0〉|2 = 1

2
〈0|[F †, [H,F ]]|0〉. (34)

The well-known Thouless theorem [17] states that the above
equality is satisfied if one evaluates the l.h.s. within the RPA
and the mean value of the double commutator in the r.h.s. in
the |HF〉 state. In this sense, the RPA preserves the EWSR. The
same is true for the SRPA (Ref. [12]). One can easily show
that the identity (34) is exactly satisfied in our approximation if
one keeps only the particle-hole components of the operator F.
Vice versa, when one uses its complete expression

F =
∑
αβ

fαβKαβ (35)

with α and β running over all single-particle states (below and
above the Fermi level), some violations are present. In Fig. 4,
we show, as a function of τ , the r.h.s. of Eq. (34) calculated
in the correlated state (33) and the l.h.s. in ERPA and ESRPA.
The calculations are done by assuming that all fαβ = 1.

One sees that the violations increase with τ . At the ERPA
level, they reach quite large values, for instance, ∼35% at
τ = 0.035. A significant improvement is obtained within the
ESRPA, the violation being ∼10% at the same interaction
strength. This is very satisfactory in view of the fact that within
other extensions of the RPA, the violations are more severe
[16]. The large violations of the EWSR found in the ERPA
can be traced back to the fact that, as discussed in Ref. [16], all
components of F enter in the r.h.s. of Eq. (34), while when the
excitation operators Q†

ν are of the RPA type, only 1p1h terms
of F contribute to the l.h.s. This is no longer true when Q†

ν is
of the SRPA type. The approach proposed in Ref. [16] entailed
considering RPA-type operators Q†

ν which also included Kαβ
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FIG. 4. R.h.s. of Eq. (34) calculated in the correlated state (33)
and the l.h.s. evaluated in ERPA and ESRPA.
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FIG. 5. Strength functions, as functions of the strength τ for the
set of parameters (30), for the states |1〉 and |2〉. Results obtained
within the RPA-SRPA, ERPA, and ESRPA are compared with the
exact ones.

terms. It was found that the EWSR were exactly satisfied, but
one could not avoid the appearance of a spurious state.

In Figs. 5 and 6, we show the strength functions |〈ν|F |0〉|2.
As far as the 1p1h states are concerned (Fig. 5), the RPA
(SRPA) results show large deviations from the exact ones only
for τ approaching the collapse point. In the case of 2p2h states
(Fig. 6), the SRPA predictions are instead very poor already
for values of τ well below the collapse point. The agreement
within the ERPA and ESRPA is considerably better although
significant deviations are observed also in this case for large τ .
As already noticed, however, in this region the structure of
these 1p1h and 2p2h states is influenced by the presence of
other states of a more complex nature which lie quite close in
energy. This could also explain the “odd” behavior exhibited
by the exact results relative to the states |2〉, |12〉, and |22〉 for
large τ . A more appropriate treatment of these high-lying states
would involve diagonalizing the Hamiltonian in a multiphonon
space. In Ref. [10], an approach of this kind was attempted,
although in a bosonic formalism, within the same model. The
conclusion was that in order to reproduce the energies of states
which in the harmonic limit would correspond to two quanta
excitations, it was necessary to perform a diagonalization in a
space which included up to four phonons. Calculations of this
kind would be quite difficult in a realistic case, so we did not
perform them in the present work.
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FIG. 6. Same as Fig. 5, but for states |11〉, |12〉, and |22〉.
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FIG. 7. Exact occupation numbers compared with the RPA and
ERPA ones.

Further information on the quality of our approach can be
obtained by looking at the occupation numbers. In Fig. 7, we
compare the exact values with the RPA and ERPA ones. For
the RPA occupation numbers, we used the expressions

n0 = 1 − 1

2

∑
ν,i

∣∣Y (ν)
i

∣∣2
(36)

and

ni = 1

2

∑
ν

∣∣Y (ν)
i

∣∣2
, (37)

where the factor 1
2 , not present in the standard RPA expression,

has been introduced following the suggestion of Refs. [18,19].
Within the ERPA, they have been evaluated as the expectation
values of Kαα in the ground state (33) with the Z coefficients
determined using Eq. (22). We notice that the RPA results
deviate greatly from the exact ones already for τ well below
the collapse point. Within the ERPA, the quality of the
agreement improves considerably. It is worthy remarking that
while the RPA strongly overestimates the correlations in the
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FIG. 8. Exact ground state correlation energy compared with the
RPA and the ERPA ones. Energies are in units of ε.

ground state, the ERPA underestimates them but to a much
less extent.

This is also evident in Fig. 8, where we plot the RPA ground
state correlation energy [4] together with the ERPA and exact
ones.

IV. SUMMARY AND CONCLUSIONS

In this work, we have discussed an extension of the RPA
and SRPA. The key point of such an extension has been the
overcoming of the QBA by replacing the (uncorrelated) |HF〉
state with a correlated one in the derivation of the RPA and
SRPA equations. The latter state has been assumed to contain
up to 2p-2h configurations, whose amplitudes have been
determined by self-consistently solving new extended RPA-
type equations. In this sense, the correlated state so introduced
can be viewed as a truncation of the RPA ground state. Unlike
the RPA case, however, no bosonic-type approximations have
been introduced when handling particle-hole operators. We
have investigated, both in the RPA and SRPA, the effects of
releasing the QBA in the way just described. As a testing
ground, we have taken the three-level Lipkin model and
compared exact calculations with those performed within
the RPA, SRPA, and their extensions ERPA and ESRPA,
respectively. The comparison has concerned ground state
correlation energies, excitation energies, strength functions,
and occupation numbers.

Furthermore, we have also examined sum rules. As a
general result, we have observed that the ERPA considerably
improves the RPA by leading, in particular, to a relevant shift
of the collapse point to higher values of the interaction strength
as well as to a better description of the spectrum. ESRPA calcu-
lations are characterized by a collapse point close to the ERPA
one but exhibit a much richer spectrum, being able, in partic-
ular, to reproduce also those states which, in the standard RPA
formalism, would correspond to double phonon excitations. A
significant improvement of the ESRPA over the ERPA has also
been observed at the level of the EWSR. As far as the ground
state (identical by construction in the ERPA and ESRPA) is
concerned, the exact occupation numbers are much better
reproduced in the ERPA than in the RPA. One observes, in
particular, a tendency of the present approximation to underes-
timate the ground state correlations (differently from the RPA,
which severely overestimates them). This is also evidenced in
the behavior of the correlation energies. In conclusion, all the
results emerging from the present analysis testify to the good
quality of the extension of the SRPA that we have discussed
and, thanks to the not very heavy computational effort that it
requires, encourage its application to more realistic systems.

APPENDIX A

As discussed in Sec. II, the extension proposed in this paper
entails the evaluation of the matrices A,B, and G in the |RPA〉
state (33). Of course, the new expressions of these matrices
become more involved. As an example, in the following we
report the explicit expression of the norm matrix G in the
case of the three-level Lipkin model. In the standard RPA and
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SRPA, we have

Gi,j = 1

2�
〈HF|[K0i , Kj0]|HF〉 = δij , (A1)

and

Gij,kl = 1

2�(2� − 1)
〈HF|[K0iK0j , Kk0Kl0]|HF〉

= J(ij )δlj δik, (A2)

where J(ij ) is the symmetrizer for the indices i, j .
In the ERPA and ESRPA, we evaluate the above matrices

by replacing |HF〉 with the |RPA〉 state (33)and obtain

Gi,j = 1

2�
〈RPA|[K0i , Kj0]|RPA〉

= 1

2�
(δijN00 − Nij ), (A3)

and

Gij,kl = 1

2�(2� − 1)
〈RPA|[K0iK0j , Kk0Kl0]|RPA〉

= 1

2�(2� − 1)
J(ij )J(kl)(δlj (N0ik000 + Nki00) − N0ik0lj

− 1

2
(δliδkj (N0000 + N00) + Nkjli − δliNkj )), (A4)

where

Nαβ = 〈RPA|Kαβ |RPA〉,

Nαβγ δ = 〈RPA|KαβKγδ|RPA〉,

Nαβγ δσν = 〈RPA|KαβKγδKσν |RPA〉,
with α, β, γ, δ, σ, ν = 0, 1, 2, . . . .

For example, we have

N00 = 〈RPA|K00|RPA〉

= 2�N 2

(
1 + �

2� − 1

∑
kl

|Zkl|2
)

,

Nij = 〈RPA|Kij |RPA〉

= 2�

2� − 1
N 2

∑
kl

Z∗
ilZkj ,

Nij00 = 〈RPA|KijK00|RPA〉

= 4�(� − 1)

2� − 1
N 2

∑
k

Z∗
ikZkj ,

where i, j = 1, 2.
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Chapitre 4 
  

Les paires de Cooper dans les gaz 
atomiques ultra-froids 
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4.1 Les gaz fermioniques ultra-froids piégés 
 
 
Depuis une quinzaine d’années, un intérêt croissant a été focalisé sur les propriétés des 
gaz atomiques ultra-froids piégés. En 1995 la condensation de Bose-Einstein (BEC) 
d’atomes bosoniques piégés (87Rb, 23Na, 7Li) a été réalisée dans différents laboratoires 
[An95, Da95, Br95]. Le succès de ces expériences a encouragé à analyser aussi les 
propriétés des gaz d’atomes fermioniques (6Li, 40K) et de nombreuses étapes ont été 
franchies depuis, grâce aussi à l’amélioration des techniques de piégeage et de 
refroidissement. Des gaz de Fermi dégénérés ont été obtenus [DM99, Gra02]. Des 
mélanges ont été réalisés [Sc01, Tu01, Ha02, Ha03] et le crossover BCS-BEC (où le 
BEC est réalisé avec des quasi-molécules) a été exploré en utilisant des résonances de 
Feshbach [Ba04, Re04, Zw04, Gi08]. Les gaz dits de dimensions quasi petites (Quasi 
Low Dimension, QLD) ont été aussi étudiés dans des pièges super anisotropiques [Pi03, 
Pe06].   
 
Les gaz atomiques ultra–froids sont des systèmes très dilués, avec des densités de 
l’ordre de 1014 atomes/cm3 (huit ordres de grandeur plus petites par rapport à la densité 
de 4He) ; ils sont piégés magnétiquement et/ou optiquement, contiennent environ 104 – 
107 atomes, ont une taille de l’ordre de dizaines ou centaines de μm et sont refroidis à 
des températures de l’ordre de dizaines de nK.  
Les gaz d’atomes fermioniques sont des systèmes de taille finie constitués par N 
fermions comme les noyaux atomiques. Cependant, ils ne sont pas auto-liés comme les 
noyaux mais existent seulement dans des pièges. Dans certaines conditions, l’interaction 
entre les atomes est attractive et les modèles théoriques prévoient que, au-dessous d’une 
température critique TC, une transition vers la phase BCS ait lieu avec formation de 
paires de Cooper [Le80].  Cette superfluidité est tout à fait analogue à celle qu’on peut 
retrouver dans les noyaux et qui est due à l’appariement des nucléons. Grâce à cette 
analogie, nous avons étudié la superfluidité de ces gaz avec les mêmes approches 
microscopiques HFB + QRPA [Gr03, Gr05a, Ca05, Gr05b] déjà adoptées pour les 
noyaux, mais formulées cette fois à température finie. Nous avons fait des comparaisons 
entre les résultats microscopiques et les résultats obtenus en approximation de densité 
locale (LDA) à différentes températures et nous avons montré les limites de validité de 
la méthode semiclassique LDA par rapport à l’approche quantique microscopique, qui 
est, dans beaucoup de cas, nécessaire pour pouvoir décrire correctement les effets de 
taille finie dans ces systèmes.  
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4.2 Champ moyen à température finie et procédure de 
régularisation 
 
 
Les gaz d’atomes peuvent être décrits dans un modèle théorique où le potentiel piégeant 
est simulé par un oscillateur harmonique et l’interaction entre les atomes est approximée 
par une interaction de portée nulle caractérisée par la longueur de diffusion en onde s. 
Ce choix est justifié par le fait que ces gaz sont typiquement très dilués. Pour simplifier 
ultérieurement le problème, on peut imposer une symétrie sphérique (dans les cas réels 
les gaz ont des formes de cigares). 
 
Si on imagine de peupler de manière égale deux états de spin différents que nous notons 
comme ↑ et ↓ (deux états différents de structure hyperfine), l’Hamiltonien qui décrit le 
système de N atomes, avec N=N↑+N↓, est écrit comme : 
 

( )∑∑
<=

−δ
π

+ω+=
ji

ji
3

N

1j

2
2
j

2 rr
m

a4rm
2
1TH rrhr ,                                  (4.1) 

 
où T est le terme cinétique et a la longueur de diffusion en onde s.  
Nous adoptons les unités m = ω = h  = KB = 1. Les équations HFB et les expressions 
pour les potentiels de champ moyen et d’appariement valables dans ce modèle  ont été 
dérivées dans la Section 1.3. Puisque l’interaction utilisée est de portée nulle, 
l’expression pour le champ d’appariement Δ(R) est divergente (divergence ultraviolette).  
 
Dans l’article [Gr03], qui suit, nous avons analysé et amélioré la procédure de 
régularisation proposée en [Br99, Bu02], basée sur le concept de pseudopotentiel 
[Hu87]. Nous avons aussi effectué des comparaisons entre les résultats microscopiques 
et les résultats semiclassiques LDA et nous avons montré les limites de validité de la 
LDA en fonction de la taille et de la température du système.   
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trapped fermionic atoms
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Institut de Physique Nucléaire, F-91406 Orsay Cedex, France
�Received 26 May 2003; published 19 September 2003�

We investigate a gas of superfluid fermionic atoms trapped in two hyperfine states by a spherical harmonic
potential. We propose a regularization method to remove the ultraviolet divergence in the Hartree-Fock-
Bogoliubov equations caused by the use of a zero-range atom-atom interaction. Compared with a method used
in the literature, our method is simpler and has improved convergence properties. Then we compare Hartree-
Fock-Bogoliubov calculations with the semiclassical local-density approximation. We observe that for systems
containing a small number of atoms shell effects, which cannot be reproduced by the semiclassical calculation,
are very important. For systems with a large number of atoms at zero temperature, the two calculations are in
quite good agreement, which, however, is deteriorated at nonzero temperature, especially near the critical
temperature. In this case, the different behavior can be explained within the Ginzburg-Landau theory.
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I. INTRODUCTION

In the last few years an increasing interest has been di-
rected towards ultracold gases of trapped fermionic atoms.
Many experimental efforts are made to develop and improve
the techniques for trapping and cooling fermionic atoms, for
instance, 40K and 6Li. An interesting aspect of trapped fer-
mionic atoms in comparison with other Fermi systems is that
parameters such as the temperature, the density, the number
of particles, and even the interaction strength are tunable
experimentally. By tuning the magnetic field in the vicinity
of a Feshbach resonance �1�, the scattering length, which is
related to the interaction strength, can be changed. This of-
fers a wide range of possibilities to investigate the behavior
of these systems in different experimental conditions. By us-
ing optical or magnetic traps, temperatures of about 1

4 TF

have been achieved �2–4�, where TF��F /kB is the Fermi
temperature.

All these efforts are mainly directed to the realization and
detection of a phase transition to the superfluid phase below
some critical temperature TC . In order to have a s-wave
attractive interaction among the atoms, which can give rise
to s-wave pairing correlations below TC , the atoms have to
be trapped and cooled in two different hyperfine states. This
has been achieved in a recent experiment �5�, where also the
Feshbach resonance in the 6Li scattering amplitude has been
used to enhance the scattering length. It seems that in the
same experiment some signals indicating a superfluid phase
transition have been observed.

From the theoretical point of view, many calculations
have been performed in order to predict and study the equi-
librium properties of the trapped system when the phase tran-
sition takes place. So far all these calculations are based on
the mean-field approach. In Ref. �6�, the trapped Fermi gas
was treated in local-density approximation �LDA�, where the
system is locally treated as infinite and homogeneous. In Ref.
�7�, some corrections to the LDA for temperatures near TC
were obtained in the framework of the Ginzburg-Landau
�GL� theory. The first approach fully taking into account the

finite system size was introduced in Ref. �8� and studied
further in Refs. �9,10�. It consists of a Hartree-Fock-
Bogoliubov �HFB� calculation, analogous to calculations
done in nuclear physics, where the mean field and the pairing
properties of the system are treated self-consistently. In Ref.
�8� also a regularization prescription for the pairing field was
developed: Since the densities in the traps are very low, the
atom-atom interaction can be approximated by a zero-range
interaction. However, this leads to an unphysical ultraviolet
divergence of pairing correlations which has to be removed.

In spite of the possibility to perform full HFB calcula-
tions, it should be mentioned that these calculations are nu-
merically very heavy and therefore limited to moderate num-
bers of particles. Another shortcoming of present HFB
calculations is that they are restricted to the case of spherical
symmetry, while the traps used in the experiments are usu-
ally strongly deformed. Hence, to describe trapped systems
under realistic conditions, one has to rely on calculations
within the LDA. This is a quite embarrassing situation, since
even for large numbers of particles the results of HFB and
LDA calculations have not always been in good agreement
�see results shown in Ref. �8��.

In this paper, we will present a detailed comparison be-
tween HFB and LDA calculations. In particular, we will
show that the disagreement between HFB and LDA calcula-
tions, which has been found in Ref. �8�, is to a certain extent
caused by the use of an unsuitable regularization prescription
for the pairing field in the HFB calculations. We will present
a modified regularization prescription which was originally
developed for HFB calculations in nuclear physics �11� and
is much easier to implement numerically. �As we learned
after sending the first version of our manuscript, Nygaard
et al. used the same prescription in their calculation of a
vortex line in a dilute superfluid Fermi gas �12�, without
giving a description of this scheme.� Due to its improved
convergence properties, this scheme leads to more precise
results for the pairing field, which in the case of large num-
bers of atoms agree rather well with the results of the LDA at
least at zero temperature. At non-zero temperature, however,
the differences between HFB and LDA results turn out to be
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important even for very large numbers of particles. For ex-
ample, we find that the critical temperature obtained within
the LDA is too high, and that the pairing field profile near the
critical temperature is not well described by a LDA calcula-
tion: we show with the HFB approach that it actually has a
Gaussian shape, as it was predicted in the framework of the
GL theory in Ref. �7�.

The paper is organized as follows. In Sec. II, we will
present the adopted formalism with a particular attention on
the description of the regularization techniques. In Sec. III,
we will show some comparisons between HFB and LDA
calculations and illustrations of the results obtained with dif-
ferent choices for the regularization method. We will also
discuss results obtained for nonzero temperatures and verify
the quantitative predictions of the GL theory. Finally, in Sec.
IV we will draw our conclusions.

II. THE FORMALISM

In this paper, we will consider a spherically symmetric
harmonic trap with trapping frequency � , where N atoms of
mass m populate equally two different spin states ↑ and ↓ ,
i.e., N↑�N↓ . As mentioned in the Introduction, the low den-
sity of the system allows us to introduce a contact interaction
for the atoms, characterized by the s-wave scattering length
a. The Hamiltonian reads

H�T��
j�1

N
1

2
m�2rj

2�
4	
2a

m �
i� j
�3�ri�rj�, �1�

where T is the kinetic term. For convenience let us introduce
a coupling constant g defined as

g�
4	
2a

m
. �2�

Since we are considering attractive interactions, we have a
�0 and, consequently, g�0. To simplify the notation, we
will use in what follows the ‘‘trap units,’’ i.e.,

m���
�kB�1. �3�

Thus, energies will be measured in units of 
� , lengths in
units of the oscillator length lho��
/(m�), and tempera-
tures in units of 
�/kB .

Before describing the HFB approach, let us add some
comments on the validity of Hamiltonian �1�. The parametri-
zation of the interaction in terms of the free-space s-wave
scattering length a is valid at very low densities, where the
distance between particles is much larger than �a�. However,
if the distance between particles becomes comparable with
�a�, the bare interaction has to be replaced by a density-
dependent effective interaction, as it is done in nuclear phys-
ics �see also Ref. �13��. This is particularly important in the
vicinity of a Feshbach resonance, where �a� becomes very
large. In this case it might be necessary to include the Fesh-
bach resonance as a new degree of freedom into the Hamil-
tonian �14�.

A. HFB approach and regularization procedure

Hamiltonian �1� will be treated within the mean-field ap-
proximation. We will not go into details here as the formal-
ism has been introduced and extensively illustrated in Ref.
�8�. The HFB or Bogoliubov–de Gennes �15,16� equations
read

�H0�W�R��u��R��
�R�v��R��E�u��R�,


�R�u��R���H0�W�R��v��R��E�v��R�, �4�

where � collects all quantum numbers except spin (n ,l ,m),
u� and v� are the two components of the quasiparticle wave
function associated to the energy E� , and H0 is the follow-
ing single-particle Hamiltonian:

H0�T�U0�� , �5�

where U0� 1
2 r2 is the harmonic trapping potential and � is

the chemical potential. The Hartree-Fock mean field W(R) in
Eq. �4� is expressed by

W�R��g�
�
��v��R��2�1� f �E�����u��R��2 f �E���,

�6�

where f (E�) is the Fermi function:

f �E���
1

eE� /T�1
. �7�

With a zero-range interaction the pairing field 
(R) appear-
ing in Eq. �4� would usually be defined as 
(R)
��g��↑(R)�↓(R)�, where �↓↑ is the field operator asso-
ciated with the spin states ↓ and ↑ . However, this expression
is divergent and must be regularized. The regularization pre-
scription proposed in Ref. �8� consists of using the pseudo-
potential prescription �17�:


�R���g lim
r→0

�

�r � r ��↑� R�
r

2 ��↓� R�
r

2 � � � . �8�

In practice, Eq. �8� is evaluated as follows: It is possible
to show that the expectation value ��↑(R�r/2)�↓(R
�r/2)� diverges as 
/(4	r) when r→0 if a zero-range in-
teraction is used. Now one adds and subtracts from this ex-
pectation value the quantity 1

2
(R)G�
0 (R,r), where G�

0 is
Green’s function associated to the single-particle Hamil-
tonian H0, Eq. �5�, and calculated for the chemical potential
�:

G�
0 �R,r���

�

��
0 � R�

r

2 ���0*� R�
r

2 �
��

0 ��
, �9�

where ��
0 denotes the eigenfunction of H0 with eigenvalue

��
0 �� . One can demonstrate that this Green’s function di-
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verges as 1/(2	r) when r→0. Expressing ��↑�↓� in terms
of the wave functions u and v , one can write the pairing field

 as


�R���g lim
r→0

�

�r
� r�

�
� u�� R�

r

2 � v�*� R�
r

2 �
��1� f �E����v�*� R�

r

2 � u�� R�
r

2 � f �E��

�

�R�

2

��
0 � R�

r

2 ���0*� R�
r

2 �
��

0 ��
�

�

�R�

2
G�

0 �R,r�� . �10�

The sum over � is no longer divergent for r→0, since the
divergent part of � 1

2
G�
0 cancels the divergent part of

��↑�↓� . Thus, we can take the limit r→0 of this sum. On
the other hand, the divergence of the last term is removed by
the pseudopotential prescription, which selects only the regu-
lar part of Green’s function G�

0 :

lim
r→0

�

�r
�r G�

0 �R,r���G�
0 reg�R�. �11�

Finally, 
 can be expressed as follows:


�R���g�
�

� u��R�v�*�R��1�2 f �E���

�

�R�

2

���
0 �R��2

��
0 ��

� �
g
�R�

2
G�

0 reg�R�. �12�

Once the regular part of Green’s function is calculated for a
given chemical potential � �8�, the HFB equations are solved
self-consistently.

In practice, it is of course impossible to extend the sum
over all states � and one has to introduce some cutoff. How-
ever, since the sum over � converges, the cutoff should not
affect the results if it is chosen sufficiently high. We will
discuss about the rapidity of convergence of the regulariza-
tion procedure presented here with respect to the introduced
energy cutoff. We will show that the convergence is quite
slow. Moreover, the calculations can become heavy when
systems with a large number of atoms are treated, as the
function G�

0 reg has to be calculated for a large value of the
chemical potential. A way to simplify the regularization pro-
cedure and to avoid calculation of G�

0 reg is proposed in Ref.
�11�, where the procedure of �8� is extended to calculations
for nuclear systems. We will describe this method in follow-
ing subsection.

B. Thomas-Fermi approximation in the regularization
procedure

In Ref. �11�, a simpler regularization procedure was pro-
posed where the Thomas-Fermi approximation �TFA� is used
to calculate the regular part of Green’s function. To that end,
let us write Green’s function G�

0 by adopting the TFA for the
sum over the states corresponding to oscillator energies �nl

0

above some sufficiently large value �C�NC� 3
2 :

G�
0 �R,r�� �

nlm

�nl
0 ��C

�nlm
0 � R�

r

2 ��nlm
0* � R�

r

2 �
�nl

0 ��

�	
kC(R)

�� d3k

�2	�3
eik•r

k2

2
�

R2

2
��

, �13�

where

kC�R ���2�C�R2��2NC�3�R2. �14�

Observing that

	
0

�� d3k

�2	�3
eik•r

k2

2

�
1

2	r
�15�

and using Eq. �13�, we can write the regular part of Green’s
function as follows:

G�
0 reg�R�� lim

r→0
� G�

0 �R,r��
1

2	r �
� �

nlm

�nl
0 ��C

�nlm
0 �R��nlm

0* �R�

�nl
0 ��

�	
kC(R)

�� d3k

�2	�3

�� 1

k2

2
�

R2

2
��

�
1

k2

2
� �	

0

kC(R) d3k

�2	�3
1

k2

2

.

�16�

Evaluating the integrals over k and summing over the mag-
netic quantum number m, we obtain

G�
0 reg�r�� �

nl

�nl
0 ��C

�2l�1 �Rnl
2 �r �

4	��nl
0 ���

�
kF

0 �r �

2	2

�ln
kC�r ��kF

0 �r �

kC�r ��kF
0 �r �

�
kC�r �

	2
, �17�

where Rnl are the radial parts of the oscillator wave functions
and
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kF
0 �r ���2��r2 �18�

is the local Fermi momentum. As noted in Ref. �11�, this
method can be used beyond the classical turning point �char-
acterized by kF

0 (r)�0] by allowing for imaginary values of
kF

0 (r). The case where kC(r) becomes imaginary will not be
considered, because we assume that NC is sufficiently large
such that the pairing field can be neglected in the regions
where kC(r) is imaginary. It should also be pointed out that
already for, say, NC���10, Eq. �17� is an extremely accu-
rate approximation to G�

0 reg , and gives results which are
almost undistinguishable from those obtained by the numeri-
cally heavy algorithm proposed in Ref. �8�.

Now let us substitute Eq. �17� into Eq. �12�. We have to
choose a cutoff for the sum over single-particle states. In-
stead of choosing a cutoff for the quasiparticle energies E� ,
as it is done in Ref. �11�, we can likewise restrict the sum in
Eq. �12� to the states corresponding to those appearing in the
sum in Eq. �17�. This is a natural choice if one obtains the
wave functions u� and v� and the quasiparticle energies E�
by solving Eq. �4� in a truncated harmonic oscillator basis
containing the states satisfying �nl

0 ��C�NC� 3
2 . In this way,

we obtain the following simple formula for the gap:


�r ���g �
nl

�nl
0 ��C

2l�1

4	
unl�r �vnl�r ��1�2 f �Enl��

�g

�r �

2 � kF
0 �r �

2	2
ln

kC�r ��kF
0 �r �

kC�r ��kF
0 �r �

�
kC�r �

	2 � .

�19�

Finally, this can be rewritten in terms of a position dependent
effective coupling constant:


�r ���ge f f�r � �
nl

�nl
0 ��C

2l�1

4	
unl�r �vnl�r ��1�2 f �Enl�� ,

�20�

where

1

ge f f�r �
�

1

g
�

1

2	2 � kF
0 �r �

2
ln

kC�r ��kF
0 �r �

kC�r ��kF
0 �r �

�kC�r �� .

�21�

We stress again that the results obtained with this regulariza-
tion prescription, from now on called prescription �a�, coin-
cide with the results obtained with the prescription intro-
duced in Ref. �8�.

However, it will turn out that it is useful to introduce the
following modification of the method: Let us replace every-
where kF

0 (r) by the local Fermi momentum taking into ac-
count the full potential �trapping potential U0 plus Hartree-
Fock potential W):

kF�r ���2��r2�2W�r �. �22�

Formally this replacement does not change anything: Instead
of adding and subtracting the term 1

2
(R)G�
0 (R,r) from the

divergent expectation value ��↑(R�r/2)�↓(R�r/2)� with
G�

0 being Green’s function corresponding to the harmonic
oscillator potential U0, we can also add and subtract a simi-
lar term involving Green’s function G� corresponding to the
full potential U0�W . Also from Eq. �21�, it is evident that in
the limit NC→� �i.e., kC(r)→�] the results will be inde-
pendent of the choice of kF . However, we will see that the
convergence of this modified scheme, from now on referred
to as scheme �b�, is very much improved. Thus, it is possible
to use a much smaller cutoff NC without having a strong
cutoff dependence of the results.

C. Local-density approximation

If the number of particles becomes very large, it is natural
to assume that the system can be treated locally as infinite
matter with a local chemical potential given by ��U0(r).
This assumption leads directly to the LDA. Formally, the
LDA corresponds to the leading order of the Wigner-
Kirkwood 
 expansion, which is at the same time an expan-
sion in the gradients of the potential �15�. Thus it is the
generalization of the standard TFA, which also corresponds
to the leading order of an 
 or gradient expansion, to the
superfluid phase. Here we will adopt the name LDA in order
to avoid confusion with the full HFB calculations using the
TFA only in the regularization prescription, as discussed in
Sec. II B. But in the literature also the name TFA is adopted.

In the case of a zero-range interaction, the LDA �or TFA�
amounts to solving at each point r the following nonlinear
equations for the mean field W(r) and the pairing field 
(r):

W�r��
g

2
��r�

�g	 d3k

�2	�3
� 1

2
��1�2 f „E�r,k�…���r,k���

2E�r,k� � ,

�23�


�r���g	 d3k

�2	�3
� �1�2 f „E�r,k�…� 
�r�

2E„r,k…

�

�r�

2���r,k���� � , �24�

where

��r,k��
k2

2
�U0�r��W�r�, �25�

E�r,k������r,k����2�
2�r�. �26�

The last term in Eq. �24� has been introduced in order to
regularize the ultraviolet divergence. In fact, the pseudopo-
tential prescription used in the previous sections was origi-
nally motivated by the fact that it reduces to such a term if it
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is applied to a homogeneous system �8,11�. A more rigorous
justification of this term is that it appears if one renormalizes
the scattering amplitude of two particles in free space �18�.

Let us first consider the case of zero temperature, T�0.
In this case, and if the gap 
 is small compared with the
local Fermi energy �F� 1

2 kF
2 , Eqs. �23� and �24� can be

solved �almost� analytically. Under these conditions, the den-
sity practically coincides with the density obtained for 

�0, where Eqs. �23�, �25�, and �26� can be transformed into
a cubic equation for the local Fermi momentum:

g
kF

3 �r�

6	2
�

kF
2 �r�

2
�U0�r����0. �27�

For a given local Fermi momentum and under the assump-
tion that corrections of higher order in 
/�F are negligible,
Eq. �24� can be solved analytically. The result is the well-
known formula


�r��8�F�r�exp� �2�
	

2kF�r��a� � . �28�

Now we turn to the case of nonzero temperature, but we
want to consider only temperatures below the critical tem-
perature, i.e., 0�T�TC . Therefore, we can neglect the in-
fluence of the temperature on the density and have to con-
sider only the temperature dependence of 
 . Let us denote
the gap at T�0 by 
0. Then the gap at nonzero temperature
can be obtained from the approximate relation �19�

�ln

�r�


0�r�
�	 d�

f „��2�
2�r�…
��2�
2�r�

. �29�

The solution of this equation leads to a universal function
which gives the ratio 
/
0 as a function of T/TC , with TC
�0.57
0. Note that, within the LDA, the critical tempera-
ture is a local quantity, TC�TC(r).

In order to compare the LDA with the HFB theory, with
special emphasis on the regularization prescription, we intro-
duce a regularization scheme for the gap equation within
LDA which is slightly different from Eq. �24�. First of all, if
we want to investigate the cutoff dependence, we have to
introduce a cutoff in Eq. �24�. Second, the regularization
term introduced in Eq. �24� corresponds to regularization
prescription �b� described at the end of the preceding section,
which is different from that introduced in Ref. �8� and from
regularization scheme �a�. If we want to compare the LDA
results with HFB results obtained with the original prescrip-
tion or with prescription �a�, which involves Green’s function
G�

0 of the potential U0 and not Green’s function G� of the
full potential U0�W , we have to replace the energy �(r,k)
appearing in the regularization term by

�0�r,k��
k2

2
�U0�r�. �30�

Thus, the gap equation within LDA suitable for comparison
with the regularization scheme �a� reads


�r���g	
0

kC(r) d3k

�2	�3
� �1�2 f „E�r,k�…�

�

�r�

2E�r,k�
�


�r�

2��0�r,k����
� . �31�

At zero temperature, T�0, it is again possible to solve this
equation analytically, with the result


�r��8�F�r��kC�r��kF�r�

kC�r��kF�r�
exp� �2�

	

2kF�r��a�

�
kF

0 �r�

2kF�r�
ln

kC�r��kF
0 �r�

kC�r��kF
0 �r�

� . �32�

The result corresponding to regularization scheme �b�, Eq.
�28�, is recovered from this result by replacing kF

0 by kF . In
this case, there is no cutoff dependence at all, but one should
remember that in deriving Eq. �32� we have implicitly as-
sumed that the cutoff lies above the Fermi surface. A weak
cutoff dependence would appear only if corrections to Eq.
�32� of higher order in 
/�F were included.

III. NUMERICAL RESULTS

In this section, we will present some numerical results. In
particular, we will investigate the convergence properties of
the different renormalization methods. Then, we will discuss
the validity of the LDA at zero temperature. Finally, we will
compare HFB and LDA calculations at nonzero temperature.

In our numerical calculations, we will use for the coupling
constant the value g��1 �in units of 
2lho /m). If we con-
sider 6Li atoms with scattering length a��2160a0 �20�,
where a0�0.53 Å is the Bohr radius, this value of g corre-
sponds to a trap with ��(2	)817 Hz. �Before relating this
to real experimental conditions, one should however remem-
ber that in the experiments the trap is usually axially de-
formed, with a low longitudinal trapping frequency �z and a
high transverse trapping frequency �� . For example, in the
experiment described in Ref. �5�, the trapping frequencies
were given by �z�(2	)230 Hz and ���(2	)6625 Hz.�
The choice g��1 also facilitates the comparison of our
results with those from Ref. �8�, where the same value for g
was used.

A. Convergence of the regularization methods

In this section, we will discuss the convergence rates with
respect to the cutoff used in the numerical calculations for
different choices for the regularization procedure. As in Sec.
II, we denote by �a� the HFB calculations made with the
choice of kF

0 given by Eq. �18�, and by �b� the calculations
made with the choice where kF

0 is replaced by kF as given by
Eq. �22�. For our comparison, we use a chemical potential
��32
� , the corresponding number of atoms in the trap is
N�1.7�104.

In Figs. 1 and 2, we present the pairing field 
 calculated
at zero temperature within the HFB and LDA formalisms for
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different values of the cutoff NC from 50 up to 125. The
results shown in Fig. 1 have been obtained with the choice
�a� for the regularization for both the HFB and LDA calcu-
lations. We verified that the HFB calculations with the exact
Green’s function G�

0 reg �without TFA� give practically the
same results as the method HFB �a� for all the values of the
cutoff. This means that the TFA in the regularization proce-
dure is very satisfying and reproduces well the regular part of
the oscillator Green’s function.

We observe in Fig. 1 that the agreement between LDA
and HFB is reasonable for all values of the cutoff NC . We

also notice that for NC�125, which is the maximum value
that we considered, the convergence has not yet been reached
and therefore the pairing field would grow further if we
could increase the cutoff above 125. In Fig. 2, we present the
same calculations made with choice �b� for the regulariza-
tion. Remember that with this choice, the pairing field within
LDA is independent of NC once NC lies above the Fermi
surface. On the other hand, the HFB results saturate quite
fast and are already very close to convergence for NC�75.
Again, the LDA and HFB results are in reasonable agree-
ment.

By comparing Figs. 1 and 2, one observes clearly that the
calculations �a�, Fig. 1, are still quite far from convergence
even for the highest considered cutoff. We argue that the
convergence rate of method �a�, which is the same conver-
gence rate as that of HFB without TFA in the regularization
prescription �8�, is much slower than that of method �b�. This
is more evident in Fig. 3 where we plot the HFB values of
the pairing field in the center of the trap, 
(0), for two
regularization prescriptions �a� �stars� and �b� �diamonds� as
a function of the cutoff NC . We also plot the results obtained
within the LDA �a� �full line� and LDA �b� �dashed line� up
to a cutoff of NC�104. In the inset of the figure, we magnify
the region of cutoff values between 50 and 150. We can
observe in the inset that the LDA �a� curve fits well the
calculated points for HFB �a�. We noticed that the LDA �a�
results converge slowly towards a pairing field of about
6.86
� , at a very high cutoff, NC�106. For NC�103, the
pairing field in LDA�a� is still only 6.37
� . This very slow
convergence rate can be understood within the LDA by tak-
ing the ratio of the pairing fields corresponding to methods
�a� and �b�. Using Eq. �32� in the limit of very large kC , one
can derive the relation


LDA(a)�r�


LDA(b)�r�
�1�

�g��2���W�r��

3	2�NC

�••• , �33�

FIG. 1. Pairing field 
 �in units of 
�) as a function of the
distance r �in units of lho) from the center of the trap, calculated for
the parameters ��32
� and g��1
2lho /m , corresponding to
N�1.7�104 particles in the trap. The different curves have been
obtained within the HFB and LDA formalisms using regularization
prescription �a� for different values of the cutoff NC .

FIG. 2. Same as Fig. 1, but with regularization prescription �b�.
Remember that with this prescription the LDA result �Eq. �32�� is
independent of the cutoff NC .

FIG. 3. Value of the pairing field in the center of the trap, 
(0)
�in units of 
�), as a function of the cutoff NC , obtained from
HFB calculations with regularization methods �a� �stars� and �b�
�diamonds�, and from the LDA, methods �a� �solid line� and �b�
�dashed line�. The parameters � and g are the same as in Fig. 1.
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where W(r) represents the Hartree field �in the present case,
W(0)��16
�].

As the agreement between LDA �a� and HFB �a� is good
in the region up to NC�125, we suppose that the conver-
gence rate for HFB �a� is the same as for LDA �a�. On the
contrary, within HFB �b� the values of the pairing field in the
center of the trap are 6.81
� for NC�100 and 6.86
� for
NC�125: we conclude that the convergence in this case is
much faster. In what follows we will always use method �b�
for the regularization procedure.

B. Validity of the LDA at zero temperature

As mentioned before, the parameters used for the calcu-
lations shown in Figs. 1–3 correspond to a trap with about
1.7�104 atoms. In this case, we found a good agreement
between the numerical HFB results and the results obtained
from the LDA. However, one might wonder under which
conditions the LDA is valid. To study this question, one has
to look at systems containing smaller numbers of particles,
since in smaller systems the quantum effects �in particular
shell effects� which are neglected in the LDA, are supposed
to be more important.

In Fig. 4, we present the HFB �full line� and LDA �dashed
line� results for the pairing field in the center of the trap,

(0), as a function of the number of atoms N. The calcula-
tions are done again at zero temperature and with a coupling
constant g��1 in trap units. We observe that the two cal-
culations are in reasonable agreement for number of atoms
greater than about 5000, which confirms the expectation that
the LDA is a valid approximation for systems with a large
number of atoms.

What is particularly interesting to look at in this figure is
the region N�3000. In this region the HFB results clearly
show the shell structure: the pairing field becomes zero for

N�240,330,440, . . . , which are the harmonic oscillator
‘‘magic numbers.’’ One also realizes that the central value of
the pairing field is smaller if the outer shell corresponds to
odd-parity states, than in the case where the outer shell cor-
responds to even-parity states. This can be understood easily,
since the main contribution to the pairing field comes from
the states near the Fermi surface, and only s states can con-
tribute to the pairing field at r�0. Usually one expects that
the LDA should at least reproduce the value of the pairing
field if the fluctuations due to shell effects are averaged out,
but our results show that the pairing field calculated within
the LDA is systematically too high. This might be related to
the fact that we are looking at the pairing field at one par-
ticular point (r�0) rather than at the average gap at the
Fermi surface, as proposed in Ref. �21�.

When the number of atoms increases, above a value of
about 2500 the shell structure starts to be washed out and
gradually disappears due to the stronger and stronger pairing
correlations. This happens in the region where the pairing
field grows up to a value of about 
�: when the pairing field
becomes comparable with the oscillator level spacing, the
pairing correlations in a closed-shell system can diffuse pairs
of atoms towards the higher-energy empty shell, resulting in
a nonzero pairing field. Globally, we observe that for N
�5000 the agreement between HFB and LDA is acceptable,
even if the LDA systematically overestimates the value of
the pairing field at the center.

Of course, the number of particles needed for the validity
of the LDA depends on the strength of the interaction; the
true criterion which has to be fulfilled reads 
LDA�
� . This
criterion can even be applied locally, as one can see in Fig. 2:
there the HFB and LDA results are in perfect agreement
except in the region of r	5.5lho , where 
 becomes smaller
than 
� .

C. Results for nonzero temperature

Now we will discuss some results for temperatures differ-
ent from zero. We are particularly interested in the following
question: Within the LDA, the critical temperature TC is dif-
ferent at each point r, i.e., when the temperature increases,
the order parameter vanishes at last in the center of the trap,
where the local critical temperature is the highest. In contrast
to this, within the HFB theory, the gap and the critical tem-
perature are global properties, and naively one would expect
that, as long as the temperature is below TC , the pairing field
extends over the whole volume of the system. We will see
that even in cases where the LDA works well at zero tem-
perature, it fails at nonzero temperature. On the other hand,
also the notion that the gap vanishes globally at T�TC has to
be revised in these cases.

In Figs. 5 and 6, we show the HFB and LDA pairing fields
obtained at different temperatures, again for g��1 �in trap
units� and regularization method �b�. The chemical potentials
chosen are ��32
� in Fig. 5 and ��40
� in Fig. 6, cor-
responding to approximately 1.7�104 and 4�104 particles,
respectively. We observe that the good agreement obtained at
zero temperature is deteriorated at higher temperatures. In
Fig. 5, already at T�2
�/kB , the LDA reproduces badly

FIG. 4. Value of the pairing field in the center of the trap, 
(0)
�in units of 
�), as a function of the number of particles N obtained
from HFB �solid line� and LDA �dashed line� calculations �regular-
ization method �b�, cutoff NC�100, coupling constant g��1 in
trap units�.
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not only the tail of the pairing field profile, but also the
pairing field in the central region of the trap, in spite of the
fact that the pairing field is still large compared with 
� at
this temperature. The LDA description gets worse and worse
for higher temperatures and results in an overestimation of
the central pairing field and in a too drastic cut of the queue
of the profiles at large distances. Finally, the LDA method
predicts a higher critical temperature than the one predicted
by HFB. We observed that TC is equal to 3.89 �in units of

�/kB) for LDA and to 2.98 for HFB. In Fig. 6, the agree-
ment is somewhat better. Since the critical temperature is

higher than in the previous case, the agreement between
LDA and HFB is maintained in a wider range of tempera-
tures. Up to T�4, one can see that at least the central region
of the trap is well described by LDA. For higher tempera-
tures, we observe the same kind of deterioration of the LDA
results shown in Fig. 5. Again, the critical temperature is
higher in LDA �7.08� than in HFB �5.97�.

It is evident that the LDA does not correctly describe the
phase transition in both cases. On the other hand, also within
the HFB calculations, one finds that with increasing tempera-
ture the pairing field becomes more and more concentrated in
the center of the trap. Such a behavior has been predicted in
Ref. �7� using the GL theory, the only assumption being that
the critical temperature is large compared with the trapping
frequency, kBTC

� . Let us briefly review the main results
from this theory and compare them with the results obtained
from our HFB calculations �the corresponding numbers are
listed in Table I�.

In the GL theory the critical temperature TC is predicted
to be lower than the critical temperature TC

(0) obtained from
the LDA. The difference can be written as

�TC�TC
(0)�TC�

3
�

kB
�7��3 �

48	2 � 1�
	

4kF�0 ��a� � ,

�34�

where � denotes the Riemann zeta function ��(3)
�1.202 . . . � . In the derivation of Eq. �34� in Ref. �7�, the
Hartree potential has been neglected. Here we will include
the Hartree potential by using an effective oscillator fre-
quency ��� . Since near TC the pairing field is concen-
trated in the center of the trap, we define � by expanding the
potential around r�0:

��m�“2�U0�r��W�r��r�0. �35�

Within the Thomas-Fermi approximation, for the density
profile the effective oscillator frequency can be written as

��
�

1�
2kF�0 ��a�

	

. �36�

The estimates for �TC obtained by inserting the numerical
values for kF(0)�a� given in Table I into Eqs. �34� and �36�
are very reasonable. This can be seen by comparing them
with the �TC values obtained from the HFB calculations,
which are also listed in Table I. If one considers that these

FIG. 5. Pairing field 
 �in units of 
�) as a function of the
distance r �in units of lho) from the center of the trap, for a chemical
potential ��32
� , corresponding to about 1.7�104 atoms in the
trap �regularization method �b�, cutoff NC�100, coupling constant
g��1 in trap units�. Results obtained within numerical HFB cal-
culations �symbols� are compared with LDA results �lines� for dif-
ferent temperatures T.

FIG. 6. Same as Fig. 5, but for a chemical potential of �
�40
� , corresponding to N�4�104 atoms in the trap.

TABLE I. Comparison of results �in trap units� obtained from
HFB calculations for the two cases ��32 and ��40 shown in
Figs. 5 and 6 �coupling constant g�1 in trap units, regularization
method �b�, NC�100] and the corresponding results obtained from
the GL theory.

� kF(0)�a� TC
(0) TC �TC �TC

(GL) l
 l

(GL)

32 0.78 3.89 2.98 0.91 1.12 1.44 1.23
40 0.91 7.08 5.97 1.11 1.29 1.28 0.95
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numbers can only be a rough estimate, since kBTC is not
really very large compared with 
� , the agreement with the
HFB results is very satisfying.

Not only the critical temperature, also the shape of the
order parameter near the critical temperature can be obtained
from the GL theory. It can be shown that for temperatures
very close to TC the pairing field has the form of a Gaussian,


�r��
�0 �exp� �
r2

2l

2 � . �37�

In contrast to the LDA result, the radius l
 of this Gaussian
is predicted to stay finite in the limit T→TC , as it is the case
for the solution of the HFB equations. Its value is given by

l

2 �RTF

2 
�

kBT�7��3 �

48	2

1

1�
	

4kF�0 ��a�

. �38�

In Ref. �7�, the quantity RTF was defined as the Thomas-
Fermi radius of the cloud, RTF��2�/(m�2). Generalizing
the derivation of Eq. �38� to the case of a nonvanishing Har-
tree field, we see that the corresponding parameter for the
pairing field near the center of the trap is given by

RTF→�2���W�0 ��

m�2
�� 1�

2kF�0 ��a�
	 � kF�0 �lho

2 .

�39�

On the other hand, the HFB pairing fields corresponding to
the temperatures next to TC , shown in Figs. 5 and 6, are also
perfectly fitted by Gaussians. As shown in Table I, the agree-
ment between the radii obtained from this fit are again in
reasonable agreement with the radii obtained from Eqs. �38�
and �39�. The deviations are of the order of 30%, which is
even better than one could have expected, since the param-
eter 
�/(kBTC) is not very small in the present case.

Finally, let us look more closely at the critical behavior
near TC . Again, from the GL theory one can derive that for
T→TC the value of the pairing field in the center should go
to zero like


�0 ���16	2�2

7��3 �
TC�TC�T �. �40�

As shown in Figs. 7 and 8, this formula is very well satisfied
by the HFB results in both cases, ��32 and ��40 �in trap
units�. Note that the prefactor in Eq. �40� differs from the
prefactor in LDA. In LDA one finds for T�TC

(0) ,


LDA�0 ��� 8	2

7��3 �
TC

(0)�TC
(0)�T �. �41�

The different prefactor as well as the different critical tem-
perature and the finite radius of the pairing field are due to
the ‘‘kinetic’’ term �
“2
 in the GL energy functional,

which is absent in the LDA and is very important for the
description of the strongly r dependent pairing field near the
critical temperature.

As a final remark let us mention that the different calcu-
lations which we have compared in this paper are all based
on mean-field theory, and therefore we do not take into ac-
count fluctuations of the order parameter 
 . It is well known
that fluctuations are very important near the phase transition,
and in particular in a situation where kF�a� is not small, as it
is the case here, they can lead to a considerable change of the

FIG. 7. Value of the pairing field in the center of the trap, 
(0)
�in units of 
�), as a function of temperature T �in units of 
�/kB)
for a chemical potential ��32
� , corresponding to about
1.7�104 atoms in the trap �regularization method �b�, cutoff NC

�100, coupling constant g��1 in trap units�. Results obtained
within numerical HFB calculations �symbols� are compared with
the LDA result �dashed line� and with formula �40� obtained from
the GL theory �solid line�.

FIG. 8. Same as Fig. 7, but for a chemical potential of �
�40
� , corresponding to N�4�104 atoms in the trap.
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critical temperature. Anyway, what we wanted to point out
here is that the LDA gives the wrong TC as compared with a
theory taking into account the inhomogeneity of the system.
From this result we conclude that in order to have a reliable
prediction of TC for the trapped system, it is not sufficient to
do a reliable calculation of TC �even including fluctuations�
for a homogeneous gas and then apply the LDA.

IV. CONCLUSIONS

In this paper, we have shown a detailed comparison be-
tween HFB and LDA calculations at T�0 and at T 0 for a
low density gas of superfluid fermionic atoms trapped by a
spherical harmonic potential. We have used a zero-range in-
teraction for the atoms and we have proposed an improve-
ment of the regularization method adopted to remove the
ultraviolet divergence �8�. This improvement is a modifica-
tion of a procedure proposed for nuclear systems in Ref.
�11�, where the Thomas-Fermi approximation is used in the
calculation of the regular part of Green’s function G�

0 reg ,
Eq. �16�. The use of the Thomas-Fermi approximation allows
us to treat systems with a large number of atoms much easier
than in the calculations of Ref. �8�. On the other hand, our
modification considerably improves the convergence rate of
the procedure with respect to the numerical cutoff. By using
this regularization method, we have observed that the LDA
results are in quite good agreement with the corresponding
HFB results at zero temperature and for systems with a rela-
tively large number of atoms, where the shell structure ef-
fects are washed out. The shell effects, which are important
for small systems where the pairing field is smaller than the
harmonic level spacing 
� , cannot obviously be reproduced
by a LDA calculation.

For nonzero temperatures, the agreement between HFB

and LDA is deteriorated even in those cases where it was
good at T�0. In general, LDA overestimates the value of
the pairing field in the center of the trap, cuts too drastically
the tail of the radial profile of the pairing field at large dis-
tances, and overestimates the critical temperature with re-
spect to HFB. We have verified that this discrepancy between
the HFB and LDA which results at T different from zero can
be nicely predicted by using the GL theory �7� in cases where
the critical temperature is much larger than the harmonic
level spacing.

In this paper, we considered only spherical traps. How-
ever, the traps used in experiments are usually cigar shaped
with a low longitudinal and a high transverse trapping fre-
quency, �z��� . In this case, it is possible that the pairing
field, even if it is larger than 
�z , is still smaller than 
�� ,
and the LDA would probably not work. Therefore in prin-
ciple one should also perform deformed HFB calculations,
but at the moment this seems to be numerically very difficult.
On the other hand, as noted above, even in the case where 

is large compared with both trapping frequencies, the LDA is
not adequate at a nonzero temperature. Therefore a first step
to study nonspherical traps could be to generalize the GL
theory of Ref. �7� to the deformed case.
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4.3 Appariement non – standard : la phase LOFF 
 
 
Il est possible de contrôler expérimentalement les populations dans les différents états 
de structure hyperfine et des mélanges avec des populations asymétriques peuvent être 
obtenus [Zw03]. Si le système est très asymétrique, les énergies de Fermi associées aux 
diverses polarisations de spin deviennent très différentes et le couplage à moment zéro 
qui caractérise la formation de paires de Cooper standard est supprimé. Par contre, 
d’autres couplages à moments non nuls peuvent se réaliser donnant lieu à des 
phénomènes d’appariement plus exotiques, comme par exemple la phase Larkin-
Ovchinnikov-Fulde-Ferrel (LOFF) [Co04] ou la phase Sarma [Li03].  
Nous avons résolu les équations HFB dans le cas d’un système asymétrique. Les 
équations à résoudre ont la forme suivante : 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),rurrvWErv

,rvrruWEru
rrrr

rrrr

σ−ησ−ησ−ησσ−η

σ−ηησσησησ
Δ+−=

Δ+=
                            (4.2) 

 
avec,  
 

σσ−σ μ−ρ+= gHW 0 .                                           (4.3) 
 
μσ et ρσ sont le potentiel chimique et la densité associés au spin σ, g est la constante de 
couplage égale à m)a4( 2hπ  ; H0 contient le terme cinétique et le potentiel piégeant et 
Δ représente le champ d’appariement. Le cas où les deux potentiels chimiques sont 
différents décrit un gaz avec deux populations différentes dans les deux états de spin. 
Quand les deux potentiels chimiques sont égaux, ↓↑ μ=μ , les équations (4.2) ont la 
forme des équations HFB standard.  
 
Dans l’article qui suit, [Ca05], nous étudions les solutions de ces équations HFB 
généralisées en fonction de l’asymétrie des populations et de la température. Dans 
certaines conditions, nous prédisons des oscillations du gap d’appariement, ce qui serait 
une indication de la réalisation d’une phase LOFF.    
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We study an ultracold trapped Fermi gas of atoms in two hyperfine states with unequal populations. In this
situation the usual BCS pairing is suppressed and nonstandard pairing mechanisms become important. These
are treated by solving the Bogoliubov–de Gennes equations, which at the same time correctly take into account
the finite size of the trapped system. We find results which can be viewed as generalization of the LOFF
�Larkin-Ovchinnikov-Fulde-Ferrel� phase to finite systems.
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In the past years much progress has been made in improv-
ing the techniques used to trap and cool dilute gases of
bosonic and fermionic atoms �1,2�. One of the interesting
aspects of the properties of ultra-cold gases is that the inter-
atomic interaction can be modified, both in its intensity and
in its sign, by changing the applied magnetic field around a
Feshbach resonance. Due to the very low densities and tem-
peratures in these systems the details of the interatomic in-
teraction are unimportant and the interaction can be charac-
terized by one single parameter, the s-wave scattering length
a. In this article we consider Fermi gases trapped and cooled
in two hyperfine states with an attractive interaction, i.e.,
a�0. We will concentrate on the weakly interacting case
�kF�a��1, where kF denotes the Fermi momentum�. In this
region, BCS superfluidity with formation of Cooper pairs is
expected below a certain critical temperature. So far, some
experimental signals have been found which would indicate
the existence of superfluidity in this region, �2� but a clear
evidence is still missing.

Besides the interaction, also the population of the
two hyperfine states can experimentally be controlled. Usu-
ally mixtures with equal populations are created, but
controlled asymmetric mixtures have also been obtained �3�.
Unequal populations of the two hyperfine states can lead to
very interesting phenomena. For instance, the BCS pairing
mechanism is supposed to become suppressed �4� since
the two Fermi momenta associated with the two spin polar-
izations become different: The formation of zero-momentum
Cooper pairs built of two atoms at their respective Fermi
surface becomes difficult. Instead, other more exotic pairing
phenomena have been suggested for the case of unequal
populations, like the Larkin-Ovchinnikov-Fulde-Ferrel
�LOFF� phase �5�, the Sarma �interior gap� phase �6,7�, or a
phase with deformed Fermi surfaces �DFS� �8�. Many of
these nonstandard pairing mechanisms have already been
discussed in other domains of physics where asymmetric
two-component fermion systems can be found: Supercon-
ductors in a magnetic field �9,10�, neutron-proton pairing in
asymmetric nuclear matter �11�, color superconductivity in
high density QCD �12�. The experimental observation of the
LOFF phase in the case of superconductivity is a subject of
debate. It seems that quite recently an oscillating supercon-

ducting order parameter has been observed in a ferromag-
netic thin film �13�.

In the literature �4–8� these nonstandard pairing types in
ultracold Fermi gases are usually discussed for the case of
infinite and homogeneous systems, or for trapped systems in
local-density approximation �LDA� which again amounts to
treating the system locally as homogeneous. However, as we
are going to show, in certain cases the LDA can become a
very poor approximation and we therefore want to analyze
this problem within a fully microscopic mean field
Bogoliubov–de Gennes �BdG� approach �14� taking into ac-
count the inhomogeneity and finite size of the trapped sys-
tem. Recently the solution of the BdG equations has been
considered in Ref. �15�, where the authors discuss also pos-
sibilities for the experimental detection of a spatially modu-
lated pairing gap.

In the present article we study two systems: a small one
where shell effects still play a role and a relatively large one,
where one could expect the LDA to be a reasonable approxi-
mation. As we will show, this is not always the case, al-
though the LDA describes roughly the qualitative features. In
addition, we examine the temperature dependence of the
nonstandard pairing phase, since this is important in connec-
tion with the experimental realization of such a phase.

Let us briefly recall the BdG formalism. We consider a
system containing N=N++N− atoms of mass m trapped by a
spherical harmonic potential in two hyperfine states denoted
by + and −. The many-body Hamiltonian of the system can
be written as

H = �
�
� d3r���

†�r�H0���r� + g�+
†�r��−

†�r��−�r��+�r�� ,

�1�

where H0=−�2�2 / �2m�+m�2r2 /2 denotes the harmonic os-
cillator single-particle Hamiltonian, ���r� is the field opera-
tor which annihilates a particle at the position r in the spin
state � �+ or − � , g=4��2a /m is the coupling constant. In
mean-field approximation, one can derive the following BdG
equations corresponding to the Hamiltonian �1�:
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u	��r�E	� = W�u	��r� + 
�r�v	−��r� ,

v	−��r�E	� = − W−�v	−��r� + 
�r�u	��r� , �2�

where W�=H0+g�−��r�−�� ,�� and �� being the chemical
potential and the density, respectively. 
�r� denotes the pair-
ing field �gap� and E	� ,u	� and v	� are the quasiparticle
energy and wave functions, respectively, corresponding to
the quantum numbers 	=n , l ,m and spin �. In order to have
different populations, the two chemical potentials �+ and �−
must be different. It is convenient to introduce the average
chemical potential �̄ and to write ��= �̄+�
� /2 where 
�
determines the asymmetry. Equations �2� reduce to the usual
BdG equations in the symmetric case �+=�−. They are
solved numerically employing the same regularization
method for the pairing field as described in Ref. �16� for the
symmetric case.

Eqs. �2� are general enough to describe rather complicated
types of nonstandard pairing. In the case of usual BCS pair-
ing, the dominant matrix elements of the pairing field are the
diagonal ones, i.e., each state �n , l ,m , + 	 is paired with its
time-reversed counterpart �n , l ,−m ,−	. However, the nondi-
agonal matrix elements of 
 are also included, which
amounts to taking into account also the pairing of states
�n , l ,m , + 	 and �n� , l ,−m ,−	 with different principal quantum
numbers n��n. In our present calculation, we still keep the
restriction that the Cooper pairs have total angular momen-
tum zero. To release this constraint would mean to allow for
a spontaneous breakdown of spherical symmetry, which
would be numerically very heavy. The effect of strong non-
diagonal matrix elements of 
 in fact corresponds closely to
the LOFF phase in the case of a uniform system. There, the
states are labeled by their momentum k. In the simplest ver-
sion of the LOFF phase, the Cooper pairs have total momen-
tum q, i.e., each state �k , + 	 is paired with �−k+q ,−	. The
corresponding gap is oscillating with wave vector q and its
matrix elements are therefore of the form 
kk�=

k−q,k� �in
contrast to the BCS phase, where 
kk�=

kk�� �17�.

In the discussion of our results all quantities will be given
in harmonic oscillator units. We use the same coupling con-
stant as in Ref. �16�, i.e., g=−�2lho /m, where lho=
� / �m��
denotes the harmonic oscillator length, and we consider two
values for the average chemical potential, �̄=22 �� �small
system with N�4900� and 32 �� �large system with
N�17000�.

In Fig. 1 we show the values of the pairing gap 
�0�
at the center of the trap for increasing aymmetry 
� at
T=0. Let us first look at the lowest line, corresponding to the
small system with �̄=22 ��. When both spin states are
equally populated �
�=0�, we find 
�0��2 ��, i.e., we are
no more in the intrashell-pairing regime, but shell effects are
still important �16�. If we increase 
�, the two Fermi sur-
faces become more and more separated, i.e., if the state
�n , l ,m , + 	 lies close to the Fermi level for spin +, the state
�n , l ,−m ,−	 lies far from the Fermi level for spin −, making
BCS pairing less and less favorable. As a consequence, at

��1.2 ��, corresponding to a particle number asymmetry
�= �N+−N−� /N�0.06, the pairing disappears �shell closure
effect�. But then, near 
��2 �����0.07�, the states

�n , l ,m , + 	 near the Fermi level for spin + approach the states
�n� , l ,−m ,−	 near the Fermi level for spin − if n�=n−1.
Therefore, pairing becomes again possible, but now the Coo-
per pairs are built of two wave functions with different num-
bers of nodes, leading to a gap 
�r� which as a function of r
has exactly one node.

Let us now turn to the investigation of the larger system,
�̄=32 ��. Here it seems to be appealing to estimate if and
where the LOFF phase could appear by using the LDA,
which should be exact in an infinite system. In order to do
this, we calculate at each point R the thermodynamic poten-
tial � of a uniform gas with effective average chemical po-
tential �̄ef f�R�= �̄−m�2R2 /2, assuming a gap of the form

�r�=
 exp�iq ·r�, and minimize � with respect to 
 and q.
To be more precise, we should have taken a more sophisti-
cated expression for the order parameter, but we stress here
that we use the LDA just to have some indications about
what kind of behavior one should expect. Let us again look
at 
�0� as a function of the asymmetry �dashed line in Fig.
1�. We find that LDA gives the BCS solution q=0 as the
most favorable solution up to 
�=11.9 ��. At that asymme-
try we find a first-order phase transition �i.e., a discontinuity
in 
�0�� to the LOFF phase with q� lho

−1 which means that
the order parameter oscillates with a wavelength of �6.2 lho.
This behavior is different from the microscopic �BdG� result
�solid line in Fig. 1�, which shows a smooth behavior of

�0�. Nevertheless, also in the BdG calculation there is a
rapid change of 
�0� between 
�=10 �����0.25� and

�=11 �����0.29�, where the system goes from the BCS-
type to the LOFF-type phase, as discussed above. The mini-
mum that one observes for the BdG gap at 
��10.8 �� and
the subsequent enhancement are due to shell effects which
still persist even in this large system and which cannot be
reproduced by the semiclassical LDA calculation.

In Fig. 2 we plot the radial profile of the pairing field 
�r�
for 
�=12 ��, corresponding to ��0.3, at T=0. The mi-
croscopic �solid line� and the LDA �dashed line� results are
shown. Within LDA, in this case, the LOFF phase is more
favorable than BCS for all values of r. We observe in Fig. 2
that the LDA gap goes abruptly to zero at a radius of �2 lho,

FIG. 1. Value of the pairing gap at the center of the trap �in units
of ��� as a function of the asymmetry 
� �in units of ���. The
lowest line corresponds to �̄=22��. The two upper lines corre-
spond to �̄=32�� and show the BdG �solid line� and the LDA
result �dashed line�.
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which is smaller than the LDA wavelength of �6.2 lho.
Thus, the region where the gap is nonzero does not even
contain one wavelength of the oscillation and therefore
the validity of LDA seems to be very questionable. As
expected from the symmetric case �16�, the LDA fails to
describe the tail of the pairing field: The LDA gap goes
abruptly to zero while in the microscopic case the gap has a
smooth profile. We finally observe that the microscopic order
parameter makes an oscillation and that a node is situated at
�3 lho: The modulation of the order parameter and the pres-
ence of a node are signals which indicate that the system is in
a LOFF-type phase.

Let us consider now the case of a smaller asymmetry,

�=6 ��, corresponding to ��0.15. We show in Fig. 3 the
radial profiles of the gap 
�r� �top� and of the densities �bot-
tom� at T=0. In the upper panel we report the microscopic
�BdG� gap �solid line� and the LDA result �dashed line�. In
this case, according to the LDA, the BCS phase �q=0� would
be energetically preferred in the center of the gas �as we have
shown in Fig. 1� and up to r=3.8 lho, while the LOFF phase
with q�0.7 lho

−1 would be more favorable in the interval

3.8 lho�r�4.1 lho. For larger values of r, the LDA predicts
that the gap should be zero. The wavelength of the oscilla-
tion of the order parameter in the LOFF phase ��8.9 lho�
would again be much larger than the region where the gap is
nonzero. Contrary to the LDA, the microscopic BdG calcu-
lation gives a smooth behavior of the order parameter. Near
the center, it corresponds rather well to the LDA prediction,
indicating that the pairing is more or less of BCS type. Be-
tween r=4 lho and 10 lho, the gap is oscillating �see inset in
the upper panel of Fig. 3�, indicating the appearance of the
LOFF-type phase. Although within the BdG calculation there
is no sharp transition from one phase to the other, qualita-
tively it seems that both phases can be present at the same
time in different regions of the system.

In the lower panel of Fig. 3 the BdG results for the two
densities ��+ and �−� are shown. One observes that in the
center of the gas the two densities are equal. This is coherent
with the fact that in the BCS phase at T=0 the LDA always
gives �+=�− if 
�
� /2, as is the case here.

All the results shown so far refer to T=0. However, in real
experiments with trapped atomic gases the temperature is
always nonzero. Let us therefore raise the temperature in the
case of asymmetry 
�=6 �� in order to analyze what hap-
pens to the gap modulation when the temperature is finite. In
Fig. 4 we show the order parameter in the radial interval
from 4 lho to 10 lho �where we observed an oscillation in the
case T=0� for four values of temperature, T=0 �solid line�,
T=0.5 �� /kB �dashed line�, T=�� /kB �triangles�, and
T=2 �� /kB �circles�. One observes that the oscillation has a
smaller and smaller amplitude with increasing temperature
and that it disappears between T=�� /kB and T=2 �� /kB.
Our interpretation of this result is that the critical tempera-
ture of the LOFF-type phase is smaller than the BCS critical
temperature. Therefore, the LOFF-type phase disappears at
some temperature between �� /kB and 2 �� /kB, while the
BCS gap in the central region of the gas is still different from
zero at T=2 �� /kB. In this case the LDA results �not shown�
are very different from the BdG ones �the gap is much too
large�, as one could expect from the fact that already in the
symmetric case the agreement between LDA and BdG cal-
culations becomes quite poor at finite temperature �16�. Nev-

FIG. 2. Radial profile of the pairing gap 
�r� �in units of ��� for

�=12 ��. The radial coordinate r is expressed in units of lho. The
microscopic �solid line� and the LDA �dashed line� results are
plotted.

FIG. 3. Radial profiles of the pairing gap 
�r� in units of ��
�top� and of the densities in units of lho

−3 �bottom� for 
�=6 �� as a
function of the radial coordinate r in units of lho. In the upper panel
the solid and dashed lines correspond to the BdG and LDA results,
respectively. In the lower panel, the solid and the dashed lines refer
to the BdG results for the + and − densities, respectively.

FIG. 4. Radial profile of the pairing gap 
�r� �in units of ��� for

�=6 ��. The radial coordinate r is expressed in units of lho. Re-
sults at T=0 �solid line�, T=0.5 �� /kB �dashed line�, T=�� /kB

�triangles�, and T=2 �� /kB �circles� are reported.
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ertheless, qualitatively the LDA gives again the right indica-
tion: Also within LDA the LOFF phase is absent at
T=2 �� /kB. Instead, at that temperature the Sarma phase
becomes more favorable in certain regions within the LDA:
This phase is characterized by zero momentum Cooper pairs,
a gap 
 smaller than 
� /2, different densities �+ and �− and
typical occupation number distributions as shown in Ref. �6�.

To summarize, we have solved the BdG equations for an
atomic Fermi gas with different populations of two hyperfine
states. It is well known that an increasing asymmetry of the
populations renders BCS pairing difficult, and nonstandard
pairing mechanisms become possible. In this article we
showed that the BdG formalism automatically includes such
nonstandard pairing mechanisms through the nondiagonal
matrix elements of the gap. For example, in the case of a
small system, we found that the usual pairing disappears at a
certain asymmetry, but when the asymmetry is strong enough
such that the single-particle energies of states with opposite
spin and different principal quantum numbers start to match,
pairing becomes again possible, but now with an oscillating
order parameter. This is very similar to the LOFF phase in-

troduced for the case of a homogeneous system. In the case
of a larger system, there is no longer a sharp separation be-
tween the BCS pairing and the LOFF-type pairing: As a
function of asymmetry, but also as a function of the distance
from the center of the trap, the system undergoes smooth
transitions from one kind of pairing to the other. This result
is qualitatively different from that obtained with LDA calcu-
lations, where the transition between the BCS and the LOFF
phase is a first order phase transition. We also observe that
even a system containing 17000 atoms is still much too small
for the LDA to be applicable, since the wavelength of the
LOFF oscillations is of the same order of magnitude as the
whole system. Finally we looked at the temperature depen-
dence of the LOFF-type phase. We observe that it disappears
already at temperatures where the BCS phase is still present.
This, of course, can be a problem if one tries to observe the
LOFF phase in experiments.

We acknowledge discussions with M. Baldo, F. Cataliotti,
and A. Sedrakian.
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4.4 Les états excités dans les gaz superfluides 
 
 
Des modes collectifs appelés modes de respiration sont observés dans les gaz atomiques 
[Ki04a, Ki04b]. Nous avons réalisé une étude microscopique basée sur la QRPA à 
température finie [Br01] pour analyser les propriétés de ces modes d’excitation et 
décrire leur évolution autour de la température critique. Cette analyse est présentée dans 
l’article qui suit [Gr05b].  
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We discuss collective monopole and quadrupole excitations of a collisionless gas of trapped Fermionic
atoms in the superfluid BCS phase, comparing the fully microscopic Bogoliubov–de Gennes and quasiparticle
random-phase approximation method with widely used semiclassical methods. In particular, the microscopic
treatment allows us to address the questions of temperature dependence and nontrivial dependence on the trap
parameters, which cannot be answered within the semiclassical approach. The main result concerning the
temperature dependence is a strong Landau damping at intermediate temperature, which disappears in the
limits of zero and critical temperature. However, even at zero temperature, considerable deviations from
superfluid hydrodynamics are found if the trap frequency is of the same order of magnitude as the pairing gap.
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I. INTRODUCTION

Dilute gases of alkaline-metal Fermionic and Bosonic at-
oms are superfluid at very low temperature: Bose-Einstein
condensates �BEC’s� have been obtained in the case of
Bosonic atoms �1�, while condensation of molecules �made
out of two atoms� has been observed in the case of Fermionic
atoms �2�. For Fermionic atoms in the weakly interacting
regime �kF�a��1, where kF is the Fermi momentum and a is
the s-wave scattering length� BCS superfluidity is expected
in the case of attractive interatomic interaction �a�0�.

A striking experimental evidence for BCS superfluidity is
still missing, even though various signals which would be
coherent with a superfluid behavior have been observed in
some experiments: the anisotropic expansion of the gas after
releasing it from the trap �3�, the measurement of the gap �4�,
the measurement of the frequencies and damping rates of the
breathing modes �5,6�.

However, the gap has been actually measured only in the
strongly interacting regime and no experimental values exist
for the weakly interacting case. The anisotropic expansion on
the one hand and the frequencies of the breathing modes on
the other hand can be predicted within a hydrodynamic ap-
proach for a superfluid gas �7–9�. In both cases the experi-
mental observations agree very well with the hydrodynamic
predictions, and this could actually be considered as an evi-
dence for superfluidity. However, the predictions for a super-
fluid gas are the same as those for a normal gas in the pres-
ence of collisions. It is true that at the very low temperatures
achieved in these experiments the Pauli principle is expected
to inhibit collisions. However, the experimental measure-
ments have been performed during the expansion of the gas
after releasing it from the trap. In such a situation momentum
space deformations are possible and collisions can survive
even at very low temperatures. So far, it has not been pos-
sible to completely control this problem from an experimen-
tal point of view and, for this reason, no firm conclusions
about superfluidity can actually be drawn.

Another limitation is related to the hydrodynamic ap-
proach: hydrodynamics can be safely applied only within the

limits of validity of semiclassical approaches, ����, where
� is the pairing gap and � is the trapping frequency. Effects
from the finite size and inhomogeneity, governed by the fi-
nite trap frequency �, are neglected. Moreover, the hydro-
dynamic formalism has been developed so far only for the
case of zero temperature �T=0�.

In this paper we deal with the excitation spectra in the
normal and superfluid phases of a dilute Fermi gas and we
analyze how these spectra are affected by superfluidity, both
in hydrodynamic and microscopic descriptions. In order to
study excitations similar to those observed experimentally
�the breathing modes� we focused our attention on the mono-
pole and quadrupole modes. However, while the breathing
modes have been observed for a cigar-shaped gas �and the
radial and axial frequencies have been measured�, we restrict
our analysis to a spherical gas for the sake of numerical
tractability. Moreover, while the experiments of Refs. �5,6�
have been done for strongly interacting gases, we treat a
weakly interacting system.

We analyze the excitation spectra within a finite-
temperature mean-field approach which provides a micro-
scopic treatment for the system. The Bogoliubov–de Gennes
�BdG� equations �10� are solved for the ground state and the
excitations are treated within the quasiparticle random-phase
approximation �QRPA� �11�. This approach has already been
developed for atomic Fermi gases in Ref. �12�, where the
spin-dipole and the quadrupole modes have been analyzed.
On the other hand, the monopole modes have already been
studied and compared to a schematic model in Ref. �13�.

In the present work we want to study systematically the
effects related to the temperature and to the trap frequency of
the system. In particular, we compare our results with the
corresponding hydrodynamic ones in order to check the va-
lidity of the semiclassical approach. In addition to the
strength distributions related to the excitation spectra, we
also present the transition densities which can give important
information on nature of the collective modes.

The paper is organized as follows. In Sec. II we briefly
sketch the quantum-mechanical and semiclassical formal-
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isms to describe collective modes in the superfluid phase and
in the normal phase in the collisionless limit. In Sec. III
results for the monopole and quadrupole excitations are
shown: the dependence on the temperature and on the fre-
quency of the trap are studied. In Sec. IV we draw our con-
clusions.

II. QUANTUM-MECHANICAL AND SEMICLASSICAL
FORMALISM

In this section we will briefly review the theoretical de-
scription of collective modes in trapped Fermi gases. As al-
ready mentioned in the introduction, one has to distinguish
between quantum-mechanical �“microscopic”� and semiclas-
sical approaches. The fully quantum-mechanical calculation
consists in solving the QRPA equations, which are the small-
amplitude limit of the time-dependent BdG equations. At
present such calculations are available only for systems con-
taining up to �104 atoms in the case of a spherically sym-
metric trap. These conditions are quite far from the experi-
mental ones, corresponding to particle numbers of �105–106

particles in a cigar-shaped trap. Up to now, the “realistic”
conditions can only be treated within semiclassical ap-
proaches. The simplest semiclassical approach is the hydro-
dynamic theory. This theory is valid in the superfluid phase
at zero temperature, since the pairing correlations keep the
Fermi surface spherical during the collective motion of the
system. However, hydrodynamics fails at nonzero tempera-
ture, unless the local equilibrium can be ensured by colli-
sions. Since we are interested in the weakly interacting re-
gime, the collision rate 1 /� is very small compared to the
frequency of the trap. In this “collisionless” regime, the
Fermi surface becomes locally deformed during the collec-
tive oscillation. This cannot be described by hydrodynamics,
but requires a description in the framework of the Vlasov
equation. The latter is valid in the normal phase, i.e., above
the critical temperature Tc. In the intermediate temperature
range 0�T�Tc, a semiclassical theory is still missing.

A. Quantum-mechanical formalism (QRPA)

The QRPA method has already been applied to trapped
Fermi gases in the weakly �12� as well as in the strongly
interacting regime �14� and here we will only give a short
summary.

We consider a gas of atoms with mass m in a spherical
harmonic trap with frequency �, assuming that the atoms
equally occupy two hyperfine states 	= ↑ ,↓. Because of the
low temperature and density of the gas, the interaction be-
tween the atoms can be chosen as a zero-range interaction
and parametrized by the s-wave atom-atom scattering length
a. In order to simplify the notation, we will express all quan-
tities in harmonic oscillator �HO� units, i.e., frequencies in
units of �, energies in units of ��, temperatures in units
of �� /kB, and lengths in units of the oscillator length
lHO=�� / �m��. Furthermore, instead of the scattering length
we will use the coupling constant g=4
a / lHO as parameter
of the interaction strength.

As mentioned above, the QRPA describes small-
amplitude oscillations around the equilibrium state within the
BdG formalism. Therefore the first step consists in solving
the BdG equations �10�

�H0 + W�r��unlm�r� + ��r�vnlm�r� = Enlunlm�r� ,

��r�unlm�r� − �H0 + W�r��vnlm�r� = Enlvnlm�r� �1�

for the static case. In this way we obtain a set of quasiparticle
energies Enl and wave functions unlm and vnlm. In Eq. �1�, H0
denotes the Hamiltonian of the noninteracting HO minus the
chemical potential �,

H0 =
1

2
�− �2 + r2� − � , �2�

while the interaction is accounted for in a self-consistent way
through the Hartree potential W and the pairing field �. Due
to spherical symmetry, the wave functions can be written as

unlm�r� = unl�r�Ylm��,
� , �3�

vnlm�r� = vnl�r�Ylm��,
� . �4�

The quantum numbers l and m are the angular momentum
and its projection, while n numbers different states having
the same l and m. In practice, the diagonalization of Eq. �1�
is done in a truncated harmonic oscillator basis, containing
the eigenfunctions of the trapping potential up to a certain
HO energy EC=NC+ 3

2 , i.e.,

2�n − 1� + l � NC. �5�

The self-consistency relates W and � to the wave func-
tions u and v. The mean field W is just proportional to the
density, i.e.,

W�r� = g	
nl

NC 2l + 1

4


vnl

2 �r��1 − f�Enl�� + unl�r�f�Enl�� , �6�

where

f�E� =
1

eE/T + 1
�7�

denotes the Fermi function. The Hartree field is independent
of the cutoff NC if the latter is taken sufficiently large. The
calculation of the pairing field �, however, is more compli-
cated. The zero-range interaction leads to a divergence which
in the case of uniform systems can be regularized in a stan-
dard way by renormalizing the scattering length. This regu-
larization method has been generalized to the case of trapped
systems by Bruun et al. �15� and developed further by Bul-
gac and Yu �16� and two of the authors �17�. As a result, the
pairing field can be written as

��r� = − gef f�r�	
nl

NC 2l + 1

4

unl�r�vnl�r��1 − 2f�Enl�� , �8�

with an effective coupling constant gef f which allows to in-
clude the contribution from states beyond the cutoff NC
within the Thomas-Fermi approximation �TFA�. The explicit
expression for gef f reads
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1

gef f�r�
=

1

g
+

1

2
2� kF�r�
2

ln
kC�r� + kF�r�
kC�r� − kF�r�

− kC�r�
 , �9�

where kF and kC denote the local Fermi and cutoff momenta,
respectively:

kF�r� = �2� − r2 − 2W�r� , �10�

kC�r� = �2NC + 3 − r2. �11�

Once the static BdG equations are solved, we can calcu-
late the linear response of the system to a small time-
dependent perturbation. Following Ref. �12�, we have to
compute the QRPA response function �, which is a 4�4
matrix built out of 16 correlation functions:

���,r,r�� =�
���̂↑�̂↑�� ���̂↑�̂↓�� ���̂↑�̂�� ���̂↑�̂

†��
���̂↓�̂↑�� ���̂↓�̂↓�� ���̂↓�̂�� ���̂↓�̂

†��
���̂�̂↑�� ���̂�̂↓�� ���̂�̂�� ���̂�̂†��
���̂†�̂↑�� ���̂†�̂↓�� ���̂†�̂�� ���̂†�̂†��

� ,

�12�

with the shorthand notation

��ÂB̂�� = − i�
0

� dt

2

ei�t��Â�t,r�,B̂�0,r���� , �13�

where �� means the thermal average. The operators of the
normal and anomalous densities, �̂ and �̂, are defined in

terms of the field operators �̂ and �̂† as follows:

�̂	�t,r� = �̂	
†�t,r��̂	�t,r� , �14�

�̂�t,r� = �̂↓�t,r��̂↑�t,r� . �15�

In order to obtain �, we first compute the free or unper-
turbed response function �0, which is defined analogously to
Eq. �12�, but which does not include the effect of interactions
between the quasiparticles. Thus �0 can be obtained by re-

placing the field operators �̂ in Eqs. �14� and �15� by

�̂	�t,r� = 	
nlm

�bnlm	unlm�r�eiEnlt − 	bnlm−	
† vnlm

* �r�e−iEnlt� ,

�16�

where b̂ and b̂† are annihilation and creation operators of
noninteracting quasiparticles. Inserting the resulting expres-
sions into Eq. �12� and using the relations 
b� ,b��= 
b�

† ,b�
†�

=0, 
b� ,b�
†�=����1− f�E���, and �b�

†b��= f�E�����, we ob-
tain explicit expressions for the 16 functions contained in �0
in terms of the u and v functions and the quasiparticle ener-
gies obtained from Eq. �1�.

Due to the spherical symmetry of the trap and the rota-
tional invariance of the interaction, excitations with different
angular momenta do not mix. Therefore it is useful to de-
compose �0 into contributions of different angular momenta:

�0��,r,r�� = 	
LM

�0L��,r,r��YLM��,
�YLM
* ���,
�� .

�17�

The QRPA response �L for angular momentum L can
now be obtained from the quasiparticle response �0L by
solving the Bethe-Salpeter integral equation

�L��,r,r�� = �0L��,r,r��

+ �
0

�

dr�r�2�0L��,r,r��G�L��,r�,r�� ,

�18�

where G accounts for the residual interaction between the
quasiparticles:

G =�
0 g 0 0

g 0 0 0

0 0 0 g

0 0 g 0
� . �19�

When calculating the 16 functions contained in �0L, one
observes that two of them, namely those related to ���̂†�̂��
and ���̂�̂†��, are divergent for NC→�. This divergence has
the same origin as that of the pairing field. Bruun and Mot-
telson �12� therefore suggested to use the same pseudopoten-
tial method as for the regularization of the pairing field in
order to remove the divergence. However, it is not clear how
in their prescription, Eq. �7� in Ref. �12�, the contribution of
states beyond the cutoff NC can be approximated �as we did
in the case of the pairing field by using the TFA�, which is
crucial for having convergence at reasonable values of the
cutoff NC. We therefore propose a simplified prescription:
when calculating �0L, we have to restrict the sum to states
below the cutoff, 2�n−1�+ l�NC. To compensate the result-
ing cutoff dependence, the interaction in the pairing channel
must be replaced by the effective coupling constant given in
Eq. �9�. Thus we replace G in Eq. �18� by Gef f�r��, which is
defined by

Gef f�r� =�
0 g 0 0

g 0 0 0

0 0 0 gef f�r�
0 0 gef f�r� 0

� . �20�

One can show that, in the case of a uniform system, this
simplified prescription coincides with the pseudopotential
method in the limit of excitations with long wavelengths and
low frequencies. We have checked the convergence of the
results using this regularization prescription.

Finally, we have to say how physical quantities of interest
can be extracted from the correlation function �. To that end
it is useful to look at the spectral representation

	
		�

���̂	�̂	��� =� d��
S���,r,r��
� − �� + i�

, �21�

with
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S��,r,r�� = −
1



	
		�

Im���̂	�̂	��� = �1 − e−�/T�	
ij

e−Ei/T

Z
���

− Ej + Ei� � 	
		�

�i��̂	�r��j��j��̂	��r���i� , �22�

where �i� and �j� are eigenstates of the many-body Hamil-
tonian with total energies Ei and Ej, respectively, and Z
=	iexp�Ei /T�. In the present QRPA formalism Eq. �22� is
evaluated using the four upper left elements of the � re-
sponse function �12�, obtained with Eq. �18�.

In this paper we will consider excitation operators of the
form

V1�t,r� � r2YLM��,
�e−i�t, �23�

with L=0 �monopole excitations� and L=2 �quadrupole ex-
citations�. The corresponding strength function SL���, which
gives the excitation spectrum, is defined by

SL��� = �
0

�

drr4�
0

�

dr�r�4	
		�

SL��,r,r�� . �24�

Another interesting quantity is the transition density ��=�
−�0, where �0 denotes the density in equilibrium and � is the
density of the excited system. In the case of zero tempera-
ture, where the stationary system is in the ground state �0�,
the transition density for �=Ej −E0 is proportional to

���� = Ej − E0,r� � 	
	

�j��̂	�r��0� . �25�

In this case, the sum over i in Eq. �22� reduces to one term
�i=0�, and therefore the transition density can be obtained
from

����� = Ej − E0,r��2 � �
�−�

�+�

d��S���,r,r� , �26�

where � is supposed to be sufficiently small to avoid that
other states than the selected one ��j�� contribute.

B. Superfluid hydrodynamics

At zero temperature, superfluid hydrodynamics provides
the equations of motion for the density �per spin state� ��t ,r�
and the irrotational collective velocity field v�t ,r� of the su-
perfluid current �continuity and Euler equations� �18�:

�̇ + � · ��v� = 0, �27�

v̇ = − ��v2

2
+

Vext

m
+

�loc

m

 . �28�

These equations can equally be used for Fermionic and
Bosonic systems, only the equation of state, relating the local
chemical potential �loc to the density �, must be adapted
correspondingly. In the case of weakly interacting fermions,
where the density can be regarded as independent of the
pairing gap, this equation of state is given by the Thomas-
Fermi relation

�loc��� =
pF

2

2m
+ g� =

�2�6
2��2/3

2m
+ g� . �29�

In the static �equilibrium� case, Eq. �28� together with this
equation of state gives immediately the usual Thomas-Fermi
equation for the density profile �0�r�,

�loc��0�r�� + V0�r� = � , �30�

which is valid in both the normal and the superfluid phase.
While the TFA in the normal phase is valid if �loc is much
larger than the discrete level spacing of the trapped system
��� in our case�, superfluid hydrodynamics requires in ad-
dition that also the pairing gap � is large compared with the
level spacing, which is much more difficult to satisfy.

Since the superfluid velocity field v is irrotational, it can
be written as a gradient. In order to establish a connection
with microscopic quantities, we write it in the form

v�r� =
�

m
� ��r� , �31�

where � is related to the phase of the pairing field by ��r�
= ���r��exp�2i��r��.

In this paper we are interested in small-amplitude motion.
We therefore split the density and the external potential into
their equilibrium values and small deviations, �=�0+�� and
Vext=V0+V1, and expand Eqs. �27� and �28� up to linear
order in the deviations. In addition, as we did in the preced-
ing subsection, we will specialize to the case of a spherically
symmetric harmonic trap and use the corresponding HO
units ��=m=�=1�, i.e., V0=r2 /2. We know that for an ex-
citation of the type �23� the solution must be of the form

��t,r� = ��r�YLM��,
�exp�− i�t� �32�

and analogous for ��. Furthermore, we are interested in the
eigenmodes of the system, which persist even if V1=0. Then
Eqs. �27� and �28� can be transformed into an eigenvalue
equation for the eigenfrequencies � and the corresponding
eigenfunctions ��r�,

�d�loc

d�
�

�0

� 1

r2 �r2�0���� − L�L + 1��
 = − �2� , �33�

where f� means df /dr, and an equation for the transition
density,

�� = − i���d�loc

d�
�

�0


−1

� =
− i�

r
�0�� . �34�

The numerical solution of Eq. �33� is not difficult. How-
ever, in the present paper we are only interested in the lowest
monopole �L=0� and quadrupole �L=2� modes. For these
two modes, the velocity field v is practically linear in r, and
we can thus obtain a very accurate analytic approximation to
the numerical solution. Let us start with the quadrupole
mode �L=2�. We insert the ansatz ��ar2 into Eq. �33�, mul-
tiply the equation by �0�r�, and integrate over d3r. By this
integration the small deviations of the quadratic ansatz from
the exact solution of Eq. �33� are averaged out and one thus
obtains a very precise prediction for the frequency. After a
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lengthy calculation we reproduce the well-known result

�L=2 = �2, �35�

which is independent of the interaction.
In a similar way we can find an approximation for the

eigenfrequency of the lowest monopole mode �L=0�. In this
case the function � has the form ��r��a−br2. Inserting this
ansatz into Eq. �33�, taking the derivative with respect to r in
order to get rid of the constant a, multiplying by r, and
proceeding in the same way as in the case of the quadrupole
mode, we finally obtain

�L=0 = 2�1 +
3Eint

8Epot
, �36�

where Eint and Epot are the interaction and potential energies,

Eint =� d3rg�0
2�r�, Epot =� d3rr2�0�r� . �37�

Contrary to the quadrupole frequency, the monopole fre-
quency depends on the interaction. Since Eint is negative, the
frequency �L=0 is slightly lower than twice the trap fre-
quency, 2�. Finally, the ratio of the constants a and b, which
is needed in order to compute the transition density ��, can
be determined from the condition that the integral over ��
must vanish, since the total number of particles stays con-
stant.

C. Vlasov description

Let us now consider a normal Fermi gas just above Tc. In
the weakly interacting limit, Tc is very small as compared
with the Fermi energy, i.e., except for the fact that the system
is not superfluid, we can neglect temperature effects. We will
also assume that the effect of collisions can be neglected.
Under this condition the system cannot come to local equi-
librium during the collective motion. In order to describe this
effect, we will use the Wigner function f�t ,r ,p�. In equilib-
rium and within the TFA, this function simply describes a
Fermi sphere:

f0�r,p� = �„pF�r� − p… . �38�

Out of equilibrium, if the particles do not undergo enough
collisions to restore the isotropic momentum distribution, the
local Fermi surface will assume a more complicated shape.
The equation of motion for the Wigner function is the Vlasov
equation

ḟ = ��V� · ��pf� −
p

m
· ��rf� , �39�

where V�t ,r�=Vext�t ,r�+g��t ,r� is the total �external
+mean-field� potential and �r and �p are acting in coordi-
nate and momentum space, respectively.

Contrary to the hydrodynamic equations in the superfluid
phase, it is very difficult to solve the Vlasov equation di-
rectly. We are therefore again looking for approximate solu-
tions for the special case of small-amplitude monopole and
quadrupole oscillations in a spherical harmonic trap. We will

employ the “generalized scaling ansatz” �19�, which has
been used with great success to describe giant resonances in
atomic nuclei and which has also been applied to trapped
atomic Fermi gases �7�. In this approach, the possible defor-
mations of the local Fermi surface are restricted to quadru-
polar shape. Introducing a small displacement field ��t ,r�,
one can write

f�t,r,p� = f0�r�,p�� , �40�

with

r� = r − ��t,r� , �41�

p� = p − m�̇�t,r� + �r�p · ��t,r�� . �42�

The velocity field is then simply given by v= �̇, and the last
term in Eq. �42� describes the deformation of the Fermi
sphere. For the form of the velocity field we make the same
ansatz as before, i.e.,

��t,r� = a � r2YLM��,
�e−i�t, �43�

with L=0 �monopole mode� or L=2 �quadrupole mode�. In
analogy to the procedure in the preceding subsection, we
linearize the Vlasov equation �39� with respect to �, multiply
by p ·�* and integrate over d3p and d3r. Using Eqs. �30� we
reproduce after a tedious calculation the results originally
derived in Ref. �7�,

�L=0 = 2��1 +
3Ekin

8Epot
, �L=2 = 2��1 −

3Ekin

4Epot
. �44�

Note that the monopole mode has the same frequency in the
normal phase as in the superfluid phase. This can be under-
stood as follows. If the displacement field is purely radial
���r�, as it is the case for the monopole mode, one can see
from Eq. �40� that the Fermi surface stays spherical. There-
fore hydrodynamics gives the same frequency as the Vlasov
equation. The frequency of the quadrupole mode in the nor-
mal phase, however, is higher than in the superfluid phase by
a factor of approximately �2. From Eq. �40� one can see that
in this case the Fermi surface gets a quadrupole deformation
perpendicular to the deformation of the density profile in
coordinate space. This deformation costs energy and there-
fore increases the frequency of the mode as compared to
hydrodynamics.

III. RESULTS

In this section we will compare QRPA and semiclassical
results for monopole and quadrupole oscillations in a spheri-
cal trap. We are mainly interested in the limits of validity of
superfluid hydrodynamics, since this theory is widely used in
order to analyze experimental results. For instance, a recent
experiment of the Innsbruck group showed that the axial
breathing mode in a cigar-shaped trap follows the hydrody-
namic behavior throughout the BCS-BEC crossover, while
the radial breathing mode deviates considerably from the hy-
drodynamic predictions �6�, especially on the BCS side of
the crossover region. This contrasts a similar experiment at
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Duke University �5�, of course with different trap param-
eters, where the frequency of the radial breathing mode was
in reasonable agreement with hydrodynamics. In both ex-
periments the systems were still very strongly interacting
even on the BCS side of the crossover �in the Innsbruck
experiment, the strongest deviations happened when kF�a�
was of the order of 2�, such that our weak-coupling theory
�valid for kF�a��1� cannot directly be compared to these
experiments. Nevertheless, it is clear that the limits of valid-
ity of hydrodynamics should be clarified.

It is known that hydrodynamics works at zero temperature
and if the level spacing �� is much smaller than the gap �,
but both conditions are generally not fulfilled in the experi-
ments. Since experiments cannot be done at zero tempera-
ture, it is interesting to see what kind of temperature effects
can arise below the critical temperature Tc. The second con-
dition is also very strong, especially if the trap is strongly
deformed and the transverse trap frequency is large, and it is
therefore important to know up to which ratio �� /� hydro-
dynamics can be trusted.

A. Temperature dependence

In this subsection we will study how the properties of
collective modes change in the small temperature range from
zero to the critical temperature Tc. For this investigation we
are using the parameter set �=32�� and g=−0.965 �in HO
units�. With these parameters, the number of particles is ap-
proximately 17 000 and the gap in the center of the trap at
zero temperature is approximately 6��; one can therefore
expect that at least at zero temperature hydrodynamics
should work very well.

In Figs. 1 and 2 we show the monopole and quadrupole
response functions, respectively, for three different values of
the temperature. The figures on the left show the response at
zero temperature. The solid lines correspond to the QRPA
results while the dashed lines represent the free quasiparticle
response. In principle, the response function consists of a
very large number of discrete levels. For the purpose of

graphical presentation, these delta functions must be smeared
out, and we therefore introduce a small imaginary part of �
=0.015� in the denominators of the correlation functions
�see Eq. �22��. For T=0, the QRPA quadrupole response
shows one single collective peak whose frequency is very
close to that predicted by hydrodynamics �see Table I�. The
QRPA response is completely different from the free quasi-
particle response, which has a broad and almost continuous
distribution of strength between �1.8� and �2.7�. As has
been realized before �12,14�, the threshold of the two-
quasiparticle strength is related to the energy of the lowest-
lying quasiparticles which are located near the surface of the
atomic cloud.

In the case of the monopole mode the good agreement
between QRPA and hydrodynamics �Table I� is even more
surprising than in the case of the quadrupole mode, since the
frequency of the monopole mode is so high that it lies in the
two-quasiparticle continuum �see dashed line in Fig. 1� and
one would therefore expect a certain amount of Landau
damping.

Apart from the study of the frequencies of the collective
modes, the comparison between hydrodynamics and QRPA
can be extended also to the analysis of the character of such
modes. We display in Fig. 3 the transition densities of the
two collective modes, which, since the density profile is
known, can be related to the velocity field �see Eq. �34��. The
normalization of the QRPA transition density is obtained
from the integral of the corresponding peak in the strength
function, while that of the semiclassical transition density
has been adjusted to the QRPA one. We see that the simple
formulas from Sec. II B are in good agreement with the
QRPA transition densities. However, the QRPA transition
densities exhibit small Friedel-like oscillations, especially
near the surface where the gap is small and the local Fermi
surface is therefore relatively sharp.

Let us now consider an intermediate temperature between
0 and Tc. For the present set of parameters the critical tem-
perature is Tc�2.8�� /kB; we therefore choose T
=1.4�� /kB�Tc /2. As can be seen in the middle of Figs. 1

FIG. 1. Free quasiparticle response �dashed
line� and QRPA response �solid line� of the
monopole excitation as a function of the fre-
quency � �in units of the trap frequency ��, for
three different temperatures: kBT=0, 1.4��, and
3�� �from left to right�.

FIG. 2. Free quasiparticle response �dashed
line� and QRPA response �solid line� of the quad-
rupole excitation as a function of the frequency �
�in units of the trap frequency �� for three differ-
ent temperatures: kBT=0, 1.4��, and 3�� �from
left to right�.
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and 2, due to the presence of thermally excited quasiparticles
the free quasiparticle response starts now already at �=0. As
a consequence, both the collective monopole and quadrupole
modes become strongly fragmented and damped. Qualita-
tively, this strong Landau damping at temperatures between
zero and Tc could be related to the damping mechanism
which is responsible for the experimentally observed damp-
ing of breathing modes on the BCS side of the BEC-BCS
crossover �5,6�. Interesting is also the double-peak structure
which can be seen in the quadrupole response, as if there
were two damped modes, one corresponding to the hydrody-
namic mode and another one corresponding to the quadru-
pole mode in the collisionless normal phase �see below�.
This can be interpreted in the sense of the two-fluid model
�20�, which states that between T=0 and T=Tc the system
effectively behaves as if it consisted of a mixture of normal
and superfluid components.

Now we increase the temperature further to T=3�� /kB,
which lies slightly above Tc, i.e., the system reaches the nor-
mal phase, but still the temperature is very low compared
with the Fermi energy. In the normal phase, the BdG equa-
tions become identical to the usual Hartree-Fock equations,
and the QRPA becomes equal to the usual RPA. In the case
of the monopole mode �right panel of Fig. 1�, the QRPA
response is almost identical to that at zero temperature �left
panel of Fig. 1�, although the free quasiparticle response is
quite different. Again there is one collective mode having the
same frequency as at T=0. This is not very surprising. As
mentioned in the preceding section, the Vlasov equation pre-
dicts the same frequency as superfluid hydrodynamics, since
in the case of the monopole mode there is no deformation of
the local Fermi surface. This is different in the case of the
quadrupole mode �right panel of Fig. 2�. Also here a collec-
tive mode reappears, but it is situated at a different frequency

than at zero temperature. The higher frequency in the normal
phase compared with the superfluid phase is due to the
Fermi-surface deformation and is well described by the Vla-
sov equation �cf. Table I�.

B. Dependence on the size of the system

Let us now investigate the importance of the discrete level
spacing at zero temperature. In the case without superfluidity,
the semiclassical �→0 limit �TFA in equilibrium and the
Vlasov equation in the dynamical case� is known to work
very well if the number of particles is sufficiently large. The
reason is very simple: The only dimensionless parameter on
which corrections can depend is �� /�, which becomes very
small for large numbers of particles. In the current experi-
ments involving �105–106 atoms this type of corrections is
completely negligible. For our study we choose, as in the
preceding subsection, a chemical potential of �=32��. This
is large enough to make these corrections small, and the
numerical calculations are still tractable. The corresponding
numbers of atoms lie between �14 000 and �17 000 de-
pending on the chosen values of the coupling constant g due
to the Hartree field �see Table II�.

In the case of superfluidity, however, another dimension-
less parameter becomes important, which is �� /�. Since in
the BCS phase ���, this parameter is not necessarily small
even if the number of particles is very large. In order to study
the validity of hydrodynamics as a function of �� /�, we
change � by varying the coupling constant g between −0.636
and −0.965 �in HO units�. As a measure for � we take its
value at the center of the trap, ��0�. The values of ��0�
corresponding to the different coupling constants are listed in
Table II.

We are now going to analyze the finite-size effects on the
quadrupole response function by using the different values of
the coupling constant listed in Table II. Note that, since we
are using HO units, changing the coupling constant g
�a / lHO is equivalent to changing the oscillator length lHO

and thus the radius of the cloud R=�2� /��lHO. Anyway, as
argued above, the important parameter for finite-size effects
is the ratio �� /��0� and not the cloud size itself.

For the strongest coupling, g=−0.965 �in HO units�, the
central value of the gap, ��0�, is large compared with ��,
and hydrodynamics works almost perfectly at zero tempera-
ture, as we have already seen in the preceding subsection.

TABLE I. Frequencies �in units of the trap frequency �� of
monopole �L=0� and quadrupole �L=2� modes for �=32�� and
g=−0.965 �in HO units� at zero temperature and above Tc. The
QRPA results for T�Tc were obtained with T=3�� /kB.

T=0 T�Tc

QRPA Hydro. �Q�RPA Vlasov

L=0 1.9 1.88 1.9 1.88

L=2 1.4 �2 2.2 2.22

FIG. 3. Transition densities for the collective monopole �left
panel� and quadrupole �right panel� modes as a function of r �in
units of the oscillator length lHO�, at T=0. Solid and dashed lines
represent the QRPA and the semiclassical results, respectively.

TABLE II. Chosen values of the coupling constant g �first col-
umn; in HO units� and corresponding results for the number of
particles, N �second column�, and for the gap at the center of the
trap, ��0� �third column; in units of ���. The remaining parameters
were fixed to �=32�� and T=0.

g N ��0�

−0.965 16500 6.0

−0.8 15000 2.9

−0.7 14300 1.4

−0.636 13900 0.7
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Figure 4 shows, from top to bottom, the evolution of the
quadrupole response at T=0 for decreasing coupling constant
g, i.e., for increasing importance of the discrete level spac-
ing. Besides the QRPA response �solid lines�, we also show
the free quasiparticle response �dashed lines�. For g=−0.8 �in
HO units�, the gap at the center is still larger than �� by a
factor of 3, but now we find considerable deviations of the
QRPA response from the hydrodynamic result. Since the free
quasiparticle response is now shifted to lower frequencies,
the hydrodynamic mode becomes fragmented, which experi-
mentally would show up as damping effect, and its frequency
���1.1�� lies below the hydrodynamic prediction ��2��.
For g=−0.7 and g=−0.636 �in HO units�, the central value of
the gap is comparable to �� and it is clear that hydrodynam-
ics must fail. Indeed, the QRPA response becomes more and
more similar to the free quasiparticle response which in the
case of weak pairing looks very different from the strong-
pairing case. The double-peak structure is a consequence of
the two types of transitions which are allowed by the selec-
tion rules of the harmonic oscillator, i.e., transitions inside an
oscillator shell ��N=0, where N denotes the number of os-
cillator quanta� and transitions with �N=2. As the interaction
decreases, the strength of the �N=0 transitions becomes less
important while the �N=2 transitions become stronger. This
can be understood from the fact that in the limit of a nonin-
teracting harmonic oscillator without pairing �g→0� the
�N=0 transitions are forbidden by Pauli principle and only
the �N=2 transitions survive. In this limit the response has a
single peak at �=2�, in exact agreement with the prediction
from the Vlasov equation. In the semiclassical language, one
can say that in this case the pairing is too weak to restore the
spherical shape of the Fermi sphere during the oscillation,
and therefore one finds the normal collisionless frequency
instead of the hydrodynamical one.

IV. SUMMARY AND CONCLUSIONS

In this paper we have studied the properties of collective
monopole and quadrupole modes in superfluid Fermi gases

in the BCS phase �kF�a��1,a�0� in a spherical harmonic
trap. Having briefly recalled the quantum-mechanical and
semiclassical formalisms �QRPA, hydrodynamics, Vlasov
equation�, we presented numerical results and compared the
different formalisms. Our main interest was focused on two
types of effects: temperature and finite-size effects. Both can-
not be treated within the semiclassical approaches available
in the present literature, and they can therefore only be stud-
ied in the framework of the fully microscopic QRPA formal-
ism.

In the case of a sufficiently large system �large meaning
�����, superfluid hydrodynamics can be used to describe
the properties of collective modes at zero temperature. Our
results confirm earlier findings �12� which show that already
for parameters which lead to ��0�=6�� the extremely
simple theory of superfluid hydrodynamics is in almost per-
fect agreement with the numerically heavy QRPA method.
This is not only true for the frequencies, but also for the
transition densities, i.e., the velocity fields associated with
the collective modes. However, experiments can never be
done at zero temperature. The critical temperature Tc being
extremely low, it is clear that already at very low tempera-
tures between 0 and Tc the properties of the collective modes
must undergo dramatic changes. This is evident if the hydro-
dynamic frequency �T=0� is different from that in the colli-
sionless normal phase �T=Tc�, like in the case of the quad-
rupole mode. In the case of the monopole mode we also find
a strong temperature dependence, although its frequency at
T=0 is the same as at T=Tc. In the intermediate temperature
range between 0 and Tc the collective modes exhibit strong
Landau damping. When the critical temperature is reached,
the damping disappears and the collective modes can be very
well described by the semiclassical Vlasov equation within
the generalized scaling approximation.

It is interesting to compare these temperature effects with
those found previously in the case of the twist mode �21�,
which is an excitation where the upper hemisphere rotates
against the lower one. Near Tc, the behavior is rather similar:
At T=Tc the twist mode is a collective mode which can be
described by the generalized scaling approximation to the
Vlasov equation and whose frequency is slightly higher than
the trap frequency. If the temperature is lowered, the twist
mode becomes strongly damped, like the quadrupole and
monopole modes. However, an important qualitative differ-
ence appears near zero temperature. Since the velocity field
of the twist mode cannot be written as a gradient, the twist
mode disappears completely at zero temperature, whereas the
quadrupole and monopole modes have an irrotational veloc-
ity field and they reappear at zero temperature as hydrody-
namic modes. In the case of the twist mode, the disappear-
ance of the 1/� weighted integrated strength could be well
described within a rather simple two-fluid model �21,22�. It
remains to be studied if a generalization of the two-fluid
model to the dynamical case can also explain the damping of
the quadrupole and monopole modes and the two-peak struc-
ture in the quadrupole response function at temperatures be-
tween 0 and Tc.

In addition to temperature effects, we studied how the
properties of the quadrupole mode change at zero tempera-
ture when the condition for the validity of the hydrodynamic

FIG. 4. Unperturbed response �dashed line� and QRPA response
�solid line� of the quadrupole excitation as a function of the fre-
quency � �in units of the trap frequency �� for T=0 and �
=32�� and four different values of the coupling constant: g
=−0.965, g=−0.8, g=−0.7, and g=−0.636 �in HO units; from top to
bottom�.
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approach, ����, is no longer satisfied. For parameters
leading to ��0��3�� the QRPA already shows considerable
deviations from the hydrodynamic theory. In the case of the
quadrupole mode, the frequency for these parameters is
found to be lower by 20% than the hydrodynamic prediction,
and a certain fragmentation of the excitation spectrum
�i.e., damping of the collective mode� can be observed.
If ��0����, the hydrodynamic mode has more or less
disappeared. At the same time, a fragmented strength appears
in the excitation spectrum near the frequency of the collec-

tive quadrupole mode in the normal collisionless phase.
These results should be kept in mind when frequencies of

collective modes measured in experiments with strongly de-
formed traps are compared with the hydrodynamic predic-
tions. Due to the strong deformation, the radial trap fre-
quency �r is often much higher than the axial one, �z. Even
in the case of strong pairing, the gap might be of the order of,
say, 3��z, and considerable deviations from hydrodynamics
are possible.

We thank Nguyen Van Giai for fruitful discussions.
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Chapitre 5 
  

Conclusions et perspectives pour 
les études de physique nucléaire 
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5.1 Contexte actuel 
 
 
Depuis une vingtaine d'années, la physique nucléaire renouvelle et restructure ses 
thématiques autour de la physique des noyaux exotiques, domaine très dynamique et en 
pleine expansion qui se développe de plus en plus grâce surtout à la construction des 
nouvelles installations. Avec ces accélérateurs de nouvelle génération qui 
fonctionneront dans les années à venir, nous pourrons  effectuer des études plus 
systématiques des états fondamentaux et excités des noyaux instables et explorer des 
régions plus exotiques de la carte nucléaire. Spiral2 dans le contexte national, ainsi que 
FAIR, RIBF et Eurisol dans le contexte international, permettront d'accroître nos 
connaissances sur les propriétés des noyaux instables.  
 
Les noyaux exotiques sont des systèmes quantiques de fermions faiblement liés ; un 
certain nombre de travaux expérimentaux ont mis en évidence l'existence de propriétés 
particulières qui les caractérisent. Entre autres, des phénomènes nouveaux comme les 
halos dans certains noyaux légers, les excitations pygmées de basse énergie ou la 
modification des nombres magiques sont désormais bien établis expérimentalement.  
D'un point de vue théorique, beaucoup d'efforts sont consacrés à la description de ces 
phénomènes, ainsi qu'à la prédiction d'autres propriétés dans les régions encore 
inexplorées de la carte des noyaux. Au cours des dernières années, l'évidence s'est 
imposée de la nécessité d'améliorer et d'étendre les outils théoriques actuellement 
disponibles. Plusieurs directions sont explorées en France et dans la communauté 
internationale de physique nucléaire dans l’effort commun pour raffiner les approches 
théoriques existantes et augmenter leur pouvoir de prédiction. Un grand nombre de 
travaux sont consacrés à l'étude de l'interaction nucléaire, en ce qui concerne à la fois 
les interactions réalistes (citons par exemple l'introduction de l'interaction de bas 
moment Vlow-k) et les interactions effectives. Dans ce cadre, des pistes pour améliorer 
les paramétrisations et  pour introduire de nouveaux termes (par exemple le terme 
tenseur) dans les interactions effectives standards (comme celle de Skyrme) sont 
analysées.  
 
Les liens avec la QCD, qui permettent d'analyser l'interaction d'un point de vue plus 
fondamental, sont aussi étudiés dans le cadre de la formulation des théories de champ 
effectives et le développement des calculs de QCD sur réseau.  
 
L'interaction d'appariement, qui joue un rôle très important pour décrire les noyaux 
superfluides, est aussi l'objet de nombreuses études pour mieux comprendre sa nature et 
ses propriétés. Ses fondements plus microscopiques ainsi que l'amélioration des 
fonctionnelles empiriques couramment utilisées sont analysés. 
   
Parallèlement à ces travaux sur l'interaction nucléaire, raffinements et extensions des 
approches traditionnelles sont proposés. Mentionnons les efforts autour des méthodes 
qui vont au-delà du champ moyen (introduction des mélanges de configurations,  
couplage particule-vibration,…), les extensions du modèle en couches avec, par 
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exemple, le modèle en couches avec continuum ou le modèle en couches auto-
consistant, les travaux autour des modèles ab initio comme le 'Coupled Cluster Method' 
ou le modèle en couches sans cœur.  
 
La nécessité d'aller au-delà du champ moyen s'impose face à l'existence de différents 
phénomènes nouveaux qui caractérisent certains noyaux exotiques. Par exemple, les 
prédictions sur l'évolution de la structure en couches loin de la stabilité nécessitent une 
évaluation plus sophistiquée des énergies des états individuels (couplage particule-
vibration). Par ailleurs, l'existence des modes d'excitation dipolaires pygmées de basse 
énergie indiquerait que les noyaux exotiques sont des systèmes plus complexes que les 
noyaux stables où les corrélations jouent un rôle peut-être plus important.  
 
Les propriétés des noyaux instables déjà connus ainsi que les scénarios qui seront 
prochainement accessibles grâce aux nouvelles installations expérimentales interpellent 
les théoriciens et nous encouragent à explorer d’autres pistes et démarches par rapport à 
celles habituelles.  
Je me sens fortement impliquée dans ce cadre de travail. En ce qui concerne les études 
sur l’interaction nucléaire, j’ai récemment exploré deux directions qui ont été discutées 
dans le Chapitre 2. D’une part, j’ai effectué une étude plus systématique de l’interaction 
d’appariement avec l’analyse de la réponse associée aux modes de transfert de paires de 
neutrons. Différentes interactions d’appariement (différents mélanges volume/surface) 
ont été considérées. Ce travail se poursuit actuellement avec l’objectif d’analyser la 
sensibilité des sections efficaces associées aux différents modes de transfert par rapport 
au choix de l’interaction d’appariement. D’autre part, l’enrichissement de la 
fonctionnelle de Skyrme dans le canal de champ moyen a été exploré suivant deux 
directions différentes : des estimations de l’effet du terme tenseur (Section 2.4), très 
important quand l’évolution des spectres à une particule est étudiée le long d’une chaine 
isotopique, et des estimations des effets reliés à des termes additionnels dépendant de la 
densité de spin (Section 2.7).  
 
Avec des projets à plus long terme, je me sens impliquée dans la formulation et la 
réalisation de méthodes théoriques plus raffinées par rapport au champ moyen standard.       
Dans ce mémoire, la plupart des résultats que nous avons présentés et discutés (non 
seulement dans le domaine de la physique nucléaire, mais aussi pour les gaz atomiques) 
ont été obtenus avec des modèles basés sur le champ moyen. Le Chapitre 3 représente 
une exception dans ce sens, puisque, dans ce chapitre, des travaux sur des modèles qui 
vont au-delà du champ moyen ont été décrits.  
C’est le moment de faire un bilan qui sera présenté sous forme de quelques perspectives 
dans la section suivante.  
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5.2 Au-delà du champ moyen. Quelques perspectives 
 
 
Aller au-delà du champ moyen signifie prendre en compte un certain nombre de 
corrélations absentes dans une approche basée sur une représentation de particules ou 
quasiparticules indépendantes. L'introduction des corrélations peut être formalisée de 
différentes manières.  
 
Un cas où l’introduction des corrélations est importante est l’étude des énergies des 
états individuels. L’analyse des états individuels est très délicate dans le cadre du champ 
moyen employant des interactions phénoménologiques. Les paramètres des interactions 
phénoménologiques sont en effet ajustés pour reproduire des propriétés globales 
(énergies de liaison et rayons) de certains noyaux et les énergies des états individuels ne 
rentrent pas dans ces procédures de fit (sauf dans l’ajustage des paramètres pour le 
terme de spin-orbite).  
 
Cette manière de procéder est raisonnable puisque le champ moyen est une approche 
insuffisante pour fournir des prédictions quantitatives précises des énergies des états 
individuels. Cela pour deux raisons. La première est que, dans le modèle HF, les 
facteurs spectroscopiques ne peuvent pas être prédits puisqu’ils sont tous égaux à 1 ou 0 
par construction. En ajoutant les corrélations d’appariement avec HFB, les occupations 
autour de l’énergie de Fermi sont éventuellement modifiées mais seulement à cause de 
l’appariement (les autres corrélations sont exclues). De plus, une correction non 
négligeable aux énergies individuelles de champ moyen vient du couplage entre les 
degrés de liberté individuels et les degrés de liberté collectifs. Ce couplage particule-
vibration [Be80, Co01, Br05, Li07], décrit dans le cadre de la RPA en tenant compte 
seulement des excitations ph1, modifie l’opérateur de masse HF : 
 

)E(M)E(M HF Σ+=  ,                                                (5.1) 
 
où : 
 

( ) )E()E(E )2(RPA Σ−Σ=Σ  .                                            (5.2) 
 
La correction due au premier terme à droite de l’éq. (5.2) est décrite par les deux 
diagrammes suivants : 
 

                                                 
1  Il a été montré par Berstch et collaborateurs [Be79] que les vibrations pp contribuent moins que les 
excitations ph à la modification des états individuels 

176



 

 
Le diagramme de gauche est dit de polarisation et celui de droite de corrélation. Les 
diagrammes du second ordre, 
 

 
 
 
doivent être soustraits pour corriger le double comptage dû à l’utilisation de la RPA 
dans la description du couplage particule-phonon.   
Ce couplage provoque un décalage des énergies individuelles (et aussi de celles des 
modes d’excitation de basse énergie) et une fragmentation des états individuels (ainsi 
que des modes collectifs) qui permet de décrire de manière pertinente les facteurs 
spectroscopiques.  
 
Nous sommes en train d’analyser de manière plus détaillée et systématique cette 
problématique du couplage particule-vibration dans le cadre des modèles employant 
l’interaction de Skyrme. Dans ce cas, une divergence ultraviolette (qui est visible quand 
le cutoff numérique introduit dans les calculs est modifié) se manifeste à cause de la 
portée nulle de l’interaction. Considérons par exemple le digramme de polarisation du 
second ordre : 
 

 

k-q 

k’+q 

k’ 

 RPA 

RPA 
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écrit comme : 
 

( )
( ) ( )

( ) ( ).','kG',q'kG
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2

q
33

82

ωω+ω+
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π

=Σ ∫∫
h         (5.3) 

 
Une manière de montrer la divergence est de choisir pour l’interaction v une forme 
gaussienne : 
 

( )
22q

4
1

geqv
μ−

= ,                                                 (5.4) 
 
où g est une constante de couplage. Après un certain nombre de manipulations, il est 
possible de montrer que Σ est la somme de deux termes dont le premier est 
proportionnel à : 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

μ
−

μ
π

−
μ F

2
F

2 k

22

k

m21 .                                        (5.5) 

 
Dans la limite où la portée de la gaussienne tend vers zéro, ce terme est fortement 
divergent et cette divergence n’est pas atténuée par le deuxième terme.  
 
À cause de cette divergence, seulement une renormalisation pourrait éliminer la forte 
dépendance du cutoff numérique choisi. Sans renormalisation, le cutoff devient donc un 
paramètre très important dans ce type de calculs.  
 
L’idée vers laquelle nos travaux sont orientés est d’ajuster une interaction de Skyrme à 
utiliser pour des calculs qui vont au-delà d’HF et qui prennent en compte le couplage 
particule-phonon (avec éventuellement un paramètre supplémentaire donné par le cutoff 
si aucune renormalisation n’est effectuée).  
 
Dans le même sens, mon activité s’oriente aussi vers la réalisation d’extensions de la 
RPA de type seconde RPA (SRPA). En effet, une façon d’inclure le couplage particule-
vibration de manière pour ainsi dire plus globale est de réaliser des calculs de seconde 
RPA (SRPA). Les configuration 2p-2h sont incluses dans le formalisme de SRPA et, 
donc, le couplage entre 1p-1h et 2p-2h est pris en compte. Dans une forme compacte, 
les équations SRPA s’écrivent comme [Ya86] : 
 

( )
( )

( )
( )⎟⎠

⎞
⎜
⎝
⎛

ωτ
ωθω=⎟

⎠
⎞

⎜
⎝
⎛

ωτ
ωθ

⎟
⎠
⎞⎜

⎝
⎛

Φ−Γ−
ΓΦ

ν
ν

ν
ν
ν h** ,                                  (5.6) 

 
avec : 
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et : 
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L’opérateur d’excitation de la SRPA est défini comme : 
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         (5.10) 

 
et les équations pour les matrices A et B sont données dans la référence [Ya86] (eqs. 
(6a) – (7)). 
 
Comme déjà mentionné dans ce mémoire, pour l’étude des états excités dans le cadre 
des méthodes de type RPA, une manière possible d’aller au-delà du champ moyen est 
de ne pas utiliser l’approximation de quasibosons et de  respecter donc le Principe de 
Pauli qui est violé avec la QBA (Chapitre 3). Cet aspect s’applique aussi à la SRPA.  
 
L’introduction de corrélations dans un modèle rigoureux peut d’ailleurs se révéler 
cruciale dans le développement de la nouvelle physique des noyaux exotiques. Par 
exemple, pour les prédictions théoriques des résonances dipolaire pygmées, le fait de 
satisfaire le Principe de Pauli peut apporter des avantages considérables si l’on 
considère que ces modes de basse énergie sont typiquement moins collectifs (moins de 
configurations y participent) que, par exemple, les résonances géantes.  
 
Une manière d’inclure de manière globale et cohérente le couplage particule-vibration 
et les extensions de la RPA qui satisfont le Principe de Pauli, pourrait se réaliser avec la 
formalisation et la mise au point d’une seconde RPA pour les noyaux avec des 
corrélations explicitement introduites dans l’état fondamental.  
 
Ce programme de recherche envisagé pour les années à venir est assez vaste et 
complexe et prévoit un certain nombre d’étapes qui demandent différents niveaux de 
compétences et d’expertise. Une partie de ce travail se prête donc de manière naturelle à 
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constituer de possibles sujets de stages et de thèses qui pourraient être développés 
prochainement dans notre groupe de physique théorique de l’IPN-Orsay.   
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