
HAL Id: tel-00450479
https://theses.hal.science/tel-00450479v1

Submitted on 26 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Description of Services and Service Factories
for Ambient Intelligence

Rémi Emonet

To cite this version:
Rémi Emonet. Semantic Description of Services and Service Factories for Ambient Intelligence. Soft-
ware Engineering [cs.SE]. Institut National Polytechnique de Grenoble - INPG, 2009. English. �NNT :
�. �tel-00450479�

https://theses.hal.science/tel-00450479v1
https://hal.archives-ouvertes.fr

GRENOBLE INP

n◦ attribué par la bibliothèque

THÈSE

pour obtenir le grade de

❉♦❝t❡✉r ❉✉ ●r♦✉♣❡ ●r❡♥♦❜❧❡ ■◆P

Spécialité : Informatique

préparée au Laboratoire d’Informatique de Grenoble

dans le cadre de l’École Doctorale Mathématiques,
Sciences et Technologies de l’Information, Informatique

présentée et soutenue publiquement

par

Rémi ❊♠♦♥❡t

le 23 septembre 2009

❉❡s❝r✐♣t✐♦♥ ❙é♠❛♥t✐q✉❡ ❞❡ ❙❡r✈✐❝❡s ❡t
❞✬❯s✐♥❡s à ❙❡r✈✐❝❡s ♣♦✉r ❧✬■♥t❡❧❧✐❣❡♥❝❡ ❆♠❜✐❛♥t❡

❙❡♠❛♥t✐❝ ❉❡s❝r✐♣t✐♦♥ ♦❢ ❙❡r✈✐❝❡s ❛♥❞
❙❡r✈✐❝❡ ❋❛❝t♦r✐❡s ❢♦r ❆♠❜✐❡♥t ■♥t❡❧❧✐❣❡♥❝❡

Directeur de thèse : James L. ❈r♦✇❧❡②

Co-directeur de thèse : Dominique ❱❛✉❢r❡②❞❛③

JURY

Pr. Marie-Christine Rousset Président
Pr. James L. Crowley Directeur de thèse
Dr. Dominique Vaufreydaz Co-directeur de thèse
Pr. Gregory D. Abowd Rapporteur
Pr. David Simplot-Ryl Rapporteur
Pr. Michel Riveill Examinateur

2

Résumé

Ce manuscrit étudie l’adéquation des approches à services, ainsi que leur amélioration, pour
l’intégration dynamique et la réutilisation logicielle dans le cadre de l’informatique ambiante.
Le dernier chapitre de ce manuscrit est un résumé étendu, en français, du manuscrit complet.

La coévolution du matériel informatique et du logiciel a donné naissance à l’informatique
ubiquitaire. Dans leur vie de tous les jours, les gens sont largement entourés par des appareils
électroniques dotés de capacités de calcul et de communication. Les gens attendent de plus
en plus des manifestations d’intelligence de la part de ce réseau d’appareils. Le domaine de
l’intelligence ambiante essaie de satisfaire ces attentes en utilisant ces appareils pour percevoir
l’activité des personnes et raisonner pour agir sur l’environnement de manière à rendre un
service pertinent à l’utilisateur.

L’intelligence ambiante est un domaine hautement interdisciplinaire et implique de nom-
breux domaines de recherche. C’est pourquoi les avancées dans ce domaine sont conditionnées
par l’interaction et l’intégration entre ces nombreuses disciplines. Ce manuscrit s’intéresse à
la problématique de capitalisation des travaux existants, ainsi qu’à l’intégration dynamique de
logiciels et d’appareils développés indépendamment les uns des autres.

Notre approche consiste à utiliser des méthodes existantes comme les architectures à ser-
vices et le web sémantique, et à les adapter à nos besoins particuliers et au large publique des
spécialistes des différents domaines. Nous étudions des systèmes existants pour identifier des
possibles améliorations du point de vue de l’intégration et de la réutilisation. Nous proposons
une intergiciel à services et une interface utilisateur graphique associée qui sont utilisables et
extensibles par les différents spécialistes. En combinant et en étendant les approches à services
et les principes du web sémantique, nous proposons une nouvelle méthode de conception faci-
litant l’intégration dynamique et la composition de services pour l’intelligence ambiante. Cette
méthode de conception se base en partie sur le nouveau concept d’usines à services qui sont
capables d’instantier n’importe quel service issu d’une famille possiblement infinie de services.
En support à notre méthode de conception, nous proposons un langage de description ainsi
qu’un compilateur et un environnement d’exécution pour notre langage. Nous appliquons notre
méthode et nos outils à la reconception de systèmes existants avec un gain en extensibilité et
en possibilité d’intégration dynamique pour ces systèmes.

3

4

Abstract

This manuscript studies the adequacy and the improvement of the service oriented principles
for software reuse and dynamic software integration in the context of ambient intelligence.

The coevolution of computer hardware and software has led to the advent of ubiquitous
computing: people are surrounded by networked computing devices. People (end-users) in-
creasingly expect smartness from these networked devices. The domain of Ambient Intelligence
(AmI) tries to fulfil these expectations by using these devices to perceive human activity and
reason to act in an adequate manner for the user.

Ambient Intelligence is highly interdisciplinary and involves many research fields. Advances
in Ambient Intelligence are conditioned by the proper interaction, capitalization and integration
of all disciplines. This manuscript tackles the problem of capitalization and dynamic integration
of devices and software not initially designed to work together.

Our approach consists in taking existing methods such as Service Oriented Architectures
(SOA) and the semantic web, and adapting them to our particular needs and to the specialists
from a wide range of domains. In this investigation, we analyze existing systems designed for
intelligent environments and examine how they were designed by different specialists. We also
study how to adapt existing SOA concepts to make them useable for a wider audience. We
create a service oriented middleware, and associated tools, insisting on their adequacy with
its target audience. We introduce a design method that reuses concepts from SOA but insists
on the usability by non software-engineering specialists. With our method we introduces the
concept of a “service factory” that emerges as a necessary construct from our analysis. We
propose a language and a runtime execution environment for our method building on top of
our SOA middleware. We use our method and this language to redesign existing systems with
improved extensibility and dynamicity.

5

6

I would like to thank my supervisor Prof. James L. Crowley and my co-supervisor Dominique
Vaufreydaz for giving me the opportunity to discover the domain of scientific research. I thank
them for providing me with the context and the freedom to explore my ideas. I also want
to thank all the members of my jury, Marie-Christine Rousset, Gregory D. Abowd, David
Simplot-Ryl and Michel Riveill, who carefully examined my work and provided me with valuable
questions and feedback. A special thank goes to Prof. Gregory Abowd for his support before
and after my defense.

I also want to express my thankfulness to all my family members, and particularly my
parents and my brother, for supporting me during these years: you have literally provided
me with the fresh air necessary to fulfill my thesis. I especially want to thank Claire for its
patience and its daily support during this thesis. I also really want to thank my distant friends
and everyone that supported me but cannot be present at my defense.

During these years, all my teachers colleagues have made my teaching experience really
enjoyable and has given me a breath of fresh air during my research work. More generally,
anyone who made me who I am deserves my gratefulness: unfortunately, this category includes
long lost contacts and many persons that won’t read this document.

A last special thank goes to the PRIMA research group for its variety and openness that
made my thesis subject possible. More than coworkers, PRIMA members are friends and all
stimulate an ambience of creativity and friendliness. Each individual has contributed to the
vision of my thesis. I want to thank James L. Crowley who actively acts for the presence of
these persons and for the unique ambience in the PRIMA group.

7

8

Contents

1 Introduction 15

1.1 Foreword (on presentation and layout) . 15

1.2 Technological Context . 15

1.3 Problem and Approach . 16

1.4 Experiments and Results . 17

1.5 Structure of Chapters . 17

1.6 Important Preliminary Notes About the Manuscript . 20

2 The Emergence of Service Oriented Software Architectures 21

2.1 Structure of this chapter . 21

2.2 From Computers to Computing Devices . 21

2.2.1 The Evolution of Computer Usage . 21

2.3 From Computer Programming to Software Engineering 22

2.3.1 From Switches to Software Engineering . 22

2.3.2 Software Engineering and Ambient Intelligence 23

2.4 Service Oriented Architectures for Intelligent Environments 24

2.4.1 Acceptance and Acceptability of Service Oriented Solutions 24

2.4.2 Solutions to the Acceptance Problem . 25

2.5 Mixing Services and Knowledge Representation Methods 26

2.5.1 From Implementations Decoupling to Design Decoupling 26

2.5.2 Design as Knowledge . 27

2.5.3 Knowledge Representation and the Semantic Web 27

2.5.4 Semantically Described Services . 30

2.6 Composition of Services . 30

2.6.1 SOA and Service Composition . 31

2.6.2 Enabling Methods for Service Composition . 31

2.6.3 Reasoning and Planning for Service Composition 33

2.6.4 Composition of Semantically Described Services 33

2.7 Concluding Remarks and Wrap Up . 34

3 Approaches to Service Functionality Description and Composition 35

3.1 Pervasive Computing Environments Become Context Aware 35

3.2 The Convergence of Service Oriented Architectures and the Semantic Web 36

3.2.1 Definitions of Service and SOA . 36

3.2.2 The Example of Web Services . 38

3.2.3 Micro Services and Dependency Injection . 41

3.2.4 The Semantic Web . 42

3.2.5 Semantic Web Services . 44

3.3 Approaches to Service Composition . 47

3.3.1 Manual Service Composition . 48

3.3.2 Workflow Methods for Automatic Service Composition 48

3.3.3 Planning (AI) Methods for Automatic Service Composition 49

3.4 Wrapping It Up in Context . 50

9

CONTENTS

4 Identifying Integration Problems in Intelligent Environments 53

4.1 Motivation and Contribution Overview . 53

4.2 The Intelligent Environment Landscape . 53

4.2.1 Many Specialties Involved In Intelligent Environments 53

4.2.2 Problems With Capitalization and Reuse . 55

4.3 Symptomatic Example: the 3D Tracking System . 57

4.3.1 General Principle of the Tracking System . 57

4.3.2 From 2D to 3D Tracking . 58

4.3.3 Distributed Tracking Using BIP . 59

4.4 Obstacles to Software Capitalization and Sharing . 60

4.4.1 The Computer Mouse: a model for intelligent environments 60

4.4.2 SOA Adequacy and Advantages . 61

4.4.3 Problems Beyond SOA . 62

4.5 Opening on Other Contributions . 63

5 OMiSCID: a Usable Middleware for Service Oriented Architectures (SOA) 65

5.1 Motivation and Requirements for SOA Adoption . 65

5.2 Implementing OMiSCID, a Usable Middleware for SOA 67

5.2.1 User Oriented API . 67

5.2.2 Corrective Maintenance and Evolutions . 68

5.3 Building Tools for SOA . 69

5.3.1 Which Tools? . 69

5.3.2 The OMiSCID Graphical User Interface . 70

5.4 Communication On SOA . 79

6 Concept and Method for the Design of Open Dynamic Systems 81

6.1 Motivation and Contribution Overview . 81

6.2 Simplifying Deployment: Service Factories . 82

6.2.1 Introduction to Service Factories . 82

6.2.2 An Excursion into Deployment Frameworks . 83

6.3 Reallocating Responsibilities in Tracking . 84

6.3.1 Overview of Responsibilities in 3D Tracking . 84

6.3.2 Architecture at the 2D Image Processing Level 85

6.3.3 Architecture at the 3D Tracking Level . 85

6.4 Reasoning in Term of Functionalities . 86

6.4.1 Service Functionalities for Reasoning-Based Integration 86

6.4.2 Introducing Abstract Functionalities . 87

6.4.3 Functionality Correspondences and Factories . 87

6.5 Step-By-Step Design Method . 89

6.6 Application to an Automatic Video Composition System 94

7 UFCL, a Language for Semantic Service Description 101

7.1 Motivation and UFCL Positioning . 101

7.1.1 UFCL as a Simple Design Tool . 101

7.1.2 UFCL as a Hub in Ambient Intelligence Engineering 102

7.2 Services and Functionality Facets . 104

7.2.1 Metamodel for Functionality Facets . 104

7.2.2 Expressing Functionality Facets in UFCL . 106

7.3 Functionality Correspondences . 107

7.3.1 Concept of Functionality Correspondences . 107

7.3.2 Expressing Functionality Correspondences in UFCL 108

7.4 Service Factories . 109

7.4.1 Concept of Service Factories . 109

7.4.2 Expressing Service Factories in UFCL . 109

7.5 Special Constructs to Make Designer’s Life Easier . 111

10

CONTENTS

8 Runtime Framework Over UFCL Descriptions 113
8.1 Objectives and Design Decisions . 113

8.1.1 Bringing UFCL to life . 113
8.1.2 Using a rule engine and backward chaining . 114
8.1.3 Do not let the user write rules . 115

8.2 Introduction to the compilation mechanisms . 115
8.2.1 The Jena semantic web framework . 115
8.2.2 Compilation overview and introduction . 117
8.2.3 Automatic Inference of Implicit Constraints . 119
8.2.4 Integration on top of OMiSCID middleware . 120

8.3 Detailed compilation of UFCL constructs . 122
8.3.1 Compiling simple descriptions . 122
8.3.2 Asserting user need . 122
8.3.3 Compiling open factories . 123
8.3.4 Compiling composing factories . 124
8.3.5 Compilation of Simple Subsumptions . 129
8.3.6 Compilation of Special Constructs . 131

9 Critical Evaluation and Perspectives 133
9.1 Content and Structure of This Chapter . 133
9.2 Direct Evaluation of Contributions . 133

9.2.1 Summary of Our Contributions . 133
9.2.2 Transitional Technologies: Why it Matters . 135
9.2.3 Difficulties of Evaluations in Pervasive Computing Engineering 136
9.2.4 Evaluations at OMiSCID Level . 138
9.2.5 Evaluation of our Design Method . 145
9.2.6 Evaluation of UFCL, the Language . 149

9.3 Overall Analysis of the Work . 151
9.3.1 Development Methods and Tools: the importance of a complete solution 151
9.3.2 Requirement for Broader Protocol Adaptation 153
9.3.3 Interleaving Services, Functionalities and Context Awareness 153
9.3.4 Retrospective Conclusions . 154

9.4 Thinking About the Future . 155
9.4.1 Shared Infrastructure with Domain Specific Descriptions 155
9.4.2 Concluding Remark: User-Orientation is Key . 157

10 Résumé Étendu 159
10.1 Avant-Propos . 159
10.2 Des Ordinateurs aux Appareils Communicants . 159
10.3 De la Programmation au Génie Logiciel . 159
10.4 Problème et Approche . 160
10.5 Architectures à Services pour l’Intelligence Ambiante . 160
10.6 Services and Représentation de Connaissances . 160

10.6.1 Du Découplage d’Implémentation au Découplage de Conception 160
10.6.2 La Conception Comme Connaissance . 161
10.6.3 Représentation de Connaissance et le Web Sémantique 161
10.6.4 Description Sémantique de Services . 161

10.7 Approches pour la Composition et la Description de Services 162
10.8 Intelligence Ambiante, Intégration et Problèmes Associés 162
10.9 OMiSCID : un middleware à services . 163
10.10Concepts et Méthodes pour la Conception de Systèmes Dynamiques et Ouverts 165
10.11UFCL, un Langage de Description Sémantique de Services 166
10.12Compilation d’UFCL et Raisonnement Automatique . 170
10.13Évaluation Critique et Perspectives . 172

11

CONTENTS

12

List of Figures

2.1 Advantage of Structured Information: programming language genealogy. 29
2.2 Visual Example of a Business Process. 32

3.1 Service Discovery Using a Service Repository. 37
3.2 UML Class Diagram: The Service Locator Pattern. 41
3.3 UML Class Diagram: Dependency Injection Principle. 42
3.4 The OWL-S service profile metamodel. 45
3.5 The four facets of WSMO services. 46
3.6 Classification of Service Composition Methods. 48

4.1 UML Class Diagram: computer mouse abstraction. 60

5.1 OMiSCID Gui - The Service Browser . 72
5.2 OMiSCID Gui - The Service Browser with details 72
5.3 OMiSCID Gui - The Variable Manager . 73
5.4 OMiSCID Gui - The Connector Manager . 73
5.5 OMiSCID Gui - Service Interconnections View 74
5.6 OMiSCID Gui - Telemeter View Plugin . 76
5.7 OMiSCID Gui - Experimental Session for 3D Tracking 77

6.1 Split 3D Tracking System . 84
6.2 Split 3D Tracking System With Functionality-Level Descriptions 88
6.3 Split 3D Tracking System: What Can be Derived 90
6.4 Architecture of the Automatic Cameraman . 95
6.5 Automatic Cameraman with Functionalities and Factories 97
6.6 Automatic Cameraman: What Can be Derived 99
6.7 Automatic Cameraman: Sharing the Functionality 99

7.1 Classical Integration Task. 103
7.2 Integration Task with UFCL. 103
7.3 UML Class Diagram: Metamodel of Functionality Facets. 105

8.1 Graphical representation of an RDF model . 116
8.2 Example steps of need rewriting and fulfillment 119
8.3 Constraint Inference Example . 120
8.4 The n + 1 = 3 rules for a factory involving n = 2 services 125

9.1 UML Sequence Diagram: Latency Experiment with OMiSCID. 139
9.2 Latency measurements results: messages of normal size. 140
9.3 Latency measurements results: big messages. 140
9.4 API Comparison: example code using before OMiSCID. 142
9.5 API Comparison: same code using the OMiSCID API. 143
9.6 OMiSCID Adoption: regular increase in the use of OMiSCID. 144
9.7 OMiSCID Gui Adoption: commit size of extensions. 145
9.8 Dynamic Addition of 3D Detectors to the Tracking System 146

13

LIST OF FIGURES

9.9 Perceived Architectural Overhead: old and new tracker, side by side. 147
9.10 Similarities Between Functionalities and GUI Tasks. 152

10.1 OMiSCID Gui - Session d’Expérimentation avec le Système de Suivi 3D 164
10.2 Système de suivi 3D et les éléments automatiquement dérivés 167
10.3 Intégration « classique ». 167
10.4 Intégration avec UFCL. 168
10.5 Exemple de réécriture du besoin (châınage arrière). 171

14

Chapter 1

Introduction

1.1 Foreword (on presentation and layout)

In this manuscript, margin notes are used to improve readability. Most of the paragraphs are
this is a margin
noteannotated to make it easier to navigate back in the manuscript. Margin notes appear with the

same style as the “this is a margin note” text beside this paragraph.

Transitions between sections appear like the current paragraph. These transitions should help
in replacing in context a particular section with respect to the preceding or the next ones.

All through chapter 2, we try to keep the reader in the flow of reading by referencing details
introduction to
“details on demand”given in chapter 3. References are bidirectional: the overview references the detailed section

that references the overview back. The reader can thus choose to go deeper in some details right
from the beginning or decide to read the details later. To illustrate how this cross-referencing
is rendered in this document, we put some more details on the authoring of this manuscript at
the end of this chapter.

See details about “How this Manuscript is Written”
→ in section 1.6 (page 20)

1.2 Technological Context

Over the last sixty years, the evolution of computer science, physics, microelectronics and other
computers for
scientistssciences related to computer development has lead to a continual increase in the ratio of devices

to the number of persons. At the beginning of computer science, a single building sized computer
was shared by many users, each waiting his turn to run his program. At this time, the processing
power in a whole building was inferior to what we can have today in a Personal Digital Assistant
(PDA) or even in some models of wrist watch. Despite this relatively low processing power,
computers were already far faster than humans for a set of simple mathematical operations: this
property, totally useless for the average citizen was a great improvements for many scientists
requiring large amounts of computation for their research.

The growing needs for computational power drove a fast evolution of computers and led
the personal
computerto an increase in computational power. With this increase in power came a progressive “de-

mocratization” of computers. Originally usable by one person at a time, computers begun to
accept multiple user tasks to be run at the same time. Further increase in power, miniaturiza-
tion and production cost reduction brought access to computing to non-scientist as applications
were developed for ordinary people. The Personal Computer (PC) era brought a period where
each individual could have access to his own computer: size, price and power of computers
made it possible to develop personal and entertainment applications and to sell computers to

15

1.3. PROBLEM AND APPROACH

non-professional customers. Leading applications in the PC era were office applications (e.g.
spreadsheet and word processor), multimedia applications (players and editors for audio and
video content) and video games (from simple games like pong to complex tri-dimensional games).

The number of computers per user has continued to increase beyond the Personal Computer
computers
everywhere vision. Human society has increasingly and seamlessly been surrounded by computers. Com-

puting devices are now all around us: examples include mobile phones, PDAs, portable audio
and video players, etc. Taken alone, mobile phones already outnumber conventional personal
computers and the trend towards emergence of new device classes continues.

The available computation-enabled devices are gaining in power, autonomy and connec-
with great
capabilities . . . tivity: many of these new portable pocket devices are as powerful as personal computers were

a decade ago. Moreover, they can now often communicate with each other and access the
Internet.

This ever-increasing density of portable devices continues to raise expectations in a manner
. . . come great
expectations similar to personal computers. Not only do users want graphical, entertaining, reliable, well-

designed applications but they now increasingly expect intelligence to emerge from this network
of devices. As a not-so-futuristic example, we can imagine a user having some pictures on his
digital camera. With current technologies and existing devices one could expect that, with
little or no interaction, the pictures could be displayed on a digital picture frame or sent as
Multimedia Messaging Service (MMS) messages through a mobile phone.

1.3 Problem and Approach

With the increased hardware capabilities, users expect networked devices to act intelligently.
ambient
intelligence. . . Implementing such “ambient intelligence” requires the interaction of experts from many active

research domains including artificial intelligence, artificial perception, human activity modelling,
networking, sociology.

The domain of “ambient intelligence” is fundamentally interdisciplinary: different specialties
must work in cooperation to progress efficiently. Ambient intelligence is not just the juxtaposi-
tion of all the specialties but rather an interconnection and a mutual enrichment of contributions
from these specialties. For example, modelling human activities taking place in a room requires

. . . is intrinsically
interdisciplinary artificial perception such as computer vision but also uses some methods issued from artificial

intelligence and machine learning. Software engineering methods can help in the integration
and reuse of contributions from different specialists.

To take advantage of recent advances in software engineering methods, each specialist must
do a double technology watch: in his individual specialty and in software engineering. In
practice, specialists cannot stay current with both their domain and latest software engineering
methods. This can cause problems in the domain of intelligent environments: only a small

problem of
integration and
reuse

part of the contributions from different domains are integrated together. The integration is not
only problematic between domains but also in time: effective reuse of existing software remains
challenging.

One of our objective in this investigation has been to propose solutions to problems of
approach: adapting
existing methods integration and reuse in the domains involved in ambient intelligence. Our approach consists

in studying the state of the art in software engineering methods and in adapting these to the
target audience: a variety of specialists in non-software engineering domains. The adaptation of
existing technologies must be guided by two activities: a detailed study of existing technologies
and methods, and a deep analysis of the target audience.

Service Oriented Architectures (SOA) provide the properties that are necessary to improve
service oriented
architectures interoperability and reuse. SOA also have the advantage of being suited for the high dynamicity

16

CHAPTER 1. INTRODUCTION

and openness of intelligent environments. We believe that the tools for SOA are often considered
too complex for the intended users.

In this investigation, we analyze existing systems designed for intelligent environments and
some contributions

examine how they were designed by different specialists. We have also studied how to adapt
existing SOA concepts to make them useable for a wider audience. We have created a service
oriented middleware, and associated tools, insisting on its adequacy with its target audience.
We have also introduced a design method that reuses concepts from SOA but insists on the
usability by non software-engineering specialists. With our method we have introduced the
concept of a “service factory” that emerged as a necessary construct from our analysis. We have
proposed a language and a runtime execution environment for our method building on top of
our SOA middleware.

1.4 Experiments and Results

An important criteria for the evaluation of a middleware that targets usability is the extent to
SOA middleware
. . .which it is adopted. We have introduced a middleware we developed in our research team and

observed its adoption. Another important criteria is the manner in which the middleware API
ensures good programming practices.

Our service oriented middleware and its tools have been adopted: the middleware is used
. . . has good
adoptionby most of the people in our team. Service oriented approach has improved ease of sharing and

reuse between team members. The graphical user interface designed for the middleware is also
widely used by service designers. More than half (6/10) of the most active service designers
using our middleware contributed custom extensions for the graphical user interface.

We have used our design method and the new concept of service factories to redesign existing
redesigning existing
systems. . .systems present in intelligent environments. The two main systems for which we propose a

redesign are a 3D tracking system and an automatic cameraman for seminar recording. We
have studied the architectural properties of the redesigned systems to evaluate the benefit of
our method.

Using our method, target systems have been restructured without major constraints. The
. . . improved
dynamic reuse and
integration

resulting systems are less monolithic. Splitting the systems using the guidelines provided in our
method improves the reusability of each subpart. Our method also facilitates dynamic reuse
of existing software components, particularly with factories: service factories remain always
started as a representer of the capabilities of the environment.

1.5 Structure of Chapters

Chapter 2 first introduces the context of our study. A brief history presents the evolution of
chapter 2

computers and computer usages. Computing devices have changed from occupying a full room
to being small enough to be carried in a pocket. Not only are computing devices getting smaller
but they are increasingly powerful and have continued to improve their ability to communicate
with each others. Chapter 2 introduces how this evolution has led to intelligent environments
and ambient intelligence. The democratization of computing devices gave birth to the domain
of software engineering: dedicated methods are required to build these more and more complex
systems.

Chapter 2 gives an overview of the main domains that have inspired and influenced our
approach. It first presents service oriented architectures and describes how they can be used
in intelligent environments. It also introduces knowledge representation domains, such as the

17

1.5. STRUCTURE OF CHAPTERS

semantic web, and explains how they can enrich software architectures. An introduction to
service composition is also given in this chapter.

Chapter 3 addresses aspects of the state of the art related to our work that are not detailed
chapter 3

in chapter 2. It describes how context aware systems and frameworks approach the problem of
ambient intelligence. Service oriented architectures are introduced in more details and we exam-
ine how they can evolve in interaction with the domain of knowledge representation. Different
approaches to service compositions are also detailed in this chapter.

Chapter 3 presents two kinds of service oriented architectures: web services and micro-
services. Web services are used for large distributed applications while micro-services are ser-
vices implemented at a programming language level such as Java. The convergence of the
semantic web and service oriented architectures leads to semantic web services. The goal of
semantic web services is to describe, in a formalized way, the functionalities provided by web
services and not only their communication interfaces. The two major implementations of se-
mantic web services, OWL-S and WSMO, are also presented. Different approaches for service
composition are introduced, the most notable being composition based on workflow and plan-
ning based methods issued from artificial intelligence. Chapter 3 finishes with a synthesis of
the state of the art introducing our approach presented in following chapters.

The contribution of chapter 4 resides in a deeper analysis of the problems involved in
chapter 4

the conception of intelligent environments. The details of our approach are drawn from the
analysis conducted in this chapter. We base our analysis on intelligent environments and take
as an illustration the example of a 3D tracking system developed in the PRIMA team. A
detailed description of this 3D tracking system is given in order to illustrate major problems of
reusability.

Chapter 4 exhibits the problem of reuse and integration that slows down the experimenta-
tions and evolution of intelligent environments. The root of these problems resides with the
monolithic aspect of most systems developed by non-software engineering specialists. Systems
must be developed in a more modular way using low coupled components to favor reuse and
to ease integration. The analysis opens with the requirement for use of a service oriented ap-
proach. Although SOA is necessary for efficient integration, we must go beyond SOA to ease
deployment of components and ease dynamic integration between higher and lower abstraction
level software. These different objectives exhibited by chapter 4 are tackled in the following
chapters.

Chapter 5 presents our contributions towards the adoption of service oriented architectures
chapter 5

(SOA) by the various specialists involved in the conception of intelligent environments. The
adoption of SOA has been identified as a requirement to improve interaction, integration and
reuse of different contributions in intelligent environments. We have designed a service oriented
middleware together with an application programming interface (API) tailored for the variety
of target developers. Along with this API, we have designed a graphical user interface that
helps in monitoring and interacting with running services.

In chapter 5, the new API for the OMiSCID service oriented middleware is introduced
and compared to the previous technology-driven API. This API is designed to be as simple as
possible while promoting best programming practice: the API makes it easier to do things well.
The API is based on few user oriented concepts (service, connector, search filter, etc.). Chapter 5
also introduces the OMiSCID graphical user interface (GUI) that we have constructed to provide
extensibility. The core of the GUI provides generic functionalities such as listing services and
their interconnections. More specific functionalities are provided by extensions that can be
written by any service designer. This requirement for easy extensibility is fundamental to favor
interaction between team members and sharing of functionalities (anyone can install and use
the extensions developed by others in a few mouse clicks).

Chapter 6 introduces new design concepts for the conception of systems in intelligent
chapter 6

18

CHAPTER 1. INTRODUCTION

environments. A new design method based on these concepts is introduced and illustrated to
redesign two existing systems.

Also in chapter 6, we introduce the concept of a service factory. Service factories are services
that are dedicated to the instantiation of others services. “Timers” provide an example of a
factory. A “timer factory” is a service that can instantiate “timer” services emitting events
at any fixed frequency. A factory represent a possibly infinite family of instantiable services.
Factories can be used to express service composition patterns: a “composite translator factory”
can compose any two compatible “translator” services to produce a third one. For example, this
factory could compose a “French to English” and a “English to Polish” to produce a “French to
Polish” translator.

Chapter 6 presents a design method articulated around the concept of service functionality
and service factories. This method aims at splitting the systems in reusable and lightly coupled
services. The role of these services is then abstracted as functionalities. As in semantic web
services technologies, correspondences between functionalities can be used to integrate systems
design by different persons. The method is applied in detail for the redesign of a 3D tracking
system and of an automatic cameraman for seminar recording.

Chapter 7 presents the User-oriented Functionality Composition Language (UFCL). This
chapter 7

language targets the various specialists involved in the conception of intelligent environments.
UFCL is a proposal to support the design method presented in the previous chapter and it must
be easy to learn, read and write for its target audience.

UFCL provides support for our design method and allows the designer to express the con-
cepts involved in our method: service functionalities, functionality correspondences and descrip-
tions of service factories. The proposed language has a human readable syntax inspired from
languages like the Structured Query Language (SQL). This chapter details the concepts that
can be expressed in UFCL and introduces the associated syntax. It presents, among others, the
two major kind of factories: open service factories (e.g. the “timer factory”) and composition
pattern factories (e.g. the “composite translator factory”).

Chapter 8 details the proposed runtime environment to interpret and reason about UFCL
chapter 8

descriptions exposed by OMiSCID services. As UFCL is designed to be loosely coupled to OMiS-
CID, this chapter explains how the runtime integrates UFCL and OMiSCID. This execution
environment is based on the gathering of all UFCL descriptions, their automatic compilation
into a rule based system and an inference using these generated rules.

In chapter 8, we explain how we compile various UFCL constructs into rules and facts in a
rule based system dedicated to semantic web technologies called Jena. Due to some limitations
in the rule engine, we had to implement backward chaining using forward chaining capabilities.
This chapter introduces the principle of our compilation process. Services exposing functionali-
ties are compiled to some facts in the knowledge base. Descriptions of correspondences between
functionalities and service factories are compiled to provide backward chaining rules that rewrite
queries of the user into new queries.

Chapter 9 contains a critical study of our work and draws some retrospective conclusions.
chapter 9

In this chapter we evaluate our different contributions, first in an isolated manner and then more
globally. We then summarize what can be learnt from this investigation. We then conduct a
reflection about the difficulties of evaluating research in pervasive computing environments and
more specifically in software engineering methods for pervasive computing. We evaluate the
adoption of our useable middleware and its tools and show an important adoption rate. We
study the advantages provided by our design method that we applied in the redesign of two
existing systems. Redesigned systems are easier to deploy, integrate and reuse. The introduction
of factories, by making explicit the capabilities of the environment, incites programmers to reuse
existing services and to integrate with existing systems. The choice we made around UFCL

19

1.6. IMPORTANT PRELIMINARY NOTES ABOUT THE MANUSCRIPT

metamodel and syntax make it a good Domain Specific Language (DSL) but that happens to
lack debuggability.

With OMiSCID and its Gui, our work illustrated the importance of a complete solution to
ensure the adoption of a technology. Our analysis in chapter 9 also shows that our attempt
to separate context information (context awareness) from service functionality description is
limited by the intrinsic interrelation between functionalities and context. A more promising
approach is provided by the integration of context information with service oriented conception.
One conclusion is that the developer-user orientation we have advocated in our work is the key to
the success of software methods for intelligent environments. This usability of design methods
must be integrated together with an approach involving a dynamic knowledge base unifying
services, functionalities and context.

1.6 Important Preliminary Notes About the Manuscript

≫ Details about “How this Manuscript is Written”

Chapter 2 presents the context of our work in the light of various facets of the state of the art.
how to read the
first chapters? To keep a clear and fluent progression in this presentation of the context, chapter 2 introduces

the main elements present in our state of the art. A more in-depth study of each related
approach is given in chapter 3 and is linked using the “details on demand” cross-referencing.

In this manuscript, a guiding thread is used to illustrate the concepts presented whenever
possible. The general context of this guiding thread is the case of a virtual personal assistant

our guiding thread
that knows about its “master” and acts to simplify his or her daily life. The user’s virtual
assistant is a digital entity holding information about the user and acting to ease different
user’s activities. We will often consider a restricted use case: the user arrives at home and his
personal assistant decides to play some background music. Then the assistant tries to notify
the user of an important but non critically urgent mail.

The current version of the manuscript is optimized for a “printing” scenario. Print version
print/screen version

will produce better quality printing but can be notably slower to display on screen. Screen
version can contain notably degraded figures as it uses bitmap versions of the original vector
images. Both print and screen versions are available by querying the author and will eventually
be available online.

End of details about “How this Manuscript is Written”
(referenced from page 15)

20

Chapter 2

The Emergence of Service
Oriented Software Architectures

2.1 Structure of this chapter

This chapter presents the context of our work in the light of various facets of the state of the
how to read the
first chapters?art. To keep a clear and fluent progression in this presentation of the context, we will only

introduce the main elements present in the state of the art. A more in-depth study of each
related investigations is given in chapter 3.

2.2 From Computers to Computing Devices

2.2.1 The Evolution of Computer Usage

In the introduction chapter we gave a quick overview of the evolution of computer hardware
over time. We highlighted the fact that hardware evolutions, application potential and user
expectation affect each others. This section is more centered on the evolution of computer
usage, observed and supposed, in the post personal computer era.

Introduced by Mark Weiser in 1991 in [Weiser 1991], the vision where computation enabled
Mark Weiser’s calm
computingdevices are present everywhere and can communicate together is called “ubiquitous computing”

or pervasive computing. From the user standpoint, one of the biggest advantages of ubiquitous
computing is that it could favor a seamless integration of computer services in the user’s daily
life. Ubiquitous computing makes it possible to eventually diminish the cognitive load of the
user in his use of the system: Marc Weiser gave a name to this aspect and designated it as calm
computing in [Weiser 1996].

Building upon this network of devices, ambient intelligence (or AmI) tries to make these
ambient intelligence

devices address the user in an appropriate way by making the devices aware of the user’s activity:
current task, availability, current focus of attention, emotions, etc. The concept of “ambient
intelligence”first appeared in 1998 in some presentations given by Eli Zelkha and Brian Epstein
(see [Url-a]). Ambient intelligence has since been studied and developed in its technical and
sociological aspects as in [Ducatel 2001].

In a more general sense, environments that sense user activity and act according to it
intelligent
environmentsare named “intelligent environments” or “smart environments” depending on the communi-

ties. The community around intelligent environments is particularly interesting as it insists on
the interdisciplinary nature of intelligent environments as mentionned in various articles such
as [Coen 1998], [Brumitt 2000] and [Mozer 1999]. Ambient intelligence requires the system to

21

2.3. FROM COMPUTER PROGRAMMING TO SOFTWARE ENGINEERING

be highly aware of the users and of their activities: this requirement places ambient intelligence
at the confluence of pervasive computing and Artificial Intelligence (AI).

From the early days of AI, science fiction writers already imagined both what intelligent
prolific science
fiction computers could do and what problems it could cause. From this viewpoint, our guiding thread

lags behind the services that computers are depicted as providing in science fiction books and
movies: fully automated and intelligent homes, buildings or cities; intelligent assistance in
accessing world knowledge or in decision making; etc. Authors have also explored the possible
negative effects of computer intelligence: artificial intelligence killing humans, controlling them
or even growing humans for energy; the risks of using complex artificial intelligence when taking
important decisions; etc.

2.3 From Computer Programming to Software Engineering

In previous section, we centered our analysis on the evolution of computers: we mainly looked at
the hardware evolution but also on the past and foreseen evolutions in computer usage. Hardware
evolutions do not automatically turn into changes in usage. Software, as the mandatory link
between the hardware and the user, must also evolve. This section is dedicated to the maturation
of computer programming.

2.3.1 From Switches to Software Engineering

In the early days of digital computing, the activity of programming consisted in manually
punch cards
revolution reformulating a problem in terms of computer machine instructions. Machine instructions

usually take the form of numerical codes. The computer program (the succession of bytes)
was input to the computer by an operator that might be the programmer himself but that was
often someone else. Entering the program was first done byte per byte by manipulating physical
binary switches representing the bits of the current byte. This tedious work was replaced by
punch cards: the operator punched holes in carboard cards to represent bytes of the program
(each hole or non-hole representing one byte).

“Materialization” of computer programs using punch cards made it far easier to modify an
birth of compilers

existing program, execute it with different inputs or reuse parts of it by cutting/copying/pasting.
These were huge benefits but the major advantage of this materialization of programs is that
it was then possible to write a program that would generate another one. One program could
read its instructions and data from a set of input punch cards and punch some cards as an
output. The general principle of having a program generating another program was called
“metaprogramming”. The most common and widespread metaprogramming activity is com-
pilation. Works on compilation and programming languages started at this time after the
programs became manipulable entities.

The emergence of compilers and the progressive spread of computers made writing software
easier and accessible to more persons. These facilities caused a huge increase in the number

from programs. . .
and the variety of programs and the birth of applications. We can define a software application
as a software program that is designed to help a human user in fulfilling a particular task. The

. . . to applications
most impacting change was the introduction of interactive applications where the application
is manipulated by a human user (i.e. not only loaded by an operator or programmer). From
the moment the program became an application and started to address human users that were
not programmers, the range of application domains and the potential volume of computer users
made a huge jump. Applications quickly grew both in size and number, became graphical and
more interactive to eventually reach the complexity of today’s desktop applications running on
personal computers.

22

CHAPTER 2. THE EMERGENCE OF SERVICE ORIENTED SOFTWARE
ARCHITECTURES

With the increased size and complexity of applications, it is now impossible for any real
size application to be developed by a single person. Today, building a software application is
not a one-person activity. It is a complex process involving various skills brought by many
different people with different skills: psychologists, analysts, ergonomists, software designers,
programmers, visual designers, software testers, etc. Software engineering aims at studying the

software engineering
process of building software and proposing methods and solutions to problems found in this
process. Even if software engineering can anticipate incoming methodological and organizational
problems, it is never until the problems are present that people begin to use solutions or even
to look for them. The consequence of this continuous evolution of software conception is that
software engineering practices are always one step behind the reality of problems.

2.3.2 Software Engineering and Ambient Intelligence

In previous section, we explained how considering software programs as an object of study made
it possible for software programming to grow considerably. We will underline major software
engineering problems that ambient intelligence is facing and how it is solved in other domains.

Examining software evolution in the light of the new paradigms of ubiquitous computing
. . . and the lack of
it in AmIand ambient intelligence shows how taught software engineering methods lag practice. In ad-

dition to the skills required to build any kind of software, ambient intelligence involves experts
from many additional complex domains: applied mathematics, statistics, machine learning,
signal processing for acoustic and visual perception, dynamic software architectures, etc. We
can illustrate this interdisciplinarity using our guiding thread that involves most of the cited
domains:

• Statistics and machine learning are required to learn and refine user preferences.

• Dynamic software architectures are necessary as the agent must properly adapt its behav-
ior to a dynamic software environment that changes as the user moves or some devices
are turned on and off.

• Visual perception is important to locate and identify the user and to recognize activity.

• Acoustic perception is required for vocal interaction with the system and to obtain clues
about current activity.

Specialists involved in the software development do not have the time to be up-to-date both
in their individual specialty and in the domain of software engineering. In addition to this

impossible double
technology watchnecessary double technology watch, designing intelligent environment is still not an industrial

activity: the market is not mature enough and a notable engineering effort would be required
to bring research works to market. This explains why the application of software engineering
methods is delayed in the context of research in various domains around intelligent environ-
ments. This last point makes the software engineering situation even worse in the domain of
research in ambient intelligence: ambient intelligence is both a highly computer science oriented
domain and a highly technical domain.

The problem of reuse and interoperability of software exists since the early day of software
general lack of
software reuseengineering. Even if it is occurs in any software engineering activity, this problem of reuse

and interoperability heavily affects intelligent environments where many domains meet. To
overcome this classical problem, many programming styles have been created and tried in the
building of software. One major aim of all these methods is to build software as an assembly
of elements with lower coupling, better re-usability, facilitated replacement, etc. Procedural
functionality decomposition, modular programming, Object Oriented Programming (OOP),
component based programming are all representatives of this continuous quest for better soft-
ware separation. When distributed computing started to be more common, evolutions of these
paradigms appeared including distributed OOP, distributed components and services.

23

2.4. SERVICE ORIENTED ARCHITECTURES FOR INTELLIGENT ENVIRONMENTS

Recently, Service Oriented Programming, also known as Service Oriented Architectures
SOA

(SOA), has emerged as a solution to many interoperability problems. The fundamental idea
behind SOA is to split the system into distinct parts representing a functional decomposition
of the original system. These parts are called services. Splitting a system into services aims at
having a clean separation of functionalities that should favor reuse of these services to build or
improve new applications. The fundamental concepts in SOA are that services are like objects
or component. We can list three important differences between services and objects:

• services are always defined by their interface: the implementation is totally hidden to the
service consumer;

• services are designed to be found and composed at runtime, dynamically;

• services are often accessible on a network (but not always).

Many technologies can be used to implement a SOA: we can briefly give two categories of
implementations. Web Services implement a distributed SOA using web technologies such

web services and
micro-services as the HyperText Transfer Protocol (HTTP). Various mechanisms around the Java Virtual

Machine (JVM) implement SOA but put the emphasis on the dynamic availability of services.

See details about “Services and Service Oriented Architectures”
→ in section 3.2.1 (page 36)

2.4 Service Oriented Architectures for Intelligent Environments

In section 2.3, we studied the evolution of computers and software engineering. We terminated
by a brief introduction of Service Oriented Architectures (SOA) principles. SOA is an architec-
tural solution to contemporary problems of software decoupling, interoperability and reuse. In
this section we will study SOA in the context of Intelligent Environments.

Service Oriented Architectures (SOA) provide solutions for the interoperability and reuse
adequacy of SOA

problems posed by pervasive computing and intelligent environments. Research on software ar-
chitectures for pervasive computing is already experimenting with SOA. This architectural style
is however not “democratized” and is not used by the various specialists involved in intelligent
environments.

2.4.1 Acceptance and Acceptability of Service Oriented Solutions

Most specialists, working in other domains than software engineering, do not implement service
supposed impact on
performance oriented architectures. Many solutions such as Web Services are perceived as having a consider-

able overhead which is a real barrier for people writing highly technical code where performances
and optimizations are often key points. This perceived overhead exists but, depending on the
application, it can be unacceptable or negligible. The “web” connotation of Web Services makes
many people think that these technologies are only applicable for web applications.

The necessity to learn a new method is also slowing down SOA adoption. The priority of
unclear return of
interest researchers and specialists is on their respective domains: learning SOA takes time on other

higher-priority tasks. Most people do not take time to learn SOA because they see no advantages
in using it in comparison to the learning time. The low perceived benefit of SOA prevents low
level component designers from adopting it. We call low level component a component that,
from an architectural point of view, has no dependencies and is only used by other components.

For most specialists, the real gain of SOA is indirect and hidden: integration and sharing
perceived
complexity is not the main objective when doing research. Most developers flee SOA as soon as they hit

the complexity of existing solutions. There are more and more tools around SOA to help the

24

CHAPTER 2. THE EMERGENCE OF SERVICE ORIENTED SOFTWARE
ARCHITECTURES

users. However, users often feel assisted and dread an underlying complexity that they do not
understand.

Some SOA solutions, such as OSGi service platform, also confront the user with a totally
restricted
development
environment

different constraint: a restriction on the programming language. Even if OSGi services can
interact easily and in an efficient way, the designer of OSGi services is forced to use Java.
This limitation of available language is a real barrier for people working in domains where
implementations are mostly in C++ or Matlab. OSGi can be used as a service framework
within the JVM but has to be running on a single virtual machine. Depending on the application
domain, the limitation to a single JVM can be an even bigger limitation than the restriction to
the Java language.

2.4.2 Solutions to the Acceptance Problem

In previous section, we identified three main barriers to SOA adoption in the context of in-
telligent environments: perceived resource overhead of SOA, unclear return of interest for re-
searchers and limitations in development environment (programming language, platform).

From the different barriers identified in the previous section, we can take a positive point of
view and extract some requirements for a more acceptable SOA solution:

easy access to SOA

• SOA implementations must be very easy to learn by the target audience

• in the first steps of the learning process, it must be illustrated through examples what is
the return of interest for the audience

• SOA implementations must be easy to install

• SOA implementations must be available in any language susceptible to be used by the
target audience

• development of services must integrate in the target audience’s development process

• SOA implementations must be efficient, must communicate about it and should prove it
(using benchmarks)

Even if we talk here about SOA, most of these points can be applied to the design of many
software targeting developers: libraries, build tools, unit testing tools, . . . In fact, we can apply
these guidelines later in this manuscript when talking about semantic web services.

Prior to the start of this thesis, part of this reflection had already been taken in our team
and the conclusions were that no existing solution fits the requirements for ambient intelligence.
At this time, the identified requirements were mainly: “having a cross-platform, cross-language
middleware to make it possible to declare, discover and interconnect services in a efficient
way”. These requirements came from the usage of C++, Java and scripting languages (mostly

previously identified
requirementsTCL at the time) within the team. The performance requirement came from the need to

transfer and process important data volumes such as uncompressed live video streams recorded
by cameras but also from the use of this middleware in the human machine interaction loop.
Communications between services must support both high bandwidth and low latency to ensure
its usability in the target context. This middleware got a first implementation for each language
of interest and started to be used in the team.

25

2.5. MIXING SERVICES AND KNOWLEDGE REPRESENTATION METHODS

2.5 Mixing Services and Knowledge Representation Methods

In previous sections, we have introduced Service Oriented Architecture (SOA) as a proper ar-
chitectural solution to improve decoupling, favor reuse and increase interoperability of parts of
software systems. We also discussed difficulties have hampered the adoption of SOA in the
creation of applications in ambient intelligence. In this section we will show the limitations to
interoperability that classical SOA solutions provide and how these limitations can be overcome.

2.5.1 From Implementations Decoupling to Design Decoupling

Service oriented computing aims at separating the use of a software functionality from its un-
implementation
decoupling derlying implementation. As we have seen above, this decoupling is a major objective of many

current software design methods. For instance, object oriented programming hides implemen-
tation details by making part of a class totally inaccessible to the code using this class (private
content). The use of interfaces (or purely abstract classes) is a step forward in this direction:

using interfaces
the real functionality is only described and might be provided by various providers transpar-
ently. Using interfaces properly, an implementation of a software element is only dependant on
the interfaces of other software element and is fully decoupled from their implementations.

We think that this objective is necessary but not sufficient as it gives no easy way to enable
an“a posteriori” interoperability between system parts designed by different vendors. Currently,
when two entities (persons, teams, companies) design software that will interoperate, two cases
often occur. In the first case, one (or both) entity(ies) already has all or part of its software

integrating one
design into another implemented and the second entity will adhere to the conventions of the first: it will use the

same communication technology and will design its parts according to the interfaces exposed by
the first entity’s code. In this case, programming often consists in writing some wrappers around
legacy code. This can be problematic because of the highly probable architectural mismatch
between the two projects [Garlan 1995]. The second possible solution to integrate skills from

a priori agreement
from scratch two entities is to start a cooperative project from scratch and agree on some choices. The most

visible choices are at the level of the technology being used for interoperability.

From our point of view, the most important choice is the selection of the interfaces of
interaction
protocols the different software building blocks. Having chosen a given technology, and for example a

particular SOA implementation, is far from sufficient to enable true interoperability. Given a
service interface, what we call an interaction protocol is the set of sequencing constraints of
service invocations: an operation must be invoked before another one, an operation cannot be
called twice, delay before timeouts, etc. If interoperable services are desired, the entities must
specify their services, their interfaces and their interaction protocols.

Integrating with another design is always a difficult task that requires fully understanding
SOA
standardization the concepts involved in the design and to build adapters to insert between the designer’s own

elements and existing elements. The vision behind decoupling provided by services is to make it
possible to have a spontaneous integration between services designed independently by different
vendors. A first requirement is to settle down on some interoperable SOA technologies. Given
the variety of SOA use cases, this requirement is hard to fulfil but many efforts are made in this
direction: we are heading toward a standardization of multiple sets of technologies for SOA,
web services being a good example of it.

To integrate two designs, not only must there be an agreement on the used technology but a
impossible
standardization of
design

second standardization effort is required. This second aspect of standardization is quite bigger
and is impossible with todays simple SOA approaches: having spontaneously interoperable
services would require worldwide standard on service design. Not only the technologies used
would have to be the same but so would the way of thinking and of formulating the problems.
Considering that software designers are human, this view of the world is unlikely. Even if

26

CHAPTER 2. THE EMERGENCE OF SERVICE ORIENTED SOFTWARE
ARCHITECTURES

possible, this would mean that there is no more creativity in software design and architectures:
either the domain is “solved” or humanity has lost its capability to be creative.

2.5.2 Design as Knowledge

The previous section has argued that an agreement on a particular SOA technology is not suf-
ficient to provide spontaneous interoperability. The most commonly used methods to enable
interoperability between two designs falls in two categories: make both design at the same time
with the same persons, and, bend (or break) one design to make it compatible with the other.
In this section we will show that a parallel can be done between, on one side, designs alignment
and architectural mismatch, and on the other side, the problems of knowledge representation
and fusion.

To summarize the argument of the previous section we can say that seeing standardization
for design is utopic. In this statement, we are not talking about design methods such as UML
but rather about design as a way of representing things and linking concepts. Our conviction is

adaptation layer
that the objects of the design must be materialized and manipulable. Spontaneous interaction
between alien designs should be provided by some design alignment methods rather than done by
manually modifying existing software elements. We would then have mixed systems composed
of components using some interfaces and interaction protocols, and of adapters between this
protocols.

To illustrate this proposal on our guiding thread example, we could take the case of the
e.g. manual
integrationuser that wants to control, using his wifi or bluetooth-enabled mobile phone, the media player

that runs on his home computer. As this is a functionality that was not included in the original
design of the phone, we need to enable a posteriori interoperability between the phone and the
music player. The first solution is to modify an existing application on the phone to build a new
application that can send commands to the music player such as “play/pause” or “volume up”.
This solution requires some deep understanding and some modifications of existing software.

The second solution consists in having an adapter layer that would convert “key press”
e.g. adaptation

events, sent by a generic service on the phone, to some commands for the music player. Even
in the case where the adapter has to be written and deployed, it still has advantages over
the first solution: we only need to understand the interface of a simple service rather than
all its internals, and we do not necessarily need to deploy the adapter on the mobile phone
nor alter the mobile phone setup. Materializing the adaptation at runtime is even better as
we can imagine that the mapping between keys and commands to the music player can be
dynamically generated, perhaps even by the user’s intelligent assistant. Interacting with the
user, and learning from the user’s habits and feedback could make it possible for the assistant
to evolve this mapping automatically.

The reflection we had about software modeling and design is the software architecture
similarity with
knowledge
representation

counterpart of the one that is present in knowledge representation communities. Designing
software and representing knowledge are both modeling exercises and share many properties.
To insist on this statement, we can reformulate it as: software design and architecture falls into
the range of modeling tasks, and software modeling can learn from state of the art knowledge
representation methods.

2.5.3 Knowledge Representation and the Semantic Web

The previous section has underlined the similarities between a posteriori interoperability in soft-
ware and knowledge representation problematics with knowledge aggregation. We insisted on
the fact that software interoperability could learn from the solutions that have been developed by
the knowledge representation communities.

27

2.5. MIXING SERVICES AND KNOWLEDGE REPRESENTATION METHODS

In this section, we will present some knowledge representation methods and we will partic-
ularly study the semantic web.

In knowledge representation domains, there is an agreement on the formats used to represent
knowledge such as Resource Description Framework (RDF) and its extensions (RDFS, OWL).

the semantic web
These technologies are fundamental to the “Semantic Web”. The semantic web places itself as
the successor of the existing web and seeks to represent information in a manner that is more
structured and understandable by computers.

Currently, information available on the web are often mixed with presentation information:
current web

there is no real separation between what is the information and how it is displayed on screen.
Even if some technologies such as various stylesheet languages (CSS, XSLT, etc.) can sepa-
rate content from presentation when used properly, the knowledge is still expressed in natural
language with all associated ambiguities, inexactness and implicit context.

Current web search engines are very efficient for simple information retrieval: they com-
current web search

pensate for the intrinsic natural language difficulties by profiling the mass of users and ranking
web pages based on their popularity. Many other parameters and automatic machine learning
methods influence this ranking. The consequence of this popularity mechanism is that as long
as search seeks popular targets, an appropriate result is returned. However, the popularity
factor is of no use when you are doing an uncommon search.

The idea of the semantic web is to represent information in a more formal, structured
semantic web search

representation using languages such as RDF and OWL. The main advantage is to allow semantic
search to give meaning to the terms used in the queries. A semantic web page is seen as a set
of concepts and relations between them, all of this being linked to the information available
on other pages. Seeing information as interrelated concepts makes automatic reasoning and
inference easier and more powerful compared to todays situation where search engines consider
a web page as a simple “bag of words”.

Imagine the simple task of finding all (or a given number of) programming languages
e.g. search scenario

that have an “elsif” keyword. Given the current traditional way of representing knowledge,
it is possible but far from easy to find a list of programming languages and to search their
specifications for the “elsif” keyword. Human intervention is necessary to discover if a given
language has this keyword: it could happen that the word “elsif” appears just as an illustration
of its absence (e.g. “elsif is not a reserved word in X language”).

In a more structured representation of knowledge, each programming language would be
e.g. semantic search

represented by a concept that would be in relation with all its keywords. Each language would
also be in relation with other elements like other languages. This could be used to produce a
genealogy of languages such as in figure 2.1). In the case of the problem of finding languages
with an “elsif” keyword, an unambiguous request could be formulated as follows: “find all X1,
X1 is of type language, X1 has keyword X2, X2 has spelling ’elsif’”.

See details about “From the Classical Web to the Semantic Web”
→ in section 3.2.4 (page 42)

The principle in knowledge representation is to reuse existing concepts whenever possible, to
concept alignment

create new concepts when needed and to express correspondences between concepts when they
have similar meanings. This principle may be linked with the concept of adapter as presented
in section 2.5.2. In knowledge representation, putting similar concepts in relation is called
an “alignment” of concepts. Alignment is mainly done by adding subsumption (specialization,
subtype) and equivalence relations between concepts created independently.

See details about “Ontologies and Ontology Alignement”
→ in section 3.2.4 (page 43)

28

CHAPTER 2. THE EMERGENCE OF SERVICE ORIENTED SOFTWARE
ARCHITECTURES

Source: http://merd.sourceforge.net/pixel/language-study/diagram.html

Figure 2.1: Advantage of Structured Information. This programming language genealogy can be auto-
matically generated. A link represent an influence from one language on the creation of another one.
Such information, already available in natural language, has been formalized in a more structured way,
allowing its automated use.

29

2.6. COMPOSITION OF SERVICES

2.5.4 Semantically Described Services

After introducing the similarities between software design and knowledge representation, the
previous section has presented semantic web technologies and tools. In this section we will
describe existing efforts and standards that aim at applying semantic web methods and tools to
Service Oriented Architectures.

Semantically describing functionalities is in fact a materialization of the design decisions and
functionality
descriptions makes it possible to manipulate these descriptions and express relations between them. Having

materialized the description of a bluetooth phone functionality, we can easily say that this
bluetooth phone concept is a specialization of the remote control concept described by
other people previously (e.g. created originally for an infrared remote control).

Mixing semantic knowledge with service functionalities descriptions is not a new idea as it
semantic web
services is exactly the foundation of Semantic Web Services (SWS). SWS technologies add a semantic

description of the functionalities provided by classical web services. A semantically described
service has not only a proper interface but it also has a meaningful description of its functionality.

There are two major proposal for SWS technologies: OWL-S (Web Ontology Language for
OWL-S and WSMO

Services) is one of them. In OWL-S, a classical web service can be semantically described on
various aspects ranging from the general “capabilities” it provides, to the detail of its compu-
tational process, and to how these abstract concepts are grounded on web service operations.
Another set of technologies for the design of semantic web services is the Web Service Modeling
Ontology (WSMO) and the associated technologies.

Both technologies for SWS (OWL-S and WSMO) have their advantages. Even if the possi-
low adoption rate

bilities of SWS in general are broad and impressive, there is still a lack of tools that are both
efficient and easy to master by most developers. There have been many efforts put on tools
around SWS but the relative lack of adoption makes these efforts decrease and most software
has not been updated for a few years. For most developers, teams or companies, adopting
semantic web methodologies currently results in a cost that is too important compared to the
expected return of interest.

See details about “Semantic Web Services”
→ in section 3.2.5 (page 44)

Despite the relatively low adoption on the side of SWS, much effort is still ongoing for
need for usability

both classic web services and the semantic web (pure knowledge without services). Following
the reasoning about barriers to SOA adoption we had at the beginning of this chapter in
section 2.4.2, we can express the same guidelines for SWS technologies. The emphasis should
particularly be put on the ease of use and the ease of the learning process for the target audience.

2.6 Composition of Services

Section 2.5 has examined a first approach to services. Borrowing from the domain of knowl-
edge representation, this approach consists in semantically describing service functionalities to
improve potential interoperability. A second interesting approach is based on the composition of
services and will be studied in this section.

Separating different aspects of software in lightly coupled building blocks makes it possible
SOA for dynamic
composition to build systems as an assembly of these building blocks. Using services or any other technology

such as objects, components, modules or plugins, this composability property comes directly
from the effort of specifying a clean interface to interact with building blocks. What SOA brings
from this point of view is that it facilitates composition that is dynamical and open.

30

CHAPTER 2. THE EMERGENCE OF SERVICE ORIENTED SOFTWARE
ARCHITECTURES

2.6.1 SOA and Service Composition

Service Oriented Architecture enables better separation of concerns, better isolation and looser
services are
composablecoupling between software elements. Such approaches have a great advantage: once software

elements are well defined and well separated it becomes possible to compose them to build new
applications or new functionalities. The most common illustration for any programmer using
object oriented programming is the possibility to reuse and combine existing classes to build new
ones through aggregation. Another common illustration of this composability is the component
based approach ([Brown 1996], [Heineman 2001]) in which the applications are build only by
reusing, configuring and assembling existing fully operational components.

Most service oriented environments are distributed. Like other distributed architectures
abstraction of the
implementationsuch as distributed components or distributed objects, services can be easily composed to build

distributed applications without being overloaded with the implementation details of every
service.

The main particularity of SOA is that components are designed to operate in a dynamic
context where services can appear and disappear at anytime. Services must be aware of these

dynamic
compositionchanges in service availability and must behave accordingly. With this dynamicity comes a

constraint: some choices about how to assemble services have to be made at runtime. In a less
dynamic context, the designer of the application was the expert responsible for taking these
decisions about composition. Taking runtime composition decisions can be done automatically

runtime service
selectionor by asking the final user. Any intermediate solution can be imagined and implemented ranging

from choosing everything automatically (even randomly when no pertinent information about
the decision is available) to asking the user for everything.

In the context of intelligent environments, we advocate the presence of an intelligent as-
e.g. intelligent
assistantsistant representing the user, learning preferences and habits, and taking simple composition

decisions on his behalf as in various systems such as [Zaidenberg 2008] and [Garlan 2007]. When
the user’s assistant has no information to take a decision, it may fall back to a default behavior:
random choice or query to the user depending on the user activity and interruptibility.

2.6.2 Enabling Methods for Service Composition

Previous section have introduced the main difference between services and components: services
are designed to be composed dynamically, at runtime and according to context whereas com-
ponents are not. In this section we will give an overview of some languages involved in the
description of services composition.

Service composition is interesting for both the industry and research. For industry, com-
position is an enabler for massive reuse and thus can provide important productivity gains.
For research, automatic service composition uncovers many interesting challenges and research
problems.

This general interest from various communities has driven the setup, reuse and maturing
choreography and
orchestrationof standards. These standards aim at making it possible for system designers to express mainly

two concepts that are called “service choreographies” and “service orchestrations”. A service
choreography defines the expected behavior of a set of services. A choreography expresses how
the interactions should happen, while the services themselves are eventually responsible for the
execution of the choreography. As a description of what should happen, a choreography can
be easily but optionally used to monitor a running service assembly. A service orchestration
is an executable process: it describes what the conductor should ask the others services to do.
To come to life a service orchestration has to be executed by an entity (program) present at
runtime and giving orders to others services.

Languages such as the Web Services Choreography Description Language (WS-CDL) de-
scribed in [Kavantzas 2005] can be used to describe choreographies. Most of the service orches-

associated
languages

31

2.6. COMPOSITION OF SERVICES

tration languages are business process description languages such as Business Process Execution
Language (BPEL) and its variants. A business process is a set of tasks that have to be done
to achieve a particular goal in a company. The tasks composing a business process are usu-
ally temporally related through a workflow. BPEL is, in fact, a shorthand for BPEL for Web
Services (BPEL4WS) and its later renaming to Web Services BPEL (WS-BPEL) for name
uniformization purposes. Figure 2.2 gives an example of visual representation for an example
business process.

Figure 2.2: Visual Example of a Business Process for a mid size trip. One must first reserve a hotel,
then try to find a car or by default reserve a plane and a taxi.

Most use cases of BPEL show only its use at design time: the designer uses BPEL to
programming using
orchestration specify how to properly call an aggregate of some existing web services to implement a new

functionality. The BPEL process can then be executed by a runtime orchestration engine to
obtain the new functionality. One good habit encouraged by BPEL is to expose the composed
functionality as a service. BPEL processes can be composed transparently with other services
allowing hierarchical composition.

Even if a BPEL process definition is expressed at design time, it references services ab-
stractly: the services are effectively used and discovered only at runtime. This late binding
is the only real abstraction in the definition of BPEL processes. Once the task of specifying
how we can compose existing services to produce another one is done, this information can be
used in ways that are even more interesting than to just start a service by executing the BPEL
process. It is possible to interpret business processes not only as an executable specification

orchestration as
composition pattern of a composite service but also as a composition pattern: given some existing services with

particular properties, we can instantiate a new composite service with some properties derived
from the component’s properties. This vision is unfortunately underexploited as may be see in
detail in following sections.

32

CHAPTER 2. THE EMERGENCE OF SERVICE ORIENTED SOFTWARE
ARCHITECTURES

2.6.3 Reasoning and Planning for Service Composition

In previous sections, we introduced some existing languages to describe service compositions but
they are often seen as a programming language to control existing services. In this section, we
will explore the approaches were reasoning and planning is preponderant.

Seeing business process descriptions as composition patterns is an interesting approach for
intelligent environments. Ambient intelligence requires a spontaneous interaction between ser-

composition for
spontaneous
interaction

vices designed independently. Reasoning about the composability of services can improve spon-
taneous integration significantly. Imagine a case where some services are running in an environ-
ment and a user arrives accompanied by a personal intelligent assistant that can reason about
what services are presents, what services it brings in the environment and what compositions
could be made to fulfill the user needs.

Despite the particularity of services of being composed at runtime and the potential behind
formalisms such as BPEL, reasoning about service composition pattern is underexploited. We
can classify automatic service composition usage in 3 categories:

• The simplest level of composition aims at building an application by filling holes in an
application pattern at runtime. This composition is only a form of dynamic linking: the
concrete services used in the composition are chosen at runtime. We use the term of
application as the only objective of this service composition is to fulfill the final user
need.

• A minor improvement consists in exposing the composition as a service itself. This way,
the composite service that is produced can be reused latter, for example in another higher
level composition.

• In the two previous cases, only one composition pattern was “tested” at a time to start
a particular service. A more interesting form of composition consists in reasoning about
all composition patterns altogether. This makes it possible to share composition patterns
(i.e. knowledge about composability) rather than sharing only the result of an effective
composition.

Many research works aim at reasoning on the composability of services based on the defini-
process calculus
based compositiontion of service composition patterns. Depending on the approach, these definitions are usually

highly formal such as finite state automata, petri nets, π-calculus or BPEL which is a form of
process calculus. A good insight of these methods can be found in [Berardi 2005]. Good results
can be obtained with these methods as long as the operational process of services is described
with sufficient details: basically, composition patterns must be fully “programmed” using these
languages to ensure composability.

2.6.4 Composition of Semantically Described Services

Sections 2.5 and 2.6 illustrate the gains provided by semantic description of services for com-
position and by reasoning about composability. This section will introduce some ongoing inves-
tigations that combine these improvements and approach real spontaneous interaction between
services.

Most of the initiatives aiming at describing interactions between services and thus enabling
the creation of simple composite services are done on classical web services. This means that
none of the particularities and difficulties of semantic descriptions are taken into account but
that none of their advantages are present either. Only recently, investigations have appeared
concerning composition of semantically described service composition patterns. The most
promising and interesting article we have found is about BPEL for Semantic Web Services
(BPEL4SWS), an adaptation of BPEL to semantically described web services.

33

2.7. CONCLUDING REMARKS AND WRAP UP

See details about “Service Composition”
→ in section 3.3 (page 47)

2.7 Concluding Remarks and Wrap Up

This chapter gave an overview of the main domains that inspired and influenced our approach.
Different aspects of the state of the art are detailed in chapter 3. A synthesis of the state of
the art, replaced in context, can be found as a closing of chapter 3 in section 3.4. Section 3.4
also introduces our approach in the light of the state of the art.

34

Chapter 3

Approaches to Service
Functionality Description and
Composition

Chapter 2 has explained the context of the research presented in this manuscript. The objective
of chapter 2 is to introduce the motivations of our work in the light of existing research and
technologies. The current chapter aims at detailing the state of the art of some aspects that
arose in chapter 2 and at giving a more comprehensive introduction to important technologies.

3.1 Pervasive Computing Environments Become Context Aware

Building on top of ubiquitous computing (or pervasive computing), ambient intelligence needs to
have an understanding of what happens in the environment. This awareness of the application
about its environment includes a wide range of elements. The simplest and most common
context element is the user location in the environment. More complex context information may
involve current activities, preferences and the schedule or various environmental elements such
as the current time and weather or computing resources available in the environment. Context

context awareness
Aware Applications are applications that can act according to their context of execution in a
broad sense.

Context aware computing is a very active research domain. The notion of context aware-
ness has been introduced by Bill Schilit in [Schilit 1994] and described as software that “adapts
according to the location of use, the collection of nearby people, hosts, and accessible devices,
as well as to changes to such things over time”. Major contributions on context aware com-

definitions of
contextputing are presented by Anind Dey in [Dey 2001] were context is defined as “any information

that characterizes a situation related to the interaction between humans, applications and the
surrounding environment”.

Many frameworks, middlewares and toolkits have been designed to help in building con-
text aware applications. A variety of surveys analyze and compare these different toolkits:

context frameworks
a particularly detailed analysis is given in [Baldauf 2007] which presents the Context toolkit,
Gaia, CoBra and other frameworks. One common aspect of such frameworks is the separation
of context producers and context consumers. In the model of the “Observer” design pattern
introduced in [Gamma 1995], this proper separation allows the addition of new context aware
applications without major modifications.

An aspect distinguishing different context acquisition frameworks is the model used to rep-
resent context information. The underlying representation used by most frameworks can be
considered as tuple spaces:

35

3.2. THE CONVERGENCE OF SERVICE ORIENTED ARCHITECTURES AND THE
SEMANTIC WEB

• Frameworks such as CoBra presented in [Chen 2004] use the Web Ontology Language
(OWL) having an underlying model in the form of triples.

• Gaia uses 4-ary predicates composed of a “context type”, a subject, a predicate and an
object, as explained in [Román 2002].

• Frameworks such as the Context Toolkit presented in [Dey 2001], Hydrogen described
in [Hofer 2003] and frameworks based on OWL indirectly use representations based on
objects with valued attributes.

Approaches such as Gaia and the Context Toolkit accept any kind of context information while
approaches based on predefined fixed ontologies add constraints to the nature of the context.

representation of
context information Both approaches have their advantages and drawbacks. A fixed ontology provides a structure

and a meaning to context information but it limits the expression of dynamic “unexpected”
kind of context information. The ideal solution enables different context providers to describe
their own ontology of context information and have some alignments and integration between
these ontologies. This principle is underlying the concept of ontologies as we detail in further
sections of this chapter.

Service oriented architectures are mentioned in relation with some of the major context
frameworks but it is seen as an enabling technology for the implementation of the framework.-

Web services are for example used in CoBra ([Chen 2004]) as remote sources of context
context and services

information. The survey mentioned above also recommend the use of web service technologies
for the standardization of context aware toolkits.

As formulated in [Coutaz 2005] “Context is key”. Context should be a first class considera-
tion for intelligent systems. However, we also believe that systems can also benefit from recent
software engineering methods such as service oriented computing. More details about service
oriented architectures are provided in the rest of this chapter.

3.2 The Convergence of Service Oriented Architectures and
the Semantic Web

3.2.1 Definitions of Service and SOA

≫ Details about “Services and Service Oriented Architectures”

Service Oriented Architecture (SOA) is the architectural part of the service oriented approach.-
The term “SOA” is often used to represent the service oriented approach as a whole. A service

terminology
oriented approach can be applied anywhere in the software engineering process from analysis
to implementation.

The fundamental idea behind service orientation is to split the object of analysis (e.g.
service orientation

a domain model or a system) into distinct parts representing a functional decomposition of
the system. This decomposition in parts called services aims at having a clean separation of
functionalities that should favor reuse of these services to build new applications or improve
existing ones. There is no unique definition of service or SOA and this section will try to give
a clearer insight of what these concepts involve.

As there is no universally recognized definition for service, we decided to start with a citation
from The Pragmatic Programmer: From Journeyman to Master by A. Hunt and D. Thomas
[Hunt 1999]. This choice is driven by the fact that this book is not about service oriented archi-
tecture but rather about general best practices in software design, analysis and programming.
Hunt and Thomas extract a set of tips all along their book and the 40th of them is entitled as
follows: “design using services”. This advice emerges after an example of application architec-

a pragmatic
definition of services ture that exhibits important decoupling and reuseability properties. Together with their tips,

the authors describe their architecture choice in this way:

36

CHAPTER 3. APPROACHES TO SERVICE FUNCTIONALITY DESCRIPTION AND
COMPOSITION

Instead of components, we have really created services: independent, concurrent
objects behind well-defined, consistent interfaces.

We propose to use their definition to underline some important element of definition for services:
distributed,
reusable, loosely
coupled entities

• Services can be considered as improvements over objects or components.

• Services are loosely coupled and autonomous entities.

• Service functionalities are defined by a clear interface or contract.

• Services encapsulate their implementation details and can be used in an abstract way
without any knowledge of the implementation.

• Services run concurrently and can be distributed if necessary.

• Services, like component and objects, can be reused and composed to simplify the creation
of new applications.

An additional aspect, not considered in The Pragmatic Programmer is the dynamicity of service
interconnections:

dynamic discovery
and composition• Services are designed to be composed at runtime.

• Services find each others using a discovery mechanism: service providers declare the ser-
vices they provide, service consumers describe the services they require.

• Services run in a dynamic software environment where other services can become available
or be retracted at any time.

Service discovery is an important aspect of service oriented architecture. Service discovery
mechanism is often assured by a service repository as presented in figure 3.1: new services declare
their presence to the service repository and service consumers consult the repository when they
require a particular service. A service provider publishes in the repository a description of

service
advertisementthe provided service together with a reference to itself telling how to access this service. A

service consumer queries the service repository by describing the services it desires; in response
it receives one or several references to the appropriate service providers.

Service Repository

Service Provider

1. publish service description

Service Consumer

2. query with search criteria

3. return matching
 service description

?

4. access service using description

Figure 3.1: Service Discovery Using a Service Repository. Service providers register the description of
their services in the repository. Service consumers obtain references to services matching their research
criteria.

The core principles of SOA listed above are mainly aiming at improving the interoperability
and reuseability of elements constituting a software system. The objective of SOA is to facilitate

SOA objectives:
interoperability and
integration

the communication and the integration of business processes between companies. It is also used
within companies to facilitate internal integration of various business entities.

End of details about “Services and Service Oriented Architectures”
(referenced from page 24)

37

3.2. THE CONVERGENCE OF SERVICE ORIENTED ARCHITECTURES AND THE
SEMANTIC WEB

3.2.2 The Example of Web Services

The previous section has introduced the principles and motivations behind Service oriented Ar-
chitectures (SOA) but has not referenced any particular technology or existing implementation.
This section will detail the Web Services technologies that constitute one of the most used and
developed supporting technologies for implementation of a service oriented architecture.

The designation of Web Services is misleading and the first reaction to this name is to think
that web services are only useable on the web. In fact, the best way to both define Web Services
and insist on the naming problem is as follows:

web services
(WS). . .

• Web Services are services built using web technologies such as HTTP (HyperText Transfer
Protocol)

• Web Services are not necessarily available on the web

In a sentence, Web Services are not services on the web but services using web technologies.
. . . services using
web technologies Web Services communication is using HTTP as a transport protocol and formats used by web

services are based on XML (eXtensible Markup Language).

A web service can be seen as an object that can be accessed using networked communications.
The implementation of a web service is hidden and the caller only knows about the interface of
the web service that is composed of a set of operations. Service interfaces are defined using the
Web Services Description Language (WSDL) which is an XML based format. WSDL is used

service interface
(WSDL) both by service consumers to describe the service they require and by publishers to declare the

service they provide. In the case of a service provider, the WSDL description must contain
more information: the provider has to tell not only what service it provides but also how to
access this service.

WSDL is traditionally used in conjunction with the Simple Object Access Protocol (SOAP)
that is a message format designed for Remote Procedure Call (RPC). SOAP is the most widely
used communication protocol between web services. As WSDL documents can be somewhat
verbose and hard to read, we will review the data contained in a WSDL file before providing
the reader with a full example.

SOAP is based on the XML-RPC and represents method calls and return values using an
XML format that can be extended. SOAP implements Remote Procedure Call (RPC) making

service
communication
SOAP+HTTP

abstraction of the transport protocol it uses. In most cases, SOAP uses HTTP as its transport
protocol: because it was designed for the web, HTTP is the most “open” protocol. HTTP has
the advantage of being useable in many organizations: even when they block most network
traffic, organizations often allow communications through HTTP proxies. Because SOAP is
decoupled from its possible transport protocols, there is no tight integration between HTTP
and SOAP. All information composing SOAP requests and responses is contained in the “body”
of the HTTP messages.

In a WSDL description, a service is composed of ports on which operations can be called.
service address:
URL When used in conjunction with SOAP, each port has an associated address in the form of an

URL where the web service can be found. This URL is interpreted as a classical URL by a web
browsers and an HTTP request is sent to the web server with content expressed using SOAP.
The following example illustrates the use of HTTP containing a SOAP request for the web
service at the address http://remi.emo.net/MyWebService/AccessItUsingSoap. To invoke the
web service, the following request could be sent to the network host named “remi.emo.net”:

38

CHAPTER 3. APPROACHES TO SERVICE FUNCTIONALITY DESCRIPTION AND
COMPOSITION

1 | POST /MyWebService/AccessItUsingSoap HTTP/1.1

2 | Host: remi.emo.net

3 | Content-Type: application/soap+xml; charset=utf-8

4 | Content-Length: ...

5 |
6 | <?xml version="1.0"?>

7 | <soap:Envelope

8 | xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

9 | soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

10 | ...

11 | </soap:Envelope>

We can see that the service address, that is given in the WSDL service description file, is
used to find the service at lines 1 and 2 of the HTTP request. The previous example also shows

basic HTTP request
that SOAP uses the possibility of HTTP for a request to contain some content (lines 6 to 11)
to send the SOAP request to the web service (contained in a soap:Envelope). In a WSDL
service descriptions, a service port may have a SOAP address but can also have a binding to
some operation. In WSDL, an operation has a name and some input and output parameters
that can be typed using XML Schema (XSD), a language used to define grammars for XML
formats.

WSDL is an illustration of how XML can be used as a base format to provide extensibility
and interoperability. Not only does a WSDL description reuse XSD for its message format

XML extensibility
description but, even if WSDL has been designed to work with SOAP, it is not dependent on
it. WSDL is highly extensible and providing SOAP related information in a WSDL document
is only optional and rely on the capability of XML to mix namespaces. The primary drawback
of XML usage is the verbosity of the formats it produces.

While XML and its extensibility is well suited as a replacement for most binary and non
extensible formats, it is not always easy to read or write by humans. It is possible to build a
human oriented language based on XML but this is a difficult task and requires some compro-
mise. The most human oriented XML format is probably HTML (XHTML) and many of its
element names (e.g. “p”, “em”, “h1”, “br”) are abbreviations to make it faster to write content.

WSDL verbosity
WSDL is not designed to be written or read by humans and the best illustration is to eventually
give a full WSDL example in this manuscript.

39

3.2. THE CONVERGENCE OF SERVICE ORIENTED ARCHITECTURES AND THE
SEMANTIC WEB

1 | <?xml version="1.0" encoding="UTF-8"?>

2 | <definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

3 | name="StockQuote"

4 | targetNamespace="http://example.com/stockquote.wsdl"

5 | xmlns:tns="http://example.com/stockquote.wsdl"

6 | xmlns:xsd1="http://example.com/stockquote.xsd"

7 | xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

8 | <types>

9 | <schema targetNamespace="http://example.com/stockquote.xsd"

10 | xmlns="http://www.w3.org/2000/10/XMLSchema" >

11 | <element name="TradePriceRequest">

12 | <complexType>

13 | <all><element name="tickerSymbol" type="string"/></all>

14 | </complexType>

15 | </element>

16 | <element name="TradePrice">

17 | <complexType>

18 | <all><element name="price" type="float"/></all>

19 | </complexType>

20 | </element>

21 | </schema>

22 | </types>

23 | <message name="GetLastTradePriceInput">

24 | <part name="body" element="xsd1:TradePriceRequest"/>

25 | </message>

26 | <message name="GetLastTradePriceOutput">

27 | <part name="body" element="xsd1:TradePrice"/>

28 | </message>

29 | <portType name="StockQuotePortType">

30 | <operation name="GetLastTradePrice">

31 | <input message="tns:GetLastTradePriceInput"/>

32 | <output message="tns:GetLastTradePriceOutput"/>

33 | </operation>

34 | </portType>

35 | <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">

36 | <soap:binding style="document"

37 | transport="http://schemas.xmlsoap.org/soap/http"/>

38 | <operation name="GetLastTradePrice">

39 | <soap:operation soapAction="http://example.com/GetLastTradePrice"/>

40 | <input><soap:body use="literal"/></input>

41 | <output><soap:body use="literal"/></output>

42 | </operation>

43 | </binding>

44 | <service name="StockQuoteService">

45 | <documentation>This service ...</documentation>

46 | <port name="StockQuotePort" binding="tns:StockQuoteBinding">

47 | <soap:address location="http://example.com/stockquote"/>

48 | </port>

49 | </service>

50 | </definitions>

51 |

The preceding WSDL file could describe a web service accessible using SOAP and imple-
menting a“StockQuoteService” functionality with a single operation (at line 30). The operation

mixing XML
namespaces has an input and an output format and is bound to a SOAP operation (lines 39 to 41). It is

mainly composed of XSD elements (in the types element, lines 9 to 21), SOAP binding elements
(soap:* elements on lines 36 to 47) and of WSDL elements (rest of the structure).

Web service advertisement and discovery is provided by a Universal Description Discov-
web service registry

ery and Integration registry (UDDI). As previously introduced in figure 3.1, service providers
publish their description into the UDDI registry that processes queries from service consumers.
WSDL is used to describe web services in the registry. Web Service technologies are the base
of Semantic Web Services that we present in section 3.2.5.

40

CHAPTER 3. APPROACHES TO SERVICE FUNCTIONALITY DESCRIPTION AND
COMPOSITION

3.2.3 Micro Services and Dependency Injection

Web services presented in the previous section are the more commonly used implementation of
Service Oriented Architecture (SOA). SOA is also widely used in other contexts including the
.Net and the Java platforms.

In parallel to web services providing cross-platform and cross-language interoperability, a
service oriented approach may be applied at a smaller scale. The domain of micro services is

micro services
very active and there are an important number of frameworks and research experiments around
these platforms. Because they work in a more constrained environment, these frameworks are
easier to put into practice and to experiment with. Two main design patterns are used to achieve
low coupling provided by service orientation: the service locator pattern and the dependency
injection pattern. In this section, we will present these two patterns. An introduction and an
interesting discussion about these patterns can be found in [Fowler 2004].

In an object oriented programming environment, the key advantage provided by the service
service orientation
in OOPlocator pattern or by dependency injection is the decoupling of a service client from a particular

service implementation. A class Client using a particular service will only depend on the
interface Service that defines the service. A concrete instance implementing the Service interface
will be dynamically provided to the Client. The client is not responsible for the instantiation
of the implementation of Service: a third party is responsible for this instantiation and for
providing the instance to the client.

The service locator pattern uses a ServiceLocator class responsible for the discovery of
service locator

existing services. The Client queries the ServiceLocator to obtain one or all implementations
of a particular Service interface. Implementations of the Service interface can be provided by
any other part of the system. Figure 3.2 illustrates the dependencies between different classes.

Figure 3.2: UML Class Diagram: The Service Locator Pattern.

The service locator pattern is used by default in the Java platform in the form of a Ser-
Java services

viceLoader class. The ServiceLoader plays the role of a service registry and can be queried for
any type of services. Any “jar” archive (the packaging unit for Java libraries) can contribute
implementations of any type of service using the “manifest” file describing the jar. These facil-
ities are used to provide implementations for image loader, database drivers, etc. The pattern
is also present in Java dynamic modules systems like OSGi presented in [Marples 2001] and the
Netbeans module system (see [Boudreau 2007]).

Dependency injection applies the “inversion of control” (IoC) principle by externally provid-
dependency
injectioning their dependencies to objects. If a Client object requires a particular Service, a particular

instance of this service will be provided to the Client by a third party, either at construction

41

3.2. THE CONVERGENCE OF SERVICE ORIENTED ARCHITECTURES AND THE
SEMANTIC WEB

Figure 3.3: UML Class Diagram: Dependency Injection Principle.

time or later using a dedicated method. Figure 3.3 illustrates the dependencies between different
classes.

Dependency injection is used to design application building blocks decoupled from each
others. The application is defined as an instantiation and an assembly of these building blocks:

injection of service
implementations objects are instantiated by the application entry point and they receive references to each others

through injection: abstract references are passed as parameters of the constructor or using
“setter” methods. Various frameworks aim at maximizing the usability of the approach by
providing declarative descriptions of the injections. An example of a state of the art framework
for dependency injection, based on OSGi, is the iPOJO framework presented in [Escoffier 2007a]
and [Escoffier 2007b].

3.2.4 The Semantic Web

≫ Details about “From the Classical Web to the Semantic Web”

The underlying principle of knowledge representation methods is to represent knowledge
semantic web

in a structured way, as a network of concepts and relations. The “semantic web” is a vision
where most information in the world would be represented in such a structured way. On the
current “normal” world wide web, information is mainly expressed using natural language and
is hard to understand automatically. Expressing knowledge in a more structured way removes
language ambiguities and makes automatic interpretation easier. A more structured form of
knowledge causes search to be faster and more accurate.

Different approaches exist towards the realization of the semantic-web vision. One approach
lexical databases

consists in building structured knowledge bases based on the expertise of people. Such knowl-
edge bases include“lexical databases” like Wordnet presented in [Miller 1995]. Lexical databases
are used as support for other systems and in research, for example to refine classical web search
or improve indexing as in [Hotho 2003].

Another approach stimulating many research works consists in using automatic text analysis
to feed semantic networks of concepts. By parsing and doing natural language processing
on the world wide web, underlying concepts and relations can be extracted. Examples of

data mining
research extracting knowledge from Wikipedia are numerous, including for example [Iftene 2008]
and [Zaragoza 2007] or the DBpedia project presented in [Auer 2008] or at [Url-b]. Methods
working on dynamic high quality databases, such as Wikipedia, benefit from the activity on
these databases. Asserting the accuracy of knowledge is a problem inherent in automatic
knowledge extraction.

42

CHAPTER 3. APPROACHES TO SERVICE FUNCTIONALITY DESCRIPTION AND
COMPOSITION

Other initiatives try to stimulate contributions from people by proposing seamless semantic
adaptation of existing tools and languages. One example is the RDFa (Resource Description
Framework attributes) language that enriches classical web pages with semantics (see [Url-c]).
Other examples retain usual web pages made of narrative-style natural language but retrieve
most of the underlying knowledge from the semantic web. An illustration of this interleaving

adding semantic to
wikipediabetween natural language and semantically described knowledge is the Semantic MediaWiki

(SMW) project [Url-d]. The SMW project aims at extending MediaWiki (the wiki system on
which wikipedia and many other wiki are based) to make it possible to add semantic informa-
tions to the pages and to easily query this information to dynamically build page content.

This trend is an illustration of the fact that technology must be useable to have a chance
lessons on
acceptanceto be used. There are tools for semantic knowledge authoring such as Protégé [Gennari 2002]

[Url-e]. These knowledge authoring tools are interesting but, in spite of their quality and usabil-
ity [Noy 2000], they still may seem over-complicated for the average user [Garćıa-barriocanal 2005].
A more accessible approach, where semantic information is progressively inserted into tradi-
tional information representation such as in the Semantic MediaWiki (SMW), is a better choice
from the acceptability and dissemination point of view. While pure semantic web has not yet

success of
progressive insertioncome into common use, “tagging” systems and initiatives such as SMW are quickly accepted

and more promising. Tagging systems are those systems where users can add some tags of their
choices to various documents and media (pictures, movies, etc.).

End of details about “From the Classical Web to the Semantic Web”
(referenced from page 28)

Introduction to Ontologies

≫ Details about “Ontologies and Ontology Alignement”

The term “ontology” is increasingly used to represent sets of interrelated concepts. In
ontologies

informatics, an ontology is “an explicit specification of a conceptualization” as introduced
in [Gruber 1993], or in more details “a formalization of a shared conceptualization of a domain
of discourse”. Various formalisms exist to represent an ontology, a common one is the Resource
Description Framework (RDF) that is used in this manuscript. In an ontology, concepts can
be linked by various relations: subsumption (one concept is a subconcept, a specialization, a
particular case of another), type (a concept property as a given type that may itself reference
any concept), etc.

The Resource Description Framework (RDF) is one of the simplest formalism used to
RDF

represent knowledge. An RDF model is composed of triples of the form “subject predicate
object” where “subject” and “object” are two resources and “predicate” is the name of a relation
linking these two resources. RDF is the base for most used ontology languages like RDF Schema
(RDFS) and the Web Ontology Language (OWL).

One principle in knowledge representation and sharing is to reuse existing concepts whenever
possible and create new concepts when needed. Ontology alignment consists in putting in

ontology alignment
relation concepts from different ontologies. Ontology alignment is accomplished mainly by
adding some subsumptions and equivalence relations between concepts created independently.
Automatic and assisted ontology alignment is an active research field as illustrated by recent
publications including [Choi 2006], [Doan 2003], [Shvaiko 2008] and [Euzenat 2007]. Ontology
alignment can be used to enable interoperability in pervasive context-aware applications as
detailed in [Euzenat 2008] or as we have presented in section 3.1. In our investigation, we will
build upon the use of alignment of software design to enable interoperability.

End of details about “Ontologies and Ontology Alignement”
(referenced from page 28)

43

3.2. THE CONVERGENCE OF SERVICE ORIENTED ARCHITECTURES AND THE
SEMANTIC WEB

3.2.5 Semantic Web Services

The previous sections have described how the domain of knowledge representation can contribute
to software interoperability. This section presents Semantic Web Service technologies that are
at the convergence of knowledge representation and service oriented architectures.

≫ Details about “Semantic Web Services”

Descriptions of non-semantic web services (WSDL files) provide information about the
functionality level
service
interoperability

protocol and syntax used to access services and developers have to understand what function-
alities are provided by existing services. As introduced in chapter 2, Semantic Web Services
add semantic interoperability to web services: a description of the functionality of each ser-
vice is provided in a machine readable form. Considering these functionality descriptions as
live objects of the design makes it possible to build automatic tools and reason about these
functionalities.

Two major set of technologies are used for semantic web services: OWL-S and WSMO.
two technologies:
OWL-S and WSMO Both technologies remain active. An analysis in [Lara 2004] places WSMO as more promising

but less mature than OWL-S; since this analysis was written, WSMO has evolved and matured.
We will briefly describe these two frameworks in this section.

Built on top of Web Ontology Language (OWL), OWL-S (OWL for Services) can be used
description of
OWL-S to semantically describe services and their functionalities. OWL-S is an OWL ontology that

describes three facets of each service:

• One service profile used to describe the functionalities of the service

• One service process model describing how the service works

• One service grounding describing how to concretely access the service

OWL-S is a W3C Member Submission accessible at [Url-f].

OWL-S service profile

Figure 3.4 describes the service profile and is extracted from the OWL-S specification avail-
able at [Url-f]. A service profile describes both functional and non-functional (name, description,
etc.) properties of a service. Functional properties are articulated around the transformation of
both data and state. The transformation applied by the service on its data is described by its

IOPE
set of inputs and outputs. The conditions express the required state of the world for the service
to be executable. The effect of the service execution on the state of the world is modeled by its
result.

Having each service registered against a taxonomy of functionalities makes it possible to
reason about equivalence and subsumption of functionalities. With inputs, outputs, precondi-
tions and effects (IOPE), programs have access to even more details for the manipulation of
services.

OWL-S process model

An OWL-S process model describes the correct sequence of messages that a client can receive
and send in its interaction with a service. This can be described as a set of atomic processes

service interaction
sequence orchestrated using various control flow operators including sequence, condition, parallelism, it-

eration. The service profile expresses how the input, output and parameters of atomic processes
are related to each others: “variables” are used to express constraints between different elements
(as in rule languages). Through the grounding of each atomic process, the process model can
be seen as a description of an orchestration pattern.

44

CHAPTER 3. APPROACHES TO SERVICE FUNCTIONALITY DESCRIPTION AND
COMPOSITION

OWL-S grounding

Service grounding is a mapping of any semantic element onto a concrete representation
required to interact effectively with the service. Grounding can for example include a mapping

reference to the
implementationof input and output types to concrete message formats. OWL-S is often used in conjunction

with WSDL: atomic processes used in the service profile are mapped to some WSDL operations.
(end of details for bulleted list)

Source: http://www.w3.org/Submission/OWL-S

Figure 3.4: The OWL-S service profile metamodel.

The Web Service Modeling Ontology (WSMO) is one of the technologies developed by the
ESSI WSMO working group ([Url-g]). WSMO is a model for semantic description of web
services. The WSML (WSM Language) is one of the possible syntaxes for describing services

description of
WSMOusing WSMO and proposes a choice between multiple tradeoffs on expressive power and rea-

soning capabilities. WSML is a human readable language aimed at being simple to read and
write. Many articles describe WSMO and associated technologies: [Roman 2006] gives a brief
introduction while more details can be found for example in [Roman 2005].

Like most other service technologies, WSMO properly decouples interface from implemen-
decoupling using
ontologies and
mediators

tation: this is done at an upper level where an interface is the semantic description and an
implementation is a web service interface. The most important aspect of WSMO is that it
favors strong decoupling by including the concept of a mediator in its model: WSMO services
have no strong dependency between each others and they communicate and interoperate using
mediators at different levels (ontology, communication, etc.). WSMO is articulated around four
points that John Domingue, chair of the WSMO working group, calls the “holy cross” in [Url-h]:

• Ontologies

• Goals

• Web Services

• Mediators

45

3.2. THE CONVERGENCE OF SERVICE ORIENTED ARCHITECTURES AND THE
SEMANTIC WEB

Ontologies

All WSMO aspects are described in an ontological description framework. Ontology frag-
ments are provided in the form of a set of concept having attributes and relations. Relations
between concepts include elements such as subsumptions (sub typing), symmetry or transitivity.
More specific constraints can also be expressed using logical expressions.

Goals

Goals in WSMO correspond to what will be called functionality in other chapters of this
manuscript. The concept of goal properly separate an objective provided by a requester (human
or machine) from the existing services. Service discovery and reasoning can then be used to
automatically fulfill the goal of the requester based on the capabilities provided by web services.

Web Services

Web Services are described in WSMO in terms of the capabilities they provide and of the
interface they expose. WSMO can do direct references to grounding information such as Web
Service Description Language (WSDL) descriptions. Grounding is not limited to WSDL and
can be done using other methods, for example using the Semantic Annotations in WSDL and
XML Schema (SAWSDL) presented in [Kopecky 2007].

Mediators

Different types of mediators are defined in WSMO to enable interoperability on the different
aspects of WSMO. Ontology to ontology (OO) mediators do integration between heterogeneous
ontologies. Goal to goal (GG) mediators interrelates goals. Web service to web service (WW)
mediators adapt web services interfaces to make them interoperable. Web service to goal (WG)
mediators maps web services capabilities to goals.

(end of details for bulleted list)

Provide the formally
specified
terminology
of the information
used by all other
components

Semantic description of
Web Services

Objectives that a client may have
when consulting a Web Service

Connectors between components with
mediation facilities for handling
heterogeneities

Wed ServicesOntologies

Goals

Mediators

Source: http://www.wsmo.org/papers/presentations/SWS.ppt

Figure 3.5: The four facets of WSMO services.

46

CHAPTER 3. APPROACHES TO SERVICE FUNCTIONALITY DESCRIPTION AND
COMPOSITION

Wrap up on semantic web services

The motivation of Semantic Web Services (SWS) is to enable machine interpretation of
SWS = SW + WS

data and functionalities that are shared on a network. SWS seeds from the observation that
Web Services (WS) technologies enable interoperability at a syntactic level only: machines have
no information about the functionality provided by a web service. SWS is the fusion of WS
technologies and Semantic Web (SW) technologies to describe web services functionalities in a
machine interpretable format.

The presentation about both OWL-S and WSMO that best fits the context of our work can
be found at [Url-i]. The reasoning about capabilities provided by SWS inspired our approach

technologies remain
complex. . .to enable dynamic spontaneous interoperability in intelligent environments. Even if WSMO

provides a human friendly language for writing various descriptions, semantic web services
frameworks are not directly applicable to our problem for two major reasons:

• SWS are complex for the non-initiated developer.

• SWS work on web services without notion of connection.

In our context, the building blocks of the applications need to be assembled and remain con-
. . . and web-service
orientednected during the time the application is running. SWS technologies concentrate on modeling

atomic invocations of web services and ignore the notion of connection between services.

End of details about “Semantic Web Services”
(referenced from page 30)

3.3 Approaches to Service Composition

All software methods aiming at favoring the design of reusable building blocks suppose that new
applications can be built by composing existing building blocks. In this section we classify and
present various approaches for the composition of services.

≫ Details about “Service Composition”

As introduced in chapter 2, section 2.6, composition is not specific to service oriented
service composition

architectures. Over objects or components, services open the possibility to do composition in
an automatic and dynamic way. Service composition range from assisted manual composition
to fully automatic composition with complex reasoning. Composition of services can be done
to produce applications or new services.

We classify composition methods in three top level categories:

• Manual composition of services.

• Automatic composition based on workflow methods.

• Automatic composition based on artificial intelligence (AI) planning methods.

A review of existing automated composition methods, that corresponds to our last two cate-
gories, is proposed in [Rao 2004]. The following sections detail these three different composition
approaches. Figure 3.6 sums up this classification of service composition methods.

End of details about “Service Composition”
(referenced from page 34)

47

3.3. APPROACHES TO SERVICE COMPOSITION

3.3.1 Manual Service Composition

The standardization of web services (or other service technologies) provides a clear definition of
assembling services

the interface of a service while abstracting its implementation details. Using service discovery,
tools can list existing services and help a programmer in assembling them to build a composite
application. Tools can be graphical and, by reasoning on services inputs and outputs, can
efficiently filter possible service compositions. The use of services with well defined interfaces
allow powerful and task-efficient tools for interactive service composition and analysis.

From descriptions interactively written by the developer, automatic execution and orches-
automatic
orchestration tration of services can be performed. This is made possible by the description of service interface

and communication protocols. Some tools provide a way to monitor and interfere with a run-
ning composite application. Tools based on services and allowing composition are numerous:
examples like JOpera and Self-Serv can be found in [Pautasso 2005b], [Pautasso 2005a] and
[Benatallah 2003].

The composition based on simple services has limited application as it requires human
human operator is
required interaction to build composition applications or services. The objective of semantic web services

and other language for service functionalities description is to enable automatic composition
of services. To make automatic composition possible, more information on service inputs and
outputs and on service functionalities must be provided. The following sections describe existing
approaches for automatic service compositions.

ServiceCompositionMethod

PlanningBased

IOPE-Based

IO-Based

MediaConverters ...

PE-Based

BlocksWorld ...

WorkflowBased

ManualComposition CompositeApplication CompositeService

Figure 3.6: Classification of Service Composition Methods.

3.3.2 Workflow Methods for Automatic Service Composition

Workflow based methods for automatic service composition can be seen as an extension to the
manual composition method. Instead of assembling existing running web services, the developer

abstract assembly
assembles abstract services or functionalities. The assembly is done by interrelating different
abstract services with workflow operators including sequence, parallelism, conditions, etc.

In the simplest case, the designer describes an application as a workflow using invocations to
abstract (and possibly concrete) services. When the application is executed, service discovery

runtime service
selection is used to find a concrete service implementing each abstract element in the workflow. Using

an abstract workflow makes it possible to automatically adapt the application to the operating
condition and the available services. When an abstract element in the workflow needs to be filled

48

CHAPTER 3. APPROACHES TO SERVICE FUNCTIONALITY DESCRIPTION AND
COMPOSITION

with a concrete running service, there may be some cases where multiple services are available.
Different alternatives in such case are to query the user of the application, to choose the “best”
implementation based on predefined criteria or to choose an implementation at random.

Considering an application composed using workflow as a service makes it possible to
hierarchical
compositionconstruct services in a hierarchical way. A service can be composed of other services, some

being atomic services, others being described themselves as a workflow. One of the most
widespread workflow language is the industry standard Business Process Execution Language
(BPEL) which is discussed for example in [Khalaf 2003]. Many editors are available in the
industry for the visual design of workflows, particularly in the context of web services.

3.3.3 Planning (AI) Methods for Automatic Service Composition

Planning methods for service composition evolved from planning in Artificial Intelligence (AI).
These methods underly the descriptions of semantic web services described in section 3.2.5.
At a general level, these methods are based on the IOPE presented above: inputs, outputs,
preconditions and effects.

In planning based methods, services are represented as transformation of data, through their
reaching the goal

input and output, and/or as transformation of the state of the world, through their preconditions
and effects. A good detailed application of this approach can be found in [Tecnologica 2004].
The objective of planning based methods is to find a sequence of service invocations that
transform the current state in the goal state. We can categorize some of the methods on
the criteria that they are working mostly on input/output transformation or only on world
transformation.

The problem of planning with only inputs and outputs can be reformulated as finding a
successive format
conversionssuccession of compatible converters from a source format to a target format. Planning then

consists in chaining service invocations. An applied example of such chaining framework is the
Microsoft DirectShow environment that can automatically build graph of “filters”. As explained
in [Layaida 2005], filters can be of three types: source, transformer and renderer. A sequence
of transformers can be created automatically by DirectShow to meet a particular requirement
(e.g. low quality rtp streaming of an high quality mpg video). Same architectures can be found
in other multimedia frameworks such as the Java Media Framework (JMF).

The other category of service planning only reasons on preconditions and effects of service
blocks world

invocations. This corresponds to the classical blocks world of artificial intelligence (see [Url-j] for
details). Each service invocation is an action that can be executed only under certain conditions
and that transforms the world state. Planning then consists in finding a sequence of service
invocations that will successively transform the initial state of the world into a state that fulfils
an objective: a state in the set of goal states. Solving this planning problem requires to explore

graph search
the graph of possible succession of actions. Different search strategies exist, including forward
chaining, backward chaining and heuristic based graph search.

Semantic web services descriptions frameworks such as OWL-S or WSMO allow both aspects
planning for SWS

of transformation to be expressed: both inputs/outputs and preconditions/effects are supported.
The semantic web frameworks are perfectly suitable for the descriptions of services that can be
composed using planning methods. Unfortunately, existing execution environments for these
framework concentrate on efficient discovery by only adding semantic subsumptions to classical
web service functionalities discovery as in [Srinivasan 2006] and [Shafiq 2007].

49

3.4. WRAPPING IT UP IN CONTEXT

3.4 Wrapping It Up in Context

In chapters 2 and 3, a vast range of subjects were treated. This section tries to sum up the
major points to remember about these chapters and to briefly introduce our approach.

The domain of ambient intelligence, even from a research point of view, requires state of
Interdisciplinarity
of intelligent
environments

the art software engineering method to evolve effectively. Intelligent environments are interdis-
ciplinary and the cooperation of specialists from various domains is fundamental.

In this context, improving integration can be done by proposing software engineering meth-
importance of
usability ods that are easily understandable and applicable by all the specialists involved in the conception

of intelligent environments. Any software design method or architecture proposed for intelligent
environments should insist on usability and acceptability: a method should ensure the quality
of the result it produces but should also maximize its acceptability by its target audience.

Making applications sensitive to their context of use is also a fundamental element for
on context
orientation making applications look intelligent. Research around context awareness is very active. Most

of the proposed solutions are architectural: context frameworks give a structure to the overall
context aware system. From our analysis, service oriented computing is an adequate tool for the
application developer and has to be integrated with information about of context. As presented
in chapter 4, we envision services as first class software element manipulated by application
designers to improve integration and reuse. Depending on the approach, the structure imposed
by a service oriented architecture and a context framework may conflict. In our contribution,
we tried to separate the service oriented architecture from the context awareness.

The domain of knowledge representation tackles the question of the integration of knowl-
on functionality
alignment edge coming from independent sources: this integration is called “ontology alignment”. Real

interoperability of software components can be achieved with a vision that is similar to that
of knowledge representation. Software services must be semantically described in terms of
the functionalities they provide. This semantic description of provided functionalities should
be neither at the implementation level nor at the interface or communication protocol level.
The description of service functionalities should be conceptual and should allow functionality
alignment.

As an example of services, consider a “printer” service: what should be described semanti-
example
functionality cally is the fact that a printer service can print a file that is passed to it, has some properties

such as the ability to print colors, an indicative printing speed, accepted formats, etc. Lower
level information such as the underlying service oriented technology (e.g. Web Services using
SOAP) or the method sequencing and signatures (e.g. “boolean printFile(String file-

Name)”) are “implementation details” that constitute grounding. Grounding expresses how an
abstract functionality is grounded in a concrete implementation.

Semantic Web Services (SWS) place themselves at the confluence of service oriented ar-
semantic web
services chitectures (using web services) and knowledge representation domain. The goal of SWS is to

describe web services in a sufficiently structured way that will make it possible to do automatic
service composition. Two major classes of approach exist for automatic service composition:
workflow methods and planning methods.

The designer of a service can program it by defining a workflow of invocations to abstract
on workflow-based
composition services. When the service is executed, service discovery is used to find a concrete service imple-

menting each abstract element in the workflow. One interesting aspect of workflow methods is
that they are able to describe not only sequence of service invocations but also wiring of services
(dataflows). In our context, we are trying to compose services to build applications: we need
to establish connections between services that will continuously send messages to each others.

composition
patterns This adequacy of workflow methods inspired us to use compositions patterns as building blocks

for our approach as presented in chapter 6. We believed that this is an original approach for
reasoning about the interaction of different service composition patterns as we propose.

50

CHAPTER 3. APPROACHES TO SERVICE FUNCTIONALITY DESCRIPTION AND
COMPOSITION

Semantic web services allow service descriptions that make planning-based approach possi-
on planning
methodsble for service composition. Semantic web services frameworks, however, concentrate on efficient

discovery. This concentration on efficient discovery is in agreement with their objective to pro-
vide semantic discovery for the huge amount of web services available on the web. In our context
of intelligent environments, we need planning based composition to happen to enable sponta-
neous interaction of services. The number of services present in an intelligent environment is
small compared to the number of services available on the entire web: a powerful planning based
reasoning is more adapted to our context than “simpler” efficient subsumption-based discovery
present in current implementations of semantic web services frameworks.

As we will detail in 4, our approach takes inspiration from the domains and methods pre-
sented above. An important particularity of our contribution is the concentration on the us-
ability aspect that is key in the context of intelligent environments design. Success of intelligent
environments come from effective interdisciplinary integration and we aim at making methods
usable by the variety of specialists involved in the development task.

51

3.4. WRAPPING IT UP IN CONTEXT

52

Chapter 4

Identifying Integration Problems
in Intelligent Environments

4.1 Motivation and Contribution Overview

The conception of intelligent environments is highly interdisciplinary, involving many specialists
sharing is the key

with different backgrounds and cultures. We are convinced that the success of research in
intelligent environments is tied to the effective communication, interaction and sharing between
these communities.

To improve the synergy between these different domains, we propose to analyze the state
of the interactions between different specialties. In this chapter, our analysis will be illustrated
by a distributed 3D tracking system developed in the PRIMA group.

The goal of our analysis is to identify weak points that penalize experimentation and ad-
vances in intelligent environments and their applications. This analysis has been done to obtain
more precise directions on the requirements for dedicated software design methods and tools.

analysis objectives
Weak points are opportunities for evolutions: we aim at extracting, from the identified weak
points, concrete requirements and coarse grained directions that guide the rest of the thesis.

In the light of our analysis we are able to examine integration problems in intelligent
environments. We find that the move towards distributed computing is an occasion to introduce

chapter
contributionsnew software design methods and architectures. Service oriented computing and architectures

are well suited for intelligent environments: they provide an approach to solve integration
problems while providing a means for distributing the applications across multiple computers.
Further analysis efforts show that we must go beyond service oriented principles to enable real
dynamicity and spontaneous service interactions in open systems.

4.2 The Intelligent Environment Landscape

4.2.1 Many Specialties Involved In Intelligent Environments

Following our definition, an intelligent environment must be capable of modeling and recognizing
a users’ activity to provide the user with contextually pertinent services. These requirements
imply that the system must have capacity for both perception and action. Building intelligent

interdisciplinarity in
intelligent
environments

environments thus requires specialists from many domains ranging from artificial perception to
machine learning to artificial intelligence to robotics and man-machine interactions. This list
could be considerably enriched with entire domains such as computer and sensor networks or
with very active sub-domains such as natural language understanding.

53

4.2. THE INTELLIGENT ENVIRONMENT LANDSCAPE

We started our analysis by identifying and classifying existing research and engineering
contributions around intelligent environments in our research team. We propose a categorization
along 4 main axes:

• Fundamental perception

• Integrated perception to autonomic computing

• Activity modeling and recognition

• Human-computer interaction

Fundamental perception

We call “fundamental perception”, research and system design on artificial perception that
can be separate from interacting with upper levels of a system. Fundamental perception
algorithms and components are often developed, tested and evaluated off-line, on recorded
databases. These systems are designed to be parametered and controlled by upper levels in the
system. Intelligent environments are at the confluence of many domains that are still highly

unsolved problems
active. Whether in computer vision or acoustic perception, much research is concerned with
solving problems that are already difficult without the constraints and specificities of intelligent
environments. Working in these domains includes object recognition, face detection, visual
person identification and voice recognition.

Integrated perception to autonomic computing

“Integrated perception” includes research on artificial perception that concerns operation in
real world situations. This category includes work on visual or multimodal tracking systems.-

The “integrated” part comes from the fact that the final product is usually a perceptual
robust perception

component that can provide a packaged service in a wide range of scenarios. Taking works
from “fundamental perceptions” and optimizing them to run in real time is the “simplest” form
of integrated perception. In addition to the real time aspect, integrated perception often has
to operate in less constrained environments which generates important specific challenges that
might be considered uninteresting for fundamental perception: easy or automatic configuration,
automatic adaptation to changing environments, etc. Insisting on these problematics leads to
the domain of autonomic computing that aims at building systems that can adapt to their
environment and continue working.

Activity modeling and recognition

“Activity modeling and recognition” aims at studying, describing and observing human
activity. On the one hand, it consists in finding formalisms to express and describe these
activities. These works are heavily using perception capabilities of the environment and are
used to provide services to the users (e.g. in [Essa 2000], [Christensen 2002]). Modeling user

recognizing human
activity activity or group activity is a key requirement to provide them with context aware services: not

understanding what users do makes it impossible to avoid unnecessary distractions or to provide
additional assistance at the right time. Even the users are not directly in interaction with the
system, recognizing their activity can still be central in some applications such as automatic
recording of meetings and seminars ([Metze 2005]), or ambient monitoring and assistance to
favor elderly people living in their personal apartment ([Url-k], [Cook 2006]).

54

CHAPTER 4. IDENTIFYING INTEGRATION PROBLEMS IN INTELLIGENT
ENVIRONMENTS

Human-computer interaction

An intelligent environment aims at providing the user with useful context dependent services
and thus how the user interact with the system is a fundamental aspect. In an environment

ergonomics
where standard screen/mouse/keyboard disappear to be replaced by more diverse and sponta-
neous interaction forms (gesture, speech, portable and wearable devices, etc.), the interaction
paradigms have to be reinvented, tested and improved.

Apart from the ergonomic aspect of the new form of interactions, new engineering methods
also have to be found. The interactive capabilities of an intelligent environment are continu-
ously evolving: a user brings his laptop or cell phone, this adds many perception and action
capabilities; the ambient noise is too loud, speech recognition and acoustic feedback will not
be of much use; etc. Given these variations on the environment capabilities, interactive system

dynamic interaction
contextdesign must be general: the major parameter in the current devices is the screen size and it has

only a limited impact on the design. Todays interactive systems are designed for a small family
of hardware configurations. Given the increase in user mobility and in the number of devices,
future systems will have to increasingly address an open environment containing devices that
are not known at design time, neither in number nor in variety.

(end of details for bulleted list)

The involvement of a wide spectrum of scientific communities is necessary for the creation
of intelligent environments. Their interaction and cooperation is the key to the realization of

inter-cultural
interactionsthe ambient intelligence vision. This interaction already shows to be a hard task in the context

of our team where different specialists have different cultures and objectives. We observe that
this aspect takes an increased importance with ambient intelligence systems.

4.2.2 Problems With Capitalization and Reuse

The problem of reuse and conservation of legacy software often manifests when designing ap-
plications at higher abstraction levels. For example, applications involving activity modeling or
learning of user habits and preferences must have perceptive capabilities. Reusing off the shelf

attempt to reuse
perceptual components being the fastest alternative, designers often follow the following steps:

• study the perceptive functionalities that existing perceptual components provide and di-
rectly reuse it when possible

• else, find a backup solution among the following

– implement a component that has the same functionality but uses a simplified and
constrained method (e.g. people localization using an RFID tag reader)

fallbacks

– implement a component that is based on the methods used by perception people
but with the proper packaging for its use in higher level systems; this usually ends
up with a poor quality and poor performance component as the expertise is missing
from its design

– decide to work on purely simulated data supposing that one day the perception will
do exactly what they want

All the enumerated situations can be observed depending on the context. The first situation
virtuous circle:
continuous
integration

involving reuse brings a mutual benefit to the stakeholders: perceptual components designers
benefit from having their components used and tested in various contexts and, at higher ab-
straction level, application designers can build bigger systems faster and safer. The reuse is a
virtuous circle: continuous reuse and integration makes further integration easier.

The lack of software integration, from perceptual components to higher level applications,
higher levels
penalizedheavily penalizes higher abstraction level efforts. Software designers have to do substantiate

55

4.2. THE INTELLIGENT ENVIRONMENT LANDSCAPE

additional development, often to obtain only low quality stubs of perceptual components for
their experiments.

At lower abstraction levels (e.g. perceptual components), the lack of integration and reusabil-
lower levels also

ity hinders the ability to test algorithms and systems. The lack of integration also becomes a
limitation considering two current evolutions of perceptive systems:

• perception systems are increasingly distributed,

• perceptual components increasingly interact.

perception systems are increasingly distributed

To illustrate the tendency to distributed processing in perception systems, we can take a
simple example of a tracking system working at the scale of a building. In this example we will

example of vision
systems restrain the sensors to cameras covering a meeting room, an office and a corridor. Even if we

could use video or network cables long enough to wire all the cameras to the same computer,
it would not be able to support the acquisition and processing or transmission of all the video
streams. This first constraint explains the initial requirement for distributed processing of sensor
data: all the processing necessary for the perception cannot happen in a single computer. Even
the 3D tracking system that may be run on the cameras (usually 3 to 5) in the office require
to be distributed to be properly operating at the time of its creation. The problem of building
and defining architectures for perception systems is an active area of research as illustrated
in [Jovanovic 2007], in [Crowley 2007] or in [Lömker 2006] and [Wrede 2006].

This kind of distributed processing is different from grid computing: it is not only a question
of dividing a computing task in part and scheduling their execution on a computer grid. In the
case of perceptual systems, computers are not interchangeable: sensors such as video camera,
microphones, RFID tag readers or bluetooth adapters are connected to particular computers.-

Even if data can be transmitted to be processed in another computer, network bandwidth
localization of data

limitations still prevent some sensor data types to be systematically transfered. Lossless video
stream transmissions quickly break any existing network down: a camera such as [Url-l] doing
acquisition of 1600x1200 images at 30 Hz with a digitization of 12 bits per pixel (1600 ∗ 1200 ∗
30 ∗ 12 = 691.2Mbits/s) already uses a dedicated gigabit ethernet connection to communicate
with its host computer. Image acquisition technology currently evolves as fast as networks and
we can expect this tendency to continue: cameras are present in many devices, are increasing
in resolution and represent a major industrial market.

perceptual components increasingly interact

Each perception technique has its intrinsic limits that can be overcome only by getting
feedback from other perception systems or from higher level systems. No perception method is

limited reliability of
perception 100% reliable and most of domains tend to converge to a limited reliability. Only a few tenth

of percent improvement is achieved each time a method is improved.

The tendency to solve the intrinsic limitations of each perception method is to merge mul-
tiple methods that are all imperfect but complementary. The fusion of methods is inspired

merging perception
methods by natural perception. In the case of human perception, it has been shown that there is a

continuous integration and feedback between different perception modalities as illustrated for
example in [Giard 1999]. Without the interaction of these perceptions, humans perception is
like computer one: inaccurate and imprecise. A concrete example is the use of lips reading when
trying to understand speech in noisy environments as studied in [Erber 1975]. This multimodal
computer perception can be done directly at the signal level, by considering all the low level
signals (audio, video, ...) as a whole, or at higher level by reasoning about the output of low
level perception process (tracking, voice recognition, ...).

56

CHAPTER 4. IDENTIFYING INTEGRATION PROBLEMS IN INTELLIGENT
ENVIRONMENTS

4.3 Symptomatic Example: the 3D Tracking System

Section 4.2 presented the variety of specialties involved in intelligent environments. In sec-
tion 4.3, we present an existing 3D tracking system developed in the PRIMA team. This tracking
system will serve as the main illustration in our analysis.

The 3D tracking system presented in this section is a major element in many intelligent
tracking system as
an integratorenvironment scenarios. A 3D tracking system has the potential to integrate a considerable

variety of contributions including image processing, audio localization, localization using wifi
or GPS, person identification, etc.

The description given is this section is fundamental as it illustrates and guides our analysis
the seed of our
contributionsof the conception of intelligent environments. All the contributions presented in the rest of this

manuscript (chapters 5 to 8) are motivated by this analysis presented in following sections.

4.3.1 General Principle of the Tracking System

We will use a 3D tracking system developed in the PRIMA group (there are equivalent prob-
lematics in other works and in other teams) as an illustration of perception systems. This 3D

PRIMA’s tracking
systemtracking system is initially an improvement over an existing 2D tracking system. The basic

principle of this 2D tracking system is to detect and follow visual targets in the image, making
an efficient use of computing resources.

The tracking system has a set of current targets and a set of detection regions. A detection
detection regions

region is a rectangle in the image were the system will look for the appearance of new targets.
Detection regions are usually fixed on entry points (doors, steps, etc.) or can be randomly
moved at each frame to statistically cover all the image (in a few frames).

Both detections regions and the regions around tracked targets are used for detection. A
image based
detectiondetection is an affectation to each pixel (of the region of interest) of a probability of target

presence. The detection can be performed with various image processing algorithm. For exam-
ple, one method is to compute an image difference between the current image and a reference
background image.

The 2D tracking system operates as follows:
2D tracking process

• Predict the new position of each target: based on the position, size and speed of each
target in previous frame, we predict in which region of the image it should be at the
current frame.

• Estimate the new position of each target.

– A detection is performed in the region of interest obtained by the prediction of the
next position of the target.

– From this detection image, the new position and size of the target is estimated.

At this step, “split” and “merge” can also happen based on various criteria. A “split” is
the replacement of a single target by two targets: this happen when the detection image
seems to contain two distinct targets. A “merge” is the opposite: two targets become too
close or overlapping, the system replaces them by a single one.

• Do a detection for new targets in each of the detection regions. A new target is created
on the detection region if the detection has a sufficient “energy”; that is if the overall
probability of target presence in the detection region is sufficiently high.

Using this principle, image processing is only done where necessary: in the detection regions
and around the targets.

57

4.3. SYMPTOMATIC EXAMPLE: THE 3D TRACKING SYSTEM

4.3.2 From 2D to 3D Tracking

The first attempts to move to 3D tracking were done by running multiple 2D trackers and
interpreting their results. Supposing the targets are evolving in a plane in the 3D space, we can

n ∗ 2D = 2.5D

convert a position in the camera image to a position in a 3D reference frame. Doing so for each
target on each camera, we obtain targets in the 3D space. The 3D tracking system then tries
to associate targets from different cameras together. This “simplest” approach is only a kind
of 2.5D tracking: the tracking itself is done in each camera and the occlusion problems are not
better solved than in 2D tracking. This approach was only briefly experimented and a full 3D
tracking was quickly implemented to robustly solve occlusion problems.

Full 3D tracking consists in tracking targets directly in the 3D space. Compared to the 2D
real 3D tracking

tracking case, both the set of detection regions and the set of targets are defined in the 3D space;
target prediction is also done in 3D space. The detection of a 3D region of interest (predicted
target or detection region) is done by projecting it on each of the camera 2D image, doing the
detection on the projected region on each camera and then merging back the probability of
target presence issued from the 2D detections.

Being it 2.5D or 3D, the tracking system started to use 3 cameras and to require much
computing resources. Depending on the size of the images, the number of cameras and the

distribute for
performances number and size of the targets, the tracking rate was not following the framerate of the cameras

anymore. This performance problem was the first motivation to split the system and distribute
it among multiple computers.

This initial split led to the tracking system as it was at the beginning of our investigation.-
This initial redesign of the system consists in having a single 3D tracking component for

a tracker + one
component per
camera

the system and an additional component for each camera. The “3D tracker” is responsible for
holding the set of detection regions and the set of current targets. When it has to do a detection,
the 3D tracker will delegate to each camera the task of doing a detection in the 2D image space.
Each component responsible for this 2D detection is called “detector estimator”.

When it has to do a detection, the 3D tracker will pass necessary information to each detector
estimator, receive back the result and merge the informations from all detector estimators. The

3D tracking process
cases of detection regions and targets are a little different:

• For detection regions, the tracker projects the 3D detection region to a 2D region of interest
on each camera using the camera calibration (a transformation from the 3D space to 2D
image coordinates). This 2D detection region is passed to the detector estimator that
is responsible for doing the 2D detection (e.g. background subtraction) and summarizing
it as 2D gaussian estimated from the 2D detection image. This gaussian representation
of the 2D detection is transmitted back to the tracker that fuses it with the other same
informations coming from other 2D detector estimators.

• For 3D targets, the 3D region of interest is projected on each camera as for detection
regions. In addition to this information, the 3D prediction is also projected to each
camera space. This 3D prediction is a 3D gaussian, and, when it is projected, it is
approximated as a 2D gaussian (mathematically, the projection or marginalization of a
3D gaussian is not an exact 2D gaussian). Receiving a 2D region of interest together
with a 2D prediction of the target position, the detector estimator does the detection and
fuses it with the provided estimation. The 3D tracker then fuses the result of all detector
estimators to obtain the current target position.

The conversion from 2D to full 3D tracking required to split the system and distribute it
across multiple computers. Initially done only for performance concerns, the separation of the

a necessary system
review system is minimal and not necessarily done in the best way. The example of the evolution of

the tracking systems perfectly illustrates that systems need to be reviewed when they need to
be distributed. This brings two remarks that will impact our approach:

58

CHAPTER 4. IDENTIFYING INTEGRATION PROBLEMS IN INTELLIGENT
ENVIRONMENTS

• the conversion to distributed computing should be relatively easy to make it acceptable
for the various specialists and,

• the necessary rework of most of the contributions is the occasion to introduce simple but
state of the art methods of software development.

4.3.3 Distributed Tracking Using BIP

The 3D tracker and its detector estimators, as presented in previous section, are different pro-
cesses that must be able to run on different computers. Communication between this processes

from ad hoc
communications. . .were first performed in an ad hoc manner by specifying at startup time a port for each detector

estimator and a configuration for the 3D tracker containing the list of hosts and ports were
detector estimators are running. All network communication details and interpretation of the
stream were provided by the tracker and detector estimator code.

We illustrated the need for easier interconnection and communication between components
of perception systems through the case of the tracking system. At this time, this need was

. . . in each
project. . .present in almost every application and research work done in the team: automatic adaptation

and error recovery in the context of tracking systems, activity recognition based on a situation
model, automatic learning of situation models, etc. Basically, any component or application
that required to consume the output of the core perception components (tracking systems, voice
detection, etc.) had the need for easier connection and communication with these components.

To provide a simplification of network communications, a dedicated library was designed
at the same time as the 3D tracker described above. At the time, the library for network

. . . to a shared
communication
library

communications was called“BIP” like the underlying protocol it used: the Basic Interconnection
Protocol. BIP requirements were:

BIP

• Avoid having to specify host and port for interconnections.

• Have interoperable implementations in at least C++, Java and Tcl.

• Have a lightweight communication protocol that does not become the bottleneck of per-
ception systems.

• Enable interoperability between major operating systems (Windows, Linux, MacOS).

BIP was an early version of a library for service oriented architectures. BIP made it possible
service oriented
middlewareto define communication channels of 3 types: input, output, bidirectional. The protocol used

splits into messages the communication stream that occurs through a channel. The communi-
cation channels can then be added to a “service”. In addition to its communication channels
also called “connectors”, a service has a name and a set of state variables. The most important
aspect of BIP services is that they can be published and discovered using the concept of zero
configuration networking (Zeroconf): it makes it possible for components to advertise their
presence and look for other ones based on their names and their properties rather than their
host and networking port.

With Zeroconf, services are registered using the same form as in the standard Domain
Name System (DNS). Classical DNS constitutes a directory that is distributed and replicated

discovery using
Zeroconfon a relatively small set of servers. Zeroconf uses multicast UDP packets to implement a

fully distributed naming system on Local Area Networks (LAN). This DNS implementation
over multicast UDP is called Multicast DNS or mDNS. On top of DNS, DNS based Service
Discovery (DNSSD) only consists in advertising in a DNS repository services such as available
printers, ftp servers, ssh servers. BIP services are advertised using DNSSD and are self described
making it possible for other BIP peers to find their connectors and their variables.

59

4.4. OBSTACLES TO SOFTWARE CAPITALIZATION AND SHARING

As the name “BIP” was confusing and only described the protocol, it was renamed to
“O3MiSCID” standing for Object Oriented Opensource Middleware for Service Communica-
tion Inspection and Discovery. For typographical simplification, it is often named “OMiSCID”

naming
or “Omiscid” by stripping inconvenient exponent.

Having a system composed of multiple distributed components adds some deployment work.
necessity dynamic
deployment For the 3D tracker to find its detectors estimators, they must have been already started on the

proper computer. Some work has been done to automate this deployment using the Jade multi-
agent platform as detailed in section 6.2.2. One problem of tying the deployment of all the part
of the applications is that the application is entirely configured by the deployment descriptor.
Having such definitions of the application does not encourage developers to build applications
with a dynamic architecture.

4.4 Obstacles to Software Capitalization and Sharing

4.4.1 The Computer Mouse: a model for intelligent environments

Perception is massively used at higher abstraction levels. From the higher abstraction levels,necessary
abstraction perception should be accessed in abstraction of the implementation details. Choosing how to

abstract lower level processes is delicate: the abstraction must be neither too generic nor too
specific.

A simple illustration of a well defined abstraction is the computer mouse. From higher
a successful
abstraction: the
mouse

abstraction levels, a mouse is a device that can input relative movements and some button
presses. This abstraction can be used directly, for example to navigate in an immersive 3D
environment or still at a higher abstraction level by considering the mouse cursor that maintain
a “position” state. The lower level perception components implementing the functionality of
the mouse can be diverse:

• ball mice and trackballs use two notched wheels to capture two dimensional movements

• optical mice use image processing to track table movements under the mouse

• touchpads and touchscreens may use pressure or capacitance of fingers to detect pressed
location

• many other pointing devices exist and have their particular 2D movement perception: pen
tablets, Wiimote (Nintendo Wii remote), keyboard-based mouse emulation, etc.

Figure 4.1: UML Class Diagram: computer mouse abstraction.

60

CHAPTER 4. IDENTIFYING INTEGRATION PROBLEMS IN INTELLIGENT
ENVIRONMENTS

Figure 4.1 underlines the concept layering involving the mouse and the cursor and gives a
classification of mouse input devices. The example of the computer mouse illustrates the fact

profitable
abstractionthat abstractions can be used by both higher level “clients” and higher level abstractions (the

cursor). The concept of computer mouse has contributed to the rapid development of visual
desktop environments by abstracting this fundamental interaction device.

Perception used in intelligent environments is more complex, various and evolving than the
domain of pointing devices. It would however be desirable to generalize the mouse principle

finding abstractions
for intelligent
environments

to various concepts in intelligent environments. This abstraction can be profitable to have for
sensors but also for actuators.

Different perception concepts could be layered as with the computer mouse and the cursor.
layering perception
abstractionLower perception usually directly operates on images, video sequences or audio streams. These

lower level components produce higher level perception such as target positions, target shapes
or speech activity. These higher level perception can usually be both used to implement higher
level tasks and, at the perception level, to produce other information such as person’s posture
or person’s attention.

4.4.2 SOA Adequacy and Advantages

Even if it does not ensure them, Service Oriented Architecture (SOA), introduced in sec-
tion 3.2.1, favors some good software design practices:

SOA benefits

• clear affectation of responsibility between system parts,

• better separation of concerns,

• sharing and reuse of existing software,

• encapsulation of functionalities,

• independence to implementation and distribution topology.

These aspects are clearly missing in the 3D tracker we presented beforehand. To give an
example of a possible problem and improvement, we can take a look at the “detector estimator”.

separating
responsibilitiesAlready doing a simplification, we can list four major functionalities embedded in the detector

estimator: doing image acquisition from the camera, having the knowledge of the background,
doing the detection, doing the estimation using the detection and the received prediction. Even
if performances could impose some restrictions on the split of the system, in this case, the
“estimation” part could be separated from the “detection” part. The acquisition of images from
the video camera could also be separated from the rest without major impact on performances
as shown in chapter 9.

Separating the system in parts makes these parts easier to test, more reusable, distributeable
and more robust as the crash of a part does not bring all the system down with it. Chapter 6

foreseen
improvementscovers these advantages in details by rearchitecturing the 3D tracking system. The rearchitec-

tured system is more extensible and some of its parts, including the images acquired from the
camera, can be shared and reused at runtime.

SOA has the qualities and potential to improve integration and reuse in intelligent environment.-
To provide an effective solution, SOA must be widely adopted: isolated creation of services

objective: SOA
adoptionhas only a limited impact. We can set an objective to have most of the actors involved in the

team (and in the development of intelligent environments) fully embrace the concepts of SOA.

It is important here to take conscience of the gap there is between the old architectures with
at best clearly specified modules linked together and the new service based architecture. The

opportunity:
jumping directly to
SOA

whole team “management” idea is here to take advantage of the need for distribution to jump

61

4.4. OBSTACLES TO SOFTWARE CAPITALIZATION AND SHARING

to a state of the art software architecture method. Looking at the domain of vision systems, we
see that they are advancing slowly compared to the gap that we try to cross. Vision systems
are moving to distributed systems but they still remain in a software environment that does
not evolve at runtime.

We want to exploit the fact that the distribution method that is used by the tracker is
implementing a service oriented architecture to impose all the associated practice in common
usage. To explain the difference here, the main particularity of the service oriented approach

improved
dynamicity is that services are discovered dynamically at runtime. Services must thus be designed in a

way that makes them robust to the absence or disappearance of a particular service, or to the
dynamic apparition of a new service (e.g. a new detector estimator could be started when the
3D tracker is running).

Intelligent environments require more than distributed perception systems: the systems
must be designed to handle the dynamic nature of the environment with sensors being brought
in or out of the system at any time. The adequacy of SOA for the intelligence environments is

action: pushing
SOA the motivation to trying to push the full adoption of SOA among developers. Having identified

this major objective toward better development methods for intelligent environments, we will
present in chapter 5, what should be done to facilitate SOA adoption and what we did for it.

4.4.3 Problems Beyond SOA

Continuing our analysis shows that SOA is a good first step but is not sufficient to solve the
problem of software integration in dynamic intelligent environments. Other problematics could
be summarized as follows, and chapter 6 tries to give methodological and conceptual answers
to these problematics:

remaining problems

• Deployment is unnecessarily repetitive during system conception.

• Using a service requires to know, at design time, the functionality of the service.

• Using a service requires to know, at design time, the data model of the service.

• Higher level processes have no way to abstract the constant evolutions happening at the
perception level.

Deployment is unnecessarily repetitive during system conception

When testing systems involving multiple services with some dependence on their configu-
rations, it is often required to stop and restart services. To reuse our 3D tracker example, we
can precise that detector estimators are started with some parameters that are also part of
the 3D tracker configuration: this is the case for the kind of detection algorithm that is used.
Doing detections with a background subtraction method or with a consecutive image difference
(motion detection) does not lead to the same interpretation in the 3D tracker. Thus, when the
designer want to test different methods, detector estimators have to be restarted and this is
mostly done manually. Even if it only consists in aborting a program and restarting it with
some modified parameters, this task is tedious and error prone.

Using a service requires to know, at design time, the functionality of the service

When writing a service that will look for another, one must specify how to find this other
service. This specification is primarily done by providing a service name that will be looked
for. This kind of service discovery is limiting in the sense that the name of the service must
represent its exact functionality. To quickly illustrate this limitation, we can take the case of

62

CHAPTER 4. IDENTIFYING INTEGRATION PROBLEMS IN INTELLIGENT
ENVIRONMENTS

a sound player that is designed to play the sound that a “microphone” service is outputting.
If we want to listen to a “radio” service that is outputting sound at the same format as the
microphone, we will have to change to sound player to handle services named “radio”. Another
solution would be to externally force the connection of the sound player to the radio service.

Using a service requires to know, at design time, the data model of the service

In the same manner a service has to know the name of the services it will use, it also has
to know the “format” of the messages it will exchange with these services. What we call the
“data model” is this format that describes how information is structured in the messages sent
between services. BIP allows any messages to be sent: messages are plain binary data. Except
for high bandwidth tasks (image streaming), message are in text formats and mostly in XML
formats. Even if we suppose an XML formatting of the messages, it is still required to have a
description of what tags are used in the messages and what they represent. What we call the
“protocol” is the convention on what exact form messages take and when they are sent. As an
example, we can give a simple output protocol for the 3D tracking system:

• interactions: one message is output at each cycle of the tracking loop;

• content: an output message has a timestamp and a list of targets with, for each, its
identifier, position and size;

• format: messages may be formatted in XML with for each target a “target” element (tag)
containing attributes for the identifier “id”, the position “mx”, “my”, “mz”, etc.

Only with such information, is it possible to interact with an existing service. Such information
makes it mandatory to patch an existing service consumer to make it understand another newly
integrated service that would provide the same information but with a different “protocol”.

Higher level processes have no way to abstract the constant evolutions happening at

the perception level

To do experiments in real conditions, higher abstraction level research works need to use real
perception and action system. These research works include activity modelling or user mod-
elling, like the personal assistant we used as a guiding thread in chapter 2. Modelling the user’s
activity, learning user’s habits and interacting with the user necessarily involve the perception
of this user. Such higher abstraction level research suffers from the continuous evolutions made
to perception systems: evolutions bring many performance and accuracy improvements to the
perception system but are often accompanied by slight changes in the usage.

To build themselves efficiently, the research domains placing themselves as a client of the
perception processes need to have an abstraction of the perceptual functionalities provided by
the environment. There is a delicate choice for this abstraction: it must be a real abstraction
over the exact perceptual services, but must not be too coarse as higher level processes want to
keep a certain control on what is perceived.

4.5 Opening on Other Contributions

In this chapter, we exhibited the major integration and interoperability problems impacting
the conception of intelligent environments. In intelligent environments, most building blocks

integration
problems. . .depend on some others. Designed by specialists from various domains and communities, these

building blocks are rarely interoperable. Interoperability problems leads to a lack of integration
between contributions from different specialists.

63

4.5. OPENING ON OTHER CONTRIBUTIONS

The lack of integration causes most of the software contributions to be lost as soon as their
author leaves or changes research domain. In some domains, like “fundamental perception”,. . . cause

capitalization
problems

this lack of capitalization over previous works as only a few consequences: theories, algorithms,
methods and concepts are the core matter and are capitalized with scientific publications.
For intelligent environments, however, the absence of software integration and reusability is
catastrophic.

In our analysis of the integration problem we observed a tendency of different systems to
get distributed. We identified that the requirement for distributed processing is a unique op-

. . . solved by SOA
portunity to introduce Service oriented architectures (SOA) in the development of components
for intelligent environments. SOA fulfills the requirements for distributed processing but also
provides better software integration, reuse and dynamicity. We formulated the adoption of
SOA as a major goal for intelligent environments. Chapter 5 explains our actions toward the
completion of this goal.

We also identified a set of major obstacles that remains even if SOA is used. These obstacles
. . . and more

mostly concerns service deployment and runtime integration of existing services. Chapter 6
details some methodological and conceptual answers to these problems.

64

Chapter 5

OMiSCID: a Usable Middleware
for Service Oriented
Architectures (SOA)

5.1 Motivation and Requirements for SOA Adoption

Chapter 4 introduced the particularities of software design for intelligent environments and
underlined problems with reuse and capitalization. Problems of integration and capitalization

need for
capitalizationpenalize experimentation and advances in the domain of intelligent environments. Service Ori-

ented Architectures (SOA) encourage improved code interoperability, integration and reuse.
Chapter 4 identified the use of SOA as an enabler to handle integration problems and dynam-
icity of intelligent environments.

From our analysis, we have seen that perception systems tend to expand in complexity
need for
distribution. . .and are increasingly distributed. The distribution of perception systems often implies that

the developers learn a new tool: methods used by developers rarely handle distributed system
design. Not only service oriented principles can solve integration and capitalization problems
but they are also one possible solution for the distribution of perception system. We believe that

. . . an opportunity
for SOAusing a proper service oriented solution as a distribution mean will simplify further integration

and reuse of heterogeneous components. To make SOA used as a distribution mean, we need
to make service oriented design as easy or easier than custom distribution methods.

At the start of this thesis work, we adopted a middleware used by the group to implement
service oriented architectures and named BIP (Basic Interconnection Protocol). The possibility

BIP middleware
to properly implement services revealed a problem: the complexity of the implementation was
repulsing potential users and not favoring the use of services as a design element. At this
time, the implementation was the result of a bottom up technology-driven design: the API
(Application Programming Interface) was obfuscated by implementation details. The OSGi
version of BIP was already an abstraction over the Java version and influenced the conception
of the user oriented API we propose in this thesis.

Our study has led to a complete redesign of this middleware to make it more accessible to
pushing service
orientationpotential users. Given the tendency at this time to use the middleware only for distribution

and not for real service oriented designs, this appeared to be necessary to ensure our other
contributions on service oriented architectures have an impact. The new implementation has
exploited the existing BIP codebase to provide solutions to many technical problems. During

from BIP to
OMiSCIDredesign, BIP has evolved into OMiSCID (Opensource Middleware for Service Communication

Inspection and Discovery). In this manuscript and as a simplification, we will call BIP the
previous implementation and OMiSCID the new redesign.

65

5.1. MOTIVATION AND REQUIREMENTS FOR SOA ADOPTION

Through interviews and discussions with potential users, we have identified the most impor-
tant aspects that inhibited the use of SOA in general and BIP in particular. We can summarize
these problems as follows:

SOA blockers

• Some users did not see a clear return of interest in implementing SOA. This was argument
invoked mostly (but not exclusively) by persons working on lower level components (with
few dependencies to other components).

• In the conceptions of some people, the term of “Services” was associated with “Web Ser-
vices” and was thus for “those who build web applications”.

• Users tended to find service design too complicated: for example too much source code
had to be written with BIP.

• Service oriented architectures were perceived has having bad performance. Splitting sys-
tems into parts and adding communication was perceived as having a major impact on
software performance by most people.

These points are the main problems that came out of our analysis of people feeling about the
use of services in their applications.

With the design of OMiSCID, we sought to solve these problems. We recognized, moreover,
that some of these problems cannot be solved by any implementation as they are at the commu-
nication and at the tool level. Rather than directly produce pure implementation specifications
for OMiSCID, we first enumerated a set of guidelines to maximize the adoption of SOA by a
family of users. From our point of view, most of these guidelines can be generalized to the
adoption of other methods and other users.

We propose the following guidelines for the adoption of service oriented architectures by
guidelines

engineers and designers involved in the conception of intelligent environments:

• SOA implementations must be very easy to learn by the target audience

• In the first steps of the learning process, the return of interest for the audience should be
illustrated through examples

• SOA implementations must be easy to install

• SOA implementations should be available in any language susceptible to be used by the
target audience

• Development of services should integrate in the target audience’s development process

• SOA implementations must be efficient and should communicate about this efficiency
(using benchmarks)

Applying these guidelines in our context leads to three kind of actions:

• designing a user-oriented service oriented middleware,

• designing tools to integrate service design in the software development process,

• communicating about service oriented middleware.

Our actions concerning these three aspects will be detailed in the following sections.

66

CHAPTER 5. OMISCID: A USABLE MIDDLEWARE FOR SERVICE ORIENTED
ARCHITECTURES (SOA)

5.2 Implementing OMiSCID, a Usable Middleware for SOA

The new implementation of OMiSCID was based on the BIP code base to maximize the reuse
of already written code. This has the advantage to keep all the lower level conventions and thus
to have a runtime compatibility between OMiSCID and BIP services (even if this is not used
anymore). Our contributions around OMiSCID falls in 3 categories: designing a brand new user
oriented API (Application Programming Interface), improving the existing implementation and
expanding the language availability.

5.2.1 User Oriented API

The form of a library, already adopted by BIP, was totally appropriate for the target audience:
a plain library

developers are used to using external libraries. Graphical environments purely dedicated to a
new development method also tend to be rejected by programmers. This tendency is natural
and there is no good reason for requiring developers to change habits to adopt service oriented
architectures.

When designing the new API, we listed use cases from a user standpoint. Given our
favoring proper
designobjective to promote service usage, we have to make a compromise between pure use cases

(that rarely use real service oriented concepts) and service oriented principles. The objective is
to have an API that fulfills use cases, that is simpler than other methods for the users and that
lead to a proper service oriented design.

A major area for improvement of BIP was to reduce code that needed to be written and
more concise API

to limit the number of concepts and classes involved in the API. We can give some quick facts
about this new API, more details (including source code example) can be found in chapter 9.
Starting a service with a variable and a connector, find another service and connecting to it
requires:

• With BIP

– 6 BIP classes with their full implementation details, most of them requiring to be
instantiated and managed by the developer,

– 25 different methods names involving all the nifty-gritty details of BIP implementa-
tion and the manipulation of many pointers.

– =⇒ 45 lines of codes purely induced by the use of BIP.

• With OMiSCID

– 2 classes and 4“concepts”, the total number is the same as for BIP but the complexity
is greatly reduced and the abstraction higher,

– 10 method names,

– =⇒ 15 lines of easily maintainable code purely induced by the use of OMiSCID.

In the OMiSCID API, the fewest possible concepts are exposed to the users to simplify
fewer concepts

their understanding. The user manipulates Services that represent services created by the ap-
plication, ServiceProxys that represent services discovered through OMiSCID service discovery.
By manipulating a Service, the user can add some connectors and variables to it, start and stop
it, and manage connections between its connectors and other OMiSCID peers. The user can
register listeners on Service connectors to be notified of received messages and the same on local
Service variables (that can be modified by other services) and remote ServiceProxy variables.

We simplified the creation of services and particularly the addition of connectors and
understandable
service declarationsvariables, but also the interconnection of services. With OMiSCID, the user can express in a

more concise way how he wants to set up his service. Simplifying this part of the process clears

67

5.2. IMPLEMENTING OMISCID, A USABLE MIDDLEWARE FOR SOA

a barrier for new users: code examples that starts services are readable and developers can
more easily understand the basic meaning of them.

Another tedious process with BIP was the discovery of remote services to obtain Ser-
better discovery
paradigm viceProxys. With OMiSCID, looking for remote services can be done punctually through a

Service or continuously by attaching a ServiceRepositoryListener to a ServiceRepository. A
ServiceRepository monitors the apparition and disappearance of services in the environment;
each listener gets automatically notified of these event and receives an associated ServiceProxy.

The key simplification of the service discovery API comes from the introduction of declar-
declarative service
search ative ServiceFilters. Using BIP, the specification of what are the remote services of interest

was done by implementing a callback function. The user had to write this function and handle
all the details of finding if the service matched a his criteria. With OMiSCID, the user can
use logical combinations (“and”, “or”, “not”) of predefined services filters to describe the search
criteria. For example, a ServiceFilter can be expressed like this in OMiSCID:

1 | And(NameIs("MovieMaker"),

2 | OwnerIs("Bob"),

3 | HasConnector("Command", AnInput))

What is straightforward to write and read in OMiSCID would require writing a function of
at least 10 lines of code with BIP.

As with BIP, highly specific filters can also be written by implementing the ServiceFilter
custom filters

interface. This use case is extremely rare as, to our knowledge, this possibility has never been
used. In the case a specific filter is implemented, we can expect its author to follow the good
practice that is exampled in the API and to write atomic, combinable and reusable filters.

By making service declaration and discovery far easier than in BIP, the user oriented API for
OMiSCID makes the use of service oriented principles simpler than a custom implementation
of network communications. In our context, the simplest way for the average to distribute an
application is to do it using services.

One last benefit that this new API brings is that it unifies the API between the two languages
common API

of implementation (at this time): C++ and Java. BIP implementation were runtime-compatible
meaning that services written in C++ could communicate with service written in Java. BIP
API for Java and C++ were however very different. With OMiSCID, an effort has been made
to have very similar APIs in all languages. Some differences in language features imposes some
slight difference in APIs but basically, someone who has written a service in C++ can easily
understand how to write one in Java and vice versa.

5.2.2 Corrective Maintenance and Evolutions

In previous section, we introduced the new OMiSCID API that we designed for user friendliness.
The manipulation of the BIP code base and its wider use through the new API was the occasion
to improve the hidden part constituted by the implementation.

Providing an implementation for the newly created OMiSCID API was done by modifying
testing and bug
fixing the existing BIP middleware. Defining a new API, we also did thorough testing of the proposed

API. Manipulating the code and increasing test coverage revealed a set of bugs and “not yet
implemented”features. While we had the hand in the code, we fixed these bugs and implemented
the missing features.

The improvements to OMiSCID and particularly its API caused its overall use to increase.
reactive support

This increased use revealed some remaining bugs, mainly race conditions. Reactively fixing
these bugs has been a requirement to the adoption of OMiSCID. This can be retained as a

68

CHAPTER 5. OMISCID: A USABLE MIDDLEWARE FOR SERVICE ORIENTED
ARCHITECTURES (SOA)

lesson for the launch of any software aiming: near real-time handling of user’s requests is a
critical factor of success. User support does not take a huge amount of time but it requires
constant availability to quickly provide the users either with bug fixes, workaround for bigger
problems or supplementary information when documentation is insufficient.

We also made evolutions on the API due to queries and observations of usage. These
evolutions mainly consisted in adding some methods that we had forgotten when designing the
API and in creating new helper methods for most observed use cases. To illustrate the kind of
modifications that this represents, we can mention the addition of an optional ServiceFilter when
registering a listener to a ServiceRepository. At the beginning, ServiceRepository were notifying
their listeners of all service apparition and disappearance and often, almost systematically, users
were holding a service filter against which they tested each service that appeared.

Another area of improvement we worked on during this reimplementation was the instal-
improved
documentationlation of OMiSCID. We made OMiSCID as easy as possible to install and documented the

necessary steps. Depending on the language, the installation and use of OMiSCID library
varies slightly. As an example, a Java developer can learn how to develop and start an empty
OMiSCID service in less than 3 minutes by watching some short screencasts (available on the
OMiSCID website [Url-m]).

Implementing a new API unified between all languages was the occasion to reassess our
choices about what languages should be supported by OMiSCID. BIP services could be designed
using C++, Java or Tcl. Due to the deprecation of Tcl in the team, no Tcl implementation was
provided for the new API. The Java version of OMiSCID can be still be used in Tcl by using
the pure Java implementation of Tcl (Jacl, [Lam 1997]). Only two “native” implementations of
OMiSCID were thus developed: a Java version and C++ version, both fully operating under
the three main operating systems (Windows, Mac OS, Linux).

With its use by new users, we identified that OMiSCID should also be available to program-
mers developing in Python and Matlab. These two environments can be targeted by adding

Python and Matlab
supporta layer of adaptation over the core implementations. Python can use OMiSCID C++ library

through some wrappers that are mostly autogenerated. Some subtleties involving differences in
memory allocation and threading between C++ and Python complicated the work of writing
these wrappers. For the other case, Matlab being written mainly in Java, it is easy to use a
Java library. Only a few code had to be written to properly handle callbacks from OMiSCID
to listeners written in Matlab: when a service started from Matlab receives a message, it is
likely that the user wants to process the message in Matlab too. The additional classes have
to be compiled against the Java Matlab Interface (JMI) but given the lazy nature of Java class
loading, it can still be included in the Java distribution of OMiSCID.

5.3 Building Tools for SOA

When considering the usability of a technology, the core technology cannot be separated from the
associated tools. For example, the usability of a programming is dependent on the availability
of dedicated editors, good libraries, debugging tools, etc. Previous section presented OMiSCID,
a solution to implement Service Oriented Architecture (SOA). This section discusses the tools
required to make our solution more usable and introduces graphical environment we propose to
manage services.

5.3.1 Which Tools?

69

5.3. BUILDING TOOLS FOR SOA

Visualization tools?

Having a library that can declare, discover and interconnect services without any tool to
visualize services is like driving by night in a high-tech car with no headlights. With BIP
already, it was identified that the service designers and consumers need a way to visualize
running services. Together with the Java implementation of BIP, a graphical user interface
(gui) was initially designed.

Like BIP itself, the existing gui was very good as a prototype but was exposing many low
level details of BIP implementation: it was designed as a tool for the creators of BIP. Some
interesting features were however already present in this first gui. The most interesting was
that it was extensible: extensions could be written in Java even though none were written due
the underlying complexity.

The developers and consumers of services want to be able to visualize what services are
generic service
management present and what are their connectors and variables. Some use cases are generic enough to

consider them as part of the service oriented library. These generic requirements mostly include
3 kinds of operations: listing of all running services, accessing the details about a service and
visualizing the interconnections between services.

In addition to the basic visualization of the services and their interconnections, users often
service-specific
extensions want other tools to visualize and interact with their services. Services can be diverse and some

of these tools can only be useful to the developer himself or to a small community of developers.
Even for these highly specialized tools, there is a need for sharing: when a service consumer
wants to use a service you designed, he can often take advantages of the visualization tools you
developed around for your service. When we talk about visualization tools here, we include
both tools used to observe the service and tools used to interact with it.

As far as the highly specific visualization and interaction tools are concerned, we cannot
and should not implement them in place of the concerned developer. What we should ensure
in the design of a visualization tool is that it must be extensible and that extensions should be
sharable and easy to install.

Code generation tools?

Another kind of tools that could help in the development process are code wizards. A
avoid wizards. . .

“wizard” interactively ask the user for some main parameters and automatically generate some,
usually long and verbose code. One problem with wizards is that to be comfortable with them,
the user has to understand all the code that is generated (see [Hunt 1999]). If the generated

. . . prefer good
APIs code is not understood by the user, this means it is an abstraction for the user and that the

details should be hidden from the user, for example encapsulated in a library. We prefer to
design a clear and simple API than providing wizards that would generate huge amount of code.
We followed this principle with the new OMiSCID API. From a user standpoint, one advantage
of wizards is that it makes it possible to author code without actually writing code: wizards
are often more declarative than standard programming.

To fulfill the need for a yet more declarative way of declaring services, we made it possible
XML service
descriptor to describe a service with its name, its connectors and variables using an XML service descriptor

file. As the XML descriptor is interpreted directly by the OMiSCID library, this approach has
the advantage of not generating any code. By modifying an XML description, it is possible to
change a service by just restarting it, without the need for a recompilation. A replacement of
such an XML description can be to use dynamic programming languages such as Python or any
scripting language running on the Java virtual machine and able to access any Java library.

5.3.2 The OMiSCID Graphical User Interface

70

CHAPTER 5. OMISCID: A USABLE MIDDLEWARE FOR SERVICE ORIENTED
ARCHITECTURES (SOA)

Design Alternatives and Decisions

We weighed the two possibilities we could imagine to provide the user with a visualization
new Gui from
scratchtool for their services. We could either start from the existing code knowing that most of it

would require to be rewritten or we could start from scratch with a clearer design and better
requirements. We decided to consider the existing gui as a prototype and to implement a brand
new gui from this experience and the requirements we identified. This decision made it possible
to reconsider some technical choices that were done and most significantly the fact that no
library or application framework had been used.

We looked for a portable desktop application framework built for extensibility. Two main
Rich Client
Platforms“platform” fulfilled our requirements: the Eclipse Rich Client Platform (RCP) and the Netbeans

Platform. Both platforms provide about the same functionalities: extensibility through plugins,
easy update via update sites, reusable core application framework, dockable windowing system,
portability brought by the Java virtual machine, etc.

Even if, at least at the time, Eclipse and its plugins were more popular and many rich client
Swing / SWT

applications were build on the Eclipse platform, we decided to settle down to the Netbeans
platform. The first criteria was that Netbeans is based on Swing, the standard while Eclipse is
based on the“Standard Widget Toolkit” (SWT). SWT was created as the toolkit for the Eclipse
IDE: the competition with Swing drove both toolkits forward. Being in the core Java library
since Java 1.2 (1998) and having a fixed API since then, Swing tends to be learned by more
people and was also more mature at the time.

Our second criteria was a purely psychological one: Eclipse was accumulating reports of
Netbeans
reputation: easier
to install

users having problems with the installation of plugins. Eclipse has long been more open than
Netbeans and thus has attracted more contributions. These contributions produced many
plugins for a wide variety of task but these plugins were of unequal quality. Even if the main
plugins were properly designed and fully functional, some additional plugins were conflicting
when installed together or simply bugged. Users that wanted to use Eclipse for different tasks
often ended up with having multiple Eclipse installation to avoid conflicts between plugins.
For a user having lived such an experience, talking about an application that uses the eclipse
platform for its extensibility will usually induce a negative prior.

Having decided to build the OMiSCID Gui as a Netbeans Platform application, we started
the implementation following some principles about the gui:

Gui guidelines

• it must include a list of running services,

• it must allow the user to manage variables (view and set their values),

• it must allow to manage connectors (receive and send messages),

• it must be easily updated with new plugin versions,

• it must be easily extensible with plugins written by domain experts,

• it should not include any domain specific plugins,

• it should include a view of service interconnections,

Based on these principles and trying to be efficient in the implementation, we designed the
gui with first all the “must” and then adding the visualization of service interconnections. The
result constitutes the core of the OMiSCID Gui that is presented below.

71

5.3. BUILDING TOOLS FOR SOA

OMiSCID Gui - Core

This section details the core components of the OMiSCID Gui. These are the components
installed by default in the Gui and usable with any OMiSCID service.

The OMiSCID gui revolves around a main graphical component: the service browser. This
listing services

service browser lists all running services and displays their variables and connectors. When
starting a bare installation of the gui, only this tree will initially be displayed. By default, the
service browser only displays a tree composed of services and their components as illustrated in
figure 5.1 but the user can decide to add some columns giving details about services, the tree
is in fact a “tree-table” as shown in figure 5.2.

OMiSCIDGui OMiSCIDGui

Figure 5.1: The OMiSCID Gui showing only the service browser. On the left: with no service. On
the right: with three services, one being unfolded.

OMiSCIDGui OMiSCIDGui

Figure 5.2: The OMiSCID Gui showing only the service browser with some different user-selected
columns selection and placement.

The service browser is the entry point for most of the plugins developed for the OMiSCID
service browser =
extension point Gui. Plugins register themselves as participating in the context menu of the service browser.

The end of current section explains the underlying principle for the extension of the gui.

The core gui includes a variable manager and a connector manager. Both can be opened
variable and
connector
manipulation

through a context menu entry that is present only when the selection is pertinent (contains a
variable for the variable manager, etc.). The variable manager is used to monitor the changes in
service variable value and, if the variable has remote write access, to query for a modification.

72

CHAPTER 5. OMISCID: A USABLE MIDDLEWARE FOR SERVICE ORIENTED
ARCHITECTURES (SOA)

Figure 5.3 shows the variable manager in action. In the same way, the connector manager
can be used to connect to a service connector, display the messages sent by this service and
interactively send messages to services. Figure 5.4 shows the connector manager in action.

OMiSCIDGui OMiSCIDGui

Figure 5.3: The OMiSCID Gui showing a variable manager component. On the left: monitoring a
read only variable. On the right: monitoring a variable with write access.

OMiSCIDGui OMiSCIDGui

Figure 5.4: The OMiSCID Gui showing a connector manager component. On the left: monitoring an
output connector. On the right: monitoring an “inoutput” (bidirectional) connector.

The next interesting feature present in the core gui is the possibility to visualize the inter-
service
interconnectionsconnections between services. This visualization uses remote introspection of OMiSCID services

to build a graph that is automatically laid out but can be tuned by the user. One connector of a
service can be connected to other connectors of other services. It is also possible to have OMiS-
CID peers that are only clients and are not declared as services: these appear without name on
the service interconnection graph. Figure 5.5 gives an example of service interconnections.

The last functionality provided with the core gui can be considered as the most powerful
automatic update
and extensionone as it is a meta-functionality. The gui comes preconfigured to use a default “update site”.

An update site is a website hosting updates for the core modules of the OMiSCID Gui and
its extensions. The principle of the update sites is built in the netbeans platform and this
functionality “comes for free” with our choice of using this framework. An update site for the
OMiSCID Gui makes it possible to release bug fixes and enhancement to the OMiSCID Gui core
but also to publish new extensions that people want to share. The OMiSCID Gui automatically
checks for updates and prompts the user if he wants to install these updates automatically: this
update process and installation of new extensions is very simple and straightforward for the
user.

73

5.3. BUILDING TOOLS FOR SOA

OMiSCIDGui

Figure 5.5: The OMiSCID Gui showing the service interconnections graph. Non-service peers appear
with no name (like f6627a00). Services can be folded, hiding their connectors and variables (like
RandomIncrementalVariable).

74

CHAPTER 5. OMISCID: A USABLE MIDDLEWARE FOR SERVICE ORIENTED
ARCHITECTURES (SOA)

OMiSCID Gui - Extensions

The core gui provides only the most widely used functionalities. The gui is designed to be
easily extensible and more specific needs can be relatively easily implemented by the authors
of services. The extensions to the gui can be called plugins or modules: a module is a unit of

Gui
modules/pluginsdeployment and update in the netbeans platform and a plugin is a module or set of modules

that bring a functionality to the user. The distinction between plugin and modules is only
important to consider in some focused discussions and most users use the two indifferently.

A set of plugins has been designed by different persons in the team for their particular
existing plugins

needs. These plugins are used by the other people through the automatic update site. We will
showcase only a few plugins but plugins have also been designed for other tasks: 3D visualization
of a 3D tracking system, plotting variable value evolutions, remote control cameras, skinning of
the gui interface, listening to audio sources, visualizing audio signal and its FFT (fast fourier
transform), etc. We also wrote a plugin that is useful for writing documentation. This plugins
takes vectorial screenshots of the gui by leveraging Java2D and the Batik SVG library. All
screenshots present in this manuscript have been generated using this plugin.

We first take an example with a quite simple device and its associated plugin. This device
laser telemeter

is a laser telemeter that measures distance of objects in a plan by scanning almost 360 degrees
around itself. The telemeter outputs a list of distances for a sampling of its field of view; the
angular resolution is around half a degree. The outputted distances are not easy to exploit by
just reading the outputted messages.

We show, in figure 5.6, the gui with two views of the output of the telemeter: the generic
connector manager and a visual view provided by a plugin dedicated to the telemeter service.
The plugin was specifically written to view the telemeter. This plugin registers an action in
the context menu of the service browser: this action only shows up when a Telemeter service is
selected and, when executed, it displays the graphical component that we observe on the figure.

In our first example, we basically have one plugin for the Telemeter. Our second example
of extension involves more plugins that interact together. These plugins range from highly
task-specific to very generic. One contributions provided by the plugins (the “addin manager”)
are now integrated in the core gui even if they were not presented in previous section. These
functionalities are easier to understand in the use case we present now than out of context and
were initially developed outside the core gui, it is thus better to present them as such.

Our second use case shows the tools used during the design (and the demonstrations) of the
3D tracking

3D tracking system. The 3D tracking system involves many services including some cameras,
some image processor and the 3D tracker itself. During the development of the 3D tracker, it is
often executed on some recorded videos instead of using live video. Working on recorded videos
make it possible to pause the system and also to rewind the video and replay a time interval to
study the behavior of the system at this time.

Figure 10.1 shows a typical situation where the gui is used to manage and visualize the 3D
controlling image
sourcestracking system. On the upper left corner of the gui, the classical service browser is displayed,

listing the running services. On the lower right corner, a dedicated panel is used to control
the camera service that are reading recorded images from the hard drive. This controller is
in charge of synchronizing the playback from various cameras but it also makes it possible to
control the replay speed, rewind the record or pause the playback. This controller is created by
selecting some camera services in the service browser and using the action that then appears in
the context menu.

Other elements are used to visualize the images from the cameras together with the boxes
visualization of
outputrepresenting regions of interest that are used by the image processing services to do person

detections. One plugin provides the component that is able to display the image received from

75

5.3. BUILDING TOOLS FOR SOA

OMiSCIDGui

Figure 5.6: The OMiSCID Gui with a plugin showing a graphical representation of a Telemeter
service output. Laser rays are represented diverging from the position of the telemeter and a shape is
reconstructed from the impact distance of these rays. For example, the two obstacles at north-west of
the telemeter correspond to the feet of a standing person.

76

CHAPTER 5. OMISCID: A USABLE MIDDLEWARE FOR SERVICE ORIENTED
ARCHITECTURES (SOA)

the camera. Another plugin is responsible for the connection the image processor and the display
of the regions of interest as rectangles. Both of these elements are injected in the J2DViewer,
provided by a third plugin and proposing a generic panel to draw using Java2D API. Each
plugin that adds the image or the rectangles to the J2DViewer depends on the J2DViewer but
they do not depend on each other. It is perfectly possible to visualize an video stream without
having an image processor and vice versa.

OMiSCIDGui

Figure 5.7: The OMiSCID Gui used to monitor and control a running service assembly that constitutes
a 3D tracking system. Multiple plugins interact to provide this overall view (detailed in the manuscript).

To explain the last panel, on the lower left corner, we first take back the case of components
Gui elements life
cyclesuch as a connector manager. When a connector manager is opened, it connects to a connector

and displays a visual component. This visual component can be closed by the user with the
implicit semantic that it should close the connection and free any allocated resources. The
user can manage the life cycle of the connector manager using the visual component that was
created. Other elements such as the variable monitor, the service interconnection graph and
the telemeter output viewer share this property of being manageable by the user.

Not all actions triggered by plugins can propose an interface with which the user can
unmanageable
element = addinmanipulate the instantiated objects. For example, the“listen to audio stream”action only starts

the playback of a current audio source in the gui. There is no particular interface associated
with it and, at first, the solution was to create an empty component that stopped playback when
it was closed. Another example is the one of the image viewer and region of interest viewer
presented in figure 10.1. Both of them are injected in a same J2DViewer component and they
cannot be managed by the user. This elements that are not manageable by the user, we call
them “addins”. This name comes from the fact that these elements are usually not standalone
and are “added” to a container: the audio mixer, the J2DViewer, a 3D viewer, etc.

77

5.3. BUILDING TOOLS FOR SOA

The “Addin Manager” shown in the lower left corner of figure 10.1 has now a clear function-
ality: it lists all running addins and makes it possible for the user to manage them. The main
action that is done on addins through the manager is to close them but common action are also
to deactivate and reactivate a particular addin. Addins can provide any actions they desire to
the user through their context menu in the addin manager. Closing and deactivating/activating
an addin are the only core actions that are defined for all addins.

The concept of addins together with the addin manager have originally been designed to
integration into core
modules handle addins in a 3D visualization tool. In this tool, there is a 3D canvas that displays a smart

environment with some graphical objects provided by different services: tracker targets, sensor
positions, etc. Given the generic nature of the concept of addin and the reusable functionality
provided by the addin manager, these modules have been added to the core gui.

OMiSCID Gui - Extension Mechanism

Extensions to the OMiSCID Gui are provided by writing modules for the Netbeans platform.
To make the packaging transparent, it is recommended to use the Netbeans IDE or the Apache
Maven (a project management and build system for Java available at [Url-m]). Extensions can
be written by contributing to the OMiSCID service browser that is part of the core gui. Plugins
mainly register to the service browser two kind of contributions, selectors and actions, that are
used to build the contextual menu presented to the user.

We will take the example of the “manage connector” action that shows up in the context
menu when the user selects a service connector. The presence of this action in the context menu

extension points
is due to two extensions to the service browser that are contributed by two plugins from the
core gui:

• an action that declares itself as being able to handle all tasks of type OmiscidConnector-
Task, and that contains the code that opens the connector manager visual component,

• a selector that tells that when the service browser selection is made of a connector, then
an OmiscidConnectorTask is available.

Using these two information sources, the service browser is able to display a contextual menu
that completely depends on the current selection.

A selector is basically an object implementing a particular programming interface: for a
selectors, tasks,
actions given selection and a given task type, a selector must return the tasks of this type that it can

instantiate from the selection. A task has no particular API and is basically plain Java class,
usually just an aggregation of properties. An OmiscidBrowserAction is just a plain Swing action
with an additional method listing all the types of tasks that this action is able to handle.

A simpler solution would have been to use only actions: an action would be executable
improved reusability

and either enabled or not (based on the current selection in the service browser). The main
motivation of our complex solution is to be able to reuse existing actions without having to
copy and modify them. If the actions were written to directly look at the service browser
selection, it would be impossible to easily extend the range of operation of the action. We can
take the example of a video stream viewer action: it is designed to be run on a service having
a connector named “rawVideoStream”. If we want to use it on a new service that outputs an
image stream, for example an automatic cameraman service, but on a different connector says
“montageVideoOutput”, we would have to modify the action to accept this new output. With
the separation of selector and action, we only have to write a new plugin that adds a selector
that handles this “montageVideoOutput” case.

Another example of the separation of selector from action could be taken with the Au-
sharing around an
“audio” task dioStreamTask. This task contains the necessary format informations together with the refer-

ence to a service and its connector. An AudioStreamTask can be produced using a microphone

78

CHAPTER 5. OMISCID: A USABLE MIDDLEWARE FOR SERVICE ORIENTED
ARCHITECTURES (SOA)

service, a radio service or even a diapason service. An AudioStreamTask can be used by a
player, an audio signal visualizer or a writer that write .wav files. With this simple example we
already illustrate that instead of writing 9 highly redundant actions, we only 3 selectors and 3
actions. Also, adding new selectors and actions does not involve any code rewrite or cut and
paste.

Concluding Remarks

Offering tools around a software method is fundamental for the method to be adopted. In
the context of SOA, developers require a way to visualize and manipulate their services during
their conception. We implemented a graphical user interface for this purpose and insisted on
some requirements specific to SOA. Specific services require specific interfaces and thus the
graphical user interface must be extensible and easy sharing of extensions must be easy. The
graphical user interface has been successfully used and extended by members of the team since
its initial release.

5.4 Communication On SOA

In previous sections, we presented how we designed OMiSCID and its extensible graphical user
interface. Having a useable solution for the development of service oriented computing for
intelligent environments, we decided that it was important and necessary to diffuse this software
and make it visible and attractive. This section present the communication efforts that we did
around service oriented computing and more specifically around OMiSCID.

We believe that the use of service oriented principles in the design of dynamic software system
is a key point. With OMiSCID, we propose a middleware that is easy to use for non software
engineering specialists. Our main objective is to favor the use of good software development
practice by various developers. Toward this objective, we want our middleware to be used as
widely as possible.

Licensing and Release

One non-technical aspect that often is the first criteria when choosing what software library
or method will be used in a project is the license. The choice of an open source license was a
requirement to make the distribution process easier. Closed source libraries and software pose
a problem of maintenance and durability: there is no guaranty for the client that the software
will still be available some years later. Given the current offer of open source software and the
risk of depending on closed source software, an important proportion of the software develop-
ers, organizations and companies tend to prefer open source software for their infrastructure
(operating systems, databases, etc.).

Another aspect about the license is that, even in the open source landscape, there are
two main kind of alternatives: copyleft licenses and permissive licenses. The probably most
widely known copyleft license is the GNU General Public License (GNU GPL). The principle
of copyleft licenses is that anyone can reproduce, adapt or distribute the software as long as
all the modifications and redistributions are released using the same copyleft licensing scheme.
The idea behind copyleft licenses is to produce a maximum quantity of free software by inciting
people to share their contributions (if they want to reuse any contribution from someone else).

Copyleft license have a great success and the current outstanding status of open source
software is in part due to this licensing scheme. In some cases however, copyleft licensed software
can be a blocker to the adoption of a software. A simple example is the one of a company that
wants to reuse such software but want to keep its added-value code private. Copyleft licenses

79

5.4. COMMUNICATION ON SOA

prevent “pillaging” by unscrupulous companies but unfortunately, at the same time, it denies
interoperability with all non open source companies. Taking the example of our service oriented
middleware, a company that would like to expose some of its private value-added functionality
as a service would not be able to do so with a copyleft license (and thus would not do so).

Given our alternatives and arguments about licensing, we decided to do an official release
MIT License

of OMiSCID and its tools. The license we chose is a derivative of the MIT License which has
the following properties: it is open source, it allows everything (non copyleft), it is short (under
200 words) and easy to understand compared to some other licenses.

We release OMiSCID in the form that makes it the simplest to use depending on the
make installation
easy platform. The Java version comes with its dependencies to minimize the installation time. The

C++ version follows the policy of different platforms. For examples, it is bundled as sources
to create statically linked executables under Windows. For Linux, we provide sources to build
OMiSCID dynamic libraries and install them together with the include files. We also provide
packages that can be used with both debian and ubuntu based distributions.

Publications, Presentations and Diffusion

We described OMiSCID in the academic domain by describing its objectives and features in
academic
publication the workshop on Services Integration in Pervasive Environments held during the IEEE Interna-

tional Conference on Pervasive Services in [Emonet 2006]. This presentation was done during
the early days of the new OMiSCID API and we had a basic ontology based description of
services that has been deprecated since then. Chapters 4 and 6 to 8 of the present manuscript
can be considered as a deeper analysis of the requirements at this level of semantic description
and a proposal to fulfil these requirements.

We also presented, in a less formal way, the OMiSCID middleware, the OMiSCID Gui and,
presentations

depending on the audience, how to extend it. These were presented first in our research team
but also to some other groups either involved in some collaborative research projects and/or
working in computer perception and activity recognition. Most of these people see an interest in
OMiSCID and it has been adopted in our collaborative projects anywhere it can apply. Some
external research groups are thinking of switching to OMiSCID for their developments. As
these groups want to do it all-in-once and “force” everyone to do the switch at the same time,
this switch is currently delayed.

To support our communication effort and give some visibility to OMiSCID, we set up a web-
on the world wide
web site to hold information, download files and documentation for OMiSCID. The website provide

the necessary information for anyone who wants to learn about OMiSCID: installation docu-
mentation, tutorials, API documentations, download section, ... A team member contributed
the visually attractive web design that is used at the time of writing. This website, together
with a unique name, makes OMiSCID easy to find on the web. During the time of our work,
even Google taught itself that this is a new word and not a typo.

80

Chapter 6

Concept and Method for the
Design of Open Dynamic Systems

This chapter can be seen as following chapter 4 and proposing solutions to the problems exhibited.
We propose design concepts that are easy to manipulate and we illustrate their use in the redesign
of existing systems.

6.1 Motivation and Contribution Overview

This chapter build upon the analysis done in chapter 4. Reading chapter 4 is a requirement
requires chapter 4

for easily understanding this chapter. In particular, this chapter supposes that the reader
section 4.3 describing an existing 3D tracking system.

In chapter 4, we identified some requirements to make system parts more interoperable and
more open to dynamic evolution. One major step forward and an enabler for other advances,
is the use of Service Oriented Architectures (SOA). Our contributions toward adoption of SOA
have been presented in chapter 5. In this chapter, we build on the use of SOA and propose

problems beyond
SOAmethods to solve other problems mentioned in 4 and particularly in section 4.4.3. We can recall

these problems here:

• there is a poor separation of concerns and responsibility allocation in existing systems,

• some deployment steps are unnecessarily repetitive, particularly during system conception,

• communicating with another service requires a service to know, at design time, the exact
interface and data model of the other,

• higher level processes need a way to abstract the constant evolutions happening at the
perception level.

All these problems complicate deployment of intelligent environments by limiting the sharing
stagnation of higher
levelsand reuse of existing components and thus complicate integration.

To simplify the deployment and remove the duplication of information that often leads to
service factories

incoherences in deployment, we will introduce the concept of service factories. Service factories
are services that can instantiate other services on demand, given a specific specification for a
service configuration. We will also describe efforts to formulate our problem as a distributed
system deployment problem and examine the limitations this formulation can bring.

An important part of this chapter consists in the introduction of the concept of service
semantic service
functionality
description

functionality to add a layer of semantic description of service functionality to OMiSCID (or
other) services. The basic idea is that services will not depend directly on each other and on

81

6.2. SIMPLIFYING DEPLOYMENT: SERVICE FACTORIES

their protocols but rather will use some functionalities. These semantic functionalities can be
aligned to bridge and make interoperable concepts from different contributors. Applying this
principle of semantic description of functionalities to factories opens interesting possibilities:
expressing factories in term of functionalities makes it also possible to describe abstract com-
position patterns. The introduction of this concept of functionality will be illustrated through
the redesign of existing systems, mostly the 3D tracking system.

In the rest of this chapter, we propose an overall method for the design (or redesign) of
proposed design
method systems. We use what can be called a bottom-up-down approach to this presentation: we

progressively lead the reader to the method by using the tracking system as an example. After
having formalized the method, we go back down to its concrete application on another example:
an automatic seminar recording system.

6.2 Simplifying Deployment: Service Factories

6.2.1 Introduction to Service Factories

To illustrate the problem of deployment, we can first sketch a quick view of the 3D tracking
system at the time we started rearchitecturing it. There is a 3D Tracker service and one detector-
estimator service per camera (see section 4.3). The use of OMiSCID here makes it easy for the

restarting services is
tedious tracker to find and connect to the detector-estimator services. Nonetheless, two important

problems remain: when started, the 3D tracker is configured with an exact description of the
detector-estimators it will use. Each time the tracking system is to be restarted, for example
during its development, the safest solution is to stop and restart all detector-estimators and
the 3D tracker service. This solution is the one used in practice. Restarting everything ensures
that configuration files, usually passed as command line arguments to the detector-estimators,
are properly updated and thus fully synchronized between the 3D tracker and its detector-
estimators.

The need for restarting four or five services each time on multiple computers is tedious, but
it is only due to the dependency between the configuration of the 3D tracker and the ones of
its detector-estimators. Part of this configuration dependency comes from improper allocation

duplicated
configuration of responsibilities. Both the 3D tracker and a detector-estimator require camera calibration.

A camera calibration is a change of reference frame from the 3D space to the camera image
2D space. Other dependencies are better justified given the used architecture. For example,
the configuration of what image processing algorithm is used by the detector can influence
how the 3D tracker should interpret its result. In such a case, it is justified that both the
detector-estimator and the 3D tracker have information about the configuration.

To remove the duplication of configurations and the restart of all services, we introduce
introducing service
factories the concept of service factories. A service factory is a service that is capable of instantiating

other services given a configuration. In our example, instead of having to manually restart
each detector-estimator to maintain the coherency between configurations, we propose to have
a factory deployed for each camera. When starting, the 3D tracker sends to each factory
the configuration of the corresponding detector-estimator, the factory instantiates the detector-
estimator service and sends back a reference to it (its service identifier). The 3D tracker can then
use the detector-estimator as in the old scenario and when it disconnects from it, the detector-
estimator stops automatically. Using factories as proposed, the configuration is centralized in
the 3D tracker and is spread to the detector-estimator services that are automatically created
each time the 3D tracker is started.

We believe that the usage of service factories can greatly reduce the repetitive deployment
task when designing a system. This benefit also remains “in production” as it minimizes the

factories benefits
number of services to deploy manually. Factories can be reused both in variety and in time:

82

CHAPTER 6. CONCEPT AND METHOD FOR THE DESIGN OF OPEN DYNAMIC
SYSTEMS

• in variety, two systems can use the same factory to instantiate their detector-estimators;

• in time, for example to redeploy a system like a 3D tracking system with an updated
configuration.

Factories have been quickly presented here as a solution to simplify deployment. Factories are
more in this chapter

not limited to starting simple services: for example, they can be used to represent composition
patterns. This concept of factories will be used and detailed in the rest of this chapter: applying
factories on concrete examples illustrates their potential and their role in the design method we
propose.

6.2.2 An Excursion into Deployment Frameworks

We presented a factory that can instantiate only detector-estimators but it could be tempting to
have a fully generic factory. An all-in-one factory could be deployed on each computer, executing

generic factories
any arbitrary command, even administration commands (to install or update applications and
services). Apart from the security issues that arise from this approach, we think it looses many
important aspects of the service factory approach has:

• localizing a sensor (e.g. a camera) is not possible anymore, in our case the service factory
is a representer of this sensor

• all the abstraction is lost and we are back to the “ssh/rlogin” deployment method where
the client knows every details about the application.

Some approaches use this kind of generic factories and add some description of computer capa-
bilities to handle heterogeneity of computers in a grid as in [Flissi 2008].

In a collaboration, we experimented the interaction of these approaches with our service
oriented approach. The collaboration consisted in using a deployment framework based on the

deployment for the
3D trackerJava Agent DEvelopment (JADE [Bouchenak 2006]) framework to automatically deploy the 3D

tracking system. Once deployed, experiments with the dynamic reconfiguration of the deployed
system were conducted. The experiments proved to be conclusive and the 3D tracking system
was properly deployed using JADE and simple reconfiguration cases were put in practice.

For this successful deployment, OMiSCID services had to be wrapped as deployable ele-
deployment
descriptorments. In addition to this wrapping, the only requirement is to deploy the JADE runtime on

each computer (like a generic factory would be). The most important piece of the automatic
deployment is a deployment descriptor that tells where to start what system parts. This de-
scriptor contained all the configuration that were then passed to the service executables as they
were started.

A deployment based on a descriptor like this one, makes it necessary to write a new
redundancy between
deployment and
SOA

descriptor to properly execute in totally new conditions. Knowledge such as presence of a
camera on a particular computer has to be expressed: this information is here in the deployment
descriptor while service oriented methods recommend the declaration of a service. Having such
a deployment is redundant with the approach of using SOA. As an additional illustration of this
redundancy, it would be possible, using the deployment framework to specify communication
ports for the detector-estimators and to automatically pass these ports to the 3D tracker.

Even if we can make them work together, using both a SOA and a sophisticated deployment
better dynamicity
handling by SOAframework is not a real synergy. We prefer a service oriented approach that handles dynamicity

in a better way in our opinion. Obviously, service oriented solutions are more complicated
to deploy than a dedicated deployment framework. That is why we propose the concept of
specialized factory as a tool to simplify repetitive deployment. As we will present in the rest
of this chapter, factories have an important potential and can be used as a support for service
composition.

83

6.3. REALLOCATING RESPONSIBILITIES IN TRACKING

6.3 Reallocating Responsibilities in Tracking

6.3.1 Overview of Responsibilities in 3D Tracking

Starting from the 3D tracking system presented in section 4.3, we separated it in multiple
duplicated
knowledge services with a better separation of concerns. At this time the tracking system was just split in

a single 3D tracker service and one detector-estimator service per camera device. Information
was duplicated, detector-estimators were combining at least 2 functionalities and algorithmic
effectiveness was even penalized by these choices.

We first try to identify the different responsibilities present within the system. Most re-
identifying
responsibilities sponsibilities can be classified either as knowledge holding or as processing. The distinction

between these two kind of responsibilities is most of the times easy to do but it can still get
complicated with lower level systems. We can consider that a knowledge responsibility consists
in providing data or holding information used by other elements in the system. A processing
responsibility aims at transforming data in the system.

The 3D tracking system can be “exploded” by isolating the independent responsibilities.
separating concerns

At a coarse grain we identify the following knowledge in the system: the camera calibration
information, the list of cameras that are usable by the 3D tracker, the captured images and
the background image used by each camera for detection based on foreground/background
image difference. On the processing side, we find the tracking in the 3D space, the conversion
between a 3D space and the 2D spaces of each camera, and finally the detection based on 2D
image processing. We could also consider the image grabbing as a processing: doing acquisition
from camera device often involves notable processing involving image decompression or color
conversions.

We propose a new architecture and organization of the 3D tracking system. This redesign is
resulting
architecture based on the identified responsibilities and is expressed in term of services. Figure 6.1 pictures

an example of these services in action. Obtaining the following system state requires the 3D
tracker to invoke factories to create product services. We will detail what is the role and
responsibilities attached to each service involved in the system in following sections.

Video Service

Video Service Processor

3D Tracker

3D Detector

3D Detector Camera2 Calibration

Camera1 Calibration

Room to Mire

Composite Transformation Factory

Room to Camera1

Room to Camera2

Video Service Processor Factory

Transformed Detector Factory

Video Service

Video Service Processor

Video Service Processor Factory

Run in a same process
Instantiates

Service

Service Factory Service
Transformation Service

Service Interconnection

Figure 6.1: Split 3D Tracking System. The 3D tracker is separated from its 3D detector components.
A 3D detector is obtained by the composition of a camera calibration with a 2D detector. Dynamic
addition of calibrations and cameras is made possible.

84

CHAPTER 6. CONCEPT AND METHOD FOR THE DESIGN OF OPEN DYNAMIC
SYSTEMS

6.3.2 Architecture at the 2D Image Processing Level

The first action was to remove the all-in-one detector-estimator and create a 2D detector. Each
splitting the
detector-estimator2D detector is only responsible for the image processing tasks. Given a set of points or a region

of interest, a 2D detector is responsible for evaluating the probability of object presence for each
of these points or pixels in the region. The detection is done purely in 2D and is based on the
observations constituted by the images captured from the camera. A detector does not have
any knowledge of camera calibration nor it requires it to derive any higher, more elaborated,
information than the simple probability of object presence.

To handle the configuration aspect of the detector, we use a factory to produce detectors.
factory to handle
configurationWe generalize the concepts and see image based detectors as a particular video processor. We

introduce a factory that generates video processor from a particular configuration. The con-
figuration consists in the definition of a chain of image processing modules. For the case of a
simple detector, a background image subtraction module is used and the result is output using
OMiSCID. We replace the need for a reference background image by using an adaptive back-
ground model whose parameters are passed to the factory within the processor configuration.

Having introduced a factory makes it possible for any other client to use a detector at the
performance
optimizationsame time as our tracking system. Even if both the factory and its products are exposed as

services, they run in a same process to maximize performances. From the outside, this decision
is not visible: one cannot tell that two services are in a single process.

It is possible not only to have multiple image processor operating on the same image at the
camera service

same time, but also multiple arbitrary clients using the images captured from the camera. The
camera service provides this functionality. The processors factory will connect to this camera
service to obtain images and at the same time any other client can still access these images.
This can be useful for a visualizer showing both the images captured from the camera and some
information provided by the 3D tracker as shown in figure 10.1.

Another solution would have been to merge the video service and the processors factory
alternative split

to prevent image transfer between these two processes. We have not done so to preserve the
independence between image processing and image acquisition. Our solution decouples the
image source from the processor and thus makes it easier to handle new sources such as videos
read from a streaming source or videos generated using image synthesis. Each solution has its
advantages and can be equally used. One constraint must be respected: the camera device must

still expose
capabilitiesbe exposed as a service even if it is embedded in the processors factory process. Exposing the

camera is capital to properly reflect the capability of the environment to any potential service
consumer.

6.3.3 Architecture at the 3D Tracking Level

At the 3D level, we split the system in two main processing entities. A 3D tracker is responsible
separate tracker
from detectorsfor holding and updating the list of current targets and detection regions. It predicts the future

possible position of targets based on their past evolution and delegates the detection to some
3D detectors. One 3D detector is present for each camera and is responsible for projecting the
3D region of interest (or a set of points) and triggering the actual detection to the 2D detectors.

These 3D detectors are created by a factory that composes a camera calibration with a
from 3D to 2D
detectorscorresponding 2D detector. The factory receives a change of reference frame in the form of a

4x3 matrix projecting points from the 3D space to the 2D reference frame of the image. A
composite 3D detector basically uses the matrix to project the 3D space query (a list of 3D
points or a 3D region of interest) into the 2D image. The projected query is transmitted to the
2D detector and the reply is transformed back to 3D by the composite 3D detector.

85

6.4. REASONING IN TERM OF FUNCTIONALITIES

3D tracking occurs in a particular 3D reference frame. The tracking may for example be
dynamic
configuration done in an orthonormal reference frame having its origin in a corner of the room. At the 3D

level, detections are expressed in this reference frame. To convert coordinates from this 3D
reference frame to the 2D reference frames of the images, transformations are necessary. This
information must be provided dynamically to the system to allow addition of new cameras at
runtime.

From a practical point of view, a calibration procedure provides a transformation from a
calibration
procedure reference frame attached to an object in the room Ro to the reference frames of each camera

image being calibrated during the procedure. A calibration procedure involving two cameras
present in the same room would provide 2 transformations: Ro7→Ri and Ro7→Rj, Ri and Rj being
the the reference frame of the images. Another calibration procedure may involve other cameras
and a different calibration object and would for example provide Rc7→Rk. The knowledge of a
transformation from the tracking reference frame (Rr) to the various objects used for calibration
(Ro, Rk) is necessary to allow a camera to be used for tracking. Such transformation are in our
example Rr7→Ro and Rr7→Rc where Rr is the tracking reference frame (attached to the room).

Different transformations can be provided dynamically, independently and by different
dynamic calibration
manipulation means. Calibration procedure may involve giving manually the position of the calibration object

relatively to the room. This relative position can also be evaluated using computer vision to
perceive the room walls, etc. The overall tracking system must be able to use any camera
for which a transformation from the tracking space to the camera space exists. Information
dynamically provided by different means must be composed to obtain the required reference
frame. For example, to obtain Rr7→Rk, Rr7→Rc and Rc 7→Rk must be composed.

We have a factory that does the composition of transformations: it basically accepts two
factory for
calibration
combination

transformations and provides the composition of transformations. At this step, we expose
transformations as dedicated services. The factory will take two such services and produce a
third one. As soon as one of the two services disappears, the product is also stopped.

With the new separation in services, the tracking system is more adaptable and its parts
improved reusability

can be reused. A designer can now easily reuse each subpart of our system: previously limited
to using the output of the 3D tracking system, he can now reuse intermediate functionalities
such as images from cameras or detections in the image. One can also extend the 3D tracking
system by writing new services with the same interface and communication protocol such as a
new 3D detector.

6.4 Reasoning in Term of Functionalities

In previous section, we split the system in multiple services with well identified independent
responsibilities. In this section, we generalize the functionalities provided by services and raise
a little the level of abstraction.

6.4.1 Service Functionalities for Reasoning-Based Integration

Having split the system in well chosen services increases the number of entry points for reuse and
design time reuse

extension. All this reuse and integration is limited to services designed after the 3D tracking
system: services must be designed to be integrated with the 3D tracking system. We are
convinced that real intelligent environments require spontaneous integration of services not
especially designed to work together.

To allow spontaneous integration of services designed in total ignorance of each others,
enabling
spontaneous
interaction. . .

we add a semantic description of the functionality provided by the services in the 3D tracking
system. Services describe their functionality using abstract terms. These terms are put into

86

CHAPTER 6. CONCEPT AND METHOD FOR THE DESIGN OF OPEN DYNAMIC
SYSTEMS

correspondence to make runtime integration possible. We also describe the capabilities of service
. . . with
functionality
descriptions

factories using these functionality level descriptions. All this information is present at runtime
and can be dynamically enriched to enable integration. Reasoning about functionalities opens
interesting combinations: functionalities can be provided directly by services, indirectly from
functionality correspondences or by potential calls to service factories.

Once a functionality is found to be useable by a service, a possible protocol adaption can
protocol adaptation

be required. For the initial conception of the system, no adaptation is required as the different
elements are created together.

We propose to add a level of semantic description of the functionalities provided by the
tracker with
functionality
descriptions

services. The architecture of the 3D tracking system with functionalities is depicted in figure 6.2.
This diagram shows the system once it is running and this state is reached by calling factories
to create different services. On the contrary to the case where functionality descriptions were
absent (section 6.3), all calls to factories can be automatically inferred from the descriptions
present. We will now detail semantic descriptions of service functionalities involved in this
architecture.

6.4.2 Introducing Abstract Functionalities

The first kind of semantic functionality description that is present in figure 6.2 is the simple
labelling of services with a simple functionality. Descriptions of this kind are the core of our
approach to functionality description. For the tracking system, we use mainly three kind of

functionality
descriptions. . .functionalities with which we decorate our services:

• Noted “Detector(Ref)”, the functionality represents a detector in a particular reference
frame. A detector is responsible for affecting a probability of object presence to any
point, expressed in the “Ref” reference frame, that is passed to it. This functionality is
used both for 2D and 3D detectors as they conceptually provide the same functionality
but in different spaces.

• Noted “Tr(A7→B)”, the functionality represents a transformation from A to B. Such a
transformation holds the knowledge of how to convert a point expressed in the frame
reference A to a point expressed in the frame of reference B. As with detectors, this
functionality is used for both 3D7→3D transformations and 3D7→2D projections.

• Noted “ImageSource(Ref)”, the functionality represents an image producer and attaches
it to a particular reference. Our video services that grab images from the video device are
such image producers but other image sources can be used as a replacement: synthetic
images producers, recorded video sequences, etc.

As stated before, describing service functionalities in more generic terms and in abstraction
. . . to abstract
concrete
implementation

of the concrete implementation (communication protocol) makes it possible to dynamically
accept new services that provide a required functionality. Services use each others through this
functionality layer and they do not depend directly on each other.

6.4.3 Functionality Correspondences and Factories

A second kind of knowledge is the correspondence between two types of functionalities. An
functionality
correspondencesexample of such knowledge can be found in the architectural diagram (figure 6.2) on the left

in the middle. We noted it as in “VSP(C, detectConf) ≫ Detector(C)”. This expression
means that a VideoServiceProcessor (VSP) functionality having the particular configuration
“detectConf” can be seen as a detector having the same reference frame as the processor. In
this case, “C” is any arbitrary reference frame that is propagated from the VSP functionality
to the Detector one. On the contrary, “detectConf” represents a particular configuration that
should be used for a VSP to be considered as a Detector.

87

6.4. REASONING IN TERM OF FUNCTIONALITIES

Video Service

Video Service Processor

3D Detector

3D Detector

Camera2 Calibration

Camera1 Calibration

Room to Mire

Composite Transformation Factory

Room to Camera1

Room to Camera2

Video Service Processor Factory

Transformed Detector Factory

Video Service

Video Service Processor

Video Service Processor Factory

Run in a same process
Instantiates

Service

Service Factory Service
Transformation Service

Service Interconnection

Functionality Level Descriptions

Functionality Factory

Functionality And
Correspondence

Service Level Descriptions

Semantic Description

ImageSource(Cam1) ImageSource(Cam2)

conf ⋙ VSP(Cam1, conf)

conf ⋙ VSP(Cam2, conf)

VSP(Cam1, detectConf)

Detector(Cam1)

⋙
VSP(C, detectConf) ⋙ Detector(C)

VSP(Cam2, detectConf)

Detector(Cam2)

⋙

Detector(Room)

Detector(Room)

Tr(B↦A)
Detector(A)
⋙ Detector(B)

Tr(A↦B)
Tr(B↦C)
⋙ Tr(A↦C)

Tr(Room↦Cam1)

Tr(Room↦Cam2)

Tr(Pattern↦Cam1)

Tr(Pattern↦Cam2)

Tr(Room↦Pattern)

Tr(Pattern↦Room)

3DTracker(Room)
uses: Detector(Room)

3D Tracker

Figure 6.2: Split 3D Tracking System With Functionality-Level Descriptions. Functionality descrip-
tions has been added, in red, to the architecture from figure 6.1. Semantic level descriptions are used
for normal services, for service factories and for functionality correspondences. Services now depend
on functionalities rather than on other services.

88

CHAPTER 6. CONCEPT AND METHOD FOR THE DESIGN OF OPEN DYNAMIC
SYSTEMS

The “VSP(C, detectConf) ≫ Detector(C)” knowledge is linked to nothing in the diagram.
It can be exposed by any mean and is not describing a particular service. Expressing this knowl-

= integration
knowledgeedge can be done by the designer of the 3D tracker or by an integrator (human or automated).

Basically, this knowledge tells which video service processor configuration is suitable to create a
detector. This knowledge is necessary for the 3D tracking system to integrate the video service
processor as a detector.

Functionality factories are the last kind of functionality-level descriptions used in the pre-
functionality
factoriessented architecture. We have three kind of factories in this architecture, all of them being

described in term of functionalities:

• The Composite Transformation Factory was originally taking two compatible transfor-
mation services and composing them into a new transformation. In the new version,
it is expressed at the functionality-level to document this capability and allow reason-
ing about it. We note this capability as follows: “Tr(A7→B) Tr(B7→C) ≫ Tr(A 7→C)”.
The constraint on the compatibility of the two transformations to compose is implicitly
expressed by the use of “B” in both “Tr(A7→B)” and “Tr(B7→C)”.

• The second factory on the top of the diagram is described using the same principle and
composes a transformation B 7→A with a detector in A to produce a detector in B. The
direction of the required transformation, B7→A, often looks wrong at the first sight. To
produce a detector in B, we need to be able to associate a probability to any point in
B. Receiving a set of points in B, we apply the transformation B7→A on them to obtain
points in A. For each of these points, the detector in A returns a probability that we can
affect to the original point in B.

• The last factories are the Video Service Processor factories. They are described in term
of functionalities, using for example “conf ≫ VSP(Cam1, conf)”. This description is
rather generic, telling that given any configuration, the factory is capable of creating a
VSP functionality with this configuration. It also adds the information that the produced
processor will be working in the Cam1 frame of reference.

The state previously presented in figure 6.2 is a picture taken of a running system. A
part of the involved services and descriptions can in fact be produced automatically using other
services and descriptions. Particularly, reasoning about what functionalities are instantiable

automatically
derived elementsby factories and what are the possible functionality correspondences opens many possibilities.

Figure 10.2 shows the same architecture but we grayed out everything that can be derived from
the core descriptions and services. These elements, not grayed out in the diagram, are the one
that have to be created by the designer, everything else is a derived product of its design.

6.5 Step-By-Step Design Method

Using the concrete example of the 3D tracking system, we introduced the underlying concepts of
the software design method we propose. This section presents this method more generally.

To bridge the gap between pervasive computing and intelligent environments, we propose a
design method for systems. This method improves extensibility, interoperability and dynamicity

method objectives
of software systems. Our method favors the creation of systems with profitable characteristics:

• systems are made of parts that can be dynamically reused by other systems,

• systems can use new parts added dynamically.

The method we propose can be applied to both the redesign of existing systems and the
design of new systems. Redisigning existing systems can involve substantial work on the imple-
mentation as it tends to generate more services to improve reuseability and extensibility.

89

6.5. STEP-BY-STEP DESIGN METHOD

Video Service

Video Service Processor

3D Detector

3D Detector

Camera2 Calibration

Camera1 Calibration

Room to Mire

Composite Transformation Factory

Room to Camera1

Room to Camera2

Video Service Processor Factory

Transformed Detector Factory

Video Service

Video Service Processor

Video Service Processor Factory

Run in a same process
Instantiates

Service

Service Factory Service
Transformation Service

Service Interconnection

Functionality Level Descriptions

Functionality Factory

Functionality And
Correspondence

Service Level Descriptions

Semantic Description

ImageSource(Cam1) ImageSource(Cam2)

conf ⋙ VSP(Cam1, conf)

conf ⋙ VSP(Cam2, conf)

VSP(Cam1, detectConf)

Detector(Cam1)

⋙
VSP(C, detectConf) ⋙ Detector(C)

VSP(Cam2, detectConf)

Detector(Cam2)

⋙

Detector(Room)

Detector(Room)

Tr(B↦A)
Detector(A)
⋙ Detector(B)

Tr(A↦B)
Tr(B↦C)
⋙ Tr(A↦C)

Tr(Room↦Cam1)

Tr(Room↦Cam2)

Tr(Pattern↦Cam1)

Tr(Pattern↦Cam2)

Tr(Room↦Pattern)

Tr(Pattern↦Room)

3DTracker(Room)
uses: Detector(Room)

3D Tracker

Grayed out services and descriptions
are those that can be derived from the others

Figure 6.3: Split 3D Tracking System: What Can be Derived. Same architecture as in figure 6.2.
Lighter parts of the schema are all the elements that are automatically derived and instantiated. Darker
elements are the ones provided by the various designers.

90

CHAPTER 6. CONCEPT AND METHOD FOR THE DESIGN OF OPEN DYNAMIC
SYSTEMS

Our method is composed of 6 steps. These steps are designed to be executed in sequence
but some reordering and interleaving is possible: once the steps are well understood, they can
be seen as best practices or guidelines. The method can be summarized as follows:

6 steps

• Identify responsibilities within the system

• Split system into parts

• Introduce factories where possible

• Abstract each part as a functionality

• Share the functionality

• Integrate

Identify responsibilities within the system

The first step to a proper separation of a system into parts is to identify various respon-
information and
processingsibilities that are often hidden in the original design or in our first conception of the system.

These responsibilities are of two main types: information and processing. Another equivalent
formulation would be to consider what are the data involved and what are the functions present
in the system. Some examples of system parts holding an information responsibility are the
camera calibration, and the camera itself as an image acquisition device. Concerning the pro-
cessing responsibility, examples such as the image processor or the 3D part of the tracker are
good examples.

Identifying different information responsibilities in the system mainly consists in exhibiting
implicit and “magic”
parameterswhat constitutes the input of our system and its parameters. This identification of parameters

and inputs may get complicated: many of these are implicit, imposed by the context. For
example in the 3D tracking system, this can be the case of the image source that can easily be
forgotten as a source of information in the system. The complexity of involved methods and
algorithms makes the presence of “magic” parameters quite common: some of the parameters
are manually set, directly in the program source code, to a value that is appropriate. The
appropriateness of the parameter may be total in a particular context but its embedding in the
code forbids any adaptation to some different conditions.

A functional decomposition of the main functionality of our system makes it possible to
a habit to acquire

identify processing responsibilities. An effort is often required to properly separate different
aspects of the processing. Specialists tend to see their system as a whole and the first split that
comes to their mind is the succession of steps to create their systems (e.g. select training set,
do machine learning, start my service). Identifying different responsibilities involved in their
system when it executes is an unnatural task for the specialists but it can become a habit with
some practice.

Split system into parts

Having identified the different responsibilities involved in the system, the second step consist
start with small
servicesin splitting the system accordingly. As the first tendency is to build monolithic applications, a

simple methodology could be to process as follows: first start the modeling with one independent
system part for each identified responsibility and then merge these parts when required.

Merging responsibilities should be done only to solve evident overdesign issues and to pre-
then merge

vent obvious performance problems. In order not to fall in the trap of premature optimization,
one must be very careful with the performance concern. As an leading example, we can take
the example of the camera image acquisition and the image processing algorithm that composes

91

6.5. STEP-BY-STEP DESIGN METHOD

the detector. The idea of having two services with all images going from one to the other would
be seen as a performance problem by most specialist: measuring the performance of such a
solution and particularly when the services are on the same computer makes this solution fully
acceptable and operational as presented in chapter 9.

Eventually, performance issues are rarely encountered and the main work while splitting
performance is
rarely a problem the system, is to choose a proper level of granularity for services. We can efficiently transmit

an image between two services but doing a functionality decomposition down to the pixel
processor and having one service per pixel would clearly be an overdesign. By the way, it would
also probably impact performance but the problem in the design is even more penalizing.

Introduce factories where possible

Having split our system in multiple parts, we can evaluate the introduction of service
evaluate each part

factories at each level of responsibility. Introducing a factory where appropriate simplifies
deployment and favors potential reuse. Service factories are not silver bullets and replacing all
system parts by factories would not be a much help. When designing a system, one must take
the time to evaluate, for every service in the system, whether using a service factory would be
pertinent.

The first case a factory is often appropriate is when the service has some instantiation
identify parameters
of services parameters. Care must be taken on the nature of the parameters. If parameters can arbitrarily

be chosen by the designer and in a wide range of values, we recommend to use a service factory.
When many different parameters can be chosen by the service creator, exposing a service factory
gives the opportunity to others to reuse the factory with their own parameters. The fact that
the set of plausible parameters is huge or infinite is a good indication of the benefit of using a
service factory: it would be impossible to start all the possible services, the factory does it on
demand.

Not all service instantiation parameters are indicating that the introduction of a service
avoid hardware
specific parameters factory is a good design decision. Some instantiation parameters are reflecting some constraints

of the execution environment and are have a role of configuration of the executable to its partic-
ular operating conditions. Such parameters cannot be arbitrarily chosen by the service creator,
the service must have proper values to run. A perfect illustration of this case where factories
are of no use is the case of an image grabber that does image acquisition for a camera device.
An image grabber requires a path to the camera device on the system to run properly: we can
obviously try to start a grabber with any parameters but the grabber will be eventually started
only if a valid video device is passed to it. Independently from the presence of instantiation
parameters, when a service represent a capability of the physical environment, it should be
directly exposed and not provided by a service factory.

Another situation where factories are interesting to introduce is when a service is orches-
generic composition
as factory trating or interfacing other services. When a service composes and enriches the functionality

provided by one or more other services, it usually looks for the required services before declar-
ing itself. In cases where this composition of services (or enrichment) is sufficiently generic, a
factory can be used to represent the composition pattern. The factory will be provided with
the service it has to enrich or compose and also with necessary additional parameters. For
these kind of factories also, the decision to replace a single service by a factory must be done
based on the potential reusability of the composition pattern. If the range of possible services
to compose and composition parameters is sufficiently wide, a factory will improve reusability
and spontaneous integration.

92

CHAPTER 6. CONCEPT AND METHOD FOR THE DESIGN OF OPEN DYNAMIC
SYSTEMS

Abstract each part as a functionality

Following the previous steps, we have a system that properly allocates responsibilities to
distinct software elements or services. To facilitate deployment and improve the virtual range
of available services, factories are used where it is justified. The architecture we produced in-
volves concrete services, for example OMiSCID services: they all have names, connectors and
variables.

This step consists in extracting from these concrete services the functionality that they
implement. Choosing the proper functionality is a delicate exercise that must be guided by

raise abstraction
keeping the purpose of “functionalities” in mind. The definition of functionalities must be at a
higher level than the definition of services. While a service is a concrete software elements, a
functionality is an abstract and more general description of the capability of the service. This
distinction can be seen as the distinction between an interface and a class in an object oriented
modeling, when these concepts are properly used.

The aim is to express the requirements of services using functionalities. A same functionality
even for factories

will be provided by multiple services and spontaneous interaction will become possible. We
can add new services implementing a functionality in a novel way. Services that required
this functionality will spontaneously, without particular modifications, be able to use the new
service. To maximize the gain of expressing functionalities, factories should also be described
in term of the functionalities they use and the functionality they can provide by instantiating
their product.

For both services and service factories, this addition of functionality based description comes
in addition to the choices of previous steps. Service names stays the same, factories continue
to operate in the same way, connectors remain untouched, etc. The only element which can

review protocols
be usefully reviewed at this step is the communication protocol used by services. The first
conception of a communication protocol is often highly specific and having taken the time to
reason about the more abstract functionality provided by a service can help in writing more
generic and often simpler communication protocols.

Share the functionality

The idea of this step is simple: do not forget to do the same as you did for each subpart of
consider your
application as a
service

your system but with the final functionality you are implementing. Even if you first imagine your
final product as a final application, we recommend to consider the overall system as a potential
service. If the system has the potential to provide a functionality for another application, it
must be exposed as a service and described in term of the functionalities it provides.

Pushing this vision forward, the designer must consider whether a factory would be adequate
to instantiate this service. If a factory is introduced, the final application will be separated from

or as a factory
the core service and will ask the factory to create the service when needed. This implies the
reusability provided by factories but also allows our application to work with another service
provider than this particular service factory.

A last aspect of sharing concerns the source code. Even if the whole code may not be
ease access to your
functionalitycandidate for an open source release, it is interesting to share any tool that facilitates the

access to the designed services. Having exposed a functionality as a service makes it easy to
use, providing a simple library to access the service makes it trivial. We recommend service
creators to extract from their code base and openly provide any tools that simplify the access
to their services. A simple example can be the one of the video service: it outputs images using
both a particular lossless encoding and a jpeg encoding. Receiving and interpreting images
requires some code that the service designer obviously writes to test its service, at least in
one language. Cleaning, documenting and providing this image interpretation code makes the

93

6.6. APPLICATION TO AN AUTOMATIC VIDEO COMPOSITION SYSTEM

reception of images trivial for the service consumer that does not have to know anything about
the specific encoding: he can concentrate on important features of the images such as its capture
time, its dimensions and content.

Integrate

The last step in our design method consists in integrating the newly designed system with
other existing systems. With properly designed services, the integration can profit to both
systems. Parts of the newly designed system can provide functionalities required by another

integrate with
others. . . system and can also reuse parts from existing systems.

We recommend to do this integration at the functional level. Modifying a service or its
. . . at the
functionality level communication protocol can still be a viable solution at the early stage of development. More

generally, the integration must be done by expressing two categories of mapping: some corre-
spondences between functionality types and some communication protocol adapters.

Functionality correspondence and protocol adaption are two distinct aspects. If the func-
integrate
functionality and
protocols. . .

tionalities have been defined properly in the associated step of our method, they should be
placed at conceptual level. Functionalities should be totally independent from the concrete
communication protocol used. Given this independence, it is natural to express independently
functionality correspondence and protocol adaptation.

While functionality correspondence is relatively easy to describe but hard to detect auto-
. . . independently

matically, protocol adaptation description can be tedious and verbose but can be done auto-
matically. The separation between functionalities and protocols is important not to limit the
designer in expressing functionality correspondence. When a functionality is found to be match-
ing a request but no adequate protocol adapter is present, the system can notify the designer
or log the fact that a protocol adapter was needed but not found. Protocol adapters can then
be written only when necessary.

6.6 Application to an Automatic Video Composition System

To illustrate our design method, we will apply it to PRIMA’s automatic cameraman. This
system makes a live montage of a seminar to produce seminar recording that captures the
important events for a seminar. It has been effectively used to record seminars and we will
work on its architecture to make it more open to dynamic evolutions. The architecture of this

starting at step 3
system already features a good separation of responsibilities. As a result, the presentation of
the current system implementation covers almost the entire two first steps of our method: the
identification of responsibilities and the split of the system.

The central service composing the automatic cameraman is the Meeting Director service.cameraman
principle Internally, the meeting director holds the expertise about how to choose the best image and

audio source based on contextual informations. The meeting director uses a rule system to
implement activity recognition based on the information perceived by other services. Based on
the perceived situation, the meeting director selects the best video source among three: a video
of the speaker, a video of the audience or a capture of the current slide (more precisely of the
image projected by the speaker).

The running system is depicted in figure 6.4 that presents the Meeting Director service
existing architecture

with all services involved in its operation. To improve readability, we laid out the services in 3
layers. We will present the responsibilities of the services composing the system.

The meeting director is responsible for the orchestration of lower level services. The be-
responsibilities

ginning of the recording and its end are controlled by a graphical user interface that exposes a

94

CHAPTER 6. CONCEPT AND METHOD FOR THE DESIGN OF OPEN DYNAMIC
SYSTEMS

Movie Maker

Video Service

Change Slide Detector

MicrophoneMicrophoneMicrophone… Microphone

Sound Localization

Meeting Director

Service

On-Demand Connection

Meeting Director Controller

Video Service Video Service

Service Interconnection

Figure 6.4: Architecture of the automatic cameraman before its redesign. The cameraman is not
monolithic and uses a layered, service based architecture.

Meeting Director Controller service. The director connects to the controller and waits for its
events to start and stop the recording. The controller has a simple interface and can be easily
replaced by some other services. The user interface can be replaced by a remote control or a
simple switch and the director controller can even be automated: for example, a service can
automatically detect the bluetooth phone of the speaker and send start and stop events when
the speaker enters or leaves the room.

The first input used by the meeting director to recognize current activity is a slide change
visual input

detector service: it is responsible for telling when the speaker changes slide. Slide change
detection is based on simple image processing that tries to identify important changes in the
screen image. Screen images are continuously grabbed from the speakers computer by a video
service. Depending on the seminar, a full software screen grabber or a hardware VGA recorder
can be used. Both solutions expose as a video service and the slide change detector can use
these images to detect slide changes, appearance of new items in a slide or animations.

The other input used by the meeting director for activity recognition is an audio localization
audio input

system. This localization system uses a set of microphones to detect speech activity and evaluate
the direction of this activity. The localization is provided as an angle around the antenna of
microphones: the system covers the full 360◦ range of directions. This range can be restricted,
for example to 180◦, when the antenna is located against a wall or an obstacle.

The director holds the knowledge of the relative position of the speaker and the audience
role of the director

with regards to the microphone antenna. It also knows which service video can be used to record
the speaker, the audience or the current slides. Using its model of the current activity and this
knowledge, the director pilots a service dedicated to the video montage and the addition of
“special effects”.

The architecture presented here and in figure 6.4 already results from a slight change in the
previous
microphone
selection

structure of the system. Originally, the choice of the camera to record was done by the meeting
director but the choice of the microphone was done by a dedicated service called an audio router.
The meeting director had no control over the choice of the microphone and the coherence of

95

6.6. APPLICATION TO AN AUTOMATIC VIDEO COMPOSITION SYSTEM

the recording was conditioned by the fact that the meeting director used audio information to
select the video source. This choice was historical and motivated by performance and separation
of concerns: audio acquisition and processing for all microphones were performed by a single
service.

To provide the meeting director with a choice of what to record but still keep a smart
policy based
microphone
selection

adaptive microphone selection, we propose to integrate the functionality of the initial existing
audio router service in the movie maker itself. The meeting director then uses policies to express
high level queries of what sound the movie maker should record. An example policy could be:
“record the two microphones with best signal to noise ratio among microphones 3 to 6”. Another
solution would be to keep the audio router service and have it controlled by the meeting director
using policies.

The audio video montage is provided by a Movie Maker service. This service generates
video montage

an audio video media file. Based on the order it receives from the director, the movie maker
combines the proper audio and video sources. The movie maker handles the connections to
video and microphone services.

The presented architecture of the automatic meeting recorder has the advantages of re-
startup
configuration specting a proper separation of concerns. At this point however, the overall system must be set

up for the specific environment in which it will operate. This configuration consists in starting
the proper services and setting up a configuration file for the meeting director. The association
of camera identifiers to particular roles (speaker, audience, slides) is part of such configuration.
This configuration is necessary and doing it in a configuration file passed at the startup of the
meeting recorder is better than having it hard coded in the meeting director itself. The same
kind of information should be provided concerning the microphone: what angle provided by the
audio localization system correspond to the speaker or the audience.

From an architectural point of view, the recording system was not monolithic but still
lack of dynamicity

suffered from a lack of dynamicity: the meeting recorder expected particular services and is fully
configured at startup time. The architectural style was based on distributed components than
on services. This component orientation limited the dynamicity and the possible spontaneous
interaction of the recording system with other elements. Following our design method, the next
steps are those which effectively bring dynamicity and service orientation to existing systems.
These next steps tell us to evaluate the possibility of using service factories in our system and
to use abstract functionalities to describe both our services and their requirements.

The whole running system with services, factories and semantic functionality descriptions
redesigned
cameraman is depicted in figure 6.5. As with the 3D tracking system, semantic descriptions tend to replace

configurations and an important part of the descriptions and the services can be derived from
other descriptions and from the factories. Figure 6.6 underlines what needs to be put into the
system and what can be automatically derived.

At the upper level, we abstracted the requirements of our meeting director services as
functionalities. The meeting director requires four main functionalities: a speech detector for

abstracting:
director the speaker, and one for the audience, a slide detector notifying of slide activity and a movie

maker dedicated to the meeting. A meeting controller is also required but no real abstraction
is added: we just bring the service into the functionality domain for consistency. These ab-
stract requirements are indirectly implemented by low level services: the latter exposes their
raw functionality. Some integration descriptions are added to do the mapping between these
functionalities and the requirements of the meeting director. Most functionalities are scoped
by the location of interest, here “Room”, or by an identifier associated to the current meeting
recording “Meeting1234”. This precaution allows multiple systems to run at the same time
without interference.

The slide detector, on the right part of the figure, can be integrated within the architecture
involving the video service processors presented with the 3D tracking system. The meeting

abstracting: slide
change detector

96

CHAPTER 6. CONCEPT AND METHOD FOR THE DESIGN OF OPEN DYNAMIC
SYSTEMS

MicrophoneMicrophoneMicrophone… Microphone

Sound Localization

Meeting Director

Meeting Director Controller

Video Service Video Service Video Service

Instantiates

Service
Service Factory Service

Functionality Level Descriptions

Functionality Factory

Functionality And
Correspondence

Service Level Descriptions

Semantic Description

On-Demand Connection
Service Interconnection

MeetingDirector(Room)
uses: SpeechDetector(Room, "Speaker")

uses: SpeechDetector(Room, "Audience")
uses: MovieMaker(Meeting1234)

uses: SlideDetector(Room)

Video Service Processor

Video Service Processor Factory

ImageSource(Cam3)

conf ⋙ VSP(Cam3, conf)

ImageSource(Cam2)

ImageSource(Cam1)

VSP(Cam3, slideConf)

SlideDetector(Room)

⋙

Movie Maker

Movie Maker Factory

task ⋙ MovieMaker(task)

VSP(Cam3, slideConf) ⋙ SlideChange(Room)MovieMaker(Meeting1234"

SoundSource(Micro1)SoundSource(Micro1)SoundSource(Micro1)…oundSource(Micro1)SoundSource(Micro1)

Speech Detector

Speech Detector Factory

Speech Detector

min, max
⋙ SpeechDetector(min, max)

SpeechLocalization(0,90) ⋙ SpeechDetector(Room, "Speaker")
SpeechLocalization(91,180) ⋙ SpeechDetector(Room, "Audience")

SpeechLocalization(0,90)

SpeechDetector(Room, "Speaker")

⋙

SpeechLocalization(91,180)

SpeechDetector(Room, "Audience")

⋙

MeetingController(Meeting1234)

Figure 6.5: Automatic Cameraman with Functionalities and Factories. Result of the application
of our design method on the cameraman from figure 6.4. Factories have been introduced, in green.
Functionality level descriptions have been added to all elements, in red.

97

6.6. APPLICATION TO AN AUTOMATIC VIDEO COMPOSITION SYSTEM

director can use a video service processor factory started on the video service recording the
presenter screen. With the proper configuration, a video service processor can be started by the
factory and can detect slide changes. An example configuration is simply to do motion detection
on the video stream and if motion energy is above a threshold, emit a slide change event. The
knowledge of this configuration was already present in the initial system in a completely ad
hoc form: a dedicated service has been written and hard coded with this configuration. Using
semantic functionalities correspondences and the generic processor factory, this knowledge can
be provided anytime by a configurator or an integrator. This knowledge is present in the
architectural diagram as “VSP(Cam3, slideConf) ≫ SlideChange(Room)”. This configuration
knowledge explicitly expresses that“Cam3”is the camera recording speaker’s screen and that the
appropriate processor configuration for change detection is“slideConf”. This exact configuration
needs to be defined somewhere, for example directly in the description in place of “slideConf”.

Considering the movie maker service, we only introduce a factory for consistency. The orig-
factory: movie
maker inal movie maker was already capable of handling simultaneous recording of multiple indepen-

dent recording. This handling of multiple recording was done by a kind of session management
where the client started a session and then worked within this session. This use of sessions had
exactly the same role as service factories and we prefer to introduce a factory. With the movie
maker services factory, each session is materialized as a movie maker service. This approach
is more consistent with the rest of the architecture and allows the factory to declare itself as
producing movie maker functionalities. To distinguish movie makers functionalities from each
other, each has a property that we called “task” in the architectural diagram.

As far as the speech detection and localization are concerned, we have separated the detec-
tion of the speaker and the audience. Originally, the sound localization service was directly used

factory:
configurable speech
localization

by the meeting director. This service provides the angle at which it perceives sound together
with an information about the nature of this sound, voice or non-voice. The configuration of the
meeting director was basically telling what ranges of angles corresponded to the speaker and
the audience. We enrich the sound localization service and make a factory out of it. The speech
localization factory can produce speech detectors based on a range of angles. The configuration
of the meeting director is externalized as functionality correspondence and thus can be provided
anytime, even when the system is already started. Telling that the speaker area corresponds
to the angles from 0◦ to 90◦ can be expressed by the simple correspondence “SpeechLocal-
ization(0,90) ≫ SpeechDetector(Room, ”Speaker”)”. Materializing this configuration makes it
both easier to change during the lifetime of the system and reusable by other systems: the
knowledge of what range of angles correspond to the speaker is not specific to the meeting
director and it can be of interest for other services.

Our method has two last steps: “share the functionality” and “integrate”. Sharing our meet-
ing director functionality consists in evaluating whether having a factory of meeting directors
is pertinent. In this case we can perfectly introduce a factory of meeting directors based on the

sharing: director
factory requirements we identified. Figure 6.7 presents the factory we can introduce together with its

functionality level description. In this figure, the factory has instantiated two meeting directors
for two distinct rooms. In the description of the factory, we used “meetingNum = unique()” to
express the fact that a unique identifier should be generated, for instance based on the identifier
of the client of the factory.

Concerning the integration of the meeting director into other systems, the last step of our
method, we will not go further than what has already been done. We already integrated the

integrated with
processors meeting director with the video service processors infrastructure for the implementation of the

slide detector. Further integration can be done afterwards by introducing new functionality
correspondences.

Redesigning the automatic meeting recorder using functionalities makes it more flexible and
dynamic. Using functionalities, system parts can easily be replaced by some other services pro-

dynamic
configuration viding the same functionalities. Functionality correspondences are also used to replace startup

98

CHAPTER 6. CONCEPT AND METHOD FOR THE DESIGN OF OPEN DYNAMIC
SYSTEMS

MicrophoneMicrophoneMicrophone… Microphone

Sound Localization

Meeting Director

Meeting Director Controller

Video Service Video Service Video Service

Instantiates

Service
Service Factory Service

Functionality Level Descriptions

Functionality Factory

Functionality And
Correspondence

Service Level Descriptions

Semantic Description

On-Demand Connection
Service Interconnection

MeetingDirector(Room)
uses: SpeechDetector(Room, "Speaker")

uses: SpeechDetector(Room, "Audience")
uses: MovieMaker(Meeting1234)

uses: SlideDetector(Room)

Video Service Processor

Video Service Processor Factory

ImageSource(Cam3)

conf ⋙ VSP(Cam3, conf)

ImageSource(Cam2)

ImageSource(Cam1)

VSP(Cam3, slideConf)

SlideDetector(Room)

⋙

Movie Maker

Movie Maker Factory

task ⋙ MovieMaker(task)

MovieMaker(Meeting1234)

SoundSource(Micro1)SoundSource(Micro1)SoundSource(Micro1)…oundSource(Micro1)SoundSource(Micro1)

Speech Detector

Speech Detector Factory

Speech Detector

min, max
⋙ SpeechDetector(min, max)

SpeechLocalization(0,90) ⋙ SpeechDetector(Room, "Speaker")
SpeechLocalization(91,180) ⋙ SpeechDetector(Room, "Audience")

SpeechLocalization(0,90)

SpeechDetector(Room, "Speaker")

⋙

SpeechLocalization(91,180)

SpeechDetector(Room, "Audience")

⋙

MeetingController(Meeting1234)

Grayed out services and descriptions
are those that can be derived from the others

VSP(Cam3, slideConf) ⋙ SlideChange(Room)

Figure 6.6: Automatic Cameraman: What Can be Derived. Same figure as 6.5 but showing what has
to be provided by designers. Lighter parts of the schema are all the elements that are automatically
derived and instantiated.

Instantiates

Service
Service Factory Service

Functionality Level Descriptions

Functionality Factory

Functionality And
Correspondence

Service Level Descriptions

Semantic Description

MeetingDirector(Room1)

Meeting Director

Meeting Director Factory

meetingNum = unique()
SlideDetector(Room)

MovieMaker(meetingNum)
SpeechDetector(Room, "Speaker")

SpeechDetector(Room, "Audience")
⋙ MeetingDirector(Room)

Meeting Director
MeetingDirector(Room2)

Figure 6.7: Automatic Cameraman: Sharing the Functionality. Applying the “share the functionality”
step of our design method incites to expose the meeting director as a factory and as a functionality. In
this example the factory has instantiated two meeting director services.

99

6.6. APPLICATION TO AN AUTOMATIC VIDEO COMPOSITION SYSTEM

time configuration by dynamic configuration expressed as knowledge useable by any service.
Effective benefits of our design method will be presented in chapter 9 that presents the final
results of our work on the presented systems.

100

Chapter 7

UFCL, a Language for Semantic
Service Description

7.1 Motivation and UFCL Positioning

In chapter 6, we proposed a design method to overcome reuse and interoperability problems
new design method

identified in chapter 4. The presented design methods involved semantic descriptions of service
functionalities to allow dynamic integration and spontaneous interaction between services. The
presentation of the design method has been done in a total abstraction of the technologies that
can be used to implement services or describe their functionalities.

In this chapter, we introduce the User-oriented Functionality Composition Language (UFCL)
UFCL to support
our methodthat is specifically created to support our design method. UFCL uses a SQL-like syntax and

allow the designer to express descriptions of three kind: service functionality descriptions, func-
tionality correspondence descriptions and descriptions of service factories.

7.1.1 UFCL as a Simple Design Tool

We have identified three main principles for improving the design and architecture of systems in
obstacles to
enabling conceptsintelligent environments. All three of these principles encounter obstacles. In order of difficulty

these are:

• Adoption of SOA: many middleware and tools are available to implement service oriented
SOA

architecture but most of them have some problems. This includes difficulties in accessi-
bility for average developers, performance problems for high throughput communications,
and important restrictions on the language or platform that can be used.

• Semantic descriptions of service functionalities: although there are multiple semantic de-
scription languages, work on semantic descriptions is generally done by researchers from
the knowledge representation field. These language are well designed but they address ex-
perts from that domain. Most of these languages propose little or no abstraction between

functionality
descriptionspure generic knowledge representation and target user task consisting in the expression

of service functionalities.

Semantic web services (SWS) propose to describe service functionalities using semantic
web technologies. SWS are not a suitable alternative in our case. First, persistent con-
nections with high bandwidth streaming are required. Second, SWS technologies require
the user to have a broad knowledge of many technologies (XML, XSLT, OWL, ...) which
are long to master for any developer.

101

7.1. MOTIVATION AND UFCL POSITIONING

• Open service factories and composing factories: to our knowledge, no existing research
new concept of
factories work or technologies propose a way to describe service factories. In chapters 4 and 6, we

identified service factories as a major element supporting our design method. As there
is no existing model for it, describing service factories will have to be done in an ad hoc
manner.

We worked on overcoming these identified obstacles and on allowing average developer to
SOA: chapter 5

build applications using the design concepts of SOA, semantic descriptions of functionalities
and service factories. First obstacle concerns SOA adoption and has already been addressed as
described in chapter 5.

Concerning the two other obstacles, we propose a simple conceptual framework for the
framework for
functionalities and
factories

representation of service functionalities and service factories. This framework is directly inspired
from our design method presented in chapter 6. The framework remains simple by semantically
describing service functionalities independently from underlying service oriented middleware.
Our conceptual framework allows semantic description of functionalities provided by services
but it also includes the concepts around service factories including composing factories.

Based on this easily understandable framework, we have designed a language to write ex-
supporting language

pressions in this framework. This language has been named Usable Functionality Composition
Language (UFCL). The design of both the conceptual framework and the language were driven

UFCL
by the requirements identified in chapters 4 and 6, and oriented by the target audience: devel-
opers with some programming and modelling skills but no particular XML and semantic web
ones.

7.1.2 UFCL as a Hub in Ambient Intelligence Engineering

Chapter 6 illustrated how we can redesign an existing complicated system and what interesting
design tools could be useful in the developer’s toolbox. The previous section gave an overview of
the framework and the language (UFCL) that we propose for the design of intelligent environ-
ments and introduced how these can be used as a design tool. In this section we will illustrate
how UFCL can be used by different actors in the design, maintenance and evolution of an
intelligent environment.

As mentioned previously in this manuscript, the design of intelligent environments involves
many specialists. An intelligent environment must be able to perceive, understand, learn, act

integration is
necessary. . . and communicate with the user. Different specialists are working on these aspects and their

contributions must interact to form the intelligent environment. The simplest solution that
comes to mind is to say: “let the specialists do their work and have an integrator handle the
packaging of the parts and their interoperability”. Given the complexity of each specialty, this
simple solution consumes much manpower: the integrator has to understand all domains to
do his job. Understanding sufficiently each complex domain requires a considerable amount of

. . . but too costly
work and the integrator cannot handle many domains at once.

We are convinced that, for a real interoperability and for a durable reuse of components,
continuous
integration specialists must cooperate and favor the continuous integration of their systems. UFCL and

our functionality centered framework aims at being a hub for the integration of individual
contributions in intelligent environments.

We can categorize the actors involved in the conception of intelligent environments in 3 cat-
implementer,
consumer,
integrator

egories: functionality implementers, functionality consumers and integrators. This separation is
oversimplified and depending on the level of abstraction that we consider, one actor may be for
example both an implementer and a consumer. We will use this simplification in 3 categories
to underline the advantages of a cooperative integration over an integration that is based on an
integrator. At the scale of an intelligent environment, these categories can be the following:

102

CHAPTER 7. UFCL, A LANGUAGE FOR SEMANTIC SERVICE DESCRIPTION

• the functionality implementers could be the specialist implementing artificial perception:
computer vision, acoustic signal processing, statistical object recognition, etc.

• the functionality consumers could be the specialist in activity modelling and user assis-
tance

• the integrator is the engineer that currently has to understand the functionalities that are
implemented and used, and who adapts them to have them operate together.

Figure 10.3 illustrates the case where the integration is done by an engineer responsible for
classical integration

the interfacing of most software elements. The work of the integrator is essentially a “compile-
time”work where he must adapt parts provided by different specialists so they fit. On the other
hand, figure 10.4 shows the case where the concept of functionality is used as a central concept
and every specialist uses it to express his requirements and what his system part provides.
UFCL and the central concept of functionality is the base for interoperability.

Compile-Time-Integrated ApplicationPerception-Level Components

Higher-Level Components

Integrator

Figure 7.1: Classical Integration Task. The integrator has to understand and modify most of the com-
ponents that needs to be integrated. Components are modified at design time to produce an application.

Dynamically-Runtime-Integrated ApplicationPerception-Level Components

Higher-Level Components

Integrator

Figure 7.2: Integration Task with UFCL. The integrator has to understand only the functionality
provided and requires by components. Functionality correspondences and transformations are introduced
without changing existing components to produce an application.

Using UFCL, the role of the integrator is transformed: formerly having to dive in the
continuous
integration with
UFCL

implementation details of each system part and adapt it, he can first look at the involved
functionalities and see if he can express some correspondences between these functionalities.
Two functionalities could be totally identical (by pure luck or if there was a prior agreement

103

7.2. SERVICES AND FUNCTIONALITY FACETS

between the provider and the consumer) or they can be slightly different, requiring some syn-
tactical transformations (message formats, etc.) or they can be almost compatible, requiring
some adaption code to be written.

The principle of service oriented computing is already to hide implementation details to
dynamic integration

facilitate interoperability. Articulating the interoperability around the concept of functionality
greatly simplifies the integration task in most of the cases and frees up some time to integrate
more things or improve other aspects. In addition to simplify the task of the integrator, it also
makes it possible to express functionality correspondences dynamically at runtime: integration
in the form of functionality correspondences takes the form of some knowledge that can be
provided at any time.

In the rest of this chapter, we will present the main concepts involved in our conceptual
framework. Each concept will be explained and will be immediately illustrated by an example
expressed using the proposed language syntax.

7.2 Services and Functionality Facets

7.2.1 Metamodel for Functionality Facets

The entire conceptual framework revolves around the concepts of services and service func-
concrete services
have functionalities tionalities. The term of service is used in the sense attributed by the middleware community.

Service represents a software entity (or software representing some hardware) that is discov-
erable and introspectable independently of its particular implementation. Details about what
exactly constitutes a service in the middleware we have used can be found in chapter 5, sec-
tion 5.2.1. To improve extensibility, our framework is designed to have no strong dependency
to the middleware itself.

In the knowledge framework we proposed, a service can expose any number of service func-
functionality =
type+properties tionality facets. A functionality facet has a functionality type and some associated properties.

We chose this simple “type+properties” as it is a natural way of describing objects for human
(and thus service designers): it is close to human mental models. For the same reason, this
“type+properties” framework is the model underlying object oriented methods (modeling and
design) and is close to knowledge representation formalisms.

To detail all the possibilities offered by our framework at the level of functionality facet
detailed model

description, we can present the complete metamodel of our framework:

• A service has 0..* functionality facets.

• A functionality facet has

– a functionality type,

– 0..* valued properties.

• A functionality type (or functionality for short) is a semantic name representing a kind
of functionality that services can provide.

• A valued property is composed of

– a simple name,

– a property value.

• A property value can be of different types

104

CHAPTER 7. UFCL, A LANGUAGE FOR SEMANTIC SERVICE DESCRIPTION

– simple literal (string, number, . . .),

– a reference to a running service,

– a reference to a facet exposed by a running service,

– a reference to an arbitrary resource (e.g. a particular room, a unit).

Figure 7.3 gives a representation in UML of the metamodel presented in the previous bulleted
list.

Figure 7.3: Metamodel of Functionality Facets expressed in UML. A service may expose any number
of functionality facets. Each facets has some named valued properties.

To avoid having two people use the same name for two different concepts (functionality
avoid conflicts using
namespacestypes), the functionality type is a semantic name. Each knowledge writer has to specify the

namespace or namespaces that he wants to use. Specifying namespaces must be mandatory
and relatively easy for the service designer. We decided to reuse the solution chosen by XML
(and all knowledge representation languages based on it) as specified in [Url-n]. Our semantic
functionality names are represented by URLs and the designer can define short aliases for
namespaces. Examples about namespaces are given in next section together with the UFCL
syntax examples.

105

7.2. SERVICES AND FUNCTIONALITY FACETS

7.2.2 Expressing Functionality Facets in UFCL

Our language makes it easy to express that a service exposes some functionality facets. We can
express such knowledge in UFCL as shown in the following snippet.

1 | namespace is http://emonet09#

2 | this isa Timer

3 | with freq = 2

4 | with grounding = "C(tickTwice)"

This UFCL expression simply declares that the current service is exposing a Timer func-
tionality with a frequency of 2 (Hertz). As a first remark on UFCL syntax, we can state that
whitespace and indentation are unimportant as they are in most of the programming languages.
This choice has been made for the sake of familiarity: most modern programming languages
are insensitive to indentation and whitespace.

In this declaration, line 11 gives a default scope for semantic names such as Timer at line 22.
Given the namespace declaration, Timer will be interpreted as http://emonet09#Timer. Our
language allows writer to use multiple namespaces and give them aliases using a syntax inspired
by classical XML namespaces (e.g. myNS:Timer). There is no absolute default namespace: writ-namespace

ers are forced to declare a namespace for their descriptions. Without this obligation, description
writers would be tempted to write most of their descriptions in the absolute default namespace
and all the advantage of namespacing would be lost. When everything is defined in a unique
namespace, name collisions are likely to happen: a name can be used by two persons to represent
different concepts.

At line 22, this is a special identifier that implicitly represents the service exposing the
UFCL description. The identifier this could have been equivalently replaced by the expos-

“this”
ing service identifier. Using this is a convenience for service designers as it allows instance-
independent descriptions to be written. It is helpful not to use this in the case where a service
describes another one. The need for describing another service may arise when a service has
been deployed with incomplete or no description.

Also at line 22, UFCL keyword isa introduces the functionality implemented by this ser-
vice. We allow one service to implement more than one functionality. To reflect that, we refer to
this implementation as a functionality facet: in the current example, we can say that this has a
Timer functionality facet. One can note that isa could be replaced by implements which would

semantic of “isa”:
implements be semantically better; however, in object-oriented design and languages, the implementation

is associated to interfaces or purely abstract classes which are concepts that not all developers
fully master.

At line 22, Timer (standing for http://emonet09#Timer) is simply a functionality name
that may but does not need to be used or defined elsewhere. In fact functionality names are

reusing ontologies
Unique Resource Identifiers (URI) like the one used in Resource Description Framework (RDF)
and Web Ontology Language (OWL). This is intended to keep the door open to reuse possibly
existing ontologies when describing implemented functionalities.

Lines 33 and 44 affect values to two properties of the functionality facet, with being only
a separating keyword. In this example, one of the two properties (freq) is a simple property

properties and
grounding of the Timer functionality facet. The other does not particularly concern the timer facet. The

special grounding property attaches the defined functionality facet to an existing software
service running in the environment. In this case, it tells us that the Timer facet is implemented
using the single OMiSCID connector called tickTwice (C(tickTwice)) to be found on the
service exposing the description.

In the presented example, the grounding implicitly refers to a connector on the service
implementing the functionality facet, this. Rare are the cases where one functionality facet

grounding in
another service

106

CHAPTER 7. UFCL, A LANGUAGE FOR SEMANTIC SERVICE DESCRIPTION

should reference variables and connectors from services other than the facet owner but it is
still allowed by UFCL grammar. This possibility could for example be used to expose a Radio

functionality extracted from an existing audio-video acquisition device. The radio service would
then reference directly the audio connector of the existing service. The following code snippet
uses the grounding expression C(12340000:audio) to explicitly reference the audio connector
on the service having the identifier 12340000.

1 | this isa Radio

2 | with ...

3 | with grounding = "C(12340000:audio)"

To underline the semantic of isa, we can imagine that our service, that has been declared
to be a Timer with a frequency of 2 is also a Timer with a frequency of 1, tick events being
sent on a connector named tick. In this case, we would have another Timer facet declaration
for the same service:

multiple
implementation. . .1 | namespace is http://emonet09#

2 | this isa Timer

3 | with freq = 2

4 | with grounding = "C(tickTwice)"1 | namespace is http://emonet09#

2 | this isa Timer

3 | with freq = 1

4 | with grounding = "C(tick)"

5 | this isa Timer

6 | with freq = 1

7 | with grounding = "C(tick)"

This mechanism would not be permitted by a simple class belonging or classical interface
. . . disallowed in
object oriented
modeling

implementation principles. In classical object-oriented modeling, inheritance and interface im-
plementation mechanisms make it possible for an object to be of several types. Object-oriented
modeling disallows an object to implement several times the same type. It is only through
multiple inheritance that an object can be twice of a given type and these are clearly corner
cases of object-oriented usage.

Similarly, the semantic of RDF-based ontologies ignores the fact that a resource is linked
. . . and in plain
OWLto another one twice with a same predicate. This RDF semantic makes it impossible to model

multiple implementation by using directly the rdf:type predicate. OWL inherits this limitation
from RDF and its application for the description of semantic web services in OWL-S faced the
same problem of multiple functionality implementation.

The concept of functionality needs to be reified to fit in classical ontology description
reifying as in
OWL-Sframeworks. In OWL-S, a service resource is not directly the subject of a rdf:type as we

introduced the concept of functionality facet, they introduced the concept of capability. An
OWL-S service has a set of capabilities, each of an arbitrary type and with some properties:
no restriction prevents a service from having multiple capabilities of the same type. As we will
see in chapter 8, we convert our language to an RDF representation and we adopted the same
reification approach as in OWL-S.

7.3 Functionality Correspondences

7.3.1 Concept of Functionality Correspondences

Having described functionalities exposed by our services makes it possible to do service selection
based on these functionalities but it is still required to have an a priori agreement on what
functionalities will be used. Reconsider our Timer functionality introduced before: it only

e.g. equivalence of
“timer” and
“metronome”

sends events at a fixed rate. In a different context, for example in a music oriented application,
the designer could have named this functionality Metronome.

107

7.3. FUNCTIONALITY CORRESPONDENCES

We would like an application designed to work with Timer to spontaneously be able to
use a Metronome service that would be present in the environment. To allow this integration,

spontaneous
interaction two kinds of knowledge are required: the knowledge that Timer and Metronome are equivalent

concepts (modulo the name and unit of frequency) and the knowledge of how we can convert
metronome’s messages and communication protocol to timer’s. These are two concerns that can
be separated and we concentrated on the first one (chapter 9 discusses the protocol adaptation).

Integrating a metronome in an application that expects timers requires a knowledge about
required
correspondence
information

this concepts correspondence. Either written by a human (the integrator from previous section)
or generated using an automatic method, this knowledge is mandatory. This knowledge is
basically composed of 3 parts:

• A functionality facet type that can be considered as another one (e.g. Metronome)

• Some constraints on the functionality properties (e.g. the number of beats per minutes
(bpm) cannot be higher than 240)

• A functionality facet of correspondence with some values for its properties (e.g. a Timer

with a frequency of bpm/60)

7.3.2 Expressing Functionality Correspondences in UFCL

UFCL has a dedicated construct to describe the equivalence between functionality facets. As
detailed in the section 8.3.5 about the compilation of functionality correspondences (in next
chapter), this syntax is just a shortcut for a more generic syntax based on factories. In the
following snippet, lines 85 to 118 use this simplified syntax. Lines before line 85 are present
only to help understanding: knowledge expressed in UFCL can be fragmented and provided by
different sources at different time.

1 | namespace is http://emonet09#

2 | this isa Timer

3 | with freq = 2

4 | with grounding = "C(tickTwice)" 1 | namespace is http://emonet09#

2 | this isa Timer

3 | with freq = 1

4 | with grounding = "C(tick)"

5 | this isa Timer

6 | with freq = 1

7 | with grounding = "C(tick)"

8 | a Metronome

9 | having bpm = ?f

10 | isa Timer

11 | with freq = ?f / 60

This UFCL fact expresses that a Metronome functionality facet can be used as a Timer

functionality facet. Lines 85 and 107 put the two concepts in relation while 118 tells that the
mapping of
functionalities and
properties

freq property of the produced timer has to be set to “?f / 60”. ?f is a wildcard defined in
line 96 as having the value of bpm property in the Metronome facet (bpm stands for beats per
minute) and has to be divided by 60 to be converted into a frequency with the unit expected
in Timer facets. Globally, these 4 lines state that any service having a Metronome facet (with a
bpm property but no particular constraints) will also have a Timer facet with its freq property
set to 1/60th of Metronome’s facet property bpm. Correspondences between functionalities can
be seen as a kind of ontology alignment, putting into relations concepts introduced by different
designers. The grounding property that is defined for all functionality facets is automatically
propagated in case of functionality correspondences. In this example, the Timer facet will
inherit from Metronome facet’s grounding.

The second kind of knowledge required in functionality correspondences concerns message
adaptation of
protocols

108

CHAPTER 7. UFCL, A LANGUAGE FOR SEMANTIC SERVICE DESCRIPTION

format and communication protocol adaptation. It is not described by UFCL functionality
correspondence. However it is an important problem that drives many research efforts, we do
not handle this part of format and protocol adaptation, we just provide this clear architectural
separation between description of semantic functionality correspondences and adaptation of
communication formats. In our current grounding, formats and protocols are stored in service
description: OMiSCID middleware associates to each service connector or variable a description
and a format description. Using this middleware, these descriptions are the base information for
protocol and format adaptation. In a fully operational system, we could allow services to expose
knowledge about protocol and format adaptation, for example using text manipulation scripts
and/or XSLT as it is done in OWL-S. In addition to these simple descriptions, we should also
allow dedicated services to convert messages on demand (format and protocol adapter services).

7.4 Service Factories

7.4.1 Concept of Service Factories

Both constructs presented in the previous sections are classical in existing semantic service
description using ontologies. Through a simple syntax, UFCL aims at bringing these concepts

describing service
factories. . .to the average non semantic web specialist developer. In this section, the mechanism presented

is more original and consists in describing service factories. The role of a service factory is to
instantiate other services on demand.

There are mainly two kinds of factory for two kinds of instantiations:
. . . of two types

• parameterized service instantiation: given desired parameters, we can produce a service
instance with those parameters. Our Timer facet is a good example of this kind of
instantiation; we could easily write a factory that would instantiate any new Timer service
given the desired frequency.

• composite service instantiation: given some references to existing services, we can produce
a new service by composing their functionalities. We can illustrate this by the translators
example. We could write a factory that would use any translator from language A to
language B together with one from language B to language C and produce a translator
from A to C.

One can imagine having a factory that both uses one or more services and accepts some free
parameters.

We claim that factories are a useful extension to existing service oriented architecture that
uses service repositories. The timer/metronome example is underlining this point: it would be

infinite families of
servicesimpossible to advertise the presence of all possible timers as there is an infinity of them but

factories allow to instantiate any required timer. Factories have to advertise what family of
services they can instantiate and under which conditions.

7.4.2 Expressing Service Factories in UFCL

UFCL handles declaration of service factories we just presented. A first example is the one
concerning Timer factory that would expose this UFCL description:

e.g. “timer factory”

12 | composing
13 | grounding "C(start)"

14 | format "<run f=’?pFreq’/>"

15 | gives a Timer

16 | with freq = ?f

109

7.4. SERVICE FACTORIES

Lines 15 and 16 express the fact that this factory produces services implementing Timer

functionality and that the freq property takes the value of the ?pFreq wildcard. No constraints
semantic of the
description are expressed on this ?pFreq wildcard in the rest of the expression. It is completely free and

any Timer can be produced. Any service consumer understanding this UFCL expression and
requiring a Timer with a specific frequency would be able to ask the factory for the needed
Timer.

Lines 13 and 14, after composing, set some properties for the factory and may define
concrete access to
the factory required facets for composition (none here). While the grounding property works like its

homonym in functionality facets, the format property tells the factory client how to format
instantiation requests. In this example, to ask for instantiation of a Timer having a frequency
of 7 Hz, one should send, on connector start, a message like “<run f=’7’/>”.

An optional section, absent from this example, allows the factory to express constraints on
used wildcards and required facets. It is illustrated in the following example on Translators

a factory for
composition composition factory:

17 | composing
18 | grounding "C(start)"

19 | format "<c a=’?t1#’ b=’?t2#’/>"

20 | a Translator ?t1

21 | a Translator ?t2

22 | having

23 | ?t1.to = ?t2.from

24 | gives a Translator

25 | with from = ?t1.from

26 | with to = ?t2.to

This example contains many references to wildcards ?t1 and ?t2 defined at lines 20 and 21.
These two wildcards are each representing one Translator functionality facet. At line 23, in

constraining using
wildcards the having section, is defined the only constraint between these two functionality facets: to be

composable, destination language in ?t1 must be the same as source language in ?t2. As in
the previous example, last section at lines 24 to 26 expresses which functionality this factory
produces. These lines tell us that this factory can produce a new Translator with the same
source language as ?t1 and the same destination language as ?t2. This example is particular
and uses three times the same functionality (Translator) but any functionality or combination
of functionalities can be used.

Lines 18 and 19 give all the necessary information to ask the factory to create a product.
First property, grounding, is used to locate the factory itself. In our case, like in previous
examples, we are grounded into OMiSCID and the grounding expression contains a reference
to an OMiSCID connector. Only the start connector name is given here so the grounding
implicitly references the start connector on the service exposing the UFCL description. The
second property, format, tells how to build the instantiation query message to the factory. The

referencing services
in grounding format expression is a plain string with some special expressions enclosed in curly braces. Here,

format uses a particular expression “?t1#” that references the existing Translator functionality
that matched ?t1 and more precisely its grounding (using the“#”suffix). In our case, services are
represented by some unique numeric identifier and a formatted message accepted by this factory
could look like “<c a=’C(12340000:tr)’ b=’C(98760000:tr)’/>” where “C(12340000:tr)”
references the tr connector (translate) on service with identifier “12340000”.

An important remark at this point is that factories receive messages containing only ground-
ing information and no facet references. Grounding information is service level information and

no dependence from
factories to UFCL can be easily interpreted by a service even if it has no knowledge about UFCL and existing

facets. This is made to decouple the factory implementation layer from UFCL : a factory does
not need to gather UFCL descriptions nor to understand them nor to do reasoning about it.
One can even build a factory service or use it without any exposed UFCL description.

110

CHAPTER 7. UFCL, A LANGUAGE FOR SEMANTIC SERVICE DESCRIPTION

The given examples do not feature combination of facet wildcards (like ?t1) and parameter
hybrid factories:
composition and
parameters

wildcards (like ?pFreq). UFCL allows such combinations and a single factories description can
use both references to services and open parameters.

7.5 Special Constructs to Make Designer’s Life Easier

To simplify the authoring of UFCL descriptions, special “shortcuts” have been added to the
language and we will present the two most important. These shortcuts are the result of the

syntactic sugar and
least surprisestudy of different use cases and are relatively important for the usability of the language. The

first shortcut we will is a “syntactic sugar” that simplifies the definition of some classes of
functionalities. The second one tries to follow the principle of “least surprise” and it impacts
the semantic so as the reasoning on functionalities is closer what developers expect.

The first shortcut allows the UFCL writer to easily create resources that are attached to a
service. For instance, when declaring a Camera functionality, we want to be able to say that

resources “within”
servicesthis camera has a 2-dimensional reference frame (the reference frame of its image) and a 3D

reference frame (the reference frame of the camera itself in the 3D space). This can be easily
done using the special construct that uses a “|” character. An example of an UFCL expression
exposed by a camera service could be:

1 | this isa Camera

2 | with imageRef = this|image

3 | with cameraRef = this|camera

With this same UFCL description, each camera service will define two resources representing
service local
“namespace”its reference frames. This “|” construct provides a kind of namespace that is local to a service.

The namespace defined with this construct is visible from any other UFCL expression. Given a
camera service that would have the unique identifier “12340000”, another service such a person
detector service could expose a functionality like this one:

1 | this isa Detector

2 | with referential = #12340000|image
3 | with modality = modality:Vision

The second principle has no visible effect on the syntax but can be summarized as follows:
a service is all its
facets“a reference to a service is considered as a reference to all of its functionality facets”. An

example where this shortcut is useful appears when we consider a camera calibration that has
to reference a camera. Here is an example of an UFCL description illustrating this case, it is
detailed just after:

1 | this isa ExternalCameraCalibration

2 | with camera = #12340000

3 | with object = J113Room

4 |
5 | a ExternalCameraCalibration

6 | having camera = ?c

7 | having object = ?o

8 | isa ChangeOfReferenceFrame

9 | with from = ?o

10 | with to = ?c.cameraRef

Here an ExternalCameraCalibration references a Camera and knows a referential in
which the calibration has been done. Conceptually a camera calibration contains the informa-
tion to pass from the reference frame attached to an object used for the calibration procedure to
the reference frame of the camera. This equivalence of knowledge is expressed in the functional-
ity correspondence in the second part of the UFCL snippet. In this subsumption, ?c.cameraRef

avoid sneaky
problemsis used. If we look in details, ?c is a reference to the service with identifier “#12340000” but

111

7.5. SPECIAL CONSTRUCTS TO MAKE DESIGNER’S LIFE EASIER

it is its facet (and not the service) that has a cameraRef property. The fact that “a reference
to a service is considered as a reference to all of its functionality facets” makes ?c.cameraRef

behave as expected.

How to Use these Descriptions

Systematically advertising and looking for services with semantic functionalities together
wrapping it up

with the presence of service factories bring a lot of flexibility and make it easier to adapt to
changes in software environment. One can easily integrate into an already running application
an alien service and have it interoperate with existing services. However, to make this sponta-
neous interoperability come to life, we must be able to manipulate and reason about all these
semantic descriptions. In the following chapter, we will present a compiler from UFCL to some
rules that makes it possible to take advantage of the presented constructs.

112

Chapter 8

Runtime Framework Over UFCL
Descriptions

8.1 Objectives and Design Decisions

8.1.1 Bringing UFCL to life

In previous chapter, we presented a framework for semantic description of service functionalities.
We presented the motivations of this framework and proposed a language, UFCL, that aims at
being simple and usable by the average developer. When faced with such descriptions, we, as

rigorous inference is
requiredhuman beings, naturally infer what factories and services can be used and composed to obtain

a given functionality. Even if it may seem trivial for simple small size cases, making a computer
do this reasoning rigorously is a complicated task.

We propose a runtime that, given the exposed UFCL descriptions, reasons about these
descriptions and is capable of answering a query from a“client”. Here, the client is an application

. . . to fulfill queries
from clientsthat is looking for a particular functionality. The aim is that developer of this application just

have to express what functionality type and which properties are needed and the runtime will
do all the rest.

We can reformulate the task of our runtime as “finding a plan that will provide the desired
functionality”. A plan may involve some queries to service factories and it is ultimately a ground-

. . . by finding a
composition planing to a functionality facet fulfilling the target functionality. All exposed UFCL descriptions

may interact in a complex way in solving this problem.

Performance-wise we would have liked to be able to formulate this problem as an optimiza-
tion problem. This would also have made it simple to integrate some costs to different plan
elements such as cost of composing two particular services, cost of starting an new service, etc.
We have not found a proper way to reformulate our task as the resolution of an optimization
problem but this direction is still to explore in depth as it has many advantages. The main

optimization made
difficult by factoriesobstacle to viewing this problem as an optimization one, was the concept of service factories

and particularly open service factories. Some factories can produce any functionality among a
possibly infinite family of services.

Two other directions for solving such problems have appeared promising: multi-agent sys-
tems and rule based systems. Both of these paradigms are hard to master and can become tricky
when used intensively. Rule-based reasoning is well suited for problems where many indepen-
dently designed sources of knowledge must spontaneously interact. Given this adequacy and

falling back on rule
based systemshaving no experience with multi-agent systems and limited experience with rule-based systems,

we decided to explore the usage of rule-based systems.

113

8.1. OBJECTIVES AND DESIGN DECISIONS

8.1.2 Using a rule engine and backward chaining

A rule based system is composed of a base of facts and some rules. The base of facts is often
called a working memory. A rule is composed of some premises and some conclusions and can
be seen as an if-then rule. For example, a rule can express something like “if it looks like a
duck and it quacks like a duck then it is a duck”. In this example, “it looks like a duck” and “it

facts and rules
quacks like a duck” are the premises while “it is a duck” is the unique conclusion. We can see
that “it” is not clearly defined and appears in multiple parts of this rule. “it” is a variable that
can represent anything and, appearing multiple times in the rule, it adds some constraints on
the facts that can be matched or will be produced by the rule.

Based on its working memory and on its rules, the rule based system can have two main
inference policies: forward chaining and backward chaining. The case of forward chaining is the

forward chaining
easiest to imagine: rules that have their premises fulfilled by the facts in the working memory
are fired (executed) and generate new facts in the working memory. In some systems, a priority
can be set for each rule in order to control the firing order when multiple rules can fire at the
same time. The user of the rule based system can inspect the working memory and search for
particular facts of his interest.

One problem of forward chaining is that it “blindly” applies rules and generate facts. This
can cause problems in case of infinite rules. To take a simple example, we can consider a context
where we have a string of a given length and want to use it to measure a smaller distance. One

. . . can easily loop
forever can imagine a rule like “if we can measure a distance d then we can measure a distance d/2”:

as soon as a string can measure a distance d, we can fold it in two to measure a distance half
as long as d. With such rule, having even a single string measuring a distance d, we can use it
to measure any distance of d/2n. If the production rule is applied “blindly” and with no stop
condition, it can get stuck into trying to generate all these possibilities (d/2, d/4, ...) and never
apply some other rules that are necessary to solve the problem.

Affecting priority to rules and telling the production algorithm to be breadth first can be a
solution in this example. However, forward chaining cannot tackle the case of open rules where

. . . for example
with factories a rule can generate infinite products without need for recursive application. In our context,

an example of open rule can be the example of a Timer functionality: we can easily create
a timer having any (reasonable) frequency and we would want a rule that represents that.
This requirement of ours makes the use of simple forward chaining inappropriate to solve our
problem.

The alternative to forward chaining is backward chaining. Compared to forward chaining,
backward chaining

rules and facts stay the same but the inference mechanism is different. Backward chaining uses
the user request as a basis and rewrites this request using existing rules. This rewriting process
progressively builds trees of requirements until the facts present in the knowledge base can
fulfill a tree. Rewriting the goal expressed by the user can fall into the problem of infinite loop
as much as the forward chaining solution. Using backward chaining, it is possible to properly

. . . is guided by
client request apply open rules such as the Timer functionality rule: as soon as a particular Timer will be

required, the rule will be fired and will create the proper Timer.

We chose the Jena Semantic Web Framework [Url-o] [Url-p] to run our rule based system.
This choice was driven by the open sourceness of this project, its high activity and its features.

choosing Jena
Jena offers the possibility to do both forward and backward chaining. Jena also proposes a
hybrid inference engine based both on forward and backward chaining. In this hybrid mode,
each rule is either backward or forward; all applicable forward rules are first executed and then
backward inference is used to fulfill user query.

Our requirements clearly state that we need backward chaining. We discovered, only during
the implementation, some limitations in Jena’s backward chaining support. We reimplemented

. . . with limited
backward chaining a custom backward chaining algorithm, reusing only Jena’s forward chaining support. Sec-

tion 8.2.2 details the principle our custom backward chaining implementation.

114

CHAPTER 8. RUNTIME FRAMEWORK OVER UFCL DESCRIPTIONS

This custom implementation of backward chaining was an unexpected and significant extra
work over what we expected from reusing Jena. Having to implement backward chaining gave

. . . caused extra
workus a clearer insight of how backward chaining works and a better control over it. It also made

our implementation portable to any basic forward chaining inference engine.

8.1.3 Do not let the user write rules

We chose rule-based systems as a tool to solve our problem but not as a front-end to our target
users (average developers). When people decide to use rule-based systems they often fall in

with freedom (to
write rules). . .what we consider as a common trap: they let the user “free” to write custom rules. In our

case, we could be tempted to let user write rules that would interact with the rules generated
by the compilation of UFCL. However, with great freedom comes complexity: letting the user
write the rules delegates all the complexity to the final user. This complexity causes the user to . . . comes

complexityhave to learn all the tricks of designing rule-based applications. In addition to this complexity,
the fact that all rule engines are different forces the user to adapt to the particular rule engine
being used.

Our usage of rules can be compared to classical assembly language. Each UFCL expression
can lead to the generation of many complicated rules and it would not be helping to let the
user write custom rules. We use UFCL as a high abstraction, domain specific language that is

rules as the
assembly language
for UFCL

designed to be productive and that is compiled to some set of coherent interacting rules: some
of the generated rules heavily rely on the structure of the facts generated by other rules. We
can compare UFCL to languages like C++ that gets compiled down to a possibly huge amount
of assembly language statements that all need to be coherent (call conventions, structure of
virtual tables, . . .). For example, in C or C++, the definition of a function is compiled to some
assembly code that has a particular structure: it starts with a label, it expects a particular
state of the stack that reflects the value of the parameters of the function, it ends with a return
assembly instruction (ret) and has to free any allocated stack space. The exact structure of
the generated code for C functions is the call convention and both the code of the functions
and the code of the callers must stick to this convention to have the program run properly. To

do not mix
assembly and higher
level languages

go back to the case of UFCL, letting the user write custom rules would be equivalent to letting
the user mix assembly language with C++ (which is by the way possible but used only in rare
highly specific cases).

8.2 Introduction to the compilation mechanisms

8.2.1 The Jena semantic web framework

As explained in previous section we decided to use Jena as our rule engine. We had to implement
a custom backward chaining engine using forward chaining capabilities of Jena.

Jena is designed for the semantic web and it uses RDF as its fact representation format.
Where some others knowledge representation system use any arbitrary length tuples, RDF is
using only triples. RDF triples are of the form“subject predicate object”or“(subject, predicate,

Jena facts: RDF
triplesobject)”using a tuple notation. When in some other systems such as CLIPS we would represent

a person having a birth year and a height with a tuple like “(Person Bob 1981 1.65)”, Jena’s
limitation forces a reification into triples: multiple triples will be used to represent a single
tuple. In this example we could use three triples to represent the same knowledge: “Bob
rdf:type Person”, “Bob yearOfBirth 1981” and “Bob height 1.65”.

This example gives an occasion to introduce another concept in RDF: apart from the ex-
pression of knowledge using triples, RDF also brings some predefined predicates and resources.

existing RDF
predicatesAmong these elements defined in the RDF specification is the rdf:type predicate which is used

to associate a type to resources from the knowledge base. This rdf:type predicate is one that

115

8.2. INTRODUCTION TO THE COMPILATION MECHANISMS

we reuse intensively in our descriptions. Any element in a triple can be written using a pre-
fix followed by a colon. This prefix references a namespace defined in the knowledge base.
In previous example, we used “rdf:type” that, given the definition of the rdf prefix stands for
“http://www.w3.org/1999/02/22-rdf-syntax-ns#type”. To simplify the notation in this section,
we will consider that any element with no prefix (such as “Bob”) is in a custom namespace.

An RDF model composed of triples can be represented in various ways. In this manuscript,
we will use two main representations: a simple textual syntax with some colors to improve
readability and a graphical syntax. Using the textual notation, we could express that some
knowledge about the previously cited “Bob” and his boss “Harry” as follows:

textual notation for
RDF. . . 1 | (Bob rdf:type Person)

2 | (Bob yearOfBirth 1981)

3 | (Bob height 1.65)
4 | (Bob hasBoss Harry)

5 | (Harry height 1.9)

6 | (Harry yearOfBirth 1592)

In addition to this textual notation, we introduce here a graphical notation. In this graphical
. . . and a graphical
one notation, each resource is represented using an ellipse and properties are represented using edges

between these ellipse-shaped nodes. Figure 8.1 is an example of the graphical representation of
the previous triples.

Bob

Personrdf:type

1981yearOfBirth

1.65
height

Harry
hasBoss 1.9height

1592
yearOfBirth

Figure 8.1: Graphical representation of an RDF model

In addition to manipulating some RDF models (set of triples), we have to declare rules
that will be applied on these models to generate new triples. Jena is extensible and allows any
custom syntax to be used to define rules. It also proposes a built-in syntax for rules that is
perfectly suitable for our usage. As we are autogenerating rules, exact rule format is not very
important to us, expressive power is far more important. All rules through this manuscript will

rule syntax. . .
be written using the rule syntax used in Jena, syntax that we introduce here:

116

CHAPTER 8. RUNTIME FRAMEWORK OVER UFCL DESCRIPTIONS

1 | [
2 | (?this soundsLike ?that)

3 | (?this looksLike ?that)
4 | ->
5 | (?this isClassifiedAs ?that)

6 |]

The tuples appearing before the arrow at lines 2 and 3 are the premises, the ones after the
arrow are the conclusions (line 5). Elements starting with a question mark are variables and

. . . with
variables. . .are used to write more generic rules and to impose constraints on the matching and produced

triples. Additional rule constraints can be expressed in the premises as in the following example:

1 | [

2 | (?this looksLike ?that1)
3 | (?that1 looksLike ?that2)

4 | notEqual(?this ?that2)

5 | ->
6 | (?this looksLike ?that2)

7 |]

Jena proposes other built-in functions to do comparison, arithmetic operation, test for pred-
icate presence and absence, new node creation, etc. All these built-in functions can be called

. . . and built-in
functionsusing a syntax similar to the one used for “notEqual”.

Variables appearing in theses built-in function calls can be of two types: bound or unbound.
bound vs unbound
variablesBound variables are variables that are constrained elsewhere in the premises like ?this and ?that2

in the example. Unbound variables are variables that get affected by the built-in function. The
following rule illustrates these unbound variable together with the makeTemp built-in function
that is used to create a new node:

1 | [
2 | (?box1 weight ?w1)

3 | (?box2 weight ?w2)
4 | sum(?w1 ?w2 ?total)
5 | lessThan(?total 900)

6 | makeTemp(?container)
7 | ->

8 | (?container rdf:type OneMetricTonContainer)

9 | (?box1 isIn ?container)
10 | (?box2 isIn ?container)

11 |]

In this example, the rule groups any two boxes that weigh less than 900 kg and puts them
in a dedicated container. At line 4, the unbound variable ?total gets bound to the sum of ?w1

creating resources
and ?w2. In the knowledge base, the resource representing the container is created by the rule
at line 6 and “affected” to the ?container variable.

8.2.2 Compilation overview and introduction

This section explains the basic principles behind the compilation of knowledge expressed in
UFCL to some set of triples and rules. We need to compile 3 kinds of UFCL constructs:

3 kinds of UFCL
descriptionssimple facet implementations, simple subsumptions and service factories descriptions. Only

complex UFCL constructs such as subsumptions and service factories descriptions will lead to
the generation of rules. We will first give an introduction to how simple facet implementation
are compiled.

The compilation of a simple UFCL facet implementation construct will produce only a set of
triples. These triples will feature a resource representing the implementing service and a resource

117

8.2. INTRODUCTION TO THE COMPILATION MECHANISMS

for the facet; the facet will have a type and some properties. To give an idea of the generated
simplifications for
explanations triples, we can take a look at the knowledge generated by the compilation of a simple UFCL

statement. This section is just an introduction and thus some simplifications in the notation
are made to improve understandability and conciseness. These notation simplifications concern
how we represent literals from basic datatypes in RDF (strings and integers here) and on the
form of autogenerated tokens (temporary names).

We consider the following UFCL description:

1 | namespace is http://emonet09#

2 | this isa Timer

3 | with freq = 123

4 | with grounding = "C(tick)"

The true semantic of the previous UFCL expression depends on the service that expose it
(through“this”) and we make the supposition that the exposing service has the unique identifier
12340000. Under this supposition, the compilation of this UFCL statement will produce a set of

functionality
descriptions
produce facts

triples that use the RDF namespace (rdf) and a custom namespace (ufcl) for UFCL compilation
elements. These triples are the following:

1 | (service:12340000 ufcl:hasFacet ufcl:temp#1)
2 | (ufcl:temp#1 rdf:type http://emonet09#Timer)

3 | (ufcl:temp#1 http://emonet09#Timer..freq 123)
4 | (ufcl:temp#1 http://emonet09#Timer..grounding "C(tick)")

service:12340000 ufcl:temp#1ufcl:hasFacet

http://emonet09#Timerrdf:type

123http://emonet09#Timer..freq

"C(tick)"
http://emonet09#Timer..grounding

The global principle for the compilation of facet implementation is presented below. We
subsumptions and
factories. . . will first introduce the principle that is used by service factories and subsumptions that have a

tighter dependence on the need expressed by the user (the developer or program looking for a
particular functionality).

When the user searches for a service implementing a given functionality, the system monitors
the presence of a matching functionality facet. In the case the facet is directly implemented
through a simple declaration, it will easily be found. The case of factories and subsumptions

. . . rewrite user
need are more complicated as they work in a backward manner and rewrite some needs. To enable

backward rules to work, when the user searches for a particular functionality facet, this search
is added in the knowledge base as a need.

Factories and subsumptions are based on rewriting an existing need to one or several other
needs; where all needs generated by a factory are fulfilled, it generates a fulfillment for the
original need. To illustrate the principle guiding the rule generation process, we take an ex-
ample with simple concepts (trivial UFCL facets with no properties). A service is exposing a
functionality A, and some subsumption knowledge is exposed: “a B isa C” and “a A isa B”.

example of
successive need
rewriting steps

When the user searches for a functionality C, some triples will be added to tell that a C is
needed (step 1 in figure 10.5). One rule produced by “a B isa C” is a need rewriting rule and
will then generate a triple telling that a B is needed (step 2). In the same way, a triple telling
that an A is needed will be generated because of “a A isa B” (step 3). This last need for A can
be fulfilled directly by the service present in the environment (step 4). A second rule generated
by the compilation of “a A isa B” is a fulfillment rule and will propagate the fact that the need
for A is fulfilled as the fulfillment of the need for B (step 5). In the same way, a fulfillment of

118

CHAPTER 8. RUNTIME FRAMEWORK OVER UFCL DESCRIPTIONS

nas B5
nas C6needs C1

nas A4

needs B2
needs A

3

Figure 8.2: Example steps of need rewriting and fulfillment

the original need for C will be generated due to the rules issued from compilation of “a B isa
C” (step 6).

The presented principle of need rewriting and fulfillment propagation is the core of our
generated code. Around this principle, some additions are required to have this reasoning
working effectively. These additions mainly aim at preventing infinite recursions when doing

avoiding infinite
loopsinference with our generated rules. Trying to avoid infinite recursion can lead to a problem of

incomplete inference: if not designed carefully, our system can easily miss some services that
could possibly fulfill user needs.

Section 8.3 gives an in-depth description of the generation mechanisms, first for simple
descriptions and then for factories. Compilations of subsumptions have been reduced to a

subsumption as a
special case of
factory

particular case of service factory to avoid code duplication and thus they will be presented at
the end of the section on composing factories.

8.2.3 Automatic Inference of Implicit Constraints

Previous section presented the general principle of our compilation process that generates rules
implementing backward chaining. This section explains a mechanisms that is orthogonal and
happens during compilation: from the constraints expressed in an UFCL description, we auto-
matically infer derived constraints.

Writers of UFCL descriptions can express constraints between different elements. We can
UFCL expression
with. . .consider an UFCL description for a factory that composes translators, with two expressed

constraints:

1 | composing
2 | a Translator ?t1

3 | a Translator ?t2

4 | having
5 | ?t1.to != ?t1.from

6 | ?t1.to = ?t2.from

7 | gives a Translator

8 | with from = ?t1.from

9 | with to = ?t2.to

In the given UFCL description, two constraints appear in the “having” section: ?t1.to
. . . explicit
constraints. . .!= ?t1.from and ?t1.to = ?t2.from. Two other explicit constraints are present in the given

UFCL description. If we call ?prod, the unnamed product of the composition, these two
constraints are: ?prod.from = ?t1.from and ?prod.to = ?t2.to (present in the “gives a”
section). From these four constraints, three others can be derived: ?t1.from != ?t2.from,

. . . and derived
ones?prod.from != ?t1.to and ?prod.from != ?t2.from. Figure 8.3 illustrates explicit and im-

plicit constraints in this case.

119

8.2. INTRODUCTION TO THE COMPILATION MECHANISMS

?t1.to ?t2.from=

?t1.from

!= !=

?prod.from= ?t2.to

!= !=

?prod.to =

Figure 8.3: Constraint Inference Example. From explicit constraints (in bold black), implicit con-
straints are inferred (in red).

Section 8.3.5 also details the rule generation process for an example involving arithmetic
inference. The UFCL expression used in this example is the following subsumption:

1 | a Metronome

2 | having bpm = ?f

3 | isa Timer

4 | with freq = ?f / 60

In this example, a single explicit constraint is given: we can express it as timer.freq =
constraint inference
is mandatory. . . metronome.bmp / 60. From this constraint, the constraint metronome.bmp = timer.freq *

60 is automatically inferred. This inversion of the constraint is necessary to do proper backward
chaining: rules should rewrite a need for a Timer (with a given frequency) to a need for a
Metronome (with the proper “bpm”). To be able to rewrite a need for a Timer into a need
for a Metronome, the system must know what “bpm” value to search for (in function of the
“freq” of the Timer).

Constraint inference is totally orthogonal to our backward chaining fulfilling a query for a
. . . and
independent functionality. Inference of new constraints is done when an UFCL expression is compiled. The

derived constraints are generated and added to the original definition.

We have implemented constraint inference using rules. In this case again, we used Jena as
rule-based
implementation. . . our rule engine. These rules handle inference over equality (transitivity), inequality (e.g. a =

b and b != c implies a != c) and inversion of operations (e.g. a = b / 60 implies b = a *

60).

Our current implementation handles all equality and inequality inference, and most common
. . . with limitations
and evolutions use cases around operations. To handle more complicated cases, we could use and embed a real

equation system solver (starting our search from [Url-q]).

8.2.4 Integration on top of OMiSCID middleware

Previous sections gave an overview of how UFCL knowledge get compiled to enable inference.
The compilation and reasoning described in previous section is independent from the OMiSCID
middleware. This separation is the result of a design effort in this sense. Before detailing
the compilation process (in section 8.3), we will see how the integration of OMiSCID and the
reasoning system is done to combine their functionalities.

The first objective is to make it possible for any service to expose knowledge expressed
using UFCL. By convention, we propose that UFCL knowledge would be located in a dedicated

distributed dynamic
UFCL knowledge
base

variable of services called “knowledge”. The particular choice of “knowledge” is a little general
and a more specific name should be chosen in the case of a diffusion to a wider community. The
combination of all “knowledge” variables from running services constitutes an open distributed
database of semantic descriptions. OMiSCID is a convenient way to implement this dynamic
distributed database of UFCL descriptions: it handles dynamic discovery of knowledge sources

120

CHAPTER 8. RUNTIME FRAMEWORK OVER UFCL DESCRIPTIONS

(services) and adding a dedicated variable is a non intrusive way of providing the description
of services.

A service designer can fill the “knowledge” variable using standard OMiSCID APIs. A
library aiming at simplifying the integration of OMiSCID and UFCL has been designed. This

library to publish
descriptions. . .library provides helpers to make it simpler to write UFCL knowledge and to set knowledge

variables. More importantly, this library encapsulates all the process consisting in gathering
and reasoning about the knowledge from all running services. From the user standpoint, only a
desired facet type and some valuation for the facet properties have to be provided to the library
tools, everything else being done automatically.

The library provides the user with the possibility to create a KnowledgeGatherer object
that is dedicated to the optimization of the knowledge gathering and reasoning process. A

. . . retrieve them. . .
knowledge gatherer listens to the apparition and disappearance of OMiSCID service in order to
maintain a union of the UFCL information exposed by running services. When a new service
appears, the knowledge gatherer updates its overall model with the new information provided
by this new service: it retrieves the value of the “knowledge” variable (if any), compiles the
UFCL expression to a reasoning model composed of triples and rules, and inserts this model
into the local union model it maintains. In the same way, when a service disappears, its model
is retracted from the union model by the knowledge gatherer. Using OMiSCID facilities, the
knowledge gatherer can also register to “knowledge” variable modifications to update its model
when a service updates its UFCL knowledge.

When the user specifies the functionality facet he or she is looking for, the knowledge
gatherer generates the associated triples (see section 8.3.2) and adds them in the union model
it is maintaining. From the moment the user has specified his functionality requirement, the

. . . and fulfill user
need by
reasoning. . .

knowledge gatherer runs the inference process on its union model. When some new knowledge
is added in response to a service apparition, the inference process is resumed with the additional
knowledge information. As soon as a service providing the facet required by the user is found,
the knowledge gatherer returns the associated grounding (a reference to the OMiSCID service).

The concrete service implementing a functionality can be directly present in the environ-
ment but it can also be issued from a more complicated plan containing some queries to service
factories. If the knowledge gatherer finds a virtual implementation of the functionality facet

. . . and invoking
factoriesrequired by the user, it automatically applies the associated plan by formatting and sending

instantiation query messages to the factories involved in the plan. All these calls to facto-
ries are transparent for the user and he or she eventually gets the desired functionality facet
implementation if it is present or instantiable.

Leveraging the dynamic nature of OMiSCID, the knowledge gatherer is able to access a
dynamic distributed database of semantic description: the knowledge gatherer monitors service
apparitions, modifications and disappearance and updates its internal model accordingly. Even

local reasoning on a
dynamic distributed
database

if the knowledge is distributed, the reasoning is centralized and duplicated for each knowledge
gatherer. Performance-wise, it could be tempting to have an inference process that would
be shared by all the users and even distributed. Our case is not well suited to sharing as
our reasoning highly depends on the need expressed by the user: different needs lead to very
different inferences.

Duplicating the reasoning and making it local has several advantages:
motivations of local
reasoning

• it makes it possible for a user to do some reasoning that mixes the knowledge exposed
by running services with some knowledge that should not be published: internal “private”
knowledge, uncertain “prospective” knowledge, etc.

• it makes reasoning more robust as we only rely on other services to provide their descrip-
tions: busy services will not impact the speed of the reasoning process

121

8.3. DETAILED COMPILATION OF UFCL CONSTRUCTS

• it keeps the possibility to deploy, on a classical computer, an inference proxy that can be
used by resource constrained devices (like a PDA).

8.3 Detailed compilation of UFCL constructs

8.3.1 Compiling simple descriptions

The previous section gave an overview of how UFCL can be compiled to give RDF triples and
rules. It also described why some mechanisms must be set up in order to cope with problems
such as an infinite generation process. Compared to the generation process described in the

avoiding loops with
ageing overview, the only element that we add to the compilation of simple description is an “age”.

We added an ageing process to our inference mechanism to ensure inference process would
not loop infinitely. The ageing is done by affecting an age at each facet implementation in
our knowledge base. Facet implementation directly exposed by services will be inserted in our
knowledge base with an age of 0 and facets generated by our inference process will get older
and older. As an illustration, we can take an example of facet implementation like this one:

1 | namespace is http://emonet09#

2 | this isa ChangeOfReferenceFrame

3 | with from = J113

4 | with to = Calibrator

5 | with grounding = "C(transform)"

We make the same supposition that the exposing service has the unique identifier 12340000
and also we simplify the names of temporary resources. The compilation of this UFCL statement

representing age
will produce the following triples:

1 | (service:12340000 ufcl:hasFacet ufcl:temp#1)
2 | (ufcl:temp#1 rdf:type http://emonet09#ChangeOfReferenceFrame)

3 | (ufcl:temp#1 http://emonet09#ChangeOfReferenceFrame..from http://emonet09#J113)
4 | (ufcl:temp#1 http://emonet09#ChangeOfReferenceFrame..to http://emonet09#Calibrator)
5 | (ufcl:temp#1 http://emonet09#ChangeOfReferenceFrame..grounding "C(transform)"ˆˆxsd:string)
6 | (ufcl:temp#1 ufcl:hasAge "0"ˆˆxsd:int)

The notation "C(transform)"̂̂xsd:string is the one used to declare literals in RDF. Any
exact RDF
representation type from the XML Schema Definition specification (XSD) can be used to type RDF literals. We

can emphasize that the code we generate for the facet properties implementation contains pred-
icates such as http://emonet09#ChangeOfReferenceFrame..from with not only the name of
the property (from) but also the name of the facet type (http:...ChangeOfReferenceFrame).
The motivation of this repetition is to facilitate debugging and understanding of the gener-
ated model: there is no homonymy between properties and thus it gets simpler to look for a
particular facet property.

8.3.2 Asserting user need

As introduced in section 8.2.2, as soon as a particular functionality facet is required, a cor-
responding need is inserted in the knowledge base. The triples issued from the compilation,
like those presented in the previous section for a ChangeOfReferenceFrame, will immedi-
ately fulfill this need if they match it. Not only the generated triples can match directly a
need but they can also be used by other rules for more complex cases like UFCL factories and
subsumptions that will be described in following sections.

The principle of our inference is to do backward chaining. Backward chaining makes the
presence of an explicit goal mandatory to trigger inference. When the user searches for a par-
ticular functionality facet, we insert triples corresponding to his query into the knowledge. This

asserting the user
need. . .

122

CHAPTER 8. RUNTIME FRAMEWORK OVER UFCL DESCRIPTIONS

initial need is expressed using the invariant triple (ufcl:user ufcl:searches ufcl:target)

where ufcl:target get described as a classical facet implementation. For example in the case
where the user is looking for a Timer with a frequency of 10, we would insert these triples in
the knowledge base:

1 | (ufcl:user ufcl:searches ufcl:target)
2 | (ufcl:target ufcl:hasAge "0"ˆˆxsd:int)

3 | (ufcl:target rdf:type http://emonet09#Timer)
4 | (ufcl:target http://emonet09#Timer..freq "10"ˆˆxsd:int)

�fcl:user ufcl:targetufcl:searches

"0"^^xsd:intufcl:hasAge

http://emonet09#Timerrdf:type

"10"^^xsd:int
http://emonet09#Timer..freq

All rules generated by the compilation of UFCL descriptions will basically work on these
triples representing a need. The initial need is issued from the query expressed by the user as

. . . that will get
rewrittenin the Timer example above. This initial need can possibly get rewritten by the rules that we

will present in the following sections. Rewriting a need produces a new set of triples having the
same form as the one representing the initial need.

8.3.3 Compiling open factories

In section 8.3.1, we presented what our system generates for UFCL facet implementation state-
ments. In this section, we will detail what is generated for other statements such as simple
subsumptions and various factory descriptions. These generation mainly produces rules and we
will see how these rules interact with knowledge generated by simple declaration and with each
others.

In this manuscript, we call factory a service that is designed to instantiate other services. We
two kind of factories

exhibited two main kind of factories: composing factories that aim at producing new services
by composing existing ones and open factories that can instantiate any service drawn from a
particular parametered family of services. As presented in section 7.4.2, declaring that a service
is an open service factory can be expressed in UFCL with declarations of the following form:

1 | composing

2 | grounding "C(start)"

3 | format "<run f=’?pFreq’/>"

4 | gives a Timer

5 | with freq = ?f

Details about the semantic of this description are given in section 7.4.2. Such an open factory
open factory: one
rulewill generate only one rule in the knowledge base. The generated rule will process any need

for a Timer with a given frequency to a fulfillment of this need together with the information
required to instantiate the new service implementing the Timer.

Given this way of expressing user need in the knowledge base, the previous UFCL snippet
describing the open timer factory will produce the following rule, expressed using Jena’s syntax
for rules:

123

8.3. DETAILED COMPILATION OF UFCL CONSTRUCTS

1 | [
2 | (?any ufcl:searches ?prod)

3 | (?prod rdf:type http://emonet09#Timer)
4 | (?prod http://emonet09#Timer..freq ?prod freq)
5 | makeTemp(?compose)

6 | makeTemp(?end)
7 | makeTemp(?endf)
8 | ->
9 | (?end ufcl:action ?compose)

10 | (?end ufcl:hasFacet ?endf)
11 | (?endf rdf:type http://emonet09#Timer)
12 | (?endf http://emonet09#Timer..freq ?prod freq)

13 | (?compose ufcl:parameter-f ?prod freq)
14 | (?compose ufcl:hasGrounding "C(11223300:start)")
15 | (?compose ufcl:hasFormat "<run f=’?pFreq’/>")

16 |]

The premises of this rule basically tell: when anyone searches for a product of type Timer
principle of the
generated rule with a given frequency, create 3 intermediate nodes that will be used in the conclusions of the

rule. Execution of this rule will insert some triples representing predicates and properties to
express the fulfillment of the requirement. What will get generated is a new virtual service ?end
that will have a functionality facet ?endf of type Timer with the required frequency. Additional
decoration is added to the virtual service to express how a real service can get instantiated.
This information takes the form of the newly generated node stored in the ?compose variable.
This information is called instantiation information.

The ?compose variable holds all information necessary to instantiate a real service corre-
instantiation
information sponding to the virtual service ?end. This information includes the properties of the factory

that generated the rule and an assignment to the free variables present in the UFCL description
of the factory. In our particular example we have the two properties of a factory (grounding
and format properties) and only one free variable assignment (assignment of ?f to the desired
frequency).

The consequence of adding this rule in the knowledge base is that anytime an implemen-
fulfilling any
matching need tation of a Timer facet will be required, one virtual service will be declared to fulfill this

requirement. This rule will apply for both an initial need expressed directly by the user and for
a need that could get generated by another rule present in the knowledge base.

8.3.4 Compiling composing factories

Previous section illustrated how open factories definitions get compiled from UFCL down to some
rules. Open factories are factories that can instantiate any services from a particular family of
services. This section explains the compilation of composing factories. This compilation process
differs notably from the one for open factories.

This section is dedicated to the compilation of the factories that produce other services by
composing existing ones. Compiling these composing factories descriptions is the most complex

factories that
compose services and difficult part of the overall compilation process. Open factories (having free parameters)

described in previous section and composing factories are not disjoint concept: it is possible
for a factory to be both composing and open. Openness and composition are two facets of
the factories that are handled differently and thus we will first present the composing factory
independently of the open factory concept.

To illustrate the composition of composing factories, we will study the compilation of the
following UFCL description which corresponds to a purely composing factory:

124

CHAPTER 8. RUNTIME FRAMEWORK OVER UFCL DESCRIPTIONS

1 | composing
2 | grounding "C(start)"

3 | format "<comp corf=’?transformation#’ det=’?detector#’/>"

4 | a ChangeOfReferenceFrame ?transformation

5 | a Detector ?detector

6 | having
7 | ?transformation.to = ?detector.frame

8 | gives a Detector

9 | with frame = ?transformation.from

Basically, this description tells that composing a change of reference frame and a detector
a factory composing
N services. . .can produce another detector operating in a different reference frame. By the way, the func-

tionality of a Detector is to affect a probability of object presence to any point that is passed to
it. If we want to do some detection in a reference frame R1, we can transform our points in R1
to their equivalent in R2 and then use a detector in the R2 reference frame. The transformation
from points in R1 to points in R2 can be done using a change of reference frame R17→R2.

The code generation process will generate a number of rules that depends on the number of
services that get composed in the service factory description: in the previous example we have
?t1 and ?t2 appearing in the service factory description. For cases like our example, one rule

. . . generates N+1
chained rulesmore than the number of involved services is generated. One rule for each involved service will

rewrite previous need (original need for the first rule) to the need for the next involved service.
A last rule will wrap everything up and convert the fulfillment of the last need of this chain
to the fulfillment of the original need. In our example, we have two services involved in the
composition and thus we will have 3 rules:

• one rule rewrites the need for the product Detector to a need for ?detector, a Detector

with a different reference frame of operation,
e.g. change of
reference frame and
detector• one rule rewrites the fulfillment of this need for ?detector to a need for ChangeOfRef-

erenceFrame (?transformation variable),

• one last rule produces a fulfillment of the original need for Detector when the need for
?transformation is fulfilled.

Figure 8.4 illustrates how the rules interact with each other to obtain a detector in R1 in the
presence of a detector in R2 and a transformation R17→R2.

�ee�s Tr. R1 to R2rule 2
has Det. R1rule 3needs Det. R1 needs Det. not R1rule 1

has Det. R2

has Tr. R1 to R2

Figure 8.4: The n + 1 = 3 rules for a factory involving n = 2 services. Rules working on needs and
exposed functionalities to compose a detector (Det.) with a transformation (Tr.).

In this example, the first rule is responsible for the rewriting of the original need for a
Detector to a need for any detector in any reference frame. The reference frame of the new
detector we are searching for is not bound and can take any value. As we are in an open world any resource can

become a reference
frame

and as new functionality facet implementations can get instantiated by service factories, we
have to consider all existing resources as a potential reference frame for a potential detector.
We introduce the concept of ufcl:candidate to represent the set of resources that have to be
tried when search is totally unconstrained.

The first Jena rule generated for the previous UFCL description is the following:
rule 1. . .

125

8.3. DETAILED COMPILATION OF UFCL CONSTRUCTS

1 | [
2 | (?any ufcl:searches ?prod)

3 | (?prod rdf:type http://emonet09#Detector)
4 | (?prod http://emonet09#Detector..frame ?prod frame)
5 | (?any ufcl:hasAge ?firstAge)

6 | sum(?firstAge ’1’ˆˆhttp://www.w3.org/2001/XMLSchema#int ?newAge)
7 | lessThan(?newAge ’10’ˆˆhttp://www.w3.org/2001/XMLSchema#int)
8 | (?subjectunboundframe ufcl:candidate ?unboundframe)
9 | makeTemp(?newSearcher)

10 | makeTemp(?detector)
11 | ->
12 | (ufcl:factory-1 ufcl:hasSearchInstance ?newSearcher)

13 | (?newSearcher ufcl:searches-prod ?prod)
14 | (?newSearcher ufcl:uses ?detector)
15 | (?newSearcher ufcl:searches ?detector)

16 | (?detector ufcl:isSearched ?newSearcher)
17 | (?detector rdf:type http://emonet09#Detector)
18 | (?detector http://emonet09#Detector..frame ?unboundframe)

19 | (?newSearcher ufcl:hasAge ?newAge)
20 |]

This rule matches any need for a Detector within a given reference frame, adds one to
the age of this need and continue only if this new age is less than a limit (here 10). This rule
applies for any candidate frame and this is expressed using the triple (?subjectunboundframe

ufcl:candidate ?unboundframe) that will match any candidate resource.

For each of need and each candidate, a new search instance is created: it is composed of
the newly created nodes ?newSearcher and ?detector. To keep track of which rule generated

. . . in details
this search instance, the ?newSearcher is declared as a search instance of an automatically
generated resource representing this rule: in this example ufcl:factory-1. The suffix number
is automatically increased during the compilation process each time a new rule creation requires
it. To have a generation process more generic and to have enough information for further rules,
the ?newSearcher gets linked to its target product ?prod and gets bidirectionaly linked to the
new facet that it requires: ?detector. The link from ?newSearcher and ?detector is duplicated
using ufcl:uses and ufcl:searches: the first one is a way to keep information about the
searcher and the second is there to trigger other rules that can rewrite or fulfill this new need.
By the way, all rules aiming at fulfilling or rewriting a need are triggered on the condition
that a someone “ufcl:searches” something. More information about the generated needs is also
generated including the properties of this needed facet and the newly calculated age.

The second rule for our previous UFCL description will aim at rewriting the fulfillment of
rule 2. . .

the need generated by the previous rule to a need for the second involved functionality facet of
type ChangeOfReferenceFrame. The second generated rule is exactly this one:

126

CHAPTER 8. RUNTIME FRAMEWORK OVER UFCL DESCRIPTIONS

1 | [
2 | (ufcl:factory-1 ufcl:hasSearchInstance ?searcher)

3 | (?searcher ufcl:uses ?searched)
4 | (?searched http://emonet09#Detector..frame ?searched frame)
5 | (?searcher ufcl:searches-prod ?prod)

6 | (?prod http://emonet09#Detector..frame ?prod frame)
7 | (?owner ufcl:hasFacet ?detector)
8 | (?detector rdf:type http://emonet09#Detector)
9 | (?detector http://emonet09#Detector..frame ?detector frame)

10 | equal(?searched frame ?detector frame)
11 | (?searcher ufcl:hasAge ?firstAge)
12 | (?detector ufcl:hasAge ?tmpAge)

13 | sum(?tmpAge ’1’ˆˆhttp://www.w3.org/2001/XMLSchema#int ?secondAge)
14 | max(?firstAge ?secondAge ?newAge)
15 | lessThan(?newAge ’10’ˆˆhttp://www.w3.org/2001/XMLSchema#int)

16 | makeTemp(?newSearcher)
17 | makeTemp(?transformation)
18 | ->

19 | (ufcl:factory-2 ufcl:hasSearchInstance ?newSearcher)
20 | (?newSearcher ufcl:searches-prod ?prod)
21 | (?newSearcher ufcl:searches-detector ?detector)
22 | (?newSearcher ufcl:uses ?transformation)
23 | (?newSearcher ufcl:searches ?transformation)

24 | (?transformation ufcl:isSearched ?newSearcher)
25 | (?transformation rdf:type http://emonet09#ChangeOfReferenceFrame)
26 | (?transformation http://emonet09#ChangeOfReferenceFrame..from ?prod frame)

27 | (?transformation http://emonet09#ChangeOfReferenceFrame..to ?detector frame)
28 | (?newSearcher ufcl:hasAge ?newAge)
29 |]

The first part of the premises (line 2 to 9) imports a need that has been generated by the
previous rule: it matches a search instance of ufcl:factory-1 (the autogenerated resource
representing the first rule). All information that is necessary to this second rule is imported

. . . in details
with the first 4 triples matchers. Apart from applying the ageing process (line 11 to 15), the rest
of the premises aims at matching a Detector that fulfills the need represented by the ?searched
facet. All constraints that can be inferred from the UFCL description are put in this rule. In
our case, the only constraint is a direct one and the rule just has to check that the detector’s
reference frame is the one we are looking for in the searcher (line 10).

On the same model as the first rule, this second rules generates a new need: this correspond
for the last need for a ChangeOfReferenceFrame. At this point, the Detector that is needed

accumulating
constraints in the
process

(?prod) is known to be operating in the ?prod frame reference frame. The possible other
Detector that could be used (?detector) is also known and operates in the ?detector frame
reference frame. To complete the composition, the ChangeOfReferenceFrame required is
fully specified: ?prod frame 7→ ?detector frame The conclusions of this rule are only asserting
the need for such a ChangeOfReferenceFrame and decorate this new need with informations
that will be used by the fulfillment rule.

The last rule that gets generated by our compiler for the previous UFCL statement uses the
rule 3. . .

result of previous rules to enrich the knowledge base with a virtual service fulfilling the original
need. This virtual service will appear in the knowledge base as a classical service implementing
a functionality facet and will be able to be used by other rules requiring this functionality
facet. The asserted virtual service has some decorations containing the necessary information
to effectively instantiate this service. The rule is longer than the previous ones but is basically
working on the same principle. It is shown in full length here:

127

8.3. DETAILED COMPILATION OF UFCL CONSTRUCTS

1 | [
2 | (ufcl:factory-2 ufcl:hasSearchInstance ?searcher)

3 | (?searcher ufcl:uses ?searched)
4 | (?searched http://emonet09#ChangeOfReferenceFrame..to ?searched to)
5 | (?searched http://emonet09#ChangeOfReferenceFrame..from ?searched from)

6 | (?searcher ufcl:searches-prod ?prod)
7 | (?prod http://emonet09#Detector..frame ?prod frame)
8 | (?searcher ufcl:searches-detector ?detector)
9 | (?detector http://emonet09#Detector..frame ?detector frame)

10 | (?owner ufcl:hasFacet ?transformation)
11 | (?transformation rdf:type http://emonet09#ChangeOfReferenceFrame)
12 | (?transformation http://emonet09#ChangeOfReferenceFrame..to ?transformation to)

13 | (?transformation http://emonet09#ChangeOfReferenceFrame..from ?transformation from)
14 | equal(?searched to ?transformation to)
15 | equal(?searched from ?transformation from)

16 | equal(?transformation from ?prod frame)
17 | equal(?transformation to ?detector frame)
18 | (?searcher ufcl:hasAge ?firstAge)

19 | (?transformation ufcl:hasAge ?tmpAge)
20 | sum(?tmpAge ’1’ˆˆhttp://www.w3.org/2001/XMLSchema#int ?secondAge)
21 | max(?firstAge ?secondAge ?newAge)
22 | lessThan(?newAge ’10’ˆˆhttp://www.w3.org/2001/XMLSchema#int)
23 | makeTemp(?end)

24 | makeTemp(?endf)
25 | makeTemp(?compose)
26 | ->

27 | (?end ufcl:action ?compose)
28 | (?end ufcl:hasFacet ?endf)
29 | (?endf rdf:type http://emonet09#Detector)
30 | (?endf http://emonet09#Detector..frame ?prod frame)

31 | (?compose ufcl:hasGrounding ’C(11223300:start)’)
32 | (?compose ufcl:hasFormat "<comp corf=’?transformation#’ det=’?detector#’/>")
33 | (?compose ufcl:parameter-detector ?detector)

34 | (?compose ufcl:parameter-transformation ?transformation)
35 | (?endf ufcl:hasAge ?newAge)
36 |]

This rule is built exactly on the model of the previous rule as far as the premises are
same kind of
premises. . . concerned but the conclusions differ as they assert a new functionality facet implementation

instead of a new need.

Premises import requirement information from the previous rule starting from any search
instance of ufcl:factory-2. They also require a proper ChangeOfReferenceFrame (?trans-

. . . with more
constraints formation) to fulfill the last need for composition. All constraints expressed between this ?trans-

formation and other elements taking part in the composition (?searched and ?prod) are expressed
in the premises. As introduced in 8.2.3, these constraints are issued from constraint inference
to maximize reasoning efficiency.

When everything required to fulfill the composition pattern is found, the conclusions of this
conclusions create a
virtual service. . . last rule assert a new functionality facet ?endf provided by a new virtual service ?end. The

produced functionality facet implements the original need this factory has previously rewritten
in two steps. As this produced functionality facet may eventually get used to fulfill the very

. . . with
instantiation
information

need of the user, the necessary information to instantiate a real service from the virtual one
must be accessible from the virtual service. This information is contained in the ufcl:action

of the generated virtual service that is represented by the resource ?compose. This instantiation
information contains the grounding and format string that tell how to instantiate the service:
where to find the factory and how to format the message we send to it. As the format string
may contain references to the variable used in the UFCL description of the factory, instantiation
information also keep some references to the facets matching these variables (?transformation
and ?detector). The section dedicated to the integration with OMiSCID middleware details
how this instantiation information is used. .

128

CHAPTER 8. RUNTIME FRAMEWORK OVER UFCL DESCRIPTIONS

8.3.5 Compilation of Simple Subsumptions

As presented in chapter 7, it is possible to use UFCL to express that a functionality type is a
subtype of another one provided some transformations are applied to its properties. There is a
dedicated construct in UFCL to do so. As an example, declaring that a Timer can be derived
from any Metronome can be done using the following UFCL declaration:

subsumptions in
UFCL. . .

1 | a Metronome

2 | having bpm = ?f

3 | isa Timer

4 | with freq = ?f / 60

The rule generation process for such a subsumption is similar to the one for factories. Every
. . . as need
rewriting rulesneed for a Metronome gets rewritten to a need for a Timer by a first rule. A second rule

transforms any presence of a Timer to an implementation of a Metronome facet.

From the user point of view, the syntax dedicated to subsumptions is in fact a little bit
too limited: in the previous example, the Metronome facet is unnamed and thus it cannot be
referenced in when expressing constraints. The code having bpm = ?f implicitly references

limited syntax
the “bpm” property of the Metronome but it is impossible to express constraints between two
properties of the Metronome. Writing having bpm = bpm would mean: “bpm property is equal
to http://emonet09#bpm (resource in the current namespace)”.

This need for a more powerful syntax for some use cases and the similarity of the rule
generation process compared to the service factories guided us to propose an additional syntax to
express simple subsumptions in UFCL. The previous code snippet can be equivalently replaced

reuse factory syntax
and semanticby the following one that uses a factory like syntax:

1 | composing

2 | a Metronome ?m

3 | product "?m"

4 | having ...

5 | gives a Timer

6 | with freq = ?m.bpm / 60

This notation allows for a greater freedom as it makes it possible to express constraints on
the parent facet as it is named (?m in this example). The special ”product” property is used in
place of the ”grounding/format” property pair to tell that no instantiation query is necessary
and that one of the components can be used directly.

The compilation of a subsumption is similar to the one of a factory that “composes” a single
service. This compilation produces two rules: a first rule rewrite the need for a Timer in a need
for a Metronome, a second rule fulfills the original Timer need if a matching Metronome

is found. The first rule is strictly identical to the rule of a factory:

129

8.3. DETAILED COMPILATION OF UFCL CONSTRUCTS

1 | [
2 | (?any ufcl:searches ?prod)

3 | (?prod rdf:type http://emonet09#Timer)
4 | (?prod http://emonet09#Timer..freq ?prod freq)
5 | (?any ufcl:hasAge ?firstAge)

6 | sum(?firstAge ’1’ˆˆxsd:int ?newAge)
7 | lessThan(?newAge ’10’ˆˆxsd:int)
8 | product(?prod freq ’60.0’ˆˆxsd:float ?tmparith)
9 | makeTemp(?newSearcher)

10 | makeTemp(?m)
11 | ->
12 | (ufcl:factory-1 ufcl:hasSearchInstance ?newSearcher)

13 | (?newSearcher ufcl:searches-prod ?prod)
14 | (?newSearcher ufcl:uses ?m)
15 | (?newSearcher ufcl:searches ?m)

16 | (?m ufcl:isSearched ?newSearcher)
17 | (?m rdf:type http://emonet09#Metronome)
18 | (?m http://emonet09#Metronome..bpm ?tmparith)

19 | (?newSearcher ufcl:hasAge ?newAge)
20 |]

This particular case illustrates the arithmetic transformation that is done by constraint
inference as presented in section 8.2.3. We can see that the original constraint freq = ?m.bpm

/ 60 has been inverted to ?m.bpm = freq * 60. The effects of this inference are visible on
lines 8 and 18 of the generated rules. The rest of the rule is identical to the first rule of a
factory. The second rule differ from the one of a factory:

21 | [
22 | (ufcl:factory-1 ufcl:hasSearchInstance ?searcher)
23 | (?searcher ufcl:uses ?searched)
24 | (?searched ufcl:isSearched ?searcher)
25 | (?searched http://emonet09#Metronome..bpm ?searched bpm)

26 | (?searcher ufcl:searches-prod ?prod)
27 | (?prod http://emonet09#Timer..freq ?prod freq)
28 | (?owner ufcl:hasFacet ?m)

29 | (?m rdf:type http://emonet09#Metronome)
30 | (?m http://emonet09#Metronome..bpm ?m bpm)
31 | equal(?searched bpm ?m bpm)

32 | (?searcher ufcl:hasAge ?firstAge)
33 | (?m ufcl:hasAge ?tmpAge)
34 | sum(?tmpAge ’1’ˆˆxsd:int ?secondAge)

35 | max(?firstAge ?secondAge ?newAge)
36 | lessThan(?newAge ’10’ˆˆxsd:int)

37 | (?end ufcl:hasFacet ?m)

38 | makeTemp(?endf)
39 | ->

40 | (?end ufcl:hasFacet ?endf)

41 | (?endf rdf:type http://emonet09#Timer)
42 | (?endf http://emonet09#Timer..freq ?prod freq)

43 | (?endf ufcl:hasAge ?newAge)

44 |]

This second (and last) rule has exactly the same premises as the last rule of a factory until
line 36: premises match a facet that fulfills (lines 28 to 36) the last asserted need (lines 22 to 27).
The rest of the rule is different from and simpler than the case of a factory. The subsumption
has only to create a new facet (line 38), fill it (lines 41 to 43) and attach it to the original
Metronome facet owner (lines 37 and 40).

Most of the rules fragments generated for subsumptions are identical to the case of factories.
We integrated the compilation of subsumptions in the factory compilation process to reuse
efficiently code for factory compilation.

130

CHAPTER 8. RUNTIME FRAMEWORK OVER UFCL DESCRIPTIONS

8.3.6 Compilation of Special Constructs

In section 7.5, some UFCL constructs where presented that help designers in writing knowledge.
This section illustrates these constructs by giving the result of their compilation.

The first special construct presented in section 7.5 makes it easy to define resources that are
attached to service. This construct uses a “|” for its syntax and can be used as in this example:

1 | this isa Camera

2 | with imageRef = this|image

3 | with cameraRef = this|camera

In this example again, the exact generated triples depend on the unique identifier of the
OMiSCID service exposing the knowledge (we consider that the identifier is 12340000). For an
expression like this|image, our compilation process will generate resource named image“within”
the resource of the service. To implement this behavior, we use a convention to represent
resources “within” another: we added /_/local/_/ as a separator between the container and
the inner resource.

1 | (service:12340000 ufcl:hasFacet ufcl:temp#1)

2 | (ufcl:temp#1 rdf:type http://emonet09#Camera)
3 | (ufcl:temp#1 http://emonet09#Camera..cameraRef service:12340000/_/local/_/camera)
4 | (ufcl:temp#1 http://emonet09#Camera..imageRef service:12340000/_/local/_/image)

5 | (ufcl:temp#1 ufcl:hasAge "0"ˆˆxsd:int)

service:12340000 ufcl:temp#1ufcl:hasFacet

http://emonet09#Ca merardf:type

service:12340000/_/ local/_/camerahttp://emonet09#Ca mera..cameraRef

service:12340000/_/local/_/image
http://emonet09#Camera..imageRef

"0"^^xsd:int
ufcl:hasAge

Summary and Conclusions

In chapter 6, we introduced a method based on semantic description of services and service
reasoning about
semantic
descriptions. . .

factories. In chapter 7, we proposed a description language to express these various semantic
descriptions. Automatic reasoning about these descriptions is necessary to get some benefits
in terms of dynamic integration and spontaneous interaction. In current chapter, we explained
how we can transform UFCL descriptions to make reasoning possible and allow automatic
service discovery based on service functionalities. Our proposed implementation handle all
UFCL constructs from simple service functionality descriptions to more complex service factories
descriptions.

In this chapter, we detail the compilation of UFCL to some facts and rules in the Jena
. . . using a
rule-based engine. . .semantic web framework. We had to re-implement a custom backward chaining engine on top

of Jena which constituted an important workload. The complexity of this task supports our
argument about the final user not writing rules. Any potential user would probably change

. . . under the hood
method if the design method requires to manually write such complex rules. In our case the
front-end is the UFCL language and no rules are to be written by the user: user can take
advantage of the inference without being overwhelmed by its complexity.

131

8.3. DETAILED COMPILATION OF UFCL CONSTRUCTS

132

Chapter 9

Critical Evaluation and
Perspectives

9.1 Content and Structure of This Chapter

Chapters 4 to 8 presented our contribution and their motivations. In this chapter, we evaluate
our contributions and conduct a critical study of our investigation. From the a posteriori analy-
sis of our work, we identify strong and weak points of our approach and propose future research
directions.

In section 9.2, we try to evaluate each aspect of our work. There are several contributions
targeted evaluations

but not all are easy to evaluate. We will discuss the problem of evaluation: how people evaluate
different approaches, what is difficult to evaluate and what just cannot be evaluated. In this
first section, the quality of each contribution is evaluated as independently as possible to judge
the effectiveness of each action.

In section 9.3, we take a step back and analyze how our work articulates with other aspects
global analysis

of software engineering for intelligent environments. We particularly underline the fact that
we proposed a complete design framework for real dynamic architectures for intelligent envi-
ronments. We study the interactions between our method and other key aspects of intelligent
environments such as context modeling on the one hand and sensor heterogeneity on the other.

Finally, we conclude this chapter by some lessons learned from the retrospective analysis
retrospection and
conclusionsof our work. These lessons suggest future research directions, from simple evolutions over our

work to completely new ways.

9.2 Direct Evaluation of Contributions

9.2.1 Summary of Our Contributions

In chapter 4 we identified problems with integration and reuse of software in intelligent environments.-
We stated that reuse and integration problems can be solved by the implementation of proper

actions to solve
integration
problems

software engineering methods: semantically described services. The acceptance of new software
engineering by such a various audience is conditioned by its simplicity of use and its perceived
advantages. Apart from our analysis and illustration of the problems slowing down the advent
of intelligent environments, we can categorize our contributions in 4 points:

• Promotion of service oriented architectures

• Proposal of a design method for inter-operable services

133

9.2. DIRECT EVALUATION OF CONTRIBUTIONS

• Proposal of a usable language supporting this method

• Implementation of a runtime for this language

Promotion of service oriented architectures

Our approach to promote SOA has been to make conception tools usable and tailored for the
simple SOA solution

target users. We proposed a simple library, OMiSCID, that can be used to publish, discover and
interconnect services. This library proposes an API that is uniform between various languages
and that is written to maximize ease of learning, usability and quality of the most intuitive code.
To help with the development of service oriented applications using this library, we provided an
easy to extend graphical user interface. These contributions are presented in detail in chapter 5.
Section 9.2.4 presents the evaluations dedicated to this contribution.

Proposal of a design method for inter-operable services

Based on our usable service oriented library, we proposed a design method that can be
method inspired
from semantic web
services. . .

seen as a set of guidelines to follow to make individual software elements easier to integrate and
make them interoperable. Chapter 6 details the motivation and principles of the method we
proposed. This design method leverages the use of a service oriented architecture and introduces
additional practice that we have identified as mandatory to obtain a real integration and make
dynamic interoperability possible. Part of these practices are concepts currently used in the
semantic web service community: services are described in terms of the functionalities they
provide. These functionalities are expressed at a semantic level where automatic reasoning
about equivalence of functionalities is possible.

In addition to semantic descriptions, we introduced a new design element, service facto-
. . . with additional
service factories ries: service factories are services that can instantiate other services. With service factories, it

becomes possible to represent some infinite families of services and to simplify repetitive de-
ployment of application. Service factory descriptions are part of the reasoning process at the
functionality level and can serve to implement automatic service composition. From state of
the art methods for semantic service description, we chose a subset of most important concepts
enabling dynamic interoperability. Section 9.2.4 studies the properties of the systems designed
using our method.

Proposal of a usable language supporting this method

We proposed a language to express semantic service functionality descriptions together
domain specific
language with service factory capabilities. Providing a new language was motivated by the new concept

of factories on the one side and by the requirement for simplicity on the other. Our method
aims at being used by most specialists working in the conception of an intelligent environment,
so it must be easy to understand, to learn and to put in practice. Verbose languages with
a complicated metamodel are hard to read and understand and often become blockers for
adoption. The constructs of this language are presented in chapter 7, the properties of the
language are studied in section 9.2.6.

Implementation of a runtime for this language

To illustrate the practical feasibility of our proposal, we have created a runtime library. This
runtime framework
enabling powerful
reasoning

runtime framework gathers and interprets both functionality descriptions exposed by simple
services and the capabilities exposed by service factories. As presented in chapter 8, descriptions
in our language are compiled and merged to be executed on a rule based system. Transformed
into rules, these descriptions make it possible to answer functionality discovery queries issued
by client applications. Our framework includes reasoning about factories and particularly about
composing factories which makes automatic service composition possible.

134

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

9.2.2 Transitional Technologies: Why it Matters

Our work represents the convergence of three domains:

• Intelligent environments and pervasive computing as it is our domain of application and
involved specialists make our target audience.

• Software engineering methods favoring sharing, reuse and dynamic interoperability.

• Automatic service composition of semantically described services.

One aspect of our contributions spans across the three domains above. We studied, improved
helping transition
to new methodsand adapted existing technologies to make them more adapted to the various specialists we tar-

get and to their domains. We name these contributions “transitional technologies” as explained
hereafter. Transitional technologies are bridges from actual practices and habits to state of the
art technologies and methods.

The term of “transition technologies” we propose is originally inspired by transitional
XHTML goal

XHTML. We can describe XHTML as an evolution over HTML: it transforms HTML to make
it conform to the XML syntax. Parsing HTML is complicated and contains many particular
cases. On the contrary XHTML being an XML dialect, it can be parsed using any existing
XML tool and library. Two versions of XHTML were created:

• XHTML 1.0 Strict: a “pure” version where document structured is restricted (e.g. no
presentation elements are allowed);

• XHTML 1.0 Transitional: an easier to adopt version with less restrictions but still using
an XML syntax.

When creating XHTML, the W3C (World Wide Web Consortium) could have created only
transitional
XHTMLthe “strict” profile and dropped the non-perfect “transitional” profile. Without the transitional

profile, switching to XML and switching to a stricter document model would have been tied
together, preventing easy migration to XML.

The importance of transitional technologies have already been measured for the case of
measuring adoption
of transitional
technologies

XHTML, in a non-academic publication (http://nikitathespider.com/articles/ByTheNumbers/fall-
2008.html). The web page [Url-r] gives various statistics about HTML formats in use. The
article highlights the importance of transitional technologies as shown in the following quote
(“doctype” being the XML abbreviation of “document type”):

Interestingly, transitional doctypes (both XHTML and HTML) dominate their re-
spective fields.

In these statistics, transitional XHTML represents 48% of the pages and strict XHTML
evaluating impact
of transitional
technologies. . .

only 32%. From an adoption point of view, transitional XHTML is one and half times more
successful than strict XHTML. The important question is what scenario would we have in the
absence of transitional XHTML:

• there would be 80% of the pages in (strict) XHTML: this extreme possibility would blame
transitional technologies as slowing down the adoption of the “perfect” technology,

• there would be less than 32% of the pages in XHTML: this possibility would mean that
transitional technologies help even the adoption of the core technology,

• there would be between the 32% and 80% of the pages in XHTML: this most varied and
most probable possibility places a cursor between the two.

135

9.2. DIRECT EVALUATION OF CONTRIBUTIONS

The hypothetic scenario of the absence of transitional XHTML is impossible to simulate which
. . . would require
parallel worlds makes it impossible to choose between the 3 scenarios. Our guess is that, in the absence of

transitional XHTML, XHTML use would be close to the current use of strict XHTML.

The transitional requirement explains why C++ is so close to C, why Java and C# syntaxes
example:
programming
languages. . .

are close to C++, etc. Whatever their intrinsic qualities and advantages, technologies that are
too different from current practice have only a tiny chance of being widely adopted. We can use
the example of C++ to illustrate a common trap when creating transitional technologies. The
C++ language is an example of transitional technology as it is build upon a C-like syntax and
introduces new concepts of object orientation. From a transitional point of view, the defect of

. . . with partial
success C++ is to be almost a strict superset of its predecessor: the “worst” C++ program will not be

more object oriented than a C program. C++ fails in the sense that it introduces new object
oriented concepts but does not ensure or favor their use from a developer in transition from C.

Our work places itself at a transitional level: we extract most important aspect from
objective: adoption
and best practices existing technologies and make them acceptable by our target audience composed of specialists

in various domains. In the design of our method, tools and language, we made the effort to be
both an acceptable step for the specialists and sufficiently constrained to ensure good practices.

9.2.3 Difficulties of Evaluations in Pervasive Computing Engineering

The field of intelligent environments is by itself at the confluence of multiple domains. Each
absence of standard
benchmarks individual domain may be mature and may have standardized evaluation methods but there

is no common method for the evaluation of contributions around intelligent environments.
Advances in intelligent environments are exposed in the form of theories and methods with
some practical illustration of effectiveness and applicability: no benchmark or quality measure
is used to compare systems for intelligent environments. Applications are often complicated
and rarely resemble each other. In such intelligent environments, major tasks still needs to be
found and defined.

In the domain of software engineering, certain aspects of an approach can easily be evaluated
what can be easily
evaluated but others are very difficult to evaluate. This duality is the same concerning one practical aspect

of software engineering: frameworks and middleware. Operating performances of the systems
are the part that can be easily measured: building systems and benchmark that measures per-
formances (execution time, memory, bandwidth, etc.) is relatively easy. The more complicated
aspect of evaluation is how to assess the usability of a software engineering method. We have
studied this problem in the particular context of software engineering for pervasive computing.

In our work, we propose a design method, service oriented middleware and tools, descrip-
evaluation of
architectures tion language, reasoning and composition runtime to favor the collaborative implementation of

good software architecture by developers with highly different backgrounds. We aim at obtain-
ing good sharing and reuse of the production from individual specialists and also at favoring
dynamic runtime integration and interoperability of elements from different systems. State of
the art methods for the evaluation of system architecture concentrate on the evaluation of ar-
chitectural decisions. As an architecture and an architectural decision cannot be separated from
the context of this decision, these methods are based on scenarios written down by the stake-
holders of the considered project. These methods aim at measuring, given the context formed by
these scenarios, different software qualities provided by the chosen architecture: modifiability,
extensibility, security, performance, time-to-market, etc.

We have proposed a design method for non-experts in software architecture, by giving guide-
lines about their day-to-day implementation tasks. Inspired by evaluation techniques for soft-

possible evaluation
protocol. . . ware architectures, we imagined an evaluation method in 3 steps:

136

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

• identify representative use cases involving the design of an application for intelligent en-
vironments (such as building an extensible automatic meeting recorder)

• have it implemented by experimentation subjects using either our method, an alternative
method or no method (user’s free choice)

• evaluate, using existing architecture evaluation methods, architectural choices made by
the experimentation subjects

With such experimental settings, we could evaluate a design method. This approach is the one
. . . with usability
studiesused for most usability studies: knowing the quality of a tool or method involves testing with a

statistically meaningful and representative set of users. Methods can be compared by evaluating
the quality of the results produced by target users with different methods. This evaluation
process is ideal for most usability studies and is heavily used to evaluate contributions on
Human Computer Interaction. In our context, user studies are unfortunately hard to organize
as we will detail below.

User studies require to have a sample of users that is sufficiently big to be statistically users are rare. . .

meaningful. The target audience of our method is highly specific and requires skills in at least
one of the domains involved in intelligent environments conception. This rareness of eligible
candidates for user studies is a considerable obstacle to put the evaluation method in practice.

The reservoir of available candidates is even more restricted due to the next particularity
. . . and
experiments are
long. . .

of our domain. The kind of tasks we want to evaluate involve modeling and design activities:
they are long, require important concentration and let an important space for creativity. These
specificities of the design task makes it impossible to do an experiment in a reasonable user time
such as 30 minutes or an hour per person. This is manageable, but still difficult, to find people
that will give 30 minutes of their time to do “cool” interactive experiments. In our context, how
many would give a few days for software design experiments?

An interesting usability study, with some problems close to ours, has been conducted
. . . for complex
tasksby Garćıa-Barriocanal in [Garćıa-barriocanal 2005]. They have evaluated ontology editors for

knowledge authoring. To make the evaluation possible they had to restrict the complexity of
the task to the simplest possible cases. It is only with this restriction that they were able to
keep experimental sessions under one hour and to find enough people for experimentations. The
restriction they made is acceptable: they evaluated the simple use case but that is common to
any other use case. Because of their restriction, they cannot draw conclusion about usability of
the software after the first few minutes or hours of use.

We imagined restricting our experiments to a simple case. As we want to evaluate the
restricting tasks is
difficultproperties and quality of architectures created using our design method, any restriction would

be problematic. We cannot honestly evaluate toy architectures that would be produced in a
few minutes by persons with almost no contextual informations. A software learning curve can
be cut in the middle to be evaluated in parts but it is far more difficult to stop a software
architecture in its early creation and evaluate it.

We found only one direction for such user studies but we could not put it into practice due to
solution: “student
studies”. . .the involvement and the particular conditions it requires. We can call this family of evaluation

method “student studies”. Our solution is to transform students (or persons in formation) into
“volunteers” for the experiments. This solution is a mutually rewarding as students would be
trained in state of the art concepts (service oriented architectures, semantic web, etc.) while
their application project would serve as data for statistical comparisons of a design methods.
Setting up such a course and project would obviously require a considerable effort to be both
efficient on the experimentation aspect and on the pedagogical aspect. It would be unacceptable
to waste a teaching module of an entire promotion of students for scientific purpose. With such
a setup, we can gather sufficient data that would be representative of what we could expect
from a real situation.

137

9.2. DIRECT EVALUATION OF CONTRIBUTIONS

Even with a setup like student studies (or an equivalent non-affordable solution where all
. . . conducted with
care participant would be paid), some tricky aspects remains. We are dealing with methods that

requires some training of the participant in the experiment (in the form of lectures for example).
From a pedagogical point of view, such training would involve many examples as most software
engineering training does: sensibility to software engineering requires experience which can at
best be “emulated” by giving examples. The comparison of the results obtained by students
using different methods will be heavily influenced by the examples provided in the lectures. The
more the examples will be close to the logic behind a given method, the best the mental model
of the students will be ready for the application of the method. If no attention is given to this
aspect, the evaluation will inevitably be biased. The bias would most probably favor the new
method that we want to evaluate. A kind of double-blind approach would be ideal: the person
setting up the experiment tells the person giving the lectures that he or she must present two
methods, without telling what is the experimental motivation of it.

9.2.4 Evaluations at OMiSCID Level

In addition to the properties of the architectures issued from our method, we can evaluate how
our middleware and its new API are fulfilling their objectives. We will give quantitative mea-
surements of fundamental properties of our middleware and some use statistics.

Measurement of Induced Latency

One major claim of the initial implementation of OMiSCID was to have good performance
performance is an
argument. . . and low overhead over a non-service architecture. This argument has been a support for our

design method when we recommend to split the system in many reusable parts. We measured
this overhead in some controlled conditions.

In the systems we presented, we split the video acquisition from the image processing. This
. . . e.g. to separate
video acquisition
from processing

is the most critical use case and the most arguable design decision as it requires an additional
copy, through our middleware, from the video service to the video processor service. We used
this setting with simulated services to improve control over the parameters of the evaluation. To
reason about the worst case, we did all benchmarks with the Java implementation of OMiSCID
that happen to be the one written with the least concern for performance.

Figure 9.1 depicts the experimental setup with an UML sequence diagram. We want to
measure the overhead of our middleware independently from the network so all elements are
running on the same computer. This replicates exactly the situation with the video service and

latency
measurement:
experimental setup

an image processor.

• Messages are emitted at a fixed rate, we show results with 25 Hz (the rate of the camera).
Comparable results have been obtained at both 100 Hz and 10 Hz.

• Messages have a size that we will change during the experiment. We vary this parameter
from 0 bytes to more than 3MB. A typical camera image weights around 350kB (384x288
with 3 channels).

• The thread that creates the message sends it simultaneously with two methods. Firstly, it
posts the message into a queue (a standard Java ArrayBlockingQueue) that is consumed
by another thread running in the same process. Secondly, the message is sent using
OMiSCID to a service running in another process. We measure the time difference between
the reception by the local thread and the OMiSCID client.

• Each latency measurement is repeated 100 times. Average value and standard deviation
are show on the graphs presented hereafter.

138

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

Figure 9.1: UML Sequence Diagram of the Experiment on the Latency Induced by OMiSCID. An
OMiSCID process (in blue) sends messages both to another thread in the same process and to another
process (in yellow) on the same machine using OMiSCID. The objective is to measure the latency
induced by the use of OMiSCID for local video transfer.

Figure 9.2 show results from the measurement of the latency involved by OMiSCID usage.
results with image
size packets. . .In this figure, the range of message sizes is limited to a 400 kB, a little more than typical image

size we use (around 350kB). Average value and error range (standard deviation) are shown for
each measurement.

These results show that the additional latency induced by the use of OMiSCID to transfer
. . . latency < 4ms

images is of 2 milliseconds in average. We can consider that the induced latency stays mostly
under 4 milliseconds. Normal distribution tells us that less than 16% of the values are above
the threshold of the average plus one standard deviation. This threshold is rarely above 4 ms
in our measurements.

Figure 9.3 shows a wider range of message sizes. The graph exhibits some strange “discon-
with huge
packets. . .tinuities” in the latency. These discontinuities are repeatable and machine dependent. With

the most recent test machine of the two, we only note a step when messages grow from 1.5MB
to 2MB. This effect is probably due to some optimizations in memory management of the Java
virtual machine or in the TCP Stack.

Still visible in figure 9.3, the behavior of our slowest machine is surprising, and also re-
. . . perturbations

peatable. If message size is increased over 900kB, latency jumps from a few milliseconds to
50 ms. A second jump is visible at 1075kB where the latency reach 200 ms. Latency jumps
back down to the expected value for message above 2.1MB. These observation are difficult to
explain as they probably have complex and interfering causes: we suppose a phenomenon of
TCP saturation is responsible for the increase for the increased latency and an full computer
saturation causes the return reasonable latency (all processes, including the message producers
are equally slowed down).

Our measurements tell us that we can safely send images at video rate with a reasonable
acceptable in
normal operationadditional latency around 2ms. The results also warns us for the case of bigger messages:

important latencies can make some applications totally unusable. The most important lesson
learned from the surprising measurements is that we should profile a computer if we plan to
send big messages.

139

9.2. DIRECT EVALUATION OF CONTRIBUTIONS

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350 400

m
ea

su
re

d
la

te
nc

y
(in

 m
s)

message size (in kB)

Java 64bits Intel Core2 Duo @2.00GHz, 3Go RAM, Linux
Java 32bits Intel Pentium 4 @3.00GHz, 3Go RAM, Linux

Figure 9.2: Latency measurements results: messages of normal size.

-50

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

m
ea

su
re

d
la

te
nc

y
(in

 m
s)

message size (in kB)

Java 64bits Intel Core2 Duo @2.00GHz, 3Go RAM, Linux
Java 32bits Intel Pentium 4 @3.00GHz, 3Go RAM, Linux

Figure 9.3: Latency measurements results: big messages.

140

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

Clarity and Verbosity of the User-Oriented API for OMiSCID

In chapter 5, we gave an insight of the new OMiSCID API and gave some numbers to
user-oriented
API. . .compare it to the old BIP API. To cover most aspects of OMiSCID functionalities, we gave

some facts about the effort needed to declare a simple service: the declared service should have
one variable and one connector, it looks for another service and connects to it. We can recall
from chapter 5 what this use case involves:

• Using BIP

– 6 BIP classes with their full implementation details, most of them requiring to be
instantiated and managed by the developer,

– 25 different methods names involving all the nifty-gritty details of BIP implementa-
tion

– =⇒ 45 lines of codes purely induced by the use of BIP.

• Using new OMiSCID API

– 2 classes and 4“concepts”, the total number is the same as for BIP but the complexity
is greatly reduced and the abstraction higher,

– 10 method names,

– =⇒ 15 lines of easily maintainable code purely induced by the use of OMiSCID.

The objectives of the new API are to maximize usability and favor good design practice. To
. . . favors good
practicemeet these objectives, typical code must be easy to write and to understand. In addition, it

must be hard to do things wrong: ideally it must be almost impossible to do thing wrong. The
least requirement is that it must be simpler to do things right than wrong.

One fundamental aspect for an API is to produce code that is both concise and easy to
detailed code
analysis. . .understand. Figures 9.4 and 9.5 contain some code written against BIP and the corresponding

OMiSCID version. Elements enclosed in green solid lines are all information that the designer
need to express. Elements enclosed in orange dashed lines are meta-information that we consider
necessary to provide with the raw design information. All the code that is not in a box can be
considered pure “useless” technical code induced by the API.

The code produced using the new API is clearly shorter. Comparing both versions side by
exhibit short but
readable code. . .side puts a spot light on the improvements of the new API: the code is shorter but it is also far

easier to understand. In our case, the code reduction implies an increased understandability.
This relation is not systematic. Using 2-letter abbreviations for all API methods would also
had reduced the code size but understandability would have been cut down.

The code supports our argument about understandability. Going from figure 9.4 to fig-
. . . with explicit
semanticure 9.5, we notice no major diminution of orange dashed boxes (green boxes are inputs that

must be specified). These oranges boxes constitute the glue that gives a semantic to the green
boxes. The new API ensures that overall code is smaller but that no concession is made on this
glue code that provides understandability.

Almost all members of the team are now using OMiSCID to communicate between their
important
OMiSCID adoptionmodules. We measure an increase in the number of available services. This cause more and

more contributions to be used and reused by other team members. Figure 9.6 depicts the
evolution of the number of Java and C++ source files using OMiSCID in the code repository
of the team. The number of such files increases regularly. This increase illustrate the fact that
more and more services are designed and made available to the team. The relative amount
of source files using OMiSCID remain almost constant between 20% and 25%: this stability
reflects the continuous sharing of new projects as services.

As far as the graphical user interface is concerned, it is systematically used by all service
important GUI
adoption. . .

141

9.2. DIRECT EVALUATION OF CONTRIBUTIONS

class MovieMaker {
ControlServer ctrlServer;
TcpServer commandServer;

public:
MovieMaker() : ctrServer("MovieMakeService") {}
bool StartExample() {
ctrlServer. SetStatus(ControlServer: : STATUS_BEGIN) ;
commandServer. SetServiceId(ctrlServer. GetServiceId()) ;
commandServer. Create(0) ;
commandServer. SetCallBackOnRecv(MovieMaker: : Callback_Receive, this) ;
InOutputAttribut* ioattr;
ioattr = ctrlServer. AddInOutput("command", commandServer. Cast() ,

InOutputAttribut: : IN_OUTPUT) ;
ioattr- >SetDescription("Use to send commands to MovieMaker\n") ;
VariableAttribut* va = ctrlServer. AddVariable("current source") ;
va- >SetValueStr("...") ;
va- >SetType("string") ;
va- >SetDefaultValue("") ;
va- >SetAccessRead() ;
if (ctrlServer. StartServer()) {
ctrlServer. StartThreadProcessMsg() ;
ctrlServer. SetStatus(ControlServer: : STATUS_INIT) ;
return t rue;

 } else return f al se;
 }
TCPClient tcpClient;
char* hostname;
int port;
void SetAddr(const char* addr, int e_port, int port_control) {
port = e_port;
/ / por t Cont rol = por t _cont rol ;
if (!addr) {
hostname = NULL;

 } else {
if (hostname) delete[] hostname;
hostname = new char[strlen(addr) +1] ;
sprintf(hostname, "%s", addr) ;

 }
 }
boolean FindAndConnectExample() {
tcpClient. SetAddr(NULL, 0) ;
tcpClient. SetServiceId(serviceId) ;
CWaitForServices* waitForServices = new CWaitForServices() ;
int index = waitForServices- >NeedService("AudioRouter",

"_bip._tcp", AudioRouterClient: : IsValidForMe, (void*) &tcpClient) ;
if (index != - 1) {

Figure 9.4: API Comparison: example code using before OMiSCID. Green boxes: information that
the designer need to express. Orange dashed boxes: glue code that gives a semantic to green boxes.

142

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

Figure 9.5: API Comparison: same code as in 9.4 but using the OMiSCID API.

143

9.2. DIRECT EVALUATION OF CONTRIBUTIONS

 0

 200

 400

 600

 800

 1000

 1200

 1400

01/01/06 01/07/06 01/01/07 01/07/07 01/01/08 01/07/08 01/01/09 01/07/09
 0

 10

 20

 30

 40

 50
nu

m
be

r
of

 fi
le

 u
si

ng
 O

M
iS

C
ID

pr
op

or
tio

n
us

in
g

O
M

iS
C

ID
 (

in
 %

)

Number Of C++ and Java Files using OMiSCID

Java Files
C++ Files

Proportion of Java files using OMiSCID
Proportion of C++ files using OMiSCID

Figure 9.6: OMiSCID Adoption. Absolute and relative number of source files using OMiSCID. In
blue: C++ source files. In red: Java source files.

designers and consumers. Most of the service designers also develop views for their services as
plugins for the GUI. An interesting phenomenon is that the automatic update system provided
by the GUI is a driver for integration. Developers get used to installing and updating plugins
in an automatic manner. The desire to take advantage of this easy way of sharing executables
has dragged some applications to be developed as plugins for the GUI.

To measure this emulation, we made some statistics on the code base of all GUI extensions
. . . and
re-contributions that is stored under the source code management tool “Subversion” (see [Pilato 2004] for a

complete introduction). We measure the size of commits “diffs”, i.e. the number of changed
lines between two revisions. The graph in figure 9.7 plots the cumulated diff size. Two values
are plotted: total cumulated size and cumulated size of commits made by other people than
the creator of OMiSCID Gui (and author of this manuscript).

On figure 9.7, we observe a relative increase of the proportion of contributions by other team
detailed analysis of
contributions members. Not show on the graph, we also observe an increase in the number of contributors.

The upper part, made of contribution from the author, includes maintenance on files checked in
by other persons. A script is run on the projects to make them public and available as automatic
updated in the GUI. This script automatically generates a release number and updates some
headers and configuration files in the project. Due to access restriction on the publishing server,
this script is mostly run by one person, contributing artificial increase in the cumulated commit
size.

We made OMiSCID as useable as possible. Our objective is to have it adopted first by
overall success of
OMiSCID all persons working in team and then by other persons. We can consider that adoption in the

team is a real success for both its API and the GUI. From a wider view angle, the partners in
some of our research projects have also used OMiSCID but no real spontaneous dissemination
has taken place. Working on communication could improve this dissemination, for example by
releasing real demo applications to market the middleware and the GUI.

144

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

01/08/07 01/11/07 01/02/08 01/05/08 01/08/08 01/11/08 01/02/09

OMiSCID Gui Extensions Commits

author: others
author: emonet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

01/08/07 01/11/07 01/02/08 01/05/08 01/08/08 01/11/08 01/02/09

OMiSCID Gui Extensions Commits (area view)

author: others
author: emonet

Figure 9.7: OMiSCID Gui Adoption: commit size of extensions. Cumulated size of the “svn commits”
done on the code base of OMiSCID Gui extensions. Commit of the Gui author and of the rest of the
team. On the left: raw values; on the right: stacked values.

9.2.5 Evaluation of our Design Method

In previous section, we evaluated OMiSCID and its adoption. In this section we analyze the
properties that our design method implies on systems.

Having examined how we could evaluate a design method if were possible to put it in practice,
we still evaluate our work as possible. A classical evaluation of middleware and design method

analyzing
redesigned systems:
tracker and
cameraman

is to show how we can build systems using the proposed method. This is the case for various
works on middleware such as [Escoffier 2007b] and also with service composition as mentioned
in [Brønsted 2007] We already gave some examples of systems designed with our method and
tools: when we introduced the method in chapter 6 and the language in chapter 7. The two
systems that we reimplemented using our method and language are a 3D tracking system and
an automatic meeting recording system. In this evaluation section, we will study and illustrate
the properties that the systems gained (and lost) in the reimplementation process. Apart from
this analysis, we will do present some heuristic measurement about the usability of the tools
we propose including the new service oriented middleware API, its extensible graphical user
interface and the proposed language for semantic descriptions.

Our design method makes it possible to describe and implement a 3D visual tracking system
fragmentation
improves
dynamicity and
sharing

as presented in chapter 6. Figure 6.6 (page 99) depicted the new architecture issued from our
method. This new architecture heavily uses semantic service functionality descriptions and
service factories. We can start looking at the properties of this new architecture. The new
architecture is more fragmented as we separated the 2D image processing from the 3D to 2D
coordinates projection from the 3D tracking component. This separation, together with the
abstraction of functionalities provided and required by different components, makes it possible
to add and replace different elements without modifying the others and possibly during the
execution of the system. This ability to handle dynamic environmental conditions is one of the
most important requirements to bring pervasive intelligent computing to life.

We can illustrate the improved dynamicity and adaptability by demonstrating an integra-
dynamic
extensibility using
functionalities

tion of a new 3D detector based on a priori geometric information about the environment and
statistical room usage obtained from machine learning. With the previous monolithic architec-
ture, such information would probably have been added by modifying the 3D tracker component
to cope with this knowledge. Using the new architecture, this information can be provided as a
3D detector that can transparently be used by the 3D tracker component without modifications.
This added dynamicity comes from the plain use of services and from the proper split of our
system. No functionality descriptions are needed as we add a new detector designed after the
system itself. Figure 9.8 illustrates this dynamic detector addition together with a second one
that makes use of semantic service descriptions. In the figure, the added “Room Occupancy
Statistics” service directly implements the functionality required by the 3D tracker.

145

9.2. DIRECT EVALUATION OF CONTRIBUTIONS

Detector(Room)

3DTracker(Room)
uses: Detector(Room)

3D Detector

3D Tracker

Detector(Room)

3D Detector Room Occupation Statistics Infrared Motion Detector

MotionDetector(Room)

Detector(Room)

⋙

Detector(Room)

Figure 9.8: Dynamic Addition of 3D Detectors to the Tracking System. Extending the system with
a newly built detector (Room Occupancy). Making the system integrate an existing service (Infrared
Motion Detector).

The second integration scenario, illustrated by figure 9.8, uses functionality descriptions and
dynamic integration
using
correspondences

correspondences. We integrate an existing “Infrared Motion Detector” service into the tracking
system by expressing a correspondence between its “MotionDetector” functionality and the
“Detector” one used in the 3D tracking system. As the infrared motion detector already exists,
it is virtually impossible to modify its behavior as other services and applications might still
be using it. By using functionality correspondence here, we keep backward compatibility with
existing services. We also do not need to modify the motion detector service for which we
might even have only binary code. The functionality correspondence makes it possible for the
3D tracker to know that it can use the infrared motion detector. To actually use it, a protocol
adapter is required. This protocol adapter can be provided at the same time the functionality
correspondence is, in the case the correspondence is used directly as in the example.

The system fragmentation improves its awareness to dynamic changes but can make it more
apparently complex
system. . . complex to deploy and understand. At first sight, as illustrated in figure 9.9, the system after

our redesign is more complex. This system complexity, as perceived by a component developer,
is a real drawback of our method as it may frighten people from adhering to the method and
adopting it. This perceived complexity, however, eventually helps system understanding for the
one who gets over first appearance.

Most of the services and descriptions added in the architectures are configuration elements
. . . due to explicit
configuration
(blue). . .

that have been materialized and made dynamic. This is the case of camera calibration and
2D image-based detector configuration. Factories have also been used at this configuration
level to produce derived configurations and interpret this new form of configuration. All the
configuration elements and their derived products are circled in blue dotted-line in figure 9.9.
These elements were already present in the original system either in a configuration file or
embedded in raw source code.

Intermediate elements that factories generate from exposed descriptions are circled in red
. . . and factory
products (red) dashed line in figure 9.9. These elements are direct consequences of the other descriptions and

thus add no comprehension overhead once the rest is understood. They also have no impact on
system deployment as their instantiation is automatic and transparent for the developer.

Eventually, the remaining “architectural overhead” introduced by our method is only com-
remains two
factories. . . posed of the service factories and the separation of the image processing from the video acquisi-

tion. The “Composite Transformation Factory” is a simple extraction of the knowledge of how

146

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

Video Service

Video Service Processor

3D Detector

Camera1 CalibrationRoom to Mire

Room to Camera1

Video Service Processor Factory

Run in a same process
Instantiates

Service

Service Factory Service
Transformation Service

Service Interconnection

Functionality Level Descriptions

Functionality Factory

Functionality And
Correspondence

Service Level Descriptions

Semantic Description

ImageSource(Cam1)

VSP(Cam1, detectConf)

Detector(Cam1)

⋙
VSP(C, detectConf) ⋙ Detector(C)

Detector(Room)

Tr(Room↦Cam1)

Tr(Pattern↦Cam1)Tr(Room↦Pattern)

3D Tracker3D Bayesian Tracker

Detector Estimator

Composite Transformation Factory

Transformed Detector Factory

…

…

Figure 9.9: Perceived Architectural Overhead: old and new tracker, side by side. Blue dotted line
area: explicit configuration elements. Red dashed line area: product of services factories.

147

9.2. DIRECT EVALUATION OF CONTRIBUTIONS

to compute calibration: this knowledge was previously encapsulated in the calibration software,
and was only used at configuration time, not shared for runtime reuse. In the same manner, the
“Transformed Detector Factory” is an extraction from the 3D tracker of the knowledge of how to
pass from 3D space to 2D space. This factory is the result of the complete separation between
the 3D tracking and the detection at 2D level. This separation was necessary to make possible
the dynamic addition of new and foreign detectors as presented previously in this section. The
“Video Service Processor Factory” materialize the possibility to share a camera among several
image processors.

Far from adding clutter to the architecture, factories simplify dynamic reuse of code and
. . . reflecting
capabilities of the
environment

even stimulates this reuse and the interaction in the research group. When no 3D tracker is
running, what does a developer see?

• With the old architecture: nothing, as the camera must be released in case someone wants
to use it.

• With our architecture: the video services representing the cameras, the factories ex-
pressing their capability to instantiate image processing services and all of the necessary
information about camera calibration (if calibration has been performed).

These latent services are reflecting the real functionalities, hardware and software, provided by
the environment. Having this view of what other developers provide automatically favors the
reuse and interactions among team members.

With proper identification of the role of each element added in the design, the initial
need for a
visualization of the
classification

perceived complexity can be easily understood. At the time of this evaluation, no particular
mechanism has been implemented to automatically visualize the equivalent of the dashed and
circled areas in figure 9.9. We can state that, without this automatic visualization, understand-
ing a running architecture requires significant efforts. To be useable, our method must not be
overly complex. From this point of view, additional improvements are required for first contact
with an existing system.

The automatic cameraman, rearchitectured using our method, also inherits from the prop-
same gain for the
cameraman erties that our method added to the 3D tracking system:

• Improved dynamic behavior: splitting the system incites the developer to handle dynamic
appearance and disappearance of used services. This makes the development, testing
and deployment life cycles less constrained, different elements being started and stopped
independently.

• Improved adaptability: as important parameters and configuration of the system has been
materialized, they can be provided at runtime, even when the system is running. Adapting
the cameraman to new environmental conditions can be done without any modification
by describing what perception service plays what role.

• Improved extensibility: split of the system and abstraction of each part in term of provided
functionality makes it possible to implement this functionality in a novel way. With
functionality level abstraction, this adaptability can reach a level often considered as
extensibility. The automatic cameraman can, for example, use an alternative way to
detect slide changes, for example by using some software to monitor the state of the
presentation player or by using a manual backup solution where someone clicks on a
button when slides are changed.

• Possible dynamic integration: integrating the automatic cameraman with another already
implemented system is simplified by the functionality layer. A plausible use case is the
installation of the automatic cameraman in a room already equipped with a localization
system developed by someone else for another purpose. With functionality correspon-
dences and protocol adaptation, the integration of the two systems does not require any
of them to be modified.

148

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

• Improved service reuse: both the split of the system and the use of factories improves
potential service reuse. Splitting the system improves the self containment and cohesion
of individual services. Service factories expose at any time the entire family of services we
can instantiate. Compared to a situation where only complex in-use services are exposed,
seeing the range of available functionalities favors reuse.

• Increased complexity: our method makes the architecture more complex to understand
at first contact. This increased complexity is currently an important drawback of our
method even if some communication actions can improve the situation.

9.2.6 Evaluation of UFCL, the Language

In previous section, we evaluated the impact of our design method on the redesigned systems. We
will now give some evaluation about UFCL, our language for semantic functionality description.

Designing a description language is always a compromise between expressive power and
tractability. We designed the language metamodel so as to make reasoning possible while

simplicity vs
expressivenessmaking it possible for the designers to express both functionality correspondences and services

factories. This makes it possible to do integration between foreign designs and to reason about
possible compositions and possibly instantiable services.

Criteria to evaluate description languages are numerous. In the context of programming
languages, these evaluation criteria are usually surveyed in computer science courses such as
in [Url-s] and [Url-t]. We base our language analysis on these criteria and see how they fit our

language evaluation
criteriaparticular context. Programming language evaluations used a set of criteria, most commonly:

1. Readability measures how easy it is for a programmer to read and understand programs.
This criterion is of capital importance as it has a direct impact on all the others. Read-
ability is not limited to syntax considerations as we will see.

2. Writability is the equivalent of readability but for writing programs. An overly verbose
language would be highly readable but hardly writable by hand. On the opposite, lan-
guages using many abbreviations and implicit syntax are easy to write, harder to read
(e.g. Perl).

3. Reliability measures what properties are ensured by the use of the language and how
the contribute to the reliability of the implied program. The more compilation check
the language will make possible, the more reliable the language will be considered. As
reliability depends also on the ability to avoid writing bugs it is highly influenced by
writability and readability, through code reviews.

4. The cost induced by using the language is another important criterion. This criterion is the
main refusal criteria invoked and is what diminishes popularity and adoption of languages.
The cost criterion depends on previous criteria but also on other aspects. Language cost
is made of cost of various sub costs: training programmers, writing programs, buying
and using tools such as editors and compilers, hardware and time for running tools and
program, doing corrective maintenance and evolutions.

Different aspects of language influence the presented quality criteria of a language. We
different facets of
UFCLwill enumerate these aspects. For each aspect, we evaluate the criteria to which it contributes

and we position our language with regards to this aspect. We use numbering to reference the
3 first criteria presented above. Cost is a more synthetic criterion, so we treat it in a synthesis
paragraph below. First item of the following list is an syntactic example:

149

9.2. DIRECT EVALUATION OF CONTRIBUTIONS

• e.g. Numbering (1, 2): we use numbers to reference criteria, so this example aspect con-
tributes to criteria 1 (readability) and 2 (writability) as numbers are simpler to write and
also read (remembering the number-criteria association is simple in this case).

• Simplicity (1, 2, 3): our language is dedicated to a particular task and the number of
features are highly limited. Our language is simple as it only gives a single way to express
constructs: functionality facet, functionality correspondence, service factory.

• Level of Abstraction (1, 2, 3): our language is used as a high level of abstraction.
Both functionality correspondences and service factories descriptions constructs are highly
declarative and describe high level mechanisms. Given its relative simplicity, our language
has a well chosen high level of abstraction. On the contrary to other languages such as
BPEL, we do not try to build a new programming language approaching Turing com-
pleteness. This level of abstraction is in adequacy with the task targeted by our language.

• Orthogonality (1, 2): different building blocks of our language can be easily combined or
used in different context. This is the case at multiple levels including the conceptual level
with the separation of simple descriptions from factories and correspondence that are all
expressed independently but interacting. Our language also exhibits some orthogonal-
ity properties through the low coupling between functionality description and grounding
expressions.

• Syntax Simplicity (1, 2): we made the choice of a textual syntax as we can find in the
Structured Query Language (SQL). UFCL syntax uses natural language words to make
expressions sound like sentences. This choice should increase the simplicity of the language
even if user’s background have an important impact as noted for SQL in [Bell 1992].
Compared to existing languages for comparable tasks, such as OWL-S, our language is
less verbose.

• Expressiveness and Syntax Conciseness (2): our language is SQL-like so some added
keywords could be removed to make the language more concise. The overall level of
abstraction of our language makes it expressive in spite of these syntactic additions. Our
language would be probably considered inadequate by people that does not like SQL.

• Support for Custom Abstraction (2, 3): this property designs the ability given by the
language to the programmer to build higher level abstraction using the language. On this
aspect, our language is not good. The only custom abstraction can come from the implicit
semantic of the terms employed by the description writer to represent its functionalities
and their properties. Our language provide no way to build higher level abstraction that
get additional checking by the compiler.

• Compile Time Validation (3): our language is open in the sense that it accepts any terms to
be used for functionality and property names. This openness makes compiler checks more
difficult when not impossible. Our language makes it easy for the compiler to check simple
properties such as the coherent usage of wildcards in a factory expression (we check that
only declared wildcards are used). We currently do not support more complex checks and,
for example, typographical errors on functionalities names are not automatically detected.
This aspect should be improved to ease development and debugging.

As a summary of the evaluation of these different aspects, we can notice that our language
UFCL: a good DSL
(currently) lacking
debuggability

is a good Domain Specific Language (DSL) but lacks debuggability. Our language is good
on readability and writability but get poor evaluations concerning reliability. Mapping these
evaluations to the cost criterion (which is a major blocker for adoption), our language has an
acceptable cost that should not prevent its adoption:

150

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

• training programmers should be relatively short as the language is simple and tailored for
the task,

• in the same way, writing semantic descriptions should be relatively easy and fast using
UFCL,

• writing descriptions requires only a text editor and no dedicated tools,

• compiling and using semantic descriptions uses only open source freely available software
but need a normal desktop machine and will not run on constrained devices,

• debugging however will require a significant amount of time, particularly if descriptions
are written without care and contains conceptual errors.

9.3 Overall Analysis of the Work

In previous section, we evaluated different aspects of our works in isolation. This section is
devoted to the lessons we learnt from our investigation.

From the focused analysis presented in previous chapter and the evaluation in this chapter,
we take a step back and analyze our work in its entirety. This analysis is an occasion of doing
an overall evaluation of this research work and of reflecting on future directions opened by our
conclusions.

9.3.1 Development Methods and Tools: the importance of a complete
solution

OMiSCID and its Graphical User Interface in Symbiosis

When we originally developed the graphical user interface (GUI) for OMiSCID services, we
thought it would be only a platform used to release modules managing stable and widely used
services. Our initial idea was to make it a platform that capitalizes complete software such as

a GUI designed for
demonstrations. . .shared infrastructure and demonstrations. This initial objective was already a good one.

After the release of the GUI and its presentation to the team, colleagues began to develop
. . . used for daily
works. . .small extension modules. Contrary to our expectations, most contributions were made of new

modules developed to provide manipulation for new services. People favored developing small
modules for their work in progress rather than porting their existing graphical interfaces into
the GUI. This portage came but it came later.

From this point of view, the GUI exceeded our expectation. We expected only a few number
. . . against
expectationsof application-like modules to be created but we rather got more small modules. This situation

where modules are small and providing elementary functionalities perfectly fits with the service
oriented vision.

The GUI and its adoption has followed and supported the advent of OMiSCID and of service
orientation in the team. Without the GUI, using OMiSCID would have a lesser perceived
advantage and its adoption would be lower.

151

9.3. OVERALL ANALYSIS OF THE WORK

Convergence of Service Semantic Functionality and the Concept of Tasks in the GUI

Interestingly, we introduced many similar concepts in the service functionality descriptions
presented in this thesis and in the GUI extension mechanism (see page 78 for details). These
two aspects have been developed in parallel with similar objective but different priorities.

In both the GUI and semantic description we aim at sharing and reusing functionalities
decoupled sharing
and reuse without modifying existing services. Functionality descriptions have been designed to allow

automatic reasoning for runtime integration of services and require compilation of descriptions.
The two main constraints in the GUI were: clean integration in Netbeans and the Java pro-
gramming language and, extremely fast understanding by the new developer. In the GUI we
use selectors and tasks although we use the concept of functionality and correspondences in
semantic descriptions.

Figure 9.10 shows the similarities of functionalities and GUI tasks. Each concrete service, in
tasks in the GUI

the GUI, might be transformed as any number of “tasks” that each can in turn be processed by
any number of actions. The concept of task plays the role of a shared representation: multiple
selectors instantiate a particular type of task from various type of concrete services. To a given
type of task might also be associated multiple actions. Both new selectors and actions can be
added without modifying neither the task nor already existing selectors and actions.

Video

Audio

Video

Listener

Viewer

ImageWriter

AudioVideo

Camera

TV
Audio

Video

Video

Selectors Tasks Actions

Listen

View

WriteImages

GUI TasksService Functionalities

Figure 9.10: Similarities Between Functionalities and GUI Tasks. Example with audio video services
and clients. In the Graphical User Interface, “tasks” are the abstraction: selectors map services to tasks
that are required by actions. With functionalities, “functionalities” are the abstraction: inference is
done on different functionalities to map from provided to required functionalities.

In the case of semantic service functionality descriptions, we did not want to have a
functionality
correspondences shared centralizing element (such as the “tasks”). Functionalities correspondences and pro-

tocol adapters play the role of the selectors in the GUI: they convert concrete services to the
required functionality. Having a central representation would not be an option as it limits the
openness of the system: it makes impossible to integrate two systems without modifying one of
them.

One lesson we can draw here is that the GUI concept of task was adopted by every contrib-
take the best of the
two approaches utor while the concept of functionality is harder to understand and to put in practice. From

this observation, we can draw some guidelines for further improvement of our work as discussed
in section 9.3.2. Basically, “tasks” are a code level materialization of service functionalities and
reasoning in term of tasks and task adapters is probably a promising direction. Care must still
be taken not to lose the dynamic openness of the systems.

152

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

9.3.2 Requirement for Broader Protocol Adaptation

In the design of system, for functionality level interoperability, we separated semantic func-
separating protocol
from
functionality. . .

tionality description from protocol description. Functionalities are abstracted from the protocol
used to access them, this makes it possible to express functionalities and reason about it more
easily. As we mentioned in chapter 6, functionality correspondence is relatively easy to de-
scribe but hard to detect automatically and, protocol adaptation description can be tedious
and verbose but can be done automatically.

The separation between functionalities and protocol is supported by the fact that proto-
. . . to allow
reasoning on
factories. . .

col adaptation is already a research field by itself. An interesting discussion about component
protocol adaptation can be found in [Reussner 2003]. Isolating functionality descriptions from
protocol is what simplified reasoning and made it possible to introduce factories in this reason-
ing.

We initially envisioned to use the separation between functionality and protocol to enable
. . . and automatic
adapter generationautomatic generation of protocol adapter. We imagined basing this generation on multiple

approaches: using service unit tests to infer protocols, using machine learning to test and evolve
different adapters and using the more classical solution where protocols are highly formalized
often in the form of finite state machines. Our investigation took us in a different direction.
Interestingly, the recently started ICT-CONNECT research project (Emergent Connectors for
Eternal Software Intensive Networked Systems) target the automatic synthesis of connectors
between devices (details on their research statement on their web site [Url-u]). They mention
modeling and reasoning about functionalities and automatic synthesis of connectors (protocol
adapters) in highly heterogeneous systems.

In our work, we only made a simple protocol adaptation layer based on OMiSCID. One
OMiSCID as an
abstract APIinteresting direction to take would be to consider the OMiSCID API as an abstract API hid-

ing protocol but also middleware heterogeneity. With such an approach, OMiSCID user could
transparently use the API to access various services and devices, not only OMiSCID services.
For example, one can imagine discovering and interacting with bluetooth services or zigbee
sensors. Such approach, were a common API is used to access multiple service discovery pro-
tocols and multiple communication protocols, is explored in the Amigo Interoperable Service
Discovery & Interaction Middleware.

Current simple protocol adaptation can be improved by taking example from other inves-
expose protocol
adaptation as
manipulable
information

tigations. We insist on the fact protocol adaptation should remain an information that can be
dynamically added into a running system to improve integration at runtime. A consequence
of our separation between functionality and protocol is that improvements in protocol adap-
tation is totally orthogonal to our framework for functionality description and reasoning. A
conclusion is that it is profitable to improve protocol adaptation even if there is a risk that the
functionalities framework will be modified.

9.3.3 Interleaving Services, Functionalities and Context Awareness

The most important lesson that we have learned from our investigation and that does not
appear in previous pages of this manuscript concerns the relation between open service oriented
architecture and context aware computing. In one sentence, service declarations, semantic
description of service functionalities and context are all interrelated and should be expressed in
an interoperable form.

In a conference article, we applied our method for the design of an automatic recording
using “locator”
functionality. . .system from scratch. This design differs from the one presented in this manuscript and it puts an

emphasis on reasoning about locations in a building. Interested reader can read [Emonet 2008]
for more details. To enable reasoning about location, we had to add a virtual functionality

153

9.3. OVERALL ANALYSIS OF THE WORK

named “locator” that locates a person in a space. It is then possible, using service factories and
functionality correspondences, to express inclusion of a space in one another, etc.

The information about user location, that we materialized as virtual functionalities, is the
. . . to represent
location context base of most context aware applications. Context is made of any information that characterize

the interaction of the users and the application (location, time, schedule, activity, mood, etc.).
Our analysis is motivated by the example of “locators” and discussions we had with people
working on context aware applications. Service discovery needs to be context aware and context
includes information about services present in the environment.

We have a strong link between context awareness and service functionalities. In addition,
context + service
discovery service functionalities should be the real interface between services: services provides an ab-

straction over the low level implementation details but this abstraction must be pushed up to
the level of functionalities. To enable real dynamic service architectures, services must interact
based on their functionalities, in total abstraction of the communication protocol they use. This
implies that every service discovery should be based on semantic functionality rather than exact
protocol.

With such semantic requirement for discovery, low level service description are relegated
semantic + simple
service discovery to simple grounding information and need not to be separated. Our reasoning leads us to the

conclusion that context information, semantic service functionality descriptions and low level
service descriptions form an indissociable whole.

This fundamental question and the lack of early maturity of our runtime has prevented
all need to be
integrated us from pushing it in the team. Our work explores interesting paths for simplifying semantic

functionality descriptions and mixing it with service factories. However, contrary to OMiSCID
and its GUI, we did not see a direct benefit of inciting team members to invest in semantic
descriptions before solving this major issue.

Research on context aware middleware is fertile but most of the contributions have no
promising directions

interest in using service oriented methods. State of the art in context awareness uses tuple
spaces to share and enrich contextual informations. They rarely take interest in describing
software and hardware capabilities, nor in adapting information to realize integration. Our
opinion is that one major investigation that goes in the right direction is the work on PersonisAD
presented in [Assad 2007] in 2007. This investigation begins to get citation from notable peers
such as A. Dey in [Dey 2009]. Our thinking about our problematic has much convergence with
the PersonisAD proposal and feeds our “future direction” section below.

9.3.4 Retrospective Conclusions

We actively promoted some aspects of our investigation for use in our research group. These
we promoted
OMiSCID aspects are the one that are most mature and the closest to the users (developers). They mainly

concern the service oriented middleware and its graphical user interface. As presented in previ-
ous sections, we were reluctant to enforce the use of more advanced facets of our investigation
as they could have lead the team in a wrong direction. Nevertheless, many of these aspects of
our investigation have an important potential and deserve to be put in practice.

We introduced the concept of service factory to an engineer in our team, in the context
we tried factories
with success. . . of 3D tracking. Factories were only introduced at the service level not at the functionality

level: a service factory is a service that can instantiate precise concrete services but no UFCL
description is attached to it. This introduction of service factories is a success and provides the
advantages mentioned previously in this manuscript: ease of deployment, improved visibility
of what is available in the environment, possible reuse of services with different configurations,
etc.

Service factories have proven to be a valuable element of dynamic and reusable architectures.
. . . but without
UFCL

154

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

The always running “video service processor” factories, visible in the GUI by everyone, had
their impact on team members. Using factories has became an option for service designers:
they spontaneously imagine implementing service factories, for example for audio processing
services. Plain service factories have the advantages to be easily put in practice with no concern
about functionality descriptions: we clearly separated the factory concept from its semantic level
description from the time we introduced service factories.

The observation that factories can be first introduced without the semantic description
we should push our
design method. . .aspect, can be generalized to most of what we propose in our design method in chapter 6.

Ignoring functionality is a good incremental and transitional approach that we should have
applied before. This application was prevented by our missing of a clear vision on the problem of
interrelation between service discovery and context awareness. In the short term, we recommend
inciting people to apply the step of our design method without caring about service functionality.

With semantic functionality descriptions set aside, our design method still involves:

• splitting applications and systems in independent services;

• introducing plain service factories when possible;

• abstracting each service not in term of service functionality but at least studying how the
service can be made more generic;

• sharing suitable applications as services or even as service factories.

Even if integration and reuse will involve more manual coding than with semantic descriptions,
these simple guidelines are still good to be distilled.

There is a last major underlying pragmatic observation in our investigation. It transpires
. . . and favor
mutual
understanding

when we prone using UFCL as a hub between designers in section 7.1.2 and when we recommend
materializing configurations at runtime in chapter 6 and in section 9.2.5 of current chapter.
There is a major need for better communication and mutual understanding between people
designing system parts for pervasive computing.

Cooperation should not be limited to exchanging black box pieces of software. To make the
. . . by improving
intelligibility. . .vision of dynamic and spontaneous interoperability possible, all contributors must share their

knowledge and make it available at runtime. Exposing configurations as knowledge present
at runtime makes system more intelligible for other contributors. Improving intelligibility and
mutual understanding among developers is a good way of favoring interactions between different
domains of pervasive computing.

Already mentioned in this manuscript, the interaction between low abstraction level per-
. . . for everyone’s
benefitceptive works (computer vision, etc.) and higher level activity modeling needs to be activated.

Both tiers would benefit from the interaction: lower abstraction level services and systems are
no simpler than higher level ones. For instance, solving the problem of vision requires to solve
the Problem of artificial intelligence (and also activity modeling by the way).

9.4 Thinking About the Future

9.4.1 Shared Infrastructure with Domain Specific Descriptions

We could think of many small improvements to different aspects of our work. These small
user orientation is
the key. . .improvements can be trivially derived from the analysis of our investigation. More interesting

are the directions that our overall research experience tells us to explore.

We think that creating an infrastructure for runtime sharing of knowledge and descriptions
. . . to effective
evolution of
intelligent
environments

is fundamental. This infrastructure must allow different kinds of information to fit in it and
interact with each others. Inspiration must be taken from the three of:

155

9.4. THINKING ABOUT THE FUTURE

• software engineering methods,

• knowledge representation methods, and

• context aware computing.

From our approach must be kept the usability aspect that in fact covers many sociological and
psychological facets.

Many existing research investigations are positioned at the confluence of two of the three
domains above. The domain of semantic web services already explores the relations between
service oriented architecture and the domain of knowledge representation. In the same way,
the interesting investigation done in PersonisAD presented in [Assad 2007] already interrelates
context aware frameworks with device description and discovery. The IST Amigo project has
also many interesting contributions in the domain of device heterogeneity handling and semantic
service descriptions. Advances made in the ICT-CONNECT project should also be monitored
as we can expect interesting contributions around protocol adaptations (most information are
on the project web site [Url-v]).

Our recommendation for an future infrastructure supporting development of ubiquitous
computing is to insist on two aspects:

• Having a knowledge base that is distributed, open, enriched at runtime and shared between
different domains and applications.

• Querying the knowledge base and contributing to it using different, target specific tools.

Having a knowledge base that is distributed, open, enriched at runtime and shared

between different domains and applications

The runtime sharing of descriptions between application parts is a recurring need. The
need for such a knowledge base is clearly identified for context aware computing (were tuple
spaces are mostly used) and implicitly present in service oriented architectures (with service
repositories). The same need is appearing in the domain of real-time higher-level computer
vision: integration between methods is becoming the more promising direction for major im-
provements. Replicating the implementation effort of each of these knowledge bases is a waste
of time. More importantly, isolating these knowledge bases from each others is an error: we
have identified intrinsic relations between context and services, and putting an artificial barrier
between the two is a real constraint.

Querying the knowledge base and contributing to it using different, target specific

tools

On top of the shared knowledge base, multiple dedicated languages and APIs must be de-
signed for each target domain and developers. These interfaces to the knowledge base must be
tailored for their target users. OMiSCID API can be such an interface: service declarations
contribute to the knowledge base while service discovery is a way to query this base. A domain
specific language such as UFCL can be used to fill the knowledge base with factory descriptions
and functionality level descriptions. A specific API and a language could be used to contribute
and query contextual information. The knowledge base interface for context aware comput-
ing could for example provide an abstraction to simplify the reasoning about uncertainty and
probabilities.

156

CHAPTER 9. CRITICAL EVALUATION AND PERSPECTIVES

9.4.2 Concluding Remark: User-Orientation is Key

The user is the key! This affirmation is well established in human computer interaction and is
more and more present in pervasive computing as the field matures. However, the user does
not provide the only technology acceptance test. Surveys, usability tests, focus groups and field
studies generate much information that is not limited to acceptability.

Observing and studying users provide knowledge about their habits, their requirements and
their expectations that is almost impossible to obtain through other means. Observing social
interactions between users gives a good insight of what real problems are. Observations can also
stimulate innovation from the observer. Conceptions methods with users involved in “converge”
faster than simple test and retry methods.

Success of bringing intelligence in pervasive computing is conditioned by the existence of
proper methods that allows various specialists to cooperate. The creation of conception meth-
ods should be as much user centered as any other conception methods. In this case the developer
becomes the user. All intelligent environments stakeholders must be studied in their habits, psy-
chology and sociological aspects. Designing software engineering methods must involve a global
reasoning and much observation of designers, developers, end-users and also the interactions
between these people.

As a concluding remark, we can say that the success of intelligent pervasive computing is
tied up with its openness to social and psychological aspects influencing both end-users and
system designers.

We must learn to live together as brothers or perish together as fools.
— Martin Luther King Jr.

157

9.4. THINKING ABOUT THE FUTURE

158

Chapter 10

Résumé Étendu

10.1 Avant-Propos

Le manuscrit original de ces travaux de thèse est écrit en anglais. Ce document est un résumé
étendu du manuscrit original.

10.2 Des Ordinateurs aux Appareils Communicants

L’évolution des ordinateurs et du matériel informatique a été considérable depuis les années
1960. La tendance générale a été l’augmentation de la puissance de calcul et de la mémoire
des ordinateurs. Les ordinateurs réservés aux scientifiques pour des applications de calcul et de
simulations ont progressivement évolués pour être utilisés dans les entreprises pour la gestion
de leurs systèmes d’information. Les possibilités alors offertes par les ordinateurs ont conduit
à l’ère de l’ordinateur personnel où de nombreuses applications ludiques et multimédia sont
apparues. La vision de l’ordinateur personnel est d’avoir un ordinateur pour chaque utilisateur.

Suite à cette augmentation de la puissance des ordinateurs, la nouvelle tendance est main-
tenant à l’augmentation du nombre d’appareil à la disposition et utilisé par chaque utilisateur.
Ainsi, avec le réseau internet, les nombreux téléphones mobiles et les ordinateurs portables, un
utilisateur moyen utilise aujourd’hui environ une dizaine d’appareil différent, de manière quo-
tidienne. Cette tendance s’accentue et l’ère qui y correspond s’appelle l’informatique ambiante
qui imagine un environnement physique ou l’accès à des ressources informatiques peut se faire
à tout endroit, à tout instant.

Avec l’avènement de l’informatique ambiante, les attentes des utilisateurs augmentent forte-
ment. Étant donné que tous les appareils présents dans l’environnement des utilisateurs sont
à la fois programmables et dotés de capacité de communication, les utilisateurs attendent un
comportement « intelligent » de la part de ce réseau d’appareils. L’ensemble des appareils
doit fournir un service plus abouti que la somme des services fournis par chaque appareil. Ces
attentes correspondent à ce qui est appelé « intelligence ambiante ».

10.3 De la Programmation au Génie Logiciel

Initialement, le programme exécuté se rentrait à l’aide d’interrupteurs actionnés manuellement
par un opérateur. L’utilisation des cartes perforées à matérialisé le programme et a rendu
possible la plus importante méthode de métaprogrammation : la compilation. La complexité
des programmes à alors permis de créer des applications et de toucher de nombreux domaines
d’applications nouveaux. Le génie logiciel s’intéresse au processus de création des applications :

159

10.4. PROBLÈME ET APPROCHE

ce processus est aujourd’hui compliqué et implique de nombreuses personnes de différents hori-
zons.

L’intelligence ambiante regroupe de nombreux domaines. Encore à l’état de recherche, les
spécialistes de ces domaines n’ont pas le temps de se maintenir à jour des dernières recherches
en génie logiciel. On constate donc des problèmes d’intégration et de réutilisation importants
dans le domaine de l’intelligence ambiante. Les architectures à services ont des propriétés très
intéressantes aux vues des requis de l’intelligence ambiante.

10.4 Problème et Approche

L’intelligence ambiante est un domaine intrinsèquement interdisciplinaire : les spécialistes de
nombreux domaines doivent collaborer pour que le domaine progresse efficacement. L’intelligence
ambiante n’est pas seulement la juxtaposition des différentes disciplines mais plutôt une inter-
connexion et un enrichissement mutuel de ces disciplines. Une double veille technologique serait
nécessaire pour que ces différents spécialistes soient à la fois à jour dans leur spécialité et dans
le domaine de l’ingénierie logicielle. L’intégration des travaux des différents domaines nécessit-
erait cette veille dans le domaine de l’ingénierie logicielle. Malheureusement, cette double veille
technologique est trop coûteuse en temps pour être menée à bien par l’ensemble des spécialistes.
Il en découle que l’intégration et la réutilisation des travaux des différents spécialistes est très
difficile et qu’en pratique beaucoup de travaux restent isolés.

Notre approche est d’étudier et d’adapter les solutions d’ingénierie existantes pour qu’elles
soient utilisables et profitables pour l’ensemble des spécialistes pouvant contribuer à l’intelligence
ambiante. Dans notre approche, nous nous proposons de rendre accessible des méthodes comme
les architectures à services (SOA) et la description sémantique des fonctionnalités des services.
Nous proposons aussi de nouveaux outils conceptuels comme les usines à services pour résoudre
les problèmes spécifiques liés à l’architecture logicielle pour l’intelligence ambiante.

10.5 Architectures à Services pour l’Intelligence Ambiante

Les solutions actuelles pour mettre en œuvre des architectures à service limitent leur accept-
abilité auprès du large public des spécialistes pouvant contribuer à l’intelligence ambiante.
Les principaux obstacles à l’adoption des architectures à services sont variés et dépendent de
l’implémentation considérée : retour sur investissement peu clair, complexité supposée ou lim-
itation à un langage de programmation. Pour être acceptable par l’ensemble des acteurs de
l’intelligence ambiante, une solution à services doit respecter de nombreux critères : facilité
d’apprentissage, facilité d’installation, accessibilité dans de nombreux langages de programma-
tion, performance (débit, latence, etc.), robustesse, etc.

10.6 Services and Représentation de Connaissances

10.6.1 Du Découplage d’Implémentation au Découplage de Conception

L’utilisation d’interfaces claires ou de services dans la conception d’une application permettent
de s’abstraire de l’implémentation d’un composant et de se concentrer sur son interface d’accès
constituée des messages qu’il peut émettre ou recevoir. Les interfaces permettent de découpler
les implémentations des éléments logiciels : ils ne dépendent plus que de l’interface des autres
services.

Cependant, pour utiliser un élément logiciel, il est nécessaire de connâıtre son interface. En
utilisant des services, cette connaissance doit nécessairement être donnée à la conception du

160

CHAPTER 10. RÉSUMÉ ÉTENDU

logiciel qui utilise un service particulier via son interface. Une standardisation ou un accord
sur tous les types de services existants serait nécessaire à permettre une intégration de tous
les éléments potentiellement existant dans un environnement intelligent. Nous pensons cette
standardisation impossible et proposons dans la suite une solution permettant l’intégration
voulue.

10.6.2 La Conception Comme Connaissance

Nous proposons d’ajouter une couche d’adaptation qui transforme un type de service donné en
un autre. Ces transformations seraient réalisées par des adaptateurs. L’adaptation peut être
réalisée de manière manuelle ou automatique. Cette idée d’adaptation de services particuliers en
d’autres services correspond exactement à une problématique du domaine des représentations de
connaissances : différentes personnes produisent des connaissances qu’il faut ensuite fusionner et
mettre en correspondance sans pour autant pouvoir modifier les connaissances initiales. Notre
problématique et celle de la représentation de connaissance partagent la propriété d’être des
exercices de modélisation : toute modélisation pose la question de l’interaction avec d’autres
modélisations du même objet.

10.6.3 Représentation de Connaissance et le Web Sémantique

Le web sémantique part du constat que le web actuel contient une quantité importante de
données mais qu’elles sont malheureusement exprimées qu’en langue naturelle. Le web séman-
tique propose de structurer ces données pour améliorer la précision et la qualité des recherches.
Grâce à une représentation structurée des données, il devient possible d’exprimer des requêtes
très précises ne se limitant pas à la coprésence de plusieurs mots dans une page web. Le concept
de page tend à disparâıtre avec le web sémantique : une page est en fait remplacée par une vue
sur les données.

Pour la représentation des données, le web sémantique utilise des langages de représentation
de connaissances comme RDF ou OWL. Un défit clair du web sémantique est de mettre en
correspondance des connaissances venant de plusieurs sources pour transformer des ı̂lots isolés
d’informations en un réseau unique de données.

10.6.4 Description Sémantique de Services

La description sémantique des fonctionnalités offertes par les services se propose de décrire
les services de manière plus abstraite que leur interface. La réelle fonctionnalité offerte par le
service est exprimée sous une forme compréhensible par les machines de façon à permettre un
raisonnement automatique sur les fonctionnalités.

Deux implémentations principales de cette approche de description sémantique de services
existent. Ces implémentations reposent toutes deux sur les services web. La première, OWL-S
(Web Ontology Language for Services) se base sur OWL pour décrire les fonctionnalités des
différents services. La seconde implémentation est WSMO (Web Service Modelling Ontology).
Les deux approches ont leurs avantages et leurs inconvénients.

Les web services sémantiques (OWL-S et WSMO) se basent sur les web services classiques et
ajoutent une description sémantique des fonctionnalités des services. La description sémantique
utilise les principes (et langages) du domaine de la représentation des connaissances. Ces
approches de descriptions restent cependant complexes pour le développeur moyen, susceptible
de contribuer à l’intelligence ambiante. D’autre part, les services web sémantiques ne travaillent
qu’avec des services web et donc sur un modèle ignorant les connections (et déconnections)
entre services. Ces éléments limitent l’utilisabilité directe de ces technologies dans le contexte
de l’intelligence ambiante.

161

10.7. APPROCHES POUR LA COMPOSITION ET LA DESCRIPTION DE SERVICES

10.7 Approches pour la Composition et la Description de Ser-
vices

Même composés manuellement, les services apportent l’avantage d’abstraire les détails d’implémentation
derrière l’interface claire et bien définie du service. Au delà de la composition manuelle de ser-
vices, des méthodes plus automatisées existent. On peut distinguer les méthodes à base de
workflow et les méthodes inspirées de l’intelligence artificielle ou dites à base de planification.

Les méthodes de composition manuelle peuvent être assistées par différents outils de présélec-
tion ou de filtrage des services existants au moment de la création du service composite. Suite
à la composition fournie par un opérateur humain, l’orchestration ou l’exécution de cette com-
position peut être mise en œuvre de manière automatique grâce à l’abstraction que propose
l’interface des services.

Les méthodes à base de workflow proposent au concepteur de définir un plan abstrait de com-
position, contenant potentiellement des tests et des structures de contrôle de flot. Les différents
éléments abstraits de ce plan de composition sont recrutés automatiquement à l’exécution : des
services concrets sont découverts et utilisés pour remplir les services abstraits utilisés dans le
plan.

Les méthodes à base de planifications considèrent les invocations aux services comme des
transformations, soit des données soit du monde (l’environnement du système). Ces méthodes
essaient de trouver automatiquement une châıne d’invocation de services permettant de passer
de l’état courant du monde (ou des données) à l’état désiré par l’utilisateur du système. Un
exemple simple de méthode à base de planification est la génération automatique de pipeline
de conversion de fichiers vidéo : en partant d’un fichier encodé dans un format donné, le
système est capable d’assembler différents décodeurs et convertisseurs pour obtenir, en fin de
châıne, un format que le module d’affichage est capable de comprendre. Il faut par exemple
assembler un décodeur d’images JPG puis un convertisseur d’espace de couleur et enfin un
module de redimensionnement de l’image pour l’affichage final. En utilisant l’entrée donnée, les
sorties acceptables et la description de chaque modules, il est possible de construire la châıne
de conversion de manière automatique.

10.8 Intelligence Ambiante, Intégration et Problèmes Associés

Par l’analyse de différents systèmes d’intelligence ambiante, nous orientons le reste des contri-
butions de notre travail. Pour mettre en évidence les différents problèmes récurrent dans le
développement de l’intelligence ambiante, nous présentons en particulier le cas d’un système
de suivi utilisant des caméras et développé au sein du projet de recherche PRIMA. La section
courante correspond au chapitre 4 du manuscrit original.

L’intelligence ambiante étant hautement interdisciplinaire, le partage de logiciel entre les
différents contributeurs à l’intelligence ambiante est capital. Les différentes disciplines sont très
variés et incluent la perception de bas niveau (vision par ordinateur, perception acoustique,
robotique, etc.), des domaines plus intégrés (perception multimodale, modélisation de l’activité
humaine, etc.). Ces différentes disciplines ont des objectifs souvent différents et leur intégration
est souvent limitée de part le temps qu’elle requiert.

L’exemple du système de suivi développé au sein du projet PRIMA est symptomatique :
les problématiques de visions sont trop « simples » pour les chercheurs en vision pure, et,
paradoxalement, les résultats produit par le système de suivi sont de trop mauvaise qualité
pour les personnes susceptibles de l’utiliser pour la reconnaissance d’activité par exemple. Ce
phénomène vient de la difficulté d’intégrer les travaux de bas niveau d’abstraction et d’en tirer
profit efficacement dans le système de suivi. Cette intégration est actuellement possible mais
nécessite un effort et un temps important pour être menée à bien.

162

CHAPTER 10. RÉSUMÉ ÉTENDU

Le système de suivi visuel de PRIMA a évolué depuis un suivi en 2 dimensions dans les
images d’une caméra à un suivi dans l’espace, en 3 dimensions, en utilisant plusieurs caméras.
L’acquisition et le traitement des images de plusieurs caméras a nécessité de distribuer le système
de suivi sur plusieurs ordinateurs. À l’époque, essentiellement pour simplifier le déploiement du
système, la distribution a été faite avec un intergiciel à services développé pour l’occasion au
sein de PRIMA et nommé BIP. Les différents services composant le système de suivi se recrutent
entre eux en utilisant une découverte de service basée sur le protocole Zeroconf. Le besoin de
distribution est l’occasion idéale d’introduire de nouvelle pratique de développement dans une
population de développeurs. Pour distribuer une application, le développeur doit utiliser de
nouveaux outils ; nous profitons de ce besoin pour pousser une approche à service qui facilite
la réutilisation et l’intégration de travaux.

Un des objectifs que nous tirons des problèmes d’intégration et du besoin de distribution est
de promouvoir l’adoption des architectures à services. Au delà des architectures à services, nous
identifions aussi des problèmes dus à un déploiement répétitifs de certains éléments des systèmes
ambiants. Nous identifions aussi un besoin de s’abstraire de l’interface exacte d’un service lors
de la conception. Avec une simple approche à service, il est nécessaire de connâıtre, dès la phase
de conception, les interfaces exactes des services que le système sera capable d’utiliser. Nous
voulons permettre une intégration a posteriori des différents services sans avoir à les modifier
et à les relancer pour qu’ils puissent interagir. Les chapitres suivant du manuscrit visent à
apporter des éléments de réponse à ces problématiques.

10.9 OMiSCID : un middleware à services

L’intelligence ambiante souffre de son interdisciplinarité : la réutilisation et l’intégration des
travaux est difficile et coûteuse. Une intégration continue serait cependant bénéfique pour
tous les acteurs concernés. Le besoin de distribution de certains travaux, en particulier des
travaux de perception, est l’occasion d’introduire des méthodes de développement plus adap-
tés à l’intégration nécessaire à l’intelligence ambiante. Nous proposons donc d’introduire un
intergiciel à services comme moyen de distribution pour l’intelligence ambiante. La solution
proposée doit être aussi facile et rapide à utiliser pour les développeurs ciblés que n’importe
quel autre moyen de distribution qu’ils pourraient trouver. La section courante correspond au
chapitre 5 du manuscrit original.

L’intergiciel BIP est un intergiciel à services à l’origine conçu pour la distribution des com-
posants de vision. Le problème majeur de BIP, que l’on retrouve dans certaines autres solutions
d’architectures à services, est son manque d’utilisabilité. Beaucoup de solutions à services ne
sont pas utilisées car les utilisateurs potentiels y voient des problèmes potentiels : limitation
à un langage de programmation, problèmes de performance, difficulté d’apprentissage, etc. De
notre analyse nous listons des requis pour un intergiciel à services utilisable par les contribu-
teurs à l’intelligence ambiante. Ces requis incluent la facilité d’apprentissage et d’installation,
l’accessibilité dans de nombreux langages, l’intégration au processus de développement usuel
des contributeurs (pas de nouvel environnement dédié) et les performances.

Partant des requis que nous avons exhibé, nous créons une nouvelle API (Application Pro-
gramming Interface) pour la création et la recherche de services appelée OMiSCID. L’implémentation
de cette API se base sur l’ancien intergiciel BIP. OMiSCID est une simple bibliothèque utilisable
en C++, Python et Java (et donc Matlab et tous les langages de scripts de la jvm). L’API
OMiSCID est commune entre les 3 langages et permet ainsi un transfert direct des compétences
lors du changement de langage de programmation. En comparaison avec BIP, OMiSCID limite
les mauvaises utilisations de l’intergiciel et propose une API beaucoup plus concise et simple à
appréhender pour un développeur souhaitant ou utiliser un service. La découverte de service est
par exemple largement simplifiée par l’introduction d’une API déclarative : l’utilisateur exprime
un filtre de services en composant des filtres existant avec des conditions logiques (et/ou).

163

10.9. OMISCID : UN MIDDLEWARE À SERVICES

L’implémentation OMiSCID a été suivie de phases d’évolution, de maintenance et de com-
munication. Ainsi, OMiSCID est disponible en open-source, possède un site publique dédié et
a été décrit dans une publication scientifique. L’intergiciel a aussi été présenté chez différents
partenaires du projet PRIMA.

Nous avons étudié les besoins en outils autour d’un intergiciel à services. Il en est ressorti un
besoin majeur : une interface graphique pour la mise au point, l’observation et l’interaction avec
les services. Nous voulons aussi transformer une telle interface graphique en lieu d’échange entre
les développeurs des différents services. L’interface graphique doit donc vérifier les propriétés
suivantes : lister les services démarrés, permettre d’interagir de manière générique avec ces
services, être facilement extensible par les différents créateurs de services, permettre le partage
et la mise à jour des différentes extensions proposées par les créateurs de services.

Nous avons implémenté OMiSCID Gui qui rempli les besoin exposés précédemment. Basé
sur la plateforme Netbeans, l’interface graphique d’OMiSCID est très facile à mettre à jour
et à étendre avec de nouveaux modules. Le développement de nouveaux modules ne nécessite
seulement la connaissance du langage Java et de bases sur la bibliothèque d’interface graphique
Swing (par défaut dans Java). OMiSCID Gui, dans sa version de base, permet de lister les
différents services OMiSCID et de surveiller leurs interconnections et d’interagir de manière
générique avec leurs variables et connecteurs. De nombreux extensions (ou modules, ou plugins)
ont été développés par les créateurs de services : visualisation du flux d’images d’une caméra,
visualisation de la sortie d’un télémètre laser, contrôle et pilotage de caméra, etc. Toutes ces
extensions peuvent être installées en quelques clicks par n’importe quel utilisateur d’OMiSCID
Gui.

OMiSCIDGui

Figure 10.1: Utilisation d’OMiSCID Gui pour le contrôle et la surveillance d’un assemblage de services
utilisés pour le suivi 3D au niveau d’un bâtiment. Cinq extensions (modules/plugins) sont contribuent
à la vue présentée dans cette capture d’écran.

164

CHAPTER 10. RÉSUMÉ ÉTENDU

10.10 Concepts et Méthodes pour la Conception de Systèmes
Dynamiques et Ouverts

Le chapitre 4 du manuscrit exhibe un certains nombres de problèmes qui ne sont résolus que
partiellement par l’utilisation d’un intergiciel à service comme celui présenté dans le chapitre 5.
En effet, les niveaux d’abstraction supérieurs comme le domaine de la modélisation d’activité
nécessitent des abstractions permettant de construire de manière durable sur les éléments de
plus bas niveaux d’abstraction. En construisant sur l’utilisation d’un intergiciel à service par
l’ensemble des acteurs de l’intelligence intelligente, nous proposons une méthode de conception
permettant une meilleure gestion de la dynamicité des systèmes d’intelligence ambiante. Cette
méthode se base en partie sur les principes utilisés dans le domaine des web services sémantiques.
Nous introduisons aussi le nouveau concept « d’usine à services » qui ressort de notre analyse
comme nécessaire. La section courante correspond au chapitre 6 du manuscrit original.

Nous avons introduit le concept « d’usine à services » : une usine à service est un service
dont le rôle est de créer de nouveaux services sur demande. Les usines à services résolvent deux
problèmes majeurs constatés entre autres dans le système de suivi 3D :

• lors des expérimentations et de la mise au point du système, il est fastidieux d’arrêter
et de redémarrer l’ensemble des services composant le système. Cette difficulté incite
d’ailleurs les concepteurs de services à faire des services tout-en-un donc moins extensibles
et moins réutilisables. De plus, le redémarrage manuel augmente le risque d’erreur lors
de la configuration de chaque service à son lancement.

• ce qu’expose l’environnement à services est très limité par rapport à ce qui est réellement
possible. Dans l’exemple du système de suivi 3D, des services de traitement d’image
sont utilisés. Ces services sont démarrés et configurés manuellement et l’environnement
expose donc sa capacité à réaliser ces traitements d’images particuliers. L’environnement
n’expose que les services démarrés alors qu’il pourrait exposer sa capacité à créer une
variété de services de traitements d’images (dépendant de la configuration du service de
traitement d’image).

Les usines à services permettent de créer sur demande un service parmi une famille de services
donnée. La création est paramétrée par les éléments de configuration nécessaires.

Ainsi, dans l’exemple du système de suivi 3D, c’est le système de suivi lui même qui a
connaissance des configurations des services de traitement d’image. Le système de suivi de-
mande aux usines à services de créer les services de traitement d’image avec la configuration
qu’il désire. Tous les éléments de configuration sont donc regroupés dans le service principal
du système de suivi et non plus distribués sur l’ensemble des lignes de commandes des services
lancés manuellement.

Les web services sémantiques apportent des solutions au problème d’intégration a posteriori
de services conçus indépendamment. Nous réutilisons ces solutions sous la forme de fonction-
nalité de services. Un service abstrait les détails de son implémentation derrière son interface
de services, c’est à dire les messages qu’un service peut recevoir et émettre. Le concept de
fonctionnalité vise à s’abstraire encore plus de l’implémentation et des messages échangés pour
permettre un raisonnement automatique de plus haut niveau. Une fonctionnalité de service ab-
strait l’interface d’un service derrière un concept fonctionnel. Par exemple, un service représen-
tant une caméra et émettant ses images avec un format précis peut être abstrait derrière la
simple fonctionnalité de « source d’images ».

Fondée sur les architectures à services, sur les usines à services et sur les principes des
services web sémantiques, nous proposons une méthode de conception destinée aux contribu-
teurs de l’intelligence ambiante et visant à améliorer la réutilisabilité et l’extensibilité de leur
services. Cette méthode s’articule en 6 étapes qui peuvent être soit prises dans l’ordre, soit

165

10.11. UFCL, UN LANGAGE DE DESCRIPTION SÉMANTIQUE DE SERVICES

considérée comme des lignes directives à suivre pour les développeurs. Ces 6 étapes sont détail-
lées dans le manuscrit et sont illustrées sur deux exemples : le système de suivi et un système
d’enregistrement automatique de séminaire. Les 6 étapes de la méthode sont les suivantes et
s’appliquent aussi bien à la reconception qu’à la conception initiale d’un système :

• identifier les responsabilités dans le système ;

• séparer le système en services ;

• introduire des usines à services si nécessaire ;

• abstraire chaque service derrière une fonctionnalité ;

• exposer sa contribution sous forme de service, de fonctionnalité et si pertinent d’usine à
service ;

• intégrer ses fonctionnalités avec celle existantes par ajout de correspondance de fonction-
nalités et d’adaptateurs.

En suivant cette méthode, nous avons amélioré la réutilisabilité des différents éléments consti-
tuant le système de suivi 3D et le système d’enregistrement automatique de séminaires. En par-
ticulier, avec la nouvelle architecture obtenue, les caméras peuvent être partagées et plusieurs
services de traitement d’images peuvent facilement être démarrés pour remplir les différents
besoins simultanés qui peuvent apparâıtre (plusieurs systèmes de suivi, couplage système de
suivi/reconnaissance de visage, etc.). La figure 10.2, issue du manuscrit, donne un aperçu des
services en jeu et des descriptions de leur fonctionnalités. Cette figure illustre aussi les descrip-
tions et services que les développeurs doivent apporter et les choses qui en sont automatiquement
dérivées par l’environnement d’exécution.

10.11 UFCL, un Langage de Description Sémantique de Ser-
vices

Le chapitre 6 du manuscrit propose une méthode de conception pour les développeurs impliqués
dans l’intelligence ambiante. Cette méthode vise à améliorer la réutilisabilité et l’intégration
dynamique des différentes contributions des différents développeurs. Pour « donner vie » à cette
méthode et supporter son application, nous proposons un langage dédié, simple à comprendre
et à écrire. La section courante correspond au chapitre 7 du manuscrit original.

Nous avons créé le langage UFCL (User-oriented Functionnality Composition Language)
qui s’adresse au développeur de services logiciels pour l’intelligence ambiante. UFCL vise à
simplifier les principes existants dans les web services sémantiques tout en incluant le concept
d’usines à services que nous avons introduit. Au niveau langage, UFCL propose un nombre de
constructions limité de façon à facilité son apprentissage. Le niveau d’abstraction d’UFCL en
fait un langage de description puissant.

En utilisant le principe de fonctionnalité comme dans les web services sémantiques, UFCL
vise à permettre une intégration a posteriori et déclarative des services développés en isolation.
Ainsi, plutôt que d’avoir une intégration où un intégrateur doit comprendre et modifier les
différentes contributions pour les intégrer (figure 10.3), l’intégrateur va ajouter des adaptateurs
entre les différentes fonctionnalités contribuées par différents développeurs. Ces adaptateurs
peuvent impliquer beaucoup de code mais par l’utilisation des fonctionnalités de services, les
adaptateurs peuvent se limiter à quelques lignes d’UFCL, le reste étant géré automatiquement
par l’environnement d’exécution.

UFCL propose trois constructions syntaxiques pour l’expression des informations au sujet
des services :

166

CHAPTER 10. RÉSUMÉ ÉTENDU

Video Service

Video Service Processor

3D Detector

3D Detector

Camera2 Calibration

Camera1 Calibration

Room to Mire

Composite Transformation Factory

Room to Camera1

Room to Camera2

Video Service Processor Factory

Transformed Detector Factory

Video Service

Video Service Processor

Video Service Processor Factory

Run in a same process
Instantiates

Service

Service Factory Service
Transformation Service

Service Interconnection

Functionality Level Descriptions

Functionality Factory

Functionality And
Correspondence

Service Level Descriptions

Semantic Description

ImageSource(Cam1) ImageSource(Cam2)

conf ⋙ VSP(Cam1, conf)

conf ⋙ VSP(Cam2, conf)

VSP(Cam1, detectConf)

Detector(Cam1)

⋙
VSP(C, detectConf) ⋙ Detector(C)

VSP(Cam2, detectConf)

Detector(Cam2)

⋙

Detector(Room)

Detector(Room)

Tr(B↦A)
Detector(A)
⋙ Detector(B)

Tr(A↦B)
Tr(B↦C)
⋙ Tr(A↦C)

Tr(Room↦Cam1)

Tr(Room↦Cam2)

Tr(Pattern↦Cam1)

Tr(Pattern↦Cam2)

Tr(Room↦Pattern)

Tr(Pattern↦Room)

3DTracker(Room)
uses: Detector(Room)

3D Tracker

Grayed out services and descriptions
are those that can be derived from the others

Figure 10.2: Nouvelle architecture modulaire du système de suivi 3D. Cette architecture inclue ser-
vices, fonctionnalités et usines à services. Les parties plus claires sont celles qui sont automatiquement
dérivées du reste par l’environnement d’exécution. Les parties pleines sont la connaissance amenée par
les différents concepteurs.

Compile-Time-Integrated ApplicationPerception-Level Components

Higher-Level Components

Integrator

Figure 10.3: Intégration « classique ». L’intégrateur doit comprendre et modifier la plupart des
composants qu’il doit intégrer. Les composants sont modifiés pendant la phase de développement pour
produire l’application.

167

10.11. UFCL, UN LANGAGE DE DESCRIPTION SÉMANTIQUE DE SERVICES

Dynamically-Runtime-Integrated ApplicationPerception-Level Components

Higher-Level Components

Integrator

Figure 10.4: Intégration avec UFCL. Grâce à l’encapsulation en services et fonctionnalités,
l’intégrateur ne doit comprendre que les fonctionnalités exposées et requises par les services. Les cor-
respondances entre fonctionnalités et les adaptateurs sont introduits à l’exécution, sans modifier aucun
composant existant.

• description des fonctionnalités exposées par un service ;

• description des correspondances entre fonctionnalités ;

• description des usines à services.

La première construction UFCL permet de décrire la ou les fonctionnalités proposées par un
service donné. Ainsi, un service OMiSCID peut par exemple exposer la description UFCL
suivante :

1 | namespace is http://emonet09#

2 | this isa Timer

3 | with freq = 1

4 | with grounding = "C(tick)"

Cette description signifie que le service exposant la description UFCL (mot clé « this ») a
une fonctionnalité de « Timer » avec une fréquence de 1. Un « Timer » est ici un élément
logiciel émettant des événements à une fréquence donnée. La propriété « grounding » doit
être donnée par l’auteur de la description UFCL mais n’est utilisées qu’automatiquement par
l’environnement d’exécution. Cette propriété référence l’implémentation concrète de la fonc-
tionnalité « Timer ». Ainsi la fonctionnalité peut être accédée sur le connecteur OMiSCID
(« C(. . .) ») nommé « tick ».

La seconde construction syntaxique d’UFCL permet d’exprimer des correspondances entre
fonctionnalités. Pour l’intégration, il est possible d’exprimer qu’un type de fonctionnalité avec
un ensemble de propriétés peut être considéré comme une autre fonctionnalité. Un exemple
d’une telle expression est donné ici :

1 | namespace is http://emonet09#

2 | this isa Timer

3 | with freq = 2

4 | with grounding = "C(tickTwice)"1 | namespace is http://emonet09#

2 | this isa Timer

3 | with freq = 1

4 | with grounding = "C(tick)"

5 | this isa Timer

6 | with freq = 1

7 | with grounding = "C(tick)"

5 | a Métronome

6 | having bpm = ?f

168

CHAPTER 10. RÉSUMÉ ÉTENDU

7 | isa Timer

8 | with freq = ?f / 60

Cet exemple UFCL exprime le fait qu’une fonctionnalité de « Métronome » ayant une valeur
quelconque (nommée ?f) pour sa propriété « bpm » (beats per minute, battements par minutes)
peut être considéré comme une fonctionnalité « Timer » avec une fréquence 60 fois plus petite
que ?f. Formulé autrement, tout service exposant une fonctionnalité « Métronome » exposera
automatiquement une fonctionnalité « Timer » de part la présence de cette description UFCL.

La dernière construction UFCL permet de décrire les usines à services. Les usines à services
sont très variées mais l’on peut en distinguer deux types principaux : les usines « ouvertes »

et les usines « qui composent ».

Un exemple d’usine « ouverte » est l’exemple de l’usine à service de traitement d’image :
cette usine peut créer n’importe quel service de traitement d’image étant donnée une config-
uration. Un autre exemple plus simple d’usine « ouverte » est l’usine à service « Timer »

qui crée, étant donnée une fréquence voulue, un service « Timer » avec cette fréquence. La
« TimerFactory » peut être décrite en UFCL comme suit :

9 | composing
10 | grounding "C(create)"

11 | format "create timer ?f"

12 | gives a Timer

13 | with freq = ?f

Cette description exprime simplement que le service exposant la description UFCL est une
usine à services et qu’il peut créer n’importe quelle fonctionnalité « Timer » avec une fréquence
arbitraire ?f. La variable ?f est ici non contrainte et n’importe quelle valeur est acceptée.
Les propriétés particulières « grounding » et « format » sont utilisées par l’environnement
d’exécution pour déterminer comment effectivement invoquer l’usine à service. Ainsi, pour
créer un « Timer » ayant une fréquence de 42, l’environnement d’exécution enverra à l’usine le
message « create timer 42 » sur le connecteur OMiSCID « create » de l’usine.

Les usines à services peuvent aussi servir à décrire des patrons de composition abstraits.
Il est aussi possible de mélanger les usines à paramètre (comme la « TimerFactory » et des
usines de composition). Un exemple d’usine de composition pure est celui de la composition de
services de traduction qui peut être exprimé comme suit en UFCL :

14 | composing
15 | a Translator ?t1

16 | a Translator ?t2

17 | grounding "C(start)"

18 | format "compose ’?t1#’ and ’?t2#’"

19 | having

20 | ?t1.to = ?t2.from

21 | gives a Translator

22 | with from = ?t1.from

23 | with to = ?t2.to

Cette description UFCL exprime le fait que le service qui l’expose est une usine de com-
position. Cette usine est capable de composer deux fonctionnalités « Translator », ?t1 et ?t2,
du moment que la langue source de ?t2 correspond à la langue destination de ?t1 (« ?t1.to =
?t2.from »). Le résultat de la composition est alors une fonctionnalité « Translator » traduisant
la langue source de ?t1 en la langue destination de ?t2. Les propriétés de grounding et de format
sont ici aussi utilisée automatiquement par l’environnement d’exécution pour l’appel à l’usine à
service. Ces propriétés doivent être fournies par le fournisseur de service mais sont transparentes
pour celui qui ne fait qu’utiliser le service (l’usine).

169

10.12. COMPILATION D’UFCL ET RAISONNEMENT AUTOMATIQUE

Les 3 constructions d’UFCL sont relativement simples mais permettent d’exprimer de nom-
breux cas d’utilisation. Ces constructions sont simples et expressives mais peuvent aussi être
utilisées de manière automatique par l’environnement d’exécution pour répondre à la requête
d’un consommateur de fonctionnalité.

10.12 Compilation d’UFCL et Raisonnement Automatique

UFCL permet d’exprimer les descriptions sémantiques des services présents dans un environ-
nement intelligent. Pour donner vie à ces descriptions sémantiques, il est nécessaire d’exploiter
de manière automatique ces descriptions pour aider les développeurs d’applications. Étant
donné une requête exprimée sous forme d’une fonctionnalité et des propriétés associées à ces
fonctionnalités, le développeur peut s’attendre à ce que l’interprétation des descriptions UFCL
et les éventuellement nécessaires appels à des usines à services soient réalisés de manière totale-
ment automatique. Automatiser l’exploitation des descriptions UFCL à l’aide de raisonnement
automatique est la fonction de l’environnement d’exécution que nous avons proposé. La section
courante correspond au chapitre 8 du manuscrit original.

L’objectif de l’environnement d’exécution est de trouver automatiquement, à partir de la
requête fonctionnelle d’une application et de l’ensemble des descriptions UFCL, un plan de
composition de la fonctionnalité requise si un tel plan existe. Ce plan peut nécessiter l’appel
à des usines à services et la création d’adaptateur. L’environnement d’exécution est aussi
responsable de l’application automatique du plan trouvé (appels aux usines, etc.).

Pour l’implémentation de notre environnement d’exécution, nous avons utilisé un système
à base de règles. Étant donné la présence d’usines à services pouvant produire un nombre
arbitraire de fonctionnalités, l’hypothèse d’utiliser un châınage avant mène automatiquement à
des boucles infinies. Nous avons donc utilisé, dans notre implémentation, un système de châınage
arrière. Le principe est de réécrire le besoin fonctionnel initial en de nouveaux besoins. Cette
réécriture continue jusqu’à trouver des fonctionnalités remplissant suffisamment de besoins pour
composer la fonctionnalité initiale. Nous avons décidé d’utiliser le système de règle Jena pour
sa spécialisation dans le domaine du web sémantique : il utilise RDF pour la représentation de
ses connaissances internes et permet donc une intégration directe avec une partie des ontologies
existantes. Malheureusement, Jena supporte le châınage arrière mais, à notre mauvaise surprise,
uniquement de manière limitée. Nous avons dû ainsi implémenter un système de châınage arrière
basé sur le châınage avant présent dans Jena. Cette implémentation est difficile et coûteuse en
temps mais permet aussi de porter aisément notre système vers un système de règle à châınage
avant (plus courant que le châınage arrière).

Un point important dans la génération de règle est que ces règles ne sont pas écrites par
les développeurs. Les développeurs peuvent ignorer la forme exacte des règles voire même
leur existence. Certaines règles étant compliquées, il aurait été inenvisageable de laisser le
développeur écrire ces règles ou même écrire des règles qui interagirait avec les règles générées.
Dans notre cas, un piège classique aurait été de se dire que l’utilisateur serait plus libre si on
lui laissait écrire des règles. Avec cette liberté, vient une complexité et une surcharge mentale
qui mettrait en grand danger la stabilité et l’utilisabilité de la méthode proposée avec UFCL.

Jena propose une notation pour la représentation des faits dans sa base de connaissance.
Ces faits ne peuvent être que des triplets « sujet prédicat objet ». Jena propose aussi une
notation pour les règles, notation que nous utilisons dans le manuscrit.

La compilation des descriptions de fonctionnalités exprimées en UFCL sont compilées unique-
ment sous formes de faits et de manière très directe. Par exemple, considérons la description
fonctionnelle suivante :

170

CHAPTER 10. RÉSUMÉ ÉTENDU

1 | namespace is http://emonet09#

2 | this isa Timer

3 | with freq = 123

4 | with grounding = "C(tick)"

Cette description signifie que le service exposant la description UFCL a une fonctionnalité
de « Timer ». Notons que ce service pourrait exposer d’autres fonctionnalités. Supposons que
ce service OMiSCID aie pour identifiant « 12340000 » dans l’intergiciel. La compilation de
cette description produira les faits suivants (représentés textuellement et graphiquement) :

1 | (service:12340000 ufcl:hasFacet ufcl:temp#1)

2 | (ufcl:temp#1 rdf:type http://emonet09#Timer)
3 | (ufcl:temp#1 http://emonet09#Timer..freq 123)

4 | (ufcl:temp#1 http://emonet09#Timer..grounding "C(tick)")

service:12340000 ufcl:temp#1ufcl:hasFacet
ufcl:hasFacet

http://emonet09#Timer
rdf:type

rdf:type

123http://emonet09#Timer..freq
http://emonet09#Timer..freq

"C(tick)"
http://emonet09#Timer..grounding

http://emonet09#Timer..grounding

Les autres constructions UFCL (usines et correspondance de fonctionnalités) sont compilées
sous formes de règles. Ces règles de réécrivent un besoin en un nouveau besoin et, si le nouveau
besoin est rempli, elles remplissent le besoin d’origine en châıne. Comme détaillé dans le
manuscrit, les correspondances de fonctionnalités ont été ramenées à un cas particulier des
usines à services.

Les règles générées sont longues et des exemples sont présentés dans le manuscrit complet.
Pour illustrer le mécanisme, considérons un exemple :

• un service expose une fonctionnalité A

• deux correspondances de fonctionnalités sont exprimées : « a A isa B » et « a B isa C »

• l’application cliente de l’environnement d’exécution demande une fonctionnalité C

La figure 10.5 illustre les différentes étapes déclenchées par les différentes règles.

Trouve B5
Trouve C6Requiert C1

Trouve A4

Requiert B2
Requiert A

3

Figure 10.5: Exemple de réécriture du besoin (châınage arrière). Le besoin initial en C est réécrit en
besoin en B puis en A. Le besoin en A étant rempli, le besoin en B le devient puis le besoin initial en
C.

Le même principe de réécriture du besoin est appliqué pour les usines à services. Ainsi, dans
le cas de l’usine qui compose deux traducteurs (description UFCL rappelée ci dessous), tout

171

10.13. ÉVALUATION CRITIQUE ET PERSPECTIVES

recherche d’un « Translator » va donner lieux à la recherche d’un « Translator » ?t1 compatible.
Si un tel ?t1 est trouvé, il donnera alors lieu à la recherche d’un ?t2 compatible avec ?t1 et
la requête initiale. Si un ?t2 correspondant est trouvé, le besoin initial en fonctionnalité sera
rempli.

1 | composing
2 | a Translator ?t1

3 | a Translator ?t2

4 | grounding "C(start)"

5 | format "compose ’?t1#’ and ’?t2#’"

6 | having

7 | ?t1.to = ?t2.from

8 | gives a Translator

9 | with from = ?t1.from

10 | with to = ?t2.to

10.13 Évaluation Critique et Perspectives

L’évaluation de nos travaux est faite à plusieurs niveaux : chaque aspect de notre proposition
est évalué de manière puis nous évaluons la globalité de notre travail et comment les différents
éléments s’entre-complètent. La section courante correspond au chapitre 9 du manuscrit origi-
nal.

Pour améliorer la situation face aux problèmes d’intégration et de réutilisation des logiciels
pour l’intelligence ambiante, nous avons proposé quatre éléments de solution :

• un intergiciel à service

• une méthode de conception

• un langage pour supporter cette méthode

• un environnement d’exécution pour automatiser l’utilisation de ce langage

Dans toutes ces propositions, nous avons promu une approche que nous nommons « transition-
nelle » dans le sens où nous voulons créer des méthodes et outils très simple à utiliser par les
développeurs visés. Le terme de « technologie transitionnelle » s’inspire du format « transi-
tionnal (X)HTML » qui vise à aider les développeurs à faire la transition d’un format HTML
sous contraint à un format HTML plus adapté à l’interprétation automatique comme le HTML
stricte. Notre objectif est de proposer des méthodes et technologies aidant les développeurs à
faire la transition du développement d’applications complètement statiques au développement
d’application extensible, dynamique et sensible à l’apparition et la disparition des éléments
logiciels.

L’évaluation des méthodes de génie logiciel et des frameworks est difficile. Il est facile
de mesurer des performances brutes mais il est très difficile d’évaluer l’acceptation d’une de
la méthode par les développeurs. Les modes d’évaluation possible reposent sur des études
utilisateurs où l’utilisateur est le développeur d’application. Un des problèmes se posant lors
d’étude d’utilisabilité pour les méthodes de développement logiciel est que le nombre potentiel
d’utilisateurs est très limité, par exemple par rapport au cas d’une évaluation d’une nouvelle
modalité d’interaction. Les scénarios d’évaluation sont de plus relativement longs : une demi-
heure ne suffit pas pour apprendre et utiliser une méthode de développement logiciel.

Nous avons proposé mais pas mis en œuvre une méthode d’évaluation utilisant des étudiants
en informatique comme sujets d’évaluation. L’idée serait de séparer une promotion d’étudiant en
2 groupes et de comparer leur progression en leur faisant utiliser deux méthodes de développe-
ment différentes pour remplir un même objectif. Cette piste est intéressante et permettrait
d’aider à l’évaluation dans certains domaines ayant trait au génie logiciel. Ces évaluations à

172

CHAPTER 10. RÉSUMÉ ÉTENDU

base d’étudiants sont à mettre en œuvre avec beaucoup de précautions : il n’est pas acceptable
de « sacrifier » une promotion d’étudiants. De plus, toute erreur doit attendre l’année (ou le
semestre) suivant pour être répercutée sur le protocole expérimental.

Nous avons évalué OMiSCID sur plusieurs aspects en commençant par la latence induite par
l’intergiciel en fonction du débit visée. Cette évaluation a montré que l’utilisation d’OMiSCID
est acceptable pour des applications nécessitant une faible latence, et elle a validé le découpage
architectural fait dans les chapitres précédents. Nous avons aussi évalué le degré de simplifica-
tion apporté par la nouvelle API d’OMiSCID qui réduit considérablement la complexité et le
volume du code nécessaire. Ces propriétés rendent l’écriture de programmes utilisant OMiSCID
moins propices aux erreurs de programmation. Nous avons aussi évalué l’adoption d’OMiSCID
et de son interface graphique au travers de statistiques faites sur la base de code de l’équipe
de recherche PRIMA. Le nombre de logiciels utilisant OMiSCID suit l’évolution du volume
de code (donc OMiSCID tend à être utilisé de manière régulière dans tout l’ensemble de la
base de code). L’interface graphique d’OMiSCID tend aussi à être étendue par les différents
développeurs de services.

L’évaluation de notre méthode de conception a été réalisée par l’analyse des propriétés des
systèmes que nous avons reconçus en utilisant la méthode de conception. Ces systèmes sont
plus dynamiques et plus adaptables. Ils permettent aussi une meilleure extensibilité et rendent
possible une intégration dynamique a posteriori avec d’autres systèmes. La fragmentation en
services permet de refléter fidèlement les capacités de l’environnement informatique et améliore
effectivement la réutilisation des services existants.

Nous avons évalué notre langage UFCL sur des critères classiques concernant les langages de
programmation : lisibilité, facilité d’écriture, fiabilité et coût global. De notre analyse ressort le
fait qu’UFCL est un très bon langage dédié à la tâche considéré mais qu’il manque légèrement
de possibilités de débogage.

Globalement, notre approche à base de technologies transitionnelles a fonctionné : OMiSCID
est utilisé largement au sein de l’équipe PRIMA et de ses collaborateurs dans des projets de
recherche. OMiSCID Gui, l’interface graphique d’OMiSCID, a eu une meilleure adoption que
nous l’espérions. Avec pour modeste objectif initial de servir de plate-forme d’intégration pour
les démonstrations, l’interface graphique est en fait utilisée quotidiennement par les concepteurs
de services pour leur développement. Le concept d’usine à service a aussi été adopté rapidement
dans le contexte de l’équipe PRIMA. L’utilisation d’UFCL est plus limitée que l’utilisation
d’OMiSCID de part son accessibilité uniquement en Java. Une implémentation en C++ d’UFCL
permettrait de l’utiliser plus largement. Cette seconde implémentation serait l’occasion de
prendre en compte les différentes leçons que nous tirons de l’implémentation en Java.

En conclusion, nous pouvons noter que l’aspect transitionnel d’une technologie est capital
pour son futur, en particulier dans l’intelligence ambiante où la variété des développeurs et
spécialistes est importante. Le succès de l’intelligence ambiante repose sur la capacité des
experts en génie logiciel à créer ces méthodes de conceptions qui soient utilisables par tous
les acteurs impliqués dans le domaine. D’une manière plus large, les aspects sociologiques et
psychologiques affectant à la fois l’utilisateur final et les concepteurs de logiciel sont à prendre
en compte pour espérer que la vision de l’intelligence ambiante prenne vie.

173

10.13. ÉVALUATION CRITIQUE ET PERSPECTIVES

174

Bibliography

[Url-a] “Ambient Intelligence” on Wikipedia
http://en.wikipedia.org/wiki/Ambient_intelligence.

[Url-b] The DBpedia website: a community effort to extract structured information from
Wikipedia.
http://wiki.dbpedia.org/About.

[Url-c] “RDFa” on Wikipedia
http://en.wikipedia.org/wiki/RDFa.

[Url-d] The Semantic Extension to MediaWiki.
http://semantic-mediawiki.org/.

[Url-e] Protégé Platform and Editor Website.
http://protege.stanford.edu/.

[Url-f] W3C Submission for “OWL-S: Semantic Markup for Web Services”
http://www.w3.org/Submission/OWL-S.

[Url-g] The ESSI WSMO working group website: research and development efforts in the areas
of Semantic Web Services.
http://www.wsmo.org/.

[Url-h] Video recording of a presentation on WSMO by John Domingue, chair of the WSMO
working group.
http://videolectures.net/iswc07_domingue_wsmo/.

[Url-i] Selected presentation about Semantic Web Services technologies, OWL-S and WSMO.
http://www.wsmo.org/papers/presentations/SWS.ppt.

[Url-j] “Blocks World” on Wikipedia
http://en.wikipedia.org/wiki/Blocks_world.

[Url-k] The CASPER project website (in french).
http://www-prima.inrialpes.fr/casper/.

[Url-l] Example camera using a 1600x1200 sensor and delivering images at 30 Hz
http://www.prosilica.com/products/ge1650.html.

[Url-m] OMiSCID website including download, documentation and screencasts.
http://omiscid.gforge.inria.fr/.

[Url-n] W3C recommendation for Namespaces in XML
http://www.w3.org/TR/xml-names/.

[Url-o] Jena Semantic Web Framework.
http://jena.sourceforge.net/.

[Url-p] Some Publications Around Jena.
http://www.hpl.hp.com/semweb/publications.htm.

175

http://en.wikipedia.org/wiki/Ambient_intelligence
http://wiki.dbpedia.org/About
http://en.wikipedia.org/wiki/RDFa
http://semantic-mediawiki.org/
http://protege.stanford.edu/
http://www.w3.org/Submission/OWL-S
http://www.wsmo.org/
http://videolectures.net/iswc07_domingue_wsmo/
http://www.wsmo.org/papers/presentations/SWS.ppt
http://en.wikipedia.org/wiki/Blocks_world
http://www-prima.inrialpes.fr/casper/
http://www.prosilica.com/products/ge1650.html
http://omiscid.gforge.inria.fr/
http://www.w3.org/TR/xml-names/
http://jena.sourceforge.net/
http://www.hpl.hp.com/semweb/publications.htm

BIBLIOGRAPHY

[Url-q] “Comparison of computer algebra systems” on Wikipedia
http://en.wikipedia.org/wiki/Comparison_of_computer%_algebra_systems.

[Url-r] “Nikita the Spider” web pages statistics including “doctypes” (HTML, transitional, etc.
).
http://nikitathespider.com/articles/ByTheNumbers/fall2008.html.

[Url-s] Slides about programming language concepts and evaluation criteria.
http://www.csee.umbc.edu/331/fall00/notes/finin1.pdf.

[Url-t] Slides, in french, about programming language characteristics and evaluation criteria.
http://www.site.uottawa.ca/~nat/Courses/PL-Course/PL-2.ppt.

[Url-u] Research axes of the ICT-CONNECT project (Emergent Connectors for Eternal Soft-
ware Intensive Networked Systems).
http://www-rocq.inria.fr/arles/connect/connectresearch.html.

[Url-v] Website of the ICT-CONNECT project (Emergent Connectors for Eternal Software
Intensive Networked Systems) started in 2009.
http://connect-forever.eu/.

[Assad 2007] Mark Assad, David Carmichael, Judy Kay and Bob Kummerfeld. PersonisAD:
Distributed, Active, Scrutable Model Framework for Context-Aware Services. pages 55–
72. 2007.

[Auer 2008] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and Z. Ives. DBpedia:
A Nucleus for a Web of Open Data. In Proceedings of 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference (ISWC+ASWC 2007), pages 722–735.
November 2008.

[Baldauf 2007] Matthias Baldauf, Schahram Dustdar and Florian Rosenberg. A survey on
context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing,
pages 263–277, June 2007.

[Bell 1992] J.E. Bell and L.A. Rowe. An exploratory study of ad hoc query languages to
databases. pages 606–613, Feb 1992.

[Benatallah 2003] B. Benatallah, Q. Z. Sheng and M. Dumas. The Self-Serv environment for
Web services composition. Internet Computing, IEEE, vol. 7, no. 1, pages 40–48, 2003.

[Berardi 2005] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo and Massimo Mecella.
Automatic Composition of Process-based Web Services: a Challenge. In Proc. of the
WWW’05 Workshop on Web Service Semantics: Towards Dynamic Business Integration
(WSS 2005), 2005.

[Bouchenak 2006] S. Bouchenak, N. De Palma, D. Hagimont and C. Taton. Autonomic Man-
agement of Clustered Applications. pages 1–11, Sept. 2006.

[Boudreau 2007] Tim Boudreau, Jaroslav Tulach and Geertjan Wielenga. Rich client program-
ming: plugging into the netbeans platform. Prentice Hall Press, Upper Saddle River,
NJ, USA, 2007.

[Brown 1996] A.W. Brown and K.C. Wallnan. Engineering of component-based systems. pages
414–422, Oct 1996.

[Brumitt 2000] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern and Steven A.
Shafer. EasyLiving: Technologies for Intelligent Environments. In HUC ’00: Proceedings
of the 2nd international symposium on Handheld and Ubiquitous Computing, pages 12–
29, London, UK, 2000. Springer-Verlag.

176

http://en.wikipedia.org/wiki/Comparison_of_computer% _algebra_systems
http://nikitathespider.com/articles/ByTheNumbers/fall2008.html
http://www.csee.umbc.edu/331/fall00/notes/finin1.pdf
http://www.site.uottawa.ca/~nat/Courses/PL-Course/PL-2.ppt
http://www-rocq.inria.fr/arles/connect/connectresearch.html
http://connect-forever.eu/

BIBLIOGRAPHY

[Brønsted 2007] Jeppe Brønsted, Klaus Marius Hansen and Mads Ingstrup. A Survey of Service
Composition Mechanisms in Ubiquitous Computing. Workshop on Requirements and
Solutions for Pervasive Software Infrastructures, 2007.

[Chen 2004] H. Chen, T. Finin and A. Joshi. Semantic Web in the Context Broker Architecture,
2004.

[Choi 2006] Namyoun Choi, Il-Yeol Song and Hyoil Han. A survey on ontology mapping. SIG-
MOD Rec., vol. 35, no. 3, pages 34–41, 2006.

[Christensen 2002] Henrik Baerbak Christensen and Jakob Bardram. Supporting Human Activ-
ities - Exploring Activity-Centered Computing. In UbiComp ’02: Proceedings of the 4th
international conference on Ubiquitous Computing, pages 107–116, London, UK, 2002.
Springer-Verlag.

[Coen 1998] Michael H. Coen. Design principles for intelligent environments. In AAAI
’98/IAAI ’98: Proceedings of the fifteenth national/tenth conference on Artificial in-
telligence/Innovative applications of artificial intelligence, pages 547–554, Menlo Park,
CA, USA, 1998. American Association for Artificial Intelligence.

[Cook 2006] D.J. Cook. Health Monitoring and Assistance to Support Aging in Place. Journal
of Universal Computer Science, vol. 12, no. 1, pages 15–29, 2006.

[Coutaz 2005] Joëlle Coutaz, James L. Crowley, Simon Dobson and David Garlan. Con-
text is key. Commun. ACM, vol. 48, no. 3, pages 49–53, 2005.

[Crowley 2007] James L. Crowley, Daniela Hall and Rémi Emonet. Autonomic Computer Vi-
sion Systems. In 2007 International Conference on Computer Vision Systems, ICVS’07.
Springer Verlag, Mar 2007.

[Dey 2001] A. Dey, D. Salber and G. Abowd. A conceptual framework and a toolkit for sup-
porting the rapid prototyping of context-aware applications, 2001.

[Dey 2009] Anind K. Dey. Modeling and intelligibility in ambient environments. Journal of
Ambient Intelligence and Smart Environments, vol. Volume 1, 2009.

[Doan 2003] Anhai Doan, Jayant Madhavan, Pedro Domingos and Alon Halevy. Ontology
Matching: A Machine Learning Approach. In Handbook on Ontologies in Information
Systems, pages 397–416. Springer, 2003.

[Ducatel 2001] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten and J. C. Burgelman. Sce-
narios for Ambient Intelligence in 2010. Rapport technique, IST Advisory Group, Febru-
ary 2001.

[Emonet 2006] Rémi Emonet, Dominique Vaufreydaz, Patrick Reignier and Julien Letessier.
O3MiSCID: an Object Oriented Opensource Middleware for Service Connection, Intro-
spection and Discovery. In 1st IEEE International Workshop on Services Integration in
Pervasive Environments, June 2006.

[Emonet 2008] Rémi Emonet and Dominique Vaufreydaz. Usable developer-oriented Function-
ality Composition Language (UFCL): a Proposal for Semantic Description and Dynamic
Composition of Services and Service Factories. In 4th IET International Conference on
Intelligent Environments, 2008.

[Erber 1975] Norman P. Erber. Auditory-Visual Perception of Speech. J Speech Hear Disord,
vol. 40, no. 4, pages 481–492, 1975.

[Escoffier 2007a] C. Escoffier, R.S. Hall and P. Lalanda. iPOJO: an Extensible Service-Oriented
Component Framework. pages 474–481, July 2007.

[Escoffier 2007b] Clement Escoffier and Richard S. Hall. Dynamically Adaptable Applications
with iPOJO Service Components. 2007.

177

BIBLIOGRAPHY

[Essa 2000] I.A. Essa. Ubiquitous sensing for smart and aware environments. Personal Com-
munications, IEEE, vol. 7, no. 5, pages 47–49, Oct 2000.

[Euzenat 2007] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, Hei-
delberg (DE), 2007.

[Euzenat 2008] Jérôme Euzenat, Jérôme Pierson and Fano Ramparany. Dynamic context man-
agement for pervasive applications. Knowledge Eng. Review, vol. 23, no. 1, pages 21–49,
2008.

[Flissi 2008] Areski Flissi, Jérémy Dubus, Nicolas Dolet and Philippe Merle. Deploying on the
Grid with DeployWare. In Proceedings of the 8th International Symposium on Cluster
Computing and the Grid (CCGRID’08), pages 177–184, Lyon, France, may 2008. IEEE.
Rank (CORE) : A.

[Fowler 2004] Martin Fowler. Inversion of Control Containers and the Dependency Injection
pattern. http://www.martinfowler.com/articles/injection.html, 2004.

[Gamma 1995] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design pat-
terns: Elements of reusable object-oriented software. Addisson-Wesley, Toronto, On-
tario. Canada, 1995.

[Garćıa-barriocanal 2005] E. Garćıa-barriocanal, M. A. Sicilia and S. Sánchez-alonso. Usability
evaluation of ontology editors, 2005.

[Garlan 1995] David Garlan, Robert Allen and John Ockerbloom. Architectural Mismatch,
or, Why it’s hard to build systems out of existing parts. In Proceedings of the 17th
International Conference on Software Engineering, pages 179–185, Seattle, Washington,
April 1995.

[Garlan 2007] David Garlan and Bradley Schmerl. The RADAR Architecture for Personal
Cognitive Assistance. International Journal of Software Engineering and Knowledge
Engineering, vol. 17, no. 2, April 2007. A shorter version of this paper appeared in the
2006 Conference on Software Engineering and Knowledge Engineering (SEKE 2006).

[Gennari 2002] John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E. Grosso, Mon-
ica Crubézy, Henrik Eriksson, Natalya F. Noy and Samson W. Tu. The Evolution of
Protégé: An Environment for Knowledge-Based Systems Development. International
Journal of Human-Computer Studies, vol. 58, pages 89–123, 2002.

[Giard 1999] M. H. Giard and F. Peronnet. Auditory-Visual Integration during Multimodal Ob-
ject Recognition in Humans: A Behavioral and Electrophysiological Study. J. Cognitive
Neuroscience, vol. 11, no. 5, pages 473–490, 1999.

[Gruber 1993] Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowl. Acquis., vol. 5, no. 2, pages 199–220, June 1993.

[Heineman 2001] George T. Heineman and William T. Councill. Component-based software
engineering: Putting the pieces together (acm press). Addison-Wesley Professional,
June 2001.

[Hofer 2003] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger, Josef
Altmann and Werner Retschitzegger. Context-Awareness on Mobile Devices - the Hy-
drogen Approach. In HICSS ’03: Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS’03) - Track 9, page 292.1, Washington, DC,
USA, 2003. IEEE Computer Society.

[Hotho 2003] Andreas Hotho, Steffen Staab and Gerd Stumme. Wordnet improves Text Docu-
ment Clustering. In In Proc. of the SIGIR 2003 Semantic Web Workshop, pages 541–544,
2003.

178

http://www.martinfowler.com/articles/injection.html

BIBLIOGRAPHY

[Hunt 1999] Andrew Hunt and David Thomas. The pragmatic programmer: From journeyman
to master. Addison-Wesley Professional, October 1999.

[Iftene 2008] Adrian Iftene and Alexandra Balahur-Dobrescu. Named Entity Relation Mining
using Wikipedia. In Proceedings of the Sixth International Language Resources and
Evaluation (LREC’08), Marrakech, Morocco, may 2008. European Language Resources
Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2008/.

[Jovanovic 2007] M. Jovanovic and B. Rinner. Middleware for Dynamic Reconfiguration in
Distributed Camera Systems. pages 139–150, June 2007.

[Kavantzas 2005] Nickolas Kavantzas, David Burdett, Greg Ritzinger, Tony Fletcher, Yves La-
fon and Charlton Barreto. Web Services Choreography Description Language Version
1.0. World Wide Web Consortium, Candidate Recommendation CR-ws-cdl-10-20051109,
November 2005.

[Khalaf 2003] Rania Khalaf, Nirmal Mukhi and Sanjiva Weerawarana. Service-Oriented Com-
position in BPEL4WS. In WWW (Alternate Paper Tracks), 2003.

[Kopecky 2007] J. Kopecky, T. Vitvar, C. Bournez and J. Farrell. SAWSDL: Semantic Anno-
tations for WSDL and XML Schema. Internet Computing, IEEE, vol. 11, no. 6, pages
60–67, Nov.-Dec. 2007.

[Lam 1997] Ioi K. Lam and Brian Smith. Jacl: a Tcl implementation in java. In TCLTK’97:
Proceedings of the 5th conference on Annual Tcl/Tk Workshop 1997, pages 4–4, Berke-
ley, CA, USA, 1997. USENIX Association.

[Lara 2004] Rubén Lara, Dumitru Roman, Axel Polleres and Dieter Fensel. A Conceptual
Comparison of WSMO and OWL-S. In ECOWS 2004, volume 3250 of LNCS, pages
254–269. Springer, 2004.

[Layaida 2005] Oussama Layaida and Daniel Hagimont. Adaptive Video Streaming for Em-
bedded Devices. IEE Proceedings - Software, vol. 152, no. 5, pages 238–244, octobre
2005.

[Lömker 2006] Frank Lömker, Sebastian Wrede, Marc Hanheide and Jannik Fritsch. Building
Modular Vision Systems with a Graphical Plugin Environment. In ICVS, page 2. IEEE
Computer Society, 2006.

[Marples 2001] D. Marples and P. Kriens. The Open Services Gateway Initiative: An Intro-
ductory Overview. IEEE Communications Magazin, vol. 39, pages 110–114, December
2001.

[Metze 2005] Florian Metze, Petra Gieselmann, Hartwig Holzapfel, Thomas Kluge, Ivica
Rogina, Alex Waibel, Matthias Wölfel, James Laurence Crowley, Patrick Reignier, Do-
minique Vaufreydaz, François Bérard, Bérangère Cohen, Joëlle Coutaz, Sylvie Rouillard,
V. Arranz, M. Bertran and H. Rodriguez. The “FAME” Interactive Space. In 2nd Joint
Workshop on Multimodal Interaction and Related Machine Learning Algorithms, page
4 pages, Edinburgh United Kingdom, 2005.

[Miller 1995] George A. Miller. WordNet: a lexical database for English. Commun. ACM,
vol. 38, no. 11, pages 39–41, 1995.

[Mozer 1999] M.C. Mozer. An Intelligent Environment Must Be Adaptive. Intelligent Systems
and their Applications, IEEE, vol. 14, no. 2, pages 11–13, Mar/Apr 1999.

[Noy 2000] N. Noy, W. Grosso and M. Musen. Knowledge-acquisition interfaces for domain
experts: An empirical evaluation of protege, 2000.

[Pautasso 2005a] Cesare Pautasso. JOpera: An Agile Environment for Web Service Compo-
sition with Visual Unit Testing and Refactoring. In VL/HCC, pages 311–313. IEEE
Computer Society, 2005.

179

BIBLIOGRAPHY

[Pautasso 2005b] Cesare Pautasso and Gustavo Alonso. The JOpera visual composition lan-
guage. J. Vis. Lang. Comput., vol. 16, no. 1-2, pages 119–152, 2005.

[Pilato 2004] Michael Pilato. Version control with subversion. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2004.

[Rao 2004] Jinghai Rao and Xiaomeng Su. A Survey of Automated Web Service Composition
Methods. In Jorge Cardoso and Amit P. Sheth, editeurs, SWSWPC, volume 3387 of
Lecture Notes in Computer Science, pages 43–54. Springer, 2004.

[Reussner 2003] Ralf H. Reussner. Automatic component protocol adaptation with the Co-
Conut/J tool suite. Future Gener. Comput. Syst., vol. 19, no. 5, pages 627–639, 2003.

[Roman 2005] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler and Dieter Fensel. Web Service
Modeling Ontology. Appl. Ontol., vol. 1, no. 1, pages 77–106, 2005.

[Roman 2006] Dumitru Roman, Jos de Bruijn, Adrian Mocan, Holger Lausen, John Domingue,
Christoph Bussler and Dieter Fensel. WWW: WSMO, WSML, and WSMX in a Nutshell.
pages 516–522. 2006.

[Román 2002] Manuel Román, Christopher Hess, Renato Cerqueira, Roy H. Campbell and
Klara Nahrstedt. Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE
Pervasive Computing, vol. 1, pages 74–83, 2002.

[Schilit 1994] Bill Schilit, Norman Adams and Roy Want. Context-Aware Computing Applica-
tions. In In Proceedings of the Workshop on Mobile Computing Systems and Applica-
tions, pages 85–90. IEEE Computer Society, 1994.

[Shafiq 2007] Omair Shafiq, Matthew Moran, Emilia Cimpian, Adrian Mocan, Michal Zaremba
and Dieter Fensel. Investigating Semantic Web Service Execution Environments: A
Comparison between WSMX and OWL-S Tools. Internet and Web Applications and
Services, International Conference on, vol. 0, page 31, 2007.

[Shvaiko 2008] Pavel Shvaiko and Jérôme Euzenat. Ten Challenges for Ontology Matching.
pages 1164–1182. 2008.

[Srinivasan 2006] Naveen Srinivasan, Massimo Paolucci and Katia Sycara. Semantic Web Ser-
vice Discovery in the OWL-S IDE. In HICSS ’06: Proceedings of the 39th Annual Hawaii
International Conference on System Sciences, page 109.2, Washington, DC, USA, 2006.
IEEE Computer Society.

[Tecnologica 2004] Scientifica E Tecnologica, P. Traverso, M. Pistore, Istituto Trentino Di Cul-
tura, P. Traverso and M. Pistore. Automated Composition of Semantic Web Services
into Executable Processes, 2004.

[Weiser 1991] Mark Weiser. The computer for the 21st century. Scientific American, vol. 265,
no. 3, pages 66–75, September 1991.

[Weiser 1996] Mark Weiser and J. Seely Brown. Designing Calm Technology. PowerGrid Jour-
nal, vol. 1.01, July 1996.

[Wrede 2006] Sebastian Wrede, Marc Hanheide, Sven Wachsmuth and Gerhard Sagerer. Inte-
gration and Coordination in a Cognitive Vision System. In ICVS, page 1. IEEE Com-
puter Society, 2006.

[Zaidenberg 2008] Sofia Zaidenberg, Patrick Reignier and James L. Crowley. Reinforcement
learning of context models for a ubiquitous personal assistant, volume Volume 51/2009
of Advances in Soft Computing, pages 254–264. Springer Berlin / Heidelberg, september
2008.

180

BIBLIOGRAPHY

[Zaragoza 2007] H. Zaragoza, J. Atserias, M. Ciaramita and G. Attardi. Semantically An-
notated Snapshot of the English Wikipedia v.1 (SW1). http://www.yr-bcn.es/

semanticWikipedia, 2007.

181

http://www.yr-bcn.es/semanticWikipedia
http://www.yr-bcn.es/semanticWikipedia

	Introduction
	Foreword (on presentation and layout)
	Technological Context
	Problem and Approach
	Experiments and Results
	Structure of Chapters
	Important Preliminary Notes About the Manuscript

	The Emergence of Service Oriented Software Architectures
	Structure of this chapter
	From Computers to Computing Devices
	The Evolution of Computer Usage

	From Computer Programming to Software Engineering
	From Switches to Software Engineering
	Software Engineering and Ambient Intelligence

	Service Oriented Architectures for Intelligent Environments
	Acceptance and Acceptability of Service Oriented Solutions
	Solutions to the Acceptance Problem

	Mixing Services and Knowledge Representation Methods
	From Implementations Decoupling to Design Decoupling
	Design as Knowledge
	Knowledge Representation and the Semantic Web
	Semantically Described Services

	Composition of Services
	SOA and Service Composition
	Enabling Methods for Service Composition
	Reasoning and Planning for Service Composition
	Composition of Semantically Described Services

	Concluding Remarks and Wrap Up

	Approaches to Service Functionality Description and Composition
	Pervasive Computing Environments Become Context Aware
	The Convergence of Service Oriented Architectures and the Semantic Web
	Definitions of Service and SOA
	The Example of Web Services
	Micro Services and Dependency Injection
	The Semantic Web
	Semantic Web Services

	Approaches to Service Composition
	Manual Service Composition
	Workflow Methods for Automatic Service Composition
	Planning (AI) Methods for Automatic Service Composition

	Wrapping It Up in Context

	Identifying Integration Problems in Intelligent Environments
	Motivation and Contribution Overview
	The Intelligent Environment Landscape
	Many Specialties Involved In Intelligent Environments
	Problems With Capitalization and Reuse

	Symptomatic Example: the 3D Tracking System
	General Principle of the Tracking System
	From 2D to 3D Tracking
	Distributed Tracking Using BIP

	Obstacles to Software Capitalization and Sharing
	The Computer Mouse: a model for intelligent environments
	SOA Adequacy and Advantages
	Problems Beyond SOA

	Opening on Other Contributions

	OMiSCID: a Usable Middleware for Service Oriented Architectures (SOA)
	Motivation and Requirements for SOA Adoption
	Implementing OMiSCID, a Usable Middleware for SOA
	User Oriented API
	Corrective Maintenance and Evolutions

	Building Tools for SOA
	Which Tools?
	The OMiSCID Graphical User Interface

	Communication On SOA

	Concept and Method for the Design of Open Dynamic Systems
	Motivation and Contribution Overview
	Simplifying Deployment: Service Factories
	Introduction to Service Factories
	An Excursion into Deployment Frameworks

	Reallocating Responsibilities in Tracking
	Overview of Responsibilities in 3D Tracking
	Architecture at the 2D Image Processing Level
	Architecture at the 3D Tracking Level

	Reasoning in Term of Functionalities
	Service Functionalities for Reasoning-Based Integration
	Introducing Abstract Functionalities
	Functionality Correspondences and Factories

	Step-By-Step Design Method
	Application to an Automatic Video Composition System

	UFCL, a Language for Semantic Service Description
	Motivation and UFCL Positioning
	UFCL as a Simple Design Tool
	UFCL as a Hub in Ambient Intelligence Engineering

	Services and Functionality Facets
	Metamodel for Functionality Facets
	Expressing Functionality Facets in UFCL

	Functionality Correspondences
	Concept of Functionality Correspondences
	Expressing Functionality Correspondences in UFCL

	Service Factories
	Concept of Service Factories
	Expressing Service Factories in UFCL

	Special Constructs to Make Designer's Life Easier

	Runtime Framework Over UFCL Descriptions
	Objectives and Design Decisions
	Bringing UFCL to life
	Using a rule engine and backward chaining
	Do not let the user write rules

	Introduction to the compilation mechanisms
	The Jena semantic web framework
	Compilation overview and introduction
	Automatic Inference of Implicit Constraints
	Integration on top of OMiSCID middleware

	Detailed compilation of UFCL constructs
	Compiling simple descriptions
	Asserting user need
	Compiling open factories
	Compiling composing factories
	Compilation of Simple Subsumptions
	Compilation of Special Constructs

	Critical Evaluation and Perspectives
	Content and Structure of This Chapter
	Direct Evaluation of Contributions
	Summary of Our Contributions
	Transitional Technologies: Why it Matters
	Difficulties of Evaluations in Pervasive Computing Engineering
	Evaluations at OMiSCID Level
	Evaluation of our Design Method
	Evaluation of UFCL, the Language

	Overall Analysis of the Work
	Development Methods and Tools: the importance of a complete solution
	Requirement for Broader Protocol Adaptation
	Interleaving Services, Functionalities and Context Awareness
	Retrospective Conclusions

	Thinking About the Future
	Shared Infrastructure with Domain Specific Descriptions
	Concluding Remark: User-Orientation is Key

	Résumé Étendu
	Avant-Propos
	Des Ordinateurs aux Appareils Communicants
	De la Programmation au Génie Logiciel
	Problème et Approche
	Architectures à Services pour l'Intelligence Ambiante
	Services and Représentation de Connaissances
	Du Découplage d'Implémentation au Découplage de Conception
	La Conception Comme Connaissance
	Représentation de Connaissance et le Web Sémantique
	Description Sémantique de Services

	Approches pour la Composition et la Description de Services
	Intelligence Ambiante, Intégration et Problèmes Associés
	OMiSCID : un middleware à services
	Concepts et Méthodes pour la Conception de Systèmes Dynamiques et Ouverts
	UFCL, un Langage de Description Sémantique de Services
	Compilation d'UFCL et Raisonnement Automatique
	Évaluation Critique et Perspectives

