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Note de Synthése

Introduction

Le travail de recherche que j’ai mené & ce jour a été motivé par deux observations
extrémement simples dont I’exposition constitue le point de départ de la présente Note de

Synthese.

Premiérement, dans de nombreuses situations, il nous faut faire des choix sans que notre
connaissance des différentes alternatives soit parfaite. Face & une décision, nous utilisons
donc nos expériences passées et connaissances propres, mais avons également recours au
savoir des autres, surtout de ceux qui nous sont proche. Ainsi, un consommateur souhaitant
acheter une voiture peut avoir a choisir une marque sans connaitre complétement toutes
les options dont il dispose. Comme 'acquisition d’un véhicule constitue un investissement
majeur, il est probable que ’acheteur potentiel discute de sa décision avec ses amis et
collégues pour obtenir des informations supplémentaires permettant un meilleur choix.
De méme, les membres d’'une équipe peuvent devoir investir dans un nouveau logiciel
sans connaitre parfaitement la facilité d’utilisation de ceux qui leurs sont proposés. Les
magazines spécialisés sont alors un moyen habituel de s’informer. Il y a de grandes chances
qu’ils tentent aussi de rassembler des informations dispersées dans I’équipe et permettant
d’adapter le choix du logiciel & ses besoins et capacités. Dans de nombreux contextes, parce
que les entités individuelles ont accés a des sources d’informations différentes ou parce que
celles-ci apprennent des choses variées de leur décisions passées, 1'union fait la force en
matiére de connaissances. Dans cette thése, j’ai considéré une classe générale de situations
présentant le caractére suivant: les informations sur les fondamentauz qui sont pertinents

pour un groupe d’agents sont dispersées parm%' ses membres. Par conséquent, le partage des
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informations détenues de maniére privée est le seul moyen dont les agents disposent pour
estimer avec précision ’environnement dans lequel ils évoluent et réagir convenablement &

celui-ci.

Deuxiémement, il semble désormais admis que la plupart des échanges d’informations
utiles & la prise de décisions économiques a lieu via les réseaux informels que forment des
entités qui communiquent activement et non via des institutions centralisées. Un réseau
de communication peut étre défini comme un ensemble de liens a travers desquels les
informations des agents circulent. Cette notion est vaste et comprend les relations amicales,
les liens virtuels aussi bien que les échanges réguliers que des colléegues ont sur leur lieu
de travail. Il existe probablement autant de types de réseaux de communication que de
facons de les utiliser : les réseaux d’amis sont des canaux important pour se passer le mot
concernant les bonnes boutiques et restaurants, ou pour diffuser des opinions politiques ;
les réseaux professionnels peuvent servir & rapporter des opportunités liés & des emplois
vacants ou bien encore & rassembler des informations sur ’état de la demande & laquelle
une firme fait face. Durant la derniére décennie, I’étude des réseaux sociaux a été un champ
de recherche trés actif en économie. Cette Note de Synthése détaille comment cette thése
s'inscrit dans la Théorie des Réseaur Economiques et Sociauz en plein développement.

Pour une vue d’ensemble claire de cette théorie, le lecteur pourra se référer au manuel de

M.O. Jackson (Jackson (2008b)).

Concernant la communication décentralisée ayant lieu au sein d’un réseau, deux princi-
pales branches sont habituellement distinguées. Dans certaines situations, la transmission
des informations entre les agents est mécanique. La diffusion de ces derniéres est automa-
tigue au sens ou elle ne résulte pas d’un choix fait par les individus. Ainsi, il est probable
que les personnes que nous fréquentons réguliérement aient appris quelles sont nos bou-
tiques préférées (et utilisent cette information pour leurs propres achats) sans que nous
n’intervenions sciemment dans cette révélation. Ensuite, il est possible que la circulation
des informations découle d’un choix fait par les agents mais que celle-ci garde un caractére
automatique. En effet, dans un groupe d’agents connectés, si les incitations collectives

et individuelles au partage de 'information sont parfaitement alignées, alors il est dans
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I'intérét de chaque agent de communiquer rapidement et honnétement. On peut, par ex-
emple, penser & des agents qui se passeraient le mot concernant 'utilisation d’une nouvelle
technologie dont les bénéfices pour chaque utilisateur sont strictement croissants avec le
nombre total de ces utilisateurs. Quand la transmission d’informations est automatique
ou qu’elle constitue une stratégie dominante pour chaque agent, le processus de circulation
peut étre lié & ’architecture du réseau auquel ces derniers appartiennent. La communi-
cation mécanique dans les réseaux n’a pas été 'objet de mon travail. Une présentation
détaillée des mécanismes de Diffusion et d’Apprentissage dans les réseaux est faite par

M.O. Jackson dans les Chapitres 7 et 8 de son manuel (Jackson (2008b)).

Dans d’autres situations, la communication entre les agents a un aspect stratégique
parce que celle-ci a un impact direct et décisif sur leurs choix. Précisément, c’est en ma-
nipulant son information ou en retardant sa révélation qu’un agent cherche & influencer les
comportements de ceux avec qui il interagit. Alors, la structure du réseau a également son
importance mais il faut tenir compte du fait que les flux d’informations en son sein résul-
tent de choix réfléchis. Nous considérerons quun Dilemme de Communication existe dés
que l'intérét collectif d’'un groupe nécessite une mise en commun des informations privées,
alors que les intéréts individuels poussent ses membres a les cacher ou & les manipuler. Ces
dilemmes informationnels occupent une place centrale dans mon travail. En particulier, je
me suis intéressée a I’étude de situations dans lesquelles la structure globale des incitations
entrave la circulation parfaite des informations parmi des membres modérément informés
d’un méme groupe. Le travail que j’ai effectué se divise en deux parties. Dans la premiére
partie de cette thése, constituée du Chapitre 1, le dilemme réside dans le fait que les agents
ont un intérét individuel a garder leurs informations secrétes aussi longtemps que possible,
alors qu’une communication rapide est dans l'intérét du groupe. Dans les Chapitres 2 et
3, qui résultent d'un travail joint avec Frédéric Koessler (Chargé de Recherche au CNRS,
affilié & ’Ecole d’Economie de Paris), un dilemme informationnel se pose car la révélation
honnéte de I'information est efficace socialement alors qu’il est dans I'intérét des individus

de manipuler celle-ci, c¢’est-a-dire de mentir.

Les dilemmes de communication décrits précédemment correspondent & de nombreuses
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situations économiques. Par exemple, les différentes divisions d’une organisation ont sou-
vent besoin de mettre en commun leurs informations pour obtenir une vue claire de
I’environnement dans lequel la firme évolue et y adapter ses choix. Il est probable que
les décisions prises dans la firme au niveau global, que cela soit par un ou plusieurs dé-
cideurs, affectent alors chaque division. Par conséquent, chaque division peut souhaiter
manipuler les informations qu’elle posséde pour pousser ces décisions dans sa direction
préférée. En d’autres termes, méme si les divisons ont un intérét commun & maximiser le
profit de la firme, leurs actions favorites peuvent différer en raison de leurs capacités propres
ou de leurs goiits locaux. De la méme maniére, les membres d’un parti politique peuvent
posséder des informations qui doivent étre assemblées afin de bien évaluer la situation et
de promouvoir ainsi une politique bien adaptée. Pourtant, il est facile de concevoir que
des préoccupations carriéristes puissent avoir un impact sur la communication ayant lieu
entre les activistes. Quand, au sein d’un groupe, l'alignement entre les intéréts collectifs
et individuels & partager 'information n’est pas parfaite, une question générale se pose de
savoir comment ses membres communiquent stratégiquement pour affecter les choix en leur

faveur.

Dans les contextes de dilemmes informationnels, cette thése a donc pour objectif
d’examiner la relation entre la fagon dont les agents transmettent stratégiquement leurs
informations et la structure des réseaux auxquels ils appartiennent. Cette relation peut
aller dans deux sens distincts, selon que ’ensemble des connexions entre les agents influ-
ence ou résulte de la communication. Chacune de ces directions correspond & une des deux
questions principales qui ont émergées de I’étude récente des réseaux par les économistes
Premiérement, comment la structure des réseaux affecte-t-elle les résultats économiques 7
Deuxiémement, pourquoi certaines structures de liens émergent-elles 7 La Théorie des Jeux
Non-Coopératifs a été appliquée aux deux branches de recherche résultant de ces questions
et mon travail contribue & ces deux derniéres. D’une part, les participants aux "Jeux en
Réseaux” (ou "Network Games”) sont les membres d’un réseau donné au départ. L’objectif
est alors d’analyser comment leurs comportements stratégiques dépendent de ’architecture

de ce dernier. Mon premier Chapitre s’inscrit dans ’ensemble de ces modéles. En effet,
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I’objectif est d’examiner comment la structure fixe des liens affecte la capacité des agents
connectés & mettre en commun des informations initialement dispersées. D’autre part, les
“Jeur de Formation de Réseauzr” (ou "Network Formation Games”) examinent les incita-
tions des agents & créer des liens. Dans les Chapitres 2! et 3, j’étudie comment la nature

de la communication stratégique entre les agents faconne leurs relations.

Parce qu’ils font appel & des environnements théoriques trés différents, les détails de
chacune des deux parties de cette thése sont présentés séparément. Formellement, les
réseaux sont modélisés selon la maniére usuelle, c’est-a-dire par des graphes dans lesquels
les entités individuelles sont représentées par des nuds et les relations entre ces entités par

des arcs.

Chapitre 1 : Centralizing Information in Networks
Motivation, Modéle et Résultats :

C’est une expérience menée en sociologie qui constitue la motivation initiale de ce
chapitre. Bonacich (1990) rapporte une expérience dans laquelle le succés d'un groupe
d’agents ne peut étre assuré que par une bonne circulation des informations entre ses
membres. Précisément, chacun des sujets expérimentaux recevait au départ un ensemble
de lettres faisant partie d’une citation que le groupe de participants devait identifier. Une
fois qu’un des individus avait découvert la citation, et indépendamment de I'identité de cet
individu, le groupe recevait une Récompense Collective partagée égalitairement entre ses
membres. Cette récompense diminuait avec le temps mis par le groupe pour atteindre leur
objectif commun. Afin d’assembler les lettres initialement dispersées, les agents disposaient
de plusieurs tours de jeu au cours desquels ils pouvaient transmettre les lettres qu’ils
détenaient via des canaux de communication. En effet, les participants étaient initialement
arrangés dans un réseau donné dont les liens étaient les seuls conduits & travers lesquels
les lettres pouvaient circuler. En plus d’étre restreinte physiquement, la transmission des
lettres avait un aspect stratégique. L’individu qui était le premier & identifier la citation au

nom du groupe obtenait une Récompense Additionnelle qu’il gardait pour lui. C’est cette

LCo-écrit avec F.Koessler, a paraitre dans la Review of Economic Studies.
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récompense qui était & l'origine d’un dilemme de communication.

L’expérience de Bonacich est représentative d’une large classe de situations dans lesquelles
le probléme de la communication entre les détenteurs d’informations se pose. Prenons par
exemple le cas d’'une équipe de travailleurs. Méme s’il est clair qu’il y a un intérét col-
lectif pour ses membres & communiquer rapidement les uns avec les autres pour prendre
des décisions appropriées, ces derniers peuvent, dans le méme temps, se trouver en com-
pétition pour étre promu ou pour obtenir toute autre forme de gratitude. Dans ce cas,
chaque agent peut souhaiter étre finalement celui qui centralise, au nom de son équipe, les
informations utiles a la prise de décision. Si cette équipe fait partie d’une organisation plus
large, elle peut ne pas avoir la liberté de réorganiser librement la structure des canaux de
communication existant entre ses membres. L’analyse de la transmission stratégique des

informations privées via les liens d’une réseau donné s’avére alors pertinente.

Le grand intérét de I’expérience décrite précédemment réside dans ce qu’elle a été menée
pour différentes structures de réseau de communication. D’un point de vue individuel, les
résultats expérimentaux suggérent que, parce que les positions dans un réseau sont différen-
ciées, leurs occupants peuvent avoir des incitations différentes & se comporter de maniére
coopérative - en communiquant librement - ou de maniére compétitive - en faisant de la
rétention stratégique d’informations. D’un point de vue global, il résulte que l'issue des
dilemmes informationnels est affectée par 'architecture des canaux de communication ex-
istant entre les joueurs. Mon premier chapitre modélise rigoureusement ’expérience de P.
Bonacich et apporte & ses résultats un soutien théorique. En effet, j'articule la relation en-
tre la communication et la structure des connections & travers lesquelles I'information peut
circuler autour de deux questions. D’un point de vue collectif, I’objectif est de déterminer
s'il existe des réseaux qui améliorent la capacité du groupe a centraliser les informations.
La performance collective est évaluée selon que I’équipe réussit ou non & mettre en commun
ces derniéres & ’équilibre, et par le temps nécessaire pour ce faire. Au niveau individuel,
c’est 'impact de la position d’un agent sur sa performance & rassembler les infos qui
sera examinée. Enfin, I'on peut noter que, dans ce premier chapitre, le focus est porté

sur ’échange stratégique d’informations et que le processus de décision qui succéde im-
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plicitement & la centralisation des informations est ignoré. Premiérement, je suppose que
personne ne décide jamais sans avoir rassemblé la totalité des informations (car il est trés
couteux de prendre une mauvaise décision par exemple). Deuxiémement, lorsqu’un agent
est parfaitement informé, je suppose que la bonne décision & prendre est alors parfaitement
déterministe. En permettant & chaque membre du groupe de prendre une décision au nom
de tous, ce chapitre fait également abstraction des questions concernant 1’allocation du

pouvoir décisionnel.

Formellement, j’analyse des jeux dynamiques dans lesquels n joueurs sont les membres
d’un graphe donné g et disposent de I" périodes pour mettre en commun 7 informations
initialement dispersées. Chacun est, au départ, doté d’une information qu’il est le seul
a détenir. A chaque période, chaque joueur choisit stratégiquement de transmettre ou
non toutes les informations qu’il détient & tous ses voisins dans le réseau. Les actions
sont parfaitement observées par tous les joueurs a chacune des périodes. L’agent qui est
le premier & centraliser les n informations est appelé le "gagnant”. Dans ce cadre, mon

. . , . .. 4 . )
principal résultat consiste en une condition nécessaire et suffisante pour qu’un groupe
atteigne 'objectif collectif de mise en commun des informations privées dans chacun des
équilibres (parfait en sous-jeux). Cette condition s’avére étre indépendante de la structure
du réseau dans laquelle se trouvent les agents. Précisément, je montre qu’'un groupe de
n joueurs n’échoue jamais en matiére de centralisation des informations a 1’équilibre si
et seulement si le nombre des périodes dont il dispose pour ce faire est au moins égal a
n— 1. Cette borne correspond exactement au nombre minimal de liens qui sont nécessaires

. . , . )

pour connecter tous les joueurs. Au contraire, ’architecture du réseau affecte le temps

. . . TP ) .
mis pour rassembler les informations & I’équilibre. Avant tout, I’on peut noter que, méme
si la communication était automatique, c’est-a-dire que chaque agent transmettrait ses
informations & tous ses voising & chaque période du jeu, le temps mis pour centraliser
les informations dépendrait de la structure des canaux de transmission. En particulier,
chaque agent aurait "techniquement” besoin d’un nombre minimal de périodes pour gagner,
qui dépendrait de sa position. Ce nombre minimal de périodes correspond a une mesure

graphique appelée ’exzcentricité. Je prouve que, pour chaque agent, il existe un équilibre
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dans lequel il est le seul gagnant & une date égale a son excentricité. Par conséquent, [’on
démontre qu’il existe toujours un équilibre dans lequel le jeu prend fin & une date égale & la
plus petite excentricité présente dans le groupe, c’est-a-dire & une date égale au rayon du
graphe. Enfin, je montre que, pour deux structures particuliéres de réseaux, il existe une

borne supérieure au temps mis par les joueurs pour centraliser les informations & I’équilibre.

Revue de la Littérature :

Parce qu’il tente de lier la performance d’un groupe & sa structure de communication
interne, le premier chapitre peut étre mis en relation avec une large littérature concernant
la Théorie des Equipes. En effet, depuis?, ce domaine de recherche analyse la prise de
décision dans les firmes dans lesquelles les informations sont initialement dispersées et dans
lesquelles il existe des contraintes physiques qui rendent la communication et les traitement
de ces derniéres couteuses. C’est 'arbitrage entre ces coiits (ressources humaines, temps)
et les bénéfices de la communication qui est au cur de ces études. Dans ce contexte, Radner
(1992), Radner (1993) et Bolton and Dewatripont (1994) (parmi d’autres) ont cherché a
identifier la structure interne optimale pour une organisation au sens large. Leurs travaux
ont principalement mis en avant le role des hiérarchies, ou plus généralement des structures
de communication centralisées, pour réduire les colits associés & la mise en commun des
informations privées. Les papiers de Crémer (1980), Aoki (1986), Geanakoplos and Milgrom
(1991) and Van Zandt (1999) ont pour objectif d’allouer efficacement les taches en présence
de cotts de traitement des informations mais lorsque leur communication est gratuite. Par
conséquent, ces travaux ne traitent pas du design d’un réseau de communication. Un point
commun que partagent les papiers associés a la littérature traitant de la théorie des équipes
est que ceux-ci font abstraction des problémes d’incitations. En effet, ils font généralement
I’hypothése que les agents agissent uniquement dans l'intérét de 'organisation, ce qui n’est
pas le cas dans mon premier chapitre. Nous supposons toutefois, en accord avec cette
litérature, que les informations ne peuvent étre déformées. Les actions des agents consistent
simplement & Passer ou & Cacher et ’on peut considérer les objets informationnels transmis

comme n’importe quels autres biens dont la valeur vient du fait qu’ils soient rassemblés.

Dans les Jeuz en Réseauz, les stratégies des joueurs connectés de maniére exogéne con-
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sistent en des choix trés variés, qui peuvent évidemment différer de transférer ou non de
I'information. Par exemple, Bramoullé and Kranton (2007) examinent un Jeu de Bien
Public ou les utilités des joueurs dépendent de la somme de leurs propres contributions et
de celles de leurs voisins. Ils supposent que les contributions des joueurs sont des substi-
tuts stratégiques. Les équilibres du jeu sont multiples et caractérisés a l'aide de concepts
issus de la Théorie des Graphes. Pour résoudre le jeu proposé dans le Chapitre 1, j’ai
également recours a des résultats issus de cette théorie et utilise, en particulier, la notion
d’excentricité d’'un nud mentionnée précédemment. Ballester, Calvo-Armengol, and Zenou
(2006) analysent une classe de jeux & information compléte avec des paiements quadra-
tiques et des complémentarités stratégiques entre les actions des agents connectés. Ils
montrent qu’a I'équilibre, D'effort exercé par chaque agent dépend de sa position dans le
réseau et, plus précisément, d’une mesure de centralité appelée I'indice de Katz-Bonacich
(Bonacich (1987)). Dans mon premier chapitre, je relie la position des agents & certains
de leurs paiements d’équilibre mais pas directement & leurs stratégies d’équilibres. Con-
cernant 1’étude des jeux joués par les membres d’un réseau donné, un cadre général est
proposé dans Galeotti, Goyal, Jackson, Vega-Redondo, and Leeat (2009b). Les auteurs
considérent une large classe de paiements, supposant que le paiement d’un joueur dépend
de son action ainsi que des décisions prises par ses voisins directs. Leurs résultats montrent
comment la structure du réseau, la position d’un individu, la nature des jeux (compléments
ou substituts stratégiques, externalités positives ou négatives), et le niveau d’information
(compléte ou incomplete) affectent les comportements individuels et les paiements. La
différence principale entre les travaux cités et notre Jeu en Réseau est que celui que nous
proposons est dynamique. Les paiements dépendent de toute I’histoire du jeu, des actions

prises par tous les joueurs & toutes les périodes.

D’un point de vue théorique, le premier chapitre de cette these est également lié a
la littérature traitant des Guerres d’Usure & plusieurs joueurs. En effet, pour que notre
jeu dynamique finisse avec un gagnant, il faut qu’un joueur parvienne & rassembler toutes
les informations dispersées avant que la limite temporelle du jeu ne soit atteinte. Dans

un réseau complet, comme chaque agent est directement connecté a chaque autre agent,
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une information transmise est immeédiatement recue par chaque joueur. Par conséquent,
dés que tous les joueurs sauf un seul ont ”cédé”, le jeu se termine avec, pour gagnant,
le joueur ne 'ayant pas fait. En ce sens, le jeu dynamique que nous étudions peut étre
considéré comme une guerre d’usure en information compléte dans laquelle n joueurs sont
en compétition, en temps discret et fini, pour remporter un seul prix. Comme dans les
guerres d’usure usuelles, chaque joueur préfére strictement gagner a perdre mais préfére
perdre tot a perdre tard. La différence réside dans la fait que 'ordre dans lequel les n — 1
cessions doivent arriver dépendent de la structure du réseau liant les agents. 7 fournissent
une caractérisation compléte de tous les équilibres parfaits en sous-jeux pour des guerres
d’usure & deux joueurs, en temps continu et information compléte. L’extension de leur
résultat & notre jeu en information compléte est immédiate : pour chaque agent, il existe
un équilibre parfait en sous-jeux dans lequel cet agent uniquement gagne immédiatement.
Je généralise cette observation a toute structure de réseau en montrant que, pour chaque
agent, il existe un équilibre parfait en sous-jeux dans lequel cet agent uniquement gagne
a la date la plus petite & laquelle il lui est physiquement possible de gagner, c’est-a-dire &

une date qui est égale & son excentricité.

Pour finir, la premiére partie de cette thése peut étre mise en relation avec des recherches
menées plus anciennement en Psychologie Sociale. Ces derniéres ont mis en lumiére le role
crucial joué par la structure des liens de communication sur les capacités d’agrégation des
informations. En particulier, les articles de Bavelas (1950) and Leavitt (1951) ont été a
I’origine de nombreux travaux empiriques qui cherchaient & savoir si la performance d’un
groupe pouvait étre améliorée par un changement de la configuration des chaines de com-
munication. Ces recherches n’ont pas été accompagnées par beaucoup de développements
théoriques. Shaw (1964) propose une revue de cette littérature, qui compare principale-
ment les structures centralisées et décentralisées. Les résultats expérimentaux suggérent
que la relation entre la structure de communication et la performance d’un groupe dépend
grandement de la tache que le groupe doit effectuer. Il semble que si la tache est relative-
ment simple et nécessite seulement d’assembler des informations initialement dispersées,

les structures centralisées sont plus adaptées que les structures décentralisées.
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Chapitres 2 et 3 : Strategic Communication Networks
Motivation, Modeéle et Résultats :

Dans de nombreuses situations économiques, les agents ont un intérét & coordonner
leurs actions ainsi qu’a adapter ces derniéres & un état du monde inconnu. Dans le second
et le troisiéme chapitre, nous allons considérer ce type de contextes mais nous détacher de
I’hypothése courante selon laquelle les agents s’accordent sur le profil optimal de décisions
contingent & 1’état du monde. Plus précisément, parce que leurs goits peuvent différer,
nous supposons que les entités qui interagissent varient en matiére de proximité idéale aux
fondamentaux. Comme nous ’avons mentionné précédemment, les différentes divisions
d’une organisation doivent souvent coordonner leurs actions pour en maximiser le profit,
ainsi qu’adapter celles-ci & l'environnement incertain dans lequel l’organisation évolue.
Pour plusieurs raisons, allant des cotits locaux d’adaptation aux préoccupations en matiére
de carriéres, il est probable que chacune de ces divisions cherche, dans le méme temps, a
adapter ses choix & ses particularités propres. De la méme maniére, lorsqu’elle investit dans
une nouvelle technologie, une firme souhaite, a la fois, faire des choix qui lui permettent
de satisfaire les attentes de ses consommateurs et également de rester en accord avec les
choix des autres firmes en raison de complémentarités stratégiques. Dans le méme temps,
chaque firme peut souhaiter investir dans une technologie qui correspond au mieux & ses
capacités a 'utiliser. Dans la seconde partie de cette thése, nous allons examiner ce type
de jeu de coordination & information incompléte dans lequel chaque individu cherche &
choisir une action a la fois proche des actions choisies par les autres individus et proche
de son "action idéale”. Chaque action idéale dépend de 1’état de la nature et d’un biais
idiosyncrasique, comme dans le modele de Communication Gratuite (ou Cheap-Talk) de
Crawford and Sobel (1982). Ces biais varient d’un individu a l'autre, et le profil de biais

dans la population mesure donc le conflit d’intérét auxquels les agents font face.

Dans ce type de situations, la seconde partie de cette thése a pour objectif d’analyser
comment les agents se transmettent stratégiquement les signaux privés qu’ils détiennent sur
les fondamentaux. En effet, avant de choisir les actions qui détermineront leurs paiements,

nous offrons aux joueurs la possibilité de communiquer les uns avec les autres de maniére
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décentralisée et stratégique. 11 n’existe aucune contrainte physique restreignant les possibil-
ités d’échanges d’informations privées. C’est parce que les agents ont des actions idéales
différentes qu’ils peuvent avoir un intérét a mentir & propos de leur type quand ils com-
muniquent avec les agents avec lesquels ils interagiront lors de la phase de décision. Dans
cette situation, nous nous focalisons sur la maniére dont I’hétérogénéité des préférences
influence la transmission stratégique d’'informations. Précisément, la question que nous
adressons est "qui parle a qui ?” durant I’étape de communication étant donnée la diversité

des agents en matiére d’actions idéales, c’est a dire de préférences. La différence entre les

Chapitres 2 et 3 réside dans les protocoles de communication qui sont examinés.

Dans le second chapitre, chaque joueur a la possibilité d’envoyer de maniére privée a
chaque autre joueur un message gratuit et non vérifiable sur son signal. L’étape de com-
munication consiste alors en un jeu de communication gratuite, dans lequel chaque agent
est & la fois un émetteur et un récepteur de message ainsi qu'un décideur. Une des nou-
veautés principales de ce chapitre réside dans le fait que nous proposons de caractériser la
transmission privée d’informations par ce que nous appelons un Réseau de Communication
Stratégique. Un tel réseau détermine, pour chaque joueur-émetteur, un ensemble de récep-
teurs qui constitue en fait son voisinage. Nous dirons qu’un joueur est le récepteur d’un
autre joueur si ce dernier lui transmet son information de maniére honnéte. En d’autres
termes, nous considérons qu’une connexion entre deux individus matérialise une révélation
d’information sincére entre ces deux protagonistes. La question qui se pose alors est de
savoir comment les conflits d’intéréts entre les joueurs affectent la formation des relations
matérialisant leur communication. Notre réussite principale réside dans le fait que nous
caractérisons complétement, et de maniére relativement simple, les réseaux qui émergent
a ’équilibre en fonction de I’hétérogénéité des préférences. Cette contribution peut se ré-
sumer, grossiérement, de la maniére suivante : plus les préférences des agents sont alignées,

plus ces derniers ont tendance o se révéler parfaitement leurs informations.

Les contraintes d’incitation informationnelles traduisent le fait qu’aucun joueur-émetteur
PP s < X )
n’a intérét & mentir & propos de son type & son ensemble (endogéne) de récepteurs. Comme

dans les jeux standards de communication gratuite, cette condition peut étre formulée
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comme une condition sur la proximité entre les biais de ’émetteur et de ses récepteurs.
Dans les modéles existants étendant la communication au cas de décideurs multiples mais
stratégiquement indépendants (Farrell and Gibbons (1989), Goltsman and Pavlov (2009),
Galeotti, Ghiglino, and Squintani (2009a)), il suffit alors de vérifier que l’émetteur n’a
pas intérét a mentir & aucun de ses récepteurs. Dans le modéle que nous proposons, les
contraintes d’incitation informationnelles prennent une forme plus sophistiquée parce que
les agents souhaitent coordonner leurs actions lors de la phase de décision qui succede a
la phase de communication. En raison des interactions stratégiques existantes entre les
récepteurs, la maniére dont chacun d’eux réagit au signal d’'un émetteur dépend non seule-
ment de son signal mais également du nombre total (anticipé) des récepteurs de ce signal.
Dans le méme temps, comme ’émetteur souhaite également coordonner son action avec
celles de ses récepteurs, chaque déviation de I’émetteur dans la phase de communication
entraine des coiits de coordination qui dépendent & la fois du nombre total de récepteurs et
du nombre des ces derniers auxquels il ment. Ces observations, combinées avec ’hypothése
que les fonctions de coiits sont quadratiques, nous ménent au résultat suivant : un émetteur
communique de maniére honnéte - ou, de maniére équivalente, se connecte - & un groupe de
récepteurs si son biais est assez proche de la moyenne des biais des membres de tout sous-
groupe de ce groupe de récepteurs. La mesure exacte de cette proximité est déterminée
par un seuil qui dépend & la fois du nombre total des récepteurs et des sous-ensembles

potentiels de ceux-ci auxquels I’émetteur peut mentir.

Un élément-clé de notre caractérisation des équilibres de la phase de communication
réside dans le fait que la communication entre deux agents ne dépend pas seulement du
conflit d’intérét qui existe entre eux mais également des préférences et du nombre des
autres agents & qui ils parlent. En particulier, nous observons que la communication d’un
émetteur donné a un large groupe de récepteurs peut émerger a 1’équilibre alors méme
qu’il n’existe aucun équilibre dans lequel cet émetteur communique uniquement avec un
sous-groupe de ce large groupe. Pour comprendre cette intuition, considérons une situation
simple & 3 agents dont un seul est informé et joue donc le role d’émetteur : I’émetteur et un

des deux agents non-informé souhaitent choisir une action adaptée exactement au vrai état
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de la nature ; ’autre agent non-informé est biaisé positivement, c’est-a-dire qu’il souhaite
prendre une décision plus grande que 1’état de la nature. Nous supposons que chaque joueur
cherche également & coordonner sa décision avec celle des deux autres. Lorsque 1’émetteur
communique seulement avec 1’agent biaisé, il a une forte incitation & minimiser, c’est a
dire & "sous-rapporter”, son type afin de diminuer 'anticipation de I'agent sur I’état de la
nature. L’émetteur espére ainsi rapprocher I'action du récepteur de sa propre action idéale.
Au contraire, lorsque I’émetteur communique a la fois avec ’agent biaisé et 1’agent non-
biaisé, il peut n’avoir aucune incitation & mentir conjointement & ces derniers car leur biais
moyen est faible, c’est-a-dire proche du sien qui est nul. Il peut également n’avoir aucun
intérét a mentir seulement a l’agent biaisé. En effet, les deux agents sont maintenant plus
réactifs au message de I’émetteur que lorsque ce dernier ne communique qu’a un seul agent.
Par conséquent, une déviation entraine une plus grande dispersion des actions des joueurs

et donc induit des cotlits de coordination plus élevés. L’on parlera donc d’un textitEffet

Disciplinant que la Coordination de multiples audiences a sur la Communication.

Finalement, nous établissons des prédictions précises en ce qui concerne les réseaux de
communication qui émergent & I’équilibre pour certaines configurations du profil de biais.
Premiérement, lorsque les biais sont distribués de maniére uniforme dans la population,
nous montrons que la tendance d’un émetteur & communiquer augmente avec la proximité
de son biais au biais moyen dans la population. En général, la communication est donc
asymétrique : les centristes ont tendance & influencer plus fortement les décisions des
autres agents que les extrémistes, car ils transmettent leurs informations honnétement &
des agents plus éloignés en terme de préférences. Cet effet est renforcé lorsque le besoin
de coordination entre les agents est plus fort. Lorsque ce besoin est trés fort, les joueurs
aux biais intermédiaires peuvent communiquer avec tous les autres agents, méme lorsque
la dispersion des préférences est grande, alors que les autres joueurs ne révélent leurs
informations & personne. Deuxiémement, lorsque les joueurs sont organisés en groupes,
chaque groupe ayant sa propre action idéale, nous montrons a nouveau que la transmission
d’information entre les groupes est asymétrique : les membres du groupe le plus grand

ont tendance & communiquer plus facilement avec les gens extérieur a leur groupe que
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les membres de groupes plus petits. En d’autres termes, ce sont les groupes de grande
taille qui influencent les décisions des groupes de petite taille par la transmission crédible

d’informations plutot que le contraire.

Dans le Chapitre 2, nous montrons aussi que les Réseaux de Communication Stratégique
ne peuvent pas étre parfaitement ordonnés au sens de Pareto, mais que le bien-étre social
espéré s’accroit quand la communication augmente. Le Chapitre 3 étend ensuite ’analyse
du modéle considéré dans le Chapitre 2 et propose trois protocoles de communication dif-
férents de la communication privée, gratuite et statique. Tous les trois résultent dans une
meilleure transmission de 'information & 1’équilibre de la phase de communication. Dans
le cas de la "Communication Publique au Sein de Groupes”, chaque joueur doit s’exprimer
publiquement face & une audience donnée et le message envoyé est, par conséquent, le
méme pour tous les membres de celle-ci. En comparaison avec la communication privée,
cette obligation limite le nombre de possibilités qu’un émetteur a de dévier de la révéla-
tion parfaite & ’ensemble du groupe de récepteurs. Dans le cas de la Communication
Dynamique, plusieurs étapes de communication gratuite sont offertes aux joueurs qui ont
alors la possibilité d’utiliser des Intermédiaires. Cette opportunité a pour effet qu’un men-
songe peut se propager, ce qui change ses conséquences et donc les incitations & manipuler
les informations divulguées. Comme pour le cas de la communication publique, la commu-
nication dynamique affaiblit donc les contraintes d’incitation informationnelles par rapport
au cas ol la communication est privée et statique. Finalement, nous considérons le cas ou
Iinformation est Vérifiable et nous démontrons que la révélation compléte d’information
est possible méme lorsque les conditions pour que cela se produise ne sont pas remplies
dans le jeu de communication gratuite. Lorsque les types des joueurs ne peuvent étre cer-
tifiés que partiellement, les conditions sur cette certification pour obtenir un équilibre avec

révélation compléte de l'information dépendent du profil de biais.

Revue de la Littérature :

Dans la classe des jeux de coordination & information incompléte, I’hypothése que les in-
dividus différent en matiére d’information est assez courante mais pas celle de ’hétérogénéité

des préférences. Par conséquent, la question qui est typiquement adressée concerne la
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maniére de disséminer efficacement les informations sur ’état du monde. Depuis Morris
and Shin (2002) and Angeletos and Pavan (2007), la maniére dont la coordination des
agents et leur bien-étre est affectée par la structure d’information a ainsi été bien mieux
comprise, en particulier en ce qui concerne la nature publique ou privée des signaux des
individus. Lorsque les objectifs des agents sont alignés mais qu’il existe des cotlits ou des
contraintes physiques a I’établissement de liens de communication entre les agents, un autre
sujet d’étude concerne l'identification des structures de communication les plus efficaces.
Ce probléme a été analysé par Morris and Shin (2007), Calvo-Armengol and Marti (2007).
Calvo-Armengol and Marti (2009) déterminent ainsi l’architecture du réseau de communi-
cation qui améliore la performance de ’organisation. Une caractéristique commune a ces
travaux est qu’il n’y a pas de conflit d’intéréts entre les agents en ce qui concerne le profile
d’action idéal contingent & 1’état du monde, alors que c’est le point central du modéle

proposé dans la seconde partie de cette thése.

Comme nous permettons aux joueurs une communication gratuite dans le second chapitre,
ce dernier est lié a la littérature basée sur les travaux de Crawford and Sobel (1982). Notre
modéle considére des décideurs multiples et interdépendants, chacun d’eux étant doté d’'une
information privée. Au contraire, les extensions du modéle émetteur-récepteur de Crawford
and Sobel (1982) incluant plus de deux joueurs se sont concentrées sur le cas de plusieurs
émetteurs et d’un unique récepteur. Une exception dans cette littérature sur la communi-
cation gratuite avec plusieurs récepteurs (mais un seul émetteur) est le papier de Farrell
and Gibbons (1989). Dans leur travail, la question principalement adressée concerne la
différence qu’il existe entre un envoi privé ou public de messages. Les auteurs identifient
en effet une situation qu’ils appellent Discipline Mutuelle due a la Communication Publique
dans laquelle I'information de ’émetteur n’est pas révélée aux récepteurs lorsque la com-
munication est privée alors qu’il existe un équilibre ou la révélation de I'information est
parfaite si celle-ci a lieu en public. Contrairement & 7, les récepteurs que nous considérons
ne sont pas des décideurs indépendants dont les actions sont séparables dans la fonction
d’utilité de ’émetteur. Nos décideurs interagissent dans lors de la phase de décision, ce qui

est & l'origine de notre Effet Disciplinant de la Coordination sur la Communication men-
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tionné précédemment. En matiére de protocole de communication, le Chapitre 3 est lié a
la littérature dans laquelle les joueurs sont capables de fournir des informations verifiables
sur leurs informations privées, au sens ol les messages disponibles pour un émetteur sont
dépendants de son type. La relation entre notre travail et les articles traitant des messages
certifiables, comme Milgrom (1981), Green and Laffont (1986), ? et Seidmann and Winter

(1997), est discutée plus en détail dans le Chapitre 3.

Comme nous déduisons ’existence de connections entre les joueurs de l'informativité de
leurs stratégies de communication, le Chapitre 2 peut étre relié aux Jeuz de Formation de
Réseaux, présentés dans le Chapitre 9 du manuel de M.O.Jackson (Jackson (2008b)). Rap-
pelons que ces jeux, qui ont une place centrale dans la Théorie des Réseaur Economiques
et Sociauz, examinent comment l'architecture de ceux-ci dépend des stratégies des agents.
Cependant, la maniére dont les liens de communication sont formés dans la seconde par-
tie de cette thése differe complétement de celle proposée dans les Jeux de Formation de
Réseaux existants. Dans ce type de jeux, les stratégies des joueurs consistent principale-
ment 3 lister les contacts désirés, étant donnés, de maniére exogéne, les cotits et bénéfices
des connections directes et indirectes. De plus, comme il est largement admis qu'une grande
part des informations nécessaires & la prise de décisions économiques sont échangées dans
les réseaux de relations, la valeur des connections est souvent interprétée en terme infor-
mationnel. Cependant, la question de savoir si les agents, une fois liés, ont effectivement
intérét & transmettre leurs informations n’a, semble-t-il, pas été étudié. Au contraire, nous
nous focalisons sur les incitations & manipuler les informations. Nous fondons ensuite la
révélation honnéte d’informations avec la construction des canaux & travers lesquelles celle-
ci a lieu. Les bénéfices tirés des connections sont alors déterminés de facon endogéne par

la maniére dont les informations transmises seront utilisées dans la phase de décision.

Nous avons mentionné précédemment le lien entre le premier chapitre de cette thése et
la Théorie des Equipes. Dans cette théorie, les agents sont supposés agir dans l'intérét de
leur groupe et la préoccupation principale concerne alors les colits de communication. En
ce sens, I’on peut donc considérer la Théorie des Equipes comme complémentaire & la vision

des organisations en terme de Principaux et d’Agents. Un résultat central de la littérature
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sur les relations entre Principaux et Agents est ce qu'on appelle le Principe de Révéla-
tion, dont la validité repose sur ’absence de cotits de communication ou de traitement des
informations. Sous quelques hypothéses supplémentaires, ce principe établit qu'un mécan-
isme direct, c’est-a-dire dans lequel les agents rapporteraient leurs informations privées a
un organe central, ne peut étre dominé par aucun autre moyen de déléguer le rassemble-
ment des informations. En d’autres termes, il démontre que le résultat obtenu dans une
structure décentralisée peut toujours étre obtenu par un organisme centralisé dans lequel
la responsabilité des agents se limite & communiquer leurs informations & une autorité
qui leur dicterait ensuite les instructions. En ce sens, les organisations centralisées sont
toujours faiblement optimales. Les récents travaux de Alonso, Dessein, and Matouschek
(2008) et Rantakari (2008) développent un modéle dans lequel le Principe de Révélation
ne peut pas étre appliqué puisque les agents ne peuvent s’engager sur les mécanismes mis
en place. Ces deux articles s’avérent étre les plus proches de la seconde partie de ma
thése en ce qu’ils considérent aussi des conflits d’intéréts en matiére de décisions et par
conséquent endogénéise la communication entre les agents. Ils analysent la communication
stratégique dans une organisation & deux divisions, dans laquelle les décisions des divisions
doivent répondre & des particularités locales ainsi qu’étre coordonnées les unes aux autres.
Les paiements des décideurs sont similaires a ceux que nous considérons mais les conflits
d’intéréts en matiére de décisions sont modélisés difféeremment. Dans Alonso et al. (2008)
and Rantakari (2008), le manager de chaque division a une action idéale qui dépend d’un
état idiosyncrasique et cherche & maximiser une somme pondérée du profit de sa division et
du profit de 'autre division. Le focus est porté sur la détermination de la meilleure maniére
d’organiser les échanges d’informations entre les deux divisions en fonctions des biais de
ces derniéres et de 'importance relative de leur besoin de se coordoner. Comme nous le
faisons dans le Chapitre 2, ils caractérisant les équilibres de la phase de communication
en fonction des préférences des managers et démontrent qu'une organisation décentralisée

peut étre strictement optimale.
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Conclusion

Dans le premier chapitre, j’analyse un jeu dynamique dans lequel les joueurs sont les
membres d’un réseau fixé. A chaque période, chaque agent décide ou non de passer son
information privée a ses voisins directs. Il lui est impossible de manipuler I'information qu’il
transmet. Etant donné le dilemme informationnel auquel les agents font face, la structure
du réseau affecte le temps nécessaire pour atteindre ’objectif commun de centralisation
des informations & I’équilibre. Au niveau individuel, la position de chaque joueur a une
influence sur la date la plus petite a laquelle il peut gagner & I’équilibre. Dans le second
chapitre, nous nous focalisons sur les incitations des agents & manipuler leurs signaux privés.
Dans ce cadre, la communication stratégique entre les joueurs dépend de I’hétérogénéité de
préférences. Initialement, les joueurs n’appartiennent pas & une réseau donné mais leurs
connections sont déduites de l'informativité de leurs stratégies de communication.

Mon travail examine donc la relation entre communication stratégique et réseauxr en
considérant deux types distincts d’hétérogénéité des agents : dans la premiére partie, des
joueurs homogénes différent en matiére de position dans un réseau ; dans une seconde,
les joueurs varient en matiére de préférences mais pas en ce qui concerne leur localisa-
tion dans une structure de communication. Deux des protocoles de communication que
nous proposons dans le Chapitre 3 réconcilient ces deux visions. Dans le Chapitre 2, nous
proposons un jeu de communication gratuite avec plusieurs émetteurs et récepteurs et au-
torisons chaque joueur & envoyer un message différent & chacun des autres joueurs. Dans
une certaine mesure, la Communication Publique au Sein de Groupes ou la Communica-
tion Dynamique permettant ['utilisation d’intermédiaires suppose implicitement 1’existence
d’une structure de communication pré-existante. Dans le Chapitre 3, nous montrons que
de tels protocoles facilitent la transmission d’informations par rapport a la communication
privée. On peut par conséquent se demander dans quelle mesure une structure de commu-
nication donnée permet de forcer les joueurs & faire des annonces publiques a des groupes
ou a passer par des intermédiaires. D’une fagon plus générale, il semble prometteur de
construire un cadre permettant d’analyser les stratégies de joueurs influencés & la fois pas

leurs places dans une strcuture sociale et pas leur gotits propres.






Introduction

We often have to make choices without precisely knowing the relative advantage of the
different options. In arriving at a decision, we may use our past experiences as well as the
experiences of others, especially those who are close to us. For instance, a consumer buying
a car may have to choose a brand without being fully informed about all the alternatives.
As it is a major purchase, the potential buyer may discuss the pros and the cons of the
choices with friends or colleagues. Similarly, workers in a team may have to invest in new
pieces of software without complete knowledge of their ease of use. They usually read
professional magazines as well as try to gather the information items that are dispersed
within the team in order to choose the technology best adapted to the group’s ability and
needs. In many situations, because individual entities access various sources of information
or learn different things from their past decisions, “unity is strength” regarding disseminated
knowledge. In the present thesis, I will consider a general class of contexts exhibiting the
following common feature: information about the fundamentals that are relevant for a group
of agents is dispersed among the members of that group. Consequently, sharing privately
held information constitutes the only way agents can accurately assess the state of the

environment they evolve in, and react appropriately to it.

Instead of taking place via centralized institutions, it seems now largely admitted that
many of such information exchanges occur through informal networks. A communication
network can be defined as a set of links through which agents’ information circulates. It is

a broad notion that encompasses the relationships of interacting friends, virtual ties that
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individuals build on the Internet, as well as regular exchanges that a bunch of colleagues
have at work. There may be as many kinds of communication networks as sorts of purposes
to use them: friendships networks are an important conduit to spread the word about new
shops and restaurants or to diffuse political opinions; professional networks may serve as
channels for reporting vacant job opportunities or gathering knowledge about the state of a
firm’s demand. During the past decade, the study of networks has been a very active area
of research in economics. As detailed below, the present work is in line with the developing

theory of social and economic networks, surveyed in Jackson (2008b).

Two main kinds of decentralized communication in networks can be distinguished. In
some situations, information transmission between agents is mechanical. It can be an
automatic diffusion of informational items, in the sense that it is not even a choice made
by individuals. For instance, it can be that people we meet on a regular basis have learnt
about our favorite shops and use this information for their own purchase. Next, it can result
from a choice made by agents and yet still be mechanical. Indeed, in a group of networked
members, if collective and individual incentives in sharing information are perfectly aligned,
then it is in every agent’s interest to communicate truthfully and rapidly. One can think
about spreading the word concerning the use of a new communication technology whose
benefits for each user always increases with the number of other users. When information
transmission is automatic or a dominant strategy for every agent, its process can be related
to the architectural properties of the network. Mechanical communication in networks is
not the object of the present work. A clear presentation of diffusion and learning in

networks is provided by Chapters 7 and 8 of Jackson (2008b).

In other situations, in which the pattern of information flows between agents has a
decisive impact on their choices, communication has a strategic aspect. Precisely, it is
by manipulating his information or delaying its transmission that an agent seeks to influ-
ence others’ behaviors. Then, network structure also matters but with the added feature
that information flow results from calculated choices. Let’s consider that a communica-

tion dilemma exists whenever the collective interest of a group demands that its members
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perfectly share privately held information, but their individual interests instead motivate
them to withhold or manipulate it. Such informational dilemmas are at the core of the
present work. Precisely, I study situations in which the overall structure of incentives in-
hibits information sharing among moderately informed members of a group. In the first
part of my thesis, made up of Chapter 1, the dilemma lies in that agents have an individ-
ual incentive to keep private information secret as long as possible, while communicating
quickly is in the collective interest. Chapters 2 and 3, which result from a joint work with
Frédéric Koessler (Researcher at CNRS, affiliated to Paris School of Economics), make up
the second part. In this part, an informational dilemma arises because truthful revelation

of private information is socially efficient while it may be in the individuals’ interest to lie.

I believe that many economic situations can be thought of as communication dilemmas.
For example, the different divisions of an organization may need to pool their private
information to get a clear view of the whole firm’s environment and make appropriate
choices. The decisions made in the firm, being by one or several decision-makers, then
surely impact every division. Therefore, every division may try to hide or manipulate the
information items transmitted to push actions in its ideal direction. Said differently, even
if divisions have a common interest in maximizing the firm’ profit, they may also vary
in their most preferred outcome because of local tastes or abilities. Similarly, activists in
a political party may possess different pieces of information that have to be gathered to
better evaluate the situation and promote a correct policy. And yet, it is easy to figure out
that career concerns may impact the revelation of information occurring between activists.
When there is no perfect alignment of the individual and collective interest in sharing
information within a group, a question arises about how members strategically communicate

to push outcomes at their own advantage.

In such contexts of informational dilemmas, this thesis aims at shedding light on the
link between the way agents strategically transmit private information and the structure of
the networks they are arranged in. This link can go in two ways depending on whether

the pattern of links “influences” or “is shaped” by communication. Each way corresponds
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to one of the two main questions which have emerged from the recent study of networks
by economists : first, how do network structures affect economic outcomes 7 second, why
do certain patterns of links emerge 7 Non-cooperative game theory has been applied to
the two resulting areas of research and this thesis yield new insights in both. One the one
hand, players in “Network Games” are the members of a given network. The objective is to
investigate how their strategic behaviors are influenced by the architecture of their links.
My first chapter is in line with such models. Indeed, I ask how the fized pattern of com-
munication links affects the way networked agents perform in pooling initially dispersed
information. On the other hand, “Network Formation Games” analyze agents’ incentives
to connect to each other. In the second and third chapters, I examine how the informative-
ness of communication between players shapes the structure of their communication ties.
Because they use different theoretical frameworks, we now present each part separately.
Formally, networks will be presented in the standard way, that is by a graph in which nodes

represent individual entities and arcs link nodes when a relationship exists between them.

Strategic Communication in Networks: Chapter 1

In this chapter, I introduce a dynamic game whose players are arranged in a fixed
network. Everyone is initially endowed with an information item that he is the only player
to hold. Players are next offered a finite number of periods to centralize the initially
dispersed items. Centralization could arise at any position in the network. In every period,
each player strategically chooses whether or not to transmit the items he holds to his
neighbors in the graph. The sooner all the items are gathered by an individual, no matter
whom, the better it is for the group of agents as a whole. Besides, the player who first
gathers all the items, called the “winner”, is offered an additional reward that he keeps
for himself. The information dilemma lies in that players have a collective interest to
share information items as well as an individual interest to hide them and wait for other
players’ ones to arrive. In this context, free communication among players is restricted
both physically - by the network - and strategically - by the reward scheme. An example

of such a scheme can be found within many forms of organization : even if it is clear that
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there is collective interest for members to communicate rapidly with each other to take
appropriate decisions, members can, at the same time, be in competition with one another
to get promoted or to gain any form of gratitude. In this case, each agent may wish to end

up being the one who centralizes the information useful to decision-making.

As suggested by Bonacich (1990), because positions in the network are differentiated,
their occupants may have different incentives to behave cooperatively - by communicating
freely - or competitively - by hoarding information. Departing from that observation,
my investigation of the relationship between group communication and the fixed set of
information conduits is organized around two questions. From a collective point of view,
the objective is to understand whether the overall network structure affects the group’s
ability to centralize dispersed items. The collective performance is evaluated regarding
whether the team fails or succeeds in pooling information in equilibrium and by the time it
needs to do so. At the individual level, I examine the extent to which an agent’s position

influences his chances to gather information.

The focus of the first chapter is on the strategic information exchange and I abstract
from the group’s decision-making process following the communication stage. First, I
implicitly assume that it is so costly to take a wrong decision that no one ever takes
one without having gathered every single piece of information. Second, once one is fully

informed, the right decision to make is assumed to be deterministic.?

Eventually, by
allowing each member of the group to take the decision in the name of all, the chapter also

puts aside questions about the allocations of decision rights.

In this framework, my main result consists in a necessary and sufficient condition for
a group to reach the collective goal of information pooling in every (subgame perfect)
equilibrium. Surprisingly, this condition is independent of the network structure in which

the agents are arranged. Precisely, I show that a group of n players never fails to pool

2A similar focus on communication instead of decision-making process is found in Jehiel (1999). The
author considers operating units that communicate their private information regarding decisions to be taken
in an organization. He characterizes the optimal communication structures assuming that communication
in a group results in the loss of transmitted messages with a probability that solely depends on the group
size. In his work, the decision-maker perceives each piece of information as essential as each one has the
power to reverse the right decision to take, the very primary concern of the decision-maker being to avoid
taking the wrong decision.
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information in equilibrium if and only if the number of periods offered to do so is at least
equal to n — 1. This threshold corresponds to the minimal number of links required to
connect all the players. On the contrary, the network architecture affects the time needed
before information is centralized in equilibrium. First note that, even if communication
were automatic, i.e. every agent would transmit his items to all his neighbors in every pe-
riod, the time needed to pool information would depend on the structure of communication
channels. In particular, each player would need a minimal number of periods to centralize
information, that depends on his position. This minimal number of periods physically
required corresponds to a graph-theoretical measure called a player’s eccentricity. It is
shown that there always exists an equilibrium in which the game ends at a date that is
equal to the smallest eccentricity exhibited in the group. Finally, I show that, for two
particular network structures, there exists an upper bound on the duration before success

in equilibrium.

Related Literature

By trying to link the performance of a group to its inner communication structure,
this first chapter is related to the large literature on team theory. Indeed, starting with
Marschak and Radner (1972), this research area analyzes decision making in firms in which
information is initially dispersed and physical constraints make it costly to communicate
and process this information. It is the tradeoff between these costs, in terms of phys-
ical resources and professional time, and the benefit of communication that is the core
of the investigations. In this context, Radner (1992), Radner (1993) and Bolton and
Dewatripont (1994) among others have searched for the optimal inner structure of an or-
ganization. These works have mainly highlighted the role of hierarchies, or more generally
of centralized structures of communication, to reduce costs associated to the gathering of
information items. Work by Crémer (1980), Aoki (1986), Geanakoplos and Milgrom (1991)
and Van Zandt (1999) study the efficient allocation of information-processing tasks in the
presence of information processing costs but assume that communication is costless. These

papers are therefore not concerned with the design of a communication network.
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A common feature of the literature on Team Theory is that it abstracts from incentive
problems. Indeed, it usually assumes that agents act in the interest of the organization and
the main concern is about costs of communication. In this sense, team theory complements
the principal-agent view of organizations. A central result in principal-agent theory is the
so-called Revelation Principle, which relies for its validity on the absence of communica-
tion or information processing costs. Under some additional assumptions, this Principle
establishes that centralized control cannot be dominated by any delegation arrangement.
Specifically, it demonstrates that the outcome of any decentralized organization can be
mimicked by a centralized organization in which the responsibility of each agent is merely
to communicate their information to a central authority and await instructions on what
to do. Centralized organizations are therefore always weakly optimal. In contrast, Alonso
et al. (2008) develop a simple model in which the Revelation Principle does not hold since
agents are unable to commit to mechanisms. Their work is more closely related to the
Chapter 2 of my thesis and is therefore detailed later. The point here is that they en-
dogenize communication as a function of incentive conflicts between the two divisions of
an organization and show that decentralized organizations can be strictly optimal. While
their focus is on strategic misrepresentation of information, we instead assume that the
information transmitted is hard, i.e. items cannot be misrepresented. Agents’ actions con-
sist either in Passing On or in Hiding and the items transmitted can be for instance any

type of goods that have to be put together to be valuable.

In network games, the strategies of the exogenously connected players consist, of course,
in a variety of choices that differ from whether or not to transmit information. For instance,
Bramoullé and Kranton (2007) consider a Public Good game where players’ utilities depend
on a sum of their own contributions and the contributions of their neighbors. They assume
that contributions of players are strategic substitutes. They find that there is multiplicity
of equilibria and use graph-theoretical concepts to characterize them. To solve the game, I
also refer to results from graph theory and, in particular, introduce the graphical notion of
node’s eccentricity. Ballester et al. (2006) analyze a class of complete information games

with quadratic payoffs and pairwise-dependent strategic complementarities. They show
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that, in equilibrium, the effort exerted by each agent strongly depends on his position in
the network of relations. In particular, this effort is proportional to his Katz-Bonacich cen-
trality measure (Bonacich (1987)). In Chapter 1, I relate some of the players’ equilibrium
payoffs to their position, but have not managed to do so with their equilibrium strate-
gies. To analyze games played by members of a fixed network, a more general framework
is presented in Galeotti et al. (2009b). The authors allow for a general class of payoffs
assuming that the payoff of a player depends on his own action as well as on the actions
that his direct neighbors take. They provide a number of results characterizing how the
network structure, an individual’s position, the nature of games (strategic substitutes ver-
sus complements and positive versus negative externalities), and the level of information
(incomplete versus complete), shape individual behavior and payoffs. The main difference
between previously mentioned works and our network game is that it is dynamic. In my
setting, payoffs depend on the history of the game, namely on the actions taken by every

player in every period of play.

From a theoretical point of view, this chapter is also related to the literature that
analyzes wars of attrition with many players. Indeed, for my dynamic network game
to end up with a winner, it must be that a player manages to gather all the dispersed
items at his position before the deadline is reached. In a complete network, since every
agent is directly linked to every other one, an information item which is transmitted is
immediately held by every player. As a consequence, as soon as all the players except one
have “conceded”, the game ends with the player who has not conceded yet winning. To
that extent, the dynamic game studied can be viewed as a war of attrition of complete
information in which n symmetric players compete for one prize in discrete and finite time.
As in the war of attrition, every player strictly prefers to win than to lose but prefers to
lose sooner than later. The difference lies in the fact that the order in which the n — 1
concessions have to happen depend on the structure of the network arranging the player.
Hendricks and Wilson (1988) provide a complete characterization of all the subgame-perfect
equilibria for two-players wars of attrition in continuous time and complete information.

Extending their result to our game played in a complete network is immediate : for every



INTRODUCTION 35

individual, there is a subgame-perfect equilibrium outcome in which only that individual
wins immediately. I generalize this statement to any network structure by showing that,
for every individual, there is a subgame-perfect equilibrium in which only that individual
wins at the earliest date physically possible for him, i.e. at a date that is equal to his

eccentricity.

Eventually, this chapter provides theoretical support to Bonacich (1990)’s experimental
study that asserts that the outcome of communication dilemmas is affected by the archi-
tecture of the links between players.® More generally, his experiments are in line with early
research in social psychology that has documented the crucial role of communication time
and communication pattern for information aggregation purposes. It is reported in the
seminal works by Bavelas (1950) and Leavitt (1951). They initiated a plethora of empiri-
cal works interested in discovering whether group performance could be enhanced through
the manipulation of the configuration of communication channels. It was not accompanied
by much theoretical development. Shaw (1964) provides a review of this literature, which
mainly compares centralized versus decentralized network structures. The experimental
findings indicate that the relationship between communication structures and a group’s
performance highly depends on the task that the group has to perform. It appeared that
when the task is relatively simple and requires only the collation of information, centralized

structures are likely to be more facilitating than decentralized ones.

Strategic Communication building Networks: Chapters 2 and 3

Many economic situations involve agents who share an interest in coordinating their
actions as well as in adapting them to an unknown state of the world. In the second and
the third chapters, we consider this type of context but depart from the typical assumption
that agents agree on the state-contingent optimal profile of decisions. Because their tastes

may differ, we let the interacting agents vary in their ideal proximity to the underlying

3The author presents two experiments where participants are initially given non-overlapping subsets of
letters from a quotation that they have to identify. There are several communication rounds, each being
an opportunity for networked subjects to share their letters along given links. If the group identifies the
quote, each member receives an identical reward, reduced by a penalty that increases with the time needed
to succeed. The first network member who identifies it receives an additional reward that he keeps for
himself.
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fundamentals. As mentioned previously, it is widely admitted that the different divisions
of an organization have to coordinate their actions to maximize the firm’s profit, with such
actions also corresponding to the uncertain environment of the firm. For a number of rea-
sons, ranging from local adaptation costs to career concerns, it is likely that each of those
divisions will also attempt to adapt its choice to some local particularities. Similarly, when
investing in a new technology, a firm wishes to make the choice that enables to meet cus-
tomers’ attempts as well as be in line with the other firms’ investments because of strategic
complementarities. At the same time, every firm may want to invest in the technology that
best meets its own capacities to use it. We consider this type of coordination game of in-
complete information in which every player incurs losses from any mismatch between his
action and both others’ actions and his own “ideal action”. Every ideal action depends on
the state and on an idiosyncratic bias, as in the cheap-talk model of Crawford and Sobel
(1982). These biases vary across agents, and the profile of biases in the population is a

measure of the conflict of interest they face.

In this type of situations, the second part of my thesis aims at analyzing how agents
strategically transmit to each other the signals they privately hold about the fundamen-
tals. Indeed, before taking their payoff-relevant actions, we offer players the opportunity
to communicate with each other in a decentralized and strategic manner. There is no
physical constraints that restrict the possibilities to exchange private information. It is
because agents differ in their ideal decisions, that they may have incentives to lie about
their type when sending messages to the players with whom they interact in the decision
stage. In this setting, our focus is on the way heterogeneity in preferences shapes strategic
information transmission. Precisely, the question we address is who speaks to whom during
the communication stage given players’ heterogeneity in ideal actions. Chapters 2 and 3

only differ in the communication protocols that are examined.

In Chapter 2, we allow players to send costless, non-verifiable, and private messages
about their signals. The communication stage therefore consists of a cheap-talk game in

which every player is, at the same time, a sender and a receiver. One of the main novelty
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of this chapter is that we propose to characterize the transmission of private information
by what we call a “communication network”, described by a set of “receivers” for every
player. A player is said to be a receiver of another player if the latter truthfully reveals
his private information to the former. Said differently, we let a connection between two
players materialize truthful revelation of information between them. The question asked
is then how players’ conflicts of interest influence their communication which shapes the
pattern of their links. From the perspective of network theory, this chapter is in line
with Network Formation Games in that it examines how the architecture of networks is
affected by agents’ strategies. Our main achievement lies in that we provide a complete
and tractable characterization of the networks emerging in equilibrium, as a function of
players’ heterogeneous preferences. This contribution roughly boils down to the intuitive
statement that agents are more prone to perfectly reveal their information, or equivalently
to link, when their preferences present some alignments. Precisely, we show that an agent
communicates, or connects, to a group as long as his ideal action is close enough to the
average ideal action of every subset of agents in this group. A key feature of our equilibrium
characterization is that whether communication takes place between two agents depends
not only on the conflict of interest between these agents, but also on the number and
preferences of the other agents with whom they communicate. In particular, we observe
that communication to a large group of recipients may occur in equilibrium even though
communication to a small subset of that group may not. Eventually, for two natural
configuration of biases, we show that agents who are more central in terms of preferences

tend to communicate more and to have a greater impact on decisions.

In Chapter 2, we also show that strategic communication networks cannot be completely
ranked in the sense of Pareto, but that expected social welfare always increases when the
communication network expands. Chapter 3 extends the analysis of the model considered
in Chapter 2 and proposes three variations of the communication protocol which all result
in more effective information transmission than private and one-shot cheap talk. Under
group communication, every player is required to publicly send the same costless message

to all the agents in a given group. Compared to private cheap talk, this requirement
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reduces the number of possible deviations that a sender has from truthful revelation to the
whole group. Under dynamic communication, several cheap-talk communication rounds are
offered to players, which enable them to transmit private information using “intermediaries”.
This opportunity changes the effect of a sender’s lie in a way that weakens informational
incentive constraints compared to static communication. Finally, we consider the case of
verifiable information and prove that complete information revelation is possible even when
the conditions for a fully revealing equilibrium to exist in the cheap-talk communication

game are not satisfied.

Related Literature

In the same class of coordination games as the one we consider, individuals usually
differ in terms of knowledge but not in terms of preferences. In such cases, the question
typically asked is about the most efficient way to disseminate information. Since Morris and
Shin (2002) and Angeletos and Pavan (2007), it is well-understood how coordination and
welfare are affected by the information structure, and in particular by the public or private
nature of individuals’ signals. With agents’ goals aligned but physical or cost constraints on
the number of communication links between agents, another object of study is to identify
the most efficient communication structures. This problem has been analyzed by Morris
and Shin (2007), Calvo-Armengol and Marti (2007). Calvo-Armengol and Marti (2009)
single out the geometry of communication links among agents that would improve the
organization’s performance. A common feature of these papers is that there is no conflict
of interests between agents regarding the ideal state-contingent action profile. In contrast,
there are no physical constraints restricting the possibilities of information revelation in

the communication stage we propose.

Since cheap-talk communication is offered to players before they take their actions in
Chapter 2, our paper is methodologically related to the literature built on Crawford and
Sobel (1982). Our model includes multiple and interdependent decision-makers, all of them
being endowed with private information. On the contrary, most extensions of Crawford and

Sobel (1982)’s sender-receiver game with more than two players involved multiple senders
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(with no decision) but one uninformed receiver.* One exception in the literature on cheap
talk with multiple receivers (but only one informed sender) is the paper by Farrell and
Gibbons (1989). In their setting, the main question addressed is whether sending private
or public messages to the receivers makes a difference. Indeed, in Farrell and Gibbons
(1989), a situation called “mutual discipline of public communication” is identified in which
information is revealed to neither decision-maker when communication is private but a
fully revealing equilibrium is played when communication takes place publicly. Contrary
to Farrell and Gibbons (1989), the receivers we consider are not independent decision-
makers whose actions are separable in the sender’s utility function. The fact that our
decision-makers play together in the decision stage is at the origin of a new effect that we
called “disciplinary effect of coordination”. Regarding communication protocols, Chapter 3
is linked to the literature in which players are able to provide hard, verifiable, or certifiable
information about their type, starting with Milgrom (1981), Green and Laffont (1986),
Okuno-Fujiwara, Postlewaite, and Suzumura (1990) or Seidmann and Winter (1997). How

our work is related to these works is discussed more extensively in Chapter 3.

The two papers which are the most closely related to the second part of my thesis in
that they consider incentive conflicts over decisions and therefore endogenize communi-
cation between agents are Alonso et al. (2008), already mentioned earlier, and Rantakari
(2008). They both analyze strategic communication in a two-division organization in which
the decisions of the divisions must be responsive to local particularities as well as coordi-
nated with each other. Decision-makers’ payoffs are similar to the ones we consider but
conflicts of interest regarding decisions are modeled in a different way. In Alonso et al.
(2008) and Rantakari (2008), each division manager has an ideal action that depends on
an idiosyncratic state and maximizes a weighted sum of his own division’s profit and the
one of the other division. The focus is on determining the best organizational arrangement

driven by these biases and by the relative importance of coordination need.

Since we derive connections between players from the informativeness of their communi-

*See, among others, Battaglini (2002), Krishna and Morgan (2001), Ambrus and Takahashi (2008), and
Morgan and Stocken (2008).
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cation strategies, Chapter 2 is related to network formation games, presented in Chapter 9
of Jackson (2008b). However, the way in which communication links are constructed in
the second part of this thesis completely departs from usual such games in a number of
ways. In typical games of this type, players’ strategies mainly consist in listing desired
contacts, given the exogenous costs and benefits of direct and indirect connections. In ad-
dition, since it is commonly admitted that much of the information required for economic
decision-making is exchanged via networks of relationships, the value of these connections
is often interpreted as being informational. However, whether agents have an effective
interest in transmitting information once a link exists has not yet been investigated to
the best of my knowledge. By way of contrast, we focus on the incentives to misrepre-
sent information and merge the truthful communication with the building of the channel
trough which that communication occurs. The benefits from linking are then endogenously

determined by the way in which the information transmitted is used in the decision stage.









Chapter 1

Centralizing Information in Networks

1.1. Introduction

Bonacich (1990) reports an experiment in which success of a given group depends on
an effective flow of information among the members of this group. Precisely, subjects were
initially given non-overlapping subsets of letters from a quotation that the group of partic-
ipants had to identify. Only once an individual identified the quote and independently of
who did so, the group received a Collective Reward, equally shared between its members.
This collective reward was reduced by a penalty that increased with the time needed to
reach the common goal. To gather letters, subjects were offered several communication
rounds, each being an opportunity for agents to transmit their letters along given commu-
nication links. Indeed, participants were arranged in a fixed network, whose links were the
only possible channels letters could flow through. In addition to be physically restricted
by the architecture of the communication links, the transmission of letters had a strategic
aspect. Indeed, the participant who first identified the quotation in the name of the whole
group was offered an Additional Reward that he kept for himself. Therefore, individuals
had a collective interest to share their letters as well as an individual motivation to hoard
them while waiting for other players’ ones to arrive. Bonacich’s experiment was run for

different network structures and whether a subject communicated extensively or withheld

43
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letters appeared to depend on its network position. At a global level, Bonacich’s exper-
imental results support the following hypothesis : the outcome of the experimental game
is affected by the architecture of the network players belong to. The present work proposes

a model in which this hypothesis can be made precise and given theoretical support.

Bonacich’s experiment is representative of a large class of situations in which the prob-
lem of communication between information holders arises, communication being physically
restricted as well as limited by strategic retention of information. In organizations, the
nature of a team’s decision is often such that it requires the aggregation of some privately
held pieces of information.! In this paper, we consider that the team’s collective task is
to put together all the information items that are initially dispersed.? As teams often
exist as a part of larger organizations, they seldom have the freedom to make adjustments
of the stated patterns of communication used to pool information. We therefore examine
the transmission of items along the links of a fixed communication structure.®> We further
consider that the agent who first centralizes information in the interest of his team indi-
vidually benefits from this achievement. For instance, such an additional gain can take the

form of a monetary reward, a promotion or gratitude form other members.

In this framework, we investigate how the fixed communication network affects the
group’s ability to centralize information items in equilibrium. We address the question of
whether it may be that among several communication patterns, all physically adequate for
the successful completion of the common task, one results in a significantly “better” equi-
librium outcome than an other. As there is not a unique definition of what “better” means

in this context, we examine the effect of the network structure on the group performance

!For instance, in Jehiel (1999), an organization is in charge of a decision and each operating unit of the
firm holds a partial and crucial information on the decision to be taken. In this work, communication is
not strategic but works through the formation of groups of agents at different levels : employees directly
communicate within their group before representatives of each group pool information in some groups of
representatives and so on. The author characterizes the optimal communication structure assuming that
information transmission within a group fails with a probability that solely depends on the group size.

It is implicitly assumed that centralizing all dispersed information items is useful to take a payoff-
relevant action afterwards. However, this paper abstracts from the decision-making part : first, it is
assumed that once the items are gathered, a state of the world is identified for which the right decision to
take is deterministic; second, we consider that no player ever takes a decision before having gathered all
the letters cause a decision not adapted to the true state leads to a very large loss.

3A view of a firm’s internal organization as a communication network can be found in Bolton and
Dewatripont (1994) or Radner (1993).
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in two ways. First, the performance of a team is evaluated regarding whether there is
failure or success in pooling information in equilibrium. Next, and if success is ensured, we
examine whether the structure affects the time the group needs to succeed in equilibrium. If
communication within the given network had no strategic aspect, the smaller the distance
between a team member and every other member would be, the sooner the collective goal
of items centralization could be reached.* In such a case, communication networks could
be ranked regarding this distance only. From an individual point of view, we also seek to

relate a person’s position in the network to his ability to win and to the speed of his win.

Formally, we analyze games in which n players are arranged in a network g and have
T periods of play to put together n dispersed items. Each agent is initially given a unique
item that he is the only player to hold and items are assumed obsolete after date 7. In
every period of this dynamic game, each player strategically chooses either to Hide or to
Pass On to his neighbors in the network the items that he holds at that time. The game
is of perfect information as actions are perfectly observed in every period. Two networks
g and ¢’ are compared with respect to the equilibrium outcomes of the two games played
in ¢ and ¢’. Our analysis yields two main insights. First, we provide a necessary and
sufficient condition for a group to centralize items at some position in the network in every
(subgame perfect) equilibrium. Interestingly, this condition is independent of the network
structure. Precisely, we show that a group of n players never fails to pool information in
equilibrium if and only if the number of periods offered to do so is at least equal to n — 1,
no matter the network players are arranged in. Next, we claim that network structure
affects the time needed for the n items to be gathered in equilibrium. Even in the case in
which every player Passes On his items to all his neighbors in every period, every player
needs a minimal number of periods to win that depends on his position. This minimal
number of periods physically required corresponds to a graph-theoretical measure called a
player’s eccentricity. We prove that, for every player, there exists an equilibrium in which

this player is the unique winner at a date that is equal to his eccentricity. It follows that

*Ignoring strategic aspects, the impact of the communication structure on group performance is the
object of a vaste literature in social psychology mainly based on Bavelas (1953) and Leavitt (1951).
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there always exists an equilibrium in which the game ends at the earliest date physically
possible for the group. This date is given by the minimal eccentricity in the network, called
its radius. Finally, we show that, for two particular networks, namely trees and complete
ones, there exists an upper bound on the duration before success in equilibrium.

The game we analyze is a Network Game in the sense that non-cooperative players are
the members of an exogenous network. It contributes to the economic literature studying
games played on social networks extensively surveyed in Goyal (2007) and Jackson (2008b).
Galeotti et al. (2009b) present a very general framework for static network games. The
authors assume that a player’s payoff depends on his own action as well as on the actions
taken by his direct neighbors in the graph. The same assumption is made in computer
sciences models of Graphical Games introduced by Kearns, Littman, and Singh (2001).
Graphical games literature focuses on finding algorithms to compute equilibria in one-
stage games played on large-scale networks. In the present work, the game played by
network members is dynamic. Players’ payoffs directly depend on the actions taken by
every member of the network in every period of play and on the order of these actions.
Indeed, in the game we build, information is pooled not only if every player transmits the
items he holds, but also if it happens in a particular order that depends on the network

structure. To understand this idea, consider the following network gjine :

[ 4 L 4 L]

1 2 3

To get the three dispersed information items privately held by every player at the beginning
of the game, player 1 not only needs players 2 and 3 to Pass On but he also needs player 3
to Pass On before player 2 does so. In the network gjne, player 2 is an intermediary for
the transmission of information from agent 3 to 1.

The paper is organized as follows. In the next section, we present the model. The
necessary and sufficient condition to ensure information centralization in every equilibrium
is provided in Section III. Results on possible sets of winners in equilibrium are presented
in Section IV. The focus of Section V is on the time needed to pool information items in

equilibrium. Section VI concludes. Proofs are mainly relegated to the Appendix.
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1.2. The Model

1.2.1. Set-Up

Players, Actions and Network : The set of agents is N = {1,...,n}. Agents are
arranged in a connected network® represented by a graph ¢, with ij € g if player i is
linked to player j. We assume that communication links are undirected so that 15 € g
implies ji € g, meaning that information can flow in both ways. For a given network g, the
geodesic distance d;;(g) between agents ¢ and j is the length of the shortest path between
them. Let N;(g) be i’s neighborhood in g : N;(g) = { j € N\{i} : ij € g}. We denote
g\{i} the subnetwork of g with the set of agents N\{i} and all links between these agents
which exist in g.

The game is played over discrete time periods t = 0, ...,T" with a finite deadline T" > 1.
At each date t > 1, every player i chooses an action a! from the set A ={P,H} : al =P
means that player ¢ Passes On all the information items he holds at time ¢ to every agents
in his neighborhood N;(g) and a! = H means that player i Hides all his information items
to every player. The way pieces of information are transmitted is exposed in more detail
below.

An action profile at time ¢ is a vector a' = (al);en € A™. A history h' of the game at

=1), which is an element

time ¢ is the observed past sequence of profiles of actions (a!,...,a
of the set of histories at date ¢ denoted H! = (A")!~1. At date ¢, every player perfectly

observes the history hl.

Information Items : We assume that there are n different information items, num-
bered from 1 to n. Initially, every player is given a unique item, which he is the only player
to hold. Player ¢ is given the item numbered i. The state of players’ information at date
t is given by a matrix V! € {0,1}"*" with the component vfj of V't equal to 1 if player i
holds the item j at date ¢ and 0 otherwise. Initially, the matrix of players’ information is

the identity matrix : V9 = Id,,.

5 A network is connected if there exists a path between any pair of distinct agents. A path is a sequence
of agents for which every agent is linked to the next agent in the sequence.
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The state of players’ information evolves as players Pass On or Hide. We assume that,

once received, an item is never lost, even if Passed On later in the game. Formally, for

¢

. . 6 .
;; evolves in the following way” :

every i,7 € N, the component v

Ufj = Max{keNi(g);a;:P}{UfflyU;t@;l}- (1.1)

Payoffs, Winners and Losers : The payoff structure has common features with the
one considered in Bonacich’s experimental study. If there is no player who manages to
gather the n items before the deadline T' is reached, then players earn nothing. On the
contrary, if there is at least one player who centralizes the n items in the time offered to
do so, then all the players are rewarded. In this case, we denote 7 the first period in which
the n items are held by an agent. The game ends up at 7. At this date, a Collective
Reward of value n is equally shared between all the players. Besides, the players who have
managed to pool information items, called the winners, receive an Additional Reward of
value R > 0. In case there are several winners, the Additional Reward is equally shared
between them. Players who have not centralized the items are called the losers. Payoffs

are discounted according to some common discount factor ¢ € (0, 1].

hT+1 uniquely defines a sequence of matrices represent-

For a given g, each final history
ing players’ information (V°, V1 .. VT). Denote 1, the vector with n components equal

to 1. The present value of player ¢’s payoff is given by :

bPlayers’ state of information is modeled using the matrix V' of zeros and ones but it could be modeled
using partitions of information as in Chwe (1999). Let’s denote the state of the world by 6 = (0;)icn € O,
where 6; is player i’s initial piece of information. At each date, player i’s state of information can be
represented by a partition of the set of all possible states of the world. At time ¢ = 0, player ¢’s information
partition is : P = {P?(0)}eco with P2(0) = {(0:,0—;) : 0—; € {0,1}"'}. In period ¢, when a player i
receives some information from one of his neighbors j € N;(g), the latter updates his information partition
in the following way : P/T"(0) = P/(0) N P}(0). The first agent i € N who manages to identify the true
state of the world §, meaning that at a date t, P/ (0) = {0} wins the game. Payoffs can easily be rewritten
using information partitions. Indeed, Vi’ = ¢,, is equivalent to P}(#) being a singleton.
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0 if VI # i, VieN
st-1 if V! # 1, and 3j#4, jEN V) =,
wi(V0..VT) = andV ke N, Vi #u,,

ST+ ) V=4,

andeEN,th*l;éLn,Withl:#{kEN:VIf:Ln}.

A game involving players in the set N arranged in a network g and lasting T" periods

is denoted I'(N, ¢, T).

Strategies : We restrict our attention to pure strategies. A pure strategy of player 4

T

is a profile s; = (s},...,s) with st: H! — A for every t = 0,...,T. A strategy profile is

2

denoted s = (s;)ien-

Example : As an example, consider the one-shot duel I'({1,2},g,1) where g is the
complete network. Initially, players’ states of information V' is I'dy. Since Ni(g) = Na(g) =
N, if player ¢ Passes On the item he holds initially to player j # i, then vjl-i =}l =1. Let’s
write players’ payoffs in the following way wu;(a;, a;) with a;,a; € {P,H} : u;(P, P) = 1—1—%,
u;(P,H) =1, u;(H,P) =1+ R and u;(H,H) = 0. The static duel I'({1, 2}, g, 1) is the well
known Chicken Game, which has two Nash Equilibria in pure strategies : (a1,a2) = (P, H)
and (a},a)) = (H, P). Note that every equilibrium outcome is such that the game ends

with a winner.

1.2.2.  Equilibrium Concept

The game I'(N, g, T') has a multiplicity of Nash Equilibria (NE) and we do not attempt
to provide a complete characterization of these. To narrow down the set of NE, the solution
concept we use is the Subgame Perfect Nash Equilibrium (SPNE).” Since we investigate
the way information is pooled in a decentralized way by the members of a fixed network,

we find it reasonable to assume that players do not commit themselves to the dates at

"Each finite game I'(NV, g, T') contains subgames that are uniquely defined by each history h’ and denoted
['(N,g,T)|h'. The strategy profile s € S is a SPNE if, for every h* € H', the continuation strategy profile
denoted s|h’ is a NE of I'(N, g, T)|h*.
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which they plan to Pass On. Incorporating subgame perfection therefore makes sense. For
every game ['(N, g,T), the set of (SP)NE is denoted Sisp)nE-

The way subgame perfection eliminates non-credible threats in the game we propose
appears in the following example. Consider I'({1, 2, 3}, giine, 2) with gine the three-player
network presented in the Introduction. The strategy profile that consists in “every player
Hiding in every period, whatever the history”, is a NE. Indeed, as long as two players out of
three Hide in every period, every player receives 0, whatever his strategy. Next, consider
the subgame of I'({1, 2, 3}, giine, 2) that starts at time ¢ = 2 after player 1 has Passed On
at date t = 1 while players 2 and 3 have Hidden. In this subgame, if player 3 Passes On
instead of Hiding, he receives ¢ instead of 0 as player 2 finally holds the three information
items. It follows that “players 2 and 3 Hiding in the second period of play, whatever the

history” is not credible.
1.2.3.  Graphical Objects

We define some graph-theoretical concepts that are used in the sequel. First, a classical

measure of centrality in graphs is the eccentricity :

Definition 1 Player i’s eccentricity in the network g, denoted e;(g), is the distance from

agent i to the agent furthest away from him : e;(g) =max;jcn{d;;(9)}.

In the game I'(N, g,T), player i’s eccentricity is equal to the minimal number of periods
required for player ¢ to centralize the n items when every player Passes On in every period.
Given a network g, the minimal eccentricity is called the radius r(g) and the maximal ec-
centricity is called the diameter d(g). Obviously, a player ¢ cannot win in a game I'(N, g, T')

that lasts strictly less than e;(g) periods. We define the following set :

Definition 2 In a game I'(N,g,T), the set of potential winners is given by W(g,T) =

{ieN:e(g) <T}

Games of interest are games I'(n,g,T) such that W(g,T) # 0 or equivalently such that

T > r(g). We restrict our attention to such games in the present work. Note that every
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player can potentially win, i.e. W(g,T) = N, if and only if 7' > d(g).

Definition 3 In a connected graph g, an agent i is critical (respectively non-critical) if

g\{i} is disconnected (respectively connected).®

In other words, a non-critical agent can be dropped from a connected graph with the
resulting subnetwork still being connected. On the contrary, a critical agent is crucial in
maintaining the connectedness of a network. By definition, an agent who is critical in g is
on every path between at least one pair of agents in g.

A complete network, denoted geompiete, is a particular architecture in which every agent
is linked to every other one, i.e. N;(g) = N\{i} for every i € N. As it implies that a link
exists between every pair of distinct agents, every agent is non-critical in geomplete- A tree
network, denoted giree, is such that there is a unique path between every pair of distinct
agents. It follows that there is at least one critical agent in every tree involving n > 3
players. A connected network involving n = 2 players is a special structure in that it is
both a complete and a tree network. More generally, the following theorem deals with the

existence of non-critical agents in connected networks :

Theorem 1 [Kelly and Merriell (1958)] In a connected network with n > 2 agents, there

are at least two non-critical agents.

Finally, a particular type of network structure is defined with respect to the existence of a

critical agent :

Definition 4 A connected network in which there exists at least one critical agent is

separable. A connected network in which every agent is non-critical is non-separable.

A separable network can be disconnected by removing one agent. Tree networks involving
three players or more are separable whereas complete networks are not.
To illustrate the previous definitions, we consider the following network gg;z which is

neither complete nor a tree :

8The term “critical agent” refers to the “critical link” defined by Jackson and Wolinsky (1996) as crucial
to maintain the connectedness of a graph.
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Players’ eccentricities appear near players’ labels. We have r(ggite) = 1 and d(ggite) = 2.
The sets of potential winners are W (ggize, 1) = {2} and W (ggite, ) = N for every T > 2.
The network gg;+ is separable with player 2 being critical whereas players 1, 3 and 4 are

non-critical.

1.3. Success or Failure in Equilibrium

Our objective is to compare network structures with respect to their efficiency in en-
couraging information centralization when its transmission is strategic. Note that if in-
formation transmission were not strategic but were automatic in every period, network
structures could be trivially ranked as r(g) would be the number of periods required to
centralize the n dispersed items in a network g.

The first measure of group performance that we consider is the centralization of dis-
persed information in every equilibrium. For every game I'(N,g,T), the set of strategy
profiles S is split into two disjoint subsets. Let Sy C S be the set of strategy profiles
such that the game I'(IV, g, T') ends with at least one winner, or equivalently, such that the
collective goal is reached at a time t < T'. Let S, = S\Sw be the set of strategy profiles
such that the game ends with no winner, or equivalently, such that players have failed to
centralize information at some position in the network before the deadline is reached.

Recall that if a game ends with at least a winner, every player earns a strictly positive
payoff whereas if the game ends with no winner, every player earns 0. It follows that failure
in performing the collective task is an outcome that is Pareto dominated by any outcome
in which success is ensured. The following proposition provides a necessary and sufficient

condition for success to be ensured in every SPNE outcome of I'(N, ¢, T) :
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Proposition 1 Sspyg C Sw if and only if the game I'(N, g,T) is such that T > n — 1.

That is, every equilibrium yields at least one winner if and only if the game lasts
sufficiently many periods. On the contrary, if the deadline is T" < n — 2, there exists
equilibria that lead to failure in the collective task. Note however that, in such cases, there
may also be equilibrium outcomes such that there is a winner.

Interestingly, the condition 7" > n — 1 is independent of the structure of the connected
network g. Given a deadline 7" and a fixed number of players n, all communication networks
are therefore equally efficient with respect to the criterion considered in this section, namely
the achievement of the collective goal in every equilibrium. Precisely, a complete network
happens to be as efficient as any connected structure that minimizes the number of links
such as tree networks do. In settings in which building communication links is costly but
neither the identity of the winner nor the time needed to succeed matters, a tree network
can be chosen rather than any other structure.

The proof of the fact that T' > n — 1 is a sufficient condition to get Sspyr C Sw is
done by induction and is quite constructive. One building block is the following result for
two-player games : every NE of a dynamic duel I'({1,2},9,T) yields at least one winner.
Indeed, for a duel to end up with a winner, it is sufficient to have one of the two players
Pass On before the deadline is reached. It follows that, when two players are offered T > 1
periods of play, both players loosing cannot be an equilibrium outcome since every player
can unilaterally prevent such an outcome. Next, to see how this fact about duels is used,
consider the one-shot game I'({1, 2, 3}, gjine, 1). In this game, if two or more players Hide,
the game ends with no winner and this is a NE since no player can unilaterally prevent
this outcome. Proposition 1 says that, adding a period to I'({1, 2,3}, giine, 1) is sufficient
to rule out such an equilibrium. This is due to the fact that, in I'({1, 2, 3}, gline, 2), player
1 or player 3 has the ability to unilaterally make the game evolve into a duel between
the two other players. That duel would last at least one period. This happens to be a
general feature of non-critical agents whose existence relies on Theorem 1. More precisely,
if a non-critical player, say player 1, Passes On at date ¢ = 1 while the other players

Hide (which means they behave in the worst way regarding items centralization), then the
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subgame that starts at time ¢ = 2 is strategically equivalent to the one-shot duel : players
2 and 3 are directly linked to each other and each player is holding some items that, if
transmitted, make the other player win immediately. This is represented as Situation A in
Figure 1. Next, as mentioned above, once a duel is reached, every equilibrium yields at
least a winner. The same reasoning can be applied to the game I'({1, 2, 3}, gcompiete, 2) as

it is illustrated by Situation B on the following Figure.

2 3 e
mOO : HEO OOom - - HEO [ ] |
123 123 123 o123 123
Situation A Situation B

Figure 1.1: Informational situations once player 1 has Passed On and players 2 and 3 have
Hidden.

From the previous paragraph, we have that every equilibrium outcome of I'({1, 2, 3}, g, 2)
is such that there is a winner. Next, one can get the same result for games I'({1, 2,3, 4}, g, 3)
by noticing that there always exists a non-critical agent in g who can, by Passing on
at time t = 1, make the subgame that starts at time ¢ = 2 be such that the other
three players are in a situation strategically equivalent either to I'({1,2, 3}, giine,2) or to
I'({1,2,3}, gecomplete, 2). This inductive reasoning enables to state that the minimal number
of periods sufficient to get a winner in every equilibrium of I'(N, ¢,T) is n — 1. It corre-
sponds to the minimal number of links required to connect n players. It is also the number
of periods needed to reduce the game to a duel through successive items transmissions by

non-critical agents who are then as “removed” from the network.

°On Figure 1, players’ labels correspond to numbers written above the line. Every player i’s infor-
mational situation is represented by three boxes numbered 1,2 and 3 and situated near player ¢ : box
numbered j near player ¢ is filled in black if player ¢ holds the item j and is empty otherwise.
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1.4. Equilibrium Sets of Winners

The last section stressed the special role played by non-critical players. We next show
that, for some particular networks, there is at least one non-critical agent who loses in
every equilibrium. More generally, in this section, we examine the impact that network
architectures have on the set of agents who may manage to centralize information items.
Even in the case in which all the players had the opportunity to do so because they were
offered a number of periods greater than every eccentricity, the structure prevents some

players from winning together in equilibrium.

Proposition 2 If the game I'(N, g, T) is such that the network g is separable, then every

strategy profile s € Sy is such that there exists at least one non-critical agent who loses.

Proposition 2 states that it cannot be that all the members of a separable network
win together. Taking a look at the separable network gi;+. presented in section 1.2.3, one
can easily get an intuition of why it is so. Assume that non-critical players 1, 3 and 4
win together at time t. To get such an outcome, player 1 must hold, at date ¢, the items
initially held by players 3 and 4 and vice versa. In ggi, player 2 is the intermediary for
information transmission between player 1 and players 3 and 4. It follows that players 1,
3 and 4 winning together at time ¢ implies that player 2 already held the four items at a
date t' <t — 1, which contradicts the initial assumption.

As stated in definition 2, given an architecture g and a deadline T', a set W (g,T) of
potential winners is defined. In particular, a game I'(N, g, T") can be such that every player
in W(g,T) is critical. Since a connected structure involves at least one non-critical agent,
this directly implies that every strategy profile s € Sy is such that there exists at least one
non-critical agent who loses. Note that this is not the object of the previous Proposition.
Indeed, Proposition 2 states that if g is separable, then all the players cannot win together
and this, even in the case in which they all potentially could. Proposition 2 imposes no
restriction on the set W(g,T').

While the previous proposition relies on the graphical properties of separability, the

following result is established for equilibrium strategy profiles. Precisely, we prove the
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uniqueness of the winner in equilibrium for two particular network structures. The following

statement, as Proposition 2, is independent of W (g, T).

Proposition 3 If the game T'(N, g,T) is such that the network g is either complete or a

tree, then every strategy profile s € Syg N Sw is such that the winner is unique.

From Propositions 2 and 3, the following statement is directly made : if the network
is either separable or complete, then every equilibrium strategy profile is such that there
exists at least one non-critical agent who loses. On the contrary, we now present an
example in which all the members of a nonseparable and incomplete network win together
in equilibrium. In the circle examined, every player is non-critical. Consider the game
I'({1,2,3,4}, geircle, 2) With geirele @ four-players circle. We start by analyzing the subgame
that would result from a first period in which every player Passes On. The informational
situation of such a subgame is illustrated by Situation C on Figure 2. In Situation C, if
every player Passes On, the game ends with four winners. At date t = 2, by Hiding while
the other players Pass On, no player can prevent the other three players from winning.
Consequently, starting from Situation C, “every player Passing On” is a NE that yields
four simultaneous winners.

Next, we analyze the subgame that would result from a first period of play in which
one player, say 1, Hides and the other three players Pass On. Situation D on Figure 2
shows the resulting informational situation. In Situation D, if player 1 Passes On while

3)

the other three players Hide, the game ends up with players 2 and 4 receiving 6(1 + 5

whereas players 1 and 3 earn §. At date t = 2, by Hiding instead of Passing On, player 1
makes the game end with no winner. Given Situation D, player 3’s action has no impact
on the outcome of the game. Finally, if player 2 or 4 deviates from Hiding, it makes three
players win (1,2 and 4) instead of two (2 and 4). Therefore, starting from Situation D,
“player 1 Passing On while the other players Hide” is a NE that yields two simultaneous
winners, players 2 and 4.

Finally, comparing Situations C and D, player 1 has no interest in deviating from

Passing On in the first period when the other three players Pass On. The same is true for
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every player as their positions are symmetric. We conclude that there exists an equilibrium
action profile such that every player Passes On in the two periods of play yielding four
winners at time ¢ = 2.

What makes nonseparable and incomplete networks different from other structures is
that they exhibit at least two paths linking any pair of agents. Therefore every information
item can flow at least two distinct ways to go from the initial holder to any agent. As a
result, for every agent, it can happen that, by Hiding, he is unable to stop some items’
transmission because they are transmitted along the other possible path. It follows that a
subgame can start in which there does not exist a single player who is able to prevent all

the players from winning together.

1234 1234 1234 1234
[ | ] | [ [ [ [m] [ [ [m] | m | [m]
1 2 1 2
4 3 4 3
| [m] | | [ | [ | (] | | | | [ |
1234 1234 1234 1234
Situation C Situation D

Figure 1.2: Two informational situations at the end of time ¢t = 1.

1.5. Equilibrium Duration before Success

Among equilibria that yield success, aggregate payoffs are lower when information is
centralized at time t than at any earlier date ¢’ < t.'° This section focuses on the time
needed for the group of players to succeed in equilibrium. From a global point of view, the
minimal duration before success in equilibrium gives the best equilibrium outcome and,
once success is ensured in every equilibrium, maximal duration before success gives the

worst equilibrium outcome.

0Tndeed, if a game ends up with at least a winner at time ¢ < 7T, then the aggregate payoffs are equal
to 8" *(n + R).
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1.5.1. Minimal Duration

Next proposition relates a person’s position in the network to his ability to win and to
the speed of his win. Recall that we restrict our attention to games in which W (g, T) # 0,
meaning that there exists at least one agent who is physically able to win. More precisely,
it states that, for every player in the set of potential winners, there exists an equilibrium
such that this player is the unique winner after a number of periods just equal to the time

physically required to centralize the dispersed items at his position.

Proposition 4 For every player i € W(g,T), there exists a SPNE such that player i is

the unique winner at time t = e;(g).

In every game I'(N,g,T), duration before success has a lower bound that depends
on the architecture of the network g and corresponds to the radius 7(g). The previous
Proposition states that an end of the game at time ¢ = r(g) is indeed a SPNE outcome.
With respect to the best equilibrium outcomes, networks can therefore be ranked according
to their radii.

In a connected network g, players’ eccentricities range from r(g) to d(g) and there
exists at least one player that exhibits each of these eccentricity measures. It follows from
Proposition 4 that for games I'(N, g, T') with T' < d(g), the equilibrium duration can range
from r(g) to T.'' For games with T" > d(g), it can range from r(g) to d(g) and may last
longer. Proposition 4 says nothing about such outcomes. Macimal duration of the game is

the object of the next Section.

Complete networks are particular in that every member’s eccentricity is equal to the
radius 7(g) = 1. Interestingly, the previous proposition applied to games I'(N, geompiete, 1)
corresponds to a well-known result of the war of attrition literature. In geompiete, an
information item which is Passed On is immediately held by every player. As a consequence,
a member of a complete network is the unique winner if and only if he is the last player
to Pass On. In other words, as soon as n — 1 players have “concede”, the game ends with

the player who has not conceded yet holding the n items and winning. To that extent,

"Indeed, there is at least one player i in W (g, T) with e;(g) = T.
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the game I'(V, gecomplete, ') can be viewed as a war of attrition of complete information in
which n symmetric players compete for one prize in discrete and finite time. As in the war
of attrition, every player strictly prefers to win than to lose but prefers to lose sooner than
later.

In Kornhauser, Rubinstein, and Wilson (1988), a concession game with complete in-
formation is played in discrete time by two players 1 and 2 with different discount factors.
The authors show that “there is an infinity of SPNE outcomes : one of these outcomes
is for player 1 to concede immediately, another is for player 1 to wait and for player 2
to concede immediately”. Proposition 4 corresponds to the straightforward generalization
of the previous statement to n players competing for one prize. Bilodeau and Slivinski
(1996) present a n-player continuous-time war of attrition in finite horizon with n players
competing for (n — 1) prizes. The authors state that “for every individual, there is a SPNE
outcome in which only that individual concedes immediatel”. On the contrary, since we
study a case in which n players compete for one prize, we show that, for every individual,
there is a SPNE outcome in which all the individuals except that one concede immediately.
If g # Geompiete, 1 Players compete for one prize but the order in which n—1 players concede

is crucial and dependent on the network structure.

1.5.2. Mazimal Duration

Among games in which success is ensured in every equilibrium, we further pay attention
to the maximal duration of the game in equilibrium. For every game I'(V,g,T), the set
of strategy profiles Sy is split into two disjoint subsets. Let Seng<n—1 C Sw be the set
of strategy profiles such that the game ends with at least a winner at a date ¢t < n — 1.
Let Send>n = Sw\Send<n—1 be the set of strategy profiles such that the game ends with
at least a winner at a date ¢t > n.

To start with, let’s consider the simple situation of dynamic duels, for which it is easy
to state the following : every equilibrium of a dynamic duel I'({1,2},9,T) is such that
the game ends up in the first period of play. Indeed, a single period is sufficient for every

agent to make a duel end. Since Proposition 3 states that the winner is unique in every



60 CENTRALIZING INFORMATION IN NETWORKS

equilibrium of I'({1, 2}, g, T'), an equilibrium strategy profile cannot be such that the game
lasts strictly more than one period as the loser would have a profitable deviation to a
strategy that makes him lose in the first period of play.

Next, let’s consider the case of n = 3. Since three-players networks are either a tree or
complete, we get that, in a three-player game lasting at least two periods, every equilibrium
yielding a winner does so in either one or two shots. This statement both relies on the
fact that, in equilibrium, every duel lasts one period and on Proposition 3. Recall that we
assume that every player strictly prefers to lose sooner than later but we do not exclude
that an agent may prefer to be a winner (even among many) at date 7' than to lose earlier.
It follows that Proposition 3 is required to find a non-critical player - there are at least two
from Theorem 1 - who loses in equilibrium and therefore has a strict incentive to reduce
the game to a duel, in which he still loses but more rapidly.

Similarly to the reasoning used in Section 1.3 to establish that 7" > n — 1 is a suffi-
cient condition to get Sspnyr C Sw, an inductive reasoning enables to state the following
proposition. It establishes that, for two particular class of networks, there exists an upper
bound on the time needed for the game to end with a winner in equilibrium. Note that the
inductive reasoning heavily relies on the fact that removing a non-critical agent with all its
links from a complete network leaves the subnetwork complete and removing a non-critical

agent from a tree leaves the subnetwork still be a tree.

Proposition 5 Let I'(N,g,T) be such that T > n — 1. In this game, if the network g is

either a tree or a complete network, then SspnE C Send<n—1-

In a game I'(N, g,T) with T > n — 1, there are equilibrium outcomes such that there
is a winner at a date t < n — 1. What Proposition 5 shows is that this is true for every

equilibrium if when g belongs to the class of complete graphs or trees.

1.6. Conclusion

In the dynamic game we propose, the members of a fixed network face a “communication

dilemma” in the sense that they have a collective interest to share information items by
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transmitting them via communication links as well as an individual interest to withhold
them. We show that, a group of n players centralizes all the initially dispersed items in
every subgame perfect equilibrium, if and only if the game lasts sufficiently many periods,
precisely more than n — 1 periods. It follows that whether or not the collective task is
performed in every equilibrium is independent of the network structure, as long as it is
physically adequate for the successful completion of this task which means that the network
is connected. On the contrary, the architecture of communication links affects the time
needed before information items are pooled in equilibrium. For every network, the minimal
time needed in equilibrium is given by the radius of the network. For complete networks
and trees, once success is ensured in equilibrium, the threshold n — 1 also corresponds to
the maximal number of periods required for items centralization.

One can view the items transmitted by players as any type of goods that have to be
pooled to become valuable. To answer the question about the structure that is the most
appropriate for the pooling of these goods, we introduce graphical notions and results from
graph theory that are used in some areas of operations research '2 but that were not used
in economics to the best of our knowledge. For instance, a building block of our analysis is
a graphical result stating that, in every connected network, there exists at least two non-
critical agents. Since such agents can be dropped from a network without disconnecting
the resulting subnetwork, proofs can be done by induction within networks.

Even if Bonacich (1990)’s experimental results stated that the outcome of social dilem-
mas is affected by the network structure, his study rather examined the influence of an
agent’s position on his individual behavior. For instance, it seemed that agents with pe-
ripheral positions behaved more cooperatively than central agents. In the present work, for
agents who are not in the set of potential winners because they are peripheral in the sense
that their eccentricities are too large, Passing On in every period of play is a weakly dom-
inating strategy. That is, the effective chances of victory determined by physical network

positions clearly affect one’s communication behavior. Focusing on the effect of positions

2For instance, see Buckley (1986) in which the eccentricity measure is used to define and find the center
of a tree network. More generally, see network location theory that addresses the question of the optimal
location of a single-point facility in a graph.
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on communication behaviors is left for further research.

1.7. Appendix

For every proposition presented in a previous section, the proof is given in a subsection
of the Appendix entitled as the section. We denote I'(IV, g, T')|ht the subgame of T'(N, g, T')
that starts at time ¢t < T after history h’. Player i’s continuation strategy after history h’

is denoted s;|ht.
1.7.1.  Success or Failure in Equilibrium

Proposition 1 : Sufficient Condition
Lemma 1 If the game T'(N, g,T) is such that T > n — 1, then Sspnyr C Sw.

Proof of Lemma 1 is by induction: assume it is true for n players and show it stays true
for n + 1. To do so, fix n and consider three kinds of games. First, games I'(N,g,T)
with |[N| = n. Next, augmented games I'(N',¢',T) with |[N’'| = n + 1. Without loss of
generality, let player (n + 1) be in N,(¢') and be non-critical in ¢’. Finally, augmented
modified games f‘(N’, g',T) that differ from augmented games only in that the initial matrix
of information V’° # Id,, is such that, for every i € N’, we have /9 = 1 and such that
@;?nﬂ = 1 meaning that player n initially holds the item (n + 1).

Let two games I'(N, g, T) and T'(N, ¢/ ,T) form a pair if the two connected networks
g and ¢ are such that g = ¢’\{n + 1}. Given either T'(N, g, T) or T(N’, ¢’,T) only, one
can always construct a pair. Indeed, a connected ¢’ is built from a connected g by linking
agent (n + 1) only to agent m. Since agent (n + 1) has a unique neighbor in ¢’, he is
non-critical in ¢’. A connected g is built from a connected ¢’ by removing the non-critical

agent (n + 1) and all its links.

The sets of (SP)NE of games I'(N’,¢/,T) and T'(N',¢',T) are denoted S{SP)NE and

§

ESP) g respectively. The sets of strategy profiles such that games I'(N',¢,T) and
[(N', ¢/, T) end with a winner (no winner, resp.) are denoted Sj;, and Sj;, respectively (S},

and S”L, resp.). Before proving Lemma 1, we show:
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Lemma 2 For every pair of games I'(N, g, T) and T(N', ¢, T), we have: if Sspnr C Sw,

then Sspnp C Sty

Proof : Take a pair of games I'(N, g, T) and I'(N', ¢, T). We show that if there exists a
strategy profile § in SgPNE NS, then there exists a strategy profile s in Sspyp N Sk
In T'(N',¢,T), consider a profile & € S’ such that player (n + 1) Hides in every period
whatever the history and such that, for every player ¢ € N, player i’s action at time ¢ is
independent of player (n+ 1)’s actions at dates ¢’ € [1,¢ —1]. Next, in I'(V, g, T), consider
a profile s € S such that s and 3’ describe, for every player i« € N and every date t < T,
the same action profile in games I'(N, g, T') and T'(N’, ¢/, T) respectively.

Considering the process of items’ transmission given by (1.1), it is easy to show that
the sequences (V9,..V7T) and (V"°,...,V'T) determined by s and § in I'(N,g,T) and
(N, ¢, T) respectively are such that, for every ¢ € N and every t < T, we have (A) : for
each item j € N, f)g > vfj. 13 Next, since § € S, there exists for every i € N an item
k € N’ such that ﬁg = 0. Given that items n and (n + 1) are transmitted together in
L(N',¢,T) as o9, .1 =1, we get that § € S7 implies that there exists for every i € N an
item k € N such that o/} = 0. Using (A), we have that & € S/ implies s € Sf.

Finally, if & € S p g, the profile of continuation strategy 3|’ is a NE of the subgame
D(N',g',T)|h" for every h'* € H". Since § is such that, for every i € N, player i’s action
in every period is independent of player (n + 1)’s past actions and player (n + 1)’s actions
are independent of the history, we directly get: if |k’ is a NE of (N, ¢/, T)|h', then s|ht
is a NE of ['(N, g, T)|ht with h'* and h* describing the same action profile for every i € N

and every date t < T. It follows that §' € S’gPNE implies s € Sgpy g which completes the

proof. [J

Proof of Lemma 1 : As stated in Section 1.3, every NE of a dynamic duel I'({1,2},4,T)
yields at least one winner, which implies that Lemma 1 is true for n = 2. We assume that

Lemma 1 is true for n agents and prove that it stays true for n + 1 agents: if the game

"*Note that we have @5 > vf; and not ¥} = v}; because we do not exclude that the initial matrix Vo
of players’ information in I'(N’, g, T) is such that there exists a pair of players i, € N, i # j such that

72 = 1 whereas this is excluded for the initial matrix of players’ information V° = Id,, of I'(N, g, T).

Zj:
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I'(N',¢', T +1) is such that T+ 1 > n, then SgpypNSL = 0.

First, in (N, ¢/, T+ 1), we consider a strategy profile s’ € Spyp such that al},; = P
and we show that 7'+ 1 > n implies s’ € Sj;,. By definition of SPNE, the profile of
continuation strategy (s;|h®);en’ is a SPNE of the subgame I'(N’, ¢/, T + 1)|h/* with h/? =
((a/M)ien, P). This subgame is equivalent to the augmented modified game T'(N',¢',T).
More precisely, games T'(N’, ¢/, T + 1)|n’? and T'(N’, ¢, T) have the same set of players
N’, the same network ¢’, the same number of periods of play T and the same matrix of
players’ information : at the beginning of I'(N’, ¢/, T + 1)|h’? the matrix V' is such that,

T 1
;i = 1 and such that v},

for every i € N’, we have v 1 = 1since n € Nypy1(g') and

a;ll_H = P. By assumption, if I'(N, g, T) is such that 7> n — 1, then Sgpyr C Sw. Given
f‘(N’,g’,T), we can find a game I'(N, ¢, T) to get a pair and then deduce from Lemma 2
that Sypnp C Sty Therefore, (si|h?)icn' € Shpnp implies (s)|h?)icns € S}y which
implies that s’ = (s (W), si|h/?)icn' € Sy

Next, in I'(N’, ¢/, T +1), we consider a strategy profile s’ € S4pyp such that afy,; = H
and we show that 7'+ 1 > n implies s’ ¢ S. By definition of SPNE, the profile of
continuation strategy (s;|h");cns is a SPNE of I'(N’, ¢/, T+1)|h? with h"? = ((a}!)ien, H).
As shown in the previous paragraph, if T > n — 1, then every SPNE played in a subgame
I(N',¢',T + 1)|h"* that starts after a history h"? = ((a}');en, P) is such that the game
I'(N',¢',T+1) ends up with a winner. Therefore, if we assume that s’ € S}, then ' > n—1
implies that player (n 4 1) has an interest in deviating from s/, such that a/!,; = H to
a strategy s/, such that a)}; = P. This profitable deviation in the first period of play
contradicts s’ € Sgpyp which is why s & S7.

Proof is completed by noting that every s’ € Sgpyp is either such that all 1 =Hor

such that a/}, = P. O

Proposition 1 : Necessary Condition
Lemma 3 If the game T'(N, g, T) is such that T <n — 2, then Sgpyg N SL # 0.

We prove Lemma 3 for complete networks only and use the the following lemma to get it

for every connected network.
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Lemma 4 If Sspne NSL # 0 in T(N, geomplete, T), then Sspne NSy # 0 in T'(N, g,T).

Proof : In T'(N, geomplete; I'), consider a strategy profile s® € Sr. Next, in I'(V,g,T),
consider a strategy profile s such that s and s¢ describe the same action profiles for every
i € N and every t < T, in I'(NV, gecomplete, T') and I'(N, g, T) respectively. It is easy to
show that if s¢ € Sr, then s € Sp, since Nij(9) C N;i(Geomplete) = N\{i} for every i € N.
Equivalently, we get that if s € Sy, then s¢ € Sy . It follows that if there exists a
player i who has a strictly profitable deviation from a profile s € Sy, for a history h! in
I'(N, g,T), then the same deviation from s¢ € S, is strictly profitable in I'(N, geompiete, T)-
We conclude that if the strategy profile s € Sp, is not in Sgpyp, then the strategy profile

s¢ € S, isnot in Sgpyg. O

Lemma 5 If the game T'(N, geomplete; ') is such that T <n — 2, then Sspyr N St # 0.

Proof : We show that if T" < n — 2, then there exists a strategy profile s € Sgpyg N SL.
For every h!, denote K (h') the set {i € N :Vj € N\{i},vj-i—l =0} and let k(h') = |K(hY)|.
Players in K (h') have Hidden in every period ¢’ € [1,# — 1]. Note that as soon as a history
h! is such that K (k') is a singleton, say K(h!) = {i}, the game ends at ¢t with player [
being the unique winner. Consider the profile s such that, for every ¢« € N, we have :

- S

First, let’s show s € Sp. Since for every 4,5 € N, i # j, U?j = 0, we have that
K(h') = N and k(h') =n. If T — 1+ 1 < n — 2, then, following s, V! remains equal to
Id,. Repeating the reasoning directly establishes s € Sy.

Next, let’s show s € SgpnE by showing that s satisfies the one-stage deviation principle.
We distinguish two kinds of histories h! and check that, conditional on h! reached, no player
i € N has an strict interest in unilaterally deviating from the continuation strategy s;|h!

at date t and conforming to s;|h! thereafter 4.

'4See one-stage deviation principle for finite horizon games in Fudenberg and Tirole (1991)[pp 108-110].
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First, consider a subgame T'(N, geomplete, I')|h* with k' such that T —t 4+ 1 > k(h') — 2.
Let | = Minc(ptyj. Following (si|h!)icn, the action profile (af)icn is such that (a) for
every i ¢ K(h'), al = H, (b) for every i € K(h")\{l}, a} = P and (c) a} = H. Therefore,
we get K (h't1) = {I} 5. As a consequence, following (s;|h!)ien in T'(N, geompiete, T) |,
the game I'(N, geompiete, I') ends at ¢ with [ being the unique winner. Obviously, player [ has
no interest in unilaterally deviating from s;|h? at time t. In addition, in Jeomplete, the action
of every i ¢ K(h') has no effect in T'(N, geompiete, T)|h! '®, so there is no strict interest in
deviating from s;|h! at t. Finally, consider a deviation of a player j € K (h?)\{l}. A strategy
s;-\ht that agrees with s;|h’ except at date ¢ consists in Hiding at ¢ instead of Passing On.
If period t = T, then player j has no interest in such a deviation as the game would end
at 7" with no winner instead of ending at T with player [ winning. If period ¢ < T, then
at time t + 1 after player j's deviation, we have K(h*1) = {41} and k(h**1) = 2 which
implies that k(h'*')—2 = 0. Sincet < T, we have T —t =T — (t+1)+1 > 0 = k(h!T!)—2.
As a consequence, following (s;|h?);cn in the subgame that starts at ¢ + 1 after player j’s
deviation, every agent i # j Hides and player j Passes On. It follows that player [ is still
the unique winner but at time ¢ 4+ 1 instead of ¢ : if player j deviates, he then receives §*
instead of 6/~!. Conditional on A’ reached, we conclude that no player i € N has a strict
interest in unilaterally deviating from s;|h! at time ¢ only.

Finally, consider a subgame I'(N, geompiete, ') |h' with h? such that T—t+1 < k(h') — 2.
Following (s;|h!);en, the action profile (al);en is such that, for every i € N, af = H.
Therefore, we get k(h'™!) = k(h?). Since T —t+1 < k(h*) —2, we have T — (t + 1) + 1 <

k(hT1). As a consequence, following (s;|h!)ien in T'(N, geompiete; T)|h?, we have that for

every i € N, a™' = H yiedling k(h'*?) = k(h'*!). The same reasoning applies for every
' € [t + 2,T) meaning that following (s;|h');en, the game T'(N, geompietes T')|h" ends at T
with no winner. As mentioned in the previous paragraph, in I'(V, gecompete, T)|ht, players
i ¢ K(h') have no strict interest in deviating from s;|h! at t. For a player i € K(h'), a

strategy si|h! that agrees with s;|h! except at date ¢ consists in Passing On at ¢ instead of

151f a player i € K(h') Passes On at time ¢, then i ¢ K(h'™') since g is complete meaning that
Ni(geompiete) = N\{i} for every i € N.
16This is due to the fact that, in geompiete, @ Passed On item immediately reaches every player.
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Hiding. If a player i Passes On at time ¢, we get k(h*1) = k(h') — 1. Since h' is such that
T —t+1< k(h')—2, we have that T — (t+1) +1 < k(h') —1—2 = k(h**1) — 2. Therefore,
following (s;|h!);en in the subgame of T'(N, geompiete, I')|h" starting at ¢ + 1 after history
hi*Y we get for every i € N, aﬁ“ = H. Repeating the reasoning, we get for every ¢ € N,
at?

= H and so until date 7. Conditional on h! reached, we conclude that no player

i € N has a strict interest in deviating from s;|ht at time ¢ only. O

Proof of Lemma & : Directly from Lemmas 5 and 4. [J

Proof of Proposition 1 : Directly from Lemmas 1 and 3. O
1.7.2.  Equilibrium Sets of Winners

Proof of Proposition 2: Every s € Sy is either such that all the winners are critical agents
I7 or such that there is at least one non-critical agent who wins. We show that if g is
separable, then every s € Sy such that there is at least one non-critical agent who wins
is also such that there is at least one non-critical agent who loses. We prove that if g is
separable, then there exists a pair of non-critical players who cannot win together.

By definition (chapter 3 in Tutte (2001)), if ¢ is separable, then there exists a pair
(g91,92) of connected subnetworks of g such that g1 U go = g and g1 N go is a critical agent
of g, say k. Letting V1 be the agents in g; and Ny the agents in go, we get Ny U Ny = N
and Ny N Ny = {k}. From Theorem 1, there exists at least one agent in Ni\{k} who is
non-critical in g1, say 4, and at least one agent in Ny\{k} who is non-critical in go, say j.
It follows from the fact that g;\{i} is connected that (g1\{i}) U g2 = g1 U g2\{i} = ¢\ {7}
is connected '® meaning that 7 is non-critical in g. The same is true for agent j. We show
that ¢ and j cannot win together at a date t < T

Assume that ¢ and j win together at ¢t meaning that, at ¢, player ¢ has every item [ € Ny
and player j has every item [ € Nj. Since k is on every path between ¢ and j, every item
[ € Ny was held by k at least one period before it was held by ¢ and every item [ € Ny

was held by k at least one period before it was held by j. Since Ny U Ny = N, there was a

1"Using Theorem 1, it is obvious that if all the winners are critical agents, there is at least one non-critical
agent who loses.
¥ The union of two connected networks is a connected network (Chapter 1 in Tutte (2001)).
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period t <t — 1 in which k held the n items. This contradicts the fact that 7+ and j win

together at t. [J

Proof of Proposition 8 : Split into the two following lemmas. [J

Lemma 6 In I'(N, gecompiete; '), every s € Syg N Sw is such that the winner is unique.

Proof : First, we show that every s € Sy is either such that the winner is unique or such
that there are n winners. Consider a strategy profile s € Sy such that the game ends
with strictly more than one winner, say players ¢ and j win together at ¢. Since ¢ wins at
t, ¢ holds every item [ € N\{i} at that date. Since the network is complete, every agent
k € N also holds every item [ € N\{i} at t. Applying the same reasoning to j, we get that
players ¢ and j both winning at ¢ implies n players winning at that date.

Next, we consider a strategy profile s € Sy such that there are n winners at ¢ and
show that s ¢ Syg. If n players win at t, every ¢ € N has Passed On at least at one date
t' < t. Nevertheless, since the n players have not won at ¢t — 1, at least two agents, say 1
and j, had not Passed On yet at time ¢ — 1 but both Pass On at ¢ !?. Given that ¢ Passes
On at t, j has a strict interest in deviating from Passing On so that he can be the only

winner at t. [J

Lemma 7 In I'(N, giree, T'), every s € Sxg N Sw is such that the winner is unique.

Proof : We show that there does not exist a strategy profile s € Syg NSy such that a pair
of players, say ¢ and j, win together at t. The proof has three parts depending on the way
7 and j are linked. Recall that a tree network is such that there is a unique path between
any pair of distinct agents.

1st Part : Assume that ij & giree- Let a player k be on the unique path between i and
J. Since giree is separable, one can find a pair (g1, g2) of connected subnetworks such that
g1Ugo = g and g1 N go is the critical agent k. Using the same reasoning as in the proof of

Lemma 2 with i € N1\{k} and j € Na\{k} 2°, we get that there does not exist a strategy

191f there is a unique i who has not Passed On yet at time ¢ — 1, then player i is the unique winner at
time ¢ — 1.
20The difference is that i is not necessarily non-critical in g1 and j is not necessarily non-critical in go.
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profile s € Sy such that ¢ and j win together at t.
2nd Part : Assume that n = 2 and ij € giree- The tree network involving 2 players is
complete. From Lemma 6, every s € Sy N Syg is such that the winner is unique.
3rd Part : Assume that n > 3 and ij € giree. Consider a strategy profile s € Sy N SyE

such that ¢ and j win together at £. In a tree with n > 3 players, two connected agents
are either two critical agents or one is critical and the other is non-critical. Assume agent
i is critical. It follows that there exists a pair (g1, g2) of connected subnetworks such that
g1Ugo =g and g1 N go is agent <. Let N; be agents in g; and N» agents in go and assume
that j € Nao\{i}. Since players i and j do not win at ¢t — 1, they both lack at least one item
at that date. Let’s show that every item that agent ¢ lacks at £ — 1 is held by j at that
time and vice versa. We first focus on items that player j € No\{i} lacks at t — 1 :

First case : j lacks an item k € Ni. As i is on every path between j € Ns and
k € Ny, the item k& must be held by 7 at ¢t — 1 for j to hold it at t.

Second case : j lacks an item k € No\{i} and j is on the unique path between k and
1. Since j is on every path between k and i, if j lacks the item k at ¢ — 1, it cannot reach
i at time t. This contradicts the fact that ¢ and j win together at ¢.

Third case : j lacks an item k € No\{i} and j is not on the unique path between
k and ¢. First, we show that network g being a tree implies that ¢ is on the unique path
between players j and k 2'. We assume it is not and show that this contradicts the fact
that j is not on the unique path between 7 and k : if 4 is not on the unique path between
j € No\{i} and k € Ny\{i}, then the unique path between j and k exists within the
subnetwork g, and therefore passes trough a player [ € No\{i} 2. Since ji € giree and j
is linked to k through [, then j is on the path between ¢ and k. Since this path is unique
by definition of a tree, j is on the unique path between k£ and ¢. We conclude that ¢ is on
the unique path between k and j. Therefore, the item k& must be held by ¢ at ¢ — 1 for j
to hold it at t.

From the previous cases, we get that ¢ and j winning at ¢ implies that items that j

2INote that this cannot be deduced from g¢’s decomposition into gi and g2 as k and j both belong to Na.

22Note that, by definition of the split of the network g into networks g1 and g2, the unique path between
j and k cannot go through an agent [ in N;\{¢} without going through player ¢ since ¢ is on every path
between players from the sets N1\{i} and N2\{i}.
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lacks at time ¢t — 1 are held by 7 at that time. Using a symmetric reasoning 23, we get
that items that 4 lacks at t — 1 are held by j at that time. Therefore, the only way ¢ and
j can both win at t is that they both Pass On at t. If they both Pass On, each of them
wins 6°1(1 + £). If one of the two Passes On, the other earns §~1(1 4+ R) by Hiding. A

strategy profile s € Sy such that two players win together at ¢ is not in Syg. O
1.7.3.  Equilibrium Duration before Success

Minimal Duration

Let W (g, T)|ht denote the set of potential winners in I'(N, g, T')|ht. Given h!, players
in W (g, T)|h! are the ones who can hold the n items at a date ¢t < T' if every player Passes

On in every period of play in [t,T].

Lemma 8 Consider a history ht of T'(N, g, T) such that there exists a playeri € W (g, T)|h!
who has Hidden in every period t' € [1,t — 1]. There exists a continuation strategy profile

s|ht that is a NE of T'(N, g, T)|h' and such that player i is the unique winner of T'(N, g, T).

Proof : Let s|h! be such that i Hides in every period of play whatever the history and such
that every j # i Passes On in every period of play whatever the history. Following s|h!, i
is the unique winner of I'(N, g, T). It is straightforward to check that no player ¢ € N has

a strict interest in unilaterally deviating from s|h?. O

Proof of Proposition 4 : Pick a player i € W(g,T). Consider a strategy profile s € S that
results in a final history h%@)+1 = (a1, ... a%(9)) such that :

eforallt<T,al=H

e every player j # i starts to Pass On in every period at a specific date t; = e;(g) —
d;ij(g) +1 (that depends on his distance to player j) : az- = H for all t < tj and az- = P for

all ¢ Z tj.

?3When focusing on items that player i € N1\{j} lacks at ¢t — 1, we also distinguish three cases. The
case in which 4 lacks an item k& € N1\{4} is similar to the previous Second case. The case in which 4 lacks
an item k € N2\{¢} and j is on the unique path between k and ¢ is similar to the previous First case. The
case in which i lacks an item k£ € N2\{i} and j is not on the unique path between k and ¢ is similar to the
previous Third case.



CENTRALIZING INFORMATION IN NETWORKS 71

The final history h%(@+1 is such that player i Hides in every period and the further a
player j is from player ¢, the earlier this player j starts Passing On in every subsequent
period. At every date ¢, the set of players N\{i} can be divided into two sets : {j # i :
tj > t}, the set of players who are “t-close” to ¢, in the sense that they have Hidden in
every period t' < ¢, and {j # i : t; < t}, the set of players who are “t-distant” from ¢, in
the sense that they have started to Pass On at a date ¢’ < t. According to h¢@)*! at the
beginning of every period t, every piece of information initially held by a “¢-distant” player
is held by at least one”t-close” player. Indeed, every player j # i who Passes On at time
t =1, i.e. who is such that d;;(g) = e;(g) is linked to at least one player k # i who Passes
On at time t = 2, i.e. one of his direct neighbor who is such that d;;(g) = e;(g) — 1 and
so one. At date t = e;(g), player i wins the game because he eventually receives the n — 1
items that he did not hold initially from all his direct neighbors. He is the unique winner
as every player lacks at least player ¢’s information item.

Let’s prove that s € SgpxE by showing that s satisfies the one-stage deviation principle.
We consider three kinds of histories h! and check that, conditional on h! reached, no player
has a strict interest in unilaterally deviating from the continuation strategy s;|h! at date ¢

and conforming to s;|h! thereafter.

(i) First, consider a history h! = (a!,...,a’™!) with t < e;(g) that describes the same
actions as h®(@*! for every i € N and every date ¢’ <t — 1. Let’s examine each kind of
player :

e Player i : Conditional on h!, player i has no strict interest in unilaterally deviating
from s;|ht, i.e. Hiding, at date t as being the unique winner at date e;(g) is player i’s best
possible outcome.

e Players in {j # i :t; < t} : Conditional on k', a “t-distant” player’s deviation from
s;|h! at date t consists in Hiding at that date. Then, the subgame that starts at time ¢+ 1
is such that player i is still able to win the game®*, i.e. belongs to W (g, T)|h*!, and has

Hidden in every period ¢ € [1,¢]. It follows from Lemma 8 that s can be constructed so

24 At date t, every information item initially held by a ”t-distant” player is held by a ”t-close” player. If
the ”t-close” players Pass On in every period from time ¢ on, player ¢ can hold the n item at t = e;(g).
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that s|h*! is a NE of I'(N, g, T)|h*! such that player 7 is the unique winner at a date
t > ei(g). Therefore, “t-distant” players have no strict interest in deviating unilaterally
from s;|h' at the single date .

e Players in {j # i : t; > t} : Conditional on h’, such a “t-close” player’s deviation
from s;|h' at date ¢ consists in Passing On at that date time. Then, the subgame that
starts at time ¢ + 1 is such that player ¢ is still able to win the game, i.e. belongs to
W (g, T)|h**!, and has Hidden in every period ¢’ € [1,¢]. It follows from Lemma 8 that
s can be constructed so that s|h*! is a NE of T'(N, g, T)|h**! such that player i is the
unique winner at a date t > e;(g). Therefore, such “t-close” players have no strict interest
in deviating unilaterally from s;|h! at the single date ¢.

o Player in {j #1i :t; =t : Conditional on ht, such a “t-close”player’s action at date
t = t;, namely 5j|ht, consists in Passing On. If one such player unilaterally deviates from
s;|h' and Hides at time ¢, it can have two different effects :

Ist case, i € W (g, T)|ht*T! : it follows from Lemma 8 that s can be constructed so
that s|hi™! is a NE of T'(N, g, T)|h'™! such that i is the unique winner at a date t > e;(g).
Therefore, player j has no strict interest in deviating from 5j|ht at t.

2nd case, i ¢ W (g, T)|h*™! : this case corresponds to a situation in which player i is
excluded from potential winners of T'(IV, g, T)|h!*™! by the fact that player j Hides at t. If
this single deviation prevents ¢ from winning, it must be that d;;(g) > T —t < e;i(9) =T,
i.e. the number of remaining periods after date ¢ is too small to enable player ¢ to get
player j’s information item before the end of the game. Conditional on h!T! reached,
player i has never Passed On in ¢ € [1,¢t]. It follows from d;;(g) > T — t that j cannot
hold the item i at a date ¢ € [t + 1,T] either. Therefore, player j cannot win and we
eventually have to check that the outcome of the game is such that player j has no interest
in deviating, because the game would end with a player different from ¢ winning earlier
than at t = e;(g) for instance.

First, let players ¢ and j be such that d;;(g) = 1. In that case, it follows from d;;(g) >
T —t that player j deviates from Passing On at date t; = ¢ = T" and that this deviation

yields to the game ending up with no winner - player j has never Passed On at a date



CENTRALIZING INFORMATION IN NETWORKS 73

t' < T and does not Pass On at time T - instead of player ¢ winning. Therefore, player j
has no strict interest in deviating from s;|h’ at the single date .

Next, let players ¢ and j be such that d;;(g) > 2, which means that there at least one
agents, say k, on the shortest path between player i and j. Since we have dix(g) < d;;(9)?°,
we have at least three players, namely ¢, j and k, who have never Passed On at the beginning
of the subgame I'(N, g, T)|ht*1. It follows that s can be constructed so that s|h!*! is a NE
of T'(N, g, T)|h*™! in which these three players Hides in every period whatever the history
in the subgame.?8 This leads to the game ending up with no winner instead of player 4

winning. Therefore, player j has no strict interest in deviating from s;|h’ at the single ¢.

(ii) Next, we consider histories h! = (al,...,a'"!) with ¢ > e;(g) + 1 that describe the
same actions as h®(9)+1 for every i € N and every t’ € [1,¢;(g)] : for any such history, the

subgames T'(NV, g, T)|h! do not exist as the game already ended at t = e;(g).

(iii) Finally, for any other history h', s can be constructed so that s|h! is a NE of
T(N,g,T)|ht. O

Maximal Duration

Proof of Proposition 5 is by induction. As in section 1.7.1, we fix n and consider games
I'(N,g,T), augmented games T(N', g',T), and modified augmented games T'(N', ¢, T).
Let two games I'(N, g,T) and T'(N', ¢/, T) form a complete pair (respectively a tree
pair) if the two connected networks g and ¢’ are such that g = ¢’\{n + 1} with g and
g’ two complete networks (respectively two tree networks). Given either I'(N, g,T) with
g complete or f‘(N’ ,¢',T) with ¢’ complete, one can always construct a complete pair.
Indeed, a complete ¢’ is built from a complete ¢g by linking agent (n + 1) to every agent
in g. Since ¢’ is complete, agent (n + 1) is non-critical in ¢’. A complete g is built from

a complete ¢’ by removing agent (n + 1) and all its links. Given either I'(N, g, T) with

%5d:,(g) and d;x(g) are the lengths of the shortest paths between player i and players j and k respectively.
Since k is one the shortest path between i and j, di;(g) = 1(¢, k) +(k, j) XXX define 1 XXX. It follows that
(i, k) = dij(g) — U(k,J) < dij(g). If dij(g) < dix(g), then I(i,k) < dir(k) which contradicts the definition
of dix(g).

261t is straightforward to check that such a profile is a NE of the subgame : given that two players Hide
in every period whatever the history, there is no strictly profitable deviation from doing the same for the
third agent.
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g being a tree or T'(N’, ¢/, T) with ¢’ being a tree, one can always construct a tree pair.
Indeed, a tree ¢’ is built from a tree g by linking agent (n + 1) only to agent n. Since
agent (n 4 1) has a unique neighbor in ¢/, he is non-critical in ¢’. A tree g is built from a
tree ¢’ by removing the non-critical agent (n + 1) and all its links %7.

The sets of strategy profiles such that the games I'(N’, ¢/, T) and T'(N’, ¢/, T) end up
with a winner at a date t < n (at date ¢ > n + 1, resp.) are denoted Séndgn and g’endgn

respectively (Sepa>n+1 and Sénd>n+1, resp.). To prove Proposition 5, we use:

Lemma 9 For every complete pair or tree pair of games I'(N,g,T) and f‘(N’,g’,T), we

have: Zf SSPNE Q Sgn_l, then SA/S'PNE Q Séndﬁn’—l'
Proof : Similar to Lemma 2. [J

Proof of Proposition 5 : As stated in Section 1.5.2, Proposition 5 is true for n = 2 and
n = 3. We next assume that Proposition 5 is true for n agents and we prove that it stays
true for n + 1 agents : we let I'(N’,¢', T + 1) be such that T+ 1 > n. If ¢’ is either tree
or complete, then Sgpyp € Sf, 4, From Proposition 3, we have that if ¢’ is either tree
or complete, every s’ € S5 is such that there is one non-critical agent in g’ who loses.
First, in I'(N’,¢',T + 1), we consider a strategy profile s’ € S5pyp such that player
(n + 1) loses and such that aj, ; = P. By definition of SPNE, the profile of continuation
strategy (si|h'?);en’ is a SPNE of the subgame I'(N’, ¢, T+ 1)|h’? with h'? = ((a/});en, P).
This subgame is equivalent to the augmented modified game T'(N', ¢, T) in the same sense
as in the proof of Lemma 1. By assumption, if g is tree or complete, then Sgpygr C
Send<n—1. Given [(N',¢,T), we can find a game I'(N, g, T) to get a complete or tree pair
and then deduce from lemma 9 that SQPNE - S’endgn,l. Therefore, (s}|h/?);en' € SgPNE
implies (si|h?);en' € gt/endgn—l which implies s" = ((s{'(P")), (si|h"))ien' € SLpgan-
Next, in T'(N’, ¢, T + 1), we consider a strategy profile s’ € Sgpyp such that player
(n + 1) loses and such that agﬂ = H. By definition of SPNE, the profile of continuation
strategy (si|h/?);en is a SPNE of T'(N’, ¢, T + 1)|W/? with h'? = ((a/})ien, H). As shown

in the previous paragraph, if g is tree or complete, then every SPNE played in a subgame

2T A critical agent in ¢’ is still critical in g.
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L(N', g, T + 1)|h/? that starts after a history h'?> = ((a/!);en, P) is such that the game

K]
['(N',¢g',T 4+ 1) ends up with a winner different from player (n + 1) at a time t < n.

/

end>n+1, then the fact that ¢’ is complete or a tree

Therefore, if we assume that s’ € S,
implies that player (n + 1) has an interest in deviating from s}, ; such that all 1= H to

a strategy s/, such that a//t | = P. Such a deviation would not make player (n + 1) win

but make him loose at t < n instead of ¢ > n + 1. This profitable deviation in the first

/

period of play contradicts s’ € Sgpyp Which is why s' & S 1o, 1.

Proof is completed by noting that every s’ € Sqpyp is either such that ag 1 =Hor

such that a), = P. O






Chapter 2

Strategic Communication Networks

2.1. Introduction

Many economic situations involve agents who share an interest in coordinating their
actions as well as in adapting them to an unknown state of the world. The analysis pre-
sented here considers this type of context but departs from the typical assumption that
agents agree on the state-contingent profile of decisions. Because their tastes may differ,
we let the interacting agents vary in their ideal proximity to the underlying fundamentals.
For example, the different divisions of an organization should coordinate their actions, as
well as adjust them to the environment of the firm. But, for a number of reasons, ranging
from local adaptation costs to career concerns, it is likely that idiosyncratic considerations
will influence each division’s actions.? Similarly, when advocating policies, members of a
political party will wish to best suit the situation, but also to be in line with the announce-
ments made by other members to ensure the cohesion of the party. At the same time,
activists may have heterogenous preferences regarding the right policy to implement.> We

here consider this type of coordination game of incomplete information in which every

'This chapter is based on Hagenbach and Koessler (2008), forthcoming in the Review of Economic
Studies.

2 A multi-divisional organization in which decisions must be adapted to local conditions and information
but also coordinated between divisions is considered in Alonso et al. (2008) and Rantakari (2008).

3Gee, for example, Dewan and Myatt (2008). ot
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player incurs losses from any mismatch between his action and both others’ actions and his
own “ideal action”. Every ideal action depends on the state and on a systematic positive or
negative bias, as in the cheap-talk or delegation models of Crawford and Sobel (1982) and
Dessein (2002). These biases vary across agents, and the profile of biases in the population

is a measure of the conflict of interest that they face.

The aim of this chapter is to analyze how agents strategically transmit to each other
the signals they privately hold about the fundamentals in these types of situation. In-
deed, before taking their payoff-relevant actions, we offer players the opportunity to send
costless, non-verifiable, and private messages about their information. Within this stylized
framework, the communication stage consists of a cheap-talk game in which every player
is, at the same time, a sender and a receiver, and we address the question of who truthfully
speaks with whom. Our precise focus is on how agents’ heterogeneity in ideal actions affects
decentralized and strategic communication between them. We propose to characterize the
transmission of private information by what we call a communication network, described by
a set of receivers for every player. A player is said to be a receiver of another player if the
latter truthfully reveals his private information to the former. A complete characterization
of the information transmission occurring in equilibrium is provided, which roughly boils
down to the intuitive statement that agents are more prone to communicate when their

ideal actions are more similar, and as the need for coordination becomes larger.

Informational incentive constraints require that no player have an interest in lying
about his type to his (endogenous) set of receivers. As in standard cheap-talk games
(e.g., Crawford and Sobel, 1982), this condition can be formulated as a condition on the
proximity between the sender’s and the receivers’ biases. In existing models extending
communication to multiple but strategically-independent decision-makers (see, e.g., Farrell
and Gibbons, 1989, Goltsman and Pavlov, 2009 and Galeotti et al., 2009a), one only has
to check that the sender has no incentive to lie to any single receiver. In our model, the
informational incentive constraints are more sophisticated than in these games since all
of the agents want to coordinate their actions. Due to the strategic interaction between

receivers, how each receiver reacts to a sender’s signal depends not only on this signal but



STRATEGIC COMMUNICATION NETWORKS 79

also on (his expectation over) the total number of receivers of this signal. At the same
time, since the sender also wants to coordinate his action with the receivers, any deviation
by the sender in the communication stage induces coordination costs that depend on both
the total number of his receivers and the number of receivers he lies to. Combined with
the assumption that loss functions are quadratic, our informational incentive constraints
require that the sender’s bias be close enough to the average bias of every subset of receivers.
Exactly how close biases should be is determined by some threshold that depends on both

the total number of receivers and the respective subsets of receivers the sender could lie to.

This feature reveals a key insight of our work: communication between two agents de-
pends on not only the conflict of interest between them, but also on the preferences and
the size of all the agents with whom they communicate. In particular, one main result is
that communication to a large group of recipients may occur in equilibrium even though
communication only to a strict subset of that group may not. To understand the intu-
ition, consider a simplified 3-player situation in which there is a unique informed agent
(the sender): the sender and one uninformed agent both want to choose an action exactly
adapted to the true state of the nature, and another uninformed agent is positively biased,
i.e. wants to choose an action higher than the true state. Assume that every player also
wants to coordinate his action with that of the two others. When the sender communi-
cates only to the biased agent, he has a strong incentive to under-report his type in order
to decrease this agent’s expectation about the state so that his action gets closer to the
sender’s ideal action. On the contrary, when the sender communicates to both the biased
and unbiased agents, he may have no incentive to jointly lie to both of them because their
average bias is small. He may also have no incentive to misrepresent his information only
to the biased agent. Indeed, both agents are now more responsive to the sender’s message
than when he communicates only to one agent, so this deviation would increase the disper-
sion of players’ actions and thus induce large coordination losses. It is worth noting that
the disciplinary effect that the coordination of multiple audiences has on communication
is different from the disciplinary effect of public communication identified by Farrell and

Gibbons (1989). They show that communication to two independent decision-makers may
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occur in equilibrium when communication is public, whereas information is revealed to nei-
ther decision-maker when communication is private. Our disciplinary effect of coordination
appears even though communication is not public and relies on the fact that the receivers
we consider are not independent decision-makers.

We provide sharp predictions regarding equilibrium communication networks for several
configurations of preferences. First, when players’ biases are uniformly distributed we
show that a player’s tendency to communicate increases with the proximity of his bias to
the average bias in the population. Communication is therefore typically not symmetric:
centrists tend to influence the decisions of the other players more because they transmit
their information truthfully to more distant players than do extremists, with this effect
becoming stronger as the need for coordination increases. When the coordination motive is
very strong, middle-biased players may communicate to all of the other players even with a
wide dispersion of preferences, while other players may never truthfully report their private
information. Second, when players are arranged in groups with the same preferences, we
again show that information transmission across groups is typically asymmetric: members
from the larger group tend to communicate more easily to members of other groups than
do members of a smaller group. That is, large groups of agents tend to influence the
decisions of small groups by credibly reporting information, while there is less truthful
communication from small to large groups.

The chapter is organized as follows. The model is presented in Section 2.2, which also
shows that strategic communication networks cannot be completely Pareto-ranked. Equi-
librium communication networks are analyzed and illustrated in Section 2.3, and Section 2.4

concludes. Most of the proofs are relegated to the Appendix.

2.2. Model

2.2.1. A Class of Coordination Games with Incomplete Information

Let N = {1,...,n} be a finite set of agents, with n > 2. Each agent chooses an action

a; € A; = R. The action profile is denoted a = (ay,...,a,). Each agent’s payoff depends
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on the action profile and a state of nature . Before the game starts, nobody knows the
state of nature, but each agent i € N receives a private signal s; € S; = {s;,5;} about 0,
where s; < '5;. We assume that agents’ types are independent and denote by ¢; € A(S;)
the prior probability distribution over agent i’s set of types, for every ¢ € N. When the

type profile is s = (s1, ..., s, ), the underlying state of nature is 0(s) € R.

Agent i’s payoff function is given by

wilan, ... an:0(s)) = —(1 — a)(a; — (s) — b;)? — —= > (ai - a;)”. (2.1)

The first component of agent ¢’s utility function is a quadratic loss in the distance be-
tween his action a; and his ideal action 6(s)+b;, where b; € R. We allow the bias parameter
b; to vary across individuals to reflect agents’ conflicts of interest with respect to their ideal
actions. The second component is a miscoordination quadratic loss which increases in the
average distance between i’s action and other agents’ actions. The constant a € (0,1)
weights both sources of quadratic loss, i.e. it parameterizes agents’ coordination motives
arising from the strategic complementarity in their actions. Without loss of generality,

players are indexed in increasing order of their biases: b; < --- < b,,.

We assume that the state of nature is the aggregated term 6(s) = > ;. si.* The
sum of players’ private signals is a good approximation to the payoff-relevant state in
many situations. In an organizational setting for instance, a signal s; for division ¢ may
represent division 4’s time, budget or expected benefit from a joint project (which is private
information), and the state that matters for the whole organization may be the total time,
budget or expected benefit of the project. More broadly, considering a state of nature which
is additive in types is a simplifying standard assumption in common-value environments,
especially in auction theory (see, amongst many others, Bulow and Klemperer, 2002, Mares
and Harstad, 2003 and Levin, 2004), in some models of lobbying with multiple experts (e.g.,

Wolinsky, 2002) or in organization theory (e.g., Jehiel, 1999). From a theoretical point of

“Note that the state can be any weighted sum of players’ types (since we do not make any assumptions
about the two possible values of each signal), and players’ signals are not assumed to be i.i.d. (they are
only assumed to be independent).
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view, assuming an additive state and independent types implies that the impact of player ¢’s
signal on the fundamentals, 5;—s;, which can be interpreted as the value of player ¢’s private
information, is independent of others’ signals. It follows that in our analysis we abstract
from any effects that the correlation and the degree of complementarity between players’
signals may have on informational incentive constraints. We focus instead on the effect of
players’ coordination motives and preference heterogeneity. The robustness of our results
to this independence property are discussed and related to the literature at the end of

Subsection 2.3.1.
2.2.2.  Communication Game

Before the coordination game described above is played, but after each player has learnt
his type, a communication stage is introduced in which players can send costless and private
messages to each other. More precisely, every player ¢ can send a different message mf € M;
to every other player j # i, with M; denoting the (non-empty) set of messages available
to player i. Let m; = (mf)];,,gZ € (M;)"! be the vector of messages sent by player i, and
m' = (mz)#l € I, Mj = M_; the vector of messages received by player i.

The information transmission occurring during the cheap-talk extension of the game
will be characterized by a communication network, whose directed links represent revelation
of private information from one player to another. In order to focus on the presence or
absence of such information-transmission links between the agents, we restrict the analysis
to pure communication strategies and abstract from the partial transmission of information
generated by random strategies.> As we only consider two possible types for each player,
it follows that any message from player ¢ to player j will either be fully revealing or non-
informative. We consider that a communication link is formed from ¢ to j when ¢’s message
to j is fully revealing. Without loss of generality, we assume that message spaces are binary:

M; = {mv m}

®We do not exclude the existence of non-trivial mixed equilibria, as in the discrete quadratic version of
Crawford and Sobel (1982), but the full characterization of such equilibria is quite difficult since we have
to consider the possibility that any combination of players randomize over their messages, for any possible
combination of receivers.
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Player ¢’s communication strategy is a profile o; = (ozj )ji with

Let Jg(mg | s;) be the probability (0 or 1) that player ¢ send the message mf to player j
according to his strategy o; when his type is s;.

Since each player 4’s utility function is strictly concave with respect to a;, his best
response is necessarily unique, so we can consider without loss of generality pure second-

stage strategies. Player i’s second-stage strategy is a mapping
T; - SZ X (Mi)n_l X M,Z' — Ai,

where 7;(s;, m;, m?) is the action chosen by player i when his type is s; € S;, the vector
of private messages m; = (mi )j#i € (M;)"™! was sent, and the vector of private mes-
sages m' = (mé)#i € M_; was received. Let 7(s, (m;)ien) = (7i(si, mi, m?))ien be the
corresponding action profile.

As is usual in cheap-talk games, the set of Nash equilibrium outcomes in our model
coincides with the set of sequential equilibrium outcomes because messages off the equi-
librium path can simply be treated as synonyms of equilibrium messages. Hence we do
not have to specify a complete belief system: an equilibrium of the communication game

is simply a strategy profile (o,7) = ((0)ien, (7:)ien) satisfying the following properties:

(i) For all i € N, and s; € 5;,

where g_i(s—;) =[] 4;(s;)-

(ii) For all i € N, m; € (M;)"~! and m® € supp[o? ],

(s, ms, m') € arg max Z pi(s_i | m) u ((Tj(S]‘, (aj—i(sj),m;), (afi(s_i),mg)))#i,ai;é?(s)) ,
‘ ‘ S_;€ES_;
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I al(m?]s;)q;(s;)

where pri(s—i | m') = 1L = ot

A communication network, that characterizes a communication strategy profile (o;);en,

is denoted by (R;)ien, where, for every player i, the set of receivers

Ri={j € N\{i} : 0](s;) # 0] (3:)},

is the set of individuals to whom player ¢ truthfully reveals his type. Let |R;| be the number
of individuals who learn player i’s type in the communication stage. Using the terminology
of network theory, R; corresponds to player i’s (out)neighborhood and |R;| to player i’s

(out)degree.

2.2.3.  Second-Stage Equilibrium Characterization

The quadratic formulation of players’ utility functions, together with the independence
of players’ types, enable us to obtain a unique and tractable second-stage equilibrium
characterization whatever the information structure generated by the communication stage.
Indeed, as in Calvo-Armengol and Marti (2009) who consider the same utility functions but
without heterogeneity in biases, it can be shown that our payoffs admit a potential that
represents common interests for all players. The corresponding common-interest game
satisfies the sufficient conditions in Marschak and Radner’s (1972) team theory for the
equilibrium to be unique and linear. More precisely, we show in Appendix 2.5.1 that, given
a profile of types (s;)ien and a communication strategy profile characterized by (R;)ien,

the second-stage equilibrium strategy of each player ¢ € N is uniquely given by:

a1 [R)E(sy) + (1= a)(n = 1)s;
GZ—Z n—1—alR,| 2 Blsj)+ (2.2)
JeL JEI;

where I; = {k : i € R} U {i} is the set of signals which are known by player i after the

communication stage, I; = {k : i & Ry }\{i} is the set of signals which are not known by



STRATEGIC COMMUNICATION NETWORKS 85

player ¢ after the communication stage, and

[(n—1) —(n—2)a]b¢+a2#i bj
n+a-—1 '

P =

(2.3)

Player i’s second-stage equilibrium action has three components. The first component
is a weighted sum of j’s actual type, s;, and the expected value of j’s type, E(s;), for
each player j whose type is known by player i (including himself). The weight put on the
actual type of player j increases with the number of players who know j’s type, |R;|. This
is because a player who wants to be coordinated with the others has a greater incentive
to act according to a signal when many other players act according to the same signal.
In other words, the larger the set of receivers, the more the sender and those receivers
choose an action which is responsive to the sender’s private information. This is one of the
key effects that will drive our results regarding efficient and equilibrium communication
networks. The second component of player i’s equilibrium action corresponds to the sum
of the expected values of j’s type for each player j whose type is not known by player <.
The last component adjusts the action of player ¢ with respect to the bias profile. This
increases in all players’ biases, with more weight being put on player i’s own bias, b;, as

the coordination motive decreases.

2.2.4. Efficient Communication Networks

Before characterizing the networks that arise as equilibria of the communication game,
we consider the efficiency of communication networks. The following proposition compares
players’ ex ante expected payoffs as the communication network expands, assuming that
equilibrium actions are played in the second-stage game.® While an increase in the size of
player i’s set of receivers is always strictly beneficial for player ¢ and for these receivers,

this increase always makes the players who do not learn player i’s type strictly worse off.

Proposition 6 Consider two communication networks R = (R;, R—;) and R’ = (R}, R_;)

As in Crawford and Sobel (1982), it is not possible to compare players’ expected payoffs at the interim
stage.
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such that |R;| < |R}|.

i) Every player j € R U {i} is strictly better off, ez-ante, with the communication
network R’ than with the communication network R;

ii) Every player j € N\({i} URY) is strictly worse off, ez-ante, with the communication

network R’ than with the communication network R.

Proof. See Appendix 2.5.2. m

The intuition of this result is the following. Consider one sender’s private signal. As
we have observed in the previous subsection (see Equation (2.2)), when the number of
players informed about this signal increases, they become more responsive to it. While this
increase benefits informed players whose actions are now better coordinated and adapted to
the state, uninformed players suffer larger miscoordination losses, and are therefore worse
off.

This result implies that, in general, communication networks cannot be ranked in the
sense of Pareto. In particular, defining a communication network R’ = (R});en as more in-
formative than R = (R;);en if R; C R} for every i € N (with at least one strict inequality),
a more-informative communication network does not Pareto dominate, in general, a less-
informative communication network. However, using Proposition 6 iteratively, we obtain
that the complete communication network (R; = N\{i} for all i € N) Pareto dominates
every other communication network.

The next proposition shows that, even if it can be harmful for some players, the overall
social-welfare effect of enlarging the set of receivers of every player is always positive. Social

welfare is defined as the sum of individual utilities: w(a;0) = >,y ui(a;0).

Proposition 7 If the communication networks R’ = (R.)ien and R = (R;)icn are such
that |R}| > |R;| for all i € N, with at least one strict inequality, then welfare is strictly
higher, ex ante, with the communication network R’ than with the communication network

R.

Proof. See Appendix 2.5.3. =
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In particular, if a communication network R’ is more informative than R, then welfare

is strictly higher with R’ than with R.

Remark : Our simple informational framework, in which the impact of a player’s signal
on others’ beliefs about the state is independent of others’ information, enables us to state
that welfare increases with the size of receiver sets. Note however that if the impact of
a player’s signal on others’ beliefs decreased with the amount of information they already
had, then welfare would depend not only on the number of receivers but also on how evenly

receivers are distributed across players (see Galeotti et al., 2009a).

2.3. Equilibrium Communication Networks

In this section we provide a full characterization and the general qualitative features of
equilibrium communication networks, and derive a number of comparative-static results.
We examine how a large number of receivers with strong coordination motives can disci-
pline communication, which is one main novelty of the present work. In particular, we
show that there may exist an equilibrium in which a sender reveals his information to a
large group of recipients, whereas there is no equilibrium in which he does so to a strict
subset of that group only. We also show that players who are more central in terms of
preferences communicate more and have a greater impact on the decisions taken. These
features are illustrated in two major configurations of preferences. When players’ biases are
uniformly distributed we show that an individual communicates more and to more distant
individuals as the proximity of his preference to the average preference of the population
increases. When preferences are the same within groups, but differ across groups, the
impact of group size on communication again produces an interesting result: information
transmission across groups is typically asymmetric, since players from the larger group

communicate more easily to members of the smaller group than the reverse.
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2.8.1. Full Characterization

Our main theorem provides a full characterization of the communication networks that
arise as equilibrium outcomes of the cheap-talk stage of the game. In short, the theorem
states that a player truthfully reveals his information to a group of players if his taste is
not too different from the average taste of every subset of that group. More precisely, there
exists an equilibrium network in which player i’s set of receivers is R; C N\{¢} if and only
if, for every subset of players in R;, the average bias of the players in the subset is close

enough to player ’s bias.

Theorem 2 There exists an equilibrium network in which player i’s set of receivers is

R; € N\{i} iff for all R, C R; we have

ZkeR; i
|Ri]

(n—1+a)(n—1-alR}|)
2(n—1)(n — 1 —a|Ry|)

b; — (gi — §i)' (24)

Proof. See Appendix 2.5.4. m

To understand the intuition of this characterization, observe that when a sender’s bias
is close to the average bias of the receivers, a lie about his type may move these receivers’
actions too far from the sender’s ideal point. On the contrary, if the distance between
the sender’s bias and the average bias of the receivers is substantial, then the sender has
an incentive to over-report or under-report his type so that the receivers’ actions become
closer to his ideal action. Since private communication allows the sender to lie to any
subset R} of the set R; of receivers, informational incentive constraints require that the
sender’s bias be close enough to the average bias of every subset R, C R;.

The exact proximity between the sender’s and the receivers’ biases required for truthful
communication depends on the threshold given by the RHS of Equation (3.1). It is worth
noting that this threshold depends on the numbers of receivers |R;| and |R}|. In existing
models of cheap talk to multiple audiences who do not interact strategically in the decision
stage (e.g., Farrell and Gibbons, 1989; Goltsman and Pavlov, 2009; Galeotti et al., 2009a),

the proximity of players’ biases required for truthful communication depends only on the



STRATEGIC COMMUNICATION NETWORKS 89

information structure and on some game parameters (here, 5; — s;, @ and n). Hence, with
independent decision-makers, a necessary condition for truthful information transmission
from a sender to a set of receivers is that, for every member of this set, there exists an
equilibrium in which the sender transmits his information truthfully to this member only.
In contrast, in our model, whether communication from a sender to a given receiver can be
sustained in equilibrium depends on the whole set of players to whom the sender truthfully
reveals his information. In particular, the incentive to communicate to a receiver not
only depends on the conflict of interest between the sender and this receiver, but also on
the number and the preferences of all the receivers to whom the sender sends a truthful

message.

To understand why the RHS of Equation (3.1) depends on |R;| and |R}|, observe two
differences between a cheap-talk model with independent decision-makers and ours. First,
since the equilibrium actions of players in R; depend on ¢’s signal and others’ actions, they
react differently to i’s signal depending on the total number of receivers |R;|. Second,
the sender also wants to coordinate his action with his receivers’ actions. Hence, when he
deviates and sends the wrong signal to a subset of receivers R, C R; (this deviation cannot
be observed by any player different from player ¢ himself), the coordination costs induced
by that lie depend on the size of R]. Precisely, the threshold of the RHS of Equation (3.1)
is decreasing in |R}|, meaning that it is less costly for the sender to lie to large subsets R;

of R; than to small ones.

As an illustration, and for future reference, consider a game with n = 4 players, o =

1/2, and assume that every player has the same value of private information, given by

6|1

S5 —8; = % The RHS of Equation (3.1) in Theorem 2 simplifies to 36—\Ri\‘ It follows
that player ¢ reveals his type to all of the other players if for all k,1 € N\{i},
., b b b
bi—% <3, |bi— ’“‘2“ <4, and |b; — by <5. (2.5)
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Similarly, player i reveals his type only to players in {j,k} C N\{i} if

b; —

bj—l-bk
2

S 3, and ’bz — bj‘, ’bz — bk’ S 3.75. (2.6)

Finally, player i reveals his type only to player j # i if [b; — b;| < 3.7 It appears clearly
that the conditions ensuring that player ¢ truthfully communicates with j depend on the
whole set of receivers to which j may belong. Given a set of receivers, we can also see that

the thresholds on the RHS decrease with the size of the subset considered.

The origin of one main insight of our work is given by the following observation: given
|R;|, the RHS of Equation (3.1) is increasing in |R;|. That is, the conditions given by
Theorem 2 on the proximity between i’s bias and the average bias of the strict subsets R] C
R; of receivers become weaker as the set of all receivers, R;, is larger. The intuition is that,
as we had already seen in the second-stage equilibrium characterization (Equation (2.2)),
as | R;| increases, receivers are more responsive to whatever the sender is revealing to them.
But the more responsive receivers are to a message by the sender, the less the latter has
an incentive to over-report or under-report his information as it may affect the actions of

the fixed set of receivers Rg too much.

This feature implies that when the informational incentive constraints are satisfied for
information transmission to a set of receivers, these constraints are not necessarily satisfied
for information transmission to a strict subset of these receivers only. In particular, one key
effect revealed by our model is that there may exist an equilibrium in which an individual
reveals his true type to a group of players whereas there is no equilibrium in which he
reveals it only to strict subsets of this group. As an example, consider the bias profile
b = (—4.1,0,3.8,4.1) in the previous four-player game. There is then an equilibrium
communication network in which player 2’s set of receivers is Ry = {1,3,4}, but there is

no equilibrium communication network in which player 2’s set of receivers is a strict subset

of {1,3,4}.

"For example, with the bias profile b = (b1, bz, b3, ba) = (0,3.8,4.8,9), (R:)ien = (0,{3},{1,2,4},0) is
the most informative equilibrium communication network.
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The fact that communication to a large group of recipients may occur in equilibrium
even though communication to a small subset of that group may not relies on the receivers’
need for coordination. This feature, therefore called the disciplinary effect of coordination,
will be illustrated for particular configurations of biases in Subsection 2.3.4. Note that this
disciplinary effect of coordination differs from the disciplinary effect of public communica-
tion identified by Farrell and Gibbons (1989) and further analyzed recently by Goltsman
and Pavlov (2009). Indeed, our effect does not rely on the public nature of a sender’s
message and appears even when communication is private.

To see how coordination motives make large equilibrium communication networks feasi-
ble when intermediate communication networks are not, it is instructive to look at extreme
situations. When there is almost no coordination motive (o — 0), incentive constraints
are as in a model without strategic interactions in the decision stage: the condition for R;

to be an equilibrium set of receivers for player ¢ reduces to

S; — S

|bl — bj| < , for all j € R;.

That is, there is an equilibrium in which player ¢ truthfully reveals his information to
the players in R; if and only if, for every agent in R;, there is an equilibrium in which
player ¢ truthfully communicates with that agent only. This is because when the need
for coordination vanishes, the responsiveness of the receivers’ actions to ¢’s signal and the
sender’s coordination costs mentioned above no longer depend on the number of receivers.

Consider now the opposite situation in which coordination costs are extremely high
(o — 1) and let player ¢ transmit his information to all the other players (R; = N\{i}) so
that the responsiveness of players’ actions to player ¢’s signal is maximal. In that case, the
incentive compatibility of Theorem 2 for player 7 reduces to

ijéi b

n—1

~2(n-1)

b; — (32' — §i)'

That is, the incentive compatibility conditions ensuring that player ¢ does not misrepresent

his information to strict subsets of receivers are irrelevant. In particular, full revelation
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of information from player ¢ to all the other players is possible whenever i’s bias b; is

Zj;éi bj
n—1

close enough to the average bias of the other players, , whatever the distribution
of players’ biases. The intuition is that, with extremely high coordination costs, player ¢
never wants to lie about his type to only a subset of the other players, as, if he does so,
his action cannot be perfectly coordinated with both the players to whom he lies and the
players to whom he reveals his true type. This also means that as the weight of the coor-
dination motive tends to one the conditions for full information revelation from any player
are equivalent to the conditions for full information revelation were communication to be
public. Indeed, if communication were public, informational incentive constraints would by
definition be weaker than under private communication: the only possible deviation from a

message sent publicly would be to jointly lie to the whole audience of players, while private

communication enables the sender to lie to any subset of these players.

As shown in Theorem 2, each player’s equilibrium communication strategy does not
depend on other players’ communication strategies. To obtain the intuition for this inde-
pendence property, consider a strategy profile in which some player (say, player 1) reveals
his type to players in R;. This strategy is optimal if, whatever his type, player 1 has no
incentive to lie to some or all players in R;. Now consider the (unobservable) deviation
that consists in player 1 lying to all players in Ry (the intuition is exactly the same when he
lies only to a subset of the players in R;). Player 1’s deviation affects player 1’s expected
utility by changing (i) the second-stage actions of players in R;, who now act in believing
player 1’s wrong type instead of the true one and (ii) player 1’s best reply to the latter
actions. As can be seen from the (linear and additive) form of second-stage equilibrium ac-
tions given by Equation (2.2), the change in the actions of the players in Ry is independent
of what they learn about the types of players other than 1. This relies on our specific utility
functions, on the additivity of the state and also on the independence of players’ types.®

Consequently, player 1’s best reply to other players’ actions and player 1’s expected utility

8 As an extreme example consider the situation in which some player j # 1 is almost perfectly informed
about player 1’s type, i.e. s; and s; are strongly correlated. Then, when players in R; know player j’s
signal, i.e. players in R also belong to R;, player 1’s message only has a limited impact on players’ actions
(and thus, on player 1’s expected payoff), whereas if player j does not reveal his type to players in Ri,
then player 1’s signal has a stronger impact on the actions of players in R;.
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are affected by the change in the actions of players in R; independently of the information
transmitted by other senders. In contrast, Austen-Smith (1993, Proposition 1) shows that
the incentive for an expert to reveal truthfully his type to a decision-maker depends on the
communication strategy of the other expert. While we assume that types are independent
and the state is additive in types, in Austen-Smith (1993) players’ signals are independent
conditional on the state. Hence, in his model, the effect of the message of an expert on the
beliefs and action of the decision-maker depends on how well informed the decision-maker
is. More precisely, if the decision-maker is well informed, the expert’s message affects his
action only slightly, whereas if the decision-maker is poorly informed, the message will
affect his action significantly. This implies that communication from a given expert to the

decision-maker is more difficult when the other expert communicates with him.?
2.3.2.  Comparative Statics

The next corollary, easily deduced from Theorem 2, details the effect of the disparity of
players’ preferences, the coordination motive, and the information structure on equilibrium

sets of receivers.

Corollary 1 (Comparative Statics) The conditions under which information is trans-

mitted from any player i to any set of receivers are relaxed as:

(i) All biases are reduced by the same factor: (by,...,by) — 7(b1,...,by), where r €

[0,1);
(i) The weight on coordination motives, «, increases;

(111) The value of private information, s; — s;, increases.

Proof. Reducing the absolute values of the biases as in (i) clearly decreases the LHS of

Inequality (3.1). The RHS of Inequality (3.1) is also clearly increasing in 5; — s;. Finally,

9 (n=1-a|R}|) _ (n—1)(|Ri|-|R}])
da (n—1—alR;]) (n—1—a|R;|)?

it is increasing in « because >0. m

A similar statistical structure is used in, e.g., Morgan and Stocken (2008) and Galeotti et al. (2009a),
where the willingness of a sender to communicate with a player also declines in the number of senders
communicating with that player.
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The intuition for (i) is quite clear. As all the biases become more similar to each
other, the conflict of interest between all players falls, so informational incentive constraints
become weaker as in existing cheap-talk models.

Point (ii) is not as direct as (i) since, in our framework, it is the need for coordination
that itself results in incentive conflicts between players. Indeed, were there no need for co-
ordination (a = 0), an equilibrium with perfect communication would always exist because
a sender would be indifferent between revealing truthfully his information or not. When
« is positive his message has an impact on his payoff through the modification of others’
actions, and misrepresenting his type may be beneficial when his bias is significantly differ-
ent from the receivers’ biases. However, the higher is «, the more costly it is for the sender
to coordinate his action to the actions of the receivers he lies to. The effect of the need for
coordination on strategic information transmission is also analyzed in Alonso et al. (2008)
who consider a two-division organization in which the decisions of the divisions are both
responsive to local conditions and coordinated with each other.!? Decision-makers’ payoffs
are similar to those we consider, but the conflict of interest regarding decisions is modeled
differently. In Alonso et al. (2008), each division manager has an ideal action that depends
on an idiosyncratic state, and maximizes a weighted sum of his own division’s profit and
that of the other division. Under decentralization, they also show that an increase in the
need for coordination facilitates communication between the two divisions. On the con-
trary, under centralization, when a benevolent principal makes all decisions by relying on
cheap-talk statements from the divisions, an increase in the need for coordination worsens
communication.

Finally, the intuition of (iii) is standard. As we already observed, the value of player i’s
information, 5; — s;, measures the impact of his message on the receivers’ belief about the
state. So, when 5; — s; is small, his influence on the receivers’ actions is also small and his
incentive to lie about his type is greater. In the extreme case in which 3; — s, tends to zero,
the incentive constraints of player ¢ would be similar to the condition for full revelation of

information in a model with a continuum of types, as in Crawford and Sobel (1982), which

103ee also Rantakari (2008).
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is never satisfied except when players’ preferences exactly coincide.

We can also note that, for a given sender and a given set of receivers, increasing the total
number of players, n, strengthens the conditions on the proximity between the sender’s and
receivers’ biases, since the RHS of Equation (3.1) is decreasing in n.!! The intuition of
this effect is similar to the intuition of (iii) in the previous corollary: as the total number
of players rises, the influence of the actions of a fixed set of receivers is smaller, so the
sender’s incentive to misrepresent his type is greater. To account for variations in the size
of the population, we could describe the state as the average of players’ signals, instead of
the sum (this is irrelevant when n is fixed, since we impose no restrictions on s; and s;).
Equivalently, we can replace each signal s; of every player 4 by t. In this case, the RHS of
Inequality (3.1) always tends to zero as n increases, whatever the set of receivers, so that
information transmission becomes impossible between any pair of players who do not have
the same preferences. This effect is similar to that observed by Morgan and Stocken (2008,
Proposition 1) who show that truthful reporting is never an equilibrium for a sufficiently

large sample of constituents.

2.3.3. General Properties

By taking a closer look at the way in which the informational incentive constraints given
in Theorem 2 intersect, some general properties of the equilibrium sets of receivers can be
established. First, we can always construct larger equilibrium sets of receivers by adding

agents whose biases are closer to the sender’s bias than to those of any of his receivers.

Corollary 2 If there exists an equilibrium network in which player i’s set of receivers is
R;, then there also exists an equilibrium network in which player i’s set of receivers is
R; U {j} for every player j whose bias is closer to i’s bias than to those of any player in
R;, i.e.,

lb; —bj| < by —bk|, VkeR;. (2.7)

"'The sign of the derivative with respect to n is 2a(n — 1)|R}| — | Ri||R}| — (n — 1)*(|Rs| + 1 — |R})),
which is always negative.
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Proof. See Appendix 2.5.5. m

In particular, the above corollary implies that there always exists an equilibrium com-
munication network in which, for every player ¢, his set of receivers R; includes all the
players with the same bias b;. Note that if condition (2.7) holds for only some players in
R;, but not for all of them, then the result may not hold. To see this, consider again the
four-player example introduced in Subsection 2.3.1 with the bias profile b = (0,2.2,3.2,3.7).
In this case, there is an equilibrium in which player 1’s set of receivers is Ry = {2,4} but
no equilibrium in which it is {2, 3,4}.

Second, it is obvious from Theorem 2 that the existence of an equilibrium network in
which player i’s set of receivers is {j} implies the existence of an equilibrium in which his
set of receivers is {k}, for every k whose bias is between b; and b;. Applying the previous

corollary, this yields:

Corollary 3 If there exists an equilibrium network in which player i’s set of receivers is
{j}, j > 1, then there also exists an equilibrium network in which player i’s set of receivers

is R; for every R; C{i+1,...,j}.

Proof. Directly from Theorem 2 and Corollary 2. =

Note that if players ¢ and j have the same value of private information, i.e. 5, —s; =
8j—8,, and if there is an equilibrium network in which player i’s set of receivers is {j}, then
there is also an equilibrium network in which player j’s set of receivers is {i}. Combined
with the previous corollary, this reciprocity property implies that if all players in {7,...,j}
have the same value of private information, then any communication network among these
players is an equilibrium network. In particular, full revelation of information between all
of the players in {i,...,j} is an equilibrium.

Under some conditions, larger communication networks can also be constructed by
forming the union of existing equilibrium networks. As stated in the following corollary,

combining two equilibrium sets of receivers R; and R; for player ¢ yields an equilibrium set

of receivers R; U R; for player ¢ if R; and R; do not overlap, i.e. R; N R, = 0.
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Corollary 4 If there is an equilibrium network in which player i’s set of receivers is R;,
and an equilibrium network in which player i’s set of receivers is Ri, and if Ry and R; do
not overlap, then there is also an equilibrium network in which player i’s set of receivers is

R; U Rz
Proof. See Appendix 2.5.5. =

More generally, the proof of the previous corollary reveals that a sufficient condition
for the result to hold is that the distance between i’s bias and the average bias in R; U RZ
is smaller than the distance between i’s bias and the average bias in R; or RZ When this
condition does not hold, the union of the two equilibrium receiver sets does not necessar-
ily yield another equilibrium receiver set. To see this, consider once more our four-player
example with the bias profile b = (0,2.2,3.2,3.7). Here, there is an equilibrium net-
work in which player 1’s set of receivers is Ry = {2,3} and an equilibrium network in
which it is Ry = {2,4}, but no equilibrium network in which player 1’s set of receivers is
R U f%l = {2,3,4}. This implies that, in general, there may not exist a “maximal” equilib-
rium communication network which is more informative than all the other communication
networks.

Necessary and sufficient conditions for the complete, Pareto dominant, communication

network to be an equilibrium are easily deduced from Theorem 2. More precisely:

Corollary 5 (Complete Network) The complete communication network is an equilib-

rium network if and only if for all i € N and R; C N\{i},

| R

(n—14+a)(n—1-a|R;)
2(n —1)*(1 — «)

b; — <

(5 — 1) (2.8)

Proof. Directly from Theorem 2. m

Note that when all players have the same value of private information, the set of
these conditions is reduced, since we only have to check that the incentive constraints
are satisfied for the two extreme players (player 1 and player n). In that case, a simple

sufficient condition for the complete network to be an equilibrium is that there exist an
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equilibrium network in which player 1’s set of receivers is Ry = {n} and player n’s set of

receivers is R, = {1}.
2.83.4. Illustrations

In this subsection, we analyze two particular configurations of biases and obtain further
results regarding the structure of equilibrium communication networks. Our aim is also
to illustrate the disciplinary effect of coordination identified after Theorem 2. First, we
consider uniformly-distributed biases, assuming that players’ biases are equidistant: ;41 —
b; = B > 0 for every ¢ € N. Second, we consider two-spike biases situations in which the
players are partitioned into two groups, L = {1,...,l} and M = {l +1,...,n}. Players
in the first group have a bias by, and players in the second group have a bias bys, with
by — b, = 8> 0. For both configurations of biases we know from Corollary 1 (i) that in
equilibrium the maximal number of receivers of every player falls with the distance (.

To focus on the impact of players’ positions on their communication behavior, we
assume from now on that they all have the same value of private information: 5, —s; = A
for all 7. In addition, we restrict our attention to equilibrium communication networks
R which are maximal (i.e., such that there exists no equilibrium communication network

more informative than R) and such that, for every i, players in {i} U R; are consecutive.'?

Uniformly-Distributed Biases

When biases are uniformly distributed, observe that, for any size |R;|, the distance
between i’s bias and the average bias of the |R;| players who are the closest to ¢ in the
population falls with the proximity of i’s bias to the average bias in the whole population.

Hence, from the equilibrium characterization of Theorem 1 we have:

Corollary 6 If players’ biases are uniformly distributed, then the mazimal number of equi-
librium receivers increases with the proximity of a sender’s bias to the average bias in the

population.

2By consecutive, we mean that there is no player in N\({i} U R;) whose bias lies between the biases of
any two players in {¢} U R;. From Theorem 2 it is easy to show that such an equilibrium always exists.
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After stating Corollary 5, we noted that full revelation of information between all
players is possible whenever the two extreme players reveal their information to all the
other players. With uniformly-distributed biases, the previous corollary further asserts
that middle-biased players (i.e. players whose biases are close to the average bias in the
population) communicate more than extremists (i.e. players whose biases are far from the

average bias in the population).

The impact of players’ position on their communication behavior is even stronger than
that stated in Corollary 6. If every player i, whatever his position, communicates to all
players whose biases are less distant than some threshold d > 0, ie., R; = {k # i :
|b; — b| < d}, then it is clear that central players communicate more than extremists since
H{k #j :|bj —bx| < d}| > [{k # i : |bi — by| < d}| whenever j is more central than i.
The next corollary shows that not only the number of receivers increases with the sender’s
centrality, but so does the distance between the sender’s bias and his receivers’ biases. In
other words, central players can truthfully communicate with agents with whom they have

higher conflicts of interest than less central players can do.

Corollary 7 If players’ biases are uniformly distributed and R; = {k # i : |b; — b| < d}
is an equilibrium set of receivers for some player i and some distance d > 0, then R; =
{k # j:|bj —bi| < d} is also an equilibrium set of receivers for every player j who is more

central than i. In general, the reverse is not true.

These results are illustrated by Figure 2.1 which plots the number of receivers |R;| as
a function of the coordination motive o and player ¢’s position, when n =7, A = 2 and
8 = 0.6. The figure shows how the number of receivers increases with players’ centrality
whatever the value of a, and with a whatever the players’ position. When « is high
enough (in this figure, when o > 0.3) we also see that more central senders communicate
to more distant receivers. For example, when a = 0.5, the most central player (player 4)
communicates to all the other players, while players 1 and 7 only communicate to a single

player.
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Figure 2.1: Number of equilibrium receivers with n = 7 players, uniformly-distributed
biases, # = 0.6 and A = 2.

To understand better the role of the coordination motive on the impact of players’
position on their incentive to communicate, consider again extreme situations. When
o — 0 we have already observed that the equilibrium condition for R; to be a equilibrium
set of receivers for player ¢ reduces to maxjep, |b; — b;| < % whatever player ¢’s position.
So, in that case, only the distance between a sender and one receiver matters for incentive
compatibility, and the reverse of Corollary 7 is true. More generally, when o > 0, the

equilibrium condition for a single receiver, namely

n—14+a«

B Sy ™

is the same for every sender, but will depend on the sender’s position for more than two

receivers. To see this, notice that incentive compatibility for the less central players (player
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1 and player n) to communicate to r; € {1,...,n — 1} receivers can be written as:

(n—1+a)(n—1—ar})

A, Vel .}
(n=1)2r —ri+1)(n—1—ar;) ri € 4L}

B <

It can be shown'? that for every a € (0,1) this incentive compatibility condition becomes
strictly stronger as r; increases. That is, it is always more difficult for extremists to com-
municate to a larger group than to a smaller group, even when the coordination motive is
very strong. On the contrary, for strong enough coordination motives, incentive compati-
bility conditions for more central players are not necessarily monotonic in the number of
receivers. That is, large receiver sets may be equilibrium outcomes for more central players,
while small receiver sets are not. For example, when n is odd, the incentive compatibility
condition for the central player ¢ = "T“ is always strictly weaker for r; 4+ 1 receivers than
for r; receivers when r; < n — 1 is odd. As « tends to one the condition always holds
for r; = n — 1 receivers, but continues to represent a constraint for r; < n — 1 receivers.

In particular, a central player may reveal his information to all players, while an extreme

player may transmit his information to none.

Two-Spike Biases

When players are partitioned into two groups, full revelation of information amongst all
players in the same group is always an equilibrium. In addition, Corollary 2 implies that if
aplayer ¢ € L (i € M, resp.) transmits his information to players in R; in equilibrium, then
there is also an equilibrium in which 4 reveals his information to players in R; U (L\{i})
(R; U (M\{i}), resp.). Hence, there is a unique maximal equilibrium network, such that
the set of receivers of each player i € L includes all players in L\{i} and the set of receivers
of each player i € M includes all players in M\{i}.

Since it is always possible for players to communicate to players with the same bias,
and since the RHS of the informational incentive constraint (3.1) is increasing in the total

number of receivers, a player’s informational incentive constraints are relaxed as the relative

13 A formal proof is available from the authors upon request.
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number of players with the same bias increases. More precisely:

Corollary 8 In the mazimal equilibrium network with two-spike biases, a player’s set of
recetvers increases, and includes more players from the other group, as the relative number

of players in his own group increases.

Proof. Directly from Theorem 2 and the observation above. m

In particular, this corollary implies that intergroup information transmission is higher
for players in the larger group than for players in the smaller group. As a simple example,
consider the situation in which v — 1. Then, there is complete communication from players
in group L if and only if § < ﬁA, which becomes easier to satisfy as the size of this
group, [, increases.

This property does not extend to more than two groups of players. For example, in the

four-player example, when o« = 0.9 and 5; — s; = 1 for all 7, the condition for player 7 to

reveal his information to all players is

Z G0 bj

b — =T <065, b —
2| <

<26, and |b; —by| <4.55. (2.9)

Hence, when b = (—3,0,0,3) there is an equilibrium in which players with zero bias
transmit their information to all of the other players, but the first inequality does not
hold when b = (0,0,0, 3). Actually, when there are more than two groups of players with
the same bias, the corollary above only applies, in general, for players in the two extreme

groups, i.e., the group with bias b; and that with bias b,.

2.4. Conclusion

In this chapter, we consider a class of economically-relevant coordination games in
which information about a common state of nature is distributed among the players. Each
of these players chooses an action by trading off the benefit of it being close to his own
“ideal action”, which depends both on the state and on an idiosyncratic bias, with that

of being close to the other players’ decisions. Before taking such actions, the players are
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offered the opportunity to communicate with each other in a decentralized and strategic
manner. In this setting, our focus is on the way heterogeneity in preferences shapes strategic
information transmission. We provide explicit conditions on the proximity of players’ biases
for information to be revealed by any sender to any group of receivers. Precisely, we show
that an agent reveals his information to a group as long as this group is large enough and
his ideal action is close enough to the average ideal action of every subset of agents in this
group.

Similar coordination games with incomplete information have already been analyzed
in the literature, but under the assumption that there is no conflict of interest between
agents regarding the ideal state-contingent action profile (see, for example, Morris and
Shin, 2002 and Angeletos and Pavan, 2007). When agents’ goals are aligned, but there
are physical or cost constraints on the number of communication links between agents,
another literature has identified the most efficient communication structures; see, amongst
others, Marschak and Radner (1972), Radner (1993), Jehiel (1999), Chwe (2000), Calvo-
Armengol and Marti (2007, 2009), and Morris and Shin (2007). In these papers, efficient
networks are characterized under physical communication constraints. On the contrary,
our approach studies the equilibrium communication networks that arise under strategic
communication constraints. To that extent, our work mainly borrows from the literature on
strategic information transmission based on Crawford and Sobel (1982) but then proposes
a framework in which every player is at the same time a sender and a receiver.

One key insight that stems from our characterization of equilibrium communication
networks is that large networks may be easier to sustain in equilibrium that smaller ones.
In other words, we show that the need for coordination of multiple interacting audiences
can discipline communication, in the sense that truthful communication may be feasible
in a large group but not in strict subsets of this group. A similar phenomenon is ob-
tained in a team-theoretic framework in Dessein and Santos (2006), which also considers a
coordination-adaptation situation with quadratic costs, but where communication is non-

strategic.'* Another main result is that agents who are more central in terms of preferences

141y that model, a communication link requires “bundling of tasks”, which is assumed to be costly.
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communicate more and have a greater impact on the decisions taken. Note that such a
prediction contrasts with those of models of costly communication (e.g., Banerjee and

Somanathan, 2001) where there is a tendency for extremists to express more voice.'?

The way in which communication links have been constructed in the current analysis
completely departs from usual non-cooperative network-formation games in a number of
ways.'0 In typical games of this type, players’ strategies mainly consist in listing desired
contacts, given the exogenous costs and benefits of direct and indirect connections. In
addition, since it is commonly admitted that much of the information required for economic
decision-making is exchanged via networks of relationships, the value of these connections
is often interpreted as being informational. However, whether agents have an effective
interest in transmitting information once a link exists has not yet been investigated to
the best of our knowledge. By way of contrast, we explicitly model agents’ informational
frameworks and derive the equilibrium links directly from the informativeness of agents’
communication strategies. Given that the connection conveys truthful information, the
benefits from linking are then endogenously determined by the way in which the information

transmitted is used in the decision stage.

2.5. Appendix

2.5.1.  Second-Stage Equilibrium Characterization

We first characterize the unique equilibrium action profile under complete information.

The utility function of player i (see Equation (2.1)) can be rewritten as (minus a constant):

2 le} 9
a; 2(1—@)(9+bi)+m;aj—ai - n_lg(aj) . (2.10)
J7FT JF#

Bundling a few tasks together may reduce profits relative to stand-alone tasks (no communication links at
all), while bundling a lot of them together may actually improve profitability.

'5n their model, individuals only differ in terms of beliefs about a binary state of nature. Centrists are
those who put relatively equal weight on the two states of the world, while extremists firmly believe in one
or the other of the states.

163ee Jackson (2008a) for an extensive survey of such models.
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The best response of each player ¢ to a_; is given by:

ai(as; 0) = (1—a)(9+bi)+%2aj. (2.11)
J#i

If a; is a best response to a_;, then it follows from Equations (3.14) and (2.11) that

player ¢’s utility takes the following simple form (minus a constant):

wilai(a_i;0),a_i;0) = (a;(as; 0)) — nf =Y (a)” (2.12)
J#

The system of equations formed by Equation (2.11) can be written as:

ay L e R =Y, (1 —a)(0+b1)
I B = R
: 1)
an ey T 1 (1— )0+ by)
I

«

o' o a n—=1)—(n—-2)«

Therefore, when every player knows the state of nature, equilibrium actions are given

by:

[(n—1) = (n—2)afb; +ad ;b

T =0+ B, for every i € N. (2.13)

Since players’ best responses are linear, exactly the same algebra shows that, under

incomplete information, and whatever the information structure generated by the commu-
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nication strategy profile, expected equilibrium actions are uniquely characterized by

E(a;) = E(0) + B;, for every i € N. (2.14)

The uniqueness of the linear equilibrium identified in (2.2) is proved as in Calvo-

Armengol and Marti (2009, Theorem 1). We define the following payoff function:

@
v(ar, ..., an;s) = —(1 — ) Z (ai — 0(s) = b;)* — =1 ZZ (ai —a;)®.  (2.15)
1€EN i€EN jF#i
The set of equilibria of our second-stage coordination game is the same as that in
the corresponding Bayesian game with identical agent preferences in which every player’s

payoff function is given by (2.15), as the best responses are identical in both games.

Theorem 4 of Marschak and Radner (1972)[167-168] provides a sufficient condition
for the equilibrium of a Bayesian game with identical agent preferences to be determined
uniquely by a system of linear equations when the set of states of the world is finite and

payoff functions are given by:

A(s)+2 Z wi(s)a; — Z vi;(s)aiag, (2.16)

i€EN i,jEN
where the A, p; and v;; are all real-valued functions of the state of the world, s € S. It is

easily checked that the payoff function (2.15) can be written as (2.16), with

As) = —(1—a) S (0(s) + b)?

1EN

wi(s) = (1 —a)(0(s) + b;) ,

The sufficient condition in Theorem 4 of Marschak and Radner (1972) then boils down to
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the n-square matrix [v;]; jen being positive definite. The determinant of [v;l; jen is:

R R
(63
-2 1
_ o : __a
n—1 ' n—1
e o ! Lo
e
0 1+-2% 0
—(1-a) i = (1-a)(1+ 2yt
0 n—1
0 0 1-1-%

The first equality results from the replacement of the elements in the first column by
the row sum, and then taking out the common factor (1 — a). The second equality is
obtained by subtracting the first row from every other row. We are left with an upper
triangular matrix whose determinant is just the product of the diagonal term, which is
positive. Similarly, we deduce that the leading principal minors of [v]; jen are positive.

The matrix [v;;]; jen is thus positive definite.

Next, by explicitly solving some particular incomplete-information situations as above,
it is possible to guess the general form of the unique second-stage equilibrium actions. To
check that the solution given by Equation (2.2) is indeed the equilibrium when the com-
munication strategy profile is characterized by (R;)icn, fix some player [ € N and suppose
that the second-stage equilibrium action of every player i # [ is given by Equation (2.2).
We then show that player I’s best response to this profile of second-stage actions (a;);x; is

also of the form of Equation (2.2).

After the communication stage, for all i € N, recall that I; = {k : i € Ry} U {i} is the
set of players whose signals are known by player i, I; = {k : i & Ry }\{i} the set of players
whose signals are not known by player ¢, and let E;(-) = E(- | {sg : k € I;}) be player i’s

expectation operator conditional on the set of signals that he knows.
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The expected payoff of player [ after the communication stage is as follows:

(1—OéEl Zsj_bl

JEN 1#£l

a;)?], (2.17)

so his best response is given by:
a=(1-a) Zs] —i—ZESj + b +—ZEI a;). (2.18)
JEL j€T, i#l

From now on and for every i € N, we use the notation r; for |R;|. Using Equation (2.2)

for i # [, player I’s conditional expectation of player i’s action is given by:

an—1—r;)E(s;) (I —-a)(n—1)s,

Ela) — J J J

1(a:) Z n—1—or; +,Z n—1—ar;
jerl; J Jelﬂfz J

1—a n—l
E(
Py n_l_% + D B(s))
jeLNI, jel;

Summing over all agents other than [, we can write:

Y Ey(a;) =

i£l
(1-— —1)s;
_Z Z n—l—ow“ 2 +Z Z n—l—ar Z Z n—alia'r)
i#£l jel;NI i#l jern, 1#l jel;NI; J
+Z Z _711_ 5] _,_Z Z 3])+Z Z 5] —I—ZB 219
A jernt, i iA el A jel,nl, il

Every signal s; known by player [ is known by r; players other than / and not known by
n —1—r; players different from [; every signal s; not known by player [ is known by r; + 1

players other than [ and not known by n — 2 — r; players other than /. This enables us to
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deduce that:

Z Ei(a) = Z , a(n —1—r;)E(s;) ‘1‘2 'r]—i—l —1—1r/)E(s;)

n—l—ar

il jel; jeli n-1-or
(I—-a)(n—1)s; l—a)(n—l)E(sj)
+ZT] n—1-ar; +Z n—1-—ar;
JEL ]GIZ
+ Y (n—1-r)E(sj)+ > (n—2-71;) E(s;)+ Y_ Bi.
JEL jel, 1#£l

-y ril —a)(n = 1)sj + (n = 1)(n = 1 —75)E(s;)

4 n—1-—ar;
JEL

+ Y (n=1)E(sj)+ > By (2.20)

jETl i#£l

In addition, we have:

ZB‘ _ a(n—l)bl-l-(n—l)ziﬂbi'

2.21
n+a-—1 ( )

Plugging (2.21) and (2.20) into (2.18) and simplifying, we obtain player !’s optimal

action, which takes exactly the same form as that in Equation (2.2).
2.5.2.  Proof of Proposition 6

The ex ante equilibrium payoff of player j € N is given by:

Uj = —(1-a)Var(a; =Y si—bj) — (1 —a)[Ela; — > _ s —b;)]?

iEN 1EN

S Z Var(a; — am) — n(i 1 Z[E(aj —an)%

m#j mj

It follows from (2.14) that E(a;) = > ,cn E(s;) + Bj, so we have:

Uj; = —(1—0¢)Var(aj—z si)—% Z Var(a;—any)—(1—a)[Bj—bj]*~ a Z[Bj—Bm]Q-

1EN m#£j n—1 m#j

We consider two communication networks R = (Rj)gen and R’ = (R} )gen such that

R; # R} and Ry, = R) for all k € N\{:}. That is, R and R’ are identical except that
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player i has a different set of receivers in R’. Player 1 is fixed throughout the analysis. The
ex ante equilibrium payoff of every player j € N with the communication network R (R/,
resp.) is denoted by U; (UJ’-, resp.). Given the communication network R (R’, resp.), the
second-stage equilibrium action of every player j € IV is denoted by a; (a;», resp.). For all
J € N, given a strategic communication network R (R’, resp.), let I; = {k: j € Ry} U {j}
(I; ={k:j € R} U{j}, resp.) denote the set of players whose signals are known by player
jyand I; = {k:j & RpP\{j} (I'; = {k : j & R.}\{j}, resp.) the set of players whose

signals are not known by player j.

For every player j € N, we have:

Uj—Uj=(1-a) (Var(a} - ZSZ) —Var(a; — Zsﬂ)

ieEN 1EN
(2.22)
o /! /
+ — Z Var(a; — ay,) — Z Var(a; — ap)
m#j m#j
The second-stage equilibrium action a; given by (2.2) enables us to write:
aln—1—r)[E(s)) — si]
Var(aj—Zsi) = Var Z n—1—an +Z[E(Sl)—sl] + B;
1EN ZEI]' lEIj
The independence of signals yields:
Var(a; — Z Si)
1EN
B an—1-—r)s B an—1-r)\>
= Z Var m + Z VG/T(Sl) = Z m VGT(SZ) + Z VGT(SI)

lel; lETj lel;

S <M>2Var(sl)+ 3" Var(s) + 1fi € Ij] <M)2 Var(s:)

1 - 1 — o
ey N ol 1T\ {i} " ari

167]'

+ 1[i € Tj] Var(s;),

where 1[i € I;] is an indicator function that equals 1 when player j knows the signal s;,
and 1[i € I;] is an indicator function that equals 1 when player j does not know the signal

si- A similar equation holds for Var(aj — >,y i), when the communication network is
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R'.

The two communication networks R and R’ that we consider are such that I;\{i} =

I\{i} and I;\{i} = I";\{i}, so that for all j € N we have:

Var(a; — Z s;) — Var(aj — Z s;) = Var(s;)

1€EN 1€EN

1ie 1) <O;§”+1__a:))2+ 1[i € ;] - 1fi € 1] <H>2—1[¢em].

When the communication network is R, for all j € N and m # j, we have, from (2.2):

Var(aj —am) = Y (—(1 —)n - 1)>2 Var(s)+ 3 <—(1 —a)ln = 1))2 Var(s:)

‘ n—1—ar £ n—1—ar
lEIjﬂIm leljﬂlm
_ (1-—a)(n—1))? (1—a)(n—1))?
= Z < o p— Var(s) + . Z P — Var(s))
le(I;NTm)\{i} le(j0Im)\{i}

2
* <%> [10i € Ij N In] + 1fi € T N In]] Viar(si).

A similar equation holds for Var(aj — aj,,) when the communication network is R'.

The two communication networks R and R’ are such that (I;NI,)\{i} = (L NI)\{i}

and (I; N 1,,)\{i} = (I'; N I},)\{i}, so for all j € N and m # j we have:

Var(a; — ay,) — Var(a; — am)

1icelinl'y,)+1[iel’;NI, e I.NT =8
(1 - a)(n—1))? [i € I J+1iel;NL] 1fie NIy, +1[i € ;N 1) Var(sy).

(n—1—ar})? (n—1—ar)?

(2.24)
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Plugging (2.23) and (2.24) into (2.22), we obtain: U; — U} =

(1-a) [1[@'6[]’-] <O;§”%1__a:)>2+ 1fieI';] —1[i € I}] (H>2—1[ie@]

toa(l-a)(n—1))

(1[i elNTy+1[iel;N1L] 1€ I;NT,) +1[i € I, N1,
mj

(n—1—ar))? - n—1—ar)? ) Var(s;).

(2.25)

We next focus on the particular case in which |R;| < |R}| and let L = R; N R, be the
set of agents who belong both to R; and R,. The set L is fixed throughout the analysis,
and |L| = 1. Let |R;| = 4, |R}| = rl, |R;\l| = ri —l and |R/\l| = r, — 1. To evaluate the sign
of U = U ]’-, in order to establish who is better off and who is worse off under the networks

R and R', the set N of players is divided into the following five types:

e (i) Players who belong to R} and also to R;. For every such player j € L, we have
i€ljand i€ I}

e (ii) Players who belong to R. but not to R;. For every such player j € R/\L, we
have i € I; and i € I

e (iii) Players other than player ¢ who belong neither to R} nor to R;. For every such
player j € N\(R; U R, U {i}), we have i € I; and i € I';.

e (iv) Players who do not belong to R; but belong to R;. For every such player
j € R\L, we have i € [; and i € T';.

e (v) Player i, for whom we have ¢ € I; and i € I].

(i) For every player j € L, the set of players other than j can be divided into four

disjoint sets of players: {i} U L\{j}, N\(R; U R, U{i}), R\L and R;\L. We have:
e for every player m € {i} UL\{j}, i € I, and i € I ;

e for every player m € N\(R; U R, U {i}), i € I, and i € I',, and we have |N\(R; U

RiU{i})|=n—1—ri—r.+1
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e for every player m € RI\L, i € I,;, but i € I/, ;
e for every player m € R\L, i € I, but i € I',,,.

Since i € I; and i € I}, Equation (2.25) simplifies to:

n—1-—r! n—1—r
Up=Uj = ol - L ! ). 2.2
’ / al —a) (n —l—arf, n—-1- a’m> Var(s:) (2.26)
Using 1/ ; btai g - (e=a)?(n=1)(ri—ri) ,
g r; > ri, we obtain U; — U} = o T—ar )T —ar)) Var(s;) < 0. Hence, for all

j € L, we have U; < U}

(ii) For every player j € R}\L, the set of players other than j can be divided into four
disjoint sets of players: {i} UL, N\(R; UR,U{i}), R\\(LU{j}) and R;\L. We have:

e for every player m € {i} UL, i € I,,, and i € I}, and we have [{i} UL| =1+ 1;

e for every player m € N\(R; U R, U {i}), i € I,, and i € I'p,, and we have |N\(R; U

RiU{i})|=n—1—r—r.+1;
e for every player m € RI\(LU{j}), i € I, but i € I}, );
e for every player m € R\L, i € I, but i € I',,.
Since i € I; and i € I}, Equation (2.25) simplifies to:

1 Oé(’l”i—l—l)
n—1—ar, (n—1—ar)?

Uj-U; = —(1- a)%(n —1) ( ) Var(s;) <0.(2.27)

Hence, for all players j € R;\L, we have U; < UJ.

(iii) For every player j € N\(R; U R, U {i}), the set of players other than j can be
divided into four disjoint sets of players: {i} UL, N\(R; U R} U {i,j}), R\\L and R;\L.
We have:

e for every player m € {i} UL, i € I,,, and i € I],, and we have [{i} UL| =1+ 1;

e for every player m € N\(R; U R, U {i,5}), i € I, and i € I'p;
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e for every player m € RI\L, i € I,;, but i € I/, ;
e for every player m € R\L, i € I, but i € I',,,.

Since i € I; and i € I';, Equation (2.25) simplifies to:

i1 ri +1
U~ U, = a(l —a)(n—1 & S ). (22
J J ol —a)(n—1) <(n —1—arl)2 (n—1-ar)? Var(s:). (2:28)
Using 7} > r;, we have (n_qgj;r{)g - (n_qij;ri)g] > 0. Hence, for all N\(R; UR;U{i}), we

have U; > U]’-.

(i) For every player j € R;\L, the set of players other than j can be divided into four
disjoint sets of players: {i} UL, N\(R; UR,U{i}), R;\\L and R;\(L U {j}). We have:

e for every player m € {i} UL, i € I,,, and i € I],, and we have [{i} UL| =1+ 1;

e for every player m € N\(R; U R, U {i}), i € I, and i € I',, and we have |N\(R; U

RiU{i})|=n—1—r;—r.+1
e for every player m € RI\L, i € I, but i € I,;
e for every player m € R\(L U {j}), i € I, but i € I'y,.
Since 7 € I; and i € fj, Equation (2.25) simplifies to:

1 a(r;+1)
n—1—ar, (n—1—ar)

U —U, = (1-a)*(n—1) ( 2> Var(s;) > 0. (2.29)

Hence, for every player j € R;\L, we have U; > U ]’

(v) The set of players other than i can be divided into four disjoint sets of players: L,
N\(R; UR;U{i}), R\\L and R;\L. We have:

e for every player m € L, i € I, and i € I ;
e for every player m € N\(R; U R, U {i}), i € I, and i € T'yy;

e for every player m € RI\L, i € I, but i € I,
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e for every player m € R;\L, i € I,,, but i € I'p,.

Since ¢ € I; and i € I], Equation (2.25) yields exactly the same difference as Equa-
tion (2.26). Hence, for player ¢ such that r; < 7}, we have U; < U]. This completes the

proof of Proposition 6.
2.5.83. Proof of Proposition 7

Consider two communication networks R = (R;, R—;) and R’ = (R}, R_;), such that
r; > r; and let L = R; N R}, with |L| = [. Ex ante expected welfare is the sum of ex ante

expected utilities. When the communication network is R/, expected welfare is given by:
W= MU+ ), U+ U
JER, JEN\(R;U{3})
When the communication network is R, it is given by:
w = Z U i+ Z U i+ U;.
JER; JEN\(R:U{i})

Using the fact that for all j € L, U; — U = U; — U], we write the difference W — W' as:

W-w' = ) W-Ul+ > =T+ WU+ Y U =Tl

jefiuL JEN\(R;UR]U{i}) JER\L JERNL
We have [{i} UL| =1+1, |[R\L| =7, =, |[R\L| = r, —l and |[N\(R; U R, U {i})| =

n—1—r; —r.+1. Using Equation (2.25) in the same way as in the proof of Proposition 6,

we obtain:

n—1-—r! n—1-—r
—-wW = 1— 1 (A ’ )
W —W a(l —a)(l+ )[n—l—arg n—l—am] Var(s;)

T;—f—l T+ 1
(n—1—-ar})? (n—1-—ar)

+a(1—a)Q(n—l)(n—l—ri—rg—l—l)[ 2} Var(s;)

—(1-a)n-1)( -1 [n — 11_ p~ + (na_(;ﬂi_—i—alr)iy] Var(s;)
(1= a)(n—1)(rs = 1) [n - 11_ e (no‘_(Ig_+;2{)2] Var(s;).
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After some simplification, we have W — W' =

— 3 n — 2 ar(s;
- LS DV (205214 ) — (04 ) + 2000~ (= 1) + (0= D0 =)

x
<0

Solving z = 0 in « yields the following discriminant: 4(n—1)%(r{—r;)?(1+r;)(1+7}) > 0.

1

(n—=1)[1—+/(A4r;)(1+7])]

(A4r)(1+r))—1

(n_l()l[i:nVV)((lfTTf))f(llwi)}. From r; > 1 and 7“2’- > 2, we deduce that a; < 0. From r; < n — 2

We have z > 0 if and only if o € [aq, @z, with a; = and ag =

and r} < n — 1, and the fact that ao is decreasing in r; and 7, we deduce that ay > 1.

Since a € (0,1), x is always strictly positive. Hence, W < W'.
2.5.4. Proof of Theorem 2

Consider an equilibrium in which each player i reveals his type to players in R; C N\{i}.

Without loss of generality, assume that each player ¢ sends to every player j € R; the

message m; = T when his type is §; and the message m] = m when his type is s;,
and sends the same message whatever his type to players outside R;. Given (R;);cn, the

second-stage equilibrium actions are given by (2.2).

Without loss of generality, we look for the conditions under which player 1 does not
deviate from his equilibrium communication strategy described above. First, assume that
player 1’s true type is s; = 1. In equilibrium, using Equation (2.2), the second-stage

action of every player i € Ry U {1} is given by

a = Z a(n_1_Tj)f(_8j1)j—o(;._a)(n_l)sj +ZE(5j)+Bi
JELN{1} !
+oz(n —1- rl)E(sll) +(1—a)(n—1)s
n—1—ar

jel;

, (2.30)

and the second-stage action of every player i ¢ Ry U {1} is given by

4 — Z a(n -1 —T])f(_sjl)j'o(éi— a)(n - 1)Sj + Z E(Sj) + B; +E(8112.31)
! JET {1}

Jjel;
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The relevant deviations for player 1 in the communication stage consist in lying to a
subset of players M C Ry, i.e. sending message m instead of m to players in M (and not
deviating towards the other players).!” Let m = |M]|, and denote by (a});cn the profile of
players’ actions after this deviation. Every player ¢ € M chooses action a} = g;, which is
given by replacing 51 by s; in (2.30). The action a; of every player i € N\(M U {1}) is
the same as that in the original equilibrium. Player 1’s optimal action in the second stage
is obtained from the best response of Equation (2.18) to (a});z1, and takes the following

form:

di=1—-a)| > s +5 + Y E(s;) +b +%ZE1(CL;). (2.32)

jen\{1} i€l i#l

Using the same reasoning as that used to obtain expression (2.20), we have:

E(s; 1—r;)E(s;)
ZEI( ZT] n—l—ar 2 +Z T]—i_l —1—](17“ :
J

i#l ]611 ]611
(1—a)(n—1)s; 1—a)(n—1
Y féli )i m _01)(_7% )$1
e n ar; n ary
(ri—=m)(1—a)(n—1)s (1—-a)(n—-1)E(s;)
+ n—1—ar +Z it n—1-ar;
]EIl
+ > (n—1-r))E(s;))+ > (n—2-r)) E(s;)+ > Bi.  (2.33)
Jjeh jeh i#1

Plugging (2.33) into (2.32), using (2.21) and simplifying, we obtain:

R N e R W
jen\{1} ! jelh
N am(l —a)s; +(n—1—am)(l —a)s;1 +a(n—1—711)E(s1)

n—1—ar;

+ By.(2.34)

We denote by V; the expected payoff of player 1 conditional on signal s; under the
original equilibrium, and by V/ his expected payoff conditional on signal s; when he deviates

by lying to players in M (and thus plays action a} in the second-stage game). Player 1

"Tn equilibrium, any message off of the equilibrium path is interpreted as exactly m or 7.
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does not deviate by lying to players in M if V{ —V; < 0. We have:

Vi-Vi=(1-a)E[@ Y s—b)"—(dh =) si—b)*|s1]

1eEN 1EN

L <Z El(@ —a;)* — (ay — a,)* | s1]

€M

+ > El@-@m)?—(af—@m)? | s1)+ > El@—a)?—(a) — @)’ 5]

1€R\M 1€EN\(R1U{1})

For the sake of simplicity, we examine separately the elements of the difference V{ —V;

and use the following notation for ¢ # 1:

s 0-an-Nl-Be) | oy Q-ae-DE)-s)

Zi =
n—1-ar;

JENI)\{1} Je(I1Nn)\{1}

Using (2.30), (2.31) and (2.34) and the fact that E[z; | s;] = B1 — B;:

o (s el s

n—1—ary

Y El@m-a) - (a)—a)|s1] =) E

2
S1
ieM ieEM

= -2 <(1 —a)(n—1—am)(5 —§1)> Z(Bl —B)-m ((1 —a)(n—1—am)(s; —§1)>2(2‘35)
> Bl@-a) - (@ -a)s]= Y E

n—1—ary : n—1—ar;
€M
81]
1€ERI\M 1€ERI\M

L, ((1 — a)am(s: - §1>) S By B~ (1 = m) ((1 — a)am(s; — §1>>2(2_36)

n—1—ar ) n—1—ar
1€ERI\M

n—1—ar;

(e <1—a>am<§1—§1>)2
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Z El@ —a)*— (a) —a;)* | s1] = Z E

iEN\(R1U{1}) ieN\(R1U{1})

(I-—a)ams; +(1—a)(n—1—am)s; — (1 —a)(n —1)E(s1)
a (Zi+ n—1-—ar )

(zi + (1-a)(n—-1)(51 — E(81))>2

n—1—ar

281]
p(UtemEs)) an_l_r)<<1—a><n—1><§1—E<sl>>>2

n—1—ar ) n—1—ar
iEN\(R1U{1})

(1—a)ams; + (1 —a)(n—1—am)s, — (1 — a)(n — I)E(sl)>2.
n—1—ary

—(n—l—rl)(

(2.37)

In addition, using

(1—a)am(s) —s)

@1—&’1:
n—1—ar;

and

22— al? = <a<n — 11— D)E(s1) + (1 —a)(n - 1)@)2

a; —a; =
! ! n—1—ar

B (am(l —a)s;+(n—1—am)(l —a)s1 +an—ry — I)E(sl)>2
n—1—ar;

+2< S~ el DB £ (-0 Ds | 3 E<sj>+31> ((=clemte —a)),

jem) n—1-—ar; el n—1-—nry
we obtain:
B (a1 — Zsi —b1)* = (a}) — Zsi —b1)?| 51
ieN ieN
=F [d% —a’12 81] —2F (dl —a’l)( Z S; + 81 +b1) S1
iEN\{1}

( n—ry—1) ! (_Sll)j'o(;l— a)(n — 1)§1>2 +2(B; — b —35) ((1 ‘n“lalm_(ig §1)>
(=

m(l—a)s;+(n—1—am)(1 —a)s; +a(n —r; — 1)E(51)>2.

(2.38)

n—1—ar

Next, we plug (2.35), (2.36), (2.37) and (2.38) into V{ — Vi and simplify. To simplify
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the part of the difference V{ — V; that deals with biases, note that:

_ _ — b, —a(n— )b + a4 b
(L-o)n-Dli—b) By — by — a(n—1)br+ad,b;

By — B; =
n+aoa-—1 n+a-—1

Finally, simple but tedious calculus yields:

VIV 20(1 — a)?(n — 1)(51 — 51) (Z by mb1> a(l— a)’m(n —1—am)(3; —§1)2.

L T Tt a— D —1—am) (n—1—ar)?

Hence, player 1 of type s = 51 does not deviate by lying to players in M C Ry if V/—V; <0,

le.:

B <b1— Zianbi) < (n—1+a)(n—1—am)(§1_§1). (2.39)

2(n —1)(n —1—ary)

Applying the same reasoning, player 1 of type s; = s; has no profitable deviation if|

for all M C Ry, the following condition holds:

Yiembi _ (n—1+a)(n—1—am)
b1 = mM = 2(n —1)(n —1—ary)

(51— 51). (2.40)

Condition (3.1) is obtained from (2.39) and (2.40).

2.5.5.  Other Proofs

Proof of Corollary 2. We have to show that for every R/ C R; U {j} we have:

ZkeR;/ b, (n—1+a)(n—1—arl) _
" ri : 2(n —1)(n — 1 — a(r; +1)) (5i = 5;)- (2.41)

If j ¢ R/, then (3.1) clearly implies (2.41), because the LHS is the same in both inequalities,
but the RHS is larger in (2.41). Now, let R/ = R, U {j} for some R, C R;. By (2.7), the
LHS of (2.41) is smaller than the LHS of (3.1). Since r/ = r}+1, it remains for us to check
that the RHS of (2.41) is larger than the RHS of (3.1), i.e

n—1—a(+1) _n—1—ar

> b= o?(r; — 1) >0, 2.42
n—1-—a(r;+1) " n—1—ar o (ri =) = (2.42)
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which is satisfied since r; > 7. =

Proof of Corollary 4. Let T, = R; UR;. For T! C T;, let R; C R; and R; C R; be such

n—14a)(n—1—ar) _—_— (n—1+4+a)(n—1-ar) 3 — s.
Smax{ 2(n—1)(n—1—0é7“¢) (z _z)7 2(’0—1)(”—1—0&7:1) (2 z)}
(n—1+ta)n—1-a(i+n) (- l+a)n-1-aff+r) .
Smax{ 2 DT aln /) S S D1t ) _’)}

n—14+a)(n—1-at)
2(n—1)(n—1— at;)

that T/ = R, U R). Since R; and R; do not overlap, we have:

< max{

Since R; and R; are equilibrium sets of receivers, Theorem 2 implies:

ZkeTi’ b,
t;

ZkeR; i
by — ———

%

Zkzeég by
P T T

T

b;

ZkeTi’ b

b,
3 t;

(gi - §i)7

where the last inequality comes from 7, 4+ 7; > t, and 7, 4+ r; > t,. Hence, by Theorem 2,

R; U RZ is an equilibrium set of receivers for player ¢.

Proof of Corollary 7. The equilibrium conditions for R; to be a set of receivers for

player ¢ can be written as:

max {

If j is more central than ¢, then for every x =1,... 7,

max {

From r; > r; we also have

m—14+a)(n—1—-az)

bi 2(n—1)(n—1—ar;)

> ker bk
_ kR T A, Yr=1,...r.
T

C|Ri| ==, R; C Ri} <

ZkGR; bk ZkER; bk
x T

bi — bj —

:yR;\_x,R;gRj}.

Rl =z,R; C RZ} —max{

(n71+a)(nflfax)A < (;LflJra)(nflfax)

2—T)(n—T—ar) —D(n—T—ar;) A for every x = 1,... 7,

So we obtain:

(n—1+a)(n—1-azx)
~ 2n—-1)(n—-1-ar)

A, Vax=1,...r.

(2.43)
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Next, for every x = r;,...r;, we have:

max {

(n—1+a) (n—14a)(n—1—ax)
2(n—1) A< 2(n—1)(n—1—arj)

2 ker; Or  2ker br

Ty

n—14+aw)

2(n —1) A

b;

b]’— <

: |R§| :$,R; - Rj} <

Usin A for every x = r;,...7r; we obtain:
s J

max {

Finally, from Inequalities (2.43) and (2.44) we deduce that R; is an equilibrium set of

n—1+a)(n—1-az)

bi 2(n—1)(n — 1 — arj)

ZkeRﬂ b
- A, Vx:m,...rj.
x

DR =z, R} gRj} <

(2.44)

receivers for player j. m









Chapter 3

Strategic Communication Networks :
How to Improve Information

Transmission 7

3.1. Introduction

As previously shown in Strategic Communication Networks (henceforth SCN), an in-
crease in information transmission is always beneficial, ex ante, in terms of welfare, defined
as the sum of individual utilities. We are therefore led to investigate whether other types
of strategic and decentralized communication extensions of the game introduced in SCN
could result in more effective information transmission than private and one-shot cheap
talk. In this chapter, three communication protocols are presented that improve strategic
communication between players.

We first show how cheap-talk communication can be enhanced by considering group
commaunication, where every player is required to publicly send the same costless message

to all the players in a given group. Compared to private cheap talk, this requirement

!This chapter results from a joint work with F.Koessler and partly borrows from Hagenbach and Koessler

(2008). 195
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reduces the number of possible deviations that a sender has from truthful revelation to the
whole group. Next, we consider dynamic communication, meaning that players are offered
several cheap-talk communication rounds, which allow private information to circulate
through “intermediaries”. This opportunity changes the effect of a sender’s lie in a way
that weakens informational incentive constraints compared to static communication.
Finally, we consider the case of verifiable information. In a situation in which players
are able to completely certify their types, we prove that complete information revelation is
possible even when the conditions for a fully revealing equilibrium to exist in the cheap-talk
communication (private or public) game are not satisfied. When types can only be partially
verified, the certifiability requirements for complete information revelation depend on the

bias profile.

3.2. Group Communication

It is well known since Farrell and Gibbons (1989) that the credibility of a sender’s claim
may radically depend on whether this claim is made publicly or privately. In their work,
the authors compare public and private information transmission in cheap talk communi-
cation games with one sender and two receivers, assuming that decision-makers’ actions are
separable in the sender’s utility function. In particular, they show how public announce-
ments can discipline a privately informed sender. Indeed, they shed light on situations in
which no information is revealed when communication to the receivers takes place privately
whereas a fully revealing equilibrium is played when communication is public.

In the same model as the one introduced in SCN, we consider group communication
games in which every player is required to send the same costless message to a fixed
subset of players. Precisely, in case every player ¢ is asked to send a common message
to players in R; C N\{i}, the communication extension of the game is called group R-
communication game, where R = (R;);en. In this game, each player i’s communication
strategy is a mapping o; : S; — M;, where o;(s;) is the message publicly observed by all

players in R; when player i’s type is s;. The public communication game is a particular
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group communication game in which every player ¢ is required to send the same message
to all the players in R; = N\{i}.

The definition of the Nash equilibrium for the group communication games is similar
to the definition for the private communication game presented in SCN. However, in the
group R-communication game, when focusing on equilibrium in which a player i perfectly
reveals his type, the only possible deviation from a common message sent to players in
R; is to jointly lie to all of them. We recall that player i could lie to any subset of R; if
communication were private. Using this observation about the restricted set of possible

deviations from truthful revelation to players in R;, the following result can be stated :

Proposition 8 In the group R-communication game, there exists an equilibrium in which

every player i completely reveals his private information iff for all i € N,

n—1+a)

b — ZkERi i
2(n—1)

i IR (5i — %) (3.1)

<

Proof. Similar to the proof of Proposition 3 in SCN. Consider an equilibrium in which
player 1 sends to all the players in R; the message m; = ™ when his type is 3; and the
message m; = m when his type is s;. The only possible deviation for player 1 in the
communication stage consists in lying to all the players in Ry, i.e., sending the message
m instead of 7 to all the players in R;. Therefore, Condition (4) (given in Proposition 3
of SCN) for R} = R; is the condition under which player 1 does not deviate from his

equilibrium communication strategy above in the group R-communication game. m

Note that if there is an equilibrium in which player ¢ perfectly reveals his informa-
tion to players in R; in the private communication game introduced in SCN, then there
is also an equilibrium in which player i perfectly reveals his information in the group R-
communication game with R; = R;. In other words, informational incentives constraints
are weaker when a sender has to talk publicly (to give a speech for instance) in front of
a given audience than when communication with the agents of this audience is private.

To that extent, a communication protocol such that players’ possible deviations are lim-



128 SCN : HOW TO IMPROVE INFORMATION TRANSMISSION ?

ited by public information revelation improves communication. This can be viewed as
a generalization of the mutual discipline effect observed by Farrell and Gibbons (1989,
Proposition 1).

As an illustration, consider the 4-player example presented in Section 4.3 of SCN. We

have seen that player i reveals his type to players in {j, k} iff

bj—l-bk
b; — 5

<3, and ’bz — bj‘, ’bz — bk’ < 3.75. (3.2)

In the group {j, k}-communication game, player i reveals his type whenever the first
inequality of Condition (3.2) holds. The mutual discipline effect appears when, e.g.,
by € (—9,—5) and b = by = —by, since in that case there is no informative equilibrium
from player i = 2 in private, while player 2 reveals his type under group R-communication
with Re = {1,3} or {1,4}.

In particular, the conditions to get a fully revealing equilibrium in the private commu-
nication game are stronger than the conditions to get a fully revealing equilibrium in the
public communication game. Precisely, in the public communication game, there exists a
fully revealing iff for all 4 € N,

Zj;éi b
n—1

n—1+a)
2(n —1)

b — < (5 — 51). (3.3)

Remark : When considering the group R-communication game, every sender i is required
to talk publicly to a set R; which is exogenously given. One could ask whether the set of
players to which 4 decides to talk publicly could be decided by player ¢ himself during a
stage of the game that would precede the communication stage, but we abstract from such

an issue.

3.3. Multistage Communication

Again, we consider the same class of coordination games with incomplete information

as the one presented in SCN. However, in this section, we assume that the information



SCN : HOW TO IMPROVE INFORMATION TRANSMISSION ? 129

about the state of the world is not dispersed among the players but that 6 is in {6, 0}
with one player only, say player 1, perfectly informed about it. As in SCN, after player 1
has observed 6 but before the players take their payoff-relevant actions, they are offered a

cheap-talk communication stage.

Before giving details about the protocol of dynamic communication, we examine the
ex-ante effect of an increase in the transmission of the information about # on welfare. At
the end of the communication stage and no matter its rules, let R C N\{1} be the set of
players, different from player 1, who are perfectly informed about §. From Equation (2)
of SCN, we have that, given a state 6 and a set R, the second-stage equilibrium action of
each player ¢ € N is uniquely given by

a(n —1—RNE®) + (1 - a)(n — 1) (Lzerupy? + Lugropy £(0))

;= B; 3.4
a/Z n—]_—a|R| + (2] ( )

with 1j;cpuq1)) an indicator function that equals 1 when player ¢ knows the state 6,
1i¢ruq1y) an indicator function that equals 1 when player i does not know the state ¢
and B; given by Equation (3) of SCN. Given these actions, Proposition 2 of SCN is di-
rectly restated in the case of a unique informed player and we get : If two sets of informed
players R and R’ are such that |R| > |R|, then welfare is strictly higher, ex ante, with the

set R’ than with R.

Players are now offered a cheap-talk communication stage that consists in several com-
munication rounds. It follows that a player to whom 6 has been revealed in some round
can further reveal it to some other players in a subsequent round. We examine whether
such dynamic communication can change players’ informational incentive constraints in a
way that increases the information transmission compared to the case in which commu-
nication is static. The conditions to get an equilibrium set of informed players R when
communication is one-stage and multistage are compared.

First, note that offering strictly more than one communication round is never harmful

for information transmission as player 1 always has the possibility to babble in all the



130 SCN : HOW TO IMPROVE INFORMATION TRANSMISSION ?

rounds except in one in which he sends exactly the same messages as he would do if there
were a unique communication round. In other words, if there exists an equilibrium of the
static communication game such that agents perfectly informed about 6 are in R, then
there always exists an equilibrium of the dynamic communication game that results in the
set of informed players R.

Next, under the assumption that player 1 is the only player informed about 6 € {6, 6},
Proposition 3 of SCN still gives the conditions under which player 1 reveals his information

to players in a set R C N\{1} with a single communication round. Precisely, we get :

Corollary 9 There exists an equilibrium of the static communication game in which player 1

reveals his private information to players in R C N\{1} iff for all R' C R we have

(n—1+a)(n—1-«a|R)
2(n—1)(n—1—«a|R|)

(3.5)

with A=0—6

Proof. Directly from Proposition 3 of SCN. We recall that Condition (3.5) states that
an informed player 1 has no incentive to deviate from telling the truth to players in R to
lying to players in R’ C R. Precisely, it ensures that player 1’s expected payoff conditional
on 6 is higher in the case in which players in R take second-stage actions knowing the true
state and player 1 best-responds to these actions than in the case in which players in R\ R’
take actions knowing the true state, players in R’ take actions being wrong about the state

and player 1 best-responds to these actions. m

A 3-player Example of Dynamic Communication : To show how the transmission of infor-
mation about 6 can now be improved by adding a second round of cheap-talk communica-
tion, we consider the following example with N = {1,2,3}. We focus on the case in which,
at the end of the communication stage, the set of players, different from player 1, who are
perfectly informed about 6 is R = {2,3}. During the decision-stage, the players take their
payoff-relevant actions according to Equation (3.4).

With a single communication round, Corollary 9 gives the conditions to get an equilib-
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rium in which player 1 perfectly reveals his type to players in R = {2,3} :

by + b3

9
‘§2+a 4
2 4

(@
A d ) [ —b| < ————

(a) |by — A for alli € {2,3}. (3.6)

With two communication rounds, the following communication strategy profile can be
considered : in the first round, player 1 perfectly reveals 6 to a unique player i € {2,3}.
During the second round, player i then perfectly reveals 6 to player j with j # i,1. After
two such rounds, the set of players, different from player 1, who are perfectly informed about
0 is R = {2,3}. Note that such a set of informed players is obtained by the transmission
of the information about # from player 1 to player j through player ¢, who then plays the
role of an intermediary. The conditions under which this communication strategy profile

is an equilibrium of the dynamic communication game are given by :

by + b 2 4 —a?
2‘;313 ZQA and  (d) [bi—bj| < = A (3.7)

(C) ‘bl - = 8(]. —Oé)

Proof. 1In the first round, consider that player 1 sends to player ¢ the message m when
his type is  and the message m when his type is §. In the second round, consider that
player ¢ sends to player j the message ¢ when he received the message m from player 1 and
the message ¢ when he received the message m from player 1. Let player 1’s true type be
#. In equilibrium, using Equation (3.4), the second-stage action of every player i € N is
therefore given by @; = 6 + B;. For every player i € N, let the expected payoff conditional
on 6 under this equilibrium be V;. In the two following paragraphs, the reasoning is the
one used to prove Corollary 9.

Let’s first focus on player 1. In the first communication round, the only possible devi-
ation that player 1 has consists in sending m to players ¢ instead of . However, with the
communication profile considered, if player 1 sends m to player 4, then player j will be sent
t by player ¢ in the second round. In other words, for player 1, lying to player ¢ implies
lying to player j too. As a result of such a deviation, player i’s second-stage action will be
given by a; = 0 + B; and player j’s second-stage action by a; = 0 + B;. In the decision

stage, player 1’s optimal action, denoted a/, is then obtained from the best-response to
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a; and a;. It follows that player 1 does not deviate from truthful revelation to player ¢
in the first round if V; is strictly higher than his expected payoff conditional on 6 with
second-stage actions that are a}, a; and a;. This condition corresponds to the one that
ensures, under static communication, that player 1 has no incentive to lie to the whole set
R = {2,3}. It follows that Condition (c) is exactly Condition (a).

Next, let’s focus on player 7. In the second round, the only possible deviation that
player i has consists in sending ¢ to player j instead of £. As a result of such a deviation,
player 1’s second-stage action will still be given by @; whereas player j action will now
be given by a; = 0 + Bj. In the decision stage, player i’s optimal action, denoted a, is
obtained from the best-response to aj and aj. It follows that player ¢ does not deviate from
truthful revelation to player j in the second round if V; is strictly higher than his expected
payoff conditional on 6 with second-stage actions that are @y, a; and aj. This condition
corresponds to the one that ensures, under static communication, that an informed player 4
has no incentive to deviate from telling the truth to a set R = {1, 7} to lying to the strict
subset R’ = {j}.2 Tt follows that Condition (d) is given by Equation (3.5) with R’ = {j}

andr=2. m

Finally, we compare the set of conditions given by (3.6) and (3.7). First, it appears
that the set of conditions involving b; is smaller with the two communication rounds than
with a single one. Indeed, player 1’s set of possible deviations is restricted by the fact that
player i is an intermediary for the transmission of information from player 1 to player j. It
follows that it is impossible for player 1 to lie to player ¢ without lying to player j as well.

Next, note that with biases such that by < b; for all ¢ € {2,3}, the conditions given by
(3.7) are strictly weaker than the ones given by (3.6). With a bias profile b = (0,0.2,1),
we even get that the unique informative equilibrium is R = {2} when communication is
static whereas there exists an equilibrium resulting in R = {2, 3} when two communication
rounds are offered. With the biais profile b, in the static case, player 1’s bias is too far

from player 3’s which is why he has an incentive to lie to the former only. In the dynamic

2This explains why the RHS of Condition (d) is the same as the RHS of Conditions (b) ensuring that
player 1 does not lie to player ¢ while telling the truth to player j under static communication.
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case, player 3 is informed by player 2 previously informed by player 1, who is better off,
ex ante, with 2 and 3 both knowing the true state than both being wrong about it. Note
however that with biases such that b; < by < b;, the conditions given by (3.6) are weaker

than the ones given by (3.7). O

As shown in the 3-player example, adding a second communication round to a single

one can facilitates information transmission. More generally, we get :

Proposition 9 Consider a set R C N\{1} with at least two players j and k such that
either bj, by > by or bj, by, < by. If there exists an equilibrium of the static communication
game such that the set of informed players is R, then there exists an equilibrium of the
dynamic communication game such that the set of informed players is R under weaker

conditions.

Proof. Under static communication, conditions to get an equilibrium in which player 1
perfectly reveals his information to players in R are given by Corollary 9. Next, consider
the following communication profile in the dynamic communication game : in the first
communication round, player 1 perfectly reveals his information to players in R\{k}. In
the second communication round, player j € R\{k} perfectly reveals his information to
player k£ and every player in R\{j, k} babbles. In every other round, every player in R
babbles. Such a communication profile is an equilibrium of the dynamic communication
game iff, for all " C R such that either {j,k} € R’ or j ¢ R’ and k ¢ R/, with |R/| =1/,

we have :

Y icr bi (n—14a)(n—1-«|R) m—14+a)(n—1-a)

(A) |br — < A and (B) |b; — bg| <

|R/| 2(n—1)(n—1—ar) 2(n—1)(n —1—«alR|)

(3.8)

with A = @ — §. The proof is similar to the one previously presented in the 3-player
example. Condition (A) ensures that player 1 has no incentive to lie to any subset of
R\{k}, taking into account the fact that lying to player j € R\{k} directly implies lying

to player k too. It follows that the set of players to whom player 1 may lie is R* C R such
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that either {j,k} € R or j ¢ R and k ¢ R'. Condition (B) ensures that player j has no
incentive to lie to player k, given that players in {1}UR\{k} know the true state. It implies
that the RHS of Condition (B) corresponds to the RHS of Equation (3.5) taking R’ = {k}
and r = [{1} U R\{k}|. Finally, it is straightforward to check that, with b;,b; > b1 or
bj, by, < by, conditions to get an equilibrium resulting in R under dynamic communication,

i.e. conditions (8), are weaker than under static communication, i.e. conditions (5). m

Note that if a set of informed players R C N\{1} includes 3 players, then it includes
at least two players j and k such that either b;, by > by or bj, by, < by. In this case, player j
can play the role of an intermediary in the transmission of information from player 1 to
player k. The transmission of information about € is then strictly easier than when player 1

directly reveals 6 to players in R.

3.4. Certifiable Information

Following the terminology of Milgrom (1981), Green and Laffont (1986), Okuno-Fujiwara
et al. (1990) or Seidmann and Winter (1997), we now consider that players are able to pro-
vide hard, wverifiable, or certifiable information about their type. Precisely, we change
the communication game introduced in SCN by allowing the set of messages available to
each player to depend on his private information. Formally, the model is equivalent to
the cheap-talk model introduced in SCN, except that each player ¢ can send messages in
M;(s;), where M;(s;) # () is a type-dependent set of messages. This section further differs
from previous ones in two regards : first, the set of types S; of player ¢ is any finite set;
second, the function 6(s) is not required to be additive in types and we only assume that
it is weakly increasing with s; for all ¢ € N. Without further loss of generality, we assume
that types in .S; C R are increasingly ordered.

The equilibrium concept used to solve both the private and the public communication
games is the perfect Bayesian equilibrium (PBE). Using notations of SCN, a PBE of the
communication game analyzed in this section is a strategy profile (o, 7) and a belief system

w satisfying the following properties:
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(i) Sequential rationality in the communication stage, corresponding to property (i) of

the Nash equilibrium defined on page 6 of SCN.

(1) Sequential rationality in the action stage, corresponding to property (ii) of the Nash

equilibrium defined on page 6 of SCN, except that it must hold for all m* € M_;.3

(11i) Belief consistency, corresponding to property (iii) of the Nash equilibrium defined
on page 6 of SCN. Certifiablity of types leads to the following additional conditions: in the
private communication game, for all 4,5 € N, i # j, and for all s; € S}, ug(sj | mz) =0if
m; ¢ Mj(s;); similarly in the public communication game, for all 4,5,k € N, k # i # j # k,

and for all s; € 5}, ug(sj | mj;) = ui(sj | mj) = 0if m; ¢ M;(s;).

A type s; € S; is said to be certifiable if there exists a message c¢;(s;) € M; =
Us,es, Mi(t:) such that M ei(si) = {ti € Si : ci(si) € My(t)} = {si}. The follow-
ing Proposition shows that no matter the communication protocol, i.e. private or public,
if every player can certify his type, then there exists a fully revealing equilibrium in which

all players reveal their type to all the other players.*

Proposition 10 (Fully revealing equilibrium with certifiable types) Whatever the
communication protocol (private of public) and the bias profile (b;)ien, if every type of ev-
ery player is certifiable, then the communication game has a perfect Bayesian equilibrium

which is fully revealing.

Proof. To support a fully revealing equilibrium, we consider the communication strat-
egy profile in which every player completely certifies his type to all the other players
whatever his type. With such a profile in the communication stage, every player perfectly
knows the state 6 in the decision stage, so the second-stage equilibrium actions are given by
Equation (2) of SCN. The public and private communication games are treated separately.

It is however important to note that when communication is private, different receivers can

SPBE permits the beliefs following messages that are never sent in equilibrium to be any arbitrary
beliefs, but requires that second-stage actions maximize expected utilities, taken with respect to these
beliefs, even after such messages.

*Since we obtain full revelation of information in the private and the public communication games, we
do not consider other group-communication games .
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make different inferences from the same deviation, while in the public communication all

receivers are required to make the same inferences.

o Public Communication. We take a fully revealing communication strategy profile
0i(s;) = ¢i(s;) for all i € N and s; € S;, and consider a deviation by player i to a message
m; # ¢;(s;) when his type is s;. To support this equilibrium, we consider the degenerate
common belief ,uz(mz) = u'(m;) = max{t; € S; : m; € M;(t;)} for every j # i when b; < b,
and ué- (m;) = pi(m;) = min{t; € S; : m; € M;(t;)} for every j # i when b; > b. According
to Equation (12) of SCN which gives a player i’s simplified utility function, a sufficient

condition for player i’s deviation not to be profitable is that for all s_; € §_;,

[as(a—i (O (mi). 5-2)): 0] =~ > [a; (0w (mi). s-0))]
. 77 (3.9)
< lai(a-i(6(s): 0 = === D [, (0(s)))”
i

With player i’s best response given by Equation (11) of SCN;, this is equivalent to

(=)0 + 00 + 2 3 a0 ma),5-))] — 2= 3 a0 (me), 50
4 J#
< [a=a)0+5) + =22 3 a06)] — == 3 las 00
4 J#

(3.10)

By replacing the equilibrium action of every player j # i given by Equation (2) of SCN

in the last inequality we get (after some simplifications):

(n—1)b; — Zj;éi b
n+a—1

0(1(ms), 5_;) — e(s)} [e(s) (i (m), i) + 2 ] <0.  (3.11)

Since 6(s) is increasing in s;, a sufficient condition for this inequality to be satisfied is
pi(m;) = max{t; € S; : m; € M;(t;)} when b; < b, and p'(m;) = min{t; € S; : m; €
M;(t;)} when b; > b.

e Private Communication. We consider a fully revealing communication strategy profile

ozj(si) = ¢i(s;) for alli € N, j # i and s; € S;, and consider a deviation by player i to a
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vector of messages m; # (¢;(s;), ..., ¢;(s;)) when his type is s;. To support this equilibrium,

we consider the degenerate private beliefs uz(m]) = max{t; € S; : mf € M;(t;)} when

b; <bj,anduj( ) min{t; € S; : m] e M;(t i)} when b; > b;.

The analogue of Equation (3.10) for the private communication game is:

(1= 00+ 5+ 2 S a0 ), s-)] — 2 S [as 0 i s- )]
J#i J#i
< [0 -a)@+0)+ % Zaj<9<s>>]2 — S s (06
4 J#
(3.12)

i.e., by replacing the equilibrium action given by Equation (2) of SCN,

(1= @0+ 2= S (i m] +B] [“Bir
J#i

J#i

Letting

E(n—l) (Ze'uj )2 n—l HZH,uJ
J#i JFi
2

— = > [0 (), 5] — (L — a)6?,

n vy
J#i

the condition further simplifies to

2 bj + ab; 2 g
T + 208 <Z#—j - Bi) + = ZWM?(W?%M)(BZ- - Bj) <

nta-l n—1<
J#i
204(1—04) . ‘
= T+mz [bi — b;] [0(us(m]), s—s) — 0] < 0.

JF

By the construction of players’ beliefs, and since 0(s) is increasing in s;, we have

[bi — b;] [0(1(m]), 5—5) — 6] <0, for all j #i.

S0 00 ), 50" + 250 — 6 md),5)] < 0.

0
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Finally, to show that the condition for no deviation is satisfied, it suffices to remark that

T is always negative. Indeed, solving T'= 0 in 6 gives the following discriminant:

1 — O[ 2 . . 2

R (o sl = (0= 1) X 0085 . 5-1).
J#i J#i

which can be checked to be always negative.> m

Proposition 10 extends the results of the literature in several aspects. First, in Okuno-
Fujiwara et al. (1990), the class of n-person games with n > 2 is restricted to the following

class of linear-quadratic utility functions for player i:5

—dY a;— aj, (3.13)
J#
where d € (0,2) and 5;(s1, ..., sy) is increasing with s; and decreasing with s_;. Developing

the utility function that we consider in SCN (given Equation (1) of SCN), we get instead

(minus a constant) :

2
ai[2(1 — o) (6(s) + Za] o = — Z(aj) . (3.14)
J?él jF#i
Equation (3.14) cannot be rewritten as Equation (3.13) for three reasons :
1. In our model, 5;(s) = 2(1 — «)(6(s) + b;) is increasing with s; for all i € N;

2. Our model involves strategic complementarities because d = —L“l is negative, while

Okuno-Fujiwara et al. (1990) assume strategic substitutes (d > 0);

3. Equation (3.14) contains the additional term — -3 3", ;(a;)* which is absent from

Equation (3.13).7

Second, Van Zandt and Vives (2007) also prove the existence of a fully revealing equilibrium

®By the property (z1 + - - + &m)* < m((z1)* 4+ -+ (2m)?) & (m=1)((@1)° 4+ -+ (2m)*) = 2,1, Tt >
0>, (- )2 >0 for all (z1,...,2m) € R™ and m € N,.
SLike us, they consider finite sets of types and assume that players’ types are independent.
"This term does not modify the second stage equilibrium strategies but may affect players’ incentives
to communicate.
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in a class of games with strategic complementarities, but they assume that each player’s
utility function is increasing in the actions of the other players. This assumption of positive
externalities in actions is clearly not satisfied in our model. Third, our proposition shows
that full revelation of information holds in the public and private communication games
while Okuno-Fujiwara et al. (1990) and Van Zandt and Vives (2007) only consider public

communication.

Finally, with the exception of some sender-receiver games considered, e.g, by Seidmann
and Winter (1997), fully revealing equilibria found in the literature are usually robust to
a simple inference that either always puts probability one on the lowest type consistent
with the sender’s report, or always puts probability one on the highest type. Here, as
shown in the proof of Proposition 10, to support full revelation of information, the form of
players’ beliefs off the equilibrium path depends on the parameters of the game (the profile
of biases (b1,...,b,)), on the player who deviates, and on the players who observe this

deviation (which depends on whether the communication game is public or private). More

J
%

precisely, in the private communication game, when player j receives a private message m
from player i and his bias is higher than player i’s bias (b; > b;), then his belief off the
equilibrium path consists in believing that player ¢’s type is the highest type compatible
with i’s message (i.e., player j believes that player i’s type is max{t; € .S; : mg € M;(t;)}).
On the contrary, when player j’s bias is lower than player i’s bias, then he believes the
lowest type compatible with i’s message. In the public communication game, players’
inferences depend on whether the bias of the player who deviates is lower or higher than
the average bias b = Y.y bi/n. When b > b;, players in N\{i} believe the highest type
compatible with player i’s report, and when b < b; they believe the lowest type. The

last observation enables to weaken the certifiability requirements for complete information

revelation.

Proposition 11 (Fully revealing equilibrium with partially certifiable types) In the
public communication game, if each player i with a lower bias than the average bias (i.e.,

b; < b) can certify, whatever his actual type s;, that his type is at most s; (i.e., there ezists
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m; € M; such that s; = max Mifl(mi)), and if each player i with a higher bias than the
average bias (i.e., b; > b) can certify, whatever his actual type s;, that his type is at least s;
(i.e., there exists m; € M; such that s; = min Mi_l(mi)), then there is a perfect Bayesian
equilibrium which is fully revealing.

In the private communication game, if each player i with the lowest bias (i.e., b; < b;
for all j € N) can certify, whatever his actual type s;, that his type is at most s;, if each
player i with the highest bias (i.e., b; > b; for all j € N) can certify, whatever his actual
type s;, that his type is at least s;, and the other players can completely certify their types,

then there is a perfect Bayesian equilibrium which is fully revealing.

From Proposition 10, we know that the mutual discipline considered by Farrell and
Gibbons (1989) is impossible when types are completely certifiable since full revelation of
information occurs in both the public and private case. On the contrary, when considering
partial certifiablity as in the previous Proposition 11, the sufficient conditions for full
information revelation are stronger in the private than in the public communication game.
It follows that the mutual discipline effect of Farrell and Gibbons (1989) is again possible
with partially certifiable information, as in the cheap-talk case considered in Section 3.2.
The following example presents a situation in which Proposition 11 applies for the public

communication game, whereas there is no fully revealing equilibrium in the private one.

Example of Mutual Discipline under Partial Certifiability Consider the 3-player game in
which only player 1 knows the state 0 € {61, 02,05}. Let players’ biases satisfy by < by < bs

and b; < %, and the state-dependent messages available to player 1 be
M(01) = {m1,ma,mz}, M(02) = {ma,m3}, M(03)={ms}.

By Proposition 11, these assumptions imply that there exists a fully revealing equilibrium
under public communication. Next, consider the fully revealing communication strategy
under private communication. When the real state is §; and player 1 deviates by sending

message my instead of my to player 2 (without deviating towards player 3), the condition
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for player 1’s deviation to be profitable is given by :

15(65 — 61)
b1 by > 16 .

Hence, under this condition there is no fully revealing equilibrium in the private com-
munication game, while a fully revealing equilibrium exists in the public one whatever
the distance between the possible fundamentals and the distance between player 1 and

) : bo+b
player 2s biases (as long as by < 23%). [






Conclusion

In the first chapter, I analyze a dynamic game in which players are the members of a
fixed network. In each period, every agent decides whether or not to pass on his private
information to his direct neighbors. He cannot misrepresent the items he transmits. Given
the informational dilemma that agents face, the network structure affects the time needed
to achieve the common goal of information pooling in equilibrium. At an individual level,
every player’s position has an influence on the earliest date at which he can “win” the
game in equilibrium. In the second chapter, we focus on players’ incentives to misrepresent
their private signals. In that framework, strategic communication between players depends
on preferences heterogeneity. Initially, players do not belong to a given network but we
derive connections between the agents from the informativeness of their communication

strategies.

In this thesis dealing with the interaction between strategic communication and net-
works, two distinct kinds of heterogeneity are thus considered : in one part, homogeneous
players differ in their network positions; in another part, players vary in preferences but not
in their location in a given communication structure. Two of the communication protocols
examined in the third chapter bring these two views together. In Chapter 2, we propose a
multi-sender and multi-receiver cheap-talk game in which every player is allowed to send a
different message to every other one. To some extent, Chapter 3 implicitly considers that
a pre-existing communication structure exists that restricts the set of available conduits

for messages.

143
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In Section 2 of Chapter 3, every agent is required to publicly send the same message
to an exogenous group of agents, as if there were a pre-existing pattern of communication
channels. Whether or not these channels ends up being used for truthful revelation of
information is the question which is then addressed.® We show that announcements made
publicly in groups can enhance information transmission compared to private cheap talk,
as it restricts the number of possible deviations from truthful communication to a whole
group. Consequently, one could wonder to which extent a given communication pattern
could compel players to make public announcement to groups instead of sending private

messages.

If this cannot be done, one can also think of a pattern of communication that would gen-
erate public communication from senders to groups of receivers by messages sent privately.
Indeed, with more than three receivers for instance, a two-stage private communication
protocol using a “majority rule” can be used to get any equilibrium that exists when com-
munication to these three players is public : in the first stage, the sender sends a message
to the group of three players. In the second stage, each receiver further sends the message
he received from the sender to all the other receivers. If all messages received by a receiver
during the second stage of communication do not coincide, then he uses a majority rule to
form his belief. Clearly, no receiver alone has an impact on others’ beliefs, and all possible
deviations of the sender generate the same beliefs as in the public communication game. I
believe that it is worth extending Chapter 2 by adding heterogeneity in the available con-
duits of information to the heterogeneity in preferences that we have considered.’ Next,
when introducing several cheap-talk communication rounds in Section 3 of Chapter 3, we
stated that the use of intermediaries can improve communication. Precisely, we claimed
that it may be that an information item initially held a sender never reaches a given receiver

whereas it does reach him in case the item could be passed through an agent whose bias

8In Galeotti et al. (2009a) for instance, players are located in a fixed network and the links are said to
be “truthful communication links” when they effectively convey truthful information in equilibrium of the
communication stage.

By locating players of Chapter 2 in a network, one could also change the coordination game of incom-
plete information played in the second-stage. Indeed, it may be that every player wants to take an action
close to that of his neighbors only. This extension has been mentioned to us quite often, I believe that
heterogeneity in the communication possibilities is qualitatively more interesting.
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lies between the sender’s and the receiver’s one. Such a statement raises the question of
whether there exists an optimal way to arrange players with heterogeneous preferences in
a communication network before letting them exchange costless messages trough the given
channels. It seems that intermediaries should lie between the senders and the receivers on

the information conduit but also in terms of preferences to play their role in equilibrium.

Finally, I'd like to come back to Bonacich’s experiment which initially motivated the
present work. My first chapter proposes a way to model the experiment he reports but
it differs from his experiment in two main ways. First, his experimental subjects could
guess the quotation they had to identify even if they did not have all the letters in their
hands. In my work, I have instead restricted attention to the case in which the unknown
state of the world is accurately assessed if and only if all the pieces of information initially
dispersed were pooled. Naturally, the measure of a player’s position that ended up being
crucial was the eccentricity, which measures the distance to the player who is furthest away.
In case some of the pieces of information would be enough to take appropriate decisions,
other measures of locations would obviously matter. It would be interesting to link more
generally the way information needs to be pooled to various graphical measures. Secondly,
in Bonacich’s work participants were allowed to give to their direct neighbors as many
letters as they wanted. On the contrary, in my game, players either give or hide all the
pieces of information they hold to all their neighbors. Even if it is a common assumption
that a player chooses a common action in interaction with all neighbors, one could given
more freedom to players regarding the way they would transmit their items.

In the first chapter, the network structure is assumed to be common knowledge among
the players. In reality, networks are complex objects and it is likely that individuals will
have only partial knowledge about it. Indeed, empirical work suggests that individuals
located in social networks generally know their own neighbors and have some idea of the
neighbors of their neighbors but usually do not know a great deal more about the network
(See for instance Bondonio (1998) and Casciaro (1998)). As reported in Bonacich’s exper-
iments, each player’s position affects his strategic behavior in the modified war of attrition

considered. We could therefore ask what does happen in his experiment if the perception
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of a player’s position is only partial 7 Is it better for the group when central players do
not realize that they are well-situated 7 I believe designing experiments that investigate
such questions would be interesting. More generally, I think it is worth examining how
accurately agents perceive their chances to win given their position in the network, even

under common knowledge of its structure.

Strategic Communication and Networks is a very broad topic. In this work, I propose a
way to build networks from communication strategies and one to study whether networks
affect the transmission of informational items. I have focused on particular contexts and
disconnected the formation of communication networks from their use. There are several
directions to connect them. For instance, one could allow for the removal of a communi-
cation links when the information items passed through it was wrong. Further research
on communication and networks seems promising and I am enthusiastic about it, all the
more so as the truth about information transmission probably lies between strategic and

automatic diffusion.
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COMMUNICATION STRATEGIQUE ET RESEAUX

Jeanne Hagenbach

Abstract

Depuis une dizaine d’années, I’étude des réseaux est une branche tres active de la recherche
en économie. Il est désormais largement admis que ceux-ci jouent un role central dans la
transmission décentralisée des informations entre les individus. Les informations communiquées
par ces derniers concernent aussi bien les opportunités d’emplois que 1’état du marché dans
lequel une équipe de travailleurs évolue. Cette theése propose une nouvelle approche du lien
entre la maniére dont les agents transmettent stratégiquement leurs informations privées et la
structure du réseau dont ils font partie.

La théorie des jeux non coopérative a été appliquée a 1’étude des réseaux sociaux et économiques
dans les deux branches suivantes: d’une part, les Jeux en Réseauzr considerent que les joueurs
sont les membres d’un réseau donné et analysent la maniere dont les comportements stratégiques
et les résultats économiques sont influencés par l'architecture de ce réseau ; d’autre part, les
Jeux de Formation de Réseaur modélisent la construction stratégique des connections entre
les individus. Ce travail apporte une contribution a ces deux domaines de recherche. Dans la
premiere partie de ma these, que forme le Chapitre 1 intitulé Centralisation des Informations
dans les Réseaux, les joueurs appartiennent a un réseau qui affectent leur maniere de trans-
mettre leurs informations. Dans la seconde partie, constituée des Chapitres 2 et 3 et intitulée
Réseauxr de Communication Stratégique, la structure des liens entre les agents découle de leur
communication stratégique.

MoTs-CLES: Réseaux Economiques et Sociaux, Communication, Information, Théorie des Jeux,
Graphes.

Abstract

During the past decade, the study of networks has been a very active area of research
in economics. It is now largely admitted that they play a central role in the decentralized
transmission of information among individuals. Information pieces that agents communicate
about range from vacant job opportunities to the state of the market a team of workers is facing.
This thesis aims at shedding a new light on the link between the way agents strategically share
private information and the structure of the networks they are arranged in.

The application of non-cooperative game theory to the study of social and economic net-
works has mainly been twofold: on the one hand, Network Games consider that players are the
members of a given network and investigate how strategic behaviors and economic outcomes are
influenced by the architecture of this network; on the other hand, Network Formation Games
model the strategic building of connections between players. The present work yields new in-
sights in these two research areas. In the first part of my thesis, made up of Chapter 1 entitled
Centralizing Information in Networks, players belong to a given network which affects the way
they transmit private information items. In the second part, made up of Chapters 2 and 3
and entitled Strategic Communication Networks, the network structure is derived from strategic
communication between players.

KEYWORDS: Social and Economic Networks, Communication, Information, Game Theory, Graphs.
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