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Abstract

Peer-to-peer (P2P) offers good solutions for many applications such as large data sharing and collab-
oration in social networks. Thus, it appears as a powerful paradigm to develop scalable distributed
applications, as reflected by the increasing number of emerging projects based on this technology.
However, building trustworthy P2P applications is difficult because they must be deployed on a large
number of autonomous nodes, which may refuse to answer to some requests and even leave the system
unexpectedly. This volatility of nodes is a common behaviorin P2P systems and can be interpreted
as a fault during tests.
In this thesis, we propose a framework and a methodology for testing and validating P2P applications.
The framework is based on the individual control of nodes, allowing test cases to precisely control
the volatility of nodes during their execution.
We also propose three different architectures to control the execution of test cases in distributed
systems. The first approach extends the classical centralized test coordinator in order to handle the
volatility of peers. The other two approaches avoids the central coordinator in order to scale up the
test cases.
We validated the framework and the methodology through implementation and experimentation on
two popular open-source P2P applications (i.e. FreePastryand OpenChord). The experimentation
tests the behavior of the system on different conditions of volatility and shows how the tests were
able to detect complex implementation problems.

Keywords: testing, peer-to-peer

Résumé

Le pair-à-pair (P2P) offre de bonnes solutions pour de nombreuses applications distribuées, comme le
partage de grandes quantités de données et/ou le support de collaboration dans les réseaux sociaux. Il
apparaît donc comme un puissant paradigme pour développer des applications distribuées évolutives,
comme le montre le nombre croissant de nouveaux projets basés sur cette technologie.
Construire des applications P2P fiables est difficile, car elles doivent être déployées sur un grand
nombre de noeuds, qui peuvent être autonomes, refuser de répondre à certaines demandes, et même
quitter le système de manière inattendue. Cette volatilitédes noeuds est un comportement commun
dans les systèmes P2P et peut être interprétée comme une faute lors des tests.
Dans cette thèse, nous proposons un cadre et une méthodologie pour tester et valider des applications
P2P. Ce cadre s’appuie sur le contrôle individuel des noeuds, permettant de contrôler précisément la
volatilité des noeuds au cours de leur exécution.
Nous proposons également trois différentes approches de contrôle d’exécution de scénarios de test
dans les systèmes distribués. La première approche étend lecoordonnateur centralisé classique pour
gérer la volatilité des pairs. Les deux autres approches permettent d’éviter le coordinateur central afin
de faire passer à l’échelle l’exécution des cas de tests.
Nous avons validé le cadre et la méthodologie à travers la mise en oeuvre et l’expérimentation sur
des applications P2P open-source bien connues (FreePastryet OpenChord). Les expérimentations ont
permis de tester le comportement des systèmes sur différentes conditions de volatilité, et de détecter
des problèmes d’implémentation complexes.

Mots-clés: testing, pair-à-pair

ACM Classification

Categories and Subject Descriptors :C. [Computer Systems Organization]: C.2 COMPUTER-
COMMUNICATION NETWORKS; C.2.4 [Distributed Systems]: Distributed applica-
tions,Distributed databases; D. [Software]: D.2 SOFTWARE ENGINEERING; D.2.5 [Testing
and Debugging]: Testing tools (e.g., data generators, coverage testing).

General Terms: Experimentation, Measurement, Performance, Reliability, Verification.

http://www.acm.org/class/
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Résumé Étendu

Introduction

Motivation

Les systèmes pair-à-pair (P2P) mettent en œuvre une approche de partage de ressources complète-
ment décentralisée. En distribuant le stockage et le traitement des données sur un grand nombre de pairs
autonomes, ils permettent de passer à l’échelle sans avoir besoin de recourir à de grands serveurs. Des
exemples célèbres de systèmes P2P comme Gnutella et Freenet[1] ont des millions d’utilisateurs qui
partagent des petaoctets de données sur l’Internet. Bien que très utiles, ces systèmes sont très simples
(par ex. il ne partagent que des fichiers) et offrent des fonctionnalités limitées (par ex. la recherche par
mot-clé).

Les systèmes P2P n’offrent pas seulement des solutions pourgérer des grandes bases de données,
mais aussi pour la plupart des systèmes existants dans différents domaines : affaires, médical ou même
militaire. Les systèmes P2P apparaissent donc comme un puissant paradigme pour mettre au point des
systèmes distribués qui passent à l’échelle, comme le démontre le nombre croissant de nouveaux projets
basés sur cette technologie [12].

Parmi les nombreux aspects qui concernent développement des systèmes P2P, rendre les systèmes
robustes est un objectif évident. Cela est d’autant plus critique lorsque les systèmes P2P sont largement
utilisés. Alors, comme pour tous les autres systèmes, un système P2P doit être testé en fonction de ses
besoins. Comme pour tout système réparti, la complexité de la communication et des échanges de mes-
sages doivent faire partie des objectifs de test. Classiquement, la validation d’un systèmes distribuée se
compose d’une architecture centralisée composée d’un contrôleur de test, ou coordinateur, qui synchro-
nise et coordonne les communications (les messages d’appel, la détection de blocages) et crée l’ensemble
des verdicts locaux [101, 89, 76, 75, 37, 59, 5, 35]. Localement à chaque nœud, les séquences de test ou
des automates de test peuvent exécuter partiellement ces tests à la demande et retourner leurs verdicts au
coordinateur. Un testeur local par nœud ou par groupe de nœuds est produit à partir des objectifs de test.
Le testeur observe ensuite les événements envoyés entre lesdifférents nœuds du système et vérifie si la
séquence des événements correspond à la machine d’état fini [25, 54, 24] ou aux systèmes de transition
étiqueté [58, 85, 59].

Dans un système P2P, un pair joue le rôle d’un nœud actif, qui peut rejoindre ou quitter le réseau
à tout moment, soit normalement (par exemple, par déconnexion) soit anormalement (par exemple, en
raison d’une défaillance). Cette capacité, que nous appelons la volatilité, est une différence majeure avec
les systèmes distribués. En effet, la volatilité modifie dynamiquement la taille du réseau et sa topologie,
ce qui rend le test des systèmes P2P tout à fait différent. Ainsi, le comportement fonctionnel d’un système
P2P (et les défauts fonctionnels) dépend fortement du nombre de pairs et de leur volatilité.

Certaines méthodes de test pour les systèmes P2P proposent d’arrêter aléatoirement l’exécution des
pairs [13, 69], ou même d’insérer des erreurs dans le réseau [55, 76]. Bien que ces approches soient
utiles pour observer le comportement de l’ensemble du système, elles ne sont pas totalement adaptées
pour le tester. De plus, puisqu’elles se focalisent sur la tolérance aux perturbations du réseau, elles ne
parviennent pas à détecter les défauts des logiciels, spécialement ceux qui se produisent en raison de la
volatilité des pairs.

1
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Comme nous avons dit précédemment, une des caractéristiques des systèmes P2P est le passage à
l’échelle. Ainsi, l’architecture de test doit passer à l’échelle elle-aussi, ce qui n’est pas le cas de l’archi-
tecture de test centralisée (c’est-à-dire, du coordinateur central de test) [44, 64, 33, 71, 50, 4].

Il est cependant possible d’utiliser les testeurs distribués pour lesquels les cas de test sont coordon-
nées par des messages échangés dans des points de communication (PC) [101, 98, 83]. Toutefois, même
avec ces PC, cette architecture de test perturbe la performance d’un système P2P. En effet, la performance
(algorithmique) de cette architecture de test est linéaireavec le nombre de pairs, tandis qu’un système
P2P typique peut passer à l’échelle logarithmiquement. Pour éviter que l’intrusion des testeurs menacent
la validité des résultats des tests, l’architecture de testdoit avoir une performance logarithmique dans le
pire des cas.

Il y a aussi des architectures de test qui s’intéressent à la volatilité ainsi qu’au passage à l’échelle,
comme par exemple, P2PTester présenté par Butnaru et al. [42], Pigeon présenté par Zhou et al.[110],
et d’un cadre présenté par Hughes et al. [57]. Toutefois, toutes ces architectures demandent l’ajout de
code supplémentaire dans le code source du système sous test. Cette inclusion peut être soit manuelle,
par exemple en utilisant des interfaces spécifiques, comme dans P2PTester, ou automatique, en utilisant
la réflexivité et la programmation par aspects, comme dans Pigeon.

Néanmoins, l’inclusion de code supplémentaire peut engendrer des erreurs et, par conséquent, conta-
miner les résultats des tests. En outre, il est difficile de vérifier si l’erreur provient du système sous test
ou de l’architecture de test.

Finalement, il y a aussi des outils de vérification de modèle (par exemple, Bogor[14], SPIN[37, 108]
et Cadence SMV [49]), qui permettent de tester un type de système P2P appelé système de publicat-
souscript (PSS) [22]. D’une part, la vérification de modèle est une alternative attrayante pour trouver
des bogues dans les systèmes en explorant tous ses états d’exécution[49, 60]. D’un autre part, elle est
toujours basée sur les modèles, et les problèmes de mise en œuvre ne peuvent pas être trouvés. Même si
en considérant la volatilité des PSS, le passage à l’échelleest une question ouverte. Tout au long d’un test,
les pairs sont simulés en tant que “threads” et la taille du système à tester est limitée par les ressources
de la machine de test. Par conséquent, les systèmes P2P à grande échelle ne peuvent pas être pleinement
testés [33]. En outre, aucune de ces approches ne peut faire face à la volatilité des pairs qui peut conduire
à un nombre exponentiel d’états d’exécution.

Contributions

Dans cette thèse, nous proposons une solution intégrée pourla création et le déploiement d’un envi-
ronnement de validation des systèmes P2P, avec la possibilité de créer des pairs et de les faire rejoindre
et quitter le système. Les objectifs de test peuvent combiner le contrôle du fonctionnement du système
avec des variations de la volatilité (et aussi la passage à l’échelle). L’exactitude du système peut donc être
validée sur la base de ces trois dimensions, c’est-à-dire les fonctions, le nombre de pairs et la volatilité
des pairs.

Tout d’abord, nous proposons une méthode incrémentale pourprendre en compte ces trois dimen-
sions. Cette méthode vise à couvrir les fonctions d’abord sur un petit système et progressivement de
répondre aux questions liées à la volatilité et au passage à l’échelle [33].

Nous proposons également trois différentes architecturesde coordination de test. Ces architectures
sont basées sur deux aspects originaux : (i) le contrôle individuel de la volatilité des pairs et (ii) une ar-
chitecture répartie de tests pour faire face à un grand nombre de pairs. Les avantages de ces architectures
sont (1) d’automatiser l’exécution des tests localement à chaque pair, (2) de construire automatiquement
un verdict global, (3) de permettre un contrôle explicite dela volatilité de chaque pair.
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Nous avons mis en œuvre l’expérimentation sur deux systèmesP2P open-source. Durant l’expéri-
mentation, nous avons analysé le comportement des ces deux systèmes avec des conditions différentes
de volatilité et nous avons montré que nos contributions sont capables de détecter des problèmes de mise
en œuvre. Nous avons également validé notre méthodologie progressive de test, montrant comment les
trois aspects dimensionnels de test augmentent la couverture du code et par conséquent, la qualité des
tests.

Validation des systèmes Pair-à-pair

Par rapport aux systèmes distribués classiques, les systèmes P2P sont totalement décentralisés. Un
pair se comporte à la fois comme le client et le serveur d’une architecture client-serveur [16]. Dans un
système P2P, les pairs communiquent les uns avec les autres directement dans une façon décentralisé
sans la nécessité d’un serveur central. En raison de la décentralisation, les pairs sont fonctionnellement
identiques, mais avec la capacité d’intégrer ou de quitter le système à tout moment. Cette particularité
ajoute la possibilité de modifier dynamiquement la taille duréseau et la topologie résultant en systèmes
à grande échelle.

Cette décentralisation se traduit aussi par une haute tolérance aux pannes car il n’existe pas de point
individuel de défaillance. Sans un serveur central, n’importe quel pair dans le système peut assumer la
responsabilité d’un autre pair en échec.

En outre, la décentralisation signifie qu’il est impossiblede contrôler la propagation des pairs à
travers le réseau, et que chaque pair peut décider de partager ou non ses ressources.

Nous pouvons classer les principales caractéristiques dessystèmes P2P comme suit :
• les pairs sont décentralisés. Il n’y a pas de serveur central, les pairs sont répartis sur le réseau. Cela

assure la tolérance aux pannes, ainsi que le passage à l’échelle.
• les pairs sont volatiles. Un pair peut joindre ou quitter le système à tout moment. Deshpande et

al.[39] décrivent que la compréhension de la volatilité peut être un facteur clé dans la conception
efficace des architectures P2P.

• les pairs sont autonomes. Un pair décide de partager son contenu et/ou ces ressources avec d’autres
pairs.

Ces caractéristiques sont directement affectées par les différentes topologies et les structures d’un
système P2P. Ces topologies et structures forment un réseauP2P également dénommé réseau logique
(network overlay). En fait, un système P2P s’appuie sur un réseau P2P pour fonctionner. Les trois topo-
logies principales de réseaux P2P sont :
• Non structurées. Les pairs s’organisent dans un cadre non-déterministe sans une structure particu-

lière [77, 7, 80]. Chaque fois qu’un nouveau pair se connecteau réseau, il contacte d’autres pairs
de façon aléatoire. Ces pairs deviennent voisins et commencent à échanger des messages pour an-
noncer leur connexions. Les messages sont propagés récursivement par inondation du réseau. Les
messages de recherche sont également envoyés par inondation du réseau (par exemple, Gnutella,
FreeHaven[40], and Kazaa[65]) ;

• Structuré. Ce type de réseau apparaît comme une solution capable de résoudre les questions de
passage à l’échelle des réseaux non structurées. Dans les réseaux structurés, les pairs peuvent
s’organiser dans différents types de structures telles quel’anneau[92], l’arbre binaire[6], l’espace
multidimensionnel[86], etc. Les structures sont maintenues par un mécanisme de routage utilisé
pour organiser le système, et également d’envoyer et de transmettre des messages (par exemple,
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FreeNet[1, 27], Chord[92, 31], CAN[86], Pastry[88], PAST[43], Tapestry[109], Kademlia[78],
PIER[56], and P-Grid[6]) ;

• Super-pair. Dans une architecture typique, un super-pair conserve un index des méta-données pour
tous les fichiers dans le réseau. Une fois qu’un pairp interroge le super-pair pour un fichier donné,
il reçoit une liste des pairs qui le possèdent. Ensuite,p ouvre une connexion directe avec un ou
plusieurs pairs afin de télécharger le fichier (par exemple, Publius[74], JXTA[2], Edutella[81, 82]
and Napster[3]).

Une particularité d’un système P2P, c’est que son interfaceest répartie sur le réseau. Par exemple,
une table de hachage distribuée (DHT) [88, 92, 86] fournit une interface locale simple qui ne contient
que trois opérations : insertion d’objet, récupération d’objet et recherche d’une clé. Toutefois, l’interface
distante est plus complexe. Elle fournit des opérations pour le transfert de données et l’entretien de la
table de routage, c’est-à-dire la table de correspondance entre les clés et les pairs, utilisée pour déterminer
qui est le responsable d’une clé donnée.

Vu la simplicité de l’interface locale, tester une DHT dans un système stable est assez simple, mais
le test n’assure aucune confiance dans la robustesse de la mise en œuvre des mécanismes spécifiques aux
systèmes P2P. Par exemple, lorsque les pairs quittent et rejoignent le système, un test doit vérifier que la
table de routage est correctement mise à jour et que les demandes sont correctement acheminés.

Lors du test de passage à l’échelle d’un système distribué, les aspects fonctionnels ne sont généra-
lement pas prises en compte. Le même scénario de test est simplement répété sur un grand nombre de
nœuds [45]. Nous pouvons utiliser cette même approche, maiscela nous conduirait à tester la volatilité
séparément de l’aspect fonctionnel. Pour un système P2P, nous prétendons que les défauts techniques
sont étroitement liés à la taille du système et la volatilité. Par conséquent, il est crucial de combiner
la taille du système et la volatilité avec des aspects significatifs de test. Ainsi, nous avons également
proposer une méthode incrémentale pour aborder ces trois aspects [33].

Notre méthodologie vise à couvrir les fonctions d’abord surun petit système et ensuite passer le
système sous test à l’échelle pour finalement introduire la volatilité.

Les architectures de test proposés ici sont basées sur la architecture CTMF (“multi-party”) [5] de
coordination des séquences de test, soit par un composant centralisé ou par de composants distribués.

La première architecture étend l’architecture centralisée classique de test avec le contrôle de la vola-
tilité. Le but est de démontrer que cette volatilité est un paramètre-clé lors de la validation d’un système
P2P [34]. Cette architecture a deux composants principaux :le testeur et le coordinateur. Les testeurs
contiennent les suites de tests et sont déployés sur plusieurs nœuds logiques. Le coordinateur est déployé
dans un seul nœud et est utilisé pour synchroniser l’exécution des cas de test. Accessoirement, il agit
comme un médiateur (broker [21]) pour les testeurs déployés.

Toutefois, la performance de cette architecture centralisée est au mieux linéaire, alors que des tests à
grande échelle requièrent une performance logarithmique.Par conséquent, nous proposons deux architec-
tures pleinement distribuées pour faire face à l’échelle des systèmes P2P [36]. La deuxième architecture
organise les testeurs dans un B-arbre [17] où la synchronisation est effectuée à partir de la racine vers
les feuilles. Ensuite, les testeurs communiquent les uns avec les autres dans l’ensemble du B-arbre pour
éviter d’utiliser un coordinateur centralisé. La troisième architecture utilise la propagation de rumeurs
entre les testeurs pour réduire les communications entre les testeurs chargés d’exécuter des actions de
test. Comme les deux architectures distribuées ne reposentpas sur un coordinateur central, elles passent
à l’échelle correctement.
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Definitions

Soit P l’ensemble des pairs représentant le système P2P, qui est lesystème sous test (SUT). Nous
désignons parT , où |T | = |P | l’ensemble des testeurs qui contrôlent le SUT, parDTS la suite de tests
qui vérifieP , et parA l’ensemble des actions exécutées parDTS surP .

Malgré que tous les pairs aient exactement la même interface, tester l’interface d’un seul pair n’est
pas suffisant pour tester le système dans son ensemble. C’estpourquoi nous introduisons la notion de cas
de test distribué, c’est-à-dire, les cas de test qui s’appliquent à l’ensemble du système et dont les actions
peuvent être exécutées par les différents pairs.

Definition 1 (Cas de test distribué). Un cas de test distribué notéτ est un N-upletτ = (Aτ , T τ , Lτ , Sτ , V τ , ϕτ )
où Aτ ⊆ A est un ensemble ordonné d’actions{aτ

0 , . . . , aτ
n}, T τ ⊆ T est une séquence de testeurs,Lτ

est un ensemble de verdicts locaux,Sτ est un table de correspondance,V τ est un ensemble de variables
etϕτ est le niveau acceptable de verdictsinconclusive.

La table de correspondance permet de mettre en relation les actions et les ensembles de testeurs, où
chaque action correspond à un ensemble de testeurs que l’exécute.

Definition 2 (La table de correspondance). La table de correspondanceS = A 7→ Π, où Π est une
séquence d’ensembles de testeursΠ = {T0, . . . , Tn}, et∀Ti ∈ Π : Ti ⊆ T

Dans les systèmes P2P, l’autonomie et l’hétérogénéité des pairs interfèrent directement dans l’exé-
cution des demandes de service. Alors que les pairs plus proches peuvent répondre rapidement, les pairs
plus distant ou surchargés peuvent présenter un retard considérable pour répondre aux demandes. Par
conséquent, les clients ne s’attendent pas à recevoir un résultat complet, mais les résultats disponibles
qui peuvent être récupérées pour un délai donné. Ainsi, les actions de cas de test ne doivent pas attendre
indéfiniment pour obtenir des résultats, mais spécifier un délai maximum (timeout) d’exécution.

Definition 3 (Action). Un cas de test est un N-upletaτ
i = (Ψ, ι, T ′) oùΨ est un ensemble d’instructions,

ι est l’intervalle de temps dans lequelΨ doit être exécuté etT ′ ⊆ T est une séquence de testeurs qui
exécutent l’action.

Les instructions sont généralement des appels à l’interface de l’application P2P, ainsi que toute dé-
claration dans la langage de programmation du cas de test.

Definition 4 (Verdict local). . Un verdict local est calculé en comparant le résultat de test attendu, noté
E, avec le résultat de test lui-même, notéR. E etR peuvent être constitués d’une valeur unique ou d’un
ensemble de valeurs de n’importe quel type. Toutefois, ces valeurs doivent être comparables. Le verdict
local v deτ sur ι est définie comme suit :

lτι =







pass si R = E
fail si R 6= E maisR 6= ∅
inconclusive si R = ∅

Motivating test case example

Nous illustrons ces définitions avec un cas de test distribuésimple (voir l’exemple 3.1). Ce test sera
également utilisé comme exemple par la suite. L’objectif dece test est de détecter des erreurs sur le mise
en œuvre d’une DHT. Plus précisément, elle vérifie si de nouveaux pairs sont en mesure de récupérer les
données insérées avant leur arrivée.
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Example 1 (Simple cas de test distribué).

Action Testeurs Action

(a1) 0,1,2 join()
(a2) 2 Insérer la chaîne de caractères "un" associé à la clé 1

Insérer la chaîne de caractères "deux" associé à la clé 2 ;
(a3) 3,4 join() ;
(a4) 3,4 Récupération de données associées à la clé 1 ;

Récupération de données associées à la clé 2 ;
(a5) * leave() ;
(v0) * Calculer un verdict ;

Ce test comprend cinq testeursT τ = {t0 . . . t4} qui contrôlent cinq pairsP = {p0 . . . p4} et cinq
actionsAτ = {aτ

1 , ..., a
τ
5}. Si les données récupérées dansa4 sont les mêmes que celles insérées dans

a2, alors le verdict estpass. Si les données ne sont pas les mêmes, le verdict estfail. Si t3 ou t4 ne sont
pas en mesure de récupérer toutes les données, alors le verdict estinconclusive.

Méthodologie des tests

Plusieurs caractéristiques d’un système P2P démontrent lebesoin d’une méthodologie précise de test,
où la simplicité des interfaces contraste avec la complexité des facteurs qui peuvent affecter les tests :
la volatilité, le nombre de pairs, la taille des données, la quantité de données, le nombre de demandes
concurrentes, etc. Ainsi, la difficulté de tester ne réside pas seulement dans le choix des données d’entrée,
mais aussi dans le choix des facteurs qui doivent varier, leurs valeurs et leurs associations.

Les aspects d’un système P2P en trois dimensions

Comme indiqué dans l’introduction, le test d’un système P2Paborde les questions classique de test
des systèmes distribués, mais avec une dimension spécifiqueque nous appelons volatilité, qui doit être
un paramètre explicite dans les objectifs de test. Deux solutions possibles peuvent être utilisées pour
obtenir une séquence de test qui prend en compte la volatilité : (i) un profil de simulation en attribuant
une probabilité pour chaque pair de quitter ou de rejoindre le système à chaque étape de la séquence
d’exécution, (ii) de façon explicite à l’intérieur d’une séquence de test. La première solution est la plus
facile à mettre en œuvre, par contre, elle rend l’interprétation des résultats difficile, car nous ne pouvons
pas découvrir pourquoi la séquence de test a échoué. En outre, elle peut créer une distorsion avec les
réponses tardives de certains pairs au cours de l’exécutionde la séquence de test. En conséquence, cette
méthodologie ne peut pas être utilisée pour combiner un comportement de test sémantiquement riche
avec le paramètre de volatilité.

Dans cette thèse, nous recommandons de contrôler pleinement la volatilité dans la définition de la
séquence de test. Ainsi, un des pairs, du point de vue de test,peut avoir à quitter ou rejoindre le système
à un moment donné dans une séquence de test. Cette action est spécifiée dans la séquence de test dans
une manière déterministe.

Etant donné que nous devons être en mesure de gérer un grand nombre de pairs, la deuxième dimen-
sion de tests d’applications P2P est le passage à l’échelle.Parce qu’il accomplit un traitement, ces deux
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dimensions doivent être testés avec du comportement fonctionnel correct. Par conséquent, une métho-
dologie des tests et son cadre devrait prévoir la possibilité de contrôler les aspects d’un système P2P en
trois dimensions. Nous les résumons comme suit :
• Les fonctionnalités, exprimé par un comportement à être exercée.
• Le passage à l’échelle, exprimé par le nombre de pairs dans lesystème.
• La volatilité, exprimé par le nombre de pairs qui se joindre ou quitter l’application après son

initialisation au cours du test.

La méthodologie incrémentale de test

Pour prendre en compte les aspects d’un système P2P en trois dimensions, nous proposons une
méthodologie qui combine le contrôle du fonctionnement d’un système avec les variations des deux
autres aspects. En effet, nous augmentons progressivementl’échelle du SUT avec ou sans la simulation
de la volatilité.

Notre méthode incrémentale est composée par les étapes suivantes :

1. test d’applications à petite échelle sans volatilité ;

2. test d’applications à petite échelle avec la volatilité ;

3. test d’applications à grande échelle sans volatilité ;

4. test d’applications à grande échelle avec la volatilité.

L’étape 1 se compose de test de conformité, avec un minimum deconfiguration. L’objectif est de
fournir une séquence de test (TS) suffisamment efficace pour parvenir à un test de critères pré-définis.
Cette séquence de testTS doit être paramétrée par le nombre de pairs, de sorte qu’ils puissent être adapté
pour les tests à grande échelle. Une séquence de test est désignée parts(ps), oùps désigne un ensemble
de pairs. Les séquences de test peuvent également être combinées pour construire un scénario complexe
de test en utilisant un langage de tests, tel que Tela [84].
L’étape 2 se compose de la réutilisation de la séquence de test initiale et en y ajoutant la volatilité (TSV ).
L’étape 3 réutilise la séquence de test de l’étape 1 et la combine pour gérer un grand nombre de pairs.
Nous avons donc obtenu un scénario de test (GTS). Un scénario de test peut être composé de plusieurs
séquences de test.
L’étape 4 réutilise les scénarios de test de l’étape 3 avec les séquences de test de l’étape 2, et un scénario
de test avec la volatilité (GTSV ) est construit et exécuté.

L’avantage de ce processus est de se concentrer sur la génération des séquences de test pertinentes,
d’un point de vue fonctionnel, et puis la réutilisation de ces séquences en y ajoutant progressivement la
volatilité et le passage à l’échelle.

En termes de diagnostic, cette méthode permet de déterminerla nature des problèmes détectés. En
effet, les problèmes peuvent être liés à une cause purement fonctionnelle (Etape 1), à une question de
volatilité (étape 2), au passage à l’échelle (étape 3) ou unecombinaison de ces trois aspects (étape 4).
Les erreurs les plus complexes sont les derniers depuis leuranalyse est liée à une combinaison de ces
trois aspects. Les étapes 2 et 4 pourraient aussi être précédées par deux autres étapes (la réduction et
l’expansion du système), afin d’aider le diagnostic d’erreurs, soit en raison de l’absence de ressources ou
de l’arrivée de nouveaux ressources. Plusieurs taux de volatilité peuvent être explorées afin de vérifier la
manière dont elles affectent l’aspect fonctionnel du SUT (par exemple, 10 % des pairs rejoignent, 20 %
des pairs quittent).
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Cadre de test P2P

Dans cette section, nous présentons le cadre de test P2P y compris trois différentes architectures de
coordination de test.
• La première architecture repose sur un coordinateur de testcentralisé, où un contrôleur central est

chargé de synchroniser l’exécution des actions de test distribué à travers des testeurs pour assurer
la bonne exécution de leur séquence [35, 34, 33]. En fait, cette architecture étend l’architecture
classique de test des systèmes distribués avec la capacité de gérer la volatilité.

• La deuxième architecture évite le coordinateur centralisée organisant les testeurs dans un B-arbre.
La synchronisation est faite par le biais de messages échangés entre les parents et les enfants [36].

• La troisième architecture évite également le coordinateurcentralisé, mais par le biais de propaga-
tion de rumeurs échangés entre testeurs [36].

Toutes ces architectures ont été mises en œuvre en Java (version 1.5) et font appel à deux fonction-
nalités de ce langage : la réflexion dynamique et les annotations. Comme nous le verrons par la suite, ces
fonctionnalités sont utilisées pour sélectionner et exécuter les actions qui composent un scénario de test.

Testeurs

La suite de tests est mise en œuvre en tant que classe, qui est la classe principale de l’application
de test. Une suite de test contient plusieurs cas de test, quisont mis en œuvre comme un ensemble
d’actions. Un cas de test est composé par des actions mises enœuvre en tant que des méthodes annotées,
c’est-à-dire, les méthodes décorées par un méta-tag, ou(annotation), qui informe que la méthode est
une action de test. Les annotations peuvent être attachées aux méthodes ou à d’autres éléments (des
paquets, les types, etc), en donnant des informations supplémentaires concernant un élément : la classe est
obsolète, une méthode est redéfinie, etc. En outre, des nouvelles annotations peuvent être spécifiées par
les développeurs si nécessaire. Les annotations sont utilisées pour décrire le comportement des actions
de test : où il doit exécuter, dans lequel testeur, si oui ou non la durée doit être mesuré. Les annotations
sont semblables à celles utilisées par JUnit1, bien que leur sémantique ne soit pas exactement la même.

Le choix d’utiliser les annotations pour la synchronisation et l’exécution conditionnelle a été motivée
par deux raisons principales. Tout d’abord, de séparer le contrôle d’exécution du code de test. Deuxiè-
mement, pour simplifier le déploiement des cas de tests : tousles testeurs reçoivent le même cas de
test. Toutefois, les testeurs exécutent seulement les actions qui leur sont assignées. Les annotations sont
ci-dessous :

Test. Spécifie que la méthode est en fait un action de cas de test. Cette annotation a quatre attributs qui
sont utilisés pour le contrôle de son exécution : le nom du casde test, le lieu où il doit être exécuté,
son ordre à l’intérieur du cas de test et le délai d’exécution.

Before. Spécifie que la méthode est exécutée avant chaque test. Son but est de mettre en place un cadre
commun pour tous les cas de test. La méthode joue le rôle d’un préambule.

After. Spécifie que la méthode est exécuté après chaque test. Son butest de mettre en place l’environ-
nement de test dans le même état qu’avant l’exécution du test.

Chaque action est un point de synchronisation : à un moment donné, seulement les méthodes avec
la même signature peuvent être exécutées sur les différentstesteurs, c’est-à-dire, les actions ne sont pas
toujours exécuté sur tous les testeurs. Au fait, les annotations sont utilisés pour restreindre les testeurs où

1http ://www.junit.org
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une action peut être exécutée. Ainsi, les testeurs partagent le même code de test mais n’ont pas le même
comportement. Le but est de séparer le code de test à partir d’autres aspects, tels que synchronisation ou
exécution conditionnelle. Le testeur offre deux interfaces, pour l’exécution des mesures de contrôle et de
la volatilité :

1. execute(an) : exécute une action donnée.

2. leave(P ), fail(P ), join(P ) : fait une série de pairs quitter le système, quitter anormalement ou
rejoindre le système.

Quand un testeur exécute un test, il procède comme décrit ci-dessous :

1. Il prie le coordinateur pour l’identification qui sera utilisée pour filtrer les actions qu’il doit exécu-
ter.

2. Il emploie réflexion java pour découvrir toutes les actions, lire les annotations et créer un ensemble
de descriptions des méthodes.

3. Il passe au coordinateur l’ensemble des descriptions juste avec les méthodes qu’il convient d’exé-
cuter y compris leurs priorités d’exécution.

4. Il attend pour le coordinateur d’invoquer d’une de ses méthodes. Après l’exécution, il en informe
au coordinateur que cette méthode a été correctement exécutée.

Architecture centralisée

Dans cette architecture, un composant centralisé (coordinateur) contrôle et synchronise une séquence
de test.

En effet, le coordinateur contrôle plusieurs testeurs et chaque testeur fonctionne sur un nœud logique
différent (le même que celui du pair qu’il contrôle). Le rôled’un testeur est d’exécuter les actions de
test et de contrôler la volatilité d’un seul pair. Le rôle du coordinateur est d’envoyer les actions d’un cas
de test (Aτ ) aux testeurs (T τ ) et de maintenir une liste des pairs indisponibles. Dans la pratique, chaque
testeur reçoit la description de la séquence de test et est donc en mesure de savoir à quel moment exécuter
cette séquence.

The Coordinator

Le rôle du coordinateur est de contrôler quand chaque actionde test doit être exécutée. Quand le
test commence, le coordinateur reçoit un ensemble des descriptions des méthodes de chaque testeur, en
associant à chaque action un niveau hiérarchique. Ensuite,il utilise un compteur, qui représente le niveau
hiérarchique qui peut être exécuté, pour synchroniser l’exécution. Du point de vue du coordinateur, un
cas de test est composé d’un ensemble d’actionsA, où chaque actionaA

n a un niveau hiérarchiquehA
an

.
Actions avec les niveaux inférieurs sont exécutés avant queles actions à des niveaux plus élevés.

L’exécution des actions suit l’idée de la validation à deux phases (2pc). Dans la première phase, le
coordinateur informe tous les intéressés qui l’actionan peut être exécutée et produit un verrou. Une fois
que tous les pairs annoncent la fin de leur exécution, le verrou est libéré et l’exécution de la prochaine
action commence. Si un délai d’action est atteint, le cas de test est terminée.

Le coordinateur propose trois interfaces, pour l’exécution des actions, le contrôle de la volatilité et
l’accès aux variables de test :

1. register(ti , At), ok(an), fail(an), error(an) : action de l’enregistrement (effectué tous les tests
avant) et les réponses d’exécution d’une action, appelée par les testeurs, une fois l’exécution d’une
action est terminée.
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2. set(key,value), get(key): accesseurs pour les variables de test.

3. leave(P ), fail(P ), join(P ) : fait une série de pairs quitter le système, anormalement quitter ou
rejoindre le système.

Architectures distribuées

Dans cette section, nous présentons deux alternatives à l’architecture de test centralisée.

B-arbre

La première architecture présentée ici se compose des testeurs en organisant dans un structure B-
arbre [17], comme le réseau P2P par GFS-Btree [68]. L’idée est d’abandonner le coordinateur centralisé
de test et d’utiliser la racine de l’arbre pour commencer l’exécution des cas de test et de calculer un
verdict. Lors de l’exécution d’un test, la racine envoie lesactions à ses enfants testeurs, qui envoient
ces actions à leurs enfants. Une fois qu’une action est exécutée, les feuilles envoient leurs résultats à
leurs parents, qui font le même jusqu’à ce que la racine reçoive tous les résultats. Ensuite, la racine peut
envoyer les prochaines actions.

L’ordre du B-arbre n’est pas fixe, elle peut varier selon le nombre de testeurs, qui est connu au début
de l’exécution. Le but est d’avoir un arbre bien proportionné, où la profondeur est équivalent à son ordre.

Propagation de rumeurs

La propagation de rumeurs est une autre solution pour synchroniser l’exécution des actions d’une
manière distribuée. Dans la propagation de rumeurs, nous utilisons la même architecture utilisée par
l’architecture en arbre avec un testeur par nœud, toutefois, la synchronisation des actions est exécutée
par des changement des messages de coordination (des rumeurs) entre les testeurs.

L’exécution des tests se fait en plusieurs étapes. Tout d’abord, un nœudp du systèmeP est désigné
comme premier testeurt0. Ce testeur va fournir des identifiants à tous les autres testeurstn qui rejoignent
le système. L’identification est calculée en suivant une séquence de1 àn et est utilisée pour sélectionner
quelles actions un nœud doit exécuter. Deuxièmement,t0 crée une adresse de multicast pour chaque
action d’un cas de test. Troisièmement, les testeurs emploient réflexion java pour découvrir toutes les
actions. Ensuite, chaque testeur vérifie les actions qu’il doit exécuter et souscrit à l’adresse de multicast
appropriée. Enfin, les testeurs responsables pour exécuterla première action commencent l’exécution.

Un testeur peut jouer deux rôles différents au cours d’un test :
• Testeur actif. Ce testeur effectue une actionai en propageant son achèvement à l’adresse de mul-

ticast de la prochaine actionai+1. Une fois que le message a été envoyé, ce testeur devient un
Testeur inactif.

• Testeur inactif. Ce testeur reste inactif en attendent les messages de tous les testeurs actifs. Une
fois qu’il reçoit l’ensemble de messages, il devient unTesteur actif.

La propagation de rumeurs entre ces deux types de testeurs garantit la séquence d’exécution de la
séquence de test.

Nous utilisons l’exemple 3.1 pour illustrer cette approche. Au départ, un nœud est choisi pour être
testeurt0. Ensuite, les autres nœuds contactent avect0 pour recevoir un identifiantn et abonner à un
adresse de multicast appropriée. Par exemple, si un testeurreçoitn = 1, il souscrit aux adresses dea1, a3

et a5. Ensuite à l’identification, la première actiona1 est exécutée par les testeurs{t0, t1, t2}. Une fois
l’exécution dea1 est terminée, les testeurs envoient ces messages à l’adresse multicast de la prochaine



Résumé Étendu 11

actiona2. Une fois testeurt2 reçoit trois messages, il exécutea2 propageant son achèvement à l’adresse
de multicast de la prochaine action. Cela se produit consécutivement jusqu’à la dernière actiona7. Enfin,
chaque testeur calcule un verdict local et l’envoie àt0, qui attribue un verdict global de l’ensemble des
cas de test.

Conclusion

Dans ce chapitre, nous présentons les conclusions générales de cette thèse. Tout d’abord, nous abor-
dons les difficultés du test des systèmes P2P. Ensuite, nous résumons nos principales contributions. Enfin,
nous discutons des futures orientations de recherche dans le test des systèmes P2P.

Difficultés du test des systèmes P2P

Dans le cadre des systèmes distribués, le pair-à-pair (P2P)apparaît comme un puissant paradigme
pour développer des systèmes distribués qui passent à l’échelle. L’absence de serveur central pour gérer
les nœuds distribués fait qu’il n’existe ni point individuel de défaillance, ni goulet d’étranglement des
performances dans le système.

Dans un système P2P, chaque pair joue le rôle d’un nœud actif avec la possibilité de rejoindre ou
de quitter le réseau à tout moment, soit normalement (par exemple, par déconnexion), soit anormale-
ment (par exemple, par échec). Cette capacité, appelée volatilité, est une différence majeure d’avec les
systèmes distribués classiques. En effet, la volatilité permet de modifier dynamiquement la taille et la
topologie du réseau, ce qui rend ainsi les tests des systèmesP2P tout à fait uniques. Par conséquent, le
comportement fonctionnel d’un système P2P (ainsi que les défauts fonctionnels) dépend fortement du
nombre de pairs et de leur volatilité.

En résumé, un cadre de test P2P devrait prévoir la possibilité de contrôler trois aspects :
• La fonctionnalité, exprimée par le comportement du système;
• Le passage à l’échelle, exprimé par le nombre de pairs dans lesystème ;
• La volatilité, exprimée par le nombre de pairs qui se joignent ou quittent le système après leur

initialisation au cours du test.

Enfin, ces aspects font ressortir la nécessité d’une méthodologie précise de test des systèmes P2P, où
la simplicité des interfaces contraste avec la complexité des facteurs qui peuvent affecter un test. Ils font
également ressortir la nécessité d’une architecture de test robuste et efficace : robuste pour comprendre
la volatilité comme un comportement normal et efficace pour subir des tests à grande échelle.

Contributions

Dans cette thèse, nous avons proposé une solution intégrée pour la création et le déploiement d’un
environnement de validation des systèmes P2P, avec la possibilité de créer des pairs et de les faire re-
joindre et quitter le système. Les objectifs de test peuventcombiner le contrôle du fonctionnement du
système avec des variations de la volatilité et aussi avec lepassage à l’échelle. L’exactitude du système
peut donc être validée sur la base de ces trois dimensions, c’est-à-dire les fonctions, le nombre de pairs
et la volatilité des pairs.
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Méthodologie incrémentale

Dans cette thèse, nous avons recommandé de contrôler la volatilité dans la définition d’une séquence
de test. Ainsi, chaque pair, du point de vue du test, peut êtreamené à quitter ou à rejoindre le système à
un moment donné dans une séquence de test.

Devant être en mesure de gérer un grand nombre de pairs, la deuxième dimension d’un test de sys-
tème P2P est le passage à l’échelle. Ces deux dimensions étant une partie intégrante des systèmes P2P,
elles doivent être combinées avec le test des fonctionnalités.

Par conséquent, nous avons proposé une méthodologie de testincrémentale où nous testons les fonc-
tionnalités du système en augmentant progressivement son échelle avec ou sans la simulation de la vola-
tilité.

Nous avons validé notre méthodologie incrémentale de test en montrant comment les trois aspects
dimensionnels de test augmentent la couverture de code, et par conséquent, la qualité des tests.

Les architectures de coordination de test

Nous avons proposé également trois différentes architectures de coordination de test [35, 36, 34, 33].
Ces architectures sont basées sur deux aspects originaux : (i) le contrôle individuel de la volatilité des
pairs et (ii) la distribution de l’architecture de test pourfaire face à un grand nombre de pairs. Les
avantages de ces architectures sont (1) d’automatiser l’exécution des tests localement à chaque pair, (2)
de construire automatiquement un verdict global, (3) de permettre un contrôle explicite de la volatilité
de chaque pair.

Nous avons mis en œuvre ces architectures et nous les avons utilisées pour tester deux systèmes P2P
open-source. Durant ces expérimentations, nous avons analysé le comportement des ces deux systèmes
avec des conditions différentes de volatilité et nous avonsmontré que notre contribution est capable de
détecter des problèmes de mise en œuvre.

Orientations futures de recherche

Notre prochain défi est de proposer une solution capable de générer des scénarios de test en assurant
une meilleure couverture des fonctionnalités par la variation de la volatilité et du nombre de noeuds
(passage à l’échelle). Cette combinaison de paramètres pourrait encore améliorer la couverture du code
durant les tests.

Nous avons également l’intention de tester les systèmes P2Pdans des situations plus extrêmes telles
que l’exécution d’insertion et/ou de récupération de très grands volumes de données. Ces tests pourraient
augmenter de manière significative la confiance sur les systèmes sous test. En outre, ces différentes
situations pourraient être utiles pour réaliser des tests de stress, dont l’objectif est de vérifier comment se
comporte un système aux conditions extrêmes mais valables :un grand nombre d’utilisateurs simultanés,
peu de mémoire, etc.

Dans un autre contexte, les systèmes P2P génèrent une quantité importante de fichiers delog tout au
long de leur exécution. Ainsi, l’analyse de ces fichiers pourrait être un thème intéressant de recherche,
tout comme la mise en œuvre d’un oracle capable d’analyser ces fichiers et qui serait complémentaire à
l’approche des assertions que nous avons présentée. Une solution possible serait de charger ces fichiers de
log dans une base de données et de tirer parti des capacités du SGBD à construire des rapports complexes
d’analyse (par exemple, des rapports d’anomalie) et de gérer de grandes quantités de données.

Enfin, la traçabilité [32, 97] pourrait être utilisée en combinaison avec l’analyse dulog. L’idée est
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d’identifier les traces des scénarios de faute pour guider ledéveloppeur à trouver l’origine d’une dé-
faillance du système.





CHAPTER1
Introduction

1.1 Motivation

Peer-to-peer (P2P) systems connect a set of distributed nodes (i.e., peers) across a network without
any centralized control or any hierarchical system. Every new peer shares with the system its resources
(e.g., CPU, storage, memory, etc) and/or its data (e.g., music files, web pages, etc). In the context of
resource sharing, a P2P system yields high scalability since the amount of resources scales up with the
number of peers. A typical P2P system can deal with heavy loads, for instance large data sets. In the
context of data sharing, a P2P system yields availability and redundancy of data since a request for the
same data can be treated by multiple peers. Furthermore, if some peers share the same data, they can
build together a social network (i.e., a group of peers tied by one or more types of interdependency).

Indeed, P2P offers good solutions for many applications such as large data sharing and collaboration
in social networks. Thus, it appears as a powerful paradigm to develop scalable distributed applications,
as reflected by the increasing number of emerging projects based on this technology [12].

Among the many aspects of the P2P development, making systems reliable is an obvious target. This
is even more critical when P2P systems are to be widely used. So, as for any system, a P2P system has to
be tested with respect to its requirements. As for any distributed system, the communication and message
exchanges complexity must be a part of the testing objectives. Testing of distributed systems consists of
a centralized test architecture composed of a test controller, or coordinator, which synchronizes and
coordinates the communications (message calls, detectionof deadlocks) and creates the overall verdicts
from the local ones [37, 59]. Locally to each node, test sequences or test automata can be executed which
run these partial tests on demand and send their local verdicts to the coordinator. One local tester per
node or group of nodes is generated from the testing objectives. The tester specifies the system using
Finite State Machines [25, 54, 24], Labeled Transition Systems [58, 85, 59] and uses this specification
to generate a test suite that is able to verify (totally or partially) whether each specified transition is
correctly implemented. The tester then observes the eventssent among the different nodes of the system
and verifies that the sequence of events corresponds to the state machine (or to the transition system).

In a P2P system, a peer plays the role of an active node with theability to join or leave the network
at any time, either normally (e.g., disconnection) or abnormally (e.g., failure). This ability, which we call
volatility, is a major difference with distributed systems. Furthermore, volatility yields the possibility of
dynamically modifying the network size and topology, whichmakes P2P testing quite different. Thus,
the functional behavior of a P2P system (and functional flaws) strongly depends on the number of peers,
which impacts the scalability of the system, and their volatility.

A Distributed Hash Table (DHT) [88, 92, 86] is an example of a P2P system, where each peer is
responsible for the storage of values corresponding to a range of keys. It has a simple local interface
that only provides three operations: value insertion, value retrieval and key lookup. The remoteinterface
is more complex, providing operations for data transfer andmaintenance of the routing table, i.e., the
correspondence table between keys and peers, used to determine which peer is responsible for a given
key. Testing these interfaces in a stable system is rather simple. However, it is hard testing that the
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routing table is correctly updated and requests are correctly routed while peers leave and join the system.
Furthermore, such testing requires a mechanism to simulatevolatility and ensures that this simulation
does not interfere with the test, i.e., that unanswered requests are not interpreted as faults.

Some approaches for P2P testing propose to randomly stop theexecution of peers [13, 69], or to
insert faults in the network [55, 76]. While these approaches are useful to observe the behavior of the
whole system, they are not totally adapted for testing a P2P system. Since they focus on tolerance to
network perturbations, they fail in detecting software faults, specially those which occurs due to peers’
volatility. For instance, if one wants to test if a peer is able to rebuild its routing table when all peers it
knows leave the system, then one needs to specify precisely the peers to drop since the random volatility
is not precise enough. Increasing significantly the rate of volatile peers is not desirable either since the
high number of messages necessary to rebuild the routing tables from the remaining peers may interfere
with the test.

A P2P system must also scale up to large numbers of peers. It means the testing architecture must
scale up either. Indeed, a typical P2P system may have a high number of peers which makes the cen-
tralized testing architecture (i.e., central coordinatormanaging distributed testers) not scalable [44, 64,
33, 71]. It is also possible to use distributed testers wheretest cases are coordinated through messages
exchanged at points of communication (PC) [101, 98]. Even with such PCs, the testing architecture
perturbs the performance of P2P systems. Indeed, the algorithmic performance with such testing archi-
tecture scales up linearly with the number of peers, while a typical P2P system scales up logarithmically.
To avoid testers intrusiveness to threaten the validity of test results, the testing architecture should thus
have logarithmic performance in the worse case.

1.2 Contributions

In this thesis, we propose an integrated solution for the creation and deployment of a P2P test envi-
ronment with the ability to create peers and make them join and leave the system. Then, the test objectives
can combine the functional testing of the system with the volatility variations (and also scalability). The
correctness of the system can thus be checked based on these three dimensions, i.e. functions, number of
peers and peers volatility.

In detail, we propose an incremental methodology to deal with these dimensions, which aims at
covering functions first on a small system and then incrementally addressing the scalability and volatility
issues [33].

As stated in the previous section, P2P testing tackles the classical issue of testing a distributed sys-
tem, but with a specific dimension we call volatility, which has to be an explicit parameter of the test
objectives. Two possible solutions may be used to obtain a test sequence which includes volatility. It can
either be simulated with a simulation profile or be explicitly and deterministically decided in the test
sequence. The first solution is the easiest to implement, by assigning a given probability for each peer
to leave or join the system at each step of the test sequence execution [39, 91, 69]. The problem with
this approach is that it makes the interpretation of the results difficult, since we cannot guess why the
test sequence failed. Moreover, it creates a bias with the possible late responses of some peers during the
execution of the test sequence. As a result, it cannot be usedto combine a semantically rich behavioral
test with the volatility parameter. In this thesis, we recommend to fully control volatility in the definition
of the test sequence. A peer thus, from a testing point of view, can have to leave or join the system at a
given time in a test sequence. This action is specified in the test sequence in a deterministic way.

Since it has the objective to deal with a large number of peers, the second dimension of P2P sys-
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tem testing is scalability. Then, because it is accomplishing a treatment, the scalability and volatility
dimensions have to be tested with the behavioral and functional correctness. In summary, a P2P testing
framework should provide the possibility to control:

• functionality captured by the test sequence which enables agiven behavior to be exercised,
• scalability captured by the number of peers in the system,
• volatility captured by the number of peers which leave or join the system after its initialization

during the test sequence.

When performing scalability testing for a distributed system, the functional aspects are barely taken
into account. The same basic test scenario is simply repeated on a large number of nodes [45]. The same
approach may be used, but would also lead to test volatility separately from the functional aspect. For
a P2P system, we claim that the functional flaws are strongly related to the scalability and volatility
issues. As a consequence, it is crucial to combine the scalability and volatility aspects with meaningful
test sequences.

We also propose three different architectures to coordinate the test sequence. These architectures
are based on two original aspects: (i) the individual control of peers’ volatility and (ii) a distributed
testing architecture to cope with large numbers of peers. The capabilities of these architectures are (1) to
automate the execution of each local-to-a-peer test case, (2) to build automatically the global verdict, (3)
to allow the explicit control of each peer volatility.

The first architecture extends the classical centralized testing architecture (i.e., central coordinator
managing distributed testers) with volatility control to demonstrate that such volatility is a key-parameter
when testing a P2P system [34]. Basically, this architecture has two main components: the tester and the
coordinator. The tester is composed of the test suites that are deployed on several logical nodes. The
coordinator is deployed in only one node and is used to synchronize the execution of test cases. It acts as
abroker [21] for the deployed testers.

However, the performance of such centralized architectureis linear while testing with large num-
bers of peers requires logarithmic. Therefore, we propose two fully distributed architectures to cope
with large-scale P2P systems [36]. The second architectureorganizes the testers in a balanced tree [17]
(B-Tree) manner where the synchronization is performed from the root to the leaves. Then, the testers
communicate with each other across the B-tree to avoid usinga centralized coordination. The third archi-
tecture uses gossiping messages among testers reducing communications among the testers responsible
to execute consecutive test case actions. Since both distributed architectures do not rely on a central
coordinator they scale up correctly.

These two distributed architectures only have one component, the tester. The tester is the application
that executes in the same logical node as peers, and controlstheir execution and their volatility, making
them leave and join the system at any time, according to the needs of a test. Thus, the volatility of
peers can be controlled at a very precise level. These architectures do not address the issue of test cases
generation but is a first element towards an automated P2P testing process. It can be considered analogous
to the JUnit1 testing framework for Java unit tests.

We validated them through implementation and experimentation on two open-source P2P systems.
Through experimentation, we analyze the behavior of both systems on different conditions of volatility
and show how they are able to detect implementation problems. We also validated our incremental testing
methodology showing how the three dimensional aspects increased code coverage.

1http ://junit.org/
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1.3 Outline

The rest of the thesis is organized as follows. In chapter 2, we introduce the P2P systems to establish
the context of our work. Then, we survey the testing architectures comparing their perspectives from the
context of distributed testing and we discuss why they are not suited to test P2P systems. Finally, we
survey the test oracle approaches and discuss their advantages and drawbacks.

In chapter 3, we present our testing framework in two parts. First, we present an incremental metho-
dology to deal with the dimensional key-aspects of P2P system testing. Second, we present three testing
architectures to coordinate the execution of test cases across peers. In chapter 4, we present the PeerUnit
tool which implements our testing framework.

In chapter 5, we describe the experimental validation of ourcontributions with three objectives: (i)
validate the usability and efficiency of our testing framework based on experiments that verify two popu-
lar open-source DHTs, (ii) validate the feasibility of our incremental testing methodology and comparing
it with classical coverage criteria and (iii) evaluate the coordination overhead of our testing architectures.

In chapter 6, we conclude this thesis and discuss future directions of research.



CHAPTER2
State of the art

2.1 Introduction

In this chapter, we present initially an overview of the peer-to-peer (P2P) systems to establish the
context of our work. Then, we survey the testing architectures comparing their perspectives from the
context of distributed testing. Moreover, we discuss why they are not suited to test P2P systems. First,
we show that they fail when dealing with the volatility, bothinterrupting the testing sequence and dead-
locking the tester, then assigning false-negative verdicts to test cases (i.e., false fail verdict). Second, we
show that most of them do not scale up due to centralized test coordination. Third, some of these archi-
tectures demand to include additional code into the system under test (SUT) source code. While this is a
straightforward approach to control testing executions, it is error prone. In fact, we believe that an ideal
testing architecture for P2P systems must consider the P2P features and also control the execution of
tests without contaminating the SUT with additional code. Furthermore, a correctness mechanism must
be provided to assign verdicts to tests. Finally, we survey two testing oracle approaches and their distinct
ways to check correctness.

This chapter is organized as follows. In section 2.2, we present a background of P2P systems. In
section 2.3, we describe several testing architectures anddiscuss why they are not able to test P2P sys-
tems. In section 2.4, we describe some testing oracles and discuss their advantages and drawbacks. In
section 2.5, we conclude this chapter.

2.1.1 Software testing

Software testing is the process of finding evidences of errors in software systems. Tests can be imple-
mented and executed in different ways along testing (e.g., Manual testing, Automated testing). Manual
testing is still valuable, but testing is mainly about an automated system to implement, apply and eva-
luate tests [20]. To do so automatically, a test must be designed to work with interfaces and the runtime
environment of the SUT.

Tests are designed to analyze and decide whether a SUT contains errors. To accomplish this task the
test engineer must define atest scenario. A test scenario is a set oftest casesthat covers all possible ways
of testing a set of conditions.

The aim of a test case is to validate one or more requirements from a system: it exercises the SUT
and checks whether an erroneous behavior occurs. We roughlydefine a test case as being composed of a
name, an intent, a sequence of actions, a sequence of input data and the expected outputs.

Along testing, an input helps to exercise the functional aspects of a system and aims to generate a
result. To define an input, a test engineer must be based on some test criteria. Various test criteria can
be used, such as control/based-flow based coverage criteria, specification-based coverage criteria, etc.
Moreover, this input can be received from an external source, such as hardware, software or human [99].

By the end of a test execution, the exercised system generates some results in form of an output value
(e.g., changes to data, reports, communication messages sent out, and output to screens). First, the actual
result that is the result of the test case itself. Second, theexpected result that is what the test engineer

19
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expects to have by the end of a test. Then, these two results are used to assign a validation label, or a
verdict to the test case. A verdict is normally assigned among three values: pass, fail andinconclusive.

Theoracle is the mechanism responsible for assigningverdicts. This mechanism compares the actual
result with the expected one and assign a verdict to the test case. If the values are the same, the verdict
is pass. Otherwise, the verdict is fail. The verdict may alsobe inconclusive, meaning that the test case
output is not precise enough to satisfy the test intent and the test must be done again. There are different
sorts of oracles: assertions, value comparison, log file analysis, manual, etc. An entire testing technique
thus includes test criteria, test cases generation techniques and mechanisms for obtaining the verdicts.

Figure2.1 illustrates the whole software testing process.Initially, some test data is used as input to
be executed by the SUT. Then, such execution generates some results also called as actual output. This
actual output is compared with an expected output with respect to some specification. Such comparison
is made by an oracle and results in a verdict. If the verdict isfalse, the error is localized, corrected and
the process starts over. The process stops when the verdict is true and a certain stop criterion is reached.

Test data SUT

Execution

Specification SResult

Oracle

Verdict

Stop criterion

True

False

Not verified

Localization /

Tunning

Figure 2.1 – Software Testing Process

2.1.2 Testing peer-to-peer systems

In this thesis, our goal is to build an automated system for the creation and deployment of a testing
environment for P2P systems. Compared to classical distributed systems, P2P systems are completely
decentralized. A peer behaves as a client computer in the client-server model, but also provides server
functions [16]. In a P2P system, peers interact with each other directly in a decentralized way without
the need of a central server. Due to the decentralization, peers are functionally identical, but with the
particular capacity to join or leave the system at any time. This simple change adds the possibility to
modify dynamically the network size and topology resultingin high scalability.

This decentralization also results in high fault-tolerance since there are no single points of failure.
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Without a central server, any peer in the system may assume the responsibility of a failed one. Moreover,
decentralization means that nobody/nothing can control the peers spread across the network. Thus, any
peer can decide to share or not its resources.

P2P systems are distributed systems, and should be firstly tested using appropriate tools dedicated to
distributed system testing. Distributed systems are commonly tested using conformance testing [90, 101,
89, 76, 75, 59]. The purpose of conformance testing is to determine to what extent the implementation of
a system conforms to its specification. The tester specifies the system using Finite State Machines [25,
54, 24] or Labeled Transition Systems [58, 85, 59] and uses this specification to generate a test suite
that is able to verify (totally or partially) whether each specified transition is correctly implemented.
The tester then observes the events sent among the differentnodes of the system and verifies that the
sequence of events corresponds to the state machine (or to the transition system). In general, a tester,
also called test driver[20, 99], is a component that appliestest cases to a SUT. The classical architecture
for testing a distributed system consists of a centralized tester which sends the test inputs, controls the
synchronization of the distributed system and receives theoutputs (or local verdicts) of each node of
the SUT. In many cases, the distributed SUT is perceived as a single application and it is tested using
its external functionality, without considering its components (i.e., black-box testing). The tester in that
case must interpret results, which include non-determinism since several input/outputs orderings can be
considered as correct.

The observation of the outputs for a distributed system can also be achieved using the traces (i.e.,
logs) produced by each node. The integration of the traces ofall nodes is used to generate an event time
line for the entire system. Most of these techniques do not deal with large scale systems, in the sense
they target a small number of communicating nodes. In the case of P2P systems, the tester must observe
the remote interface of peers to observe their behavior and also deal with a potentially large number of
peers. Writing test cases is then particularly difficult, because non-trivial test cases must execute actions
on different peers. Consequently, synchronization among actions is necessary to control the execution
sequence of the whole test case.

Analyzing the specific features of P2P system, we remark thatthey are distributed systems, but the
existing testing techniques for distributed systems do notaddress the issue of synchronization when a
large number of nodes are involved. Thus, the typical centralized tester architecture can be reused for
building a testing framework for P2P systems. However, Ulrich et al. [98] describe that such centralized
architecture may not scale up and becomes a bottleneck. Another dimension is not addressed by distribu-
ted system testing, which is the problem of nodes volatilityof P2P systems. P2P systems must be robust
and work even if peers are volatile (under limits which have to be determined). Volatility thus interferes
with the system functionality and may cause failures to occur. This aspect of dealing with volatility is
usually addressed using stress and load testing techniques.

2.2 P2P Systems

Peer-to-peer (P2P) systems are distributed systems designed for resource sharing (content, storage,
CPU cycles) by direct exchange, rather than requiring the support of a centralized server or authority.
These systems are characterized by their ability to adapt tofailures and accommodate transient popula-
tions of nodes while maintaining acceptable connectivity and performance [12].

We can classify the main characteristics of P2P systems as follows :
• Peers are decentralized. There are no central server, and peers are distributed over a wide-area

network.
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• Peers are volatile. A peer may join and leave the system at anytime. Deshpande et al. [39] des-
cribes that understanding volatility can be a key factor in designing effective and efficient P2P
architectures.

• Peers are autonomous. A peer decides to share its contents and/or resources with other peers.

These characteristics are directly impacted by different topologies and structures that a P2P system
may have. These topologies and structures form a P2P networkalso called overlay network. In fact, a
P2P system relies on a P2P network in order to operate. We organized the rest of the section based on the
three main structures of P2P networks: unstructured, structured and super-peer.

2.2.1 Unstructured

In unstructured networks, peers organize themselves in a non-deterministic manner without any par-
ticular structure (e.g., ring, binary tree, multidimensional space) [77, 7, 80]. Gnutella, FreeHaven [40],
and Kazaa [65] are examples of unstructured P2P networks.

Whenever a new peer connects to the network, it contacts other peers randomly. These peers be-
come neighbors and start to exchangePing messages to announce the connection. These messages are
propagated recursively through the entire neighborhood, flooding the network. Query messages are also
sent by flooding. However, such approach is not scalable. In avery large system, if all peers query by
flooding, than the network becomes overloaded reducing the performance of the P2P system as well.

To reduce the flooding, some new mechanisms were presented. The Gnutella search mechanism is
based on constrained flooding, where messages are passed between neighbors with a time-to-live (TTL).
For instance, in a query, a peer forwards messages recursively to all of its neighbors until locate the
desired data. These messages decrement their TTL field at each hop until such TTL reaches zero to be
dropped.

Despite the flooding have been constrained by a TTL, the traffic load continued to be expensive [91]
and the P2P systems continue to have difficulty to scale up. Thus, more sophisticated techniques were
presented to reduce such traffic. For instance, Kalogeraki et al. [63] propose to forward messages to
selected neighbors based on the past behavior of the network. Lv et al. [72] propose to forward messages
to random neighbors, that also forward them randomly: periodically, these messages contact the query
originator to ask whether the termination condition is heldor not (e.g., TTL). For other techniques refer
to [23, 29, 107].

A drawback of the unstructured networks is the absence of guarantee to query completeness [48].
This happens because some peers containing relevant data may be too far from the query originator and
the query messages are dropped by TTL before they reach data.

2.2.2 Structured

Structured networks appear to solve the scalability issuesof the unstructured networks. In structured
networks peers may organize themselves in different types of structures such as ring [92], binary trees [6],
multidimensional space [86], or others. The structures aremaintained by a routing mechanism used to
organize the system, and to send and forward messages.

A Distributed Hash Table (DHT) is an example of a structured network. In a DHT, each peer is
responsible for the storage of values corresponding to a range of keys. A DHT has a simple local interface
that provides three operations: value insertion, value retrieval and key look up. The remoteinterface is
more complex, providing operations for data transfer and maintenance of the routing table, i.e., the



CHAPITRE 2 — State of the art 23

correspondence table between keys and peers, used to determine which peer is responsible for a given
key.

Figure 2.2 illustrates a Chord DHT where a peer is responsible to keep a set of pairs “(key, value)”
mapped to its ID. Once a peer joins the system, it acknowledges its neighborhood and acquires the pairs
with the keys it is mapped for. When such peer decides to leavethe system, it passes its pairs to its
neighbors. Each peer also keeps a routing table with the IDs of its neighbors used to route messages. For
instance, peerP10 decides to look up for key54. It sends a message directly to its last neighborP29
since it has the closest ID to the key. Then, the look up is routed in the same way until find the object
keeper, which is peerP52.

P20

P33

P45

P48

P52

P14

P10

lookup(54)

P1

P29

K54

Figure 2.2 – Chord ring with three on-line nodes

The routing mechanism provides two advantages compared to unstructured networks. First, it avoids
message flooding resulting in high scalability due to low network traffic. Yet, the routing ensures an
upper bound of hops necessary to look up for a key. A typical upper bound isO(log(N)) whereN is
the number of peers in the network. Second, it efficiently routes query messages to a responsible peer up
to the upper bound limit resulting in high quality of service(e.g., completeness, data availability, query
response time, etc).

A drawback of the structured networks is the limited autonomy of peers since each peer is only
responsible to keep the keys closer to its ID. Examples of P2Psystems based on structured networks in-
clude FreeNet [1, 27], Chord [92, 31], CAN [86], Pastry [88],PAST [43], Tapestry [109], Kademlia [78],
PIER [56], and P-Grid [6].

2.2.3 Super-peer

Super-peer network is a hybrid of unstructured networks andclient/server systems. In super-peer
networks some functionalities are still centralized in special peers classified as super peers due to their
high amount of resources. Figure 2.3 illustrates a typical architecture, where a super-peer keeps an index
of meta-data for all files in the network. Once a peerp queries the super-peer for a given file, it receives
a list of peers that hold such file. Then,p opens direct connections with one or more of those peers in
order to download the file.
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Figure 2.3 – Super-peer architecture

Yang and Garcia-Molina [106] argue that super-peer networks have better object location than pure
P2P networks because the indices of files remains centralized. Furthermore, super-peer networks are
relative simple to implement and the quality of the service can be perceived by users (i.e., completeness
of query results, response time).

However, super-peer networks have an important disadvantage. It can be vulnerable to malicious
attack, legal action, and technical failure since the content description and the ability to access it is
controlled by a single institution [12]. Examples of P2P systems based on super-peer networks include
Publius [74], JXTA [2], Edutella [81, 82] and Napster [3].

2.2.4 Comparing P2P Systems

In the previous subsections, we presented characteristicsof different structures of P2P network. A
comparison of these networks can be based on the ability of with which they can adapt to volatility,
scalability and autonomy. Table 2.1 summarizes the comparison.

Characteristic Unstructured Structured Super-peer
Fault-tolerance high high low

Scalability low high low
Autonomy high low moderate

QoS low high high

Table 2.1 – Comparing P2P networks

Initially, we compare the ability of the networks to deal with the volatility of peers (i.e., fault-
tolerance). While super-peer networks rely on powerful butfail-prone peers (super-peers), unstructured
and structured networks are completely decentralized withhigh degree of fault-tolerance. In super-peer
networks, whenever a super peer leaves the system, the rest of the system suffer. For instance, centralized
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index can not be reached when a super-peer fails and it becomes impossible to find data. However, in
other networks a failed peer may have its data replicated andanother peer takes its place.

Concerning scalability, super-peer networks can not scaleup since new powerful peers can not be ea-
sily added. Unstructured networks have also some scalability issues, but related to their expensive traffic
load (e.g., flooding, random walk), besides some efforts to reduce it. In contrast, structured networks are
completely scalable. They are completely decentralized with low network traffic due to their message
routing mechanism.

An issue in structured networks is the autonomy, which is lowbecause the peers can not control the
data they store. In fact, the storage is divided across all peers, where a peer is responsible to a range
of keys. Super-peer networks also have autonomy issues, butrelated to connection restrictions that can
be imposed by the super-peers. In contrast, unstructured networks have high degree of autonomy since
peers may store their objects freely.

Finally, we compare the quality of service (QoS), e.g., completeness, data availability, query res-
ponse time, etc. Indeed, both structured and super-peer networks guarantee high QoS, but in different
approaches. While structured networks guarantees a high QoS based on the message routing mechanism,
super-peer networks rely on centralized peers that keep theindices of the object location. In contrast,
unstructured networks does not provide guarantee to completeness, because queries may not reach the
object keeper.

2.3 Testing Architectures for Distributed Systems

We classify three possible approaches to execute test casesacross a distributed system. Consider a
simple example to illustrate each approach. A DHT stores pairs “(key,value)” across the nodes in system,
where each node is responsible to keep a certain set of pairs.Three operations are provided to manipulate
these pairs: lookup, put and retrieve. A test case is written to verify theretrieval operation. This test case
is composed by the put of some value, then the retrieval of it,and finally the retrieved value is compared
to the put one in order to assign a verdict.

In the first approach, it is considered that a single node represents the whole system. Figure 2.4
illustrates a node receiving a test case to be executed. Although, this approach may find implementation
problems, it is not capable to find issues triggered by the communication between nodes. In fact, this
approach will execute like an unit test performed by Junit [62].

In the second approach, multiple nodes can be used along testing. This approach aims to reduce
the time cost of the testing process by deploying different test cases across different nodes in parallel.
Figure 2.5(a) illustrates this approach where each node receives a copy of the same test case. While this
approach tests a distributed system more properly, it is limited to simple tests since each node executes
the entire test case. For instance, it is possible to performa stress test with several nodes putting pairs in
parallel, however, it is impossible to test if a node retrieves a pair put by another one.

As we mentioned, Distributed systems are particularly difficult to test. The system may have several
possible sources of input and output spread across the network. In this case, a good approach to test is the
decomposition of test cases in actions. Then, different nodes can be responsible to execute an action or a
set of them. Yet, the nodes that compose the system may be heterogeneous, meaning that the execution
time of test case actions varies for each node. Consequently, synchronization among test case actions is
necessary.

In the third approach, again all nodes of the system participate in the test. However, the test case is
decomposed in actions, also called test case events or test case actions, in order to be deployed across the
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Figure 2.4 – One node representing the whole system

nodes. Figure 2.5(b) illustrates this approach where each node receives a set of actions to be executed.
This approach can execute complex tests since different actions can be executed by different nodes. For
instance, nodeP0 puts a pair into the DHT, then the other nodes will retrieve such pair and assign a
verdict afterward. We believe this approach is more suited to P2P system testing, thus, we base our
contribution on it.

P2

P0

P3 P1

put(10,'Nantes')
res := retrieve(10)
res = 'Nantes' ?

Simple test case

put(10,'Nantes')
res := retrieve(10)
res = 'Nantes' ?

Simple test case

put(10,'Nantes')
res := retrieve(10)
res = 'Nantes' ?

Simple test case

put(10,'Nantes')
res := retrieve(10)
res = 'Nantes' ?

Simple test case

(a) Entire Test case

P2

P0

P3
res := retrieve(10)
res = 'Nantes' ?

Simple test case

put(10,'Nantes')

Simple test case

res := retrieve(10)
res = 'Nantes' ?

Simple test case

res := retrieve(10)
res = 'Nantes' ?

Simple test case

P1

(b) Decomposed Test case

Figure 2.5 – Distributed approaches

2.3.1 Conformance Testing Methodology and Framework (CTMF)

In this section, we describe some general architectures presented by the international standard ISO/9646
“Conformance Testing Methodology and Framework”(CTMF). Then, we describe the architectures beyond
the CTMF showing their advantages and drawbacks focused on P2P system testing.

The international standard 9646 “Conformance Testing Methodology and Framework”(CTMF) [5]
has been considered as the reference of testing architectures [101, 89, 76, 75, 59]. The CTMF defines
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conceptual architectures to support test execution. A testarchitecture is a description of how an Imple-
mentation Under Test (IUT) is to be tested, in particular, what inputs can be controlled and what outputs
can be observed. Yet, the CTMF defines a System Under Test (SUT) as a set of IUTs.

Figure 2.6 illustrates the CTMF single-party architectures. Single-party is aimed at testing an IUT
that communicates in a point-to-point connection, with a single node. An IUT is composed by upper and
lower interfaces through which is tested. Typically, the lower interfaces are accessible only from remote.
These interfaces are tested by two components called the Upper Tester (UT) and the Lower Tester (LT).
The tests are performed in the Points of Control and Observation (PCO) through control and observation
of the inputs and outputs from/to the IUT.

Conceptually the IUT and the testing system communicate using different components. While IUT
and UT communicate by means of Abstract Service Primitives (ASPs), IUT and Lower Tester (LT) ex-
change Protocol Data Units (PDUs). In practice, Schieferdecker et al. [89] describe that it is not necessary
to distinguish between ASP and PDU since they are encoded together. Therefore, only the term PDU is
used. Yet, both UT and LT can be realized in the same tester process [89, 96, 38], otherwise they need to
exchange coordination messages using the Test Coordination Procedure (TCP).
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Figure 2.6 – CTMF Single-party Architectures

Figure 2.6 also illustrates the local and the distributed methods. In fact, the difference between them
is the management of the PCOs. While in the local method the PCOs are managed from within the testing
system, in the distributed method they are managed from within the SUT.

Figure 2.7 illustrates the CTMF multi-party architecture.In this setting, an IUT can have several
nodes running at the same time. Thereby, more than one LTs andUTs are active to control and observe
the IUT. The coordination between LTs is performed by a particular entity called Lower Tester Control
Function (LTCF) through Coordination Points (CP). Besidesthe coordination, such entity performs two
procedures. First, it starts all the LTs. Second, it determines the final test verdict gathering information
from all the LTs after they stopped the test case execution.

Several architectures were based on the CTMF, however, mostof them consider the CTMF too
restrictive with respect to the types of systems that can be tested. Furthermore, they consider that the
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up-coming distributed systems requires a flexible and adaptive test architecture. As a result, Walter et
al. [101] present a flexible and generic architecture beyondconformance testing (i.e., Interoperability,
Performance, Quality-of-service, etc). Further authors also described new architectures. Thus, we divi-
ded these architectures in the next subsections in order to survey their advantages and drawbacks. The
first subsection describes the single-party architecture since it has one tester (LT+UT) communicating
with the IUT. The second subsection describes the multi-party architecture since it has more than one
tester (LT+UT) communicating with the IUT.
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Figure 2.7 – CTMF Multi-party Architecture

2.3.2 Single-party architecture

The single-party architecture is used when the IUT communicates in a point-to-point connection,
with a single node. Basically, this architecture has one tester (LT+UT) communicating with the IUT. This
architecture is used by some tools such as ATIFS (a testing toolset with software fault injection) [75]
comprising its fault injection mechanism FSoFIST (Ferry-clip with Software Fault Injection Support
Tool) [76], and TorX [18, 96].

Figure 2.8 illustrates the TorX architecture. One tester isused to communicate with the IUT, in their
case the Conference Protocol Entity (CPE), while the control and observation of the CPE is done through
its interfaces defined as CSAP and USAP.

A test execution in TorX works as follows. Each time the tester decides to trigger the IUT with an
input, it looks into the system specification module (a module of TorX) for a valid stimulus and offers
it to the IUT. Whenever the tester observes an output, it checks whether this response is valid according
to the specification module. This process of offering inputsand observing outputs can continue until an
output is considered incorrect according to the specification, then resulting in a fail verdict. Moreover,
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the output observation has a timeout which returns an empty if expired. In this case, the verdict will be
also assigned fail.

Another testing tool called FSoFIST has its architecture similar to the TorX’s. It includes a sup-
plementary module to inject environment faults during a test execution. Yet, this module also aims at
observing the IUT behavior in the presence of the injected faults.

These architectures are not able to test P2P systems for three reasons. First, they rely in only one
tester that allows to control only one peer. In this case, onemust assume that this peer represents the entire
system. However, flaws related to P2P features (e.g., communication, lookup, etc) cannot be detected.
Then, a better testing architecture requires multiple testers to control the distributed peers. Second, false-
negatives verdicts can be assigned due to communication delay. For instance, in TorX an expired timeout
returns an empty output resulting in a false fail verdict. Third, the volatility is not managed at all either
returning an empty output or considering an error from the IUT. In both cases the results will be false-
negative verdicts (i.e., false fail verdicts).

tester
CPE

UDP layer

CSAP

USAP

Figure 2.8 – TorX Architecture

2.3.3 Multi-party architecture

In the multi-party architecture context more than one tester controls and observes the IUT. These
distributed testers collect partial information about theexecution progress and use them to synchronize
the rest of the execution. Synchronization can be managed either by a centralized test coordinator or by
distributed testers. Ulrich et al. [98] describe that the distributed testers is of interest since it makes better
use of system resources than the centralized test coordinator that can be a bottleneck during the test run.

In this section, we first discuss some architectures that synchronize the test sequence with a centra-
lized test coordinator. Then, we discuss some other architectures that do the same in distributed manner.
Finally, we survey the architectures focused on P2P system testing.
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2.3.3.1 Centralized testing coordination

The classical architecture for testing a distributed system consists of a centralized tester which sends
the test inputs, controls the synchronization of the distributed system and receives the outputs (or local
verdicts) of each node of the SUT.

Several solutions based on this approach have been presented. Some of them focus on selecting re-
presentative subsets of test suites [52, 103, 66, 100, 105] prioritizing the execution of the most significant
test cases. Some others distribute the execution of test cases simultaneously over a set of machines like
SysUnit [4], Joshua presented by Kapfhammer et al. [64], GridUnit presented by Duarte et al. [44, 45],
FIONA presented by Gerchman et al. [50] and BlastServer presented by Long and Strooper [71].

Figure 2.9 illustrates the three components of the Joshua architecture. The first component is the
TestControllerwhich is responsible to prepare the test cases and to write them into the second com-
ponent calledTestSpace, that is a storage area. The third component, calledTestExecutor, is responsible
to consume the test cases from theTestSpace, to execute them, and to write the results back into the
TestSpace. Finally, theTestControllermonitors theTestSpacefor the results and updates the Joshua’s
interface with them.

TestSpaceTestController

TestExecutor 1

TestExecutor 2

TestExecutor n

...

Tk

Rj

Ts Tn
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Figure 2.9 – The Joshua Architecture

The GridUnit architecture is based on Joshua. The main goal of GridUnit is to deploy and to control
unit tests over a grid with minimum user intervention in order to distribute the execution of tests and
speed up the testing process. To distribute the execution, each test case is transformed in a grid task. The
control and scheduling of the tasks are provided by the OurGrid platform [30, 26]. Therefore, different
test cases can be executed by different nodes. However, a single test case is only executed by a single
node. Yet, it is not possible to decompose a test case in actions where different nodes execute different
actions. Moreover, both architectures do not handle node volatility.

BlastServer and FIONA are other architectures similar to Joshua. They use the client/server approach.
A server component is responsible to synchronize events, while a client component provides the commu-
nication conduit between the server component and the client application. The execution of tests is based
on a queue controlled by the server component. Clients requests are queued, then consumed when nee-
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ded. This approach ensures that concurrent test sequences run to completion. However, they can not be
used to test P2P systems due to scalability issue. The issue is that centralized testing coordination could
not scale up to a large system and – due to action synchronization tasks – impacted the performance of
the SUT. Yet, BlastServer does not address the issues of network failures.

2.3.3.2 Distributed testing coordination

While the test case decomposition allows the execution of complex test cases, it requires actions syn-
chronization to guarantee the correct sequence of execution. Furthermore, such kind of synchronization
requires an architecture to coordinate when and where to dispatch the actions.

Ulrich et al. [98, 83] present a testing architecture for distributed systems, called Test and Monitoring
Tool (TMT), that coordinates actions by synchronization ofevents. This architecture uses a global tester
and a distributed tester. The global tester divides the testcases in small parts calledpartial test cases
(PTC). Each PTC is assigned to a distributed tester and can beexecuted in parallel to another PTC with
respect to a function that controls mutual exclusivity. Thebehavior of the distributed testers is control-
led by aTest Coordination Procedure(TCP) which coordinates the PTCs execution by synchronization
events. By using synchronization events, the distributed testers do not need to control the execution of
the entire test case. Each tester runs independently its partial test case

Another testing architecture was presented by Walter et al.[101] for conformance, interoperability,
performance and real-time testing. This architecture works as a toolbox of components (e.g., communica-
tion, test coordination, etc) which can be combined to develop a specific testing architecture. Figure 2.10
illustrates a specific architecture for interoperability testing. Three points of communication (PC) A, B
and C are monitored by their respective test components (TC)which also provide the verdicts and the
control of the SUT.
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Figure 2.10 – A specific interoperability testing architecture based on Walter et al. [101].

The components can be also used to simulate failures along the tests like network delay or noise.
For instance, it can be possible to create disturbs in the network to simulate volatility. However, such a
disturb may be considered a failure.
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The departure of nodes can also prevent the synchronizationof events in the architecture of Ulrich et
al. [98, 83]. Consequently, the whole test architecture deadlocks. These architectures have also an issue
in the presence of result incompleteness, since the result sets are expected to be complete when testing
traditional distributed systems.

Furthermore, scalability is an issue. Despite this architecture synchronize the test sequence through
distributed testers exchanging messages at PCs, the performance of the P2P SUT may be perturbed.
Indeed, the performance of the synchronization algorithm within such testing architecture scales up li-
nearly with the number of peers, while a typical P2P system scales up logarithmically. To avoid testers
intrusiveness to threaten the validity of test results, thetesting architecture should thus have logarithmic
performance in the worse case.

2.3.3.3 P2P testing architectures

Due to the specific characteristics of P2P Systems (e.g., volatility and scalability), the former distri-
buted testing architectures may not detect P2P implementation flaws. The main problem to build a proper
P2P testing architecture is how to support the volatility ofnodes without considering it as an error and
also scale up along with the SUT. Moreover, how to control theexecution of tests, but avoid the inclusion
of additional code inside the SUT.

Some testing architectures address the volatility and scalability issues like P2PTester presented by
Butnaru et al. [42], Pigeon presented by Zhou et al. [110], and the framework presented by Hughes et
al. [57]. However, all of them requires the inclusion of additional code in the SUT source code. This in-
clusion can be either manually, for instance using specific interfaces, like in P2PTester, or automatically,
using reflection and aspect-oriented programming, like in Pigeon.

The inclusion of additional code is error-prone since the added code may produce errors and conta-
minate the test results. Furthermore, it is hard to verify ifthe error came from the SUT or the testing
architecture.

In fact, all these architectures are used to measure the performance of P2P systems. For instance,
P2PTester measures the time and costs of processing jobs such as data indexing or querying. The platform
also logs the communication spawned from processing each specific query or search issued by a node.
The same approach is used by the framework of Hughes et al. [57].

The Pigeon framework is another platform focused on performance testing for massively multiplayer
online games (MMGs). The authors believe that the performance of MMGs is the most crucial problem
that should be addressed since the network latency is impacted by the frequent propagation of updates
during a game. Then, a layer called P2P Communication Model (PCM) is charged to monitor the network
latency and log the exchanged messages.

While measuring the performance of the systems can be interesting to execute both performance
testing and benchmarks, it is not enough to other kinds of tests. Moreover, all of these platforms rely
on logging while testing. Assuming that these platforms aimto verify correctness, they must check the
log files after the test execution using an oracle. However, none of the platforms provide any oracle
mechanism to do it. The use of logging to verify correctness is discussed later on in this chapter.

2.3.4 Other approaches

There are also some model-checking tools (e.g., Bogor [14],SPIN [37, 108] and Cadence SMV [49])
to check a kind of P2P system called publish-subscribe system (PSS) [22]. In one hand, model-checking
is an attractive alternative to find bugs in systems by exploring all possible execution states [49, 60].
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In the other hand, it is still based on models and implementation problems can not be found. While
they consider the volatility nature of PSS, scalability is an open issue. Along model-checking, peers
are simulated as threads and the size of the SUT may be boundedby the checking machine resources.
Therefore, large-scale P2P systems cannot be fully checkedsince implementation flaws are strongly
related to such large-scale [33]. Furthermore, none of these approaches address the volatility of peers
that may lead to an exponential number of execution states.

2.3.5 Comparing Testing Architectures

We divide the comparison of testing architectures in two perspectives. In the first perspective, we
compare from the testing point of view. In the second perspective, we compare from the P2P point of
view by discussing architectural choices and the treatmentof the P2P characteristics.

From the testing perspective, a testing architecture must fulfill some requirements such as a mecha-
nism to control the execution of tests, a manner to develop meaningful tests and a mechanism to verify
correctness. Table 2.2 describes that some of the architectures surveyed in this section do not address all
these requirements.

Architecture Testing Type Action Correctness SUT Code
Name Decomposition Treatment Contamination
TorX generic no logging no

FSoFIST fault injection no logging no
SysUnit unit no assertions no
Joshua unit no assertions no

GridUnit unit no assertions no
BlastServer generic no assertions no

FIONA fault injection no logging no
TMT conformance yes logging yes

Walter et al. [101] generic yes - -
P2PTester performance no logging yes

Pigeon performance no logging yes
Hughes et al. [57] performance no logging yes

Table 2.2 – Comparing testing requisites

Each architecture is focused on a different type of test. However, we are interested on a generic type
of test that can be easily adapted to any other type. For instance, using a Junit’s like unit test we can
decompose test cases in actions providing the possibility to build a conformance test like the example
illustrated in figure 2.5(b).

Concerning the test control requirement, four architectures do so including supplementary code in-
side the SUT. While such approach provides a straightforward way to control the execution of the tests,
errors from the supplementary code can contaminate both theSUT and the test itself, and lead to un-
predictable results. A better approach in this case is provided by GridUnit, which implements unit tests
accessing the SUT’s public interfaces. Concerning the correctness treatment requirement, the advantages
and drawbacks will be discussed later on in this chapter.
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From the P2P perspective, a testing architecture must be clearly in multi-party manner. Table 2.3
describes that several architectures address this requirement, but when testing a P2P system the archi-
tecture must also scale up along with the SUT, which means theuse of a central coordinator becomes
a bottleneck. In fact, only three architectures can scale upalong with a P2P SUT by avoiding a central
coordination. They are P2PTester, Pigeon and the frameworkpresented by Hughes et al. [57]. Since these
architectures are focused on testing P2P systems, they alsohandle the volatility of peers. Yet, FSoFIST
and FIONA handle the volatility of nodes during tests as well, however, they consider it as an injected
fail and do not consider it as a common behavior of the SUT.

While the P2P perspective points out in favor to the last three architectures, the testing perspective
pointed out that some flaws (e.g., SUT contamination and no action decomposition) may restrict their
use to test P2P systems.

Architecture Architecture Test case Volatility
Name type coordination aware
TorX single-party no no

FSoFIST single-party no yes
SysUnit multi-party centralized no
Joshua multi-party centralized no

GridUnit multi-party centralized no
BlastServer multi-party centralized no

FIONA multi-party centralized yes
TMT multi-party centralized no

Walter et al. [101] multi-party centralized no
P2PTester multi-party distributed yes

Pigeon multi-party distributed yes
Hughes et al. [57] multi-party distributed yes

Table 2.3 – Comparing P2P requisites

2.4 Test Oracles

Test oracles are used to check the SUT correctness given by means of verdicts. A verdict is the result
of a test case execution and is given by comparing the actual result with an expected one provided by a
trusted source. Apassverdict is given when the SUT produces an acceptable result,otherwise it will be
fail.

Baresi et al. [15] describe that in industry the oracle is often a human being and point out two
drawbacks to this approach: accuracy and cost. While the accuracy of the human "eyeball oracle" drops
with the large volume of tests to be evaluated, the cost becomes too expansive. Moreover, humans are
prone to error when checking complex behaviors.

The oracle is a trusted source of expected results that wouldbe behaviorally equivalent to the imple-
mentation under test [20]. However, a perfect oracle can notbe guaranteed and it is impossible to decide
that an output is correct in all possible cases [73]. In case of a passverdict, a stopping criteria may define
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the end of the testing process. However, if afail verdict is assigned, then a bug was found. As a further
process, a diagnosis process can be executed to localize theexact character of such bug.

In this section we survey the oracle approaches more relatedto test implementations like assertions
and log file analysis. Other oracle approaches related to model-checking, FSM and LTS are discussed by
Baresi et al. [15].

2.4.1 Assertions

Tao Xie [104] describes that oracles are often in form of runtime assertions. Assertions [95] allow
either to check required constraints directly in the program source or build test applications. In fact, an
assertion is a boolean expression that defines required constraints.

Assertions are coded during development and enabled beforeruntime. Along runtime a program
execution may reach an assertion, if this assertion is satisfied, then it is evaluated totrue, otherwisefalse.

For instance, consider the following code in java :

public Double fahrenheitToCelsius (Double fahrenheit ){
assert fahrenheit !=null : "Unacceptable temperature";
// now return value
return ( fahrenheit .doubleValue()− 32) / 1.8;

}

This code converts the temperature from fahrenheit to celsius, but it does not acceptnull values. In
this case, an assertion checks the entered values. If the assertion predicate becomes false, meaning that
a necessary condition was not met, then an assertion violation occurs. This violation is also called as
“assertion failure”. In fact, the assertion has not failed,but it has detected an unacceptable situation.

Assertions can be provided either by a programming language(e.g., Java, Eiffel, C++) or by a testing
framework (e.g., JUnit [62], JTiger [61], TestNG [94], GNU Nana [51] and APP [87]). The difference is
that a testing framework can be used to develop a test application, while the assertions of programming
languages are built inside the SUT’s source code and used to check required constraints.

The following code is a JUnit test application used to test the fahrenheit to celsius conversion method.

@Test
public void testFahrenheitToCelsius (){

Double celsius = fahrenheitToCelsius (32);
assertEquals (0.0, celsius .doubleValue );

}

In the above test application, the input value is 32◦ Fahrenheit and the expected output value corres-
ponds to 0◦ Celsius. If the values are the same, then the verdict ispass, otherwise it isfail and a bug was
detected.

Assertions can provide many advantages. Some of them include :
• The condition checking can easily detect interface faults (e.g., incorrect parameters, inconsistent

messages) that can escape during the system development. Still, an assertion violation is a bug [79].
• Errors and omissions are caught early and automatically. This means, assertions prevent errors [20].
• It offers a cheap and effective tool to testing effectiveness [20].
• Powerful tool for automatic detection of faults during debugging, testing and maintenance [87].
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A practical use of assertions is described by Berg et al. [19]and Robert Binder [20]. During the
development of the IBM OS/400 operating system (OS), the assertions were widely used. They report
that the entire OS has 20 millions lines of code, where 2 millions are C++ code. About half of this C++
code was dedicated testing code where roughly 40% were assertions.

However, assertions have some drawbacks including :
• Assertions are written by humans, therefore, prone to errors as well. Specially for built-in asser-

tions.
• Assertions are source code. This means more maintenance effort from the developers.
• Assertions can not detect all errors. They can not express all valid conditions. Yet, human seman-

tics can create confusion [20].
• An incorrect assertion will not report itself as defective [20].

Nevertheless, assertions provide a powerful and straightforward test oracle approach. Yet, both build-
in assertions and assertions in test applications can be combined to improve testing effectiveness.

2.4.2 Log File Analysis

Log files are the real-world manifestation of mathematical report traces [10]. A report trace is a set
of reports and a report is a set of report elements. In a log fileeach report is a log entry with a set of
elements. For instance, Figure 2.11 illustrates the entries of a log file where each log entry contains its
set of elements. In this case, the elements are the entry time-stamp, the log level and the log message.

Log file analysis is the inspection of log files to identify anddiagnose problems. This inspection
can be done informally, by the programmer, or formally, by using formal methods and log file analysis
languages (LFAL) [9, 15].

16:32:16.439|FINEST|start Action: BeforeClass Hierarchy: -2147483648
16:32:16.441|FINEST|startingNetwork Action: action1 Hierarchy: 0
16:32:16.442|FINEST|joiningNet Action: action2 Hierarchy: 0

Figure 2.11 – Log file

The effective use of log file analysis is based on some hypotheses [11]. Initially, the SUT records its
events to an output called log file. These events can be messages exchanged, returned values, or any other
input/output. Then, a log file policy must be defined to state precisely the outputs from the SUT. In fact,
both log file and its policy can be easily built using some available logging frameworks [53, 70]. Finally,
an analyzer must take the log files as input either accepting it or rejecting it with an error message.

Andrews et al. [9, 10, 11] used an analyzer for both unit and system testing. Such analyzer compares
each log entry with a dictionary to decide eitherpassor fail.

The log files may also be loaded in databases. This approach takes advantage of database capabilities
to generate reports (i.e., database queries). However, it has some issues: how to translate verification
conditions into queries, generate reports and load large amounts of data. The Planchecker system [46, 47]
follows this approach (see Figure 2.12). The steps of log fileanalysis on Planchecker are :
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1. Database setup. Database structures are created to hold the content of the log files. Each log mes-
sage is represented as an object in the database.

2. Data loading. Loading data is a straightforward process whether the log files are well-structured.
Moreover, the loading of very large data files into databasesis not a novel challenge and is also an
object of study in data warehousing [8, 67].

3. Translation. This step determines the validation conditions, and expresses them as database que-
ries. It is also a straightforward process since query languages (e.g., SQL, AP5) are very mature
and well developed.

4. Log analysis. Databases have rules capabilities [93, 102] that can be used to check violations. Yet,
the results from queries are organized into confirmation andanomaly reports.

Figure 2.12 – Planchecker Architecture

Another important advantage of this approach is the querying of very large volume of data. Most
of the actual Database Management Systems (DBMS) can process terabytes of information to produce
analysis reports [28].

Log file analysis arises some issues if used in P2P system testing. First, log files are spread across
distributed nodes and must be gathered to be loaded into a database. Second, each log entry has a time-
stamp registering the time a given event happened. However,each node in the network has a different
clock. Thereby, a global clock must be defined in order to build an overall log file. Once this global clock
is defined, then every log entry must be recalculated.

2.4.3 Comparing Test Oracles

In the previous subsections, we presented the characteristics of different oracle approaches. A com-
parison of these oracles can be based on the approach type, the oracle approach and the extension of the
SUT source code with supplementary code. Table 2.4 summarizes the comparison.

Some programming languages provide embedded assertion facilities, but there are also external as-
sertion facilities that can be added (i.e., APP, GNU Nana). While embedded assertion facilities are very
useful during the development of a system. Testing frameworks can be used to create testing applications
that can be applied in different types of tests (e.g., unit test, system test, etc).
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Moreover, embedded assertion facilities extend the SUT source code with supplementary assertion
code. Besides its advantages to detect several types of errors during the system development, it has two
main drawbacks. First, the added code must be maintained as long as the SUT code evolves. Second, the
added code is also error prone since it is added by humans. Nevertheless, such approach showed effective
in detect errors and can be used complementary to the testingframework approach.

In contrast, log file analysis does not provide a framework todevelop testing applications, neither
extends the SUT source code. In fact, it uses the SUT outputs to identify and diagnose problems. Howe-
ver, if a distributed SUT is tested, some issues arise. First, a distributed SUT generates log files spread
across distributed nodes that must be gathered. Second, a global clock must be defined to manage the
clock difference between distributed nodes. This global clock is useful whether to build a global log file.

Approach Approach Oracle SUT Code
Name Type Approach Extension

Java assertion facility Language embedded Assertions yes
C++ assertion facility Language embedded Assertions yes
Eiffel assertion facility Language embedded Assertions yes

JUnit Testing Framework Assertions no
JTiger Testing Framework Assertions no

TestNG Testing Framework Assertions no
APP External assertion facility Assertions yes

GNU Nana External assertion facility Assertions yes
Andrews et al. Testing Framework Log file analysis no
Planchecker Testing Framework Log file analysis no

Table 2.4 – Comparing testing oracles

In conclusion, we can state that the log file analysis and bothassertion approaches are complemen-
tary, and can be combined in order to improve testing effectiveness.

2.5 Conclusion

In this chapter, we discussed the testing approaches for distributed systems. We presented an over-
view of the P2P systems to establish the context of our work. We compared the differences between
P2P systems and traditional distributed systems by presenting the main characteristics of P2P systems.
Furthermore, we surveyed the main structures of P2P networks: unstructured, structured and super-peer.

We also surveyed the testing architectures comparing theirperspectives from the context of distribu-
ted testing. Then, we discussed why they are not suited to test P2P systems. We showed that they fail
when dealing with the volatility, either interrupting the testing sequence and deadlocking the tester or
assigning false-negative verdicts to test cases (i.e., false fail verdict). Then, we showed that most of them
do not scale up due to centralized test coordination. In fact, the ones that scale up demand to include
additional code into the SUT source code. While this approach supports the volatility control, it is error
prone.
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We also described some oracle mechanisms. We focused on assertions and log file analysis since
they are closely related to test implementations, rather than formal models. The assertion approach can
be used in two distinct ways. First, embedded into the sourcecode. In one hand, it can detect several types
of errors during the system development. In the other hand, the additional code must be also considered
during the source code maintenance. Yet, additional code iserror prone since it is added by humans.
Second, built in testing applications. Several testing frameworks provide assertion facilities that can be
used to build testing application.

The log file analysis approach can also be used in two distinctways. First, using an analyzer that takes
the log files as input either accepting it or rejecting it withan error message. Second, using a database.
Log files are loaded into databases to take advantage of its capabilities. Nowadays query languages are
very mature and provide a powerful tool to build reports (e.g., anomaly reports). Yet, databases structures
like rules and triggers can be used to check violations. Moreover, today’s DBMS can load very large
amounts of data quickly. Therefore, the load of log files is nolonger an issue.

Besides their different characteristics, both assertion and log file analysis showed complementary
and can be combined in order to improve testing effectiveness.





CHAPTER3
Framework for Testing

Peer-to-peer Systems
In this chapter, we present an integrated solution for testing large-scale P2P systems. This solution is

based on a framework that allows the creation and deploymentof a P2P test environment. From the P2P
perspective, a test designer can instantiate peers and makethem join and leave the system (i.e., peers’
volatility). From the testing perspective, a test designercan combine the functional testing of a system
with volatility variations, and also different system sizes (i.e., system scalability). The correctness of
such a system can thus be checked based on three-dimensionalaspects, i.e., functionality, scalability and
volatility.

While testing the scalability of a distributed system, the functional aspect is typically not taken into
account. The same basic test scenario is simply repeated on alarge number of nodes [45]. This also
happens while testing volatility. The basic test scenario is repeated upon different rates of volatility.
For a P2P system, we claim that the functional flaws are strongly related to scalability and volatility.
Therefore, it is crucial to combine the scalability and volatility aspects with meaningful test sequences.
Thus, we present an incremental methodology to deal with these three-dimensional aspects [33]. Our
methodology aims at covering functions first on a small system and then incrementally scaling up this
system introducing the volatility later on.

We also present three different architectures to coordinate the tests. These architectures are based
on the multi-party CTMF architecture coordinating the tests either by a centralized component or by
distributed ones.

The capabilities of these architectures are (1) to automatethe execution of each local-to-a-peer test
case, (2) to build automatically the global verdict, (3) to allow the explicit control of each peer volatility.
These architectures are based on two original aspects : (i) the individual control of peers’ volatility and
(ii) the distribution of the coordination components to cope with large numbers of peers.

The first architecture extends the multi-party centralizedtesting architecture, centralized architecture
for short, in order to handle the volatility of peers [34]. Basically, this architecture has two main compo-
nents : the tester and the coordinator. The tester is the application that executes in the same logical node
as peers, and controls their execution and volatility, making them leave and join the system at any time,
according to the needs of a test. Thus, the volatility of peers can be controlled at a very precise level. The
tester is composed of test suites that are deployed across several logical nodes.

The coordinator is deployed in only one node and is used to coordinate the execution of test cases. It
acts as abroker [21] for the deployed testers.

However, the algorithmic performance of such architecturescales up linearly with the number of
peers, while a typical P2P system scales up logarithmically. To avoid testers intrusiveness to threaten the
validity of test results, the testing architecture should thus have logarithmic performance in the worse
case. Therefore, we present two multi-party architecturesthat are fully distributed, distributed archi-
tectures for short, to cope with large-scale P2P systems [36]. These architectures replace the central
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coordinator with distributed testers that coordinate the execution of test cases in distinct manners.
The second architecture organizes the testers in a balancedtree [17] (B-Tree) manner where the

coordination is performed from the root to the leaves. Then,the testers communicate with each other
across the B-tree to avoid using a central coordinator. The third architecture uses gossiping messages
among testers. This reduces communication among testers that are responsible to execute consecutive
test case actions. Since both distributed architectures donot rely on a central coordinator they scale
up correctly. These architectures do not address the issue of test cases generation but is a first element
towards an automated P2P testing process. It can be considered analogous to the JUnit1 testing framework
for Java unit tests.

This chapter is organized as follows. Section 3.1 introduces the basic definitions used along this
thesis. Section 3.2 presents the incremental testing methodology including a discussion of the three
dimensional aspects. Section 3.3 introduces the frameworkincluding a documentation to develop test
cases. Within the framework we present the three testing architectures.

3.1 Definitions

Let us denote byP the set of peers representing the P2P system, which is the system under test
(SUT). We denote byT , where|T | = |P | the set of testers that controls the SUT, byDTS the suite of
tests that verifiesP , and byA the set of actions executed byDTS onP .

Considering that all peers have exactly the same interface,testing the interface of a single peer is not
sufficient to test the whole system. Actually, to test the whole system several peers have to run together
the same test case. However, they may not execute such test case in the same way. Each peer executes
a different part of the test case in order to reproduce a precise behavior. This is why we introduce the
notion of distributed test cases, i.e., test cases that apply to the whole system and whose actions may be
executed by different peers.

Definition 5 (Distributed test case). A distributed test case notedτ is a tupleτ = (Aτ , T τ , Lτ , Sτ , V τ , ϕτ )
whereAτ ⊆ A is a sequence of actions{aτ

0 , . . . , aτ
n}, T τ ⊆ T a set of testers,Lτ is a set of local ver-

dicts, where|Lτ | = |P |, Sτ is a schedule,V τ is a set of variables andϕτ is the level of acceptable
inconclusive verdicts.

The Schedule is a map between actions and sets of testers, where each action corresponds to the set
of testers that execute it.

Definition 6 (Schedule). A schedule is a mapS = A 7→ Π, whereΠ is a collection of tester sets
Π = {T0, . . . , Tn}, and∀Ti ∈ Π : Ti ⊆ T .

A test sequence is a sequence of messages (e.g., service requests) exchanged among peers along
testing.

Definition 7 (Test sequence). A test sequence is a tupleTS ∈ (P )

In P2P systems, the autonomy and the heterogeneity of peers interfere directly in the execution
of service requests. While close peers may answer quickly, distant or overloaded peers may need a
considerable delay to answer. Consequently, clients do notexpect to receive a complete result, but the
available results that can be retrieved during a given time.Thus, test case actions (Definition 8) must not
wait indefinitely for results, but specify a maximum delay (timeout) for an execution.

1http ://junit.org/
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Definition 8 (Action). A test case action is a tupleaτ
i = (Ψ, ι, T ′) whereΨ is a set of instructions,ι is

the interval of time in whichΨ should be executed andT ′ ⊆ T is a set of testers that executes the action.

The instructions are typically calls to the peer application interface as well as any statement in the
test case programming language.

Definition 9 (Local verdict). A local verdict is given by comparing the expected result, notedE, with the
result itself, notedR. E andR may be a single value or a set of values from any type. However,these
values must be comparable. The local verdictv of τ within ι is defined as follows :

lτι =







pass if R = E
fail if R 6= E butR 6= ∅
inconclusive if R = ∅

3.1.1 Motivating test case example

Let us illustrate these definitions with a simple distributed test case (see Example 3.1). This test case
will be also used as a motivating example through the chapters to come. The aim of this test case is to
detect errors on a DHT implementation. More precisely, it verifies whether new peers are able to retrieve
data inserted before their arrival.

Example 3.1 (Simple test case).

Action Testers Action

(a1) 0,1,2 join()
(a2) 2 Insert the string "One" at key 1 ;

Insert the string "Two" at key 2 ;
(a3) 3,4 join() ;
(a4) 3,4 Retrieve data at key 1 ;

Retrieve data at key 2 ;
(a5) * leave() ;
(v0) * Calculate a verdict ;

This test case involves five testersT τ = {t0 . . . t4} that control five peersP = {p0 . . . p4} and five
actionsAτ = {aτ

1 , ..., a
τ
5}. If the data retrieved ina4 is the same as the one inserted ina2, then the verdict

is pass. If the data is not the same, the verdict isfail. If t3 or t4 are not able to retrieve any data, then
the verdict isinconclusive.

3.2 Testing methodology

Several aspects of a P2P system expose the need for a precise testing methodology, such as : leave/-
join of peers, number of peers, data size, amount of data, number of concurrent requests, etc. Thus, the
difficulty of testing is not only in choosing the relevant input data, but also in choosing the aspects that
should vary, their values and their association.
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3.2.1 The three dimensional aspects of a P2P system

As stated in the introduction, P2P testing tackles the classical issue of testing a distributed application,
but with a specific dimension which we call volatility, whichhas to be an explicit parameter of the test
objectives. Two possible solutions may be used to obtain a test sequence which includes volatility. It can
either be simulated with a simulation profile or be explicitly and deterministically decided in the test
sequence. The first solution is the easiest to implement, by assigning a given probability for each peer
to leave or join the system at each step of the test sequence execution. The problem with this approach
is that it makes the interpretation of the results difficult,since we cannot guess why the test sequence
failed. Moreover, it creates a bias with the possible late responses of some peers during the execution
of the test sequence. As a result, it cannot be used to combinea semantically rich behavioral test with
the volatility parameter. For instance, if we test the recovery from peer isolation where it is verified if a
peer correctly updates its routing table when all peers it knows have left the system, then such random
volatility simulation is not useful.

In this thesis, we recommend to fully control volatility in the definition of the test sequence. Thus, a
peer, from a testing point of view, can leave or join the system at a given time in a test sequence. This
action is specified in the test sequence in a deterministic way. For instance, if we want to perform the same
recovery from isolation test we only need a system containing enough peers to fill the routing table of a
peer. The drawback of any volatility simulation is that testcases must be aware of the arrival/departure
of peers, otherwise they may wait indefinitely for messages from peers that are no longer available.

The second dimension of P2P application testing is scalability since we can deal with large numbers
of peers. Because it is accomplishing a treatment, the scalability and volatility dimensions must be tested
with behavioral and functional correctness. In conclusion, a P2P testing methodology and framework
should provide the possibility to control the three dimensional aspects of a P2P system. We summarize
them as follows :
• Functionality, captured by a test sequence which enables a given behavior to be exercised.
• Scalability, captured by the number of peers in the system.
• Volatility, captured by the number of peers which leave or join the application after its initialization

during the test sequence.

3.2.2 The incremental methodology

To take into account the three dimensional aspects of P2P systems, we present a methodology that
combines the functional testing of a system with the variations of the other two aspects. Indeed, we
incrementally scale up the SUT either simulating or not volatility. This simulation can be executed with
different workloads, such as : shrinking the system, expanding it or both at the same time. These different
workloads may exercise different behaviors of the SUT and possibly reveal different flaws.

Our incremental methodology is composed by the following steps :

1. small scale application testing without volatility ;

2. small scale application testing with volatility ;

3. large scale application testing without volatility ;

4. large scale application testing with volatility.

Step 1 consists of conformance testing, with a minimum configuration. The goal is to provide a test
sequence set efficient enough to reach a predefined test criteria. These test sequences must be paramete-
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rized by the number of peersTS(P ), so that they can be extended for large scale testing. Test sequences
can also be combined to build a complex test scenario using a test language such as Tela [84].

In our motivating example, we start a stable system with all the peers set as illustrated in Figure 3.1.
The peerp2 will insert some data into a DHT, then the peersp3 andp4 will retrieve them. This first step
aims to verify pure functional problems without interference with the size of the system and/or volatility.
In the case of a stable and small scale DHT, all the peers probably know each other representing minimal
or even nonexistent routing table updates. Thus, messages may be exchanged directly between peers.

P

P4

P3

P1

P0

res1 := retrieve(1)
res2 := retrieve(2)

Simple test case

res1 := retrieve(1)
res2 := retrieve(2)

Simple test case

put(1,'One')
put(2,'Two')

Simple test case

Figure 3.1 – Small scale application testing without volatility (Step 1)

Step 2 consists of reusing the initial test sequences and adding the volatility dimension. The result
is a set of test sequences including explicit volatility (TSV ). Figure 3.2(a) illustrates a DHT before
volatility when data is inserted by peerp2. Then, the peersp3 andp4 join the system and retrieve data as
illustrated in Figure 3.2(b). This second step aims to verify functional problems related to volatility at a
small scale considering that pure functional problems wereisolated at Step 1. Indeed, testing inserts and
retrieves upon volatility exercises both data forwarding and routing table update. Furthermore, a small
scale system guarantees low forwarding since data tend to besent to peers within the routing table.

Step 3 reuses the initial test sequences of Step 1 combining them to deal with a large number of
peers. We thus obtain a global test scenarioGTS. A test scenario composes test sequences. This third
step aims to verify functional problems related to scalability. To do so, we test the SUT without volatility
in a large scale. As described in Step 1, a stable system represents minimal or even nonexistent routing
table updates. Whenever we scale up the SUT, peers are obligated to perform some tasks like routing
messages and forwarding data to unknown peers. Indeed, these tasks could be only tested in large scale
systems since peers are unlikely to know all the others.

Figure 3.3 illustrates a large scale and stable DHT. In our motivating example, peerp2 inserts some
data into the DHT respectively atp1 andp2. Whenever the peersp3 andp4 try to retrieve data, they
probably do not knowp1 andp2, messages are routed until reaching such data. Therefore, aspects related
to scalability, such as message routing, can be verified fromthis third step.

Step 4 reapplies the test scenarios of Step 3 with the test sequences of Step 2, and a global test
scenario with volatility (GTSV ) is built and executed. Figure 3.4 illustrates a large scaleDHT upon
volatility. In fact, this step aims to verify the problems related to all three dimensions. Therefore, after
the insertion of data illustrated in Figure 3.4(a), peers come and go depending on the type of the volatility.
For simplicity, Figure 3.4(b) illustrates the join of new peersp3 andp4. In our example, the successors
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P

P1

P0

put(1,'One')
put(2,'Two')

Simple test case

(a) DHT before volatility

P

P4

P3

P1

P0

res1 := retrieve(1)
res2 := retrieve(2)

Simple test case

res1 := retrieve(1)
res2 := retrieve(2)

Simple test case

(b) DHT after volatility

Figure 3.2 – Small scale application testing with volatility (Step 2)
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P3

P4

P1

P0

res1 := retrieve(1)
res2 := retrieve(2)

Simple test case

res1 := retrieve(1)
res2 := retrieve(2)

Simple test case

put(1,'One')
put(2,'Two')

Simple test case

...

...

...

...

Figure 3.3 – Large scale application testing without volatility (Step 3)
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of bothp3 andp4 have to update their routing table and route messages. Eventually, the test case can be
improved to store something atp3 or p4 in order to exercise data forwarding as well.

P10
P20

P30

P2

P1

P0

put(1,'One')
put(2,'Two')

Simple test case

...

...

...

...

(a) DHT before volatility
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��� �� ��

P4

P1

P0

res1 := retrieve(1)
res2 := retrieve(2)

Simple test case

res1 := retrieve(1)
res2 := retrieve(2)

Simple test case

...

...

...

...

(b) DHT after volatility

Figure 3.4 – Large scale application testing with volatility (Step 4)

The advantage of this process is to focus on the generation ofrelevant test sequences, from a func-
tional point of view, and then reuse these basic test sequences by including volatility and scalability. The
test sequences of Step 1 satisfy test criteria (code coverage, interface coverage). When reused at large
scale, the test coverage is thus ensured by the way all peers are systematically exercised with these basic
test sequences.

In terms of diagnosis, this methodology allows to determinethe nature of the detected erroneous
behavior. Indeed, the problem can be linked to a purely functional cause (Step 1), a volatility issue
(Step 2), a scalability issue (Step 3) or a combination of these three aspects (Step 4). The most complex
errors are the last ones since their analysis is related to a combination of the three aspects. Steps 2 and
4 could also be preceded by two other steps (shrinkage and expansion), to help the diagnosis of errors
due to either the unavailability of resources or arrival of new ones. Yet, several rates of volatility can be
explored to verify how they affect the functionality aspectof the SUT (e.g., 10% joining, 20% leaving).

3.3 Framework

In this section, we present a testing framework which encompasses the basic features of distributed
testing, volatility and deployment within three scalable coordination architectures.
• The first architecture relies on a centralized test coordinator, where a central controller is respon-

sible to synchronize the execution of test case actions across distributed testers to ensure their
correct execution sequence [35, 34, 33]. In fact, this architecture extends the classical architecture
for testing distributed systems with the capacity to handlevolatility.

• The second architecture drops the centralized coordinatororganizing the testers in a B-Tree manner
and synchronizing through messages exchanged among parents and children [36].

• The third architecture also drops the centralized coordinator synchronizing through gossiping mes-
sages exchanged among consecutive testers [36].

All these architectures were implemented in Java (version 1.5) and make extensive use of two Java
features : dynamic reflection and annotations (the prototype is presented in Chapter 4). As we will see in
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the following, these features are used to select and executethe actions that compose a test case.

3.3.1 Requirements for a P2P testing framework

Testing P2P systems thus relates to distributed system testing, however, such testing certainly in-
cludes both volatility and scalability features which makethe existing distributed testing techniques not
fully adapted.

We believe that volatility is a parameter which must be part of the functional tests. Thus, volatility
must be integrated to functional testing since faulty behaviors may be detected due to variations in the
number of online peers. Moreover, the existing approaches do not replace the generation of test sequences
which involve volatility explicitly.

Concerning scalability, current testing architectures are not as scalable as P2P systems. In a testing
campaign with a large size SUT, a large delay may happen between the execution of consecutive actions
due to synchronization. However, such delay is not acceptable due to time out constraints. We believe that
testing a P2P system is not only a matter of correctness. Peers exchange messages asynchronously and
may not answer a complete result set to a query due to time out constraints or even volatility. Therefore,
testing any P2P system is also a matter of time.

In summary, a testing framework for P2P systems should provide :
• distributed control/observation facilities to manage distributed test sequences,
• functions to deal with volatile peers at runtime,
• deployment facilities to deal with high number of peers.

3.3.2 Testers

In general, a tester is the control/observation component responsible to manage test suites (i.e., test
cases and test sequences). A test suite is implemented as a class, which is the main class of the testing
application. A test suite contains several test cases, which are implemented as a set of actions. Test
case actions are implemented asannotatedmethods, i.e., methods adorned by a particular meta-tag, or
annotation, that informs that the method is a test case action, among other information. Annotations can
be attached to methods and to other elements (e.g., packages, types, etc.), giving additional information
concerning an element : the class is deprecated, a method is redefined, etc. Furthermore, new annotations
can be specified by developers. Method annotations are used to describe the behavior of test case actions :
where it should execute, when, in which tester, whether or not the duration should be measured. The
annotations are similar to those used by JUnit2, although their semantics are not exactly the same.

The choice of using annotations for synchronization and conditional execution was motivated by
three main reasons. First, to separate the execution control from the testing code. The execution control
is a duty of the framework and should be done automatically upon certain rules or parameters. These
parameters are provided by the annotations and filled by a test engineer while writing the testing code.
Second, to simplify the deployment of the test cases. One approach would deploy the precise set of
actions to each tester. However, such deployment could be expensive in a very large system since different
testers manage different sets of actions. In our approach, all testers receive the same test case, however,
they only manage the actions annotated to them. Third, to implement a testing system that supports
effective and repeatable automated testing also called as test harness [20].

The test harness requires four steps :

2http ://www.junit.org



CHAPITRE 3 — Framework for Testing Peer-to-peer Systems 49

1. Set up : sets the SUT to be tested. This means the runtime environmentis set. This step is also
called as preamble scenario. For instance, loading databases, files or memory ; establishing the
peer set within a DHT.

2. Execute : exercises the SUT by inputs and outputs that are stored to be compared afterward. For
instance, inserting data into the DHT, then retrieving suchdata.

3. Evaluate : evaluates a test case execution. This step is the oracle implementation. Thus, the test
case must compare the actual results with the expected ones and the results can be both displayed
and/or logged.

4. Clean up : releases all the resources used within testing. The idea is to let the SUT in the same
state as before the test case begins. Its purpose is to ensurethat there will be no interference among
different test cases. This step is also called as postamble scenario. For instance, stopping databases ;
closing network connections ; making all the peers leave a DHT.

In our framework, all the testers receive the same test case to simplify the deployment of a distri-
buted test case. However, the testers only execute the actions assigned to them in agreement with the
annotations. The available annotations are listed below :

Test : specifies that the method is actually a test case action. Thisannotation has four attributes that are
used to control its execution : the test case name, the place where it should be executed, its order
inside the test case and the execution timeout.

Before : specifies that the method is executed before each test case. The purpose of this method is to set
up a common context for all test cases. The method plays the role of a preamble scenario.

After : specifies that the method is executed after each test case. The purpose of this method is to clean
up the resources used along testing. The method plays the role of a postamble.

Each action is a point of synchronization : at a given moment,only methods with the same signature
can be executed on different testers. Actions are not alwaysexecuted on all testers, since annotations are
also used to restrain the testers where an action can be executed. Thus, testers may share the same testing
code but do not have the same behavior. The purpose is to separate the testing code from other aspects,
such as synchronization or conditional execution. The tester provides two interfaces, for action execution
and volatility control :

1. execute(ai) : executes a given action.

2. leave(), fail(), join() : makes a peer leave, abnormally quit or join the system.

When a tester executes a test case, it proceeds as described in Figure 3.5 :

1. It asks the coordinator for identification, used to filter the actions that it should execute.

2. It uses java reflection to sort out the actions, read their annotations and create a set of method
descriptions (i.e., the signature of methods it should manage).

3. It passes to the coordinator the set of method descriptions that it should manage and their priorities.

4. It waits for the coordinator to invoke one of its methods. After the execution, it informs the coor-
dinator that the method was correctly executed.
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execute(a2)

executionEnd(a2)

put(1,"One")

:Node :Cont0:Testert2:Tester t1:Tester

put(2,"Two")

execute(a1)

executionEnd(a1)

join()

Figure 3.5 – Test case execution

3.3.3 Centralized testing architecture

Our objective when developing the framework was to make the implementation of test cases as simple
as possible. The framework is not driven by a specific type of tests (e.g., conformance, functional, etc.)
and can be used as a basis for developing different test cases.

A first approach for this framework relies on a centralized test controller architecture to synchronize
the execution of the distributed test cases. Basically, this architecture has two main components : the
tester and the coordinator. The coordinator is deployed in only one node, while the testers are deployed
in one or more nodes depending on the size of the SUT. The deployment diagram of this architecture is
illustrated in Figure 3.6.

Peer

Application
TesterCoordinator

1 *

Figure 3.6 – Deployment diagram

The coordinator controls several testers and each tester runs on a different logical node (the same
as the peer it controls). The coordinator acts as abroker [21] for the deployed testers. Along a test case
execution, the role of the tester is to execute test case actions and to control the volatility of a single peer.
The role of the coordinator is to dispatch the actions of a test case (Aτ ) through the testers (T τ ) and to
maintain a list of unavailable peers. In practice, each tester receives the description of the overall test
sequence and is thus able to know when to apply a local execution sequence.
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3.3.3.1 The coordinator

The coordinator is a central component that controls when each test action should be executed. When
the test starts, the coordinator receives a set of method descriptions from each tester and associates each
action to a hierarchical level. Then, it iterates over a counter representing the hierarchical level that can
be executed, allowing the execution to be synchronized. From the coordinator point of view, a test suite
consists of a set of actionsA, where each actionaA

n has a hierarchical levelhA
an

. Actions with lower
levels are executed before actions with higher levels.

The execution of actions follows the idea of two phase commit(2PC). In the first phase, the coordina-
tor informs all the concerned peers that an actionan can be executed and produces a lock. Once all peers
announce the end of their execution, the lock is released andthe execution of the next action begins. If
an action’s timeout is reached, the test case isinconclusive.

The coordinator provides three different interfaces, for action execution, volatility and test case va-
riables :
• register(ti, At), ok(an), fail(an), error(an) : performs the actions registration (performed before

all tests) and response for actions execution, called by testers once the execution of an action is
finished.

• set(key,value), get(key): provides the accessors for test case variables, that are described on
section 3.3.6.

• leave(P ), fail(P ), join(P ) : makes a set of peers leave, abnormally quit or join the system.

3.3.3.2 Test case execution

The synchronization algorithm has three steps (see Algorithm 1) : registration, action execution and
verdict construction. Before the execution of aτ , eacht ∈ T registers its actions with thecoordinator.
For instance, in the motivating example (see Example 3.1), testert2 may register the actionsA′ =
{a1, a2, a5}.

The registration algorithm works as follows (see Algorithm2). Initially, the coordinator identifies
eachtesterwith an integer identifier, for instance the first tester receives the identifier0. The identifier is
increased by 1 every time a new tester asks for it. This simplemethod simplifies the action definition that
is made at the user level. The identifier is also used by a node to know whether it is allowed to execute a
given action.

Once the registration is finished, thecoordinator builds the scheduleS, mapping the actions with
their related subset of testers. In our example, actiona3 is mapped to{t3, t4}. OnceS is built, the
coordinator traverses all test casesτ ∈ DTS and then the actions of eachτ . For each actionaτ

i , it uses
Sτ (aτ

i ) to find the set of testers that are related to it and sends the asynchronous messageexecute(ai)∀t ∈
Sτ (aτ

i ). Then, the coordinator waits for the available testers to inform the end of their execution. The
set of available testers corresponds toSτ (aτ

i ) − Tu, whereTu is the set of unavailable testers. In our
example, oncea1 is finished, testers{t0, t1, t2} inform thecoordinatorof the end of the execution.

Thus, thecoordinatorknows thata1 is completed and the next action can start. When a testert ∈ T τ

receives the messageexecute(aτ
n), it executes the suitable action. Each testerti receives the asynchro-

nous messageexecute(a) and then performs actiona as described in algorithm 3. If the execution suc-
ceeds, then a messageok is sent to the coordinator. Otherwise, if the action timeoutis reached, then the
messageerror is sent.

Once the execution ofτ finishes, the coordinator asks all testers for a local verdict. In the example,
if t3 gets the correct strings "One" and "Two" ata4, then its local verdict ispass. Otherwise, it isfail.
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Algorithm 1 : Test suite execution
Input : T , a set of testers ;DTS, a distributed test suite
Output : V erdict
foreach t ∈ T do1

register(t);2

end3

foreach τ ∈ DTS do4

foreach a ∈ Aτ do5

foreach t ∈ Sτ (a) do6

send execute(a) tot;7

end8

wait for an answer from allt ∈ (Sτ (a)− Tu) ;9

end10

foreach t ∈ T τ do11

Lτ ← Lτ ∪ {lτt } ;12

end13

return oracle(Lτ , ϕ) ;14

end15

Algorithm 2 : Registration
Input : p, a node
Output : id
foreach a ∈ Ap do1

Sτ (a)← Sτ (a) ∪ p ;2

end3

id++ ;4

return id ;5

Algorithm 3 : Action execution
Input : a, an action to be executed
invoke(a) ;1

if ιa is reachedthen2

senderror to Coordinator ;3

else4

sendok to Coordinator ;5

end6
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After receiving all local verdicts, the coordinator is ableto assign a verdictLτ . If any local verdict is
fail, thenLτ is alsofail, otherwise the coordinator continues grouping eachlτt into Lτ . WhenLτ is
completed, it is analyzed to decide between verdictspass andinconclusive as described in Algorithm 4.
This algorithm has two inputs, a set of local verdicts (L) and an index of relaxation (ϕ), representing the
level of acceptableinconclusive verdicts (detailed in section 3.3.3.4). If the ratio between the number of
pass and the number of local verdicts is greater thanϕ, then the verdict ispass. Otherwise, the verdict
is inconclusive.

Algorithm 4 : Oracle
Input : L, a set of local verdicts ;ϕ an index of relaxation
if ∃l ∈ L, l = fail then1

return fail2

else if |{l ∈ L : l = pass}|/|L|) ≥ ϕ then3

return pass4

else5

return inconclusive6

end7

3.3.3.3 Dealing with node volatility

The volatility of nodes can make testing difficult during theexecution of a test case. If the coordinator
is not informed that a node has left the system, then it is unable to follow the test sequence and is unable
to proceed. We must then be able to control node volatility toforecast the next action that must be
performed. Our algorithm treats the volatility of nodes as common actions, where the tester informs the
coordinator that a node has joined/left the system.

Since the coordinator is informed by the testers of node departures or fails, it is able to update
its schedule and does not wait for confirmation from these nodes. Therefore the next action is set for
execution and the synchronization sequence continues.

3.3.3.4 Setting a global verdict

To set a global verdict, the algorithm should also take into account the autonomy of nodes, since it
directly influences the result completeness of queries. Result completeness guarantees that a result set is
complete with respect to the set of objects in the master source. For instance, in a distributed database
system, query results are complete since all nodes are expected to answer.

In a P2P system, when a node queries the system a partial result set may satisfy the request. As some
nodes may not answer (e.g., due to timeout constraints), there is no guarantee of completeness. During
the verification of a P2P system, the lack of result completeness may engenderinconclusive verdicts,
since the oracle can not state if the test case succeeded or not. This lack of completeness should not be
interpreted as an error, it belongs to the normal behavior ofP2P systems.

Thus, we introduce an index for completeness relaxation, which was showed in algorithm 4 asϕ.
This index is used to take into considerationinconclusive verdicts engendered by lack of response to
some node request. It represents the percentage of desirable pass verdicts inV τ . Such index is chosen
by the testing designer, since it represents the human knowledge about the SUT completeness.
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3.3.4 B-Tree distributed testing architecture

In this section, we present an alternative to the centralized test controller architecture. This architec-
ture consists of organizing testers in a B-Tree manner, similarly to the overlay network used by GFS-
Btree [68]. Briefly, a B-Tree stores a set of pairs(k, v) where at most one valuev is associated with each
keyk.

In our B-Tree implementation we use the testers’ ID as keys. Then, these IDs become communication
addresses arranged in a B-Tree manner. In fact, we take advantage of the B-Tree structure for two reasons.
First, drop the centralized coordinator to scale up the testing architecture. Second, optimize the exchange
of messages since any message from the root to a leaf takeslog(n) hops wheren is the number of
elements in the tree.

The order of the B-Tree is not fixed, it may vary according to the number of testers, which is known at
the beginning of the execution. The goal is to have a well-proportioned tree, where the depth is equivalent
to its order.

Furthermore, the responsibility to start the execution of test cases and assign verdicts is left to the
root. When managing an execution, the root dispatches actions to its children testers, which dispatch
them to their children consecutively way down to the leaves.Once an action is received and executed,
the leaves start sending the results back to their parents way up to the root. Whenever the root receives
back the results, it dispatches the next action. Consecutively, all actions are executed up to the last one
when the root assigns a verdict.

3.3.4.1 Preliminaries

The B-tree architecture has a main component, the tester. The role of the tester is to execute test case
actions and control the volatility of a single peer. Moreover, it coordinates the dispatch of the test case
actions (Aτ ) through distributed testers (T τ ) arranged in a B-Tree manner. The UML diagram presented
in Figure 3.7 illustrates the deployment of the framework : each tester runs on a logical node (the same
as the peer it controls). Yet, a node may have several testersdepending on the order of the tree.

Tester
Peer

Application

0..1

0..*

parent

children

Figure 3.7 – Deployment diagram

Figure 3.8 illustrates a b-tree of order 1. Whether using theinterfaces, theroot() operation returns
the ID of tester 3. Thechildren(t1) operation returns the IDs 0 and 2. Theparent(t1) returns the ID of
tester 3.

In the B-tree architecture, the tester provides two additional interfaces compared with the previous
centralized architecture. These additional interfaces are for action execution management and test case
variables :
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• register(t, At), ok(ai), fail(ai), error(ai) : performs action registration (before all tests), action
execution and responses to execution.

• set(key, variable), get(key) :variable : provides accessors for test case variables.� �
42� �

6

Figure 3.8 – B-Tree example

We assume the B-Tree provide us two different operations, for node insertion and structure informa-
tion :
• insert(tree, ti) : inserts a tester into the tree using the tester ID as key.
• children(ti), parent(ti), root(tree) : returns the children or the parent of a given tester, and returns

the root of the tree.

3.3.4.2 Test case execution algorithms

In detail, a test case execution works as follows. Initially, a tester is randomly chosen as the bootstrap
tester, or bootstrapper for short, and receives the ID0. The role of the bootstrapper is to provide IDs to
all the incoming testers and build a B-Tree.

Algorithm 5 describes the bootstrapper creating the B-treeand waiting for subscriptions from all
the other testers. At each subscription, the B-Tree is populated with the tester’s ID (lines 3-5). Once the
B-Tree is built, the bootstrapper informs the root that the structure is ready to execute (line 6).

The execution of actions is managed by a dispatch function which is also responsible to send them to
a set of testers (see Algorithm 6). To start, this function receives a tester and an actionai. Then, it starts
sending dispatch messages to its children (lines 1). If the tester is supposed to, it also executesai (lines
2-4). For each sent message, an answer must be returned (line5). This ensures that the testers are always
available and the communication goes along. It has to be noticed that both tasks of sending and receiving
messages are asynchronous.

In fact, there are two different types of testers : the root and the “regular” testers. The role of the root
is to start the test sequence way down the B-Tree and to assigna global verdict. The role of a regular tester
is simply execute actions and route messages way up and down the B-Tree. Both testers are presented
below.

Algorithm 7 describes the root tester. Briefly, it describesthe actions dispatching and also the grou-
ping of the local verdicts that will be used to assign the finalverdict.

Initially, the root waits for a message from the bootstrapper (line 1). Once it receives, it decomposes a
given test case in actions to start the test case execution (lines 2-6). In fact, the execution of actions is al-
lowed through dispatch messages sent to children. However,sometimes not all the children must receive
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Algorithm 5 : Bootstrap tester
Input : A, a set of actions ;T , a set of testers
tree← createBTree;1

receiveregister(t, At)∀t ∈ T ;2

foreach t ∈ T do3

insert(tree, t) ;4

end5

sendstart to root(tree);6

Algorithm 6 : Dispatch function
Input : this, a tester ;ai, an action to be managed
senddispatch(t, ai)∀t ∈ children(this);1

if ∃ai ∈ actions(this) then2

execute(ai);3

end4

receiveok∀t ∈ children(this);5

sendok to parent(this);6

Algorithm 7 : Root tester
Input : τ , a distributed test case
receivestart from t0 ;1

foreach ai ∈ Aτ do2

T ′ ← receivers(a);3

senddispatch(ai, t)∀t ∈ T ′;4

receiveok∀t ∈ T ′;5

end6

sendresult∀t ∈ T τ ;7

L← receiveverdict∀t ∈ T τ ;8

return oracle(L,ϕτ ) ;9
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a given message. For instance, only one child in the left sideof the tree. In order to avoid any message
wasting, we use an optimization function (receivers) to know exactly which children must receive it (line
3). The optimization function works like the binary search,regardless it returns only the correct child (or
children) instead of the entire branch. Then, the correct children are informed to the dispatch function
(line 4).

Once all the actions are executed, the root asks testers for aresult and waits for all verdicts. Then,
the root tester groups them to compute the final verdict within the oracle function (lines 7-8). The oracle
function has two inputs, the set of local verdicts (L) and an index of relaxation (ϕτ ). If the ratio bet-
ween the number ofpass and the number of local verdicts is greater thanϕτ , then the verdict ispass.
Otherwise, the verdict isinconclusive.

Algorithm 8 describes how the verdict is computed. Once the execution of actions has finished, the
root asks its children for their results. This request is sent the way down to the leaves (line 2). Once a
tester receives the set of verdicts from its children, it adds its own verdict to this set and send it to its
parent. Consecutively, all the messages are sent from children to parents the way up to the root.

Algorithm 8 : Result
Input : this, a tester ;
sendresult∀t ∈ children(this);1

L′ ← receiveverdict∀t ∈ children(this);2

L′ ∪ verdict;3

return L′;4

3.3.4.3 The optimization function algorithm

In the B-Tree structure, when one wishes to send a message, starting at the root, the tree is traversed
top to bottom, choosing the child pointer whose separation IDs are on either side of the ID that will
receive the message. For instance, a test case is written to be executed by seven testers where an action
must be executed specifically by testerst1 andt3.

Figure 3.9(a) illustrates an execute message being sent to all the root’s children, however, one mes-
sage is wasted tot5. Figure 3.9(b) illustrates the binary search where the proper child is chosen and the
search goes the way down to the leaf. Yet, the binary search will be executed to every tester since its ID
is the key to be sought. For instance, to seek for IDs 0 and 2 thebinary search performs twice and returns
the paths “3-1-0” and “3-1-2”.

Thus, in our optimization function we perform in the same wayof the binary search choosing the
child pointer that fits the best. However, we are interested only in the correct child rather than the entire
path followed by the binary search.

In fact, we aim to send an action only once verifying the best child for it, then the child does the same
avoiding any message wasting. Algorithm 9 describes the optimization function. Briefly, this function
receives the current action and returns the children that must receive the execute message.

Recalling that an action is a tupleaτ
i = (Ψ, ι, T ′) as described in section 3.1, it is possible to know

exactly which testersT ′ will execute it (line 1). However, we want to know only the children of the actual
tester.

Then, we first verify if each testert ∈ T ′ is a child of the actual tester. If it is a child, then the subset
of testersT ′′ will keep it (lines 4-5). If it is not a child, we verify in which side of the treet is. If it is in
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Figure 3.9 – B-Tree upon a message exchange

the left side, thenT ′′ simply keeps the left child’s ID (lines 6-7) otherwiseT ′′ keeps the right child’s ID
(line 9). Finally, the correct children are returned withinthe subsetT ′′ (line 12).

Algorithm 9 : Receivers optimization function
Input : ai, an action
Output : T ′′, a set of testers
T ′ ← testers(ai) ;1

T ′′ ← ∅ ;2

foreach t ∈ T ′ do3

if t ∈ children(this) then4

T ′′ ∪ {t} ;5

else ift.ID < this.ID then6

T ′′ ∪ {left(children(this))} ;7

else8

T ′′ ∪ {right(children(this))} ;9

end10

end11

return T ′′ ;12

3.3.4.4 B-Tree example

Let us illustrate the execution of a distributed test case. This test case improves the motivating
example to better explain this architecture. Like the previous motivating example 3.1, the objective is
to detect errors on a DHT implementation.

This test case involves seven testersT τ = {t0 . . . t6} to control seven peersP = {p0 . . . p6} and six
actionsAτ = {a1, ..., a6}. According to Example 3.2, the first action may be executed bytesterst0, t1
andt2. This means that the root (see Figure 3.8), nowt3, is responsible to dispatch the actiona1 to its
child t1. Then,t1 dispatcha1 to its childrent0 andt2, and execute it.

After the execution ofa1, t1 receives the finalization message fromt0 andt2, and informs its parent
the finalization as well. Then,t3 dispatches the next actiona2 to t1 to be executed byt2. This action is
executed and sent back way up to the root. The next actiona3 has a call to the volatility interface. This
makes the testers aware that their peers will join the system. Thus, the test sequence can run without
volatility interference.

In the end,t3 receives all the local verdicts to compute the final verdict.If the data retrieved ina4 is
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the same as the one inserted ina2, then the verdict ispass. If the data is not the same, the verdict isfail.
If the testers were not able to retrieve any data, then the verdict is inconclusive.

Example 3.2 (Simple test case).

Action Testers Instructions

(a1) 0,1,2 join()
(a2) 2 put(14, "fourteen") ;
(a3) 3,4,5,6 join() ;
(a4) 3,4,5,6 data := retrieve(14) ;
(a5) 3,4,5,6 assert(data = "fourteen") ;
(a6) * leave() ;

3.3.5 Gossiping distributed testing architecture

The Gossiping is another solution to synchronize the execution of actions in a distributed manner. In
Gossiping we use the same architecture used by the B-Tree approach with a tester per node, however, the
synchronization of actions is executed by gossiping coordination messages through testers.

The Gossiping approach has the following steps. First, any nodep in the systemP is designated to
execute the first testert0. This tester will act as an identifier to all the other testerstn ∈ T that join
the system. The identification follows an incremental sequence from 0 up ton and is used to select the
actions a node should execute. Second,t0 creates a multicast address for each test case action. Third,
the decomposed test case is deployed throughP and stored at each tester. Then, each tester verifies
which actions it should execute and subscribes to the suitable multicast addresses. Finally, the testers
responsible for the first action start the execution.

A tester can play two different roles during the test case execution :
• Busy tester. This tester executes an actionai and gossips its completion to the multicast address of

the next actionai+1. Once it has sent a gossip, it becomes anIdle tester.
• Idle tester. This tester remains idle waiting the gossips from all theBusy testers. Once it receives

all their gossips, then it becomes aBusy tester.

The gossiping between these two types of testers guaranteesthe execution sequence of the whole test
case.

3.3.5.1 Interfaces

Indeed, the gossiping architecture deploys testers like the b-tree architecture and also uses a boots-
trapper to identify testers and compute verdicts. This bootstrapper provides the same two additional
interfaces of the B-Tree bootstrap tester, for action execution and test case variables.

The “regular” testers also provide the same interfaces usedby the B-Tree “regular” testers to execute
actions, control the volatility of peers, and access test case variables. However, an interface to commu-
nicate with the multicast structure is provided. The operations of this interface are used to subscribe to a
multicast address and both send and receive messages from it. The operations are :
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• send(address,message), receive(message), subscribe(address) : provides communication with
the multicast addresses.

3.3.5.2 The algorithm

The algorithm works as follows. Initially, a bootstrap tester, or bootstrapper for short, is randomly
chosen. It will be responsible to identify the other testersand create the gossiping structure. This structure
holds a multicast address to each test case actiona ∈ Aτ . Algorithm 10 details the creation of these
addresses by the bootstrapper before the execution starts (lines 1-3).

Algorithm 10 : Bootstrap tester
Input : Aτ , a set of actions
foreach a ∈ Aτ do1

create(multicast(a)) ;2

end3

foreach t ∈ T τ do4

register(t);5

end6

send(multicast(a0),ok) ;7

wait for lt from all t ∈ T τ ;8

foreach t ∈ T τ do9

Lτ ← Lτ ∪ {lτt } ;10

end11

return oracle(Lτ , ϕ) ;12

Then, the bootstrapper registers each new tester returningan ID to them (lines 4-6). Once the regis-
tration phase is done, the bootstrapper send aok message to the first multicast address in order to start
the test case execution (line 7).

Algorithm 11 details the non-bootstrapper testers. Initially, the testers subscribe themselves to the
multicast addresses of the actions they are set to execute (lines 1-3). Once the subscriptions are finished,
the registration phase is terminated and the testers wait for the start message (line 4). This guarantees the
communication among testers is ready to execute the test case.

Once the fist action is received, the testers subscribed to it(e.g.,T ′

a0
) receive theok message and

start its execution (line 5). As soon as the execution is terminated, the testers of this first action (e.g.,
T ′

a0
) send a message to the multicast address of the next one (line6). This happens consecutively up to

the last actionan.

Once all the actions are executed, the testers send their local verdicts to the bootstrapper (line 8).
Then, the bootstrapper gather all the local verdicts in the set Lτ (see Algorithm 10 lines 8-12). In fact,
the final verdict is computed in the same way described at the centralized controller architecture and the
B-Tree architecture.
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Algorithm 11 : Tester

Input : A′, a subset of actions
foreach a ∈ A′ do1

subscribe(multicast(a)) ;2

end3

foreach receive(ok) do4

execute(ai);5

send(multicast(ai+1), ok) ;6

end7

sendlτt to t0 ;8

3.3.5.3 Gossiping example

To illustrate this approach we use the original motivating example (see Example 3.1). Initially any
node is chosen to be testert0. In fact, this node decomposes the actions and creates the multicast ad-
dresses (see Figure 3.10(a)). Then, the other nodes contactt0 to receive an identifiern and subscribe to
the suitable multicast addresses. For instance, if a testerreceivesn = 1, it subscribes to the addresses of
a1 anda5.

Figure 3.10(b) presents the first actiona1 being executed by the testerst0, t1 andt2. Once the exe-
cution ofa1 is finished, they gossip the completion to the multicast address of the next actiona2. Then,
the testers subscribed toa2, that is onlyt2, receive the multicast message and executea2 gossiping its
completion in the end (see Figure 3.10(c)). Consecutively,execution, then gossiping happen up to the
last actiona5. Finally, each tester computes a local verdict and sends it to t0, which assigns a verdict of
the entire test case.

3.3.6 Test case variables

We callTest Case Variablesa structure that keeps values used along testing and cannot be predicted
when a test case is written. This means that values generatedon-the-fly can be stored and used at runtime.
To access this structure, the framework provides an interface to insert and retrieve variables as described
at each architecture interface section.

The structure is kept by the central coordinator when using the centralized architecture, or by the
bootstrapper when using the distributed architecture. Several testing scenarios can take advantage of this
structure. For instance, testers must analyze the routing table of their peers to verify if it was correctly
updated. More precisely, testers must compare the peer IDs from a routing table with the ID of peers
that leave or join the system. This comparison is not trivial, because each tester only knows the ID of its
peer, which is dynamically assigned. For instance, a given tester may be aware that the peers controlled
by testerst0 andt1 left the system, but does not know that they correspond to peers 20BD8AB6 and
1780BB16. To simplify the analysis of routing tables, we use test casevariables to map tester IDs to
peer IDs, as shown in Table 3.1.

The variables are stored only at runtime and must be purged bythe end of each test case execution.
This avoids interference with further executions and happens within the postamble scenario.
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Figure 3.10 – Gossiping architecture

Tester ID Peer ID
0 20 BD 8A B6
1 17 80 BB 16
2 A0 36 02 F7
3 40 E4 DE A2
... ...
15 FA 09 EE 90
16 21 3A C2 58

Table 3.1 – ID mapping



CHAPITRE 3 — Framework for Testing Peer-to-peer Systems 63

3.4 Conclusion

Let us summarize the contributions presented in this section.
When testing P2P systems, we claim that three dimensional aspects must be combined to check for

correctness. These aspects are : volatility, scalability and functionality.
A peer, from a testing point of view, can have to leave or join the system at a given time in a test

sequence. This action is specified in the test sequence in a deterministic way. Since it has the objective
to deal with a large number of peers, the second dimension of P2P system testing is scalability. Then,
because it is accomplishing a treatment, the scalability and volatility dimensions have to be tested with
the behavioral and functional correctness.

To take into account the three dimensional aspects of P2P systems, we presented a methodology that
combines the functional testing of an application with the variations of the other two aspects. Indeed, we
incrementally scale up the SUT either simulating or not volatility.

In terms of diagnosis, this methodology allows to determinethe nature of the detected erroneous
behavior. Indeed, the problem can be linked to a purely functional cause (Step 1), a volatility issue
(Step 2), a scalability issue (Step 3) or a combination of these three aspects (Step 4). The most complex
errors are the last ones since their analysis is related to a combination of the three aspects. Steps 2 and
4 could also be preceded by two other steps (shrinkage and expansion), to help the diagnosis of errors
due to either the unavailability of resources or arrival of new ones. Yet, several rates of volatility can be
explored to verify how they affect the functionality aspectof the SUT (e.g., 10% joining, 20% leaving).

We also presented three different architectures to coordinate the test sequence. These architectures
are based on two original aspects : (i) the individual control of peers’ volatility and (ii) a distributed
testing architecture to cope with large numbers of peers. The capabilities of these architectures are (1) to
automate the execution of each local-to-a-peer test case, (2) to build automatically the global verdict, (3)
to allow the explicit control of each peer volatility.

The first architecture extends the classical centralized testing architecture (i.e., central coordinator
managing distributed testers) with volatility control to demonstrate that such volatility is a key-parameter
when testing a P2P system [34]. Basically, this architecture has two main components : the tester and
the coordinator. The tester is composed of the test suites that are deployed on several logical nodes. The
coordinator is deployed in only one node and is used to synchronize the execution of test cases. It acts as
abroker [21] for the deployed testers.

However, the performance of such centralized architectureis linear while testing with large num-
bers of peers requires logarithmic. Therefore, we presented two fully distributed architectures to cope
with large-scale P2P systems [36]. The second architectureorganizes the testers in a balanced tree [17]
(B-Tree) manner where the synchronization is performed from the root to the leaves. Then, the testers
communicate with each other across the B-tree to avoid usinga centralized coordination. The third archi-
tecture uses gossiping messages among testers reducing communications among the testers responsible
to execute consecutive test case actions.

The distributed architectures are composed of a distributed component, the tester. The tester is the
application that executes in the same logical node as peers,and controls their execution and their vo-
latility, making them leave and join the system at any time, according to the needs of a test. Thus, the
volatility of peers can be controlled at a very precise level.





CHAPTER4
PeerUnit: a Testing Tool
for Peer-to-peer Systems

In this chapter, we present the PeerUnit tool which implements the P2P testing framework presented
in the previous section. PeerUnit provides a generic interface to control tests using any of the three testing
architectures. As mentioned, PeerUnit was developed in Java (version 1.5) and make extensive use of two
Java features: dynamic reflection and annotations.

This chapter is organized as follows. Section 4.1 describe the interfaces and the interactions of the
main components of PeerUnit. Section 4.2 details the Coordinator component, its classes and behavior.
Section 4.3 details the Tester component. Section 4.4 presents the testing elements provided by PeerUnit,
such as annotations and assertions. It also presents how to write a test case using PeerUnit. This test case
is written based on the motivating Example 3.1.

4.1 Main Components

In this section, we describe the two main components of PeerUnit. We present the interfaces of
these components: the Coordinator that is used whenever testing with the centralized architecture and
the Tester. We also detail the interactions between them: registration of test case actions and execution.

Figure 4.1 illustrates the main components of PeerUnit. As mentioned, theCoordinatoris responsible
to deploy the test cases across distributed testers and synchronize the execution of these test cases. To
communicate with each tester, every tester address is stored on a list which is read as the execution goes
on. This list is populated when the testers register their actions and get their identifiers. This list also
keeps the actions which are mapped to the testers responsible to execute them. The communication is
done by Java Remote Method Invocation (Java RMI), in which the methods of remote Java objects can
be invoked from other Java virtual machines, possibly on different hosts.

Peer

Application
TesterCoordinator

1 *

Figure 4.1 – Main components

65
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Figure 4.2 illustrates the main interfaces and data types ofPeerUnit. The most important operations
provided by theCoordinator interface are:

• register(): performs the actions registration (performed before all tests). An action is an instance
of theMethodDescriptiondata type.

• put(), get(): provides the accessors for test case variables.
• quit() : accessed by a tester either to inform a peer it controls abnormally quit the system or to

finish a test case execution. In both cases, a local verdict isinformed.
• getNewId(): accessed by Testers to get their identifiers.

+register(Tester, MethodDescription[*])
+put(Integer, Object)
+get(Integer) : Object
+quit(Tester, Verdicts)
+getNewId() : Integer

<<interface>>
Coordinator

+execute(MethodDescription)
+kill()
+getTesterName() : Integer

<<interface>>
Tester

PASS 
FAIL 
INCONCLUSIVE
ERROR

<<enumeration>>
Verdicts

+setDescription(String, String, Integer, String, Integer) 
+compareTo(MethodDescription) getName() : String
+getTimeout() : Integer
+getAnnotation() : String

<<datatype>>
MethodDescription

Figure 4.2 – Main interfaces

The Tester component was implemented to be independent of the architecture. This allows us the
execution of tests without changing the testing code. Obviously, the difference between architectures
happens in the communication between components. Althoughthe communication at the centralized
architecture has a central coordinator, all the architectures implement the same operations.

The most important operations provided by theTesterinterface are:

• execute(): executes an action. This happens when the Coordinator allows the execution of the
next action and the tester is set to execute it. Whenever testing in a distributed architecture, the
execution is allowed by another tester (e.g., parent testerin the B-Tree architecture).

• getTesterName(): returns the tester’s identifier.
• kill() : is accessed to make a peer quit the P2P system.

Since the communication happens by Java RMI, these operation are invoked remotely. This means
either the Coordinator or a parent tester synchronizes the execution of test cases by calling theexecute()
operation.

Figure 4.3 illustrates the registration at the centralizedarchitecture. Two testers register their actions
at the coordinator receiving their identifiers as soon as thecoordinator computes the identifiers and stores
the actions in the list of actions.

The execution of test cases was previously presented in Figure 3.5.
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t1:Tester t2:Tester ctl:Coordinator

id := getNewId(t1)

id := getNewId(t2)

register(t1, [a1,a3])

register(t2, [a1,a2])

Figure 4.3 – Registration sequence

4.2 Coordinator

In this section, we describe the Coordinator component. First, we present the main classes and their
operations. Then, we present the various behaviors of each class.

4.2.1 Main Classes

Figure 4.4 illustrates the Coordinator component in detail. As mentioned, the Coordinator returns
an identifier to each tester at the registration. An identifier is an integer that is incremented at each
registration, however, a P2P testing may have a large numberof testers. Therefore, there is possibly
high-degree of concurrency to access theregister(Tester, MethodDescription[*]) operation remotely
and get an identifier. To manage this degree of concurrency, we use thejava.util.concurrentpackage.
This package provides utility classes commonly useful in concurrent programming1.

Along testing, the Coordinator is capable to measure the test case execution which is done by calling
the Chronometerclass. Actually, theChronometeris called depending on the setup of the “measure”
annotation (see Section 4.4.1).

The Coordinator also stores the local verdicts sent by the testers along the execution. As soon as the
Coordinator receives all the local verdicts, the Oracle package computes a final verdict to a test case. The
Oracle package is detailed later in this chapter.

4.2.2 Behavior

Figure 4.5 illustrates the states of the Coordinator duringthe test case execution. Initially, the Coor-
dinator waits for the registration ending. This happens whenever all the testers register their actions and
get an identifier. Then, it reads the list of actions and submits to testers each action at a time. Once all the
actions are submitted, the list of actions is cleaned and thefinal verdict can be assigned.

Basically, the Coordinator component has two main classes:the CoordinatorImpl that implements
the interface and theChronometerthat measures the execution of test cases. The operations provided by
theCoordinatorImplclass are:
• run() : starts the coordinator.

1http: //java.sun.com/j2se/1.5.0/docs/guide/concurrency/
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+register(Tester, MethodDescription[*])
+put(Integer, Object)
+get(Integer) : Object
+quit(Tester, Verdicts)
+getNewId() : Integer

<<interface>>
Coordinator

+start(String)
+stop(String)
+getTime(String) : Long

Chronometer

java.util.concurrent

*

Tester
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+run()
-testcaseExecution(Chronometer) 
-finishExecution(Chronometer)
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• testcaseExecution(): submit the actions to testers. It receives as parameter an instance of Chrono-
meter to measure the execution of each action.

• finishExecution(): cleans the list of actions, closes all the connections and stops the coordinator. It
receives as parameter an instance of Chronometer to measurethe execution of the entire test case.

The operations provided by theChronometerclass are:
• start(): starts the measurement of a given action.
• stop(): stops the measurement.
• getTime(): get the time in milliseconds.

4.3 Tester

In this section, we describe the Tester component. First, wepresent the main packages and their
classes. Then, we present the behavior of each class.

4.3.1 Main Classes

We divided the main classes in three packages: (i) the main package that implements the core activi-
ties of the testers, (ii) the assertions that implements theoracle and (iii) the exceptions.

4.3.1.1 Main Package

Figure 4.6 illustrates the Tester component in detail. Initially, a tester is instantiated according to
the testing architecture. This can be configurated in the setup file (see Appendix B). For instance, the
TreeTesterinstantiates a tester in a B-Tree architecture.

Then, the tester keeps the list of actions that will be executed. This list is generated by theParser
which is responsible to read and sort the annotations in order to guide the test case execution (i.e., points
of synchronization, conditional execution and the testingcode). In the centralized architecture, such list
is used at the registration phase and stored at theCoordinator. In the distributed architectures, it is used
to constraint the test case execution. Finally, the tester reads the list of actions to synchronize with the
Coordinatoror another testers during the execution of test cases.

To access theTesterinterface, a tester engineer has to inherit theTestCaseinterface when writing the
testing code. TheTestCaseinterface provides generic operations to manage test casesand take advantage
of the features provided by PeerUnit (see Figure 4.7). Then,theTestRunnerclass uses dynamic reflection
to read the testing code and send it to be parsed and executed.Furthermore, theTestCaseinterface allows
the testing engineer to switch the testing architecture without changing the testing code.

4.3.1.2 Assertion Package

Figure 4.8 illustrates the assertion package. TheGlobalVerdictclass groups the local verdicts as-
signed by theOracle class. Actually, theOracle class assigns a local verdict based on the assertions
provided by theAssertclass. During testing, the assertions may throw a range of failures. Then, a ver-
dict is computed based on the throwable object. Furthermore, two circumstances lead theAssertclass to
assigninconclusiveverdicts automatically (as detailed in Section 3.3.3.4): execution timeout and incom-
pleteness of a result set.
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Figure 4.8 – Assertion package

Assertions provide a powerful and straightforward test oracle approach as described in section 2.4.1.
Our framework inherits the default assertion methods from the JUnit framework’s TestCase class. Some
of the most important assertions are:
• assertTrue(boolean condition)asserts if a condition is true.
• assertFalse(boolean condition)asserts if a condition is false.
• fail(String message)fails a test with the given message.
• assertEquals(String message, Object expected, Object actual) asserts that two objects are equal.
• assertArrayEquals(String message, Object[] expecteds, Object[] actuals) asserts that two ob-

ject arrays are equal.

Our framework also offers two additional test assertions:
• inconclusive(String message)indicates aninconclusiveverdict. This assertion is also used inter-

nally by the framework in case of a test case execution’s timeout.
• assertCollectionEquals(String message,Collection expecteds, Collection actuals)asserts that

two collections are equal.

In the assertions presented above except forfail(String message)andinconclusive(String message),
if the condition is not met, the assertion throws an error. Inthis case, the oracle assigns thefail verdict.

The code below was extracted from the source code presented in the appendix section B.3. This piece
of code verifies if a peer can join the system during the start up. If such peer cannot join the system, then
the peer cannot proceed the test case execution. In this case, it is not possible to indicate that the system
is buggy. In fact, it only indicates that an unmanageable situation occurs, then aninconclusiveverdict
is assigned. This piece of code also verifies if a collection of objects inserted by one peer was correctly
retrieved by the others.

public class SimpleTestextendsTestCaseImpl{
...
if (! net . joinNetwork(peer , bootaddress ,false , log )){

inconclusive ("I couldn’t join, sorry");
}
...
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@Test(place=0,timeout=1000000, name ="tc1", step = 3)
public void put (){
...

List<PastContent> expecteds=newArrayList<PastContent >();
for (PastContent content : peer . getInsertedContent ()) {

log . info ("Expected so far : "+content.toString());
expecteds .add(content );

}
...

@Test(place=−1,timeout=1000000, name ="tc1", step = 4)
public void get (){
...

List<PastContent> actuals =new ArrayList<PastContent >();
for (PastContent actual : peer . getResultSet ()) {

actuals .add( actual );
}
Assert . assertCollectionEquals ("[Local verdict] ",expecteds, actuals);

...
}

4.3.1.3 Exceptions Package

An exception is an event that occurs during the execution of aprogram that disrupts the normal flow
of instructions2 . The Exception package and its classes are a form ofjava.lang.Throwablethat indicate
conditions that a reasonable application might want to catch.

We provide some new exceptions in order to catch disruptionsfrom P2P features (see Figure 4.9),
such as: actions timeout and incompleteness. As mentioned,these features cannot be considered as fai-
lures, thus, we provide theInconclusiveFailureexception that indicates aninconclusiveverdict to the
oracle.

PeerUnitFailure

ComparisonFailure InconclusiveFailure
ArrayComparison

Failure
AssertionFailed

Error

*

1

Assertion

Figure 4.9 – Exceptions package

2http: //java.sun.com/docs/books/tutorial/essential/exceptions/
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4.3.2 Behavior

Figure 4.10 illustrates the states of a tester during the test case execution. Initially, the testing code
is parsed to allow the registration of the actions. Once the actions are registered, the tester waits to start
their execution. When all actions are completely executed,a local verdict is assigned and sent to the
coordinator.

parsing

wait for
execution

verdict assignment

register()

isLastMethod()

action 
execution

execute()

Figure 4.10 – Tester state chart

The behavior of the Tester component can be explained basically through the following classes and
interfaces. Starting from theTreeTesterclass that is the implementation of the Tester interface forthe
B-Tree architecture, such implementation provides operations to manage the execution of test cases and
manage the tree structure as well. The operations provided by theTreeTesterclass are:
• startExecution(): starts the execution of the tester.
• endExecution(): ends the execution of the tester receiving as a parameter the verdict list that is

passed by the children testers. Then, the tester eventuallyadds its local verdict to the list since it
goes up towards the root tester.

• setParent(): keeps informed the tester about its parent in the tree.
• setChildren(): keeps informed the tester about its children in the tree.

TheTestCaseinterface provides the operations to access theTesterinterface and its implementations
(e.g.,TreeTester). As mentioned, this provides us architecture independency. The operations provided by
theTestCaseinterface are:
• setTester(): sets an instance ofTester.
• getTesterName(): is accessed to acknowledge the tester’s identifier.
• kill() : is accessed to make a peer quit the P2P system.
• put(), get(): provides the accessors for test cases.

As mentioned theParserclass is responsible to read the testing code and sort out theannotations in
order to guide the testing sequence. Then, it provides some operations to read the testing code, verify
if the tester is supposed to execute an action and eventuallyexecute it. The operations provided by the
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Parserclass are:
• register(): returns a list of actions to be executed. It receives as parameter the testing code that

inherits theTestCaseinterface.
• shouldIExecute(): returns true if an action has to be executed by a tester. It receives as parameter

the identifiers of testers set to execute such action. These parameters can be a range of testers
identifiers or only one identifier.

• invoke(): receives as parameter an action and invokes it.

The GlobalVerdictclass computes the local verdicts sent by the testers duringthe tests. This com-
putation also considers the relaxation index that is used tohandle inconclusive verdicts as discussed in
Section 3.3.3.4. The operations provided by theGlobalVerdictclass are:
• setGlobalVerdict(): sets a local verdict and the relaxation index.
• getGlobalVerdict(): returns the final verdict as soon as all local verdicts were computed.
• getJudged(): returns the quantity of testers already judged. This is used to acknowledge how many

testers remains without a local verdict.

4.4 Writing test cases

In this section, we present how to write a test case using PeerUnit. First, we describe the annotations
used by the testers to manage the test execution (i.e., synchronization and deployment). Then, we describe
a simple test case wrote over the motivating example (see Example 3.1).

4.4.1 Annotations

PeerUnit provides three annotations. The first annotation specifies that a method is a test case action.
As mentioned, a test case action is a point of synchronization used to manage the test sequence. This
annotation, called @Test, provides the following parameters :
• “place” informs the id of a tester responsible to manage the action on a peer. Note that the testers’

id are dynamically assigned during the test case registration, and are not related to the peers’ id,
which are proper to the SUT. If set to “−1”, then all the testers will manage the action.

• “from” informs the id of the first tester within a set of testers. This parameter indicates that the
action will be managed by more than one tester. Furthermore,it cannot be used together with the
“place” parameter.

• “to” informs the id of the last tester within a set of testers.This parameter also indicates that
the action will be managed by more than one tester. It cannot be used together with the “place”
parameter either.

• “name” informs the name of the test case. Different methods may be part of the same test case.
• “step” informs that a test case has different steps during the execution.
• “measure” measures the execution time in milliseconds.
• “timeout” indicates a milliseconds time frame to execute the action. If this time expires, then it is

assigned a localinconclusiveverdict.

The code below shows the annotation usage. This action, thatbelongs to test case “tc1”, will be
managed by testers 0 to 20. The other parameters indicate that the execution will be measured and it has
1000 milliseconds to finish.
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@Test(from=0, to=20, name="tc1", step=1, measure=true, timeout=1000)
public void action (){

...
}

The second and third annotations specify the test case set upand clean up respectively. The objec-
tive is to comply with the test harness described in section 3.3.2. These annotations, called @Before
and @After, provide some of the same parameters used by @Test, such as : “place”, “from”, “to” and
“timeout”.

The code below shows the @Before and @After usage. These methods will be managed by all the
testers since the “place” parameter value is set to “-1”. Theexecution of each method has a time frame
of 1000 milliseconds.

@Before(place=−1, timeout=1000)
public void setupAction (){

...
}
...

@After(place=−1,timeout=1000)
public void cleanAction (){

...
}

4.4.2 A test case example

We present a simple test case to illustrate the elements presented in this section. This test case was
wrote over the motivating example (see Example 3.1). It checks the correctness of the insertion of two
pairs {(1, “One”),(2, “Two”)} , by peers that join the system after its storage.

The test suite is implemented by a class namedTestSample, which is a subclass ofTestCaseImpl.
The classTestCaseImplis the implementation of the interfaces introduced into thearchitecture sections.
TheTestSampleclass contains an attribute namedpeer, an instance of the peer application. In this way,
we can reach the SUT since peer is the implementation of a SUT peer (e.r., Chord, Pastry, etc).

public class TestSampleextendsTestCaseImpl {
private Peer peer ;
private Integer key[] = {1,2};
private String data [] = {"One","Two"};

}

The objective of the methodstart() below is to initialize the peer application. Since this initialization
is rather expensive, it is executed only once. The@Beforeannotation ensures that this method is per-
formed at all peers at most one time. This annotation attributes specify that the method can be executed
everywhere and that its timeout is 100 milliseconds.

@Before(place=−1, timeout=100)
public void start (){

peer =new Peer (); }
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The methodjoin() asks the peer instance to join the system. The annotation@Testspecifies that this
method belongs to the test case "tc1", that it is executed by testers 0, 1 and 2, and that the execution time
is measured.

@Test(from=0, to=2, name="tc1", step=1, measure=true)
public void join (){

peer . join ();
}

The methodput() stores some data in the DHT. The annotation ensures that onlytester 2 executes
this method.

@Test(place=2, timeout=100, name="tc1", step = 2)
public void put (){

for ( int i=0; i<2; i++){
peer . put (key[ i ], data [ i ]);

}
}

The methodjoinOthers() is similar to the methodjoin() , presented above. The annotation@Test
specifies that this method is the third action of the test case, and that only testers 3 and 4 execute it.

@Test(from=3, to=4, name ="tc1", step=3)
public void joinOthers (){

peer . join ();
}

The methodretrieve() tries to retrieve the values stored at keys 1 and 2. If the retrieved objects
correspond to the ones previously stored, the test case passes, otherwise it fails.

@Test(from=3, to=4, name ="tc1", step=4)
public void retrieve (){

String actual [];
for ( int i=0; i<2; i++){

actual [ i ] = peer . get (key[ i ]);
}

assertEquals (data , actual );
}

Finally, the methodstop() asks the peer instance to leave the system. This method is executed by all
the peers.

@After(place=−1,timeout=100)
public void stop (){

peer . leave ();
}



CHAPTER5
Experimental Validation

In this chapter, we present an experimental validation of our framework with three objectives : (i)
evaluate the coordination overhead of our testing architectures, (ii) validate the feasibility of our in-
cremental testing methodology (iii) validate the usability and efficiency of the P2P testing framework
based on experiments that test two popular open-source P2P systems. The first P2P system, FreePastry1

from Rice University, is an implementation of Pastry [88]. The second P2P system, OpenChord2 from
Bamberg University, is an implementation of Chord [92]. Furthermore, testing these two P2P systems
allows us to exercise the framework in different scenarios.Additionally, it allows us to compare both P2P
systems as a side effect.

We tested two structures that are strongly impacted by volatility. The first structure is the routing
table, which stores the addresses of the successor peers. Briefly, we tested the ability of a peer to update
its routing table in three different test cases. In the first test case, a peer is isolated, i.e., all peers present
in its routing table leave the system at the same time. In the second test case, some peers join the system.
In the third test case, some peers leave the system.

The second structure is the DHT, which is responsible to store the data. We tested the implementation
of the insert and retrieve operations. To do so, we wrote fourtest cases. The first test case validates these
operations on a stable system and provides a base for the experiments that simulate volatility. The other
three test cases validate these operations upon different volatility workloads. All test cases use randomly
generated data.

5.1 Experimental environment

We validated our framework over the Grid5000 platform3. The Grid’5000 project aims at building a
highly reconfigurable, controlable and monitorable experimental Grid platform gathering 9 sites geogra-
phically distributed in France featuring a total of 5000 processors.

We used two clusters of 64 nodes from the Grid5000 platform. Both clusters run GNU/Linux opera-
ting system. In the first cluster, each node has 2 Intel Xeon 2.33GHz dual-core processors. In the second
cluster, each node has 2 AMD Opteron 248 2.2GHz processors. Since we can have full control over these
clusters during experimentation, our experiments are reproducible. We allocate the peers equally through
the nodes in the clusters up to 16 peers per node. In experiments with up to 64 peers, we use only one
cluster.

In all experiments reported in this thesis, each peer is configured to run in its own Java VM. The
implementation and tests can be found in our web page.4 A complete test case with instructions to install
and execute our framework is available at the appendix section.

1http ://freepastry.rice.edu/FreePastry/
2http ://open-chord.sourceforge.net/
3Grid5000 platform : http ://www.grid5000.fr/
4Peerunit project, http ://peerunit.gforge.inria.fr
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5.2 Coordination overhead evaluation

We first evaluated the overhead of the coordination of actions. We measured this overhead by the
response time of a test case execution. To measure the response time, we submitted a fake test case, com-
posed of empty actions through a different range of testers.Then, for each action, we measured the whole
execution time, which comprises remote invocations, execution of the empty actions and confirmations.

The fake test case contains 8 empty actions (we choose this number arbitrarily) and is executed up
to a limit of 2048 testers running in parallel. The java code described below shows the source code of
the fake test case. Figure 5.1 presents the response time foraction coordination for a varying number of
testers. Results are shown for two different testing architectures. Using the centralized architecture (see
Section 3.3.3), the response time grows linearly with the number of testers as expected for an algorithmic
complexity ofO(n). In contrast, the B-Tree architecture (see Section 3.3.4) had logarithmic response
time.

/∗∗
∗ The fake test case
∗/

public class SimpleTestextendsTestCaseImpl{

/∗∗
∗ This method starts the test
∗/

@BeforeClass(place=−1,timeout=1000)
public void begin (){

}
@Test(place=−1,timeout=1000, name ="action2", step = 1)
public void action2 (){

}
@Test(place=−1,timeout=1000, name ="action3", step = 1)
public void action3 (){

}

...

@Test(place=−1,timeout=1000, name ="action7", step = 1)
public void action7 (){

}
@AfterClass(timeout=1000,place=−1)
public void end() {

}
}

The result shows that the B-Tree architecture addressed scalability by managing actions across dis-
tributed testers. However, the result does not consider theconstruction of the tree in order to compare
only the coordination times. The construction of the tree, performed by the bootstrapper, took 306 mil-
liseconds for 2048 testers. Even if added to the coordination time, such increase yielded 72% better
response time than the centralized architecture.
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Figure 5.1 – Coordination Overhead Evaluation

5.3 Test Cases Summary

In this section, we describe the test cases used to test the routing table and the DHT. Initially, we
describe the test sequences that the test cases are based on.Then, we detail the test cases.

5.3.1 The routing table test sequence

In the routing table test cases, testers must analyze the routing table of their peers to verify if it was
correctly updated. More precisely, testers must compare the ID of peers from a routing table with the ID
of peers that leave or join the system. This comparison is nottrivial, because each tester only knows the
ID of its peer, which is dynamically assigned. To simplify the analysis of routing tables, we use test case
variables to map tester IDs to peer IDs, as shown in section 3.3.6.

We implemented the test case as follows.

Name : Routing Table Test.

Objective : Test the update of the routing table.

Parameters :
• P : the set of peers that form the SUT ;
• Pinit : the initial set of peers ;
• Pin : the set of peers that join the system during the execution ;
• Pout : the set of peers that leave the system during the execution.

Actions :

1. System creation.

2. Volatile peers are stored in test case variables.

3. Volatility simulation.
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4. Routing table verification and verdict assignment.

In the first action, a system is created and joined by all peersin Pinit. In the second action, the IDs
of Pin and/orPout are stored in test case variables. In the third action, volatility is simulated : peers
from Pin join the system and/or peers fromPout leave the system by comparing their IDs with the test
case variables. In the fourth action, each remaining peer (p ∈ Pinit + Pin − Pout) verifies its routing
table, waiting forι seconds. Then, the routing table is analyzed whether it has references to the test case
variables and a verdict is assigned. Three different test cases are based on this test sequence :

1. Recovery from peer isolation.

2. Expanding system.

3. Shrinking system.

5.3.1.1 Recovery from peer isolation

The first test case consists in the departure of all peers thatare present in the routing table of a given
peerp. Then, we test if the routing table ofp is updated within a time limit.

In the first action, the P2P system is created and a set of peersPinit = P joins the system. In the
second action, a peerp ∈ P (randomly chosen) stores the contents of its routing table in the test case
variableRT . In the third action, the peers whose IDs are inRT leave the system. In the fourth action,
the routing table ofp is periodically analyzed within a delay. At the end of this action, the routing table
of p is analyzed a last time to assign a verdict. The values ofRT are compared with the updated routing
table ofp. If the intersection of these two sets of IDs is empty, the verdict ispass.

5.3.1.2 Expanding system

In the second test case, we test if the peers that join a stablesystem are taken into account by the
older peers. To do so, we analyze the routing table of each peer that belongs to a set of peersPinit to test
if it is correctly updated within a time limit, after the joining of a set of new peersPin.

In the first action, the P2P system is started and peers that belong toPinit join the system. The second
action is a waiting time, allowing the SUT to reach a stable state. In the third action, the new peers (Pin)
join the system and their IDs are stored in the test case variable, NID. In the fourth action, the routing
table of each peer fromPinit is compared with the values ofNID. If all routing tables are updated, the
verdict ispass.

5.3.1.3 Shrinking system

In this third test case, we test if the peers that leave a stable system are correctly removed from the
routing tables of the remaining peers, within a time limit.

In the first action, the P2P system is created and all peers (P = Pinit ∪ Pout) join the system. In the
second action, the IDs of peers fromPout are stored in the test case variableLID. In the third action,
peers whose IDs belong toLID leave the system. The fourth and last action verify if the routing table of
peers fromPinit − Pout does not have references to peers IDs belonging toLID.



CHAPITRE 5 — Experimental Validation 81

5.3.2 The DHT test sequence

Name : DHT Test.

Objective : Test the insert/retrieve operations.

Parameters :
• P : the set of peers that form the SUT ;
• Pinit : the initial set of peers ;
• Pin : the set of peers that join the system during the execution ;
• Pout : the set of peers that leave the system during the execution ;
• Data the input data, corresponding to set of pairs (key, value).

Actions :

1. System creation.

2. Insertion ofData.

3. Volatility simulation.

4. Data retrieval and verdict assignment.

We describe the DHT test sequence as follows. In the first action, a system is created and joined by
all peers inPinit. In the second action, a peerp ∈ Pinit insertsn pairs. In the third action, volatility is
simulated : peers fromPin join the system and/or peers fromPout leave the system. In the fourth action,
each remaining peer (p ∈ Pinit + Pin−Pout) tries to retrieve all the inserted data, waiting forι seconds.
When the data retrieval is finished, the retrieved data is compared to the previously inserted data and a
verdict is assigned. Four different test cases were extracted from this summary :

1. Stable system.

2. Expanding system.

3. Shrinking system.

4. Volatile system.

5.3.2.1 Insert/Retrieve in a stable system

In this test case, we set a system with two sets of peersP andP1 whereP1 ⊂ P , and verify if all
peers fromP are able to retrievek data previously inserted by peers fromP1. The test case is executed
several times, for different sizes ofP and ofP1.

Then, we set the system to execute 4 times. Each time testing with a different system size (|P | =
(16, 32, 64, 128)). In all executions, no peer leaves or joins the system (Pin = ∅, Pout = ∅ andPinit =
P ). The same input data is used in all executions (|Data| = 1, 000).

In the first action, all peers fromP join the system. The second action waits for about 16 seconds
in order to let the system stabilize. This delay was set basedon the time to update the routing table
presented in Section 5.6. In the third action, all peers fromP1 insertk data into the DHT. Sincek is
generated on-the-fly, we stored it in the test case variableED. In the fourth action, eachp ∈ P tries
to retrieve the data. The retrieval may be executed several times, the number of retrievals was defined
before the execution of the test case. Once the data are retrieved, they are compared with the data ofED
to assign a verdict.
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5.3.2.2 Insert/Retrieve in an expanding system

In the second test case, we configured a system containing a set Pinit of peers, where a peerp ∈ Pinit

insertsk data. After the insertion, we configured a setPin of new peers to join the system. Then, we test
if all peers fromPin are able to retrieve thek inserted data. The size ofPin is computed by(|P | ∗ r)/100
wherer represents the rate of peers joining the system. We set this rate from 10% to 50% to test the
system under different joining workloads.

We use a predefined number of peers (|P | = 128) and of input data (|Data| = 1, 000). The test case
uses different configurations, for different rates of peersjoining the system. We set this rate from 10%
to 50% (|Pinit| × |Pin| = [(116, 12) ; (103,25) ; (90,38) ; (77,51) ; (64,64)]). No peer leaves the system
(Pout = ∅).

In the first action, a system is created and joined by all peersin Pinit. In the second action, a peer
p ∈ Pinit inserts data, which is also stored in the test case variableED. The number of peers inserting
data is irrelevant, as presented in Section 5.6. In the thirdaction, the peers from (Pin) join the system. In
the fourth action, eachp ∈ Pin tries to retrieve all the inserted data, waiting forι seconds. The retrieved
data is stored in the local variableOD. When the data retrieval is finished,OD is compared toED and
a verdict is assigned.

5.3.2.3 Insert/Retrieve in a shrinking system

In this test case, we set a system containing a setP of peers, where a peerp ∈ P insertsk data. Then,
we test if a set of peersP1 ⊂ P is able to retrieve all inserted data when a set of peersP2 ⊂ P leaves the
system. The size ofP2 is variable ; it is computed by(|P | ∗ r)/100, wherer corresponds to the rate of
peers leaving the system. We set this rate from 10% to 50% to test the system under different departure
workloads. We limitedP to a 64-peer system.

We use a predefined number of peers (|P | = 128) and of input data (|Data| = 1, 000). Initially, all
peers join the system (Pinit = P ). After the data insertion, some peers leave the system. We set the rate
of peers leaving the system from 10% to 50% (|Pout| = (12, 25, 38, 51, 64)). No peer joins the system
(Pin = ∅ ). Note that in Pastry, the data stored by a peer becomes unavailable when this peer leaves the
system and remains unavailable until it comes back. Thus, inthis test case we do not expect to retrieve
all data, only the remaining data is retrieved to build the verdict.

In the first action, the system is created and all peers fromP join the system. In the second action, a
peerp ∈ P insertsk data. In the third action, the IDs of all peers fromP2 (randomly chosen) are stored
in the test case variableLP . Then, testers readLP and compare to their peers ID. If both IDs match,
then the tester makes the peer leave the system.

In the fourth action, eachp ∈ P1 tries to retrieve all the data. After the departure, some data may
be lost, especially with high rates of departure. Thus, a single retrieval by eachp ∈ P1 is enough to
acknowledge the data available in the system. Such data is stored in the test case variableAD, and the
data from the unavailable peers are removed. Then, eachp ∈ P1 tries to retrieve all the data waiting
for a response within a timeι. The retrieval may be executed several times, the number of retrievals
being defined before the execution of the test case. In the case of multiple retrievals, a delay is respected
between two retrievals. Whenever the data arrives, it is stored in the local variableLI. Thus,LI is
compared toAD at the end of this action and a verdict is assigned.
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5.3.2.4 Insert/Retrieve in a volatile system

In this test case, we set a system containing a setP1 = Pstable ∪ Pout of peers, where each peer
p ∈ P1 insertsk data. Then, we test ifPstable is able to retrieve all inserted data while a set of peers
P2 = Pin ∪ Pout joins/leaves the system. The size ofP2 is variable ; it is computed by(|P | ∗ r)/100,
wherer corresponds to the rate of peers joining/leaving the system. We set this rate from 10% to 50% to
test the system under different departure workloads. We limited P to a 64-peer system.

In this test case, we define a set of stable peersPstable, Pstable ⊂ P andP = Pstable ∪ Pin ∪ Pout.
We set the rate of stable peers from 90% down to 50% (|Pstable| = (116, 103, 90, 77, 64)). The initial set
of peers is composed of the stable peers and the peers that will leave the system (Pinit = Pstable ∪Pout).
After the data insertion, all peers fromPout leave the system while all peers fromPin join the system.

5.4 Testing OpenChord

In this section, we briefly describe the routing table and theDHT of the Chord’s algorithm. Then, we
describe the result of the tests.

In the context of the routing table, Chord makes no effort to achieve good network locality. A peer’s
ID is chosen by hashing its IP address. Then, the peers are arranged ordered in an ID circle. Chord
updates its routing table in two different ways : periodically and/or dynamically. To update its routing
table periodically, the Chord algorithm uses an active process called stabilization. The update of the
routing table also happens dynamically every time a peer joins or leaves the system. For instance, in a
Chord system with peersp0, p1, p3, andp6, the routing table ofp1 stores the addresses of peersp3 and
p6. These peers stored in the routing table are called successors. If a new peerp4 joins the system, then
p1 will update its routing table with the address ofp4. Then,p4 becomes a successor ofp1.

In the context of the DHT, Chord provides support for one operation : given a key, it maps the key
onto a peer. Briefly, a key identifier is produced by hashing the key, while the peer identifier is chosen by
hashing the peer’s IP address. Then, both identifiers are used to assign keys to peers. For simplicity, we
call "key" both the original key and the key identifier. For instance, in the same Chord system with peers
p0, p1, p3, andp6, a key1 would be located atp1. Similarly, key2 would be located at nodep3, and key
7 would be located at peerp0.

5.4.1 Recovery from peer isolation

In this test case, we set the system to 64 peers. Indeed, creating a system with less than 64 peers can
lead the test to an inconclusive result becausep may know all the peers which are removed in the third
action. In a larger system, the results would be similar since the update of the routing table is performed
periodically.

OpenChord got apass verdict, however, 4 seconds after the removal of its successors. In fact, this de-
lay represents a unique execution of the stabilization process (whose periodicity is set to 6 seconds). This
test case showed that OpenChord peers were able to update their routing table correctly upon isolation.

Furthermore, we noticed that testing P2P systems is also a matter of time. Therefore, we also discuss
the time to get a verdict in the further sections, in particular in Section 5.6.
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5.4.2 Expanding system

In this test case, we increased the size of the system exponentially (2n) up to 1024 peers5 to test the
update in different system sizes. We set a maximum time to limit the test execution. We also increased
this time in exponential scale (2n), starting from 8 seconds in order to perform at least one update in
the routing table. Similar to the peer isolation test, OpenChord got apass verdict after the stabilization.
However, the update took a little longer due to the time to execute the stabilization. In this test, we per-
formed up to 25 different executions to validate the system at different sizes and upon different volatility
rates. OpenChord got apass verdict in all executions.

5.4.3 Shrinking system

In this test case, we increased exponentially the size of thesystem and the time limit similarly to the
expanding workload. OpenChord got also apass verdict. However, it took a longer period of time than
the expanding system to get this verdict. This happened because the depart of peers were not informed
(i.e., the peers were killed) and the stabilization could not contact all the bogus6 peers to erase their
addresses. Similar to the expanding workload, we performedup to 25 different executions to validate
the system at different sizes and upon different volatilityrates. OpenChord got apass verdict in all
executions.

5.4.4 Insert/Retrieve in a stable system

Starting the test with a 16-peer system, all local verdicts were pass (i.e. the data stored inED
matches with the retrieved objects). However, when testingwith a higher number of peers, some local
verdicts wereinconclusive due to a lack of response. For instance, in a 32-peer system, more than9%
of the testers did not get an answer of their peers (see Figure5.2). When executing the tests in a larger
system (e.g. 128 peers) the verdicts were frequentlyfail. At first sight, we thought that this verdict was
due to an insufficient time to stabilize the system. Thus, we stated a maximum delay of 512 seconds.
However, when executing with 128 peers, the test case got frequentlyfail verdicts.

We concluded that OpenChord has a bug to retrieve data in systems larger than 64 peers. Peers may
organize themselves in more than one DHT (i.e. Chord ring) and the peers of one DHT are not able to
retrieve data from the others. This would mean that OpenChord is not able to merge the DHTs in order
to retrieve all data within the configured period of time.

5.4.5 Insert/Retrieve in a volatile system

In this subsection, we describe the test results in a system up to 64 peers upon three different volatility
workloads : expanding, shrinking and full volatility. Similar to the stable system, OpenChord gotfail
verdicts in systems with more than 64 peers.

In an expanding system, OpenChord was able to retrieve data and get apass verdict. However, the
time to retrieve data was longer if compared with the stable system. When a new peer joins, it becomes
responsible for some inserted data, then such data must be transported to this peer consequently slowing
down the retrieval. The data transportation is bigger as long as more peers join the system, therefore,
retrieval was even slower at higher rates of volatility.

51024 peers correspond to 8 peers per node in the clusters.
6A peer that left the system, but with its address still valid in any routing table.
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Figure 5.2 – Insert/Retrieve in a stable system

In a shrinking and full volatile system, OpenChord was able to retrieve data and get apass verdict.
However, the time to retrieve data increases dramatically if compared with the expanding system. In
OpenChord, oncep notices that its successor has failed,p replaces its successor entry with the first live
entry in the routing table. In high rates of departure, this replacement may be frequent, thus slowing
down the retrieval.

5.5 Testing FreePastry

Like in the OpenChord section, we briefly describe the routing table and the DHT of the Pastry’s
algorithm. Then, we describe the result of the tests.

The Pastry routing table algorithm differs from Chord’s mainly in its approach to achieve network
locality. In Pastry, the ID of a peer is based on its local address. This means a peer is close to its successor
geographically. To achieve this, a peer fills its routing table with the IDs of peers who shares the same
prefix. Another difference is the update of the routing table. The Pastry algorithm uses a lazy approach
to update its routing table. It means the routing table is updated only when a peer communicates with its
successors (these are called neighbors in Pastry).

The Pastry DHT, called Past [43], is similar to Chord’s DHT. Akey is stored at the peer numerically
closest to the key ID. Like Chord, the key ID is produced by hashing the key.

5.5.1 Recovery from peer isolation

Similar to the OpenChord test, we created a system of 64 peersto avoid the acknowledgment of the
entire system. As mentioned, FreePastry uses a lazy approach to update the routing table. Then, we called
aping method to force the update of the routing table. We executed this test twice increasing the amount
of calls to theping method at each time. In the first time, we called the method just once and FreePastry
got aninconclusive verdict. Such verdict was assigned since we could not affirm that the routing table
was not updated due to the laziness or to a bug. In the second time, we called the method twice, then
FreePastry got apass verdict.
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5.5.2 Expanding system

In this scenario, we used the same testing configuration of OpenChord’s (i.e., system size and volati-
lity rates). FreePastry had a similar result compared with the active process of OpenChord and also got a
pass verdict. This happened because when a new peer joins a FreePastry system, it needs to communicate
with all its neighbors inducing the update of their routing tables.

5.5.3 Shrinking system

In this scenario, we used the same testing configuration of the expanding workload in terms of system
size and volatility rates. FreePastry got apass verdict in all executions, however, the time to get such
verdict increased dramatically compared with the expanding system due to laziness. Differently from the
expanding workload, a peer does not contact any neighbor when leaving the system. Then, we had to call
theping method to force the update of the routing table, otherwiseinconclusive verdicts were assigned
frequently.

5.5.4 Insert/Retrieve in a stable system

FreePastry passed all the tests in a stable system and could retrieve data with different system sizes.
Concerning the retrieval response time, FreePastry got thesame response time in all executions in a
small-scale system. This happened because a peer knows a large portion of the system and in some cases
it retrieves data directly (e.g., from a neighbor).

In a large-scale system, FreePastry also gotpass verdicts, however, the time to get this verdict in-
creased motivated by the response time delay.

5.5.5 Insert/Retrieve in a volatile system

In this subsection, we describe the test results upon three different workloads : expanding, shrinking
and full volatility. We executed each test 5 times to each workload. This represented different volatility
rates starting from 10% to 50%.

In an expanding system, FreePastry retrieved data faster than in a stable system. A possible reason
can be the neighbor locality. In FreePastry, the neighbors are geographically closer by IP address, which
means the lookup may be faster, especially with the configured system size. Whenever a new peerp
joins the system it needs to find and contact a neighbor. Then,Pastry updates the neighbor list of all
the impacted peers. This update floods a large portion of the system and assists the retrievals. Moreover,
FreePastry gotpass verdicts in all executions.

In a shrinking system, FreePastry retrieved data slower than any other workload. A possible reason
can be the update of the routing table. As mentioned, FreePastry updates its routing table whenever a
peerp needs to contact its neighbor. In the case of a retrieval,p contacts its neighbors immediately, and
theirs neighbors do the same until reaching the peer which stores the data. This update may flood a large
portion of the system and may assist other retrievals. However, this is slower than the expanding one also
due to the laziness. The update of the neighbor list only happens when a peer tries to contact a neighbor,
for instance, during a retrieval. FreePastry gotpass verdicts in all executions.

In a full volatile system, FreePastry could benefit from constant joins and leaves to update its routing
table constantly, therefore, improving retrieval. Furthermore, FreePastry also passes this test case with
any rate of volatility.
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5.6 Comparing the P2P systems

Testing two P2P systems through the same test cases allows usthe comparison of the test results
and also of their approach to implement a DHT and a routing mechanism. However, we consider this
comparison a side effect of our contribution. In this section, we discuss advantages and drawbacks of
each approach based on the response time to execute the testsand get a verdict.

In the context of the routing table tests, OpenChord showed better results than FreePastry to update its
routing table in terms of time to get a verdict. For instance,in the recovery from peer isolation FreePastry
needed 29.9 seconds to get apass verdict while OpenChord needed only 4 seconds. In fact, OpenChord
showed a faster routing table updating process than FreePastry due to its stabilization. Such stabilization
can detect the departure of a peer quickly and may be a better approach compared with the lazy approach
of FreePastry. This can be seen in the other results as well. Figure 5.3 shows the minimum time for a peer
to update its routing table and get apass verdict in an expanding system. Figure 5.4 shows this minimun
time in a shrinking system. In a shrinking system, FreePastry’s laziness showed more evident and the
time to finish any test increased dramatically.
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Figure 5.3 – Routing table update (expanding)

In the context of the DHT tests, Figure 5.5 shows that data retrieval in FreePastry is faster than
in OpenChord for all system sizes. The retrieval time in FreePastry remains stable for any size ofP1.
However, we did not test in larger systems due to the scalability limit of OpenChord.

In an expanding system limited to 64 peers, FreePastry and OpenChord were able to retrieve data and
get apass verdict. Figure 5.6 shows that, with a joining rate of 30%, both DHTs need the same time to
retrieve the data. However, FreePastry is faster than OpenChord in higher rates. As mentioned, a possible
reason can be the successors locality. In FreePastry, they are geographically closer by IP address, which
means the lookup may be faster, especially with the configured system size.

In a shrinking and full volatile system limited to 64 peers, Figure 5.7 shows that FreePastry was faster



88 CHAPITRE 5 — Experimental Validation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  200  400  600  800  1000

tim
e 

to
 u

pd
at

e 
(s

ec
on

ds
)

network size (peers)

OpenChord
FreePastry

Figure 5.4 – Routing table update (shrinking)

than OpenChord in all rates. Due to retrieval, FreePastry peers are forced to update their routing tables.
Therefore, the retrieval response time was better than in OpenChord. In OpenChord, the high rates of
departure may reorganize the peers in multiples DHT (i.e., Chord ring), as argued in Section 5.4.4, thus
slowing down data retrieval.

5.7 Code coverage

In this section, we present the code coverage of the test cases. We coupled code coverage with the
experiments to measure the confidence of the test cases. Furthermore, we can measure whether using our
incremental methodology increases coverage.

We focus the coverage analysis only on FreePasty since otherDHTs, such as Chord [92] or CAN [86],
have similar behavior for data storage and message routing.Therefore, a similar impact on code coverage
of the size of the system and the number of data should be expected. Moreover, FreePastry has the most
dynamic community among the DHTs with new packages releasesavailable quite often.

To analyze the impact of volatility and scalability on the different test cases presented before, we
conducted several experiments, using the insert/retrievetest case presented above, with different para-
meters. In these experiments, we use two Java code analysis tools for code coverage and code metrics,
Emma7 and Metrics8, respectively.

According to these tools, FreePastry has 80,897 bytecode instructions and contains 130 packages.
About 56 packages are directly concerned by the DHT implementation. The remaining packages deal
with behaviors that are not relevant here : tutorials, NAT routing, unit testing, etc. In the code coverage

7http ://emma.sourceforge.net
8http ://metrics.sourceforge.net
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Figure 5.5 – Insert/Retrieve (stable system)

analysis presented in this section, we focus on 4 main packages and their sub-packages, which are sum-
marized in Table 5.1. In all results presented here, the codecoverage rate corresponds to a merge of the
code covered by all peers.

Name Qualified Name Sub-packages Instructions Description

Past rice.p2p.past 3 4,606 DHT service

Transport org.mpisws.p2p.transport 16 19,582
Transport protocol
(sockets/messages)

Pastry rice.pastry 14 26,795
Routing network
(nodes, join, routing)

Replication rice.p2p.replication 4 2,429 Object replication

Table 5.1 – Main packages summary

For the first two experiments, we analyze the impact on the code coverage of two parameters, the size
of the input data and the number of peers. As Figure 5.8 shows,the Past package is the most impacted by
the growth of the cardinality of the input data, while the impact on the other packages is less significant.
The reason for this is that the choice of the peer responsiblefor storing a given data depends on the data
key. Thus, when a peer stores a large number of data, it must discover the responsible peers, i.e., using the
lookup() operation. This operation behaves differently when communicating with known and unknown
peers.

Figure 5.9 shows that the code coverage of the four packages grows when the system scales up. The
explanation for this is that in small systems (e.g., 16 peers), peers know each other, and messages are
not routed. When the system expands up to 128 peers, each peeronly knows part of the system, making
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Figure 5.6 – Insert/Retrieve (expanding system)

communication more complex. However, there is a limit on thecoverage gains, while scaling up from
128 peers to 256 peers.

In the other experiments, we analyze the impact of volatility on the code coverage, using the same
test cases presented in Section 5.3.2. We compare these results with the coverage of the 14 original unit
tests provided with FreePastry (noted OT), which are executed locally. Figure 5.10 presents a synopsis
of the different code coverage results. As expected, our test cases cover more code than the original unit
tests, especially on packages that implement the communication protocol.

At first glance, volatility seems to have a minor impact on code coverage, since the stable test case
with 256 peers yields better results than some other test cases (e.g., shrinking 128). In fact, the impact
is significant because the different test cases exercise different parts of the code and are complementary.
This complementarity is noticeable for the Pastry and the Past packages, where the accumulated results
are better than any other result. The total accumulated coverage (Accum.+OT) shows that our tests cases
and the original unit tests are also complementary.

5.8 Conclusion

Let us summarize the experimental results.
We can notice by the results that testing a P2P system is not only a matter of correctness. Peers

exchange messages asynchronously and may not answer a complete result set to a query due to timeout
limitations or even volatility. Therefore, testing any P2Psystem is also a matter of time.

In the tests to update the routing table, FreePastry and OpenChord were able to update their routing
table in all scenarios, therefore, gettingpass verdicts. The results also show that OpenChord was faster
than FreePastry to update the routing table. This is becauseOpenChord updates it through an active
process while FreePastry updates it only when a peer communicates with its successors.
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Figure 5.7 – Insert/Retrieve (shrinking system)

In the tests of the insert/retrieve operations, FreePastrywas able to retrieve data upon different work-
loads and getpass verdicts. However, OpenChord was not able to retrieve data in a system with more
than 64 peers. In this size, OpenChord gets frequentlyfail verdicts. A possible reason is the organization
of OpenChord peers in multiple DHTs. The peers from one DHT are not able to retrieve data from the
other.

In a system limited to 64 peers, the results show that FreePastry was faster than OpenChord to retrieve
data upon different workloads. A possible reason is the organization of peers in the system. FreePastry
organizes the peers by IP address which speeds up the lookup for data, especially with the configured
system size. OpenChord organizes the peers logically by ID.This means that two peers running in the
same machine may not be successors.

As expected, volatility increases code coverage. However,such increase has a limit due to some spe-
cific portions of the code (e.g., exceptions) that can be covered only by specific test cases. For instance,
a test case that covers the exception threw by a look-up performed with the address of a bogus peer. This
situation only happens when a peer address resides in the routing table after its volatility.

Other DHTs, such as Chord [92] or CAN [86], have similar behavior to FreePastry for data storage
and message routing. Therefore, a similar impact on code coverage of the size of the system and the
number of data should be expected.

In spite of the test cases simplicity, the ratio of code covered by all test cases is rather important, as
showed in Figure 5.10. While the impact of volatility, the number of peers and the amount of input data
on the code coverage are noticeable, the only variation of these parameters is not sufficient to improve
code coverage on some packages, for instance, the transportpackage. A possible solution to improve
the coverage of these packages is to alter some execution parameters from the FreePastry configuration
file. Most of the parameters deal with communication timeouts and thread delays. Yet, the number of
parameters (≈ 186) may lead to an unmanageable number of test cases.
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The experiments also revealed a bug on both systems, which was indirectly found along testing.
Indeed, the bootstrap peer, i.e., the peer that is used by newpeers to join the system, acting like a
Broker[21, 41], were unable to treat a certain number of simultaneous requests (more than approximately
30). This bug was particularly annoying when setting up tests for large systems. Hopefully, the developers
were able to correct the bug and release a new version of theirsoftware.





CHAPTER6
Conclusion

In this chapter we present the general conclusions of this thesis. First, we revisit the major issues for
testing P2P systems. Second, we summarize the related work.Then, we summarize our main contribu-
tions. Finally, we discuss future directions of research intesting of P2P systems.

6.1 Issues on testing P2P systems

In the context of distributed systems, peer-to-peer (P2P) appears as a powerful paradigm to develop
scalable distributed systems. No central server manages the distributed nodes. Thus, there is neither a
single point of failure nor a performance bottleneck in the system.

In a P2P system, a peer plays the role of an active node with theability to join or leave the network
at any time, either normally (e.g., disconnection) or abnormally (e.g., failure). This ability, which we call
volatility, is a major difference with distributed systems. Furthermore, volatility yields the possibility of
dynamically modifying the network size and topology, whichmakes P2P testing quite different.

In summary, a P2P testing framework should provide the possibility to control three aspects :
• functionality captured by the test sequence which enables agiven behavior to be exercised,
• scalability captured by the number of peers in the system,
• volatility captured by the number of peers which leave or join the system after its initialization

during the test sequence.

These aspects exposed the need for a precise methodology forP2P testing, where the simplicity of
interfaces contrasts with the complexity of the factors that can affect the test : volatility, number of peers,
data size, amount of data, number of concurrent requests, etc. Thus, the difficulty of testing is not only in
choosing the relevant input data, but also in choosing the factors that should vary, their values and their
association.

6.2 Survey of testing distributed systems

We surveyed the testing architectures comparing their perspectives from the context of distributed
testing. Then, we discussed why they are not suited to test P2P systems. We showed that they fail when
dealing with the volatility, either interrupting the testing sequence and deadlocking the tester or assigning
false-negative verdicts to test cases (i.e., false fail verdict).

Some approaches for P2P testing propose to randomly stop theexecution of peers [13, 69], or to
insert faults in the network [55, 76]. While these approaches are useful to observe the behavior of the
whole system, they are not totally adapted for testing a P2P system. Since they focus on tolerance to
network perturbations, they fail in detecting software faults, specially those which occur due to peers’
volatility. For instance, if one wants to test if a peer is able to rebuild its routing table when all peers it
knows leave the system, then one needs to specify precisely the peers to drop since the random volatility
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is not precise enough. Increasing significantly the rate of volatile peers is not desirable either since the
high number of messages necessary to rebuild the routing tables from the remaining peers may interfere
with the test.

Then, we showed that most of them do not scale up due to centralized test coordination. In fact, the
ones that scale up demand to include additional code into theSUT source code. While this approach
supports the volatility control, it is error prone.

A P2P system must also scale up to large numbers of peers. It means the testing architecture must
scale up either. Indeed, a typical P2P system may have a high number of peers which makes the cen-
tralized testing architecture (i.e., central coordinatormanaging distributed testers) not scalable [44, 64,
33, 71]. It is also possible to use distributed testers wheretest cases are coordinated through messages
exchanged at points of communication (PC) [101, 98]. Even with such PCs, the testing architecture
perturbs the performance of P2P systems. Indeed, the algorithmic performance with such testing archi-
tecture scales up linearly with the number of peers, while a typical P2P system scales up logarithmically.
To avoid testers intrusiveness to threaten the validity of test results, the testing architecture should thus
have logarithmic performance in the worse case.

6.3 Contributions

In this thesis, we presented an integrated solution for the creation and deployment of a P2P test envi-
ronment with the ability to create peers and make them join and leave the system. Then, the test objectives
can combine the functional testing of the system with the volatility variations (and also scalability). The
correctness of the system can thus be checked based on these three dimensions, i.e. functions, number of
peers and peers volatility.

6.3.1 Incremental methodology

In this thesis, we recommend to fully control volatility in the definition of the test sequence. A peer
thus, from a testing point of view, can have to leave or join the system at a given time in a test sequence.
This action is specified in the test sequence in a deterministic way.

Since it has the objective to deal with a large number of peers, the second dimension of P2P sys-
tem testing is scalability. Then, because it is accomplishing a treatment, the scalability and volatility
dimensions have to be tested with the behavioral and functional correctness.

To take into account the three dimensional aspects of P2P systems, we presented a methodology that
combines the functional testing of an application with the variations of the other two aspects [33]. Indeed,
we incrementally scale up the SUT either simulating or not volatility.

Our incremental methodology is composed by the following steps :

1. small scale application testing without volatility ;

2. small scale application testing with volatility ;

3. large scale application testing without volatility ;

4. large scale application testing with volatility.

In terms of diagnosis, this methodology allows to determinethe nature of the detected erroneous
behavior. Indeed, the problem can be linked to a purely functional cause (Step 1), a volatility issue
(Step 2), a scalability issue (Step 3) or a combination of these three aspects (Step 4). The most complex
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errors are the last ones since their analysis is related to a combination of the three aspects. Steps 2 and
4 could also be preceded by two other steps (shrinkage and expansion), to help the diagnosis of errors
due to either the unavailability of resources or arrival of new ones. Yet, several rates of volatility can be
explored to verify how they affect the functionality aspectof the SUT (e.g., 10% joining, 20% leaving).

6.3.2 Testing architectures

We also presented three different architectures to coordinate the test sequence. These architectures
are based on two original aspects : (i) the individual control of peers’ volatility and (ii) a distributed
testing architecture to cope with large numbers of peers. The capabilities of these architectures are (1) to
automate the execution of each local-to-a-peer test case, (2) to build automatically the global verdict, (3)
to allow the explicit control of each peer volatility.

The first architecture extends the classical centralized testing architecture (i.e., central coordinator
managing distributed testers) with volatility control to demonstrate that such volatility is a key-parameter
when testing a P2P system [34]. Basically, this architecture has two main components : the tester and
the coordinator. The tester is composed of the test suites that are deployed on several logical nodes. The
coordinator is deployed in only one node and is used to synchronize the execution of test cases. It acts as
abroker [21] for the deployed testers.

However, the performance of such centralized architectureis linear while testing with large num-
bers of peers requires logarithmic. Therefore, we presented two fully distributed architectures to cope
with large-scale P2P systems [36]. The second architectureorganizes the testers in a B-Tree [17] man-
ner where the synchronization is performed from the root to the leaves. Then, the testers communicate
with each other across the B-tree to avoid using a centralized coordination. The third architecture uses
gossiping messages among testers reducing communicationsamong the testers responsible to execute
consecutive test case actions. Since both distributed architectures do not rely on a central coordinator
they scale up correctly.

The distributed architectures are composed of a distributed component, the tester. The tester is the
application that executes in the same logical node as peers,and controls their execution and their vo-
latility, making them leave and join the system at any time, according to the needs of a test. Thus, the
volatility of peers can be controlled at a very precise level. These architectures do not address the issue of
test cases generation but is a first element towards an automated P2P testing process. It can be considered
analogous to the JUnit1 testing framework for Java unit tests.

6.4 Validation

We used our framework to test two open-source DHTs, FreePastry and OpenChord. We conducted
several experiments, testing the behavior of both DHTs on different conditions of volatility in order to
validate the usability and efficiency of our testing framework. Furthermore, it was able to detect imple-
mentation problems. The experiments showed that both systems correctly updated their routing table and
that only FreePastry has a reliable implementation of the two main DHT operations (insert/retrieve). As
for OpenChord, it did not pass the tests of these same operations, when the size of the P2P system was
greater than 64 peers.

We coupled the experiments with an analysis of code coverage, showing that the alteration of the
three dimensional aspects improves code coverage, thus improving the confidence on test cases. During

1http ://junit.org/
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the experiments, we focused on volatility testing and did not test these systems on more extreme situa-
tions such as performing massive inserts and retrieves or using very large data. Testing different aspects
(concurrence, data transfer, etc.) would increase significantly the confidence on both SUT. However,
these tests were out of the scope of this thesis. They could beperformed through the interface of a single
peer and would not need the framework presented in this thesis.

We also showed that testing a P2P system is not only a matter ofcorrectness. Peers exchange mes-
sages asynchronously and may not answer a complete result set to a query due to timeout limitations or
even volatility. Therefore, testing any P2P system is also amatter of time.

The experiments also revealed a bug on both systems, which was indirectly found along testing.
Indeed, the bootstrap peer, i.e., the peer that is used by newpeers to join the system, acting like a
Broker[21, 41], were unable to treat a certain number of simultaneous requests (more than approximately
30). This bug was particularly annoying when setting up tests for large systems. Hopefully, the developers
were able to correct the bug and release a new version of theirsoftware.

6.5 Future work

The next challenging issue is to propose a solution to selectscenarios that guarantees the functional
coverage of the P2P functions in combination with the "coverage" of volatility/scalability. Such a mul-
tidimensional coverage notion should be defined properly asan extension of existing classical coverage
criteria.

We also intend to test these P2P systems on more extreme situations such as performing massive
inserts and retrieves or using very large data. Testing different aspects (concurrency, data transfer, etc.)
would increase significantly the confidence on these systems. Furthermore, these different aspects can be
useful for stress testing.

The purpose of stress testing is to verify how a system behaves under extreme but valid conditions :
high number of simultaneous users, low memory, etc. In P2P Systems, this also concerns volatility. Thus,
testing a P2P system under extreme situations upon volatility sounds fruitful as we indirectly found bugs
along bootstrapping large amount of peers.

In another context, P2P systems generate large amount of logs along execution. Thus, an interesting
path to pursuit can be log file analysis. As discussed in section 2.4.2, we can benefit from this to build a
powerful oracle complementary to the assertion approach that we chose. Furthermore, we can load log
files into databases to take advantage of its capabilities tobuild complex analysis reports (e.g., anomaly
reports) and manage large amount of data.

In this context, tracing also can be an useful approach [32, 97]. Fault scenarios in the trace are
identified that guide the developer to the origin of a system failure. These scenarios can be used either
along system testing or model-checking in order to visualize fulfillment or violations of the requirements.

Finally, we also intend testing other DHT implementations such as Bamboo2 or JDHT3.

2http ://bamboo-dht.org/
3http ://dks.sics.se/jdht/
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Framework install

We call our framework as PeerUnit and make it freely available on internet for download1. In this
section, we describe some requirements and instructions toinstall PeerUnit.

A.1 Requirements

We compile and run Peerunit on different platforms with JavaJDK1.5 :
• FreeBSD
• MacOSX
• Linux

In addition, it is necessary to use some external packages, such as :
• “Apache Ant” is a Java-based build tool similar to “make” on Unix, but it is platform independent.

Peerunit is compiled and its jar package is built through a handy script in “Ant”.
http://ant.apache.org/

• “Jsh” is a java shell or a java launcher. That is, a program with a prompt that allows you to type
sequence of commands. Our interest on Jsh is to reach the SSH connectivity tool from a java API.
http://downloads.sourceforge.net/jsch/jsch-0.1.32.jar

• Deployment package. We developed a deployment tool based on“Jsh” to allow a distributed exe-
cution of our testing campaign :
http://www.sciences.univ-nantes.fr/lina/gdd/
members/sunye/deploy.jar

A.2 Install

You can get peerunit in two ways (unix-like command).

1. - Get the jar package like this :

$ wget -P /your_path http://www.sciences.univ-nantes.fr/lina/gdd
/members/almeida/peerunit.jar
$ export CLASSPATH=\$CLASSPATH:/your_path/peerunit.jar:.

2. - Compile the source code using our ant file (build.xml). The ant file will create the file peerunit.jar.

$ ant build

The peerunit.jar will be generated in the "dist/" folder.

1Peerunit project, http ://peerunit.gforge.inria.fr
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Executing test cases

In this section, we describe instructions to execute a test case on PeerUnit.
This test case verifies if some data was put in a freepastry DHT.

Figure B.1 – Insert test

B.1 The test case summary

On a system of "n" peers, where a peer inserts "k" values, are all peers able to retrieve all the inserted
values ?

Name : DHT Test.

Objective : Test the insert/retrieve operations.

Parameters : P : the set of peers that form the SUT ;Pinit : the initial set of peers ;Pin : the set of peers
that join the system during the execution ;Pout : the set of peers that leave the system during the
execution ;Data the input data, corresponding to set of pairs (key, value).

Actions : (i) System creation ; (ii) Insertion ofData ; (iii) Volatility simulation ; (iv) Data retrieval and
verdict assignment.

The test sequence is as follows. In the first action, a system is created and joined by all peers inPinit.
In the second action, a peerp ∈ Pinit insertsn pairs. In the third action, the volatility is simulated : peers
from Pin join the system and/or peers fromPout leave the system. In the fourth action, each remaining
peer (p ∈ Pinit + Pin − Pout) tries to retrieve all the inserted data, waiting forι seconds. When the
data retrieval is finished, the retrieved data is compared tothe previously inserted data and a verdict is
assigned.

B.2 How to execute it (unix-like)

This example uses the centralized architecture.
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1. - Download and set the CLASSPATH for Peerunit (described in the install appendix A).

2. - Download Freepastry and set the CLASSPATH. It requires three packages to run :
• FreePastry-2.0_02.jar
• xpp3-1.1.3.4d_b2.jar
• xmlpull_1_1_3_4c.jar

3. - Configure the tester.properties that should be in the "config/" folder. This folder must be created
in the same folder where you put the peerunit.jar file. Here isan example of the tester.properties
file.

To execute this test you just have to change the following properties :
• tester.server=<IP where the coordinator will execute>
• tester.logfile=<path and the name for the peerunit logfile>
• tester.logfolder=<path to store the logfiles of the peers>
• tester.peers=<number of peer that execute the test>

4. - Start the peerunit coordinator :

$ java fr.inria.peerunit.rmi.coord.CoordinatorImpl &

5. - Starting the bootstrap peer :

$ java freepastry.Bootstrap &

6. - Run the test(each peer will run in a single JVM) :

$ java freepastry.test.SimpleTest &%$

For instance, if you want to execute with 4 peers(set in tester.peers property), you can use this
simple script :

#!/bin/bash
for ((i=0;i<=3;i+=1));
do

java freepastry.test.SimpleTest &
done

Obs. Sometimes Freepastry doesn’t bootstrap the peers and the verdict is "inconclusive", so you need to
give another try.

B.3 The test case source code

package freepastry . test ;

import static fr . inria . peerunit . test . assertion . Assert . inconclusive ;

import java . io . IOException;
import java . net . InetAddress ;
import java . net . InetSocketAddress ;
import java . net .UnknownHostException;
import java .rmi.RemoteException;
import java . util . ArrayList ;
import java . util . List ;
import java . util . logging .Logger;
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import rice .environment.Environment;
import rice .p2p.commonapi.Id;
import rice .p2p.past . PastContent ;
import rice .p2p.past .PastContentHandle;
import rice . tutorial . past .MyPastContent;
import util . FreeLocalPort ;
import fr . inria . peerunit .TestCaseImpl;
import fr . inria . peerunit . parser . AfterClass ;
import fr . inria . peerunit . parser .BeforeClass ;
import fr . inria . peerunit . parser . Test ;
import fr . inria . peerunit . test . assertion . Assert ;
import fr . inria . peerunit . util . TesterUtil ;
import freepastry .Peer;
import freepastry . test . old . TestInsertLeaveB ;

public class SimpleTestextendsTestCaseImpl{
// logger from jdk
private static Logger log = Logger.getLogger(TestInsertLeaveB .class.getName());
private static SimpleTest test ;
// Freepastry peer
Peer peer =new Peer ();

/∗∗
∗ This method starts the test
∗/

@BeforeClass(place=−1,timeout=100)
public void begin (){

log . info ("Starting the test ");
}

/∗∗
∗ This method starts the bootstrap peer
∗/

@Test(place=0,timeout=1000, name ="tc1", step = 1)
public void startingNetwork (){

try {

log . info ("I am "+test.getPeerName());
// Loads pastry settings
Environment env =newEnvironment();

// the port to use locally
FreeLocalPort port=new FreeLocalPort ();
int bindport = port . getPort ();
log . info ("LocalPort:"+bindport);

// build the bootaddress from the command line args
InetAddress bootaddr = InetAddress .getByName(TesterUtil. getBootstrap ());
Integer bootport =new Integer ( TesterUtil . getBootstrapPort ());
InetSocketAddress bootaddress ;

bootaddress =new InetSocketAddress(bootaddr , bootport . intValue ());

if (! peer . join ( bindport , bootaddress , env, log )){
inconclusive ("I couldn’t become a boostrapper, sorry");
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}

// Setting the bootstrap address
test . put (0, peer . getInetSocketAddress (bootaddr ));
log . info ("Net created");

while(! peer . isReady ())
Thread.sleep (1000);

} catch (IOException e) {
e. printStackTrace ();

} catch ( InterruptedException e) {
e. printStackTrace ();

} catch (Exception e) {
e. printStackTrace ();

}
}

/∗∗
∗ This method starts the rest of the peers
∗/

@Test(place=−1,timeout=1000000, name ="tc1", step = 2)
public void joinNet (){

try {
// Wait a while due to the bootstrapper performance
Thread.sleep (10000);
if ( test .getPeerName()!=0){

// Loads pastry settings
Environment env =newEnvironment();

// the port to use locally
FreeLocalPort port=newFreeLocalPort ();
int bindport = port . getPort ();
log . info ("LocalPort:"+bindport);

// Each peer waits a while to join due to the freepastry bootstrap
Thread.sleep ( test .getPeerName()∗1000);

// Getting the bootstrap address
InetSocketAddress bootaddress= ( InetSocketAddress ) test . get (0);
log . info ("Getting cached boot "+bootaddress.toString());

if (! peer . join ( bindport , bootaddress , env, log )){
inconclusive ("Couldn’t boostrap, sorry");

}
log . info ("Running on port "+peer.getPort());
log . info ("Time to bootstrap");

}
} catch (RemoteException e) {

e. printStackTrace ();
} catch ( InterruptedException e) {

e. printStackTrace ();
} catch (UnknownHostException e) {

e. printStackTrace ();
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} catch (IOException e) {
e. printStackTrace ();

} catch (Exception e) {
e. printStackTrace ();

}
}

/∗∗
∗ Stabilize the network.
∗/

@Test(place=−1,timeout=1000000, name ="tc1", step =3)
public void stabilize (){

for ( int i = 0; i < 4; i++) {
try {

// Force the routing table update
peer .pingNodes();
Thread.sleep (16000);

} catch ( InterruptedException e) {
e. printStackTrace ();

}
}

}
/∗∗
∗ Put some data and store in test variables .
∗/

@Test(place=0,timeout=1000000, name ="tc1", step = 4)
public void put (){

for ( int i=0; i < 2 ; i++){
// build the past content
final String s ="test" + peer.env.getRandomSource().nextInt ();
final PastContent myContent =newMyPastContent(peer.localFactory . buildId (s ), s );
peer . insert (myContent);

}

// Wait until all the insert ends since it is asynchronous
while(( peer . getFailedContent (). size ()+peer . getInsertedContent (). size ())<2){

log . info ("Inserted so far : "+peer.getInsertedContent().size());
log . info ("Failed so far : "+peer.getFailedContent().size());
try {

Thread.sleep (1000);
} catch ( InterruptedException e) {

e. printStackTrace ();
}

}

List<PastContent> expecteds=newArrayList<PastContent >();
for (PastContent content : peer . getInsertedContent ()) {

log . info ("Expected so far : "+content.toString());
expecteds .add(content );

}

// Use a test variable to store the expected data
test . put (1, expecteds );

}
/∗∗
∗ Get the data and the verdict .
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∗/
@Test(place=−1,timeout=1000000, name ="tc1", step = 5)
public void get (){

// Lookup
List<PastContent> expectedContent=(List<PastContent>) test . get (1);
Id contentKey;

// Get the keys to lookup for data
for (PastContent key : expectedContent ) {

contentKey=key.getId ();
if (contentKey!=null ){

log . info ("Lookup Expected "+contentKey.toString());
peer . lookup(contentKey );

}
}

// Wait a little while for a response
try {

Thread.sleep (16000);
} catch ( InterruptedException e) {

e. printStackTrace ();
}

// A list to store the retrieved data
List<String> actuals =new ArrayList<String >();
for (Object actual : peer . getResultSet ()) {

if ( actual !=null ){
if (! actuals . contains ( actual . toString ())){

log . info ("[Local verdict] Actual "+actual.toString());
actuals .add( actual . toString ());

}
}

}

// Generating the expecteds list
List<String> expecteds=new ArrayList<String >();
for (PastContent expected : expectedContent){

expecteds .add(expected . toString ());
}

// Assigning a verdict
log . info ("[Local verdict] Waiting a Verdict. Found "+actuals.size()+" of "+expecteds.size());
Assert . assertCollectionEquals ("[Local verdict] ",expecteds, actuals);

}

/∗∗
∗ This method finishes the test
∗

∗/
@AfterClass(timeout=100,place=−1)
public void end() {

log . info ("Peer bye bye");
}

}
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Test et Validation des Systèmes Pair-à-pair

Eduardo CunhaDE ALMEIDA

Résumé

Le pair-à-pair (P2P) offre de bonnes solutions pour de nombreuses applications distribuées, comme le partage
de grandes quantités de données et/ou le support de collaboration dans les réseaux sociaux. Il apparaît donc
comme un puissant paradigme pour développer des applications distribuées évolutives, comme le montre le
nombre croissant de nouveaux projets basés sur cette technologie.
Construire des applications P2P fiables est difficile, car elles doivent être déployées sur un grand nombre de
noeuds, qui peuvent être autonomes, refuser de répondre à certaines demandes, et même quitter le système de
manière inattendue. Cette volatilité des noeuds est un comportement commun dans les systèmes P2P et peut
être interprétée comme une faute lors des tests.
Dans cette thèse, nous proposons un cadre et une méthodologie pour tester et valider des applications P2P.
Ce cadre s’appuie sur le contrôle individuel des noeuds, permettant de contrôler précisément la volatilité des
noeuds au cours de leur exécution.
Nous proposons également trois différentes approches de contrôle d’exécution de scénarios de test dans les
systèmes distribués. La première approche étend le coordonnateur centralisé classique pour gérer la volatilité
des pairs. Les deux autres approches permettent d’éviter lecoordinateur central afin de faire passer à l’échelle
l’exécution des cas de tests.
Nous avons validé le cadre et la méthodologie à travers la mise en oeuvre et l’expérimentation sur des applica-
tions P2P open-source bien connues (FreePastry et OpenChord). Les expérimentations ont permis de tester le
comportement des systèmes sur différentes conditions de volatilité, et de détecter des problèmes d’implémen-
tation complexes.

Mots-clés:testing, pair-à-pair

Testing and Validation of Peer-to-peer Systems

Abstract

Peer-to-peer (P2P) offers good solutions for many applications such as large data sharing and collaboration
in social networks. Thus, it appears as a powerful paradigm to develop scalable distributed applications, as
reflected by the increasing number of emerging projects based on this technology.
However, building trustworthy P2P applications is difficult because they must be deployed on a large number
of autonomous nodes, which may refuse to answer to some requests and even leave the system unexpectedly.
This volatility of nodes is a common behavior in P2P systems and can be interpreted as a fault during tests.
In this thesis, we propose a framework and a methodology for testing and validating P2P applications. The
framework is based on the individual control of nodes, allowing test cases to precisely control the volatility of
nodes during their execution.
We also propose three different architectures to control the execution of test cases in distributed systems. The
first approach extends the classical centralized test coordinator in order to handle the volatility of peers. The
other two approaches avoids the central coordinator in order to scale up the test cases.
We validated the framework and the methodology through implementation and experimentation on two popular
open-source P2P applications (i.e. FreePastry and OpenChord). The experimentation tests the behavior of the
system on different conditions of volatility and shows how the tests were able to detect complex implementation
problems.

Keywords: testing, peer-to-peer
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