
HAL Id: tel-00451619
https://theses.hal.science/tel-00451619v1

Submitted on 29 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimisation de maillages
Jane Tournois

To cite this version:
Jane Tournois. Optimisation de maillages. Modeling and Simulation. Université Nice Sophia Antipo-
lis, 2009. English. �NNT : �. �tel-00451619�

https://theses.hal.science/tel-00451619v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

THÈSE
pour obtenir le titre de

Docteur en Sciences

de l’Université de Nice - Sophia Antipolis

Mention : Informatique

présentée et soutenue par

Jane Tournois

Optimisation de Maillages
Mesh Optimization

Thèse dirigée par Pierre Alliez

soutenue le 4 novembre 2009

Jury :

Mr Pierre Alliez Chargé de Recherche, INRIA Directeur

Mme Dominique Attali Chargée de Recherche, CNRS Examinatrice

Mr Stéphane Lanteri Directeur de Recherche, INRIA Président

Mr Bruno Lévy Directeur de Recherche, INRIA Rapporteur

Mr Niloy Mitra Associate Professor, KAUST Examinateur

Mr Alain Rassineux Professeur des Universités, UTC Rapporteur

Mme Mariette Yvinec Chargée de Recherche, INRIA Invitée

Remerciements

Je tiens à remercier tout particulièrement Pierre Alliez pour avoir encadré mon travail de-
puis le Master et pendant ces années de thèse. Sa disponibilité, son expérience, ses connais-
sances scientifiques dont il a su me faire profiter, son soutien et ses conseils ont grandement
contribué au bon déroulement de ma thèse.

Je remercie toute l’équipe Geometrica pour l’accueil qui m’a été offert dès mon arrivée dans
l’équipe. L’ambiance sympathique, amicale et propice au travail, ainsi que pour la bonne
humeur quotidienne qui y règnent ont été très importantes pour moi. L’organisation des
"thés et après-thés" hebdomadaires en sont le meilleur exemple. Merci aussi à l’ensemble
des membres de Geometrica pour l’aide qu’ils ont pu m’apporter au travers des différentes
discussions que nous avons eues ensemble. Je remercie également Agnès Bessière et Caroline
French, assistantes de l’équipe, pour leur aide précieuse.

J’exprime ma gratitude envers toutes les personnes avec qui j’ai eu la chance de travailler
sur des publications : Pierre Alliez, Olivier Devillers, Camille Wormser, Mathieu Desbrun,
Pedro Machado et Rahul Srinivasan.

Je remercie également Mathieu Desbrun et toute son équipe pour leur accueil lors de ma vi-
site à Caltech, ainsi que pour leurs encouragements pendant la conférence SIGGRAPH’2009,
à laquelle nous avons participé ensemble.

Je remercie mes collègues moniteurs et enseignants de l’École Polytechnique Universitaire
de Nice Sophia Antipolis pour leur accueil, la confiance qu’ils m’ont accordée et les échanges
que nous avons eus. Merci pour tout, en particulier à Claudine Peyrat, Pierre Bernhard,
Vincent Granet et Sébastien Mosser, avec qui j’ai eu l’opportunité de collaborer pour mes
enseignements.

Je suis reconnaissante à Bruno Lévy et Alain Rassineux d’avoir accepté d’être rapporteurs
de ma thèse. Leurs rapports et les échanges que nous avons eus m’ont permis d’envisager
de nouvelles pistes de réflexion.

Je remercie tous les membres de mon jury de thèse, Pierre Alliez, Dominique Attali, Sté-
phane Lanteri, Bruno Lévy, Niloy Mitra, Alain Rassineux et Mariette Yvinec, de m’avoir
fait l’honneur d’assister à ma soutenance, pour leurs questions au cours de celle-ci, et les
discussions que nous avons eues.

Je tiens également à remercier Marie Samozino, François Grimbert, Thierry Viéville et
Mireille Bossy pour m’avoir donné la chance de représenter les doctorants, au cours de mes
trois années de thèse, au Comité de Suivi Doctoral (CSD) de l’INRIA Sophia Antipolis
Méditerranée. Cette mission, que j’ai partagé avec Christelle Molle, est importante et a été
très enrichissante pour moi.

J’adresse un amical "merci" à Pooran Memari avec qui j’ai partagé mon bureau, pour tous
les échanges tant scientifiques que culturels, linguistiques et amicaux que nous avons eus.

Mes derniers remerciements vont à ma famille et mes amis, qui croient en moi et sont
toujours là pour m’encourager. Merci à Sébastien de m’avoir supportée et aidée depuis le
début.

Contents

1 Introduction 5

1.1 Motivations . 5
1.2 Fundamentals . 7
1.3 Problem statement . 10

1.3.1 Mesh quality . 11
1.3.2 Mesh complexity . 13

1.4 State-of-the-art . 14
1.4.1 Refinement . 14
1.4.2 Optimization . 17

1.5 Contributions . 23

2 2D Triangle Mesh Generation 27

2.1 Related work . 28
2.1.1 Delaunay Refinement . 28
2.1.2 Optimization . 29

2.2 Algorithm . 30
2.2.1 Refinement . 30
2.2.2 Optimization . 33

2.3 Implementation . 38
2.4 Results . 38
2.5 Summary . 42

3 3D Tetrahedral Mesh Generation 47

3.1 Related work . 47
3.2 Algorithm . 51

3.2.1 Interleaving Refinement and Optimization 51
3.2.2 Sliver removal . 63

3.3 Implementation . 78
3.3.1 Intersection and Projection . 78
3.3.2 Filtering relocations . 81
3.3.3 Locking . 81

3.4 Results . 82
3.5 Summary . 86

4 Conclusion & Future work 87

4.1 Conclusion . 87
4.2 Future Work . 89

4.2.1 Variety of inputs . 89
4.2.2 Convergence speedup . 93
4.2.3 Optimization of a regular triangulation 96

Bibliography 99

Chapter 1

Introduction

Contents
1.1 Motivations . 5

1.2 Fundamentals . 7

1.3 Problem statement . 10

1.3.1 Mesh quality . 11

1.3.2 Mesh complexity . 13

1.4 State-of-the-art . 14

1.4.1 Refinement . 14

1.4.2 Optimization . 17

1.5 Contributions . 23

1.1 Motivations

Meshing a domain consists in defining a concise set of simple elements whose non-
overlapping union best describes the domain and its boundaries, while satisfying a
series of criteria on element shapes and sizes. These simple elements are typically
triangles or quadrilaterals in 2D, and tetrahedra, hexahedra or other polyhedra in
3D.

Meshes are a key component in many domains of application, as various as
visualization [LM98, LP01], simulation [KTY09] (for robotical surgery for ex-
ample [CDA96, DPS+06]), animation [MCP+09], architecture [PAH+07], and
CAD [Fle99]. They also are some applications such as surface reconstruc-
tion [HDD+92] where meshes are used as core data structures. See Figure 1.1 for
examples.

Most ubiquitous in computer animation and computational sciences is the need
for unstructured isotropic tetrahedral meshes. These versatile geometric repre-
sentations are used in finite element and finite volume simulations of physical
phenomena as varied as material deformation [KMOD09], heat transfer [ATP84],

6 Chapter 1. Introduction

and electromagnetic effects [PSB+07].

Figure 1.1: Applications. (a) Simulation of physical deformations. A falling cheese
mesh [KMOD09]. (b) Computational Fluid Dynamics for animation. Smoke be-
havior in a bunny-shaped domain [MCP+09]. (c) Biomedical applications. Mesh
generated from a segmented liver image representing 4 anatomical regions [BYB09].

As the accuracy and stability of such computational endeavors heavily depend on
the shape of the worst element [She02d], mesh element quality is a priority when
conceiving a mesh generation algorithm.

Automatic mesh generation is still a challenging problem, both from a theoretical
and a practical point of view. Though the literature dealing with meshing is
very rich, a lot of work remains to be done in order to reach the "perfect mesh
generator". The wide range of input types and application domains makes the
problem difficult to solve in its whole. The scientific motivation is to get an
algorithm (or several algorithms) that provably terminates, whatever type of input
is given, and that generates optimal output meshes (e.g. with the optimal number
of elements). Turning towards application fields, the challenge is to get a practical
algorithm that is fast, robust, and generates meshes of high quality with regard to
the application requirements.

Owen [Owe98] gives a survey of many fundamental unstructured mesh generation
algorithms, including triangle and quadrilateral meshing in 2D and in 3D. Frey and
George [FG07] complete this work with more recent algorithms, and theoretical

1.2. Fundamentals 7

aspects of mesh generation.

In this thesis, we focus on the problem of generating quality unstructured isotropic
meshes. Our main concern stands in generating meshes of high quality in terms
of angles (dihedral angles in 3D), such that all simplices are close to the regular
simplex, with a reasonable number of vertices.

1.2 Fundamentals

Let P = {pi}i=1..n be a set of vertices in R
d.

Voronoi diagram. The Voronoi diagram associated to P, denoted V(P), is a
simplicial decomposition of R

d into d-dimensional subspaces called Voronoi cells

and denoted V(pi) = Vi. Each Voronoi cell Vi is composed of the set of points of
R

d which are closer from pi than from any other point in P:

Vi = {p ∈ R
d : ∀j 6= i, d(x, pi) ≤ d(x, pj)}.

Vi can also be considered as the intersection of the n−1 half-spaces bounded by the
bisector planes of segments [pipj], j 6= i. Vi is therefore a convex polytope, possibly
unbounded. The points of P are called generators.

In two dimensions, Voronoi edges are the edges shared by two Voronoi cells, and
Voronoi vertices are the points shared by three Voronoi cells. In three dimensions,
Voronoi facets, edges and vertices are the geometric objects shared by one, two and
three Voronoi cells, respectively.

Delaunay triangulation. The Delaunay triangulation DT (P) of P is the geo-
metric dual of V(P). DT (P) contains the edge [pipj] if and only if the intersection
of V(pi) with V(pj) is not empty. A triangulation T of P can be described this
way. T describes a partition of the convex hull of P into d-dimensional simplices
(i.e. triangles in 2D, tetrahedra in 3D, etc).

The Delaunay triangulation can also be defined through the empty circle (resp.
empty sphere in 3D) property [Del34]. A triangle (resp. a tetrahedron) is in the
Delaunay triangulation if and only if its circumcircle (resp. circumsphere) does not
contain any other points of P in its interior (see Figure 1.2).

Using this type of triangulation is very convenient since it is canonically defined
through the locations of its vertices. We only have to care about the positions of

8 Chapter 1. Introduction

the vertices, and not about the connectivity. Moreover, the Delaunay framework is
powerful for guaranteed-quality mesh generation.

Figure 1.2: Delaunay triangulation empty sphere property. (Left) Four points and
their convex hull. (Middle) This triangulation does not meet the empty-sphere
Delaunay condition (circumcircles contain more than 3 vertices). (Right) Flipping

an edge turns it into a Delaunay triangulation for the four points.

Each simplex in the Delaunay triangulation is dual to a Voronoi simplex. In 2D, the
dual of a Delaunay triangle is the Voronoi vertex which also is the circumcenter of
the triangle. In 3D, each Delaunay tetrahedron is the dual of a Voronoi vertex which
also is the tetrahedron’s circumcenter. The dual of a Delaunay facet is a Voronoi
edge, the dual of a Delaunay edge is a Voronoi facet, and the dual of a Delaunay
vertex pi is the Voronoi cell Vi. Figure 1.3 illustrates this dual relationship in 2D.

Restricted Delaunay triangulation. The Delaunay triangulation of P forms
a triangulation of the convex hull of P. In most applications, the only tetrahedra
in which the user is interested are the ones lying inside the domain Ω, or on its
boundary ∂2Ω for surface meshes (see Figure 1.4).

Let S be a subset of R
d. In general, S is a manifold of dimension k ≤ d (in 3D,

usually a volume or a surface in R
3). The restricted Delaunay triangulation of P

to S, denoted by DT |S(P), is a sub-complex of DT (P) composed of the so-called
restricted simplices. A simplex is said to be restricted to S if its dual Voronoi
simplex intersects S. For example, in 2D, the Delaunay triangulation restricted to
a curve ∂Q is composed of the Delaunay edges whose dual Voronoi edges intersect
Q. Similarly, the Delaunay triangulation restricted to the polygonal region Q de-
fined by ∂Q is composed of the Delaunay triangles whose circumcenters are inside Q.

It can be shown that the restricted Delaunay triangulation forms a good ap-
proximation of the object. Under some assumptions, and in particular if P is

1.2. Fundamentals 9

Figure 1.3: The Voronoi diagram of a set of points (a) is dual (b) to the Delaunay
triangulation (c), which satisfies the empty sphere property (d).

a sufficiently dense sample of a domain Ω [AB99], DT |Ω(P) is a good approx-
imation of Ω. From a topological point of view, DT |Ω(P) is homeomorphic to
Ω. From a geometrical point of view, the Hausdorff distance between DT |Ω(P)

and Ω can be made arbitrarily small, and normals and curvatures can be
consistently approximated from the restricted triangulation. Thanks to these
approximation properties, some provably correct algorithms have been developed in
the last decade for mesh generation and mesh reconstruction from point sets [BO05].

From an implementation point of view, (in particular in 3D) computing all the
Boolean tests needed to select the restricted simplices and the intersection points
already is a difficult task. The predicates and point constructions need to be fast and
robust. They are responsible for robustness and efficiency of the whole refinement
process.

10 Chapter 1. Introduction

Figure 1.4: Restricted triangulations. (1) Voronoi diagram of a set of points in
the plane. (2) Dual Delaunay triangulation. (3) Delaunay triangulation restricted
to the boundary of the blue domain (depicted in red). (4) Delaunay triangulation
restricted to the blue domain (depicted with filled blue triangles). (5) Delaunay
triangulation of a set of points in R

3. (6) Delaunay triangulation restricted to
a curve (depicted with a blue line). (7) Delaunay triangulation restricted to the
boundary of two intersecting spheres. (8) Delaunay triangulation restricted to two
intersecting spheres.

1.3 Problem statement

This thesis addresses the problem of generating high quality Delaunay triangula-
tions, in two and three dimensions. Triangle mesh generation can be considered
as a succession of point insertions inside the domain to be discretized, along with
connectivity updates defining the simplices of the mesh. We choose to stay within
the Delaunay framework, which defines the connectivity in a canonical manner. In
this way, we can focus on vertex locations and number.

This discretization - or meshing - problem takes as input the definition of the
domain to be discretized. User-defined criteria are also taken as input. For example,
the user can provide a sizing function bounding the maximal size of simplices
everywhere in the domain. It can be uniform or not, and gradation can be tuned
too. Shape of simplices, topology of the output boundary and approximation
error can also be controlled through user-defined criteria. The output mesh has to

1.3. Problem statement 11

satisfy all these criteria, when they are required by the user. Vertex insertions and
relocations are used to achieve this goal.

We need to define what is a quality mesh, and here within our framework a good
Delaunay triangulation. Simplices quality and number are the main characteristics
defining a good mesh. Many criteria have been used to define a quality mesh.

1.3.1 Mesh quality

Many finite element methods require discretizing a domain into a set of tetrahe-
dra. These applications require more than just a triangulation of the domain for
simulation and rendering. The accuracy and the convergence of these methods
depend on the size and shape of the elements apart from the fact that the mesh
should conform to the domain boundary [She02d]. Both the bad quality and the
large number of the mesh elements can negatively affect the execution of a simula-
tion. It is required that all elements of the mesh are well-shaped as the accuracy
of the simulations and computations can be compromised by the presence of a sin-
gle badly shaped element. In general it is desirable to bound the smallest dihedral
angle in the mesh. Large dihedral angles can be responsible for large discretization
and interpolation errors [LS07], and compromise the accuracy of numerical simula-
tions [Jam76, Kri92, She02d, BA76]. Small dihedral angles are responsible for the ill-
conditioning of matrices associated with the finite element methods [BS89, She02d].

The Delaunay refinement technique guarantees a bound on the radius-edge ratio of
all mesh elements, which is the ratio of the circumradius to the shortest edge length
of a triangle or a tetrahedron. Although in 2D this translates into a lower bound
on the minimum angle in the mesh, in 3D it does not: A bound on the radius-edge
ratio is not equivalent to a bound on the smallest dihedral angle.

1.3.1.1 Triangle quality (2D)

In 2D, the radius-edge ratio ρ of a triangle is linked to its minimum angle θmin by
the formula ρ = 1

sin θmin
. Moreover, Delaunay refinement is providing guarantees

on the radius-edge ratios of output simplices, by satisfying the user-defined criteria
(typically a radius-edge ratio for triangle shape). When refinement terminates, an
upper-bound is available on the radius-edge ratios of simplices. This way, bounding
the triangulation angles from below becomes easy.

The radius ratio, computed as the ratio of inradius over circumradius of a triangle,
can also be used as a quality criterion. However, this criterion is not used for defining
which triangle should be refined, and no guarantee on this value is given on the
output mesh. It can be considered a post-meshing quality criterion.

12 Chapter 1. Introduction

1.3.1.2 Tetrahedron quality (3D)

Several tetrahedron quality criteria have been defined and used in the literature
depending on the application.

In Delaunay-based isotropic mesh generation, one wants to avoid the creation of bad
tetrahedra (see Figure 1.5). Among them, a sliver is a tetrahedron that has its four
vertices close to the equator of a sphere, and can have dihedral angles arbitrarily
close to 0 and to π, and is usually considered as the worse kind of tetrahedron. As we
have seen, a single bad tetrahedron in the final mesh can compromise a simulation
method convergence. Let us list some tetrahedron quality criteria.

• The radius edge ratio ρ of a simplex. This measure, which is minimal for
the regular tetrahedron, unfortunately cannot detect slivers, though it is used
in Delaunay refinement algorithms to define bad simplices.

• The radius ratio, defined as the ratio of the inradius (insphere radius) to the
circumradius (circumsphere radius), is another popular measure of tetrahedron
quality. It is desired to ensure that radius ratio of all tetrahedra are bounded
from below by a constant.

• Denote the volume of tetrahedron pqrs by V and its shortest edge length by
l. The volume per cube of shortest edge length (σ = V

l3
) is used as

a measure of the shape quality along with the radius-edge ratio ρ, or on its
own [CDE+00]. According to Li [Li00a], a tetrahedron pqrs is called sliver if
ρ(pqrs) ≤ ρ0 and σ(pqrs) ≤ σ0, where ρ0 and σ0 are constant.

• The minimum dihedral angle θmin is also used as a criterion for quality
mesh generation. In the sequel, we choose this measure to evaluate the mesh
quality as it is more intuitive and geometrically meaningful than, e.g., the
radius ratio, which combines the six dihedral angles of a tetrahedron.

It can be shown that a lower bound on the radius ratio is equivalent to a lower
bound on the minimum dihedral angle.

Consider an arbitrary tetrahedron τ with triangular faces T1, T2, T3, T4. Let the
areas of these triangles be denoted by S1, S2, S3, S4 respectively, the dihedral angle
between Ti and Tj by θij and the length of the edge shared by Ti and Tj by lij . The
volume V of τ is given by

V =
2

3lij
SiSj sin θij for i 6= j in {1, 2, 3, 4}. (1.1)

Let rC , rI be the circumradius and inradius of τ and ri be the circumradius of
Ti for i in {1, 2, 3, 4}. We know that for any tetrahedron, ri ≤ rC . This gives
Si ≤ π r2

i ≤ π r2
c , and we also have a bound on the volume V ≥ 4

3 πr3
I .

1.3. Problem statement 13

Using Equation 1.1, for i 6= j we have

4

3
πr3

I ≤
2

3lij
SiSj sin θij ≤

2

3lij
π2r4

c sin θij ,

and we get

sinθij ≥
2

π
· r

3
I

r3
c

lij
rC
≥ 2

π
· a

3
0

ρ0
,

where a0 is the radius-radius ratio and ρ0 is the radius-edge ratio. Finally,

θij ≥ sin−1

(

2

π
· a

3
0

ρ0

)

.

Figure 1.5: Tetrahedra shapes [BCER95, Epp01]. A regular tetrahedron is well
shaped and has its dihedral angles close to 70.5̊ . A sliver has its four vertices close
to a circle, four very small dihedral angles (close to 0̊), and two very large (close to
180̊). Each of the other tetrahedra presents a different type of degeneracy.

Parthasarathy et al. describe more tetrahedron quality criteria [PGH94]. They
provide some experimental results on the stability of these quality measures under
different types of vertex perturbations, and a comparison of their computational
cost.

1.3.2 Mesh complexity

It is clear that the number of simplices is important in all applications, as the
computational cost is directly linked to the number of simplices on which a value
needs to be computed.

We make the observation that filling in a domain with elements that are both
well-shaped and well-sized (i.e. as big as possible) requires fewer elements, by a
simple packing argument. Similarly, dealing with a well-spaced point set (i.e. no

14 Chapter 1. Introduction

two simplices are too close together, and the domain is covered by vertices) has nice
properties [Epp01]. For example, in 2D, the constrained Delaunay triangulation of
a well-spaced point set has a bounded aspect ratio (longest edge length divided by
shortest altitude length) [Rup93]. Mitchell shows that a bound on angles can be
turned into lower and upper bounds on the cardinality of the triangulation [Mit94].

We aim to make the most of these observations in order to obtain meshes with few
elements, both well-shaped and well-sized.

1.4 State-of-the-art

We are giving here a short survey of the mesh refinement and mesh optimization
methods known in the literature. A more extensive study will be presented, for 2D
in Chapter 2 and for 3D in Chapter 3.

1.4.1 Refinement

Pioneered by Lawson [Law77] and Watson [Wat81], Delaunay triangulation
algorithms are now of common use in the mesh generation field. The Delaunay
criterion itself only defines the connectivity of the triangulation, from a given point
set. Next to connectivity, the main problem to consider is how to insert vertices in
the triangulation to improve simplices quality, and reach some user-defined criteria.
This point insertion problem is called refinement.

Refinement algorithms have been extensively studied in the literature. They
are amenable to analysis, and hence are reliable algorithms. In addition, the
robust implementations of Delaunay triangulations which are now available greatly
facilitate the implementation of Delaunay-based mesh refinement algorithms.

Using a simple probing device, refinement can also be considered as a good technique
for learning smooth objects by probing, as done by Boissonnat et al. [BGO05]. In
2D as in 3D, the output mesh is shown to be a good approximation of the smooth
object under some conditions. Moreover, Shewchuk showed that the output mesh
can conform to some input geometric constraints [She02a] by a bounded number of
vertex insertions.

Delaunay refinement Delaunay refinement algorithms, first introduced in
2D by Chew [Che89b], Ruppert [Rup93, Rup95], and Shewchuk [SMD97] have
been extensively studied in the last decades. Chew [Che97], Li and Teng [LT01],
Rineau and Yvinec [RY07] propose Delaunay refinement algorithms. They provide

1.4. State-of-the-art 15

guarantees on the output meshes, satisfying some user-defined criteria.

These greedy algorithms are know to terminate when there is no acute dihedral
angles in the input. For example, Rineau and Yvinec [RY07] provide a proof
of termination of their Delaunay tetrahedral mesh generation algorithm. The
main idea is to prove that when a new element is created, its size is bounded
from below. By a packing argument, the number of inserted vertices is bounded too.

To iteratively improve the quality of the current mesh and reach the user-defined
criteria, these greedy Delaunay refinement algorithms insert vertices inside the
domain and on the boundary of the domain to be meshed. Usually, the inserted
points are bad edge midpoints, and bad facet and tetrahedron circumcenters. Some
variants have been developed to obtain output meshes of higher quality.

Algorithm 1 Classical Delaunay refinement

Input: A domain Ω ⊂ R
3.

Insert 3 points on each surface patch to initialize refinement.
while There is a bad edge e restricted to ∂1Ω, do

refine(e).
while There is a bad facet f restricted to ∂2Ω, do

refine(f).
while There is a bad cell c restricted to Ω, do

refine(c).
Output: The final triangle mesh.

Algorithm 1 gives an overview of a classical greedy Delaunay refinement algorithm,
in 3D. Each refine(.) operation consists in computing the point to be inserted,
and insert it into the triangulation. Refinement of facets and cells are conditioned
by encroachment. First defined in 2D [Rup95] and extended to 3D [She98],
encroachment handling is necessary for the output mesh to conform the input
boundary. To describe the refinement process of each type of boundary simplex,
we need to define the surface Delaunay ball.

Definition 1.4.1. The surface Delaunay ball of a facet f (resp. an edge) restricted

to a subset Ω ∈ R
3 is the ball circumscribing f and centered at the intersection point

of f ’s dual Voronoi object with Ω.

Let pc be a candidate point to insertion. For an edge e restricted to ∂1Ω, refine(e)

computes pc as e’s midpoint (or surface Delaunay ball on the boundary), and
inserts it. For a facet f restricted to ∂2Ω, refine(f) computes pc as the intersection
point between f ’s dual Voronoi edge and ∂2Ω. If this point is in the surface
Delaunay ball B of an edge restricted to ∂1Ω, pc is discarded and B’s center

16 Chapter 1. Introduction

is inserted. Similarly, for a cell c restricted to Ω, refine(c) computes pc as
c’s circumcenter. If this point is in the surface Delaunay ball B′ of a facet re-
stricted to ∂2Ω, then pc is set to be B′’s center, and this facet is refined, as previously.

However, most Delaunay refinement algorithms fail at removing all badly-shaped
tetrahedra, and a special class of almost-flat tetrahedra (so-called slivers) may
remain in the triangulation. The slivers, with dihedral angles close to 0 and to π,
are problematic for many numerical simulations.

Some variants of the standard Delaunay refinement algorithm have been developed.
Some of them are based on the same algorithm, but define other Steiner points for
every type of simplex. For example, Üngör defines the off-centers as locally optimal
Steiner points [Üng04], to get output meshes of higher quality (see Section 2.1.1 for
more details). Chernikov and Chrisochoides improve this idea [CC06] by defining
a complete area, called selection disk, where the Steiner point can be chosen. For
a bad simplex, inserting as Steiner point a point chosen in this area will for sure
improve the quality of the mesh.

Weighted Delaunay refinement Initially based on Cheng et al.’s [CDRR04]
idea of "protecting" the sharp angle edges from over-refinement, one of the greedy
Delaunay refinement variants is based upon the idea of using a regular triangulation,
i.e. a weighted Delaunay triangulation [CDR07, CDL07]. This approach makes
possible to handle sharp input edges, with a proof of termination.

In presence of edges supporting dihedral angles smaller than 90̊ , weights are
inserted on Steiner points of the input sharp edges, to "protect” sharp edges from
being responsible for the infinite looping of classical greedy Delaunay refinement
algorithms. The basic algorithm consists in first, protecting the sharp edges with
weighted vertices, and then run a classical Delaunay refinement algorithm while
replacing circumcenters by orthocenters.

Using weighted Delaunay triangulations is difficult. Indeed, one has to deal with hid-
den points that can appear and disappear depending on their neighbourhood. This
becomes even more difficult when optimization comes into play. In Section 4.2.3,
we will present some ideas for optimizing vertex locations along with their weights.

Grid-based mesh generation Grid-based mesh generation has also been the
subject of numerous studies. Octree algorithms were introduced by Yerry and Shep-
ard [YS84], followed by Baker et al. [BGR88], Bern et al. [BEG90], Mitchell and
Vavasis [MV96], Fuchs [Fuc98] and Naylor [Nay99]. Naylor developed the idea of
body centered cubic (BCC) lattice. Since then, the BCC lattice and octrees have

1.4. State-of-the-art 17

been used in grid-based tetrahedron mesh generation to improve the quality of out-
put tetrahedra.

The more recent provably good algorithm was proposed by Labelle and
Shewchuk [LS07] to mesh domains bounded by smooth boundaries, while
providing theoretical bounds on their output minimal and maximal dihedral angles.

The methods generating meshes based on a regular grid have several drawbacks.
First, they can only handle smooth surfaces. Second, the grading of elements sizes
inside the mesh is not good enough for many simulation purposes. Finally, since
three directions (corresponding to the initial grid axes) are clearly favored, the gener-
ated meshes can not be considered as isotropic. In simulation, the use of structured
grids can lead to undesired severe stair-casing or aliasing effects [WBOL07].

Unstructured grids conforming to input structures (anatomical data, mechanical
parts, etc) are very suitable to finite element simulations [PSB+07, SCL+06].

Other types Some other types of triangulations, with non-Delaunay con-
nectivity, have also been developed. Among them, the max-min solid angle
triangulation [Joe91] is computed from a Delaunay triangulation by modifying its
connectivity. When the points are fixed, the solid angles are as good as they can
be. However, there is no direct link between a solid angle value and the quality of
the corresponding tetrahedron dihedral angles values.

According to Frey and George [FG07] a mesh is said to be optimal when each edge
in the mesh is of length 1 (according to the given metric), and each simplex volume

is
√

d+1

d!
√

2d
. This optimality criterion has to be balanced with a minimal number of

vertices inside the mesh.

1.4.2 Optimization

To improve the quality of a mesh, one can decide to insert vertices (see Sec-
tion 1.4.1). However, when the required point density is already met, inserting
more points would lead to over-refining the mesh. Another approach consists in
modifying the vertex characteristics to improve, at each vertex locally, the quality
of the mesh. This can be done by moving vertices, or keeping vertices locations
and changing the connectivity.

18 Chapter 1. Introduction

1.4.2.1 Vertex relocation

First, some methods, often called mesh smoothing algorithms, perform vertex
relocations to improve the quality of the mesh. Most mesh smoothing algorithms
iterate over all the internal vertices in the mesh several times until every vertex has
not moved more than a specified tolerance, which can be local or global.

Mesh smoothing methods can be enriched by alternating smoothing steps with
connectivity updates. These steps ensure that each triangle remains well-oriented,
and that there is no inconsistency in the mesh. In our framework, connectivity
updates are canonical since the output mesh should keep the Delaunay property.

Amenta, Bern and Eppstein reformulate mesh smoothing problems as quasi-convex
programs, a special case of generalized linear programs [ABE97]. Triangular mesh
smoothing methods can be designed to optimize a single criterion, or a mixture of
several criteria. For some criteria, quasi-convex programming allows to compute
the optimal location of each vertex, iteratively. They show that optimizing the
area, altitude, angles, edge lengths, aspect ratio perimeter, circumradius, inradius,
area over squared edge length or a mixture of these can be done in linear time by
quasi-convex programming.

Laplacian smoothing The most direct mesh smoothing method in computer
graphics, due to its simplicity, is Laplacian smoothing. First introduced by Her-
mann [Her76], the Laplacian mesh smoother is a finite difference approximation of
the Laplace operator. The optimization process is iterative. At each step, every
vertex x is relocated to the centroid x

⋆ of its neighbor vertices (the ones with which
it is sharing an edge), according to the following formula

x
⋆ =

1

n

n
∑

i=1

wipi,

where pi is one of x’s neighbors, and wi the associated weight. Vertices weights can
be 1, or any other value as long as

∑n
i=1 wi = n. It can for example be proportional

to the volume of the shared simplices.

Laplacian smoothing has been extensively used, studied and extended in the lit-
erature of triangle mesh generation [Fie88, Geo91, dlG95, CTS98]. It results in
homogeneous meshes, but the associated energy is only linked to edge length. Spa-
tial distribution of vertices is not taken into account. Therefore, it often fails to
improve the shape of mesh simplices. Some other mesh optimization methods have
been developed.

1.4. State-of-the-art 19

Centroidal Voronoi Tesselation Du and Wang [DW02] propose to generate
quality meshes considering them as dual to optimal Voronoi diagrams. Their optimal
Voronoi tesselation minimized the following quadratic energy

ECVT(P) =

N
∑

i=1

∫

y∈Vi

ρ(y)||pi − y||2dy,

where P is the set of vertices of the mesh and {Vi}i=1..N the corresponding Voronoi
cells.

This optimization process is iterative and alternates updates of the Voronoi diagram
and vertex relocations. First, compute the Voronoi diagram of P, since it is the
partition that minimizes ECVT for a given fixed set of vertices [Che05]. Second,
perform one Lloyd iteration [Llo82] by relocating each vertex pi to the centroid
of its Voronoi cell Vi. This operation also minimizes ECVT, when the partition is
fixed [Che05]. See Section 2.2.2 for more details on Lloyd iteration.

Du et al. [DFG99, DW02] describe how a mesh that minimizes the energy ECVT has
each vertex at the centroid of its Voronoi cell. The Voronoi diagram of P is hence
said to be a Centroidal Voronoi Tesselation, CVT for short. Du and Wang [DW02]
also show that CVT is generating meshes of higher quality than the widely used
Laplacian smoothing.

The minimization of ECVT corresponds to a function approximation problem. It can
be seen as the minimization of the volume between the paraboloid of dimension d+1,
defined by f(x) = ||x||2, and an underlaid, circumscribing piecewise linear approx-

imant fdual
PWL

, formed by planar patches tangent to the paraboloid (see Figure 1.8).
Tangency points are obtained by lifting Voronoi vertices onto the paraboloid. Hence,
ECVT can be expressed as

ECVT = ||fdual
PWL
− f ||L1 .

In 2D, CVT tends to produce hexagonal Voronoi diagrams, dual to a triangulation
composed of equilateral triangles. This is due to the fact that any Lp optimal
approximation of a smooth function f tends to align and shape its elements with
respect to the eigenvectors and eigenvalues of its Hessian [She02b]. The Hessian
of f = ||x||2 is isotropic, hence the resulting meshes must have nearly hexagonal
cells. On a surface in 3D, CVT has the same effect and tends to produce nice
surface meshes. However, in 3D volume meshes, getting a isotropic distribution
of the vertices can have a negative effect on the tetrahedra quality [Epp01]. For
example, a sliver tetrahedron has its four vertices located close to the equator of
a sphere, with its vertices locations evenly distributed. Since Lloyd iteration tends
to optimize the compactness of Voronoi cells, it makes the distribution of vertices
more and more isotropic. It thus is blind to the creation and persistence of slivers
in the mesh. Figure 1.6 illustrates the comparison between the 2D and the 3D case.

Recently, some approaches have been developed to accelerate the convergence of
Lloyd algorithm to obtain a CVT. Du and Emelianenko based their work on using the

20 Chapter 1. Introduction

Figure 1.6: CVT mesh optimization. In 2D (top), (left) a 2D Delaunay mesh M2

generated by Delaunay refinement, (center) M2 optimized with CVT, and (right)
M2’s Voronoi diagram. In 3D (bottom), (left) a 3D Delaunay mesh M3 generated
by Delaunay refinement, (center) M3 optimized with CVT, and (right) M3’s slivers
(tetrahedra with dihedral angles smaller than 5̊).

Newton method [DE06a] when Lloyd’s algorithm was getting close to convergence.
Liu et al. provide an improvement by using a quasi-Newton approach, which can
be used since the beginning of the optimization process on 3D surface [YLL+] and
volume [LWL+09] meshes. See Section 4.2.2 for more details.

Optimal Delaunay Triangulation For 3D volume meshes, Chen [Che04] pro-
poses a "dual" approach to CVT optimization. The energy that he aims at mini-
mizing is the following

EODT = ||fprimal
PWL − f ||L1 =

∑

Tj∈DT

∫

Tj

|fprimal
PWL − f |,

where Tj is a mesh tetrahedron. This energy describes the volume between the
paraboloid and an overlaid, inscribed piecewise linear approximant fprimal

PWL formed
by a linear interpolation of points on the paraboloid (see Figure 1.8). Points are
obtained by lifting the mesh vertices onto the paraboloid. As described in Sec-
tion 3.2.1.5, minimizing this energy by relocating vertices turns the mesh into an
Optimal Delaunay Triangulation, ODT for short.

Chen [Che04] observes that EODT can be expressed in a similar way to ECVT, by the

1.4. State-of-the-art 21

formula

EODT =
1

n + 1

∑

i=1..N

∫

y∈Ωi

ρ(y)||y − pi||2.

Each integral is here taken over Ωi, the 1-ring neighborhood of pi, composed of
incident simplices (triangles in 2D, tetrahedra in 3D).

Chen’s EODT energy is computed over primal simplices. It is thus more likely to
improve the shape of primal simplices than ECVT, which is focusing on the compact-
ness of Voronoi cells. As shown on Figure 1.7, ODT iterations perform much better
than CVT at improving the histogram of dihedral angles inside the mesh, and fewer
slivers are left after optimization.

Figure 1.7: Comparison of the dihedral angles histograms after DR, CVT and ODT.
Slivers (tetrahedra with a dihedral angle smaller than 5̊) are plotted in red. (Left)
Mesh M of a sphere, generated by greedy Delaunay refinement. (Middle) M opti-
mized with CVT. (Right) M optimized with ODT.

Explicit vertex perturbation Li [Li00a] introduces the idea of a post-processing
step to any mesh generation algorithm. This algorithm consists in moving vertices
in a random manner inside a small sphere around each vertex. A small perturbation
of each vertex incident to a sliver happens to be sufficient to trigger the edge flips
necessary to remove most slivers. He shows that if such a perturbation exists, then
it can be found in a finite number of random trials.

In Section 3.2.2, we describe an extended version of Li’s algorithm. Our extension
favors deterministic directions for vertex perturbation. Being more deterministic
makes our algorithm faster, and allows it to reach higher minimal dihedral angles.

22 Chapter 1. Introduction

Figure 1.8: PWL approximations of the paraboloid. A paraboloid can be approxi-
mated by an underlaid circumscribed PWL function (left, CVT), or by an overlaid
inscribed PWL function (right, ODT).

1.4.2.2 Connectivity modification

Sliver exudation First introduced by Cheng et al. [CDE+00], sliver exuda-
tion consists in changing the vertices weights to trigger flips and improve the
overall quality of the mesh. Edelsbrunner and Guoy’s experimental study [EG02]
gives more practical details, and shows nice results on the final mesh dihedral angles.

Associated to classical Delaunay refinement, sliver exudation can be used for com-
plete mesh generation [CD02, CDR05]. It can also be considered as a post-processing
step [RY07, PSB+07] to improve the dihedral angles inside the mesh. Indeed, chang-
ing the vertices weights triggers edge flips inside the mesh, and is sometimes sufficient
to improve the overall quality of the mesh.

Explicit modification Some other algorithms perform explicit modifications of
the mesh connectivity. Their strategy is to leave the Delaunay framework and
its canonical connectivity, and operate edge and facet flips to locally and globally
improve the quality of the mesh.

Among them, Joe proposes an algorithm to turn a Delaunay triangulation into a
max-min solid angle triangulation by edge flips [Joe91]. This algorithm ensures that

1.5. Contributions 23

the minimum solid angle at tetrahedra vertices in the mesh is maximal, among all
possible connectivity changes.

Klinger and Shewchuk [KS07] improve the quality of a tetrahedral mesh through
explicit edge and facet flips, associated to vertex insertion and removal, and mesh
smoothing steps. This complex mesh improvement strategy is definitely able to get
high quality output dihedral angles in the mesh.

These methods have some drawbacks. First, the connectivity needs to be handled
"by hand", and the propagation of modifications into the mesh is not trivial. Second,
they are not able to take into account a sizing function, defining where in the domain
the simplices should be large or small. Gradation of the initial mesh can thus the
damaged.

1.5 Contributions

We present mesh generation algorithms, in 2D and in 3D, able to produce high
quality isotropic and Delaunay meshes. Our first goal is to reach good dihedral
angles, and also to insert as few Steiner points as possible, compared to existing
mesh generation algorithms.

Since mesh optimization is a costly process, mesh quality has to be traded off
against computation time. Assume that the minimum amount of time required
for meshing a domain is the time spent by Delaunay refinement. Ideally, the mesh
quality should then increase monotonously with the additional computation time.

Our algorithms take as input any closed polygonal domain in 2D, and any water-
tight manifold polyhedral domain in 3D. The Delaunay triangulation triangulates
the whole convex hull of the mesh vertices. In 2D, our meshing algorithm exactly
conforms the input boundary edges. In 3D, our meshing algorithm computes an
interpolant approximation of the input boundary. It is a surface Delaunay triangu-
lation restricted to the input boundary.

Interleaving refinement and optimization. The main idea that we develop
in this thesis is that interleaving Delaunay refinement steps and mesh optimization
steps is a valid approach for inserting a small number of Steiner points while
obtaining well-shaped simplices. The idea comes from the following 1D observa-
tion. A greedy Delaunay refinement approach could, by recursively bisecting the
edges, insert almost twice the number of Steiner points inserted by the interleaving
approach. Figure 1.9 shows an example in 1D, where this observation is highlighted.

24 Chapter 1. Introduction

In the next sections, Algorithm 2, in 2D, and Algorithm 5, in 3D, describe the whole
interleaved algorithms.

Figure 1.9: One-dimensional comparison between greedy refinement and interleaved
refinement and optimization. In both cases in this particular example, one wants
to discretize an edge of length 1 into sub-edges of length at most 0.21. On the
left, refinement steps by bisection, ’R’, are recursively processed on the edge. Seven
(red) points are inserted recursively, and the process requires 3 refinement steps.
On the right, refinement by bisection, ’R’, and smoothing points locations along the
edge, ’O’, are iteratively processed. Four (red) points are inserted, and the process
requires 7 steps.

Optimization. Most of the state-of-the-art mesh smoothing algorithms take into
account interior vertices only, or boundary vertices only for surface meshing. In our
algorithms, we provide a consistent mesh optimization framework for inside vertices
and boundary vertices. To achieve this goal, we use different mesh optimization
schemes in 2D and in 3D, since they had not the same efficiency.

In 2D, we use Lloyd iteration to reach a CVT and apply it consistently to the vertices
inside the domain, and in 1D to the vertices lying on input constrained edges (see
Section 2.2.2).

In 3D, we extend the ODT volume optimization process to surface boundary vertices
(see Section 3.2.1.5).

Refinement. Interleaving refinement steps and optimization steps requires defin-
ing what is a refinement step. Since we don’t want the algorithm to end up as a
greedy Delaunay refinement algorithm would, each refinement step should insert a

1.5. Contributions 25

set of well chosen Steiner points. In any dimension, our main goal is to avoid the
creation of points clusters.

In 2D, we refine worst simplices first, and we propose a solution to avoid refining
other simplices that would be too close (see Section 2.2.1).

In 3D, we compute an independent set of Steiner vertices. Starting with worst
quality simplices, two vertex insertions should not impact the same tetrahedra (see
Section 3.2.1.4).

Sliver removal (3D). Though our extension of ODT mesh optimization is able
to achieve good dihedral angles bounds and histograms, we propose an additional
post-processing sliver removal algorithm (see Section 3.2.2). Our sliver removal step
is hill-climbing by construction in terms of dihedral angles. Extending Li’s random
vertex perturbation [Li00a], we experimentally show that our algorithm is able to
reach higher dihedral angles within shorter computation times. On some examples,
it is able to reach a minimum dihedral angle as high as 30̊ .

Chapter 2

2D Triangle Mesh Generation

Contents
2.1 Related work . 28

2.1.1 Delaunay Refinement . 28

2.1.2 Optimization . 29

2.2 Algorithm . 30

2.2.1 Refinement . 30

2.2.2 Optimization . 33

2.3 Implementation . 38

2.4 Results . 38

2.5 Summary . 42

We consider the problem of generating 2D triangle meshes from a bounded domain
and a set of geometric and sizing constraints provided respectively as a planar
straight line graph (PSLG) and a sizing function [TAD07]. This problem is mainly
motivated by several practical applications, such as numerical simulation of physical
phenomena. The latter applications require quality meshes, ideally of smallest size.
Quality herein refers to the shape and size of the elements: A triangle is said to
be good if its angles are bounded from below, and if the length of its longest edge
does not exceed the sizing function. The smallest size triangulation, conforming
the sizing function, is sought after for efficiency reasons as the number of elements
governs the computation time.

Quality triangulation is a well-studied problem, and many meshing strategies have
been proposed and studied. Existing algorithms could be roughly classified as
being greedy, variational, or pliant. Greedy algorithms commonly perform one local
change at a time, such as vertex insertion, until the initial stated goal is satisfied.
Variational techniques cast the initial problem into the one of minimizing an energy
functional such that low levels of this energy correspond to good solutions for this
problem (reaching a global optimum is in general elusive). A minimizer for this
energy may perform global relaxation, i.e., vertex relocations and re-triangulation
until convergence. Finally, an algorithm is pliant when it combines both refinement
and decimation, possibly interleaved with a relaxation procedure [BH96, CGS06].

28 Chapter 2. 2D Triangle Mesh Generation

Although satisfactory bounds have been obtained for the triangle angles using De-
launay refinement algorithms [MPW05], one recurrent question is to try lowering
the number of points (so-called Steiner points) added by the meshing algorithm.
Recall that the Steiner points are inserted either on the constrained edges or inside
the domain, to satisfy sizing and quality constraints, as well as to preserve the input
constrained edges. At the intuitive level, inserting “just enough” Steiner points re-
quires generating triangles which are everywhere as big as possible, while preserving
the sizing constraints. Luckily enough, the triangle which covers the biggest area
for a given maximum edge length is the equilateral triangle. In other words, and by
using a simple domain covering argument, trying to generate large and well-shaped

triangles simultaneously serves the goal of lowering the number of Steiner points.
Our approach builds upon this observation.

Contributions This chapter proposes to mesh a 2D domain into large and well-
shaped triangles by alternating Delaunay refinement and optimization. We pursue
the goal of generating large triangles by performing refinement in a multilevel man-
ner, i.e., by inserting a subset of the Voronoi vertices batch-wise at each refinement
stage. Each refinement stage is parameterized with a decreasing size, which is com-
puted from the current mesh. Each mesh optimization stage is performed by ap-
plying the Lloyd iteration both in 1D along constrained edges, and in 2D inside the
domain. To ensure that the constraints are preserved during mesh optimization, the
bounded Voronoi diagram (Voronoi diagram with constraints) is computed using a
novel robust and effective algorithm. For the sake of efficiency, the optimization
stages are applied with increasing accuracy. Our experiments show that, for the
required sizing, our algorithm generates in general meshes with fewer Steiner points
and better quality than Delaunay refinement alone. We now briefly review Delaunay
refinement and mesh optimization techniques.

2.1 Related work

2.1.1 Delaunay Refinement

A mesh refinement algorithm iteratively inserts well chosen points, so-called Steiner

points in a given coarse mesh until all constraints are satisfied. One trend in
refinement algorithms is to insert as few Steiner points as possible. One popular
approach is to take as initial coarse mesh the constrained Delaunay triangulation
of the input PSLG, and to refine it. Refinement algorithms of this kind are called
Delaunay Refinement algorithms. They were pioneered by Chew [Che89a], and
later extended by many authors [Rup95, She02b]. Delaunay refinement algorithms
proceed as follows: During refinement, an edge is said to be encroached if a point
of the triangulation (not its endpoints) is on or inside its diametral circle. As
long as the current mesh contains encroached edges, the algorithm inserts their

2.1. Related work 29

midpoints. It then iteratively inserts the circumcenter of the “worst” triangle of the
triangulation (according to size and shape criteria), unless it encroaches an edge.
These steps are performed until all triangles are good, i.e., until each triangle has
the size and shape criteria satisfied. Shewchuk [She02b] shows that this algorithm
terminates with a finite number of Steiner points and with bounds on the triangles
angles (provided the input PSLG does not contain any small angle). Several studies
have been made on the insertion order of the Steiner points, and a satisfactory
choice is to insert the circumcenter of the worst triangle first.

Another way to grasp the problem of minimizing the number of Steiner points is
to define another type of Steiner points than circumcircle centers. The main idea
is that if a triangle contains a large angle, Ruppert’s algorithm inserts a Steiner
point far away from it, in a place which may be irrelevant. Üngör [Üng04] defines
a so-called off-center as follows. The off-center offc of a triangle △(p, q, r) of
shortest edge pq is defined as the circumcenter c of △(p, q, r) if the radius-edge ratio
of △(p, q, c) is lower or equal to β, the angle quality bound. Otherwise, offc

is the point v on the bisector of pq, and inside its circumcircle, such that the
radius-edge ratio of △(p, q, offc) equals β. This technique is shown to insert fewer
Steiner points than Ruppert’s algorithm.

Chernikov and Chrisochoides generalize and improve over Üngör’s off-centers
solution [CC06]. They show that, more generally, any point in the selection disk of
a bad triangle △ can be chosen as a Steiner point. It is shown that, choosing any
point inside the selection disk as Steiner point eliminates △, and that the algorithm
terminates. They propose an example of new Steiner point inside the selection

disk and show that the corresponding refinement algorithm in general inserts fewer
points than when using off-centers.

Some other methods combine both insertion and removal of mesh elements (includ-
ing Steiner points) to obtain higher quality meshes. Such combination was used by
Bossen and Heckbert [BH96] as well as by Coll et al. [CGS06], to cite a few. Finally,
Erten and Üngör [EÜ07] have recently introduced a new method which first tries
relocating the vertices of bad triangles. If the relocations would not improve the
mesh, they are canceled and a Steiner point is inserted inside △.

2.1.2 Optimization

Many different triangulations covering a given domain and satisfying a set of
constraints may exist, each of them of different quality. When high quality meshes
are sought after, it is therefore desirable to resort to an optimization procedure so
as to optimize a specific quality measure (see [She02d] for a comprehensive study of
quality measures). Two questions now arise: Which criterion should be optimized?

30 Chapter 2. 2D Triangle Mesh Generation

By exploiting which degrees of freedom? The optimized criterion can be directly
related to the shape and size of the triangles [ABE97], but other criteria have been
proposed as well. We refer the reader to [Epp01] for a comprehensive survey of mesh
optimization techniques. As the number of degrees of freedom are both continuous
and discrete (vertex positions and mesh connectivity), there is often a need for
narrowing the space of possible triangulations. For example, Chen proposes to cast
the isotropic meshing problem as an (isotropic) function approximation problem,
optimizing within the space of Delaunay triangulations [Che04].

Eppstein [Epp01] highlights the fact that, in 2D, evenly distributed points lead
to well-shaped triangles, assuming an isotropic triangulation such as the Delaunay
triangulation. Isotropic meshing can therefore be casted into the problem of isotropic
point sampling, which amounts to distribute a set of points on the input domain
in as even a manner as possible. One way to distribute a set of points isotropically
and in accordance with a sizing function is to apply the Lloyd iteration procedure
(described in Section 2.2.2) over an initial Voronoi diagram. Du et al. [DFG99]
have shown how the Lloyd iteration transforms an initial ordinary Voronoi diagram
into a centroidal Voronoi diagram, where each generator happens to coincide with
the center of mass of its Voronoi cell. Another interesting feature of the Lloyd
iteration in our context is that it can be applied to any dimension, i.e., in 1D for
the Steiner points inserted on the constrained edges, and in 2D for the Steiner
points inserted inside the domain. One drawback of the Lloyd iteration is its slow
convergence. Moreover, it only converges to a local minimum of a certain energy
functional [DEJ06]. Convergence accelerations are possible either by using Newton-
Lloyd iterations or by using specific types of multilevel refinements [DE06a, DE06b].

2.2 Algorithm

We introduce an algorithm which interleaves Delaunay refinement and optimization,
in order to generate a triangle mesh satisfying both shape and size properties for
each triangle. We sketch our algorithm in pseudo-code as described in Algorithm 2.

The complete algorithm sequence is illustrated by Figure 2.1. Figures 2.6, 2.7, 2.8,
and 2.9 compare the output of our algorithm with a mesh obtained by Delaunay
refinement alone. Our method improves over the number of Steiner points as well
as the shape of the elements.

2.2.1 Refinement

The refinement steps are specifically designed to insert “just enough” Steiner points
to respect the sizing function, and to provide the optimization steps with good
initial solutions. We achieve this goal by inserting batches of Steiner points chosen

2.2. Algorithm 31

Algorithm 2 Meshing algorithm

Input: A PSLG domain Ω ⊂ R
2.

Let T be the constrained Delaunay triangulation of Ω.
repeat

Batch refinement of the triangulation T (Section 2.2.1).
repeat

Optimization of T by the Lloyd algorithm (Section 2.2.2),
until Stopping criterion S.

until Refinement does not insert any new Steiner point in T .
repeat

Optimization of T by the Lloyd algorithm,
until Stopping criterion S′ stronger than S.

Output: The final triangle mesh.

as Voronoi vertices. The roles are separated: Each refinement step acts on the size
of the elements, while each optimization step acts on the shape of the elements (see
Section 2.1.2).

Let us call µ(p) the desired mesh sizing specified at point p. We assume that
this sizing function is provided by the user. During meshing we call sizing ratio

the ratio between the current size of an element and the local desired sizing.
An element can be an edge or a triangle, i.e., the sizing ratio is computed
as sr(f) = longest edge(f)

µ(centroid(f)) for a triangle and sr(e) = length(e)
µ(centroid(e)) for an edge.

After meshing, the sizing ratios of all elements must be lower or equal to 1 in
order to satisfy the sizing constraints, and a low number of Steiner points is ob-
tained by keeping the sizing ratios as close to one as possible under these constraints.

Before each refinement step, the algorithm iterates over each triangle and con-
strained edge of the mesh in order to compute the maximum sizing ratio srmax. From
this value we compute the current target sizing ratio as srtarget = max(srmax√

3
, 1),

which is then used as a slowly decreasing sizing criterion for refinement. The
refinement factor 1/

√
3 is justified by the fact that inserting all circumcenters

in a triangulation made of equilateral triangles operates a
√

3 − section of the
edges (compared to a bisection on the constrained edges). In 2D, the refinement
corresponding to the target sizing ratio can therefore not be faster than this
value. As we aim at refining the mesh with sizing ratios as uniform as possible,
we parameterize the 1D refinement with the same target sizing ratio. The
target sizing ratio is thresholded to 1 in order not to insert points that would
introduce new triangles or edges with a sizing ratio lower than 1, i.e. smaller than
the desired sizing. Hence, at each refinement iteration, the target sizing ratio
slowly decreases, until it reaches the value of 1, which corresponds to satisfying
the input sizing requirement, via the sizing function µ, for each simplex of the mesh.

32 Chapter 2. 2D Triangle Mesh Generation

Figure 2.1: Interleaved Delaunay refinement and optimization with a uniform sizing
parameter. In the reading order: The constrained Delaunay triangulation (CDT)
of the initial PSLG (13 vertices), then refinement (Ri) and smoothing (Si) in al-
ternation. The last step (S∞) is the final optimization until the stronger stopping
criterion. The final mesh contains 645 vertices.

Refinement is first performed in 1D along the constraint edges, then in 2D. Call L
the list of Steiner points to be inserted. The algorithm iterates over all triangles
and constrained edges and measure their sizing ratio. If it is larger than the current
target sizing ratio srtarget, we add its midpoint or circumcenter to L, and alter the
sizing ratio of its (unprocessed) incident elements in order to avoid over-refinement.

More specifically, and relying on the fact that a local point insertion involves neigh-
boring triangles, we inform the neighboring triangles of a split triangle that they
should take upon themselves a part of this refinement. To do so, when a triangle f

2.2. Algorithm 33

is processed and eligible for splitting, the quantity 1/3∗ (srf/
√

3−srtarget) is added
to the sizing ratios of each of its unprocessed neighboring triangles. In this way, we
divide between f ’s neighboring triangles the difference between what we expect to
be the sizing ratio of f after splitting (srf/

√
3) and the target sizing ratio. Then,

these triangle sizing ratios may be increased or decreased, and respectively get more
or less likely to be split during the current refinement step. A similar method is
used in 1D over the edges, with 1/2 as refinement factor. When all elements have
been visited, all points in L are inserted to the constrained Delaunay triangulation.
The next step is mesh optimization.

2.2.2 Optimization

The mesh optimization step involves the Lloyd iteration applied to the cells of a
bounded Voronoi diagram (the pseudo-dual of the constrained Delaunay triangula-
tion).

Lloyd iteration. The Lloyd iteration [Llo82] is a minimizer for the following
energy functional:

ECVT =
N
∑

i=1

∫

y∈Vi

ρ(y)||y − xi||2dy,

where {xi}Ni=1 are a set of generators and {Vi}Ni=1 the corresponding Voronoi cells.
The Lloyd iteration minimizes this energy by alternately moving the generators to
the centroid of their Voronoi cells, and recomputing the Voronoi diagram. The
centroid x

⋆ of the cell V is defined as:

x
⋆ =

∫

V yρ(y)dy
∫

V ρ(y)dy
,

where ρ is a density function defined on the domain Ω. After convergence, the space
subdivision obtained is a centroidal Voronoi tessellation (CVT) [DFG99, DEJ06].
As it corresponds to a critical point of the energy ECVT, it is a necessary condition
for optimality, in the sense of minimizing ECVT.

We choose to stop the Lloyd iteration when all generators move less than a
user-defined distance threshold. We first define the notion of move ratio of a
generator x in its Voronoi cell as mr(x) = ||x−x

⋆||
size(cell(x)) , where the size of the cell

is defined as the longest distance between any pair of points of this cell. The
Lloyd iteration is stopped when max

x∈{xi}N
i=1

mr(x) < p (p is typically set
to 3% during refinement, and to 1% for the final relaxation step). In practice,
the 1D Lloyd iteration, which allows moving the Steiner points to the centroids
of their 1D cells (along the constraints), plays an important role at minimizing
the number of Steiner points inserted. We could exhibit an extreme example

34 Chapter 2. 2D Triangle Mesh Generation

where combining refinement with 1D Lloyd iteration inserts half of the number of
1D Steiner points inserted by the common recursive edge bisection of the constraints.

Our algorithm applies the Lloyd iteration both in 1D by moving Steiner points along
the input constrained edges (Voronoi cells are line segments), and in 2D by moving
Steiner points at the centroid of their bounded Voronoi cell. Figure 2.2 illustrates
both 1D and 2D iterations.

Figure 2.2: Lloyd iteration with a uniform density. (a) Steiner points randomly
inserted on a constrained edge, and after convergence of the Lloyd iteration. (b)
Steiner points randomly inserted on a 2D domain, and after convergence of the
Lloyd iteration. Sites are filled dots, and centroids are outlined dots (they coincide
after convergence). (c) Lloyd iterations applied both in 1D and 2D.

Bounded Voronoi Diagram. While the ordinary Voronoi diagram and Delau-
nay triangulation do not take constraints into account, we wish here to prevent the
Voronoi regions to cross over the constraints. To this aim we use a constrained De-

launay triangulation [Che89a, She96, DGJ03] and a variant of its dual, the bounded

Voronoi diagram (BVD), defined by Seidel [Sei88]. The common duality between
Delaunay triangulation and Voronoi diagram links each triangle to its circumcenter.
In our context, each triangle △ may have its circumcenter c on the other side of a
constrained edge. Hence, c is the dual of △ if it is on the same side of the constraint.
Otherwise, it is a pseudo-dual, and some Voronoi edges of △ must be clipped by the
constraint. The BVD is defined as follows: each cell Vi of a generator xi is composed

2.2. Algorithm 35

by the points of the domain Ω which are closer to xi than to any other generator.
As for the constrained Delaunay triangulation, the distance incorporates visibility
constraints. The distance dS(x, y) between two points x and y of R

2 is defined as:

dS(x, y) =

{ ||x− y||R2 if x “sees” y,

+∞ otherwise.

In this definition, x “sees” y when no constrained edge intersects the segment
[x, y]. This visibility notion can be extended to triangles. We will see later how
the notion of triangle sight, or symmetrically triangle “blindness”, is important
to construct the bounded Voronoi diagram. Figure 2.3 illustrates a constrained
Delaunay triangulation and its pseudo-dual bounded Voronoi diagram. Notice
that trying to construct the naïve Voronoi diagram by joining the circum-
centers of all pairs of incident triangles would not even form a partition. The
notion of triangle blindness is pivotal for constructing the bounded Voronoi diagram.

Definition 2.2.1 (Blind triangle). A triangle△ is said to be blind if the triangle and

its circumcenter c lie on the two different sides of a constrained edge E. Formally,

△ is blind if and only if there exists a constrained edge E such that one can find

a point p in △ (not an endpoint of E), such that the intersection [p, c] ∩ E is non

empty.

Figure 2.3: Constrained Delaunay triangulation of a set of points (left) and its
pseudo-dual bounded Voronoi diagram (right).

The BVD construction algorithm initially tags all triangles of the triangulation as
being blind or not blind (Algorithm 3). It then constructs each cell of the diagram
independently using these tags (Algorithm 4). Finally, all cells are assembled to
build the complete bounded Voronoi diagram of a given set of points and constrained
edges.

Algorithm 3 tags all triangles of the triangulation as being either blind or non-blind.
In addition, each blind triangle stores which constrained edge in the triangulation
acts as a visibility obstacle, i.e., which edge prevents it to see its circumcenter (it is
the first constraint intersected by the oriented line joining any point of the triangle
to any point of the constraint). Notice how the algorithm only needs to iterate

36 Chapter 2. 2D Triangle Mesh Generation

Algorithm 3 Tag blind triangles
Input: Constrained Delaunay triangulation cdt.

Tag all triangles non-blind by default.

for each Constrained edge e of cdt do

Create a stack: triangles

for each Adjacent triangle fe to e tagged non-blind do

Push fe into triangles

while triangles is non-empty do

Pop f from stack triangles

if f is blinded by e (use P) then

Tag f as blinded by e

for each Adjacent triangle f ′ to f do

if f ′ is finite and tagged non-blind
and the common edge between f and f ′ is unconstrained then

Push f ′ into triangles.

over the constrained edges of the triangulation, as all sets of blinded triangles form
connected components incident to constrained edges. Indeed, the Voronoi diagram
of the vertices of the blind triangles on one side of any constraint is a tree rooted
from the dual ray of the constraint.

We define a robust predicate, called P in the sequel, to test if a triangle is blinded
by a constrained edge. More specifically, P takes as input a triangle and a segment,
and returns a Boolean indicating whether or not the circumcenter of the triangle
lies on the same side of the segment than the triangle. The circumcenter is never
constructed explicitly in order to obtain a robust tagging of the blind triangles.
Each cell of the bounded Voronoi diagram can be constructed by circulating around
vertices of the triangulation, and by choosing as cell vertex either circumcenters or
intersections of the standard Voronoi edges with the constrained edges. Note that we
do not need to construct bounded Voronoi cells incident to input constrained vertices
as the latter are constrained and therefore not relocated by the Lloyd iteration.
Moreover, these cells are the only ones which would not necessarily be convex. This
is not an issue since the constrained vertices are not meant to be relocated by the
Lloyd iteration. Algorithm 4 describes this construction, and Figure 2.4 illustrates
the construction of a single bounded Voronoi cell. Figure 2.5 illustrates a bounded
Voronoi diagram.

Quadratures The Lloyd iteration requires computing centroids of line segments
in 1D and of (possibly bounded) Voronoi cells in 2D. Such computations require
quadrature formulas when a variable density function is specified, i.e., when the
input sizing function is not uniform. The density function ρ and the sizing function
µ are linked by the following formula [DW05]: µ(x) = 1

ρ(x)d+2 , where d is the

2.2. Algorithm 37

Algorithm 4 Construct a BVD cell
Input: Unconstrained vertex z of the constrained Delaunay triangulation cdt.

Call P the polygon (cell) in construction,
Call f the current triangle and fnext the next triangle in the circulation,
Call Lf,fnext

the line going through the circumcenters of f and fnext.
for each Incident triangle f to z in cdt do

if f is tagged non-blind then

Insert the circumcenter of f into P .
if fnext is blind then

Call Sfnext
the constrained edge blinding fnext,

Insert point Lf,fnext
∩ Sfnext

into P .
else

Call Sf the constrained edge blinding f .
if fnext is tagged non-blind then

Insert Lf,fnext
∩ Sf into P .

else

Call Sfnext
the constrained edge blinding fnext,

if Sf 6= Sfnext
then

Insert Lf,fnext
∩ Sf and Lf,fnext

∩ Sfnext
into P .

Output: Bounded Voronoi cell of z.

Figure 2.4: Construction of a cell of
the bounded Voronoi diagram. The
standard Voronoi diagram is truncated
on the constrained edge (colored trian-
gles are blind).

Figure 2.5: Bounded Voronoi diagram of
a PSLG.

38 Chapter 2. 2D Triangle Mesh Generation

dimension of the domain. In 2D, we have

µ(x) =
1

ρ(x)4
.

The key idea behind a quadrature is to decompose a simple domain (be it an edge
or a triangle in our case) into smaller sub-domains (so-called quadrature primitives)
where simple interpolation schemes are devised. The number N of quadrature prim-
itives used for each element allows the user to tune the computation accuracy of the
centroids. In practice this number is increased during refinement so that a low pre-
cision is used at coarse levels (typically N = 10), and a high precision is used at fine
levels (N = 100 for the final level).

We use the trapezium rule in 1D, with N sub-segments, and the midpoint approx-
imation rule in 2D, with a decomposition of each bounded Voronoi cell into N

sub-triangles. More precisely, an initial step triangulates the cell by joining each
of its vertices to its generator. The next step recursively bisects the longest edge
of these triangles until the number of quadrature triangles reaches N . On each
quadrature triangle, the midpoint approximation formula is applied:

∫

△
f(x)dx ≈ |△|

3
(f(x12) + f(x23) + f(x13)),

where x12, x23 and x13 are the midpoints of a quadrature triangle edges. Finally,
we sum the integrals on each quadrature triangle in order to obtain an approximate
centroid of the whole bounded Voronoi cell.

2.3 Implementation

Our algorithm is implemented in C++, using the Computational Geometry

Algorithms Library CGAL [cga, FGK+00]. The Delaunay refinement algorithm
that we use to compare our meshes to is the Terminator algorithm defined by
Shewchuk [She00a], implemented as a CGAL package [Rin07]. The chosen angle
bound is set to 20.7̊ .

2.4 Results

To estimate the added value of our interleaving approach, we run our meshing
algorithm on different types of PSLG.

Figures 2.7 and 2.8 show uniform meshes, and compare our algorithm with the
standard Delaunay refinement algorithm. The number of Steiner points inserted are

2.4. Results 39

respectively 22% and 23% fewer with our method, and the angle distributions are
better centered around 60 degrees, as expected. The intervals in which the angles lie
are also tighter: [33̊ , 99̊] vs [20̊ , 124̊] for Figure 2.7, and [29̊ , 103̊] vs [22̊ , 127̊] for
Figure 2.8. The distributions of aspect ratios (circumradii to shortest edge ratios)
show that our algorithm produces many more triangles with aspect ratios close to
the optimal value, which is 1/

√
3 ≈ 0.57 for an equilateral triangle. This shows

that, although our algorithm does not provide theoretical bounds on the triangle
angles or aspect ratios, the practical bounds are improved.

Obviously, any mesh generation algorithm which incorporates smoothing or opti-
mization is expected to obtain meshes of higher quality than a greedy algorithm
such as Delaunay refinement, at the price of higher computation times (10 times
slower for our algorithm in the uniform cases, and close to 100 times slower in
the non-uniform cases which involve costly quadratures). In our experiments, in-
terleaving refinement and optimization, similar in spirit to multilevel algorithms,
consistently leads to higher quality meshes than refining, then optimizing at the
finest level. In addition to the mesh quality obtained, the choice of the Lloyd it-
eration instead of the many other mesh optimization techniques is justified by the
possibilities to apply it in 1D and 2D, and to take a sizing function as input with
variable precision quadratures.

One of the main problems in mesh generation is to limit the number of small angles,
even when small angles are part of the input [She02d]. The input PSLG of Figure 2.9
contains 17 “spins”, with inside angles ranging from 5 to 37 degrees. As depicted
by the angles distributions, small angles do not hurt our algorithm, which does
not produce more small angles than Delaunay refinement does. In addition, our
algorithm inserts 26% fewer Steiner points than the Terminator algorithm does.
The practical upper bound on angles is lower, albeit the improvement is small (128̊

vs 131̊).

As already discussed in Section 2.2.2, optimizing the mesh simultaneously in 1D
and 2D has an important impact on the number of Steiner points inserted. For
example, when the input PSLG contains two long constraints parallel and close to
each other, the local improvement in terms of number of 1D Steiner points can be as
high as 50%. Intuitively, Delaunay refinement is restricted to recursive constrained
edge bisection, which may lead to bisect all constrained edges at the finest level,
even if they are slightly longer than the local admissible sizing. In our algorithm,
each refinement step is followed by an optimization step, which prevents the next
refinement step to over-refine. This behavior is illustrated by Figure 2.10, where our
method inserts 25% fewer Steiner points than Delaunay refinement alone.

For an input domain Ω and a sizing function µ, one can compute the minimum
number of triangles needed to cover Ω. After computing the mean edge length over

the domain: µ̄ =
R

Ω
µ(x)dx

area(Ω) , the minimum number of triangles needed is given by

m△ = area(Ω)√
3/4.µ̄2

, where the denominator is the mean area of an equilateral triangle

40 Chapter 2. 2D Triangle Mesh Generation

Figure 2.6: Comparison between Delaunay refinement alone and our algorithm. The
sizing function is uniform and equals 0.05. Our method inserts 20% fewer Steiner
points than Delaunay refinement does. The distribution of angles is narrower at the
end of our algorithm. The angles are within [35̊ , 96̊] with our method, vs [21̊ , 122̊]

with Delaunay refinement. The practical upper bound on aspect ratios is lower with
our method: 0.88 vs 1.37.

Figure 2.7: The sizing function is uniform and equals 0.02. Our method inserts 22%
fewer Steiner points than Delaunay refinement does. The angles are in [33̊ , 99̊] with
our method, vs [20̊ , 124̊] with Delaunay refinement. The maximum aspect ratio is
lower: 0.85 vs 1.41.

2.4. Results 41

Figure 2.8: The sizing function is uniform and equals 0.02. Our method inserts 23%
fewer Steiner points than Delaunay refinement does. The angles are in [29̊ , 103̊]

with our method, vs [22̊ , 127̊] with Delaunay refinement. The maximum aspect
ratio is lower: 1.00 vs 1.33.

Figure 2.9: The input PSLG constraints form acute angles from 5̊ to 37̊ . The
sizing function is uniform and equals 0.02. Our method inserts 26% fewer Steiner
points than Delaunay refinement does. The angle distribution shows small angles
due to the input. The angles range in [5̊ , 128̊] with our method, vs [5̊ , 131̊] with
Delaunay refinement. As expected the upper bound on aspect ratios is similar with
both methods: 5.73.

42 Chapter 2. 2D Triangle Mesh Generation

Figure 2.10: The sizing function is uniform and equals 0.01. The input PSLG
contained 248 vertices. Our method inserts 25% fewer Steiner points than Delaunay
refinement does. The closeup depicts two constrained edges, parallel and close to
each other. Combining 1D and 2D optimization allows inserting fewer Steiner points
in this area.

inside the domain. In the uniform case, we observe that our method produces meshes
with 1.60m△ triangles, whereas Delaunay refinement produces meshes with 2.20m△
triangles. These values are very consistent over all the examples we have tested. In
the non-uniform case, µ̄ depends too much on the gradation of µ and on the domain
geometry to be able to exhibit a representative average.

Figures 2.11, 2.12, 2.13 and 2.14 illustrate results from larger inputs and with non-
uniform sizing functions, such as the one described by Alliez et al. [ACSYD05] as:

µ(x) = inf
s∈∂Ω

[kd(s, x) + lfs(s)],

where ∂Ω is the domain boundary, d the Euclidian distance, lfs the local feature size,
and k a constant. This sizing function is shown [ACSYD05] to be the maximum k-
Lipschitz function that is smaller or equal to lfs on ∂Ω. In the non-uniform case, our
algorithm inserts on average 28% fewer Steiner points than the standard Delaunay
refinement.

2.5 Summary

In this chapter, we have presented a new 2D triangle mesh generation algorithm,
interleaving Delaunay refinement and optimization using the Lloyd iteration. The
meshes generated are bound to cover the input constraints provided as a PSLG,
and to satisfy sizing criteria provided as a sizing function. Although our algorithm
comes with no theoretical bound on the triangle angles, we show experimental
evidence that it produces meshes with fewer Steiner points (25% on average) than

2.5. Summary 43

Figure 2.11: The sizing function is uniform and equals 0.01. The initial PSLG
contained 256 vertices. The final mesh contains 9761 vertices.

the standard Delaunay refinement algorithm, and of better quality. An efficient
and robust algorithm for computing bounded Voronoi diagrams is also provided.
We plan to integrate the latter into the CGAL library.

The main added value provided by the interleaved refinement and optimization
steps in a multilevel manner is to provide the Lloyd optimization steps with
good initial solutions, and therefore to generate meshes of higher quality than
the ones optimized once after refinement. More specifically, such interleaving not
only contributes to obtain lower minima for the functional energy described in
Section 2.2.2, but also prevents the Lloyd iteration to perform long range vertex
relocations, and therefore to converge slowly. The final number of Steiner points
is (non-trivially) related to the decreasing speed of the “target sizing” parameter
used by the refinement step. The ultimate goal being to insert just enough Steiner
points (and therefore to generate large well-shaped elements), it is desirable to slow
down the decreasing of this parameter, especially when approaching the objective
sizing function. Although our experiments in this direction were satisfactory in
terms of Steiner points added, the computation times substantially increase.

As future work we plan to derive a “hill-climbing” version of our algorithm, where the
Lloyd iteration would be modified so as to move each generator toward their centroid
while staying within some fixed angle bounds. A challenging goal would be to

44 Chapter 2. 2D Triangle Mesh Generation

provide theoretical bounds greater than the ones provided by Delaunay refinement.

Figure 2.12: Mesh generated with respect to the sizing function
µ(x) = infs∈∂Ω[0.45 ∗ d(s, x) + lfs(s)]. The initial PSLG contained 256
vertices. The final mesh contains 1440 vertices.

2.5. Summary 45

Figure 2.13: Mesh generated with respect to the sizing function
µ(x) = infs∈∂Ω[d(s, x) + lfs(s)]. The initial PSLG contained 3632 vertices.
The final mesh contains 9691 vertices.

Figure 2.14: Mesh generated with respect to the sizing function µ(x) infs∈∂Ω[0.6 ∗
d(s, x) + lfs(s)]. The initial PSLG contained 205 vertices. The final mesh contains
981 vertices.

Chapter 3

3D Tetrahedral Mesh Generation

Contents
3.1 Related work . 47

3.2 Algorithm . 51

3.2.1 Interleaving Refinement and Optimization 51

3.2.2 Sliver removal . 63

3.3 Implementation . 78

3.3.1 Intersection and Projection 78

3.3.2 Filtering relocations . 81

3.3.3 Locking . 81

3.4 Results . 82

3.5 Summary . 86

In this chapter, we introduce a robust, hybrid meshing algorithm to generate high-
quality isotropic tetrahedral meshes. Delaunay refinements and variational opti-
mizations are interleaved in order to produce a discretization of the domain that
meets a series of desirable geometric and topological criteria, while offering smooth
gradation of the resulting well-shaped tetrahedra.

3.1 Related work

Most previous work aimed at generating isotropic tetrahedral meshes were designed
around four basic concepts: packing, regular lattices, refinement, and optimiza-
tion. While packing methods (including advancing front approaches) were initially
favored, their relatively high computational complexity and lack of theoretical guar-
antees have spawned the investigation of alternative methods. Regular lattices have
been at the core of some of the fastest meshing techniques, as they provide a blazingly
fast approach to meshing most of the domain. While smooth surface boundaries can
be efficiently handled with guaranteed minimum dihedral angles [LS07], the regu-
larity of the mesh resulting from these methods (i.e., the presence of preferred edge
directions) can induce severe aliasing effects in simulation [WBOL07].

Techniques combining Delaunay triangulation and refinement have received spe-
cial attention due to their versatility and theoretical foundations. They have

48 Chapter 3. 3D Tetrahedral Mesh Generation

been used initially in 2D [Che89b], then in 3D for polyhedral domains [NCC02,
AHMP07], for smooth surfaces [Che93], for 3D domains bounded by smooth sur-
faces [ORY05, BOG02] and for 3D domains bounded by piecewise smooth sur-
faces [RY07, CDL07, CDR07]. They proceed by refining and filtering a 3D tri-
angulation until a set of user-specified criteria is satisfied. Refinement is achieved

Figure 3.1: Michelangelo’s David. Our mesh generation algorithm produces high
quality meshes through Delaunay refinements interleaved with optimization. The
input PSC has 800K triangles; (right) a uniform sizing criterion generates a 1M
vertices mesh; (left) approximation error and shape criteria alone generate a smaller
graded mesh (250K vertices), while guaranteeing the same mesh quality and a better
local approximation error.

3.1. Related work 49

through iterative insertion of Steiner points, either inside the domain or on the do-
main boundary, to meet the desired criteria. A filtering process is applied to cull
simplices such that the triangulation restricted to the input domain tessellates the
domain, and such that the boundary of this restricted triangulation approximates
the domain boundary. This procedure becomes more delicate for piecewise-smooth
inputs (a more general class of domains where the boundary is a collection of smooth
patches meeting at potentially sharp creases), as sharp creases require additional
care. Non-smooth regions subtending small angles add another level of difficulty for
Delaunay refinement. Refinement techniques are usually judged on the quality of
the resulting mesh elements and on the sparsity of Steiner point insertion.

Figure 3.2: Top: Mesh (5,499 vertices) generated by Delaunay refinement (shape
and boundary approximation criteria activated). Notice the cluster in the middle
of the armhole. Right image shows tetrahedra with dihedral angles smaller than
15 degrees. Bottom: Mesh (3,701 vertices) generated by interleaving Delaunay
refinement and optimization so as to satisfy the same criteria. Distributions of
dihedral angles are shown on the left.

The quest for ever better quality meshes has sparked advances in mesh optimiza-
tion through local vertex relocation to optimize a specific notion of mesh qual-
ity [ABE97, PS04], topological operations [CDE+00], or both [FOG97]. Further
improvement of the mesh quality can be achieved by inserting additional vertices
and/or incorporating a rollback mechanism to undo previous optimizations in order
to guarantee a monotonic increase in mesh quality [KS07]. Among the large body
of work in mesh optimization, the Optimal Delaunay Triangulation approach (ODT

50 Chapter 3. 3D Tetrahedral Mesh Generation

for short) stands out, as it casts both geometric and topological mesh improvement
as a single, unified functional optimization [CX04b, Che04] that tries to minimize
in R

4 the volume between a paraboloid and the linear interpolation of the mesh ver-
tices lifted onto the paraboloid. This approximation-theoretical method to obtain
isotropic meshes was adapted for tetrahedral meshing of 3D domains [ACSYD05],
mixed with a constrained Lloyd relaxation on the domain boundary. While this tech-
nique was shown to only produce nicely-shaped tetrahedra throughout the domain,
slivers (i.e., nearly degenerate elements) could appear near the domain boundary,
as the boundary vertices were guided by Lloyd relaxation and were thus unaffected
by the 3D optimization. Furthermore, this method lacks a number of useful fea-
tures. First, the algorithm is not designed to satisfy the type of user-defined criteria
commonly handled by Delaunay-based mesh generation techniques [RY07]. Also,
an estimate of the boundary local feature size (lfs) is required to derive a sizing
function; however, there is currently no consensus on how to extend the notion of
lfs to polyhedral domains. Finally, this method cannot handle arbitrary boundary
meshes, requiring a restricted Delaunay triangulation instead.

Contributions We combine the efficacy of Delaunay refinement methods with
the isotropic quality induced by optimal Delaunay optimization techniques (ex-
tending the 2D approach of Chapter 2) to provide a practical, high-quality meshing
algorithm for 3-Dimensional domains bounded by piecewise smooth boundaries.
This combination of techniques is motivated by the desire to maximize mesh quality
while reducing mesh size.

Delaunay refinement alone tends to generate overly complex meshes, with, e.g.,
spurious clusters of vertices due both to the greedy nature of the algorithm and
to encroachment mechanisms; interleaving parsimonious refinement and mesh op-
timization instead turns out both to reduce the number of Steiner points and to
improve the overall mesh quality (see Figure 3.2). Unlike previous mesh optimiza-
tion methods which either consider the boundary fixed or use boundary conditions
incompatible with global mesh improvement, we introduce a consistent variational
treatment applied to both interior and boundary nodes, improving the overall qual-
ity of the mesh. To speed up Delaunay refinement and make it parsimonious, we
select subsets of isolated Steiner points using the probabilistic multiple choice ap-
proach [WK02] to reduce the treatment of short-lived primitives and provide in-
dependent refinements before each round of optimization. The practicality of our
approach further stems from additional, distinctive features. First, we only rely on
simple intersection tests to probe the domain boundary to make the approach as
generic as possible with respect to the boundary surface representation. Second,
we do not require a mesh sizing function as input and provide instead a dynamic
sizing function which evolves throughout refinement until all user-specified criteria
are satisfied.

3.2. Algorithm 51

Finally, the method is versatile enough to serve as a general framework for isotropic
tetrahedral meshing, as each step involved in the process can be adapted to special
requirements.

3.2 Algorithm

3.2.1 Interleaving Refinement and Optimization

The algorithm we now detail interleaves refinement and optimization of an initial
3D Delaunay triangulation [TWAD09]. Mesh simplices are gradually improved to
meet user-defined criteria on boundary approximation and on the shapes and sizes
of elements through refinements, while passes of optimization further improve the
shape of the elements. The high-level pseudo-code is as follows:

Algorithm 5 Mesh generation at a glance

Input: Domain Ω ∈ R
3 (Section 3.2.1.1)

and a set {k1, k2, ..., kn} of user-defined criteria (Section 3.2.1.2).

Initialize coarse mesh M (Section 3.2.1.3)
while Criteria {k1, k2, ..., kn} not all met do

Refine through sparse vertex insertions (Section 3.2.1.4)
Optimize mesh (Section 3.2.1.5)

Perturb remaining slivers (Section 3.2.2)

3.2.1.1 Input

The input is a 3-Dimensional domain Ω whose boundary ∂Ω is defined as a piecewise
smooth complex (PSC). More specifically, our current implementation takes as input
a piecewise linear approximation of a PSC. This approximation is provided as a
triangle surface mesh, watertight, and forming a 2-manifold with no self-intersection.
In addition, we assume that sharp edges as well as feature vertices of this mesh are
tagged. Dart (resp., corner) vertices are deduced from tagged sharp edges as they
are incident to one (resp., three or more) sharp edges. Tip and cusp vertices, which
are incident respectively to zero and two sharp edges, cannot be derived solely using
the sharp edge tags and hence must be specified by the user. By chaining sharp
edges together, we obtain a set of polylines that we will refer to as creases. A crease
may either connect two feature vertices or form a cycle. All creases are enumerated,
and each sharp edge of the input surface mesh is marked with the index of its
associated crease. Finally, we identify and enumerate surface patches as connected
components of the boundary, bounded (or not) by sharp creases. Each face of the
input surface mesh is marked with the index of its associated patch as depicted in
Figure 3.3. The sharp input creases subtending angles should not be too small (the

52 Chapter 3. 3D Tetrahedral Mesh Generation

theoretical bound is 90 degrees) to have a guarantee that Delaunay refinement steps
will terminate (see [RY07]).

Figure 3.3: Input piecewise smooth complex (PSC) with all surface patches (left)
and sharp creases (right) enumerated.

3.2.1.2 Parameters

The user selects a set of criteria that the final mesh must satisfy. These criteria,
which accommodate the typical user requirements for mesh generation, are used to
guide the refinement process as explained in Section 3.2.1.4. All of them but the
first criterion are optional in our implementation:

• Sizing: a spatially-varying sizing function (or possibly a single value if con-
stant) indicates the maximum mesh edge length allowed within the domain.

• Approximation: an approximation control function defines a local upper bound
ǫmax for the surface or crease approximation error. Similar to the mesh sizing
function, it is defined either as a single value if the function is constant over
the boundary, or as a spatially-varying scalar function.

• Shape: two global element shape quality bounds are defined as the maximum
circumradius to shortest edge ratio allowed in the final mesh. We denote by
σf

max and σt
max these bounds for facets and tetrahedra, respectively.

• Topology: a Boolean flag determines whether the topology of the input PSC
should be preserved, i.e., if the vertices of each restricted facet must belong
to the same patch, and if the vertices of each restricted edge must belong to
the same crease.

• Manifold: a Boolean flag determines whether the final mesh boundary should
be a two-manifold surface.

3.2. Algorithm 53

3.2.1.3 Initialization

A first mesh M of the domain is obtained by inserting in M all feature vertices

(corners and such) of the input surface mesh. These vertices remain untouched
throughout the mesh generation procedure. We also add the eight corners of a
large bounding box of the input domain, in order not to have to deal with infinite
Voronoi faces in later stages. Finally, we ensure that each surface patch and each
crease have received the minimal number of sample points to seed the refinement
process by adding more vertices if necessary, as in [RY07]. The mesh M is defined
to be the Delaunay mesh of all these vertices. Finally, we refine this initial mesh
with respect to looser criteria than those defined by the user (typically, we relax the
various input criteria parameters by a factor two), using our refinement procedure
that we detail next.

3.2.1.4 Refinement

The refinement process is entirely driven by the user-defined criteria listed in Sec-
tion 3.2.1.2. Each refinement step is designed to remove a set of bad elements

(simplices not satisfying at least one of the given criteria) by inserting so-called
Steiner vertices to M. Unlike typical Delaunay refinement techniques that insert
one Steiner point at a time, we proceed in batches of refinement, inserting a sparse
subset of all the candidate Steiner points per batch (see Fig. 3.5).

Bad Elements The simplices considered for refinement are the so-called restricted

simplices, that is, the ones considered as inside the domain Ω or on ∂Ω—namely,
tetrahedra whose dual Voronoi vertex is located inside Ω, facets whose dual Voronoi
edge intersects ∂Ω and edges whose dual Voronoi facet intersects an input crease.
We consider one of these restricted elements bad if it violates one of the following
criteria:

• Size: A restricted edge is considered bad if it is longer than the sizing function
evaluated at its midpoint. A restricted facet or a tet is considered bad if at
least one of its edges is badly sized.

• Approximation error: A restricted edge e is considered bad if the distance from
its midpoint to the farthest intersection point between its dual Voronoi face
and an input crease is larger than the local approximation bound. Similarly,
a restricted facet f is considered bad if the distance from f ’s circumcenter to
the farthest intersection point between its dual Voronoi edge and ∂Ω is larger
than the approximation bound.

• Shape. A restricted facet (resp., tetrahedron) is considered bad if the ratio of
its circumradius to shortest edge is higher than the user-specified bound σf

max

(resp., σt
max).

54 Chapter 3. 3D Tetrahedral Mesh Generation

• Topology. A restricted edge (resp., facet) is considered as not capturing the
proper topology if its two (resp., three) vertices do not belong to the same
input crease (resp., surface patch). If the topology criterion is activated, we
store for each vertex v of the mesh its location with respect to the input PSC.
That is, each vertex is tagged either as an interior, a feature (e.g. corner), a
crease, or a boundary (i.e. surface) vertex. In the last two cases, the index of
the feature (crease or surface patch) is stored too.

In addition to these types of bad elements, we add an extra one to enforce the
topological disk condition [RY07] as it is an important indicator of topological con-
formity of the mesh to the input domain. For a vertex v tagged as boundary (i.e., on
an input surface patch), the topological disk condition is satisfied iff the boundary
facets incident to v form a topological 2-disk. If v belongs to an input crease, its
incident restricted edges (edges whose dual Voronoi facet intersects input creases)
have to form a topological 1-disk. We thus mark every boundary vertex of the mesh
whose topological disk condition is not satisfied as bad as well.

Steiner Vertices For each bad simplex, we define its
associated Steiner point location. The associated Steiner
point to a restrictededge is the farthest intersection point
between its dual Voronoi face and the input creases. The
associated Steiner point to a restricted facet is the far-
thest intersection point between its dual Voronoi edge
and ∂Ω. The associated Steiner point to a restricted
tetrahedron is its circumcenter. Finally, for each bound-
ary vertex of the mesh whose topological disk condition
is not satisfied, we define its associated Steiner point to
be the Steiner point of the facet (resp., crease edge) in-
cident to v that realizes the largest approximation error:
its insertion will help enforce the topological disk condi-
tion.

To ensure termination of the refinement process, we further check for encroach-

ment [She02b, CDL07, RY07]. The candidate Steiner point p of a tetrahedron
is said to encroach a boundary facet f if it is inside its restricted Delaunay ball
(centered at f ’s Steiner point and passing through the vertices of f). Similarly, the
Steiner point of a facet is said to encroach on a crease edge if it is inside its restricted
Delaunay ball (centered at its Steiner point and passing through its endpoints). In
these two cases of encroachment, we alter the position of the associated Steiner
point, replacing it by the Steiner point of the encroached primitive (and recursing
the encroachment check).

Independent Set Refinement To help define a good subset of Steiner points
to add in batch, we introduce the notion of conflict regions and independent sets of

3.2. Algorithm 55

conflict regions. For each Steiner point p, we call the “conflict region” the tetrahedra
that would be affected by its insertion as well as their adjacent tetrahedra: these
elements are likely to be destroyed by the insertion of p. We call an “independent set”
of conflict regions a set that does not contain overlapping conflict regions, so that
none of the insertions of these selected Steiner points would influence each other. We
construct such an independent set of conflict regions as described in Algorithm 6: we
iteratively select Steiner points in order of increasing dimension of their associated
simplices. That is, first crease edges are collected and sorted from worst to best. As
many crease-edge Steiner points as possible are inserted into the set, along with their
conflict regions, while making sure there is no overlap of conflict regions. Second,
we similarly treat boundary facets. Finally, tetrahedra are handled; however, as
there can be a large number of bad tetrahedra during the meshing process, the
same process of sorting elements before choosing them would be too costly. We
therefore process bad tetrahedra through a more efficient multiple-choice approach
as explained next, and this is done iteratively until no Steiner point can be inserted
to the independent set without overlapping the regions already inserted. Figure 3.4
shows an independent set on the mesh of a cylinder for which only the approximation
criterion is not yet satisfied.

Figure 3.4: Independent set of conflict regions. Left: Mesh of a cylinder obtained
by Delaunay refinement based only on an edge length criterion. Middle: Facets that
do not satisfy the approximation error criterion. Right: The computed independent
set of conflict regions.

Multiple-Choice Selection of Tetrahedra Although many Delaunay refine-
ment algorithms use modifiable priority queues to store all bad simplices of the mesh
M, most queue elements are short-lived as each Steiner point insertion affects its
surrounding. In fact, our experiments consistently showed that the computational
burden spent maintaining the global priority queue of all bad simplices is overly high
compared to the number of primitives actually refined. We thus depart from the
usual refinement strategy by using a multiple choice approach (proposed for mesh
decimation by Wu and Kobbelt [WK02]) as follows. At each step, a small container
of Nmc“bad” tetrahedra (Nmc= 20 in our implementation) is filled with randomly
selected non-conflicted tetrahedra. The worst tetrahedron in this container is then

56 Chapter 3. 3D Tetrahedral Mesh Generation

selected, and the container is updated with another random non-conflicted tetrahe-
dron. As our goal is to only sparingly refine the mesh before further optimization,
this multiple-choice approach significantly speeds up our refinement process while
preserving its overall performance.

Algorithm 6 Construction of Independent Set of Conflict Regions

Input: A PSC as input domain,

a coarse initialization of the mesh, and

a set K = {ki}i of criteria to be met.

Set Independent Set IS to nil.
Collect all restricted tets in Tbad.
Collect all bad crease edges in Ebad, bad boundary facets in Fbad.
for each bad simplex s in Ebad and Fbad (from worst to best), do

Let p be the Steiner point of s.
Let Uc be the set of all tets in direct conflict with p’s insertion.
Let Un be the set of all tets sharing a facet with a tet in Uc.
if No tetrahedron of Uc ∪ Un is in the Independent Set IS, then

Insert conflict region Uc ∪ Un in IS along with p.

Let Cmc be a multiple-choice container of Nmc tets.
while There are non-conflicted tets do

Fill up Cmcwith random tets from Tbad which Steiner points’
conflict regions Uc∪Un do not intersect regions already in IS.
Add Steiner point of Cmc’s worst tet & its conflict region to IS.

Batch-insert all Steiner points stored in IS to mesh.
Update restricted Delaunay triangulation.

3.2. Algorithm 57

Figure 3.5: Refinement steps without optimization. The mesh initialized with fea-
ture vertices; after a few batch refinement steps (from 5 to 50); the final refined mesh
with shape and approximation criteria satisfied; and its 244 slivers (tetrahedra with
dihedral angle smaller than 10 degrees).

58 Chapter 3. 3D Tetrahedral Mesh Generation

3.2.1.5 Optimization

Chen [Che04] defines an Optimal Delaunay Triangulation (ODT) as the minimizer
of the energy

EODT = ||fprimal
PWL − f ||L1 =

∑

Tj∈DT

∫

Tj

|fPWL − f |,

where f(x) = ||x||2 and fPWL is the linear function interpolating the values of f at
the vertices of each tetrahedron Tj . This energy has a simple geometric interpreta-
tion: it is the volume between the 4D paraboloid defined by f and its inscribed
piecewise linear approximation fPWL through lifting the triangulation onto the
paraboloid [BWY07]. Because of a result of function approximation theory [She02d]
stating that the best interpolating approximation of a function is achieved when the
elements’ size and orientation match the Hessian of the function, an ODT is thus
isotropic.

The energy EODT can be reformulated [ACSYD05] as

EODT =
1

4

∑

xi∈Tj

xi
2|Ωi| −

∫

M
x

2dx, (3.1)

where |Ωi| is the volume of the 1-ring neighborhood of vertex xi. Noting that the
last term is constant given a fixed boundary ∂M, and that |Ωi| =

∑

Tj∈Ωi
|Tj |, a

derivation of this quadratic energy in xi leads to the following optimal position x
⋆
i

of interior vertex xi in its 1-ring [Che04]:

x
⋆
i = − 1

2 |Ωi|
∑

Tj∈Ωi

















∇xi
|Tj |

[

∑

xk ∈ Tj

xk 6= xi

||xk||2
]

















. (3.2)

The term ∇xi
|Tj | is the gradient of the volume of the tetrahedron Tj with respect

to xi. Replacing the paraboloid function f(x) = ||x||2 by the translated function
f(x) = ||x − xi||2, does not change the interpolation error, leading to the same
optimal position. We thus get the following equivalent expression used to update a
vertex position :

x
⋆
i =xi −

1

2 |Ωi|
∑

Tj∈Ωi



∇xi
|Tj |

[

∑

xk∈Tj

||xi − xk||2
]



. (3.3)

We also know that, given xk a vertex of T , and fk its opposite facet in T , the
volume of T is |T | = 1

3 d(xk, fk) |fk|, where d is the Euclidian distance. By taking

3.2. Algorithm 59

its gradient, we obtain

∇xk
|T | = 1

3
|fk|∇xk

d(xk, fk) =
1

3
|fk|nk,

were nk is the unit normal to fk pointing towards xk. Most importantly, notice that
∇xk
|T | is independent on the location of xk.

From what we have seen, we get
∑

Tj∈Ωi
∇xi
|Tj | = 0. Thus, it follows that when

all ||xi − xk||2 are equal, x
⋆
i = xi. In other words, when the neighbors of xi lie on a

sphere with center c, x
⋆
i = c; we call this property the ODT circumsphere property.

As a special case of this property, the optimal position of a vertex that has only four
neighbors is exactly at T ’s circumcenter, denoted cT . Using Eq. (3.3) in this special
case of a 1-ring in the shape of a tetrahedron T = (xp,xq,xr,xs), and taking the
point xi to be located at xp, we get:

cT = xp −
1

2 |T |

[

∇xp |T |
[

∑

xk∈T

||xp − xk||2
]

+ F(xp,xq,xr) + F(xp,xq,xs) + F(xp,xr,xs)

]

(3.4)

where the extra terms on the right-hand side only depend on each face of the tetra-
hedron (because, as we took xi to be at xp, all but one of the tetrahedra inside T

are degenerate and become faces of T). More precisely, these terms are explicitly
given as:

F(xp,xq,xr) = +
1

3

[

||xp − xq||2 + ||xp − xr||2
]

Np,q,r

where Np,q,r is the area-weighted normal of the face (p, q, r) pointing towards the
inside of the tetrahedron, i.e., Np,q,r = |(p, q, r)| np,q,r. Now, go back to Eq. (3.3)
for an arbitrary 1-ring centered on xp, and note that the term in parenthesis appears
as is (for p ≡ i) in Eq. 3.4. Substitute this term by the circumcenter and all the
other terms that Eq. 3.4 contains. All the face terms F cancel each other out, thus
simplifying the expression to:

x
⋆
i =

1

|Ωi|
∑

Tj∈Ωi

|Tj |cj . (3.5)

Natural ODT for Boundary Vertices While [Che04, ACSYD05] do not in-
volve the boundary vertices in the minimization of the ODT energy, we propose
an extension that changes the update of boundary vertices during optimization so
as to further reduce the total energy, thus providing a boundary extension to the

60 Chapter 3. 3D Tetrahedral Mesh Generation

original ODT mesh smoothing procedure. Denote by xi a vertex on the boundary

of a 3D mesh (i.e., it does not have a full 1-ring N (xi) of restricted tetrahedra). For
a given connectivity, the new position x

⋆
i of xi that extremizes the ODT energy is

a bit more complicated, as some of the face terms F do not disappear:

x
⋆
i =

[





∑

T∈N (xi)

|T |cT



+ B

]

/
∑

T∈N (xi)

|T |,

where the boundary terms B are

B =
1

6





∑

(i,p,q)∈∂M
Ni,p,q

[

||xi − xq||2 + ||xi − xq||2
]



 .

The first part (|T |cT) is the weighted barycenter of the circumcenters divided by
the total 1-ring volume just as before. At the boundary appears an extra term, a
sum over boundary triangles (i, p, q) involving the squared length of the “spokes” of
the triangle 1-ring. This formula, applied as is, shrinks the domain as it obviously
decreases the total energy. However, as seen previously, we can assign a multiplica-
tive weight λ to the supplementary term B without affecting the update rule for
internal vertices, because the boundary terms cancel each other out for a full 1-ring:

x
⋆
i =

[





∑

T∈N (xi)

|T |cT



+ λB

]

/
∑

T∈N (xi)

|T |.

We now use set this extra degree of freemdom λ so as to retain the ODT circumsphere

property mentioned earlier, but now in the case of an incomplete 1-ring: if all
neighbors of xi are at the same distance from xi, we want x

⋆
i = xi: we will thus

obtain a formula valid for both the complete 1-ring and incomplete 1-ring cases,
while preserving the ODT circumsphere property. We have

x
⋆
i = xi −

1

2|Ωi|
∑

Tj∈Ωi



∇xi
|Tj |
[

∑

xk∈Tj

||xi − xk||2
]

+ (1− λ)
∑

p,q 6=i

F(xi,xp,xq)



 .

(3.6)

Consider the case where all ||xi − xk||2 are equal to some constant R. We want
x

⋆
i = xi and we know, from the divergence theorem applied on the 1-ring of the

boundary vertex, that

∇xi
|Tj | = −

∑

p,q 6=i

1

3
Ni,p,q.

On the one hand, ∇xi
|Tj | is weighted by 3R in (3.6). On the other hand, each

1
3Ni,p,q is weighted by 2R in (3.6). Enforcing the circumsphere property on partial

3.2. Algorithm 61

1-rings at the boundary thus requires (1 − λ) = 3/2, i.e., λ = −1/2. The optimal
position for this variant (denoted NODT for Natural ODT) is now computed as

x
⋆
i =

[





∑

T∈N (xi)

|T |cT



− 1

2
B

]

/
∑

T∈N (xi)

|T |,

where the boundary terms B (if any) are

B =
1

6





∑

(i,p,q)∈∂M
Ni,p,q

[

||xi − xp||2 + ||xi − xq||2
]



 .

Variable Sizing The optimization formula above is only valid for generating uni-
form isotropic meshes. To account for a variable mesh sizing, we update a dynamic
mesh sizing function after each batch of refinement, and replace all measures in
above formulas (lengths, areas, volumes) by measures in the metric of the sizing
function. Such measures are obtained by quadratures over the mesh elements. This
sizing function [ADA07] is guaranteed to be K-Lipschitz and is initialized with
values computed by averaging the lengths of the mesh edges incident to all mesh
vertices. Intuitively, the refinement is in charge of discovering the local feature size
of the domain boundary. One of the user-defined criteria triggers a local refinement
of the mesh, which induces an update of the sizing function, which in turn imposes
further refinements to maintain the K-grading of the mesh. The optimization part
of the algorithm then takes the current sizing function as input to avoid the undoing
of local refinements that a uniform sizing would produce.

Restriction and Projection In practice, as we want the mesh to interpolate the
domain, each boundary vertex of the mesh should be on ∂Ω. To enforce this prop-
erty, the new location x

⋆
p of xp is projected onto ∂Ω. Two cases are distinguished:

x
⋆
p can belong to a surface patch, or to a sharp feature of the mesh. If at least one

of the incident edges to xp is a crease edge (i.e., its dual Voronoi facet intersects a
PSC crease), then we project x

⋆
p onto the closest crease. Similarly, if at least one of

the incident facets to xp is a boundary facet (i.e., its dual Voronoi edge intersects
the PSC), we project x

⋆
p onto the closest facet of the input PSC.

62 Chapter 3. 3D Tetrahedral Mesh Generation

Figure 3.6: Comparing Delaunay refinement and mesh optimization. Distributions
of dihedral angles are shown to the left. Slivers are shown for a dihedral angle bound
of respectively 5 (middle) and 10 degrees (right). Top: Delaunay Refinement alone
(resp. 35 and 136 slivers). Middle: Optimized mesh with 100 Lloyd iterations (resp.
23 and 55 slivers). Bottom: Optimized mesh with 100 NODT iterations (resp. 0
and 3 slivers).

3.2. Algorithm 63

3.2.2 Sliver removal

The only bad elements that remain after Delaunay refinement are slivers. A sliver
tetrahedron is formed by evenly placing its 4 vertices near the equator of its circum-
sphere (see Figure 1.5). In such a sliver the smallest dihedral angle can be very close
to 0̊ , and a numerical simulation may be far from accurate in the presence of slivers.

While our NODT boundary treatment significantly reduces the number of slivers
compared to the results reported in [ACSYD05], we cannot guarantee a total ab-
sence of slivers (see Figure 3.8). We thus perform a final phase of sliver removal.
We implemented an explicit perturbation inspired by [Li00a] which performed bet-
ter than sliver exudation [CDE+00] in all our experiments. This phase applies small
perturbations to each vertex incident to slivers. We first try to move along the gra-
dient of the squared circumradius of the sliver; if unsuccessful, the volume gradient
is tried. If neither of these perturbations remove the sliver without adding new ones,
random perturbations are applied repeatedly.

3.2.2.1 Previous Work

The problem of removing slivers from a 3D Delaunay mesh has received some atten-
tion over the last decade. Delaunay refinement gets so close to providing a perfect
output that removing the leftover slivers is generally performed as a post-processing
step that is worth it. Previous work on removing and avoiding the creation of sliv-
ers can be classified into three parts: The Delaunay-based methods, the weighted
Delaunay-based methods, and the non-Delaunay methods. For each part, post-
processing steps and complete mesh generation algorithms can be studied. This
section focuses on a post-processing step, devised to take as input a Delaunay mesh
and to improve its quality in terms of dihedral angles.

Delaunay-based

Vertex Perturbation Li [Li00a, ELM+00] proposes to explicitly perturb the ver-
tices incident to a sliver in an almost-good mesh, by locally relocating them so as to
remove the incident slivers. The idea is based on the fact that, for any triangle qrs,
the region of locations of the vertex p such that the tetrahedron pqrs is a sliver, is
very small. Moving the point p out of this region ensures that the tetrahedron is
not a sliver anymore, or has disappeared once the Delaunay connectivity is updated.
This is achieved by moving the point p to a new location inside a small ball centered
at p, whose radius is proportional to the distance from p to its the nearest neighbor.
The authors show that for certain values of the involved parameters, there always
exists some points in this ball which are outside all regions that form slivers with
nearby triangles. Li uses the union graph concept to avoid circular dependencies on

64 Chapter 3. 3D Tetrahedral Mesh Generation

vertex perturbations. The following theorem [Li00a] proves the existence of such a
point that makes the mesh locally sliver-free.

Theorem 3.2.1 (Sliver theorem [Li00a]). If every simplex in a Delaunay triangula-

tion has radius-edge ratio of at least ρ0, then there is a constant σ0 > 0 and a very

mild perturbation S′ such as the volume per cube of shortest edge length σ(τ) ≥ σ0

for each tetrahedron τ in the perturbed triangulation.

Based on this theorem, Li proposes an algorithm that applies mild random pertur-
bations to the mesh until one which removes slivers is found. One drawback of the
above result is the pessimistic theoretical estimate of the bounds on the involved
parameters. These bounds are either too small or too large to have any signifi-
cance. In practice, though this technique is very effective, when targeting a large
bound on the minimum dihedral angle (e.g. 15̊), the average number of trials of
random perturbations required is very large. In our experiments, it is not rare to
apply hundreds of random perturbation trials on a single vertex before succeeding
in removing a sliver. This number is not surprising when seeking a high minimum
dihedral angle such as 15̊ since the corresponding tetrahedron is not a real sliver
anymore. However the fact that the perturbation succeeds even for a high minimum
dihedral angle is at the core of our motivation. Finally, the fact that this method
always maintains the mesh as a true Delaunay triangulation makes it both robust
and practical.

Vertex insertion One strategy for sliver removal is to insert vertices, in order
to cause connectivity changes inside the Delaunay triangulation. Usual Delaunay
refinement shape criterion is the radius-edge ratio, which does not detect slivers.
Labelle proposes a vertex insertion strategy [Lab06] based on a dihedral criterion to
characterize bad tetrahedra, and in particular slivers. In presence of slivers, points
located on two different regular grids are inserted to the mesh. The algorithm is
complex, but has good guarantees on output dihedral angles, which provably are in
the interval [30̊ ; 135̊].

Sliver-free mesh generation. Some mesh generation algorithms are designed to
avoid creating slivers. For example, Delaunay refinement can be modified by choos-
ing a new type of Steiner point which does not create any sliver [Li00b, LT01, LH01].
As an example, Chew’s algorithm [Che97] inserts Steiner points in a randomized
manner, to avoid the creation of slivers. This method has a theoretical lower bound
of arcsin 1/4 ≈ 14.5̊ on the angles of the triangular faces of the mesh. Labelle’s
algorithm [Lab06] can also be used as a complete mesh generation algorithm.

3.2. Algorithm 65

Weighted Delaunay-based

Sliver exudation First described by Cheng et al. [CDE+00], sliver exudation is
a technique based on turning a Delaunay triangulation into a weighted Delaunay
triangulation [BWY07], devised to trigger flips so as to increase the minimal angle.
Edelsbrunner and Guoy [EG02] provide an experimental study of sliver exudation,
and show that it works pretty well in practice as a post-treatment applied to a
triangulation obtained by Delaunay refinement [RY07]. The main strategy of the
algorithm consists of assigning a weight to each vertex so that the weighted Delaunay
triangulation is free of any slivers after connectivity updates, without any changes
over the vertex locations. This method successfully increases all dihedral angles
above 5̊ in the best configuration (see Section 3.2.2.3), but as admitted in [EG02],
the theoretical bound on the dihedral angle is too small to be of any practical
significance.

Beside being not strictly Delaunay anymore, the main disadvantage of sliver exuda-
tion is that the process often ends with leftover slivers near the boundary [EG02].
This is mainly due to the fact that sliver exudation is not allowed to modify the
topology of the boundary of the mesh. Hence, weight assignments close to the
boundary are constrained and do not always manage to remove the slivers.

Sliver-free mesh generation. Cheng and Dey [CD02] propose a complete Delau-
nay refinement algorithm, combined with the sliver exudation technique. This type
of weighted-Delaunay algorithm is also used to handle input domains containing
sharp creases subtending small angles [CDR05].

Non-Delaunay

Local combinatorial operations. Though a Delaunay-refined triangulation is
known to have nice properties on its angles in 2D [Ede87], there is no theoretical
guarantee on the dihedral angles in 3D. One valid choice consists of leaving the
Delaunay framework by flipping some well-chosen simplices [She02c, KS07], either
as a post-processing step to the meshing process [KO01], or during the whole pro-
cess [CDM04]. As long as the triangulation remains valid, flips can be performed on
its edges and facets. Joe gives a description of all possible flips [Joe95] that can be
made in a triangulation, and a triangulation improvement algorithm through these
flips. Although each improvement in this algorithm is local, the complete algorithm
succeeds in improving the overall quality of the mesh.

Dealing with non-Delaunay meshes can also be combined with optimization steps,
such as Laplacian smoothing [FK94], which relocates each vertex to a new location
computed as an average of the incident vertex positions. Laplacian smoothing can
be applied to any valid triangulation.

66 Chapter 3. 3D Tetrahedral Mesh Generation

Sliver-free mesh generation. Some other types of triangulations, such as for
example max-min solid angle triangulations [Joe91] can be computed to improve the
solid angles as compared to that in a Delaunay triangulation. This method generates
a set of well-distributed points in the input polyhedral domain and first computes a
Delaunay triangulation of these vertices. Then, local combinatorial transformations
are applied to satisfy the local max-min angle criterion. These local transformations
can in fact be applied to any triangulation as a post-processing step.

Instead of performing local improvements through flips in a Delaunay mesh, Labelle
and Shewchuck [LS07] propose a fast lattice refinement technique which constructs
a triangulation based on two nested regular or adapted grids. In its graded version
this algorithm provides a theoretical bound on the dihedral angles which is much
more practical than provided by other algorithms.

Contribution We present a sliver removal algorithm inspired by Li’s random per-
turbation algorithm [Li00a]. Our algorithm is made more deterministic by choosing
a favored perturbation direction for each vertex incident to one or more slivers, before

resorting to Li’s random perturbation if the favored perturbation fails at removing
the incident slivers. Our experiments show that the chosen deterministic directions
are sufficient to remove more than 80% of the slivers of a mesh, leading to shorter
computational times. In addition, our approach is able to deal with uniform and
graded meshes (see Figure 3.7), and reaches higher minimum dihedral angles than
random perturbation in practice [TSA09].

Figure 3.7: Sphere. (Left) Graded mesh with 3195 vertices, output angles are
in [23.5; 142.5]. (Right) Uniform mesh with 7041 vertices, output angles are in
[30.02; 138.03].

3.2. Algorithm 67

Figure 3.8: Elephant. Top: mesh generated by Delaunay refinement with
lmax = 0.1, ǫmax = 0.001. Distribution of dihedral angles, and sliver tetrahedra
with dihedral angles lower than 15 degrees are shown. Middle: output of Delaunay
refinement (i.e., top row) optimized with our technique. Bottom: optimized mesh
(middle row) after sliver perturbation.

68 Chapter 3. 3D Tetrahedral Mesh Generation

3.2.2.2 Algorithm

We describe a sliver perturbation algorithm which improves in a hill-climbing man-
ner the dihedral angles of an input isotropic Delaunay mesh. This algorithm can be
used as a post-processing step after refinement or optimization.

To improve the dihedral angles of the mesh tetrahedra, the rationale behind our
approach is as follows: each vertex v incident to at least one sliver is repeatedly
relocated through a perturbation vector ~pv such that when v moves to v + ~pv, the
incident slivers get flipped. More specifically, the chosen direction for ~pv is not
devised to improve the shape of the slivers, but rather to worsen them instead, so
that they get flipped. Two directions are favored by the algorithm: the incident
squared circumradius gradient ascent (see Section 3.2.2.2) and the sliver volume
gradient descent (see Section 3.2.2.2). The length of the perturbation vector is
heuristically chosen as a fraction (usually between 0.05 and 0.2) of the minimum
incident edge length. If neither of these two perturbation vectors succeed in flipping a
sliver we resort to random perturbations (see Section 3.2.2.2). If the whole sequence
does not improve the local minimum dihedral angle then we restore the vertex to
its original location before perturbation.

Algorithm 7 Sliver perturbation
Input: T : a Delaunay triangulation,

α: the angle bound defining slivers, and

Nmax: the maximum number of random trials, or gradient steps.

Let P be a priority queue of Delaunay vertices.
Fill P with vertices incident to slivers,
Compute perturbation vector ~pv for each vertex v in P,

while P non-empty do

Pop v from P,
v′ ← v,
while relocating v to v′ would not trigger a combinatorial change,
and #loops < Nmax do

v′ ← v′ + ~pv,
if ~pv is random, then

compute a new ~pv,
v′ ← v.

Conditionally relocate v to v′.

if v is still incident to slivers and ~pv is not random, then

Compute a new perturbation vector (another type, if possible),
and re-insert v into P.

Insert all vertices affected by relocation into P,
with their new perturbation vector.

3.2. Algorithm 69

When more than one sliver is incident to a vertex v, all perturbation vectors
must be compatible (i.e., pushing in a similar direction) to be effective. In our
current algorithm, a set of perturbation vectors are said to be compatible if all
their pairwise dot products are positive. The perturbation vector ~pv is then set to
be the average of these vectors. When not compatible, v is perturbed only using
random perturbations. The algorithm relies on a modifiable priority queue, built
in a way such that vertices incident to fewer slivers are processed first. Hence, any
“chain" of slivers (set of slivers sharing at least one vertex) is treated starting from
its endpoints thereby minimizing the need to process vertices incident to more than
one sliver.

Note that each vertex relocation is conditional, as we want our algorithm to be
hill-climbing in terms of dihedral angles. We need to check that the minimum
dihedral angle of the triangulation does not decrease, and that the topology of the
boundary is not affected. Otherwise, the relocation is canceled.

Each time a vertex is effectively relocated, the priority queue is updated. Moving
v to v′ in a Delaunay mesh makes combinatorial changes (and, hence, changes on
incident dihedral angles) on the vertices incident to v before its removal, and the
ones incident to v′ after its insertion. We first compute the perturbations associated
with all these vertices, and insert them into the priority queue.

The order in which the vertices are processed in the priority queue is related to the
vertex type. Interior vertices are processed first, since they are more likely to be
easily perturbable than boundary vertices. The boundary vertices are constrained
to be located on the boundary, and their move must not break the topology of the
mesh. These constraints make them more difficult to perturb. The other ordering
criteria are discussed in Section 3.2.2.3.

By construction, our combined perturbation algorithm is hill-climbing in the sense
that the dihedral angles in the output mesh must be higher than the ones in the input
mesh. Li’s random perturbation [Li00a] has theoretical guarantees. In particular,
it can be shown that, given an input mesh, a small perturbation can be found
that improves the radius-edge ratios of simplices (Theorem 3.2.1). This combined
method makes some deterministic perturbation trials, which are aborted when they
fail to improve the dihedral angles in the mesh. At this point, the combined method
has not damaged the quality of the mesh. Since we resort to random perturbation
in case deterministic perturbation has failed, combined perturbation appropriates
random perturbation guarantees [Li00a].

70 Chapter 3. 3D Tetrahedral Mesh Generation

Circumsphere Radius In an almost-good isotropic tetrahedron mesh, the
distribution of the mesh vertices is locally uniform. Hence, perturbing the vertex
locations so as to make the radius of the sliver’s circumsphere explode triggers many
flips as the empty circumsphere property must hold after Delaunay connectivity
update.

Let τ be the sliver, and {pi}i=0,1,2,3 its vertices. Without loss of generality, and
since the sequel remains true by translation, we can assume that p0 = 0R3 . We also
assume that this vertex is fixed. Let c be τ ’s circumcenter. We have ||c|| = R the
radius of τ ’s circumsphere. Then, ∇R2 = ∇||c||2. We aim at computing ∇R2.

Let pi = (xi, yi, zi) for i in {0, 1, 2, 3} be τ ’s vertices, with p0 = 0R3 . Also,
let p2

i be (x2
i + y2

i + z2
i). The center c of the circumsphere of τ is given by

c =





xc

yc

zc



 =







Dx

2a
Dy

2a
Dz

2a






, where a =

∣

∣

∣

∣

∣

∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣

∣

∣

∣

∣

∣

,

Dx = −

∣

∣

∣

∣

∣

∣

p2
1 y1 z1

p2
2 y2 z2

p2
3 y3 z3

∣

∣

∣

∣

∣

∣

, Dy = +

∣

∣

∣

∣

∣

∣

p2
1 x1 z1

p2
2 x2 z2

p2
3 x3 z3

∣

∣

∣

∣

∣

∣

, and Dz = −

∣

∣

∣

∣

∣

∣

p2
1 x1 y1

p2
2 x2 y2

p2
3 x3 y3

∣

∣

∣

∣

∣

∣

.

Thus we have, ∇p1
||c||2 =









∂||c||2
∂x1

∂||c||2
∂y1

∂||c||2
∂z1









with

∂||c||2
∂x1

=
∂

∂x1

(

D2
x + D2

y + D2
z

4a2

)

=
1

2a3
·
(

a · (Dx ·
∂Dx

∂x1
+ Dy ·

∂Dy

∂x1
+ Dz ·

∂Dz

∂x1
)− ∂a

∂x1
· (D2

x + D2
y + D2

z)

)

,

∂||c||2
∂y1

=
1

2a3
·
(

a · (Dx ·
∂Dx

∂y1
+ Dy ·

∂Dy

∂y1
+ Dz ·

∂Dz

∂y1
)− ∂a

∂y1
· (D2

x + D2
y + D2

z)

)

,

∂||c||2
∂z1

=
1

2a3
·
(

a · (Dx ·
∂Dx

∂z1
+ Dy ·

∂Dy

∂z1
+ Dz ·

∂Dz

∂z1
)− ∂a

∂z1
· (D2

x + D2
y + D2

z)

)

.

and

∇p1
a =







∂a
∂x1
∂a
∂y1
∂a
∂z1






=





y2z3 − y3z2

−(x2z3 − x3z2)

x2y3 − x3y2



,

∇p1
Dx =







∂Dx

∂x1
∂Dx

∂y1
∂Dx

∂z1






=







−2x1
∂a
∂x1

−2y1
∂a
∂x1

+ p2
2z3 − p2

3z2

−2z1
∂a
∂x1
− p2

2y3 + p2
3y2






,

3.2. Algorithm 71

∇p1
Dy =







∂Dy

∂x1
∂Dy

∂y1
∂Dy

∂z1






=







−2x1
∂a
∂y1
− p2

2z3 + p2
3z2

−2y1
∂a
∂y1

−2z1
∂a
∂y1

+ p2
2x3 − p2

3x2






,

∇p1
Dz =







∂Dz

∂x1
∂Dz

∂y1
∂Dz

∂z1






=







−2x1
∂a
∂z1

+ p2
2y3 − p2

3y2

−2y1
∂a
∂z1
− p2

2x3 + p2
3x2

−2z1
∂a
∂z1






.

Following a gradient ascent scheme, the vertex position pi evolves this way:

pnext
i = pi + ǫ

∇piR
2
τ

||∇piR2
τ ||

,

where the step length ǫ is taken as a fraction of the minimum incident edge length
to pi. A relocation is performed only if the new minimal dihedral angle in the
tetrahedra impacted by the relocation is not smaller than it was before relocation.
As shown by Figure 3.9, the squared radius of τ ’s circumsphere increases very fast
for a small perturbation of one of its vertices’ positions. The circumsphere, now
huge, most probably includes other mesh vertices, which triggers a flip to maintain
the empty sphere Delaunay property.

Figure 3.9: Circumsphere of a sliver. Before perturbation (left), the sliver is close
to the equatorial plane of its circumsphere. A very mild perturbation of one of the
sliver vertices (right) makes its circumradius increase considerably.

Volume One of the main characteristics of a sliver is that its volume is strictly
positive albeit small with respect to its smallest edge length, and possibly arbitrarily
small. This property can be exploited in order to apply a perturbation devised to
generate a sliver with negative volume and hence to trigger a combinatorial change.

Let {pi}i=1,2,3 be the three fixed points of τ , and p0 the vertex to be perturbed.

72 Chapter 3. 3D Tetrahedral Mesh Generation

The volume of τ is

Vτ =
1

6

∣

∣

∣

∣

∣

∣

∣

∣

x0 y0 z0 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

∣

∣

∣

∣

∣

∣

∣

∣

.

Then, we get the volume gradient:

∇p0Vτ =
1

6





y2z3 + y1(z2 − z3)− y3z2 − z1(y2 − y3)

−x2z3 − x1(z2 − z3) + x3z2 + z1(x2 − x3)

x2y3 + x1(y2 − y3)− x3y2 − y1(x2 − x3)



 .

Following a gradient descent scheme, the vertex position pi evolves this way:

pnext
i = pi − ǫ

∇piVτ

||∇piVτ ||
,

where the step length ǫ is taken as a fraction of the minimum incident edge length to
pi. A relocation is performed only if the new minimal dihedral angle of the tetrahedra
impacted by the relocation is not smaller than it was before relocation. A negative
tetrahedron volume triggers a flip to maintain a valid Delaunay triangulation.

Random perturbation When both ∇V and ∇R2 fail at flipping the considered
slivers by vertex perturbation, we use a random perturbation based on Li’s
approach [Li00a]. A perturbation satisfying three conditions (flip sliver, improve
minimum dihedral angles, preserve restricted Delaunay triangulation) is searched
for randomly inside a sphere centered at v. In accordance with Li’s algorithm, the
magnitude of the perturbation vector is set to fraction of the minimum incident
edge length.

3.2. Algorithm 73

3.2.2.3 Experiments and Results

The algorithm presented has been implemented with the 3D Delaunay triangulation
of the Computational Geometry Algorithms Library [cga]. Our implementation of
Li’s random perturbation algorithm is based upon Algorithm 7, with one single
perturbation type: the random one, described in Section 3.2.2.2. For each of the
following experiments we set 100 trials of random perturbations (in our combined
version as well as in the purely random algorithm).

The order in which the vertices are processed in the priority queue has been chosen
empirically as a result of many experiments. Interior vertices are processed first,
with priority over boundary vertices. Boundary vertices are constrained so as to
remain on the domain boundary and their relocation is invalid if they modify
the local restricted triangulation. This makes boundary vertices more difficult to
perturb than interior vertices. The second order criterion is the number of incident
slivers to the processed vertex. The idea behind this choice is that a chain of slivers
(several incident slivers) is more difficult to perturb than an isolated sliver as the
directions of gradients may not be compatible. However, if the endpoints of the
chain are successfully perturbed, we ideally would not have to deal with vertices
incident to more than one sliver. Thirdly, the vertex incident to a smaller dihedral
angle is processed first, as our first goal is to remove the worst tetrahedra.

In our experiments, the ∇R2 direction turns out to be more effective than ∇V

at perturbing a sliver. On average, this perturbation is responsible for about 80%

of all sliver flips. The ∇V perturbation accounts for about 15% of the flips while
the random perturbation counts for the remaining 5%. The priority given to ∇R2

over ∇V and random while picking the perturbation vector can be blamed for
distorting these statistics, but we have chosen this order because it turns out to be
the most effective. Giving priority to ∇V results in an overall slowdown. Random
perturbation always remains the last resort in the combined perturbation algorithm
as the deterministic directions are favored.

The following experiments show what our combined algorithm can achieve on
meshes generated by Delaunay refinement alone and on some meshes which have
been optimized after refinement. A mesh optimization algorithm is in general
devised to improve the mesh quality [ABE97] while simpler algorithms aim at
evenly distributing the vertices in accordance to a given mesh sizing function. Note
that a mesh with well-spaced vertices does not mean an absence of slivers inside
the mesh [Tal97], and hence sliver removal is still required. The mesh optimization
schemes used in our experiments are the centroidal Voronoi tessellation [DFG99]
using the Lloyd iteration, and the Optimal Delaunay triangulation (ODT for
short) [CX04a]. Both of these optimization methods have been implemented in a

74 Chapter 3. 3D Tetrahedral Mesh Generation

Figure 3.10: Dinosaur. Comparison of the timings for our perturbation and ran-
dom perturbation (in seconds) w.r.t. the sliver angle bound α on the Dinosaur
model meshes obtained by Delaunay refinement (left), followed by Lloyd optimiza-
tion (middle) and ODT optimization (right).

way that respects the local density of the mesh. It is important to not modify the
density of a graded mesh, and to not decrease its quality.

Figures 3.10 and 3.11 provide the computation times and the best minimum
dihedral angles obtained in our experiments. The same experiment has been
carried out on many other models (not shown), giving similar results. Figures 3.10
and 3.11 emphasize that, for the same definition of a sliver (in terms of smallest
dihedral angle), the combined algorithm is faster in removing all slivers by explicit
perturbation compared to using Li’s random perturbation alone. Moreover the
combined algorithm reaches higher minimum dihedral angles.

The algorithm obtains fairly high minimum dihedral angles when the input is a
mesh obtained by Delaunay refinement. Figures 3.10 and 3.11 illustrate that when
the mesh is optimized prior to perturbation, the time taken for the algorithm to
succeed in removing all slivers is shorter and that it can reach a higher minimum

3.2. Algorithm 75

Figure 3.11: Bimba. Comparison of the timings for our perturbation and random
perturbation (in seconds) w.r.t. the sliver angle bound α on the Bimba model meshes
obtained by Delaunay refinement (left), followed by Lloyd optimization (middle) and
ODT optimization (right).

dihedral angle. As shown by histograms of Figure 3.10, the algorithm takes 611
seconds to perturb the mesh obtained after Delaunay refinement so that no dihedral
angle is below 17̊ . If the same mesh is optimized prior to perturbations, the time
taken goes down to 76 seconds for Lloyd and even further down to 11 seconds for
ODT. Overall the same histograms show that a mesh optimized by ODT is easier
to perturb and can reach a higher minimum angle (25̊) than a mesh optimized by
Lloyd (21̊). However, optimization can be costly. The optimizations performed on
Figure 3.10 meshes before applying perturbation took about 200 seconds. In spite
of this additional cost, the combined perturbation algorithm remains more efficient
than the random one. The same comments apply to Figure 3.11. The gradation
of the mesh in Figure 3.11, along with the numerous high curvature regions, make
it more difficult to perturb in a way that still preserves the gradation, even after
optimization. Even in this case, ODT reaches a higher minimum angle.

For comparison we have also performed sliver exudation on meshes generated by
Delaunay refinement and on meshes optimized after refinement. As expected sliver

76 Chapter 3. 3D Tetrahedral Mesh Generation

exudation performs better on the optimized meshes.

We performed two other experiments that were abandoned since they rarely
succeeded in improving the mesh quality. While computing the perturbation
of a vertex incident to more than one sliver, we tried combining ∇V vector of
one of the slivers and ∇R2 of the other by using their average as perturbation
direction if they were compatible. In practice such a combination was almost
never successful removing the slivers. The other aborted experiment consisted
of removing from the mesh the vertices that every explicit perturbation failed
to perturb. In practice this never resulted in improving the minimum dihedral angle.

Moreover, our experiments show that successively applying our combined algorithm
to the mesh several times while progressively increasing the angle bound that
defines a sliver provides higher minimal dihedral angles at the price of higher
computation times. This amounts to giving priority to vertices incident to the
worst slivers, cluster by cluster of minimum dihedral angles.

Table 3.1 summarizes the best angles obtained in this way using combined
perturbation, random perturbation and sliver exudation. In this labor-intensive
experiment we only measure how far we can go in terms of dihedral angles and do
not consider timing. Finally, Figure 3.12 shows some Delaunay meshes obtained
by Delaunay refinement followed by ODT optimization and perturbed with the
combined algorithm along with their dihedral angle histograms.

Mesh input us random exudation
Dinosaur (DR) 0.65 25.0 24.2 1.68
Dinosaur (DR & Lloyd) 0.24 26.15 23.5 4.47
Dinosaur (DR & ODT) 2.26 28.55 22.0 4.55
Bimba (DR) 0.16 15.51 15.64 1.11
Bimba (DR & Lloyd) 0.11 16.02 15.63 3.84
Bimba (DR & ODT) 0.84 19.8 18.85 4.47

Table 3.1: Angles. Minimum dihedral angles obtained by the different perturbation
algorithms (combined perturbation, random perturbation, and sliver exudation).
To achieve these maxima, combined perturbation takes about twice the exudation
time, and random perturbation takes about six times the exudation time.

3.2. Algorithm 77

3.2.2.4 Summary

We have presented a practical vertex perturbation algorithm for improving the
dihedral angles of a 3D isotropic Delaunay triangulation. The key idea consists
of performing a gradient ascent over the sliver circumsphere radius as well as
a gradient descent over the sliver volume. All vertices incident to slivers are
processed, in an order devised to improve effectiveness and computation times. We
compare our approach with pure random perturbation and sliver exudation.

Our experiments show that we are both faster and able to reach higher minimum
dihedral angles. Our scheme is particularly well suited as a post-processing step
after mesh optimization [TWAD09]. We also plan to use it in the context of mesh
generation from multi-material voxel images [BYB09].

In the cases where all vertices of a sliver are on the domain boundary, the pertur-
bation can fail in removing a sliver as the boundary vertices are too constrained.
One way to extend our approach would be to also perturb the vertices of the sliver’s
adjacent tetrahedra whose relocation can impact the sliver. Future work will focus
on obtaining a proof of termination of our combined perturbation algorithm, and
some tighter lower bounds on output dihedral angles.

Figure 3.12: Delaunay meshes perturbed with combined perturbation algorithm
after ODT optimization.

78 Chapter 3. 3D Tetrahedral Mesh Generation

3.3 Implementation

Our algorithm is implemented in C++ using the CGAL library [cga]. We use its 3D
Delaunay triangulation as our core data structure. The input PSC is represented as
a surface triangle mesh, itself being represented by a CGAL polyhedral surface.

3.3.1 Intersection and Projection

One crucial component for reaching good timings is the efficient update of the re-
stricted triangulation and computation of Steiner points. This requires many in-
tersection tests between rays and Voronoi edges and the input domain boundary,
as well as intersections between Voronoi faces and the input sharp creases. We
have implemented a collision detection library based on the principles used in OP-
CODE [Ter05]. Two hierarchies of axis-aligned-bounding-boxes (AABBs) are cre-
ated right after loading the input PSC: one for the PSC triangle facets and one for
the PSC segment sharp creases. Figure 3.13 shows two input surface triangle meshes
and the associated triangle facets AABB trees constructed.

Each intersection query (be it a test or an exhaustive enumeration) then calls inter-
section with AABBs during traversal, and intersection with PSC primitives (triangle
or segments) at the leaves of the tree. In addition, the same AABB trees are used for
projecting the optimized boundary vertices onto the domain boundary or creases.
The trees are this time queried with 3D balls whose radius decreases during the tree
traversal. A projection (or distance) query between a point p and the input prim-
itives is turned into a ball (centered at p) query. Similarly to intersection queries,
the ball traverses the AABB tree and recursively queries intersection tests with the
AABBs. When the traversal ends, at the leaves of the tree, the closest point p′ from
p on the input primitives is computed.

Construction The AABB tree construction starts by computing the AABB of the
complete set of input primitives. Then, all primitives are sorted along the longest
coordinate axis of this AABB. The primitives are separated into two subsets of
equal size. This splitting procedure is applied recursively until each bounding box
contains a single primitive.

Functionalities The AABB tree data structure is built to provide a number of
intersection detection, intersection computation and distance computation function-
alities. An intersection query can be made to get the intersection objects (e.g. inter-
section points for ray queries). A distance query can be made to compute a distance
or to get, for example, the closest point or primitive from the query point.

An AABB tree can be built on several types of input data, including a set of triangles
and a set of segments.

3.3. Implementation 79

Figure 3.13: AABB tree. Top: input surface triangle meshes. Bottom: AABB trees
constructed from triangle facets.

Intersection queries Intersection queries are very important for Delaunay re-
finement. Our first AABB tree is constructed from a set of triangles: the input PSC
triangle facets. This is useful for extracting the restricted Delaunay tetrahedra from
the mesh. A tetrahedron is said to be restricted if its circumcenter is on the bounded
side of the input surface triangle mesh, which should be manifold and watertight.
Testing if a tetrahedron τ is restricted or not can thus be done by counting the
number of intersections between the input boundary triangles and an arbitrary ray
whose source point coincides with τ ’s circumcenter. The tetrahedron is restricted if
and only if this number is odd. Similarly, a Delaunay facet is said to be restricted

if its dual Voronoi edge intersects the input boundary. The AABB tree of triangles
is used for computing the intersection between the input surface triangle mesh and
Voronoi segments.

The second AABB tree employed is constructed from a set of segments: the input
PSC segment sharp creases. This is useful for extracting the restricted Delaunay
edges from the mesh. A Delaunay edge is said to be restricted if its dual Voronoi
facet intersects the input surface sharp edges.

Figure 3.14 shows an input PSC and the restricted edges, facets and tetrahedra of
a mesh with respect to this PSC.

80 Chapter 3. 3D Tetrahedral Mesh Generation

Figure 3.14: AABB tree. (a) Input PSC. (b) AABB tree computed from the PSC’s
triangle facets. (c) A mesh M computed by interleaving refinement and optimization
(inside tetrahedra). (d) Restricted edges in M are plotted in blue. (e) Restricted
facets in M . (f) Restricted tetrahedra in M .

Besides the detection of restricted simplices, intersection queries are needed to com-
pute Steiner points of bad simplices. The Steiner point of a bad (restricted) simplex
is computed as the intersection point between its dual Voronoi object and its cor-
responding input boundary simplex (see Section 3.2.1.4 for details on the choice of
Steiner vertices).

An intersection query starts a tree traversal. During traversal, intersection tests
only with respect to the AABBs are computed. Intersection constructions, with
respect to the input primitives, are computed at the end of the traversal, in the
leaves of the tree.

Projection queries In our algorithm, projection queries are mostly used in mesh
optimization. We constrain every vertex of on the boundary of the mesh, i.e. incident
to inside and outside tetrahedra, to lie exactly on the input PSC. Since the Natural
ODT (see Section 3.2.1.5) formula does not guarantee that the vertex lies exactly on
the input PSC, each computed optimal vertex x

⋆
i is projected onto it. Computing

the projection is done by finding the closest point on the input PSC. For crease
edge vertices, the closest point is searched on input crease edges, using the segment
AABB tree. For other boundary vertices, the closest point is searched on input PSC
triangles.

This data structure for intersection and distance computation has been implemented
as a CGAL package [ATW09].

3.3. Implementation 81

3.3.2 Filtering relocations

One of the costly parts of our algorithm lies in the fact that, at each optimization
step, all the vertices of the mesh are relocated. This implies that, each time, the
Delaunay connectivity of the whole mesh has to be re-computed. To handle these
relocations, two main approaches can be considered. First, relocation consists in
moving vertices one by one in the triangulation. Second, rebuilding consists in
recomputing the complete connectivity of the Delaunay triangulation from scratch.
We compare these approaches and study [MTAD09] some filtering techniques for
relocation speedup.

Surprisingly, rebuilding the triangulation from scratch often is a good option com-
pared to relocating the vertices. However, when all the vertices move with a small
displacement vector, or when only some vertices move, relocation can be faster than
rebuilding. We focus on each vertex relocation.

The naive algorithm for relocating a single vertex v to position p is to remove v, and
to insert a new vertex at p in the triangulation. This is costly and can be improved.
The main idea is that, if the displacement is small enough, the connectivity around
v will not change. In this case, removal and insertion should not be necessary.
Modifying v’s coordinates should be sufficient. For each vertex, a safety region

in which it can move with no need of updating the local connectivity is computed.
The filtering algorithm [MTAD09] is able to correctly decide whether or not a vertex
relocation requires a connectivity update.

Some experiments are carried out in 2D and in 3D, for clustering and mesh op-
timization. In 2D, these experiments show that the filtering algorithm can be as
much as six times faster than rebuilding. In 3D, it becomes more and more efficient
when the optimization schemes get closer to convergence. As the relocation vectors
become smaller and smaller, connectivity updates are less frequent. Close to con-
vergence, the filtering algorithm can get three times faster as rebuilding, and thirty
times faster than the naive remove-insert relocation algorithm.

3.3.3 Locking

We also significantly speed up the NODT procedure through a locking process. We
lock up (i.e., deactivate the optimization of) all mesh vertices which are incident
to only excellent restricted tetrahedra. A tetrahedron is defined as excellent when
all its dihedral angles are within a user-specified interval (typically [45− 95]). Only
the vertices newly inserted during refinement or relocated during optimization are
allowed to unlock their incident vertices. Consequently, entire parts of the mesh
which do not need to be improved either by refinement or by optimization are
skipped throughout the refinement/optimization alternation. Tuning the interval
bounds which qualify an excellent tetrahedron is our way to trade efficiency for
the final mesh quality. Finally, each time the restricted Delaunay triangulation is

82 Chapter 3. 3D Tetrahedral Mesh Generation

updated, the circumcenters are cached to avoid recomputing them at each refinement
and optimization step.

3.4 Results

Figure 3.15: Bimba. Mesh generated by interleaved refinement and optimization
with lmax = 0.1, ǫmax = 0.0005.

To evaluate our approach, we test the various steps of our algorithm separately,
then together. Figure 3.5 shows our refinement routine when no optimization step
is performed. Notice that the resulting mesh lacks gradation, as typical for De-
launay refinement methods. We compare results of Delaunay refinement, Lloyd
relaxation [DFG99], and our NODT in terms of number of slivers (before sliver re-
moval for fairness) in Figure 3.6. Figure 3.8 shows an elephant mesh obtained by
Delaunay refinement (top) as it gets optimized by our NODT routine (middle), then
after sliver removal (bottom).

Figure 3.15 shows the mesh of the bimba model obtained by interleaved refinement
and optimization with approximation and element quality criteria activated (the
sizing criterion lmax = 0.1 is not significant as the input PSC fits into a unit bounding
box). The mesh contains 43K vertices and all dihedral angles are above 17 degrees.
The input PSC has 400K vertices. We also test our method on mechanical parts.
Figure 3.16 shows the mesh of a turbine generated by our interleaved algorithm. The
mesh contains significantly fewer vertices (13%) than Delaunay refinement alone.

We also compare our technique to DelPSC [CDL07], TetGen [Si07] and GHS

3.4. Results 83

Figure 3.16: Turbine. Mesh generated by interleaved refinement and optimization
with lmax = 0.1, ǫmax = 0.001. The inset shows the input PSC with all patches
segmented. The mesh has 14K vertices and 51K tetrahedra, with all dihedral angles
greater than 15 degrees.

3D [Geo04] in Figure 3.17 in terms of both mesh quality and vertex count. Note that
for TetGen and GHS 3D we provided as input the boundary of our optimized mesh
for fair comparison. Figure 3.19 shows the mesh of the Buddha model obtained by
interleaved refinement and optimization, showcasing our method on a domain with
a large range of local feature sizes.

Activating the topology criterion enforces that each restricted facet has its three
vertices on the same PSC patch, and that each restricted edge has its two vertices
on the same PSC crease. The mesh can thus be refined beyond the specified approx-
imation criterion until all surface sheets are separated, as illustrated by Figure 3.18.

In our experience (Table 3.2), computational times to obtain a mesh range from
seconds for the sphere and nested-spheres models, to minutes for the anchor, turbine
and bimba models (resp. 10, 15 and 23), to two hours for Michelangelo’s David
model.

Model ǫmax Nb of tetrahedra Time
Coverrear 0.001 22,091 3 min
Bimba(1) 0.001 52,866 10 min
Bimba(2) 0.0005 121,644 41 min
Buddha 0.001 161,378 20 min

Table 3.2: Timings. The four meshes mentioned in this table were generated with
lmax = 0.1, σf

max = 2, and σt
max = 2.

84 Chapter 3. 3D Tetrahedral Mesh Generation

Figure 3.17: Cover rear. Top left: mesh obtained by interleaved refinement and
optimization with lmax = 0.1, ǫmax = 0.001, σf

max = 1.5, σt
max = 1.5,

with topology criterion activated; 4,050 vertices. Top right: mesh generated by
DelPSC, same parameters; 15,157 vertices. Bottom: meshes generated by TetGen
(left, 4,189 vertices) and GHS 3D (right, 6,641 vertices), same parameters and with
the boundary of our optimized mesh taken as input.

3.4. Results 85

Figure 3.18: Nested spheres. Left: input PSC. Middle: mesh generated by refine-
ment with lmax = 1, ǫmax = 0.03 and topology criterion not activated. Right:
mesh further refined with same criteria but with topology activated.

Figure 3.19: Buddha. Isotropic graded mesh obtained by interleaving refinement
and optimization. All resulting dihedral angles are greater than 16 degrees.

86 Chapter 3. 3D Tetrahedral Mesh Generation

3.5 Summary

The algorithm presented in this chapter introduces a new mesh generation frame-
work, based on the idea of interleaving steps of Delaunay refinement and optimiza-
tion. Guided by user-defined criteria such as size, shape, and approximation error of
mesh elements, refinement steps are parsimoniously applied batch-wise through the
insertion of independent sets of Steiner vertices. Optimization steps are performed
through a variant of Chen’s ODT that handles boundary as well as spatially-varying
mesh sizing. A post-processing step extending Li’s random vertex perturbation en-
ables the algorithm to remove the possibly remaining slivers after interleaving.

The meshes generated by this algorithm - interleaving and perturbation - are exper-
imentally shown (see Section 3.4) to have a smaller number of Steiner vertices than
state-of-the-art methods it has been compared too. However, the main improvement
provided by this algorithm stands in the quality of dihedral angles.

The main limitation of our algorithm is that it does not handle sharp input creases
subtending small angles (the theoretical bound on input angles is 90̊ , see [RY07]).

Chapter 4

Conclusion & Future work

Contents
4.1 Conclusion . 87

4.2 Future Work . 89

4.2.1 Variety of inputs . 89

4.2.2 Convergence speedup . 93

4.2.3 Optimization of a regular triangulation 96

4.1 Conclusion

This thesis describes a new approach to practical isotropic Delaunay mesh gener-
ation. In two and three dimensions, the idea of interleaving Delaunay refinement
steps and mesh optimization steps is put to work with satisfactory results. The
whole mesh generation process is driven by user-defined criteria that the output
mesh needs to satisfy (e.g., size or shape of simplices). Each Delaunay refinement
inserts a batch of Steiner vertices so as to avoid creating clusters of vertices. Each
optimization step relocates vertices to minimize an energy functional consistently
inside the mesh and on its boundary, and is followed by a connectivity update. The
optimization methods can conform to a user-defined mesh sizing or to the actual
gradation of the mesh. The 3D algorithm comprises a sliver removal post-processing
step inspired by Li’s random vertex perturbation, which has been made more
deterministic, and improves the quality of the mesh obtained by interleaving when
it is needed.

Our whole processes of mesh generation and improvement are designed within the
Delaunay framework. Our implementation thus inherits robustness and efficiency
from the CGAL [cga] implementation of data structures such as the Delaunay tri-
angulation.

The meshes generated by both algorithms presented (Algorithm 2 in 2D and Algo-
ritm 5 in 3D), based on interleaving refinement and optimization, are experimentally
shown to be smaller in terms of number of simplices. Complexity is also a quality
criterion for a mesh (see Section 1.3.2), yet our main contribution stands for the

88 Chapter 4. Conclusion & Future work

quality of the output angles. The output meshes show a good balance between
simplex quality and vertex parsimony.

Our algorithms are designed to be as generic as possible. For example, it is possible
to add some other user-defined criteria to complete the behavior of refinement for
a particular application. The oracle for collision detection and projection (imple-
mented as an AABB tree in 3D, see Section 3.3.1), can be extended for other types
of inputs, depending on the application (see Section 4.2.1). The oracle framework
makes our algorithms generic and valid as long as the associated oracle is properly
defined.

The optimization steps are designed to consistently minimize an energy functional
(ECVT in 2D and EODT in 3D). Both vertex relocations and connectivity updates
(devised to maintain the triangulation Delaunay) consistently minimize the same
energies. The fact that theses energies are quadratic allows us deriving closed form
formulas for vertex optimal locations. In both cases the Delaunay connectivity is
the global minizer of these energies for a fixed set of vertices.

The main drawback of our 3D mesh generation method is that it does not handle
input sharp creases subtending small angles. Refinement is proven to terminate
when no input edge is incident to a dihedral angle smaller than 90̊ [RY07]. Though
we experimentally show the ability of our algorithm to generate meshes with good
dihedral angles, and though the sliver removal post-processing step is hill-climbing
by construction, we can not provide any guarantee that the output mesh is
sliver-free. Another theoretical drawback is that it requires a post-processing sliver
removal step. The interleaving framework would be more elegant with a single
procedure, ending up with no sliver. Finally, the optimization steps are slow.
Running fewer iterations or elaborating upon faster iterations would be much
desired.

Ideally we would like a mesh generation and optimization algorithm able to trade
quality for time in a continuous manner. The first stages of the algorithm should
be devised so as to induce a fast increase of quality. In our interleaving framework
we are able to get a higher quality in the end, rather than applying refinement
followed by optimization. However, the quality increasing slope is smaller at the
beginning of the process than refinement alone because the optimization procedure
is more time consuming.

Ideally the algorithm should be robust to dirty inputs, so as to handle for example
non-manifold polyhedra, self-intersecting domains, and other degeneracies. Extend-
ing the optimization method to the anisotropic framework would also be very in-
teresting. The algorithm could finally be enriched with a decimation operator. The
introduction of a mesh adaptation loop, able to insert and remove vertices from the

4.2. Future Work 89

mesh depending on the needs, and on the application, particularly for simulation,
would be very nice.

Additional degrees of freedom can be considered for mesh optimization. For
example, ODT and CVT optimization are both minimizing an interpolation error
between the paraboloid and the lifted primal triangulation or dual tessellation. We
could reformulate this minimization problem as an approximation problem instead
of an interpolation one. The hope is to get a better minimum for the approximation
error, and maybe a triangulation composed of better-shaped elements. The norm
used to define this interpolation/approximation error could also be modified.

4.2 Future Work

One limitation of the implementation of our algorithms is that they are limited to
a particular type of domain. In 2D, the domain must be a closed PSLG, possibly
with holes and several connected components. In 3D, the domain must be described
as a polyhedron, watertight and manifold.

4.2.1 Variety of inputs

4.2.1.1 Sharp creases

Some problems arise in triangle mesh generation when small angles exist in the input
domain boundary.

In 2D for example, Ruppert’s [Rup93] Delaunay refinement algorithm fails to ter-
minate in presence of angles smaller than 45 deg in the input PSLG. Two input
segments forming a small angle and a badly shaped facet could cause an endless
loop of mutual encroachments and refinements. The segments become shorter and
shorter and the algorithm does not terminate.

Some practical solutions have been proposed to handle small angles. One of them
is denoted by corner lopping. This idea has been introduced by Bern, Eppstein,
Gilbert [BEG90], and Ruppert [Rup95]. Corner lopping consists in modifying the
input PSLG so as to remove the small angles that may hamper the termination
of standard Delaunay refinement algorithms. It then refines this new PSLG and
finally triangulates the cut-off corners and put back the sharp angles with these new
triangles in the mesh.

To avoid this type of pre- and post-processing steps, Ruppert [Rup95] introduces the
idea of using concentric circular shells around input vertices incident to small angles.
Steiner vertices of edges adjacent to small angles are chosen at their intersection with
these circular shells. At some point, the two edges adjacent to a small angle have the

90 Chapter 4. Conclusion & Future work

Figure 4.1: Meshes generated by interleaving refinement and optimization in 2D.
(Top) Star meshes. The minimum input angle is 5̊ . (a) 855 vertices, with sizing
function µ(x) = 0.03. (b) 472 vertices, µ(x) = infs∈∂2Ω[0.1d(x, s)+lfs(s)]. (c) Close-
up to the smallest angle. (Bottom) Mushroom meshes. The minimum input angle is
2.7̊ . (d) 2392 vertices, µ(x) = 0.02. (e) 1737 vertices, µ(x) = infs∈∂2Ω[0.7d(x, s) +

lfs(s)]. (f) Close-up to the smallest angle.

same length, thus they do not encroach upon each other, and refinement is prevented
from infinite looping. This technique works for angles as small as 10̊ [She02b], and
sometimes even for smaller angles.

Shewchuk proposes the Terminator algorithm [She00b], based on the concentric
shells protection idea, associated to some conditions to avoid unsafe edge splits.
This algorithm is shown to terminate with no condition over the input angles.

In 3D most Delaunay refinement algorithms are proven to terminate when no
input dihedral angles are smaller than 90̊ [RY07]. The idea of using concentric
shells to prevent refinement from infinite looping can also be applied using
concentric spheres. Cheng et al. introduce the idea of dealing with a weighted
Delaunay triangulation (i.e. a regular triangulation) in order to deal with sharp
creases subtending small angles [CD02, CDRR04, CDR05, CDR07] and a practical
algorithm [CDL07]. The algorithm first refines sharp edges with weighted points,
represented by protecting balls. No three balls should intersect and two intersecting
balls should not have too different sizes. In this framework circumcenters are
replaced by orthocenters during Delaunay refinement. Inserted orthocenters are
kept away from the sharp edges by these weights, which prevent infinite refinement.

4.2. Future Work 91

Figure 4.2: Meshes generated by interleaving refinement and optimization in 3D,
from inputs with angles lower than 90̊ . (a) Point (9, 374 vertices). The minimum
input angle is 70̊ . (b) Sculpt (11, 897 vertices). The minimum input angle is 52̊ . (c)
Sword (3, 574 vertices). The minimum input angle is 47̊ . (d) Blade. The minimum
input angle is 5̊ . Interleaving fails to terminate.

In 2D, our algorithm is able to handle sharp angles: Refinement is based on a size
criterion, and no size inconsistency should appear thanks to the Lloyd optimiza-
tion steps which tend to locally uniformize the size of simplices. Figure 4.1 shows
some examples where our interleaving algorithm terminates, though the input PSLG
contains angles as small as 2.7̊ .

In 3D, our algorithm is sensitive to input edges subtending dihedral angles smaller
than 90̊ , as standard Delaunay refinement algorithms [RY07]. In practice, our
algorithm is able, in certain cases, to terminate when some input dihedral angles
are about 40̊ . Note that the configuration of these sharp edges can also play a
role: Refinement will not have the same trouble to terminate whether the sharp
features are isolated, adjacent, close to a high curvature area, etc. Figure 4.2 shows
examples where our meshing algorithm terminates though dihedral angles smaller
than 90̊ exist in the input polyhedron.

As future work we want our mesh generator to be practical through handling any
types of angles in the input polyhedron. We plan to complete our algorithm with
some provably good handling of sharp edges using one of the aforementioned algo-
rithms, or using a new approach specialized to mesh optimization.

92 Chapter 4. Conclusion & Future work

4.2.1.2 Multi-domains

Our 3D meshing algorithm is designed to work within the framework of a restricted
Delaunay triangulation. The triangulation is currently restricted to a single domain
Ω, characterized by some intersection tests. Recall that a tetrahedron is considered
for refinement if and only if it is inside, i.e., if its circumcenter is inside Ω. For
medical applications, Pons et al. [PSB+07, BPY09] and Boltcheva et al. [BYB09]
consider a multi-domain Ω = ∪i=1..mΩi setting. The domain is divided into m sub-
domains, as shown by Figure 4.3. The input data describing Ω is given as a 3D
image, where each sub-domain Ωi is tagged with its number i. Let Ω0 be the region
outside the domain Ω.

Figure 4.3: Multi-domain mesh of the visible human.

For multi-domain mesh generation, the definition of restricted must be adapted to
each type of simplex. These definitions are not binary anymore, since a simplex can
be restricted to different sub-domains. A tetrahedron is restricted to the sub-domain
Ωi if its circumcenter is in the sub-domain Ωi. A facet is restricted if its dual Voronoi
edge intersects sub-domains of different indices, or if at least one of its vertices is
outside the domain. Note that a restricted facet is not necessarily on the boundary
of the mesh, but can be at the interface between two sub-domains. Finally, an
edge is restricted if its dual Voronoi facet intersects sub-domains of different indices.
Similarly to facets, a restricted edge is not necessarily on the boundary of the mesh
but can describe a junction between two, three or more sub-domains. Boltcheva et
al. [BYB09] are using a weighted Delaunay triangulation to preserve in their output
mesh the junction edges detected in the input 3D image.

Figure 4.3 shows a multi-domain tetrahedral mesh, generated on the well-known
visible human data, given as a 3D image. These numerical input data have been
generated from real anatomic data.

We would like to extend our algorithm to multi-domain inputs. First, our collision
detection oracle, the AABB tree (see Section 3.3.1) must be extended so as to

4.2. Future Work 93

manage this type of input. This would allow us detecting restricted simplices and
their Steiner points, which are sufficient to perform refinement. Extending the
optimization part would probably be more difficult. Inside vertices can be optimized
in the same way they are in our mono-domain approach, with ODT or NODT
iterations. Boundary vertices (incident to inside and outside tetrahedra) can also
be optimized by using the NODT optimization scheme. An open question remains
on how to optimize the location of vertices lying at the interface of two sud-domains.
Each of these vertices should remain on its "inside surface patch", and its optimal
location should take into account its incident restricted tetrahedra, and its incident
restricted facets (and/or restricted edges depending on where the vertex lies).

4.2.1.3 Other types

In some application the input domain can be given through other definitions. For
example, the boundary can be defined as implicit surfaces or as piecewise smooth
parametric surfaces represented by NURBS patches or by parametric function. To
handle these types of inputs - or others - our algorithm needs an extended oracle.
Collision detection, intersection tests and projections query are needed whatever
type of input is given.

4.2.2 Convergence speedup

The mesh optimization procedures we have described, CVT, ODT and NODT,
are powerful for improving the quality of a mesh. The main drawback of these
optimization methods is their computational cost. In particular, a large number
of iterations is often needed to reach convergence. Since these methods aim at
minimizing an energy functional, let us go back to this more abstract point of view.

Functional minimization is a very well-known problem in numerical analysis. Many
ideas have been developed for reaching a good minimum (preferably the global
minimum) in a small number of iterations. Among them, the Newton method can
be applied to the problem of minimizing CVT and ODT energies. Indeed, CVT
and ODT vertex position updates can be formulated as x

n+1 = F (xn), where x
n is

the vector of all vertex positions {xn
k}k=1..N at iteration n, and F the function that

applies the update rule to every vertex.

Let us remind the basics of Newton’s method. For the non-linear system F (x) = 0,
with x a vector, the Newton iteration is given by

x
n+1 = x

n − dF |−1
x

n F (xn),

where dF is the Jacobian matrix of the application F .

94 Chapter 4. Conclusion & Future work

Lloyd-Newton Du and Emelianenko [DE06a] introduce the idea of coupling New-
ton and Lloyd methods to speedup CVT optimization convergence. In this context,
F is taken as the Lloyd map FCV T from generators to centroids. This approach
consists in finding a fixed point of the Lloyd map, or computing a minimum of the
function 1

2 ||z − FCV T (z)||2. CVT is a solution of a system of non-linear equations,
and Newton’s method can be re-written as follows:

x
n+1 = x

n + (dFCV T |xn − I)−1(xn − FCV T (xn)).

The matrix (dFCV T |xn − I) has dimensions dN × dN , where d is the dimension.
Given this matrix, a Lloyd-Newton iteration can be performed.

Algorithm 8 describes the Lloyd-Newton iteration. Lloyd iterations are executed
while the vertex displacements from generators z to centroids z⋆ are large enough.
This displacement is evaluated as a difference of the distortion functional

H(z) =

N
∑

i=1

∫

V(zi)
ρ(y)|y − zi|2dy.

Algorithm 8 Lloyd-Newton iteration [DE06a]

Input: A domain Ω ∈ R
3,

z = {zi}Ni=1 the initial set of generators,
a tolerance value ǫ.
(1) Let V(z) be the Voronoi tessellation of Ω with generators z = {zi}Ni=1.
(2) Compute the centroids z⋆ = {z⋆

i }Ni=1.
if ||H(z⋆)−H(z)|| ≥ ǫ then

z := z⋆ and goto (1).
else

set Newton step size s = 1.
(3) Compute z̃ = z + s(dFCV T |z − I)−1(z − FCV T (z)).
(4) Let nout be the number of points in z̃ = {z̃⋆

i }Ni=1 that are outside of Ω.
if nout = 0 then

z := z̃ and goto (3).
else if nout = 1 then

reduce step size s := s/2 and goto (3).
else

goto (1).
Output: A CVT with generators {zi}Ni=1 in R

3.

It is shown that such a combination of Lloyd iteration and the Newton method
improves the convergence rate of CVT optimization. However, the main drawback
of this method is that, when the Lloyd-Newton iteration converges, it may converge
to a local minimum of 1

2 ||z − FCV T (z)||2, which can be an unstable critical point
of FCV T .

4.2. Future Work 95

ODT-Newton Similarly to Du and Emelianenko’s Lloyd-Newton [DE06a]
method, Newton’s method can be applied to speedup the ODT optimization con-
vergence. Let FODT be the functional defined by an ODT iteration. Recall that the
formula used during the ODT vertex position update is (Equation 3.5):

x
⋆
i =

1

|Ω(xi)|
∑

Tj∈Ω(xi)

|Tj(xi)|cj(xi),

where the dependence on xi is carefully noted for clarity.

In more explicit notation, we have:

x
n+1 = FODT











xn
1

xn
2
...

xn
N











=













1
|Ω(xn

1
)|
∑

Tj∈Ω(xn
1
) |Tj(x

n
1)|cj(x

n
1)

1
|Ω(xn

2
)|
∑

Tj∈Ω(xn
2
) |Tj(x

n
2)|cj(x

n
2)

...
1

|Ω(xn
N

)|
∑

Tj∈Ω(xn
N

) |Tj(x
n
N)|cj(x

n
N)













.

Applied to FODT , Newton’s update rule becomes

x
n+1 = x

n + (dFODT |xn − I)−1(xn − FODT (xn)),

where dFODT is the Jacobian matrix associated to FODT . Computing dFODT is the
key issue. It amounts to computing the N2 matrices ∂Fi

∂xk
. Each coefficient dFODT,i,j

can be computed starting from the original formula

FODT,i(x) = x
⋆
i = xi −

1

2|Ωi|
∑

Tj∈Ωi



∇xi
|Tj |





∑

xk∈Tj

||xi − xk||2






 .

As we have seen in Section 3.2.1.5, ∂|Ωi|
∂xi

= 0. It follows that:

∂FODT,i

∂xi
(x) = x− 1

|Ωi|
∑

Tj∈Ωi



∇xi
|Tj |

〈

∑

xk∈Tj

xi − xk, x

〉



 .

Consider now the case of ∂Fi

∂xk
, with k 6= i. We have, by applying the chain rule:

∂FODT,i

∂xk
(x) =

1

2 |Ωi|2

〈

∑

Tj∈Ωi∩Ωk

∇xk
|Tj |, x

〉

∑

Tj∈Ωi



∇xi
|Tj |

[

∑

xn∈Tj

||xi − xn||2
]





− 1

|Ωi|





∑

Tj∈Ωi∩Ωk

∇xi
|Tj |



 〈xk − xi, x〉

− 1

2 |Ωi|
∑

Tj∈Ωi∩Ωk





∂∇xi
|Tj |

∂xk
(x)
[

∑

xn∈Tj

||xi − xn||2
]



 .

96 Chapter 4. Conclusion & Future work

We still have to compute
∂∇xi

|Tj |
∂xk

, for Tj ∈ Ωi ∩ Ωk. Denote by xk, xp, xq and xi

the vertices of Tj in direct order. Then,

∇xi
|Tj | =

1

6
(xk − xp)× (xk − xq)

∂∇xi
|Tj |

∂xk
(x) =

1

6
(x× (xk − xq) + (xk − xp)× x)

=
1

6
x× (xp − xq).

Though the derivatives of FODT are intricate our preliminary experiments are en-
couraging. It seems that Algorithm 8 could be applied to the ODT mesh optimiza-
tion scheme. Formulas are needed to be simplified or approximated to get some
reasonable computation times, in particular for the matrix inversion.

Quasi-Newton-Lloyd Liu et al. [LWL+09] have recently proposed to use quasi-
Newton methods for speeding-up the computation of CVT [DFG99]. This approach
consists in minimizing the CVT energy function directly, instead of computing a
fixed point of the Lloyd map. They prove the C2 smoothness of the CVT energy
function, and perform quasi-Newton optimization steps to compute the minimum.
Quasi-Newton optimization is done through the BFGS method [Noc80, WN06]. It
can be done since the very first iteration, unlike the previous Lloyd-Newton algo-
rithm. It is also used for optimization of surface meshes in the context of surface
remeshing [YLL+].

This method is shown to give a nice speedup on optimization convergence. Moreover,
it should not converge to an unstable critical point of the energy. As future work, we
are thinking of exploring some quasi-Newton-ODT algorithms to minimize directly
EODT and speedup the convergence.

4.2.3 Optimization of a regular triangulation

As shown in 3D, regular triangulations (i.e., weighted Delaunay triangulations) are
useful for handling small input angles [DL08], and for removing slivers [CDE+00].
Both of these features make tetrahedron meshing practical, and help generating
quality meshes.

As we wish to mix these approaches with our optimization methods to generate tetra-
hedral meshes of higher quality, we are thinking about some optimization scheme in
a weighted Delaunay triangulation. Initial weights are inserted in the mesh for han-
dling sharp input creases, or as a post-processing sliver exudation step. Given this
weighted Delaunay triangulation, how could ODT, NODT or CVT be extended?

4.2. Future Work 97

Let us consider the ODT energy

EODT = ||fPWL − f ||L1 =
∑

Tj∈DT

∫

Tj

|fPWL − f |.

Recall that f(x) = ||x||2 and fPWL is the linear function interpolating the values of
f at the vertices of each tetrahedron Tj . EODT measures the volume between the
4D paraboloid defined by f and its inscribed piecewise linear approximation fPWL

through lifting the triangulation onto the 4D paraboloid [BWY07].

A vertex x = (xx,xy,xz) of DT is lifted onto the paraboloid P4 in R
4 by computing

x
P4 = (x, ||x||2) = (xx,xy,xz,x

2
x +x

2
y +x

2
z) to be its location. A weighted vertex

x
′ = (xx,xy,xz,xw) of the weighted triangulation DT w is lifted onto the paraboloid
P4 by computing its location x

P4 = (xx,xy,xz,x
2
x + x

2
y + x

2
z − xw). Hence, in the

weighted setting, lifted vertices do not interpolate the paraboloid in R
4 anymore,

but approximate it (see Figure 4.4).

Figure 4.4: Interpolation vs approximation of the paraboloid. ||fPWL − f ||L1 is
represented by the grey-shaded areas.

One difficulty with weighted triangulation lies in the existence of hidden points.
When the weighted triangulation is lifted, it may be different from its convex hull
in R

4. Let vP4 be a lifted vertex that is not on the convex hull. Then v (the vertex
in R

3 × R) is said to be hidden. It does not appear in the (unlifted) triangulation.

Two approaches for optimizing a weighted triangulation can be investigated upon.
First, one could consider a weighted vertex as a vertex in R

4, and minimize the
approximation error by changing location and weight at the same time. Second, one

98 Chapter 4. Conclusion & Future work

could alternate the optimization of vertex locations in R
3, and of vertex weights, in

R. There are a lot of degrees of freedom in this approach. First, the approximation
error between the lifted weighted triangulation and the paraboloid P4 can be esti-
mated according to different norms. For example, the L∞ norm could be a valid
choice in order to remove the worst elements first.

Many open questions remain around the idea of optimizing a weighted triangulation
by minimizing the volume (whatever norm is chosen) between the lifted triangulation
and P4. Would this weighted triangulation optimizer this way embed a sliver exuder
as part of its optimization procedure? This would be a desired property of this 4D
optimization scheme.

Bibliography

[AB99] N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering.
Discrete and Computational Geometry, 22(4):481–504, 1999. 9

[ABE97] N. Amenta, M. Bern, and D. Eppstein. Optimal point placement for
mesh smoothing. In Proceedings of the 8th annual ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 528–537. Society for Industrial and
Applied Mathematics Philadelphia, PA, USA, 1997. 18, 30, 49, 73

[ACSYD05] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. Variational
tetrahedral meshing. ACM Transactions on Graphics, 24(3):617–625,
july 2005. 42, 50, 58, 59, 63

[ADA07] L. Antani, C. Delage, and P. Alliez. Mesh Sizing with Additively
Weighted Voronoi Diagrams. In Proceedings of the 16th International

Meshing Roundtable, pages 335–346, 2007. 61

[AHMP07] U.A. Acar, B. Hudson, G.L. Miller, and T. Phillips. SVR: Practical
engineering of a fast 3D meshing algorithm. In Proceedings of 16th

International Meshing Roundtable, pages 45–62, 2007. 48

[ATP84] D.A. Anderson, J.C. Tannehill, and R.H. Pletcher. Computational fluid
mechanics and heat transfer. Hemisphere, New York, pages 132–135,
1984. 5

[ATW09] P. Alliez, S. Tayeb, and C. Wormser. AABB tree. In CGAL Editorial
Board, editor, CGAL User and Reference Manual. 3.5 edition, 2009. 80

[BA76] I. Babuska and A.K. Aziz. On the angle condition in the finite element
method. SIAM Journal on Numerical Analysis, pages 214–226, 1976.
11

[BCER95] M. Bern, P. Chew, D. Eppstein, and J. Ruppert. Dihedral bounds for
mesh generation in high dimensions. In Proceedings of the 6th annual

ACM-SIAM Symposium on Discrete Algorithms, pages 189–196. Soci-
ety for Industrial and Applied Mathematics Philadelphia, PA, USA,
1995. 13

[BEG90] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh genera-
tion. In Proceedings of the 31st Annual Symposium on Foundations of

Computer Science, pages 231–241, 1990. 16, 89

[BGO05] J-D. Boissonnat, L.J. Guibas, and S. Oudot. Learning smooth objects
by probing. In Proceedings of the 21st annual Symposium on Compu-

tational Geometry, pages 198–207. ACM New York, NY, USA, 2005.
14

100 Bibliography

[BGR88] B.S. Baker, E. Grosse, and C.S. Rafferty. Nonobtuse triangulation of
polygons. Discrete and Computational Geometry, 3(1):147–168, 1988.
16

[BH96] F.J. Bossen and P.S. Heckbert. A pliant method for anisotropic mesh
generation. In Proceedings of the 5th International Meshing Roundtable,
pages 63–74, oct 1996. 27, 29

[BO05] J-D. Boissonnat and S. Oudot. Provably good sampling and meshing
of surfaces. Graphical Models, 67(5):405–451, 2005. 9

[BOG02] C. Boivin and C. Ollivier-Gooch. Guaranteed-quality triangular mesh
generation for domains with curved boundaries. International Journal

for Numerical Methods in Engineering, 55:1185–1213, 2002. 48

[BPY09] J-D. Boissonnat, J.P. Pons, and M. Yvinec. From segmented images
to good quality meshes using Delaunay refinement. Lecture Notes In

Computer Science, pages 13–37, 2009. 92

[BS89] R.E. Bank and L.R. Scott. On the conditioning of finite element equa-
tions with highly refined meshes. SIAM Journal on Numerical Analysis,
pages 1383–1394, 1989. 11

[BWY07] J-D. Boissonnat, C. Wormser, and M. Yvinec. Curved Voronoi dia-
grams. In Effective Computational Geometry for Curves and Surfaces,
pages 67–116. Springer, 2007. 58, 65, 97

[BYB09] D. Boltcheva, M. Yvinec, and J-D. Boissonnat. Mesh generation from
3d multi-material images. In MICCAI ’09: Proceedings of the 12th

International Conference on Medical Image Computing and Computer-

Assisted Intervention, London, UK, 2009. Springer-Verlag. 6, 77, 92

[CC06] A.N. Chernikov and N.P. Chrisochoides. Generalized Delaunay Mesh
Refinement: From Scalar to Parallel. In Proceedings of the 15th Inter-

national Meshing Roundtable, pages 563–580, 2006. 16, 29

[CD02] S.W. Cheng and T.K. Dey. Quality meshing with weighted Delaunay
refinement. In Proceedings of the 13th Symposium on Discrete Algo-

rithms, pages 137–146. Society for Industrial and Applied Mathematics
Philadelphia, PA, USA, 2002. 22, 65, 90

[CDA96] S. Cotin, H. Delingette, and N. Ayache. Real time volumetric de-
formable models for surgery simulation. Lecture Notes in Computer

Science, 1131:535–540, 1996. 5

[CDE+00] S.W. Cheng, T.K. Dey, H. Edelsbrunner, M.A. Facello, and S.H. Teng.
Sliver exudation. Journal of the ACM (JACM), 47(5):883–904, 2000.
12, 22, 49, 63, 65, 96

Bibliography 101

[CDL07] S.W. Cheng, T.K. Dey, and J.A. Levine. A Practical Delaunay Meshing
Algorithm for a Large Class of Domains. In Proceedings of the 16th

International Meshing Roundtable, pages 477–494. Springer, 2007. 16,
48, 54, 82, 90

[CDM04] B. Cutler, J. Dorsey, and L. McMillan. Simplification and improve-
ment of tetrahedral models for simulation. In Proceedings of the 2004

Eurographics/ACM SIGGRAPH Symposium on Geometry Processing,
pages 93–102. ACM New York, NY, USA, 2004. 65

[CDR05] S.W. Cheng, T.K. Dey, and T. Ray. Weighted Delaunay refinement
for polyhedra with small angles. Proceedings of the 14th International

Meshing Roundtable, 2005. 22, 65, 90

[CDR07] S.W. Cheng, T.K. Dey, and E.A. Ramos. Delaunay Refinement for
Piecewise Smooth Complexes. In Proceedings of the 18th Symposium

on Discrete Algorithms, pages 1096–1105, 2007. 16, 48, 90

[CDRR04] S.W. Cheng, T.K. Dey, E.A. Ramos, and T. Ray. Quality meshing for
polyhedra with Small Angles. Proceedings of the 20th Symposium on

Computational Geometry, pages 290–299, 2004. 16, 90

[cga] Cgal, Computational Geometry Algorithms Library.
http://www.cgal.org. 38, 73, 78, 87

[CGS06] N. Coll, M. Guerrieri, and J.A. Sellares. Mesh Modification Under Local
Domain Changes. In Proceedings of the 15th International Meshing

Roundtable, pages 39–56, 2006. 27, 29

[Che89a] L.P. Chew. Constrained Delaunay triangulations. Algorithmica,
4(1):97–108, 1989. 28, 34

[Che89b] L.P. Chew. Guaranteed-quality triangular meshes. Technical report,
Dept. of Computer Science, Cornell Univ., 1989. 14, 48

[Che93] L.P. Chew. Guaranteed-quality mesh generation for curved surfaces. In
Proceedings of the 9th Symposium on Computational Geometry, pages
274–280. ACM New York, NY, USA, 1993. 48

[Che97] L.P. Chew. Guaranteed-quality Delaunay meshing in 3D (short ver-
sion). In Proceedings of the 13th Symposium on Computational Geom-

etry, pages 391–393. ACM New York, NY, USA, 1997. 14, 64

[Che04] L. Chen. Mesh Smoothing Schemes based on Optimal Delaunay Tri-
angulations. In Proceedings of 13th International Meshing Roundtable,
pages 109–120, 2004. 20, 30, 50, 58, 59

[Che05] L. Chen. Robust and accurate algorithms for solving anisotropic singu-

larities. PhD thesis, The Pennsylvania State University, The Graduate
school., dec. 2005. 19

102 Bibliography

[CTS98] S.A. Canann, J.R. Tristano, and M.L. Staten. An approach to combined
Laplacian and optimization-based smoothing for triangular, quadrilat-
eral, and quad-dominant meshes. In Proceedings of the 7th International

Meshing Roundtable, pages 479–494. Citeseer, 1998. 18

[CX04a] L. Chen and J. Xu. Optimal Delaunay triangulation. Journal of Com-

putational Mathematics, 22:299–308, 2004. 73

[CX04b] L. Chen and J.C. Xu. Optimal delaunay triangulations. Journal of

Computational Mathematics, 22(2):299–308, 2004. 50

[DE06a] Q. Du and M. Emelianenko. Acceleration schemes for computing Cen-
troidal Voronoi Tessellations. Journal of Numerical Linear Algebra and

Applications, 13(2–3):173–192, mar-apr 2006. 20, 30, 94, 95

[DE06b] Q. Du and M. Emelianenko. Uniform convergence of a nonlinear energy-
based multilevel quantization scheme via Centroidal Voronoi Tessella-
tions. submitted to SIAM Journal of Numerical Analysis, 2006. 30

[DEJ06] Q. Du, M. Emelianenko, and L. Ju. Convergence of the Lloyd algo-
rithm for computing Centroidal Voronoi Tesselations. SIAM Journal,

Numerical Analysis, 44(1):102–119, 2006. 30, 33

[Del34] B. Delaunay. Sur la sphère vide. Bulletin de l’Academie des Sciences

d’URSS. VII Serie. Classe des Sciences Mathematiques et Naturelles.,
pages 793–800, 1934. 7

[DFG99] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi Tessellations:
Applications and Algorithms. SIAM review, 41(4):637–676, 1999. 19,
30, 33, 73, 82, 96

[DGJ03] Q. Du, M. Gunzburger, and L. Ju. Constrained Centroidal Voronoi
Tessellations for Surfaces. SIJSSC: SIAM Journal on Scientific and

Statistical Computing, 24, 2003. 34

[DL08] T.K. Dey and J.A. Levine. DelPSC: a Delaunay mesher for piecewise
smooth complexes. In Proceedings of the 24th annual Symposium on

Computational Geometry, pages 220–221. ACM New York, NY, USA,
2008. 96

[dlG95] E.B. de l’Isle and P.L. George. Optimization of tetrahedral meshes.
Modeling, Mesh Generation, and Adaptive Numerical Methods for Par-

tial Differential Equations, page 97, 1995. 18

[DPS+06] H. Delingette, X. Pennec, L. Soler, J. Marescaux, and N. Ayache. Com-
putational models for image-guided robot-assisted and simulated med-
ical interventions. Proceedings of the IEEE, 94(9):1678–1688, 2006. 5

Bibliography 103

[DW02] Q. Du and D. Wang. Tetrahedral mesh generation and optimization
based on centroidal Voronoi tessellations. International Journal for

Numerical Methods in Engineering, 56:1355–1373, 2002. 19

[DW05] Q. Du and D. Wang. Recent progress in robust and quality Delaunay
mesh generation. Journal of Computational and Applied Mathematics,
2005. 36

[Ede87] H. Edelsbrunner. Algorithms in combinatorial geometry. Springer Ver-
lag, 1987. 65

[EG02] H. Edelsbrunner and D. Guoy. An experimental study of sliver exuda-
tion. Engineering with computers, 18(3):229–240, 2002. 22, 65

[ELM+00] H. Edelsbrunner, X.Y. Li, G. Miller, A. Stathopoulos, D. Talmor, S.H.
Teng, A. ’́Unǵ’or, and N. Walkington. Smoothing and cleaning up
slivers. In Proceedings of the 22nd annual ACM symposium on Theory

of computing, pages 273–277. ACM New York, NY, USA, 2000. 63

[Epp01] D. Eppstein. Global optimization of mesh quality. In Tutorial at the

10th International Meshing Roundtable, volume 10, 2001. 13, 14, 19,
30

[EÜ07] H. Erten and A. Üngör. Triangulations with locally optimal Steiner
points. Eurographics Symposium on Geometry Processing, pages 1–10,
2007. 29

[FG07] P.J. Frey and P.L. George. Mesh generation: application to finite ele-

ments. ISTE, 2007. 6, 17

[FGK+00] A. Fabri, G.J. Giezeman, L. Kettner, S. Schirra, and S. Sch
"onherr. On the design of CGAL, a Computational Geometry Algo-
rithms Library. Software Practice and Experience, 30(11):1167–1202,
2000. 38

[Fie88] D.A. Field. Laplacian smoothing and Delaunay triangulations. Com-

munications in Applied Numerical Methods, 4(6):709–712, 1988. 18

[FK94] K. Forsman and L. Kettunen. Tetrahedral mesh generation in convex
primitives by maximizing solid angles. IEEE Transactions on Magnet-

ics, 30(5 Part 2):3535–3538, 1994. 65

[Fle99] P. Fleischmann. Mesh generation for technology CAD in three dimen-
sions, 1999. 5

[FOG97] L.A. Freitag and C. Ollivier-Gooch. Tetrahedral mesh improvement
using swapping and smoothing. International Journal for Numerical

Methods in Engineering, 40(21):3979–4002, 1997. 49

104 Bibliography

[Fuc98] A. Fuchs. Automatic grid generation with almost regular Delaunay
tetrahedra. In Proceedings of the 7th International Meshing Roundtable.
Citeseer, 1998. 16

[Geo91] P.L. George. Automatic mesh generation. Wiley Chichester, 1991. 18

[Geo04] P-L. George. Tetmesh-GHS3D, Tetrahedral mesh generator. INRIA

User’s Manual, INRIA (Institut National de Recherche en Informatique

et Automatique), France, 2004. 83

[HDD+92] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Surface reconstruction from unorganized points. Computer Graphics,
26:71–79, 1992. 5

[Her76] L.R. Herrmann. Laplacian-isoparametric grid generation scheme. Jour-

nal of the Engineering Mechanics Division, 102(5):749–907, 1976. 18

[Jam76] P. Jamet. Estimations d’erreur pour des éléments finis droits presque
dégénérés, RAIRO Anal. Numer, 10:46–61, 1976. 11

[Joe91] B. Joe. Delaunay versus max-min solid angle triangulations for 3-
dimensional mesh generation. International Journal for Numerical

Methods in Engineering, 31(5), 1991. 17, 22, 66

[Joe95] B. Joe. Construction of 3-dimensional improved-quality triangulations
using local transformations. SIAM Journal on Scientific Computing,
16(6):1292–1307, 1995. 65

[KMOD09] L. Kharevych, P. Mullen, H. Owhadi, and M. Desbrun. Numerical
coarsening of inhomogeneous elastic materials. In ACM SIGGRAPH

Transactions on Graphics, volume 28, page 51. ACM, 2009. 5, 6

[KO01] P. Krysl and M. Ortiz. Variational Delaunay approach to the gener-
ation of tetrahedral finite element meshes. International Journal for

Numerical Methods in Engineering, 50(7):1681–1700, 2001. 65

[Kri92] M. Krizek. On the maximum angle condition for linear tetrahedral
elements. SIAM Journal on Numerical Analysis, 29(2):513–520, 1992.
11

[KS07] B.M. Klingner and J.R. Shewchuk. Aggressive Tetrahedral Mesh
Improvement. In Proceedings of the 16th International Meshing

Roundtable, pages 3–23, 2007. 23, 49, 65

[KTY09] R. Kikuuwe, H. Tabuchi, and M. Yamamoto. An edge-based compu-
tationally efficient formulation of Saint Venant-Kirchhoff tetrahedral
finite elements. ACM Transactions on Graphics, 28(1):1–13, 2009. 5

Bibliography 105

[Lab06] F. Labelle. Sliver removal by lattice refinement. In Proceedings of the

22nd annual Symposium on Computational Geometry, pages 347–356.
ACM New York, NY, USA, 2006. 64

[Law77] C.L. Lawson. Software for C1 surface interpolation. Mathematical

Software, 3:161–194, 1977. 14

[LH01] C.Y. Liu and C.J. Hwang. New strategy for unstructured mesh gener-
ation. AIAA journal, 39(6):1078–1085, 2001. 64

[Li00a] X.Y. Li. Sliver-free 3-Dimensional Delaunay Mesh Generation. PhD
thesis, University of Illinois at Urbana-Champaign, 2000. 12, 21, 25,
63, 64, 66, 69, 72

[Li00b] X.Y. Li. Spacing control and sliver-free Delaunay mesh. In Proceedings

of the 9th International Meshing Roundtable, pages 295–306, 2000. 64

[Llo82] S. Lloyd. Least square quantization in PCM. IEEE Transactions on

Information Theory, 28:129–137, 1982. 19, 33

[LM98] B. Lévy and J-L. Mallet. Non-distorted texture mapping for sheared
triangulated meshes. In SIGGRAPH Proceedings of the 25th annual

conference on Computer graphics and interactive techniques, pages 343–
352. ACM New York, NY, USA, 1998. 5

[LP01] P. Lindstrom and V. Pascucci. Visualization of large terrains made
easy. In Proceedings of IEEE Visualization, volume 574, pages 363–
370, 2001. 5

[LS07] F. Labelle and J.R Shewchuk. Isosurface Stuffing: Fast tetrahedral
meshes with good dihedral angles. In ACM Transactions on Graphics,
volume 26(3), page 57, 2007. 11, 17, 47, 66

[LT01] X.Y. Li and S.H. Teng. Generating well-shaped Delaunay meshes in 3D.
In Proceedings of the 12th annual ACM-SIAM Symposium on Discrete

Algorithms, pages 28–37. Society for Industrial and Applied Mathemat-
ics Philadelphia, PA, USA, 2001. 14, 64

[LWL+09] Y. Liu, W. Wang, B. Lévy, F. Sun, D.M. Yan, L. Lu, and C. Yang. On
Centroidal Voronoi Tessellation. Energy smoothness and fast computa-
tion. ACM Transactions on Graphics, 2009. To appear. 20, 96

[MCP+09] P. Mullen, K. Crane, D. Pavlov, Y. Tong, and M. Desbrun. Energy-
Preserving Integrators for Fluid Animation. ACM/SIGGRAPH Trans-

actions on Graphics, 28(3), 2009. 5, 6

[Mit94] S.A. Mitchell. Cardinality bounds for triangulations with bounded min-
imum angle. In 6th Canadian Conference on Computational Geometry,
pages 326–331, 1994. 14

106 Bibliography

[MPW05] G.L. Miller, S.E. Pav, and N.J. Walkington. When and Why Delaunay
refinement algorithms work. International Journal of Computational

Geometry and Applications, 15(1):25–54, feb 2005. 28

[MTAD09] P. Machado, J. Tournois, P. Alliez, and O. Devillers. Filtering re-
locations on a Delaunay triangulation. 7th Symposium on Geometry

Processing, 2009. 81

[MV96] S.A. Mitchell and S.A. Vavasis. Quality mesh generation in higher
dimensions. 1996. 16

[Nay99] D.J. Naylor. Filling space with tetrahedra. International Journal for

Numerical Methods in Engineering, (44):1383–1395, 1999. 16

[NCC02] D. Nave, N. Chrisochoides, and L.P. Chew. Guaranteed quality parallel
Delaunay refinement for restricted polyhedral domains. Proceedings of

the 18th Symposium on Computational Geometry, pages 135–144, 2002.
48

[Noc80] J. Nocedal. Updating quasi-Newton matrices with limited storage.
Mathematics of computation, pages 773–782, 1980. 96

[ORY05] S. Oudot, L. Rineau, and M. Yvinec. Meshing Volumes Bounded by
Smooth Surfaces. In Proceedings of the 14th International Meshing

Roundtable, pages 203–219, 2005. 48

[Owe98] S.J. Owen. A survey of unstructured mesh generation technology. In
Proceedings of the 7th International Meshing Roundtable, 1998. 6

[PAH+07] H. Pottman, A. Asperl, M. Hofer, A. Kilian, and D. Bentley. Architec-

tural geometry. Bentley Institute Press, 2007. 5

[PGH94] V.N. Parthasarathy, C.M. Graichen, and A.F. Hathaway. A compari-
son of tetrahedron quality measures. Finite Elements in Analysis and

Design, 15(3):255–261, 1994. 13

[PS04] P.O. Persson and G. Strang. A simple mesh generator in MATLAB.
SIAM Review, pages 329–346, 2004. 49

[PSB+07] J. Pons, F. Ségonne, J-D. Boissonnat, L. Rineau, M. Yvinec, and
R. Keriven. High-quality consistent meshing of multi-label datasets.
Lecture Notes in Computer Science, 4584:198, 2007. 6, 17, 22, 92

[Rin07] L. Rineau. 2D conforming triangulations and meshes. In CGAL Ed-
itorial Board, editor, CGAL User and Reference Manual. 3.3 edition,
2007. 38

[Rup93] J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh
generation. In Proceedings of the 4th annual ACM-SIAM Symposium

Bibliography 107

on Discrete Algorithms, pages 83–92. Society for Industrial and Applied
Mathematics Philadelphia, PA, USA, 1993. 14, 89

[Rup95] J. Ruppert. A Delaunay refinement algorithm for quality 2-Dimensional
mesh generation. Journal of Algorithms, 18(3):548–585, 1995. 14, 15,
28, 89

[RY07] L. Rineau and M. Yvinec. Meshing 3D domains bounded by piece-
wise smooth surfaces. Proceedings of the 16th International Meshing

Roundtable, pages 442–460, 2007. 14, 15, 22, 48, 50, 52, 53, 54, 65, 86,
88, 90, 91

[SCL+06] G. Scarella, O. Clatz, S. Lanteri, G. Beaume, S. Oudot, J.P. Pons,
S. Piperno, P. Joly, and J. Wiart. Realistic numerical modelling of
human head tissue exposure to electromagnetic waves from cellular
phones. Comptes rendus-Physique, 7(5):501–508, 2006. 17

[Sei88] R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams
with obstacles. Technical Report 260, IIG-TU Graz, 1988. 34

[She96] J.R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator. Applied Computational Geometry: To-

wards Geometric Engineering, 1148:203–222, 1996. 34

[She98] J.R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement.
In Proceedings of the 14th annual Symposium on Computational Geom-

etry, pages 86–95. ACM New York, NY, USA, 1998. 15

[She00a] J.R. Shewchuk. Mesh generation for domains with small angles. Pro-

ceedings of the 16th annual Symposium on Computational Geometry,
pages 1–10, 2000. 38

[She00b] J.R. Shewchuk. Mesh generation for domains with small angles. In
Proceedings of the 16th Symposium on Computational Geometry, pages
1–10, 2000. 90

[She02a] J.R. Shewchuk. Constrained Delaunay tetrahedralizations and prov-
ably good boundary recovery. In Proceedings of the 11th International

Meshing Roundtable, pages 193–204. Citeseer, 2002. 14

[She02b] J.R. Shewchuk. Delaunay refinement algorithms for triangular mesh
generation. Computational Geometry: Theory and Applications, 22(1-
3):21–74, 2002. 19, 28, 29, 54, 90

[She02c] J.R. Shewchuk. Two discrete optimization algorithms for the topologi-
cal improvement of tetrahedral meshes. Unpublished manuscript, 2002.
65

108 Bibliography

[She02d] J.R. Shewchuk. What is a good linear element? interpolation, condi-
tioning, and quality measures. In Proceedings of the 11th International

Meshing Roundtable, pages 115–126, 2002. 6, 11, 29, 39, 58

[Si07] H. Si. TetGen, A Quality Tetrahedral Mesh Generator and 3-
Dimensional Delaunay Triangulator, 2007. Available on the web at:
http://tetgen.berlios.de/. 82

[SMD97] J.R. Shewchuk, G.L. Miller, and R.O.H. David. Delaunay refinement

mesh generation. PhD thesis, Carnegie-Mellon University, Pittsburgh,
PA, School of Computer Science, 1997. 14

[TAD07] J. Tournois, P. Alliez, and O Devillers. Interleaving delaunay refinement
and optimization for 2d triangle mesh generation. In Proceedings of the

16th International Meshing Roundtable. Springer-Verlag, october 2007.
27

[Tal97] D. Talmor. Well-spaced points for numerical methods. PhD thesis,
University of Minnesota, 1997. 73

[Ter05] P. Terdiman. OPCODE 3D Collision Detection library, 2005.
http://www.codercorner.com/Opcode.htm. 78

[TSA09] J. Tournois, R. Srinivasan, and P. Alliez. Perturbing slivers in 3D
Delaunay meshes. In Proceedings of the 18th International Meshing

Roundtable, october 2009. 66

[TWAD09] J. Tournois, C. Wormser, P. Alliez, and M. Desbrun. Interleaving
Delaunay refinement and optimization for practical isotropic tetrahe-
dron mesh generation. ACM/SIGGRAPH Transactions on Graphics,
28(3):75:1–75:9, 2009. 51, 77

[Üng04] A. Üngör. Off-centers: A new type of steiner points for computing size-
optimal quality-guaranteed Delaunay triangulations. In LATIN: Latin

American Symposium on Theoretical Informatics, 2004. 16, 29

[Wat81] D.F. Watson. Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes. The Computer Journal, 24(2):167–
172, 1981. 14

[WBOL07] J.D. Wendt, W. Baxter, I. Oguz, and M.C. Lin. Finite volume flow
simulations on arbitrary domains. Graphical Models, 69(1):19 – 32,
2007. 17, 47

[WK02] J. Wu and L. Kobbelt. Fast mesh decimation by multiple-choice tech-
niques. Vision, Modeling, and Visualization, pages 241–249, 2002. 50,
55

[WN06] S.J. Wright and J. Nocedal. Numerical optimization. Springer, 2006.
96

Bibliography 109

[YLL+] D-M. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang. Isotropic remeshing
with fast and exact computation of restricted Voronoi diagram. In
ACM/EG Symposium on Geometry Processing / Computer Graphics

Forum. To appear. 20, 96

[YS84] M.A. Yerry and M.S. Shephard. Automatic three-dimensional mesh
generation by the modified-octree technique. International Journal for

Numerical Methods in Engineering, 20(11):1965–1990, 1984. 16

Optimisation de maillages

Résumé :

Dans cette thèse, une approche pratique pour la génération de maillages tri-
angulaires isotropes est proposée. En 2D comme en 3D, l’objectif consiste à
mailler un domaine donné, pouvant avoir une géométrie complexe. L’approche
présentée consiste à entrelacer des étapes de raffinement de Delaunay et des étapes
d’optimisation de maillages dans le but de générer des maillages gradés de qualité.
L’utilisateur peut contrôler les caractéristiques du maillage en définissant des cri-
tères de taille et de forme des simplexes, ainsi que de topologie et d’approximation.
Les méthodes par éléments finis, largement utilisées en simulation, nécessitent des
maillages gradés, composés de simplexes bien formés.

Des alternatives aux méthodes de raffinement de Delaunay usuelles sont dévelop-
pées. Les méthodes d’optimisation de maillages proposées permettent d’optimiser
la position des sommets intérieurs et de ceux du bord. Les caractéristiques du
bord du domaine à mailler, et en particulier des arêtes vives, sont préservées
par ces méthodes. En 2D, l’optimisation est basée sur l’algorithme de Lloyd et
les diagrammes de Voronoi centrés (CVT). En 3D, une extension naturelle des
triangulations de Delaunay optimales (ODT) de Chen, capable d’optimiser la
position des sommets du bord du maillage, est introduite. Notre algorithme de
maillage tétraédrique est enrichi par une étape de post-traitement permettant
d’améliorer de façon significative la qualité des angles dièdres du maillage.

Nous montrons que l’entrelacement d’étapes de raffinement et d’optimisation per-
met d’obtenir des maillages de meilleure qualité que ceux générés par les méthodes
connues en termes d’angles dans les simplexes et de complexité.

Mesh Optimization

Abstract:

In this thesis, a practical approach to isotropic triangle mesh generation is proposed.
In 2D as in 3D, the goal is to mesh the interior of a domain that possibly has
a complex geometry. The studied approach consists in interleaving Delaunay
refinement steps and mesh optimization steps, in order to generate quality graded
meshes that satisfy size, shape, topology and approximation user-defined criteria
for simplices. Widely used for simulation, finite element methods need graded
meshes composed of well-shaped simplices.

Alternatives to usual Delaunay refinement methods are developed. New mesh
optimization methods, able to optimize internal and boundary vertices locations
and to preserve the input boundary features, including sharp creases, are studied.
In 2D, the optimization method is based on the Lloyd iteration and centroidal
Voronoi tessellations (CVT). In 3D, a natural extension to optimal Delaunay
triangulations (ODT) introduced by Chen that is able to optimize boundary
vertices locations, is proposed. Our tetrahedron meshing algorithm is completed
with a post-processing step that significantly improves the quality of tetrahedra
dihedral angles.

We finally give some experimental evidence that interleaving refinement and opti-
mization results in generating meshes of higher quality than usual methods, in terms
of simplices angles and number of vertices.

	1 Introduction
	1.1 Motivations
	1.2 Fundamentals
	1.3 Problem statement
	1.3.1 Mesh quality
	1.3.2 Mesh complexity

	1.4 State-of-the-art
	1.4.1 Refinement
	1.4.2 Optimization

	1.5 Contributions

	2 2D Triangle Mesh Generation
	2.1 Related work
	2.1.1 Delaunay Refinement
	2.1.2 Optimization

	2.2 Algorithm
	2.2.1 Refinement
	2.2.2 Optimization

	2.3 Implementation
	2.4 Results
	2.5 Summary

	3 3D Tetrahedral Mesh Generation
	3.1 Related work
	3.2 Algorithm
	3.2.1 Interleaving Refinement and Optimization
	3.2.2 Sliver removal

	3.3 Implementation
	3.3.1 Intersection and Projection
	3.3.2 Filtering relocations
	3.3.3 Locking

	3.4 Results
	3.5 Summary

	4 Conclusion & Future work
	4.1 Conclusion
	4.2 Future Work
	4.2.1 Variety of inputs
	4.2.2 Convergence speedup
	4.2.3 Optimization of a regular triangulation

	Bibliography

