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Chapter 1

Introduction

Recently, there has been a surge in research activities that employ game theory to model and
analyze the performance of various networks, such as communication networks, computer net-
works, social networks, biologically inspired networks etc. There already exist several success-
ful examples where game theory provides deeper understanding of complex network dynamics
and leads to better design of efficient, scalable, and robust networks. Still, there remain many
interesting open research problems yet to be identified and explored, and many issues to be
addressed. Important analysis and applications have been done in the context of static games.
Motivated by the dynamic behavior of most of the long-term systems and the understanding of
prediction, learning and evolution, dynamic game theory has found several applications. Those
include cooperative and non-cooperative models of repeated games, sequential games, stochas-
tic games, differential games, evolutionary games etc.

Evolutionary games in large population provides a simple framework for describing strate-
gic interactions among large numbers of players. Traditionally, predictions of behavior in game
theory are based on some solution concept, typically Cournot equilibrium (64), Bertrand equi-
librium (47) or some extension/refinement thereof. These notions require the assumption of
equilibrium knowledge, which posits that each user correctly anticipates how other players
will act or react. The equilibrium knowledge assumption is too strong and is difficult to jus-
tify in particular in contexts with large number of players. As an alternative to the equilibrium
approach, an explicitly dynamic updating choice is proposed, a model in which players myopi-
cally update their behavior in response to their current strategic environment. This dynamic
procedure does not assume the automatic coordination of player’s actions and beliefs, and it
can derive many specifications of players’ choice procedures. These procedures are specified
formally by defining a revision of pure strategies called a revision protocol. A revision protocol
takes current payoffs (also called fitness in behavioral ecology) and aggregate behavior as in-
puts; its outputs are conditional switch rates which describe how frequently players in some
class playing strategy a who are considering switching strategies move to another strategy b,
given that the current payoff vector and subpopulation state. Revision protocols are flexible
enough to incorporate a wide variety of paradigms, including ones based on imitation, adapta-
tion, learning, optimization, etc. The revision protocols describe the procedures players follow
in adapting their behavior in the dynamic evolving environment such as evolving networks.
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Chapter 1. Introduction

Birth of Evolutionary Game Theory in Engineering

The evolutionary games formalism is a central mathematical tool developed by biologists for
predicting population dynamics in the context of interactions between populations. This formal-
ism identifies and studies two concepts: the Evolutionary Stability, and the Evolutionary Game
Dynamics. The unbeatable strategy has been defined by Hamilton (95; 96) which is the analo-
gous of strong equilibrium (resilient against multilateral deviations) in large systems. A weaker
of notion of locally unbeatable strategy, the Evolutionarily Stable State or Strategy (ESS), has been
defined by the biologists Maynard Smith & Price (186). The ESS is characterized by a property
of robustness against invaders (mutations). More specifically, (i) if an ESS is reached, then the
proportions of each population do not change in time. (ii) at ESS, the populations are immune
from being invaded by other small populations. This notion is stronger than Nash equilibrium
in which it is only requested that a single user would not benefit by a change (mutation) of
its behavior. The ESS concept helps to understand mixed strategies in games with symmetric
payoffs. A mixed strategy can be interpreted as a composition of the population. An ESS can
be also interpreted as a Nash equilibrium of the one-shot game but a (symmetric) Nash equilib-
rium cannot be an ESS. As is shown in (223), ESS has strong refinement properties of equilibria
such as proper equilibrium, perfect equilibrium etc. Before the ESS concept, Hamilton has intro-
duced the concept of Unbeatable Strategy (95; 96), which is stronger than ESS. Although ESS and
unbeatable strategy have been defined in the context of biological systems, it is highly relevant
to engineering as well (230). In the biological context, the replicator dynamics is a model for
the change of the size of the population(s) as biologist observe, where as in engineering, we can
go beyond characterizing and modeling existing evolution. The evolution of protocols can be
engineered by providing guidelines or regulations for the way to upgrade existing ones and in
determining parameters related to deployment of new protocols and services.

There have been a lot of work on non-cooperative modeling of power control using game
theory (76; 166). There are two advantages in doing so within the framework of evolutionary
games:

• it provides the stronger concept of equilibria, the ESS, which allows us to identify robust-
ness against deviations of a fraction of players, and

• it allows us to apply the generic convergence theory of evolutionary game dynamics, and
stability results that we introduce in next chapters.

Homogenous population

We consider the standard setting of evolutionary games : there is a large populations of players;
each member of the population has the same pure action set A (a finite set).

Mixed strategies and population profile

Denote by ∆(A) the (|A| − 1)−dimensional simplex of R|A|. Let x(t) be the |A|− dimen-
sional vector whose element xa(t) is the population share of strategy a at time t. Thus we, have
∑

a∈A
xa(t) = 1 and xa(t) ≥ 0. We frequently use an equivalent interpretation where x(t) is a

mixed strategy used by all players at time t; by a mixed strategy we mean that a player chooses
at time t an action a with probability xa(t). With either interpretations, at each local interaction
occurring at time t a given player can expect that the other player would play strategy a with
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probability xa(t). The vector x(t) will also be called the state of the population at time t. Define
the expected payoff of a player with the action a when the population profile x(t) by fa(x(t)).

Equilibrium and Evolutionary Stability

The evolutionarily stable state or strategy (ESS) concept have the property that if it is reached,
then the proportions of each population do not change in time. Suppose that, initially, the pop-
ulation state has been x ∈ ∆(A) during a long time. The average payoff in the population is
∑

a∈A
xa fa(x). Now suppose that a small group of mutants enters this population playing accord-

ing to a different profile mut (and persists using it during a time longer than the delays). If
we call ǫ ∈ (0, 1) the size of the subpopulation of mutants after normalization, then the pop-
ulation profile after mutation will be ǫ mut + (1 − ǫ)x. After mutation, the average payoff of
non-mutants who are randomly matched to mutants is given by ∑

a∈A
xa fa(mut), and the aver-

age payoff of non-mutants will be given by

ǫ ∑
a∈A

xa fa(mut) + (1 − ǫ) ∑
a∈A

xa fa(x).

Analogously, we can construct the average payoff of mutant

ǫ ∑
a∈A

muta fa(mut) + (1 − ǫ) ∑
a∈A

muta fa(x).

A population x ∈ ∆(A) is an ESS if for all mut 6= x, there exists some ǫmut ∈ (0, 1), which may
depend on mut, such that for all ǫ ∈ (0, ǫmut)

ǫ ∑
a∈A

muta fa(mut) + (1 − ǫ) ∑
a∈A

muta fa(x) (1.1)

< ǫ ∑
a∈A

xa fa(mut) + (1 − ǫ) ∑
a∈A

xa fa(x)

That is, x is ESS if, after mutation, non-mutants are more successful than mutants, in which
case mutants cannot invade and will eventually get extinct. The number ǫmut is called invasion
barrier See Weibull (1995). It is the maximum rate of mutants against which s is resistant. If
x is an ESS then x is a Nash equilibrium. Equivalently x is an ESS if and only if it meets best
response conditions:

∑
a∈A

muta fa(x) ≤ ∑
a∈A

xa fa(x), ∀ mut, (1.2)

∀ mut 6= x, ∑
a∈A

muta fa(x) = ∑
a∈A

xa fa(x) ⇒ (1.3)

∑
a∈A

muta fa(mut) < ∑
a∈A

xa fa(mut) (1.4)

For population games with non-linear payoffs (i.e when x 7−→ fa(x) is non-linear function),
define the solution and evolutionary stability concepts as follows: A population profile x is an
equilibrium state if

∑
a∈A

xa fa(x) ≥ ∑
a∈A

muta fa(x), ∀ mut

5



Chapter 1. Introduction

This variational inequality is equivalent to :

(∗) ∀a ∈ A, xa > 0 =⇒ fa(x) = max
b∈A

fb(x)

This last condition is sometimes referred to "Wardrop first principle" (233) of optimality and
can be easily obtained using the indifference condition at mixed equilibria. The condition (∗) is
sometimes written in the form: supp(x) ⊆ arg max

a
fa(x).

We say that a population profile x = (xa)a∈A is evolutionarily stable if for each deviation
strategy called "mutant strategy" mut = (muta)a∈A 6= x, there exists some ǫmut > 0 such that
∀ǫ ∈ (0, ǫmut),

∑
a∈A

(xa − muta) fa(ǫ mut + (1 − ǫ)x) > 0. (1.5)

The strategy x is a neutrally evolutionary stable state (NESS) if the above inequality is non-
strict. If the inequality is non-strict and ǫ = 0 then the resulting inequality says that x is an
equilibrium state. Thus, the ESS notion is stronger than Nash equilibrium.

A population profile x ∈ ∆(A) is an unbeatable state if for any mut 6= x,

∑
a∈A

(xa − muta) fa(ǫmut + (1 − ǫ)x) > 0, ∀ǫ ∈ (0, 1) (1.6)

That is, x is an unbeatable state if, after mutation of any size (it can be all the population), non-
mutants are more successful than mutants. In other words, any mutants of any size cannot
invade the population. Note that an unbeatable state is an evolutionarily stable state, which
implies neutrally stable state, which is an equilibrium of the one-shot game i.e if the population
profile is at this state and no player has incentive to unilaterally change his/her action. The
following inclusion holds:

∆Unbeatable state ⊂ ∆ESS ⊂ ∆Neutally stable ⊂ ∆Equilibrium state (1.7)

Note that evolutionarily stable state and unbeatable state may not exists (see for example
the class of Rock-Paper-Scissor games (99; 90; 65; 234)). The following theorem gives another
necessary and sufficient condition to be an ESS for evolutionary games with bilinear payoff
functions. A proof can be found in (94).
Theorem 1.0.0.1. Let q be a symmetric (Nash) equilibrium for the matrix game with payoffs (F, Ft)
where Ft is the transposition matrix of F = (F(i, j)i,j) and BRP(q) be the pure best response to q i.e

BRP(q) =

{
j | ∑

k

F(j, k)qk = max
l

∑
k

F(l, k)qk

}
.

Define q̄ as

q̄j =

{
qj if j ∈ BRP(q)
0 otherwise

Let F̃ the submatrix obtained from F by taking only the index i, j ∈ BRP(q). Then q is an evolutionarily
stable strategy if and only if

∑
k∈BRP(q)

(pk − q̄k) ∑
j∈BRP(q)

F̃k,j(pj − q̄j) < 0

for all p 6= q.
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Note that the last condition is equivalent to

∀y ∈ Y, ∑
k,j∈BRP(q)

ykyj F̃k,j < 0

where

Y :=




z ∈ R|BRP(q)|\{0}, ∑
j∈BRP(q)

zj = 0, and q̄j = 0 =⇒ zj ≥ 0






and |BRP(q)| is the cardinal of the finite set BRP(q).

ESS is an important refinement of Nash equilibria as shown in the following example.

Example

Consider the following matrix game with two players. Each has one block of strategies 1 nd
one pure strategy 2. The block contains at least two strategies. The corresponding payoffs are
given in the tabular where the player I chooses a row r1 (the block ) or r2 and player II chooses
a column c1 (block) or c2.

Player II
c1 c2

r1 min(α, β), min(α, β) min(α, β), min(α, β)

P
la

ye
r

I

r2 min(α, β), min(α, β) max(α, β), max(α, β)

where α, β ∈ R. The game has an infinity of Nash equilibria: (i) one of the player chooses
the first strategy (in the block) and the second an arbitrary strategy, (ii) Both players choose the
second strategy. But the game has only one ESS (the second strategy). An allocation of payoffs is
said Pareto optimal if the outcome cannot be improved upon without hurting at least one player.
In this case the ESS is also Pareto optimal because the payoff obtained at ESS is the maximum
payoff that each player can have.

When the block has only two pure actions, the game becomes the following: Each player has
three strategies 1, 2 or 3. The corresponding payoffs are given in the tabular where the player I
chooses a row r1, r2 or r3 and player II chooses a column c1, c2 or c3.

c1 c2 c3
r1 min(α, β), min(α, β) min(α, β), min(α, β) min(α, β), min(α, β)
r2 min(α, β), min(α, β) min(α, β), min(α, β) min(α, β), min(α, β)
r3 min(α, β), min(α, β) min(α, β), min(α, β) max(α, β), max(α, β)

ESS is not unbeatable

We ask the following question: What happens when the size of mutants is greater than the
invasion barrier of an ESS? To answer to question, we use the unbeatable strategy, a concept
defined by Hamilton (1967), as a population profile which is resilient to any deviant strategy of
any size. An unbeatable strategy is always an ESS, though an ESS is not necessarily unbeatable,
as it may be beaten by large migrations into the population. The following example illustrates
a situation where ESS is not unbeatable

7



Chapter 1. Introduction

c1 c2 c3
r1 max(α, β), max(α, β) max(α, β), max(α, β) min(α, β), min(α, β)
r2 max(α, β), max(α, β) min(α, β), min(α, β) max(α, β), min(α, β)
r3 min(α, β), min(α, β) min(α, β), max(α, β) min(α, β), min(α, β)

Are strong Nash equilibria evolutionarily stable strategies?

Aumann was one of the first one to introduce a number of concepts in game theory. One of
these concepts was a strong equilibrium (34), which is a pure Nash equilibrium, in which not
only single players cannot benefit from changing their strategy (to a different pure strategy),
but no non-empty subset of players can form a coalition, where a coalition (group) means that
all of them can change their strategies together, and all gain from the change.

In a strong equilibrium (see also acceptable point ), no coalition (of any size) can deviate and
improve the utility of every member of the coalition (while possibly lowering the utility of
players outside the coalition). Clearly, every strong equilibrium is a Nash equilibrium, but the
converse does not hold. In cases where a strong equilibrium exists, it seems to be a very robust
notion. Considering strong equilibrium allows us to separate the effect of selfishness (which
remains in strong equilibria) from that of lack of coordination (which disappears, since a strong
equilibrium is resilient to deviations in coalitions).

In a n−player one-shot normal form game we say that a pure strategy profile is a k−strong
equilibrium if it is robust by deviation of the group of size at most k(k ≤ n). A pure Nash
equilibrium is resilient to pure deviations of groups of size k, if there is no group of size at most
k, such that the strategy profile is not resilient to a pure deviation by the subset of the group. A
k−strong equilibrium is a pure Nash equilibrium that is resilient to pure deviations of coalitions
of size at most k. We will discuss how to define strong equilibrium in randomized strategies. In
a Nash equilibrium no player can improve its own payoff by unilaterally changing its action.
Thus, a Nash equilibrium corresponds to 1−strong equilibrium. It is easy to see that strong
equilibrium is equivalent to a n−strong equilibrium.

We ask the following question: Are strong Nash equilibria evolutionarily stable strategies?
We show that the answer is negative. To see this, consider an evolutionary game with constant
payoff. It is clear that the game has many strong equilibria. None of theses equilibria are
evolutionarily stable strategies.

Evolutionary game dynamics

As an alternative to the equilibrium approach, evolutionary game dynamics propose an explic-
itly dynamic updating choice, a model in which players myopically update their behavior in
response to their current strategic environment. This dynamic procedure does not assume the
automatic coordination of users’ actions and beliefs, and it can derive many players’ choice pro-
cedures. These procedures are specified formally by defining a revision of pure strategies. The
revision of strategies describes the procedures users follow in adapting their behavior to in the
dynamic evolving environment such as in evolving networks.

There is a large number of population dynamics have been used in the context of non-
cooperative games. Examples are the excess payoff dynamics, the fictitious play dynamics
such as Brown-von Neumann-Nash dynamics (Brown & von Neumann, 1950), gradient-based
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game dynamics (Rosen, 1965), replicator dynamics (Taylor & Jonker, 1978), pairwise compar-
ison dynamics such as Smith dynamics (Smith, 1984), fictitious play (Gilboa & Matsui, 1991),
projection dynamics, best response dynamics (Fudenberg & Levine, 1991), Fudenberg & Tirole,
1991), Boltzman dynamics and logit dynamics (Fudenberg & Levine, 1998), G-function based
dynamics (Vincent & Brown, 2005) etc. Much literature can be found is the extensive survey on
evolutionary game dynamics in (99) and in the book of Sandholm on Population Games and
Evolutionary Dynamics (168). The replicator dynamics is one of the most studied evolutionary
game dynamics. It has been used for describing the evolution of road traffic congestion in which
the fitness is determined by the strategies chosen by all drivers (167). It has also been studied in
the context of the association problem in wireless networks in (181).

Most of applications using evolutionary game dynamics was inter-disciplinary between eco-
nomics, biology and behavioral ecology. Recently, game theory evolving has found many ap-
plications in the field of wireless communications and networks. The standard formulations of
evolutionary games consider only pairwise interactions such as random matching. However,
interactions which are not pairwise frequently arise in communication networks, such as the
cases of Code Division Multiple Access (CDMA) system (209), Orthogonal Frequency-Division
Multiple Access (OFDMA) in Worldwide Interoperability for Microwave Access (WiMAX) en-
vironment (11) etc. It has been applied to problems such as congestion control (147), distributed
cooperative sensing over cognitive radio networks (232; 160), code division multiple access
(CDMA), Orthogonal Frequency-Division Multiple Access (OFDMA) based Worldwide Inter-
operability for Microwave Access (WiMAX) environment (11), reciprocal and non-reciprocal
interference control, mobile medium access control and channel selection (213) and capacity re-
gion of Additive White Gaussian Noise (AWGN) (88; 242), Multihoming and association prob-
lems (184; 209). These examples will be discussed in chapters 3 and 4.

The purpose of this manuscript is threefold.

Part I: Delayed Evolutionary Game Dynamics with Migration

The first part of this manuscript contains evolutionary stability and dynamic foundation of
evolutionary games. The chapter 2 presents evolutionary games with delayed payoffs. We in-
troduce and study delayed evolutionary game dynamics in which each pure strategy has its own
time delay. Delayed evolutionary game dynamics are in general a system of first order non-
regular nonlinear differential equations or differential inclusions with time delays. We use the
theory of delayed differential equations (DDE), which is a special class of functional differential
equations to study bifurcation, periodicity, stability, convergence and chaocity of the system
under time delays. Delays play an important role in many situations in networking such as in
flow control and congestion problems. We examine the effects of time delays in various contexts
: congestion control protocols, dissemination information, Hawk and Dove game and multiple
access game with regret cost using various delayed evolutionary game dynamics such delayed
replicator dynamics, delayed imitation by dissatisfaction dynamics, delayed best response dy-
namics, delayed Brown-von Neumann-Nash dynamics, delayed projection dynamics, delayed
generalized Smith dynamics, delayed evolutionary game dynamics with migration etc.

The chapter 3 extends the basic pairwise interaction model of evolutionary games to cover
more general interactions including non-reciprocal interactions, and random number of play-
ers. In order to make use of the wealth of tools and theory developed in biology literature, many
works in the area of computer networks ignore cases where local interactions between popula-
tions involve more than two players in a local interaction. This restriction limits the modeling
power of evolutionary games which are not useful in a network operating at heavy load, such
as internet traffic and dense networks. This motivated us to consider more than two players
interacting locally. Moreover, the interactions can be non-symmetric. The resulting framework
leads to evolving games with non-linear expected payoffs (in term of population profile). Equi-
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librium analysis as well as dynamic behavior of networking games are presented. Conditions
for existence and uniqueness of equilibrium are given in some class of games including sub-
modular games, supermodular games, potential games, games with monotone payoffs etc. We
also discuss about selection of equilibria using population dynamics.

We study the following applications:

• Power control in Wideband CDMA wireless networks: Wideband Code Division Multiple
Access (W-CDMA) is wideband spread-spectrum channel access method that utilizes the
direct-sequence spread spectrum method of asynchronous code division multiple access
to achieve higher speeds and support more users compared to most time division mul-
tiple access (TDMA)(144). Power control in wireless networks has become an important
research area. Since the technology in the current state cannot provide batteries which
have small weight and large energy capacity, the design of tools and algorithms for ef-
ficient power control is crucial. For a comprehensive survey of recent results on power
control in wireless networks an interested reader can consult e.g., (144) and the reference
therein. Power control protocols based on game theory have been designed for already
ten years starting with the pioneering work (76; 115). Non-cooperative games provide
a convenient framework for decentralization and distributed decision making in those
applications, where as cooperative approaches of game theory have allowed to handle is-
sues concerning fairness in power allocation. Most applications of game theory to power
control consider mobile terminals as players of the same type and study strategic one-
shot games with a fixed number of players. Here, we consider a population game with
many simultaneous local interactions, where the game is played infinitely under some
self-organizing process called "hybrid dynamic" and where each interaction concerns a
random number of players (213; 11).

• OFDMA based IEEE 802.16 Networks: OFDMA (Orthogonal Frequency Division Multiple
Access) is recognized as one of the most promising multiple access technique in wireless
communication system. This technique is used to improve spectral efficiency and becomes
an attractive multiple access technique for 4th generation mobile communication system
as WiMAX.

In OFDMA systems, each user occupies a subset of subcarriers, and each carrier is as-
signed exclusively to only one user at any time. This technique has the advantage of
eliminating intra-cell interference (interference between subcarriers is negligible). Hence
the transmission is affected by intercell interference since users in adjacent sectors may
have also been assigned to the same carrier. If those users in the adjacent sectors trans-
mitted with high power the intercell interference may severely limit the SINR achieved
by the user. Some form of coordination between the different cells occupying the spec-
tral resource are studied in (134; 123). The optimal resource allocation requires complete
information about the network in order to decide which users in which cells should trans-
mit simultaneously with a given power. All of these results however, rely on some form
of centralized control to obtain gains at various layers of the communication stack. In a
realistic network as WiMAX, centralized multicell coordination is hard to realize in prac-
tice, especially in fast-fading environments. Decentralized schemes have proposed to the
intercell interference in OFDMA-based IEEE 802.16 Networks.

• Aloha-like protocols: Random Medium Access Control (MAC) algorithms have played an
increasingly important role in the development of wired and wireless networks and the
performance and stability of these algorithms, such as slotted-Aloha, Carrier Sense Mul-
tiple Access (CSMA) is still an open problem (36). Distributed Medium Access Control,
starting from the first version of Abramson’s Aloha to the most recent algorithms used in
IEEE802.11, have enabled a rapid growth of both wired and wireless networks. They aim
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at efficiently and fairly sharing a resource among users even though each user must decide
independently (eventually after receiving some messages or listening) when and how to
attempt to use the resource. MAC algorithms have generated a lot of research interest,
especially recently in attempts to use multi-hop wireless networks to provide high-speed
access to the internet with low-cost and low-energy consumption. we focus our attention
to wireless networks, where the resources are receivers, base station or access points and
where users interact because of interference, i.e., interfering users cannot transmit simul-
taneously. There is a collision if another user (mobile) transmits with a greater power level
at the same range of the receiver.

We apply evolutionary game with random number of interacting players to slotted Aloha
wireless networks, power control in Wideband CDMA networks and OFDMA-based IEEE 802.16
networks. We then focus on evolutionary stability properties of correlated equilibrium in evolu-
tionary games with arbitrary number of players in each local interaction. The performance and
cost of random medium access control with power control is analyzed. This study is extended
to the case of Signal-to-Interference-plus-Noise-Ratio (SINR) and Quality of Service (QoS) based
Admission Control in which more than one user can have successful transmissions at the same
time slot. A class of delayed evolutionary game dynamics for correlated equilibria is given
based on assignment functions from the set of signals to set of actions. The chapter 4 presents
a class of bio-inspired game dynamics with migration in a hybrid evolutionary game model in
Code Division Multiple Access (CDMA) wireless data networks, in OFDMA-based WiMAX en-
vironment and in association problem between several types of technologies such as UMTS 3G,
High Speed (Downlink/Uplink) Packet Access (HSDPA/HSUPA), IEEE 802.16 (WiMAX), IEEE
802.11 (WiFi), Long Term Evolution (LTE) etc. Considering both location of users (regions) and
secondary actions association in each location, we transform the migration problem in term of
revision of strategies. Each user has its own state (location, specific technology). An individual
state has two components: the current location of the user and the current secondary action. In
contrast to the standard formulations in which users can not change their class or type, we con-
sider here that the class which corresponds to its location can be changed in time. This captures
the mobility of users in the population. We show that the order of revision of strategies is im-
portant in the leading dynamics (speed of convergence, Nash stationarity, positive correlation
etc) .

Part II: Stochastic Population Games

The second part of this manuscript focuses on stochastic population games of evolving
games. The chapter 5 introduces stochastic population games. This class of games is described
by : (i) classes of large population of players, (ii) each player from each class has its own state
and a set of actions available in each state, (iii) each player interacts with other randomly se-
lected players (in the same class or from other classes). The states and actions of each player in
an interaction together determine the instantaneous payoff for all involved players. They also
determine the transition probabilities to move to the next state. Each player wishes to maximize
the expected payoff during its sojourn time in the system.

• Energy management in hybrid Aloha-like networks We study energy management in a dis-
tributed Aloha network with large number of mobile terminals. Each mobile can choose
both the channels and powers (this is in contrast to standard Aloha model in which users
are associated to the closest receivers). Each terminal is faced to a random number of
interacting players which transmit at the channel. A terminal attempts transmissions dur-
ing a finite horizon of times depending on the state of its battery energy. At each slot, each
terminal have to take a decision on the transmission power based on the battery state. At
each state of the battery, there are a finite power levels. At the lowest state of battery no
power is available and the mobile have to replaced the battery by a new or to recharge
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its battery. A transmission is successful if no other user transmit during the slot or the
mobile transmits with a power which is bigger than the power of all others transmitting
mobiles at the same receiver. We model each battery state as a Markov decision process.
We analyze this problem stochastic population games with individual states.

• Access control in solar-powered broadband networks

Environmental energy is becoming a feasible alternative for many low-power systems,
such as wireless sensor and mesh networks. However, this provides an unpredictable
and limited amount of energy over time. The power storage elements, such as recharge-
able batteries or super-capacitors, become very useful to increase the system lifetime and
the system availability. In particular, solar power is made possible with the use of Pho-
tovoltaic cells. Comprised of several layers of material, these cells are able to produce
electrical power from exposure to sunlight. Since in many geographic areas, nice weather
is not guaranteed and is unpredictable, the nodes should be able to recover from blackout
periods caused by the unavailability of energy.

We extend our study to the case where the mobiles use power storage element, such as
rechargeable Solar-powered batteries, in order to have energy available for later use. By
modeling the energy-level of Solar-powered batteries as a stochastic process, we study
noncooperative interactions within large population of mobiles that interfere with each
other through many local interactions. Each local interaction involves a random number
of mobiles. The actions taken by a mobile determine not only the immediate payoff but
also the state transition probabilities of its battery. We define and characterize the evolu-
tionary stable strategies of the stochastic population game.

The stochastic population game with dynamic rechargeable battery depending on the
weather (solar energy) is described as follows: There are many local interactions among
individuals belonging to large populations of mobiles. The result of the interaction be-
tween mobiles depends on their current individual state. From time to time the individ-
ual state of a mobile varies. The action choice of mobiles involved in a local interactions
as well as their individual states determine the not only the result of the interactions but
also the transition probabilities to the other possible individual states. Each individual is
thus faced with an Markov Decision Process (MDP) in which it maximizes the expected
average cost criterion. Each individual knows only the state of its own MDP, and does not
know the state of the other mobiles it interacts with.

The destination of some transmission occasionally may receive simultaneously a trans-
mission from another terminal which results in a collision. It is assumed however that
even when packets collide, one of the packets can be received correctly if transmitted at
a higher power. As state of the MDP of a user we take its energy level. The immediate
fitness (rewards) is the number of successful transmissions. By allowing the mobiles to
be equipped with rechargeable solar powered batteries, the mobiles may have infinite life
time and the criteria that is maximizing is the limit average Cesaro-type payoff.

Part III: Mean Field Limits

The third part of this manuscript focuses on a class of mean field games and asymptotic
properties of stochastic games. An interesting and important problem in n−player games is
that of determining what happens when the number of players increases. Mean field asymp-
totics have been proposed to analyze this problem and a connection between the equilibria
of limiting game and finite game is obtained. In addition, the dynamics of the system evolu-
tion is characterized. Those dynamics extend the standard evolutionary game dynamics. The
chapter 6 studies the transition between evolutionary games with finite number of players and
evolutionary games with infinite number of players. When the size of the population goes
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to infinity, a new class of deterministic population dynamics is given and sufficiency condi-
tions for convergence and evolutionary stability are derived. A fluid model of spatial random
access games is presented. The chapter 7 provides a rigorous derivation of the asymptotic be-
havior of the stochastic evolving games as the size of the population grows to infinity. Under
restricted class of strategies, the random process consisting of one specific player and the re-
maining population converges weakly to a jump process driven by the solution of a system
of differential equations. The large population asymptotic of the microscopic model is equiv-
alent to a macroscopic stochastic population game in which a local interaction is described by
a single player against an evolving population profile. We illustrate our model to derive the
equations for a dynamic evolutionary Hawk and Dove game with energy level. We derive a
new class of dynamic games called differential population games. Different from standard differ-
ential game models, this class of games is described by large population of players in which
each player from each class is facing a random vector that evolves according to the population
dynamics (deterministic or stochastic differential equations/inclusions). We derive equilibrium
and optimality solutions using Hamilton-Jacobi-Bellman-Issacs equations. This research is of
importance for dealing with complexity in stochastic dynamic optimization of large-scale sys-
tems and has methodological implications in many complex systems arising in engineering and
socio-economic areas, ecology and evolutionary biology.
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Delayed Evolutionary Game
Dynamics with Migration
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Chapter 2

Delayed evolutionary game
dynamics

In this chapter, we study some evolutionary games where competition between individuals
from a large population occurs through many pairwise interactions between randomly selected
individuals. There are two features that make evolutionary games attractive to networking and
communication systems. Its evolutionarily stability concept is better adapted to large popula-
tions of players as it describes robustness against deviations of a whole fraction of the popula-
tion. The second appealing element of evolutionary games, the evolutionary game dynamics,
describes the evolution of strategies in time. We study in particular an evolutionary game de-
scribing competition between mobile terminals over the access to a channel and we revisit the
well known Hawk and Dove game (or Chicken game). In addition to the study of properties of
the ESS in these games, we study the effect of time delays on the convergence of various evo-
lutionary dynamics to the ESS. Delays play an important role in many situations in networking
such as in flow control and congestion problem. We assume that time delays are not necessarily
symmetric. The case of a common time delay for all strategies can be found in Tao & Wang
(1997). We provide instability conditions and illustrate the non-stable behavior with numerical
examples.

Several previous papers have already studied evolutionary games with pairwise local in-
teractions in the context of wireless networks. Evolutionary games have been studied in the
context of unslotted Aloha in (52). They have identified conditions for the existence of non
trivial ESS and have computed them explicitly. In (215), we have considered the multiple ac-
cess game and studied delay effect under various models of evolutionary game dynamics with
asymmetric delay based on the theoretic results on stability obtained in (214). In (216), we have
extended the model of (215) by including a regret cost, incurred when no user transmits, and
studied the impact of that cost on the proportion of mobiles that transmit at equilibrium. In
the last three papers, the delay is shown to have negative impact on the stability of the system.
For other applications of evolutionary games concepts in networking, see (147; 240; 12; 211; 13)
who study congestion control models. The time delay is shown to have negative impact on the
stability of the system and “evolutionarily stable state” can be unstable.

We introduce below asymmetric time delays into classical models of populations dynamics.
An action taken today will have its effect some time later. The delays can be symmetric or
not. We then obtain delayed payoff (or payoff, fitness, cost) functions. The evolution of the
system leads to delayed evolutionary game dynamics. Delayed evolutionary game dynamics
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Chapter 2. Delayed evolutionary game dynamics

are in general a system of first order non-regular nonlinear differential equations or differential
inclusions with time delays. We use the theory of delayed differential equation (DDE) to study
stability, convergence and non-convergence of the system under time delays. Evolutionary
game dynamics with asymmetric time delays have been introduced in (214; 216; 215; 13). In the
case of finite number classes where each class has a finite number of pure actions, a simple class
of delayed evolutionary game dynamics is given by

ẋe
a(t) = ∑

b∈Ae

xe
b(t)βe,b

a (x(t), {x(t − τe
b)}e,b)− xe

a(t) ∑
b∈Ae

xe
b(t)βe,a

b (x(t), {x(t− τe
b)}e,b) (2.1)

where τe
a denotes the time delay associated to the pure strategy a of class e. See chapter 6 for a

derivation of this expression from mean field interactions or from Kolmogorov forward equa-
tions.

We now consider simple pairwise interactions. For such games there is a direct relation
to a two players matrix game representing the expected fitness obtained in an interaction be-
tween two individuals (selected at random); the expectation is with respect to the fraction of
the population that uses each strategy. We introduce asymmetric time delays in evolutionary
game dynamics and study asymptotic stability of evolutionary stable strategies under these dy-
namics. We give sufficiency conditions of stability of the ESS which can not invaded by small
proportion of deviations. Using delay differential equations properties, we show that the inte-
rior ESS of generic two-players games is asymptotically stable for small delays (Theorems 2.1.5,
2.1.6) and apply this result in the Hawk and Dove Game. We show that for a small time delay of
the hawk strategy the system is asymptotically stable independently the Dove’s time delay. In
the common access problem in wireless adhoc networks, we show that the game has a unique
ESS in which nodes which transmit and nodes which does not transmit can co-exist. We show
how the evolution and the ESS are influenced by the characteristics of the wireless channel and
pricing:

• We give a necessary and sufficient stability condition (Propositions 2.2.2.1 and 4.3.3) which
depend on the regret cost in the multiple access game,

• We show that ESS is stable for small transmission delay under BNN and replicator dy-
namics for the regret cost lower to unit. The ESS becomes unstable for large delays.

• We show that the fraction of transmitters of the population of mobiles oscillates around
the ESS for all small regret cost under imitate the better dynamics (Proposition 2.2.3.1 and
remark 2.2.3.2).

The rest of this chapter is organized as follows. In Section 5.4, we describe our model of
population game with delayed payoffs and we give an example of channel access problem in
which delays must be take in consideration the interactions and we analyze delays impact on
stability of the ESS in many dynamics. Multiple access game is studied in Section 2.2. We
give some numerical examples of oscillatory regime in the access game. Section 2.4 extends
delayed evolutionary game dynamics to asymmetric population games which one can have
simultaneously intra-population interactions and inter-population interactions.

2.1 Setting and notations

We consider the standard setting of evolutionary games : there is a large populations of players;
each member of the population has the same pure strategy set A (a finite set). There are many
pairwise interactions. Denote by ∆(A) the (|A| − 1)−dimensional simplex of R|A|.
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2.1. Setting and notations

2.1.1 Delays and Fitnesses

The fitness for a player at a given time is determined by the action a taken by the player at
that time, as well as by the actions of the population it interacts with, that was taken τa units
ago. More precisely, If player 1 chooses the strategy b and player 2 the strategy a then player
1 receives the payoff u(b, a) (called fitness) only τb times later and player 2 receives the payoff
u(a, b) after a delay of τa.

Below we denote by fa(x(t − τa)) the fitness for an individual using the strategy a at time t
when it encounters an individual that used strategy x(t − τa) at time t − τa. We have fa(x(t −
τa)) = ∑

b∈A
u(a, b)xb(t − τa), and we set f̄ (x(t)) = ∑

a∈A
xa(t) fa(x(t − τa)) to be the average

expected fitness of the whole population at time t.

The following example in the context of wireless communications illustrates our model.

Example

Consider a transmitter A and a very close receiver B. Transmitter A can decide whether to trans-
mit with frequency f1 or f2. If it transmits with frequency fi then its signal receives interference
at receiver B from transmitters that are located at a distance of Di from the receiver, which trans-
lates to a time delay of τi (where i = 1, 2). Thus indeed, the action of a player determines the
delay it will take for actions of other players to be effective.

2.1.2 Delayed evolutionary game dynamics

Evolutionary game dynamics are models of strategy change commonly used in evolutionary
game theory. A strategy which does better than the average or its opponent, increases in fre-
quency at the expense of strategies that do worse than the average or the opposed action. Many
evolutionary game dynamics models are used in the literature (see (168; 99) and the references
therein) : replicator dynamics, best response dynamics, Brown-von Neumann-Nash dynamics,
Smith dynamics, gradient dynamics, projection dynamics etc. We introduce below delays into
classical models of populations dynamics. Let βb

a conditional switch rate from the strategy b to
the strategy a. The flow of the population is specified in terms of the functions βb

a which deter-
mine the rates at which an player who is considering a change in strategies opts to switch to his
various alternatives. The incoming flow of the action a is ∑

b∈A

xb(t)βb
a(x(t)), and the outgoing flow

is xa(t) ∑
b

βa
b(x(t)) where xa(t) represents the fraction of players of the population which use

the action a at time t. Let

Wa
f (x(t), {x(t − τk)}k) = ∑

b∈A
xb(t)βb

a(x(t), {x(t − τk)}k)− xa(t) ∑
b∈A

βa
b(x(t), {x(t − τk)}k).

The evolutionary game dynamics (234; 168; 208) is given by

ẋa = Wa
f (x(t), {x(t − τk)}k), a ∈ A. (2.2)

For example the delayed replicator dynamics, delayed Brown-von Neumann-Nash dynamics
and generalized projection dynamics are obtained respectively for

βb
a(x(t), {x(t− τk)}k) = xa(t) max(0, fa(x(t − τa))− fb(x(t − τb))),

17



Chapter 2. Delayed evolutionary game dynamics

βb
a(x(t), {x(t − τk)}k) = max(0, fa(x(t − τa))− ∑

b∈A
xb(t) fb(x(t − τb))),

βb
a(x(t), {x(t − τk)}k) = ha(x(t), {x(t− τk)}k).

Delayed replicator dynamics

In the delayed replicator dynamics, the share of a strategy in the population grows at a rate
equal to the difference between the delayed payoff of that strategy and the average delayed
payoff of the population. The fitness acquired at time t will impact the rate of growth τa time
later. Thus the delayed replicator dynamics of xa(t) is given by

a ∈ A, ẋa(t) = xa(t)

[
fa(x(t − τa))− ∑

b∈A
xb(t) fb(x(t − τb))

]
.

The standard replicator dynamics is obtained when all the delays are zero.

Delayed BNN dynamics

Delays can be introduced in BNN dynamics, Brown & von Neumann (1950) as follows

a ∈ A, ẋa(t) = ga(x(t))− xa(t) ∑
b∈A

gb(x(t)) (2.3)

where

ga(x(t)) = max

{
0, fa(x(t − τa)) − ∑

b∈A
xb(t) fb(x(t − τb))

}
.

The function ga(x(t)) is the positive part of the excess payoff for strategy a when the population
state is x(t) at time t.

There are a close relation between BNN dynamics with Nash’s original proofs of his equi-
librium theorem (see Hofbauer & Sigmund (2003)). BNN dynamics is interpreted in Hofbauer
& Sigmund (2003) as follows: Suppose there are large users in the population in which there
is steady influx and outflux. New users joining the system use only strategies that are better
than average, and better strategies are more likely to be adopted. On the other hand, randomly
chosen users leave the game. More precisely, the strategy x ∈ ∆(A) is adopted with probability
proportional to the excess payoff ga(x).

Delayed imitate the better dynamics

We introduce delayed myopic imitation dynamics. We suppose that users in the population
review their strategy and imitate the better’s strategy on the time (imitation by dissatisfaction).
In a symmetric two player game, the delayed dynamic is given by

b ∈ A, ẋb(t) = xb(t)

(

∑
a∈A

xa(t) [ρab(x(t − τa))− ρba(x(t − τb))]

)
, b ∈ A (2.4)

where ρab(x) = g( fb(x(t − τb)), fa(x(t − τa))), a, b ∈ A and g(a, b) = 0 if a < b and g(a, b) = 1
if a > b.
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Delayed best response dynamics

A strategy Y ∈ ∆(A) is a best response to the trajectory x(t) at time t if ∑
a∈A

Ya fa(x(t − τa)) ≥

∑
a∈A

va fa(x(t − τa)), ∀v ∈ ∆(A). We note by BR(x(t)) the best response strategies set to the

strategy x(t) i.e

BR(x(t)) =

{
Y ∈ ∆(A), ∑

a∈A
Ya fa(x(t − τa)) ≥ ∑

a∈A
va fa(x(t − τa)), ∀v ∈ ∆(A)

}

A fraction of population revise their strategy and choose the best replies BR(x(t)) to the
current population state x(t) at time t. The best response dynamics is given by ẋ ∈ BR(x)− x.

Delayed logit dynamics

The delayed logit dynamics (called also delayed exponential weight dynamics or delayed Boltz-
man dynamics) is given by

a ∈ A, ẋa(t) =
e

1
ǫ fa(x(t−τa))

∑b∈A e
1
ǫ fb(x(t−τb))

− xa(t) (2.5)

It can be shown that the delayed logit dynamics given by

a ∈ A, ẋa(t) =
e fa(x(t−τa))T0

∑b∈A e fb(x(t−τb))T0
− xa(t) (2.6)

converge to the best response dynamics if T0 → +∞. See Hofbauer and Sigmund (2003).

Delayed ray-projection dynamics

The Ray-projection dynamics with time delays is given by

a ∈ A, ẋa(t) = ha(x(t), {x(t − τb)}b) − xa(t) ∑
b∈A

hb(x(t), {x(t− τb)}b) (2.7)

where g is a vectorial function of the the population profile and the vector of expected payoffs.

Delayed orthogonal projection dynamics

The orthogonal-projection dynamics with time delays is given by

a ∈ A, ẋa(t) = fa(x(t − τa)) −
1
n ∑

b∈A
fb(x(t − τb)) (2.8)

where g is a vectorial function of the the population profile and the vector of expected payoffs.
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Delayed target projection dynamics

ẋ(t) = projTX ( f ({x(t − τk}k))− x(t) (2.9)

Definitions

Consider the following delay differential equations

dxa

dt
= ẋa(t) = Θa(xa(t), x(t − τ1), . . . , x(t − τ|A|)), a ∈ A, x(.) ∈ ∆(A) (2.10)

Denote by τ the maximum of τa, a ∈ A
1. The state x∗ is stationary state (or rest point) of the differential equation (2.10) if it is a

critical point i.e the right side of (2.10) is zero at x∗.

2. x∗ is stable if it is a stationary point with the property that for every neighborhood V of
x∗, there exists a neighborhood U ⊂ V with the property that if x(t) ∈ U for t ∈ (−τ, 0)
then x(t) ∈ V for all t > 0.

3. x∗ is asymptotically stable if it is stable and there exists a neighborhood W of x∗ such that
x(t) ∈ W for all t ∈ (−τ, 0) implies lim

t→+∞
x(t) = x∗

4. x∗ is exponentially stable if it is stable and there exists t0, L, η > 0 such that

∀ t ≥ t0, |x(t)− x∗| ≤ Le−ηt.

From these definitions, it follows that exponential stability implies asymptotic stability implies
stability which implies stationary point of system.

2.1.3 Stability analysis of the delayed replicator dynamics

In this subsection, we introduce replicator dynamics for a population and |A| asymmetric de-
lays with |A| ≥ 2.

ẋa(t) = xa(t)

[
fa(x(t − τa)) − ∑

b∈A
xb(t) fb(x(t − τb))

]
, a ∈ A. (2.11)

Suppose that equation (2.11) has an interior stationary point x∗. It is known Gopalsamy (1992,
page 188) or from the Hartman and Grobman theorem adapted to delay differential equation
that the steady state x∗ is asymptotically stable for (2.11) around the stationary point x∗ if the
trivial solution of the linearized version is asymptotically stable.

The linearized equation of (2.11) at the stationary point x∗is given by

ża = x∗a

[
fa(z(t − τb))− ∑

b∈A
x∗b fb(z(t − τb))

]
, a ∈ A (2.12)
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where z(t) = x(t)− x∗. This equation can be written as

ż(t) = K ∑
l∈A

Blz(t − τl)

where z(t) = t(z1(t), . . . , z|A|(t)) and Bl =
(

bl
ik

)
∈ R|A|×|A|,

bl
ik =

{
x∗i (1 − x∗i )uik if l = i
−x∗i x∗l uik if l 6= i.

Characteristic equation

det

(
λI − K ∑

l∈A
Ble−τlλ

)
= 0. (2.13)

A necessary and sufficient condition of stability of (2.12) is that all roots of the equation (3.7)
have negative real parts.

Two actions

Suppose that each individual of the population only uses a pure strategy. Denote ξ(t) = x1(t)
the proportion of individuals in the population using the first strategy at time t, then replicator
dynamic of ξ(t) is given by

ξ̇(t) = −Kδξ(t)(1− ξ(t))×
[
(u12 − u11)

δ
ξ(t − τ1) +

(u21 − u22)

δ
ξ(t − τ2) − ξ∗

]
(2.14)

where δ = (u21 − u11) + (u12 − u22), ξ∗ =
u12 − u22

δ
. If the payoff matrix

U =

(
u11 u12
u21 u22

)

satisfies
(

u12 > u22, u21 > u11

)
or
(

u12 < u22, u21 < u11

)
(2.15)

then 0 < ξ∗ < 1 and ξ∗ is a unique interior stationary point so called fixed point, rest point or
equilibrium point.

Theorem 2.1.4. Under the first condition of (2.15):
(

u12 > u22, u21 > u11

)
, ξ∗ is the unique ESS of

the game.

Proof. If the first condition of (2.15) is satisfied then (ξ∗, 1 − ξ∗) is a symmetric mixed Nash
equilibrium in the two player game with the payoff matrix U. Moreover, one has,

∀ mut 6= ξ∗, (ξ∗, 1 − ξ∗)U
(

mut
1 − mut

)
− (mut, 1 − mut)U

(
mut

1 − mut

)
(2.16)

= δ(ξ∗ − mut)2 (2.17)

Hence (ξ∗, 1 − ξ∗) is an ESS.
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Chapter 2. Delayed evolutionary game dynamics

The linearized version of (2.14) at the stationary point x∗ is given by

ż(t) = −γ [αz(t − τ1) + βz(t − τ2)] (2.18)

where γ = Kξ∗(1 − ξ∗), α = u12 − u11, β = u21 − u22.

Let

ż(t) = −az(t − τ1) − bz(t − τ2) (2.19)

where a, b ∈ R and τ1, τ2 are positive. The characteristic equation of (2.19) is given by

s = −ae−τ1s − be−τ2s (2.20)

Gopalsamy (1992) proved that when a, b, τ1, τ2 are positive, a sufficient condition for all roots
of (2.20) to have negative real parts is aτ1 + bτ2 < 1 and a necessary condition for the same is

aτ1 + bτ2 <
π

2
. The following theorem give sufficient conditions of stability of (2.19) at zero.

Theorem 2.1.5 (Berezansky& Braverman(2006), Li et al.(1999)). Suppose at least one of the follow-
ing conditions holds

1. a + b > 0, |a|τ1 + |b|τ2 <
a + b

|a|+ |b|

2. a > 0, aτ1 <
a − |b|
a + |b|

3. b > 0, bτ2 <
b − |a|
|a|+ b

Then equation (2.19) is exponentially stable.

Theorem 2.1.6. Suppose that 0 < b < a and τ1 <
1

a + b
. Then, all roots of (2.20) have negative real

parts (the equation (2.19) is asymptotically stable).

Proof. By hypothesis, one has A =
b

a
∈ (0, 1) and r1 := aτ1 <

1
1 + A

. Equation (2.20) can

rewritten as

λ = −e−r1λ − Ae−r2λ (2.21)

where λ =
s

a
, r2 = aτ2. Since all roots of equation (2.21) have negative real parts when r1 = 0,

if the conclusion fails, then there must be exist some r1 ∈ (0,
1

1 + A
] such that equation (2.21)

has purely imaginary roots ±iy, y > 0 satisfying

cos(r1y) = −A cos(r2y) and y − sin(r1y) = A sin(r2y) (2.22)

One has
A2 − 1 = y2 − 2y sin(r1y)

that is

f (y) :=
y2 + 1 − A2

2y
= sin(r1y) (2.23)

Since −1 ≤ sin(r1y) ≤ 1 ⇒ y ∈ (1 − A, 1 + A).

f (y) =
y

2

(
1 +

1 − A2

y2

)
≥ y

2

(
1 +

1 − A2

(1 + A)2

)
≥ y

1
1 + A

> r1y ≥ sin(r1y) (2.24)

a contradiction with (2.23).
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Corollary 2.1.6.1. If one of the following conditions holds, then ξ∗ is stable

1. α + β = δ > 0, K (|α|τ1 + |β|τ2) <
δ

ξ∗(1 − ξ∗) (|α|+ |β|)

2. α > 0, Kτ1 <
α − |β|

αξ∗(1 − ξ∗) (α + |β|) .

3. β > 0, Kτ2 <
β − |α|

βξ∗(1 − ξ∗) (|α|+ β)
.

4. 0 < β < α, Kτ1 <
1

δξ∗(1 − ξ∗)

The case of symmetric delay

Consider the following linear delay differential equation

z(t) = −ωz(t − τ) (2.25)

with τ, ω > 0 and its characteristic equation

λ + ωe−λτ = 0 (2.26)

Necessary and sufficient condition of asymptotic stability as a function of the delay is given by
the following lemma. A proof can be found in Gopalsamy (1992, Proposition 1.2.8)
Lemma 2.1.6.2. A necessary and sufficient condition for all roots of (2.26) to have negative real parts is
2ωτ < π

Suppose that τ1 = τ2 = τ, then the trivial solution of (2.18) is asymptotically stable if

Kτ <
δπ

2δ1δ2
(2.27)

and unstable if Kτ >
δπ

2δ1δ2
where δ1 = u21 − u11, δ2 = u12 − u22 and δ = α + β = δ1 + δ2.

The case Kτ =
δπ

2δ1δ2
is called bifurcation point. By using lemma 2.1.6.2 with ω = γδ, we

conclude that the dynamic (2.14) is asymptotically stable at the stationary point ξ∗ =
δ2

δ
if K

and τ satisfy (2.27).

2.2 Multiple Access Game with Regret Cost

Multiple Access Game introduces the problem of medium access. We assume that mobiles
are randomly placed over a plane. All mobiles use the same fixed transmission range of r. The
channel is ideal for transmission and all errors are due to collision. A mobile decides to transmit
a packet or not to transmit to a receiver when they are within transmission range of each other.
Interference occurs as in the ALOHA protocol: if more than one neighbors of a receiver transmit
a packet at the same time then there is a collision. The Multiple Access Game is a nonzero-sum
game, the mobiles have to share a common resource, the wireless medium, instead of providing
it. We suppose that a mobile has a receiver in its range with probability K. When a mobile m
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Chapter 2. Delayed evolutionary game dynamics

transmits to its receiver R(m), all mobiles within a circle of radius r centered at the receiver R(m)
cause interference to the node m for its transmission to receiver R(m). This means that more
than one transmission within a distance r of the receiver in the same slot result in a collision of
all packets at the receiver. Each of the mobiles has two possible strategies: either to transmit
(T) or to stay quiet (S). If mobile m transmits a packet, it incurs a transmission cost of δ ≥ 0.
The packet transmission is successful if the other mobiles don’t transmit (stays quiet) in that
given time slot, otherwise there is a collision, and the cost (of collision risk) is ∆ ≥ 0. If there
is no collision, mobile m gets a reward of V from the successful packet transmission after the
τT times later. We assume that the reward V is greater than the cost of transmission ∆. When
all mobiles stay quiet, they have to pay a regret cost κ. The regret cost κ describes the behavior
of mobiles when they are aware of the backoff delays. The interaction between two mobiles is
represented in Figure 3.27. The value of successful transmission is normalized to unit.

T S
T −∆K K(V − ∆)
S 0 −κK

Figure 2.1: Access game between two mobiles.

2.2.1 Nash Equilibria, ESS and Pareto optimality

An allocation of payoffs is said Pareto-optimal if the outcome cannot be improved upon without
hurting at least one user. This matrix game has two pure Nash equilibria (T, S) and (S, T) and

a unique mixed Nash equilibrium given by (
1 − ∆ + κ

1 + κ
,

∆

1 + κ
). Note that the pure strategies

(T, S) and (S, T) are also optimal in the Pareto sense. The mixed equilibrium converges the
pure strategy T when the regret cost is large.

Proposition 2.2.1.1. The mixed strategy (
1 − ∆ + κ

1 + κ
,

∆

1 + κ
) is the unique ESS of the multiple access

game.

Proof. This comes from the theorem 2.1.4. The strategy (
1 − ∆ + κ

1 + κ
,

∆

1 + κ
) is the unique interior

Nash equilibrium. It is the unique symmetric Nash equilibrium. Thus, it is the only candidate
to be ESS because symmetric Nash equilibria set contains ESS set. At a mixed equilibrium, the
strategies T and S must have the same fitness. We check the condition of ESS given in (1.3). For

all ξ 6= 1 − ∆ + κ

1 + κ (
1 − ∆ + κ

1 + κ
− ξ, ξ − (1 − ∆ + κ)

1 + κ

)
A

(
ξ

1 − ξ

)

=
K

1 + κ
((1 + κ)ξ − 1 + ∆ − κ)2

> 0

We conclude that (
1 − ∆ + κ

1 + κ
,

∆

1 + κ
) an ESS.

Note that at the ESS, the two subpopulations obtain the same negative payoff equal to

−K
∆

1 + κ
.
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2.2.2 Stability bound for ESS under replicator dynamics

If (ξ(t), 1− ξ(t)) denotes de repartition of the population in the multiple access game, then the
fitness of the subpopulation using the strategy T at time t is K(−ξ(t − τT) + 1 − ∆), and the
fitness of the strategy S is −κK(1 − ξ(t)). The replicator dynamic equation becomes

ξ̇(t) = −Kξ(t)(1− ξ(t)) [ξ(t − τT) + κξ(t)− 1 + ∆ − κ] (2.28)

and its linearized version around the stationary point ξ∗,

ż(t) = −Kξ∗(1 − ξ∗)
1 + κ

[κz(t) + z(t − τT)] , τT > 0, (2.29)

is asymptotically stable if and only if all roots of the characteristic equation

λ +
Kξ∗(1 − ξ∗)

1 + κ

[
κ + e−τTλ

]
= 0 (2.30)

Proposition 2.2.2.1. If κ ≥ 1 then all roots of the characteristic equation (2.30) has negative real parts.

Proof. • Suppose there exists a root λ of the characteristic equation (2.30) with ℜ(λ) > 0
and κ > 1 then

ℜ(λ) + Kξ∗(1 − ξ∗)
κ

1 + κ
> Kξ∗(1 − ξ∗)

κ

1 + κ
>

Kξ∗(1 − ξ∗)
1 + κ

(2.31)

> −Kξ∗(1 − ξ∗)
1 + κ

e−τℜ(λ) cos(τℑ(λ)) (2.32)

a contradiction with (2.30). Thus all roots of the characteristic equation (2.30) have real
parts strictly negative.

• Suppose that κ = 1.





ℜ(λ) + Kξ∗(1 − ξ∗)

κ

1 + κ
= −Kξ∗(1 − ξ∗)

κ

1 + κ
e−τℜ(λ) cos(τℑ(λ))

ℑ(λ) = Kξ∗(1 − ξ∗)
κ

1 + κ
e−τℜ(λ) sin(τℑ(λ))

(2.33)

If ℜ(λ) > 0 then ℜ(λ) + Kξ∗(1 − ξ∗)
κ

1 + κ
= −Kξ∗(1 − ξ∗)

κ

1 + κ
e−τℜ(λ) cos(τℑ(λ)) ≤

Kξ∗(1 − ξ∗)
κ

1 + κ
i.e ℜ(λ) ≤ 0 : impossible. If ℜ(λ) = 0 then ℑ(λ) = 0 and the trivial

solution is stable.

Proposition 2.2.2.2. Suppose that κ < 1. Then all solutions of the characteristic equation (2.30) has
negative real parts if and only if

τ ≤ (1 + κ)2

K∆(1 − ∆ + κ)

√
1 + κ

1 − κ
× cos−1(−κ) (2.34)

Note that when κ goes to 1, the bound
(1 + κ)2

K∆(1 − ∆ + κ)

√
1 + κ

1 − κ
cos−1(−κ) goes to infinity (sta-

bility without conditions).
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Proof. • Suppose that τ < τ0 :=
(1 + κ)2

K∆(1 − ∆ + κ)
cos−1(−κ)

√
1 + κ

1 − κ
. When τ = 0 the system

(2.30) becomes ℑ(λ) = 0 and ℜ(λ) = −K
∆(1 − ∆ + κ)

(1 + κ)2 < 0.

Let b = K
∆(1 − ∆ + κ)

(1 + κ)2 , a = κb. If (2.30) has a solution with real part strictly positive, then

there must be some 0 < τ1 < τ0 such that (2.30) has purely imaginary roots ±ℑ(λ) × i
with ℑ(λ) > 0 satisfying

{
a = −b cos(τ1y)
y = b sin(τ1y)

⇔
{

a = −b cos(τ1y)
y = b sin(τ1y), y > 0 ⇔

{
y =

√
b2 − a2

τ1 = τ0

We proved that τ1 = τ0 which is a contradiction. Thus, if 0 < τ < τ0 then all solutions of
the characteristic equation (2.30) have negative real parts.

• Suppose that τ > τ0. Denote by s = λ/b, r = τb > 0, r0 = τ0b. The equation (2.30) can be
written as the zeros the function

φ(s, κ) := s + κ + e−rs

We want to prove that all zeros of φ(., κ) have negative real parts. The function φ is an
analytic function in s and κ. Let

O := {s, ℜ(s) ≥ 0, |s| ≤ 1}

One has r0 ≥ π

2
. Indeed,

arccos(−p)− π

2

√
1 − p2 > 0, p ∈ (0, 1).

Thus when r > r0 and r 6= 2kπ +
π

2
, k ∈ N the function φ(s, 0) has no zeros in the

boundary of O. Using Rouche’s theorem φ(s, 0) and φ(s, κ) have same sum of the orders
of zeros. When r > r0 the zeros of φ(s, 0) is at least 2. Thus, φ(s, κ) has at least one root
with positive real part.

2.2.3 Imitate the better dynamics

The imitate the better equation can be expressed as

ξ̇(t) = ξ(t)(1− ξ(t))h(ξ(t − τ), ξ(t)) where

h(ξ(t − τ), ξ(t)) =






1 if ξ(t − τ) + κξ(t) < 1 − ∆ + κ
0 if ξ(t − τ) + κξ(t) = 1 − ∆ + κ
−1 if ξ(t − τ) + κξ(t) > 1 − ∆ + κ

Proposition 2.2.3.1. Suppose that κ < 1. For all τ > 0, and for all initial conditions ∀ t ∈ (−τ, 0], ξ(t) =

ξ0 ∈ (0,
1 − ∆ + κ

1 + κ
) the solution of the imitation equation oscillates around the ESS.
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Proof. Consider the following differential equations




ξ̇(t) = ξ(t)(1− ξ(t)) if ξ(t − τ) + κξ(t) < 1 − ∆ + κ
ξ̇(t) = 0 if ξ(t − τ) + κξ(t) = 1 − ∆ + κ

ξ̇(t) = −ξ(t)(1 − ξ(t)) if ξ(t − τ) + κξ(t) > 1 − ∆ + κ
∀ t ∈ (−τ, 0], ξ(t) = ξ0

(∗∗)
{

ẇ(t) = w(t)(1 − w(t))
w(0) = ξ0

, ξ0 ∈ (0,
1 − ∆ + κ

1 + κ
).

The solution of (∗∗) is given by w(t) = 1 − 1
1 + χet

where χ =
ξ0

1 − ξ0
. The function w goes

to 1 when t goes to infinity. The functions ξ and w are equal in (0, t1) where t1 = tr + t∗ and t∗
the first time such that w(t) = ξ∗ (this time exists because w is a continuous function, starts at
ξ0 which is lower than ξ∗ and goes to 1),

t1 = inf{t > 0, ξ(t − τ) + κξ(t) > 1 − ∆ + κ}.

We can explicitly compute t∗ and t1,

t∗ = log
(

ξ∗

χ(1 − ξ∗)

)
, t1 = log

(
ν +

√
ν2 + 4ξ∗(1 − ξ∗)e−τ

2χ(1 − ξ∗)e−τ

)

where ν = −(1 − ξ∗)(1 + e−τ) +

(
1 + κe−τ

1 + κ

)
. One has t∗ + τ > t1 > t∗ and ξ1 = ξ(t1) =

w(t1) > ξ∗. Let consider the equation
{

v̇(t) = −v(t)(1− v(t))
v(t1) = ξ1

Then, ξ(t) = v(t) =
1

1 + et

χe2t1

on (t1, t′1) where

t′1 = log

(
χe2t1

α +
√

α2 + 4(1 − ξ∗)ξ∗e−τ

2e−τξ∗

)
, α = −ξ∗(1 + e−τ) +

(
1 + κe−τ

1 + κ

)
.

ξ(t′1) = v(t′1) is lower than ξ∗.

Remarks 2.2.3.2. Using the same arguments as in proposition 2.2.3.1, we extend the result to all initial
conditions. Suppose that that κ < 1. Then, for all τ > 0, and for all initial conditions ξ(t) = ξ0 ∈ (0, 1)
on (−τ, 0), the solution of imitation equation oscillates around the ESS.

2.2.4 Numerical illustrations

Impact of regret cost

The ESS depends on the parameter κ. When κ is large, the ESS point is closed to (1, 0) : the pure
strategy transmit. Our first numerical experiment studies the convergence of these dynamics for
the case of the unit growth parameter K and a small delay τ = 0.02 as a function of the regret
cost κ : we check the speed of convergence and the stability of the dynamics as a function of the
cost κ. The state 2/3 is a stationary point for these parameters, for which 2/3 of the population
choose to transmit. We took ∆ = 1/3. Figure 2.2 (resp. Figure 2.3) represents the trajectories of
the population using the strategy T in the imitation dynamic (resp. replicator dynamic) when
the initial condition is ξ(t) = 0.02, ∀t ∈ (−τ, 0).
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Figure 2.2: Effect of κ on stability of delayed imitation dynamics, τ = 1.
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Figure 2.3: Effect of κ on stability of replicator dynamics, τ = 8.

Impact of delay of transmission with regret cost

The ESS does not depend on the delay but the delay has a big influence on the stability of the
system. Our second numerical experiment studies the convergence of these dynamics for the
case of the unit growth parameter K as a function of delay τ.We took ∆ = 1/3 and κ = 0.002. The
resulting trajectories of the population using the strategy T is represented as a function of time.
We evaluate the stability varying the delay τ between 0.02 and 15 time units in the replicator
dynamic in Figure 2.4 and Figure 2.5. For τ = 0.02, we have stability but the convergence speed
is slow. The other extreme is illustrated for τ = 15 which the trajectory oscillates rapidly and
the amplitude is seen to be greater than 2/3. The system is unstable. Figure 2.6 represents the
fraction of the population using the strategy T in the imitation dynamic in which the system is
unstable for all τT > 0. The amplitude of oscillation growth with the delay.

Impact of the delay of transmission without regret cost

We evaluate the stability varying the delay τT between 0.02 and 10 time units in the replicator
dynamic without regret cost in Fig. 2.7. For τT = 0.02, we have stability but the convergence
speed is slow. The other extreme is illustrated for τT = 10 which the trajectory oscillates rapidly
and the amplitude is seen to be greater than 2/3. The system is unstable. Figure 2.8 represents
the trajectories of the population using the strategy T in the imitation dynamic in which the
system is unstable for all τT > 0. The amplitude of oscillation growth with the delay. The peri-
odicity increases when the delay decreases. The best response at the time t when the population
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Figure 2.4: Effect of τT in delayed replicator dynamic for κ = 0.002
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Figure 2.5: Effect of τT in delayed replicator dynamic for κ = 2.
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Figure 2.6: Impact of τT in the imitation dynamics

ξ(t) is
BR(ξ(t)) = I[0,1−∆](ξ(t − τT)) + [0, 1]I{1−∆}(ξ(t − τT))

where IA(.) is the indicator function of the set A. In Figure 2.9, the best response dynamics is
represented for respectively τT = 0.04, 1, 2. The mixed strategy (1/2, 1/2) is chosen for the best
response to (1 − ∆, ∆). We evaluate the stability varying the delay τT between 0.04 and 8.4823
time units in the Brown-von Neumann-Nash in Fig. 2.10. The BNN dynamics becomes

ξ̇(t) =





K(1 − ξ(t)2)(−ξ(t − τT) + 1 − ∆) if ξ(t − τT) < 1 − ∆

0 if ξ(t − τT) = 1 − ∆

Kξ(t)2(−ξ(t − τT) + 1 − ∆) if ξ(t − τT) > 1 − ∆
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For τT = 0.04, we have stability but the convergence speed is slow. The system is unstable when
τT becomes greater than 8.4823.
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Figure 2.7: Effect of τT on velocity and stability of replicator dynamics.
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Figure 2.8: Effect of τT on velocity and stability of imitation dynamics.
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Figure 2.9: Effect of τT on velocity and stability of best response dynamics.

In these figures we observe cases of stable and of non-stable behavior. All turn out to confirm
the stability conditions that we obtained above.

2.2.5 Notes

This chapter is based on our publications (13; 12; 215; 214). We considered evolutionary games
with one population of users and studied delays impact on convergence to ESS for different
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Figure 2.10: Effect of τT on velocity and stability in BNN dynamics.

types of evolutionary dynamics. Using some results from delay differential equation theory,
we observed stability phenomena that are new with respect to non-delayed evolutionary game
dynamics. In all the dynamics considered, delays were shown to have negative impact and ESS
can be unstable when the delays are large. In the context of the access evolutionary game of
mobile terminals, this suggest that updating MAC strategies in the terminals have to be done
with care so as to avoid the oscillatory behavior that we observed in the non-stable regime.

2.3 Evolution of Transport Protocols in Wireless and Wired
Networks

Todays Internet is well adapted to the evolution of protocols at various network layers. Much
of the intelligence of congestion control is delegated to the end users and they have a large
amount of freedom in the choice of the protocols they use. In the absence of a centralized policy
for a global deployment of a unique protocol to perform a given task, the Internet experiences
a competitive evolution between various variants of protocols. The evolution manifests itself
through the upgrading of existing protocols, abandonment of some protocols and appearance
of new ones. We highlight in this paper the modelling capabilities of the evolutionary game
paradigm for explaining past evolution and predicting the future one. In particular, using this
paradigm we derive conditions under which (i) a successful protocol would dominate and wipe
away other protocols, or (ii) various competing protocols could coexist. In the latter case we also
predict the share of users that would use each of the protocols. We further use evolutionary
games to propose guidelines for upgrading protocols in order to achieve desirable stability
behavior of the system.

When transferring data between nodes, flow control protocols are needed to regulate the
transmission rates so as to adapt to the available resources. A connection that looses data units
has to retransmit them later. In the absence of adaptation to the congestion, the on going trans-
missions along with the retransmissions can cause increased congestion in the network result-
ing in losses and further retransmissions by this and/or by other connections. This type of
phenomenon, that leads to several ’congestion collapses’ (113), motivated the evolution of the
Internet transport protocol, TCP, to a protocol that reduces dramatically its throughput upon
congestion detection.
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Chapter 2. Delayed evolutionary game dynamics

The possibilities to deploy freely new versions of protocols on terminals connected to the
Internet creates a competition environment between protocols. Much work has been devoted
to analyze such competition and to predict its consequences. The two main approaches for
predicting whether one version of a protocol would dominate another one are

• Inter Population Competition (IRPC): One examines local interactions between connec-
tions of different types that interact with each other (by sharing some common bottleneck
link). If a connection that corresponds to one version performs better in such an interac-
tion, then the DC approach predicts that it would dominante and that the other version
would vanish.

• Intra Population Competition (IAPC): In this approach one studies the performance of
a version of a protocol assuming a world where all connections use that version. This
is repeated with the other version. One then predicts that the version that gives a better
world would dominate.

We address the dominance question with the evolutionary game paradigm and provide an
alternative answer along with a more detailed analysis of this competition scenario. Our ap-
proach predicts whether one can expect one protocol to dominate the other or whether the two
protocols can be expected to coexist. It provides with the tools for computing the share of the
population that is expected to use each version in case the versions would coexist. Finally, it
provides a description of the dynamics of the competition, which may result in a stable be-
havior that consists of a convergence to some equilibrium, or it may display instabilities and
oscillations. By identifying the conditions for a stable behavior, one can provide guidelines for
upgrading protocols so as to avoid undesirable oscillating behavior.

We provide a framework to describe and predict evolution of protocols in a context of com-
petition between two types of behaviors: aggressive and peaceful. We compute the ESS for con-
gestion protocols of different degree of aggressiveness. We identify cases in which at ESS, only
one population prevails (ESS in pure strategies) and others, in which an equilibrium between
several population types is obtained. To study this, we map the problems, whenever possible,
into the Hawk and Dove Game. We then study the convergence of the replicator dynamics to it.

We develop a framework for controlling evolutionary dynamics (changing or upgrading
protocols) through the choice of a gain parameter governing the replicator dynamics. We ad-
dress the following two design issues concerning this choice:

(i) the tradeoff between fast convergence and stability. We identify a simple threshold on the
gain parameter in the replicator dynamics such that the stability is only determined by whether
we exceed or not the threshold.

(ii) the stability as a function of delays. We derive new stability conditions for the replicator
dynamics in the Hawk and Dove game with non-symmetric delays and apply it to the evolution
of the MAC and transport layer protocols.

We first provide in the next subsection the needed background on evolutionary games. We
summarize work on competition between TCP versions in subsection 2.3.1. We then study the
ESS for congestion control protocols (subsection 2.3.2). After that, we investigate the impact
of the choice of some parameters in the replicator dynamics on the stability of the system in
subsection 2.3.4. Finally we give some numerical investigations.
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2.3.1 Competition Between Congestion Control Protocols

There are various versions of the TCP protocol among which the mostly used one is New-Reno.
The degree of ’aggressiveness’ varies from version to version. The behavior of New-Reno is
approximately AIMD (Additive Increase Multiplicative Decrease): it adapts to the available
capacity by increasing the window size in a linear way by α packets every round trip time and
when it detects congestion it decreases the window size to β times its value. The constants α
and β are 1 and 1/2, respectively, in New Reno.

In last years, more aggressive TCP versions have appeared, such as HSTCP (High Speed
TCP) (191) and Scalable TCP (122; 72; 5). HSTCP can be modeled by an AIMD behavior where
α and β are not constant anymore : α and β have minimum values of 1 and of 1/2, resp. and both
increase in the window size. Scalable TCP is an MIMD (Multiplicative Increase Multiplicative
Decrease) protocol, where the window size increases exponentially instead of linearly and is
thus more aggressive. Versions of TCP which are less aggressive than the New-Reno also exist,
such as Vegas (54).

Several researchers have analyzed the performance of networks in which various transport
protocols coexist, see (200; 51; 1; 6; 135). In all these papers, the population size using each type
of protocol is fixed.

Some papers have already considered competition between aggressive and well behaved
congestion control mechanisms within a game theoretic approach. Their conclusions in a wire-
line context was that if connections can choose selfishly between a well behaved cooperative
behavior and an aggressive one then the Nash equilibrium is obtained by all users being ag-
gressive and thus in a congestion collapse (89; 136).

We introduce in the next two sections two models of competition between TCP versions,
both can be modeled within the framework of the Hawk and Dove game. This will allow us to
predict whether a given version of TCP is expected to dominate others (ESS in pure strategies,
which means that some versions of TCP would disappear) or whether several versions would
co-exist. The first model is adapted to competition in wireless networks and the second to
wireline networks.

2.3.2 Competition in Wireless Networks

During the last few years, many researchers have been studying TCP performances in terms of
energy consumption and average goodput within wireless networks (180; 243). Via simulation,
the authors show that the TCP New-Reno can be considered as well performing within wireless
environment among all other TCP variants and allows for greater energy savings. Indeed, a less
aggressive TCP, as TCP New-Reno, may generate lower packet loss than other aggressive TCP.
Thus the advantage of an aggressive TCP in terms of throughput could be compensated with
energy efficiency of a more gentle TCP version. (In Section 2.3.3 we shall illusutrate another
consideration that affects the competition between TCP versions.) The goal of this section is to
illustrate this point, as well as its possible impact on the evolution of the share of TCP versions,
through a simple model of an aggressive TCP.

The model. We consider two populations of connections, all of which use AIMD TCP. A
connection of population i is characterized with a linear increase rate αi and a multiplicative
decrease factor βi. Let xi(t) be the transmission rate of connection i at time t. We consider the
following simple model for competition.

• The RTT (round trip times) are the same for all connections.
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• There is light traffic in the system in the sense that a connection either has all the resources
its needs or it shares the resources with one other connection. (If files are large then this is
a light regime in terms of number of connections but not in terms of workload).

• Losses occur whenever the sum of rates reaches the capacity C: x1(t) + x2(t) = C.

• Losses are synchronized: when the combined rates attain C, both connections suffer from
a loss. This synchronization has been observed in simulations for connections with RTTs
close to each other (2). The rate of connection i is reduced by the factor βi < 1.

• As long as there are no losses, the rate of connection i increases linearly by a factor αi.

We say that a TCP connection i is more aggressive than a connection j if αi ≥ αj and βi ≥ β j.
Let βi := 1 − βi. Let xn and yn be the transmission rates of connection i and j, respectively, just
before a loss occurs. We have xn + yn = C. Just after the loss, the rates are β1xn and β2yn. The
time it takes to reach again C is

Tn =
C − β1xn − β2yn

α1 + α2

which yields the difference equation:

xn+1 = β1xn + α1Tn = qxn +
α1Cβ2
α1 + α2

where q =
α1β2 + α2β1

α1 + α2
. The solution is given by

xn = qnx0 +

(
α1Cβ2
α1 + α2

)
1 − qn

1 − q
.

HD game: throughput-loss tradeoff

In wireline, the utility related to file transfers is usually taken to be the throughput, or a function
of the throughput (e.g. the delay). It does not explicitly depend on the loss rate. This is not
the case in wireless context. Indeed, since TCP retransmits lost packets, losses present energy
inefficiency. Since energy is a costly resource in wireless, the loss rate is included explicitly in
the utility of a user through the term representing energy cost. We thus consider fitness of the
form Ji = Thpi − λR for connection i; it is the difference between the throughput Thpi and the
loss rate R weighted by the so called tradeoff parameter, λ, that allows us to model the tradeoff
between the valuation of losses and throughput in the fitness. We now proceed to show that our
competition model between aggressive and non-aggressive TCP connections can be formulated
as a HD game. We study how the fraction of aggressive TCP in the population at (the mixed)
ESS depends on the tradeoff parameter λ.

Since |q| < 1, we get the following limit x of xn when n → ∞:

x =
α1Cβ2
α1 + α2

· 1
1 − q

=
α1β2C

α1β2 + α2β1
.

It is easily seen that the share of the bandwidth (just before losses) of a user is increasing in its
aggressiveness. Hence the average throughput of connection 1 is

Thp1 =
1 + β1

2
× α1β2

α1β2 + α2β1
× C.
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The average loss rate of connection 1 is the same as that of connection 2 and is given by

R =
1
T

=

(
α1

β1
+

α2

β2

)
1
C

where T =
β1β2C

α1β2 + α2β1

with T being the limit as n → ∞ of Tn.

Let H corresponds to (αH , βH) and D to (αD, βD) such that αH ≥ αD and βH ≥ βD. Then, for
i = 1, 2, Thpi(H, H) = Thpi(D, D). Since the loss rate for any user is increasing in α1, α2, β1, β2
it then follows that J(H, H) < J(D, D), and J(D, H) < J(D, D). We conclude that the utility that
describes a tradeoff between average throughput and the loss rate leads to the HD structure.

The mixed ESS is given by the following probability of using H:

x∗(λ) =
η1 − η2λ

η3
where

η1 =

(
µ

1 + β1

2
− 1 + β2

4

)
C, η2 =

1
C

(
α1

β1
− α2

β2

)
,

η3 = C(
1
2
− µ)

β1 − β2

2
, µ =

α2(β1)

α2(β1) + α1(β2)
.

where µ := 1 − µ. Note that η2 and η3 are positive. Hence, the equilibrium point x∗ decrease
linearly on λ. We conclude that applications that are more sensitive to losses would be less
aggressive at ESS (Braess type paradoxes do not occur here).

2.3.3 Competition in Wireline Networks

Tradeoff between throughput and fairness Consider a number of TCP connections that share a
common bottleneck. We study the competition between the New-Reno version of TCP and the
Scalable version of TCP that has been proposed (122) in the context wireline networks that are
characterized by a very high speed and has long distance (and thus large delays). Scalable TCP
is then much more aggressive than the New-Reno TCP as it is an MIMD (Multiplicative Increase
Multiplicative Decrease) protocol, where the window size increases exponentially instead of
linearly at the absence of losses. It is also more aggressive when losses are detected: it decreases
its window size (and thus the transmission) rate to 0.875 times the one it had prior to the loss
(instead of to halving it as is done in New-Reno). We begin by examining the Inter and Intra
Population Competition.

Intra Population Competition If the connections are all symmetric and use the same AIMD
version, then we know that they share equally the bandwidth (7). Moreover if the number of
connections or the buffer size is large then the connections use all the available bandwidth so
that the throughput per connection is the capacity of the bottleneck link divided by the number
of connections that share the bottleneck.

The situation is different when a bottleneck link is shared between symmetric MIMD con-
nections. The connections suffer from a high level of unfairness under various scenarios. We
briefly summarize some central findings in (6):

• The case of synchronized losses: if all connections suffer a loss at the same time then the
bandwidth share of each connection remains constant in time. This is particularly harmful
for new connections that may not be able to grab throughput.
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• The case of asynchronous losses: in case that there are some asynchronous random losses
(with or without synchronous losses that are due to congestion), the bandwidth is shared
more fairly: the average throughput tend to be the same after a very long time.

Remarks 2.3.3.1. The situation that we described corresponds to symmetric connections. In case the
round trip times are not the same, the throughput share between the connections is inversely proportional
to the RTT. In MIMD, in contrast, the connection with larger RTT gets almost no bandwidth.

As for the throughput, MIMD is able indeed to use all the available link capacity (provided
that there are buffers; the buffer size needed for full utilization are much smaller than those
needed in AIMD. Below we do not consider this aspect.)

Inter Population Competition The way bandwidth is shared between TCP connections of
different types (AIMD and MIMD) that share a common bottleneck is complex and depends
on various factors. We shall restrict our discussion to links with high bandwidth and large
buffering. In those conditions, an MIMD connection gets more throughput than AIMD does.
As for fairness, the problems of no fairness (in the sense that the the initial share remains the
same) or fairness on a very slow time scale, do not occur between two connections of different
types (AIMD and MIMD).

The game formulation Consider a competition between a large population of users where a
fraction of them use an AIMD fersion of TCP and another MIMD connection sharing a common
bottleneck link We can now use the above description to define. the structure of the evolution-
ary game. There are many pairwise interactions described through the matrix game of the form
given in Figure 2.11 where H (Hawk) stands for the MIMD TCP and D (Dove) stands for AIMD.
Let the fitness of a player that uses an action i that interacts with a player that plays j be given
as F(i, j) = θ(i, j) − f (i, j) where θ(i, j) is the throughput part corresponding to the share of the
bottleneck capacity that the player receives and f is a disutility for lack of fairness. f (i, j) is zero
except for the case i = j = H; θ(i, j) = 0.5 when i = j, where as θ(H, D) = 1 − θ(D, H) = a
where a is some positive constant smaller than 0.5. Denoting d = 0.5 − f (H, H) we obtain the
fitnesses as given in Figure 2.11.

 d 

 a  0.5 

H

D

DH

Player II

Pl. I

          

      1−a      

Figure 2.11: MIMD (H) versus AIMD (H)

Characterizing the ESS We note that the conditions defining a Generalized Hawk and Dove
game are satisfied. We thus conclude the following:

• AIMD is never a dominant strategy (i.e. there is no ESS where all the population uses
AIMD). To understand this, we note that if all used AIMD then a shift of a small fraction
of the population to MIMD would give this fraction a larger fitness, since MIMD would
get a larger throughput when interacting with AIMD but it would almost never suffer
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from the fairness problem since encounters between MIMD connections would be quite
rare.

• MIMD may, on the other hand, be dominant. This occurs if d > a. In other words, if users
did not care much about the fairness problems of MIMD, then its share in the population
could be expected to grow to 1 and AIMD could disappear.

• if d < a then the unique ESS consists of a coexistence between AIMD and MIMD. At ESS,
the fraction using MIMD is given by

p =
1 − 2a

1 − 2d

Notes

We have mentioned in the introduction two simplistic approaches for predicting which popu-
lation would dominate. The Intra Population Competition (IAPC) compares a world with only
one type of behavior and compares the corresponding utility; in our case it would amount to
observing that F(D, D) > F(H, H) and thus would wrongly suggest that AIMD would dom-
inate the MIMD and their share would be one, where as we know that this possibility never
occurs

The Inter Population Competition (IRPC) compares only the interactions that involve H
and D and it would predict that MIMD would dominate since it gets better fitness in these
interactions. This prediction is again wrong; indeed, we have seen that both population may
coexist insight of having F(H, D) > F(D, H) provided that d < a.

Delayed replicator dynamics

We introduce here the replicator dynamics which describes the evolution in the population of
the various strategies. In the replicator dynamics, the share of a strategy in the population grows
at a rate equal to the difference between the payoff of that strategy and the average payoff of
the population. More precisely, consider N strategies. Let x be the N dimensional vector whose
ith element xi is the population share of strategy i. Thus we have ∑

i

xi = 1 and xi ≥ 0. Below

we denote by J(i, k) the expected payoff (or the fitness) for a player using strategy i when it
encounters a player with strategy k. With some abuse of notation we define J(i, x) = ∑

j

J(i, j)xj.

Then the replicator dynamics is defined as

ẋi(t) = xiK
(

J(i, x)− ∑
j

xj J(j, x)
)

= xiK
(

∑
j

xj J(i, j)−∑
j

∑
k

xj J(j, k)xk

)

where K is a positive constant and ẋi(t) := dxi(t)/dt. Note that the right hand side vanishes
when summing over i. This is compatible with the fact that we study here the share of each
strategy rather than the size of the population that uses each one of the strategies.

In Equation (2.35), the fitness of strategy i at time t has an instantaneous impact on the rate
of growth of the population size that uses it. An alternative more realistic model for replicator
dynamic would have some delay: the fitness acquired at time t will impact the rate of growth τ
time later. We then have

ẋi(t) = xi(t)K

(

∑
j

xj(t − τ)J(i, j)−∑
j,k

xj(t)J(j, k)xk(t − τ)

)
(2.35)
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where K is some positive constant. The delay τ represents a time scale much slower than the
physical (propagation and queueing) delays, it is related to the time scale of (i) switching from
the use of one protocol to another (ii) upgrading protocols.

2.3.4 Architecting evolution

We study the choice of two parameters in the replicator dynamics that impact the stability of
the evolution process of protocols: the gain parameter K and the delay τ appearing in Equation
(2.35). The standard replicator dynamics (2.35) appearing in the evolutionary game literature is
defined with K = 1. K’s other than one can be interpreted as if the utilities J are multiplied by
a constant. Alternatively, it can be seen as scaling time. The parameter K can thus be used to
accelerate the rate of convergence in (2.35).

The impact of K and τ on the stability

We consider below the case of two players and two actions. Define

δ1 = J(B, A)− J(A, A), δ2 = J(A, B)− J(B, B),

δ = δ1 + δ2, θ =
δπ

2δ1δ2

Guidelines for an evolution framework.

For K = 1, it has been shown in (205) that if the delay τ in (2.35) satisfies τ < θ then the mixed
ESS is asymptotically stable, and if τ increases beyond θ then the ESS becomes unstable.

We make the observation that Equation (2.35) with K is equivalent to Equation (2.35) with all
elements J(i, m) multiply by K. Thus we can use the result of (205) to conclude that the stability
condition for general K is given simply by

τK < θ. (2.36)

This provides us with an important guideline for designing evolutionary protocols. In order
for such a protocol to be scalable to any delay, the product of the adaptation speed parameter
K and delay τ should be O(1). Thus the larger the delay is, the slower we should react to the
fitness of a strategy being used.

We note that this type of scaling is quite familiar in other networking contexts: the internet
transport protocol TCP has a throughput that scales according to 1/RTT (where RTT is the
round trip delay). This scaling is obtained by a self clocking mechanism based on ACKs that
trigger new transmissions.

2.3.5 Numerical illustrations

Impact of gain parameter

Our first numerical experiment on evolution of protocols studies the behavior of the replicator
dynamics for the case of one delay unit as a function of K: we check the speed of convergence
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and the stability of the replicator dynamics as a function of the gain parameter K. We consider
the following fixed parameters: we took τ = 1, δ = 2/3, and let K vary between 0.16 and 15. A
unique mixed ESS exists for these parameters, for which the fraction of the population using H
is 3/4. The resulting trajectories of the population ratio using the first strategy, H, as a function
of time, is given in Fig. 2.14, 2.12, 2.13 . For K = 0.16, we have stability but the convergence
speed is slow. The other extreme is illustrated for K = 15 which is seen to be unstable: it
oscillates rapidly and the amplitude is seen to grow slowly.
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Figure 2.12: Effect of K on stability
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Figure 2.13: Effect of τ on stability

Impact of delay

We now keep K constant and evaluate the stability varying the delay between 0.016 and 15
time units. When τ = 0.016 the system is stable but the rate of convergence to the interior
equilibrium is not fast. For τ = 15 the system is unstable, the solution oscillates around the
equilibrium x∗ = 3/4.
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Figure 2.14: Effect of initial state

Oscillating Solution and dependence on the initial state.

In Figure 2.14 we display an oscillatory behavior of the population ratios as function of time
for two different initial values of x(0) = 0.03 and x(0) = 0.97 with K = 15 and τ = 1. It
corresponds to an unstable regime in which the ESS is not attained. The trajectories are seen
to converge to periodic ones. The limit trajectories look the same and do not depend on the
initial state except for a dependence through the phase. In this unstable regime, more than one
protocol co-exist and the ratio of population sizes using the protocols has oscillations with large
amplitude.

In both figures 2.14 and 2.13, we observe that we have stability when τK < 4π ≃ 12.56. In-
deed, in figure refallfigtau, the parameter τ = 1, hence the condition of stability (2.36) becomes
K < 12.56. This actually confirm that using K = 0.16, 1, 1.56, 12, the system is stable and using
K = 15, the system is unstable. We observe the same behavior when keeping K constant and
varying the delay τ.

2.3.6 Notes

In this section, we have studied evolutionary aspects of congestion control protocols in using
the biological paradigm of evolutionary games. We have studied the questions of whether one
could expect one type of protocol to wipe away another one or whether we may expect proto-
cols to coexist. In the latter case we provided a quantitative characterization of the share that
each protocol could be expected to have in the whole population at equilibrium. We then iden-
tified conditions under which there is a convergence to the equilibrium and obtained examined
the oscillating behavior that occurs when there is no convergence. The conditions that guaran-
tee convergence can be used as guidelines for deployment of new protocols so that the users
upgrades would result in a stable system wide behavior.
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2.4 Multi-class delayed evolutionary game dynamics

In this section we briefly describe delayed evolutionary game dynamics with multi-classes of
players. Consider several classes of large population of players and finitely many pure strate-
gies in each class. Let E = {1, 2, . . . , E} be the set of classes. the action set of class e is
Ae = {1, 2, . . . , ne}. Denote x(t) = (xe(t))e∈E the population profile at time t. The composi-
tion of class e is then describe by xe(t) = [xe

1(t), . . . , xe
ne

(t)] where xe
a(t) is fraction of players at

time t with the strategy a in class e. Denote by Fe
a(x(t)) the expected payoff of a user with a in

class e when the population profile is x(t) at time t. Denote τe
a the time associate to the strategy

a of class e. The delayed evolutionary game dynamics is given by

ẋe
a(t) = ∑

b∈Ae

xe
b(t)βe,b

a (x(t), {x(t − τe
b)}e,b) (2.37)

−xe
a(t) ∑

b∈Ae

xe
b(t)βe,a

b (x(t), {x(t− τe
b)}e,b) (2.38)

Delayed Replicator Dynamics with multi-class A fraction of member of a subpopulation
of class e grows when its payoff is greater than the expected average payoff of all the class e in
the population.

d

dt
xe

a(t) = µexe
a(t)

[
Fe

a(x(t − τe
a))− ∑

b∈Ae

xe
b(t)Fe

b(x(t − τe
b))

]
(2.39)

Every equilibrium of evolutionary game with delayed payoffs is a rest point of the dynamic
(2.39).

Delayed Brown-von Neuman-Nash Dynamics Denote ge
a by the positive part of the excess

payoff of subpopulation a of class e In continuous time, Brown-von Neuman-Nash Dynamics is
given by

d

dt
xe

a(t) = µe

[
ge

a(x(t))− xe
a(t) ∑

b∈Ae

ge
b(x(t))

]
(2.40)

where ge
a(x(t)) = max

[
0, Fe

a(x(t − τe
a)) − ∑

b∈Ae

xe
b(t)Fe

b(x(t − τe
a))

]
. The equilibria of evolution-

ary game with delayed payoffs are exactly the rest points of the dynamic (2.40).

Delayed Best Response Dynamics Members of each subpopulation revise their strategy
and choose the best replies BR(x(t)) at the current population state x(t).

d

dt
xe(t) ∈ µe(BRe(x(t))− xe(t)) (2.41)

where BRe(x−e(t)) = arg max
y∈∆(Ae)

{

∑
b∈Ae

ybFe
b (x(t − τe

b))

}
,

The equilibria of evolutionary game with delayed payoffs are exactly the rest points of the
dynamic (2.41).

Delayed Logit dynamics
d

dt
xe

a(t) = µe




e
Fe

a (x(t−τe
a))

ηe

∑b∈Ae e
Fe

b
(x(t−τe

b
))

ηe

− xe
a(t)
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Imitation by dissatisfaction Users in the population review their strategy and imitate the

better strategy at that time.
d

dt
xe

a(t) = µexe
a(t)

[

∑
b∈Ae

xe
b(t)(ρe

ba(x(t))− ρe
ab(x(t)))

]
where ρe

ba(x(t)) =

g(Fe
a(x(t − τe

a)), Fe
b(x(t − τe

b)), g(a, b) = 1 if a > b, otherwise g(a, b) = 0.

Delayed orthogonal projection dynamics The orthogonal projection dynamic is a myopic
adaptive dynamic in which a subpopulation grows when its expected payoff is greater than the

arithmetic average payoff of all the population.
d

dt
xe

a(t) = µe

[
Fe

a(x(t − τe
a)) −

1
ne

∑
b∈Ae

Fe
b (x(t − τe

b))

]

Delayed ray-projection dynamics
d

dt
xe

a(t) = µe

[
Fe

a(x(t − τe
a)) − xe

a(t) ∑
b∈Ae

Fe
b(x(t − τe

a))

]

Delayed θ−Smith dynamics

d

dt
xe

a(t) = µe ∑
b∈Ae

xe
b(t) max(0, Fe

a(x(t − τe
a)) − Fe

b (x(t − τe
b)))

θ (2.42)

−µexe
a(t) ∑

b∈Ae

max(0, Fe
b(x(t − τe

b))− Fe
a (x(t − τe

a)))
θ

The equilibria of the evolutionary game with delayed payoffs are exactly the rest points of the
dynamic (2.42).

Delayed target projection dynamics ẋe(t) = projTXe (Fe({x(t − τk}k))− xe(t)

In figure 2.15 we illustrate the evolution of cooperation with three types in which one can
move from one to another stable equilibrium because of time delays. We conclude that the
delayed evolutionary game dynamics can have unpredictable trajectories even when the non-
delayed dynamics leads to stable points.
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Figure 2.15: Moving from equilibrium to another.

Notes

In next chapter we pursue the study of delayed game dynamics and extend this analysis for
evolutionary games with variable number of players in each local interaction. The chapter is
based to our publications in (213; 11; 211; 218; 210).
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Chapter 3

Evolutionary games with random
number of interacting players

The classical evolutionary game formalism is a central mathematical tool developed by biol-
ogists for predicting population dynamics in the context of interaction between populations.
In order to make use of the wealth of tools and theory developed in the biology literature,
many works in the area of computer networks (52; 20; 214) ignore cases where local interactions
between populations involve more than two individuals. This restriction limits the modeling
power of evolutionary games which are not useful in a network operating at heavy load, such
as ad-hoc networks with high density. This motivated us in this chapter to consider more than
two users interacting locally and the interactions can be non-reciprocal.

Our main contributions in this chapter can be summarized in three points:

• The first objective of this work is to extend the evolutionary game framework to allow
an arbitrary (possibly random) number of players that are involved in a local interaction
(possibly non-reciprocal interaction);

• The second objective of this work is to apply the extended model to access games stud-
ied in (216) which we extend to more than two interacting nodes. In the context of MAC
games, we study the impact of the node distribution in the game area on the equilibrium
stable strategies of the evolutionary game. The interaction between more than two in-
dividuals in a population is a new concept in evolutionary game theory and has a lot
of application in multiple access game in wireless networks. Considering this kind of
games, we use the notion of expected utility as this game is not symmetric, indeed the
number of players with which a given one interacts may vary from one to another; and
also non-reciprocity property. We consider the following parameters in the access game:
transmission cost, collision cost and regret cost. We analyze the impact of these parame-
ters on the probability of successful transmission and give some optimization issues. The
notion of correlated evolutionarily stable state (see Section 3.4) and coordination mechanism
are used to improve the performance(reducing collisions).

• The third objective of this work is to apply evolutionary game models to study the inter-
action of numerous mobiles in competition in a wireless environment. The power control
game in wireless networks is a typical non-cooperative game where each mobile decides
about his transmit power in order to optimize its performance. This application of non-
cooperative game theory and tools is studied in several articles (145; 171; 146). The main
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difference in this article is the use of the evolutionary game theory which deals with pop-
ulation dynamics that is well adapted for studying the power control game in dense wire-
less networks. Specifically, we focus our first study in a power control game in a dense
wireless network where each user transmits using orthogonal codes like in W-CDMA.
In the second scenario, we consider also uplink transmissions but inter-cell interferences
like in WiMAX cells deployment. The utility function of each mobile is based on carrier
(signal)-to-interference ratio and pricing scheme proportional to transmitted power. We
provide and predict the evolution of population between two types of behaviors : aggres-
sive (high power) and peaceful (low power). We identify cases in which at ESS, only one
population prevails (ESS in pure strategies) and others, in which an equilibrium between
several population types is obtained. We also provide the conditions of the uniqueness
of ESS. Furthermore, we study different pricing for controlling the evolution of popula-
tion. We introduced the benefit of correlation (BoC) and show that the random access game
with two strategies has a BoC of 100%. In addition, we show that hierarchical solutions and
canonical correlation devices are do not improve the performance the number of strategies
is at least three.

The rest of this chapter is organized as follows. In Section 3.1 and 3.2, we illustrate some
examples of non-reciprocal interactions and limitations of the pairwise interaction approach. In
Section 3.3 we describe a general model of population games with random number of inter-
acting players at each local interaction and study both evolutionary stability and evolutionary
game dynamics. We then study in Section 3.4 a generalized multiple access game with a ran-
dom number of players. In Section 3.5, we present the evolutionary game model to study the
power allocation game in a dense wireless ad hoc network. In Section 3.6, we propose an evo-
lutionary game analysis for the power allocation game in a context of inter-cell interferences
in OFDMA-based WiMax cells. Numerical results of both wireless network architectures are
proposed in each section.

3.1 Reciprocal and non-reciprocal interactions

Consider a population of users. Each individual needs occasionally to take some action. When
doing so, it interacts with the actions of some M (possibly random number of) other individuals.
All players have the same actions available, and same expected utility. We note however that the
actual realizations need not be symmetric. In particular, (i) the number of players with which
a given player interacts may vary from one player to another. (ii) We do not even need the
reciprocity property: if player A interacts with player B, we do not require the converse to hold.
We provide some examples of multiple access games to illustrate this non-reciprocity.

We now model interference control as local interactions between transmitters; for each trans-
mitter there corresponds a receiver. We shall say that a transmitter A is subject to an interaction
(interference) from transmitter B if the transmission from B overlaps that from A, and provided
that the receiver of the transmission from A is within interference range of transmitter B.

3.1.1 Non-reciprocal pairwise interaction

Consider the example depicted at Figure 3.4. It contains 4 sources (circles) and 3 destinations
(squares). A transmission of a source i within a distance r of the receiver R, causes interference
to a transmission from a source j 6= i to receiver R. We see that Source A and Source C cause
no interference to any other transmission but the transmission from A suffers from interference
from source B, and the one from C suffers from the transmission of the top most source (called
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D). Source B and D interfere with each other at their common destination. Thus each of the
four sources suffers interference from a single other source, but except for nodes B and D, the
interference is not reciprocal.

A

D

CB

Figure 3.1: Non-reciprocal pairwise interactions

It is easy to see that in this non-reciprocal pairwise interaction, the following configurations
leads to equilibria:

• A and D transmit at the same time slot. There are 2 successful transmissions if the others
stay quiet.

• A and C transmit at the same time slot. There are 2 successful transmissions if the others
stay quiet.

• B and C transmit at the same time slot. There are 2 successful transmissions if the others
stay quiet

• A, D and C transmit at the same time slot. There is 1 successful transmission (only from
A) if B stay quiet.

• A, B and C transmit at the same time slot. There is 1 successful transmission (only from
C) if D stay quiet.

• C, D transmit at the same time slot. There is 1 successful transmission (only from A) if B
stay quiet.

• B, D transmit at the same time slot. There is no successful transmission in the system at
that time.

3.1.2 Non-reciprocal interactions between groups three players

In Figure 3.2 there are four sources and only two destinations. Node A does not cause any
interference to the other nodes but suffers interference from nodes B and D. Nodes B, C, D
interfere with each other. This is a situation in which each mobile is involved in interference
from two other mobiles but again the interference is not reciprocal.

The following configurations leads to equilibria:

• A and C transmit at the same time slot. There are 2 successful transmissions if the others
stay quiet. This is a global optimum.

• Only B transmits. There is one successful transmissions if the others stay quiet.
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A B C

D

Figure 3.2: Non-reciprocal interaction between groups three players

• Only D transmits. There is one successful transmissions if the others stay quiet.

• B and D transmit at the same time slot. There is no successful transmissions.

3.1.3 Interactions between random number of players

In this subsection the number of interfering nodes is not fixed. The mobile A suffers interference
from 2 nodes, B and D suffer interference from a single other node and C does not suffer (and
does not cause) interference.

A

D

CB

Figure 3.3: Interactions between a random number of players

The following configurations leads to equilibria:

• A and C transmit at the same time slot. There are 2 successful transmissions if the others
stay quiet. This is a global optimum.

• B and C transmit at the same time slot. There are 2 successful transmissions if the mobiles
A and D stay quiet. This is a global optimum.

• B and C transmit at the same time slot. There are 2 successful transmissions if the others
stay quiet. This is a global optimum.
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• D and C transmit at the same time slot. There are 2 successful transmissions if the others
mobiles A and B stay quiet. This is a global optimum.

Note that if D or B moves from its position. The mobile A can play the role of C is this analysis
and a new game between B or D and C will be played.

All examples exhibit asymmetric realizations and non-reciprocity. We next show how such
a situation can still be considered as symmetric (due to the fact that we consider distributions
of nodes rather than realizations). Assume that the location of the transmitters follow a Poisson
distribution with parameter λ over the two dimensional plane. Consider an arbitrary user A.
Let r be the interference range. Then the number K + 1 of transmitters within the interference
range of the receiver of A has a Poisson distribution with parameter λπr2/2. Since this holds
for any node, the game is considered to be symmetric. The reason that the distribution is taken
into account rather than the realization is that we shall assume that the actions of players will
be taken before knowing the realization.

3.1.4 Spatial non-reciprocal random access games

We assume that all sources (players) have the same actions set (but their decisions can be differ-
ent). The number of transmitters with which a given transmitter interacts may vary from one
transmitter to another. We do not even need the reciprocity property: if transmitter TA inter-
acts with transmitter TB, we do not require the converse to hold. We provide some example of
multiple access and interference control to illustrate this non-reciprocity.

We consider local interactions between transmitters; for each transmitter there corresponds
a receiver. We shall say that a transmitter TA is subject to an interaction (interference) from
transmitter TB if the transmission from TB overlaps that from TA, and provided that the receiver
of the transmission from TA is within interference range of transmitter TB. Consider the example de-
picted in Figure 3.4. It contains 3 receivers or destinations represented by squares, with range
Nj, j = 1, 2, 3. A transmission of a source i within a distance r of the receiver Rj, causes inter-
ference to a transmission from a source j 6= i to receiver Rj but also i causes interference to any
transmitter located in the an intersection range of coverage (the destinations of i and j can be
different). We see that sources in area A1 := N1\(A12 ∪ A13 ∪ A123) cause no interference to
any transmitter from A12 ∪ A13 ∪ A123 transmitting to R2 or R3. The transmitters located in
area A1 cause no interference to any transmitter located in areas A2 or A3. but the transmission
from sources in A1 suffers from interference from source located in A12, A13, A123. The sources
in A1 interfere with each other at their common destination R1. Thus, the interference is not re-
ciprocal. In term of games, a transmitter in areas A12 ∪ A13 ∪ A23 ∪ A123 play simultaneous
several one-shot games with a unidimensional action (transmit or not) and receives a vector of
payoff. Only the payoff obtained at the receiver in which he transmits can be non-zero.

Analysis of equilibria and optima

We consider arbitrary number of sources in each area. Let nij be the cardinal of Aij and n123 be
the cardinal of A123. Denote by r1 := n1 + n12 + n13 + n123 the number of transmitters located
in N1 = A12 ∪ A13 ∪ A1 ∪ A123 (the total number of transmitters covered by receiver R1.
Similarly, r2 := n2 + n12 + n23 + n123, r3 := n3 + n13 + n23 + n123. A strategy profile is a (Nash)
equilibrium if no source from any area can unilaterally deviate and improve its probability of
success.

Equilibria and Pareto optima
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Figure 3.4: Non-reciprocal interference control

Consider the following configurations:

C3 Equilibria with three successful transmissions at the same slot:

– From each area A1, A2, A3, only one source transmits: only one source from A1, one
from A2, one from A3 transmit and others stay quiet. These configurations are equi-
libria. There are three successful transmissions. Any permutation of the n1 sources in
A1, n2 sources in A2 and n3 sources in A3 when keeping the others sources in areas
A12, A13, A23, A123 stay quiet lead a pure strategy equilibria that are also Pareto op-
tima. They are global optima (social welfare) in the sense that the total sum of payoffs
is maximized (one can have at most three successful transmissions at the slot).

C2 Equilibria with two successful transmissions at the same slot:

– Only one source located in A12 transmits, one source from A3 transmits and the
others stay quiet.

– Only one source located in A13 transmits, one source from A2 transmits and the
others stay quiet. There are two successful transmissions.

– Only one source located in A23 transmits, one source from A1 transmits and the
others stay quiet.

C1 Equilibria with one successful transmission at the same slot:

– Only one source located in A123 transmits and all the others sources stay quiet. There
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is one successful transmission in all the three receivers. Since this source is located at
the intersection between N1, N2 and N3, there is interference to any transmission at
any receiver. By permutation and selection of one source of the n123 sources located
A123, we obtain the others equilibria at this configuration. These equilibria are not
global optima.

C0 At least two sources from each neighborhood Nj, j = 1, 2, 3 transmit and the others play
any mixed strategies. Hence, there are infinite number of equilibria of this type. These
equilibria are not Pareto optima because each source gets zero which is Pareto dominated
by the configurations of type C1 − C3.

Notice that if there is no pairwise intersections between the neighborhoods Nj, j = 1, 2, 3,
(the number n12, n123, n23, n13 are null) then the interactions becomes reciprocal (if source i in-
terferes with source j then source j interferes with source i) and the games in N1,N2,N3 can be
analyzed separately.

Notes

This model can be easily extended to finitely many intersecting neighborhoods. See Chapters 4
and 6.

3.2 Why random number of players?

The classical evolutionary game formalism is a central mathematical tool developed by biolo-
gists for predicting population dynamics in the context of interaction between populations. In
order to make use of the wealth of tools and theory developed in the biology literature, many
works in the area of computer networks (88; 20; 52; 214) ignore cases where local interactions
between populations involve more than two individuals. This restriction limits the modeling
power of evolutionary games which are not useful in a network operating at heavy load, such
as ad-hoc networks with high density. This motivated us to consider a random number of users
interacting locally.

We model and study interactions in wireless networks using the theory of evolutionary
games which we extend to cover a random number of players. We study access games within
a large population of mobiles that interfere with each other through many local interactions.
Each local interaction involves a random number of mobiles. The games are not necessarily
reciprocal as the set of mobiles causing interference to a given mobile may differ from the set
of those suffering from its interference. We then apply evolutionary games to non-cooperative
uplink power control in wireless networks. Specifically, we focus our study in a power con-
trol in W-CDMA and WiMAX wireless systems. We study competitive power control within a
large population of mobiles that interfere with each other through many local interactions. We
show how the evolution dynamics, the equilibrium and the evolutionary stability behavior are
influenced by the characteristics of the wireless channel and pricing characteristics.

3.3 Model and notations

We describe in this part notations of our model.

• There is a large population of users.
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• We assume that there are finite number of pure strategies in each population. Each mem-
ber of the population chooses from the same set of strategies A = {1, 2, . . . , N}.

• Let Mix = ∆(A) := {(xa)a∈A | xa ≥ 0, ∑
a∈A

xa = 1} the set of probability distributions

over the N strategies. It is also interpreted as the set of distributions of strategies among
the population, where xa represents of proportion of users choosing the strategy a. A
distribution x is sometime called the "state" or "profile" of the population. It can also be
interpreted as a strategy. M can be interpreted as the set of mixed strategies of a user.

• The number of opponents M of a user is a random variable in the finite set {0, 1, . . .}. In the
bounded case, we will denote by kmax the maximum number of opponents interacting
simultaneously with a user. This value depends on the node density and the transmission
range. When making a choice of a strategy, a player knows the distribution of M but not
its realization.

• The payoff of all players functions (identical for each member of the population) of the
player’s own behavior and opponents’ behavior. Each user’s payoff depends on oppo-
nents’ behavior through the distribution of opponents’ choices and of their number. The
expected payoff of a user playing strategy j when the state of the population is x, is given
by

fa(x) = ∑
k≥0

P(K = k)uk(a, x, . . . , x), a ∈ A

where uk is the payoff function given that the number of opponents is k. Although the
payoffs are symmetric, the actual interference or interactions between two players that
use the same strategy need not be the same, allowing for non-reciprocal behavior. The
reason is that the latter is a property of the random realization whereas the actual payoff
already averages over the randomness related to the interactions, the number of interfer-
ing players, the topology etc.

• The game is played many times.
Theorem 3.3.1 (Existence of equilibrium). For any distribution of random number K of players that
interact locally such that the expected payoff is continuous in the simplex (or product of simplexes for
multipopulation case), the evolutionary game with random number of interacting players has at least one
equilibrium state.

Proof. We show that the game has a symmetric Nash equilibrium. We first remark that the
generating function of K is continuous in (0, 1). Thus, F is lower semi-continuous in ∆(A)

(which is a non-empty, convex and compact subset of Euclidean space Rn+1). The existence of
symmetric Nash equilibrium in mixed strategies follows from Kakutani fixed point theorem or
from the existence of solutions of the following variational inequalities

find x ∈ ∆n s.t ∑
b∈P

(xb − mutb) fb(x) ≥ 0, ∀ mut

3.4 Slotted Aloha

Multiple Access Game introduces the problem of medium access. We assume that mobiles
are randomly placed over a plane. All mobiles use the same fixed transmission range of r.
The channel is ideal for transmission and all errors are due to collision. A mobile decides to
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transmit a packet or not to transmit to a receiver when they are within transmission range
of each other. Interference occurs as in the Aloha protocol: if more than one neighbors of a
receiver transmit a packet at the same time then there is a collision. The Multiple Access Game
is a nonzero-sum game, the mobiles have to share a common resource, the wireless medium. In
this game, the parameter µ represents the probability that a mobile has its receiver R(i) within
its range. When a mobile i transmits to R(i), all mobiles within a circle of radius r centered at
R(i) cause interference to the node i for its transmission to R(i). This means that more than one
transmission within a distance r of the receiver in the same slot cause a collision and the loss of
mobile’s i packet at R(i).

Each of the mobiles has two possible strategies: either to transmit (T) or to stay quiet (S). If
mobile i transmits a packet, it incurs a transmission cost of δ ≥ 0. The packet transmission is
successful if the other users don’t transmit (stays quiet) in that given time slot, otherwise there
is a collision and the corresponding cost is ∆ ≥ 0. If there is no collision, user i gets a reward
of V from the successful packet transmission. We suppose that the reward V is greater than the
cost of transmission δ. When all users stay quiet, they have to pay a regret cost κ. If κ = 0 the
game is called degenerate multiple access game. Figure 3.27 represents an example of interaction
of three nodes. The node 1 chooses a row, node 2 chooses a column and node 3 an array. The
ESS corresponding to any number of nodes1 of this game is given in theorem 3.4.1.

T S
T (−Bθ,−Bθ,−Bθ) (−Bθ, 0,−Bθ)
S (0,−Bθ,−Bθ) (0, 0, V − δ)

T S
T (−Bθ,−Bθ, 0) (V − δ, 0, 0)
S (0, V − δ, 0) (−κ,−κ,−κ)

Figure 3.5: Multiple access game with three nodes. Bθ = ∆ + δ

Let A := {T, S} be the set of pure strategies. An equivalent interpretation of strategies is
obtained by assuming that individuals choose pure strategies and then the probability distri-
bution represents the fraction of individuals in the population that choose each strategy. We
denote by s (resp. 1 − s) the population share of strategy T (resp. S). The payoff obtained by
a node with k opponents when it plays T is uk(T, s) = (−∆ − δ) (1 − ηk) + (V − δ)ηk where
ηk := (1 − s)k, and the node-mutant receives uk(S, s) = −κ(1 − s)k when it stays quiet. The
expected payoff of an anonymous transmitter node-mutant is given

fT(s) = µ ∑
k≥0

P(K = k)uk(T, s)

= µ

(
−(∆ + δ) + (V + ∆) ∑

k≥0
P(K = k) (1 − s)k

)

= −µ(∆ + δ) + µ(V + ∆)GK(1 − s).

where GK is the generating function of K. Analogously, we have

fS(s) := µ ∑
k≥0

P(K = k)uk(S, s) = −µκ ∑
k≥0

(1 − s)k
P(K = k).

The expected payoff of any individual in the population where s is the proportion of mobiles
which transmit, is given by: s fT(s) + (1 − s) fS(s).

We next introduce two alternative information scenario that have an impact on the decision
making. In the first case, a mobile does not know whether there are zero or more other mobiles

1The one-shot game with n nodes has 2n − 1 Nash equilibria and a unique ESS.
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in a given local interaction game about to be played. In the second case the mobile has this
information, and consequently he transmits with probability one in case no other potential in-
terferers are present. In addition to studying these two cases we shall also consider a third case
called the "massively dense" ad-hoc network in which, whenever a mobile participates wishes
to transmit, there is at least one other mobile that is involved in the local interaction game.

We denote α :=
∆ + δ

V + ∆ + κ
, which represents the ratio between the collision cost −∆ − δ

(cost when there is a collision during a transmission) and the difference between global cost
perceived by a mobile −∆ − δ − κ (collision and regret) and the benefit V − δ (reward minus
transmission cost). When the collision cost ∆ becomes high, the value α converges to one and
when the reward or regret cost becomes high, the value α is close to zero.

Case 1 : Aloha without sensing

A transmitter does not know if there are other transmitters at the range of its receiver. Then,
even when it is the only transmitter, it has to decide to transmit or not.

Theorem 3.4.1. If P(K = 0) <
∆ + δ

V + ∆ + κ
=: α, then the game has a unique ESS s∗1 given by

s∗1 = φ−1(
∆ + δ

V + ∆ + κ
) where φ : s 7→ ∑

k≥0
P(K = k) (1 − s)k .

Proof. A mixed equilibrium s is characterized by fT(s) = fS(s) i.e φ(s) =
∆ + δ

V + ∆ + κ
. The

function φ is continuous and strictly decreasing monotone on (0, 1) with φ(1) = P(K = 0)

and φ(0) = 1. Then the equation φ(s) =
∆ + δ

V + ∆ + κ
has a unique solution in the interval

(P(K = 0), 1). One has, f (s, y) − f (mut, y) = µ(V + ∆ + κ)(s − mut) (φ(y)− φ(s)) . Since
s − ǫmut − (1 − ǫ)s = ǫ(s − mut), for y = ǫmut + (1 − ǫ)s one has ∑

j∈{T,S}
(xj − mutj) f j(y) > 0

(because φ is strictly decreasing continuous function) for all mut 6= s. This completes the
proof.

When a mobile is never alone in his interference area, i.e. P(K = 0) = 0; the condition α > 0
is satisfied.

Case 2: Aloha with sensing

A mobile knows when it is the only transmitter at the range of its receiver, and when it is it will
thus transmit with probability one. We can say then that the action set is T whenever a user has
opponents in a local interaction.
Theorem 3.4.2. An anonymous user without opponents receives the fitness f0 = V − δ. If P(K =

0) <
∆ + δ

V + ∆
, then the game has a unique ESS s∗2 given by s∗2 = φ−1

(
∆ + δ + κP(K = 0)

V + ∆ + κ

)
where

φ : s 7→ ∑
k≥0

P(K = k) (1 − s)k .

Proof. The proof is similar as in theorem 3.4.1.
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Case 3: Massively Dense

In this case, we take into account only local interactions between users. Then, in this case,
mobiles are never alone to transmit during a slot and we have ∑

k≥1
P(K = k) = 1.

Theorem 3.4.3. The game has always an unique ESS which is solution of the following equation

∑
k≥1

P(K = k)(1 − s)k = α.

The proof is similar as in theorem 3.4.1 using the monotocity of g.
Proposition 3.4.3.1. The ESS given in theorems 3.4.1,3.4.2,3.4.3 is asymptotically stable in the repli-
cator dynamics without delays for all non-trivial initial state (s0 /∈ {0, 1}).

Proof. The replicator dynamics is given by

d

dt
s(t) = (V + ∆ + κ)s(t)(1− s(t))(φ(s(t))− α).

The function φ is decreasing on (0, 1) implies that the derivative of the function s(1 − s)(φ(s)−
α) at the ESS is negative. These means that the dynamic is competitive. Hence, the ESS is asymp-
totically stable.

3.4.4 ESS and nodes distribution

In this subsection, we consider different nodes distributions. We study the existence and the
uniqueness of ESS in the different nodes distributions. First one, we assume that all mobiles
have the same number of neighbors n − 1, i.e., P(K = j) = δn−1(j) and seconde one, we
assume that nodes are randomly distributed on a plan following a Poisson point process with
density λ.

Arbitrary number of opponent nodes

In this part, we suppose that the population of nodes is composed with many local interaction
between n ≥ 2 nodes. Let A := {T, S} the set of strategies and assume that the strategy T has
a delay τT and the strategy S has the delay τS. The payoff of a player using the action ai ∈ A
against the other players when they use the multi-strategy a−i = (a1, . . . , ai−1, ai+1, . . . , an) is
given by Ui(a).

Each user plays the n−player following game Γn = (N ,A, (Ui)i∈N ) where

• N is the set of users (nodes) and the cardinal of N is n,

• A the set of pure actions (the same for every user),

• for every user i in N , the payoff function Ui : An → R is given by

Ui(a) =





V − δ if ai = T and aj = S, ∀ j 6= i

0 if ai = S and {j ∈ N | aj = T} ≥ 1
−∆ − δ if ai = T and {j ∈ N | aj = T} ≥ 2
−κ if aj = S ∀ j ∈ N
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Let s be the proportion of nodes in the population using the strategy T. Then x = (s, 1 − s) is
the state of the population. Let ∆(A) := {sT + (1 − s)S | 0 ≤ s ≤ 1} the set of mixed strategies.
The average payoff is

f (x, x) = µs
[
(−∆ − δ)

(
1 − (1 − s)n−1

)
+ (V − δ) (1 − s)n−1

]
− µκ(1 − s)n.

It is not difficult to see that the one-shot game Γn has 2n − 1 Nash equilibrium, n of them are
optimal in Pareto sense2:

• If only one node transmit and the others stay quiet, then the node which transmit gets the
payoff V − δ and the others receive nothing and has no cost. This configuration is an
equilibrium .

• There are exactly n pure equilibria and all these pure equilibria are Pareto optimal.

• k (1 ≤ k < n − 1) of the n nodes choose to stay quiet and the n − k others are active

and play the optimal mixed strategy in the game Γn−k :
(

1 − α
1

n−k−1 , α
1

n−k−1

)
where α :=

∆ + δ

V + ∆ + κ
. Thus, there are exactly

n−2

∑
k=1

(n
k ) = 2n − (n + 2) partially mixed Nash equilibria.

• The game has a unique strictly mixed Nash equilibrium given by
(

1 − α
1

n−1 , α
1

n−1

)

• the allocation of payoff obtained in these (partially or completely) mixed strategy are not
Pareto optimal.

Note that the first interference scenario described in the previous section holds here because
the number of interferes is fixed and is equal to n− 1. Then from Theorem 3.4.1 with the function

φ(s) = (1 − s)n−1, the ESS exists and is uniquely defined by s∗ = 1 − α
1

n−1 .

This result generalizes the ESS in the two-player case that we have shown in (216) that when
there are pairing local interaction in a single population, the completely mixed (Nash) equilib-
rium of the two nodes stage game Γ2 is an ESS.

Optimization of the total throughput

We assume here that all mobile has the same number of opponents, that is n − 1. We look for
the probability of success that can be achieved in a local interaction depending on the Dirac
distribution and also cost parameters. At the equilibrium point, the probability of success of a
node is given by s∗(1 − s∗)n−1 and the total probability to have a successful transmission in a
local interaction (total throughput) is given by

Psucc(α, n) = nµs∗(1 − s∗)n−1 = nµ(1 − α
1

n−1 )α, (3.1)

where µ is the probability that a mobile has a receiver in its range. The probability to have

a successful transmission Psucc(α, n) = nµ(1 − α
1

n−1 )α goes to −µα log(α) when the number
of nodes goes to infinity. Hence, when n is large, the maximum total throughput of a local
interaction is obtained when α = 1/e and is closed to µ/e. The optimal total throughput is

2An allocation of payoffs is Pareto optimal or Pareto efficiency if there is no other allocation that makes every node
at least as well off and at least one node strictly better off.
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obtained when α∗ = (1 − 1
n

)n−1 and the corresponding throughput is Psucc(α∗, n) = µ(1 −
1
n

)n−1 −→ µ

e
.

In Figure 3.10 we observe the total throughput depending on the number of interferes n.
The parameters considered are µ = 0.8 and α = 1/3. We denote that the total throughput is
increasing in that case with the number of interferes which it seems non intuitive. The reason
is that the number of transmitted mobiles at the ESS, i.e. s∗, is exponentially decreasing with
n. Another important result is that it may have a finite number of interferers that maximize
the total throughput like in figures 3.7(α = 0.2). When the ratio α is very small α = 0.05 the
probability of success is decreasing in n as shown in Fig. 3.6. In Fig. 3.11 we represent the
probability of success Psucc(α, n) as a function α for several values of n.
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Figure 3.6: Impact of n in the probability of success in Dirac distribution for α = 0.05
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Figure 3.7: Impact of n in the probability of success in Dirac distribution for α = 0.2.

In figure 3.11, we observe the total throughput for different value of n and applying the
result of the previous proposition, we obtain the optimal total throughput depending on α.

Impact of the time delays Now, we study the effect of the time delays on the convergence of
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Figure 3.8: Impact of n in the probability of success in Dirac distribution.
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Figure 3.9: Probability of success in Dirac distribution as function of α and n.
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Figure 3.10: Impact of n in the probability of success in Dirac distribution for α = 1/3.

replicator dynamics to the evolutionarily stable states in which each pure strategy is associated
with its own delay. Let τT (resp. τS) be the time delay of the strategy (T) (resp. (S)). The
delayed replicator equation becomes

ṡ(t) = µ s(t)(1− s(t)) [ fT(s(t − τT)) − fS(s(t − τS))] (3.2)

where fT(s(t)) := −µ(∆ + δ)
(

1 − (1 − s(t))n−1
)

+ µ(V − δ) (1 − s(t))n−1 and fS(s(t)) :=

−µκ (1 − s(t))n−1 .

In order to study the asymptotically stability of the replicator dynamics (3.2) around the
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Figure 3.11: Probability of success in Dirac distribution.

unique ESS s∗1 = 1 − (
∆ + δ

V + ∆ + κ
)

1
n−1 , we linearize (3.2) at s∗1 . We obtain the following linear

delay differential equation

ż(t) = −µ(n − 1)s(1 − s)n−1 ((V + ∆)z(t − τT) + κz(t − τS)) (3.3)

where z(t) = s(t) − s∗1 . The following theorem gives a sufficient conditions of stability of (3.3)
at zero.
Theorem 3.4.5. Suppose at least one of the following conditions holds

• (V + ∆)τT + κτS <
1

(n − 1)s(1 − s)n−1µ

• V + ∆ > κ and (V + ∆)τT <
V + ∆ − κ

(n − 1)s(1− s)n−1µ(V + ∆ + κ)

• V + ∆ < κ and κτS <
−V − ∆ + κ

(n − 1)s(1− s)n−1µ(V + ∆ + κ)

Then the ESS s is asymptotically stable.

A proof of the theorem 3.4.5 can be obtained using theorem 3 in (214) applying to equation
(3.3).

A necessary and sufficient condition of stability of (3.3) at zero when delays are symmetric
is given in theorem 3.4.6.
Theorem 3.4.6 (symmetric delay). Suppose that τT = τS = τ, then, the ESS s∗1 is asymptotically
stable if and only if

τ <
π

2(n − 1)µs∗1(1 − s∗1)n−1(V + ∆ + κ)

The proof uses the following well known lemma (see (215) and the references therein).
Lemma 3.4.6.1. The trivial solution of the linear delay differential equation

ż(t) = −az(t − τ), τ, a > 0

is asymptotically stable if and only if 2aτ < π.
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Numerical solutions The numerical solutions given figure 3.12 are obtained when the ran-

dom variable K is a Dirac δ{n−1}. We took n = 4 = kmax, ∆ =
1
4

= δ, V = 1. The initial condi-

tion is 0.02 and the delays τT and τS between 0.02 and 7. For the small delays: τT = 0.02, τS =
0.02 and τT = 3, τS = 2 respectively, the system is stable. For the delay τH = 7 and τS = 5, the
system is unstable and the proportion of transmitters in the cell oscillates around the ESS.
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Figure 3.12: Delay effect in Dirac Distribution.

Poisson distribution

We consider that nodes are distributed over a plan following a Poisson distribution with density
λ. The probability that a node has k neighbors is given by the following distribution.

Cases 1 and 2: P(K = k) =
(λπr2)k

k!
e−λπr2

, k ≥ 0. Case 3:P(K = k) =
(λπr2)k−1

(k − 1)!
e−λπr2

, k ≥ 1.

Considering those node distributions and from previous theorems, the unique ESS s∗ for all
cases, is solution of the following equation :






e−λπr2s1 = α for case 1

e−λπr2s2 = α +
κP(K = 0)

V + ∆ + κ
for case 2

(1 − s3)e−λπr2s3 = α for case 3

Thus we obtain the following equilibria in the different scenario:

s∗1 = log
(

α
− 1

λπr2

)
, s∗2 = log

(
(α +

κP(K = 0)

V + ∆ + κ
)
− 1

λπr2

)

and s∗3 = 1 − LambertW(λπr2αeλπr2
)

λπr2 ,

where LambertW(s) is the LambertW function which is the inverse function of f (w) = wew.

Optimization of the total throughput in Poisson distribution We look for the probability
of success that can be achieved in a local interaction depending on distribution parameters and
also cost parameters. We consider the Poisson distribution with parameters λ and r.
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The probability to have a successful transmission in a local interaction (total throughput) is
given by different equation depending on the scenario. In the case 1 we have:

Psucc(α, λ) = µs∗1 ∑
k≥0

kP(K = k)(1 − s∗1)k = µs∗1 ∑
k≥0

k
(λπr2)k

k!
(1 − s∗1)k

≈ µs∗1(1 − s∗1)λπr2α,

In the case 2, we have: Psucc(ᾱ, λ) ≈ µs∗2(1− s∗2)λπr2ᾱ. We derive immediately the following
result:
Proposition 3.4.6.2. The maximum total throughput under poisson distribution is attained when α =

eh(λ,r) in the case 1 (resp. ᾱ = eh(λ,r) in the case 2) where h is one of the two functions defined by

(λ, r) ∈ R2
+ 7→ −(1 + 2λπr2) ±

√
1 + 4(λπr2)2

2
.

In the case 3, we have:Psucc(α, λ) = µs∗3 ∑
k≥1

kP(K = k)(1 − s∗3)k = µs∗3 ∑
k≥1

k
(λπr2)k−1

(k − 1)!
(1 −

s∗3)k ≈ µαs∗3(1 + λπr2(1 − s∗3)).
Proposition 3.4.6.3. There exists a unique α∗3 in which the total throughput is maximum when α = α∗3 .

The α∗3 is given by α∗3 = (1 − s)e−λπr2s where s is the unique solution in [0, 1] of the following equation
:

1 + γ − s(2 + 5γ + γ2) + s2(4γ + 2γ2) − γ2s3 = 0

Proof. The derivative of the function H :=
∂Psucc

∂s
s given by

H(s) = (1 + γ − s(2 + 5γ + γ2) + s2(4γ + 2γ2) − s3γ2)e−γs.

We prove that the above function is strictly decreasing on [0, 1]. For that, it is sufficient to study
the following function

G(s) = 1 + γ − s(2 + 5γ + γ2) + s2(4γ + 2γ2) − s3γ2.

We have
∂G(s)

∂s
is given by

∂G(s)

∂s
= −(2 + 5γ + γ2) + 2s(4γ + 2γ2)− 3s2γ2.

It is easy to show that the above function is always negative. Since H(0) = 1 + γ > 0 and
H(1) = −e−γ < 0 then the function H is positive for s ∈ [0, s̄) and is negative for s ∈ (s̄, 1]
where s̄ is the solution of the equation G(s) = 0. Since s∗ is decreasing function on α, we
conclude that function Psucc is positive if s ∈ [0, s̄) and is negative s ∈ (s̄, 1]. Since the optimal
of function Psucc is attained at α = (1 − s̄)e−λπr2s̄

The probability of success at the ESS in poisson distribution is represented in figures 3.13
and 3.14. We observe in particular case that when the number of interferes increases, i.e. the
rate λ in the case of the Poisson distribution, the total throughput increases.

In the figures 3.15 and 3.16, we describe numerical application of our evolutionary game
model with Poisson distribution of nodes under the replicator dynamics. We took n = 4 =

kmax, ∆ =
1
4

= δ = κ, λ = 1 and V = 1. The initial condition in all these figures is 0.02. In
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Figure 3.13: Probability of success in Poisson distribution (cases 1,2).
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Figure 3.14: Probability of success in Poisson distribution (case 3).
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Figure 3.15: Evolution of the fraction of transmitters varying the density parameter λ.
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the figure 3.15 we compare the evolution of the fraction of transmitters varying the parameter
of density λ between 0.1 and 5 for the case 1, 2 and 3 respectively. We observe that we have
stability for all cases. In figure 3.16 represents the impact of the parameter µ on the velocity of
the system. We took µ between 0.1 and 0.5 without delay. We observe that we have stability but
the convergence speed becomes slow when µ decreases.
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Figure 3.16: Impact of µ on the velocity of the replicator dynamics without delay
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Figure 3.17: Evolution of transmitters by varying the density parameter λ.

Now, we study the effect of the time delays on the convergence of replicator dynamics to
the evolutionarily stable states in which each pure strategy is associated with its own delay in
Poisson distribution. The replicator dynamics becomes

ṡ(t) = µs(t)(1 − s(t)) [ fT(s(t − τT)) − fS(s(t − τS))] (3.4)

where fT(s(t)) := µ
(
−(∆ + δ) + (V + ∆)e−λπr2s(t)

)
and fS(s(t)) := −µκe−λπr2s(t) in the case

1.In order to study the asymptotically stability of the replicator dynamics (3.4) around the
unique ESS, we linearize (3.4) at s∗ = s∗1 . We obtain the following linear delay differential equa-
tion

ẏ(t) = −c1((V + ∆)y(t − τT) + κy(t − τS))
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Figure 3.18: Impact of the time delay on replicator dynamics (case 1).

where c1 := µs∗(1 − s∗)α
(

1 + s∗(1 − s∗)λπr2
)

, and y(t) = s(t) − s∗. The following theorem
give sufficient conditions of stability of (3.5) at zero.
Theorem 3.4.7 (see (214)). Suppose at least one of the following conditions holds
(i) (V + ∆)τT + κτS < θa,

(ii) V + ∆ > κ and (V + ∆)τT <
(V + ∆ − κ)θa

V + ∆ + κ
,

(iii) V + ∆ < κ and κτS <
(−V − ∆ + κ)θa

V + ∆ + κ
where θa :=

1
s∗(1 − s∗)µα (1 + s∗(1 − s∗)λπr2)

Then

the ESS s∗ is asymptotically stable.

A necessary and sufficient condition of stability of (3.5) at zero when delays are symmetric
is given in theorem 3.4.8.
Theorem 3.4.8 (symmetric delay). Suppose that τT = τS = τ. Then, the ESS s∗ is asymptotically
stable if and only if

τ <
π

2s∗(1 − s∗)µα (1 + s∗(1 − s∗)λπr2) (V + ∆ + κ)

The fraction of transmitters in the population is represented in figure 3.18 for λ = 0.5 and
r = 1. The delays τT and τS are between 0.02 and 7. The system is stable for τT = τS = 0.02
or τT = 3, τS = 2. For τT = 7 and τS = 5 the system is unstable. We display an oscillatory
behavior of the population as function of time. The trajectory are seen to converge to periodic
ones. All turn out to confirm the stability condition that we obtained in theorem 3.4.7. In
the figure 3.17 we compare evolution of the fraction of transmitters varying the parameter of
density λ between 0.1 and 5 for the case 1, 2 and 3 respectively. In this figure, the time delays
are respectively 3 and 2. Note that in this figure the equilibrium point is decreasing function in
the density parameter λ. Indeed, when the density of nodes increases, the number of mobiles
share a receiver increases. To avoid collision, the nodes decrease the probability of transmission.
We observe also that for λ = 5, we have stability but the convergence speed is slow than for
λ = 0.1.
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3.4.9 Coordination mechanisms to reduce collisions

In this subsection we focus on the concept of correlated evolutionarily stable states (CESS) in access
games. A correlated equilibrium is introduced by Aumann (32) in 1974 and can be interpreted
as a distribution of actions given to the mobiles by some referee(which can be the base station,
the receiver) before to play each local game. For more details on correlated equilibrium, we
refer the reader to (32; 33; 125). As in (125), we use the concept of correlated equilibrium from
the perspective of bounded rationality.

We define a probability space
(

Ω, 2Ω, Pn
)

which generates signals on which the nodes can

condition their strategic choices where Ω = An. The set Ω is partitioned as follows I j(a) :=
{as1s2 . . . sj−1sj+1 . . . sn | sl ∈ A, l 6= j}, I j := {I j(a), a ∈ A}. then, I j has exactly |A| = 2
elements which are information sets of node j ∈ N . We define an assignment function(called also
rule) profile α = (α1, . . . , αn) as a mapping from the set of states Ω to mixed strategies set ∆(A).
For all j, the assignment function of the node j, αj must satisfy :
if for some w, αj(w) = s, then αj(w′) = s, for all w′ ∈ I j(s).

That is, for each element w ∈ I j, node j cannot distinguish states that are in the same infor-
mation set. We denote the set of all pure assignment functions by AF : {g | g : A −→ A}.
Thus, when a node chooses an assignment function α and when he receives the signal ω from
the referee, he will choose the mixed action α(ω). We use α(sj|ω) to denote the probability
assigned on sj under this mixed action α(ω). Then α(w) = [α(s1|ω), . . . , α(sn|w)] ∈ ∆(S).

Given a referee (Ω, Pn), we define the identity assignment function as αid,n(sj|ω) = 1 if
projj(ω) = sj where projj(ω) denotes the j−th element of the signal ω and αid,n(sj|ω) = 0 for
all ω such that projj(ω) 6= sj.

If each node use the identity assignment then, the resulting probability distribution of ac-
tions profile actually played will be Pn, the same as the probability distribution of actions rec-
ommended by the referee. But when nodes use other assignments, a different distribution may
result.

Given an assignment profile α and a probability distribution Pn over An, the expected payoff
is given by

f n(α) = ∑
ω∈Ω

Pn(ω) ∑
a=(a1,...,an)∈An

un(a) ∏
j∈N

α(aj|w)

= ∑
a=(a1,...,an)∈An

un(a) ∑
ω∈Ω

Pn(ω) ∏
j∈N

α(aj|w) = ∑
a=(a1,...,an)∈An

un(a)Qα(a)

where Qα(a) = ∑
ω∈Ω

Pn(ω) ∏
j∈N

α(aj|w). We say that two assignment functions profile α and β

are equivalent if they induce the same value Qα = Qβ

Proposition 3.4.9.1. Suppose that Pn(a) = Pn(σ(a)) for all permutation σ (the distribution Pn is

said symmetric). If an assignment profile β is equivalent to αid,n then Qβ(a) = Pn(a), for all a ∈ An.

Proof. This is because Qαid,n(a) = Pn(a), ∀a ∈ An.

Now, suppose a small group of mutants appears. These mutants use a mutational assign-
ment function α′n. which is not equivalent to the identical assignment function αid,n., but they
cannot change the referee recommendation. Let ǫ be the portion of the population which are
mutants (who use α′,) and 1 − ǫ portion of the population are non-mutants who use αid,n. At
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each time, n nodes are randomly chosen to play the strategic game Γn. In playing the game, the
nodes have the same referee (Ω, Pn).

A probability distribution Pn over An is an CESS if non-mutants with identity assignment
function perform better than mutants with assignment functions that are not equivalent to the
identical assignment function.
Definition 3.4.9.2. A CESS Pn is a symmetric distribution probability over An such that for every

assignment function α′n nonequivalent to the identical assignment function αid,n, there exists some
ǫα′n > 0 such that

Fn(αid,n, ǫα′n + (1 − ǫ)αid,n) > Fn(α′n, ǫα′n + (1 − ǫ)αid,n) (3.5)

for all ǫ ∈ (0, ǫα′n) where Fn(β, α) = f n(β, α, . . . , α)

Proposition 3.4.9.3. If s is an ESS then the product measure s⋆(n) given by s⋆(n)(a) = ∏
j∈N

sj(aj) is a

CESS.

Proof. It is easy to see that s⋆(n) is a probability measure on An. Since s is an ESS, (s, . . . , s) ∈
∆(A)n is a Nash equilibrium of the n−player game i.e ∑

a∈An

un(a) ∏
j∈N

sj(aj) ≥ ∑
a∈An

un(bk, a−k) ∏
j∈N\{k}

sj(aj) ≥

0, ∀bk ∈ A. This means that the product probability measure s⋆(n) is an CESS.

Our principal motivation to study CESS is that, in general the expected payoff obtained in
ESS can be improved by CESS distribution (see the example depicted in Fig. 3.19). Non-ESS can
be CESS as shown in the following example.
Examples 3.4.9.4. Consider the following matrix game

Γ1((V = 4, ∆ = δ = κ = 1)) :
S T

S −1,−1 0, 3
T 3, 0 −2,−2

, P1 :
S T

S p11 p12
T p21 p22

, Ω = {S, T}2

I1 = {{SS, ST}, {TS, TT}}, I2 = {{SS, TS}, {ST, TT}}.

A rule of the node 1 (row) is to assigns the first element and the second element of I1 respectively. A rule

of the node 2 (column) is to assigns the first element and the second element of I2 respectively.

For the node 1,

• SS means "always stay quiet: choose always S"(independently of the signal).

• TT means "always transmit: choose always T"(independently of the signal).

• ST means "obedient to recommendation: choose S if ω ∈ {SS, ST} and choose T if ω ∈
{TS, TT}".

• TS means "opposite of the recommendation: choose S if ω ∈ {TS, TT} and choose T if ω ∈
{SS, ST}".

For the node 2,

• SS means "always stay quiet: choose always S"(independently of the signal).

• TT means "always transmit: choose always T"(independently of the signal).

• ST means "obedient to recommendation: choose S if ω ∈ {SS, TS} and choose T if ω ∈
{ST, TT}".

64



3.4. Slotted Aloha

• TS means "opposite of the recommendation: choose S if ω ∈ {ST, TT} and choose T if ω ∈
{SS, TS}".

Thus, AF = {SS, ST, TS, TT} and the extended game becomes

SS ST TS TT

SS −1 −p11 − p21 −p12 − p22 0
ST −p11 − p12 + 3p22 + 3p21 −p11 + 3p21 − 2p22 −p12 + 3p22 − 2p21 −2p21 − 2p22
TS −p21 − p22 + 3p11 + 3p12 −p21 + 3p11 − 2p21 −p22 + 3p12 − 2p11 −2p12 − 2p11
TT 3 3p11 + 3p21 − 2p12 − 2p22 3p12 + 3p22 − 2p11 − 2p21 −2

Remarks 3.4.9.5. The mixed strategy s = (1/3, 2/3) is the unique ESS of the game with payoff matrix

Γ1. The expected payoff obtained at the ESS is −1/3. In this example, every probability distribution P1

satisfying p11 <
p12

2
, p22 < 2p21, p12 = p21 is a CESS. In particular,

P1 :
S T

S 0 1/2
T 1/2 0

is a CESS (but the mixed strategy (1/2, 1/2) is not an ESS) and the assignment functions profile
(ST, ST) and (TS, TS) give the payoff 3/2 which is greater than −1/3.

Number of nodes which transmit: active nodes We define numbT : An −→ N as the num-
ber of transmitters of an action. Par example, numbT(T, . . . , T) = n and numbT(T, S, . . . , S) = 1.
The set {b ∈ A | numbT(b) = 1} is exactly the situations where only one of the nodes transmit

(and the others stay quiet). numbT(b) = 1 if and only if there exists a unique j such that bj = T
i.e all permutations of the actions profile T S . . . S︸ ︷︷ ︸

n−1 times

.

Denote by Θn := {b ∈ An | numbT(b) = 1}.
Proposition 3.4.9.6. The probability distribution Pn over An defined as

Pn(a) =

{ 1
n

if a ∈ Θn

0 otherwise

is a CESS with the payoff
V − δ

n
> 0. Moreover at each slot, we have a successful transmission with

probability one (if each node have some packet to transmit at each slot) and the allocation of payoffs
obtained at this CESS is Pareto optimal.

Recall the payoff obtained at ESS is not Pareto optimal.

Proof. Θn has exactly n actions. Thus, Pn is a probability measure. Let B := {b ∈ An−1 | numbT(b) =
1}.

[un(TS . . . S) − un(SS . . . S)]Pn(TS . . . S) =
V − δ

n
> 0, and

∑
a−1∈An−1

[un(Sa−1)−un(Ta−1)]Pn(Sa−1) = − ∑
a−1∈An−1

un(Ta−1)Pn(Sa−1) = (n− 1)
(∆ + δ)

n
> 0.

Thus, Pn is a CESS and the system has a successful transmission at each slot with probability
one. The total payoff obtained at the CESS is exactly V − δ. Hence the allocation at this CESS is
Pareto optimal.

The Figure 3.19 represents the payoff obtained at the CESS given in the proposition 3.7.4.6
and the payoff of the ESS varying the regret cost κ. We took ∆ = 2/10, V = 1, δ = 0.
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Figure 3.19: Payoffs obtained at a CESS and the ESS.

3.5 W-CDMA Wireless Networks

In this section, the random number of opponents is induced by the geographical position of the
mobiles compared to the base stations.

R

Figure 3.20: Interferences at the receiver in uplink CDMA transmissions.

We study in this section competitive decentralized power control in an wireless network
where the mobiles uses, as uplink MAC protocol, the W-CDMA technique to transmit to a
receiver. We assume that there is a large population of mobiles which are randomly placed over
a plane following a Poisson process with density λ. We consider a random number of mobiles
interacting locally. When a mobile i transmits to its receiver R(i), all mobiles within a circle
of radius R centered at the receiver R(i) cause interference to the transmission from node i to
receiver R(i) as illustrated in figure 3.20. We assume that a mobile is within a circle of a receiver
with probability µ. We define a random variable R which will be used to represent the distance
between a mobile and a receiver. Let ς(r) be the probability density function (pdf) for R. Then

we have µ =
∫ R

0
ς(r)dr.
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Remarks 3.5.0.7. If we assume that the receivers or access points are randomly distributed following a
poisson process with density ν, the probability density function is expressed by ς(r) = νe−νr.

For uplink transmissions, a mobile has to choose between High(H) power level and Low(L)
power level. We denote by PH the high power and PL the low power levels. Let s be the
population share strategy H. Hence, the signal Pr received at the receiver is given by Pr =
gPil(r), where g is the gain antenna and α > 2 is the path loss exponent. For the attenuation,

the most common function is l(t) =
1
tα

, with α ranging from 3 to 6. Note that such l(t) explodes

at t = 0, and thus in particular is not correct for a small distance r and largen intensity λ.
Then, it makes sense to assume attenuation to be a bounded function in the vicinity of the
antenna. Hence the last function becomes l(t) = max(t, r0)

−α. First we note that the number of
transmission within a circle of radius r0 centered at the receiver is λπr2

0 . Then the interference

caused by all mobiles in that circle is I0(s) =
λπg(sPH + (1 − s)PL)

rα−2
0

.

Now we consider a thin ring Aj with the inner radius rj = jdr and the outer radius rj =

r0 + jdr. The signal power received at the receiver from any node in Aj is Pri
=

gPi

rα
i

. Hence the

interference caused by all mobiles in Aj is given by

Ij(s) =






2gλπrjdr(
sPH + (1 − s)PL

rα
j

) if rj < R,

2µgλπrjdr(
sPH + (1 − s)PL

rα
j

) if rj ≥ R.

Hence, the total interference contributed by all nodes at the receiver is

I(s) = I0(s) + 2gλπ(sPH + (1 − s)PL)

[∫ R

r0

1
rα−1 dr + µ

∫ ∞

R

1
rα−1 dr

]
,

= gλπ(sPH + (1 − s)PL)(
α

α − 2
r
−(α−2)
0 − 2(1− µ)R−(α−2)).

Hence the signal to interference ratio SINRi is given by

SINRi(Pi, s, r) =





gPi/rα
0

σ + βI(s)
if r ≤ r0,

gPi/rα

σ + βI(s)
if r ≥ r0,

where σ is the power of the thermal background noise and β is the inverse of the processing gain
of the system. This parameter weights the effect of interference, depending on the orthogonality
between codes used during simultaneous transmissions. In the sequel, we compute the mobile’s
utility (fitness) depending on his decision but also on the decision of his interferers. We assume
the user’s utility (fitness) choosing power level Pi is expressed by

fPi
(s) = w

∫ R

0
log(1 + SINR(Pi, s, r))ς(r)dr − ηPi.

The pricing function Pi define the instantaneous "price" a mobile pays for using a specific
amount of power that causes interference in the system and η is a parameter. This price can
be the power cost consumption for sending packets.

We are now looking at the existence and uniqueness of the ESS. For this, we need the fol-
lowing result.
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Lemma 3.5.0.8. For all density function ς defined on [0, R], the function h : [0, 1] → R defined as

s 7−→
∫ R

0
log
(

1 + SINR(PH, s, r)

1 + SINR(PL, s, r)

)
ς(r) dr is continuous and strictly monotone.

Proof. The function s 7−→ log
(

1 + SINR(PH, s, r)

1 + SINR(PL, s, r)

)
ς(r) is continuous and integrable in r on

the interval [0, R]. The function h is continuous. Using derivative properties of integral with
parameter, we can see that the derivative function of h is the function h′ : [0, 1] → R defined as

s 7−→
∫ R

0

∂

∂s

[
log
(

1 + SINR(PH, s, r)

1 + SINR(PL, s, r)

)]
ς(r).

We show that the term
∂

∂s

[
log
(

1 + SINR(PH, s, r)

1 + SINR(PL, s, r)

)]
is negative. Let W(s) :=

1 + SINR(PH, s, r)

1 + SINR(PL, s, r)
.

The function W can be rewritten as W(s) = 1 +
g(PH−PL)

rα

σ + βI(s) +
gPL
rα

where I(s) = (s(PH − PL) +

PL)c(r) and c(r) = λπg

[
α

α − 2
r
−(α−2)
0 − 2(1− µ)R−(α−2)

]
if r ≥ r0 and

λπg

rα−2
0

otherwise. Since

W satisfies W(s) > 1 and W ′(s) = −c(r)β(PH − PL)
g(PH−PL)

rα

(σ + βI(s) + gPL
rα )2

< 0. Hence,

∂

∂s

[
log
(

1 + SINR(PH, s, r)

1 + SINR(PL, s, r)

)]
=

∂

∂s
(log W(s)) =

W ′(s)

W(s)
< 0

i.e h′(s) < 0. We conclude that h is strictly decreasing.

Using this lemma, we have the following proposition which gives pure strategies depending
on the parameters.
Proposition 3.5.0.9. For all density function ς, the pure strategy PH dominates the strategy PL if and

only if
η

w
(PH − PL) <

∫ R

0
log
(

1 + SINR(PH, PH, r)

1 + SINR(PL, PH, r)

)
ς(r) dr = h(1). For all density function ς, the

pure strategy PL dominates the strategy PH if and only if
η

w
(PH − PL) >

∫ R

0
log
(

1 + SINR(PH, PL, r)

1 + SINR(PL, PL, r)

)
ς(r) dr =

h(0).

Proof. We decompose the existence of the ESS in several cases.

1. PH is preferred to PL : The higher power level dominates the lower if and only if fPH
(PH) >

fPL
(PH) and fPH

(PL) > fPL
(PL). These two inequalities implies that

η

w
(PH − PL) <

∫ R

0
log
(

1 + SINR(PH, PH, r)

1 + SINR(PL, PH, r)

)
ς(r) dr.

2. PL is preferred to PH : Analogously, the lower power dominates the higher power if and

only if fPL
(PH) > fPH

(PH) and fPL
(PL) > fPH

(PL) i.e
η

w
(PH − PL) >

∫ R

0
log
(

1 + SINR(PH, PL, r)

1 + SINR(PL, PL, r)

)
ς(r) dr.

The following result gives a sufficient condition for the existence of the ESS.
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Proposition 3.5.0.10. For all density function ς, if h(1) <
η

w
(PH − PL) < h(0), then there exists an

unique ESS s∗ which is given by s∗ = h−1
( η

w
(PH − PL)

)
.

Proof. Suppose that the parameters w, η, PH and PL satisfy the following inequality h(1) <
η

w
(PH − PL) < h(0). Then the game has no dominant strategy. A mixed equilibrium is char-

acterized by fPH
(s) = fPL

(s). It is easy to see that this last equation is equivalent to h(s) =
η

w
(PH − PL). From the lemma 3.5.0.8, we have that the equation h(s) =

η

w
(PH − PL) has an

unique solution given by s∗ = h−1
( η

w
(PH − PL)

)
. We now prove that this mixed equilibrium

is an ESS. To prove this result, we compare s∗ fPH
(mut) + (1 − s∗) fPL

(mut) and mut fPH
(mut) +

(1 − mut) fPL
(mut) for all mut 6= s∗. The difference between two values is exactly w(s∗ −

mut)(h(mut) − h(s∗)). According to lemma 3.5.0.8, h is decreasing function. Hence, (s∗ −
mut)(h(mut) − h(s∗)) is strictly positive for all strategy mut different from s∗. We conclude
that the mixed equilibrium (s∗, 1 − s∗) is an ESS.

From the last proposition, we can use the pricing η as a design tool for create an incentive for
the user to adjust their power control. We observe that the ESS s∗ decreases when η increases.
That means the mobiles become less aggressive when pricing function increases and the system
can limit aggressive requests for SINR.

3.5.1 Numerical examples in W-CDMA Wireless Networks:

In the numerical examples below, we show how the pricing function can optimize the overall
network throughput. we first investigate the impact of the different parameters and pricing
on the ESS and the convergence of the replicator dynamic. We also discuss the impact of the
pricing function on the system capacity.

We first show the impact of density of nodes and pricing on the ESS and the average rate. We
assume that the receivers which are randomly placed over a plane following a Poisson process
with density ν, i.e, ς(r) = νe−νr. We recall that the rate of a mobile using power level Pi at

the equilibrium is given by w
∫ R

0
log(1 + SINR(Pi, s, r))ς(r)dr. We took r0 = 0.2, w = 20, σ =

0.2, α = 3, β = 0.2, R = 1. First, we show the impact of the density of nodes λ on the ESS
and the average rate. In figures 3.21, we depict the average rate obtained at the equilibrium
and the ESS, respectively , as a function of the density λ. We recall that the interference for a
mobile increases when λ increases. We observe that the mobiles become less aggressive when
the density increases. We observe that it is important to adapt the pricing as function of the
density of nodes. Indeed, we observe that for low density of nodes, the lower pricing (η = 0.92)
gives better results than higher pricing (η = 0.97). When the density of nodes increases, the
better performance is obtained with higher pricing.

Our second experiment in W-CDMA studies convergence to the ESS of the W-CDMA system
described above under replicator dynamics. Fig. 3.22 and 3.23 represent the fraction of popula-
tion using the high power level for different initial states of the population: 0.99, 0.66, 0.25 and
0.03. We observe that the choice of receiver distributions change the ESS. In the next section we
study another wireless architecture where interferences are between mobiles which are located
in different cell. This typical interference problem occurs in WiMAX environment.
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Figure 3.21: The average rate at equilibrium versus λ for η = 0.92, 0.97.
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Figure 3.22: Convergence to the ESS in W-CDMA system : uniform distribution.
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Figure 3.23: Convergence to the ESS in W-CDMA system : quadratic distribution.
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3.6 OFDMA-based IEEE802.16 Network

OFDMA (Orthogonal Frequency Division Multiple Access) is recognized as one of the most
promising multiple access technique in wireless communication system. This technique is used
to improve spectral efficiency and becomes an attractive multiple access technique for 4th gen-
eration mobile communication system as WiMAX.

In OFDMA systems, each user occupies a subset of subcarriers, and each carrier is assigned
exclusively to only one user at any time. This technique has the advantage of eliminating intra-
cell interference (interference between subcarriers is negligible). Hence the transmission is af-
fected by intercell interference since users in adjacent sectors may have also been assigned to
the same carrier. If those users in the adjacent sectors transmitted with high power the intercell
interference may severely limit the SINR achieved by the user. Some form of coordination be-
tween the different cells occupying the spectral resource are studied in (134; 123). The optimal
resource allocation requires complete information about the network in order to decide which
users in which cells should transmit simultaneously with a given power. All of these results
however, rely on some form of centralized control to obtain gains at various layers of the com-
munication stack. In a realistic network as WiMAX, centralized multicell coordination is hard
to realize in practice, especially in fast-fading environments.

We consider an OFDMA system where radio resources are allocated to users on their chan-
nel measures and traffic requirements. Each carrier within a frame must be assigned to at most
one user in the corresponding cell. In this way each carrier assignment can be made indepen-
dently in each cell. Hence when a user is assigned to carrier, the mobile should determine the
power transmission to the Base station. This power should take into account the interference
experienced by the transmitted packet.

Consider the uplink of a multiple multicell system, employing the same spectral resource
in each cell. Power control is used in an effort to preserve power and to limit interference and
fading effects. For users located in a given cell, co-channel interference may therefore come from
only few cells as illustrated in figure 3.24. Since the intra-cell interference is negligible, we focus
on the users which use a specific carrier. Consider N cells, and a large number of population of
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7

Figure 3.24: Hexagonal cell configuration
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mobiles randomly distributed over each channel and each cell. Since in OFDMA systems, each
carrier is assigned exclusively to only one mobile at any time, we assume that the interactions
between mobiles are manifested through many local interactions between N′ mobiles where N′

is the set of neighbors of a cell. We can ignore the interaction among more than N′ mobiles
that transmit simultaneously and that can cause interference to each other. Hence, in each slot,
interaction occurs only between the mobiles which have been assigned to the same carrier.

Let gij denote the average channel gain from user i to cell j. Hence, if a user in cell i transmits
with power pi, the received signal strength at cell i is pigii, while the interference it occurs on cell

j is pigij. Hence, the interference experienced by cell i is given by SINRi(p) =
gii pi

σi + ∑j 6=i gij pj
,

where σi is the power of the thermal noise experienced at cell i. The rate achieved by user i is
given by ri(p) = log(1 + SINRi(p)), where p denotes the power level vector of mobiles choice
which are assigned to a specific carrier. We assume that the user’s utility is given by ui(p) =
ri(p) − ηpi. The above utility represents the weighted difference between the throughput that
can be achieved as expressed by Shannon’s capacity and the power consumption cost. We
assume that all mobiles perform the on-off power allocation strategy. In this strategy, each
mobile transmits with full power or remains silent. Let Ni be the set of neighbors of a user
in cell i. Hence the interference experienced by a user in the cell i is given by SINRi(p) =

gii pi

σi + ∑j∈Ni\{i} gji pj
, where pj ∈ {0, P}, P is the power level of transmission.

Let si the proportion of transmitters in the cell i. The couple (si, 1 − si) with si ∈ (0, 1),
represents the state of the cell i. We denote by s−i the vector (s1, . . . , si−1, si+1, . . . , sNi

). The
fitness of the cell i can be defined as follows:

f i(si, s−i) = si f i
P(s−i) = si ∑

a−i∈{0,P}|Ni|−1

ui(P, a−i)s−i(a−i) where

s−i(a−i) =


 ∏

j∈T(a−i)

sj




 ∏

j∈Ni\{T(a−i)
⋃{i}}

(1 − sj)


 and

T(a−i) = {k ∈ Ni\{i}, pk = P},

is the set of neighbors transmitting. We have f i
0(s−i) = 0 for any multi-strategy s−i.

A multi-strategy s = (si)i=1,...N is neutrally stable if for all s′ 6= s there exists ǫy′ > 0 such
that ∀ǫ ∈ (0, ǫy′)

f i
si
(ǫs′−i + (1 − ǫ)s−i) ≥ f i

s′i
(ǫs′−i + (1 − ǫ)s−i) (3.6)

for some i. The multi-strategy s is evolutionary stable if the inequality (3.6) is strict. Hence, an
ESS is a neutrally stable strategy but the reciprocal is not true. See (169) for more details on
neutrally stable strategy. If s is neutrally stable strategy then s is Nash equilibrium. The best
response (BR) of the user i to s−i is given by

BRi(s−i) =






1 if f i
P(s−i) > 0,

0 if f i
P(s−i) < 0,

[0, 1] if f i
P(s−i) = 0.

A strategy s is a Nash equilibrium is equivalent to si ∈ BRi(s−i), i = 1, . . . , |N|. In particular
when η = 0, the strategy ON is a Nash equilibrium (ON is a dominant strategy).

The following proposition gives necessary conditions for pure strategies and strictly mixed
strategies to be neutrally stable.
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Proposition 3.6.0.1. We decompose the different equilibrium strategy in the following items.

• If the strategy ON (P) is a neutrally stable equilibrium then

η ≤ ηmin where ηmin =
1
P

min
i=1,...,N

log

(
1 +

gii
σi
P + ∑j∈Ni, j 6=i gji

)
.

Moreover, ON becomes a strictly dominant strategy if η < ηmin.

• If the strategy OFF (0) is a neutrally stable equilibrium then

η ≥ 1
P

max
i

log
(

1 +
giiP

σi

)
=: ηmax.

For η > ηmax, OFF becomes a strictly dominant strategy (hence, an ESS).

• If ∀ j 6= i, gij = g, gii = ḡ, σi = σ then the game becomes a symmetric game. Hence, it exists a
symmetric equilibrium with the proportion s(= si, ∀i) of transmitters, which must satisfy

Q(s) :=
n−1

∑
k=0

aksk(1 − s)n−k−1(n−1
k ) = ηP (3.7)

where ak = log(1 +
ḡP

σ + kgP
) > 0 represents the fitness obtained by user i when he transmits

and k of the opponents of user i decided to transmit and the n − 1 − k others stay quiet.

• Every strictly mixed equilibrium (symmetric or not) must satisfy f i
si
(s−i) = 0 for all i.

Proof. The two first assertions of the proposition 3.6.0.1 are obtained by Nash equilibrium con-
ditions: the strategy ON (P) is a neutrally stable equilibrium implies that ∀i, 0 ≤ f i

P(P, . . . , P)

and the strategy OFF (0) is a neutrally stable equilibrium implies that ∀i, f i
P(0, . . . , 0) ≤ 0. In

the last assertion (symmetric case), the fitness of user i is s(Q(s)− ηP) where (si, 1 − si) is state
of the cell. Since Q(1) < 0 and Q(0) > 0 when ηmin < η < ηmax, then the equation (3.7) has a
solution s in (0, 1) which implies the existence of an ESS.

Remark that the strategy ON is an ESS if η < ηmin. In order to prove the existence and
uniqueness of the ESS in the symmetric case, we study roots of the polynomial Q in the follow-
ing lemma.
Lemma 3.6.0.2. Let 0 ≤ an−1 < an−2 < . . . < a0, η and P positive reals satisfying ηP ∈ (an−1, a0).
Then, the polynomial Q(s)− ηP has a unique root on (0, 1).

Proof. We show existence and uniqueness of the root of the polynomial Q on (0, 1).

Existence Q is a polynomial with real coefficients. Hence, Q is continuous in (0, 1). The image

of the interval (0, 1) contains I = [an−1 − ηP, a0 − ηP]. The inequality
an−1

P
:= ηmin < η <

a0

P
:= ηmax, implies 0 ∈ I. Thus, there exists, a ∈ (0, 1) such that Q(a) = 0.

Uniqueness We show that Q is strictly monotone on (0, 1). Let Q′ be the derivative of Q. Q′ is
given by

Q′(s) = ∑
k≥0

(k + 1)(n−1
k+1 )ak+1sk(1 − s)n−2−k − ∑

k≥0
(n − k − 1)(n−1

k )aksk(1 − s)n−2−k

Since (k + 1)(n−1
k+1 ) = (n − k − 1)(n−1

k ), one has
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Q′(s) = −
n−2

∑
k=0

(n − 1)!
k!(n − 2 − k)!

[ak − ak+1]s
k(1 − s)n−2−k

The inequalities ak − ak+1 > 0, k = 0, . . . , n − 2 and s ≥ 0, 1 − s ≥ 0 imply that Q′(s) < 0 on
(0, 1). Hence, Q is strictly decreasing on (0, 1). We conclude that Q is bijective from (0, 1) to I
and hence, Q has a unique root on (0, 1)

Given this result, we have the following proposition given the existence and uniqueness
of the ESS in the symmetric game. The proof is immediate from the lemma 3.6.0.2 and from
proposition 3.6.0.1.
Proposition 3.6.0.3. The symmetric power control game has a unique strictly mixed equilibrium.

3.6.1 Numerical investigation in OFDMA-based IEEE802.16 networks

We consider below numerical examples of an OFDMA system. We shall obtain the ESS for
several values of η. We assume that gii = g and gij = ḡ for all i 6= j and σi = σ for all i. We
consider below a numerical example for different values of N′ (see figure 3.24 in which N′ = 7).
Let the noise σ = 0.1 and the power attenuation g = ḡ/4 = 0.9. In figure 3.25 (resp. 3.26),
we plot the ESS versus η (resp. power level P). In both figures, the population ratio using the
strategy ON is monotone decreasing in η.
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Figure 3.25: The population ratio of ON at equilibrium versus η.

We observe that the parameter η which can be interpreted as the pricing per unit of power
transmitted, can determine whether the ESS is aggressive (in pure strategies or in mixed strate-
gies. It can determine in the latter case what fraction of the population will use high power at
equilibrium. Pricing can thus be used to control interference.

Notes

In this chapter we have adapted the theory of evolutionary games with a random number of
players in wireless networks. This adaptation is needed in order to apply this theory for the
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Figure 3.26: The population ratio of strategy ON versus P.

study of access game and particularly in wireless networks. (i) We have proposed different
scenario based on the level of information for each player in the slotted Aloha model. In all
cases, we have obtained the existence and uniqueness of the ESS, we have proposed optimiza-
tion issues for the transmission probability of success and finally, we have studied the impact
of delay in the convergence to the ESS of the replicator dynamics. (ii) We considered power
control games with one or several populations of users and studied evolutionarily stable states
in interaction of numerous mobiles in competition in a wireless environment. We have mod-
eled power control for W-CDMA and OFDMA systems as a non-cooperative population game
in which each user needs to decide how much power to transmit over each receiver and many
local interactions between users at the same time has been considered. We have derived the
conditions for existence and uniqueness of evolutionarily stable states and characterize the dis-
tribution of the users over each power level.

3.7 Correlated Evolutionarily Stable Strategies in Random Medium
Access

In this section we study dynamic multiple access in distributed wireless networks with random
number of users. We apply evolutionary game theoretic analysis to solve several problems: (a)
We address the stability of Aloha-like systems with power levels. Specifically, we consider an ar-
bitrary number of receivers distributed in several locations. They receive packets from random
number of users accessing the resource using Aloha-like algorithms. We provide an explicit
expression of equilibria, correlated evolutionarily stable strategies, and prove some asymptotic
stability results. (b) We apply correlation mechanism and evaluate the performance of random
medium access when saturated users interact through interference. We introduce the benefit
of correlation (BoC) to measure the gap between the probability of success at correlated evo-
lutionarily stable states and the worst probability of success of evolutionarily stable states. We
show that if only two power levels are available, the correlation mechanism reduces consid-
erably the interference and the number of collisions. Moreover, the correlation mechanism is
stable in long-term under several classes of bio-inspired evolutionary game dynamics. (c) Sur-
prisingly, when the number of strategies is at least three, the game has no pure equilibrium, and
the correlation mechanisms do not improve the probability of success and BoC=0.
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Random Medium Access Control (MAC) algorithms have played an increasingly important
role in the development of wired and wireless networks and the performance and stability of
these algorithms, such as slotted-Aloha, Carrier Sense Multiple Access (CSMA) is still an open
problem (36). Distributed Medium Access Control, starting from the first version of Abramson’s
Aloha to the most recent algorithms used in IEEE802.11, have enabled a rapid growth of both
wired and wireless networks. They aim at efficiently and fairly sharing a resource among users
even though each user must decide independently (eventually after receiving some messages
or listening) when and how to attempt to use the resource. MAC algorithms have generated
a lot of research interest, especially recently in attempts to use multi-hop wireless networks to
provide high-speed access to the internet with low-cost and low-energy consumption.

In this section we focus our attention to wireless networks, where the resources are receivers,
base station or access points and where users interact because of interference, i.e., interfering
users cannot transmit simultaneously. There is a collision if another user (mobile) transmits with
a greater power level at the same range of the receiver. Motivated by the interest of evolving
dense networks, evolutionary game theory was found to be an appropriate framework to apply
in networks. It has been applied to problems such as congestion control (147), distributed coop-
erative sensing over cognitive radio networks (232; 160), code division multiple access (CDMA),
Orthogonal Frequency-Division Multiple Access (OFDMA) based Worldwide Interoperability
for Microwave Access (WiMAX) environment (11), reciprocal and non-reciprocal interference
control, mobile medium access control and channel selection (213) and capacity region of Ad-
ditive White Gaussian Noise (AWGN) (88), Multihoming and association problems (184). A
one-shot random access game have been studied in (109). In (232; 88; 11; 109; 213) the authors
did not analyze the performance and the fairness properties of these approaches and the num-
ber of strategies limited is fixed to two.

We provide a general evolutionary game theoretic framework to analyze networks where
interfering users share a resource using an Aloha-type access control. We consider access con-
trol with arbitrary number of strategies and variable number of mobiles around each receiver. We
study a large population of communicating terminals using a aloha-like protocol with several
levels of transmission power. We examine how to choose between these power levels in order
maximize their probability of success minus the cost of energy consumption. We study several
solution and stability concepts: the Nash equilibrium and the Evolutionarily Stable State (ESS)
and the correlated evolutionarily stable strategy. The concept of ESS were introduced in math-
ematical biology by Maynard Smith and Price (187; 186) in the context of Evolutionary Games,
which allow to describe and to predict properties of large populations whose evolution de-
pends on many local interactions, each involving a finite number of individuals. Evolutionary
game dynamics are models of strategy change commonly used in evolutionary game theory.
A strategy which does better than the average or its opponent, increases in frequency at the
expense of strategies that do worse than the average or the opposed action. Many evolutionary
game dynamics models are used in the literature (229; 168; 99; 65; 234). We compare the per-
formances of these notions with the global cooperative solution. The payoffs that we consider
are functions of the probability to have a successful transmission and of the cost for the power
levels. We study in particular the impact of the pricing for the use of the power levels on the
system performance. We analyze various solutions concepts and refinement: Nash equilibria,
Pareto optimality, strong equilibria, correlated evolutionarily stable state. In order to study the
interactions between mobiles and their stationary strategy in the long run, we develop some
evolutionary game dynamics (99; 168; 229; 90) in order to study the convergence and the stabil-
ity of equilibria.

76



3.7. Correlated Evolutionarily Stable Strategies in Random Medium Access

Related works

In (232), an evolutionary game-theoretical framework with two strategies: Cooperate or Defect
has been proposed for distributed cooperative sensing over cognitive radio networks. By em-
ploying the theory of replicator dynamics, the authors study the behavior dynamics of sec-
ondary users, and further propose a distributed learning algorithm that gradually converges to
the Nash equilibrium. In (20; 212), an evolutionary access game with battery state-dependent
energy management have been proposed for distributed Aloha networks with low density. The
authors consider only two strategies: high or low power and interference between more than three
mobiles is neglected. Our analysis extend (20; 213; 109) and covers general distribution (eventu-
ally with mobility) of mobiles and arbitrary number of strategies. We propose an evolutionary
access control game with random number of interacting players and arbitrary number of ac-
tions. Our work extends previous evolutionary networking game theoretic works (232; 20; 11)
where only two strategies is considered. We use the Price of Anarchy (PoA) concept (28; 29)
in order to measure the gap between equilibrium and social optima in the population game.
We show that the PoA of evolutionarily stable state is more than the PoA of Nash equilibria in
any population game with arbitrary number of strategies. In the evolutionary access game with
non-degenerate costs and more than three strategies, the PoA at ESS denoted by PoAESS coin-
cide with PoANE. Moreover, PoSESS = PoSNE = 0. In contrast, if we have only two strategies
and m mobiles around the receiver, the PoSNE = 1 ≥ PoANE = 0 = PoAESS. We introduce and
analyze correlated evolutionarily stable states (CESS) in access control. CESS is a refinement
of correlated equilibrium. We show that the evolutionary access control game with arbitrary
number of opponent around each receiver has a several CESS which are more robust in term of
fairness, stability and efficiency than correlated equilibria (CE) (32). We define the benefit of cor-
relation (BoC) that measures the improvement in term of probability of success by introducing
correlation between mobiles in the population game. To the best to our knowledge, this work
is one the first which study correlated evolutionarily stable states in networking context. For
the two strategies case, we show that the BoC of the access game is 100% i.e PoSCESS = 1 and
PoANE = 0. As a consequence, for the model studied in (109) the global optimum is attained
using CESS. We compute explicitly an equivalence class of CESS which is a social optimum
and which is local asymptotically stable under the evolutionary dynamics. In particular, our
contribution gives some situations where the three properties: equilibrium, stability, optimality
(global cooperative solution) holds. For more than two strategies, we show that the game has
no pure equilibrium (Theorem 3.7.3) and a unique mixed equilibrium which we compute ex-
plicitly (Theorem 3.7.6). We develop a general class of evolutionary game dynamics for CESS.
Surprisingly, when the number of strategies is at least three, the correlation mechanism does
not improve the probability of success.

In next subsection we formulate problem of access control with several actions and introduce
the evolutionarily equilibrium concept, the efficiency metric "Price of Anarchy" and evolution-
ary game dynamics with time delays. In subsection 3.7.1 we analyze equilibria: Nash, ESS, CE,
CESS and price of anarchy, price of stability and benefit of correlation in Dirac distribution. We
compute explicitly the equilibria and the price of anarchy in general distribution in subsection
3.7.5. We extend our study to asymmetric random access games with several classes and ran-
dom number of interacting mobiles and formulate the SINR-threshold based admission control
and in subsection 5.5.

3.7.1 Access control with several power levels

We consider a wireless communication network with distributed receivers in which some mo-
biles contend for access on a common, wireless communication channel. We characterize this
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distributed multiple access problem in terms of many random access game at each time. Ran-
dom multiple access games introduce the problem of medium access. We assume that mobiles
are randomly placed over an area and a distributed receivers in the corresponding area . The
channels are ideal for transmission and all errors are due to collision. A mobile decides to trans-
mit a packet with some power level or not to transmit (null power level) to a receiver when they
are within transmission range of each other. Interference occurs as in the Aloha protocol where
the power control is introduced: if more than one neighbors of the receiver transmit a packet
with a power level which is greater than the corresponding power of the mobile at the same
time slot there is a collision. The evolutionary random multiple access game is a nonzero-sum
dynamic game, at each time, the mobiles in the same range have to share a common resource,
the wireless medium. We denote by µ the probability that a mobile has its receiver within its
range. We assume that µ > 0 (if µ = 0 there are no receivers, and hence no successful transmis-
sion).

Strategies

We assume that for each packet, its source can choose the transmitted power among several
power levels

P = {p0, p1, p2, . . . , pn}
with p0 < p1 < . . . < pn i.e a strategy for a mobile corresponds to the choice of a power level in
P . p0 = 0 means that the mobile does not transmit, pn is the maximum power level available to
the mobiles.

Aloha-type payoff with pricing

If mobile j transmits a packet using a power pj, it incurs a transmission cost of c(pj) ≥ 0. The
packet transmission is successful if the other users in the range of its receiver use some power
levels strictly lower than pj in that given time slot, otherwise there is a collision. If there is no
collision, user i gets a reward of V from the successful packet transmission. If c(a) > V for
some power a then a is dominated by 0 (not transmit). For the remainder, suppose that the
reward V is greater than the cost of transmission max

j
c(pj) < V. All packets of a lower power

level involved in a collision are assumed to be lost and will have to be retransmitted later. In
addition, if more than one packet of a higher power level is involved in a collision then all
packets are lost. The power differentiation thus allows one packet of a higher power level to
be successfully transmitted in collisions that do not involve other packets of the higher power
level. Then, a transmission of mobile j is successful if its transmission power is strictly greater
than the power levels used by the others mobiles at the same slot. When the number of mobiles
which transmitting at the receiver is m + 1, the payoff is given by u

j
m+1 : Pm+1 −→ R

u
j
m+1(aj, a−j) = −c(aj) + V ×

{
1 if aj > max

k 6=j
ak

0 otherwise

where a−j denotes (a1, . . . , aj−1, aj+1, . . . , am+1), c : R+ −→ R+ is a pricing function. We
assume that

c(p0) = c(0) = 0 ≤ c(p1) ≤ c(p2) . . . ≤ c(pn)

Denote a population profile as the frequencies (fractions) of use of pure strategies in the
population. A population profile can be represented by an element of the n−simplex ∆n of the
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(n + 1)−dimensional Euclidean space Rn+1. The expected payoff of a mobile j with the power
level pi when facing to m others mobiles is given by

fm,pi
(x) = µu

j
m+1(x, . . . , pi, x, . . . , x) (3.8)

= µ

(

∑
a∈Pm

u1
m+1(pi, a1, . . . , am)

m

∏
j=1

xaj

)
(3.9)

where xp j
is the fraction of mobiles with the power level pj ∈ P , and x = (xp0 , xp1 , . . . , xpn) is

the population profile.
Lemma 3.7.1.1. fm,p0(x) = 0, and for i ≥ 1,

fm,pi
(x) = µ

[
−c(pi) + V ∑

j0+j1+...+ji−1=m

x
j0
p0 x

j1
p1 . . . x

ji−1
pi−1

]

fm,pi
(x) = −µc(pi) + Vµ(xp0 + xp1 + xp2 + . . . + xpi−1)

m

Denote by K the random variable representing the number of opponents of a anonymous
mobile picked in a the population when the population profile is x and by GK(s) = EK(sK)
the generating function of M. The expected payoff of a mobile using the power level pi can be
expressed as

Fpi
(x) = EK( fK,pi

(x))

= VµGK(xp0 + xp1 + xp2 + . . . + xpi−1) − µc(pi)

for all i > 0 and Fp0(x) = 0.

We observe that if x is stochastically dominated by y, i.e for all i < n,
n

∑
j=i+1

xj ≤
n

∑
j=i+1

yj then

Fb(x) ≥ Fb(y), ∀b ∈ P . The function F is extended to a more general generating function (229)
G defined in a linear space that contains ∆n × ∆n. The G-function satisfies

G(v, x)|v=p j
= Fp j

(x).

A population profile x is an evolutionarily stable state (ESS) if for all other population profile
mut 6= x there exists a ǫmut > 0 (which may depend on mut) such that,

∑
b∈P

(xb − mutb)G(v, (1− ǫ)x + ǫ mut)|v=b > 0, ∀ǫ ∈ (0, ǫmut) (3.10)

When the inequality (3.10) is non-strict, and ǫ = 0, we obtain that the probability distribution
x is a symmetric Nash equilibrium (NE).

Bio-inspired and G-function game dynamics

We adopt a class of evolutionary game dynamics based on the generating fitness (payoff) func-
tion (G-function) and revision protocols developed respectively by Vincent (229) and Sand-
holm (168) in which we introduce time delays. The time delays characterize the expected delay
needed to know if a transmission is successful or not. An action pi taken at time t will have its
effect at time t + τpi

. Delayed evolutionary game dynamics with asymmetric time delays have
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been introduced in (214). In the evolving MAC context, we construct evolutionary game dy-
namics from a model of individual decision making, we introduce revision of protocols, which
describe how mobiles adjust their choices of strategies during the game. A revision protocol

is a Lipschitz continuous map β : Rn+1 × (∆n)n+2 −→ R
(n+1)×(n+1)
+ that takes a G-function G

vectors G = (G(b, .))b∈P and population profile x as arguments, and returns nonnegative ma-
trices with size (n + 1) × (n + 1) as outputs. The generating The scalar βpi p j

(G; x1, . . . , xn+2) is
called the conditional switch rate from strategy pi to strategy pj. If the agents receiving revision

opportunities independently according to rate κ Poisson processes, then
βpi p j

(G, x1, . . . , xn+2)

κ
represents the probability that a mobile with the power level pi who receives a revision oppor-
tunity switches to transmit with the power level pj. The two maps β and G together define a
delayed non-linear differential equation

d

dt
xpi

(t) = ∑
b∈P

xb(t)βbpi
(G, x(t), x(t − τp0), . . . , x(t − τpn) (3.11)

−xpi
(t) ∑

b∈P
βpib(G, x(t), x(t − τp0), . . . , x(t − τpn))

with initial condition

x(t) = φ(t), ∀t ∈ (−max
b∈P

τb, 0). (3.12)

Note that the delayed differential equation (3.11) combined the condition x(t0) = x0 can de-
fined an infinite solutions (this class of differential equation is not covered by Cauchy-Lipschitz’s
theorem) . To guarantee uniqueness of solutions under locally Lipschitz property of β we need
to impose a initial condition known in an interval with length at least max

b∈P
τb =: τ.

Lemma 3.7.1.2. If β is locally Lipschitz, φ is continuous on (−max
b∈P

τb, 0) and F is generated by regular

G−function G : Rn+1 × Rn+1 −→ R satisfying

G(v, x)|v=b = Fb(x).

Then the delayed evolutionary game dynamics defined by (3.11) and (3.12) has a unique solution.

The dynamic is said positively correlated (PC) if

d

dt
x 6= 0 =⇒ ∑

b

[
d

dt
xb][G(v, x)|v=b] > 0.

In (168), Sandholm showed that in absence of time delays, replicator dynamics (197) (or gen-
eral imitation dynamics), Smith dynamics (189) (pairwise comparison dynamics), projection
dynamics (168), Brown-von Neumann-Nash dynamics (55) (excess payoff dynamics) satisfy the
positive correlation (PC) property. Moreover Brown-von Neumann-Nash dynamics, projection
dynamics and Smith dynamics satisfy the property that every rest point of the dynamics is an
equilibrium of the game. It is easy to see that the parameter µ > 0 and the times does not
change the set of equilibria. Hence, the following holds:
Corollary 3.7.1.3. Delayed imitation dynamics, delayed pairwise comparison dynamics, delayed pro-
jection dynamics, excess payoff dynamics and projection dynamics satisfy the positive correlation (PC)
property. Moreover Brown-von Neumann-Nash dynamics, projection dynamics and Smith dynamics
satisfy the property that every rest point of the dynamics is an equilibrium of the game.
Examples 3.7.1.4. If

βpi,p j
= xp j

(t) max
(

0, G(w, x(t − τw))|w=p j
− G(v, x(t − τv))|v=pi

)
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we obtain the delayed replicator dynamics

d

dt
xp j

(t) = xp j
(t)

[
G(w, x(t − τw))|w=p j

−
n

∑
k=0

xpk
(t)G(w′, x(t − τw′))|w′=pk

]

j = 0, . . . , n,

Analogously, the delayed Brown-von Neumann-Nash dynamics is obtained for βpi,p j
=

max (0, gg) where

gg = Gw(x(t − τw))|w=p j
−

n

∑
k=0

xpk
(t)G(w′, x(t − τw′))|w′=pk

and the delayed θ−Smith dynamics for

βpi,p j
= max

(
0, G(w, x(t− τw))|w=p j

− G(v, x(t − τv))|v=pi

)θ
,

with θ ≥ 1. Note that under delayed evolutionary game dynamics, the ESS can be unstable (see
Fig.3.35). If the dynamics is regular, a sufficient condition of stability of an ESS x∗ is given by:
(i) all roots of the Jacobian of the function H defined by

Hp j
(y) = yp j

(t)

[
G(w, y(t))|w=p j

−
n

∑
k=0

ypk
(t)G(w′, y(t))|w′=pk

]

have negative real value the ESS x∗ and (ii)

‖J(x∗)‖∞

(
max
b∈P

τb

)
< 1

where ‖J(x∗)‖∞ denotes the norm sup of Jacobian of H.

Dirac distribution

In this subsection, M is the Dirac distribution δm−1 (the number of opponents in the same range
is m − 1). If there is no pricing for the energy consumption then, the high power level weakly
dominates the others power levels. We show that the one-shot random access game between m
mobiles and without cost c(.) ≡ 0 (degenerate case) has an infinite number of equilibria. Only
(pn, . . . , pn) is a symmetric equilibrium.
Proposition 3.7.1.5. If c(.) ≡ 0, then the one-shot random access game between m mobiles has an
infinite number of Nash equilibria and unique a symmetric Nash equilibrium (pn, . . . , pn) which is an

evolutionarily stable state. Moreover, the game has many Pareto optima3.

Proof. (i) Symmetric Equilibrium It is clear that for all j, uj(pn, x−j) ≥ uj(yj, x−j), ∀ x−j ∈
(∆n)m−1 i.e pn weakly dominates the others power levels in P\{pn}. Hence, the strategy pn is an
equilibrium. Moreover the best reply to the population profile x is to play pn if xpn 6= 1, and to
play any strategy z ∈ ∆n if xpn = 1. Thus, (pn, pn, . . . , pn) is the unique symmetric equilibrium.
At the equilibrium (pn, pn, . . . , pn), the payoff of each mobile is zero. Thus, (pn, pn, . . . , pn) is
not Pareto optimal because the allocation obtained at (pn, 0, . . . , 0) or (pn, p1, p1, . . . , p1) Pareto
dominates zero.

3An allocation of payoffs is Pareto optimal or Pareto efficient if there is no other feasible allocation that makes every
user at least as well off and at least one user strictly better off
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(ii) Pure Equilibria: Fix a mobile j which uses the action pn. Then any action profile of the
others mobiles x−j ∈∈ Pm−1 leads to a Nash equilibrium (no mobile can improve its probability
of success by deviating unilaterally). In particular, if j0, j2, . . . , jn−1 such that ji of the m − 1
mobiles pi and j0 + . . . + jn−1 = m − 1 then no mobile can improve its probability of success
by deviating unilaterally and this kind of configuration where only mobile use pn is also Pareto
optimal. Thus, the game has the binomial number (m

1 ) times the cardinality of Pm−1 which
is mnm−1 pure Nash-Pareto equilibria (pure Nash equilibria which are also optimal in Pareto
sense). The total number of pure Nash equilibria is given by the cardinality of the set

{
(j0, . . . , jn) ∈ Nn+1| jn ≥ 1,

n

∑
i=0

ji = m, ji ≥ 0

}

(iii)Partially Mixed Equilibria: Any situation where at least one of the mobiles use the
strategy pn , and other mobiles use an arbitrary mixed strategy, gives a mixed Nash equilibria.
The allocation of payoff obtained in these partially mixed strategy need not to be Pareto optimal
if at least one mobile chooses the strategy pn with strictly positive probability.

(iv) Evolutionarily Stable State: The unique symmetric equilibrium pn is evolutionarily
stable.

A multi-strategy is a strong equilibria if is a configuration from which no coalition (of any
size) can deviate and improve their payoff (probability minus cost) of every member of the
coalition (group of the simultaneous moves), while possibly lowering the payoff of mobiles
outside the coalition group. A strong equilibrium is in particular a strong equilibrium (by tak-
ing coalition of size) but also Pareto optimal (coalition of full size). The Theorem 3.7.2 below
describes Nash equilibria, Pareto optimality and coalition proof of two strategies {p0, p1} access
game between m mobiles.
Theorem 3.7.2. Suppose that n = 1 and 0 = c(p0) < c(p1) < V. Then the one-shot random access
game has (i) 2m − 1 number of Nash equilibria, (ii) m of them are Nash-Pareto equilibria, and strong equi-
libria, (iii) a unique fully mixed Nash equilibrium which is not Pareto optimal. (iv) a unique ESS given

by

(
1 − (

c(p1)

V
)

1
m−1 , (

c(p1)

V
)

1
m−1

)
. (v) the price of anarchy is zero for both ESS and Nash equilibria.

Proof. (Proof the Theorem 3.7.2) We show the following results: (i) If only one node transmit
with p1 and the others stay quiet (p0), then the mobile which transmit with p1 gets the payoff
V − c(p1) and the others receive nothing and has no cost c(p0) = 0. This configuration is an
equilibrium point. (ii) there are exactly m pure equilibria and all these pure equilibria are Pareto
optimal (because the maximum to total payoff is attained) and strong equilibria. (iii) k (1 ≤ k <
m− 1) of the m mobiles choose to stay quiet and the m− k others are active and play the optimal

mixed strategy in the game with m − k mobiles denote by Γm−k :
(

1 − ν
1

m−k−1 , ν
1

m−k−1

)
where

ν :=
c(p1)

V
. Thus, there are exactly

m−2

∑
k=1

(m
k ) = 2m − (m + 2)

partially mixed Nash equilibria. (iv) The game has a unique strictly mixed Nash equilibrium

given by
(

1 − ν
1

m−1 , ν
1

m−1

)
. (v) the allocation of payoff obtained in these (partially or com-

pletely) mixed strategy are not Pareto optimal.
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Pure equilibria Suppose that the node i transmits and the others N\{i} stay quiet. Then
mobile i will obtain the maximum payoff V − c(p1) > 0. Mobile i obtains 0 by deviating (stay
quiet). Hence mobile i has not incentive to deviate unilaterally. A mobile j 6= i will receive 0
and have no cost in this configuration. Suppose that mobile j decide to deviate unilaterally then
mobile j payoff will be −c(p1) < 0. Hence, no mobile has incentive to deviate unilaterally from
this configuration. We change the role of mobile i and another mobile j to obtain the others pure
equilibria (permutation).

Completely mixed equilibrium The payoff of node i is fm(s) = si [(−c(p1)(1− η) + (V − c(p1))η]

where η = ∏
j 6=i

(1− sj). The best response (BRi) of the node i to the multi-strategy s−i of the oth-

ers nodes is given by

BRi(s−i) =





1 if η >
c(p1)

V

0 if η <
c(p1)

V

[0, 1] if η =
c(p1)

V

Note that at η will be independent of i. Thus, for i, k ∈ {1, . . . , m}, the quotient
∏j 6=i(1 − sj)

∏j 6=k(1 − sm)
=

1 =
1 − si

1 − sk
. Hence, s1 = . . . = sm. We conclude that sj = 1 − (m−1)

√
ν, ∀j ∈ N is the unique

strictly mixed Nash equilibrium.

Partially mixed equilibria Suppose that m > 2 and fix an integer k between 1 and m − 2.
Suppose k nodes stay quiet and m − k transmit with positive probability.Without lost of gener-
ality, we can suppose that the k first nodes {1, 2, . . . , k} does not transmit and any node j with
j > k participate the game Γm−k. The optimal strategy for j (j > k) is sj = 1 − (m−k−1)

√
ν. For

j ≤ k, we show that mobile j have no incentive to deviate because payoff obtained by node j by
deviating is

si [(−c(p1))(1 − ν) + (V)ν]− 0 × (1 − si)ν

which is lower than 0. For m = 2, the game becomes the two-player game

1\2 p1 p0
p1 (−c(p1),−c(p1)) (V − c(p1), 0)
p0 (0, V − c(p1)) (0, 0)

It is easy to see that the Nash equilibria of the strategic game Γ1 are (p1, p0), (p0, p1) and (1 −
ν, ν).

Pareto optimality Note that the allocation of payoff obtained in these (partially or com-
pletely) mixed strategy are not Pareto optimal because the payoff of each mobile is zero at these
configuration. This completes the proof.

The negative results (ii), (iii), (v) of Theorem 3.7.2 in term of performance can be improved
by introducing the concept of correlated evolutionarily stable state (CESS). We will introduce
CESS in next subsection and exhibit a class of CESS for which the system is stable and 100%
efficient (the payoff at the CESS is a social welfare) and the system is stable in long-term. We
first remark that the result of Theorem 3.7.2 (i),(ii),(iv) for two strategies ♯P = 2 does not holds
for arbitrary number of strategies ♯P ≥ 3 as shown in the following examples (see Fig.3.27)
where pure equilibria may not exists.
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The three strategies two-player game has no equilibrium in pure strategies (see Fig 3.28 and
3.27). The game has a unique completely mixed strategy

(
V − c(p2)

V
,

c(p2) − c(p1)

V
,

c(p1)

V
) ∈ ∆2

obtained by solving the indifference equations.

p2 p1 p0
p2 (−c(p2),−c(p2)) (V − c(p2),−c(p1)) (V − c(p2), 0)
p1 (−c(p1), V − c(p2)) (−c(p1),−c(p1)) (V − c(p1), 0)
p0 (0, V − c(p2)) (0, V − c(p1)) (0, 0)

Figure 3.27: No pure equilibria. Three strategies

A0 :=

p2 p1 p0
p2 (−c(p2),−c(p2),−c(p2)) (−c(p2),−c(p1),−c(p2)) (−c(p2), 0,−c(p2))
p1 (−c(p1),−c(p2),−c(p2)) (−c(p1),−c(p1), V − c(p2)) (−c(p1), 0, V − c(p2))
p0 (0,−c(p2),−c(p2)) (0,−c(p1), V − c(p2)) (0, 0, V − c(p2))

A1 :=
p2 p1 p0

p2 (−c(p2),−c(p2),−c(p1)) (V − c(p2),−c(p1),−c(p1)) (V − c(p2), 0,−c(p1))
p1 (−c(p1), V − c(p2),−c(p1)) (−c(p1),−c(p1), V − c(p1)) (−c(p1), 0,−c(p1))
p0 (0, V − c(p2),−c(p1)) (0,−c(p1),−c(p1)) (0, 0, V − c(p1))

A2 :=

p2 p1 p0
p2 (−c(p2),−c(p2), 0) (V − c(p2),−c(p1), 0) (V − c(p2), 0, 0)
p1 (−c(p1), V − c(p2), 0) (−c(p1),−c(p1), 0) (V − c(p1), 0, 0)
p0 (0, V − c(p2), 0) (0,−c(p1), V − c(p1)) (0, 0, 0)

Figure 3.28: No pure equilibrium under pricing.

For the remainder we assume that 0 = c(p0) < c(p1) < c(p2) < . . . < c(pn) < V. We have
seen in Theorem 3.7.2 that with two strategies, the access game between m mobiles has several
pure equilibria and Pareto optimal solutions. The following Theorem 3.7.3 shows that Theorem
cannot be extended for three strategies and an equilibrium do not exist in pure strategies.
Theorem 3.7.3. Let ♯P be the cardinality of P . The evolutionary random access game with more than
two strategies ♯P ≥ 3, and m ≥ 2 mobiles has no pure equilibrium.

Proof. Fix a strategy profile (a1, . . . , am) ∈ Pm with ♯P ≥ 3. Let T1 = arg max
j

aj. We distinguish

two cases: ♯T1 = 1 or ♯T1 ≥ 2

• suppose that ♯T1 = 1 and let T1 = {j∗}. One has in particular pj∗ > p0 = 0. If aj∗ = pi <

pn then any mobile k in P\T1 which deviates and uses al > pj∗ > p0 = 0 (the existence of
al is guaranteed because there are more than three strategies) will improve its payoff from
−c(ak) to V − c(al).

If aj∗ = pn then mobile j∗ can improve its payoff from V − c(pn) to V − c(bj∗) by playing
a second higher power level bj∗ ∈ T2 = arg max

j/∈T1
aj or one the others mobiles can save

energy.
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• suppose now that ♯T1 ≥ 2. Then if (a1, a2, . . . , am) 6= (p0, . . . , p0) there is collision for all
mobiles which transmit, otherwise (a1, a2, . . . , am) = (p0, . . . , p0) and any mobile which
deviates and uses a power greater than p0 will have a successful transmission.

In both cases, there is at least one mobile can deviate and improve its payoff. Thus, (a1, . . . , am)

is not an equilibrium. Since (a1, . . . , am) is an arbitrary pure strategy profile in P with ♯P ≥ 3.
We conclude that the game between m mobiles has no pure equilibrium if the number of pure
strategies is at least three.

Theorem 3.7.4. Then the evolutionary access game with m mobiles and at least three strategies has a
unique Nash equilibrium (in mixed strategies) given by

xp0 =

(
c(p1)

V

) 1
m−1

,

1 ≤ j < n, xp j
=

(
c(pj+1)

V

) 1
m−1

−
(

c(pj)

V

) 1
m−1

,

xpn = 1 −
n−1

∑
j=1

xp j
− xp0 = 1 −

(
c(pn)

V

) 1
m−1

Proof. The result follows by using the inverse of the function xm in (0, 1) and solving the system
(Cramer invertible)




1 0 0 . . . 0 0
1 1 0 . . . 0 0
1 1 1 . . . 0 0
...

...
. . .

. . . . . . 0
1 1 1 . . . 1 0
1 1 1 . . . 1 1







xp0

xp1

xp2

...
xpn−1

xpn




=




(
c(p1)

V

) 1
m−1

(
c(p2)

V

) 1
m−1

(
c(p3)

V

) 1
m−1

...
(

c(pn)

V

) 1
m−1

1




Proposition 3.7.4.1. The price of anarchy and the price of stability (PoS) of Nash equilibria in the
random access game are both zero for ♯P ≥ 3.

Correlated evolutionarily stable state

In this subsection we focus on the concept of correlated evolutionarily stable state (CESS) in access
games. A correlated equilibrium is introduced by Aumann (32) in 1974 and can be interpreted
as a distribution of actions or messages given to the mobiles by some referee (which can be the
base station or the receiver) before to play each local game. For more details on correlated equi-
librium, we refer the reader to (32; 33; 125; 58). As in (125), we use the concept of correlated
equilibrium from the perspective of bounded rationality. In term of medium access control, the
correlated mechanism phase (the phase of messages reception from the receiver before trans-
mission) can be seen as the analogue of the probing or listening phase in CSMA algorithm (users
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willing to use the channel must first probe -or listen to- the channel, and when it is not busy,
they can decide to transmit).

Let N := {1, 2, . . . , m}. We define a probability space
(

Ω, 2Ω, Pm
)

which generates signals

on which the mobiles can condition their strategic power choices where Ω = Pm. The set Ω is
partitioned as follows I j(b) := {ba1a2 . . . aj−1aj+1 . . . am | al ∈ P , l 6= j}, I j := {I j(b), b ∈ P}.
then, I j has exactly |P| = n + 1 elements which are information sets of mobile j. We define an
assignment function (called also rule) profile α = (α1, . . . , αm) as a mapping from the set of states
or signals Ω to mixed strategies set ∆(P). For all j, the assignment function of the mobile j, αj

must satisfy : if for some w, αj(w) = b, then αj(w′) = b, for all w′ ∈ I j(s).

That is, for each element w ∈ I j, mobile j cannot distinguish states that are in the same
information set (same equivalence class). We denote the set of all pure assignment functions
by AF : {g | g : P −→ P}. Thus, when a mobile chooses an assignment function α and
when he receives the signal ω ∈ Ω from the referee, he will choose the mixed action α(ω).
We use α(aj|ω) to denote the probability assigned on aj under this mixed action α(ω). Then
α(w) = [α(p0|ω), . . . , α(pn|w)] ∈ ∆(P). Given a referee (Ω, P), we define the identity assign-
ment function as αid,m(aj|ω) = 1 if projj(ω) = aj where projj(ω) denotes the j−th element of
the signal ω and αid,m(aj|ω) = 0 for all ω such that projj(ω) 6= aj. If each mobile use the identity
assignment then, the resulting probability distribution of actions profile actually played will be
P, the same as the probability distribution of actions recommended by the referee. But when
mobiles use other assignments, a different distribution may result. Given an assignment profile
α and a probability distribution P over Pm, the expected payoff is given by

f (α) = ∑
ω∈Ω

P(ω) ∑
a∈Pm

um(a) ∏
j∈N

αj(aj|w)

= ∑
a∈Pm

um(a) ∑
ω∈Ω

P(ω) ∏
j∈N

αj(aj|w)

= ∑
a∈Pm

um(a)Qα(a)

where Qα(a) = ∑
ω∈Ω

P(ω) ∏
j∈N

αj(aj|w). We say that two assignment functions profile α and β

are equivalent if they induce the same value Qα = Qβ

Proposition 3.7.4.2. Suppose that for all a ∈ Pm P(a) = P(σ(a)), for all permutation σ (the distri-

bution P is said symmetric). If an assignment profile β is equivalent to αid,m then Qβ(a) = P(a), for all
a ∈ Pm.

Proof. One has, Qαid,m(a) = P(a), ∀a ∈ Pm. The result follows immediately.

Now, suppose a small group of mutants appears. These mutants use a mutational assign-
ment function α′m. which is not equivalent to the identical assignment function αid,m., but they
cannot change the referee recommendation. Let ǫ be the portion of the population which are
mutants (who use α′,) and 1 − ǫ portion of the population are non-mutants who use αid,n. At
each time, m mobiles are randomly chosen to play the strategic access game. In playing the
access game, the mobiles have the same referee (Ω, P)). A probability distribution P over Pm

is an CESS if non-mutants with identity assignment function perform better than mutants with
assignment functions that are not equivalent to the identical assignment function.
Definition 3.7.4.3. A CESS P is a symmetric distribution probability over Pm such that for every

assignment function α′m nonequivalent to the identical assignment function αid,m, there exists some
ǫα′m > 0 such that
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Fm(αid,m, ǫα′m + (1 − ǫ)αid,m) > Fm(α′m, ǫα′m + (1 − ǫ)αid,m) (3.13)

for all ǫ ∈ (0, ǫα′m) where Fm(β, α) = ∑
r∈AF

βr f (r, α, . . . , α)

When the inequality (3.13) is non-strict and ǫ = 0, the probability distribution P is a corre-
lated equilibrium (CE). Hence, a CESS is a CE.
Proposition 3.7.4.4. If x is an ESS then the product measure x⋆(m) given by x⋆(m)(a) = ∏

j∈N
x j(aj) is

a CESS.

Proof. It is easy to see that x⋆(m) is a probability measure on Pm. Since x is an ESS, (x, . . . , x) ∈
∆(P)m is a Nash equilibrium of the m−player game without correlated device (Ω = ∅ or
mobiles ignore the signals) i.e

∑
a∈Pm

um(a) ∏
j∈N

x(aj) ≥ ∑
a∈Pm

um(bk, a−k) ∏
j∈N\{k}

x(aj) ≥ 0, ∀bk ∈ P .

This means that the product probability measure x⋆(m) is a CE. Moreover,

um(xǫ, . . . , xǫ, x, xǫ, . . . , xǫ) > um(xǫ, . . . , xǫ, y, xǫ, . . . , xǫ), ∀y

implies that

∑
ω∈Ω

P(ω) ∑
a∈Pm

um(a)x(ai |w) ∏
j∈N \{i}

xǫ(aj|w) > ∑
ω∈Ω

P(ω) ∑
a∈Pm

um(a)y(ai |w) ∏
j∈N \{i}

xǫ(aj |w)

where P(a) = ∏
j∈N

x(aj), xǫ := (1 − ǫ)x + ǫy.

More generally all convex combination of Nash equilibria (NE) are correlated equilibria and
the set of CE is convex. This convexity properties of the CE’s set is used in some algorithms
based on linear or convex programming and generically, the complexity is less than in Nash
equilibria in finite action games. We denote by ∆CESS the set of CESS. Then,
Lemma 3.7.4.5. The following inclusions holds:

∆ESS ⊂ ∆NE ⊂ ∆CE, ∆ESS ⊂ ∆CESS ⊂ ∆CE, (3.14)

One of the principal interest to study CESS is that, in general CESS remains stable for small
delays in various game dynamics and the expected payoff obtained at ESS can be improved by
CESS distribution. Non-ESS can be CESS as shown below.

We now construct of a class CESS for arbitrary number of users with two actions.

Number of mobiles which transmit with power pi We define numbpi
: Pm −→ N as the

number of transmitters of the power pi. For example, numbpn(pn, . . . , pn) = m and numbpn(pn, a2, . . . , am) =

1 if aj 6= pn, ∀j ≥ 2. The set {b ∈ Pm | numbp1(b) = 1, numbp0(b) = m − 1} is exactly the situa-
tions where only one of the mobiles transmits with the power pn and the others mobiles use the
power level p0 (do not transmit). numbT(b) = 1 if and only if there exists a unique j such that
aj = pn i.e all permutations of the actions profile (pn, a2, . . . , am) and permutations satisfying
pj < pn∀j. There are mnm−1 possibilities.

Denote by Θm := {a ∈ Pm | numbp1(a) = 1, numbp0(a) = m − 1}.
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Proposition 3.7.4.6. For two strategies, the probability distribution Pm over Pm defined as

Pm(a) =

{ 1
m

if a ∈ Θm

0 otherwise

is a CESS with the payoff
V − c(p1)

m
> 0. Moreover at each slot, we have a successful transmission

with probability one (if each mobile have some packet to transmit at each slot) and hence, the CESS leads
to a social optimum. The price of anarchy of the class of assignment functions with the distribution Pm

is one (i.e the proposed method is 100% efficient). This class of CESS is also energy efficient (the energy
consumption is minimized).

Proof. Θm has exactly m actions. Thus, Pm is a probability measure. We show that every strat-
egy α ∈ P used in Pm, ∑

a−j∈Pm−1

Pm(α, a−j) > 0 and any alternative strategy bj ∈ P\{α}, it

holds that ∑
a−j∈Pm−1

Pm(α, a−j)
[
u(α, a−j)− u(bj, a−j)

]
> 0 i.e Since n = 1, we have verify for the

inequality for two strategies: for bj ∈ P\{p1} one has, [um(p1, a−j)− um(bj, a−j)]Pm(p1, a−j) =
V − c(p1) + c(bj)

m
> 0. By summing over a−j ∈ Pm−1, ∑

a−j∈Pm−1

[um(p1, a−j)−um(bj, a−j)]Pm(p1, a−j) >

0 for all permutation on the position of j and bj 6= p0. Similarly, for bj ∈ P\{p0}, a−j ∈ Θm−1,

one has, [um(p0, a−j) − um(bj, a−j)]Pm(p1, a−j) =
c(p1)

m
> 0 Hence Pm is a strict CE. Thus, Pm

is a CESS and the system has a successful transmission at each slot with probability one. The
total payoff obtained at the CESS is exactly V − c(p1) which is strictly greater than the payoff
obtained at the ESS (zero). The social optimum is V − c(p1) which guarantees a successful trans-
mission with the minimum power consumption. thus, the CESS is efficient in term of energy
consumption (by considering par example the ratio between the probability of success and cost
of energy consumption as the energy-efficient metric).

Benefit of Correlation

One of the advantages of a correlated evolutionary stable state is that it has a potential to reduce
the distance between the optimal solution and the ESS solution obtained as an outcome of users
which decide independently.
Proposition 3.7.4.7. The following inequalities holds:

PoSCESS ≥ PoSESS ≥ PoAESS ≥ PoANE ≥ PoACE (3.15)

PoSCE ≥ PoSNE ≥ PoSESS ≥ PoAESS ≥ PoANE ≥ PoACE (3.16)

Proof. Apply the Lemma 3.7.4.5.

We define the benefit of correlation (BoC) as PoSCESS − PoANE.
Corollary 3.7.4.8. The benefit of correlation in the random access game is 100% for Ω = Θm.

BoC = 1
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Probability of success: Comparison at NE, ESS and CESS

In the numerical examples below, we show how the pricing function can optimize the network
throughput or probability of success. we first investigate the impact of the different parameters
and pricing on the NE, ESS and CESS and the convergence of the replicator dynamic with time
delays. We also discuss the impact of the pricing function on the system capacity. We took the
parameters: three strategies P = {p0, p1, p2}, n = 2, V = 1, µ = 0.8 (80% of coverage). The

expected probability of success of a mobile is given by
n

∑
j=1

xp j
GK(xp0 + . . . + xp j−1). We consider

three examples of distribution: geometric distribution Geo(p = 0.3) and Dirac distribution
δm, m = 30.

Figure 3.29: Probability of success - Dirac distribution m = 30

Figure 3.30: Geometric probability of success with parameter p = 0.3

These numerical examples (Fig.3.29,3.30, 3.31) confirm the optimality of CESS in random
access game with two strategies: probability to have a successful transmission at the CESS
is maximum and equal to the probability that a resource exists times the probability that a
randomly selected mobile has a packet to transmit which we represent by µ = 0.8.

Limitation of CESS’s approach in access game

We have seen that for ♯P ≤ 2 or for c(.) = 0, CESS can improve the performance of system and
some class of CESS are social welfare. But for ♯P ≥ 3, the correlated equilibria is reduced the
Nash equilibria. Hence, the correlation is not needed. If we reduce the set of signal (message)
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Figure 3.31: Probability of success at CESS

to Ω = Θm we obtain that If ♯P = 2 then PoSCESS = 1 = PoSNE = PoACESS and 0 = PoSESS =
PoAESS = PoANE. If ♯P ≥ 3 then PoSCESS = PoACESS = PoSESS = PoAESS = PoSNE =
PoANE = 0.

Game dynamics for CESS

The class of game dynamics based on rule or assignment functions r ∈ AF can be extended to
correlated strategies. These dynamics are systems of non-linear delay differential with ♯AF =

mm equations. The revision protocol β gives a matrix with size m2m. y be a distribution of
probabilities on AF . Then yr is the fraction of the population of mobiles with the assignment
function r. The evolutionary game dynamics is then given by

d

dt
yr(t) = ∑

r̄∈AF
yr̄(t)βr̄r(Ḡ, y)− yr ∑

r̄∈AF
βrr̄(Ḡ, y) (3.17)

where Ḡ is a G-function defined on a more general space that contains the set of assignment
function satisfying

Ḡv(y)v=r = Fr(y) = ∑
r̄−j∈AFm−1

fm(r, r̄−j) ∏
i 6=j

yr̄i .

3.7.5 General distribution

Theorem 3.7.6. The evolutionary access game with random number of interacting mobiles around each
receiver and at least three strategies has a unique fully mixed Nash equilibrium given by

xp0 = G−1
K

(
c(p1)

V

)
,

1 ≤ j < n, xp j
= G−1

K

(
c(pj+1)

V

)
− G−1

K

(
c(pj)

V

)
,

xpn = 1 −
n−1

∑
j=1

xp j
− xp0 = 1 − G−1

K

(
c(pn)

V

)

under the condition that P(K = 0) <
c(p1)

V
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Proof. If P(K = 0) <

(
c(p1)

V

)
all the real numbers

c(p1)

V
,

c(p2)

V
, . . . ,

c(pn)

V
are in set GK(I)

where I is the interval (0, 1) and GK is a bijection from I to (P(K = 0), 1). The result follows
by using the inverse of the G-function of the random variable in (0, 1) and solving the system
(Cramer invertible)




1 0 0 . . . 0 0
1 1 0 . . . 0 0
1 1 1 . . . 0 0
...

...
. . .

. . . . . . 0
1 1 1 . . . 1 0
1 1 1 . . . 1 1







xp0

xp1

xp2
...

xpn−1

xpn




=




G−1
K

(
c(p1)

V

)

G−1
K

(
c(p2)

V

)

G−1
K

(
c(p3)

V

)

...

G−1
K

(
c(pn)

V

)

1




Proposition 3.7.6.1. For any distribution of the random variable K, and ♯P ≥ 3, the following results
holds : PoSNE = PoSESS = 0 = PoAESS = PoANE

Non-convergence and instability to the ESS

In figure 3.32, we plot the trajectories of replicator dynamics without time delays and three
strategies. We observe the convergence to the interior rest point starting from any in the rel-
ative interior of the simplex. Moreover, the interior rest point is asymptotically stable. The
parameters are V = 1, c(p2) = 1/2, c(p1) = 1/4, c(p0) = 0.

Figure 3.32: Three powers: replicator dynamics

In figures 3.33, 3.34 and 3.35, we describe numerical application of our evolutionary game
model with Poisson distribution of mobiles under the delayed replicator dynamics in which
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Chapter 3. Evolutionary games with random number of interacting players

each pure strategy is associated with its own delay (τp0 = 0, τp1 = τ). We took a poisson
distribution with parameter λ = 5. in Poisson distribution. In the figure 3.35 we illustrate
a situation where the ESS is not stable (for large delays) and in the figure 3.33 and 3.35 the
dynamics converge to the ESS which is stable (for small delays).
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Figure 3.33: Convergence and stability of ESS for small delays
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Figure 3.34: Oscillation with decreasing amplitude.

These figures show that the ESS can be unstable for large time delays. In the particu-
lar case of pairwise interactions K = 1 where the payoff functions Fb are linear, there is a
method to obtain the equilibrium from oscillating trajectories of the delayed replicator dy-
namics if its remains at the relative interior of the simplex starting from any interior function
φ(t) ∈ int∆n, t ∈ (−τ, 0), then the time average trajectories of the delayed replicator dynamics
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Figure 3.35: Instability of ESS: non-convergence.

converge to the ESS i.e

AT =
1

T − s

∫ T

s
xp j

(t) dt −→ x∗p j
.

Since the access game has a unique interior equilibrium, the delayed replicator dynamics has a
unique interior rest point. Since the set ∆n is compact, there exists φ such that the subsequence
Aφ(T) converges (to some point xj). Similarly, the vector Aξ(T) converges to x. We show that x
is a rest point of the delayed replicator dynamics.

log(
xpj

(ξ(T))

xpj
(s)

)

ξ(T) − s
=

1
ξ(T)− s

G

(
w,
∫ ξ(T)

s
x(t − τw) dt

)

w=p j

(3.18)

− 1
ξ(T) − s ∑

b∈P

∫ ξ(T)

s
xb(t)G(v, (x(t− τb))v=b dt

This implies that when T goes the infinity, one has Fp j
(x) = constant. By uniqueness of the

interior equilibrium, we conclude that x = x∗. Note that for the Brown-von Neumann-Nash
dynamics the limit of the time average trajectories can be different than x∗ (see (99; 44) for details
on the so-called Shapley triangle, Time Average of the Shapley Polygon TASP) and Birkoff center.

3.7.7 Extension

We describe two possible extensions of the access game studied in previous subsections. The
first is the asymmetric case: multi-class of users and the cost function are not necessarily the
same. We give a multi-class evolutionary game dynamics for this model. The second extension
is a signal-to-noise-plus-interference ratio (SINR) based admission control in which a mobile
has a successful transmission if its SINR of the mobile is greater than some fixed threshold β.
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Dynamics for asymmetric random access games

We use the model of multi-class evolutionary game to study the evolution of population profile
(frequencies) and the asymptotic stability of (strict) equilibria in long-term. For example, the
delayed replicator dynamics becomes

d

dt
xe

pj
(t) = xe

pj
(t)

[
Ge(w, x(t − τe

w))|w=pj
−

n

∑
k=0

xpk
(t)Ge(w′, x(t − τe

w′))|w′=pk

]
(3.19)

j = 0, . . . , ne, e ∈ E
where E denotes a index set for class or subpopulation, x(t) = (x1(t), . . . , x♯E ), xe(t) = (xe

pk
)k=0,...,ne

the state of class e with ne + 1 actions. The number τe
pk

denotes time delays of the action pk in
class e and G(v, x(t− τe

v))v=pk
= Fe

pk
(x(t− τe

pk
)) the associated expected payoff received at time

t.

SINR-threshold based admission control

We now focus in the case where the value V of successful transmission may depend on the
power consumption such as in the effective throughput or capacity depending on the signal
to noise plus interference ratio (SINR). The system can accept several mobiles depending on
their SINR. The packets of mobiles with a very low SINR (less than β) are lost. In that case
the appropriate game formulation is an evolving game with variable number of players and
coupled constraints. When facing to m others mobiles, the mobile is subjected to the Quality of
Service (QoS) constraints

SINRj(aj, a−j) =
ajhj

σ2 + γ ∑k 6=j akhk
≥ β

where β is some threshold, σ2 noise term, h is the gain, γ is the load. The channel decodes
correctly if the SINRj(a) ≥ β. This implies that, given the power level of the mobiles a−j, the
mobile j has a successful transmission if its power level is in

P j(a−j) :=

{
b ∈ P j | b ≥ β

hj
(σ2 + γ ∑

k 6=j

akhk)

}
.

By doing this SINR-threshold admission control, more than one mobile can have successful
transmission and the number of collisions is reduced compared the models described in previ-
ous Sections. The payoff is then

u
j
m+1(aj, a−j) = −c(aj) + V

{
1 if aj ∈ P j(a−j)
0 otherwise

Let k be sup{l,
p1h

σ2 + l p1γh̄
≥ β} where h = min hj, h̄ = max hj. Then k mobiles can have

successful transmission if they use the power level p1 and the others mobiles use p0. The class
of CESS constructed in section 3.7.1 can be formulated as follows:

Θ̄m = {b ∈ Pm | numbp1(b) = k, numbp0(b) = m − k}

Under the correlated strategy P̄m given by the distribution P̄m(a) =
1

♯Θ̄m
if b ∈ Θ̄m and 0

otherwise, each user has
V − c(p1)

♯Θ̄m
. The expected payoff is then k(V − c(p1)) and total energy

consumption is kp1 which is the minimum possible for k successful transmission.
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3.7.8 Notes

Biological models and tools have inspired a growing number of studies and of designs of decen-
tralized wireless networks. In various ways, this work falls in this category of biology-inspired
algorithms and decision making theory. The evolutionary game theoretic framework proposed
here incorporates several actions for each mobile for interference, and admission control. We
have analyzed correlated evolutionary stable states which preserve robustness, stability and
high performance compared to ESS and Nash equilibrium. An interesting extension of this
work is the evolutionary communication equilibria (85) that extends the correlated evolutionary
stable states by introducing more general signal (message) space.

Notes

In next chapter we develop a new class of evolutionary game dynamics which covers migra-
tion and mobility of players in a one-hop neighborhood. This location-dependent evolutionary
game dynamics with multicomponent strategies is well adapted to hybrid systems. Example of
applications to power control in heterogeneous networks is given. The chapter is based to our
publications in (209; 210).
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Chapter 4

Evolutionary game dynamics with
migration

In this chapter, we propose a class of bio-inspired evolutionary game dynamics with migra-
tion for hybrid population games with many local interactions at the same time. Each local
interaction concerns a random number of interacting players. The strategies of a player have
two components. Specifically, each player chooses both (i) the region or subpopulation and
(ii) a strategy among a finite set of secondary pure strategies in each region. We investigate
what impact the restriction the actions, when updating a strategy, a player can change only
the secondary strategies associate to the region at a time, has on the population dynamics. We
apply this model to the integrated power control and base station assignment problem in a
multi-cell in code division multiple access (CDMA) wireless data networks, in OFDMA-based
WiMAX environment, and association between technologies in heterogeneous networks with
large number of mobiles. We show that global neutrally evolutionary stable states are station-
ary points of hybrid mean dynamics called dynamics with multicomponent strategies under the
positive correlation conditions. We give some convergence results of our hybrid model in stable
population games and potential population games under some particular class of dynamics.

4.1 Introduction

Power control in wireless networks has become an important research area. Since the tech-
nology in the current state cannot provide batteries which have small weight and large en-
ergy capacity, the design of tools and algorithms for efficient power control is crucial. For a
comprehensive survey of recent results on power control in wireless networks an interested
reader can consult e.g., (144) and the reference therein. Power control protocols based on game
theory have been designed for already ten years starting with the pioneering work (76; 115).
Non-cooperative games provide a convenient framework for decentralization and distributed
decision making in those applications, where as cooperative approaches of game theory have
allowed to handle issues concerning fairness in power allocation (17).

Most applications of game theory to power control consider mobile terminals as players of
the same type and study strategic one-shot games with a fixed number of players. Here, we con-
sider a population game with many simultaneous local interactions, where the game is played
infinitely under some self-organizing process called "hybrid dynamic" and where each inter-
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action concerns a random number of players (213). We develop several class of bio-inspired
game dynamics with migration (148) in a hybrid evolutionary game model in code division mul-
tiple access (CDMA) wireless data networks, in OFDMA-based WiMAX environment and in
association problem between several types of technologies such as UMTS 3G, WiMAX, WiFi
etc.

A hybrid non-cooperative game model for wireless communication has been studied in (4)
as an extension of the classical non-cooperative power control game formulation in CDMA
system in which mobiles were considered to be connected to the closest base station (BS).

We consider in this chapter an evolutionary game model and study a hybrid dynamic for
updating actions along with its convergence to an equilibrium point. We apply this model to
the integrated power control and base station assignment problem as in such that each mobile’s
action space consists of the choice of a power level and a base station in some region which
corresponds to a cell. The first advantage to use evolutionary framework to model this problem
is that, under suitable assumptions, evolutionary game dynamics give naturally an algorithm
for converging to an equilibrium point. Evolutionary Game theory describes the evolution with
some dynamic process and involves strategic interaction over time in large populations of users.

Contribution

In the first part of this chapter we develop several classes of bio-inspired game dynamics with
migration for hybrid systems. We apply our hybrid evolutionary game model in code division
multiple access (CDMA) wireless data networks, in OFDMA-based WiMAX environment.

The second part of the chapter focuses on multi-class Stackelberg approach:

• On one hand based on the leader-followers games with constraints in large population of
players, general model of discrete and continuous time game dynamics are proposed.

• We apply evolutionary Stakelberg games1 in several contexts including CDMA cognitive
radio networks, OFDMA-based WIMAX environment in wireless networks and associa-
tion between several technologies in hybrid networks.

• we develop a coordination mechanisms between players. To be best to our knowledge,
this work is one of the first to apply multilevel evolutionary games in networking context.

Structure

The chapter is structured as follows. We first provide in the next section the model with different
second strategies set in each region and we develop the hybrid mean dynamics. After that we
study the power control game in multi-cell CDMA and we give some numerical investigations.
We give some convergence results in potential population games and stable population games
(211) with constraints. We then describe a Stackelberg approach in population games with
choice constraints.

1The classical Stackelberg games model rational players with asymmetric roles. In this paper, we don’t necessary
consider rational players. Players update their strategies by trial and error-detection and revising their protocols of
strategies process (learning).
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4.2 The Hybrid Model

We consider a population game model with multicomponent strategies. The population game
consists of

• A large number of players.

• Each member of the population has a multicomponent strategy: first strategy (region) and
secondary strategy.

• The players with the same first strategy have to choose their secondary strategies in a fi-
nite set and compete in a local non-cooperative game with either a finite random number
of interacting players or with all the players in the region. The set of strategies avail-
able to players in all the population is S and has typical elements (r, a), (r̄, b). Let Ar =

{p1
r , . . . , pnr

r } the pure secondary strategies set of the region r and, Sr = {(r, a), a ∈ Ar}
the pure strategies of a r−player. Then S = ∪rSr . Denote by lr the mass of the region r, l
the total mass of the population,

X r = { xr ∈ R|Ar |, xr
a ≥ 0, ∑

a

xr
a = lr}

the set of mixed secondary strategies in the region r and,

X = { x ∈ R∑r |Ar|, xr
a ≥ 0, ∑

r
∑
a

xr
a = ∑

r

lr = l}

the set of all mixed strategies. Without loss of generality, we normalize the total mass l of
the population to one. We call state of the population an element of X and, state of the region
r, an element of X r.

• Each player from each local interaction receives some payoff. By Fr
a (x) we denote the

expected payoff (reward minus loss) of the second strategy a ∈ Ar in the region r when
its state is xr and the state of the other regions is x−r. If every user takes a part in some
region in a non-cooperative game between Kr + 1 users where Kr is a random variable
over {0, 1, 2, . . .}, then the payoff Fr

a (x) can be expressed as

Fr
a (x) = ∑

k≥0
P(Kr = k)Fr,k

a (x)

where Fr,k
a (x) is the expected payoff of the strategy a obtained in the local interaction

between k users in the region r when the state is x. We denote by F : X → R∑r |Ar |, the
payoff function of all the population.

In addition to the study of the equilibrium of the game we shall consider also some evolution-
ary dynamics and study its convergence properties. We shall assume that players revise their
strategies and use the strategies with higher payoffs. The system evolves under some evolution-
ary game dynamic process that describes the change of strategies (incoming flow and outgoing
flow) in the population.

4.2.1 Global Nash Equilibrium

We say that x = (xr
a)r,a is a Global Nash equilibrium (GNE) if for all deviation multi-strategy

mut = (mutr
a)r,a,

∑
r

∑
a

(xr
a − mutr

a)Fr
a (x) ≥ 0. (4.1)
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Wardrop equilibrium When the number of opponents is very large (possibly infinity), the cor-
responding Nash equilibrium is sometimes referred to Wardrop equilibrium. A state x is a
Wardrop equilibrium if for any region r, all strategies being used by the members of the region
r yield the same payoff, the payoff that would be obtained by members which chose the region
r is lower for all strategies not used by players with the first action r.

{ ∀r, ∀a, xr
a > 0 =⇒ Fr

a (x) = F̄r = constant,
xr

a = 0 ⇒ Fr
a (x) ≤ Fr′

a′ , ∀ a′, r′ | xr′
a′ > 0

For the existence of such equilibria, we can transform to existence of solution the variational
inequality (4.1) which is guaranteed if the function Fr

a(.) is continuous.

The relation between the two definitions is given by the following equivalences (see also the
interaction between several populations model in (168)):

x is GNE ⇐⇒ x ∈ arg max
mut

{

∑
r

∑
a

mutr
aFr

a(x)

}
(4.2)

⇐⇒ [xr
a > 0 =⇒ Fr

a(x) ≥ Fr′
a′ (x), ∀r′, a′] (4.3)

4.2.2 Global evolutionarily stable state (ESS)

We use here the notion of ESS defined by Taylor in (197) in a multi-subpopulation game models
but in our case the fitness of the region r can be independent of the state of the other regions, and
users migrate to the regions with higher fitnesses. We say that x = (xr

a)r,a is a global evolution-
arily stable state if for each deviation multi-strategy called "mutations" mut = (mutr

a)r,a 6= x,
there exists some ǫmut > 0 such that ∀ǫ ∈ (0, ǫmut),

∑
r,a

(xr
a − mutr

a)Fr
a(ǫ mut + (1 − ǫ)x) > 0. (4.4)

If the inequality (4.4) is non-strict the corresponding equilibrium is called Neutrally Stable Strat-
egy.

4.2.3 Choice Constrained Equilibrium

A strategy x is a choice constrained equilibrium (CCE) if for all (r, a) such that xr
a > 0 one has

Fr
a (x) = max

r̄,
b∈Ar̄

Fr̄
b(x). (4.5)

Note that a global ESS is a neutrally ESS which is a GNE. But a GNE can not be a global ESS.
A CCE is a collection of constrained local Nash equilibria.

4.2.4 General Game Dynamics with Migration

We study a game-theoretic dynamics of a large population of users with migration. Users move
to a region in which the average payoff of their power control strategy is higher. If user from
region r̄ chooses a base station from region r we will say that the user migrate to region r. Migra-
tion between regions could help the population to evolve towards a stationary point which is
related to a Wardrop equilibrium (233; 179) or an evolutionary stable state.
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Chapter 4. Evolutionary game dynamics with migration

Strategies with migration as replicators

We introduce here the replicator dynamics with migration which describes the evolution in the
population of the various strategies. In the replicator dynamics, the share of a strategy in the
population grows at a rate equal to the difference between the payoff of that strategy and the
average payoff of the population under the migration constraints. More precisely, let (xt) be the
state of the population at time t. Thus we have ∑

r
∑
a

xr
a,t = 1 and xr

a,t ≥ 0 where xr
a,t represents

the fraction of players playing a strategy (r, a) in period t.

We describe by approximating from stochastic influence (198) on the change in frequency
of actions, the replication dynamics. We will describe more general class of evolutionary game
dynamics in next subsection.

Suppose that in every period ∆t, each player learns with probability α∆t > 0 the expected
payoff to the other opponent players and changes to the other’s strategy if he perceives that the
other’s payoff is higher. However the information about the difference in the expected payoffs
of the strategies is imperfect, so the larger the difference in the payoffs, the more likely the
player is to perceive it, and change. Specially, we assume that the probability that a player
using (r, a) will shift to (r̄, b) in some neighboring set N(r,a) is given by

xr
a,t+∆t =

{
µr[Fr

a,t(xt) − Fr̄
b,t(xt)] if Fr

a,t(xt) > Fr̄
b,t(xt)

0 if Fr
a,t(xt) ≤ Fr̄

b,t(xt)

where µ is sufficiently small so that xr
a,t ≤ 1 holds ∀ (r̄, b), (r, a). The expected fraction Exr

a,t+∆t

of the population using (r, a) in period t + ∆t is given by

xr
a,t − α∆txr

a,t ∑
(r̄,b)∈I

xr̄
b,tµ

r[Fr̄
b,t(xt) − Fr

a,t(xt)] + ∑
(r̄,b)∈N(r,a)\I

α∆txr
a,tx

r̄
b,tµ

r[Fr
a,t(xt)− Fr̄

b,t(xt)]

= xr
a,t + αµr∆txr

a,t



Fr
a,t(xt)− ∑

(r̄,b)∈N(r,a)

xr̄
b,tF

r̄
b,t(xt)



 (4.6)

where
I =

{
(r̄, b) ∈ N(r,a), Fr̄

b,t(xt) > Fr
a,t(xt)

}

For large population, we can replace Exr
a,t+∆t by xr

a,t+∆t. Taking the limit of

xr
a,t+∆t − xr

a,t

∆t

when ∆t goes to zero, we then obtain

Continuous time:
d

dt
xr

a,t = αµrGt(xt)

where

Gt = xr
a,t


Fr

a,t(xt) − ∑
(r̄,b)∈N(r,a)

xr̄
b,tF

r̄
b,t(xt)


 .

The constant µrα changes the rate of adjustment to stationary point. In the classical replicator
these parameters are fixed to one. The two parameters α and µ give us a framework for con-
trolling game dynamics (changing or upgrading policy) through the choice of a gain parameter
governing the replicator dynamics. The discrete time version of the dynamics is then given by

Discrete time: xr
a,t+∆t = xr

a,t + αµrGt(xt)∆t
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4.2. The Hybrid Model

Decomposable dynamics for hybrid power control games

We now describe more general decomposable dynamics with migration respectively to apply
in hybrid power control games.

We assume that during any time-step ∆t, each individual among a fraction κr∆t of the region
r takes part in some local interaction and receives payoffs. We allow a fraction of users to
migrate to a region in which their strategies have higher payoffs. The flow in the region r is
specified in terms of some functions ρr

ā,a which determines the rates at which a player who is
considering a change in strategies opts to switch to his various alternatives in the region r, and

some function η
(r,a)
(r̄,b) which determine the rates at which a player who is considering a change

in strategies opts to switch to his various alternatives from other regions into region r. The
functions ρ and η are called revision protocols. The two revision protocols depend on the state
of the population and the payoff functions. The inflow inside the region r is kr ∑

ā∈Ar

xr
āρr

ā,a and

outflow inside the region r, krxr
a ∑

ā∈Ar

ρr
a,ā. We denote by Mr

a the function representing increase

in the number of users inside of region r due to higher fitness. Mr
a is the difference between the

intra-inflow and the intra-outflow.

Mr
a(xr) := kr

[

∑
ā∈Ar

xr
āρr

ā,a − xr
a ∑

ā∈Ar

ρr
a,ā

]
(4.7)

The inter-inflow of the region r is krγr ∑
(r̄,b)

xr̄
bη

(r̄,b)
(r,a) and inter-outflow of the region r is γrkrxr

a ∑
(r̄,b)

η
(r,a)
(r̄,b)

where γr is a parameter which represents the migration rate of region r, and kr is a growth pa-
rameter. By φr

a we denote a function which describes changes of the numbers of users playing
the pure secondary strategy a in the region r due to migration from other region to the region r.

φr
a(xr, x−r) = krγr



∑
(r̄,b)

xr̄
bη

(r̄,b)
(r,a) − xr

a ∑
(r̄,b)

η
(r,a)
(r̄,b)



 (4.8)

By combining the two equations (4.7), (4.8) we obtain the continuous time mean dynamics
with migration or mean dynamics with multicomponent strategies.

d

dt
xr

a(t) := Vr,a
F (x) = Mr

a(xr(t)) + φr
a(x(t)) (4.9)

We denote by β the following revision protocol

β
(r̄,b)
(r,a) =

{
krρr

ba if r̄ = r

krγrη
(r̄,b)
(r,a) if r̄ 6= r

Some example of dynamics with multicomponent strategies

Here we give some class of dynamics with migration. We denote by [d]+ the maximum between
d and 0.

• Replicator dynamics

ρr
ā,a = xr

a[F
r
a − Fr

ā ]+, η
(r̄,b)
(r,a) = xr

a[F
r
a − Fr̄

b ]+
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• Smith dynamics

ρr
ā,a = [Fr

a − Fr
ā ]+, η

(r̄,b)
(r,a) = [Fr

a − Fr̄
b ]+

• BNN dynamics

ρr
ā,a = [Fr

a − ∑
ā

Fr
ā xr

ā]+, η
(r̄,b)
(r,a) = [Fr

a − ∑
(r̄,b)

Fr̄
b xr̄

b]+

• Combined Smith and BNN dynamics (in this order)

ρr
ā,a = [Fr

a − Fr
ā ]+, η

(r̄,b)
(r,a) = [Fr

a − ∑
(r̄,b)

Fr̄
b xr̄

b]+

• Combined BNN and Smith dynamics

ρr
ā,a = [Fr

a − ∑
ā

Fr
ā xr

ā]+, η
(r̄,b)
(r,a) = [Fr

a − Fr̄
b ]+

Note that the order of combination of the revision protocols is non-commutative. We next define
number of properties that classify evolutionary game dynamics with migration constraints.

Constrained Nash Stationarity (CNS) property All rest points of the mean dynamic (4.9) are
precisely the CCEs of the game being played i.e (M + φ)(x) = 0 if and only if x is CCE.

The replicator dynamics is one of the most studied dynamics in evolutionary game theory
to describe evolution of the frequencies in the population but it is known that the replicator
dynamics may not lead to equilibria (see (231; 168)). To guarantee constrained Nash stationary
(CNS) properties, the mean dynamics must satisfy some conditions.

Positive Correlation (PC) (168)

∑
r,a

Fr
a(x)(Mr

a(xr) + φr
a(xr, x−r)) ≥ 0.

Positive correlation guarantees that every Nash equilibrium of the game is a stationary point of
the dynamics (4.9) as shown in Result 4.3.3.

To see why this condition is so named, observe that by the condition ∑
r,a

Mr
a(xr)+ φr

a(xr, x−r) =

0,

∑
r,a

Fr
a(x)(Mr

a(xr) + φr
a(xr, x−r)) = ∑

r,a


Fr

a(x) − 1
lr ∑

(r̄,b)

xr̄
bFr̄

b(x)


 [Mr

a(xr) + φr
a(xr, x−r) − 0

]

= ∑
r

lrCov(Mr(xr) + φr(x), Fr(x))

where Cov denotes the covariance between strategy growth rates and payoffs in region r.
Hence, condition (PC) holds if there is a positive correlation between growth rates and pay-
offs in each region.

Monotonicity condition: sign preserving (SP) Monotonicity condition on ρ and η defines the
following class of dynamics. The couple of functions (ρ, η) preserves the sign if for all region r

ρr
ā,a(x)

{
> 0 if ā, a ∈ Ar and Fr

a(x) > Fr
ā (x)

= 0 otherwise ,
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η
(r̄,b)
r,a (x)

{
> 0 if a ∈ Ar, b ∈ Ar̄ , Fr

a(x) > Fr̄
b (x)

= 0 otherwise

The sign preserving property say that the inflow rate from the strategy a to ā inside the region
r is positive if and only if the payoff to a exceeds the payoff to ā and the inflow rate from other
regions to the region r is positive for a given strategy a if and only the payoff to r exceeds the
payoff to r̄.

4.3 Equilibrium and rest point

In (168), Sandholm showed that in absence of migration (par example if γr = 0, ∀ r), replicator
dynamics (or general imitation dynamics), Smith dynamics (pairwise comparison dynamics),
projection dynamics, Brown-von Neumann-Nash dynamics (excess payoff dynamics) satisfy
the positive correlation property. Moreover Brown-von Neumann-Nash dynamics and Smith
dynamics satisfy (CNS) property. Here, we extend these results to evolutionary game dynamics
with migrations.
Theorem 4.3.1. Suppose that ρ and η generate one of the following dynamics: replicator, Smith, BNN
dynamics. Then, the resulting dynamics with multicomponent (ρ, η) in (4.9) is (PC).
Theorem 4.3.2. Suppose that the functions ρ and η satisfy (SP). Then, The multicomponent dynamics
(4.9) satisfies (PC). In particular, Smith dynamics is (PC).

Proof. Sign preserving property implies that ρr
ā,a[F

r
a − Fr

ā ] ≥ 0 and η
(r̄,b)
(r,a) [F

r
a − Fr̄

b ] ≥ 0.

∑
(r,a)

ẋr
aFr

a = ∑
r,a,ā

krxr
ā ρr

ā,a[F
r
a − Fr

ā ]︸ ︷︷ ︸
≥0

+ ∑
(r,a),(r̄,b)

krγrxr̄
b η

(r̄,b)
(r,a) [F

r
a − Fr̄

b ]
︸ ︷︷ ︸

≥0

(4.10)

Theorem 4.3.3. If VF is positively correlated then x is CCE implies that x is a stationary point of mean
dynamics (4.9).

Proof. x is a CCE is equivalent to ∀z, such that ∑
(r,a)

zr
a = 0, one has ∑

(r,a)

Fr
a(x)zr

a ≤ 0. Now fix a

region r, and define the vector z as follows

zr̄
b =

{
V r̄,b

F (x) if r̄ = r, b ∈ Ar

0 if b /∈ Ar or r̄ 6= r

Then

∑
r,a

zr
a = ∑

(r,a)
(r̄,b)

xr̄
bβ

(r̄,b)
(r,a) − ∑

(r,a)
(r̄,b)

xr
aβ

(r,a)
(r̄,b) = 0 (4.11)

So,
∑
(r,a)

Vr,a
F (x)Fr

a(x) = ∑
(r,a)

zr
aFr

a(x) ≤ 0

By (PC), this inequality implies that Vr,a
F (x) = 0.
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Theorem 4.3.4 (Characterization of stationary points). Suppose that the functions ρ and η satisfy
(SP). Let x be a stationary point of the mean dynamics (4.9). Then x is a CCE.

xr
a > 0 ⇒ Fr

a (x) = max
r̄,

b∈Ar̄

Fr̄
b(x) (4.12)

Proof. We show that every stationary point of the mean dynamics is a CCE.

• x is a CCE if and only for all (r, a), xr
a = 0 or there is no outflow from strategy (r, a) :

∑
(r̄,b)

β
(r,a)
(r̄,b) = 0

• Suppose that VF(x) = 0. If (r̄, b) is an optimal strategy then sign preserving assumption

implies that there is no outflow from (r̄, b) i.e xr̄
b ∑

(r,a)

β
(r̄,b)
(r,a) = 0. Since VF(x) = 0, one has

∑
(r,a)

xr
aβ

(r,a)
(r̄,b) = 0. This condition is exactly

∀(r, a), xr
a = 0 or β

(r,a)
(r̄,b) = 0, ∀(r̄, b), b ∈ Ar̄ .

This last alternative says that Fr
a(x) ≥ Fr̄

b(x), ∀(r̄, b), b ∈ Ar̄.

This completes the proof.

4.4 Class of Games with Multicomponents Strategies

4.4.1 Stable Population Games

We say that F is a stable game if for all x, y ∈ X ,

∑
r

∑
a

(xr
a − yr

a)(Fr
a(x)− Fr

a(y)) ≤ 0.

Proposition 4.4.1.1. In stable population games, the set of GNE is convex and coincides with the set of
neutrally ESS.

Proof. Suppose that F satisfies

x, y ∈ X , ∑
r,a

(xr
a − yr

a)(Fr
a(x)− Fr

a (y)) ≤ 0

and let x be a GNE. It is easy to see that every neutrally ESS is a GNE. Now we show that x is a
neutrally ESS. So fix, an arbitrary vector y. Since F is stable and x is GNE, one has the system





∑
r,a

(yr
a − xr

a)(Fr
a(y)− Fr

a (x)) ≤ 0

∑
r,a

(yr
a − xr

a)Fr
a(x) ≤ 0

Adding the two inequalities of the last system, we obtain that

∑
r,a

(yr
a − xr

a)Fr
a(y) ≤ 0.

104



4.4. Class of Games with Multicomponents Strategies

Taking y = (1 − ǫ)x + ǫ mut for arbitrary mut 6= x, we conclude that x is a neutrally ESS. To
prove the convexity, we rewrite the GNE set as an intersection of convex sets {GNE} =

⋂

y

Ay

where Ay = {x ∈ X , ∑
r,a

(yr
a − xr

a)Fr
a(y) ≤ 0}.

Proposition 4.4.1.2. Suppose that the revision protocol has the form

β
(r̄,b)
(r,a)(x) =

{
ξr

a(Fr
a(x)− Fr̄

b(x)) if b ∈ Ar̄ , a ∈ Ar

0 otherwise

for some functions ξr
a : R → R+ then the set of CCE is globally asymptotically stable in stable games.

Proof. Let the function B : X → R+ be defined by

B(x) = ∑
(r,a), a∈Ar

(r̄,b), b∈Ar̄

xr
a

∫ −Fr
a(x)+F r̄

b(x)

0
ξ r̄

b(θ) dθ.

The function B has the following properties: The set {x, B(x) = 0} is exactly the set of CCE.

(b)
∂

∂xr′
a′

B = ∑
(r̄,b)

∫ −Fr′
a′+F r̄

b

0
ξ r̄

b(θ) dθ + ∑
(r,a)

ẋr
a

∂Fr
a

∂xr′
a′

(c)
d

dt
B(x(t)) = ∑

(r′,a′)

∂B

∂xr′
a′

ẋr′
a′ = 〈ẋ, DF(x)ẋ〉+ ∑

(r′,a′)
(r,a)

β
(r,a)
(r′,a′) ∑

(r̄,b)

[∫ −Fr′
a′+F r̄

b

0
ξ r̄

b(θ) dθ −
∫ −Fr

a+F r̄
b

0
ξ r̄

b(θ) dθ

]

Since F is a stable population game, one has 〈ẋ, DF(x)ẋ〉 ≤ 0. In other hand, β
(r,a)
(r′,a′) > 0 ⇔

Fr′
a′ > Fr

a . Then, for any action (r̄, b), one has Fr̄
b − Fr′

a′ ≤ Fr̄
b − Fr

a . Hence, the term

[∫ −Fr′
a′+F r̄

b

0
ξ r̄

b(θ) dθ −
∫ −Fr

a+F r̄
b

0
ξ r̄

b(θ)

is negative. We conclude that
d

dt
B(x) ≤ 0 and

d

dt
B(x) = 0 if and only xr

aβ
(r,a)
(r′,a′) = 0, ∀(r, a), (r′, a′)

i.e VF(x) = 0. Thus, the function satisfies Lyapunov stability criterion for the set of stationary
point of VF.

4.4.2 Potential Population Games

We say that F is a full potential game if it exists a C1 function f : X → R such that

∂

∂xr
a

f = Fr
a (x).

Two strategies: if the game has only two strategies in each r, all strategy distributions lie on
a line. Given any continuous payoff functions

Fr
1 , Fr

2 : X r = {(xr
1, xr

2), xr
i ≥ 0, xr

1 + xr
2 = lr} → R,

a potential function is given by

f (x) =
N

∑
r=1

∫ xr
1

0
(Fr

1(t, lr − t) − Fr
2(t, lr − t)) dt
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Proposition 4.4.2.1. Global convergence holds in potential games under (PC).

Proof. Suppose that f is a potential function of the game and the dynamic ẋ = VF(x) is (PC).
Then f is a Lyapunov function of this dynamic.

d

dt
f (x) = ∑

r
∑

a∈Ar

Vr,a
F (x)Fr

a(x).

Moreover f satisfies
d

dt
f (x) ≥ 0 with equally if and only if x is a CCE. It is known that if a

dynamic admits a such Lyapunov function, all solution trajectories of the dynamic converge to
an equilibrium. Combining with results 4.3.4 and (PC) we obtain the announced result.

4.4.3 Migration with constraints

In this subsection, we assume that when updating a strategy one can change only one com-
ponent of the strategies at the same time. Players with the action (r, a) can use all actions in
N(r,a) = ∪r̄ 6=r,({(r̄, a), a ∈ Ar̄} ∪ ∪ā∈Ar{(r, ā)}. Taking these considerations, a strategy x is a
CCE if for all (r, a) such that xr

a > 0 one has

Fr
a(x) = max

(r̄,b)∈N(r,a)

Fr̄
b (x). (4.13)

and the constrained dynamic becomes

ẋr
a = ∑

(r̄,b)∈N(r,a)

xr̄
bβ

(r̄,b)
(r,a) − xr

a ∑
(r̄,b)∈N(r,a)

β
(r,a)
(r̄,b)

= ∑
r̄

xr̄
bη

(r̄,a)
(r,a) − xr

a ∑
r̄

η
(r,a)
(r̄,a) + ∑

ā∈Ar

xr
āρr

ā,a − xr
a ∑

ā∈Ar

ρr
a,ā

Remarks 4.4.3.1. We denote by

C(r,a) = S\N(r,a) =
[∪r̄

({r̄} × Ar̄
)] \N(r,a)

1. Let y ∈ X be a CCE of the game with migration constraints. If y satisfies

max
(r̄,b)∈N(r,a)

Fr̄
b(y) ≥ max

(r̄,b)∈C(r,a)

Fr̄
b (y)

for all (r, a) such that yr
a > 0 then y is also a CCE in the game without migration constraints. This

kind of phenomena occurs in the well known Braess Paradox problem (53): increasing the number
of regions (increasing the area of coverage, adding new resources such as deployment of new base
stations) does not necessary lead to higher equilibria payoffs. If a CCE x of the unconstrained
migration game satisfies

max
(r̄,b)∈C(r,a)

Fr̄
b(x) ≤ Fr

a(x)

then x is a Braess steady state. Given such a steady state x, if there are mutations, mutations cannot
spread due to the migration constraints. Hence, the mutants’ strategy can be invaded strictly at
the steady state x.

2. Let x be a CCE of the game without migration constraints. If x satisfies Fr
a (x) = max

(r̄,b)∈N(r,a)

Fr̄
b(x)

then x is also a CCE in the game with migration constraints.
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3. Let Opt1 (resp. Opt2) the set of CCEs with the maximum payoff in the unconstrained migration
game (constrained migration game.) Then,

∀ x ∈ Opt1, y ∈ Opt2, xr
a > 0 =⇒ Fr

a (x) ≥ Fr
a (y).

4. Suppose that the unconstrained migration game has a unique CCE. Let x (resp. y) be a CCE for
the game without migration constraints (resp. the constrained migration game.) Then for every
action (r, a) such that xr

a > 0, one has Fr
a(x) ≥ Fr

a(y).

4.4.4 Inverse problem: reachable regions of a power level

In this subsection, we model the power levels as first strategies and regions as secondary strate-
gies. Let P a finite set of power levels, Ap = {r1

p, . . . , rnp

p } the pure secondary strategies set
of the power level p ∈ P and, Sp = {(r, a), r ∈ Ap} the pure strategies of a p−player. Then
S = ∪p∈PSp. Given an energy (power level), the player will migrate from its location to a
reachable region of this power level.

A strategy x is a CCE of this inverse problem if for all (r, a) such that xr
a > 0 one has

Fr
a (x) = max

b∈P ,
r̄∈Ab

Fr̄
b(x), (4.14)

and mean dynamic becomes

ẋr
a = ∑

b∈P
∑

r̄∈Ab

xr̄
bβ

(r̄,b)
(r,a) − xr

a ∑
b∈P

∑
r̄∈Ab

β
(r,a)
(r̄,b)

4.5 Global Optimization

In this section, we focus on global optimization of the payoff of all the population. The total
payoff function is defined as

Ftotal : X −→ R

x 7→ ∑
r

∑
a∈Ar

xr
aFr

a(xr, x−r).

The optimization problem is given by

max
x

∑
r

∑
a∈Ar

xr
aFr

a (x)

subject to
∀ r, ∑

r
∑

a∈Ar

xr
a = lr

∀(r, a) ∈ S , xr
a ≥ 0

The Lagrangian for this maximization problem is

L(x, λ, µ) = ∑
r,a

xr
aFr

a(x) −∑
r

λr

(

∑
a

xr
a − lr

)
+ ∑

r,a
xr

aµr
a

Thus, the Karush-Kuhn-Tucker(KKT) first order necessary conditions for maximization are
∀r, ∀a ∈ Ar ,

∂

∂xr
a

Ftotal(x) = λr − µr
a, µr

a ≥ 0, µr
axr

a = 0 (4.15)
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4.6 Hybrid power control in OFDMA-based IEEE802.16 network

OFDMA (Orthogonal Frequency Division Multiple Access) is recognized as one of the most
promising multiple access technique in wireless communication system. This technique is used
to improve spectral efficiency and becomes an attractive multiple access technique for 4th gen-
eration mobile communication system as WiMAX.

In OFDMA systems, each user occupies a subset of subcarriers, and each carrier is assigned
exclusively to only one user at any time. This technique has the advantage of eliminating intra-
cell interference (interference between subcarriers is negligible). Hence the transmission is af-
fected by intercell interference since users in adjacent sectors may have also been assigned to
the same carrier. If those users in the adjacent sectors transmitted with high power the intercell
interference may severely limit the SINR achieved by the user. Some form of coordination be-
tween the different cells occupying the spectral resource are studied in (134; 123). The optimal
resource allocation requires complete information about the network in order to decide which
users in which cells should transmit simultaneously with a given power. All of these results
however, rely on some form of centralized control to obtain gains at various layers of the com-
munication stack. In a realistic network as WiMAX, centralized multicell coordination is hard
to realize in practice, especially in fast-fading environments.

We consider an OFDMA system where radio resources are allocated to users on their chan-
nel measures and traffic requirements. Each carrier within a frame must be assigned to at most
one user in the corresponding cell. In this way each carrier assignment can be made indepen-
dently in each cell. Hence when a user is assigned to carrier, the mobile should determine the
power transmission to the Base station. This power should take into account the interference
experienced by the transmitted packet.

Power control on the uplink Consider the uplink of a multiple multicell system, employing
the same spectral resource in each cell. Power control is used in an effort to preserve power
and to limit interference and fading effects. For users located in a given cell, co-channel inter-
ference may therefore come from only few cells (neighbors). Since the intra-cell interference is
negligible, we focus on the users which use a specific carrier.

Consider N cells, and a large number of the population of mobiles randomly distributed
over each channel and each cell. Since in OFDMA systems, each carrier is assigned exclusively
to only one mobile at any time, we assume that the interactions between mobiles are mani-
fested through many local interactions between Kr + 1 mobiles where Kr is a random variable
which represents the number of opponent mobiles in the set of neighbors of a cell r. At each
slot, interaction occurs only between the mobiles which have been assigned to the same car-
rier. We assume that in this model that users can choose many base stations available in his
neighborhood and a finite power levels as a secondary pure strategies .

Let grr̄ denote the average channel gain from user in cell r to cell r̄. Hence, if a user in cell r
transmits with power pr, the received signal strength at cell r is prgrr, while the interference it
occurs on cell r̄ is prgrr̄. Hence, the interference experienced by cell r is given by

SINRr
Kr(p) =

grr pr

σ2
r + ∑ r̄∈Nr\{r}

|Nr |=Kr
grr̄ pr̄

,

where σ2
r is the power of the thermal noise experienced at cell r, Nr be the set of neighbors of a

user in cell r. The rate achieved by user in cell r is given by Rr(p) = EKr log(1 + SINRr
Kr(p)),

where p denotes the power level vector of mobiles choice which are assigned to a specific carrier.
We assume that the user’s utility in cell r is given by ur(p) = Rr(p) − cr(p). The above utility

108



4.7. A hybrid evolutionary game in multicell CDMA system

represents the weighted difference between the throughput that can be achieved as expressed
by Shannon’s capacity and the power consumption cost. We show existence and uniqueness of
the equilibrium point under some conditions on the cost functions. The results are given in next
section in hybrid model of multicell CDMA system but the technique used there are valid for
the above game.

4.7 A hybrid evolutionary game in multicell CDMA system

We consider a large population of mobile terminals and many distributed base stations in a
multicell CDMA wireless network model. The system consists of N cells which are called "re-
gions". The number of users which transmit to a base station is a random variable. Each mobile
connects to a base station which it chooses from of the set of base stations {1, 2, . . . , N} with an
uplink power level from the set A. The action space of a mobile is given by {1, 2, . . . , N} × A.
The level of services a mobile receives is described in terms of signal-to-interference ratio (SIR).
The SIR obtained by mobile m at a base station located in region r is given by

SIRr,k
m (am, a−m) =

Lamhr,m

σ2
r + ∑0≤l≤k,l 6=m alhr,l

where a−m denote the vector (a1, . . . , am−1, am+1, . . . , ak) the power levels of the others mobiles,
σ2

r is a constant which represents the variance of a noise power due to the factors other than
the transmissions of other mobiles at the base station r. The term amhr,m represents the power
level received at base station from mobile using the power level am and L = W/B > 1 is the
spreading gain of the CDMA system, W is the chip rate and B is the data rate of the users.

Figure 4.1: The hybrid model

The payoff that mobile using the power level am can send to the base station in region r at a
given slot is given by

Jr,k(am, a−m) = Cr log
(

1 + SIRr,k
m (am, a−m)

)
− cr(am)
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Chapter 4. Evolutionary game dynamics with migration

where Cr is the channel bandwidth of r and cr(.) is the cost function of region r. We assume that
cr is an increasing cost function. The expression of Jr,k + cr is known as Shannon capacity. The
expected fitness of mobile m at the base station r when the state of the population at region r is
xr is given by

Fr
am(xr) = ∑

k

P(Kr = k) ∑
a−m

(

∏
l 6=m

xr
al

)
Fr,k(am, a−m).

The total payoff of the population is

thp(x) :=
N

∑
r=1

∑
am∈S

xr
am Fr

am(xr)

Proposition 4.7.0.1 (two power levels). Let A = {0, P} and hr,m = hr, r = 1, 2. Let Wr
j =

Cr log(1 +
hrP

σ2
r + jhrP

), j = 0, . . . , k., and cr(P) positive reals satisfying cr(P) ∈ (∑
k

pkWr
k , ar

0) where

pk = P(K = k). Then, the polynomial

Qr(ξ) := −cr(P) + ∑
k

pk

k

∑
j=0

Wr
j (

k
j )ξ j(1 − ξ)k−j

has unique root xr
∗ on the interval (0, 1).

Proposition 4.7.0.2. The unique solution (xr
∗)r=1,...,N given by the result 7.3.10 is a the unique interior

Wardrop equilibrium.

Proof. The fitness of the strategy P in the cell r is given by Fr
P(xr

P, 1 − xr
P) = Qr(xr

P), the fitness
of the strategy 0 is zero. Then the expected fitness of the cell r is xr

PQr(xr
P). Hence, every interior

Wardrop equilibrium (xr
∗)r=1,...,N must satisfy

Qr(xr
P) = 0, ∀r.

From result 7.3.10, these equations have a unique solution on (0, 1) under the conditions:

∀r, Qr(0) = −cr(P) + Wr
0 > 0,

Qr(1) = −cr(P) + ∑
k

pkWr
k < 0

Proposition 4.7.0.3. The Wardrop equilibrium (xr
∗)r=1,...,N is also a global ESS.

Proof. For x = x∗ and every cell r, one has (xr
P − mutr

P)Fr
P(ǫ mutr + (1 − ǫ)xr) > 0 for small ǫ.

Hence, for all r,

∑
a∈A

xr
aFr

a (ǫ mutr + (1 − ǫ)xr) > ∑
a∈A

mutr
aFr

a(ǫ mutr + (1 − ǫ)xr).

We conclude that

∑
r

∑
a∈A

xr
aFr

a (ǫ mutr + (1 − ǫ)xr) > ∑
r

∑
a∈A

mutr
aFr

a(ǫ mutr + (1 − ǫ)xr).

This completes the proof.
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4.8 Numerical investigation: Convergence to the equilibrium

Our numerical experiment studies the behavior of the replicator dynamics and smith dynam-
ics with migration. We consider the following fixed parameters : we took N = 2 cells, K ∈
{0, 1, . . . , 500}, A = {0, P}, hr,m = hr, r = 1, 2, σ2

r = r× 10−3, pk = 2× 10−3, k = 1, . . . , 500, γ1 =
0.5, γ2 = 1, cr(P) = r, P = 1. An interior Wardrop equilibrium exists for these parameters,
for which the fractions of the population using P is given by the result 4.7.0.2. The continuous
replicator dynamics becomes

d

dt
xr

P(t) = krxr
P(1 − xr

P)Qr(xr
P) + γrkrxr

P[Qr(xr
P) − ∑

r̄

Qr̄(xr̄
P)]

The continuous Smith dynamics becomes

d

dt
xr

P(t) = kr ((1 − xr
P)[Qr(xr

P)]+ − xr
P[−Qr(xr

P)]+) +

γrkr ∑
r̄

xr̄
P[Qr(xr

P) − Qr̄(xr̄
P)]+ − xr

P ∑
r̄

[Qr̄(xr̄
P) − Qr(xr

P)]+

The resulting trajectories of the population ratio each cell using the power level P, as a function
of time, is given in Fig. 4.2,4.3 and 4.4.

Figure 4.2: RD: convergence to Wardrop equilibrium

The throughput of transmitters, the total throughput and the total payoff of the whole pop-
ulation are represented respectively in Fig.4.5, 4.6 and 4.7. In Fig. 4.5, we can see that the
throughput of players which use the strategy P decreases when the number of transmitters
increases. This because the SINR decreases when the number of transmitters increases. The
throughput increases with the power level P. When the number of transmitters is high, a player
will increase its SINR, but will decrease the SINRs of the others players, and the total cost will
decrease. Thus, the total payoff becomes negative as shown in Fig.4.7.

Notes

In the second part this manuscript we develop a new class of dynamic evolutionary games
called stochastic population games which include Markov decision evolutionary games. This
class is also related to the so-called anonymous sequential games. We examine both homoge-
nous and heterogenous case and apply them to energy management and resource competition
in wireless networks. The chapter is based to our publications in (217; 10; 212; 25).
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Figure 4.3: RD: fraction of mobiles using the power levels P in cell 1 and cell 2

Figure 4.4: Smith dynamics
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Figure 4.5: The expected throughput of the transmitters.

Figure 4.6: The expected throughput of the population vs xP.
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Figure 4.7: The total payoff of all the population vs xP.
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Chapter 5

Stochastic Population Games

This chapter studies non-cooperative population games with several individual states. The
population consists of local resources distributed in several areas and several classes of players.
Each local resource has a finite number of states. Each member of each class of the population
has (i) its own state that he/she controls (ii) a finite set of actions in each pair individual state-
resource state, (iii) its instantaneous reward depends on its state, the resource state and the pop-
ulation’s profile at the given time, (iv) time-average (coupled) constraints. We apply this model
to power management in ALOHA-like wireless networks, solar-powered broadband wireless
networks, and battery state-dependent power control in wireless networks with several types
of renewable energies.

5.1 Introduction

Randomness is implicitly hinted in the requirement of robustness against mutations, that we
may view as random deviations. But the assumption of a very large population tends to hide
this source of randomness since that randomness tends to average out. The evolutionary games
without state may provide an interpretation in which the deterministic game is a limits of games
with finitely many players who may take random actions. Such an interpretation can be found
in (63). Yet, other sources of randomness have been introduced into evolutionary games. Some
authors have added small noise to the replicator dynamics in order to avoid the problem of
having the dynamics stuck in some local minimum, see (42; 86; 112) and references therein.
The ESS can then be replaced by other related notions such as the Stochastic Stable Equilibrium
(SSE) (86).

In this paper we introduce a class of stochastic population games with individual states for
both players and resources. There are many local interactions among individuals belonging to
large populations of players. Each individual stays permanently in the system; from time to
time it moves among different individual states, and interacts with other player. The actions
of the player along with those with which it interacts determine not only the immediate fitness
of the player but also the transition probabilities to the next state it will have. Each individual
is thus faced with an MDP in which it maximizes the expected average cost criterion. Each
individual knows only the state of its own MDP, and does not know the state of the other
players it interacts with. The transition probabilities of a player’s MDP are only controlled by
that player. The local interactions between players can be viewed as a stochastic game with

116



5.2. Illustrating Examples

coupled constraints and variable number of interacting players. The case where the number of
interacting players is constant have been studied in (15; 16).

5.2 Illustrating Examples

5.2.1 Battery state-deependent power management

Consider a large number of mobiles terminals controlling their transmission power and a dis-
tributed base stations. Each mobile has an amount of energy E when its battery is new (typically
it is the case if the battery is new or if the battery is completely recharged). Each mobile imple-
ments a power control policy where the transmission power is allowed to depend on the energy
level (state) of its battery. The available action (reachable base stations and powers) depends on
the state of the battery. Given the remaining energy of its battery, the mobile have to choose the
optimal power level. One of the important element for each mobile is its instantaneous through-
put which can be characterized as a function of the signal to interference plus noise ratio (SINR)
at the base station where he transmits. The battery is replaced only when it is completely empty.
The cost of new battery cost is C. The new battery has the same energy of E. The mobile have to
control both the power consumption as well as the time at which the batteries are changed. At
each slot, each mobile is faced to a random number (213) of interacting players which transmit
at the same base station. Each battery life-time game corresponds to a stochastic population
game with finite horizon (absorbing state of battery when the energy is very small). The aim
here is to find jointly the power levels and the base stations such that all users achieve as high
payoff as possible, minimum guarantee (e.g. QoS requirement thresholds) but also to control
the battery-state.

When batteries are recharged dynamically with different types of alternative energy such as
renewable energies (solar, wind etc). The battery transition state becomes irreducible Markov
decision process under each policy depending on an exogenous parameter which characterizes
the good weather (good weather will correspond to the sun for the solar-power systems and
to the wind for wind-powered systems). In this case, the interaction becomes a stochastic pop-
ulation game with infinite horizon and we shall consider time-average reward (discounted or
not).

5.2.2 Energy management in hybrid Aloha-like networks

Consider a distributed Aloha network with large number of mobile terminals. Each mobile
can choose both the channels and powers (this is in contrast to standard Aloha model in which
users are associated to the closest receivers). Each terminal is faced to a random number of
interacting players which transmit at the channel. A terminal attempts transmissions during a
finite horizon of times depending on the state of its battery energy. At each slot, each terminal
have to take a decision on the transmission power based on the battery state. At each state of
the battery, there are a finite power levels. At the lowest state of battery no power is available
and the mobile have to replaced the battery by a new or to recharge its battery. A transmission is
successful if no other user transmit during the slot or the mobile transmits with a power which
is bigger than the power of all others transmitting mobiles at the same receiver. The pairwise
interactions case of this problem has been studied by Altman and Hayel in (20) as a stochastic
evolutionary game. They have considered three states: Full, Almost Empty and Empty, and
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simultaneous interactions with more two users are neglected1. Their model can be extend to
more than two opponent interactions and also to finitely many states as shown in next Section.
We can also extend to the case where each terminal is faced to a random number (219; 213; 11)
of interacting terminals which transmit at the same range and each terminal have to control an
arbitrary transition state of its energy.

5.2.3 Markov decision process

A player arrives at some random time t0. It has a clock that dictates the times at which interac-
tions with other players occur. It is involved in interactions that occur according to a Poisson
process with rate λ. After a random number of time periods, the player leaves the system and
is replaced by another one. This will be made precise below. During the player’s life time, each
time the timer clicks, the player interacts with another randomly selected player.

We associate with each player a Markov Decision Process (MDP) embedded at the instants
of the clicks.

The parameters of the MDP are given by the tuple {S ,A, Q} where

• S is the set of possible individual states of the player

• A is the set of available actions. For each state s, a subset As of actions is available.

• Q is the set of transition probabilities; for each s, s′ ∈ S and a ∈ As, Qs′(s, a) is the proba-
bility to move from state s to state s′ taking action a. ∑

s′∈S

Qs′(s, a) is allowed to be smaller

than 1.

Define further

• The set of policies is U . A general policy u is a sequence u = (u1, u2, . . .) where ui is
a distribution over action space A at time i. The dependence on time is a local one: it
concerns only the individual’s clock; a player is not assumed to use policies that make use
of some global clocks. There can only be also one global clock for all individuals. A policy
is an individual decision which defines the sequences of action which will be taken by the
individual at each individual’s clock.

• The subset of mixed (respectively pure or deterministic) policies is UM (respectively UD).
We define also the set of stationary policies US where such policy does not depend on
time.

Frequency state-action Often we encounter the notion of individual states in evolutionary
games; but usually the population size at a particular state is fixed. In our case the choices of
actions of an individual determine the fraction of time it would spend at each state. Hence the
fraction of the whole population that will be at a given state may depend on the distribution
of strategies in the population. In order to model this dependence we first need to describe the
expected amount of time fη,u(s) that an individual spends at a given state s when it follows a
strategy u and its initial state at time 1 is distributed according to a probability η over S . More
generally, we define fη,u(s, a) the expected number of time units during which it is at state s and
it chooses action a. fu := { fη,u(s, a)} is called the occupation measure corresponding to a policy
u or frequency state-action.

1Note that this assumption does not holds in dense networks.
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More precisely, define pt(η, u; s, a) = Pη,u(Xt = s, As = a) the probability for a user to
be in state s, at time t, using action a under policy u when the initial state has a probability
distribution η. Further define pt(η, u; s) = ∑

a

pt(η, u; s, a).

Define

f t
η,u(s, a) =

1
t

t

∑
r=1

pr(η, u; s, a).

Denote f t
η(u) := { f t

η,u(s, a)}. Define by Φu
η to be the set of all accumulation points of f t

η(u) as
t → ∞. Whenever Φu

η contains a single element, we shall denote it by fη(u).

5.3 Single population stochastic evolutionary games

Aim: To model and characterize evolutionary games where individuals have states that are
described by controlled Markov chains. The action of an individual in a local interaction with
another randomly selected individual determines not only the instantaneous fitness but also its
probability to move to another state. The goal of a player is to maximize its time average fitness.

Mathematical methods: The main mathematical tool is occupation measures (expected fre-
quencies of states and actions). This tool is a central one in the theory of Markov Decision
Processes. We make use of the geometric properties of the set of achievable occupation mea-
sures.

Key assumption: Under any pure stationary policy of an individual, its Markov chain has a
single ergodic class of states.

We define and characterize a new concept of Evolutionarily Stable Strategies (OMESS),
based on the concept of Occupation Measures. We relate this set to the concept of ESSet (221).
We present a way to transform the new type of evolutionary games into standard ones. We
apply this novel framework to energy control in wireless networks.

A new rich class of evolutionary games is defined along with the corresponding new defini-
tions of equilibrium. This combination of evolutionary games together with Markov Decision
Processes introduces new dynamical features and modeling capabilities.

Keywords: evolutionary games, occupation measure evolutionarily stable strategy, Markov
decision process, energy control in wireless networks.

Pairwise interaction we consider a large population of individuals. As in standard evolu-
tionary games, there are many pairwise interactions between randomly selected pairs.

Let r(s, a, s′, b) be the immediate reward that a player receives when it is at state s and it uses
action a while interacting with a player who is in state s′ that uses action b.

Denote by α(u) = {α(u; s, a)} the system state: α(u; s, a) is the fraction of the population at
individual state s and that use action a when all the population uses strategy u. We shall add
the index t to indicate a possible dependence on some time.

Consider an arbitrary tagged player and let St and At be its state and action at time t (as
measured on its individual clock). Then his expected immediate reward at that time is given by

Rt = ∑
s′,a′

αt(u; s′, a′)r(St, At, s′, a′) := r(St, At, αt(u)).
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Assume now that a player arrives at the system at time 1. The global expected fitness when
using a policy v is then

Fη(v, u) = lim inf
t→∞

1
t

t

∑
m=1

Eη,v[Rm].

When η is concentrated on state s we write with some abuse of notation Fs(v, u) = Fη(v, u).
We shall often omit the index η (in case it is taken to be fixed).

Unless stated differently, we shall make throughout the following assumption.

Introduce the following assumptions.

A2(U): When the whole population uses a policy u ∈ U, then at any time t which is either
fixed or is an individual time of an arbitrary player, αt(u) is independent of t and is given by

αt(u; s, a) = fη,u(s, a) = π(s)u(a|s)

for all s, a where fη,u(s, a) is the single limit of f t
η,u(s, a) as t → ∞ and π is the stationary distri-

bution of the chain.

A2: Assumption A2(U) holds for U = Us and for U = UM.

The validity of the Assumption depends on the way the infinite population model is ob-
tained by scaling a large finite population model. This aspect is beyond the scope of this paper.
Denote the set of all policies for which Φu

η is a singleton by U∗. For u ∈ U∗, the following holds:

F(v, u) = inf
z∈Φv

η
∑
s,a

z(s, a) ∑
s′,a′

fη,u(s′, a′)r(s, a, s′, a′). (5.1)

The set of occupation measures will be shown to be a polytope whose extreme points corre-
spond to strategies in UD. This will allow us to transform the stochastic population game or
Markov decision evolutionary game to a standard evolutionary game.

Note that for any u ∈ UM, and for any strategies v and w,

Φv
η ⊂ Φw

η implies F(v, u) ≥ F(w, u). (5.2)

This, together with the fact that for any policy u and z ∈ Φu
η there exist a stationary policy

v ∈ U∗ satisfying f v
η = z, will motivate us to limit ourselves to policies in U∗.

When both u and v are in U∗, the global expected fitness simplifies to

F(v, u) =
∞

∑
t=1

Eη,vRt = ∑
s,a

fη,v(s, a)∑
s′,a′

fη,u(s′, a′)r(s, a, s′, a′). (5.3)

Assumption A1 would not hold if the policy of a player could depend on the absolute time
or on the behavior (i.e. the actions) of other players. For example, in the standard replicator
dynamics, the policy of a player adapts to the instantaneous fitness which depends also on
the actions of the other players in the population. Thus A1 does not hold there. On the other
hand, since players of a given class are undistinguishable, and since the lifetime distribution of
a player depends only on his local time, we may expect Assumption A1 to hold. Checking A1
is beyond the scope of the paper.
Definition 5.3.0.1. We shall say that two strategies u and u′ are equivalent if the corresponding occu-
pation measures are equal. We shall write u =e u′. The set of occupation measures equivalent to u is
denoted by e(u) := {v|v =e u}.
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Note that if u and u′ are equivalent policies for a given player then for any v used by the rest
of the population, the fitness under u and under u′ are the same.

We now define the notion of evolutionary stable set in standard population games. An ESSet
is a set of Nash equilibria which have the following special properties (see Cressman, 2003).
Definition 5.3.0.2. A set E of symmetric Nash equilibrium is an evolutionarily stable set (ESSet) if, for
all q ∈ E, we have J(q, p) > J(p, p) for all p 6∈ E and such that J(p, q) = J(q, q).

Note that for all strategies p and p′ in an ESSet E, we have J(p′, p) = J(p, p). The concept of
ESSet is stronger than Nash equilibrium and there are some simple matrix games in which such
an equilibrium set does not exist (see Weibull, 1995, page 48 example 2.7).

In (Thomas, 1985), the author defines Evolutionary Stable Sets and presents an example of
ESSet containing a continuum of (Nash) equilibrium strategies, none of which can be an Evolu-
tionarily Stable Strategy (ESS). Another example is of an ESS, a special case of an ESSet restricted
to one point.

The ESSet is robust against perturbation by a strategy which is outside the ESSet, but any
strategy in the set need not to be robust against perturbation. For instance, every ESSet is
asymptotically stable for the replicator dynamic (Cressman, 2003). Every ESSet is a disjoint union
of equilibria.

The stronger notion of equilibrium from evolutionary game theory is the Evolutionarily
Stable Strategy (ESS). The concept of ESSets generalize the standard concept of ESS as it is a
one-element ESSet.

Defining the Occupation Measure ESS

With the expression (5.8) for the fitness, we observe that we are again in the framework of
evolutionary games and can use definition of Theorem 5.3.1 for the Occupation Measure ESS
(OMESS) in the stochastic population game:
Definition 5.3.0.3. (i) A strategy u ∈ U∗ is an equilibrium for the stochastic population game if and
only if it satisfies

F(u, u) ≥ F(v, u). (5.4)

(ii) A strategy u ∈ U∗ is a Occupation-measure ESS (OMESS) for the stochastic population game if and
only if

• it is an equilibrium, and

• for all v ∈ U∗ such that v 6=e u that satisfy F(u, u) = F(v, u), the following holds: F(u, v) >
F(v, v).

We could use the following as an equivalent Definition of OMESS for stochastic population
game.
Theorem 5.3.1. A strategy u is said to be OMESS if for every v 6=e u there exists some ǫv > 0 such
that the following holds for all ǫ ∈ (0, ǫv):

F(u, ǫu + (1 − ǫ)v) > F(u, ǫu + (1 − ǫ)v) (5.5)

In equation (5.5) we use a convex combination of two policies. We delay the definition of
this to the next section (see Remark 5.3.1.3).

The following result links between the OMESS and the ESSets.
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Proposition 5.3.1.1. If u is an OMESS, then e(u) is an ESSet.

Proof. Let u be an OMESS. We take a measure v 6∈ e(u). By definition of equivalent class we
have one of the following condition holds:

• F(u, u) > F(v, u),

• F(u, u) = F(v, u) and F(u, v) > F(v, v).

Thus each w ∈ e(u) is a Nash equilibrium. The second condition implies that for every w ∈ e(u)
and v 6∈ e(u) such that F(w, w) = F(v, w), we have F(w, v) > F(v, v). This implies by definition
that e(u) is an ESSet.

In the following, we show that an ESSet is a weaker notion than OMESS: a problem with no
OMESS may still have a non empty ESSet.

Consider a single state s and two actions h or l. Assume that the reward does not depend on
the action. two pure stationary policies are u and v where u consists on playing always h and
the policy v is to play always l. Then,

• the ESSet of the Markov game is all the feasible policies,

• u and v are not in the same equivalence class,

• F(u, w) = F(w, w), ∀w ∈ e(v)c 6= ∅. v is not an OMESS.

• the game has no OMESS

Computing the OMESS

Define the set of occupation measures achieved by all (individual) policies in some subset U′ ⊂
U as

Lη(U′) =
⋃

u∈U′
fη,u(s, a).

It will turn out that the expected fitness of an individual (defined in next subsection) will de-
pend on the strategy u of that individual only through fη,u. We are therefore interested in the
following characteristic of Lη(U) (see (119; 26; 178)):
Lemma 5.3.1.2. Lη(U) equals to the set Qη defined as the set of α = {α(s, a)} satisfying

∑
s′∈S

∑
a∈As′

α(s′, a)[δs′(s)− Qs′(s, a)] = η(s), ∀s, α(s, a) ≥ 0, ∀s, a. (5.6)

where δs′(s) is the Dirac distribution in state s′.
(ii) We have: Lη(U) = Lη(US) = coLη(UD) where coLη(UD) is the convex hull of Lη(UD).
(iii) For any α ∈ Lη(U), define the individual stationary policy u ∈ US by

us(a) =





α(s, a)

∑a∈As
α(s, a)

if ∑
a∈As

α(s, a) > 0

arbitrary number in [0, 1] if ∑
a∈As

α(s, a) = 0

Then fη,u = α.
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Transforming stochastic population game the into a standard population game

Consider the following standard evolutionary game EG:

• the finite set of actions of a player is UD,

• the fitness of a player that uses v ∈ UD when the other use a policy u ∈ US is given by
(5.8).

• Enumerate the strategies in UD such that UD = (u1, ..., um) where

m = ∏
s∈S

|As|,

• Define γ = (γ1, ..., γm) where γi is the fraction of the population that uses ui. γ can be
interpreted as a mixed strategy which we denote by γ̂.

Remarks 5.3.1.3. Here the convex combination ǫγ̂ + (1 − ǫ)γ̂′ of the two mixed strategies γ̂ and γ̂′ is
simply the mixed strategy whose ith component is given by ǫγi + (1 − ǫ)γ′

i, i = 1, ..., m.

Combining Lemma 5.3.1.2 with eq. (5.7) we obtain:
Proposition 5.3.1.4. (i) γ̂ is an equilibrium for the game EG if and only if it is an OMESS for the
original stochastic population game.
(ii) γ̂ is an ESS for the game EG if and only if it is a OMESS for the original stochastic population game.

Proof. The statements hold if we allowed for only mixed policies; indeed, they follow from
Lemma 5.3.1.2 and eq. (5.7). We have to check that if a mixed policy is an equilibrium or a
OMESS when restricting to UM then it is also an equilibrium among all policies. This in turn
follows from from Lemma 5.3.1.2 and eq. (5.8).

Non-pairwise interactions We now assume the number of players in local interaction is
more than two and this number is not known. Let rk(s, a, s2, a2, . . . , sk, ak) be the immediate
reward that a player receives when it is at state s and it uses action a while interacting with k − 1
others players who is in state sj that uses action aj, j = 2, . . . k. Then the expected immediate
reward at that time is given by

Rt = ∑
k≥1

P(K = k) ∑
s2,a2,...sk,ak

k

∏
j=2

αt(u; sj, aj)rk(St, At, s2, a2, . . . sk, ak) =: r(St, At, αt(u)).

Assume now that a player arrives at the system at time 1. The global expected fitness when
using a policy v is then

Fη(v, u) = lim inf
t→∞

1
t

t

∑
m=1

Eη,v[Rm].

When η is concentrated on state s we write with some abuse of notation Fs(v, u) = Fη(v, u).
We shall often omit the index η (in case it is taken to be fixed).

For u ∈ U∗, the following holds:

F(v, u) = inf
z∈Φv

η
∑
s,a

z(s, a) ∑
s2,a2,...sk,ak

r(s, a, s2, a2, . . . sk, ak)
k

∏
j=2

fη,u(sj, aj). (5.7)
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When both u and v are in U∗, the global expected fitness simplifies to

F(v, u) =
∞

∑
t=1

Eη,vRt = ∑
s,a

fη,v(s, a) ∑
s2,a2,...sk,ak

r(s, a, s2, a2, . . . , sk, ak)
k

∏
j=2

fη,u(sj, aj)r(s, a, s2, a2, . . . sk, ak).

(5.8)

5.4 Stochastic population games : multiclass case

Consider the following model of population game denoted by

Γ = (P, (Yp)p∈P, (Ap(y))p∈P,y∈Yp, (Qp)p∈P, (rp)p∈P),

where

• The population is composed of several subpopulations. Each subpopulation contains a
large number of players. P denotes the set of subpopulations (we assume that P is finite).

• Each player of each subpopulation p has its own state Yp (finite) and Markov transition
structures Qp between the states.

• For every player i from the subpopulation p ∈ P and every state y ∈ Yp of i, Ap(y) is the
set of actions available. The action space of the subpopulation p is given by ∏

y∈Yp

Ap(y).

The set of all actions at all states is given by Allp where

Allp = {(y, a), y ∈ Yp, a ∈ Ap(y)}.

• We denote by ∆(Yp) the (|Yp| − 1)-dimensional simplex of R|Yp| and by qp : Allp →
∆(Yp) a transition rule between the states. The transition probability distribution between
states is defined by

Q
p
y,a,y′ := qp(y′|y, a) = qp(y′|y1, a1, . . . , yt−1, at−1, y, a)

for each y′, y ∈ Yp, a ∈ Ap(y).

• For every subpopulation p ∈ P,

rp : ∏
p′

∏
y∈Yp′

X p′(y) → R
∑

y∈Yp′ |Ap′ (y)|

is the vector of all instantaneous payoff functions of a player from the class p′,

X p′(y) =



(xp′(y, b))

b∈Ap′(y)
| xp′(y, b) ≥ 0, ∑

y∈Yp′
∑

b∈Ap′ (y)

xp′(y, b) = mp′





where mp′ is the mass associate to the subpopulation p′. Given a state y and strategy
profile xp, x−p, the payoff obtained by playing the action a ∈ Ap(y) is r

p
y,a(x)

• The game is played many times.
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5.4.1 Histories and Strategies

Histories A history ht at time t is a collection of states and actions (y1, a1, x1, . . . , yt−1, at−1, xt−1, yt).
We denote by

H
p
t = (Allp ×X )t−1 × Yp

the set of histories of a member of the subpopulation p at time t. At t = 1, H
p
1 = Yp. Let H

p
∞

be the set of all infinite histories of the subpopulation p endowed with the product σ−field and
H∞ = ∏

p∈P

H
p
∞.

Strategies

• Pure strategy A pure strategy of a player from subpopulation p at time t is a map σ
p
t :

H
p
t −→ Ap(yt). The collection σp = (σ

p
t )t≥1 of pure strategy at each time constitutes a

pure strategy of the subpopulation p. We denote by Σp the set of all pure strategies of
subpopulation p, by Σ = ∏

p

Σp the set of all pure strategy profiles. Note that the number

of pure strategies is infinite.

• Stationary strategy: σ is stationary strategy if for each population p and every time t and
histories,

ht = (y1, a1, x1, . . . , yt−1, at−1, xt−1, yt),

h′t = (y′1, a′1, x′1, . . . , y′t−1, a′t−1, xt−1, y′t)

such that if yt = y′t one has σt(ht) = σt(h′t) i.e a stationary strategy is a history and time
independent strategy which depends on the state only.
Lemma 5.4.1.1. The number of pure stationary strategies is ∏

p∈P
∏

y∈Yp

|Ap(y)|.

• Behavioral strategy A behavioral strategy at time t is a function that assigns each finite
history to a mixed action profile of the current state: σ

p
t : H

p
t −→ ∏

p

∆(Ap(yt)), p ∈ P.

• Mixed strategy A mixed strategy profile is a collection of probability distributions on
Σ. Using Tychonoff’s theorem, the set of all these notions of strategies is compact in the
product set histories spaces in the sense of the weak-topology. A general mixed strategy
is a probability distribution on the behaviorial strategies set.

For any strategy profile σ = (σp)p∈P and every initial state distribution profile µ = (µp)p∈P,
a probability measure Pσ,µ is induced by σ and µ. The stochastic process (yt, at, xt)t≥1 is defined
on H∞ in a canonical way, where the random variables yt, at, xt describe the individual state,
the action in this state and the population profile.

5.4.2 Cesaro-limit Fitness

We examine the limit average Cesaro-type payoff

F
p
µ (σp, σ−p) = Eσ,µ

[
lim inf
T−→+∞

1
T

(
T

∑
t=1

r
p
yt,at(xt)

)]

where Eσ,µ denotes the expectation over the probability measure Pσ,µ induced by σ, µ on the
set of histories endowed with the product σ−algebra.
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Symbol element Assignments
Yp y state of the subpopulation p.
Ap(y) a Set of actions of subpopulation p

in state y ∈ Yp.
qp qp(y′|y, a) Transition law from y to y′.
r

p
y,a(x) Instantaneous reward.

Ht ht, h′t Set of histories for the time t.
Σp σp Set of pure strategies of the sub-

population p.
Σ σ Set of pure strategies profile.
F

p
µ (σ) Expected fitness function start-

ing from µ.

Table 5.1: Notations

Given a strategy σ and a initial state y, we define the expected time-average payoff. We
denote by Πp the stationary limit average matrix:

Πp(σp) = lim
t−→+∞

1
t

t

∑
j=1

(Qp)j(σp).

The matrix Πp is well-defined, commutes with Qp and satisfies the projection equation: Πp ×
Πp = Πp.

If Fp is the vector (F
p
y (x))y∈Yp, we have that Fp(x) = Πprp(x) for all stationary strategy

profile x. Then, Fp = ΠpFp. Note that the function x 7−→ Fp(x) is not necessarily continuous
because the limit matrix Πp(x) can be discontinuous on x.
Definition 5.4.2.1. A strategy σ is an ǫ−equilibrium if for all p,

Fp(σ) + ǫ ≥ Fp(σ′p, σp), ∀ σ′p ∈ ∆(Σp).

A 0−equilibrium is called equilibrium.

Notes

• When each member of each subpopulation has a single state, we obtain a population game
model which each local interaction is repeated game.

• If there exists a subpopulation p∗ such that |Yp| = 1 for all p 6= p∗. We obtain a stochastic
population game with single class of controllers which is the subpopulation p.

5.5 Constrained stochastic population games

In addition to the model described in Section 5.4, we assume that players have (possibly cou-
pled) average constraints on their actions in any state. The payoff of the subpopulation p is

Eσ,µ

(
lim inf
t−→+∞

1
t

t

∑
k=1

r
p
yk,ak

(xk)

)

with σp ∈ ∆(Σp) subject to
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• Orthogonal constraints:

p ∈ P, Pσp

(
lim sup
t−→+∞

1
t

t

∑
k=1

Dp(yk, ak) ≤ βp

)
= 1,

where Dp : Allp −→ R is an individual cost function (independent of the strategies of the
others players), βp ∈ R is a given cost threshold.

• Coupled constraints:

p ∈ P, Pσ,µ

(
lim sup
t−→+∞

1
t

t

∑
k=1

C
p
yk,ak

(xk) ≤ αp

)
= 1

where Cp : Allp × X −→ R is a cost function which depends on the individual state-
action but also on the population profile i.e the strategies of the others players (in the
same class or not).

A strategy σ is a constrained equilibrium if for all p,

Fp(σ) ≥ Fp(σ′p, σp), ∀ σ′p ∈ ∆(Σp)

and σp ∈ Λ(σ−p) where Λ(σ−p) is the set feasible strategies (that satisfy the orthogonal and
coupled constraints) given the strategies of the others populations σ−p.

Constrained stochastic population games with unknown hori-
zon

In general, the lifetime of an individual or of the system is not known. We shall integrate this
in our interaction model. In this section we develop a general formulation of a local interaction
with unknown stopping time. Players does not known the length of the local interaction but
have a common probability structure on the stochastic local game. At time t, they assign some
probability P(T = t) to the event {T = t} that the local interaction ends in time t.

t ≥ 1, P(T = t) ≥ 0, ∑
t≥1

P(T = t) = 1.

Fix an anonymous member of some subpopulation p, and a sequence of state-actions σ. A player
from the class p will receive

F
p
µ (σ) = Eσ,µ

[
lim inf
t→+∞

∑
t
k=1 P(T = k)(∑

k
j=1 r

p
y j,aj

(xj))

∑
t
j=1 jP(T = j)

]

under the constraints: p ∈ P,

Pσ

(
lim sup

t→+∞

∑
t
k=1 P(T = k)(∑

k
j=1 C

p
y j,aj

(xj))

∑
t
j=1 jP(T = j)

≤ αp

)
= 1,

Pσp

(
lim sup

t→+∞

∑
t
k=1 P(T = k)(∑

k
j=1 Dp(yj, aj))

∑
t
j=1 jP(T = j)

≤ βp

)
= 1,
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Theorem 5.5.1.
F

p
µ (σ) = Eσ,µ lim inf

t→+∞
F

p,t
µ (σ)

where F
p,t
µ (σ) :=

1

∑
t
j=1 jP(T = j)

t

∑
j=1

(
t

∑
k=j

P(T = k)

)
r

p
y j,aj

(xj)

Proof. We apply Fubini’s theorem on finite summation to change the order between k and j in
the expression of F

p,t
µ (σ) where

F
p,t
µ (σ) =

∑
t
k=1 P(T = k)(∑

k
j=1 r

p
y j,aj

(xj))

∑
t
j=1 jP(T = j)

.

Examples: This model generalizes the finite and infinite horizon payoff notions:

• If T is the Dirac measure concentrated on t∗ i.e P(T = j) = 0 if j 6= t∗ and P(T = t∗) = 1,
we obtained the arithmetic average payoff

Eσ,µ
∑

t∗
j=1 r

p
y j,aj

(xj)

t∗

• If T is the geometric distribution P(T = t) = (1 − δ)δt−1, then we obtain the average
discounted payoff:

(1 − δ) Eσ

+∞

∑
t=1

δt−1r
p
yt,at

(xt)

• Note that when the expected horizon of local interaction is finite (for example when the
lifetime of the system or of the user is finite - in expectation - but the end of the interaction
is not known)2, the average payoff can be rewritten as

F
p
µ (σ) =

∑
+∞
j=1

(
∑

+∞
k=j P(T = k)

)
Eσ,µr

p
y j,aj

(xj)

∑
+∞
j=1 jP(T = j)

=
∑t≥1 P(T ≥ t)Eσ,µr

p
yt,at

(xt)

E(T)
(5.9)

The following theorem generalizes the Theorem 2.1 in (22) for constrained games and also
the Theorem 2.6 (ii) in (21) and the Theorem 1 in (83) for unconstrained product games.
Theorem 5.5.2. Assume that each subpopulation has a single (aperiodic) ergodic class under each sta-
tionary strategy. Then the stochastic population game with individual independent states and unknown
lifetime has an equilibrium in stationary strategies. Moreover, the constrained game has an equilibrium
under Slater condition.

For the proof we need tightness properties of the measure generated by the frequencies
state-actions under the distribution of the horizon.

2Note that the expected horizon can be finite and P(T = t) > 0. It is the case for P(T = t) = δt−1(1 − δ), δ ∈
(0, 1).E(T) =

1
1 − δ
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Proposition 5.5.2.1. Assume that for each subpopulation p and any stationary strategy σp, the state
process is an irreducible Markov chain with one ergodic class then, for any strategy σ the frequencies
state-actions

( f
p,t
µ,σ(y, a))p∈P,t≥1

where

f
p,t
σ,µ(y, a) =

∑
t
j=1

(
∑

t
k=j P(T = k)

)
Pσ(Xj = y, aj = a|y1 = µ)

∑
t
j=1 jP(T = j)

are tight.

The occupation measures in this extended model are characterized by the following conver-
gence result: Pσ,µ almost surely, the random variables that give the frequencies state-action

∑
t
k=1 P(T = k) ∑

k
j=2 δy′ (X

p
j )− ∑y,a Q

p
yay′δ(y,a)(X

p
j−1, a

p
j−1)

∑
t
j=1 jP(T = j)

(5.10)

goes to zero when t goes to infinity, for all y′ ∈ Yp, p ∈ P. Hence, when E(T) = ∑
k≥0

P(T > k) =

∑
k

kP(T = k) < +∞ then we obtain the equation:

∑
+∞
k=1 P(T = k) ∑

+∞
j=2 δy′(X

p
j )− ∑y,a Q

p
yay′δ(y,a)(X

p
j−1, a

p
j−1)

∑
∞
j=2 P(T ≥ j)

(5.11)

5.6 Energy Control in Wireless Networks

We next illustrate the stochastic population game setting with a problem that arises in dynamic
power control in mobile networks.

Users participate in local competitions for the access to a shared medium in order to transmit
their packets. An individual state of each mobile represents the energy level at the user’s battery
which, for simplicity, we assume to take finitely many values, denoted by S = {0, . . . , n}.

Each time the battery empties (which corresponds to reaching state 0), the mobile changes
the battery to a new one (this corresponds to state n), and pay a cost C. We assume that each
time a mobile reaches state zero, it remains there during a period whose expected duration is τ.

In each state s ∈ S \ {0}, each mobile has two available actions h and l which correspond
respectively to high power pH and low power pL. We consider an Aloha-type game where a
mobile transmits a packet with success during a slot if:

• with probability p, the mobile is the only one to transmit during this slot,

• the mobile transmits with high power and the other transmitting mobile uses low power
or is in state 0.

5.6.1 Time average fitness criterion

The reward function r depends on a mobile’s state as well as on the transmission powers, that
is, the action of the mobile as well as that of the one it interacts with. Then we have for s 6= 0:

r(s, a, s′, a′) = p + (1 − p)1(s′=0) + (1 − p)1{(a=h), (a′=l), (s′ 6=0)}.
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For s = 0 we take r(0, a, s′, a′) = C/τ.

For each state s ∈ S \ {0}, the transition probability Qs′(s, a) may be non-zero (for both
a ∈ {l, h}) only for s′ ∈ {s, s − 1}. Then, as the two possible transitions are to remain at the
same energy level or move to the next lower one, we simplify the notation and use Q(s, a) to
denote the probability of remaining at energy level s using action a.

To model the fact that the mobiles stays in the average τ units at state 0 and then moves to
state n we set the transition probabilities from state 0 to any state other than n and 0 to be zero;
the probability to move to n is 1/τ and that of remaining at 0 is 1 − 1/τ.

The transition probabilities between energy levels which are motivated by the application
of energy consumption satisfy:

• For all state s ∈ S \ {0}, we have Q(s, h) < Q(s, l) because using less power induces
higher probability to remain in the same energy level.

• For all state s ∈ S \ {0} and for both actions a ∈ {l, h}, we have Q(s, a) > Q(s − 1, a)
because less battery energy the mobile has, less is the probability to remain at the same
energy level.

We pursue the example described in Section 5.6 applying the latest proposition in order to
obtain the OMESS for this stochastic population game. Indeed, we will find the OMESS for the
related EG game which will be written as a matrix game with dimension 4. In order to find the
equilibrium of this matrix game, we have to compute the fitness F̃(v, u) for all policies v and u.
We use the renewal theorem to find the expected fitness par cycle of lifetime.

F̃(v, u) = p
Tη,v

Tη,v + τ

Tη,u

Tη,u + τ
+ (1 − p)

Tη,v(h)

Tη,v + τ

Tη,u(l)

Tη,u + τ
+

τ
1

Tη,u + τ

Tη,v

Tη,v + τ
− C

1
Tη,v + τ

where Tη,v(a) is the expected number of times the action a is used under the policy v starting
from initial distribution η.

In a first step, we have to compute the occupation measure fu corresponding to each policy
u ∈ {u1, u2, u3, u4}; for that we need the probability for a user to be in each state, at time t, using
action a under policy u. At initial time t = 0, a mobile always starts with a battery full of energy,
that is η = (0, 0, 1). We describe the matrix game with the four following matrices:

F̃1(ui, uj) =
Tη,ui

Tη,ui
+ τ

Tη,uj

Tη,uj
+ τ

,

F̃2(ui, uj) =
Tη,ui

(h)

Tη,ui
+ τ

Tη,uj
(l)

Tη,uj
+ τ

,

F̃3(ui, uj) =
1

Tη,uj
+ τ

Tη,ui

Tη,ui
+ τ

,

and
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F̃4 =




1
X1 + X3 + τ

1
X1 + X3 + τ

1
X1 + X3 + τ

1
X1 + X3 + τ

1
X1 + X4 + τ

1
X1 + X4 + τ

1
X1 + X4 + τ

1
X1 + X4 + τ

1
X2 + X3 + τ

1
X2 + X3 + τ

1
X2 + X3 + τ

1
X2 + X3 + τ

1
X2 + X4 + τ

1
X2 + X4 + τ

1
X2 + X4 + τ

1
X2 + X4 + τ




with

X1 =
1

1 − Q(1, l)
, X2 =

1
1 − Q(1, h)

,

X3 =
1

1 − Q(2, l)
, X4 =

1
1 − Q(2, h)

.

Then we obtain the following modified fitnesses depending on the policies in the following
matrix:

F̃ = pF̃1 + (1 − p)F̃2 + τF̃3 − CF̃4.

The OMESS of the stochastic population game which model energy control behaviors in
wireless networks is obtained by finding the OMESS of the standard EG with the matrix of
fitnesses given by F̃.

5.7 Energy control: absorbing state

We study in this Section an energy management non-cooperative game with an infinite number
of players modeled as a stochastic population game. We consider pairwise interactions where
each player has to choose between an aggressive or a non-aggressive action. The lifetime of
each player depends on the level of aggressiveness of all his action during his life. The instanta-
neous reward of each player depends on the level of aggressiveness of his action and also of his
opponent. We consider different restricted strategies and study the existence of evolutionary
stable strategies.

We assume that each mobile terminal is an individual player of a global population and the
interaction for transmission is interpreted as a fight for food (as in (139)). It is important to note
that the Markov process of each player is controlled by himself, whereas in (139) the interaction
determines the evolution of the individual process. Each player starts his life in the highest
energy state or level, say state n. Starting from state n, each player will visit the different levels
in the decreasing order until reaching the last state 0. The state 0 corresponds to the state Empty
and the state n is the Full state of the battery. The other states 1, . . . , n − 1 are intermediary states
of the battery or energy. When the system is at the state 0 there is no energy and the player has
to charge his battery or to buy a new battery. We will call terminal absorbing fitness the expected
cost of charge or price of a new battery.

At each time slot there should be an interaction with another player and then an action
should be taken by each player in the population. The actions taken by a player determine
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not only the immediate reward but also the transition probabilities to its next individual state
(energy level). The instantaneous reward depends also on the level of aggressiveness of the
others players.

Then, the evolution of the level of energy depending on the player’s action can be modeled
as a discrete homogeneous time Markov process.

5.7.1 Individual sequential decision

Each player has to choose between two possible actions in each state (different from the Empty
state): high(h) and low(l). The strategy h is a aggressive strategy and the strategy l is a passive
one. Since there are only two strategies h and l, the population aggressiveness can be described
by a process (αt)t≥1 where αt is the fraction of the population using the aggressive strategy, that
is the action h, at time t. The stochastic process αt may depend on the history with length t. The
main issue of this paper is to study how a player will manage its energy during his lifetime in
order to optimize its total reward.

5.7.2 Binary Reward

We define a binary reward of a player in an interaction as follows: The player win the resource
if (i) he has no opponents for the same resource during the time slot, or (ii) he uses the most
aggressive action and its opponents are passive. Otherwise, he gets zero. We extend the reward
function to mixed strategies by randomized the binary reward.

We denote by 1 − p the probability for any player of having an opponent at the same time
slot. The probability of success (probability to win to the resource) of a player using the action
h when its energy level is at the state s > 0 is given by

r(s, h, α) = p + (1 − p)[α × 0 + (1 − α)× 1] = p + (1 − p)(1− α), (5.12)

where α is the fraction of the population who use the action h at any given time. Note that
assuming that α is fixed in time does not mean that the actions of each player are fixed in time.
It only reflects a situation in which the system attains a stationary regime due to the averaging
over a very large population, and the fact that all players choose an action in a given individual
state using the same probability low.

Similarly, when he use l the probability of success in state s 6= 0 is

r(s, l, α) = p. (5.13)

The expected reward of a player when its energy level is at the state s > 0 and he uses h with
probability βs is then given by

r(s, βs, α) = βsr(s, h, α) + (1 − βs)r(s, l, α) = p + βs(1 − p)(1− α). (5.14)

Under this reward function, a player has more chance to win the resource with an aggressive
strategy than a passive one, but a passive strategy save more energy for future.
Remarks 5.7.2.1. Consider a pairwise one-shot interaction between a player i in state s 6= 0 and a
player j in state s′ 6= 0. Define the action set of each player as {h, l} and the payoff function as the binary
reward defined above. From the probability to win, it is not difficult to see that the instantaneous reward
r(s, βs, α) increases with βs. Then, the one-shot game is a degenerate game with infinite Nash equilibria.
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We will see that the non-aggressive which is weakly dominated in the one-shot game is not necessarily
dominated in the long-term dynamic game that we will describe later.

A pure strategy of a player at time t is a map αt : Ht −→ {h, l}, where Ht = Allt−1 × S the
set of histories at time t with All = {(s, a) | s = 1, . . . , n, a ∈ {h, l}}. The collection σ = (σt)t≥1
of pure strategy at each time constitutes a pure strategy of the population. We denote by Σ the
set of all pure strategies.

Let σ be a strategy profile, and ht = (s1, a1, . . . , st−1, at−1, st) be a history of length t. The
continuation strategy −→σ ht

from round t given the history ht can be defined as follows

−→σ ht
(s′1, a′1, . . . , a′t′−1, s′t′) = σ(s1, a1, . . . , st−1, at−1, st, s′1, a′1, . . . , a′t′−1, s′t′).

The fitness obtained with the policy −→σ , v = r(−→σ ht
) is called continuation fitness after ht. If σ is a

stationary policy then v depends only on the state st.

For each state s 6= 0, the action space of each player becomes [0, 1]. We define as a player
policy, the set of actions during his battery life, that is the sequence u = (u1, u2, . . .) where ui is
the probability of choosing action h at time slot i. We consider the energy level of energy at time
t as the random process (Xt)t≥1 and energy management is a Markov decision process.

For the remainder we shall consider only stationary policies where the probabilities ui is
the same for all time i and we denote it by the vector β = (β1, β2, . . . , βn) where βs is the
probability of choosing action h in state s. We denote by h = (1, . . . , 1) and l = (0, . . . , 0) the
two pure aggressive and non-aggressive policies.
Given a stationary policy β and a strategy of the global population α = (αt)t≥1, the transitions
in energy levels of the battery is described by the Markov process (Xt) with the transition law

∀s 6= 0, ∀a ∈ {h, l}, q(Xt+1 = s′|Xt = s, a) =





Qs(a) if s′ = s
1 − Qs(a) if s′ = s − 1

0 otherwise

and q(0|0, a) = 1.

We assume two main characteristics of the transition probabilities of energy levels depend-
ing on the action taken by the player.

• First, ∀s 6= 0, Qs(h) < Qs(l) < 1, reflects that using action h, the probability to remain in
any given energy level is lower than using action l,

• second, ∀a, the discrete function s 7−→ Qs(a) is non-decreasing. This assumption means
that lower is the energy level, lower is the probability to remain in the same level for each
action.

Note that each player controls the transition state of its own battery: Q is independent of the
decision of the other players. Let T(β) the expected time to reach to the state 0 given the initial
state Full n under the stationary policy β. Then the total reward of the player in all the lifetime
of its battery, starting in state n, is given by

Vβ(n, α) = Eβ,α
T(β)

∑
t=1

r(st, βst , αt) = r(n, βn, α) + Eβ,α

(
T(β)

∑
t=2

r(st, βst , α) |st1 = n

)
. (5.15)

5.7.3 Computing Fitness using Dynamic Programming

We define the dynamic programming operator Y(s, a, α, v) to be the total expected fitness of a
player starting at stat s if
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• It takes action a at time 1,

• at time 2 the total sum of expected fitness from time 2 onwards is v,

• At each time slot, the probability that another player uses action h, given that there is a
interaction between individual players, is α.

We denote by v the continuation fitness function which depends on the state s and the global
population strategy α. We have

Y(s, a, α, v) = r(s, a, α) + Qs(a)v(s, α) + (1 − Qs(a))v(s − 1, α), ∀a ∈ {h, l}.

The function v is a fixed point of the operator φ defined by

v −→ (φv) := βsY(s, h, α, v) + (1 − βs)Y(s, l, α, v).

Proposition 5.7.3.1. The expected fitness for a player during its lifetime is given by:

Vβ(n, α) =
n

∑
i=1

r(i, βi, α)

1 − Qi(βi)
− C.

Proof. We compute the fitness by using the recursive formula defined by the operator φ. First,
we have that v(0, α) = 0 and then

v(1, α) = φ(v) = β1[r(1, h, α) + Q1(h)v(s, α) + 0] + (1 − β1)[r(s, l, α) + Qs(l)v(1, α) + 0],

= r(1, β1, α) + [β1Q1(h) + (1 − β1)Q1(l)]v(1, α).

The fixed point v(1, α) is given by

Vβ(1, α) =
r(1, β1, α)

1 − [β1Q1(h) + (1 − β1)Q1(l)]
=

p + β1(1 − p)(1− α)

1 − [β1Q1(h) + (1 − β1)Q1(l)]
.

For all state s > 1 we have

v(s, α) = βs[r(s, h, α) + Qs(h)v(s, α) + (1 − Qs(h))v(s− 1, α)],

+(1 − βs)[r(s, l, α) + Qs(l)v(s, α) + (1 − Qs(l))v(s− 1, α)]

= r(s, βs, α) + [βsQs(h) + (1 − βs)Qs(l)]v(s, α) + [βs(1 − Qs(h)) + (1 − βs)(1 − Qs(l))]v(s− 1, α),

= r(s, βs, α) + Qs(βs)v(s, α) + (1 − Qs(βs))v(s − 1, α),

where Qs(βs) := βsQs(h) + (1 − βs)Qs(l). Since Qs(βs) < 1 one has

v(s, α) =
r(s, βs, α)

1 − Qs(βs)
+ v(s − 1, α).

By rewriting

v(s, α) =
s

∑
i=1

[v(i, α)− v(i − 1, α)],

we obtain that

Vβ(s, α) =
s

∑
i=1

r(i, βi, α)

1 − Qi(βi)
.

Hence, the expected fitness obtained by starting from the Full state n to the next new battery is
then given by

Vβ(n, α)− C.
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5.7.4 Sojourn Times

We denote by Ts(βs) the sojourn time of a player at the state s with the policy βs. The sojourn
time satisfies the following fixed point formula:

Ts(βs) = 1 + ∑
a∈{h,l}

Qs(a)βs(a)Ts(βs).

Hence,

Ts(βs) =
1

1 − Qs(βs)

The fraction of times that the player chooses the aggressive h in state s is given by

α̂s(β) = βs
Ts(βs)

∑
n
i=1 Ti(βi)

and the probability for any player to meet another player which is using action h is given by

α̂(β) :=
n

∑
s=1

α̂s(β) =
∑s βsTs(βs)

∑
n
i=1 Ti(βi)

≤ 1. (5.16)

The function α̂ gives a mapping between the strategy vector β of an anonymous player and the
global population strategy α.

5.7.5 Reduced game

We compare the two type of attitudes: use always the high power (h̄) or use always low power
l̄. The payoffs corresponding to these strategies are described as follows:

h̄ l̄
h̄ pTh Th

l̄ pTl pTl

where Th =
n

∑
s=1

1
1 − Qs(h)

(resp. Tl =
n

∑
s=1

1
1 − Qs(l)

) is the expected lifetime of the battery

under the policy h̄ (resp. l̄). Th can be interpreted also as the hitting time to the state 0 starting
from the state Full. This description gives us a two-player matrix game called reduced game.
Generically, the reduced game has a unique ESS and global maximizer. Since the remaining
energy of battery decreases with the power consumption: Th < Tl one has:

• If p = 0. Then h̄ is the unique ESS and
1
2

is the global maximizer.

• If 0 < p <
Th

Tl
then ν =

1
1 − p

− p

1 − p

Tl

Th
is the unique ESS and the global maximizer is

ν

2
.

• If
Th

Tl
< p ≤ 1 then l̄ is the unique ESS and global maximizer of the reduced game.
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5.7.6 Deterministic strategies

The action taken in each state s is determined with a given distribution the first time the player
is in this state. We are able to compute the ESS of this game by transforming our stochastic
population game into a standard Evolutionary Game depicted as a matrix game.
Lemma 5.7.6.1. The number of pure stationary strategies is 2n.

Proof. A pure strategy is an application from to set of states S\{0} to the actions {h, l}. Thus,
the number of the pure strategies is the cardinal of the set {h, l}S\{0} which is exactly 2n.

Denote by U = {β : y ∈ S\{0} 7−→ {h, l}} = {h, l}S\{0} the set of pure stationary strategies.
The cardinal of U is 2|S|−1.

Define the following finite population game Γd = (U, G) :

• U = {h, l}S\{0} is the set of actions. ∆(U) the set of probability measure on U (this corre-
sponds to be mixed strategies obtained by randomizing the pure stationary strategies).

• the payoff matrix is given by
Gu,u′ = Vu(n, α(u′)).

If I denotes the set of states in which the high power is used then

Gu,u′ = Vu(n, α(u′)) =
n

∑
s=1

p + (1 − p)(1− α(u′))us

1 − Qs(us)

where s ≥ 1, us ∈ {0, 1} and

α(u′) =
∑s∈I Ts(1)

∑s∈I Ts(1) + ∑s∈S\I Ts(0)
.

The size of the matrix is 2n × 2n.

The strategy w ∈ ∆(U) is an equilibrium of Γd if for all u ∈ U,

wu > 0 =⇒ Gu(w) = max
u′∈U

Gu′(w)

where
Gu(w) = ∑

u′
Guu′wu′ .

From Nash-Glicksberg’s fixed point theorem, and the symmetry of the game, the following
result holds:
Lemma 5.7.6.2. The game Γd has at least one symmetric equilibrium (in ∆(U)).

Any symmetric equilibrium of the matrix game Γd induced an equilibrium of the population
game in stationary strategies (this is because the set of symmetric mixed strategies in the matrix
game contains the set of stationary strategies). Any strategy u ∈ U satisfying

Guu > Gu′u, ∀ u′ ∈ U\u, (5.17)

is an ESS of the evolutionary game. Note that the non-strict inequalities Guu ≥ Gu′u, ∀ u′ ∈ U,
are necessary condition for u to be an equilibrium in the matrix game Γd.
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5.7.7 Pure stationary strategies

Preliminaries

As already mentioned, our game is different and has a more complex structure than a standard
evolutionary game. In particular, the fitness that is maximized is not the outcome of a single
interaction but of the sum of fitnesses obtained during all the opportunities in the player’s
lifetime.

We obtain the following characterization of an Evolutionary Stable Strategy (ESS).
Lemma 5.7.7.1. A necessary condition for β∗ to be an ESS is

for all β′ 6= β∗, Vβ∗(n, α̂(β∗)) ≥ Vβ′(n, α̂(β∗)) (5.18)

A sufficiency condition for β∗ to be an ESS is that (5.18) holds with strict inequality for all β′ 6= β∗.

Using this corollary and this simple necessary condition to be an ESS, we are now able to
determine the existence of an ESS. First we considering the restricted game to independent
state actions, i.e. the probability of choosing the aggressive action h does not depend on the
individual state. Second, we generalize to dependent state actions which is more complicated.
However we need latter the following lemma in numerous proofs.

Lemma 5.7.7.2. Given α̂(β′), the function Z : βs 7−→
p + (1 − p)(1− α̂(β′))βs

1 − Qs(βs)
is monotone.

Proof. Since Z is a continuously differentiable function, Z is strictly decreasing if

(1 − p)(1− α̂(β′))(1− Qs(l)) < (Qs(l)− Qs(h))p,

constant if
(1 − p)(1− α̂(β′))(1 − Qs(l)) = (Qs(l)− Qs(h))p

and strictly increasing if

(1 − p)(1− α̂(β′))(1− Qs(l)) > (Qs(l)− Qs(h))p.

Thus, given p, Q, the function Z is monotone.

5.7.8 State-independent strategies

We examine the case where the probability of choosing action h does not depend on the level of
energy of the battery, that is ∀s βs = ρ. We first consider only h̄ the fully aggressive strategy (the
player uses always the high energy level available in the state) or l̄ the fully passive strategy
(the player uses always weak action level when it is possible) policies.
Proposition 5.7.8.1. If p 6= 0, then the strategy h̄ which consists to play always h (ρ = 1) cannot be an
ESS. Otherwise, if p = 0 then h̄ is an evolutionary stable strategy.

Proof. Suppose that p 6= 0. Then, for all stationary mixed policy β′

V0(n, α(β′)) = p ∑
s

1
1 − Qs(l)

, and

V1(n, α(1)) = p ∑
s

1
1 − Qs(h)

.
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Thus V1(n, α(1)) < V0(n, α(1)). It is better to use the low power l if the opponent use high
power h (the payoff is p and the lifetime is increased). Hence, the strategy h̄ is not is a best reply
to itself. This means that h̄ is not a Nash equilibrium and then h̄ is not an ESS.
Suppose now that p = 0. Then the strategy l is weakly dominated, and Vh̄(n, α(h̄)) = 0 =
Vl̄(n, α(β′)), ∀β′. Moreover, for all β′ 6= h̄ we have

Vβ′(n, α(1)) = 0 = Vh̄(n, α(h̄)), and

Vh̄(n, α(β′)) = (1 − α(β′)) ∑
s

1
1 − Qs(h)

> Vβ′(n, α(β′)) = (1 − α(β′)) ∑
s

β′
s

1 − Qs(β′
s)

.

This completes the proof.

This result is somehow logical as when, at each time slot, any player is in interaction with
another player, the only strategy which permits to win the fight is to be aggressive. We have the
same kind of result for the non-aggressive strategy.
Proposition 5.7.8.2. The strategy l̄ which consists to play always l (ρ = 0) is an ESS if and only if the

subset of states I1 := {s, p <
1 − Qs(l)

1 − Qs(h)
} is empty.

Proof. We have

V0(n, α(β′)) = p
n

∑
s=1

1
1 − Qs(l)

, and Vβ(n, α(0)) =
n

∑
s=1

p + (1 − p)βs

1 − Qs(β)
.

Thus

max
β

Vβ(n, α(0)) = ∑
s∈I1

1
1 − Qs(h)

+ p ∑
s∈I0

1
1 − Qs(l)

+ ∑
s∈I∗

1
1 − Qs(h)

< V0(n, α(0)) (5.19)

where

I1 := {s, p <
1 − Qs(l)

1 − Qs(h)
},

I0 := {s, p >
1 − Qs(l)

1 − Qs(h)
},

I∗ := {s, p =
1 − Qs(l)

1 − Qs(h)
}.

The subsets I0, I1, I∗ constitute a partition of S. I∗ has at most one element. Using lemma 5.7.7.2
and the equation (5.19), l̄ is a best response to itself if

∑
s∈I1

1
1 − Qs(h)

< p ∑
s∈I1

1
1 − Qs(l)

.

This inequality does not holds if I1 is not empty.

We consider now stationary mixed strategies where each player determine the probability ρ
of choosing the aggressive strategy at each energy level of his battery.
Proposition 5.7.8.3. If the same level of aggressiveness βs = ρ ∈ (0, 1), ∀s is an ESS then it must
satisfy

p ∑
n
s=1

(Qs(l)−Qs(h))
(1−Qs(ρ))2

(1 − p) ∑
n
s=1

(1−Qs(l))
(1−Qs(ρ))2

= 1 − ρ. (5.20)

If p, Q and 0 ≤ ρ ≤ 1 satisfy (5.20), then ρ is an ESS.
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Proof. The strategy ρ is a best reply to the strategy β′ if it satisfies Vρ(n, α(β′)) ≥ Vµ(n, α(β′)), ∀µ ∈
[0, 1]n. Then, ρ is a best response to itself if

Vρ(n, α(ρ)) ≥ Vµ(n, α(ρ)), ∀µ ∈ [0, 1]n.

A necessary condition for an interior extremum of the function h : x 7−→
n

∑
s=1

p + (1 − ρ)(1 − p)x

1 − Qs(x)

is to satisfy

h′(x) = 0 ⇐⇒ 1 − ρ =
p ∑

n
s=1

(Qs(l)−Qs(h))
(1−Qs(x))2

(1 − p) ∑s
(1−Qs(l))
(1−Qs(x))2

.

Note that α(ρ) = ρ.

We now show that for every p, Q such that
p ∑

n
s=1

(Qs(l)−Qs(h))
(1−Qs(ρ))2

(1 − p) ∑s
(1−Qs(l))
(1−Qs(ρ))2

≤ 1, every strategy (ρ, 1− ρ)

satisfying

1 − ρ =
p ∑

n
s=1

(Qs(l)−Qs(h))
(1−Qs(ρ))2

(1 − p) ∑s
(1−Qs(l))
(1−Qs(ρ))2

is an ESS. Let β′ be a strategy such that Vρ(n, ρ) = Vβ′(n, ρ). Denote by C := Vρ(n, α(β′)) −
Vβ′(n, α(β′)). We now prove that C is strictly positive for all β′ 6= ρ.

The condition C > 0 is satisfied if

Vρ(n, α(β′)) > Vβ′(n, α(β′)),
n

∑
s=1

p + (1 − p)(1− α(β′))ρ

1 − Qs(ρ)
>

n

∑
s=1

p + (1 − p)(1− α(β′))β′

1 − Qs(β′)
.

Since Vρ(n, ρ) = Vβ′(n, ρ), one has

[p + (1 − p)(1− ρ)ρ] ∑
s

1
1 − Qs(ρ)

= [p + (1 − p)(1− ρ)β′] ∑
s

1
1 − Qs(β′)

.

This implies that

∑
s

1
1 − Qs(β′)

=
p + (1 − p)(1− ρ)ρ

p + (1 − p)(1− ρ)β′ ∑
s

1
1 − Qs(ρ)

.

By restituting this value in C, we obtain C > 0 if

n

∑
s=1

p + (1 − p)(1 − α(β′))ρ

1 − Qs(ρ)
> [p + (1 − p)(1 − α(β′))β′]

p + (1 − p)(1 − ρ)ρ

p + (1 − p)(1 − ρ)β′ ∑
s

1
1 − Qs(ρ)

,

(p + (1 − p)(1 − α(β′))ρ) > [p + (1 − p)(1 − α(β′))β′]
p + (1 − p)(1 − ρ)ρ

p + (1 − p)(1 − ρ)β′
,

(p + (1 − p)(1 − α(β′))ρ)(p + (1 − p)(1 − ρ)β′) > [p + (1 − p)(1 − α(β′))β′](p + (1 − p)(1 − ρ)ρ).

Developing and simplifying the last expression, we obtain that D > 0 is equivalent to [β′ −
ρ][α(β′) − ρ] = [β′ − ρ]2 > 0. This completes the proof.
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We are now able to determine explicitly, if it exists, an ESS in stationary mixed strategies
of our stochastic population game for energy management. Then, it is interesting to provide
conditions of existence of such stationary mixed ESS.
Proposition 5.7.8.4. A sufficiency condition of existence of an interior state-independent evolutionary
stable strategy is given by

p < p0 :=
∑

n
s=1

1
1−Qs(l)

∑
n
s=1

(1−Qs(h))
(1−Qs(l))2

. (5.21)

Proof. The function

ξ(p, ρ) = p
n

∑
s=1

(Qs(l)− Qs(h))

(1 − Qs(ρ))2 − (1 − p)(1− ρ)
n

∑
s=1

(1 − Qs(l))

(1 − Qs(ρ))2 ,

is continuous on (0, 1) and ξ(p, 1) > 0, ∀p ∈ (0, 1). Thus, if (5.21) satisfied then ξ(p, 0) < 0
and 0 is in the image of (0, 1) by ξ(p, .). This implies that there exists ρ ∈ (0, 1) such that
ξ(p, ρ) = 0.

Proposition 5.7.8.5. The game has at most one ESS in state independent strategies.

Proof. (i) Uniqueness of pure ESS: We have to examine the two strategies: h̄ and l̄. From Propo-

sition 5.7.8.2 l̄ is an ESS if and only p > max
s 6=0

(
1 − Qs(l)

1 − Qs(h)

)
and from Proposition 5.7.8.1, h̄ is an

ESS if and only p = 0. Since, max
s 6=0

(
1 − Qs(l)

1 − Qs(h)

)
> 0, we conclude that only one of two strategies

can be an ESS.

(ii) Strictly mixed ESS (or interior ESS): A necessary condition to interior ESS is given by
Equation (5.20). Let ρ and ρ′ in (0, 1) be two solutions of (5.20) i.e

ξ(p, ρ) = ξ(p, ρ′) = 0.

From Proposition 5.7.8.3, one has

Vρ′(n, α(ρ′)) ≥ Vρ(n, α(ρ′)) > Vρ′(n, α(ρ′))

which is a contradiction. We conclude that if an ESS exists in state-independent strategies, it is
unique.

Note that the inequality (5.21) is satisfied if

0 < p < min
s 6=0

(
1 − Qs(l)

1 − Qs(h)

)
. (5.22)

Moreover the following result holds:
Lemma 5.7.8.6.

min
s 6=0

(
1 − Qs(l)

1 − Qs(h)

)
< p0 < max

s 6=0

(
1 − Qs(l)

1 − Qs(h)

)
. (5.23)
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Proof. Let a = min
s 6=0

(
1 − Qs(l)

1 − Qs(h)

)
and b = max

s 6=0

(
1 − Qs(l)

1 − Qs(h)

)
. Then,

∀s, b >
1 − Qs(l)

1 − Qs(h)
> a ⇐⇒ (5.24)

∀s, b(1 − Qs(h)) > 1 − Qs(l) > a(1 − Qs(h)) ⇐⇒ (5.25)

∀s, b(1 − Qs(h)) − (1 − Qs(l)) > 0 > a(1 − Qs(h))− (1 − Qs(l)) ⇐⇒ (5.26)

∀s,
b(1 − Qs(h)) − (1 − Qs(l))

(1 − Qs(l))2 > 0 >
a(1 − Qs(h)) − (1 − Qs(l))

(1 − Qs(l))2 (5.27)

By taking the sum over s from one to n, one has,

b
n

∑
s=1

1 − Qs(h)

(1 − Qs(l))2 −
n

∑
s=1

1
1 − Qs(l)

> 0 > a
n

∑
s=1

1 − Qs(h)

(1 − Qs(l))2 −
n

∑
s=1

1
1 − Qs(l)

.

This means that ξ(b, 0) > ξ(p0, 0) > ξ(a, 0). Since, the function p 7−→ ξ(p, ρ) is strictly increas-
ing, the last inequality implies that b > p0 > a. This completes the proof.

The relation (5.22) gives another sufficient condition of existence of a stationary mixed ESS.

By proposition 5.7.8.2, there is a pure non-aggressive ESS (l) if and only if p > max
s 6=0

(
1 − Qs(l)

1 − Qs(h)
).

Then in some particular cases of parameters p and transition probabilities, there is no pure
independent stationary ESS nor mixed, when

p0 < p < max
s 6=0

(
1 − Qs(l)

1 − Qs(h)
).

The cooperative optimal strategy for players is denoted by ρ∗ that is defined by:

ρ̃ = arg max
β

Vβ(n, β).

This strategy gives the global optimum solution of the centralized system of our energy man-
agement model. We are interested in comparing the aggressiveness of the ESS to the global
optimum solution.
Proposition 5.7.8.7. Let ρ∗ be the ESS in stationary strategies of the stochastic population game and ρ̃
the global optimum solution. Then we have

ρ̃ ≤ min{1
2

, ρ∗}.

Proof. The function

β 7−→ Vβ(n, β) =
n

∑
s=1

p + (1 − p)(1− β)β

1 − Qs(l) + β(Qs(l)− Qs(h))

is continuous and strictly decreasing on (
1
2

, 1). Thus, the function has a global maximizer on

[0, 1] and the global maximizer is lower than
1
2

.

Let ρ∗ be an ESS. Suppose that ρ̃ > ρ∗. Since ρ∗ is an ESS, ρ∗ satisfies

Vρ∗(n, ρ∗) ≥ Vρ̃(n, ρ)
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and Vρ∗(n, ρ̃) > Vρ̃(n, ρ̃) if Vρ∗(n, ρ∗) = Vρ̃(n, ρ∗). Given a strategy β, the function α 7−→ Vβ(n, α)
is strictly decreasing. Hence,

Vρ∗(n, ρ∗) > Vρ∗(n, ρ̃) > Vρ̃(n, ρ̃).

The inequality
Vρ∗(n, ρ∗) > Vρ̃(n, ρ̃)

is a contradiction with the definition of ρ̃. Hence, ρ̃ ≤ ρ∗. We conclude that a global maximizer

is lower than
1
2

and ρ̃ coincides with ρ∗ (it is the case if the ESS is a pure strategy) or ρ̃ < ρ∗.

The main important result here is that the ESS is more aggressive than the global optimum
solution, i.e. ρ∗ ≥ ρ̃. This seems relatively intuitive because in a context of an evolutionary
game, every player is somehow afraid to meet another player using an aggressive strategy, then
the aggressive strategy is more used in the population.

5.7.9 State-dependent actions

We consider now that the action taken by each player depends on his energy level or state. We
first compute explicitly the best response correspondence BR : S\{0} −→ 2I where I is the
compact set [0, 1].
Proposition 5.7.9.1. In stationary strategies, the best response to the strategy α(β′) is determined by
(β1, . . . , βn) such that for all s = 1, . . . , n,

βs(α(β′)) =





1 if α(β′) < 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))

0 if α(β′) > 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))

any strategy ηs ∈ [0, 1] if α(β′) = 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))

Thus, the optimal stationary strategy β = (β1, . . . , βn) is characterized by

βs =






1 if s ∈ Iα := {j,
Qj(l)− Qj(h)

(1 − Qj(l))
< (1 − α)(−1 +

1
p
)}

0 if s ∈ Jα := {j,
Qj(l)− Qj(h)

(1 − Qj(l))
> (1 − α)(−1 +

1
p
)}

Proof. The best reply βs to α(β′) maximizes the function Z : βs 7−→ p + (1 − p)(1− α̂(β′))βs

1 − Qs(βs)
defined in Lemma 5.7.7.2. From Lemma 5.7.7.2, Z is monotone. The maximizer is one if

(1 − p)(1− α̂(β′))(1− Qs(l)) > (Qs(l)− Qs(h))p,

zero if
(1 − p)(1− α̂(β′))(1− Qs(l)) < (Qs(l)− Qs(h))p,

and any strategy in [0, 1] is maximizer of Z if the equality

(1 − p)(1− α̂(β′))(1− Qs(l)) = (Qs(l)− Qs(h))p
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holds. We conclude that

βs(α(β′)) =





1 if α(β′) < 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))

0 if α(β′) > 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))

any strategy ηs ∈ [0, 1] if α(β′) = 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))

Let

f (s) =
Ts(l)

Ts(h)
=

1 − Qs(h)

1 − Qs(l)
, (5.28)

be the ratio between the sojourn time with the low power l and the sojourn time with h in each
state s. By taking assumption on the transition probabilities, we have that for all energy level
s, f (s) > 1. This ratio can be interpreted also as the proportion of time obtained taken the
non-aggressive action l in state s compared to the aggressive one h.
Definition 5.7.9.2 (Threshold Policies). We define the two following pure threshold policies u1 and
u2:

• Risky Policy (RP) : there exists a state s such that ∀s′ > s, u1(s′) = L and ∀s′′ < s, u1(s′′) = H.
This policy is called a control limit policy in (139).

• Carefully Policy (CP) : there exists a state s such that ∀s′ > s, u2(s′) = H and ∀s′′ < s,
u2(s′′) = L.

That kind of threshold policies, keeping the same action until the level of energy is low, has
been also obtained in (139) in a context of a dynamic Hawk and Dove game. The inequality

α(β′) < 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))
= 1 − p

1 − p
( f (s) − 1) is equivalent to

(1 − α(β′))
1 − p

p
> f (s) − 1, (5.29)

where f (s)− 1 is exactly the gain in mean sojourn time in state s using action l instead of action
h. Equation 5.29 can be rewritten:

p

1 − Qs(l)
<

1 − (1 − p(1 − α(β′)))
1 − Qs(h)

,

where the left side term is the average reward for a player during the time it is in state s and it
uses action l, and the right term is the average reward during the time it is in state s and it uses
action h. Then, the threshold policies are based on the comparison between the average instan-
taneous reward in each state depending on the action taken by each player which determines
the instantaneous reward and also the remaining time in this state.

We have the following result showing that the best response strategies are u1 or u2 depend-
ing on the structure of the Markov Decision Process.
Proposition 5.7.9.3. The best response is u1 (resp. u2) if f (s) is increasing (resp. decreasing).

Proof. First we assume that the function f is decreasing, meaning that more the level of energy is

high, more is the gain of surviving time in each energy level. If
1 − Qn(h)

1 − Qn(l)
) < (1 − α)(−1 +

1
p
)
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then

βs =

{
plays h if s ≥ j(α, p)
plays l if s ≤ j(α, p)− 2

else if
1 − Qn(h)

1 − Qn(l)
> (1 − α)(−1 +

1
p
) then βs consists to play always l where

j(α, p) := min{j,
1 − Qj(h)

1 − Qj(l)
< (1 − α)(−1 +

1
p
)}.

Note that one has at most one state s such that
1 − Qj(s)

1 − Qs(l)
= (1 − α)(−1 +

1
p
). We have the

inverse relations if f (s) is increasing.

Theorem 5.7.10 (Partially mixed equilibrium). If there exists a level s such that βs =
α∗ + (1 − Qs(l))(κ2α∗ − κ1)

1 − (Qs(l)− Qs(h))(κ2α∗ − κ1)
∈

(0, 1) where

κ1 = ∑
j∈I

1
1 − Qj(h)

, κ2 = κ1 + ∑
j/∈I, j 6=s

1
1 − Qj(l)

, α∗ = 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))
,

I = {j 6= s, f (s) > f (j)}
and β j, j 6= s given by

β j =





plays h if
(Qs(l)− Qs(h))

(1 − Qs(l))
>

(Qj(l)− Qj(h))

(1 − Qj(l))
i.e f (s) > f (j)

plays l otherwise



 ,

then β = (β1, . . . , βn) is an equilibrium.

Proof. By Proposition 5.7.9.1, the best reply has the form

BR(βs) =





play action h if α(βs) < 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))
,

play action l if α(βs) > 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))
,

any strategy h, l or mixed if α(βs) = 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))
.

The fixed point equation gives β ∈ BR(β) with

α(β) =
∑

n
s=1

βs

1−Qs(βs)

∑
n
s=1

1
1−Qs(βs)

.

Since f is monotone and Qs(l) < Qs(h), there exist at most one state s0 such that

1 − Qs0(h)

1 − Qs0(l)
= (1 − α(β))(−1 +

1
p
) (5.30)

and a mixed equilibrium is characterized by
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β′
s =






play action h if s′ > s0,
play action l if s′ < s0,

any strategy h, l or mixed if s′ = s0.

where βs0 satisfies equation 5.30. After some basic calculations, equation 5.30 has a unique
solution given by

βs0 =
α∗ + (1 − Qs(l))(κ2α∗ − κ1)

1 − (Qs(l)− Qs(h))(κ2α∗ − κ1)
∈ (0, 1)

with

κ1 = ∑
j∈I

1
1 − Qj(h)

, κ2 = κ1 + ∑
j/∈I, j 6=s

1
1 − Qj(l)

, α∗ = 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))
,

I = {j 6= s, f (s) > f (j)}.

Note that a necessary condition of existence such s is that

p >
(1 − c)(1 − Qs(l))

(1 − Qs(h)− c(1 − Qs(l)))

with c =
1 + κ1(1 − Qs(h))

1 + κ2(1 − Qs(h))
∈ (0, 1). We then obtain several equilibria by permutation on the

state satisfying βs =
α∗ + (1 − Qs(l))(κ2α∗ − κ1)

1 − (Qs(l)− Qs(h))(κ2α∗ − κ1)
∈ (0, 1).

Lemma 5.7.10.1. The partially mixed equilibrium is decreasing in p.

Proof. It suffices to proof in the unique state s in which βs ∈ (0, 1). The fraction of players with
the aggressive action in state s is then given by

βs =
α∗ + (1 − Qs(l))(κ2α∗ − κ1)

1 − (Qs(l)− Qs(h))(κ2α∗ − κ1)
∈ (0, 1)

where

κ1 = ∑
j∈I

1
1 − Qj(h)

, κ2 = κ1 + ∑
j/∈I, j 6=s

1
1 − Qj(l)

,

α∗ = 1 − p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))
, I = {j 6= s, f (s) > f (j)}.

Since the function p 7−→ α∗(p) = 1− p(Qs(l)− Qs(h))

(1 − p)(1− Qs(l))
is strictly decreasing, the denominator

is non-decreasing in p and the numerator is strictly decreasing in p. Thus βs is decreasing in p.
This completes the proof.
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5.7.11 Dynamics

By proposition 5.7.9.3 we know that, when the function f is monotone, the best response strate-
gies have a given structure defined as threshold policies RP or CP. In order to numerically
observe the equilibrium policies in the population, we construct the replicator dynamics which
have properties of convergence to equilibrium and ESS in evolutionary games. A replicator
dynamic is a differential equation that describes the way strategies change in time as a function
of the fitness. Roughly speaking they are based on the idea that the average growth rate per
player that uses a given action is proportional to the excess of fitness of that action with respect
to the average fitness.

When f is monotone increasing (resp. decreasing) the set of policies are u1
1, . . . , un+1

1 (resp.
u1

2, . . . , un+1
2 ) where policy ui

1 (resp. ui
2) consists of taking action h (resp. l) in the i − 1 first

states. For all i = 1, . . . , n + 1 the proportion of the population playing ui
1 is denoted by σi. The

replicator dynamics describes the evolution of the different policies in the population in time
and is given by the following differential equation:

σ̇i(t) = σi(t)

[
n+1

∑
j=1

σj(t)G
ui

1,uj
1
−

n+1

∑
k=1

n+1

∑
j=1

σk(t)σj(t)G
uk

1,uj
1

]
=: fi(σ(t)). (5.31)

The replicator dynamics satisfies the so-called positive correlation condition:

f (σ) 6= 0 =⇒ ∑
j

G
u

j
1
(σ) f j(σ) > 0.

It follows from (? ) that any equilibrium σ∗ (in the n−simplex of the (n + 1)−dimensional
Euclidean space Rn+1) of the evolutionary game is a rest point of the replicator dynamics. In
order to describe the long-term behavior of the dynamics, we shall say that a stationary point (or
rest point) σ∗ is stable under (5.31) if for every neighborhood N of σ∗ there exists a neighborhood
N ′ j N of σ∗ such that σ∗ ∈ N ′ =⇒ σ(t) ∈ N , ∀t ≥ 0. If σ∗ is a stable rest point of (5.31) then
σ∗ is an equilibrium.

5.7.12 Numerical Illustrations

We consider an evolutionary game where each player has n = 5 levels of energy. Each player
starts his lifetime full of energy (level 5) and has to decide between an aggressive or a non-
aggressive action at each pairwise interaction with another player. We assume that all players
are in the same population that means that all players have the same transition probabilities Q.

We consider the following transition probabilities

Q =




0.1 0.05
0.2 0.1
0.5 0.4
0.7 0.6
0.8 0.7




,

where for i = 1, . . . , 5, Qi1 (resp. Qi2) is the probability to remain in energy level i using
action l (resp. h).
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5.7.13 State-Independent action

Each player chooses action h with a probability that does not depend on their level of energy.
We denote this probability by ρ. First, using this transition probabilities, the threshold p0 given
by equation 5.21 induces the existence of an ESS is

p0 = 0.75

Then using result from proposition 5.7.8.4, if the probability p is less than 0.75, there exists an
ESS which is the unique solution of the system defined in equation 5.20.

Second, we have M = max
s

1 − Qs(l)

1 − Qs(h)
= 0.9474, then using proposition 5.7.8.2 the subset of

states I1 is empty. Then, we have that if p > 0.9474 the unique ESS is to take always action l,
that is ρ = 0.

We observe also on figure 5.1 that taking the pure aggressive action h is only an ESS when
p = 0. It is somehow intuitive because if the system is such that every player meets always
another player, the best strategy to survive is to be aggressive. Related to this comment, we
observe also that the probability to choose an aggressive action is monotone decreasing with p.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

p

ρ

ESS
Global Optimum

p
0
=0.75

M=0.9474

Figure 5.1: ESS ρ with state-independent actions

Finally, we also verify the result of the proposition 5.7.8.7 comparing the ESS with the global
optimum solution.

5.7.14 Dependent state action

We consider that each player decide to take an aggressive action depending on their level of
energy. Using the transition probabilities Q the function f defined by equation 5.28 is strictly
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increasing, that means that the best response strategy is a risky policy as u1. We describe the
set of policies u1

1, u2
1, . . . , u6

1 where the policy ui
1 has 5 components which are the action in each

energy level from 1 to 5. For example, u3
1 = (hhhll) means action h in states 1, 2 and 3; and

action l in states 4 and 5.
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Figure 5.2: Replicator dynamic with p = 0.5

On figure 5.2, the replicator dynamics converge when p = 0.5 to the pure policy u2
1, i.e. each

player takes action l only in the full energy level (state 5). On figure 5.3 the replicator dynamics
converge to a mixed strategy between policies u1

1 and u2
1 where 87.41% of the population uses

policy u1
1 and 12.59% policy u2

1. When p = 0.9, we observe on figure 5.4 the replicator dynamics
converge to the pure policy u5

1 which consists to take action h only in state 1. Moreover, we
observe that every rest points of the replicator dynamics in the three cases are stable and then
there are equilibrium.

Finally, with those examples, we have observed that when the probability to meet another
player decreases (means p increases), players become less aggressive and the equilibrium tends
to non-aggressive policies.

5.7.15 Notes

We have studied an energy management non-cooperative population game using evolutionary
Markov game framework. We have presented a problem considering the stochastic evolution-
ary games where each player can be in different state during his life, and has the possibility to
take several actions in each individual state of each player. Those actions have an impact not
only on the instantaneous fitness but also on the future individual’s state of the player. Restrict-
ing the game to stationary mixed policies, we have determined explicitly the ESS of the stochas-
tic population game. Considering more general dependent state policies, we have obtained
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Figure 5.3: Replicator dynamic with p = 0.1

the threshold structure of the best response policies and then we have studied numerically the
convergence of the replicator dynamics to an ESS.

5.8 Access Control in Solar-Powered Broadband Networks

This Section studies both power control and multiple access control in solar-powered broad-
band wireless networks. We assume that the mobiles use power storage element, such as
rechargeable Solar-powered batteries, in order to have energy available for later use. By model-
ing the energy-level of Solar-powered batteries as a stochastic process, we study noncooperative
interactions within large population of mobiles that interfere with each other through many lo-
cal interactions. Each local interaction involves a random number of mobiles. The actions taken
by a mobile determine not only the immediate payoff but also the state transition probabilities
of its battery. We define and characterize the evolutionary stable strategies (ESS) of the stochas-
tic evolutionary game.

Environmental energy is becoming a feasible alternative for many low-power systems, such
as wireless sensor and mesh networks. However, this provides an unpredictable and limited
amount of energy over time. The power storage elements, such as rechargeable batteries or
super-capacitors, become very useful to increase the system lifetime and the system availabil-
ity. In particular, solar power is made possible with the use of Photovoltaic cells (see Fig. 5.5).
Comprised of several layers of material, these cells are able to produce electrical power from
exposure to sunlight. Since in many geographic areas, nice weather is not guaranteed and is
unpredictable, the nodes should be able to recover from blackout periods caused by the un-
availability of energy. In (158), a stochastic model for a solar powered wireless sensor/mesh
networks is used to analyze the following QoS measures for several stochastic policies pro-
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Figure 5.4: Replicator dynamic with p = 0.9

posed: the average battery capacity, the sleeping probability and the average delay.

In this Section, we consider an evolutionary game approach with dynamic rechargeable bat-
tery depending on the weather (solar energy). We make use of stochastic evolutionary games in
solar-powered broadband wireless networks. There are many local interactions among individ-
uals belonging to large populations of mobiles. The result of the interaction between mobiles
depends on their current individual state. From time to time the individual state of a mobile
varies. The action choice of mobiles involved in a local interactions as well as their individual
states determine the not only the result of the interactions but also the transition probabilities to
the other possible individual states. Each individual is thus faced with an Markov Decision Pro-
cess (MDP) in which it maximizes the expected average cost criterion. Each individual knows
only the state of its own MDP, and does not know the state of the other mobiles it interacts with.

The destination of some transmission occasionally may receive simultaneously a transmis-
sion from another terminal which results in a collision. It is assumed however that even when
packets collide, one of the packets can be received correctly if transmitted at a higher power. As
state of the MDP of a user we take its energy level. The immediate fitness (rewards) is the num-
ber of successful transmissions. By allowing the mobiles to be equipped with rechargeable solar
powered batteries, the mobiles may have infinite life time and the criteria that is maximizing is
the limit average Cesaro-type payoff.

Consider the following setting of evolutionary games: there is a large populations of mo-
biles; each mobile has a finite number of transmission power level available. There are many
local interactions at the same time. At each slot, some of the terminals have to take a decision
on their transmission power based on their own battery state. At the lowest state of the bat-
tery no power is available and the mobile has to wait the time to have good weather for regain
some energy. Each player has its individual states set S = {0, 1, 2, . . . , n}. Each mobile of the
population has a finite action set in each state s : A(s). We assume that there are a random
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Figure 5.5: Solar-power mechanism

number of interacting mobiles in each local interaction. At time t, each mobile knows its own
state st and selects an action at ∈ A(st). The mobile receives some payoff r(st, at, αt) where αt

is the composition of the population at time t (the j−th element of αst
t represents the fraction of

mobiles choosing the action j) and the state of mobile goes to the state st+1 with the probability
q(st+1|st, at). Each individual is thus faced with an MDP in which it maximizes the expected av-
erage fitness criterion. Each individual knows only the state of its own MDP, and does not know
the state of the other players it interacts with. The transition probabilities of a player’s MDP are
only controlled by that player. Let ∆(S) be the (|S| − 1)-dimensional simplex of the Euclidean
space R|S|. The set of all action profiles at all states is given by All = {(s, a), s ∈ S, a ∈ A(s)},
then q : All ×Θ → ∆(S) is a transition rule between the states where Θ = ∏

s∈S

∆(A(s)), ∆(A(s))

is the set of probability distribution on A(s). The vector [q(st+1 = 0|st, at), . . . , q(st+1 = n|st, at)]
satisfies ∀ j ∈ S, q(st+1 = j|st, at) ≥ 0, ∑

j∈S

q(st+1 = j|st, at) = 1. A state s is absorbing state if

q(s|s, a) = 1, ∀ a ∈ A(s), ∀α ∈ Θ. We examine the limit average Cesaro-type payoff given a
population profile σ and an individual trajectory u,

Fn(u, σ) = lim inf
T−→+∞

Eu,σ

(
1
T

T

∑
t=1

r(st, at, αt)

)

where Eu,σ,n denotes the expectation over the probability measure Pu,σ,n induced by u, σ on the
set of histories endowed with the product σ−algebra (initial state of the battery is n). Define
further

• The subset US of stationary policies; a stationary policy u is a policy in which the proba-
bility to choose an action a depends only on the current state s; it is denoted by u(a|s).

• The subset UD ⊂ US of pure or deterministic stationary policies UD. A policy of this type
can be viewed as a function from the states to the actions.

• The set UM of mixed strategies: A mixed strategy is identified with a probability γ over
the set of pure stationary strategies. It can be considered as first choosing a pure stationary
policy u with probability γ(u) and then keeping choosing forever the actions according to
u. A general mixed strategy is a mixture of behaviorial strategy.

Occupation measure Often we encounter the notion of individual states in evolutionary
games; but usually the population size at a particular state is fixed. In our case the choices of
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actions of an individual determine the fraction of time it would spend at each state. Hence the
fraction of the whole population that will be at a given state may depend on the distribution of
strategies in the population. In order to model this dependence we first need to introduce the
expected average frequency fn,u(s) that an individual spends at a given state s when it follows a
strategy u and its initial state at time 1 is n. Moreover, we define fn,u(s, a) the expected average

frequency during which it is at state s and it chooses action a, fu,n = lim
To∞

1
T

T

∑
t=1

Qt(u) where

Q(u) := [q(s′|s, a, u)]s′,s,a.

We now define the equilibrium concept in the context of evolutionary games. A behaviorial
stationary strategy u = (u1, . . . , un) with ui = (xi, yi) is an evolutionary stable strategy (ESS) if
for all strategy mut such that fmut 6= fu there exists ǫmut > 0 such that

∑
s,a

( fu(s, a) − fmut(s, a))r(s, a, αǫ) > 0 where αǫ = (1 − ǫ)α(u) + ǫα(mut).

Interpretation: Suppose that, initially, the population profile is α(u). Now suppose that a
small group of mutants enters the population playing according to a different profile α(mut). If
we call ǫ ∈ (0, 1) the size of the subpopulation of mutants after normalization, then the popu-
lation profile after mutation will be ǫα(mut) + (1 − ǫ)α(u). After mutation, the average payoff
of non-mutants will be given by ∑

s,a
fu(s, a)r(s, a, αǫ). Analogously, the average payoff a mutant

is ∑
s,a

fmut(s, a)r(s, a, αǫ). That is, u is ESS if, after mutation, non-mutants are more successful

than mutants. In other words, mutants cannot invade the population and will eventually get
extinct. In case where the payoff function r is linear in last variable α (it is not the case in this
model) then this definition is equivalent to α(u) is a strict symmetric Nash equilibrium or α(u)
is a strictly better response than α(mut) given that the others mobiles mut. Note that if α is not
linear, we can have α(ǫmut + (1 − ǫ)u) 6= ǫα(mut) + (1 − ǫ)α(u).

5.8.1 Stochastic modeling of the energy levels of Solar-powered battery

we assume that a battery has n + 1 energy states S = {0, 1, . . . , n}. The state 0 corresponds to
the state Empty and the state n is the Full state of the battery. The other states 1, . . . , n − 1 are
intermediary states of the battery. We associate with each mobile a Markov Decision Process
(MDP) which represents the transition probabilities between energy levels. Let Xi

t be the energy
level of battery at time t. Given a stationary policy σ and a strategy of all the population α =
(αt)t≥1, the transition probability of the energy level of battery is is described by the (first order,
time-homogeneous) Markov process (Xt) where the transition probability law q which is given
by

qsas′ =






1 − Rγ,s(a) − Qγ,s(a) if s′ = s − 1
Rγ,s(a) if s′ = s + 1
Qγ,s(a) if s′ = s

0 otherwise

, ∀1 ≤ s ≤ n − 1, ∀ as ∈ A(s),

qnas′ =





1 − Qγ,n(a) if s′ = n − 1
Qγ,n(a) if s′ = n

0 otherwise
, q0as′ =





γ if s′ = 1
(1 − γ) if s′ = 0

0 otherwise
,

where γ 7−→ Rγ,s(a) ∈ [0, 1] is an increasing function ∀s, a with R0,s(a) = 0, 0 ≤ Rγ,s(a) +
Qγ,s(a) ≤ 1. The factor γ represents the probability to have a "good weather". If γ is zero, the
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state 0 is unique absorbing sate and expected lifetime of the battery is finite. For γ 6= 0, the
Markov chain is irreducible i.e., there is only one class, that is, all states communicate with each
other for stationary policy.

5.8.2 Battery-state dependent access control in solar-powered system

This subsection studies is a generalization of the random access game with unknown number of
mobiles, finite state, and three strategies.The channel is ideal for transmission and all errors are
due to collision. A mobile can transmit a packet using a power level among three available
levels: transmit with high power Ph, transmit with low power Pl or does not transmit 0. We
consider a general capture model where a packet transmitted by a mobile is received success-
fully when if and only if that mobile uses a transmission power which is greater than the power
used by the others transmitters at that time slot. Given a population profile α = (x, y, 1− x − y)
with 0 ≤ x, 0 ≤ y, x + y ≤ 1, the expected probability to have a successful transmission :

(i) When the mobile chooses Pl, the reward is the probability that the others mobiles choose
zero i.e no others mobiles transmit, i.e.,

r(s, Pl , α) = ∑
k≥0

P(K = k) (1 − x − y)k = E((1− x − y)K) = GK(1 − x − y)

where GK is the generating function of K.

(ii) When the mobile chooses Ph, the reward is the probability that no other mobiles transmit
with the high power i.e.,

r(s, Ph, α) = EK

K

∑
l=0

(K
l )(1 − x − y)lyK−l = EK(1 − x)K = GK(1 − x). (5.32)

where (K
l ) is the binomial coefficient of K and l.

(iii) When the terminal chooses 0, the reward is zero, i.e., r(s, 0, α) = 0

Since there are three strategies Ph, Pl and 0, the population aggressiveness can be described by
a process (xt, yt)t≥1 where xt (resp. yt) is the fraction of the population using the high power
level (low power) at time t. However, for each state s 6= 0, the action space becomes M :=
{(x, y), x ≥ 0, y ≥ 0, x + y ≤ 1}. A stationary policy of an user is a map β : S −→ M. The
expected reward of a user when its battery is at the state s 6= 0 is then given by

r̃(s, β, α) = x′sr(s, Pl , α) + y′sr(s, Pl , α),

where β(s) = (x′s, y′s) ∀s ∈ S.

5.8.3 Computing Equilibria and ESS

Nash Equilibria and Pareto optimality

In this subsection, we study the existence and uniqueness of Nash equilibrium in different sce-
narios :
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Two mobiles K = δ2 The interaction in each slot and each non-empty individual state is
described in the following tabular. Mobile 1 chooses a row, mobile 2 chooses a column. The
payoff of mobile 1 (resp. mobile 2) is the first (resp. the second) component of the vector payoff.

1\2 ”0” Pl Ph

”0” (0, 0) (0, 1)⋄ (0, 1)⋄⋆

Pl (1, 0)⋄ (0, 0) (0, 1)⋄⋆

Ph (1, 0)⋄⋆ (1, 0)⋄⋆ (0, 0)⋆

The Nash equilibria are represented by ⋆ and Pareto optimal allocation 3 are represented by ⋄.

Three mobiles K = δ3 The instantaneous reward is presented in the matrix game. Mobile 1
chooses a row, mobile 2 chooses a column and mobile 3 chooses an array Mi.

M1 :=
(0, 0, 0) (0, 1, 0)⋄ (0, 1, 0)⋆

(1, 0, 0)⋄ (0, 0, 0) (0, 1, 0)⋆

(1, 0, 0)⋄⋆ (1, 0, 0)⋄⋆ (0, 0, 0)⋆
M2 :=

(0, 0, 1)⋄ (0, 0, 0) (0, 1, 0)⋄⋆

(0, 0, 0) (0, 0, 0) (0, 1, 0)⋄⋆

(1, 0, 0)⋄⋆ (1, 0, 0)⋄⋆ (0, 0, 0)⋆

M3 :=
(0, 0, 1)⋄⋆ (0, 0, 1)⋄⋆ (0, 0, 0)⋆

(0, 0, 1)⋄⋆ (0, 0, 1)⋄⋆ (0, 0, 0)⋆

(0, 0, 0)⋆ (0, 0, 0)⋆ (0, 0, 0)⋆

Proposition 5.8.3.1. In any state s 6= 0, the one-shot local interaction between p ≥ 2 mobiles has an

infinite (Nash) equilibria, (
p
1)2p−1 = p2p−1 of them are Pareto optimal, and a unique symmetric (Nash)

which is the strategy h (independently of the state).

Note that this one-shot game has a unique evolutionary stable state (see (11)).

Proof. The Nash equilibria and Pareto optimality of the local interaction in state s 6= 0 can be
described as follows:

(i) Symmetric Equilibrium It is clear that r(s, Ph, α) ≥ r(s, Pl, α) ≥ r(s, 0, α), ∀ α i.e Ph weakly
dominates Pl which weakly dominates 0. Hence, the strategy Ph is an equilibrium. Moreover
the best reply to the population profile α = (x, y, 1 − x − y) is to play Ph if x 6= 1, and to play
any strategy z ∈ [0, 1] if x = 1. Thus, (Ph, Ph, . . . , Ph) is the unique symmetric equilibrium.
At the equilibrium (Ph, Ph, . . . , Ph), the reward of each mobile is zero. Thus, (Ph, Ph, . . . , Ph) is
not Pareto optimal because the allocation obtained at (Ph, Pl, . . . , Pl) or (Ph, 0, 0, . . . , 0) Pareto
dominates zero.

(ii)Pure Equilibria: Fix a mobile m which uses the action Ph. Then any action profile of the
others mobiles b−m ∈∈ {0, Pl, Ph}p−1 leads to a Nash equilibrium (no mobile can improve its
probability of success by deviating unilaterally). In particular, if k (0 ≤ k ≤ p − 1) of the p − 1
mobiles choose Pl and the p − k − 1 others use 0 then no mobile can improve its probability of

success by deviating unilaterally. The mobile m has exactly
p−1

∑
k=0

(
p−1
k ) = 2p−1 pure equilibria in

which he/she has successful transmission. By changing the role of m, we get (
p
1 )2p−1 = p2p−1

pure equilibria with successful transmission. All these pure equilibria are Pareto optimal: if
only one terminal uses the high power Ph and the others mobiles use 0 or Pl ,, then the mobile
with the high power Ph gets the payoff 1 and the others gets the payoff 0.

3An allocation of payoffs is Pareto optimal or Pareto efficient if there is no other allocation that makes every node at
least as well off and at least one node strictly better off.
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(iii)Mixed Equilibria: Any situation where at least one of the mobiles use the strategy Ph ,
and other mobiles use an arbitrary mixed strategies, gives a mixed Nash equilibria. The allo-
cation of payoff obtained in these mixed strategy are not Pareto optimal if at least one mobile
chooses the strategy Ph with positive probability.

In the figure 5.6, we plot the best response (power level) of a mobile for a given trajectory
of a profile population, with Ph = 10 and Pl = 2. We observe that the best response is is to
use a low power when the population is very aggressive (x = 1), and to use the high power
in any state s 6= 0 when the population is less aggressive x < 1. In the figure 5.7, we plot the
sojourn time of a mobile to stay in a state as function of its stationary strategy β = (x, y) with
s 6= 0, Qs(0) = 0.95, Qs(Pl) = 0.65 and Qs(Ph) = 0.25. We observe that the sojourn time is
decreasing function in aggressiveness of that mobile.

Power Level

Times
0

2

10

Figure 5.6: best reply (line) during several slots.
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Figure 5.7: Sojourn time

Fig.5.8 represents the probability of success in uniform distribution between three mobiles
and Fig.5.9 in Poisson distribution with intensity 0.2. The probability to have a successful trans-
mission in any state s decreases with the aggressiveness of the population.
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Figure 5.8: Payoff – uniform distribution
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Figure 5.9: Payoff – Poisson distribution
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Figure 5.10: Expected average payoff versus γ.

Evolutionarily Stable Strategy

Under the condition γ > 0, we have the following result:
Proposition 5.8.3.2. The payoff function has a representation in term of occupation measure, i.e.,
Fn,u(σ) = ∑

s,a
fu(s, a)r(s, a, α) where α = (x, y) is the profile of population under stationary strategy σ.

Proposition 5.8.3.3. The fully aggressive strategy P̄h which consists to transmit with the maximum
power (Ph) in each state s 6= 0 is an Evolutionarily Stable Strategy.

Proof. Let mut such that α′(mut) 6= 1. For u = P̄h the time average payoff is Fu(αǫ) = GK

(
ǫ(1 − α′Ph

(mut))
) n

∑
s=1

fP̄h
(Ph),

and

Fmut(αǫ) =
n

∑
s=1

fmut(s, muts)×
[
mutPh

GK(ǫ(1 − α′Ph
(mut))) + mutPl

GK(ǫ(1− α′Ph
(mut)− α′Pl

(mut)))
]

.

Since the generating is increasing, GK(ǫ(1− α′Ph
(mut)− α′Pl

(mut))) ≤ GK(ǫ(1− α′Ph
(mut)) with

equality if and only α′Pl
(mut) = 0. We deduce that Fmut(αǫ) is strictly greater FPh

(αǫ) for all mut

such that α′Ph
(mut) < 1.

The Figure 5.10 illustrates the expected long-term payoff versus the parameter γ. We took
four states and Rs,γ = γ, Rs,γ = 0.3 ∗ (1 − γ).

5.8.4 Power control in clouded weather

We assume now that the solar-powered system is in a clouded weather (γ = 0, "no sunlight")
during a long period (clouded sky, raining time or due to the season). Power storage elements,
such as supercapacitors (but finite in practice), in order to have energy available for later use
has been proposed. Because of limited capacity (hence energy of the battery), the aggressive
terminals (which use the high power) will be rapidly in the state 0 which becomes an absorbing
state. The terminals with empty battery need an alternative solution such as external recharge or
to buy a new battery. So there is an additional cost to survive in this situation. If the maximum
lifetime of the battery (for example using the power ”0”) is finite then the power control in
clouded weather can be modeled by the stochastic evolutionary game with total successful
transmission before to reach to the absorbing state 0.
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Lemma 5.8.4.1. The total expected successful transmission during the lifetime of the battery under the
strategy u is given by

1
1 − γ

× 0 +
n

∑
s=1

us(Pl)GK(1 − αPl
− αPh

) + us(Ph)GK(1 − αPh
)

1 − Q0,s(us)

where Q0,s(us) := us(Ph)Q0,s(Ph) + us(Pl)Q0,s(Pl)

Proof. This says that the total reward total is the sum over the states of the expected successful
transmission times the expected sojourn times spent in this state. The sojourn time in state s

under the policy us is
1

1 − Q0,s(us)
. This completes the proof.

The following Proposition holds in the stochastic evolutionary game with total reward.
Proposition 5.8.4.2. (i) The strategy "stay quiet" (plays ”0” in each state) cannot be an ESS. (ii) A
necessary condition for the full aggressive strategy to be an ESS is GK(0) = P(K = 0) = 0. Moreover if

GK(1− αPh
)

n

∑
s=1

1
1 − Q0,s(Ph)

> max
mut∈{Ph,Pl}n

{
n

∑
s=1

r(s, muts, α)

1 − Q0,s(muts)

}
then P̄h is an ESS. (iii) Similarly,

if GK(1 − αPh
)

n

∑
s=1

1
1 − Q0,s(Pl)

> max
mut∈{Ph,Pl}n

{
n

∑
s=1

r(s, muts, α)

1 − Q0,s(muts)

}
then P̄l is an ESS.

Proof. The strategy "stay quiet" (play ”0” in each state) cannot be an ESS because it is best reply
to itself. Hence, the strategy not transmit can be invaded by mutations. If P̄h is an ESS then

GK(0)
n

∑
s=1

1
1 − Q0,s(Ph)

must be greater than GK(0)
n

∑
s=1

1
1 − Q0,s(Pl)

. Since the power consump-

tion is greater with Ph than Pl (Ph > Pl), one has,
n

∑
s=1

1
1 − Q0,s(Ph)

<
n

∑
s=1

1
1 − Q0,s(Pl)

.

This implies that GK(0) = P(K = 0) = 0. The other results are immediate by best response
conditions.

5.8.5 Notes

Thanks to the renewable energy techniques, designing autonomous mobile terminal and con-
sumer embedded electronics that exploit the energy coming from the environment is becoming
a feasible option. However, the design of such devices requires the careful selection of the
components, such as power consumption and the energy storage elements, according to the
working environment and the features of the application. In this paper we have investigated
power control interaction based on stochastic modeling of the remaining energy of the battery
for each user in each local interaction. We have showed existence of equilibria and conditions
for evolutionary stable strategies.

5.9 Wardrop equilibria in nonatomic stochastic power control
games

Consider a large number of mobiles terminals controlling their transmission power in a base
station. Each mobile has an amount of energy E when its battery is new (typically it is the case
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if the battery is new or if the battery is completely recharged). Each mobile implements a power
control policy where the transmission power is allowed to depend on the energy level (state)
of its battery. The available action depends on the state of the battery. Given the remaining
energy of its battery, the mobile have to choose the optimal power level in terms of reward and
cost. One of the important element for each mobile is its instantaneous throughput which can be
characterized as a function of the signal to interference plus noise ratio (SINR) at the base station
where he transmits. The battery is replaced or recharged only when it is completely empty.
The cost of new battery or recharge cost is C. The new battery has the same energy of E. The
mobile have to control both the power consumption as well as the time at which the batteries are
changed or recharged. At each time slot, each mobile is faced to a large number of interacting
users which transmit at the same base station. Each battery life-time game corresponds to a
stochastic power control game with finite horizon in expectation (absorbing state of battery
when the energy is very small). Our aim here is to find the power consumption policy at each
state such that all users achieve as high throughput as possible, minimum guarantee (e.g. QoS
requirement thresholds) but also to control the battery-state.

Potential Function and Optimization Problems

Lemma 5.9.0.1. The function V : R+ −→ R defined by V(x) = (Cl −Ch)xs + log

(
1 +

ρhxs + (1 − xs)ρl

σ2

)

is a potential function.

Proof. V(x) = −(Ch −Cl)xs +
∫ xs

0

(
ρh − ρl

) 1
σ2 + ρht + (1 − t)ρl

dt where ρh =
Ph

1 − Qs(h)
, ρl

s =

Pl

1 − Qs(l)
.

Interpretation of the Potential Function

The above can be seen as the expression of capacity minus energy consumption.
Lemma 5.9.0.2. The potential function is strictly concave.

Proof. The potential function is continuously twice differentiable, and the second derivative is

given by V′′(x) = − (ρh − ρl)2

(σ2 + ρhx + (1 − x)ρl)2 < 0. We conclude V is strictly concave (it can be

seen also as a sum of strict concave function and the concave function).

Proposition 5.9.0.3. The stochastic power control game has a unique Wardrop equilibrium.

Proof. The existence of Wardrop equilibrium is guaranteed by maximization of the potential
function. Since V is a C1 concave function, V has a maximum in compact convex set [0, 1] and
maximizers are Wardrop equilibria. The uniqueness of the equilibrium is immediate from the
strict concavity of the potential function given by Lemma 5.9.0.2.

Convergence to Wardrop equilibrium

Proposition 5.9.0.4. The unique equilibrium is asymptotically stable under the θ−Smith dynamics.
Moreover, for any initial strategy distribution, the dynamics to converge to the Wardrop equilibrium.
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5.10 Different types of renewable energy

Power control in wireless networks has became an important research area. Since the technol-
ogy in the current state cannot provide batteries which have small weight and large energy
capacity, the design of tools and algorithms for efficient power control is crucial.

Thanks to the renewable energy techniques, designing autonomous mobile terminal and
consumer embedded electronics that exploit the energy coming from the environment is be-
coming a feasible option. However, the design of such devices requires the careful selection of
the components, such as power consumption and the energy storage elements, according to the
working environment and the features of the application.

Menache and Altman have studied in (142) a battery-energy dependent power control with
finite number of mobiles as a dynamic non-cooperative game with power cost assumption. In
this model we consider a stochastic population game approach with dynamic rechargeable bat-
tery based on renewable energy. Environmental energy is becoming a feasible alternative for
many low-power systems, such as wireless sensor/mesh networks. Nevertheless, environmen-
tal energy is an exciting challenge. Because of the limited amount of energy over time, the
power provided is unpredictable. Power storage elements, such as rechargeable batteries or
supercapacitors, in order to have energy available for later use has been proposed. Alternative
energy as solar, wind, or nuclear energy, that can replace or supplement traditional fossil-fuel
sources, as oil, and natural gas is needed. We refer the reader to (158) for advantageous to use
renewable energy in broadband wireless networks such as Wi-Fi, WiMax or mesh networks.

We consider several class of large number of mobiles terminals controlling their transmission
power and a distributed base stations. The mobiles with the same type of renewable energy
(wind, solar, hydro) are in the same class or subpopulation. Each mobile of the subpopulation
p has an amount of energy Ep when its battery is at the full state. Each mobile implements a
power control policy where the transmission power is allowed to depend on the energy level
(state) of its battery. The available action (reachable base stations) depends on the state of the
battery. Given the remaining energy of its battery, the mobile have to choose the optimal power
level. One of the important element for each mobile is its instantaneous throughput which can
be characterized as a function of the signal to interference plus noise ratio (SINR) at the base
station where he/she transmits. The battery is recharged by different techniques of renewable
energy (solar-power, wind-power etc). The mobile have to control both the power consumption
as well as the level of its battery and its throughput. Each mobile is faced to a non-cooperative
stochastic game with individual states with many others mobiles which transmit at the same
base station or at the same range. The goal of a terminal is to find jointly the power levels and
the base stations such that the terminal achieves as high payoff as possible, minimum guarantee
(e.g. QoS requirement thresholds) but also to control the battery-state.

Battery-state transition

We consider the energy reserve of the battery type p, (X
p
t )t≥1 and power level management as

a Markov decision process. For each state y 6= 0, the action space is Ap(y) with at least two
elements, and Ap(0) has at most one element (empty or singleton). Given a stationary policy
σ and a strategy of all the populations the change in energy reserves of the battery type p is
described by the (first order, time-homogeneous) Markov process (X

p
t ) with the transition law
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qp. ∀y 6= 0, np, ∀a, the probability of transition qp(X
p
t+1 = y′|Xp

t = y, a) is expressed as





1 − R
p
γp,y(a)− Q

p
γp,y(a) if y′ = y − 1

R
p
γp,y(a) if y′ = y + 1

Q
p
γp,y(a) if y′ = y

0 otherwise

,

qp(X
p
t+1 = y′|Xp

t = np, a) =





Q
p
γp,np(a) if y′ = np − 1

1 − Q
p
γp,np(a) if y′ = np

0 otherwise
,

and

qp(X
p
t+1 = y′|Xp

t = 0, 0) =





γp if y′ = 1
(1 − γp) if y′ = 0

0 otherwise
,

where ∀ y, a, γp 7−→ R
p
γp,y(a) ∈ [0, 1] is an increasing function with R

p
0,y(a) = 0, 0 ≤ R

p
γp,y(a) +

Q
p
γp,y(a) ≤ 1. The factor γp represents a function of the probability to have a "good weather"(for

example, the sun for the solar-power battery, the wind for wind-power battery) and the proba-
bility for battery of type p to go from state 0 to state 1. If γp is zero, the state 0 is absorbing. For
γp 6= 0 is the chain is communicating.

s

s + 1

q ( n | n , a )

q ( s | s - 1 , b )

s - 1

Figure 5.11: Generic battery state transition rule.

Note that each user controls the transition state of its battery: qp is independent of the deci-
sion of the other mobiles.

Reward

We focus on utility function based on a simplified version of the signal to noise plus interference
ratio (SINR). The battery-state have the property that more energy is available in high state.
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Hence, that set of powers in y + 1 contains the set of power available in y. For example,

∅ ⊂ Ap(0) = {pow
p
0} ⊂ Ap(1) = {pow

p
0 , pow

p
1} ⊂

Ap(2) = {pow
p
0 , pow

p
1 , pow

p
2} ⊂

. . . Ap(np) = {pow
p
0 , pow

p
1 , . . . , pow

p
np}

The signal to noise plus interference ratio of a mobile with the battery type p in state y at the
position λ = (λ1, λ2, λ3) is

SINRp
y(a, x; λ, BS) =

agpp

(ǫ2+(λ1−x0)2+(λ2−y0)2+(λ3−z0)2)
α
2

N0 + κIown(xp) + κIother(x−p)
,

a ∈ Ap(y), p ∈ P, y ∈ Yp = {0, 1, 2, . . . , np}
where

Iown(xp) = ∑
y,b

bgppxp(y, b)hpp

Iother(x−p) = ∑
k 6=p

∑
y,b

gkpbxk(y, b)hkp,

where

hkp =
∫

λ∈D

dµk,BS

(ǫ2 + (λ1 − x0)2 + (λ2 − y0)2 + (λ3 − z0)2)
α
2

x j(y, a) is the fraction of the sub-population j in state y with the power level a, N0 is the
power of the thermal background noise, µp,BS is the distribution of mobiles (in the 3-dimensional
space) with the battery type p around the base station BS, D ⊆ R3 is the domain (geograph-
ical placement of base stations and mobiles) and α is the path-loss and κ is the inverse of the
processing gain of the system, it weights the effect of interferences, depending on the orthog-
onality between codes used during simultaneous transmissions. The coefficient κ is equal to 1
in a narrow band system, and is smaller than 1 in a broadband system that uses CDMA. The
instantaneous expected reward r

p
y,a(x) of an user in state y is expressed as

∫

λ∈D
f
(

SINRp
y(a, x, λ, BS)

)
dµp(λ)

where f is a non-decreasing function with f (0) = 0. ǫ is a positive parameter (to eliminate of
continuity problem at zero) and the gij are positive gain parameters. The 3−dimensional vector
(x0, y0, z0) describes the position of the base station BS in R3

Computing the interference term in presence of continuum of users

In order to compute explicitly the SINR term, we first need the following lemma:
Lemma 5.10.0.5.

ν ≥ 1, bν =
∫ +∞

0

1
(1 + x2)ν

dx =





π

2
if ν = 1

√
π

2
Γ(ν − 1

2 )

Γ(ν)
if ν > 1.

where Γ is the Euler function Γ(x) =
∫ +∞

0
e−ttx−1 dt.
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Proof. For ν = n a positive integer, the polynomial (1 + z2)n has two zeros z = ±i each zero
with the order n. Consider the circuit CR′ = [−R′, R′] ∪ {R′eiθ, 0 ≤ θ ≤ π}. Since the complex

function z ∈ C −→ 1
(1 + z2)n

has no zero on the circuit CR′ , Using residue’s theorem of complex

analysis, we obtain the following result:
∫

x≥0

1
(1 + x2)n

dx = πiRes(ξ(z), i). The residue of ξ

around z = i, a pole of order n, can be found by the formula:

Res(ξ, i) =
1

(n − 1)!
lim

z−→i
(

d

dz
)n−1 [(z − i)nξ(z)]

Thus, bn =

√
π

2
Γ(n − 1

2 )

Γ(n)
. We then use the extension of the Euler function Γ on the positive real

axis.

From the lemma 5.10.0.5, we derive immediately that, n ≥ 2,
∫ +∞

0

x2

(1 + x2)n
dx = bn−1 − bn

Proposition 5.10.0.6. hjp =
4π2

ǫ2α−3 (b α
2 −1 − b α

2
)

Proof. Using spherical coordinates from cartesian coordinates by the transformation





λ1 = r sin θ cos φ
λ2 = r sin θ sin φ

λ3 = r cos θ

and the volume element r2dr sin θdθdφ, one has,

hjp = 4π2
∫ +∞

0

r2

(ǫ2 + r2)
α
2

dr =
4π2

ǫ2α−3

∫ +∞

0

r2

(1 + r2)
α
2

dr

i.e hjp =
4π2

ǫ2α−3 (b α
2 −1 − b α

2
)

Proposition 5.10.0.7. The highest payoff that a mobile with the battery type p can obtain against any
strategies of others mobiles in the one-shot power control game is given by

v̄
p
y =

∫

D
f




u
p
y gpp

(ǫ2+(λ1−x0)2+(λ2−y0)2+(λ3−z0)2)
α
2

N0 + ∑j ∑y hjpu
j
ym

j
ygjp


 dµp

where u
p
y is the maximum power level available in the battery-type p in state y.

Proof. Since the payoff decreases when the others players increases their power levels (in aver-
age), the minmax point is obtained when they uses their high powers. The maximum payoff
that a mobile with the battery type p can obtain against any strategies of others mobiles is then
given by

v̄
p
y = max

a∈Ap(y)

∫

D
f




agpp

(ǫ2+(λ1−x0)2+(λ2−y0)2+(λ3−z0)2)
α
2

N0 + ∑j ∑y hjpu
j
ym

j
ygjp


 dµp
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=
∫

D
max

a∈Ap(y)
f




agpp

(ǫ2+(λ1−x0)2+(λ2−y0)2+(λ3−z0)2)
α
2

N0 + ∑j ∑y hjpu
j
ym

j
ygjp


 dµp

=
∫

D
f


 max

a∈Ap(y)

agpp

(ǫ2+(λ1−x0)2+(λ2−y0)2+(λ3−z0)2)
α
2

N0 + ∑j ∑y hjpu
j
ym

j
ygjp


 dµp.

This completes the proof.

Theorem 5.10.1. Each mobile with the battery type p can guarantee the payoff

∑
y 6=0

Π
p
y v̄

p
y

for all γp > 0, where Π
p
y = lim

t−→∞
P(X

p
t = y) is the probability to be in state y under the maximum

power strategy.

Proof. Π
p
y is the frequency of visit of the battery state in y. From Proposition 5.10.0.7, each mobile

with the battery type p can obtain at least v̄
p
y against any strategies of others mobiles. Each

mobile of subpopulation can then obtain at least ∑
y

Π
p
y v̄

p
y which is an equilibrium payoff. This

completes the proof.

Notes

Our stochastic population game model with multi-class of of users can be extended to the lo-
cal common resources states case. The model including the state of local resources allows us
to take into account the local resources for which users are interacting cooperatively or non-
cooperatively.

In the third part of this manuscript we develop a new class of mean field games. Using
stochastic processes results we will be able to drop the assumptions of stationary regime and
derive weak convergence of the population profile process when the size of population goes
to infinity. The two chapters show that in general, the validity of standard analysis such as
fixed point analysis, stationarity and ergodicity conditions need to be justified. The chapters
are based to our publications (210; 208; 218).
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Mean Field Limits
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Chapter 6

Mean field asymptotics of
population games

We consider evolutionary games in finite population, in which each individual in a interacts
with other randomly selected players. The types and actions of each player in an interaction
together determine the instantaneous payoff for all involved players. They also determine the
transition probabilities to use actions. We provide a rigorous derivation of the asymptotic be-
havior of this system as the size of the population grows. We show that the large population
asymptotic of the microscopic model is equivalent to a macroscopic evolutionary game in which
a local interaction is described by a single player against a population profile. We derive various
classes of evolutionary game dynamics.

6.1 Introduction

We consider a population with finite number of players in which a small frequent interactions
occurs among random number of players that are selected at random. Each player is thus
involved in infinitely many interactions with other randomly selected players. Each interaction
in which a player is involved can be described as one stage of an evolving game. The actions
of the players at each stage determine an immediate payoff (also called fitness in behavioral
ecology) for each player as well as the transition rates of a Markov chain associated with each
player. The transition rate is determined of the change of actions and the system state.

This model extends the basic pairwise interaction model in evolutionary games by introduc-
ing a random number of interacting player and the rate of transition for several players which
has opportunities to changes its action. At each time slot, a one-shot game with unknown num-
ber of players replaces the matrix games, Instead of a choice of a (possibly mixed) action, a
player is now faced with the choice of decision rules (called strategies) and revision of theses
strategies that determine what actions should be chosen at a given interaction for given present
and past observations.

This model with a finite number of players, called mean field interaction (43), become more
complex to analyze if the number of players grows (because a huge action profile space is re-
quired to describe all the of players). Then taking the asymptotic as the number of players
grows to infinity, the whole behavior of the population is replaced by a deterministic limit that
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Chapter 6. Mean field asymptotics of population games

represents the system’s state or population profile, which is fraction of the population at each
type that use a given action.

In this paper we study the asymptotic behavior of the system in which the population pro-
file evolves in time. For large number of players, under mild assumptions (see Section 6.2),
the mean field converges to a deterministic measure that satisfies a non-linear ordinary dif-
ferential equation for a fixed stationary strategy. We show that the mean field interaction is
asymptotically equivalent to an evolutionary game with random number of interacting play-
ers. At a given time, any given player sees an equivalent game against a collective of players
whose state evolves according to an ordinary differential equation (ODE) which we explicitly
compute. In addition to providing the exact limiting asymptotic, the ODE approach provides
tight approximations for fixed large N of the random process. We derive several evolutionary
game dynamics and learning-based dynamics such as Smith dynamics, replicator dynamics,
logit dynamics, Brown-von Neumann-Nash dynamics etc. We give sufficient conditions for
convergence to equilibria and asymptotic results for non-convergent dynamics. We then apply
to Aloha-based protocols with power control, evolution of technologies and resource selection
in heterogenous networks.

6.2 The setting

Consider the following interaction model consisting of :

• One population of players with size N ∈ N.

• Each player has its own state. A state of a player is has two components: the type and the
action. The state of player j at time t is denoted by XN

j (t) = (θj, AN
j (t)). Each player j

has to make type-dependent sequential decisions in interaction where he will be involved.
For each type θ ∈ Θ (finite), there is finite set of possible actions a ∈ Aθ.

S = {(θ, a)| θ ∈ Θ, a ∈ Aθ}

Let d = ♯S be the total number of states.

• Time is discrete and takes its value in the set

N

N
:= {0,

1
N

,
2
N

, . . .}.

The global detailed description of the system at time t is XN(t) = (XN
1 (t), . . . , XN

N(t)). We
assume that XN(t) is Markov.

• Introduce the transition kernel of XN(t), KN(x1, ..., xN; x′1, ..., x′N)

= P

(
XN

1 (t +
1
N

) = x′1, ..., XN
N (t +

1
N

) = x′N |XN
1 (t) = x1, ..., XN

N (t) = xN

)
(6.1)

• (Indistinguishability per type) We assume that all players with the same type are indis-
tinguishable i.e play the same role when facing an interaction. This implies that the tran-
sition kernel of XN(t) is invariant with respect to changes in the labeling of players. In
other words, for any permutation σ of the index set {1, 2, ..., N}:

KN(θ1, a1, ..., θN, aN, aN ; θ1, a′1, ..., θN, a′N)

= KN(θ1, aσ(1), ..., θN, aσ(N); θ1, a′σ(1), ..., θN, a′σ(N)) (6.2)
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Thanks to indistinguishability per type assumption we will be able to reduce the study of

XN(t) = (XN
1 (t), XN

2 (t), . . . , XN
N (t))

to a lower dimension one. This will be used to describe the dynamics of the system.

• Define MN(t) to be the current population profile or occupancy measure i.e

MN
θ,x(t) =

1
Nθ

Nθ

∑
j=1

δ{XN
j (t)=θ,a}.

where Nθ is the number of players with the type θ. For simplicity we denote by N indeed

of Nθ. At each time t, MN(t) is in the finite set {0,
1
N

,
2
N

, . . . , 1}♯S . and MN
θ,a(t) is fraction

of population of type θ (also called subpopulation θ) using action a at time t.

• Local interaction: At time t, a random set of players BN(t) ⊂ 2{1,2,...,N} are randomly
selected from N players for an interaction. Each player j in the set BN(t) takes part in a
one-shot game at time t. Each player selected has a revision opportunity of its strategies.
The state of player j can change only if j is selected for an interaction.

The instantaneous payoff of a player j when he/she moves from the state XN
j (t) at time t

to XN
j (t +

1
N

) at time t +
1
N

after an interaction is given by

gN
j (XN

j (t), XN
BN(t)\j

(t), XN
j (t +

1
N

), XN
BN(t)\j

(t +
1
N

)

We assume that for any permutation σ of the index set {1, 2, ..., N}:

gN
j (θ1, a1, ..., θN, xN, ; x′1, ..., x′N)

= gN
σ(j)(θ1, aσ(1), ..., θN, aσ(N); x′σ(1), ..., x′σ(N)) (6.3)

Note that the game is not necessarily symmetric since the set of strategies and the payoff
function can be different between the types.

The instantaneous expected payoff of a player j in state x at time t is given by

rN(xj(t), m(t)) = E

[
gN

j

(
XN

j (t), XN
BN(t)\j(t), XN

j (t +
1
N

), XN
BN(t)\j(t +

1
N

) | ΩN

)]

where ΩN := {j ∈ BN(t), XN
j (t) = xj(t), MN(t) = m(t)}. We assume that the payoff :

rN : R♯S −→ Rd

m 7−→ (rN(x, m))x

is continuous and bounded. This payoff will represent in averaging over the random
number b(t) = ♯BN(t) of interacting players. We will explicit the dependency in next
section.

It follows from the indistinguishability per type assumptions that

1. MN(t) is Markov.

2. (XN
j (t), MN(t)) is Markov. This means that the evolution of one specific player XN

j (t)

depends on the other players only through the occupancy measure MN(t).
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6.2.1 Revision of strategies

At every time slot, a random number of players BN(t) is picked at random; then, given that
♯BN(t) = k, an ordered sequence of k players (j1, j2, . . . , jk) is picked at random uniformly
among the

N(N − 1)(N − 2) . . . (N − k + 1)

possible ones. Then, the collection of k players does a transition independent of the past accord-
ing to

LN
(x1,...,xk;x′1,...,x′k)

(m, k) := P
(

XN
jl

(t +
1
N

) = x′l , l = 1, . . . , k |ζN , ♯BN(t +
1
N

) = k
)

ζN := {XN
jl

(t) = xl , l = 1, . . . , k, MN(t) = m}

JN
k (m) := P(♯BN(t) = k|MN(t) = m) (6.4)

6.2.2 Instantaneous payoffs

The instantaneous payoff of a player is given by:

rN(x, m) = EB
(

rN,B(x, MN|MN(t) = m
)

=
N

∑
k=1

rN,k(x, m)JN
k (m)

with

rN,k(x, m) = ∑
x2,...,xk

gN,k(x, x2, . . . , xk)

(
Nmx2 − 1x=x2

N − 1

)

×
(

Nmx3 − 1x3=x − 1x3=x2

N − 2

)

. . .

(
Nmxk

− ∑
k−1
l=2 1xk=xl

− 1xk=x

N − k

)

where gN,k(x, x2, . . . , xk) is the payoff of the player state in state x and the k − 1 other players
respectively with type-action x2 = (θ2, a2), . . . , xk = (θk, ak).

6.3 Convergence to differential equation

The drift is defined as the expected change in MN in one time slot:

f N(m, t) = E

(
MN(t +

1
N

)− MN(t)|MN(t) = m

)
= ∑

k≥1
f N,k(m)JN

k (m)
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with

f N,k(m) = E

(
MN(t +

1
N

) − MN(t)|MN(t) = m, ♯BN(t +
1
N

) = k

)

= ∑
x′1,...,x′k

∑
x1,...,xk

mx1

(
Nmx2 − 1x1=x2

N − 1

)

×
(

Nmx3 − 1x3=x1 − 1x3=x2

N − 2

)

. . . ×
(

Nmxk
− ∑

k−1
l=1 1xk=xl

N − k

)

× 1
N

LN
x;x′(m, k)

(
k

∑
l=1

(~ex′l
−~exl

)

)

where xl = (θl , al); x′l = (θl , a′l).

We are interested in the case where the number N of players is large compared to the expected
number of possible number of simultaneous interacting players.

The following diagram illustrates the problem.

XN
j (t), MN [u,m0](t)

t −→ +∞
- XN

j , ?̟N [u,m0]

Xj(t), ?m[u,m0](t)

N −→ +∞
? t −→ +∞

- ??

N −→ +∞
?

Figure 6.1: Non-Commutative Diagram.

We study the mean field convergence i.e lim
N−→∞

MN weakly or better almost surely where

for any time t, the sequence of measures MN(t) ∈ ∆(S) satisfying some dynamical systems.
Necessarily this requires the weak convergence of MN(0) to m(0). For B ⊆ S, define

MN(t)(B) :=
1
N

N

∑
j=1

δ{XN
j (t)∈B}

We assume that the following limits exist as N goes to infinity. (a) LN
x;x′(m, k) → Lx;x′(m, k),

(b) rN(x, a, m) → r(x, a, m) and (c) JN
k (m) → Jk(m).

Proposition 6.3.0.1. For every k, the random measure

MN,k =
1

N(N − 1)(N − 2) . . . (N − k + 1) ∑
j1,j2,...,jk
distinct

δ(XN
j1

,...,XN
jk

)

converge weakly to a deterministic measure on Sk. In particular for k = 1 the population profile

MN,1 = MN =
1
N

N

∑
j=1

δXN
j

169



Chapter 6. Mean field asymptotics of population games

converges in distribution.

Proposition 6.3.0.2. At each time t, the marginal measure MN(t) =
1
N

N

∑
j=1

δXN
j (t) converges to the

solution of the ODE
ṁ(t) = f (m(t)) (6.5)

with initial condition lim
N−→∞

MN(0) = m0.

6.4 From mean field interactions to evolutionary games

Proposition 6.4.0.3 (Asymptotically equivalent game). When N goes to infinity, the mean field

interaction model with random set BN(t) of players is equivalent to an evolutionary game in which a
local interaction at time t is described by

• each player is facing a population profile m(t),

• the instantaneous payoff of a player with the type θ and action a is

rθ,a(m(t)) := lim
N−→∞

rN
θ,a(m(t)|XN

j = (θ, a), MN(t) = m(t))

The Proposition 6.4.0.3 says that for large N, all interactions can be replaced to any one
player with an average or effective interaction and an appropriate payoff function. This reduces
any large population problem into an effective one-player problem.

At the asymptotic regime we have the following: At each time t, a random number b(t) = k
of players has opportunity to revise their strategies. The expected rate to move from x1, . . . , xk

to x′1, . . . , x′k is ∑
k≥1

Lx,x′(m(t), k)Jk(m(t))

6.4.1 Equilibrium state analysis

We say that a population profile (the vector of frequencies) ~m∗ is a stationary equilibrium state if
for all vector m of frequencies, the following variational inequality holds:

〈~m∗ − ~m, r(~m∗)〉 ≥ 0,

where r(~m) = (rx(m))x∈S, and 〈., .〉 is the inner product in the d dimensional Euclidean space
Rd. We recall that given a closed convex and non-empty set ∆d and a continuous function r,
solving the variational inequality problem defined by ∆d and r means finding a vector ~m∗ such
that

〈~m∗ − ~m, r(~m∗)〉 ≥ 0

Geometrically, the task of variational inequality problem is to find a vector ~m∗ such that the
image of ~m∗ under the reward function r will form an angle more than or equal to 90ř with any
vector with tail ~m∗ and head ~m ∈ ∆d.
Proposition 6.4.1.1 (Existence). For any distribution B and any continuous function r on the non-

empty, convex and compact subset ∆d of the Euclidean space Rd, the evolving game has a least one
stationary equilibrium state.
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6.4. From mean field interactions to evolutionary games

Sketch of the Proof. We first show that ~m∗ ∈ ∆d is a solution of the variational inequality problem
if and only if for any ς > 0, ~m∗ is a fixed point of the map Π∆d

(I + ς~r) from ∆d to ∆d.

Multiplying the inequality 〈~m∗ − ~m, r(~m∗)〉 ≥ 0 by ς > 0, and adding 〈~m∗, ~m − ~m∗〉 to both
sides of the resulting inequality, one obtains

〈~m − ~m∗, ~m∗ − [~m∗ + ςr(~m∗)]〉 ≥ 0.

Recall that the projection map on ∆d which is convex and closed set is characterized by:

z ∈ Rd, z′ = Π∆d
z ⇐⇒ 〈z′ − z, m − z′〉 ≥ 0, ∀m ∈ ∆d

Thus,
~m∗ = Π∆d

(~m∗ + ςr(~m∗))

According to Schauder’s fixed point theorem, given a map α : ∆d −→ ∆d, with α continuous,
there is at least one m ∈ ∆d, such that ~m = α(~m). Observe that since the projection Π∆d

and
(I + ς~r), are both continuous, Π∆d

(I + ς~r) is also continuous by composition.

It follows from convexity and compactness of ∆d and the continuity of Π∆d
(I + ς~r) that the

Brouwer-Schauder fixed point theorem can be applied to the map Π∆d
(I + ς~r). We conclude

that at least one stationary equilibrium state exists.

6.4.2 Dynamics of evolving games

The general dynamics obtained from the mean field interaction is given

d

dt
mθ,a(t) = fθ,a(m(t))

where the drift limit can be expanded as

fy(m(t)) = ∑
k≥1

Jk(m(t)) f k
y(m(t)),

f k
y (m(t)) = ∑

x1,...,xk

(
k

∏
l=1

mxl
(t)

)(
k

∑
j=1

η
j
x;y(m(t), k)

)
− my(t)

(
k

∑
j=1

∑
x−j

(
k

∏
l=1,l 6=j

mxl
(t))ηt

y,x−j

)
,

where
y = (θ, a), η

j
x;y(m(t), k) = ∑

x′−j

Lx;(y,x′−j)
(m(t), k),

(y, x′−j) = (x′1, x′2, . . . x′j−1, y, x′j+1, . . . , x′k)

and
ηt

(y,x−j)
(m(t), k) = ∑

x′
L(y,x−j);x′(m(t), k).
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6.4.3 Single player selected per time slot

Suppose now that at each time slot, only one player between the N is randomly selected and
has a chance to change its strategy, i.e. ♯BN = 1 w.p. 1.

Thus H2 and H3 are automatically satisfied. The resulting ODE becomes

d

dt
mx(t) = ∑

x′
mx′Lx,x′(m)− mw ∑

x′
Lx,x′(m)

The term ∑
x′

mx′Lx′,x(m) is the incoming flow in to x′ and the outgoing flow from x is mx ∑
x′

Lx,x′(m).

We then obtain a large class of standard evolutionary game dynamics.

γ−Smith dynamics γ−Smith dynamics are obtained for Lθ,b;θ,a(~m) = λ max(0, rθ,a(~m)− rθ,b(~m))γ

d

dt
mθ,a = λ ∑

b

mθ,b max(0, rθ,a(m)− rθ,b(m))γ − λms,a ∑
b

max(0, rs,b(m)− rs,a(m))γ

Replicator dynamics Replicator dynamics is obtained for Lθ,b;θ,a(~m) = λmθ,a max(0, rθ,a(m) −
rθ,b(m))

d

dt
mθ,a = λ ∑

b

mθ,bms,a max(0, rθ,a(m)− rθ,b(~m)) − λmθ,a ∑
b

mθ,b max(0, rθ,b(m)− rθ,a(m))

= λmθ,a

[
rθ,a(m)−∑

b

mθ,brθ,b(m)

]

The following result gives possible rest points for linear payoffs (in the population profile) of
the replicator dynamics even when the ODE does not necessarily converge.

Convergence of time averages under the replicator dynamics Suppose that the replicator dy-
namics has a solution (mθ,a(t)) in the relative interior of the (d− 1)−simplex i.e there is an ǫ > 0
such that ǫ ≤ mθ,a(t) for all t ≥ 0. Then

lim
T−→+∞

dRP

(
1
T

∫ T

0
mθ,a(t)

)
= 0

where RP is the set of rest point of replicator dynamics and

dRP(m) = min
m∗∈RP

‖ m − m∗ ‖ .

This says that the time average value of the population profile over the time interval [0, T]
converges to the set of interior rest point of the replicator dynamics as T goes to infinity.

Logit dynamics Logit dynamics (called also regularized version of best response dynamics or Boltz-
man dynamics) when

ǫ > 0, Lθ,b;θ,a(m) = λ
e

rθ,a(m)

ǫ

∑b e
rθ,b(m)

ǫ

d

dt
mθ,a = λ

e
rθ,a(m)

ǫ

∑b e
rs,b(m)

ǫ

− λmθ,a
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BNN dynamics Brown-von Neumann-Nash dynamics for

Lθ,b;θ,a(m) = λ ∑
b

mθ,b max(0, rθ,a(m)− ∑
b

mθ,brθ,b(m))

d

dt
mθ,a = λ ∑

b

mθ,b max(0, rθ,a(m)− ∑
b

mθ,brθ,b(m))− λmθ,a ∑
b

max(0, rθ,b(m)−∑
b

ms,brθ,a(m))

Note that in general the trajectories of the mean field dynamics need not to converge.

6.4.4 Dynamics for pairwise local interaction

Suppose now that at each time slot, exactly two players among N are randomly selected i.e.
♯B = 2 w.p. 1. Here too H2 and H3 are automatically satisfied. Then the mean dynamics is
given by

∑
x′1,x′2

∑
x1,x2

mxl
mx2 Lx1,x2;x′1,x′2

(~m)

(
2

∑
l=1

(~ex′l
−~exl

)

)
(6.6)

where Lx1,x2;x′1,x′2
(~m) is the probability that the first object in interaction movers to state x′1 and

the second one to state x′2 given that the first was in state x1, the second in state x2, and the
system state was ~m just before the interaction.

We can expand Equation (6.6) as

d

dt
mx = ∑

x1,x2,x′2

mx1mx2 Lx1,x2;x,x′2
(~m) + ∑

x1,x2,x′1

mx1mx2 Lx1,x2;x′1,x(~m)

−mx ∑
x2,x′1,x′2

mx2 Lx,x2;x′1,x′2
(~m)− mx ∑

x1,x′1,x′2

mx1 Lx1,x;x′1,x′2
(~m)

= ∑
x1,x2

mx1mx2η1
x1,x2;x(~m) + ∑

x1,x2

mx1mx2η2
x1,x2;x(~m) − mx ∑

x2

mx2ηt
x,x2

(~m)− mx ∑
x1

mx1ηt
x1,x(~m)

with

η1
x1,x2;x = ∑

x′2

Lx1,x2;x,x′2
, η2

x1,x2;x = ∑
x′1

Lx1,x2;x′1,x, ηt
x1,x2

= ∑
x′1,x′2

Lx1,x2;x′1,x′2
(6.7)

The term η
j
x1,x2;x(resp. ηt

x1,x, ηt
x,x1

) corresponds to the rate of transfer of a player with x1 =
(θ1, a1) to switch into x = (θ, a) (resp. from x) after an encounter with another player with
x2 = (θ2, a2).

6.4.5 Equilibrium and rest point

Proposition 6.4.5.1 (sufficient condition). Suppose that the drift limit ~f satisfies

~f (m) 6= 0 =⇒ 〈~f (m), r(m)〉 = ∑
s,a

rs,a(m) fs,a(m) > 0 (6.8)
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where
fy(m) = ∑

k≥1
Jk(m) f k

y (m),

f k
y (m) = ∑

x1,...,xk

(
k

∏
l=1

mxl

)(
k

∑
j=1

η
j
x;y(m, k)

)
− my

(
k

∑
j=1

∑
x−j

(
k

∏
l=1,l 6=j

mxl
)ηt

y,x−j

)
,

where
y = (s, a), η

j
x;y(m, k) = ∑

x′−j

Lx;(y,x′−j)
(m, k),

(y, x′−j) = (x′1, x′2, . . . x′j−1, y, x′j+1, . . . , x′k)

and
ηt

(y,x−j)
(m, k) = ∑

x′
L(y,x−j);x′(m, k).

Then any stationary equilibrium state is a rest point of ODE.

Proof. Suppose that the condition

~f (m) 6= 0 =⇒ 〈~f (m), r(m)〉 = ∑
y

ry(m) fy(m) > 0

holds. Let m∗ be a stationary equilibrium state (it exists by Proposition 6.4.1.1). We want to
prove that f (m∗) = 0. Since, m∗ is a stationary equilibrium state, it solves the variational in-
equality problem

∀h ∈ {z = (zs,a)s,a, ∑
s,a

zs,a = 0}, 〈h, r(m∗)〉 ≤ 0.

Define the vector x = (xs,a)s,a such that xs,a = fs,a(m∗). By construction, the drift limit satisfies

∑
s,a

fs,a(m∗) = 0.

Thus,
0 ≥ 〈x, r(m∗)〉 = 〈 f (m∗), r(m∗)〉.

This condition is equivalent to f (m∗) = 0.

The condition given by Equation (6.8) is called positive correlation (168) condition. In the
one object per time slot model with single internal state case, it has been shown that (see (168))
that the replicator dynamics, the Brown-von Neumann-Nash dynamics, θ−Smith dynamics or
general pairwise comparison dynamics are positively correlated. As a corollary, the set of rest
points of all these dynamics contains the set of equilibrium states.
Proposition 6.4.5.2. Suppose that the polymatrix of transition L satisfies

Ls,a,x−j;s,b(m) > 0 ⇐⇒ a, b ∈ As, rs,a(m) < rs,b(m)

for each j, x−j and m. Then

1. The mean dynamics satisfies the condition of Proposition 6.4.5.1, Equation (6.8).

2. m∗ is an equilibrium state if and only if for all xj = (θ, a), one of the following conditions is
satisfied:

(a) ∑
b

Ls,a,x−j;s,b(m) = 0
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(b) m∗
s,a = 0.

3. Any rest point of the ODE is a stationary equilibrium state.

Proof. The point (3) follows from the points 2 − (a) and 2 − (b). The point The point 2 − (a) of
Proposition is the optimality of action a used in state s and the point 2 − (b) says that if a is not
used if a is not a good strategy. We now proof the first part of the Proposition. Suppose that m
such that f (m) 6= 0 with

fy(m) = ∑
k≥1

Jk(m) f k
y (m),

f k
y (m) = ∑

x1,...,xk

(
k

∏
l=1

mxl

)(
k

∑
j=1

η
j
x;y(m, k)

)
− my

(
k

∑
j=1

∑
x−j

(
k

∏
l=1,l 6=j

mxl
)ηt

y,x−j

)
,

One has,

∑
y

ry(m) fy(m) = ∑
y

∑
k≥1

Jk(m) f k
y (m)ry(m) = ∑

k≥1
Jk(m)

(

∑
y

f k
y (m)ry(m)

)
(6.9)

We can rewrite ∑
y

ry(m) fy(m) as ∑
k≥1

Jk(m) ∑
y

[Ak
y − Bk

y] where

Ak
y =

k

∑
j=1

∑
x1,...,xk

∑
x′−j

(
k

∏
l=1

mxl
)Lx j,x−j;y,x′−j

(m, k)ry(m),

Bk
y = my




k

∑
j=1

∑
x−j

(
k

∏
l=1,l 6=j

mxl
)


 ∑

(x′j,x
′
−j)

Ly,x−j;x′j,x
′
−j

(m, k)ry(m)




 (6.10)

=
k

∑
j=1

∑
x−j

∑
(x′j,x

′
−j)

(my

k

∏
l=1,l 6=j

mxl
)Ly,x−j;x′j,x

′
−j

(m, k)ry(m) (6.11)

By interchanging the roles of y and x′j we obtain that

Bk
y =

k

∑
j=1

∑
(x j,x−j)

∑
x′−j

(
k

∏
l=1

mxl
)Lx j,x−j;y,x′−j

(m, k)rx j
(m) (6.12)

Then, ∑
k≥1

Jk(m)

(

∑
y

f k
y (m)ry(m)

)
is exactly

∑
k≥1

k

∑
j=1

∑
(x j,x−j)

∑
(y,x′−j)

(
k

∏
l=1

mxl
)Jk(m)Lx j,x−j;y,x′−j

(m, k) max[0, ry(m)− rx j
(m)].

Since there exists at least one component y such fy(m) 6= 0, and

Lx j,x−j;z,x′−j
(m, k)[rz(m)− rx j

(m)] = Lx j,x−j;z,x′−j
(m, k) max[0, rz(m)− rx j

(m)] ≥ 0

for all z, we conclude there exists k ≥ 1 such that Lx j,x−j;y,w′
−j

(m, k) max[0, ry(m) − rx j
(m)] > 0.

This implies that ∑
y

ry(m) fy(m) > 0.
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Cooperative vs Competitive mean field limit We say that the mean dynamics is cooperative

(resp. competitive) if all w 6= w′ d

dmw′
fw(m) ≥ 0 (resp.

d

dmw′
fw(m) ≤ 0). In the bidimen-

sional (three strategies) case it has been shown in (101) that the trajectories of cooperative game
dynamics converge starting from almost any initial condition in the simplex. Example of coop-
erative mean dynamics includes dynamics of supermodular population games (168). Generic
convergence of cooperative (resp. competitive) dynamics with strict inequality can be found in
(190).

Dynamic equilibrium

• In many cases in evolving games, it is known that the trajectories of evolutionary game
dynamics can be chaotic, may have cycle limits and may not converge. Under several
evolutionary game dynamics, the expected payoff obtained in the cycle is not so far from
candidate to be a "static" equilibrium payoff. This suggests a time dependent equilibrium
approach in evolving games.

• a trajectory is a dynamic equilibrium if the time average payoff under this trajectory leads to
an equilibrium payoff

Example: the trajectory of RSP leads to a "dynamic equilibrium" but it cycles around the Shapley
triangle.

m : [t0, ∞[−→ ∆n is a dynamic equilibrium if for any other trajectory, there exists t1 suffi-
ciently large such that

lim inf
T

1
T − t1

∫ T

t1

〈m(t)− m′(t), r(m(t))〉 dt ≥ 0

Corollary: a "static" equilibrium state m∗ is a special case of dynamic equilibrium where the
trajectory is t 7−→ m∗ (constant function).

6.5 A Spatial Non-Reciprocal Random Access Model

Random Access Control algorithms have played an increasingly important role in the devel-
opment of wired and wireless networks and the performance and stability of these algorithms,
such as slotted-Aloha, Carrier Sense Multiple Access (CSMA) is still an open problem. Dis-
tributed medium access control, starting from the first version of Abramson’s Aloha to the most
recent algorithms used in IEEE802.11, have enabled a rapid growth of wireless networks. They
aim at efficiently and fairly sharing a resource among users even though each user must decide
independently (eventually after receiving some messages or listening, sensing channels) when
and how to attempt to use the resource. Random access algorithms have generated a lot of
research interest, especially recently in attempts to use multi-hop wireless networks to provide
high-speed access to the internet with low-cost and low-energy consumption.

In this section, we restrict our attention to wireless networks, where the resources are re-
ceivers, base station or access points and where users interact because of interference, i.e., in-
terfering users cannot transmit simultaneously. There is a collision if another user (mobile)
transmits with a greater power level at the same range of the receiver. Motivated by the interest
of evolving dense networks, game theory evolving was found to be an appropriate framework
to apply in networks. We provide asymptotic analysis of spatial random access based on mean
field interaction where interfering users share resources placed on a undirected graph using an
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Aloha-type access control. We consider several classes of users. Users are spatially distributed
and the arrival processes around each vertex are assumed to be independent. The interactions
between users are non-reciprocal in the sense that the set of users causing interference differ from the
set of those suffering from these interferences. The scenario has been introduced and analyzed in
(213) in the context of evolutionary games.

Model Description

We consider a spatial non-reciprocal random access model described as follows:

• Let define a system composed of an undirected graph G = (V, E) with finite vertices
V = {1, 2, . . . , K}, and E is set of edges, and many classes of users distributed in 3D. For
each vertex i ∈ V, the one-hop neighborhood of i is denoted by

Ni = {i} ∪ {j ∈ V, (i, j) ∈ E}.

The set Ni corresponds to the set of 1-adjacent nodes to i.

• Time is slotted. During each time slot t a random number At of users arrive in the system.
Denote by Ai

t the number of users arriving in vertex i at time t. We assume that arrival
process {Ai

t}t are i.i.d in time with expectation E(Ai
t) = αi. Denote by W i

t the random
variable representing the number of users at vertex i at time t. A user at vertex i require a
service with some probability. The user transmits with some probability

ui

∑j∈Ni
W

j
t

.

If Bi
t is the total number of users requiring a service at time t. Then, the random variable

Bi
t follows a binomial law with parameters W i

t and
ui

∑j∈Ni
W

j
t

.

Bi
t ∼ Bin



W i
t ,

ui

∑j∈Ni
W

j
t





• There is a successful transmission at vertex i if only one of users in Ni transmit at time t.

W i
t+1 = W i

t − 1{Bi
t=1} ∏

j∈Ni\{i}
1{B

j
t=0} + Ai

t

Given (W1
t , . . . , WK

t ), the random variable B1
t , . . . , BK

t satisfy the decoupling conditions. (W1
t , . . . , WK

t ) ∈
N K is an irreducible Markov chain.

Drift

Let us look at the expected change in W in one slot when all users use the strategy u1, . . . , uK.
Define

f (u1, . . . , uK, x) = E[Wt+1 − Wt|Wt = x] (6.13)
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The drift is given by

f i(u1, . . . , uK, x) =





αi − uixi

∑j∈Ni
x j

(1 − ui

∑j∈Ni
x j

)xi−1 ∏
j∈Ni\{i}

(1 − uj

∑j∈Ni
x j

)x j
if xi > 0

αi if xi = 0

For any sequence (xi
t) such that xi

t −→ +∞, define the process

Mxt
k =

W(⌊k ∑i xi
t⌋)

∑i xi
t

.

Mx
k ∈ D([0, T], RK) where D([0, T], RK) is the space of cadlag or RCLL ( right continuous

with left limits) functions from the compact interval [0, T] to RK endowed with the Skorokhod
topology.

Let (xi
t)t be a sequence going to infinity. Then the collection {(Mx

k )k, k ∈ N} has a compact
close in the Skorokhod topology. Any limit m of subsequence of Mx

k is Lipschitz continuous.

If a mean field limit m satisfies ∀i, ∑
j∈Ni

mj(0) > 0 then m is solution of the ordinary differen-

tial equation
i = 1, 2, . . . , K

ṁi(t) = αi − uimi(t)

∑j∈Ni
mj(t)

e
− ∑k∈Ni\{i}

ukmk(t)

∑j∈Nk
mj(t)

e
− uimi(t)

∑j∈Ni
mj(t)

The mean field limit dynamics is topologically equivalent to the Ray-projection evolutionary

game dynamics with expected rate transition αi − uimi(t)

∑j∈Ni
mj(t)

e
− ∑k∈Ni

ukmk(t)

∑j∈Nk
mj(t)
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Stochastic mean field games

We introduce a particular class of stochastic mean field games also called Markov Decision
Evolutionary Games with N players, in which each individual in a large population interacts
with other randomly selected players. The states and actions of each player in an interaction
together determine the instantaneous payoff for all involved players. They also determine the
transition probabilities to move to the next state. Each individual wishes to maximize the total
expected discounted payoff over an infinite horizon. We provide a rigorous derivation of the
asymptotic behavior of this system as the size of the population grows to infinity. We show
that under any Markov strategy, the random process consisting of one specific player and the
remaining population converges weakly to a jump process driven by the solution of a system
of differential equations. We characterize the solutions to the team and to the game problems
at the limit of infinite population and use these to construct almost optimal strategies for the
case of a finite, but large, number of players. We show that the large population asymptotic
of the microscopic model is equivalent to a (macroscopic) Markov decision evolutionary game
in which a local interaction is described by a single player against a population profile. We
illustrate our model to derive the equations for a dynamic evolutionary Hawk and Dove game
with energy level.

7.1 Introduction

We consider a large population of players in which frequent interactions occur between small
numbers of chosen individuals. Each interaction in which a player is involved can be described
as one stage of a dynamic game. The state and actions of the players at each stage determine
an immediate payoff (also called fitness in behavioral ecology) for each player as well as the
transition probabilities of a controlled Markov chain associated with each player. Each player
wishes to maximize its expected fitness averaged over time.

This model extends the basic evolutionary games by introducing a controlled state that char-
acterizes each player. The stochastic dynamic games at each interaction replace the matrix
games, and the objective of maximizing the expected long-term payoff over an infinite time
horizon replaces the objective of maximizing the outcome of a matrix game. Instead of a choice
of a (possibly mixed) action, a player is now faced with the choice of decision rules (called strate-
gies) that determine what actions should be chosen at a given interaction for given present and
past observations.
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This model with a finite number of players, called a mean field interaction model, is in
general difficult to analyze because of the huge state space required to describe the sate of
all players. Then taking the asymptotics as the number of players grows to infinity, the whole
behavior of the population is replaced by a deterministic limit that represents the system’s state,
which is fraction of the population at each individual state that use a given action.

In this chapter we study the asymptotic dynamic behavior of the system in which the popu-
lation profile evolves in time. For large N, under mild assumptions (see Section 7.3), the mean
field converges to a deterministic measure that satisfies a non-linear ordinary differential equa-
tion for under any stationary strategy. We show that the mean field interaction is asymptot-
ically equivalent to a Markov decision evolutionary game. When the rest of the population
uses a fixed strategy u, any given player sees an equivalent game against a collective of players
whose state evolves according to the ordinary differential equation (ODE) which we explicitly
compute. In addition to providing the exact limiting asymptotic, the ODE approach provides
tight approximations for fixed large N. The mean field asymptotic calculations for large N for
given choices of strategies allows us to compute the equilibrium of the game in the asymptotic
regime.

Related Work. Mean field interaction models have already been used in standard evolution-
ary games in a completely different context: that of evolutionary game dynamics (such as repli-
cator dynamics) see e.g. (198) and references therein. The paradigm there has been to associate
relative growth rate to actions according to the fitness they achieved, then study the asymptotic
trajectories of the state of the system, i.e. the fraction of users that adopt the different actions.
Non-atomic Markov Decision Evolutionary Games have been applied to firm idiosyncratic ran-
dom shocks and to cellular communications. Nonatomic mean field games have been studied
in (129; 48; 173; 114; 108). The authors in (129) develop a mean field approach for optimal con-
trol and differential games - continuous state and time- mean field games with continuum of
players and their partial differential equation characterization.

Structure. The remainder of this chapter is organized as follows. In next section we present
the model assumptions and notations. In Section 7.3 we present some convergence results of
the ODE in the random number of interacting players. In Section 7.5 a resource competition
between animals with two types of behaviors and several states is presented. All the sketch of
proofs are given in Appendix.

7.2 Model description

7.2.1 Markov Decision Evolutionary Process With N Players

We consider the following model, which we call Markov Decision Evolutionary Game with N
players.

• There are N ∈ N players.

• Each player has its own state. A state has two components: the type of the player and the
internal state. The type is a constant during the game. The state of player j at time t is denoted
by XN

j (t) = (θj, SN
j (t)) where θj is the type. The set of possible states X = {1, . . . , Θ} × S is

finite.

• Time is discrete, taking values in
N

N
:= {0,

1
N

,
2
N

, . . .}.

• The global detailed description of the system at time t is XN(t) = (XN
1 (t), . . . , XN

N (t)).
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Define MN(t) to be the current population profile i.e MN
x (t) =

1
N

N

∑
j=1

1{XN
j (t)=x}. At each

time t, MN(t) is in the finite set {0,
1
N

,
2
N

, . . . , 1}♯X . and MN
θ,s(t) is the fraction of players who

belong to population of type θ (also called subpopulation θ) and have internal state s. Also let

M̄N
θ = N

N

∑
s∈S

MN
θ,s(t) be the size of subpopulation θ (independent of t by hypothesis). We do

not make any specific hypothesis on the ratios
M̄N

θ

N
as N gets large (it may be constant or not, it

may tend to 0 or not).

• Strategies and local interaction: At time slot t, an ordered list BN(t), of players in {1, 2, . . . , N},
without repetition, is selected randomly as follows. First we draw a random number of players
K(t) such that

P(K(t) = k|MN(t) = ~m) = JN
k (~m)

where the distribution JN
k (~m) is given for any N, ~m ∈ {0,

1
N

,
2
N

, . . . , 1}♯X . Second, we set BN to

an ordered list of K(t) players drawn uniformly at random among the N(N− 1)...(N−K(t)+ 1)

possible ones. By abuse of notation we write j ∈ BN(t) with the meaning that j appears in the
list BN(t).

Each player such that j ∈ BN(t) takes part in a one-shot event at time t, as follows. First,
the player chooses an action a in the finite set A with probability uθ(a|s) where (θ, s) is the
current player state. The stochastic array u is the strategy profile of the population, and uθ is
the strategy of subpopulation θ. A vector of probability distributions u which depend only on
the type of the player and its internal state is called stationary strategy.

Second, say that BN(t) = (j1, . . . , jk). Given the actions aj1 , ..., ajk drawn by the k players, we
draw a new set of internal states (s′j1 , ..., s′jk) with probability LN

θ;s;a;s′(k, ~m),

where θ = (θj1 , ..., θjk), s = (sj1 , ..., sjk), a = (aj1 , ..., ajk), s′ = (s′j1 , ..., s′jk)

Then the collection of k players makes one synchronized transition, such that

SN
ji

(t +
1
N

) = s′ji i = 1, . . . , k

Note that SN
j (t +

1
N

) = SN
j (t) if j is not in BN(t).

It can easily be shown that this form of interaction has following properties: (1) XN is
Markov and (2) players can be observed only through their state.

The model is entirely specified by the probability distributions JN , the Markov transition
kernels LN and the strategy profile u. In this paper, we assume that JN and LN are fixed for all
N, but u can be changed and does not depend on N (though it would be trivial to extend our
results to strategies that depend on N, but this appears to be unnecessary complication). We are
interested in large N.

It follows from our assumptions that

1. MN(t) is Markov.
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2. for any fixed j ∈ {1, . . . , N}, (XN
j (t), MN(t)) is Markov. This means that the evolution

of one specific player XN
j (t) depends on the other players only through the occupancy

measure MN(t).

7.2.2 Payoffs

We consider two types of instantaneous payoff and one discounted payoff:

• Instant Gain: This is the random gain GN
j (t) obtained by one player whenever it is involved

in an event at time t. We assume that it depends on this player’s state just before the event and
just after the event, the chosen action, and on the states and actions of all players involved in
this event. Formally, if player j ∈ BN(t)

GN
j (t) = gN(xj, aj, x′j, xBN(t)\j, aBN(t)\j, x′BN(t)\j

)

where xj = XN
j (t), aj is the action chosen by player j, x′j = XN

j (t +
1
N

), xBN(t)\j [resp. x′BN(t)\j]

is the list of states at time t [resp. at time t +
1
N

] of players other than j involved in the event,

aBN(t)\j is the list of their actions and g() is some non random function defined on the set of

appropriate lists. Whenever j is not in BN(t), GN
j (t) = 0. We assume that GN

j (t) is bounded, i.e.

there is a non random number C0 such that, with probability 1: for all j, t: |GN
j (t)| ≤ C0

• Expected Instant Payoff: It is defined as the expected instant gain of player j, given the state
x of j and the population profile ~m. By our indistinguishability assumption, it does not depend
on the identity of a player, so we can write it as

rN(u, x, ~m) := E

(
GN

j (t)
∣∣∣XN

j (t) = x, MN(t) = ~m
)

Note that this conditional expectation contains the case when j is not in BN(t), i.e. when
GN

j (t) = 0.

• Discounted Long-Term Payoff: It is defined as the expected discounted long term payoff of
one player, given the initial state of this player and the population:

r̄N(u; x, ~m) := E(
∞

∑
t=0 step 1/N

e−βtGN
j (t)|Xj(0) = x, MN(0) = ~m)

where β is a positive parameter (existence follows from the boundedness of GN
j ). The fact that

it does not depend on the identity j of the player, but only on its initial state x and the initial
population profile ~m, follows from the indistinguishability assumption.

We defined the Discounted Long-Term Payoff in terms of the instant gain, as this is the most
natural definition. The following proposition shows that the alternative definition, by means of
the expected instant payoff, is equivalent.
Proposition 7.2.2.1. For all player state x and population profile ~m

r̄N(u; x, ~m) = E(
∞

∑
t=0 step 1/N

e−βtrN(u, XN
j (t), ~MN(t))|Xj(0) = x, MN(0) = ~m)
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7.2. Model description

Sketch of proof of Proposition 7.2.2.1

Let τN be the first time after t = 0 that XN
j (t) hits in some given state. We show that

r̄N =
1
N

E
τN

∑
s=0 step 1/N

e−βtrN
(

XN
j (s), MN(s)

)
(7.1)

Define for t ∈ N/N:

ZN
t =

t

∑
s=0 step 1/N

e−βs
(

GN(s) − rN
(

XN
j (s), MN(s)

))

we have, for 0 ≤ s ≤ t:

Q := E

(
ZN

t − ZN
s |FN

s

)

=
t

∑
u′=0

step 1/N

e−βu′
E

(
GN(u′) − rN

(
XN

j (u′), MN(u′)
)
|FN

s

)

which can be written as

t

∑
u′=0

step 1/N

e−βu′
E

(
E

(
GN(u′) − rN

(
XN

j (u′), MN(u′)
)
|FN

u′

)
|FN

s

)

= 0

thus ZN
t is an FN

t − martingale. Now τN is a stopping time with respect to the filtration FN
t

thus, by Doob’s stopping time theorem: EZN
t∧τN = EZN

0∧τN = 0 Further, ZN
t∧τN ≤ K|τN | for

some constant K. Since τN is almost surely finite and has a finite expectation, we can apply
dominated convergence (with t → ∞) and obtain EZN

τN = 0.

7.2.3 Focus on One Single Player

We are interested in the following special case (here we make the dependency on the strategy
explicit). There are two types of players, i.e. Θ = 2. There is exactly one player (the player of in-
terest) with type 1. All other players have type 2. In this case we use the notation RN(u1, u2; s, ~m)
for the discounted long-term payoff obtained by the player in type 0, when her strategy is u1
and all other players’s strategy is u2, given that this player’s initial internal state is s and the
initial type 2 subpopulation profile is ~m. Note that

RN(u1, u2; s, ~m) = r̄N(u1, u2; (1, s), ~m′)

with m′
1,s′ =

1
N

1s=s′ and m′
2,s′ = m2,s′ for all s′ ∈ S .

Markov Decision Evolutionary Game

Player j may choose a strategy uj. We look for a (Nash) equilibrium u such that if all players
use u then no player has an incentive to deviate from u. For any finite N one can map this into
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a standard Markov game. This is true for both the case where the number of players is known
and in the case it is unknown when taking a decision. Therefore we know that a stationary
equilibrium exists in the discounted case. A stationary equilibrium is solution of the fixed point
equation:

∀j, uj,θ ∈ arg max
v j,θ

RN(vj,θ, u−j; s, m)

By assuming symmetry per type we can show that a stationary equilibrium exists which is a
solution of the fixed point equation

∀θ, uθ ∈ arg max
vθ

RN(vθ, u; s, m)

Markov Decision Evolutionary Team

We wish to find a stationary u that maximizes RN averaged over all players.

u = (u1, . . . , uΘ) ∈ arg max
v

RN(v; s, m)

7.3 Main Results

7.3.1 Scaling Assumptions

We are interested in the large N regime and obtain that, for any fixed j, (XN
j , MN) converges

weakly to a simple process. This requires the weak convergence of MN(0) to some ~m0.

We assume that the parameters of the model and the payoff per time unit converge as N →
∞, i.e. 




JN
k (~m) → Jk(~m)

LN
θ;s;a;s′(k, ~m) → Lθ;s;a;s′(k, ~m)

rN(u, x, ~m) → r(u, x, ~m)

(7.2)

Our main scaling assumption is

H1 ∑
k

k2 Jk(~m) < ∞ for all ~m ∈ ∆. This ensures that the second moment of the number of

players involved in an event per time slot is bounded.

Note that H1 excludes the case where the number of players involved in an event per time slot
scales like N (i.e. synchronous transitions of all players at the same time). There may be large
N asymptotic results for such cases (130) but the limit is not given by an ODE. In contrast, H1 is
automatically true if the number of players involved in an event per time slot is upper bounded
by a non random constant. We also need some technical assumptions, which are usually true
and can be verified by inspection.

H2 ∑
k

Jk(~m) > 0 for all ~m ∈ ∆ (∆ is the simplex {~m : mθ,s ≥ 0, ∑
θ,s

mθ,s = 1}). This ensures that

the mean number of players involved in an event per time slot, ∑
k≥0

kJk(~m) is non zero.

Define the drift of MN(t) as

~f N(u, ~m) = E

(
MN(t +

1
N

)− MN(t)|MN(t) = ~m

)
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Note that we make explicit the dependency on the strategy u but not on J and L, assumed to be
fixed.

It follows from our hypotheses that

lim
N→∞

N f N(u, ~m) := f (u, ~m) (7.3)

exists.

H3 We assume that the convergence in Equation (7.3) is uniform in ~m and the limit is Lipschitz-
continuous in ~m. This is in particular true if one can write, for every strategy u, f N(u, ~m) =
1
N

φu(
1
N

, ~m), with φu defined on [0, ǫ] × ∆ where ǫ > 0 and Φu is continuously differen-

tiable.

H4 P(XN
j (t + 1/N) = y|XN

j (t) = x, MN(t) = m, MN(t + 1/N) = m′) converges uniformly in
~m, ~m′ and the limit is Lipschitz-continuous in ~m, ~m′. This is in particular true if one can
write, for every strategy u, as ξu,x;y(1/N, m, m′). with ξ defined on [0, 1]× ∆×∆ and ξu,x;y
is continuously differentiable.

Our model satisfies the assumptions in (43), therefore we have the following result:
Theorem 7.3.2 ((43)). Assume that lim

N−→∞
MN(0) = ~m0 in probability. For any stationary strategy

u, and any time t, the random process MN(t) =
1
N

N

∑
j=1

δXN
j (t) converges in distribution to the (non-

random) solution of the ODE
~̇m(t) = f (u, ~m(t)) (7.4)

with initial condition ~m0.

7.3.3 Convergence results

We focus on one player, without loss of generality we can call her player 1, and consider the
process (XN

1 , MN). For any finite N, XN
1 and MN are not independent, however in the limit we

have the following:
Theorem 7.3.4. Assume that lim

N−→∞
MN(0) = ~m0 and lim

N−→∞
XN

1 (0) = x0 = (θ1, s0) in probability.

The discrete time process (XN
1 (t), MN(t)) defined for t ∈ N

N
, converges weakly to the continuous time

jump and drift process (X1(t), ~m(t)), where ~m(t) is solution of the ODE Equation (7.4) with initial
condition ~m0 and X1(t) is a continuous time, non homogeneous jump process, with initial state x0. The
rate of transition of X1(t) from state x1 = (θ1, s1) to state x′1 = (θ1, s′1) is

A(x1, x′1; ~m(t), u) = ∑
k≥1

Jk(~m)Ak(s1, s′1; ~m(t), u)

with Ak(s1, s′1; ~m(t), u) =

∑
θ;s;a;s′

Lθ1,θ;s,s;a;s′,s′(k, ~m(t))
k

∏
j=1

uθj
(aj|sj)

k

∏
j=2

mθj,s j
(t)

where θ = (θ2, ..., θk), s = (s2, ..., sk)

a = (a1, ..., ak), s′ = (s′2, ..., s′k)
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Note that, contrary to results based on propagation of chaos, we do not assume that the
distribution of player states at time 0 is exchangeable. In contrast, we will use Theorem 7.3.4
precisely in the case where player 1 is different from other players. Theorem 7.3.4 motivates the
following definition.

Sketch of Proof of Theorem 7.3.4

To prove the weak convergence of ZN , we check the following steps: Without loss of generality,
we took the set of states as S = {0, 1, 2, . . . , ♯S} XN

j has a jump r with probability

qN
i,i+r(MN(k)) =

1
N

LN
i,i+r(MN(k), u))

and MN is the continuous process with drift f N .

• We introduce of X̃N
j by scaling with step size

1
N

. Then, ZN = (XN, MN) is approximate

in some sense by a discrete time process Z̃N = (X̃N , m̃N) where m̃N(k) = m(⌊Nt⌋) m

solution of the ODE with X̃N
j is the discrete time jump process with transition matrix

qN
i,i+r(m̃N(k)) =

1
N

LN
i,i+r(m(

k

N
), u)).

We show that d(XN
j , X̃N

j ) −→ 0 for any compact of time intervals.

•
Z̃N = (X̃N , m̃N) =⇒ (X̃, m̃)

MN([Nt]) −→ m(t). We derive the weak convergence of ZN to (X, m) where m is deter-
ministic and X is random.

Approximation by a discrete time process

The following lemma follows from the lemma 1 and 3 in Benaim and Weibull (2003,2008), in
which we incorporate behaviorial strategies.
Lemma 7.3.4.1. For every t > 0 there exists a constant c such that for every ǫ > 0 and N large enough
one has

P( sup
0≤τ≤T

||MN(τ) − m(τ)|| > ǫ| MN(0) = m0, u) ≤ 2(♯S)e−ǫ2CN

for all m0 ∈ ∆d, all every stationary strategy u.

Since C is independent of N, and (e−ǫ2C)N is summable, we can use the dominated conver-
gence theorem: for all ǫ > 0,

∑
N

P

(
sup0≤τ≤T ‖ MN(τ) − m(τ) ‖∞> ǫ| MN(0) = m0, u

)
< ∞,

By Borel-Cantelli’s lemma, for every fixed t < ∞, the random variable νN,t := sup
0≤τ≤t

‖ MN(τ)−

m(τ) ‖∞ converges almost completely towards 0. This νN,t implies that converges almost surely
to 0.

We introduce of X̃N
j by scaling with step size

1
N

. Then, ZN = (XN , MN) is approximate in

some sense by a discrete time process Z̃N = (X̃N , m̃N) where m̃N(k) = m(⌊Nt⌋) m solution
of the ODE where X̃N

j is the discrete time jump process with transition matrix qN
i,i+r(m̃N(k)) =
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1
N

Li,i+r(m(
k

N
), u)). Using the lemma 7.3.4.1 and uniform Lipschitz continuity of of LN , we

obtain that

sup
i,j

sup
0≤τ≤t

‖ qN
i,j(MN(τ))− qi,j(m(τ)) ‖≤ K(ǫN + sup

0≤τ≤t
‖MN(τ)− m(τ)‖).

Hence, we can write ‖MN(τ) − m(τ)‖ ≤ K(ǫN +
1

N2 ) over set of event Ωǫ = {‖MN(τ) −
m(τ)‖ ≤ ǫ} and P(Ωǫ) ≥ 1 − 2(♯S)e−ǫ2CN → 1. Thus,

P(XN
j,|[0,t] = X̃N

j,|[0,t]|k transitions) ≥ E(ǫBin( 1
N ,Nt))

E(ǫBin( 1
N ,Nt)) = (1 − 1

N
+

1
N

ǫ)Nt

P(XN
j,|[0,t] = X̃N

j,|[0,t]|k transitions) ≥ eǫ

and this holds for any ǫ arbitrary small. We define the metric d(X, Y) = ∑
k≥0

1
2k

d(Xk, Yk) where

d(Xk, Yk) = 1Xk 6=Yk
. Then, d(XN

j,|[0,t], X̃N
j,|[0,t]) −→ 0 when N goes to infinity.

Convergence of the discrete time process To prove the weak convergence of (X̃N
j , M̃N), we

check the following steps:

• the discrete time empirical measures M̃N are tight (follows from Sznitman for finite states)
and converges to a martingale problem. The limit m̃ is deterministic measure and is solu-
tion of ODE which has the unique solution m (given m0, u). Thus, m̃ = m.

• Conditionally to M̃N , X̃N
j converges to a martingale problem. The jump and drift process

X̃ with time dependent transition is given by the limit of the marginal of AN(.|M̃N, m0, x0, u).
We derive the weak convergence of (X̃N

j , M̃N) to (X̃, m̃) where m̃ is deterministic and X̃

is random. For this we use the Theorem 17.25 and its discrete time approximation in
Theorem 17.28 pages 344-347 in Kallenberg.

Definition 7.3.4.2. To a game as defined in Section (7.2.1) we associate a “Macroscopic Markov Decision
Evolutionary Game", defined as follows. There is one player, (player 1), with state X1(t) and a population
profile ~m(t). The initial condition of the game is X1(0) = x, ~m(0) = ~m0. The population profile is
solution to the ODE (7.4) and X1(t) evolves as a jump process as in Theorem 7.3.4.

Further, let r̄(u; x, ~m) be the discounted long-term payoff of player 1 in this game, given that X1(0) =
x and ~m(0) = ~m0, i.e.

r̄(u; x, ~m) = E

(∫ ∞

0
e−βtr(u, X1(t), m(t))|X1(0) = x, ~m(0) = ~m0

)

We also consider, as in Section (7.2.3), the case with Θ = 2 types and define by analogy R(u1, u2; s, ~m)
as the discounted long-term payoff when player 1 starts in state s and the population profile starts in state
~m, with player 1 using strategy u1 and other players strategy u2.

In order to exploit the convergence in distribution of the process focused on one player, we
need that the payoff be continuous in the topology of this convergence. This is stated in the next
theorem.
Theorem 7.3.5. Let E = S × ∆ and DE[0, ∞) the set of cadlag functions from [0, ∞) to R, equipped
with Skorokhod’s topology. The mapping

DE[0, ∞) → R

(s, m) 7→
∫ ∞

0
e−βtr(u, s(t), m(t)) dt
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is continuous.

Using Theorem 7.3.4 and Theorem 7.3.5 we obtain the following, which is the main result of
this paper. It says that when N goes to infinity, the Markov Decision Evolutionary Game with
N(t) of players becomes equivalent to the associated Macroscopic Markov decision evolution-
ary game. This reduces any multi-player problem into an effective one-player problem.

Sketch of Proof of Theorem 7.3.5

Since Skorohod’s topology is induced by a metric, it is sufficient to show that whenever (XN
j , mN) →

(x, m) in Skorohod’s topology, we have:

lim
N−→∞

∫ ∞

0
e−βtrN(v, XN

j (t), mN(t))dt =
∫ ∞

0
e−βtr(v, x(t), m(t))dt (7.5)

By (73), page 117, there is some sequence of increasing bijections λn: [0, ∞) → [0, ∞) s.t.

λn(t)− λn(s)

t − s
→ 1 uniformly in t and s

and ‖ yn(t)− y(λn(t)) ‖→ 0 uniformly in t

over compact subsets of [0, ∞). Fix ǫ > 0, arbitrary and consider

hN := |
∫ ∞

0
e−βtrN(XN(t), v, mN(t))dt −

∫ ∞

0
e−βtr(x(t), v, m(t))dt|

≤
∫ ∞

0
e−βt|rN(xN(t), v, mN(t)) − r(x(t), v, m(t))|dt

First let K = sup
x∈S ,v,m∈∆

|r(x, v, m)| < ∞ by hypothesis, and pick some time T large enough

such that e−βTK/β ≤ ǫ/3. Thus

hN ≤ ǫ/3 +
∫ T

0
e−βt|r(xN(t), v, mN(t))− r(x(t), v, m(t))|dt (7.6)

Second, we use the distance on E defined by

d((x, m), (x′, m′)) =‖ m − m′ ‖ +1x 6=x′ (7.7)

Let K′ = sup
x∈S ,v,m∈∆d

|r(x, v, m)− r(x′, v, m′)|
‖ m − m′ ‖ < ∞

by hypothesis. It is easy to see that for all x, x′ ∈ S and m, m′ ∈ ∆d:

‖ r(x, v, , m)− r(x′, v, m′) ‖≤ K′d((x, m), (x′, m′)) (7.8)

Thus, by Equation (7.6):

hN ≤ ǫ/3 + K′
∫ T

0
e−βtd

(
(xN(t), mN(t)), (x(t), m(t))

)
dt (7.9)
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By (73), page 117, there is some sequence of increasing bijections λN : [0, ∞) → [0, ∞) s.t.

λN(t)− λN(s)

t − s
→ 1 uniformly in t and s

and d
(
(xN(t), mN(t), (xN(λN(t)), mN(λN(t)))

)
→ 0

uniformly in t over compact subsets of [0, ∞). Thus there is some N0 ∈ N such that for N ≥ N0
and t ∈ [0, T]:

d
(
(xN(t), mN(t), (xN(λN(t)), mN(λN(t)))

)
≤ ǫβeβT

3K′ (7.10)

Thus, by the triangular inequality for d: hN ≤

≤ ǫ

3
+ K′

∫ T

0
e−βtd

(
(xN(t)mN(t)), (x(λN(t)), m(λN(t))

)
dt

+K′
∫ T

0
e−βtd

(
(x(λN(t)), m(λN(t))), (x(t), m(t)

)
dt

≤ 2ǫ

3
+ K′

∫ T

0
e−βtd

(
(x(λN(t)), m(λN(t))), (x(t), m(t))

)
dt (7.11)

Third, let D be the set of discontinuity points of (x, m). Since (x, m) is cadlag, D is enumer-
able, thus it is negligible for the Lebesgue measure and

∫ T

0
e−βtd

(
(x(λN(t)), a, m(λN(t))), (x(t), a, m(t)

)
dt

=
∫ T

0
e−βtd

(
(x(λN(t)), m(λN(t))), (x(t), m(t)

)
1t/∈Ddt

Now lim
N−→∞

λN(t) = t and thus for t /∈ D

lim
N−→∞

d
(
(x(λN(t)), m(λN(t))), (x(t), m(t)

)
= 0

and thus by dominated convergence

lim
N−→∞

∫ T

0
e−βtd

(
(x(λN(t)), m(λN(t))), (x(t), m(t))

)
dt = 0 (7.12)

and for N large enough the second term in the right-hand side of Equation (7.11) can be made
smaller than ǫ/3. Finally, for N large enough, hN ≤ ǫ. This completes the proof.
Theorem 7.3.6 (Asymptotically equivalent game). When N goes to infinity we have (a) the dis-

crete time process XN
1 converges in distribution to the continuous time process X1 (b) r̄N(u; x, ~m) →

r̄(u; x, ~m) and (c) RN(u1, u2; s, ~m) → R(u1, u2; s, ~m)

Sketch of Proof of Theorem 7.3.6

Define the discounted stochastic evolutionary game with random number of interacting play-
ers in each local interaction in which each player in x with the mixed action u(.|x) receives
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r(u, x, m(t)) where m(t) is the population profile at t, which evolves under the dynamical sys-
tem (7.4) and the between states follows the transition kernel L. Then, a strategy of a player is
the same as in the microscopic case and the discounted payoffs

R(u1, u2, s0, m0) =
∫ ∞

0
e−βtr(s(t), u1, m[u2](t))dt

is the limit of RN(u1, u2, s0, m0) when N goes to infinity, where m[u2] is the solution of the ODE
ṁ = f (u2, m), m(0) = m0 . It follows that the asymptotic regime of the microscopic game and
the Markov decision evolutionary game (macroscopic game) are equivalent.

7.3.7 Case with Global Attractor

Assume that, for some strategy u, the ODE (7.4) has a global attractor ~m∗ (this may or may
not hold, depending on the ODE). If in addition the model with N players is irreducible, with
stationary probability distribution ̟N for MN , then lim

N−→∞
̟N = δ~m∗ where δ~m∗ is the Dirac

mass at ~m∗ (follows from (43)). i.e. the large time distribution of MN(t) converges, as N → ∞,
to the attractor ~m∗.

Also, (XN
j (t), MN(t)) converges to a continuous time, homogeneous Markov jump process

with time-independent transition matrix:

A(x1, x′1; u) = ∑
k≥1

Jk(~m)Ak(s1, s′1; ~m∗, u)

Assume that the transition matrix A(x1, x′1; u) is also irreducible and let π() be its unique sta-
tionary probability. Also let πN be the first marginal of the stationary probability of (XN

1 , MN).
It is natural in this case to replace the definition of the long term payoffs RN(u1, u2; s, ~m) and
RN(u1, u2; s, ~m) by their stationary counterparts

RN
st (u1, u2) := ∑

s

πN(s)RN(u1, u2; s, ~m∗)

Rst(u1, u2) := ∑
s

π(s)R(u1, u2; s, ~m∗)

7.3.8 Single player per type selected per time slot

Consider the special case where at each time slot, only one player per type between the N is
randomly selected and has a chance to change its action, i.e. ♯BN = 1 w.p 1.

Thus H1 and H2 are automatically satisfied. The resulting ODE (see (41)) becomes

d

dt
mx(t) = ∑

x′
mx′Lx′,x(~m, u, Θ)− mx ∑

x′
Lx,x′(~m, u, Θ)

The term ∑
x′

mx′Lx′,x(~m, u, Θ) is the incoming flow in to x and the outgoing flow from x is

mx ∑
x′

Lx,x′(~m, u, Θ).

We then obtain a large class of state-dependent evolutionary game dynamics. Note that in
general the trajectories of the mean dynamics need not to converge. In the case of single player
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selected in each time slot of 1/N and linear transition in m, the time averages under the repli-
cator dynamics converge its interior rest points or the boundaries of the simplex.

7.3.9 Equilibrium and optimality

Let Us be the set of strategies. Consider the optimal control problems

(OPTN)

{
Maximize RN(u, u; s, ~m0)

s.t u ∈ Us
(OPT∞)

{
Maximize R(u, u; s, ~m0)

s.t u ∈ Us

The strategy u is an ǫ−optimal strategy for the N-optimal control problem if RN(u, u; s, ~m0) ≥
−ǫ + sup

v
RN(v, v; s, ~m0).

Also consider the fixed-point problems

(FIXN)

{
find u ∈ Us such that

u ∈ arg max
v∈Us

{RN(v, u; s, ~m0)} (FIX∞)

{
find u ∈ Us such that

u ∈ arg max
v∈Us

{RN(v, u; s, ~m0)}

A solution to (FIXN) or (FIX∞) is a ( Nash) equilibrium. We say that u is an ǫ−equilibrium
for the game with N [resp. N → ∞] players if RN(u, u; s, ~m0) ≥ sup

v
RN(v, u; s, ~m0) − ǫ [resp.

R(u, u; s, ~m0) ≥ sup
v

R(v, u; s, ~m0) − ǫ].

Note that the definition of equilibrium and optimal strategy may depend on the initial con-
ditions. If, for any u ∈ Us, the hypotheses in Section (7.3.7) hold, then we may relax this depen-
dency.
Theorem 7.3.10 (Finite N). For every discount factor β > 0 the optimal control problem (OPTN)
(resp. the fixed-point problem (FIXN)) has at least one 0−optimal strategy (resp. 0−equilibrium). In
particular, there a ǫN-optimal strategy (resp. ǫN−equilibrium) with ǫN −→ 0.

Sketch of Proof of Theorem 7.3.10

We show that for every discount factor β > 0 the optimal control problem (OPTN) (resp. the
fixed-point problem (FIXN)) has at least one 0−optimal strategy. It follows from the existence
of equilibria in stationary strategies for finite stochastic games with discounted payoff: The set
of pure strategies is a compact space in the product topology (Tykhonov theorem). Thus, the
set of behavioral strategies Σj is a compact space and also convex as the set of probabilities on
the pure strategies. For every player j and every strategy profile σ the marginal of the payoffs
and constraints functions are continuous for any β > 0 : αj 7−→ RN

j (αj, σ−j, s, m0). Moreover,
the stationary strategies is convex, compact and upper and lower hemi-continuous (as a corre-
spondence). Define

γj(s, m0, σ) = arg max
αj∈Us

RN
j (αj, σ−j, s, m0).

Then, γj(m0, σ) ⊆ Σj is a non-empty, convex and compact set and the product correspondence

γ : σ 7−→ (γ1(s, m0, σ), . . . , γN(s, m0, σ))

is upper hemi-continuous (its graph is closed). We now use the Glicksberg generalization of
Kakutani fixed point theorem, and there is a stationary strategy profile σ∗ such that

σ∗ ∈ γ(s, m0, σ∗).
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Moreover, if the game has symmetric payoffs and strategies for each type, there is a symmetric
per type stationary equilibrium. This completes the proof.
Theorem 7.3.11 (Infinite N). Optimal strategies (resp. equilibrium strategies) exist in the limiting

regime when N → ∞ under uniform convergence and continuity of RN → R. Moreover, if {UN} is a
sequence of ǫN−optimal strategies (resp. ǫN−equilibrium strategies) in the finite regime with ǫN −→ ǫ,

then, any limit of subsequence Uφ(N) −→ U is an ǫ− optimal strategy (resp. ǫ−equilibrium) for game
with infinite N.

Sketch of Proof of Theorem 7.3.11

Let (UN)N be a sequence of solution of (FIXN) i.e equilibrium in the system with N play-
ers. Choose a subsequence Nk such that UNk converges to some point u when k goes to in-
finity. We can write RNk(UNk , UNk) − R(U, U) = RNk(UNk , UNk) − RNk(U, U) + RNk(U, U)−
R(U, U). Since RN(., .) is continuous and converges uniformly to R(., .), RNk converges uni-
formly to R, the second term RNk(U, U)− R(U, U) −→ 0 when Nk −→ ∞ and the first term
RNk(UNk , UNk)−RNk(U, U) can be rewritten as RNk(UNk , UNk)−RNk(U, U) = RNk(UNk , UNk)−
R(UNk , UNk) + R(UNk , UNk)− R(U, U)+ R(U, U)− RNk(U, U). Each term goes to zero by con-
tinuity of R, convergence of UNk to U, and by uniform convergence of RN to R. Let UN be
a ǫN−equilibrium. Then, RN(UN, UN) ≥ RN(v, UN) − ǫN, ∀v. Then any limit U of a subse-
quence of UN satisfies R(U, U) ≥ R(v, U)− ǫ, ∀v. Similarly, if

RN(UN, UN) ≥ RN(v, v)− ǫN , ∀v

then any omega-limit U of the sequence of UN satisfies R(U, U) ≥ R(v, v) − ǫ, ∀v i.e U is
an ǫ−optimal strategy. In particular if (UN)N is a sequence of ǫN−equilibria (resp. optimal
strategies) with ǫN −→ 0 when N goes to infinity then any accumulation point U of (UN)N is a
0−equilibrium (resp. 0−optimal strategy).

7.3.12 Robust equilibrium

We now consider two types of players θ = 1, 2 and define the expected payoff of a player with
type 2, the strategy v whenever the other players of type 1 use u when the proportion of the
players of type 2 is α as R̄N(v, u, α, m0)
Definition 7.3.12.1. The strategy u is k−resilient to invasion if for all strategy v 6= u

R̄N(v, u, α, m0) ≤ R̄N(u, u, α, m0)

∀α ∈ {0,
1
N

, . . . ,
k

N
}

Since a Nash equilibrium is resilient against unilateral deviation (1-resilient). A k−resilient
strategy is in particular 1-resilient.
Definition 7.3.12.2. The strategy u is resilient to invasion by small fraction of deviants (RID) if for all
strategy v 6= u there exists an invasion barrier ᾱv 6= 0 such that

R̄(v, u, α, m0) < R̄(u, u, α, m0) = R̄(u, u, 0, m0) ∀α ∈ (0, ᾱv).

The strategy which is resilient to invasion by small fraction of deviant is more robust than a
Nash equilibrium. A Nash equilibrium u is not necessarily a RID.
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Proposition 7.3.12.3. If u is a RID then u is an equilibrium.

Proof.

∀v, R(v, u, m0) = R̄(v, u, 0, m0) ≤ R̄(u, u, 0, m0) = R(u, u, m0)

Proposition 7.3.12.4 (RID for Infinite N). If {UN} is a sequence of kN−resilient against deviants

strategies in the finite regime with
kN

N
−→ ǫ > 0, then, any limit of subsequence Uφ(N) −→ U is a

neutrally RID1 for game with infinite N.

Proposition 7.3.12.5. If u is an
ǫ

2
−equilibrium of the Markov decision evolutionary game with infinite

players then there exists N0 such that for all N ≥ N0, u is an ǫ−equilibrium of the mean field interaction
with N players.

Proof.
R(u, u, m0) ≥ R(v, u, m0)− ǫ/2, ∀v ∈ Ub

Since RN goes to R uniformly, choose N0 satisfying

∀N ≥ N0, ‖RN − R‖∞ ≤ γN ≤ ǫ/4,

RN(u, u, m0) − RN(v, u, m0) = RN(u, u, m0) − R(u, u, m0) + R(u, u, m0) − R(v, u, m0)

+R(v, u, m0) − RN(v, u, m0) ≥ −ǫ/2 − 2γN ≥ −ǫ

Proposition 7.3.12.6. Let u be a strict equilibrium. Then u is a RID for the payoff function R̄ defined
as

R̄ = αR(v, u, m0) + (1 − α)R(u, u, m0).

Moreover u is non-invadable strategy (NIS) i.e the inequality for RID holds for any uniform threshold ǫ.

Proof. Since u is a strict equilibrium, one has:

R(v, u, m0) < R(u, u, m0), ∀v 6= u, ∀v ∈ Ub

This implies that R̄ < R(u, u, m0), ∀α ∈ (0, 1). This completes the proof for RID and for NIS.

7.4 Link with differential population

Each individual maximizes its long-term payoff

r̄(u; x, ~m) = E

(∫ ∞

0
e−βtr(u, X1(t), m(t))|X1(0) = x, ~m(0) = ~m0

)

subject to the population profile evolution given by

d

dt
m(t) = f (u, m(t))

1A neutrally RID is a weaker notion of RID with non-strict inequality
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and the rate of transition of the process X1(t) from state x1 = (θ1, s1) to state x′1 = (θ1, s′1) is
A(x1, x′1; ~m(t), u).

We derive a new class of dynamic games called differential population games. Different from
standard differential game models, this class of games is described by large population of play-
ers in which each player from each class is facing a random vector that evolves according to the
population dynamics and the individual state follows a jump and drift process. See (207) for
more details on differential population games.

7.5 Illustrating example

We present in this section an example of a dynamic version of the Hawk and Dove problem
where each individual has three energy levels. We derive the mean field limit for the case
where all users follow a given policy and where possibly one player deviates. We then further
simplify the model to only two energy states per player. In that case we are able to fully identify
and compute the equilibrium in the limiting Markov decision evolutionary game. Interestingly,
we show that the ODE converges to a fixed point which depends on the initial condition.

Consider an homogenous population of N animals. An animal plays the role of a player. Oc-
casionally two animals find themselves in competition on the same piece of food. Each animal
has three states x = 0, 1, 2 which represents its energy level. An animal can adopt an aggressive
behavior (Hawk) or a peaceful one (Dove, passive attitude). At the state x = 0 there is no ac-
tion. We describe the fitness of an animal (some arbitrary player) associated with the possible
outcomes of the meeting as a function of the decisions taken by each one of the two animals.
The fitnesses represent the following:

• An encounter Hawk-Dove or Dove-Hawk results in zero fitness to the Dove and in v̄ of
value for the Hawk that gets all the food without fight. The state of the Hawk (the winner)
is incremented a = 1{x′H=min(xH+1,2)} and the state of the Dove is b = 1{x′D=max(xD−1,0)}.

• An encounter Dove-Dove results in a peaceful, equal-sharing of the food which translates

to a fitness of
v̄

2
to each animal and the state of each animal change with the sum of the

two distributions
1
2

a +
1
2

b

• An encounter Hawk-Hawk results in a fight in which with p = 1/2 chances, one (resp. the
other) animal obtains the food but also in which there is a positive probability for each one

of the animals to be wounded 1/2 . Then the fitness of the animal 1 is
1
2
(v̄− c) +

1
2
(−c) =

1
2

v̄ − c, where the −c term represents the expected loss of fitness due to being injured.

i\j (gN
i , gN

j ) XN
i (t +

1
N

), XN
j (t +

1
N

)

D − D (
v̄

2
,

v̄

2
)

1
2

δmin(x1−1,0),max(x2+1,2)

+
1
2

δmax(x1+1,2),min(x2−1,0)

D − H (0, v) (min(x1 − 1, 0), max(x2 + 1, 2))

H − H
1
2

v − c
1
2

δmin(x1−1,0),max(x2+1,2)

+
1
2

δmax(x1+1,2),min(x2−1,0)
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7.5. Illustrating example

The vector of frequencies of states at time t is given by MN
x (t) =

1
N

N

∑
j=1

1{XN
j (t)=x} for x = 0, 1, 2

and the action set is Ax = {H, D} in each state x 6= 0, A0 = {}.

The assumptions in Section 6.2 are satisfied (pairwise interaction, ♯BN(t) = 2) and the occu-
pancy measure MN(t) converges to m(t).

7.5.1 ODE and Stationary strategies

Consider the following fixed parameters µ1 = L0,1, µ2 = L0,2. The population profile is de-
noted by ~m = (m0, m1, m2) and the stationary strategy is described by the parameters v1, v2
where v1 := u(H|1), v2 = u(H|2)






ṁ2 = m0L0,2 + m1L1,2(u, m)− m2L2,1(u, m)
ṁ1 = m0L0,1 + m2L2,1(u, m) − m1L1,2(u, m) − m1L1,0(u, m)
ṁ0 = m1L10(u, m) − (µ1 + µ2)m0

where

L12(u, m) =m0 + v1

( v1m1

2
+ (1 − v1)m1 +

v2m2

2
+ (1 − v2)m2

)
+ (1 − v1)

(
(1 − v1)m1

2
+

(1 − v2)m2

2

)

L2,1(u, m) = v2

( v1m1

2
+

v2m2

2

)
+ (1 − v2)

(
(1 − v1)m1

2
+ v2m2 +

(1 − v2)m2

2

)

L10(u, m) := v1

( v1m1
2

+
v2m2

2

)
+ (1 − v1)

(
v1m1 +

(1 − v1)m1
2

+ v2m2 +
(1 − v2)m2

2

)
,

For BN = {j1, j2}, x′j, xi ∈ {0, 1, 2},

d

dt
mx = ∑

x1,x2,x′2

mx1mx2 Lx1,x2;x,x′2
(u, ~m) + ∑

x1,x2,x′1

mx1 mx2 Lx1,x2;x′1,x(u, ~m)

−mx ∑
x2,x′1,x′2

mx2 Lx,x2;x′1,x′2
(u, ~m) − mx ∑

x1,x′1,x′2

mx1 Lx1,x;x′1,x′2
(u, ~m)

7.5.2 Computation of R(u1, u2; s, ~m).

We want to compute the value

V(u1, u2, x) := Ex

∫ ∞

0
e−βtr(u1, u2, x(t), m(t)) dt

s.t. ṁ(t) = f (u2, m(t)), m(0) = m0, x(0) = x.

V(u1, u2, x) = Ex

∫ ∆

0
e−βtr(u1, u2, x(t), m(t)) dt + Ex

∫ ∞

∆
e−βtr(u1, u2, x(t), m(t)) dt

= Ex

∫ ∆

0
e−βtr(u1, u2, x(t), m(t)) dt + Exe−β∆V(u1, u2, x(∆))

This implies that

0 = Ex
1
∆

∫ ∆

0
e−βtr(u1, u2, x(t), m(t)) dt +

e−β∆ − 1
∆

ExV(u1, u2, x(∆)) +
ExV(u1, u2, x(∆))− V(u1, u2, x)

∆
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Using Ito’s formula and Lebesgue integration properties, we obtain that:
ExV(u1, u2, x(∆))− V(u1, u2, x)

∆

goes to ∑
x′

Dmx′ V(u1, u2, x′)
d

dt
mx′ , where Dmx′V is the derivative of V in a weak sense,

e−β∆ − 1
∆

−→

−β, and the term

Ex
1
∆

∫ ∆

0
e−βtr(u1, u2, x(t), m(t)) dt −→ r(u1, u2, x, m0)

when ∆ goes to zero. Thus, we obtain

βV(u1, u2, x) = r(u1,x, u2,x, x, m) + ∑
x′

(Dmx′ V(u1, u2, x′)) fx′(u2, m) (7.13)

where ui,x = ui(H|x).

The global optimality is then given by the Hamilton-Jacobi-Bellman equation obtained by
maximizing the right-hand side of the equation (7.13) over the action set.

βΨ(x) = max
u1,x,u2,x

{r(u1,x, u2,x, x, m) + ∑
x′

(Dmx′ Ψ(u1, u2, x′)) fx′(u2, m)}

and optimality conditions of the best response to u2 is given by

βΦ(u2, x) = max
a∈{H,D}

{r(a, u2,x, x, m) + ∑
x′

(Dmx′ Φ(u2, x′)) fx′(u2, m)}

Theses equations are in general difficult to solve and the solutions are not necessarily regular
(e.g. viscosity solutions). Numerical approaches based on multi-grid techniques of Hamilton-
Jacobi-Bellman-Issacs equations can be found in (128).

7.5.3 The case of two energy levels

In order to derive closed form expressions for solutions of our ODE, we consider two states, i.e.,
each animal has two states x = 1, 2 which represents its energy levels. Thus, the ODE can be
expressed as follows:

ṁ2(t) = (1 − m2(t))L1,2(u, m)− m2(t)L2,1(u, m) (7.14)

which can be rewritten as

ṁ2(t) = a1 + a2m2(t) + a3(m2(t))2 (7.15)

with a1 = 1, a2 =
u2

2
− 2 < 0, a3 =

1 − u2

2
> 0.

Let m[u, m0](t) be the solution of the ODE given u and a initial distribution m(0) = m0. We
distinguish two cases:

Case 1: u2 = 1 (fully aggressive when it is possible): the ODE becomes ṁ2(t) = 1 − 3
2

m2(t) and

the solution has the form

m2[1, m0](t) =
2
3
[1 − c1e−

3
2 t] (7.16)

with c1 = 1 − 3
2

m0 and m1[u, m0](t) = 1 − m2[u, m0](t)
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Case 2: u2 6= 1, (less aggressive in state 2)

m2[u, m0](t) = γ−(u) +
γ+(u) − γ−(u)

1 − c2e(γ+(u)−γ−(u))a2t
, (7.17)

c2 = 1 +
γ+(u) − γ−(u)

m2(0)− γ−(u)
, γ−(u) =

2 − u2/2 − (2 + u2
2/4)

1
2

1 − u2
< 1,

γ+(u) =
2 − u2/2 + (2 + u2

2/4)
1
2

1 − u2
> 1

Note that in both cases there is a unique strategy-dependent global attractor.

lim
t−→∞

m2[u, m0](t) =

{
γ−(u) if u2 6= 1

2/3 if u2 = 1

The expected instant payoff of a player using the stationary strategy v when the population
profile is m[u, m0](t), is given by

r(v, u, 2, m[u, m0](t)) = v[v̄ − cm2u2] + (1 − v)r(v, u, 1, m[u, m0](t))

r(v, u, 1, m[u, m0](t)) =
1
2
(1 − m2[u, m0](t)u2)v̄

where m2[u, m0](t) is given by (7.16) (resp. (7.17)) for u2 = 1 (resp. u2 6= 1). Now, we can
compute explicitly the best response against u for a given initial m0. Let

β2(u, 2, m0, t) = r(H, u, 2, m[u, m0](t))− r(D, u, 2, m[u, m0](t)).

The best response, BR(x, u, m[u, m0](t)), against u at t is

BR(x, u, m[u, m0](t)) =

{
play Hawk if β2(u, x, m0, t) > 0
play Dove if β2(u, x, m0, t) < 0

This implies that it is better to play Hawk for
v̄

2c
>

γ

1 + γ
where γ = max(2/3, m0). Since the

solution of the ODE is strictly monotone in time for each stationary strategy, there is at most

one time for which β2 is zero. It is easy to see that if
v̄

2c
>

2
3

then the strategy which to play

Hawk in state 2 and Dove in state 1 is an equilibrium.
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Figure 7.1: Global attractor for u2 = 1
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Figure 7.2: Global attractor for u2 = 0.2

7.6 Notes

The goal of this chapter has been to develop mean field asymptotic of interactions with large
number of players using stochastic games. Due to the curse of the size of the population, the
applicability of atomic stochastic games has been severely limited. As an alternative, we pro-
posed a method for Markov decision evolutionary games where players make decisions only
based on their own state and the global system state. We have showed under mild assumptions
convergence results, where asymptotics were taken in the number of players. The population
state profile satisfies a system of non-linear ordinary differential equations. We have considered
very simple class of strategies that are functions only of player’s own state and the population
profile. We applied to Hawk-Dove interaction with several energy level and formulated the
ODEs. We show that the best response depends on the initial conditions.
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dynamics. This leads to a new class of game dynamics with multicomponent strategies and mi-
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facing to an evolving vector which represents the population profile. We use this model to an-
alyze resource and energy constrained interactions in wireless networks. Finally, we present a
class of mean field games. When taking the asymptotics of finite systems, we derive a new class
of game dynamics called mean field game dynamics. This class contains the standard evolutionary
game dynamics based on revision of pure actions. We apply this model to analyze spatial ran-
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