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P2P Infrastructure for Content Distribution
Manal EL DICK

Abstract

The explosive growth of the Web requires new solutions for content distribution that meets the requirements of
scalability, performance and robustness. At the same time, Web 2.0 has fostered participation and collaboration
among users and has shed light on Peer-to-Peer (P2P) systems which involve resource sharing and decentral-
ized collaboration. This thesis aims at building a low-cost infrastructure for content distribution based on P2P
systems. However, this is extremely challenging given the dynamic and autonomous behavior of peers as well
as the locality-unaware nature of P2P overlay networks. In the first stage, we focus on P2P file sharing as a first
effort to build a basic infrastructure with loose requirements. We address the problem of bandwidth consump-
tion from two angles: search inefficiency and long-distance file transfers. Our solution Locaware leverages
inherent properties of P2P file sharing; it performs locality-aware index caching and supports keyword queries
which are the most common in this context. In the second stage, we elaborate a P2P CDN infrastructure, which
enables any popular and under-provisioned website to distribute its content with the help of its community of in-
terested users. To efficiently route queries and serve content, Flower-CDN infrastructure intelligently combines
different types of overlays with gossip protocols while exploiting peer interests and localities. PetalUp-CDN
brings scalability and adaptability under massive and variable scales while the maintenance protocols provide
high robustness under churn. We evaluate our solutions through extensive simulations and the results show
acceptable overhead and excellent performance, in terms of hit ratio and response times.

Keywords : P2P systems, content distribution, interest-awareness, locality-awareness

Infrastructure P2P pour la Distribution de Contenu

Résumé

Le Web connaît ces dernières années un essor important qui implique la mise en place de nouvelles solutions
de distribution de contenu répondant aux exigences de performance, passage à l’échelle et robustesse. De
plus, le Web 2.0 a favorisé la participation et la collaboration entre les utilisateurs tout en mettant l’accent
sur les systèmes P2P qui reposent sur un partage de ressources et une collaboration décentralisée. Nous avons
visé, à travers cette thèse, la construction d’une infrastructure P2P pour la distribution de contenu. Toutefois,
cette tâche est difficile étant donné le comportement dynamique et autonome des pairs ainsi que la nature des
overlays P2P. Dans une première étape, nous nous intéressons au partage de fichiers en P2P. Nous abordons le
problème de consommation de bande passante sous deux angles : l’inefficacité de la recherche et les transferts
de fichiers longue distance. Notre solution Locaware consiste à mettre en cache des index de fichiers avec
des informations sur leurs localités. Elle fournit également un support efficace pour les requêtes par mots clés
qui sont courantes dans ce genre d’applications. Dans une deuxième étape, nous élaborons une infrastructure
CDN P2P qui permet à tout site populaire et sous-provisionné de distribuer son contenu, par l’intermédiaire
de sa communauté d’utilisateurs intéressés. Pour un routage efficace, l’infrastructure Flower-CDN combine
intelligemment différents types d’overlays avec des protocoles épidémiques tout en exploitant les intérêts et
les localités des pairs. PetalUp-CDN assure le passage à l’échelle alors que les protocoles de maintenance
garantissent la robustesse face à la dynamicité des pairs. Nous évaluons nos solutions au travers de simulations
intensives ; les résultats montrent des surcoûts acceptables et d’excellentes performances, en termes de taux de
hit et de temps de réponse.

Mots-clés: Systèmes Pair à Pair, distribution de contenu, intérêts, localités physiques

Discipline : Informatique
Spécialité : Bases de Données

Laboratoire : LABORATOIRE D’INFORMATIQUE DE NANTES ATLANTIQUE.
UMR CNRS . , rue de la Houssinière, BP   –   Nantes, CEDEX .
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Introduction

Motivation

In the last decade, Web 2.0 [O’R05] has brought a paradigm shift in how people use the
Web. Before this Web evolution, users were merely passive consumers of content that is
provided to them by a selective set of websites. In a nutshell, Web 2.0 has offered an
“architecture of participation” where individuals can participate, collaborate, share and
create content. Web 2.0 applications deliver a service that gets better the more people
use it, while providing their own content and remixing it with others’ content. Today,
there are many emerging websites that have helped to pioneer the concept of participation
in Web 2.0. Popular examples include the online encyclopedia Wikipedia that enables
individuals to create and edit content (articles), social networking sites like Facebook,
photo and video sharing sites like YouTube and Flickr as well as wikis and blogs. Social
networking is even allowing scientific groups to expand their knowledge base and share
their theories which might otherwise become isolated and irrelevant [LOZB96].

With the Internet reaching a critical mass of users, Web 2.0 has encouraged the
emergence of peer-to-peer (P2P) technology as a new communication model. The P2P
model stands in direct contrast to the traditional client-server model, as it introduces
symmetry in roles, where each peer is both a client and a server. Whereas a client-server
network requires more investment to serve more clients, a P2P network pools the resources
of each peer for the common good. In other terms, it exhibits the “network effect” as
defined by economists [KS94]: the value of a network to an individual user scales with the
total number of participants. In theory, as the number of peers increases, the aggregate
storage space and content availability grow linearly, the user-perceived response time
remains constant, whereas the search throughput remains high or even grows. Therefore,
it is commonly believed that P2P networks are naturally suited for handling large-scale
applications, due to their inherent self-scalability.

Since the late 1990s, P2P technology has gained popularity, mainly in the form of file
sharing applications where peers exchange multimedia files. Some of the most popular
P2P file sharing protocols include Napster [CG01], Freenet [CMH+02], Gnutella [Gnu05],
BitTorrent [PGES05] and eDonkey2000. According to several studies [SGD+02], P2P file
sharing accounts for more traffic than any other application on the Internet. Despite
the emergence of sophisticated P2P network structures, file-sharing communities favor
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unstructured networks for their high flexibility. File search commonly relies on blindly
flooding the query over the P2P network, without any knowledge about the file location.
Flooding mechanism has several attractive features such as simplicity, reliability and
flexibility in expressing a query rather than strictly requiring the exact filename. However,
it suffers from high bandwidth consumption because of its search blindness and its message
redundancy. Many efforts have been done to tackle this problem which severely threatens
the scalability of P2P file sharing networks. Along these lines, index caching has been
proposed to incorporate indexing information in a simple and practical way. The main
concept is to cache query responses in the form of indexes, on their way back to the
query originator. Existing techniques [PH03, Sri01,WXLZ06] exhibit salient limitations
because they trade either storage efficiency and/or query flexibility for search efficiency.
Most importantly, they perform random file transfers between peers, totally ignoring their
physical proximity and therefore increasing costs and response times unnecessarily. This
critical issue has implications for user experience and Internet scalability [RFI02] and
needs to be resolved to ensure the deployment of P2P file sharing.

In the course of time, P2P collaboration has extended well beyond simple file sharing.
As Web 2.0 users are becoming more actively involved, P2P networks have enabled
the creation of large-scale communities that cooperatively manage the content of their
interest. The success of Wikipedia attests that as a mode of article production, P2P-style
collaboration can succeed and even operate with an efficiency that closed systems cannot
compete with. Projects like computation sharing over a P2P network in SETI@home
[ACK+02] demonstrate that people are willing to share their resources to achieve common
benefits. We focus on content sharing in P2P networks where large numbers of users
connect to each other in a P2P fashion in order to request and provide content.

Under the Web 1.0 context, the content of web-servers is distributed to large audiences
via Content Distribution Networks (CDN) [BPV08]. The main mechanism is to replicate
popular content at strategically placed and dedicated servers. As it intercepts and serves
the clients’ queries, a CDN decreases the workload on the original web-servers, reduces
bandwidth costs, and keeps the user-perceived latency low. Given that the Web is
witnessing an explosive growth in the amount of web content and users, P2P networks
seem to be the perfect match to build low-cost infrastructures for content distribution.
This is because they can offer several advantages like decentralization, self-organization,
fault-tolerance and scalability. In a P2P system, users serve each other queries by sharing
their previously requested content, thus distributing the content without the need for
powerful and dedicated servers.

However, due to the decentralized and open nature of P2P networks, making efficient
use of P2P advantages is not a straightforward endeavor. Many challenges need to
be overcome when building a P2P infrastructure that is as scalable, robust and high
performing as commercial CDNs.
One major issue with any P2P system is the mismatch between the P2P network and
the underlying IP-level network, which has two strong negative impacts. First, it can
dramatically increase the consumption of network resources which limits the system
scalability [RFI02]. Second, it can severely deteriorate the performance by increasing user-
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perceived latency. For an efficient collaboration and a good quality of service, users should
be able to access nearby content and communicate with peers close in locality. For this,
the P2P network needs to incorporate some locality-awareness which refers to information
about the physical location of peers and content. Previous efforts [DMP07,MPDJP08] on
distributed and locality-aware algorithms have motivated us to deepen our investigation
on this issue given the potential performance gains.

Another concern is that peers are not dedicated servers but autonomous and volunteer
participants with their own heterogeneous interests. Peers unexpectedly fail, frequently
join and leave the network by thousands [SR06]. Furthermore, they cannot be charged
with heavy workloads or forced to contribute against their interests. Under these
conditions, it is hard to ensure reliability since a peer departure can cause content or
performance loss. Furthermore, scalability is constrained by efficient load balancing over
peers. The challenge is thereby to cope with the autonomy of peers and efficiently maintain
the network under their dynamicity so that it does not affect the system performance in
processing queries and serving content.
In the P2P literature, several approaches like [IRD02,WNO+02,RY05,FFM04] have been
proposed that build a P2P CDN. However, they usually compromise one requirement for
another. In short, they are typically confronted with the trade-off between autonomy
and reliability, or between quality of service and maintenance cost [DGMY02]. Some of
them can achieve high reliability by reducing peer autonomy, while others can offer a
good performance and quality of service for a high maintenance cost. Obviously, there is
still room for improvement. Most importantly, the existing P2P CDNs lack of effective
scalability as they operate on small scales.

Contributions
The goal of this thesis is to contribute to the development of novel and efficient P2P
infrastructures for content distribution. In short, our work has evolved as follows. First,
we have focused on P2P file sharing which can be considered as the simplest form of
content distribution. This helped us make our first steps in exploring locality-awareness
as a strong requirement and a significant source of gains. In addition, we have made
a first attemp in dealing with the autonomous behaviour of peers and leveraging the
inherent properties. Second, we have switched to more sophisticated collaborations and
aimed at building a pure P2P infrastructure that can provide the scalability, reliability
and performance of a commercial CDN with much lower costs.

More precisely, our contributions in this thesis are the following.
First, we survey content distribution systems which can range from file sharing to

more elaborate systems that create a distributed infrastructure for organizing, indexing,
searching and retrieving content. We shed light on the requirements and open issues
of traditional content ditribution techniques, in particular commercial CDNs. Then, we
give a comprehensive study of P2P systems from the perspective of content sharing and
identify the design requirements that are crucial to make efficient use of P2P advantages.
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We also present the recent trends and their challenges that can improve the performance
of P2P content distribution. Finally, we discuss existing P2P CDNs and evaluate them
according to the previously identified requirements. This analysis allows us to identify
the requirements that our solutions should provide and the challenges that we might
encounter.

Our second contribution targets file sharing in unstructured P2P networks. For this,
we propose Locaware [DPV07,DP09], a new approach that tackles the existing limitations
in P2P file sharing. It provides locality-aware and selective index caching in order to
efficiently reduce unnecessary bandwidth consumption. Basically, a peer intercepts query
responses and selectively caches several indexes per file, along with information about their
physical locations. Thus, a peer can answer a query by providing several possibilities,
which improves file availability and enables the selection of a file copy close to the
query originator. Moreover, Locaware combines its indexing scheme with a query routing
technique that provides some expressiveness and flexibility in the query formulation. In
short, indexes are compactly summarized using Bloom Filters [Blo70] and then sent to the
neighbors. The simulation results demonstrate that Locaware can limit wasted bandwidth
and reduce network resource usage. They motivate us to elaborate more on Bloom filters
and locality-awareness, in order to achieve greater performance improvement. On the one
hand, the impact of locality-awareness could be more significant and its benefits intensified
if exploited in query routing. On the other hand, Bloom Filters could be explored for
more sophisticated search and caching techniques.

Our third contribution consists in building a P2P CDN, called Flower-CDN [DPK09a,
DPK09d], that does not require dedicated or powerful servers. Flower-CDN distributes the
popular content of any under-provisioned website by strictly relying on the community
of users interested in its content. To achieve this, it takes into account the interests
and localities of users, and accordinly organizes peers and serves queries. Flower-CDN
adopts a novel and hybrid architecture that combines the strengths of the two types of
P2P networks, i.e., structured and unstructured. It relies on a P2P directory service
called D-ring, that is built and managed according to the interests and localities of the
peers providng its services. D-ring helps new participants to quickly find peers in the
same locality that are interested in the same website. Peers with respect to the same
locality and website form together a cluster overlay called petal, to enable an efficient
collaboration. Within a petal, peers use Bloom filters and gossip protocols [EGKM04] to
exchange information about their contacts and content, allowing Flower-CDN to maintain
accurate information despite dynamic changes. We use this two-layered infrastructure
consisting of D-ring and the petals for a locality-aware query routing and serving. D-
ring ensures a reliable access for new clients, whereas petals allow them to subsequently
perform locality-aware searches and provide them close-by content. Thus, most of the
query routing takes place within a locality-based cluster leading to short response times
and local data transfer. Our simulation results show that Flower-CDN achieves significant
gains of locality-awareness with limited overhead.

Our fourth contribution aims at providing our P2P CDN with high scalability and
robustness under large scale and dynamic participation of peers. Thus, we propose
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PetalUp-CDN [DPK09b], which dynamically adapts Flower-CDN to increasing numbers
of participants in order to avoid overload situations. In short, PetalUp-CDN enables D-
ring to progressively expand to manage larger petals so that all the participants share the
workload rather evenly. In addition, we maintain our P2P CDN in face of high churn and
failures, by relying on low-cost gossip protocols. Our maintenance protocols [DPK09c]
preserve the locality and interest aware features of our achitecture and enables fast and
efficient recovery. Based on our extensive empirical analysis, we show that our approach
leverages larger scales to achieve higher improvements. Furthermore we conclude that
Flower-CDN can maintain an excellent performance under a highly dynamic participation
of peers.

Our fifth contribution address the deployment of Flower-CDN for public use. We show
how to transparently integrate Flower-CDN into the user’s web browser and dynamically
configure it according to the interests of the user. We design the implementation
architecture that covers security and privacy issues in a simple and practical manner.

Thesis Organization
The thesis is organized as follows. In Chapter 1, we provide a literature review of the
state-of-the-art for content distribution and P2P systems. First we give more insight
into traditional CDNs and their requirements which are needed for the design of novel
and cheaper alternatives. Then we present P2P systems and identify their fundamental
requirements and challenges. Finally, we introduce the existing P2P solutions for content
distribution and enlighten their open issues.

Chapter 2 is dedicated to Locaware, our locality-aware solution for P2P file sharing.
The first part of the chapter recall the context of P2P File Sharing and index caching
in order to clearly define the problem. The second part focuses on the design and
implementation of Locaware, and finally its performance evaluation through simulations.

In Chapter 3, we present Flower-CDN, our proposed P2P infrastructure that exploits
localities and interests of peers for efficient content distribution. After a quick overview,
we explore the D-ring model with its different features and services. Then we describe
the Petal model and its gossip-based management. In addition, we discuss and argument
our design choices, and analyse the costs of our solution. We conclude with our extensive
simulation methodology and results.

Chapter 4 addresses the scalability and robustness of our P2P CDN. We present
the highly scalable version of Flower-CDN, PetalUp-CDN, with its design and dynamic
construction. Then we discuss the maintenance protocols that ensure the robustness of
Flower-CDN and PetalUp-CDN under churn. Finally, we present our empirical analysis
for robustness and scalability.

In Chapter 5, we give guidelines on the deployment of Flower-CDN for public use and
discuss implementation details.

Finally, we conclude and highlight future directions of research.
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Chapter 1
Content Distribution in P2P

Systems

Abstract. In order to define the problems we address in this thesis, the first chapter provides a
literature review of the state-of-the-art for content distribution. In short, the contributions of
this chapter are of threefold. First, it gives more insight into traditional Content Distribution
Networks (CDN), their requirements and open issues. Second, it discusses P2P systems as a
cheap and scalable alternative for CDN and extracts their design challenges. Finally, it evaluates
the existing P2P systems dedicated for content distribution. Although significant progress has
been made in P2P content distribution, there are still many open issues.

1.1 Introduction
The explosive growth of the Internet has triggered the conception of massive scale
applications involving large numbers of users in the order of thousands or millions.
According to recent statistics [ITU07], the world had 1.5 billion Internet users by the
end of 2007. The client-server model is often not adequate for applications of such scale
given its centralized aspect. Under this model, a content provider typically refers to a
centralized web-server that exclusively serves its content (e.g., web-pages) to interested
clients. Eventually, the web-server suffers congestion and bottleneck due to the increasing
demands on its content [Wan99]. This substantially decreases the service quality provided
by the web-server. In other terms, the web-server gets overwhelmed with traffic due to
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a sudden spike in its content popularity. As a result, the website becomes temporarily
unavailable or its clients experience high delays mainly due to long download times, which
leaves them in frustration. That is why the World Wide Web is often pejoratively called
World Wide Wait [Moh01].

In order to improve the Internet service quality, a new technology has emerged that
efficiently delivers the web content to large audiences. It is called Content Distribution
Network or Content Delivery Network (CDN) [BPV08]. A commercial CDN like Akamai1
is a network of dedicated servers that are strategically spread across the Internet and that
cooperate to deliver content to end-users. A content provider like Google and CNN can
sign up with a CDN so that its content is deployed over the servers of the CDN. Then,
the requests for the deployed content are transparently redirected to and handled by the
CDN on behalf of the origin web-servers. As a result, CDNs decrease the workload on
the web-servers, reduce bandwidth costs, and keep the user-perceived latency low. In
short, CDNs strike a balance between the costs incurred on content providers and the
QoS provided to the users [PV06]. CDNs have became a huge market for generating large
revenues [iR08] since they provide content providers with the highly required scalabiliy,
reliability and performance. However, CDN services are quite expensive, often out of
reach for small enterprises or non-profit organizations.

The new web trend, Web 2.0, has brought greater collaboration among Internet users
and encouraged them to actively contribute to the Web. Peer-to-Peer (P2P) networking
is one of the fundamental underlying technologies of the new world of Web 2.0. In a
P2P system, each node, called a peer, is client and server at the same time – using
the resources of other peers, and offering other peers its own resources. As such, the
P2P model is designed to achieve self-scalability : as more peers join the system, they
contribute to the aggregate resources of the P2P network. P2P systems that deal with
content sharing (e.g., sharing files or web documents) can be seen as a form of CDN,
where peers share content and deliver it on each other’s behalf [SGD+02]. The more
popular the content (e.g., file or web-page), the more available it becomes as more peers
download it and eventually provide it for others. Thus, the P2P model stands in direct
contrast to traditional CDNs like Akamai when handling increasing amounts of users and
demands. Whereas a CDN must invest more in its infrastructure by adding servers, new
users bring their own resources into a P2P system. This implies that P2P systems are
a perfect match for building cheap and scalable CDN infrastructures. However, making
use of P2P self-scalability is not a straightforward endeavor because designing an efficient
P2P system is very challenging.

This chapter aims at motivating our thesis contributions in the field of content
distribution. For this purpose, it reviews the state-of-the-art for both traditional and P2P
content distribution in order to identify the shortcomings and highlight the challenges.

Roadmap. The rest of this chapter is organized as follows. Section1.2 gives more insight
into traditional CDNs and highlights their requirements which are needed for the design

1http://www.akamai.com
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of novel and cheaper alternatives. Section 1.3 presents P2P systems and identifies their
fundamental design requirements. Section 1.4 investigates the recent P2P trends that are
useful for content distribution and identifies their challenges. Then, Section 1.5 deeply
explores the state-of-art in P2P solutions for content distribution. It evaluates the existing
approaches against the previously identifed requirements (for both P2P and CDN) and
enlightens open issues.

1.2 Insights on Content Distribution Netwoks
Content distribution networks is an important web caching application. First, let us
briefly review the different web caching techniques in order to position and understand
the CDN technology. Then, we shed lights on CDNs, their requirements and their open
issues.

1.2.1 Background on Web Caching
A web cache is a disk storage of predefined size that is reserved for content requested
from the Internet (such as HTML pages and images)2. After an original request for
an object has been successfully fulfilled, and that object has been stored in the cache,
further requests for this object results in returning it from the cache rather than the
original location. The cache content is temporary as the objects are dynamically cached
and discarded according to predefined policies (further details in Section 1.2.2.1).

Web caching is widely acknowledged as providing three major advantages [CDF+98].
First, it reduces the bandwidth consumption since fewer requests and responses need
to go over the network. Second, it reduces the load on the web-server which handles
fewer requests. Third, it reduces the user-perceived latency since a cached request is
satisfied from the web cache (which is closer to the client) instead of the origin web-
server. Together, these advantages make the web less expensive and better performing.

Web caching can be implemented at various locations using proxy servers [Wan99,
Moh01]. A proxy server acts as an intermediary for requests from clients to web-servers. It
is commonly used to cache web-pages from other web-servers and thus intercepts requests
to see if it can fulfill them itself. A proxy server can be placed in the user’s local computer
as part of its web browser or at various points between the user and the web-servers.
Commonly, proxy caching refers to the latter schemes that involve dedicated servers out
on the network while the user’s local proxy cache is rather known as browser cache.

Depending on their placement and their usage purpose, we distinguish two kinds of
proxies, forward proxies and reverse proxies. They are illustrated in Figure 1.1.

A forward proxy is used as a gateway between an organisation (i.e., a group of clients)
and the Internet. It makes requests on behalf of the clients of the organisation. Then,
it caches requested objects to serve subsequent requests coming from other clients of
the organisation. Large corporations and Internet Service Providers (ISP) often set up

2Web caching is different from traditional caching in main memory that aims at limiting disk accesses
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Figure 1.1: Web caching: different placements of proxy servers.

forward proxies on their firewalls to reduce their bandwidth costs by filtering out repeated
requests. As illustrated in Figure 1.1, the university of Nantes has deployed a forward
proxy that interacts with the Internet on behalf of the university users and handles their
queries.

A reverse proxy is used in a network in front of web-servers. It is delegated the
authority to operate on behalf of these web-servers, while working in close cooperation
with them. Typically, all requests addressed to one of the web-servers are routed through
the proxy server which tries to serve them via caching. Figure 1.1 shows a reverse proxy
that acts on behalf of the web-servers of wikipedia.com, cnn.com and youtube.com by
handling their received queries. A CDN deploys reverse proxies throughout the Internet
and sells caching to websites that aim for larger audience and lower workload. The reverse
proxies of a CDN are commonly known as surrogate servers.

1.2.2 Overview of CDNs

A CDN deploys hundreds of surrogate servers around the globe, according to complex
algorithms that take into account the workload pattern and the network topology [Pen03].
Figure 1.2 gives an overview of a CDN that distributes and delivers the content of a web-
server in the US.
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Figure 1.2: Overview of a CDN.

Examples of commercial CDNs are Akamai 3 and Digital Island 4. They mainly focus
on distributing static content (e.g., static HTML pages, images, documents, audio and
video files), dynamic content (e.g., HTML or XML pages that are generated on the fly
based on user specification) and streaming audio or video. Further, ongoing research aims
at extending CDN technology to support video on demand (VoD) and live streaming. In
this thesis, we mainly focus on static content. This type of content has a low frequency of
change and can be easily cached; its freshness can be maintained via traditional caching
policies [Wan99].

A CDN stores the content of different web-servers and therefore handles related queries
on behalf of these web-servers. Each website selects specific or popular content and pushes
it to the CDN. Clients requesting this content are then redirected to their closest surrogate
server via DNS redirection or URL rewriting. The CDN manages the replication and/or
caching of the content among its surrogate servers. These techniques are explained in
more detail below.

The interaction between a user and a CDN takes place in a transparent manner, as if
it is done with the intended origin web-server. Let us consider a typical user interaction
with the well-known CDN, Akamai [Tec99], which mainly deals with objects embedded
in a web-page (e.g., images, scripts, audio and video files). First, the user’s browser sends
a request for a web-page to the website. In response, the website returns the appropriate

3http://www.akamai.com
4http://www.digitalisland.com/
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HTML page as usual, the only difference being that the URLs of the embedded objects
in the page have been modified to point to the Akamai network. As a result, the browser
next requests and obtains the embedded objects from an optimal surrogate server.

How is this transparent interaction achieved from a technical perspective? In the
following, we investigate this issue by exploring CDN techniques for replication and
caching on one hand, and location and routing on the other hand.

Figure 1.3: Typical user interaction with a website using Akamai services [Tec99].

1.2.2.1 Replication and Caching in CDN

According to [CMT01] and [SPV06], replication involves creating and permanently
maintaining duplicate copies of content on different nodes to improve content availability.
One the other hand, caching consists in temporarily storing passing by request responses
(e.g., web-pages, embedded objects like images) in order to reduce the response time and
network bandwidth consumption on future, equivalent requests. Note that web documents
are typically accessed in read-only mode: requests read a document without changing its
contents.

Replication. In a CDN, replication is typically initiated when the origin web-servers
push content to any surrogate servers [PV06,BPV08]. The surrogate servers then manage
the replication of the content among each other, either on-demand or beforehand.

In on-demand replication, the surrogate server that has received a query and
experienced a cache miss, pulls the requested content from the origin web-server or other
surrogate servers. In the latter case, it might use a centralized or distributed index to
find a nearby copy of the requested content within the CDN.

Beforehand replication implies different strategies that replicate objects a priori and
dynamically adjust their placement in a way that brings them closer to the clients and
balances the load among surrogate servers [Pen03].

However, due to replication requirements in terms of cost and time, any replicas’
placement should be static for a large amount of time.
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Caching. Given that popularity of objects may fluctuate with time, some replicas may
become redundant and unnecessary. This leads to unoptimized storage management
at surrogate servers. That is why caching can be seen as an interesting alternative to
replication, especially in cases where unpredictable numerous users have suddenly interest
in the same content.

Content objects are dynamically cached and evicted from the cache according to cache
replacement policies. More precisely, each cached object is assigned a cache expiration
policy which defines how long it is fresh based on its own characteristics [Wan99]. Upon
receiving a request for an object, the server first checks the freshness of its cached version
before serving it. In case it has expired, the surrogate server checks with the origin server
if the object has changed (by sending a conditional GET (cGET) request, e.g. If-Modified-
Since request). Subsequently, the origin server either validates the cached copy or sends
back a fresh copy. Since the cache has a limited storage size, the server might need to
evict cached objects via one of the cache replacement policies that have been studied
in [Wan99]. In the policy LRU, the rarely requested objects stored in the local cache are
replaced with the new incoming objects. Additionally, the cache may regularly check for
expired objects and evict them.

An evaluation of caching and replication as seperate approaches in CDNs is covered
in [KM02], where caching outperforms but replication is still preferred for content
availability and reliability of service. If replication and caching cooperate they may greatly
fortify the CDN since both deal with the same problem but from a different approach.
Indeed, [SPV06] has proven that potential performance improvement is possible in terms
of response time and hit ratio if both techniques are used together in a CDN. CDNs may
take advantage of the dynamic nature of cache replacement policies while maintaining
static replicas for availability and reliability.

1.2.2.2 Location and Routing in CDN

To serve a query in a CDN, there are two main steps, server location and query routing.
The first step defines how to select and locate an appropriate surrogate server holding
a replica of the requested object whereas the second step consists in routing the query
to the selected surrogate server. In several existing CDNs, these two steps are combined
together in a single operation.

A query routing system uses a set of metrics in selecting the surrogate server that can
best serve the query. The most common metrics include proximity to the client, bandwidth
availability, surrogate load and availability of content. For instance, the distance between
the client and a surrogate server can be measured in terms of round-trip-time(RTT) via
the ping common tool.

Actually, each CDN uses its proprietary algorithms and mechanisms for location and
routing and does not always reveal all the technology details. Here, we try to give a
generic description of the mechanisms commonly used by CDNs, based on the materials
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in [BPV08,Pen03]. The most common query routing technique are DNS redirection and
URL rewriting.

DNS Redirection. CDNs can perform dynamic request routing using the Internet’s
Domain Name System (DNS). The DNS is a distributed directory service for the Internet
whose primary role is to map fully qualified domain names (FQDNs) to IP addresses. For
instance, hostname.example.com translates to 208.77.188.166. The DNS distributes the
responsibility of assigning domain names and mapping those names to IP addresses over
authoritative name servers: an authoritative name server is designated to be responsible
for each particular domain, and in turn can designate other authoritative name servers
for its sub-domains. This results in a hierarchical authority structure that manages the
DNS. To determine an FQDN’s address, a DNS client sends a request to its local DNS
server which resolves it by recursively querying a set of authoritative DNS servers. When
the local DNS server receives an answer to its request, it sends the result to the DNS
client and caches it for future queries.

Normally, DNS mapping from an FQDNs to an IP address is static. However, CDNs
use modified authoritative DNS servers to dynamically map each FQDN to multiple IP
addresses of surrogate servers. The query answer may vary depending on factors such as
the locality of the client and the load on the surrogate servers. Typically, the DNS server
returns, for a request, several IP addresses of surrogate servers holding replicas of the
requested object. The DNS client chooses a server among these. To decide, it may issue
pings to the servers and choose based on resulting RTTs. It may also collect historical
information from the clients based on previous access to these servers.

URL Rewriting. In this approach, the origin web-server redirects the clients to
different surrogate servers by rewriting the URL links in a web-page. For example, with
a web-page containing an HTML file and some embedded objects, the web-server would
modify references to embedded objects so that they point to the CDN or more particularly
to the best surrogate server. Thus, the base HTML page is retrieved from the origin
web-server, while embedded objects are retrieved from CDN servers. To automate the
rewriting process, CDNs provide special scripts that transparently parse web-page content
and replace embedded URLs. URL rewriting can be proactive or reactive. In the proactive
URL rewriting, the URLs for embedded objects of the main HTML page are formulated
before the content is loaded in the origin server. In reactive approach involves rewriting
the embedded URLs of a HTML page when the client request reaches the origin server.

1.2.3 Requirements and Open Issues of CDN
As introduced previously, a CDN has to fulfill stringent requirements which are mainly
reliability, performance and scalability [PV06].

• Reliability guarantees that a client can always find and access its desirable content.
For this, the network should be robust and avoid single point of failure.
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• Performance mainly involves the response time perceived by end-users submitting
queries. Slow response time is the single greatest contributor to clients abandoning
web-sites [Tec04].

• Scalability refers to the adaptability of the network to handle more amounts of
content, users and requests without significant decline in performance. For this, the
network should prevent bottlenecks due to overload situations.

The reliability and performance of a CDN is highly affected by the mechanisms of
content distribution as well as content location and routing. Content distribution defines
how the content is distributed over the CDN and made available for clients. It mainly deals
with the placement of content and involves caching and replication techniques in order
to make the same content accessible from several locations. Thus, with these techniques,
the content is located near to the clients yielding low response times and high content
availability since many replicas are distributed. Content location and routing defines how
to locate the requested content and route requests towards the appropriate and relevant
servers. Locality-awareness refers to any topological information about the localities of
peers to be able to evaluate their physical proximity. Locality-awareness is a top priority
in routing mechanisms in order to find content close to the client in locality.

To expand and scale-up, CDNs need to invest significant time and costs in provisioning
additional infrastructures [Tec04]. Otherwise, they would compromise the quality of
service received by individual clients. Further, they should dynamically adapt their
resource provisioning in order to address unexpected and varying workloads. This
inevitably leads to more expensive services for websites. In the near future, the clients will
also have to pay to receive high quality content (in some of today’s websites like CNN.com,
users have already started to pay a subscription to view videos). In this context, scalability
will be an issue to deliver high quality content, maintaining low operational costs [BPV08].

Most recently, traditional CDNs [BPV08] have turned towards P2P technology to
reduce investments in their own infrastructure, in the context of video streaming. The
key idea is to dynamically couple traditional CDN distribution with P2P distribution.
Basically, the CDN serves a handful of clients which in turn provide the content to other
clients. Joost5 and BitTorrent6 are today’s most representative CDN companies using
P2P technology to deliver Internet television and video streaming, respectively.

To conclude this section, we observe that P2P technology is being progressively
accepted and adopted as a mean of content distribution. The existing CDNs still depend
–at least partly- on a dedicated infrastructure, which requires investment and centralized
administration. If the CDN could rely on a cheap P2P infrastructure supported only by
end-users, this would provide a cheap and scalable alternative that avoids the considerable
costs. In the rest of this chapter, we further investigate the feasibility of pure P2P content
distribution.

5http://www.joost.com
6The technology is called BitTorrent DNA (Delivery Network Accelerator). Available at http://www.

bittorrent.com/dna/
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1.3 P2P Systems
In the past few years, P2P systems have emerged as a popular way to share content.
The most representative systems include Gnutella [Gnu05, JAB01, Jov00], BitTorrent7

[PGES05] and Fastrack/Kazaa [LKR06]. The popularity of P2P systems is attested by
the fact that the P2P traffic accounts for more than 70% of the overall Internet traffic
according to a recent study8.

The P2P model holds great promise for decentralized collaboration among widespread
communities with common interests. This communal collaboration lies at the heart of
the Web 2.0 paradigm and stems from the principle of resource sharing. By distributing
storage, bandwidth and processing across all participating peers, P2P systems can achieve
high scalability, that would otherwise depend on expensive and dedicated infrastructure.

Let us first give an overview of P2P systems by defining their main concepts then we
can explore them in more detail.

1.3.1 Overview of P2P Systems
P2P systems operate on application-level networks referred to as overlay networks or
more simply overlays. In other words, peers are connected via a logical overlay network
superposed on the existing Internet infrastructure. When two peers are connected via a
logical link, this implies that they know each other and can regularly share information
across this link. We say that the peers are neighbors in the P2P network. Figure 1.4 shows
a P2P overlay network where Peer A and Peer B are neighbors, independently of their
Internet location. A P2P overlay network serves as an infrastructure for applications that
wish to exploit P2P features. It relies on a topology and its associated routing protocol.
The overlay topology defines how the peers are connected whereas the routing protocol
defines how the messages are routed between peers. According to their degree of structure,
P2P overlays can be classified into two main categories: structured and unstructured.
Typically, they differ on the constraints imposed on how peers are organized and where
shared objects are placed [QB06].

The P2P overlay has a direct impact on the performance, reliability and scalability
of the system. Given that P2P networks operate in open and vulnerable environments,
peers are continuously connecting and disconnecting, sometimes unexpectedly failing. The
high rates of peer arrival and departure creates the effect of churn [SR06] and requires
a continuous restructuring of the network core. For the purpose of reliability, the P2P
overlay must be designed in a way that treats failures and churn as normal occurences. For
the purpose of scalability, the P2P overlay should dynamically accommodate to growing
numbers of participants. The performance of P2P systems refers to their efficiency in
locating desirable content, which tightly depends on the P2P overlay, mainly on the
routing protocol.

7http://www.bittorrent.com/
8Available at http://www.ipoque.com/resources/internet-studies/internet-study-2008_

2009.
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Figure 1.4: P2P overlay on top of the Internet infrastructure.

Basically, when a peer searches for a given object, it originates a query and routes it
over the P2P overlay. Whenever a peer receives the query, it searches its local repository
for the requested object. Eventually, the query reaches a peer that can satisfy the query
and respond to the requester. The responder peer is either able to provide a copy of the
requested object or has a pointer to the location of the object. Accordingly, the responder
peer generates a query response that contains along with the object information (e.g.,
filename, id), the address of the provider peer. Upon receiving the query response, the
query originator downloads a copy of the object from the provider peer.

In the following, we present the two categories of P2P overlays, i.e., unstructured and
structured overlays. For each category, we discuss its behavior under churn as well as
its strengths and weaknesses. Then, we summarize by stating the requirements of P2P
systems and accordingly compare both categories.

1.3.2 Unstructured Overlays
Often referred to as the first generation P2P systems, unstructured overlays remain highly
popular and widely deployed in today’s Internet. They impose lose constraints on peer
neighborhood (i.e, peers are connected in an ad-hoc manner) and content placement (i.e.,
peers are free to place content anywhere) [QB06].

1.3.2.1 Decentralization Degrees

Although P2P systems are supposed to operate in a fully decentralized manner, in
practice, we observe that various degrees of decentralization can be applied to the routing
protocols of unstructured overlays. Accordingly, we classify unstructured overlays into
three groups: centralized, pure decentralized and partially decentralized with superpeers.
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(a) Centralized. (b) Pure decentralized.

(c) Partially decentralized with superpeers.

Figure 1.5: Types of unstructured P2P overlays.

Centralized In these overlays, a central server is in charge of indexing all the peers and
their shared content as shown in Figure 1.5a. Whenever a peer requests some content, it
directly sends its query to the central server which identifies the peer storing the requested
object. Then, the file is transferred between the two peers. The now-defunct Napster9

9http://www.napster.com/
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[CG01] adopted such a centralized architecture.

Pure Decentralized In pure decentralized overlays, all peers have equal roles as shown
in Figure 1.5b. Each peer can issue queries, serve and forward queries of other peers.
Query routing is typically done by blindly flooding the query to neighbors. The flooding
mechanism has been further refined, in a way that nowadays we find several variants of
flooding like random walks and iterative deepening. These techniques are explained in
more detail in Section 1.3.2.2. Of the many existing unstructured P2P systems, Gnutella
[Gnu05,JAB01,Jov00] is one of the original pure decentralized networks.

Partially Decentralized with Superpeers In these overlays, high-capacity peers
are assigned the role of superpeers, and each superpeer is reponsible of a set of peers,
indexing their content and handling queries on their behalf. Superpeers are then organized
in a pure decentralized P2P network and can communicate to search for queries (see
Figure 1.5c). They can be dynamically elected and replaced in the presence of failures.
Gnutella2 [SR02] is another version of Gnutella that uses superpeers; Edutella [NWQ+02]
and FastTrack/Kazaa [LKR06] are also popular examples of hybrid networks.

The higher is the degree of decentralization, the more the network is fault-tolerant and
robust against failures, because there will be no single point of failure due to the symmetry
of roles. However, the higher is the degree of centralization, the more efficient is the search
for content. Thus, the hybrid overlay strikes a balance between the efficiency of centralized
search, and the load balancing and robustness provided by means of decentralization.
Furthermore, it can take advantage of the heterogeneity of capacities (e.g., bandwidth,
processing power) across peers. That is why recent generations of unstructured overlays
are evolving towards hybrid overlays.

1.3.2.2 Decentralized Routing Techniques

In decentralized routing, blind techniques are commonly used to search for content in
unstructured networks. Blind techniques route the query without any information related
to the location of the requested object. A peer only keeps references to its own content,
without maintaining any information about the content stored at other peers. Blind
techniques can be grouped into three main categories: breadth-first-search, iterative
deepening and random walk.

Breadth-First-Search (BFS). Originally, unstructured systems relied on the flooding
mechanism which is more formally called Breadth-First-Search (BFS). Illustrated in
Figure1.6a, the query originator sends its query Q to its neighbors, which in turn forward
the message to all their neighbors except the sender and so on. The query is associated
with a Time-To-Live (TTL) value, which is decreased by one when it travels across one hop
in the P2P overlay. At a given peer, the message comes to its end if it becomes redundant
(i.e., no further neighbors) or the TTL value becomes zero. Query responses follow the
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reverse path of the query, back to the requester peer. The main merits of this approach
are its simplicity, reliability, and its high network coverage, i.e., a large number of peers
could be reached within a small number of hops. However, measurements in [RFI02] have
shown that although 95% of any two peers are less than 7 hops away, flooding generates 330
TB/month in a Gnutella network with only 50,000 nodes. This heavy traffic compromises
the benefits of unstructured systems and drastically limits their scalability. The reasons
behind the traffic burden of flooding are blindness and redundancy. First, a peer blindly
forwards the query without any knowledge about how the other peers can contribute to
the query. Second, a peer may receive the same query message multiple times because
of the random nature of connections in an unstructured overlay. This can result in huge
amounts of redundant and unnecessary messages.

In [KGZY02], modified BFS has been proposed in attempt to reduce the traffic
overhead of flooding. Upon receiving a query, a peer randomly chooses a ratio of its
neighbors to send or forward the query (see Figure1.6b). However, this approach may
loose many of the good answers which could be found by BFS.

Iterative Deepening. This approach [YGM02,LCC+02] is also called expanding ring.
The query originator performs consecutive BFS searches with successively larger TTL.
A new BFS follows the previous one by expanding the TTL, if the query has not been
satisfied after a predefined time period. The algorithm ends when the required number
of answers is found or the predefined maximum TTL is reached. In case the results are
not in the close neighborhood of the query originator, this approach does not address the
duplication issue and adds considerable delay to the response time.

Random Walk. In the standard algorithm, the query originator randomly selects one
of its neighbors and forwards the query to that neighbor. The latter, in turn, forwards the
query to one randomly chosen neighbor, and so on until the query is satisfied. Compared
to the basic BFS, this algorithm reduces the network traffic, but massively increases the
search latency.

In the k-walker random walk algorithm [LCC+02], the query originator forwards k
query messages to k randomly chosen neighbors (k is a value specified by the application).
Each of these messages follows its own path, having intermediate peers forward it to one
randomly chosen neighbor at each step. These query messages are also known as walkers
and are shown in (Figure1.6c) as W1 and W2. When the TTL of a walker reaches zero,
it is discarded. Each walker periodically contacts the query originator, asking whether
the query was satisfied or not. If the response is positive, the walker terminates. This
algorithm achieves a significant message reduction since it generates, in the worst case,
k∗TTL routing messages, independently of the underlying network. Nevertheless, a major
concern about this algorithm is its highly variable performance because success rates are
highly variable and dependable on the network topology and the random choices made. In
addition, the random walk technique does not learn anything from its previous successes
or failures.
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(a) BFS or flooding. (b) Modified BFS.

(c) Random walk.

Figure 1.6: Blind routing techniques of unstructured overlays.

1.3.2.3 Behavior under Churn and Failures

It is well known that P2P networks are characterized by a high degree of churn [GDS+03].
Therefore, it is vital to examine the behavior of P2P networks in highly dynamic
environments where peers join and leave frequently and concurrently.

The maintenance of unstructured overlays merely rely on the messages ping, pong
and bye: pings are used to discover hosts on the network, pongs are replies to pings and
contain in formation about the responding peer and other peers it knows about, and byes
are optional messages that inform of the upcoming closing of a connection.

After joining the overlay network (by connecting to boostrap peers found in public
databases), a peer sends out a ping message to any peer it is connected to. The peers
send back a pong message identifying themselves, and also propagate the ping message to
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their neighbors. When a peer gets in contact with a new peer, it can add it as a neighbor
in its routing table in a straigthforward manner. A peer that detects the failure or leave
of a neighbor simply removes it from its routing table. If a peer becomes disconnected
by the loss of all of its neighbors, it can merely repeat the bootstrap procedure to re-join
the network [CRB+03].

The measurements in [QB06] show that the bandwidth consumption due to
maintenance messages is reasonably low in the unstructured Gnutella system. Peers
joining and leaving the Gnutella network have little impact on other peers or on the
placement of shared objects, and thus do not result in significant maintenance traffic.

To resume, there are few constraints on the overlay construction and content placement
in unstructured networks: peers set up overlay connections to an arbitrary set of other
peers they know, and shared objects can be placed at any peer in the system. The
resulting random overlay topology and content distribution provides high robustness to
churn [QB06]. Furthermore, the routing mechanism greatly rely on flooding which yields
randomness and repetitiveness and thus more robustness. Given that a query takes several
parallel routes, the disruption of some routes due to peer failures does not prevent the
query from being propagated throughout the P2P network.

1.3.2.4 Strengths and Weaknesses

Unstructured P2P systems exhibit many simple yet attractive features, such as high
flexibility and robustness under churn and failures. For instance, the freedom in content
placement provides maximum flexibility in selecting policies for replication and caching.

Unstructured overlays are particularly used to support file-sharing applications for
two main reasons. First, since they introduce no restritions on the manner to express a
query, they are perfectly capable of handling keyword search, i.e., searching for files using
keywords instead of the exact filenames. Second, file popularity derives a kind of natural
file replication among peers, which induces high availability. Indeed, peers replicate the
copies of files they request when they download them.

However, the main Achilles heel of unstructured systems are their blind routing
mechanisms which incur severe load on the network and give no guarantees on lookup
efficiency. Because of the topology randomness, a query search necessitates O(n) hops
(where n is the total number of peers), generates many redundant messages and is not
guaranteed to find the requested object. Many studies such as [RFI02] and [Rit01] claim
that the high volume of search traffic threatens the continued growth of unstructured
systems. Indeed, the measurements in [RFI02] have shown that although 95% of any two
peers are less than 7 hops away, flooding generates 330 TB/month in a Gnutella network
with only 50,000 nodes.

1.3.3 Structured Overlays
The evolution of research towards structured overlays has been motivated by the poor
scaling properties of unstructured overlays. Structured networks discard randomness and
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impose specific constraints on the overlay topology [QB06]. They remedy to the blind
search by tightly controlling the content placement. As a result, they provide an efficient,
deterministic search: they can locate any object within a bounded number of hops.

More precisely, a structured overlay provides a distributed index scheme, by mapping
content to locations (e.g., an object identifier is mapped to a peer address). To achieve
this, objects and peers are assigned unique identifiers (respectively keys and IDs) from
the same identifier space (e.g., hashing filename or url for an object and the IP address for
a peer). Then, this identifier space is dynamically partitioned among peers, so that each
peer is responsible for a specific key space partition. Accordingly, a peer stores the objects
or pointers related to objects with respect to its key partition. The topology dictates for
each peer a certain number of neighbors. The peer holds a routing table that associates
its neighbors’s identifiers to their IP addresses. Then a routing algorithm is defined to
allow a deterministic key-based search. The main representative of structured overlays is
the Distributed Hash Table (DHT ) which is presented and dicussed in the following.

1.3.3.1 DHT Routing

At a fundamental level, DHTs can be viewed as content addressing and lookup engines.
A DHT provides content and peer addressing via consistent hashing [KLL+97]. This
technique enables a uniform hashing of values and thereby evenly places or maps content
to peers. The addressing mechanism serves as a distributed and semantic-free index,
because it gives information about the location of content based on hash-based keys.

The lookup engine of the DHT mainly consists in locating the target peer by
means of routing over the overlay. The routing protocol tightly depends on the
different implementations of DHT and more precisely the routing geometries [GGG+03].
Nonetheless, all routing protocols aim at providing efficient lookups as well as minimizing
the routing state10 that should be maintained at each peer. Most of them exhibit almost
similar space and time complexity. That is, the routing table of peer contains at most
O(log N) entries and a lookup is normally performed in O(log N) hops where N is the
total number of nodes in the DHT [HHH+02].

The routing geometry mainly defines the manner in which neighbors and routes are
established. According to [GGG+03], there are 6 basic types of routing geometries: tree,
hypercube, ring, butterfly, XOR and hybrid. The main factor that distinguishes these
geometries is the degree of flexibility they provide in the selection of neighbors and routes.

Neighbor selection refers to how the routing table entries of a peer are established,
whereas route selection refers to how the next-hop can be determined in a routing
process. Flexibility in the selection of neighbors and routes has a significant impact
on the robustness and locality-awareness properties of the DHT-based system [GGG+03].
When allowing some freedom in the selection of neighbors and routes, one can choose
neighbors and next routes, respectively, based on proximity. For instance, if the choice of
neighbors is completely deterministic, it prevents the addition of features on top of the
initial DHT proposal in order to achieve locality-aware routing tables. Further, flexible

10The routing state refers to the routing table of the peer.
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selections interfere in failures because they describe how many alternatives are there for
the neighbor or the next-hop in case they are down. For instance, if there are no options
for a next-hop, or only a few, this may destabilize or interrupt the routing process, which
can greatly increase the number of hops or/and the latency.

In the following, we look at 4 geometries, tree, hypercube, ring and hybrid and discuss
their flexibility degrees.

Tree. Peer IDs are the leaves of a binary tree of height log N , where N is the number
of nodes in the tree (see Figure 1.7). The responsible for a given key is the peer whose
identifier has the highest number of prefix bits which are common with the key. The
distance between any two peers is the height of their smallest common subtree. Each
peer has log N neighbors, such that the hth neighbor is at distance h from the peer. Let
us consider the tree of height equal to 3 in Figure1.7. The peer with ID = 010 has the
peer with ID = 011 as its 1st neighbor because their smallest common subtree is of height
h = 1. Their IDs share a prefix of two bits and differ on the last bit. Similarly, the peer
with ID = 010 has chosen the peer with ID = 000 as its 2nd because their smallest
common subtree is of height h = 2. Their IDs share a prefix of one bit and differ on
the two others. Routing is performed such that the prefix match between the target key

Figure 1.7: Tree routing geometry.

and the ID of the intermediate peer is increased by one at each hop, until reaching the
responsible peer. The well-known DHT implementation Tapestry [ZHS+04] falls into this
category.

The tree geometry gives a great deal of freedom to peers in choosing their neighbors;
when choosing the ith neighbor, a peer has 2i−1 options. In the tree example, the peer
with ID = 010 has 22−1 = 2 choices for its 2nd neighbor: the peer with ID = 000 and the
peer with ID = 001 because they both belong to the subtree of height h = 2. However,
this approach has no flexibility in the selection of routes: there is only one neighbor which
the message must be forwarded to, i.e., this is the neighbor that has the most common
prefix bits with the given key.
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Hypercube. This geometry is based on a d-dimensional Cartesian coordinate space
that is partitioned into a set of separate zones such that each peer is attributed one
zone. Peers have unique identifiers with log N bits, where N is the total number of peers
of the hypercube. Each peer p has log N neighbors such that the identifier of the ith
neighbor and p differ only in the ith bit (see Figure 1.8a). Query routing proceeds by
greedily forwarding the given key via intermediate peers to the peer that has minimum bit
difference with the key. Thus, it is somehow similar to routing on the tree. The difference
is that the hypercube allows bit differences to be reduced in any order while with the tree,
bit differences have to be reduced in strictly left-to-right order. CAN [RFH+01] uses a
routing geometry similar to hypercubes. Figure 1.8b shows a 2-dimensional [0; 1] ∗ [0; 1]
coordinate space partitioned between 5 peers.

(a) Hypercube routing geometry. (b) Hypercube-like structure of CAN.

Figure 1.8: Hypercube routing geometry.

There are (log N)! possible routes between two peers, which provides high route
flexibility. However, each peer in the coordinate space does not have any choice over
its neighbours coordinates since adjacent coordinate zones in the coordinate space cannot
change. Therefore, the high route selection flexibility provided by Hypercubes is at the
price of poor neighbor selection flexibility.

Ring. Peers are arranged in a one-dimensional cyclic identifier space and ordered
clockwise with respect to their identifiers. Chord [SMK+01] represents the prototypical
DHT ring. In Chord, each peer has an m-bit identifier, and the responsible for a key is
the first peer whose identifier is equal to or greater that the key. Each peer p has log N
neighbors such that the ith neighbor has a distance from the peer clockwise in the circle
equal to 2i−1modN . Hence, any peer can route a given key to its responsible in log N
hops because each hop cuts the distance to the destination by half. In Figure 1.9, the
Chord peer with ID = 8 maintains 8 entries in its routing table called finger table.
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Figure 1.9: Ring routing geometry. Example of Chord with 10 peers and a peer ID of
m = 6 bits.

Although Chord specifies the set of neighbors for each peer, the ring geometry does
not necessarily needs such rigidity in neighbor selection. In fact, the log N lookup bound
is preserved as long as the ith neighbor is chosen from the range [2i−1modN, 2imodN ].
This provides a great deal of neighbour selection flexibility because each peer would have
2i−1 options in selecting its ith neighbor. Moreover, to reach a destination, there are
approximately (log N)! possible routes. Therefore, the ring geometry also provides good
route selection flexibility.

Hybrid. This geometry employs a combination of geometries. As a representative
example, Pastry [RD01a] is a popular DHT implementation that combines the tree and
ring geometries, aiming at a locality-aware routing. To achieve this, each peer maintains
a routing table, a leaf set, and a neighborhood set. The routing table resembles the
tree structure described previously, while the leaf set acts as the ring in routing. The
neighborhood set is used to maintain locality properties. During a lookup process, a peer
uses first the tree structure represented by its routing table, and only falls-back to the
ring via its leaf set if routing in the tree fails. This is why Pastry provides flexibility in
neighbor selection, similar to the tree geometry. However, the matter is more subtile with
respect to route selection flexibility. Given that a peer maintains an ordered leafset, it
is able to take hops between peers with the same prefix (i.e., between branches of the
tree) and still retain the bits that were fixed previously; this however does not necessarily
preserve the log N bound on the number of hops.
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1.3.3.2 Behavior under Churn and Failures

Preserving the topology constraints is crucial to guarantee the correctness of lookup in
structured overlays. However, churn and failures highly affect DHTs.

When peer failures or leaves occur, they deplete the routing tables of the existing peers.
Recovery algorithms are used to repopulate the routing tables with live peers, so that
routing can continue unabated. The recovery can be reactive (upon detecting the failure
of a peer referenced by the routing table) like in Pastry [RD01a] or periodic (upon regular
time intervals in the background) like in Chord [SMK+01]. Basically, the peer exchanges
entries from the routing table with peers from its routing table and accordingly update
its routing table. After a single peer leaves the network, most DHTs require O(log N)
repair operations, i.e., updates of routing tables affected by the leave (N is the total
number of peers) . When a peer unexpectedly fails, the DHT needs more time and effort
to first detect the failure and then repair the affected routing tables. It should also notify
the application to take specific measures so that the content held by failed peers is not
lost. Several approaches have been proposed to prevent this problem, most notably the
replication of content at peers with IDs numerically close to the content’s key [RD01b].

When a new peer joins the overlay network, the DHT should detect the arrival and
inform the application of the set of keys that the new peer is responsible for so that the
relevant content is moved to its new home. Similarly to leaves and failures, the recovery
algorithms should update the routing tables of the peers concerned by the new arrival.

However, if the churn rate is too high, the overhead caused by these repair operations
can become dramatically high and could easily overwhelm peers [CRB+03].

Furthermore, recovery protocols take some time to repair and update the routing tables
affected by joins and/or leaves. Given that new arrivals and departures are frequent in
P2P environments, one must check the static resilience of a DHT [GGG+03], i.e., how well
the DHT routing algorithm can perform before the overlay has recovered (before routing
tables are restored and keys migrated to new homes). DHTs with low static resilience
require much faster recovery algorithms to be similarly robust. In such DHTs, requests
that fail in routing should retry the lookup after a pause. A DHT with routing flexibility
provides high static resilience because it has many alternate paths available to complete
a lookup (see Section 1.3.3.1).

The analysis in [RGRK04] has examined the effects of churn on existing DHT
implementations and derived two main observations. A DHT may either fail to complete
a lookup, or return inconsistent answers (e.g., return the address of a peer that is no more
responsible for the requested key). On the other hand, a DHT may continue to return
consistent answers as churn rates increase, but it can suffer from a substantial increase in
lookup latency.

1.3.3.3 Strengths and Weaknesses

Structured overlays offer strong guarantees on lookup efficiency while limiting the routing
overhead. In particular, the ring topology is the best compromise that supports
many of the properties we desire from such overlays. They have been used in a
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variety of applications such as content storage (e.g., OceanStore [KBC+00], Pastry
[RD01b]), multicast services (e.g., Bayeux [ZZJ+01], Scribe [RKCD01]) or large-scale
query processing engines (e.g., Pier [HHL+03]).

However, two criticisms arise against these overlays and constitue a major hurdle
in the adoption of such systems. First, the tightly controlled topology requires high
maintenance in order to cope with the frequent joins and leaves of peers. Moreover, studies
[RGRK04] have shown that structured systems exhibit less than desirable performance
under high churn rates because routing tables are affected and take time to be repaired.
A second criticism concerns the limited flexibility provided by structured systems wrt.
the autonomy of peers and the lookup functionality. Peers cannot freely choose their
neighbors nor their responsabilities. Further, structured systems are designed in a way
to provide key-based lookup which is convenient to exact-match queries. Their ability to
support keyword searches and more complex queries is still an open issue.

Thus, structured overlays are the perfect match for applications that seek a scalable
and guaranteed lookup but do not witness highly dynamic populations.

1.3.4 Requirements of P2P Systems
Based on this preliminary study on P2P systems, we observe that they introduce new
requirements in respect of content sharing. The study in [DGMY02] identifies the
following requirements:

• Autonomy defines the level of freedom granted to peers, mainly with respect to the
placement of content. This is required to give peers proper incentives to cooperate.
Indeed, it is usually not desired and rarely enabled to force storing content on peers.

• Expressiveness refers to the flexibility in query formulation. It should allow the
user to describe the desired content at the level of detail that is appropriate to the
target application.

• Quality of service has the most influence on user satisfaction. It can be defined
with metrics like response time and hit ratio.

• Efficiency refers to the efficient use of resources of the P2P network (bandwidth,
processing power, storage). Given the high rate of failures and churn, the
maintenance protocol should neither compromise the gains with its overhead nor
degrade the system performance. Also, efficiency implies that the routing protocol
does not overload the network or the peers while not missing the available content.

• Robustness means that efficiency and quality of service are provided despite the
occurrence of peer failures.

• Security is a major challenge given the open nature of P2P networks. With respect
to content distribution, one of the most critical issues is the content authenticity
which deals with the problem of distinguishing fake documents from original ones.
We do not focus on this requirement in our study.
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REQUIREMENTS UNSTRUCTURED STRUCTURED
Autonomy free to choose neighbors and content tight control on neighbors and content

Expressiveness keywords exact-match
Quality of service no guarantees deterministic

Efficiency efficient maintenance efficient lookup
Robustness suitable for high churn problems under high churn

Table 1.1: Comparison of P2P overlays.

Table 1.1 summarizes how the requirements are achieved by the two main classes of
P2P networks. This is a rough comparison to understand the respective merits of each
class. Obviously, there is room for improvement in each class of P2P networks. Regarding
efficiency, structured systems provide a highly efficient lookup at the cost of a significant
maintenance overhead, in opposition to unstructured systems.

Beyond this classical classification of P2P systems, there exist new trends in the P2P
literature, that focus on other considerations and incur new challenges on the design of a
P2P system. This is further investigated in Section 1.4.

1.4 Recent Trends for P2P Content Distribution
We have, so far, discussed P2P systems from a classical perspective. However, today’s
research is evolving towards more sophisticated issues about P2P systems, from the
perspective of content distribution.

Recently, some have started to justify that unstructured and structured overlays are
complementary, not competing. It is actually easy to demonstrate that depending on the
application, one or the other type of overlay is clearly more adapted. In order to make
use of the desirable features provided by each topology, there are efforts underway for
combining both in the same P2P systems.

Further, the overlay can be refined through extracting and leveraging inherent
structural patterns from P2P networks. These patterns can stem from the underlying
physical network (e.g., physical proximity between peers) or be defined at the application
layer (e.g., interest-based proximity between peers). Matching the overlay with the
underlying physical network greatly contributes in reducing communication and data
transfer costs as well as user-perceived latencies. Additionally, leveraging interests of
peers to organize them can ease the search for content and guide the routing of queries.

Another recent trend is the usage of gossip protocols as a mean to build and maintain
the P2P overlay. Gossiping is also used to feed the overlay with indexing information in
order to facilitate content search.

In the following, we present in more detail the aforementioned trends. In Section
1.4.0.1, we detail locality-based overlay matching and the existing solutions along these
lines. Then, we present interest-based overlay matching in Section 1.4.0.2. In Section
1.4.0.3, we introduce the usage of gossip protocols in P2P systems. Finally, we review the
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existing approaches that combine several overlays in Section 1.4.0.4. Finally, we identify
the major challenges to be met when aiming to achieve these new trends and accordingly
discuss the aforementioned approaches.

1.4.0.1 Trend 1: Locality-Based Overlay Matching

As introduced in Section 1.3, the overlay topology defines application-level connections
between peers and completely abstracts all features about the underlying physical network
(e.g., IP level). In other terms, the neighborhood of a node is set without much knowledge
of the underlying physical topology, causing a mismatch between the P2P overlay and the
physical network. Figure1.4 clearly illustrates the mismatch between a P2P overlay and
the underlying Internet. As an example, peer A has peer B as its overlay neighbor while
peer C is its physical neighbor. This can lead to inefficient routing in the overlay because
any application-level path from peer A towards the nearby peer C traverses distant peers.

More precisely, the scalability of a P2P system is ultimately determined by its efficient
use of underlying resources. The topology mismatch problem imposes substancial load on
the underlying network infrastructure, which can eventually limit the scalability [RFI02].
Furthermore, it can severely deteriorate the performance of search and routing techniques,
typically by incurring long latencies and excessive traffic. Indeed, many studies like
[SGD+02] have revealed that the P2P traffic contributes the largest portion of the Internet
traffic and acts as a leading consumer of Internet bandwidth. Thus, a fundamental
challenge is to incorporate IP-level topological information in the construction of the
overlay in order to improve routing performance. This topological information could
also be used in the selection of close-by search results to ensure a good user experience.
Topological information refers to locality-awareness because it aims at finding peers close
in locality. Below, we present the main representative approaches that propose locality-
based matching schemes.

Physical Clustering. In [KWX01], clustering has been used to group physically close
peers into clusters. The approach relies on a centralized engine to identify clusters of
close peers under common administrative control. To achieve this, the central server
uses IP-level routing information which is not directly available to end-user applications.
Thus, the main drawbacks of this approach are the centralized topology control and the
topological information itself, which prevents it from being scalable and robust to churn.

In the context of application-level multicast and media streaming, many solutions aim
at constructing a locality-aware overlay because of the strong requirements on the delivery
quality. The NICE protocol [BBK02] builds a hierarchy of clusters rooted at the source,
whith close peers belonging to the same part of the hierarchy. However, maintaining the
hierarchy under churn may incur high overhead and affect performance.

LTM Technique. The LTM (Location-aware Topology Matching) technique [LXL+05]
targets unstructured overlays. It dynamically adapts connections between peers in a
completely decentralized way. Each peer issues a detector in a small region so that the
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peers receiving the detector can record the relative delay. Accordingly, a receiving peer
can detect and cut most of the inefficient logical links and add closer peers as neighbors.
However, this scheme operates on long-time scales where the overlay is slowly improved
over time. Given that participants join and leave on short time-scales, a solution that
operates on long-time scales would be continulally reacting to fluctuating peer membership
without stabilizing.

Locality-Aware Structured Overlays. While the original versions of structured
overlays did not take locality-awareness into account, almost all of the recent versions make
some attempt to deal with this primary issue. [RSS02] identifies three main approaches.

• Geographic layout: the peer IDs are assigned in a manner that ensures that peers
that are close in the physical network are close in the peer ID space.

• Proximity routing: the routing tables are built without locality-awareness but the
routing algorithm aims at selecting, at each hop, the nearest peer among the ones
in the routing table. For this, flexibility in routing selection is required as layed out
in Section 1.3.3.1.

• Proximity neighbor selection: the construction of routing tables takes locality-
awareness into account. When several candidate peers are available for a routing
table entry, a peer prefers the one that is close in locality. To achieve this, flexibility
in neighbor selection is required as pointed out in Section 1.3.3.1.

Pastry [RD01a] and Tapestry [ZHS+04] adopt proximity neighbor selection. In order
to preferentially select peers and fill routing tables, these systems assume the existence
of a function (e.g., round-trip-time RTT) that allows each peer to determine the physical
distance between itself and any another peer. Although this solution leads to much shorter
query routes, it requires expensive maintenance mechanisms under churn. As peers arrive
and leave, routing tables should be repaired and updated. Without timely repairing,
the overlay topology will diverge from optimal condition as inefficient routes gradually
accumulate in routing tables.

A design improvement [RHKS02] of CAN aims at achieving geographic layout. It
relies on a set of well-known landmarks spread across the network. A peer measures
its round-trip time (RTT) to the set of landmarks and orders them by increasing latency
(i.e., network distance). The logical space of CAN is then divided into bins such that each
possible landmarks ordering is represented by a bin. Physically close nodes are likely to
have the same ordering and hence will belong to the same bin. This is illustrated in Figure
1.10. We have 3 landmarks (i.e., L1, L2, and L3) and, accordingly, the CAN coordinate
space is divided into 6 bins (3! = 6). Since peers N1, N2, and N3 are physically close
(see Figure 1.10 (a)), such peers produce the same landmark ordering, i.e., L3<L1< L2.
As a result, N1, N2, and N3 are placed in the same bin of the overlay network, and they
take distinct neighbor zones (see Figure 1.10 (b)). The same approach applies to other
peers. Notice that such approach is not perfect. For instance, peer N10 is closer to N3
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than N5 in the physical network whereas the opposite situation is observed in the overlay
network. Despite its limited accuracy, this technique achieves fast results and copes well
with dynamicity. In addition, binning has the advantage of being simple to implement
and scalable since peers independently discover their bins without communicating with
other participants. Furthermore, it does not incur high load on the landmark machines:
they need only echo ping messages and do not actively initiate measurements nor manage
measurement information. To achieve more scalability, multiple close-by nodes can act as
a single logical landmark.

Figure 1.10: Locality-aware construction of CAN

An observation about the aforementioned locality-aware schemes is that the technique
used in Pastry and Tapestry is very protocol-dependent and thereby cannot be extended
to other contexts in a straigthforward manner, whereas the binning technique can be more
generally applied in contexts other than in structured overlay, like unstructured overlays.

1.4.0.2 Trend 2: Interest-Based Topology Matching

In attempt to improve the performance of P2P systems and the efficiency of search
mechanisms, some works have addressed the arbitrary neighborhood of peers from a
semantic perspective. Recent measurement studies [HKFM04,FHKM04,SMZ03] of P2P
workloads have demonstrated the inherent presence of semantic proximity between peers,
i.e., similar interests between peers. They have shown that exploiting the implicit interest-
based relationships between peers may lead to improvements in the search process. In
short, they have reached the following conclusion: “if a peer has an object that I am
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interested in, it is very likely that he will have other objects that I am (or will be)
interested in”.

These interest-based relationships can be translated into logical connections between
peers that can either replace or be added on top of a peer neighborhood. If we consider
Figure 1.4, peer A has peer B as a neighbor specified by its overlay topology and could
have extra connections with semantically similar peers like peer D. Then, these semantic
connections can be used to achieve efficient search.

In the following, we discuss two representative works along these lines. They were
initially proposed for unstructured overlays. When applying one of them, a peer maintains
two types of neighbors: its neighbors in the unsructured overlay (e.g., random peers) and
its interest-based neighbors. Upon receiving a query, the peer uses its interest-based
neighbors first; if this first phase fails the normal search phase is performed via its normal
neighbors. In superpeer overlays, the first phase can be used to bypass the superpeers
thus alleviating their load.

Semantic Clustering. Garcia-Molina et al. [CGM04] introduces the concept of
semantic overlays and advocates their potential performance improvement. Peers with
semantically similar content are grouped into clusters together. Clusters can overlap
because a peer can simultaneously belong to several clusters related to its content. To
achieve this, the authors assume global knowledge of the semantic grouping of the shared
documents and accordingly choose a predefined classification hierarchy. Then, each peer
decides which clusters to join by classifying its documents against this hierarchy. To
join its clusters, the peer finds peers belonging to these clusters by flooding the network.
However, It is not clear how this solution performs in the presence of dynamic user
preferences.

Interest-Based Shortcuts. In [SMZ03], the concept of shortcut is proposed, allowing
peers to add direct connections to peers of similar interests besides their neighbors. The
similarity of interests are captured implicitly based on recent downloads and accordingly,
interest-based shortcuts are dynamically created in the network: basically, a peer adds
shortcuts to peers among those from which it had recently downloaded content. In
practice, these shortcuts are discovered progressively while searching for content via
flooding. Furthermore, the time for building interest-based groups is non-trivial, and
these groups may be no more useful when the peer goes offline and then online again, due
to the dynamic nature of P2P networks.

The aforementioned schemes may also be applied to structured overlays. In addition to
its routing table, a peer may maintain interest-based neighbors and use them conjunctly.
However, this increases the routing state at each peer and incurs extra storage and update
overhead.
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1.4.0.3 Trend 3: Gossip Protocols as Tools

We now present the usage of gossip protocols in P2P systems. They can serve as efficient
tools to achieve new P2P trends in a scalable and robust manner. We particularly focus
on gossiping because we greatly rely on these protocols to achieve our thesis purposes.

Gossip has recently received considerable attention from researchers in the field of P2P
systems [KvS07]. In addition to their inherent scalability, they are simple to implement,
robust and resilient to failures. They are designed to deal with continuous changes in
the system, while they exhibit reliability despite peer failures and message loss. This
makes them ideally suited for large-scale and dynamic environments like P2P systems.
In this section, we provide generic definition and description of gossip protocols, then we
investigate how P2P systems can leverage these protocols.

Generic Definition Gossip algorithms mimic rumor mongering in real life. Just as
people pass on a rumor by gossiping to their contacts, each peer in a distributed system
relays new information it has received to selected peers which in their turn, forward the
information to other peers, and so on. They are also known as epidemic protocols in
reference to virus spreading [DGH+87].

Generic Algorithm Description The generic gossip behavior of each peer can be
modeled by means of two separate threads: an active thread which takes the initiative
to communication, and a passive thread which reacts to incoming initiatives [KvS07].
Peers communicate to exchange information that depends strictly on the application.
The information exchange can be performed via two strategies : push and pull. A push
occurs in the active thread, i.e., the peer that initiates gossiping shares its information
upon contacting the remote peer. A pull occurs in the passive thread, i.e., the peer shares
its information upon being contacted by the initiating peer. A gossip protocol can either
adopt one of these strategies or the combination of both (i.e., push-pull which implies a
mutual exchange of information during each gossip communication).

Figure 1.11 illustrates in more detail a generic gossip exchange. Each peer A knows a
group of other peers or contacts and stores pointers to them in its view. Also, A locally
maintains information denoted as its state. Periodically, A selects a contact B from its
view to initiate a gossip communication. In a pull-push scheme, A selects some of its
information and sends them to B which, in its turn, does the same. Upon receiving the
remote information, each one of A and B merges it with its local information and update
their state. At that point, how a peer deals with the received information and accordingly
update its local state is highly application dependent.

How P2P Systems Leverage Gossip Protocols Gossip stands as a tool to achieve
4 main purposes [KvS07]: dissemination, resource monitoring, topology construction and
peer sampling. Figure 1.12 illustrates these gossip-based services and how they interfere
in a P2P system that is represented by an overlay layer and a search layer.
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(a) Select contact. (b) Exchange state information.

(c) Merge and update local state.

Figure 1.11: Peer A gossiping to Peer B.

Introduced by Demers et al. [DGH+87], dissemination has traditionally been the
purpose of gossiping. In short, the aim [EGKM04] is to spread some new information
throughout the newtork by letting peers forward messages to each other. The information
gets propagated exponentially through the network. In general, it takes O(logN) rounds
to reach all peers, where N is the number of peers. Figure 1.12 shows that gossip-based
dissemination can be used to feed the search layer with indexing information useful to
route queries. Basically, a peer can maintain and gossip information about the content
stored by other peers and decide accordingly to which peers it should send a query.

Then, gossiping has turned out to be a vehicule of resource monitoring in highly
dynamic environments. It can be used to detect peer failures [RMH98], where each peer
is in charge of monitoring its contacts, thus ensuring a fair balance of the monitoring
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Figure 1.12: How a P2P system can leverage gossiping.

cost. Further, gossip-based monitoring can guarantee that no node is left unattended,
resulting in a robust self-monitoring system. In Figure 1.12, the monitoring service is
used to maintain the overlay under churn by monitoring a peer’s neighbors. In addition,
it interferes in the search layer to monitor indexing information in face of content updates
and peer failures.

Recently, various researches have explored gossiping as a mean for overlay
construction and maintenance according to certain desirable topologies (e.g., interest-
based, locality-based, random graphs), without requiring any global information or
centralized administration. In such systems, peers self-organize under the target topology,
via a selection function that determines which neighbors are optimal for each peer (e.g.,
semantic or physical proximity). Along these lines, several protocols have been proposed
such as Vicinity [VvS05] which creates a semantic overlay and T-Man [JB05] that provides
a general framework for creating topologies according to some ranking function. Figure
1.12 represents the topology construction service providing peers with specific neighbors
and thereby connecting the P2P overlay.

Analyses [JGKvS04] of gossip protocols reveal a high reliability and efficiency, under
the assumption that the peers to send gossip messages to are selected uniformly at random
from the set of all participant peers. This requires that a peer knows every other peer,
i.e., that the peer has global knowledge of the membership, which is not feasible in a
dynamic and large-scale P2P environment. Peer sampling offers a scalable and efficient
alternative that continuously supplies a node with new and random samples of peers.
This is achieved by gossiping membership information itself which is represented by the
set of contacts in a peer’s view. Basically, peers exchange their view information, thus
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discovering new contacts and accordingly updating their views. In order to preferentially
select peers as neighbors, gossip-based overlay construction may be layered on top of a
peer sampling service that returns uniformly and randomly selected peers. Well-known
protocols of peer sampling are Lpbcast, Newscast and Cyclon [VGS05]. In Figure 1.12,
we can see the peer sampling service supporting other gossip-based services and supplying
them with samples of peers from the network.

To conclude this section on gossip protocols, we shed light on their salient strenghts
and weaknesses.

Strengths Gossip algorithms have the advantage of being extremely simple to
implement and configure [Bir07]. Furthermore, they perfectly meet the decentralization
requirement of P2P systems since many of them are designed in a way to let peers take
local-only decisions. If properly designed, they can balance and limit the loads over
participant peers.

Gossiping also provides high robustness which stems from the repeated probabilistic
exchange of information between two peers [KvS07]. Probabilistic choice refers to the
choice of peer pairs that communicate while repetition refers to the endless process of
choosing two peers to exchange information. Therefore, gossip protocols are resilient
to failures and frequent changes and they cope well with the dynamic changes in P2P
systems.

Weaknesses The usage of gossip might introduce serious limitations [Bir07]. The
protocol running times can be slow and potentially costly in terms of messages exchanged.
One should carefully tune gossip parameters (e.g., periodicity) in a way that matches the
goals of the target appplication.

1.4.0.4 Trend 4: P2P Overlay Combination

We now present a recent trend that is changing the classical categorization of P2P systems.
Lately, several approaches have been proposed to build a P2P system over multiple
overlays in order to combine their functionalities and leverage their advantages. The
combination might involve structured and unstrucured overlays as well as interest- (or
semantic) and locality-based overlays. The construction and maintenance of the combined
overlays might imply additional overhead which should not compromise the desirable
gains. Below, we present and discuss some examplary approaches.

Structured & Unstructured. The approach presented in [CCR04] improves the
unstructured Gnutella network by adding some structural components. The motivation
behind is that unstructured routing mechanisms can support complex queries but generate
significant message overhead. Structella [CCR04] replaces the random graph of Gnutella
with the structured overlay of Pastry, while retaining the flexible content placement of
unstructured P2P systems. Queries in Structella are propagated using either flooding or
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random walks. A peer maintains and uses its structured routing table to flood a query to
its neighbors, thus ensuring that peers are visited only once during a query and avoiding
duplicate messages. However, this work does not enable the important features of locality
and interest awareness.

Interest & Locality-based. The work in [CW04] builds Foreseer, a P2P system that
combines an interest-aware overlay and a locality-aware overlay. Thus, each peer has
two bounded sets of neighbors: proximity-based (called neighbors) and interest-based
(called friends). Finding neighbors relies on a very basic algorithm that improves locality-
awareness slowly with time. Whenever a node discovers new peers, it replaces its neighbors
with the ones that are closer in latency. A similar scheme is used to progressively make
and refine friends from the peers that satisfy queries of the node in question. Friends
are preferentially selected by comparing their content similarity with the target node.
However these schemes operate on long-time scale.

Joint Overlay. In [MBK07], the authors leverage the idea of cohabiting several P2P
overlays on a same network, so that the best overlay could be chosen depending on the
application. The distinctive feature of this proposal is that, in the joint overlay, the
cohabiting overlays share information to reduce their maintenance cost while keeping
the same level of performance. As an example, they describe the creation of a joint
overlay with a structured overlay and an interest-based unstructured overlay using gossip
protocols. Thus each peer belongs to both overlays and can alternatively use them.

DHT Layering or Hierarchy. The work in [NT04] organises the structured overlay in
multiple layers in order to improve performance under high levels of churn. They introduce
the concept of heterogeneity with respect to peer behavior, being altruistic or selfish. The
idea is to concentrate most routing chores at altruistic peers; these peers are willing to
carry extra load and have the required capabilities to do so. The authors also assume that
altruistic peers stay connected more than others. Thus, a main structured overlay is built
over altruistic peers, and each one in its turn is connected to a smaller structured overlay
of less altruistic peers. Figure 1.13 shows an example of a two-layers DHT, where the
main DHT represents the altruistic network and links several DHT-structured clusters.
The P2P overlay can be further clustered, resulting into multiple layers.

A similar work is proposed in [SX08] and addesses the problem of load balancing in
a heterogenous environment in terms of capacities. Likewise, a main structured overlay
is built over high-capacity peers, and each one acts as a super-peer for a locality-based
cluster of regular peers. Each peer has an ID obtained by hashing its locality information
(using the binning technique of Section 1.4.0.1). A regular peer is assigned to a super-peer
whose ID is closest to the peer’s ID, which results in regular peers being connected to
their physically closest super-peer.

These proposals are orthogonal to our work, as they mainly focus on DHTs
performance under heterogeneity. It is not clear how they can support content distribution
and location.
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Figure 1.13: A two-layers DHT overlay [NT04].

1.4.0.5 Challenges to Be Met

When refining the P2P network via sophisticated techniques (like locality or interest aware
schemes), one should make sure that the overhead is worth the performance improvement.
Based on the aforementioned trends, we have identified two major challenges that need
to be explored:

Challenge 1 To capture or gather the information (e.g., topological or semantic
relationships) in a manner that is both practical and scalable. This should be done without:

• requiring global knowledge or centralized administration.

• incurring large overheads of messages and/or data transfers on the existing overlay.

Challenge 2 To be adaptive to dynamic changes and churn. Indeed, the solution should
provide a scheme that can still be valid and effective when new peers join or/and existing
ones leave. For this, it should:

• operate on short-time scales. Given that participants join and leave on short time-
scales, a solution that operates on long-time scales would be continulally reacting to
fluctuating peer membership without stabilizing.

• avoid grouping peers into a static configuration which does not evolve well as the
behavior or characteristics of peers change.
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1.4.0.6 Discussion

In this section, we have reviewed the recent trends in the P2P literature, mainly from the
perspective of content sharing. We have seen that they improve the performance of P2P
infrastructures but incur additional challenges related to scalability and dynamicity on
their design. Table 1.2 summarizes the main approaches that integrate recent P2P trends
and evaluates them with respect to the challenges.

Trend Challenge 1 Challenge 2
Locality-aware schemes

Physical clustering no no
LTM technique yes no

Pastry & Tapestry locality-aware scheme yes no
Binning technique yes yes

Foreseer yes no
Interest-aware schemes

Semantic clustering no no
Interest-based shortcuts yes no

Foreseer yes no

Using Gossip partially yes
Joint Overlay no no

Table 1.2: Trends vs. challenges.

In short, matching the overlay with a locality or interest-aware scheme could bring
great benefits to the P2P system in terms of efficiency and quality of service. However, the
schemes should be kept simple and practical. Among the proposed approach, the binning
technique is the perfect match to achieve locality-awareness with respect to the challenges.
It relies on topological information that is practical and incurs limited overhead (Challenge
1); it also operates fast and can easily adapt to changes (Challenge 2).

Gossiping can be used to build locality and interest-based schemes and can answer
the challenges. It can be designed in a way that provides simplicity, decentralization
and high robustness. In general, gossip is a tool, not an end in itself. It should be used
selectively, in contexts where gossip is the best choice, mainly in the fields of monitoring
and dissemination and overlay maintenance. This implies that gossip protocols need to
be combined with other tools to build an efficient P2P infrastructure [Bir07]. Further,
efficient tuning is needed so that gossip does not incur significant delays and overheads
in terms of messages. The message overhead might prevent gossip protocols from fully
satisfying Challenge 1.

Finally, we have concluded that structured and unstructured overlays should not
be seen as competing but rather complementing each other. Each category provides
specific and unique functionalities. Combining different overlays and schemes might reveal
interesting, yet very challenging. In particular, the maintenance of several overlays should



41 1.5. P2P Content Distribution Systems

not overwhelm the P2P system. An interesting solution is to leverage the combination in
the maintenance mechanisms (e.g., exploiting one overlay to maintain the other). Also,
gossip can be a potentially effective solution for this issue that requires no centralization
if properly designed.

1.5 P2P Content Distribution Systems
In the previous section, we provided a generic presentation of P2P systems which can serve
as infrastructures for applications like content distribution. In this section, we deepen
our study on P2P content distribution systems. In particular, we examine the existing
proposals and identify the shortcomings according to the requirements and challenges
identified through this chapter.

Most of the current P2P applications fall within the category of content distribution,
which range from simple file sharing, to more sophisticated systems that create a
distributed infrastructure for organizing, indexing, searching and retrieving content
[ATS04]. P2P content distribution functionalities are achieved via collaboration among
peers, scalability being ensured by resource sharing. By distributing tasks across all
participating peers, they can collectively carry out large-scale content distribution without
the need for powerful and dedicated servers.

In the following, we first give an overview (Section 1.5.1) where we define the context
of P2P content distribution and recall the P2P and CDN requirements discussed in the
previous sections. Then, we discuss the existing works and enlighten the open issues of
P2P file sharing (Section 1.5.2) and P2P CDN (Section 1.5.3).

1.5.1 Overview
Recall that the design of a CDN brings stringent requirements which are performance,
reliability and scalability (cf. Section 1.2.3). In contrast to traditional CDNs, a P2P
infrastructure relies on peers which are not dedicated servers but autonomous and
volunteer participants with their own heterogenous interests. When building a CDN
over a P2P infrastructure, it is vital to reconcile and coordinate these requirements with
the ones introduced by P2P systems, i.e., autonomy, expressiveness, efficiency, quality of
service, robustness, and security (cf. Section 1.3.4). Let us recapitulate and identify the
different correlations between CDN and P2P requirements. Further, we point out where
the P2P recent challenges interfere.

Performance, Quality of Service. Performance meets the requirement of quality
of service. It is ensured via locality-aware and efficient location of content as laid out
previously. While many P2P systems abstract any topological information about the
underlying network, locality-awareness should be a top priority in order to achieve short
query response times. The locality-aware solution should overcome Challenges 1 and 2,
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i.e., it should be kept simple, incur acceptable overhead, operate fast and adapt to churn
and high scales.

Scalability, Efficiency. In order to make efficient use of P2P inherent scalability, it is
essential to distribute load equitably over peers. This is realized if all peers fairly share
the processing of queries as well as the routing load. However, when some peers hold
popular content, they may present hot spots, attracting large amounts of queries.

Reliability/Robustness, Autonomy. Reliability can only be ensured by the
robustness of the P2P system under the dynamic nature of its peers. There is a strong
correlation between robustness and autonomy [DGMY02]. Indeed, churn and failure rates
are much higher that in CDN infrastructures because of the autonomous nature of peers.
Routing and serving querie can be difficult to achieve as peers join and leave frequently
and unexpectedly. Furthermore, the solutions of caching and replication that improve
content availability are highly constrained by the autonomy of peers.

Efficiency, Autonomy. Decoupling efficiency from autonomy seems to be very
challenging, given that most existing techniques tend to sacrifice autonomy to achieve
efficiency [DGMY02]. This is because less autonomy allows more control on the content
placement and topology such that there exist a deterministic way to locate content within
bounded cost. In addition, search seems to be more efficient if the content is replicated.
An interest-based scheme might be useful to leverage the interests of peers in the search
and replication mechanisms. To be efficient, the scheme must meet Challenges 1 and 2
by being dynamic, practical and scalable.

Before we deepen our analysis of P2P content distribution, let us stand back and get an
overview of the context. Figure 1.14 illustrates the relation between the P2P infrastructure
and content distribution as its overlying application. The P2P infrastructure provides
specific services which are identified by [ATS04] as follows: routing and location,
anonymity and reputation management. We focus on P2P infrastructures for routing and
location. The operation of any P2P content distribution system relies on a network of
peers within which messages must be routed with fault-tolerance and minimum overhead,
and through which peers and content can be efficiently located. We have previously
seen different infrastructures and algorithms that have been developed to provide such
services. As laid out in the previous sections, the infrastructure characteristics, i.e., the
topology, the routing protocol, the degree of centralization and structure, play a crucial
role in the performance, reliability and scalability of the P2P content distribution system.
Figure 1.14 shows that the application layer contains functionalities that are specifically
tailored to build content distribution. Among these functionalities, we mention indexing,
replication and caching which will be discussed along the next sections.
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Figure 1.14: P2P infrastructure for content distribution.

1.5.2 P2P File Sharing
File sharing remains widespread in P2P networks. Some of the most popular networks are
BitTorrent, FastTrack/Kazaa, Gnutella, and eDonkey. They are generally deployed over
unstructured overlays, mainly due to their flexibility and support for keyword search.

File-sharing applications can afford to have looser garantees on the CDN requirements
because such applications are meant for a wide range of users from non-cooperating
environments [YGM02]. These are typically light-weight applications that adopt a best-
effort approach to distribute content and yet are accepted by the user population [ATS04].
Nonetheless, these systems should rigorously aim at keeping the network load at bay to
enable a deployment over large-scales.

Since unstructured networks commonly use blind techniques to locate files as discussed
in Section 1.3.2.2, many efforts have been made to avoid the large volume of unnecessary
traffic incurred by such techniques. As such, informed techniques have been proposed,
which rely on additional information about object locations to route queries. Typically, a
peer can maintain an index of the content provided by other peers and decide accordingly
to which peers it should send the query.

Next, we provide more insight into P2P file sharing systems by identifying their
inherent properties. Then, we discuss the indexing techniques proposed in this context.

1.5.2.1 Inherent Properties

P2P file sharing exhibit inherent properties that should be well understood in order to
design efficient solutions. In a nutshell, they are characterized by a high level of temporal
locality in queries, involve a natural replication of files, and commonly witness keyword
queries. Furthermore, P2P file sharing systems are considered as the leading consumer
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of Internet bandwidth [SGD+02]. The challenges are thereby to leverage intrinsic aspects
(natural replication, temporal locality) and address inherent issues (keyword lookup,
bandwidth consumption).

Natural Replication. File sharing systems vehiculate a "natural" replication of files,
which is enabled by the flexibility of unstructured overlays with respect to content
placement. When a peer requests a file, it downloads a copy which is often made available
for upload to other peers. Thus, the more popular a file, the more it is "naturally"
replicated and spread into the P2P network [CRB+03,GDS+03].

Temporal Locality. Several analyses [Mar02, LBBsS02, Sri01] of P2P file sharing
systems observed that the queries exhibit significant amounts of temporal locality, that
is, queries tend to be frequently and repeatedly submitted, requesting few popular files.
Accordingly, they advocated the potential of caching to capitalize on this temporal locality.
Caching is often done for the purposes of improved performance (i.e., higher hit ratio,
reduced latencies and bandwidth costs). It can also be viewed as a cost-effective version
of replication since it takes advantage of the unused storage resources and can evict copies
at any time.

Keyword Lookup. File-sharing systems like Gnutella [Gnu05] vehiculate a simple
keyword match. Users often generate queries that contain a set of keywords and peers
generate query reponses referring to files whose names contain all the query keywords.
Thus, query routing are required to support keyword lookup.

Bandwidth Consumption. Many measurement studies on P2P file sharing (e.g.,
[KRP05]) shed light on the tremendous bandwidth consumption and its detrimental
impact on both users and Internet Service Providers (ISPs). For the end users, their
participation into a P2P network swamps all the available bandwidth and renders the
link ineffective for any other use. For the ISPs, the P2P traffic is a major source of costs
since an ISP handles the file tranfer at the physical network layer. This increase of costs on
ISPs is passed on to the user in the form of higher prices to access the Internet. The main
reason behind this pertinent problem involves file transfers. P2P files are three orders
of magnitude larger than web objects, since the majority of shared files are audio and
movies [LBBsS02,SGD+02]. Also, they are randomly transferred between peers without
any consideration of network distances.

On the one hand, the studies suggest to cache files in order to remedy this problem.
However, this cannot be achieved without relying on a dedicated caching infrastructure.
Indeed, in file sharing communities, users rarely accept to store or cache large files on
behalf of each others.

On the other hand, the studies of [GDS+03,KRP05] present evidence on the potential
bandwidth savings of locality-aware file transfers. Indeed, the analysis in [GDS+03] has
shown that there is an untapped locality in file-sharing workload, i.e., a requested file
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is likely to be available at peers close to the requester in network locality. This means
that there is substancial opportunity to improve file sharing performance by exploiting
the untapped locality. In short, a query can be intentionally redirected towards nearby
files, to optimize the file transfer.

BitTorrent [PGES05] addresses this issue under a different angle. Basically, a peer
downloads multiple fragments in parallel from multiple downloaders of the target file, thus
distributing the load among several peers. There are two primary concerns about this
approach. First, it ignores locality-awareness by randomly choosing downloaders, which
can further accentuate the bandwidth problem. The second concern is the centralized
aspects of the search operation which limits scalability and robustnees. To share a file,
a peer first creates a metadata file called a torrent that contains information about the
tracker. A tracker is a centralized server that keeps track of all current downloaders of a
file and coordinates the file distribution. Peers that want to download the file must first
obtain a torrent file for it, and connect to the specified tracker, which tells them from
which other peers to download the fragments of the file. BitTorrent provides no way to
index torrent files which are thus hosted by specific websites. On-going improvements aim
at distributing the tracker’s functionality (i.e., the discovery of file downloaders) over the
peers via DHT or gossip protocols. BitTorrent can also serve as a P2P CDN to distribute
web content and relieve original web servers.

1.5.2.2 Indexing Approaches

In unstructured networks, informed search is achieved by the use of distributed indexes to
route queries. Basically, a peer maintains indexes related to the content stored by remote
peers. Then, the peer evaluates any received query against its indexes and redirects it to
peers that can contribute to it.

In general, an index yields a trade-off between compactness and accuracy, and between
maintenance overhead and broadness. The more the index compactly represents the
content, more storage efficiency is achieved but more false positives can result from index
lookup. At the same time, the more broad is the coverage of the index (i.e, indexing
distant content), the more effort and overhead is generated to maintain the indexes in
dynamic environments.

An indexing approach should overcome several challenges, so that it does not partially
offset the benefits of indexing itself. Below, we identify three main challenges:

• limit the overhead involved in the creation and update of indexes.

• support keyword search.

• introduce locality-awareness.

There are two types of indexes, a forwarding index and a location index. A forwarding
index allows to reach the requested object within a varying number of hops, while a
location index allows to reach the target in a single hop.



chapter 1. Content Distribution in P2P Systems 46

The approaches of forwarding indexes suply direction information towards the
content, rather than its actual location. Two representative approaches are routing indices
and local indices.

Routing Indices. This technique [CGM02] assumes that all documents fall into a
number of topics, and that queries request documents on particular topics. Also, each
peer stores, for every topic, the approximate number of documents that can be retrieved
through each one of its neighbors (i.e., including all the peers accessible from or linked to
this neighbor). Figure1.15 illustrates the use of routing indices (RI) over four topics of
interest. Considering the RI maintained by peer A, the first row contains the summary
of its local index, showing that A has 300 documents (30 about databases, 80 about
networks, none about theory, and 10 about languages). The rest of the rows represent
compound RI. For example, they show that peer A can access 100 database documents
through D (60 in D, 25 in I, and 15 in J).

Figure 1.15: Example of routing indices [CGM02].

Local Indices. This approach is proposed in [YGM02]. Each peer maintains an index
over the content of all peers within r hops of itself, and can therefore process any received
query on behalf of these peers. While a query is routed using BFS (breadth-first-search
or flooding), it is processed only at the peers that are at predefined hop distances from
the query originator. According to the authors’ analysis, the hop distance between two
consecutive peers that process the query must be 2 ∗ r + 1. This allows querying all
content without any overlap and reducing the query processing time.

In the aforementioned appoaches, the indexes maintained by each peer would be
extraordinarily large, and hence the overhead related to their creation and update may
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become prohibitively expensive, thus compromising the benefits. Furthermore, they do
not consider locality-awareness for the purpose of reducing bandwidth consumption.

Another category of approaches uses location indexes which aim at determining
which peers can provide certain content. Examples of such approaches are index caching,
intelligent BFS and Bloom Filter-based indices.

Index Caching. The basic concept is to cache query responses in the form of indexes, on
their way back to the originator. Recall that a query response contains the file identifier
(e.g., filename) and the address of the provider peer that has a copy of the file. The
advantage of index caching is that it does not incur additional overhead to create and
update the indexes, as they exploit passing-by query responses.

Let us briefly review the different approaches of index caching. Centralized caching
[PH03] at the gateway of an organization does not leverage node resources and is likely
to produce bottlenecks. Distributed index caching is illustrated in Figure 1.16, where a
query requesting file A has reached peer P1 that can provide a copy of A (see Figure
1.16a). As normally done in unstructured systems, a query response that contains the
filename of A and the address of P1 is sent back to the query originator. Forwarding
peers cache the query response as an index for file A and thus can respond to eventual
queries requesting file A. Uniform index caching [Sri01] consists that each peer caches all
passing-by query responses, which results in large amount of duplicated and redundant
cached among neighboring nodes (see Figure1.16b). Selective index caching addresses the
problem of redundancy by selectively caching file indexes and accordingly routing queries.
However, none of the existing solutions addresses locality-awareness in file transfers. Next,
we describe a typical example of selective index caching, i.e., DiCAS [WXLZ06].

DiCAS. Peers are randomly assigned to M groups, with each group being identified by
an ID noted Gi. Group IDs are used to restrict index caching in some peers along the
query reverse path, in order to avoid redundant indexes among neighbors. Hence, a query
response is only cached in peers whose Gi matches the filename in the query response,
i.e., Gi = hash(f) modM (see Figure 1.17a). Furthermore, Group IDs help searching for
file indexes by routing a query towards peers that are likely to have indexes satisfying the
query. To forward a query, a peer selects the neighbors whose Gi matches the string of
keywords in the query (see Figure 1.17b). When no such neighbors are found, the query
is sent to a highly connected neighbor.

This search is specifically tailored for exact-match queries. Therefore, DiCAS is not
adapted for keyword searches which are the most common in the context of P2P file
sharing. To illustrate this problem, consider a user looking for a file with name f =
key1 + key2 + ...+ keyn. Commonly, the user will employ a query with string of keywords
q = key1 + keym + keyn. Based on DiCAS predefined hashing, the file index is cached
in peers with Gi = hash(f) modM , while the query is forwarded to peers with Gi′ =
hash(q) modM . Obviously, this approach may mislead the query by redirecting it to
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(a) Query response on its way back to the originator.

(b) Query response cached by all forwarding peers.

Figure 1.16: Uniform index caching.

peers that have no indexes for the target file. This results in more flooding overhead and
higher response time.

One alternative is to cache file indexes based on the hashing of the query string of
keywords, i.e, q. Since multiple combinations of keywords can map to the same filename,
it brings back the problem of wide duplication and reduces the efficiency of indexes.

Intelligent BFS. This technique [KGZY02] adapts the basic BFS algorithm. A peer
maintains for each neighbor the list of recently answered queries from (or through) this
neighbor. When a peer receives a query, it identifies all listed queries that are similar
to the newly received query based on some similarity metric, and sends the query to the
neighbors that have returned most answers for the similar queries. If an answer is found
for the query at a peer, a message is sent to the peers over the reverse path in order to
update their statistics. However, this technique produces more routing messages because
of update messages. In addition, it can not be easily adapted to the peer departures and
file deletions, and it ignores locality-aware aspects.
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(a) Query response selectively cached by forwarding peers.

(b) Query selectively routed to neighbors.

Figure 1.17: Selective index caching: DiCAS with M = 3 groups G1,G2,G3.

Bloom Filter-Based Indices. Bloom filters [Blo70] have long been used as a lossy
summary technique. The works in [CJ06, CW04] use a Bloom filter to represent the
collection of keywords that characterize the objects shared by a peer. By first examining
the filter, one can see if a queried file might be at the peer before actually searching the
local repository of the peer. Thus, a peer selectively forwards a query to the peers that
might satisfy the query. The advantage of using Bloom filters [FCAB98] is that they are
space efficient, i.e., with a small space, one can index a large number of data. However, it
is possible that a Bloom filter gives a false positive answer, i.e., the Bloom filter wrongly
returns a positive answer in response to a question asking the membership of a data item.
An important feature of a Bloom filter-based index is that it minimizes the maintenance
overhead, making it suitable for highly dynamic environments.
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In [CJ06], each peer replicates d copies of its Bloom filter and distribute them to its
neighbors. Then, peers periodically exchange with each other the Bloom filters they have,
so as to widely disseminate them in the P2P network. Each Bloom filter is associated a
tag TTL that records the time up to which a Bloom filter is valid. When the time expires,
the peer that holds the copy should check with the owner of the copy to obtain a new
version. The approach in [CW04] was previously introduced in Section 1.4.0.4 where a
peer has two types of neighbors in the P2P overlay: interest-based and proximity-based.
Thus, each peer stores the Bloom filters of both types of neighbors. The advantage of this
approach over the previous indexing schemes is that it attemps to achieve a locality-aware
routing.

1.5.2.3 Discussion

In summary, P2P file sharing is a highly popular application that tolerates some
performance limitations and prefers unstructured overlays. However, there is a growing
concern regarding its network costs since the P2P traffic overwhelms the Web traffic as a
leading consumer of Internet bandwidth. Two main reasons are behind this problem.

First, searching for files is inefficient, generating large amounts of redundant messages.
Indexing can help improve search efficiency as it provides information useful for query
routing. However, it might imply considerable overhead for the creation and update
of indexes. Furthermore, it is highly required from file sharing applications to support
keyword lookup. Thus, indexing should not hinder this feature.

Second, the large files are transferred over long network distances, thus overloading
the underlying network. Locality-awareness seem to be the best solution for this issue,
redirecting queries to close-by files.

On the other hand, there are several inherent properties of P2P file sharing that have
not been fully exploited and could be leveraged to attenuate the P2P traffic problem. The
most important ones are the temporal locality of queries and the natural replication of
files. For instance, index caching leverage temporal locality as it keeps query responses
for later queries in order to improve search efficiency.

To conclude, Table 1.3 lists indexing approaches and checks whether or not they
answer the different challenges. As an example, the first two approaches do not address
the overhead related to their index creation and maintenance. On the same matter, index
caching like DiCAS implicitly limits the overhead since it dynamically stores and evicts
indexes as query responses pass by. Also, the usage of Bloom filters can achieve, at the
same time, maintenance and storage efficiency. Another observation is that most of the
approaches do not incorporate locality-awareness in their indexing scheme and thus fail
in redirecting queries to nearby locations for short data tranfers.

1.5.3 P2P CDN
Several P2P approaches have been proposed to distribute web content over P2P
infrastructures in order to relieve the original web servers. As previously discussed, they
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Indexing approach Overhead efficiency Keyword lookup Locality-awareness
Routing indices no yes no
Local indices no yes no

DiCAS yes no no
Intelligent BFS no yes no

Bloom filter indices yes yes yes

Table 1.3: File indexing approaches

can greatly optimize their performance if they take into account recent P2P trends while
meeting their challenges (cf. Section 1.4). We classify existing approaches into three
main categories: hybrid, unstructured and DHT-based. We also distinguish the currently
deployed P2P CDNs. First of all, let us give an overview of caching and replication
mechanisms. Then we survey the existing P2P CDNs and investigate if they meet the
requirements and leverage the recent trends.

1.5.3.1 Insights into Caching and Replication

In the context of content distribution, content replication is commonly used to improve
content availability and enhance performance. More particularly, P2P systems can
significantly benefit from replication given the high levels of dynamicty and churn. For
instance, if one peer is unavailable, its objects can still be retrieved from the other peers
that hold replicas. According to [ATS04], content replication in P2P systems can be
categorized as follows.

Passive Replication. It refers to the replication of content that occurs naturally in
P2P systems as peers request and download content. This technique perfectly complies
with the autonomy of peers.

Active (or Proactive) Replication. This technique consists in monitoring traffic
and requests, and accordingly creating replicas of content objects to accommodate future
demand.

To improve object availability and at the same time avoid hotspots, most DHT-based
systems replicate popular objects and maps the replicas to multiple peers. Generally, this
can be done via two techniques. The first one [RFH+01] uses several hash functions to
map the object to several keys and thereby store copies at several peers. The second
technique consists in replicating the object in a number of peers whose IDs match most
closely the key (or in other terms, in the logical neighborhood of the peer whose ID is
the closest to the key). The latter technique is commonly used in several systems such
as [RD01b,DKK+01].

The study in [CS02] evaluates three different strategies for replication in an
unstructured system. The uniform strategy creates a fixed number of copies when the
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object first enters the system. The proportional strategy creates a fixed number of copies
every time the object is queried. In the square-root replication strategy, the ratio of
allocations is the square root of the ratio of query rates. To implement these strategies,
the object can be replicated either randomly or at peers along the path from the requester
peer to the provider peer. However, it is not clear how the strategies can be achieved in a
distributed way (e.g., how to monitor query rate under P2P dynamicity). Further, such
proactive replication is not feasible in systems that wish to respect peer autonomy; they
may not want to store an object at peers that have not requested it.

Along with replication, there is the classical issue of maintaining consistency between
replicas in case of content updates. In this thesis, we do not discuss this issue, however
good pointers can be found in our previous work [MPDJP08,DMP07].

Caching The key idea is to cache copies of content as it passes through peers in the
network and manage them according to cache replacement policies. In Freenet [CMH+02]
for instance, when a search request succeeds in locating an object, the object is transferred
through the network node-by-node back to the query originator. In the process, copies of
the object are cached by all intermediate nodes.

To shorten query routes and thus reduce search latencies, DHT-based approaches
like [RD01b,DKK+01] cache additional copies of the objects along the lookup path towards
the peers storing these objects.

1.5.3.2 Deployed Systems

To the best of our knowledge, the P2P CDNs that are currently available for public use
mainly comprise CoralCDN [FFM04], CoDeeN [PWP+04] and CobWeb [SRS05]. These
systems are deployed over PlanetLab which provides a relatively trusted environment
consisting of nodes donated largely by the research community. Basically, they rely on
a network of cooperative proxy servers that distribute web content and handle related
queries. Such systems cannot be categorized as pure P2P solutions because they are using
dedicated servers rather than exploiting client resources. The only P2P characteristic
exhibited by these systems is the absence of centralized administartion. We examine one
typical example of these systems, CoralCDN.

CoralCDN [FFM04]. CoralCDN relies on a hierarchy of tree-based overlays that
cluster nearby nodes. Each level of the hierarchy consists of several overlays, and each
overlay consists of the set of nodes whose average pair-wise RTTs are below the threshold
defined by this level. A node is member of one overlay at each hierarchy level and detains
the same node ID in all overlays to which it belongs. Figure 1.18 illustrates a three-
level hierarchy with RTT thresholds of ∞, 60 msec, and 20 msec for level 0, 1, and 2
respectively. It focuses on Node R and only shows the three overlays to which R belongs
at each level. R is physically the closest to C2 among the nodes (C0, C1, C2, C3) because
R and C2 share the highest-level overlay.



53 1.5. P2P Content Distribution Systems

Figure 1.18: CoralCDN hierarchy of key-based overlays [FFM04].

Each overlay is structured according to a tree topology. A key is mapped to several
nodes whose IDs are numerically close to the key, in order to avoid hot spots due to
popular objects. A node stores pointers related to the object whose key is mapped to its
node ID. In Figure 1.18, Node R has the same node ID in all its overlays; we can view a
node as projecting its presence to the same logical location in each of its overlays.

Based on this indexing infrastructure, CoralCDN allows to locate web object copies
hosted by nearby proxies of CoralCDN: the proxies will be represented by the nodes of
the hierarchy. Based on its RTT measurements, a client is redirected via the DNS services
to a nearby CoralCDN proxy which eventually provides her the requested object. If not
cached locally, the proxy can perform a key-based routing throughout its overlays in order
to find a pointer to a remote copy of the object; it starts at the highest-level overlay of
the proxy to benefit from network locality then progresses down the hierarchy. Once the
object is fetched and locally cached, the proxy inserts pointers to itself, with respect to
the object, in the different overlays to which belongs this proxy. To handle dynamicity,
pointers are associated with TTL (fixed time-to-live) values and are periodically refreshed
by their referenced proxy.
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1.5.3.3 Centralized Approaches

The first category of approaches [RY05,PS02] relies on the web-server that centralizes and
manages the directory information. Basically, the server maintains a directory of peers to
which its objects have been transferred in the past and manages the redirection of queries.
When a client requests an object, the server returns several peers from the redirection
directory. The client first tries to retrieve the object from one of those peers. If this fails,
the object is directly served by the server.

To minimize redirection failures in a P2P dynamic environment, OLP [RY05] tries to
predict the object lifetime and accordingly selects the peer to which the query should
be redirected. However, redirection in OLP does not consider locality-awareness when
providing clients with object locations. CoopNet [PS02] tries to incorporate locality-
awareness as the web-server sends to the requester client a list of nearby peers providing
the requested object. To limit the server redirection, a client connects to the peers
provided by the web-server and forms a small network with them. However, there is no
well-defined search algorithms within these networks. Moreover, CoopNet does not deal
with dynamic aspects because the web-server cannot detect which peers in its directory
have failed or discarded their cached objects.

Centralized approaches lack robustness, because whenever the web-server fails, its
content is no longer accessible in spite of available peers with cached copies. As with the
traditional server/client model, the server is still a single point of failure. Scaling such
systems requires replacing the web server with a more powerful one, to be able to redirect
the queries of a large audience.

1.5.3.4 Unstructured Approaches

The second category of approaches uses unstructured overlays for their flexibility and
inherent robustness. Two representative systems are Proofs and BuddyWeb.

Proofs. Proofs [SRS02] uses an ustructured overlay in which peers continuously
exchange neighbors among each other. This provides each peer with a random view
of the system for each search operation. Peers keep their requested objects and can
then provide them to other participants. To locate one of the object replicas, a query is
flooded to a random subset of neighbors with a fixed TTL, i.e., the max number of hops.
The continuous randomization of the overlay has the benefit of improving the network
fault-tolerance and tends to uniformly distribute the load over peers. However, the blind
searches for not not-so popular objects induce heavy traffic overheads and high latencies.
Moreover, Proofs does not leverage new trends, and most importantly locality-awareness
which is useful to forward queries to close results.

BuddyWeb. BuddyWeb [WNO+02] also uses an unstructured network and blind search
to access objects. However, it relies on central servers to provide each newly joining peer
with neighbors that share interest similarities with the peer. Therefore, this interest-
based scheme does not meet Challenge 1 as it greatly depends on central servers to
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gather, manage and provide all the information. These servers can present single points
of failures (i.e., SPOF), which makes BuddyWeb vulnerable and hinders its scalability.
Similarly to Proofs, BuddyWeb does not take into account locality-awareness.

1.5.3.5 Structured Approaches

Now, we examine existing approaches that rely on structured overlays in order to benefit
from their efficient lookup. We examine Squirrel [IRD02], PoPCache [RFB07] and
Backslash [SMB02]. These approaches adopt similar strategies. We have identified two
types of strategies, DHT-Home and DHT-Directory. We also discuss a work that proposes
a different approach using a novel DHT, called Kache.

DHT-Home Strategy. It places objects at peers with ID numerically closest to the
hash of the URL of the object without any locality or interest considerations (see
Figure1.19a). Queries find the peer that has the object by navigating through the DHT. To
deal with highly popular objects, objects may be progressively replicated along neighbors
as the number of requests increases. This is achieved by further forcing peers to store
arbitrary content.

DHT-Directory Strategy. The second type of strategy stores at the peer identified
by the hash of the object’s URL a small directory of pointers to recent downloaders of
the object (see Figure1.19b). A query first navigates through the DHT and then receives
a pointer to a peer that potentially has the object. Approaches adopting this strategy
may be vulnerable to high churn because the directory information is abruptly lost at the
failure of its storing peer.

In general, such systems are self-scalable because of the DHT load balancing mechanism
and the replication in case of hot spots. However, there are two main drawbacks in the
query routing with repsect to the stringent requirement of CDNs on short latencies. First,
each query has to navigate through the whole DHT, which implies several routing hops.
This can be acceptable in corporate LAN type environments, such that the latency of
the network links are a magnitude smaller than the latency of the server. Otherwise,
the server will be much faster. Second, unless using a locality-aware overlay combined
with proactive replication, the query is served from a random physical location. To
conclude, the aforementioned approaches do not exploit recent P2P trends for performance
improvement.

Kache. Kache [LGB03] relies on a new form of DHT that increases robustness to churn
by increasing memory usage and communication overhead. Basically, peers are organized
using a hash function into

√
N groups where N = total number of peers. This is shown

in Figure 1.20 with focus on the peer with ID=110 from group 0. The peer maintains (a)
a view of its own group (i.e., peers 30 and 160), and (b) for each foreign group, a small
(constant-sized) set of contact peers lying in it (i.e., peer 432). Each entry (group view
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(a) Home model. (b) Directory model.

Figure 1.19: DHT strategies in a P2P CDN.

or contact) carries additional fields such as RTT estimates. Peer 110 also stores directory
information related to each single object that is cached in the system and whose URL
maps to group 0 by means of hashing. For each such object o, peer 110 has a directory
table that contains the IP addresses of a bounded set of peers holding a copy of o.

When a peer p downloads a copy of the object o, it creates a directory entry < o, p >
and communicates it to its contacts c that belong to o’s group. When the directory table
of c is full, c performs RTT measurements to keep the directory entries that refer to
the closest peers and discard the other entries. Each peer gossips within its group to
replicate and spread directory entries; it selects close-by peers from its view to exchange
gossip messages. Obviously, peers gossiping and replicating directory entries are not
necessarily interested in this information. Furthermore, since directory information is
highly replicated, aggressive updates are required when referenced peers discard their
content or leave the network.

Kache is robust against failures, because all peers in the same group store pointers of all
the objects mapped onto the group. Moreover, locality-awareness is incorporated through
the RTT-based routing tables. Lookups are bounded by O(1), thus scaling does not
influence lookup time. However, the resources necessary to maintain routing information
increases as the number of peers increases.

1.5.3.6 Discussion

Table1.4 summarizes the performance behavior of the P2P-CDN approaches previously
described. Obviously, none of them fully satisfy the requirements that we have identified
along this chapter. An important observation is that most of the approaches do not focus
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Figure 1.20: A Kache system with peers distributed across
√
N groups, and soft state at

a typical peer [LGB03].

on scalability, and often target small local networks.
In CoralCDN, users are not involved in the P2P network: they use the P2P CDN but

do not contribute any resources to it. An increase of the number of users requires more
investment by adding proxy caches to the CoralCDN. OLP is unsuitable for P2P systems
as it is not scalable (i.e., bottlenecks) nor robust to churn (i.e., SPOF) due to its centralized
nature, and it does not consider locality-awareness. CoopNet has similar limitations,
except that it supports locality-aware redirection of queries. Proof derives its robustness
from the randomness of unstructured overlays, but in return suffers from their scalability
issues due to flooding overhead and lacks locality-awareness. BuddyWeb does not cope
with dynamic and large-scale participation of peers because its construction mechanism is
centralized, and thus is not adapted for real P2P environments. Kache addresses most of
the requirements, and most importantly achieves robustness by replicating and gossiping
indexing information. However, Kache scalability comes at the cost of a significant storage
overhead on every peer. DHT-Directory approaches do not provide robustness as the
performance of query handling is directly affected by peer failures. In comparison, DHT-
Home aproaches rely on DHT robustness which incurs high costs and breaks the autonomy
of peers. In addition, the aforementioned approaches do not specifically incorporate
locality-awareness which is a major requirement of P2P-CDN.



chapter 1. Content Distribution in P2P Systems 58

SYSTEM OVERLAY ROBUSTNESS SCALABILITY LOCALITY AUTONOMY
CoralCDN hierarchy of proxies yes more proxy investment yes -

OLP centralized SPOF server bottleneck no yes
CoopNet centralized SPOF server bottleneck no yes
Proof unstructured randomness flooding overhead no yes

BuddyWeb unstructured SPOF server bottleneck no yes
Kache gossip/DHT replication overhead yes yes

DHT-Directory structured directory loss yes no yes
DHT-Home structured DHT robustness yes no no

Table 1.4: Summary of P2P-CDNs

1.6 Conclusion

The objective of this chapter was to provide a consice, yet comprehensive study of P2P
content distribution, with a view to building our own P2P CDN. For this, we reviewed
the state-of-the-art for traditional and P2P content distribution in order to identify the
shortcomings and highlight the challenges.

First, we identified the traditional requirements for CDNs which are performance,
scalability and reliability, and we discussed the mechanisms needed to fulfill each
requirement. We also shed light on CDN open issues, mainly in terms of scalabilty
and its significant costs. We focused on the potential savings and benefits in using P2P
technology as a cheap and efficient alternative for commercial CDNs.

Second, we explored P2P systems from the perspective of content sharing and shed
light on the design requirements that are crucial to make efficient use of P2P self-
scalability. The main relevant requirements are autonomy, expressiveness, efficiency,
quality of service, and robustness.

Third, we presented the recent P2P trends that can improve the performance of P2P
content distribution but incur additional challenges. The trends that we identified are
locality-aware and interest-aware overlay matching, gossip usage and overlay combination.
The challenges are to keep the solutions simple, avoid centralized management and large
overheads, operate fast and dynamically adapt to changes and massive scales. Along
these lines, matching the overlay with a locality- or interest-aware scheme could bring
great benefits to the P2P system in terms of efficiency and quality of service. Another
recent trend is the combination of different overlays and schemes, which can reveal very
challenging. In particular, the maintenance of several overlays should not overwhelm
the P2P system. Gossip protocols can serve as potentially effective means to achieve
these new trends as it provides simplicity, decentralization and high robustness to churn.
However, gossip should be properly designed and tuned to avoid significant delays and
message overheads.

Finally, we focused on the two P2P applications that derive from content distribution,
P2P file sharing and P2P CDN. We investigated both fields and reviewed existing
approaches. In the context of file sharing, there is a growing concern about the network
costs since the P2P traffic is the leading consumer of Internet bandwidth, mainly due
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to search inefficiency and long file transfer. While the top priority is to exploit locality-
awareness in order to serve queries from close-by locations, most existing works do not
address this issue. Regarding P2P CDN, they have stringent performance requirements
that are quire different to what is expected from a file-sharing system. They should be
highly robust, efficient and scalable, while taking into account the autonomy of peers.
Existing P2P CDNs do not answer all the important requirements. Most importantly,
they are not designed to achieve high scalability as they target small scales. Therefore our
thesis focuses on providing a complete solution for P2P content distribution that tackles
the requirements by leveraging recent trends while answering the challenges.





Chapter 2
Locality-Aware P2P File Sharing

Abstract.Though widely deployed for file-sharing, unstructured P2P systems aggressively exploit
network resources as they grow in popularity. The P2P traffic is the leading consumer of
bandwidth, mainly due to search inefficiency, as well as to large data transfers over long
distances. This critical issue may compromise the benefits of such systems by drastically
limiting their scalability. In order to reduce the P2P redundant traffic, we propose Locaware,
which performs index caching while supporting keyword search and keeping the overhead at bay.
Locaware aims at reducing the network load by redirecting queries to available nearby results.
For this purpose, Locaware leverages inherent properties like temporal locality and natural file
replication and exploits locality-awareness.

2.1 Introduction
Despite the emergence of sophisticated topologies, file-sharing communities favor
unstructured overlays due to their loose constraints. Indeed, in systems that mainly
involve users from non-cooperating organizations, high maintenance is neither required nor
affordable. Also, flooding-style search can be adept at content discovery and highly attract
file sharing communities, especially because it allows a query to be expressed in a flexible
manner rather than strictly requiring the exact filename. Unfortunately, as these systems
grow in popularity, they aggressively exploit network resources, typically by consuming
huge amounts of bandwidth. This issue severely threatens the scalability of unstructured
file sharing systems. The main reason behind this is that search techniques tend to be
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very inefficient, generating huge traffic and sometimes providing a bad user experience.
In attempt to improve search efficieny and reduce the unnecessary traffic, index caching
[PH03, Sri01,WXLZ06] is used in a way that limits the extent of flooding. However,
most approaches have salient limitations because they trade either storage efficiency or
flexibility for efficiency and most importantly do not address locality-awareness.

In this chapter, we propose an indexing solution for P2P file sharing, that supports
keyword loookup, implements locality-awareness and aims at storage and maintenance
efficiency. Our solution, called Locaware, brings twofold benefits:

• capture temporal locality of query workload and exploit natural replication in order
to improve search efficiency and reduce redundant traffic.

• capture network locality of query workload in order to optimize file transfer and
minimize bandwidth consumption.

To achieve these benefits, Locaware leverages inherent properties of P2P file sharing
and combines a set of techniques that are simple, yet effective. The main contributions of
this chapter are based on our material published in [DPV07,DP09] and can be summarized
as follows:

• locality-aware and selective index caching: The technique aims at reducing the P2P
unnecessary bandwidth consumption while achieving storage efficiency. A peer
intercepts query responses and selectively caches several indexes per file, along with
information about their physical locations. As a consequence, a peer answers a
query by providing several possibilities. This approach aims at finding a nearby
copy for the purpose of optimal file transfer, while it improves the file availability.

• keyword-based query routing: The technique allows locating relevant files and
avoids flooding overhead. To support keyword queries, Bloom filters are used to
compactly represent files, which enables some expressiveness and flexibility in the
query formulation.

We evaluated the performance of our solution through simulation using PeerSim, and
showed the effectiveness of Locaware in improving search efficieny and limiting bandwidth
consumption. In short, Locaware improves success rate of selective index caching solutions
by almost 30%. Further, it reduces transfer distance by 14 % compared to several other
approaches.

Roadmap: The rest of this chapter is organized as follows. In Section 2.2, we first define
the models of P2P File Sharing and index caching in order to identify the requirements
and state the problem. Section 2.3 presents Locaware and describes its design and
implementation. Section 2.4 depicts a performance evaluation of our solution through
simulation. Finally, we conclude in Section 2.5.
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2.2 Problem Definition
In this section, we first define the models of P2P file sharing and index caching on which
is based this work. Then, we precisely state the problem we address in this chapter.

2.2.1 P2P File Sharing Model
Let us now define the assumptions we make on the P2P file sharing model. We assume
an unstructured P2P network operating similar to Gnutella [Gnu05]. Peers are highly
dynamic and autonomous, failing or leaving the network at any moment. They share files
of any type specified by the application. To search for a file, a user employ in its query a
string of keywords related to the target filename. The query is then flooded with a fixed
TTL over the P2P network. Peers respond back to the query, with files that have all the
keywords of the query in their filenames. A query response contains the filename and
the IP address of a peer providing the requested file. Query responses follow the exact
reverse path of their query, back to the requester peer. The latter downloads the file via
direct connection with the provider peer and eventually becomes a provider for the file in
question.

2.2.2 Index Caching Model
In order to limit redundancy and duplication, we consider a selective index caching
technique where each peer maintains an index cache and selectively caches passing by
query response. Thus, each entry of an index cache is a file index that associates a filename
to the address of a provider peer. We group the group concept of DiCAS [WXLZ06] where
each peer randomly chooses a group ID noted Gi (Gin ∈ [0 ..M − 1] with M a system
parameter). A Gi matches a filename F if the following condition is satisfied:

Gi = hash(f) modM (2.1)

Query responses are only cached in peers whose group ID matches the hashing of the
filename in the query response. We do not perform index caching based on keywords,
as it results in less efficiency and more duplication as pointed out in Section 1.5.2.2 of
Chapter 1.

2.2.3 Problem Statement
Our objective is to fully exploit the benfits of index caching in order to limit the wasted
bandwidth. Here, we precisely state the requirements that have controlled our design
choices.

• Flexibility: the index caching strategy should be coupled with a tecnhique that
efficiently routes the query towards relevant file indexes. This technique should
ultimately support keyword searches which are more prevalent and important than
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exact-match queries in file-sharing systems. Recall that an exact-match query
employs a string of keywords that is exactly conform to the requested filename,
while a keyword query selects a subset of the filename keywords. The popularity
of keyword queries stem from two reasons. First, the same file may be stored by
different peers under slightly different names. Second, a user often queries a file
using the partial filename.

• Locality-awareness: the approach should incorporate locality-awareness in order
to optimize file transfer. In fact, the benefits of index caching can be significantly
compromised if indexes randomly redirect queries while relevant files are available
at nearby peers. That is why indexes could further limit the consumed bandwidth
if they can give some indication about the physical location.

• Availability: the index cache should leverage the natural replication of files to
provide query responses with more guarantees on file availability. Typically, a peer
p caches for a file F an index referring to one provider peer and ignores all other
providers of F . In consequence, p redirects all queries for F to the one provider
peer it knows. This approach has two limitations. First, the index in question may
quickly expire because the provider can disconnect or discard its file at any moment.
Thus, the queries remain unsatisfied which leads to further and repetitive searches.
Also, given the temporal locality of P2P queries, the provider peer may become
quickly overloaded.

2.3 Locaware Design and Implementation
To fulfill the aforementioned requirements, we propose Locaware, a locality-aware
approach for P2P file sharing networks. In the section, we present the detailed design of
Locaware. First, we explain how Locaware uses Bloom filters for the purpose of keyword
searches. Then we discuss the index caching startegy, and finally we present the algorithms
supporting query search.

2.3.1 Bloom Filters as Keyword Support
In order to support keyword queries, we need a scheme to model the keywords of the
filenames that are cached in an index cache. The idea is to summarize the set of keywords
that can be found in an index cache in order to send the summarized information to
the neighbors and guide their redirection of queries. A summary minimizes the update
overhead because it is not affected by every single file addition or deletion. Furthermore,
the requirements on a summary representation that is adapted to Locaware are small
size and low false hit ratio. This is because these summaries need to be propagated to
neighbors and thus should not incur a significant bandwidth overhead. Bloom Filters
provide a straightforward mechanism to build such summaries.



65 2.3. Locaware Design and Implementation

2.3.1.1 Bloom Filters

A Bloom filter [Blo70] is a simple space-data structure for representing a set of elements S,
in order to support membership queries. When querying a Bloom filter, it never returns
false negatives but it may lead a false positive when it suggests that an element belongs
to the set S even though it does not.

More precisely, a Bloom filter is a bit array of size m, constructed using k independent
hash functions hj : S → 1, ...,m with 1 ≤ j ≤ k (the unique assumption on the hash
functions is randomness). The bits of the Bloom filter are initialized to zeros and set as
follows. For each element x ∈ S, all bits in the positions h1(x), ..., hk(x) of the Bloom
filter are set to one. Thus, the Bloom filter can be used to check whether an element y
belongs to the set S by using the k hash functions: one should only verify if all the bits at
positions h1(y), ..., hk(y) are set to one. If any of these bits is not set to one, then we can
be sure that S does not contain y. If all the bits are set, then S may contain y. Figure
2.1 illustrates an example, where the represented set might contain “Joe”, because bits 1,
3, 8 are set. The set definitely does not contain “Suzan” because bit 6 is false.

Figure 2.1: A Bloom filter of m = 10 bits.

The salient feature of Bloom filters is that there is a clear tradeoff between the storage
amount allocated to the Bloom filter and the probability of false positives. The number
of false positives falls exponentially as the size m of the Bloom filter increases. According
to the analysis in [FCAB98], an optimal trade-off can be achieved for (1/2)k ' 0.6185m/n,
where n is the size of the set represented by the Bloom filter. Thus, the false positive rate
can be controlled at an acceptable level if the parameters are set appropriately.

To handle membership changes, we can maintain, for each bit i in the array, a count
c(i) of the number of times this bit has been set to 1. When an element x is inserted into
or deleted from the set S, the counts c(h1(x)), ..., c(hk(x)) are incremented or decremented
by 1 accordingly. Thus, bit i is turned on when its count c(i) changes from 0 to 1. Also,
the bit is turned off when its count changes from 1 to 0. In practice, allocating 4 bits per
count is amply sufficient [FCAB98].

2.3.1.2 Maintaining a Bloom Filter for the Index cache

Each peer maintains a Bloom filter that represents the set of keywords of all cached
filenames in its index cache. Whenever the peer caches a file index, it inserts each keyword
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of the cached filename as an element of its Bloom filter. A Bloom filter BF matches a
query q = {key1, ..., keyn} if the following condition is satisfied:

∀keyi ∈ q; keyi ∈ BF (2.2)

Neighboring peers exchange their group IDs. In addition, each one replicates its Bloom
filter and sends a copy to each one of its direct neighbors. Thus, a peer stores on behalf
of each neighbor its group ID and its BF . As a result, the peer can query its neighbors’
Bloom filters to selectively route a query.

A Bloom filter is built incrementally as new filenames are inserted in the index
cache and existing ones discarded. Updating the BF locally is done automatically since
membership changes are supported by Bloom filters. Copies of BF held by neighbors
must also be updated. A peer delays the propagation of its BF updates to its neighbors
until the rate of new changes in its index cache reaches a threshold. The peer can either
specify which bits in the bit array have flipped or send the whole array, whichever is
smaller.

2.3.2 Locaware Index Caching
In order to provide more accurate and efficient responses to queries, we introduce locality-
awareness in index caches, in terms of information about the network locality of the file
provider. In addition, we exploit natural file replication, based on the fact that a peer
which has recently requested a file F is likely to have it and can thereby serve subsequent
requests for F . This aims at providing a peer with several indexes per file so that it can
selectively answer a query according to the locality of the query originator. Below, we
first introduce how we implement locality-awareness then we describe our index caching
technique and its cache control policy.

2.3.2.1 Locality-Awareness

To model network localities in a simple way, we use the common binning technique
[RHKS02] and adapt it to our context. We have chosen this technique as it meets the
challenges of practicality, scalability and dynamicity as described in Section 1.4.0.1. Recall
that peers can be grouped into virtual bins that reflect their network localities based on
RTT measurements. We thereby associate to each possible bin a locality Id noted locId.
Upon joining the network, each peer computes its own locId and refreshes it regularly.

2.3.2.2 Locality-Aware Indexes

As introduced in Section 2.2.2, we assume that index caching is based on the hashing
of the whole filename as in DiCAS. This means that a peer whose group ID matches a
filename caches all passing-by distinct indexes of the corresponding file.

The index cache of a peer may hold for a cached filename, several provider addresses
and their locIds (see Figure 2.2). To achieve this, a query response should contain both
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the address and the locId of the file provider. Additionally, it includes the address and
the locId of the query originator, which will be considered as a new provider by peers
intercepting the responses. In other terms, a peer that is forwarding a query response
checks if the vehiculated filename matches its group ID. If so, the peer extracts from the
query response the address information about both the provider and the query originator
to cache them. This is illustrated in Figure 2.2 where peers are assigned to three groups
G1, G2 and G3 (i.e., M = 3). P2 requests the file whose name F matches G1; its query
has reached a peer from G1 that has an index for F related to provider P1. The latter peer
generates a query response < F,P1, locId = 1 > and caches a new index for F related
to the evenual provider P2. Then, peers of G1 forwarding the query response cache two
indexes for F , one related to P1 and another to P2.

Figure 2.2: Locaware. Caching indexes of filename F; hash(F ) modM = G1.

2.3.2.3 Controlling the Cache Size

The cache size refers in our solution to the temporary storage space allocated at a peer for
the index cache. Given the inherent heterogeneity of P2P systems, each peer contributes
with a different amount of memory. The maximal amount of memory that a peer can
invest is denoted by maxMemo. When its cache size surpasses its maxMemo, the peer
discards some of its index cache content.

To perform an efficient and simplified cleanup, the peer determines the excess entries
which has the lowest expected utility. It proceeds with the following cleanup consisting
of two phases:

1. If there are more than two cached indexes for the same filename and locId, only the
two most recently cached entries are kept while the rest is discarded.

2. If after the previous cleanup the cache size remains in excess, the peer searches for
the filename with the largest number of entries and discards the ones that are the
least recently cached.
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The above strategy ensures a level of freshness in the response index while controlling
its storage size. Further, it would tend to spread load rather evenly across the provider
peers.

2.3.3 Locaware Query Searching
Locaware adapts query search to fully exploit its index caching strategy. Algorithm 1
describes how a peer processes and routes a query. As introduced previously, the query
is propagated along with the address information of the query originator: the string of
keywords is noted as q while the query originator as pq. Upon the reception, the peer first
performs a lookup over its index cache for a filename F that can satisfy q and extracts the
set of indexes related to F (noted I(F )) (i.e., line 2). If such subset is found, the peer tries
to select from I(F ) the indexes that refer to providers with the same locId as the query
originator (i.e., lines 3-7). Random indexes related to F might also be selected to have
enough indexes in the query response (between 5 and 10). As a result, the query response
would contain two subsets of indexes related to the requested F , one that complies with
the locId of the query originator and another that consists of random locIds for availability
guarantees. This is to guarantee that the requester will find an available copy of its file
despite peer failures and file deletions.

Algorithm 1 - process(q) at each peer
I(F ): set of cached indexes for filename F
I(F, locId): set of cached indexes for filename F and specific locId
qr: query response that may be generated for q
info(pq) := 〈pq.locId, pq.address〉

1: receive 〈q, info(pq)〉
// Check local index cache

2: I(F )← index_cache.lookup(q)
3: if I(F ) is not empty then
4: I(F, pq.locId)← I(F ).lookup(pq.locId)
5: if I(F, pq.locId) is not empty then
6: subset← I(F, pq.locId).select_subset()
7: end if
8: randomSubset← I(F ).select_subset()
9: qr ← 〈info(pq), subset, randomSubset〉
10: send back qr
11: break
12: end if

In case the peer did not find any index that can satify the query (i.e., I(F ) is empty),
the query is forwarded to some of its direct neighbors (i.e., lines 13-22). To avoid missing
relevant indexes that are cached at neighbors, a peer relies on the Bloom filters received
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from its neighbors. It checks for each neighbor if the query matches the corresponding BF
and accordingly redirects the query. In case none of its neighbors’ BF match the query, the
peer proceeds to a routing based on group IDs. If none of the previous routing strategies
succeed, the peer forwards the query to the neighbor with the highest connectivity degree.

success := false
// Check neighbors’ Bloom filters

13: for each neighbor i do
14: if (BFi.matches(q)) then
15: send(q) to neighbor i
16: success← true
17: end if
18: end for
19: if success then
20: break
21: end if

// Check neighbors’ group IDs
22: for each neighbor i do
23: if (groupIdi.matches(q)) then
24: send(q) to neighbor i
25: success← true
26: end if
27: end for
28: if success then
29: break
30: end if

// Select, as a last resort, neighbor c with highest connectivity
31: select neighbor c
32: send(q) to neighbor c

2.3.4 Storage and Bandwidth Considerations
In this section, we discuss the trade-off incurred by our design choices and more specifically
their costs in terms of bandwidth and storage requirements.

2.3.4.1 About Bloom Filters Usage

A peer stores its Bloom filter as well as its neighbors’ filters. A Bloom filter provides a
trade-off between its memory requirements and its false positive ratio. Hence, given a
response index with 50 filenames of 3 keywords in average, an optimal representation by
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a Bloom filter needs a negligeable amount of memory, varying between 0.15 and 0.6KB.1
Since the average connectivity degree d of a peer is equal to 3 in Gnutella, then the average
storage space allocated for Bloom filters at a peer is equal to (3 + 1) ∗ 0.15 = 0.6KB,
which is very small.

Recall that a peer propagates the updates of its Bloom filter to its direct neighbors.
Bloom filter changes reflect filename additions and/or deletions in the corresponding
response index. The update propagation is delayed until the percentage of new changes
reaches a threshold α. Let fupd be the update frequency which depends on the value
α. The size of the Bloom filter2 ,i.e., 1.2Kb, is small enough to be transmitted at each
update. Given that d is the average number of neighbors per peer, then at each update
transmission, the peer sends d messages. Thus, the number of messages transferred per
node and per second is d ∗ Fupd and the number of bits transferred per node and per
second is d ∗ Fupd ∗ 1.2Kb (3.6 ∗ FupdKb for d = 3). Since some staleness in the Bloom
filter can be acceptable, we can tune α and thus Fupd in a way that significantly minimizes
the update cost.

2.3.4.2 About Locality-Awareness

Recall that our approach involves caching multiple indexes per file. Hence, a query
response can consist of several indexes pointing to different providers of the same file.
In contrast, DiCAS is limited to one index per query response.

Concerning the storage requirements due to the extension of the response index, we
have proposed a strategy to bound the cache size at each peer.

The transmission of I indexes associated to L locIds generates a larger query response.
Let us show that it is still amply acceptable. Given the following parameters (4 bytes for
an IP address, 1 byte for a filename and 7 bits = 0.875 bytes for a locId3), a query response
is equal to 1 + 4 ∗ I + 0.875 ∗ L bytes. For I = 5 IP addresses divided between L = 2
locIds, the resulting traffic is limited to 22.75 bytes, i.e., 0.182 kb, which is insignificant
compared to the huge size of the P2P shared files.

2.4 Performance Evaluation
In this section, we evaluate the performance of Locaware. First, we discuss our evaluation
methodology based on the design goals of Locaware. Then, we present our experimenal
setup and our experimental results. Finally, we summarize and highlight the pertinent
lessons we have learnt.

1To support changes, 4-bit counts are added to a BF (i.e., extra memory = 0.6KB). These counts
are only stored locally and not propagated to neighbors

20.15KB is equivalent to 1.2Kb in data communication
3We focus on scalability with approximate topology information. Thus, a small number of landmarks

should suffice us. For 5 landmarks, we get 120 possible locIds
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2.4.1 Evaluation Methodology
Locaware design aims at improving index caching schemes and fully exploiting their
benefits in the context of P2P-file sharing. To evaluate Locaware’s performance, we
examine the effectiveness of two main contributions: the keyword search support and the
locality-aware provider selection. For this purpose, we compare the behavior of Locaware
against three index caching schemes: unifom index caching (i.e., UIC ), Dicas designed
for filename search (i.e., Dicas-filenames) and Dicas designed for keyword searches (i.e.,
Dicas-keywords) (presented Section 1.5.2.1). Further, we need to check that Locaware
reduces the traffic overhead incurred by flooding. That is why the comparison also covers
the standard Gnutella flooding approach without caching (i.e., Flooding).

The efficiency of any search technique can be investigated under two angles: user
satisfaction and cost [YGM02]. An efficient technique should seek to reduce the cost,
mainly in terms of bandwidth consumption, which can be used to justify the algorithm
scalability. At the same time, it should focus on optimizing user-perceived quality of
service. Thus, we normally observe a trade-off between cost and user satisfaction.

To evaluate user satisfaction, we use the metric below:

• success rate or hit rate: the rate of queries successfully satisfied to all submitted
queries. A query miss occurs if the search has not located any copy of a satisfying
file as the number of search hops reached the fixed TTL. In respect to Locaware,
success rate can reflect how efficient are the index caching and its adaptive search
strategies in supporting keyword searches.

To quantify cost, we rely on two types of overhead:

• search traffic: the average number of messages produced by a query, including
query response and download messages. This metric is highly significant since the
main objective of index caching is to limit the search traffic.

• transfer distance: the average network distance over, in terms of latency, over
which the object is transited when transferred from the provider peer to the requester
peer. Higher distances generally involve more intermediate links and nodes to carry
the traffic, which contributes to the aggregate network utilization and may overlaod
the network. This metric quantifies the locality-awareness in the provider’s selection.
The lower is the transfer distance, the closer in locality are the provider and the
requester, and consequently the lower is the bandwidth consumed by the file transfer.

2.4.2 Experimental Setup
We evaluate the performance of our proposed solution via simulation over PeerSim
[JMJV], a Java-based simulator specifically tailored for P2P protocols.

A simulation consists of one experiment driven by cycles and events. The execution
of an experiment is broken into cycles during which peers inject queries into the network
and/or process events which are mainly incoming queries. We set the number of cycles
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to 100 and map a cycle to 1000 ms. An experiment runs first an initialization phase that
configures the network and the workload according to specific parameters.

2.4.2.1 Configuring the P2P Network

We generate an unstructured P2P overlay of 1000 peers with an average connectivity
degree of 3. P2P networks are typically built on top of the Internet, which consists
of nodes connected by links of variable latencies.In order to properly simulate a P2P
environment, the simulator should reproduce this link heterogeneity. PeerSim has an
event-driven framework that enables us to model the latency of each individual link.
However, it does not provide support for simulating bandwidth and CPU resources. We
generate an underlying network of nodes with links of latencies varying between 10 and
500 ms. To model latencies, our solution is inspired by BRITE [MLMB02] and works
basically as follows. Peers are placed in a 2-dimentional Cartesian coordinate space,
called plane. The latency between two peers is proportional to the geometrical distance
between them on the plane.

To implement localities, we use 4 landmarks, which results in 24 possible locIds,
because a larger number of landmarks will scatter the peers into many different localities.
For instance, given 5 landmarks, i.e., 120 locIds, we only obtain an average of 8 peers with
the same locId. In consequence, it would be quite difficult to find for a given requester
peer, a provider with the same locId. Thus, a small number of landmarks is well-adapted
to our simulation model. Furthermore, we adjust the provider selection strategy as follows:
when a requester peer does not find a provider with matching locId amongst its received
indexes, it measures its RTT to the set of available providers and chooses the one with
the smallest RTT .

2.4.2.2 Configuring the Workload

We generate a pool of 3000 files and assign each one of them a filename that is a string
of 3 keywords, randomly chosen from a pool of 9000. The intialization phase provides
each peer with a repository of files and a query distribution. The repository contains 3
files that are randomly chosen from the pool and is shared with the P2P network. The
query distribution maps which query the peer performs at each simulation cycle, at the
rate of 0.00083 queries per second per peer. A query refers to a file chosen from the pool
according to Zipf distribution and contains a string of one or more keywords randomly
chosen from the filename in question.

A query search is bounded by a TTL equal to 7. Thus, it stops either if it reaches
a file copy or index satisfying the query or if the number of hops attains the TTL. To
set the size of the Bloom filter associated to each index cache, we look at the analysis
done in [FCAB98]. We consider that an index cache contains at most 50 filenames of 3
keywords (the total number of indexes would be larger since several addresses could refer
to the same filename). Thus, we set the Bloom Filter size to 1200 bits, which can provide
an optimal representation with a negligeable amount of memory.
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2.4.3 Experimental Results
We have conducted three experiments and examined the evolution of the aforementionned
metrics (i.e., search traffic, success rate, transfer distance) as the number of queries in the
system increases. Each experiment compares the performance of Locaware against the 4
approaches listed previously.

2.4.3.1 Search Traffic

The first experiment, illustrated in Figure 2.3, evaluates the search traffic. Locaware
like Dicas approaches, reduces the search traffic wrt. flooding and UIC by 98% and 96%,
respectively. Thus, Locaware preserves the main objective of selective index caching
and routing by drastically limiting the search overhead. This acheivement is vital for
scalability in P2P file sharing.

Figure 2.3: Search traffic evolution.

2.4.3.2 Success Rate

The second experiment, illustrated in Figure 2.4, evaluates the success rate. On the one
hand, as expected, flooding and UIC outperform other techniques. Indeed, they provide
each query with a large search scope at the cost of extensive traffic overhead. This is the
trade-off yielded by selective routing schemes (like Dicas and Locaware) which restrict
the number of peers visited by a query for the purpose of minimal overhead. In short,
the loss in success rate is the price paid in order to make unstructured P2P file sharing
systems scalable.

On the other hand, Locaware offers a substancial compensation over Dicas: it
increases success rate by 21% wrt. Dicas-filenames and 29% wrt. Dicas-keywords. The
main reason behind this significant improvement is that Locaware provides an efficient
support for keyword queries and avoids missing results held by neighbors. In contrast,
Dicas relies on the group ID based routing, which can often mislead keyword queries.
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Figure 2.4: Success rate evolution.

Therefore, given that keyword queries are inherent to P2P file sharing, Locaware meets
a fundamental requirement of these systems.

Based on these experimental results, Locaware seems well-adapted to P2P file sharing
systems because it achieves the optimal trade-off between search efficiency (i.e., success
rate) and overhead (i.e., search traffic).

2.4.3.3 Locality-Awareness

In the last experiment, we evaluate locality-awareness through measuring the transfer
distance, which is shown in Figure 2.5. Thanks to Locaware, the average transfer distance
is decreased by 14% compared to other approaches. Also, an interesting observation that
could be derived from this experiment is that Locaware shows improvement with the
increase of queries, unlike the other approaches which remain stable. This is because
Locaware leverages the natural file replication to serve queries from close-by providers.
In fact, as more queries for a particular file are generated and served, there will be more
providers of this file available in different physical locations. Eventually, a query for this
file is more likely to find a provider within the same locality as the requestor.

To further investigate locality-awareness, we measure the percentage of queries
satisfied from the same locality as the requesters, or in other words the percentage of
locality-aware file tranfers. The results are shown in Figure 2.6. Locaware realises 27%
locality-aware tranfers, thus achieving an improvement of 40% compared to the other
approaches.

Transfer distance have a salient impact on performance and scalability, especially that
we deal with large file transfers. Lower distances limit the number of intermediate physical
links and nodes that carry the burden of large data. This can significantly reduce the
overall costs on the network and help in minimizing the response time perceived by the
user.
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Figure 2.5: Transfer distance evolution.

Figure 2.6: Distribution of locality-aware file transfers

2.4.4 Lessons Learnt
At the end of this chapter, we highlight the lessons we have learnt in our experiments and
give insight on further direction improvements. The lessons are particularly pertinent to
the usage of Bloom filters, the locality-awareness and the grouping of peers.

In respect to Bloom filters, we aimed at high efficiency, typicially by improving
both response time and succcess rate. Despite the significant improvement achieved in
success rate, the experiments revealed that Bloom filters were not fully profitable for
query routing, i.e., they did not always provide significant assistance and information to
guide a query. Two main reasons justify this observation. First, a Bloom filter can only
give an optimal representation of the direct neighbors’ index cache and cannot guide to
further forwarding. By querying the neighbors’ BF, we can mainly avoid missing requested
indexes if they are cached at neighbors. Second, the Bloom filter optimality lowers the
probability for the query to find the matching BF: peers do not often find neighbors with
matching BF and thus end up using matching group IDs. Therefore, we should investigate
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a more elaborate usage of Bloom filters in order to fully exploit their benefits.
Concerning locality-awareness in file transfer, we were motivated by its great impact on

bandwidth consumption. However, we aspired for more improvement in transfer distance
than the actual experimental results. In fact, the locality-awareness is not incorporated
into query routing. The algorithm is not designed to find the good providers; it is
limited to selecting the good provider when such candidate is available among the received
indexes. Thus, we believe that the improvement would be much more significant with a
locality-aware routing that focuses on efficiency finding close-by providers.

Finally, we believe that search can be more efficient if the groups are based on peer
interests instead of being random. Each group can be associated to a specific profile
and files can be mapped to groups based on their content (e.g., file topics). As a simple
example, in the context of video files, a goup profile could refer to the topic "comedy" (or
could combine several topics like "comedy" and "english"). A peer selects its group based
on its preferences and acordingly caches file indexes that might interest it. Therefore,
a peer can benefit from its index cache for its own queries before propagating them to
neighbors. Although this scheme needs to be deeply explored, we think that it can achieve
significant gains.

2.5 Conclusion
In this chapter, we focused on P2P file sharing in unstructured systems and addressed the
problem of excessive bandwidth consumption. Our solution, Locaware, leverages inherent
properties of P2P-file sharing environments, i.e., temporal locality and natural replication
for more efficient search and less traffic, and network locality for lower bandwidth
consumption in file transfer.

Locaware consists of a locality-aware and selective index caching with efficient support
for keyword search. Basically, Locaware aims at improving the efficiency of finding nearby
copies of the requested files. Further, its achievements are realized with a perfectly
acceptable overhead in terms of storage and bandwidth requirements.

Through simulation, we showed that Locaware significantly improves the success rate
of selective indexing caching solutions and reduces the traffic of flooding solutions. Most
importantly, the results demonstrated that Locaware can limit wasted bandwidth and
reduce network resource usage.

The results motivate us to elaborate more on Bloom filters and locality-awareness,
in order to achieve greater performance improvement. On the one hand, the impact
of locality-awareness could be more significant and its benefits intensified if exploited in
query routing. On the other hand, Bloom Filters could be explored for more sophisticated
search and caching techniques.



Chapter 3
Locality and Interest Aware P2P

CDN

Abstract. The P2P model seems to be the perfect match to build a scalable and low-cost CDN.
However, building a P2P CDN that can provide a performance similar to commercial CDNs, can
reveal very challenging, as it involves autonomous and volunteer participants. In this chapter,
we propose a P2P-CDN called Flower-CDN, that supports under-provisioned websites with large
user-base, by strictly relying on their user communities rather than dedicated and reliable servers.
To achieve this, we cope with the autonomous behavior of peers by leveraging their interests. We
incorporate locality-awareness to enable low-cost collaborations and redirect queries to close-by
content. Flower-CDN infrastructure efficiently combines DHT and gossip protocols, interest and
locality-based schemes, and exploits their advantages while avoiding their limitations.

3.1 Introduction
Content Distribution Networks (CDN) are well-known technologies for distributing the
content of web-servers to large audiences. The main mechanism is to replicate requested
content at strategically placed dedicated machines. As they intercept and serve the
clients’ queries, these technologies decrease the workload on the original web-servers,
reduce bandwidth costs, and keep the client’s perceived latency low. Unfortunately,
non-profit websites (e.g., related to charities, social organizations, scientific associations,
etc.) often cannot afford the expenses of deploying and administrating a dedicated CDN
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infrastructure. Nevertheless, such websites often attract substantial loads, either due to
their international audience or by being referenced by other popular websites. Thus, their
under-provisioned servers become easily overloaded with queries and may fail to maintain
an acceptable quality of service to their clients. Furthermore, remote clients experience
long latency even if the server is not overloaded. Thus, what these websites need is
a distributed content distribution infrastructure that can quickly deliver the content at
large scale but that does not imply the large costs of traditional CDNs.

We believe that the P2P model is a perfect match to build such a scalable and cheap
CDN for popular and under-provisioned websites by exploiting the underutilized resources
of their user communities. In fact, many projects have demonstrated that users are willing
to contribute to organizations whose cause they support (e.g., fund-raising and editing in
Wikipedia, sharing idle computer resources in SETI@home, etc.).

Our basic idea is simple and conceptually similar to file-sharing applications: After
a peer has retrieved a web-page, it caches it and provides it to other peers that request
it. Thus, once a web-page is cached by peers, successive requests can be served from
the P2P network, alleviating the load on the web-server. However, CDNs have stringent
performance requirements that are quite different to what is expected from a file-sharing
system. Any CDN has to focus on two performance metrics: response time and hit
ratio. Traditional CDN replicate most of the content at strategic locations and thus,
the CDN can serve many client requests leading to a high hit ratio. Additionally,
response times are short if efficient routing algorithms find replicas close to the client
in network locality. Traditional CDN generally incorporate locality-awareness into their
query routing mechanism as it has the potential to dramatically reduce response times as
well as bandwidth consumption and thus increase system scalability.

However, building a P2P-based CDN is not a straightforward endeavor. The system
should respect the autonomy of peers, typically by assigning them duties and placing
content at them according to their interests. Otherwise, peers will not have enough
incentives to cooperate. Finally, we have to make locality-awareness a top priority in
order to achieve short query response times.

Considering all these issues, we propose a locality- and interest-aware P2P CDN,
Flower-CDN, that enables any under-provisioned website to efficiently distribute its
content, with the help of the non-profit community interested in its content. Our
solution exhibits several unique characteristics that enable us to overcome all of the above
mentioned challenges. It combines the strengths of both structured and unstructured P2P
networks, exploiting DHT efficiency and gossip robustness. The content of this chapter
is mainly based on our material published in [DPK09a].

• Flower-CDN introduces a novel DHT usage and management, called D-ring, that
relies on a new locality- and interest-aware key service. It helps new peers to quickly
find peers in the same locality that are interested in the same website.

• We propose the organization of peers that share the same locality and are interested
in the same website into unstructured overlay clusters (called petals). Within a petal,
peers use gossip protocols to exchange information about their content and contacts,
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allowing Flower-CDN to maintain accurate information despite dynamic changes in
order to support eventual queries.

• We use this novel two-layered architecture consisting of a D-ring and petals to
provide hybrid locality-aware query routing. The D-ring ensures a reliable access
for new clients, while subsequent searches are performed within the petals. Thus,
most of the query routing takes place within a local cluster leading to short query
search and local data transfer.

• We present a cost analysis of our gossip protocols. The analysis aims at quantifying
the overhead and guiding the configuration of gossip parameters.

• Finally, we present a detailed performance evaluation. Our experimental results
show that Flower-CDN can reduce lookup latency by a factor of 9 and the transfer
distance by a factor of 2, compared to an existing P2P CDN. Moreover, Flower-
CDN incurs very acceptable overhead in terms of gossip bandwidth, which can also
be tuned according to hit ratio requirements and bandwidth availability.

Roadmap. We organize the remainder of this chapter as follows. Section 3.2 provides
an overview of Flower-CDN. Section 3.3 extensively describes the D-ring model with its
different features and services, while Section 3.4 presents the Petal Model and its gossip-
based management. The design choices of Flower-CDN are justified in Section 3.5. A
cost analysis that focuses on the gossip overhead of our approach is given in Section 3.6.
Simulation methodology and results are presented in Section 3.7 before concluding in
Section 3.8.

3.2 Flower-CDN Overview and Preliminaries
Flower-CDN is designed to support a set W of websites ws, each of which has its own
requestable content (e.g., set of web-pages and documents). A website ws is supported
by Flower-CDN as long as there are a sufficient number of clients willing to participate
on behalf of ws in order to enjoy a better access for the content of ws.

We implement locality-awareness in Flower-CDN as we did for Locaware in Chapter
2 via the binning technique [RHKS02]. A peer measures its RTT to a set of well-known
landmarks spread across the network; and orders them by increasing latency. Physically
close peers are likely to have the same landmark ordering. Thus, each possible ordering
identifies a locality loc: 1 ≤ loc ≤ k with k the total number of localities.

Figure 3.1 illustrates the architecture of Flower-CDN. Participant peers belonging to
the same locality loc and interested in the same website ws build together an unstructured
overlay noted petal(ws, loc), using gossip protocols. These peers, called content peers and
noted cws,loc, cache, manage and exchange content of ws, thus considerably relieving the
server of ws from its query load. Flower-CDN charges one peer of each petal(ws, loc), the
role of a directory peer (noted dws,loc): dws,loc knows about all content peers cws,loc and
keeps information about their stored content.
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Figure 3.1: Flower-CDN architecture with websites α and β and four localities.

Directory peers are also embedded in D-ring, a structured overlay based on a
Distributed Hash Table (DHT ), to support queries coming from new clients, that request
objects of W for the first time. That is Flower-CDN relies on a hybrid architecture
consisting of a set of independent petals linked via one directory overlay (i.e., D-ring).

Instead of querying server ws, a new client located in loc, submits its query to D-ring
and gets directed to the directory peer in charge of ws in loc i.e., dws,loc. Then, dws,loc
tries to resolve the query while relying on its petal or some neighboring petals related to
ws. The query is hence redirected to some content peer cws,loc that holds the requested
object; cws,loc serves the query, i.e., it directly transfers the object to the client. Then, the
client can join petal(ws, loc) as a content peer cws,loc, if it is willing to contribute storage
resources with respect to the content of ws. For further queries, cws,loc searches directly
in its petal(ws, loc) instead of relying on D-ring.

In summary, all peers that are willing to support a certain website ws ∈ W become
part of one of the petals of ws helping ws to distribute its content. We denote this set of
peers as Pws:
∀ws ∈ W : Pws = ⋃0≤loc<k petal(ws,loc).
Peers interested in this same website and thus dealing with the same content, may

exchange summaries of their content to help searching for queries.

3.3 D-ring Model
The directory overlay D-ring is a structured overlay with a novel DHT mechanism that
leverages interests and network localities of peers to construct the overlay and efficiently
route queries. In this section, we first describe the different architectural aspects of D-
ring (i.e., key management and directory structure), then we discuss the functionality of
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Figure 3.2: Peer ID structure in D-ring.

D-ring which consists of a P2P directory service.

3.3.1 Key Management
In order to ensure a fast lookup, D-Ring can be integrated into any existing structured
overlay based on a standard DHT (e.g., Chord [SMK+01], Pastry [RD01a]). For each
website ws ∈ W , the directory overlay enables k participant peers from Pws, where k is
the number of localities, to join as directory peers for ws: each locality loc is covered by
a directory peer dws,loc, to empower locality-aware redirection of queries. In the example
of Figure 3.1, Flower-CDN covers 2 websites α and β and 4 localities, i.e., k = 4. Thus,
both websites α and β have 4 directory peers in D-ring.

In DHT-based systems, peer identifiers (noted ID) are chosen from an identifier space
S = [1 · · 2m − 1]; where m is the ID length in bits. Based on these identifiers data
placement is then typically determined by a hash function which maps data identifiers to
peer identifiers. That is, every object receives a key, and the peer with the ID closest to
the object key is responsible for storing the object or pointers to the locations of object
replicas. When a client looks for an object with a given key, it now contacts any peer in
the DHT and the request is routed through the DHT until the peer with the ID closest
to the object key is found. This routing service takes typically in the order of log(n) hops
where n is the number of peers in the DHT.
In Flower-CDN, we do not want to map data items to peers but we want that a query
for website ws posed by a peer in locality loc quickly finds the directory peer dws,loc.
To achieve this and exploit the existing DHT infrastructure, we only have to assign a
directory peer a very specific peer ID, namely an identifier based on the website and
locality it represents. As shown in Figure 3.2, the m bits of a peer ID are split into 2
segments, a website ID and a locality ID:

• locality ID:

– identifier of the locality to which the directory peer belongs. It is expressed
using the lowest bit-segment of length m1.
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Figure 3.3: D-ring distribution of keys given that k = 8 and W = {α, β}.

– A locality is mapped to an ID between [0 · · k − 1]; m1 should be chosen such
that 2m1 ≥ k.

• website ID:

– identifier of the website which the directory peer serves. It is expressed using
the highest bit-segment of length m2 = (m−m1).

– The website ID related to ws is obtained uniformy at random from the the
subspace S ′ = [1 · · 2m2 − 1]. The identifier is obtained by hashing the url of
ws (noted hash(ws)).

Directory peers in the same locality have the same locality ID. Moreover, directory peers
for the same website have the same website ID; they have successive peer IDs and therefore
are neighbors on D-ring. As shown in Figure 3.1, for website β, dβ,0 is succeeded by dβ,1,
then dβ,2, etc. The same order applies to website α. If a query for an object of website
ws is now submitted to D-Ring from locality loc, it is not the object key that is the input
for the DHT routing service. Instead the search key is the concatenation of ws and loc.
The underlying DHT infrastructure will then find dws,loc as its peer ID exactly matches
the search key.
An example is given in Figure 3.3 with k = 8, W = {α, β}, 4 bits for the website ID

and 3 bits for the locality ID. With hash(α) = 0, the website ID related to α is 0. To
obtain the range of peer IDs assigned to the directory peers of α, we vary the locality ID
from 0 and 7 (i.e., (k− 1)) and concatenate it to the website ID of α. Thus, peer IDs and
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search keys for α range between 0 and 7. Similarly, with hash(β) = 15, keys for β range
between 240 and 247.

3.3.2 Directory Tools
In the following, we use the notation dws,loci when we need to differentiate between
directory peers of the same website ws wrt. different localities. Besides its DHT-based
routing table, a directory peer dws,loci maintains:

1. Directory-index(ws, loci): a directory that indexes the content of ws stored in
petal(ws, loci). The directory contains an entry for each content peer cws,loci ,
consisting of 3 fields:

• information about the address of cws,loci (e.g., IP address)
• age field useful for failure and leave detection (presented in Sec. 3.4.1)
• list of object identifiers (e.g., hash(url)) describing the content held by cws,loci

We say that dws,loci has a complete view of petal(ws, loci), represented by its
directory-index.

2. A small set of Directory-summaries(ws, locj): these are summaries of directory-
indexes maintained by other directory peers dws,locj (i 6= j). dws,locj refers to any
other directory peer of ws that dws,loci knows via its routing table. Directory-
summary(ws, locj) is represented by a Bloom filter, in a similar way as has been
done for cache summaries in [FCAB98], using the identifiers of the objects listed in
directory-index(ws, locj).

Figure 3.4 shows a part of D-ring and focuses on the directory peer dβ,1 and three content
peers for (β, 1), namely A, B and C. dβ,1 maintains directory-index(β, 1) that lists, for
each peer in petal(β, 1), their objects (e.g., A holds objects x and y which are initially
provided by website β). Moreover, dβ,1 stores directory summaries received from its direct
neighbors i.e., dβ,0 and dβ,2.

3.3.3 P2P Directory Service
D-ring acts as a P2P directory service for clients wishing to use and contribute to Flower-
CDN. Mainly, it provides two functionalities. First, it supports first queries coming from
new clients of W and handles them instead of the original webservers. Second, D-ring
serves as a reliable access to Flower-CDN for those new participants: by routing its first
query over D-ring, a client is guided to the petal related to its locality loc and its interest
ws and thus joins as a directory peer or content peer.

Based on the standard DHT routing service, D-ring routes query messages targeting
a website ws and a locality loc using a key composed of the website ID of ws and the
locality ID of loc (noted IDws,loc). Given that IDws,loc also represents the ID of dws,loc
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Figure 3.4: Query submitted by F , a new client of β in locality loc = 1.

(cf. Sec.3.3.1), the message is normally delivered to the target directory peer dws,loc. In
case dws,loc has not joined D-ring yet, the message reaches one of its direct neighbors on
D-ring (i.e., which has the numerically closest ID to IDws,loc).

A new client of website ws that is located in loc routes its first query over D-ring
using IDws,loc. In case the directory peer in charge of ws wrt. loc (i.e., dws,loc) does not
exist, the new client joins D-ring to be dws,loc using the standard DHT join procedure
(see Sec.4.3 for a deep explanation). Otherwise, the new client joins petal(ws, loc) as a
content peer via the existing directory peer. Below, we first detail how a query of a new
client is handled by an existing directory peer, then, we discuss how the client joins its
petal as a content peer.

3.3.3.1 Query Processing

Consider query(ows), a query that is submitted by a new client and that requests an object
of the content of ws noted ows. Upon receiving query(ows), dws,loci processes it as shown
in Algorithm 2. dws,loci searches first its directory index for the requested object ows.
If directory-index(ws, loci) shows that ows is stored by some content peer cws,loci , dws,loci
redirects query(ows) to cws,loci after checking its aliveness. Otherwise, dws,loci queries
the directory summaries, to check if some dws,locj might have the requested object in
its directory index. In case dws,locj is found, query(ows) is redirected to dws,locj which
proceeds with process(query(ows)). When no satisfying directory or content peer is
found, query(ows) is redirected to the website ws.

Figure 3.4 shows a new client F of website β with a query q for object x. Assuming
that client F is located in loc = 1, q is forwarded to dβ,1 which searches its directory index
for x. Then, dβ,1 redirects q to content peer A or C, which holds a copy of x and thus can
serve the query. If F requests object x′ which is not contained by any peer in petal(β, 1),
dβ,1 first checks its directory-summaries for (β, 0) and (β, 2) to see if they might have x′
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in their directory index. If it appears so, dβ,1 redirects q accordingly to either dβ,0 or dβ,2.
Otherwise, dβ,1 redirects q to the website β.

Algorithm 2 - process(query(ows)) at dws,loci
cws,loci ← directory-index(ws, loci).lookup(ows)
if cws,loci != null and cws,loci is alive then

redirect query(ows) to cws,loci
else

dws,locj ← directory-summaries.lookup(ows)
if dws,locj != null and dws,locj is alive then

redirect query(ows) to dws,locj
else

redirect query(ows) to ws
end if

end if
if sameWebsite(dws,loci , client) == true and sameLocality(dws,loci , client) == true
then

directory-index(ws, loci).add(client, ows, 0)
end if

3.3.3.2 Joining the Petal

After processing its query, the client interested in ws and located in loc joins petal(ws, loc)
as a content peer cws,loc. As shown in the end of Algorithm 2, the appropriate dws,loc adds
a new entry in its directory index: the client with its requested object and age zero.
Furthermore, the client is provided with a list of contacts from its petal to achieve its
integration. The next section brings more insight into this issue.

3.4 Petal Model
As previously introduced, petal(ws, loc) consists of a directory peer dws,loc and several
content peers cws,loc, all of which reside in locality loc and are interested in the content
provided by ws. Petal(ws, loc) expands progressively as more clients of ws in loc join
Flower-CDN.

Each petal(ws, loc) provides a search infrastructure for queries of content peers cws,loc.
Once a client has become a content peer cws,loc, any subsequent queries that the client
poses for website ws directly use petal(ws, loc) instead of D-ring. For this purpose, within
the petal, content peers gossip to exchange and discover other content peers cws,loc and
summaries of their stored content (more details are given in Sec. 3.4.1). Hence, cws,loc
can search the summaries of its petal(ws, loc) to see where a copy of its requested object
might be stored. In the remaining of this section, we describe how a petal is managed via
gossip protocols. Then, we present how a query is processed within a petal.



chapter 3. Locality and Interest Aware P2P CDN 86

3.4.1 Gossip-Based Management
Gossip-style communication is used throughout a petal to disseminate summaries and
their updates in an epidemic manner. Peers also gossip to discover new members in their
overlay and to detect failed ones. We chose gossip-style communication for 3 reasons.
First, it enables robust self-monitoring of clusters: each peer is in charge of monitoring a
few random others, sharing the monitoring cost and thus ensuring load fairness [VGS05].
Second, it eases information dissemination, such that peers discover new content and new
peers providing some content [EGKM04]. Finally, it is easy to deploy, robust and resilient
to failure.
Basically, gossip proceeds as follows: a peer pi knows a group of other peers or contacts,
which are maintained in a list called pi’s view. Periodically (with a gossip period noted
Tgossip), pi selects a contact pj from its view to gossip: pi sends its information to pj and
receives back other information from pj. The gossip algorithm used in Flower-CDN is
inspired by gossip-based approaches for P2P membership management, such as [VGS05].

3.4.1.1 Gossip Tools

To support gossip, each cws,loc locally manages the following elements:

1. content-list(cws,loc): a list of the object identifiers of the content currently held by
cws,loc. The list is used during gossip exchanges in two ways:

• current content-summary(cws,loc): a summary of the current content-list(cws,loc)
built using a Bloom filter.
• ∆list(cws,loc): a sublist that reflects the new changes in the list (i.e., object

deletion or insertion) wrt. a threshold of changes (detailed later in this section)

2. view(cws,loc): a partial view of petal(ws, loc), which contains a fixed number Vgossip of
entries, each one referring to some other c′ws,loc. A view entry referring to a contact
c′ws,loc contains 3 fields:

• information about the address of c′ws,loc (e.g., IP address)
• age: numeric field that denotes the age of the entry since the moment it was

created (not an indication of c′ws,loc’s lifetime)
• content-summary(c′ws,loc)

Whenever cws,loc gossips with c′ws,loc, cws,loc updates the entry related to c′ws,loc in
view(cws,loc) as follows: the age of c′ws,loc is set to zero, and a current content-
summary(c′ws,loc) is received from c′ws,loc; thus the age zero refers to the most recent entry
status. Periodically (i.e., with period Tgossip), cws,loc increments by 1 the age of all its view
entries. Thus, a high age reflects that cws,loc has not heard recently about c′ws,loc in order
to refresh its view entry.

When cws,loc joins petal(ws, loc), view(cws,loc) is initialized upon its first contact with
a peer from its petal (i.e., another c′ws,loc or dws,loc). In Figure 3.4, the new client F that
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has contacted dβ,1 for a query, may initialize its view in two different ways. In case its
query is served from some cβ,1 (e.g., A), F ’s view is initialized from a subset of A’s view.
In all other cases (i.e., query served from ws or petal(β, 2)), it is dβ,1 that provides F
with a subset of its view; then, F ’s initial view will not have content summaries but will
progressively fill them via gossip exchanges.

3.4.1.2 Gossip Behavior

The gossip behavior of each content peer cws,loc is illustrated in Algorithm 3: the active
behavior describes how cws,loc initiates a periodic gossip exchange, while the passive
behavior shows how cws,loc reacts to a gossip exchange initiated by some other content
peer c′′ws,loc. For simplicity, we refer to view(cws,loc) in the algorithm by view.

Algorithm 3 Gossip behavior of cws,loc
// active behavior
loop

wait(Tgossip)
view. increment_age()
c′ws,loc ← view.select_oldest()
viewSubset ← view.select_subset()
gossipMsg ← 〈content-summary(cws,loc), viewSubset〉
send gossipMsg to c′ws,loc
receive gossipMsg′ from c′ws,loc
viewEntry ← 〈c′ws,loc, 0, content-summary(c′ws,loc)〉
buffer ← merge(view, gossipMsg′.viewSubset, viewEntry)
view ← buffer.select_recent()

end loop

// passive behavior
loop

waitGossipMessage()
receive gossipMsg′′ from c′′ws,loc
viewSubset ← view. select_subset()
gossipMsg ← 〈content-summary(cws,loc), viewSubset〉
send gossipMsg to c′′ws,loc
viewEntry ← 〈c′′ws,loc, 0, content-summary(c′′ws,loc)〉
buffer ← merge(view, gossipMsg′′.viewSubset, viewEntry)
view ← buffer.select_recent()

end loop

The active behavior is launched after each time interval Tgossip. After incrementing
the age of its view entries, cws,loc selects from its view: (1) c′ws,loc, the oldest contact
via select_oldest() and (2) viewSubset, a random susbet of Lgossip view entries (
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0 < Lgossip ≤ Vgossip) via select_subset(). Then, cws,loc sends to c′ws,loc gossipMsg,
a message that contains viewSubset and a current content-summary(cws,loc). cws,loc
receives in exchange, gossipMsg′ containing similar information from c′ws,loc; cws,loc creates
viewEntry, a view entry related to c′ws,loc, with the age 0 and the current summary of
c′ws,loc. The procedure merge() collects in a buffer all the entries from both the local view
and the received information from c′ws,loc, and discards the duplicates: if 2 entries related
to the same contact exist, only the instance with the smallest age value is kept. Then,
the procedure select_recent() selects the most recent Vgossip entries from the buffer i.e.,
the ones with the smallest age values, in order to limit the view size to Vgossip.

The passive behavior is triggered when cws,loc receives a gossip messsage containing
summary and view information from some content peer c′′ws,loc. Then, cws,loc answers by
sending back a gossip message with its own summary and view information, and updates
its local view via merge() and select_recent() as described previously.

Through both active and passive behaviors of Algorithm 3, cws,loc and its gossip
partner, i.e., c′′ws,loc or c′ws,loc, exchange their current content summaries; they add new
view entries of each other in their local views or refresh the existing ones in case they
already know each other.

3.4.1.3 Push Behavior

Recall that the first access to petal(ws, loc) is provided by D-ring via its directory peer
dws,loc which maintains a complete view (or directory-index) of its petal. dws,loc handles
first queries of new clients targetting petal(ws, loc) and may provide them, in some cases,
an initial view of petal(ws, loc) to allow them to integrate it.

To maintain the director-index(ws,loc) up-to-date, each content peer cws,loc needs to
regularly communicate with dws,loc. For this purpose, cws,loc keeps track of the current
dws,loc and maintains, in its view, a special entry for dws,loc that only contains its address
and its age information (noted dir-info). cws,loc periodically increments the age of dir-
info, as it does with all its view entries. cws,loc sends its dir-info along with every gossip
message sent to another content peer. This process spreads continuous updates about the
directory peer throughout its petal, which also serves to detect its failure and ensure the
recovery (further explanation is given in Sec. 4.3.2).

Given that a content peer may request and access new content, cws,loc sends updates
about its newly stored objects to dws,loc, using push messages. As depicted in Algorithm
4, cws,loc monitors the changes (i.e., the newly stored objects) in content-list(cws,loc) noted
list for simplicity; whenever the percentage of new changes reaches a predefined threshold,
cws,loc creates ∆list to be pushed to dws,loc (via extract_changes()). Then, cws,loc resests
to 0 its age field of dws,loc. Further, object evictions due to cache expiration or replacement
policies are reported to dws,loc as new changes via push messages.

As shown in Algorithm 5, dws,loc periodically increments the age fields of its view
entries. Upon the reception of a push message from cws,loc, dws,loc resets to zero the age
of cws,loc’s entry in directory-index(ws, loc). Then, using ∆list, dws,loc updates the list of
objects stored by cws,loc in its directory index.
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Algorithm 4 Push behavior of cws,loc
loop

counter ← list. count_changes()
if counter ≥ threshold then

∆list← list. extract_changes()
pushMsg ← 〈∆list〉
send pushMsg to dws,loc;
reset_age(dws,loc)
counter ← 0

end if
end loop

Algorithm 5 Behavior of dws,loc
// active behavior
loop

wait(Tgossip)
view. increment_age()

end loop

// passive behavior
loop

waitPush_Message()
receive msg from cws,loc
reset_age(cws,loc)
directory-index.update(cws,loc, push.∆list)

end loop

A directory peer also has to maintain its directory summaries, which are summaries
of the directory-indexes of other directory peers. A directory peer pushes a refreshed
directory summary to its neighbor directory peers when the percentage of new object
identifiers (that are not reflected in the old summary) reaches a predefined threshold.
This delayed propagation is warranted as [FCAB98] has shown that directory summaries
do not have to be updated every time the related directory index changes. Hence, the
use of directory summaries has low demand on bandwidth and memory, while achieving
a low probability of false positives.

3.4.2 Query Processing
A content peer processes its own queries as well as other queries coming from its petal.
Incoming queries are sent by content peers or the directory peer on behalf of a new client.

Consider query(ows), a query that requests an object of the content of ws noted ows.
Upon receiving query(ows), cws,loc processes it as shown in Algorithm 6. First, cws,loc
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checks its own content-list. In case ows is locally cached, cws,loc serves the query by
directly transferring the object to the query originator. Then, if the query originator is a
new client, cws,loc adds it to its view: the entry is associated to an age equal to zero and
a null content-summary. To let the new peer join the petal , cws,loc sends it a subset of its
view so that it initializes its empty view.

In cas the object is not found locally, cws,loc forwards the query based on its content-
summaries. However, if cws,loc has recently joined the petal, it might not have received
content-summaries yet. Therefore, it redirects the query to its directory peer. Otherwise,
cws,loc queries the content-summaries to check if any c′ws,loc of its view might have the
requested object ows. Many potential candidates may exist (i.e., many c′ws,loc that seem
to have ows) but some of them may have disconnected. cws,loc randomly scans through
the candidates; it tries to contact them and discards the unavailable ones until finding an
available c′ws,loc (i.e., lines 13-21). Then query(ows) is redirected to c′ws,loc which proceeds
with process(query(ows)). When no satisfying content peer is found, query(ows) is
redirected to the website ws (i.e., line 22).

Algorithm 6 - process(query(ows)) at cws,loc
1: if content-list(cws,loc).contain(ows) then
2: serve query(ows)
3: if originator is new then
4: view.add_Contact(originator, 0, null)
5: send viewSubset to originator
6: end if
7: break algorithm
8: else
9: if content-summaries is empty then
10: redirect query(ows) to dws,loc
11: break algorithm
12: end if
13: loop
14: c′ws,loc ← content-summaries.lookup(ows)
15: if c′ws,loc != null and c′ws,loc is available then
16: redirect query(ows) to c′ws,loc
17: break algorithm
18: else
19: view.remove_Contact(c′ws,loc)
20: end if
21: end loop
22: redirect query(ows) to ws
23: end if

By serving queries, Flower-CDN enables progressive replication of an object
throughout the petal(ws, loc), based on its popularity in the locality loc. Therefore, at
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the redirection of queries for ows by the directory peer dws,loc, the load would tend to be
spread rather evenly across the set of content peers cws,loc holding copies of ows.

3.5 Discussion of Design Choices
In this section, we argument our design choices, mainly related to the usage of DHT and
gossip protocols, and the hybrid architecture.

We have chosen to build D-ring over a DHT to provide an efficient and reliable lookup
that guarantees that new clients can find their petals and join Flower-CDN. However, we
previously raised concern about DHT limitation in terms of maintenance overhead under
churn. As an example, Chord [SMK+01] requires O(log2N) messages to update the P2P
overlay about a single newly joining peer. In a network of 30000 peers, we obtain 220
update messages. This message overhead does not only increases the network load but
it also introduces more delay in DHT lookup operations as update messages take some
time to get to all concerned peers and repair routing information. D-ring alleviates this
problem and brings more robustness. Since only a selective set of participants take part
of D-ring, its size remains bounded because one directory peer represents a whole petal.
For instance, for a network of 30000, suppose that Flower-CDN supports 100 websites in
6 localities, we obtain in average 50 peers in each petal and a D-ring of 100 ∗ 6 = 600
directory peers. Thus, a new directory peer only needs 85 messages to update other peers’
routing tables.

Another crucial design choice is the usage of gossip protocols for petal management.
They are involved in the construction and maintenance of the petal’s unstructured
overlay since they provide simplicity and robustness. They are also in charge of the
dissemination and monitoring of content-summaries because they can perfectly adapt to
dynamic changes. Flower-CDN remediates to their overhead in terms of messages and
delay by confining them in localities such that gossip exchanges only engage close-by
peers.

Our last important design choice is the hybrid architecture that combines DHT, gossip-
based overlays, locality- and interest-aware schemes. The maintenance of all these schemes
is combined and merged in the same protocols to limit the overhead under churn and
dynamicity. This issue is fully addressed in the next chapter.

3.6 Cost Analysis
In this section, we analyze the overhead of our gossip-based approach which is used to
spread the changes in content summaries. Furthermore, the analysis aims at guiding the
configuration of gossip parameters in order to minimize the overhead.

Let us consider a change in the content summary of a particular content peer, called
author, as a rumor to be propagated via gossip. We analyze a single rumor noted as S
and measure the number of messages required to spread S throughout a petal of size P .
Notice that a content summary is a compact representation of the content stored by a
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peer, and whenever the peer’s content is updated due to a new object insertion or deletion,
it does not necessarily affect the summary. This is why in our analysis we assume that
the updates on summaries are not frequent.

Let R(x) be the number of peers that become aware of S during round x, and msg(x)
the number of messages that disseminate S during round x. In the following, we first
observe the evolution of R(x) and accordingly msg(x) with the number of rounds x.
Then, we compute the number of rounds f required to spread S throughout a petal of
size P , i.e., to reach R(f) = P where f represents the final round. Finally, we measure
the final number of messages M(f) generated during the f rounds to spread S in the
petal.

Following common practice, e.g. [DHA03], in our analysis we do not take into account
the peers that join and leave the system during the rumour propagation.

Round 1

The author includes S in its gossip message and sends it to one contact of its view. The
number of messages used for spreading S during this round is msg(1) = 1. The number
of peers that are now aware of S is R(1) = 2, i.e., the author and the contacted peer.

Round (x+1)

In round (x+ 1), R(x) peers are aware of S. Each aware peer p selects the oldest contact
from its view and sends to it its own summary together with a randomly selected subset of
summaries from its view. The author of the rumor propagates it in all rounds, while other
aware peers include S in their gossip message with probability pS ; pS = Lgossip/Vgossip
because Lgossip is the number of summaries randomly selected among the peer’s view
summaries, i.e., Vgossip.

Some of the peers to which an aware peer sends the rumor may have already received
it in a previous round, e.g. from another peer. We should exclude these peers from the
ones that become aware in round (x + 1). Let paware(x) be the probability of choosing a
contact that is aware by the end of round x, i.e. that became aware during some round
previous to round (x+ 1). Thus, the probability of choosing an unaware contact in round
(x + 1) is punaware(x) = 1 − paware(x). An aware peer p can gossip to one of (P − 2)
peers, since p cannot gossip to itself nor to the contact it gossiped to in the previous
round. Out of (P − 2), there are (R(x) − 1) peers aware of S, given that R(x) is the
total number of aware peers including p. Thus, paware(x) = (R(x) − 1)/(P − 2) and
punaware(x) = 1− (R(x)− 1)/(P − 2).

From the point of view of the author peer, the probability of choosing an unaware
contact in round (x + 1) is paware/author(x) = (R(x) − 2)/(P − 2). The author does not
send the rumor S to its previous contact that is already aware of S. Thus,
punaware/author(x) = 1− (R(x)− 2)/(P − 2).

Based on the above discussion, the number of peers that are aware of S in the (x+ 1)
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rounds is:
R(x+ 1) = R(x) + 1 ∗ punaware/author(x)

+ (R(x)− 1) ∗ pS ∗ punaware(x)
(3.1)

The expression is explained as follows. The number of aware peers after (x+ 1) rounds is
equal to the number of peers previously aware, i.e., R(x), and the number of peers newly
aware contacted by some of the R(x) peers during round (x + 1). The contact of the
author is a newly aware peer with a probability punaware/author(x). Only a pS fraction of
the (R(x)−1) other aware peers (i.e., non author peers) forward S to their contacts. Out
of the (R(x)− 1) ∗ pS contacted peers, a punaware(x) fraction are newly aware of S.

The rumor propagation keeps going until a final round f where R(f) = P , i.e., until
the whole petal becomes aware of S. If we replace round (x + 1) by the final round f in
Equation 3.1, we obtain:

R(f ) = R(f -1) + 1 ∗ punaware/author(f -1)
+ (R(f -1)− 1) ∗ pS) ∗ punaware(f -1)

(3.2)

Let us set pS = α and 1/(P −2) = β and convert Equation 3.2 to polynomial form. Then,
we obtain:

R(f ) = αβR2(f -1) + (1− β + α + 2αβ)R(f -1)
− αβ − α + 2β + 1

(3.3)

Equation 3.3 can be illustrated by a curve for some given values of pS and P .
In Figure 3.5a, we set pS = 10/50 and plot three curves, each one for a different P (i.e,
P = 100, 200, 300). We can see that R(f) = P after 35 rounds for P = 100; after 40
rounds for P = 200 and after 45 rounds for P = 300. This result reflects a common
property of gossip protocols: the larger is the size of the petal, the more is the number of
rounds needed to propagate a rumor.
In Figure 3.5b, we set P = 100 and plot three curves, each one for a different pS (i.e,
pS = 10/20, 10/50, 10/70). We can see that R(f) = P after 20 rounds for pS = 10/20;
after 35 rounds for pS = 10/50 and after 45 rounds for pS = 10/70. Indeed, a higher pS
implies that content peers that are aware of a rumor S are more likely to propagate S in
every gossip exchange. That is why S is propagated faster througout the petal.

As a result, we can conclude that the intra-petal gossiping has a good convergence
speed with respect to the number of rounds. Note that the selection of the gossip period
Tgossip effectively regulates the speed of gossiping in real time. However, it does not affect
the protocol’s emergent behavior or its convergence speed.

Let us now compute the number of messages needed for propagating the rumor S.
The messages that propagate S in round (x + 1) are the gossip messages carrying S in
round (x+ 1) and sent by the peers that are aware of S at the beginning of round (x+ 1)
(i.e., R(x)). Thus, the total number of such messages is msg(x+ 1) = 1 + (R(x)− 1) ∗ pS,
which reflects one message sent by the author peer and the messages sent by the rest of
the aware peers (i.e., (R(x) − 1)) with probability pS. After f rounds, the final number
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(a) Petal size P vs. number of gossip rounds. (b) Probability pS vs. number of gossip rounds.

Figure 3.5: Impact of petal size and probability on the number of rounds required to
spread the rumor in the petal.

of messages M(f) generated for spreading S into the petal is:

M(f) =
f∑
x=1

msg(x) =
f∑
x=1

[1 + (R(x)− 1) ∗ pS] (3.4)

In Figures 3.6b and 3.6a, we illustrate the variation of M(f) with pS and P , respectively.
In Figure 3.6a, we set pS = 10/50 and vary P . As shown, the number of messages
increases linearly with the increasing petal size, which once again asserts the property of
gossip protocols.

(a) Petal size P vs. number of gossip messages. (b) Probability pS vs. number of gossip messages.

Figure 3.6: Impact of petal size and probability on the number of messages required to
spread the rumor in the petal.

In Figure 3.6b, we set P = 100 and vary pS. Interestingly, when increasing pS from 0.1
and 1, the number of messages decrease by 35 %. This is because increasing pS reduces
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the number of rounds which has a great impact on reducing the number of redundant
messages, i.e., messages sent to peers already aware of R. In fact, with a higher pS, the
rumor tends to be widely propagated from the first rounds during which it is more likely
to reach unaware peers. Given that the propagation of R is achieved within fewer rounds,
the number of redundant messages is significantly reduced.

Figure 3.7 shows the total number of views exchanged during the f rounds with
increasing pS. We derived this figure from Figure 3.6b, i.e., by multiplying pS by M(f),
because each gossip message contains a fraction pS of the view. As shown, with increasing
the value of pS, the number of sent views increases.

Figure 3.7: Impact of probability pS on the number of views exchanged to spread the
rumor.

Concluding Remarks

The results of our analysis show that our gossip-based approach spreads the rumors with
a reasonable communication cost, i.e., less than 4 messages per petal member (see Figure
3.6a). Notice that we have obtained this cost in the worst case, i.e., where there is only
one rumor in each message. However, if there are n rumors in each message (n > 1), the
number of messages per rumor and petal member is less than 4/n.

The results of our analysis also help us to configure the pS parameter based on the
view size, in order to optimize the communication cost of our gossip-based approach.
This configuration is done particularly by studying the behavior of the curves depicted
in Figures 3.6b and 3.7. When the view size is small (e.g., Vgossip = 5 entries), i.e., when
the dominant factor for the communication cost is the number of messages, the optimal
value for pS is equal to 1, because it gives the lowest value for the number of messages
(see Figure 3.6b). The value of pS = 1 is acheived by setting Lgossip equal to Vgossip
when configuring Flower-CDN. In contrast, when the view size is large (e.g., Vgossip = 50
entries), i.e., when the dominant factor for the communication cost is the number of sent
views, a small pS gives a better communication cost (see Figure 3.7).
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3.7 Performance Evaluation
We evaluate the performance of Flower-CDN through simulations. Our performance
evaluation consists mainly in quantifying the gains due to locality-awareness in Flower-
CDN. Furthermore, we evaluate the price to be paid for achieving these gains, by
examining the trade-off between hit ratio and gossip bandwidth consumption. For these
purposes, we use the metrics below:

• Background traffic: the average traffic in bits per second (bps) experienced by a
content or directory peer due to gossip and push exchanges.

• Hit ratio: the fraction of queries satisfied from the P2P system. Hit ratio is an
indicator of the degree of server load relief achieved, given that the fraction of queries
reflected by the hit ratio are not redirected to the server.

• Lookup latency: the average latency taken to resolve a query and reach the
destination that will provide the requested object (original server or content peer).
Lookup latency is an indicator of the system’s search efficency, because it measures
how fast objects are found.

• Transfer distance: the average network distance, in terms of latency, from the
querying peer to the peer that will provide the requested object. Used with queries
satisfied from the P2P system, the transfer distance reflects how well the system
exploits the locality-awareness in finding close results to clients.

In the following, we first present our evaluation methodlogy and argue the choice of
simulation parameters, then we discuss the results.

3.7.1 Evaluation Methodology
We conduct simulation-based experiments using PeerSim [JMJV], a Java-based simulator
specifically tailored for P2P protocols. PeerSim provides an event-driven framework that
enables us to model the latency of each individual link; however, it does not provide
support for simulating bandwidth and CPU resources. Given that P2P networks are
built on top of the Internet, we generate an underlying topology of peers connected with
links of variable latencies; the model inspired by BRITE [MLMB02] assigns latencies
between 10 and 500 ms. Flower-CDN localities are modeled using the landmark-based
technique [RHKS02]. We use k = 6 localities that are non-uniformly populated.

Given that D-ring relies on a DHT-structured overlay, we choose Chord
overlay [SMK+01] for its simplicity; we simulate its routing and churn stabilization
protocols and adapt its key management service as explained in Sec.3.3.1, to be able to
simulate the D-ring protocol. To construct D-ring overlay, we assume that Flower-CDN
supports |W | = 100 websites, which results in k ∗ |W | = 600 directory peers.

We compare Flower-CDN with the DHT-Directory approach that is widely employed
in the P2P CDN litterature (cf. Section 1.5.3.5). Recall that, in DHT-Directory, all
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participant peers are part of one structured overlay based on a traditional DHT. For
each requested object, a small directory of pointers to recent downloaders of the object.
The storing peer, which is comparable to our directory peer, is identified by the hash
of the object’s identifier without any locality or interest considerations. A query always
navigates through the DHT and then receives a pointer to a peer that potentially has
the object. We chose the DHT-Directory strategy because it shares some similarities
with Flower-CDN wrt. the directory structure. This makes a comparison easier and at
the same time allows us to see the effects of locality-based petals and their gossip-based
management.

Each experiment is run for 24 hours mapped to simulation time units. In order to
keep the load at bay, we restrict the query generation to 6 active websites of W . For
our query workload we use synthetically generated data because available web traces
reflect object accesses while we are interested in website accesses. Each active website
provides 500 objects which are requestable and cacheable (e.g., web page of 10-100 KB,
though we do not model object size). Our simulation model assumes no correlation
between different website communities and applies zipf distribution for object requests
submitted to each ative website of W [BCF+99]. The websites involved in our system
are small specialized sites: each site speaks directly to the specific needs and interests of
its committed community. Hence, they dominate their target niches and get considerable
traffic. A peer only poses queries for objects unavailable in its local storage (i.e., it never
issues the same query more than once). Moreover, we assume that a content peer has
enough storage potential to avoid replacing its stored content through the experiment’s
duration. As a peer only stores content it has requested, this is a reasonable assumption
given the usual browsing activity of individual users.

Experiments start with a stable D-ring: for each couple (website, locality), there is
one directory peer with an empty directory. Petals related to the 6 active websites, are
built progressively during the simulation as new clients join in. Queries are generated
with a rate of 6 queries per second, distributed between the 6 active websites 1. For each
query intended to a given website ws, two selections are carried out: (1) a new client or a
content peer of ws is chosen from a random locality as the query originator, and (2) the
queried object is selected, using Zipf law, among ws objects. Then, new clients become
content peers and join their corresponding petal. When a petal reaches its maximum
size noted petalSize (set by default to 100), no new clients may join the petal. With
this, we avoid that the directory peer is overloaded with the maintenance of the petal
information. In consequence, the petals of a given website evolve at different rythms
and sizes. Eventually, we should have up to N = |W | ∗ k ∗ petalSize participant peers.
However, since we are only looking at 6 active websites, N = |W | ∗ k+ (6 ∗ k ∗ petalSize)
which is equal to 4200 participant peers in the current configuration.

The main simulation parameters are summarized in Table 3.1. Summary size denotes
the size of the Bloom filter representing the content summary; we assume that the
maximum number of objects held by a content peer is limited by the total number of

1We could not submit larger workloads because of the simulator limitations in terms of memory
constraints. However, the chosen workload still gives us a good understanding of the relative behavior.



chapter 3. Locality and Interest Aware P2P CDN 98

Table 3.1: Simulation Parameters

Parameter Values
Latency 10-500 ms
Nb of localities k 6
Nb of websites |W | 100
Nb of participants 2400
Nb of objects/website 500
Query rate 6 queries per second
Summary size 8*500 bits
Push threshold 0.1; 0.5; 0.7
View size Vgossip 20; 50; 70
Gossip period Tgossip 1 min; 30 min; 1 hour
Gossip length Lgossip 5; 10; 20

objects provided by its website, thus we set summary size according to the analysis
in [FCAB98], to minimize both false positives and storage requirements. Push threshold
refers to the percentage of new changes beyond which a content peer launches a push
exchange with its directory peer (cf. Secction 3.4.1.3). Vgossip refers to the view size
and Tgossip to the gossip period as described in Section 3.4.1 while Lgossip refers to the
maximum size of the view subset exchanged in a gossip round. More details about the
tuning of these gossip parameters are given in the following sections.

3.7.2 Trade off: Impact of gossip
The first experiments evaluates the trade-off of Flower-CDN. Therefore, we investigate the
impact of background traffic, on the performance of Flower-CDN, by varying the gossip
parameters: gossip length (Lgossip), gossip period (Tgossip) and view size (Vgossip). We also
varied push threshold; but we do not show the results which illustrate similar performance
(i.e., almost same gains and same trade-off) for different values of push threshold (0,1; 0,5;
0,7). Thus, these experiments also help in tuning the gossip parameters and adapt them
to our protocol.

In each experiment, we vary one of the 3 gossip parameters (Lgossip, Tgossip, Vgossip)
and fix the two other parameters; then after 24 simulation hours, we collect the results for
each parameter value. Table 3.2 lists the results obtained for the 3 experiments, in terms
of hit ratio and background bandwidth. Due to lack of space, we do not show lookup
latency and transfer distance results which are quite unaffected by the gossip parameters’
variation.

Table 3.2(a) shows the results of the variation of Lgossip. When increasing the gossip
length, more information is sent at each gossip exchange and thus more background
bandwidth is consumed at each involved peer. Indeed, if Lgossip increases from 5 to 20,
the background bandwidth increases by a factor of 4 as shown in Table 3.2. Yet, the
increase in hit ratio is not substantial.
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Table 3.2: Impact of Gossip.

Lgossip hit ratio background traffic
5 0.823 37 bps
10 0.86 74 bps
20 0.89 147 bps

(a) Varying Lgossip with (Tgossip = 30 min; Vgossip = 50)

Tgossip hit ratio background traffic
1 min 0.94 2239 bps
30 min 0.86 74 bps
1 hour 0.81 37 bps
(b) Varying Tgossip with (Lgossip = 10; Vgossip = 50)

Vgossip hit ratio background traffic
20 0.78 74 bps
50 0.86 74 bps
70 0.863 74 bps

(c) Varying Vgossip with (Lgossip = 10; Tgossip = 30 min)

Table 3.2(b) shows the results of the variation of Tgossip. When increasing the gossip
period, gossip exchanges are more spaced and thus less fequent, which has a similar effect
on bandwidth consumption as the decrease of gossip length. Background bandwidth is
reduced by a factor of 60 by augmenting Tgossip from 1 minute to 1 hour, while the hit
ratio is decreased by 0.13.

Therefore, the choice of the 2 gossip parameters (Lgossip and Tgossip) is a trade-off
between two factors: (1) the application requirements for hit ratio convergence speed,
i.e., how fast Flower-CDN reaches a maximal hit ratio, and (2) the network available
resources in terms of network bandwidth availability. For relatively fast convergence, i.e.,
hit ratio of 0.86 within 24 hours, we could set Tgossip = 30 min and Lgossip = 10. A peer
would experience 74 bps, which is very low bandwidth that could be sustained even by
modem connections. For less demanding applications with limited bandwidth availability,
we could set (Tgossip = 1 hour, Lgossip = 10) or (Lgossip = 5, Tgossip = 30 min) resulting in
the negligible amount of 37 bps per peer.

Table 3.2(c) illustrates the results of the variation of Vgossip. As shown, increasing
the view size does not affect bandwidth consumption, while the hit ratio presents a slight
increase of 0.083 when enlarging the view from 20 to 70 contacts. In fact, a larger view size
only requires more storage space but does not affect the amount of information exchanged
between content peers.

For the rest of the simulation, we set Tgossip = 30 min, Lgossip = 10 and Vgossip = 50,
because this setting provides good performance with an acceptable overhead in terms of
background traffic (i.e., on average 74 bps per peer). However, we believe that different
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query workloads and churn rates may influence the results for Tgossip and Lgossip which
should be tuned accordingly.

To conclude, we show in Figure 3.8a the variation of background traffic and hit ratio
with time, for the setting chosen above. The hit ratio keeps on increasing with time,
given that copies of queried content are progressively spread into the different petals as
more queries are generated and thus more content peers are served. While the hit ratio
continues to improve, the background traffic stabilizes at 74 bps after 5 hours.

(a) Trade off with bandwidth in Flower-CDN. (b) Flower-CDN vs. DHT-Directory.

Figure 3.8: Hit ratio evolution in static environment.

3.7.3 Hit ratio
The following results compare DHT-Directory and Flower-CDN wrt. hit ratio. Figure 3.8b
shows that the hit ratio eventually converges to 1 for both DHT-Directory and Flower-
CDN, but convergence takes longer for Flower-CDN given that the search space is
partitioned into petals. In fact, after 24 hours, the hit ratio of Flower-CDN is less than
that of DHT-Directory by 13%. This difference can be justified by the following. Once a
copy of an object ows is stored in DHT-Directory, a subsequent query for ows searches all
the overlay and eventually finds it in case of a stable environment. In comparison, Flower-
CDN restricts the search for ows in the target content-overlay(ws, loci) wrt. locality of the
client (i.e., loci) as well as content-overlay(ws, locj) where dws,locj is a direct neighbor of
dws,loci on D-ring (guided by the directory summaries as explained in Sec. 3.3.3), in order
to achieve locality-awareness. Moreover, an object ows becomes available in content-
overlay(ws, loc) only after a peer from the overlay has submitted a query for ows. Thus,
once a copy of ows is available in each content-overlay, Flower-CDN achieves a hit ratio
similar to DHT-Directory wrt. ows.

In general, a smaller hit ratio means less queries are served from the P2P and instead
go to the server. This is not bad as long as the server is not overloaded. Furthermore, as
we will see in the next paragraph, DHT-Directory achieves the better hit ratio by using
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peers as content providers that are far away from the requester. In practice, it might be
faster to retrieve requested objects from the server than a far away peer.

3.7.4 Locality-awareness
Here, we evaluate the gains due to locality-awareness in Flower-CDN, by measuring lookup
latency and transfer distance. Again we compare with DHT-Directory which does not
leverage locality-awareness.

The first experiment measures the lookup latency. Figure 3.9a shows the variation of
the average lookup latency of a query with time: the lookup latency starts by decreasing
and stabilizes around 120 ms shortly after the system warms up (i.e., less than 5 hours in
this experiment). Figure 3.9b shows the latency distribution of queries for both solutions:
87% of our queries are resolved within 150 ms while 61 % of DHT-Directory’s queries
take more than 1050 ms. In Flower-CDN, only first queries of new participants have to
go through D-ring and result in long lookup latencies. Afterwards, queries are resolved
within the local petal, achieving very short delays. In contrast, DHT-Directory routes
every single query through the DHT. Thus, we conclude that the locality-aware hybrid
overlay of Flower-CDN performes very well in providing efficient lookup.

(a) Evolution with time. (b) Query distribution.

Figure 3.9: Lookup latency in static environment.

The second experiment focuses on transfer distance. We are interested in this
metric because it has a significant impact on network usage and object download speed
which affects response times perceived by users. At the underlying network level,
higher distances generally involve more intermediate links and nodes to carry the traffic,
which contributes to the aggregate network utilization and may overlaod the network.
Furthermore, additional delays are introduced by the extra stages traversed by the data,
due to acknowledgments and retransmissions at each visited node, etc. Figure 3.10a shows
the variation of the average transfer distance of a query with time: the transfer distance
is high at first when object transfers (i.e., downloads) are done via the original servers.
After the warm-up period the transfer distance drops significantly to 80 ms when many
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transfers start to be performed within the same locality. Figure 3.10b shows the transfer
distance distribution of queries for both solutions: 59 % of our queries are served from
a distance within 100 ms compared to 17% of DHT-Directory’s queries. Thus, Flower-
CDN provides excellent results by reducing the average tranfer distance by a factor of 2 in
comparison with DHT-Directory. Flower-CDN ensures data transfers over short distances,
which limits the network load and reduces the response times perceived by users.

(a) Evolution with time. (b) Query distribution.

Figure 3.10: Transfer distance in static environment.

3.7.5 Discussion

We learnt two main lessons through our set of experiments. First, the usage of gossip
when confined in petals appears to be quite efficient with an acceptable overhead in terms
of bandwidth consumption. Moreover, the bandwidth overhead could be adapted to the
available network resources by tuning the gossip parameters, while respecting hit ratio
requirements. Second, combining structured and gossip-based overlays with locality-aware
considerations proved to be quite performing especially in performing fast searches (i.e.,
low lookup latency) and finding close-by results (i.e., low transfer distance). In Flower-
CDN, D-Ring is only used to provide a first reliable access, for new participant peers wrt. a
petal. Afterwards, they become part of this petal and direct subsequent queries directly to
the petal instead of D-ring. In contrast, DHT-Directory relies on the DHT-based overlay
for every single query leading to high lookup latencies. Furthermore, DHT-Directory’s
DHT contains all peers while D-ring only contains the subset of directory peers. Thus, D-
ring is smaller and therefore, routing is faster than in DHT-Directory. Moreover, although
not measured in our experiments, the high lookup rates very likely also lead to higher
loads on DHT participants.
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3.8 Conclusion
In this chapter, we proposed Flower-CDN, an interest and locality-aware P2P CDN, that
enables a website to efficiently distribute its content, with the help of the community
interested in its content. Without relying on any dedicated servers, Flower-CDN offers an
efficient routing infrastructure for the community’s queries. Flower-CDN’s infrastructure
intelligently combines DHT efficiency for reliable lookup with gossip robustness for self-
monitoring. Furthermore, it exploits peer interests and localities in order to organize
participant peers and serve queries. The P2P directory service, D-ring, relies on a novel
DHT mechanism that can be easily integrated into existing structured overlays, whereas
the petals are constructed and managed via cheap gossip protocols. We analytically
and empirically analysed our gossip protocols to efficiently tune their parameters and
control their overhead. Through simulation-based experiments, Flower-CDN showed
high performance especially in performing fast searches and finding close-by results.
Furthermore, gossip incured acceptable overhead in terms of bandwidth consumption,
which could be adapted to the available network resources and hit ratio requirements.
Our results demonstrate that the design choices of our hybrid architecture are perfectly
adapted to the context.

The next step would be to focus on the robustness and scalability of our new
infrastructure. These major requirements prove whether or not Flower-CDN can compete
with commercial CDNs and yet avoid their prohibitive costs.





Chapter 4
High Scalability and Robustness in

a P2P CDN

Abstract. A primary concern about a P2P CDN is its ability to handle dynamic and large-scale
participation of peers. Flower-CDN should be robust to churn and failures and prevent these
frequent events from disrupting the architecture efficiency. Furthermore, Flower-CDN should be
able to support massive scales while providing unaltered performance and avoiding bottlenecks.
In this chapter, we provide Flower-CDN with high scalability and robustness under churn and
massive scale. For this, we propose PetalUp-CDN, a highly scalable version of Flower-CDN, that
dynamically adapts to variable rates of participation and prevent overload situations. Moreover,
we design maintenance protocols that can efficiently detect and recover from failures and churn
via low-cost gossiping.

4.1 Introduction
When designing a CDN over a pure P2P infrastructure, particular challenges arise because
the peers are autonomous and volunteer participants. In particular, churn rate is much
higher than in dedicated CDN infrastructures, i.e., peers unexpectedly leave or join by
thousands the P2P network. Indeed, several analysis [GDS+03,SW04] shed light on this
issue and show that the median time between when a node joins the network until it
leaves, varies from one hour to a few minutes. To achieve robustness, the system should
seek to minimize the performance degradation caused by the inherent dynamicity of peers.
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However, it should make sure to keep the maintenance overhead at bay so that it does not
offset the gains in robustness. In the P2P literature, the works [LGB03,RY05] that propose
a P2P CDN are designed to operate in a dynamic environment. OLP [RY05] greatly relies
on a central server which inevitably presents a single point of failure. Kache [LGB03]
borrows gossip robustness at the cost of agressively replicating directory information that
eventually should be updated under dynamic changes, which yields a significant overhead
in terms of storage and update.

Flower-CDN should be well-prepared in face of churn, treat failures as normal
occurences and prevent these frequent events from affecting the system reliability. Given
that the essence of Flower-CDN (partly) lies in its locality and interest-aware architecture,
it is crucial to maintain this architecture and preserve its functionality despite dynamic
changes. For this, we have considered every scenario related to peer dynamicity and
proposed the appropriate maintenance protocol that ensures a graceful recovery of the
system. In particular, the failure of a directory peer is efficiently detected and replaced,
via gossip protocols, by content peers of the petal since they share the same interest and
belong to the same locality. The directory information is progressively reconstituted via
gossiping while relying on summaries during the recovery phase.

Another challenge is to guarantee the scalability of the P2P CDN under massive scales.
Scalability involves unaffected performance while avoiding bottlenecks and overload
situations. However, most of the existing P2P CDNs do not focus on this issue as pointed
out in Section 1.5.3.6. In our case, Flower-CDN aims at keeping the petals at a manageable
size, so that their directory peers are not overloaded with the maintenance of the directory
information. More precisely, Flower-CDN restricts the number of participant peers that
can contribute to the system, by limiting the size of each petal. A petal’s size is constrained
by the capacities (processing, storage, bandwidth) of the directory peer currently in charge
of this petal. However, the P2P system may attract more participant peers than the
system’s predefined capacity. To address this issue and warrant the extensive deployment
of Flower-CDN to larger scale, we have designed PetalUp-CDN, an approach that extends
Flower-CDN. The key idea is to increase the number of directory peers in a petal as
the number of content peers increase. Basically, several directory peers could share the
management of a given petal, mainly in indexing the petal’s content and servicing new
clients. This multi-directory scheme dynamically adapts to variable rates of participation,
thus achieving scalability while preserving performance. Furthermore, it improves the
reliability of the system since multiple directory peers maintain indexing information
related to the same petal.

Our contributions which are partly published in [DPK09b] can be summarized as
follows:

• We propose PetalUp-CDN, which dynamically adapts to increasing numbers of
participants in order to avoid overload situations in the context of a large-scale
application. Additionally, PetalUp-CDN deals efficiently with reverse contexts
where peers progressively depopulate the system.

• We describe how to maintain PetalUp-CDN (and Flower-CDN) in face of dynamic
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changes and failures, by relying on low-cost gossip protocols and a locality-aware
maintenance protocol for our novel D-ring.

• Finally, we present an empirical analysis of scalability and robustness under churn.
Our generic solution outperforms an existing P2P-CDN with respect to hit ratio by
40% and reduces response time by a factor of 12 under high levels of dynamicity.
Moreover, our approach leverages larger scales to achieve higher improvements.

Roadmap. PetalUp-CDN is described in Section 4.2. Section 4.3 discusses the
maintenance protocols that ensure the robustness of Flower-CDN and PetalUp-CDN
under churn. Finally, Section 4.4 presents our empirical analysis before the conclusion.

4.2 PetalUp-CDN
PetalUp-CDN is a scalable version of Flower-CDN that dynamically adapts to variable
rates of participation. In the following, we first clearly define the problem that PetalUp-
CDN addresses. Given that PetalUp-CDN mainly affects D-ring, we then describe the
architecture of D-ring and its evolution according to the dynamicity of the P2P network.

4.2.1 Problem Statement
In Flower-CDN, one directory peer dws,loc is in charge of petal(ws, loc) and is assigned
three main tasks. First, it routes the queries of new clients over D-ring. For this it
maintains a routing table provided by the underlying DHT of D-ring. Second, it provides
an access to the petal for new clients of ws in locality loc and processes their first queries
based on its directory information. Second, it indexes the content shared by all the content
peers cws,loc and maintains these indexes under churn and dynamic changes. Accordingly
it receives regular push and keepalive messages from each cws,loc in the petal.

To prevent the directory peer from being overloaded with its tasks, Flower-CDN limits
the size of the petal, i.e., the number of clients with respect to a website and a locality that
can use and participate to Flower-CDN. For this, the maximum size of a petal can be fixed
a priori: it can be a system parameter that is tuned by the engineers according to some
predictions like the rate of participation and the average capacity of a participant (capacity
in terms of processing, bandwidth and storage). Moreover, whenever a directory peer is
overloaded, it can simply retire by leaving D-ring, and then it would be automaticallly
replaced (more details are provided by the maintenance protocol of D-ring in Section
4.3.2).

However, accurate a priori prediction is not a straighforward endeavor. Furthermore,
and most importantly, the rate of participation with respect to a petal could exceed the
average capacity of one potential directory peer. This implies that many clients could be
prevented from contributing to the aggregate capacity of a petal in terms of processing,
bandwidth and storage.
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To resolve the aforementioned problem, one could split a petal into several sub-petals
of manageable sizes. However, it severely reduces the search scope of content peers as
they would not be able to access the content of their interest that is stored by peers in
the same locality but in a different sub-petal.

PetalUp-CDN should be designed in a way that allows several directory peers to
share the management of the same petal. To maintain the locality- and interest-
aware architecture and its high performance unaffected, additional challenges need to
be addressed.

• adapt D-ring architecture in order to support several directory peers per petal.

• implement D-ring evolution in a dynamic way that does not affect the performance
of the P2P directory service.

• adapt the petal’s management to the changes in order to preserve the efficiency of
content search inside a petal.

In the following, we first describe the architectural changes applied to D-ring, then
present the dynamic evolution of D-ring, and finally the adapted petal management.

4.2.2 D-ring Architecture in PetalUp-CDN
The current structure of D-ring cannot support more than one directory peer for each
couple (ws, loc). Since the problem resides in the key management service of D-ring,
PetalUp-CDN adapts this service to scale-up D-ring.

In PetalUp-CDN, directory peers for each couple (ws, loc) consecutively join D-ring.
The number of directory peers in charge of each petal(ws, loc) increases progressively as
the number of clients for ws in loc increases.

Figure 4.1: Peer ID structure in D-ring of PetalUp-CDN.

Recall that D-ring assigns to dws,loc a peer ID that concatenates the ID of ws and
the ID of loc. PetalUp-CDN introduces another ID of m3 additional bits where m3 is a
system parameter. This scalable ID is suffixed to the peer ID as shown in Figure 4.1.
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Figure 4.2: Example of petal(β, 1) in PetalUp-CDN.

We thereby obtain 2m3 consecutive peer IDs for each couple (ws, loc) instead of only one.
Thus, we may have up to 2m3 instances of each dws,loc, noted diws,loc (with 0 ≤ i < 2m3).
As a result, all directory peers for the same website and locality have successive peer IDs
and are neighbors on D-ring. This settlement helps directory peers of the same petal
efficiently share directory information by exchanging directory-summaries (cf. Section
3.3.2). Furthermore it is vital for the gradual construction of D-ring

Each directory peer diws,loc manages a partial view noted view(ws, loc)i and thereby a
partial directory-index(ws, loc)i of petal(ws, loc). The view of a directory peer refers to
its diretcory-index, thus both terms can be used interchangeably. More formally, we can
state that for each website ws and locality loc, we have two properties:

Property 1 ∀i, j / i 6= j : view(ws, loc)i ∩ view(ws, loc)j = ∅

Property 2 petal(ws, loc) = ⋃0≤i<2m3 view(ws, loc)i

By having multiple directory peers in charge of a petal, the failure of one or more of
these directory peers will not lead to a complete loss of directory information, and will
allow the system to continue in a slightly-reduced capacity. Moreover, these additional
directory peers are not carrying redundant information, but each one is responsible
for maintaining information about a part of the petal. An example of PetalUp-CDN
configuration is illustrated in Figure 4.2 which focuses on petal(β, 1). Two directory peers
d0
β,1 and d1

β,1 share the management of petal(β, 1). Thus, they manage each one a subset
of the content peers cβ,1.
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4.2.3 D-ring Evolution in PetalUp-CDN
The petals expand progressively as new peers join and shrink as existing ones leave. To
keep the load on directory peers at bay, D-ring follows the evolution of the petals and
accordingly may expand or shrink. However, the expansion and shrink should not disrupt
the architecture of D-ring nor its performance in routing queries. In the following, we
discuss how to address this issue.

4.2.3.1 D-ring Expansion

Directory peers of petal(ws, loc) are created sequentially, starting from d0
ws,loc. A new

directory peer is created for petal(ws, loc) when the number of content peers cws,loc can
no more be managed by the existing directory peers diws,loc. This is detected by directory
peers upon processing new queries by evaluating the number of their content peers against
a predefined limit.

Recall that queries routed over D-ring are initiated by new clients that eventually
join the petals. Thus, in PetalUp-CDN, a query targeting petal(ws, loc) scans through
the existing directory peers diws,loc in search for an underloaded directory peer that can
resolve the query and take in charge the client as a new content peer. If no such directory
peer is found, the latest created diws,loc initiates the join of a new directory peer di+1

ws,loc. In
the following, we describe how a query is routed over the evolving D-ring and then how
it is processed in such a way that might result in the creation of a new diectory peer for
the petal targeted by the query.

Query Routing. While scanning the directory peers of its target petal, a query may
undergo several redirections before being actually served. Thus, in order to limit query
response time, we should minimize the number of query redirections required to reach
an underloaded directory peer. Moreover, if contacted by every new client of its petal,
a directory peer can become overloaded even if its is just redirecting queries to other
directory peers. Thus, as directory peers share the management of directory information,
they should also share the handling of new queries. Therefore, we believe that to achieve
the optimal routing, each client should discover the number of directory peers that have
been created so far for its petal and randomly choose one of them to contact it. When
no such global discovery scheme is available, we use a safe alternative that is described
below.

When routing a query over D-ring, the client uses a key in which the website and
locality IDs are set according to the her information (cf. Section 3.3.1). To determine the
value of the scalable ID in the routed key, we propose to pick a random value between 0
and its middle value. For instance, if the scalable ID is formed of 23 bits, the scalable ID
takes a value between 0 and 4. Consider a query with ID4

ws,loc. If d4
ws,loc does not exist,

the DHT routing protocol delivers the query to the first preceding directory peer (i.e.,
diws,loc with 0 ≤ i < 4) because the latter has the closest ID to ID4

ws,loc. In such a case,
the query would have reached the latest created directory peer which can locally process
the query or create a new directory peer for petal(ws, loc) if overloaded. If d4

ws,loc does
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exist, the query gets to d4
ws,loc which keeps on redirecting the query to further directory

peers of petal(ws, loc) until an underloaded directory peer is found or created. This
redirection approach shortens the route of the query and distributes load rather evenly
accross directory peers.

Query Processing. Whenever the query reaches a directory peer diws,loc of the target
petal, it is handled based on Algorithm 7, i.e., scalable-process(query(ows)). First,
dws,loci checks its view size against a limit, maxDirectory. maxDirectory is determined a
priori according to the average expected peer capacity in terms of bandwidth, processing
and storage. If the view size has reached maxDirectory, diws,loc verifies if di+1

ws,loc is in
D-ring. In case di+1

ws,loc exists (i.e. lines 2-4), diws,loc redirects the query to di+1
ws,loc which

in its turn runs scalable-process(query(ows)). As for diws,loc, its task stops here with
break. In case di+1

ws,loc does not exist (i.e. lines 5-13), diws,loc selects from its view the
content peer to join D-ring as di+1

ws,loc. The content peer is then removed from the view
and directory-index of diws,loc because it will no loger behave as a content peer. The new
di+1
ws,loc keeps its cached content until it expires; meanwhile, it might use this content to

satisfy relevant queries received from new clients.
Afterwards, in order to avoid waiting for di+1

ws,loc to join, diws,loc processes the query
(i.e., line 13), in its stead, based on process(query(ows)) of Algorithm 2 (Chapter 3).
Consequently, diws,loc adds the client to its directory-index as a provider of ows and to its
view as a content peer cws,loc. If the view size has not reached maxDirectory yet, diws,loc
performs the same steps to resolve the query and add the new client (i.e., line 13). In

Algorithm 7 - scalable-process(query(ows)) at diws,loc
1: if view.size ≥ maxDirectory then
2: if di+1

ws,loc exists then
3: redirect query(ows) to di+1

ws,loc

4: break
5: else
6: cws,loc ← view.select_Neighbor()
7: ask cws,loc to join
8: di+1

ws,loc ← cws,loc
9: directory-index.remove(cws,loc,−)

10: view.remove(cws,loc)
11: end if
12: end if
13: process(query(ows))

consequence of the above, a new client is only added to the view and directory-index of
one specific directory peer, which achieves Properties 1 and 2: each directory peer of ws
in loc only adds to its directory-index and its view a partial subset of the clients wrt.
(ws, loc).
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4.2.3.2 D-ring Shrink

A petal’s size evolve dynamically, sometimes decreasing as more content peers leave
and sometimes increasing as new clients join. This may result in some cases where an
overloaded directory peer gets rid of its failed/departed content peers and starts serving
new clients since its view size is reduced. Furthermore, a website may loose its popularity
with time, having content peers continuously leaving its petals. In such a case, we need
to remove the redundant directory peers and eventually end up with one directory peer
to manage the small petal. However, we cannot discard directory peers randomly as it
has severe implications on the routing and processing of queries.

To handle this issue, we propose a solution that can be illustrated by a simple example.
Assume ws was once very popular in loc, which resulted in creating 3 directory peers
d0
ws,loc, d1

ws,loc and d2
ws,loc. Then, petal(ws, loc) starts to shrink by loosing content peers

cws,loc, In such a case, the 3 directory peers merge their subsets of content peers; d1
ws,loc and

d2
ws,loc withdraw from D-ring, leaving only one directory peer to manage petal(ws, loc).
More precisely, as a petal starts to shrink, its extra directory peers start to resign

from their directory peer positions and become again content peers. This progressive
resignation involves the latest created directory peers (noted dlws,loc) to avoid breaking the
sequence of diws,loc and disrupting the mechanisms of PetalUp-CDN (see Section 4.2.3).
dlws,loc can discover that it is the last directory peer of the sequence by checking that its
successor on D-ring belongs to a different petal.

To clearly show how a directory peer decides to resign, let us consider Algorithms 8
and 9. Algorithm 8 describes the case where dlws,loc has lost a great majority of its content
peers, i.e, its view has reached a predefined minimum noted minDirectory. dlws,loc sends
a requestMerge to its preceding neighbor dl−1

ws,loc which accepts to merge its view with
view(dlws,loc) only if the resulting view has an acceptable size. In such a case, dlws,loc resigns
and dl−1

ws,loc takes over.

Algorithm 8 - shrink at dlws,loc
1: if view.size ≤ minDirectory then
2: send requestMerge(view.size) to dl−1

ws,loc

3: receive answerMerge from dl−1
ws,loc

4: if answerMerge==yesMerge then
5: resign()
6: dl−1

ws,loc.takeOver()
7: end if
8: end if

Algorithms 9 describes the case where diws,loc (i.e, not the latest created directory peer)
has lost a great majority of its content peers. diws,loc sends a requestMerge to dlws,loc which
accepts only if the merged view has an acceptable size. In such a case, dlws,loc resigns and
diws,loc takes over.
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Algorithm 9 - shrink at diws,loc
1: if view.size ≤ minDirectory then
2: send requestMerge to dlws,loc
3: receive answerMerge from dlws,loc
4: if answerMerge==yesMerge then
5: dlws,loc.resign()
6: takeOver()
7: end if
8: end if

Next, we detail the algorithms of resign() and takeOver(). In Algorithm 10, dlws,loc is
resigning to let some other existing diws,loc take over by merging their directory information.
Since dlws,loc will become again a content peer, dlws,loc adds a new entry related to itself in
its directory-index: the entry contains the address of dlws,loc, the list of ws’ content stored
by dlws,loc and the age zero. Then, dlws,loc transfers its directory-index to diws,loc. diws,loc
takes over only if the merged view or directory-index does not exceed maxDirectory (cf.
Algorithm 7 in Section 4.2.3). As depicted in Algorithm 11, it basically consists of diws,loc
receiving directory-index(dlws,loc) and merging it with its own directory-index.

Algorithm 10 dlws,loc.resign() for diws,loc; 0 ≤ i ≤ l − 1

directory-index.add(dlws,loc, content_list, 0)
transfer directory-index to diws,loc

Algorithm 11 diws,loc.takeOver()

receive directory-index(dlws,loc)
directory-index.merge(directory-index(dlws,loc))

In the worst case, the petal ends up with one directory peer, which is guaranteed
as long as there are content peers in the petal. These guarantees are provided by the
maintenance protocols that are introduced in Section 4.3.2.

4.2.4 Petal Management in PetalUp-CDN
To maintain efficient content search, a petal should not be affected by the multi-directory
scheme. Recall that once a client becomes a content peer, it does not use D-ring anymore
and relies on its petal to route its queries and search for its desirable content. Moreover,
as a petal scales up, its aggregate resources increase. As such, there will be more content
of ws available in petal(ws, loc) as the number of cws,loc increases. Therefore, each cws,loc
should be able to leverage the scale-up of its petal independently of the number of directory
peers.
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To enable content sharing throughout petal(ws, loc), cws,loc gossips to any other cws,loc
of its petal. Thus, in Figure 4.2, c1 can gossip to both c2 and c3 and eventually benefit from
their stored content to satisfy its queries. But how does c1 get to know content peers like
c3 that are controlled by other directory peers? In Flower-CDN, a newly joining (cws,loc)
initializes its view based on the view of an older content peer of petal(ws, loc) or its own
directory peer dws,loc. In PetalUp-CDN, one should provide the first content peers of
diws,loc with content peers related to other directory peers of petal(ws, loc). To illustrate
the purpose behind this approach, let us consider Figure 4.2. Suppose that c3 is the first
content peer to join via d1

β,1 and gets an initial view containing c1 and c2. Afterwards, c4
joins and gets a view containing c3 which can then transmit the two contacts c1 and c2 to
c4 via gossip exchanges. This solution is vey simple and practical and can be implemented
as follows.

A new di+1
ws,loc uses its view and content summaries maintained while still a content peer

of diws,loc, until its old view expires (more details in Section 4.3.1) and gets progressively
replaced by a new view related to newly arrived clients. When receiving first clients,
di+1
ws,loc provides them with a subset of its old view so that they initialize their view of
petal(ws, loc). Thereby, these clients that will become content peers get to know content
peers of diws,loc and eventually introduce them to other content peers of di+1

ws,loc via gossip.

4.3 Robustness Under Churn
Dealing with the highly dynamic nature of peers is crucial to ensure the robustness of the
P2P CDN. In this section, we first focus on the protocols that maintain D-ring and its
petals connected despite churn. Then, we discuss the maintenance protocols of D-ring that
aims at preserving the architecture originality. As we explain next, these maintenance
protocols cover both approaches of Flower-CDN and PetalUp-CDN. In case of Flower-
CDN, the notation diws,loc refers to the single directory peer dws,loc.

4.3.1 Maintenance of Connection between D-ring and Petals
Flower-CDN mechanisms are achieved via the connection between D-ring and the petals.
However, the failure or departure of a diretcory peer may disconnect (at least partly) its
petal from D-ring. Thus, a primary concern is to maintain this connection despite the
highly dynamic environment governed by churn.

In Flower-CDN, the maintenance protocol aims at keeping the one directory peer
connected with all the content peers of the petal. In PetalUp-CDN, given that several
directory peers may coexist within the same petal, one should maintain the connection
of each diws,loc to a subset of content peers from its petal(ws, loc), which corresponds
to its view(ws, loc)i. To achieve this, each content peer of petal(ws, loc) restricts its
communications to the directory peer diws,loc via which it joined the petal.

The maintenance protocol relies on two features: push & keepalive messages and
exchange of dir-info.
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Exchange of dir-info. Each cws,loc keeps track of its directory peer diws,loc: it maintains
a dir-info which contains the address and peer ID of diws,loc as well as the age field. cws,loc
periodically increments its dir-info by 1 and resets it to zero whenever contacting diws,loc.
Recall that two content peers that gossip to each other also exchange their dir-info to
discover the current available directory peer. If the exchanged dir-info share the same
peer ID, then the 2 content peers belong to the same directory peer. In such a case, they
both keep the dir-info with the smaller age, which refers to more recent information about
their directory peer. Thus, whenever a directory peer leaves, some of its content peers
that detect it when trying to contact it, gossip the information to the other content peers
concerned with this particular directory peer so that they update their dir-info.

Push & Keepalive Messages. As discussed in Section 3.4.1.3, the directory peer and
the content peers of a petal monitor the liveness of each other mainly via push messages.
However, this is not enough because some content peers do not produce frequent changes
in their stored content and therefore rarely communicate with their directory peer via push
messages. That is why we exploit a feature inherent to P2P systems, keepalive messages,
which are periodically sent to check links between peers. In consequence, there will be
two forms of interaction between a directory peer and its content peers: push messages
and keepalive messages. More precisely, cws,loc regularly sends keepalive messages to diws,loc
in addition to push messages. In case of the example shown in Figure 4.2, c1 which is
linked to d0

β,1 only sends push and keepalive messages to d0
β,1. At the same time, diws,loc

periodically increments the age of its view entries and discards the expired ones as they
probably refer to dead content peers. Upon the reception of a push or keepalive message
from cws,loc, diws,loc resets to zero the age of cws,loc’s entry in its directory-index(ws, loc).

4.3.2 Maintenance of D-ring
Churn has severe implications on D-ring architecture and operation in the absence of
appropriate maintenance protocols. If a directory peer fails or leaves, its queries will be
redirected to unconcerned directory peers and the clients will not be able to join their
target petal. Thus, D-ring should be able to detect and recover from failures and leaves.
Furthermore, to support the gradual construction, D-ring should enable directory peers
to dynamically join D-ring without disrupting the architecture. In the following, we first
discuss the failures and leaves, then the joins and replacements of directory peers. The
protocols that handle such events are not affected by whether one or several directory
peers exist for the same petal (i.e., Flower-CDN or PetalUp-CDN). More details are given
below.

4.3.2.1 Failures and Leaves

A directory peer leaves D-ring when it fails or quits the system. The leave of diws,loc is
detected by its content peers, i.e., contained in its view(ws, loc)i, while sending keepalive
or push messages. The replacement of diws,loc is performed by a peer that shares the
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interest in the same website’s content and belong to the same locality, i.e., a content peer
from view(ws, loc)i or a new client. If diws,loc leaves voluntarily, it selects from its view
the content peer to replace it. Otherwise, any content peer of view(ws, loc)i can perform
the replacement as soon as it detects the failure.

However, in case of a deliberate resignation of a directory peer diws,loc due to the
petal’s shrink, the content peers should not confuse it with a failure and replace their
resigned directory peer. Since the latter is instantly replaced by its preceding directory
peer di−1

ws,loc, di−1
ws,loc is the first peer that knows about the resignation. Moreover, any join

message targeting the position diws,loc reaches the replacing directory peer di−1
ws,loc which is

the numerically closest to diws,loc on D-ring. In such cases, di−1
ws,loc notifies the content peers

that are trying to join and replace diws,loc about the resignation. It also informs them that
they are now affiliated to di−1

ws,loc.
The detection and replacement involve one directory peer and its content peers. Thus

these protocols operate similarly on Flower-CDN and PetalUp-CDN.

4.3.2.2 Joins and Replacements

A peer p can try to join D-ring as a directory peer either in case it is initially (1) a content
peer or (2) a new client. Case (1) occurs when p is replacing its failed directory peer or
when it joins as as di+1

ws,loc due to its petal’s growth. Case (2) happens if p has found
no directory peer available for ws in loc while routing its query over D-ring, because (i)
p is the first/only participant for petal(ws, loc); or (ii) all the previous directory peers
of petal(ws, loc) have left D-ring and have not been replaced yet. In all cases, p uses
joinDring(IDi

ws,loc) (Algorithm 12) where IDi
ws,loc is the ID of the directory peer position

targeted by p (i = 0 in case (2)). However, p does not always succeed in joining because
several peers may simultaneously target the same vacant position; the one that first
integrates into D-ring, succeeds.

Algorithm 12 - joinDring(IDi
ws,loc)

1: route joinMessage(IDi
ws,loc) over D-ring

2: directoryPeer ← joinMessage(IDi
ws,loc).destination

3: if directoryPeer.ID == IDi
ws,loc then

// joinMessage reached a directory peer with the same target ID
4: dir-info.update(directoryPeer)
5: if new client then
6: join petal(ws, loc) as cws,loc
7: end if
8: else
9: become diws,loc
10: construct directory-index
11: end if

Similarly to the standard join in DHT-based overlays, p routes a join message with a
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key equal to IDi
ws,loc and eventually reaches a directory peer from the overlay referred to

by destination (i.e, line 1-2). If the target position is not vacant (i.e., lines 3-8), the join
message reaches the current diws,loc and p discovers its current directory peer to update its
dir-info. Then, if p is a new client, it simply joins petal(ws, loc) as a content peer. If the
target position is vacant (i.e., lines 9-12), p becomes diws,loc and gradually contructs its view
and directory-index as its content peers discover its join and send it push messages. As
introduced in Section 4.3.1, content peers discover the join of p as they try to contact their
previous directory peer diws,loc and detect its leave. Then, some of them will try to join,
detect that there is already a new directory peer and update their dir-info. Subsequently,
the information about the new diws,loc spreads rapidly via gossip to content peers related
to diws,loc.

If the previous diws,loc had voluntarily left, it would have transferred a copy of its view
and directory-index to the new directory peer p before its departure. Moreover, in case p
was a content peer before joining D-ring, p would hold content summaries and use them
to answer its first received queries, while waiting for its new directory-index to be built.

Subsequent to joins and leaves of directory peers, routing tables should be updated
to ensure a correct lookup. For this, we rely on the underlying DHT protocols that can
normally detect the presence or the absence of a directory peer and propagate the changes.

4.4 Performance Evaluation
In this section, we present a performance evaluation of PetalUp-CDN and our maintenance
protocols. We focus on robustness and scalability provided provided by our proposed
protocols. In other words, we aim at quantifying the performance in serving queries
under dynamic and large-scale participation of peers.

To evaluate the protocol’s robustness and scalability, we use the metrics that were
previously used and dicussed in Section 3.7: background traffic, hit ratio, lookup
latency, and transfer distance. In the remainder of this section, we first describe
our evaluation methodology, then we discuss the experimental results. The first set
of experiments focuses on robustness and thus involves the maintenance protocols and
operate on Flower-CDN as a beginning. Then the second set of experiments aims at
scalability and introduces PetalUp-CDN while running the maintenance protocols to
manage churn.

4.4.1 Evaluation Methodology
We conduct a set of simulation-based experiments in a highly dynamic environment
governed by churn. Our evaluation methodology reuses many concepts defined in Section
3.7. In short, our simulation relies on PeerSim [JMJV]. We generate an underlying
topology of peers connected with links of variable latencies between 10 and 500 ms.
Then, we model k = 6 localities, choose Chord [SMK+01] as our DHT-based overlay
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Table 4.1: Simulation Parameters.

Parameter Values
Latency 10-500 ms
Nb of localities k 6
Nb of websites |W | 100
Population P 3000-15000
Underlying network P ∗ 1.3
Mean uptime m 60 min
Nb of objects/website 500
Query rate 1 query/6 min/peer
Summary size 8*500 bits
Push threshold 0.5
Vgossip -
Tgossip 1 h
Lgossip -
maxDirectory 15; 25; 35

and compare our protocols with DHT-Directory approaches. We set W = 100 websites
involved in the P2P CDN but restrict query generation to 6 active websites of W . Each
active website provides 500 objects whose popularity follows Zipf distribution [BCF+99].
Table 4.1 lists the main parameters.

For a realistic simulation environment, we simulate churn based on a study [SR05]
where P2P population converges to a desired size, P . For this purpose, the arrival rate of
peers must be equal to the mean departure rate, P

m
, where m denotes the mean uptime

of a peer. We model the uptime of a peer as an exponential distribution with m = 60
minutes, resulting in a high churn rate. We assume that a peer always fails (i.e., when
its lifetime expires) and never leaves normally, to test our P2P CDN in highly unstable
scenarios. Moreover, a peer might re-join multiple times during an experiment, each time
with a different uptime.

We conduct experiments targeting different population sizes (i.e., P =
3000, 5000, 9000, 11000, 15000) in the context of a highly dynamic environment. The
underlying network which consists of all peers (online and offline) have a size of 1.3 ∗ P .

Initially, each peer is randomly assigned a website from |W | to which it has interest
throughout the experiment. We start with a population of k ∗ |W | = 600 directory peers
which have limited uptimes and form the initial D-ring (i.e., one directory peer per couple
(website, locality)). After a small warm-up period, the population stabilizes around P
as new clients keep on arriving and existing peers on failing. For all non-active websites,
peers are only involved with churn because it affects D-ring routing. More precisely, a
peer with interest for an active website submits queries on a regular basis, as soon as it
arrives until it fails. A peer belonging to a non-active website, is simply added to its petal
upon its arrival; it is only involved in the failure management of its directory peer.
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We do not limit the view size of a content peer and allow it to grow with the size
of its petal which reaches at most 60 with P = 15000 in the current configuration; also,
when a peer selects a contact for gossip and finds it unavailable, the peer removes the
contact from its view, which naturally bounds the view size. Finally, gossip/keepalive
period which refers to the periodicity of gossip and keepalive messages sent by a content
peer is calibrated at 1 hour.

4.4.2 Robustness to churn
Here, we focus on the robustness of our protocols under high churn. Thus, we conduct
for both DHT-Directory and Flower-CDN the same experiment under the same churn
and workload conditions. The experiment targets a mean population size of 3000. The
obtained results are depicted in Figures 4.3, 4.4a and 4.4b.

First, we analyse the evolution of hit ratio with time (Figure 4.3). At the beginning,
DHT-Directory surpasses Flower-CDN wrt. hit ratio. This is because Flower-CDN needs a
warm up period to build up and enable its petals to get populated, given that query search
space involves specific petals to achieve locality-awareness. In contrast, DHT-Directory
searches the whole overlay for queries and its hit ratio increases faster than that of Flower-
CDN. However, as the impact of churn becomes more significant, DHT-Directory fails to
preserve an increasing hit ratio while Flower-CDN keeps on improving despite failures:
the improvement reaches 40% after 24 simulation hours. In fact, in DHT-Directory, the
information about previous downloaders which is held in a directory, is abruptly lost
with the failure of the directory peer in charge of it. In contrast, Flower-CDN efficiently
manages this problem because periodic updates are disseminated throughout a petal via
gossip and push. Thus, a new directory peer d can progressively reconstruct its directory-
index as it receives updates from content peers. Meanwhile, d can resolve first queries
using content summaries previously received during gossip exchanges, given that a failed
directory is replaced by a content peer.

Figure 4.3: Hit ratio evolution in dynamic environment.

Second, we look at the distribution of queries with respect to lookup latency and
transfer distance for P = 3000. Figure 4.4a shows that 66% of our queries are resolved
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within 150 ms while 75% of DHT-Directory’s queries take more than 1200 ms. Figure
4.4b shows that the percentage of queries served from a distance within 100 ms is 62%
for Flower-CDN and 22% for DHT-Directory. Thus, Flower-CDN preserves its highly
significant locality-aware gains under the worst scenarios of failures, given that the
directories lost with DHT-Directory can be quickly recovered with Flower-CDN.

(a) Lookup latency. (b) Transfer distance.

Figure 4.4: Query distribution in dynamic environment.

4.4.3 Scalability
In the following set of experiments, we analyse the scalability of our protocols. First, we
examine Flower-CDN under variable rates of participation then we validate PetalUp-CDN.
Note that the experiments still simulate high churn.

4.4.3.1 Flower-CDN

We study the behavior of Flower-CDN with respect to scalability and compare it to the
behavior of DHT-Directory in a similar scenario. For each approach (Flower-CDN and
DHT-Directory), we conduct 5 experiments, each one targeting a different population size
(i.e., P = 3000, 5000, 7000, 9000, 11000) in the context of a highly dynamic environment.
For each experiment, we collect the hit ratio obtained after 24 simulation hours, and the
average lookup latency and transfer distance for a query. To avoid over-fitted results,
we run each experiment 3 times and compute the average hit ratio, lookup latency
and transfer time for this experiment. We also measure for Flower-CDN the average
background traffic. The results of the 4 experiments are summarized in Table 4.2.

We can see that the hit ratio of Flower-CDN increases from 0.7 to 0.82 when increasing
P from 3000 to 11000. This means that Flower-CDN leverages larger scales to achieve
higher gains. Actually, a larger population size enables Flower-CDN to build up and
converge to a maximum hit ratio faster. Moreover, the results of hit ratio show that
Flower-CDN maintains its improvement over DHT-Directory through variable population
sizes.
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When comparing the results of lookup latency and tranfer distance between Flower-
CDN and DHT-Directory, we observe that the improvement factor increases with scale
and can reach 12 for the average lookup latency and 2 for the average transfer distance.
Indeed, when a petal has more content peers submitting queries and becoming providers
of the requested content, searches in this petal will have larger scopes and thus are more
likely to be resolved within this petal. That is why large scales are also advantageous for
search speed and localization of close results in Flower-CDN.

Finally, the results of background bandwidth show that a peer experience around 90
bps due to its exchanges. This is very low bandwidth that could be sustained even by
modem connections, which proves that Flower-CDN incurs very acceptable overhead via
its highly effective gossip protocols. Here, we study the behavior of Flower-CDN wrt.
scalability and we summarize the results in Table 4.2 for lack of space.

P hit ratio avg lookup avg transfer
3000 DHT-Directory 0.41 1544 ms 166 ms

Flower-CDN 0.7 178 ms 107 ms
5000 DHT-Directory 0.52 1596 ms 165 ms

Flower-CDN 0.72 141 ms 89 ms
7000 DHT-Directory 0.58 1618 ms 167 ms

Flower-CDN 0.78 160 ms 91 ms
9000 DHT-Directory 0.59 1692 ms 165 ms

Flower-CDN 0.79 156 ms 87 ms
11000 DHT-Directory 0.62 1743 ms 164 ms

Flower-CDN 0.83 143 ms 84 ms

background traffic
3000 Flower-CDN 97 bps
5000 Flower-CDN 89 bps
7000 Flower-CDN 91 bps
9000 Flower-CDN 92 bps
11000 Flower-CDN 94 bps

Table 4.2: Scalability comparison.

4.4.3.2 PetalUp-CDN

PetalUp-CDN aims at achieving a graceful scale-up of Flower-CDN. In a nutshell, the
goal is to maintain the high performance of Flower-CDN and at the same time limit the
load on directory peers as the number of participants reaches massive scales.

We evaluate the performance of PetalUp-CDN through a set of 4 experiments targeting
a population size of 150001. Each experiment depicts the behavior of PetalUp-CDN for

1Due to memory constraints, we could not simulate more than 15000 peers
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a specific value of maxDirectory, the construction parameter of PetalUp-CDN. Recall
that maxDirectory defines the maximum number of content peers that a directory peer
should manage to avoid overload situations. Above this number, an additional directory
peer is created for the corresponding petal. The current simulation configuration leads
to petals that can at most reach 60 content peers. Thus, maxDirectory is consecutively
assigned the values (15; 25; 35) in the first three experiments. The fourth experiment
corresponds to an unlimited maxDirectory, which brings us back to Flower-CDN. The
results of the four experiments are synthesized into four curves, each one depicting the
time-based evolution of one of the metrics (background traffic, hit ratio, lookup latency,
and transfer distance). They are shown in Figures 4.5.

First, let us analyse the results of background traffic (Figure 4.5a). Our aim is
to measure the impact of PetalUp-CDN on the amount of load that a directory peer
undergoes due to the keepalive and push messages regularly sent by its subset of content
peers. We measure the average background traffic of a participant peer because during
an experiment a peer can alternatively become a diretcory peer and a content peer.
Obviously, the smaller is maxDirectory, the smaller is the traffic load on a directory
peer. In particular, the load reduction can reach 33% between Flower-CDN and PetalUp-
CDN with maxDirectory = 15.

When examining hit ratio evolution (Figure 4.5b), we observe that the four approaches
achieve similar results. This demonstrates that the partionning of a petal does not affect
the performance of our P2P CDN in handling queries. Whether the set of content peers is
managed by one directory peer or distributed accross several directory peers, the system
succeeds equally well in locating the requested content.

Regarding lookup latency (Figure 4.5c) and transfer distance (Figure 4.5d), the
performance is quite the same for all the approaches (with a slight difference of 5 ms
in transfer distance). Thus, PetalUp-CDN can achieve the same locality-aware gains as
Flower-CDN, independently of the number of directory peers in charge of a petal. In
other terms, it can perform fast searches and serve close-by content.

4.4.4 Discussion
Based on the previous experiments, we conclude that our P2P CDN can maintain an
excellent performance under a large-scale and dynamic participation of peers.

With respect to robustness, our maintenance protocols can guarantee a high hit ratio
and reduced lookup latency and transfer distance. They provide an efficient detection
mechanism for dynamicity via low-cost gossip protocols. Also, they ensure a fast recovery
of the P2P CDN that attenuates the loss of directory information and enables a smooth
transition. To resume, Flower-CDN and PetalUp-CDN can be extremely robust despite
high levels of churn due to the efficient use of gossip.

Regarding scalability, Flower-CDN has shown excellent gains despite modest sizes
of petals (i.e., a petal size did not exceed 60 peers). We believe that large petals can
significantly contribute in increasing the gains. For higher scales, PetalUp-CDN has
demonstrated its ability to avoid overload situations without a decline in performance.
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(a) Background traffic. (b) Hit ratio.

(c) Lookup latency. (d) Transfer distance.

Figure 4.5: PetalUp-CDN vs. Flower-CDN performance and overhead.

Its multi-directory scheme does not affect hit ratio, transfer distance, and latency lookup
when handling queries. The results are extremely promising since they show that our
P2P CDN can efficiently support massive scales.

4.5 Conclusion
After demonstrating Flower-CDN’s high performance in Chapter 3, this chapter
aimed at providing the two other primary requirements of CDN, scalability and
reliability/robustness. For scalability purposes, we proposed PetalUp-CDN that extends
Flower-CDN to large scales. To avoid overload situations, PetalUp-CDN is designed
in a way that allows several directory peers to share the management of a large petal.
D-ring is adapted in order to dynamically evolve with respect to the needs of the petals
while maintaining its locality- and interest-aware architecture and high performance. The
performance evaluation demonstrated that this multi-directory scheme does not affect hit
ratio and response times, thus enabling efficient scalability.
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Furthermore, we ensured the robustness of both Flower-CDN and PetalUp-CDN via
our maintenance protocols. Based on low-cost gossip, these protocols efficiently detect
failures and churn, and can recover the P2P CDN smoothly and quickly. Simulation
results showed that our approach successfully resists to churn and leverages higher scales
to achieve higher improvements. In summary, hit ratio is ameliorated by 40% and response
times reduced by a factor of 12, in comparison with an existing P2P CDN.



Chapter 5
Deployment of Flower-CDN

Abstract. In this chapter, we present the main guidelines to deploy Flower-CDN for public
use. For this, we propose a browser extension that integrates Flower-CDN functionality into the
browsing activity of a user. Flower-CDN extension provides a highly flexible and safe interface
through which users can configure their interests with respect to several different websites.

5.1 Introduction
Flower-CDN is deployed over clients that are interested in some particular website and
that are willing to participate in order to enjoy a better access for the content of their
interest. A website ws is supported by Flower-CDN as long as there are a sufficient
number of clients on behalf of ws. More precisely, the more popular a website ws is,
the more participants are attracted to Flower-CDN to populate the petals of ws and to
occupy its directory peer positions. As for an unpopular website, its petals tend to be
empty and its directory peer positions vacant.

A user accesses the Web through its web browser which handles her HTTP requests
and accordingly allows her to search and view web content. In order to use and contribute
to Flower-CDN transparently, a user should incorporate Flower-CDN functionality into
her browser and let it run over HTTP.

We propose a Flower-CDN browser extension that enables P2P content distribution
in a transparent and flexible manner. Additionally, it provides configuration management
through which users can dynamically update their interests and enforce privacy
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Figure 5.1: Flower-CDN extension within the web browser.

preferences by specifying which content they will share. Finally, we adopt a simple security
model that guarantees content integrity even in the face of untrusted peers.

Roadmap. In the following, we first introduce how Flower-CDN can be integrated
into the user’s web browser in Section 5.2. Then, we deepen our study by describing
the implementation architecture of Flower-CDN in Section 5.3. Finally, we conclude in
Section 5.4.

5.2 Flower-CDN Browser Extension
Flower-CDN functionality can be implemented as a browser extension. Figure 5.1
illustrates the changes affecting a browser that installs Flower-CDN extension. Flower-
CDN operates via three main components: a whitelist config manager, an HTTP request
manager and a Flower-CDN proxy.

As shown in Figure 5.1, the content that the user shares in Flower-CDN is stored
in a delimited section of the browser cache (i.e., the disk storage allocated for the web
browser). This ensures the privacy of the user, because it allows to isolate the web
content that the user wants to share from the private content. The amount of disk space
allocated to Flower-CDN section grows dynamically as more content is cached, bounded
by the available disk space of the browser cache. The cache replacement and expiration
policies adopted by the browser cache are used to manage Flower-CDN content (recall
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that the content mainly consists of web pages and their embedded objects). Further, the
view and directory informations of a peer are also stored in this Flower-CDN section and
managed according to their own expiration policies (i.e., the view via gossip exchanges cf.
Section 3.4.1.2 and the directory information via push and keepalive cf. Section 4.3.1).

The whitelist config manager mantains a list configured by the user and called Flower-
CDN whitelist that specifies a set of domains referring to websites on behalf of which the
user participates to Flower-CDN. The web browsing process begins when the user inputs
a URL into the browser and initiates an HTTP request. This request is first handled by
the HTTP request manager. It checks the URL against the Flower-CDN whitelist and
forwards the request to the local Flower-CDN proxy if the URL matches the whitelist.
Otherwise, the HTTP request follows the browser’s standard processing path. Upon
receiving the request, the Flower-CDN proxy tries first to locally resolve it and then
resorts to the Flower-CDN network. The user is connected to the Flower-CDN network
as a content or directory peer, via its local proxy which communicates with other Flower-
CDN proxies at remote users. Thus, a Flower-CDN proxy handles requests coming from
remote users in addition to the local user’s requests.

Below, we first give more details on how a Flower-CDN extension is configured wrt. the
user’s interests and locality. Then, we give more explanation on how a user is connected
to the Flower-CDN network (i.e., D-ring or petals).

5.2.1 Configuration
A user may have interest in several websites for which she wants to use Flower-CDN. In
Flower-CDN, peers that are related to different websites are involved in different petals
and thus have uncorrelated behaviors. Therefore, the user can participate in Flower-CDN
as n different peers. She specifies, via the whitelist config manager, the names of the
n websites of her interest and the cache section of her Flower-CDN proxy contains n
subsections of dynamic sizes.

Figure 5.2 illustrates how a user Suzan is integrated in a Flower-CDN network. Suzan
who is in locality 2 is interested in 2 websites α and β. Thus, she is represented in
Flower-CDN network as 2 different content peers cα,2 and cβ,2. Technically speaking, the
Flower-CDN proxy that operates within Susan’s browser, manages two different cache
subsections, one for each content peer. For instance, the first subsection contains the
view and the content maintained by cα,2.

Upon the reception of an HTTP request, the Flower-CDN proxy detects the website
ws targeted by the request based on its URL. If Suzan has a query for α, her Flower-CDN
proxy accesses the Flower-CDN network as cα,2 and deals with the local cache subsection
of cα,2.

Upon its installation by the user, a Flower-CDN browser extension is provided with the
number k of localities involved in the system as well as the technique used to detect one’s
locality. For instance, if we use the landmark-based technique [RHKS02], the user will
know the IP adresses of a set of well-known landmarks spread across the network. Thus,
she can measure its RTT to the landmarks and orders them by increasing latency. Given
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Figure 5.2: A user in Flower-CDN as two content peers related to two different websites.

that each possible landmark ordering identifies a locality, the user detects her locality loc
based on her ordering.

5.2.2 Connection with Flower-CDN network
Recall that a new client uses D-ring to enter Flower-CDN. Thus, a newly installed Flower-
CDN browser extension has a list of IP addresses referring to random directory peers for
bootstraping. When the Flower-CDN proxy wants to access Flower-CDN network for the
first time, it uses a random bootstrap peer to route its first message over D-ring.

Upon receiving a query, the Flower-CDN proxy detects the target website ws and acts
as the corresponding peer p. If this is the first query for ws, p needs to access D-ring.
Thus, it computes the key reflecting the website targeted by the query and the locality
of p and picks a random bootstrap peer which invokes the DHT routing procedure to
forward the query to the target directory peer. If p has already submitted queries for
ws, p acts as a directory or content peer of ws according to its acquired role, and uses
its view to connect to peers from its petal hosted by remote users via their Flower-CDN
local proxies.
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A user may reconnect after a temporary disconnection or failure. In such a case, each
one of her peers p does not necessarily have to take all the way via D-ring as if it is a new
client. p can act as a content peer and try to renew contacts with other content peers
of its petal using its previously built view which is stored within the user browser cache.
More precisely, p searches for a contact from its view that is still available to gossip with
in order for p to reintegrate its petal. However, if p’s view contains no available contact,
p cannot reintegrate its petal and thus has to rejoin Flower-CDN as a new client.

5.3 Flower-CDN Implementation
We now go inside the Flower-CDN proxy of each user and describe its implementation
architecture. We first introduce the global architecture with its different layers. Then, we
focus on Flower-CDN implementation details.

5.3.1 Global Architecture
Flower-CDN relies on a DHT-structured overlay via its D-ring. Let us look at a standard
DHT-based application. Then, we discuss Flower-CDN layering and identify the resulting
changes.

5.3.1.1 DHT-based Applications

DHT systems provide an infrastructure for distributed storage and search. This is enbaled
via two interfaces:

• put(key, data) stores a key and its associated data object in the DHT.

• get(key) retrieves the data object associated with key from the DHT.

Figure 5.3 shows the global architecture of a DHT-based application. On top of
the Internet network there is the P2P overlay network that is structured as a DHT.
The overlay layer ensures key-baesd routing and location by implementing the lookup
method: lookup(key) returns the IP address of the DHT peer in charge of key. In order
to guarantee the correctness of lookup, the overlay layer manages peer failures and churn
by regularly updating routing tables [RGRK04]. On top of this layer, the distributed
storage layer ensures key-based data distribution and search by implementing the put
and get methods.

5.3.1.2 Flower-CDN

Figure 5.4 illustrates a global architecture implementing Flower-CDN functionality.
The application layer now integrates two additional services, the HTTP request

management and the whitelist config management.
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Figure 5.3: DHT-based application global architetcure.

The Flower-CDN proxy layer comprises two adjacent sublayers, the D-ring layer and
the petal layer. The petal layer is represented by two main components that depict
the behavior of a content peer, content protocol and gossip protocol (as discussed in
Section 3.4). The D-ring layer consists of the key management service supporting the
P2P directory service (described in Section 3.3.3). It comes directly over the DHT routing
and location overlay. Flower-CDN does not use the distributed storage functionality of
the DHT. Thus, the interfaces put and get are deactivated at each peer implementing
Flower-CDN.

Figure 5.4: Flower-CDN global architecure
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Flower-CDN only uses the routing and location overlay of the DHT to build the P2P
directory service of D-ring. The DHT-based overlay provides the key-based lookup to
route queries. Additionally, it is combined with stabilization protocols that keep routing
tables up-to-date despite the arrivals and departures of peers [SMK+01,RD01a]. Basically,
a peer periodically checks the liveness of its neighbors in the routing table. It also
exchanges routing information with its neighbors to discover newly joining peers and
accordingly update its routing table. Therefore, in Flower-CDN, the joins and leaves of
directory peers are automatically detected by the DHT-based overlay.

5.3.2 Implementation Architecture
The implementation architecture of Flower-CDN is illustrated in Figure 5.5. It shows
seven components connected to links that refer to method invocations. Most of the
links have two parts. The component that is connected to the part ending with a circle
provides the method. The component that is connected to the part ending with an arc
invokes the method. For instance, the component content protocol provides the method
processQuery(q) that can be invoked by the component interest manager. In addition,
some links have only one part and are only connected via the red circle to one component.
This means that the component provides a method to be invoked by remote instances of
the same component (e.g., via Java RMI). As an example, content protocol provides the
method processQuery(q) for remote content protocols.

As introduced in Section 5.2.1, the Flower-CDN cache section is subdivided according
to the interests of the user. In Figure 5.5, we omit this interest-based subdivision for
simplicity. Further, we clearly separate the different types of data (i.e., view, content
objects, directory-index, etc. ) and include them in their appropriate component.

In this section, we first introduce the architecture components and then present in
more detail their sequential interactions.

5.3.2.1 Components

Flower-CDN implementation architecture is organized under seven components: locality
manager, key manager, interest manager, directory protocol, content protocol, security
manager and gossip protocol.

Locality Manager. Its role consists in computing the own locality of the user. It offers
one method:

- getMyLocality(): returns the locality of the current user.

Key Manager. It provides the key management service of D-ring, as described in
Section 3.3.1. This component is used by the local content protocol and directory potocol
when they need to access D-ring via the DHT layer. For this, it offers one method:
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Figure 5.5: Flower-CDN implementation architecture.

- generateKey(ws, loc): generates a key when provided with the url of the target
website ws and the identfier of the target locality loc.

Interest Manager. It holds the whitelist specified by the user (i.e., the user interests
in terms of websites for which she wants to contribute in Flower-CDN). It provides two
methods for the user interface to update the whitelist according to the current user
interests:

- addInterest(ws): adds the website ws to the whitelist.
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- removeInterest(ws): removes the website ws from the whitelist.

In addition, the interest manager is responsible of receiving the user queries via:

- submitQuery(q): enables the user to submit a query q related to a website from the
whitelist. It detects the target website ws and redirects the query to the component
directory protocol if the corresponding peer is a directory peer or to the component
content protocol if the corresponding peer is a content peer or a new client (see
Section 5.2.1). For this, it calls the method processQuery(q) provided by both
components.

Recall that for each interest, the user is represented by a peer that has a specific role
among directory peer, content peer and client. Upon adding an interest ws, the default
role associated with ws is client. Eventually, the role changes with time according to the
behavior of the peer. To update the role associated to each website of the whitelist, the
folllowing method is provided:

- updateRole(ws, r): sets the role of the local peer related to ws (r =
directory, content, client).

Directory Protocol. It depicts the behavior of each directory peer dws,loc hosted by
the user. For this, it maintains the data related to each dws,loc which consists of the
directory-index(ws, loc) and the directory-summaries received from directory peers dws,loc′
of other users (same website as the local directory peer but for different localities). For
each method, the directory protocol detects the target website and therefore uses the
corresponding data. For simplicity, we consider one directory peer dws,loc hosted by the
user (i.e, the user is only interested in website ws).

The directory protocol provides the following methods:

- processQuery(q): handles a query q using Algorithm 2 (Chapter 3). q refers to
a query targeting dws,loc. Therefore, this method can be invoked by the interest
manager for the user’s own queries as a directory peer. In addition, it can be
invoked by remote directory protocols that have used D-ring to route the query
towards dws,loc.

- processPush(p): processes a push message p received by dws,loc from one of its
content peers cws,loc. This method is invoked by the remote content protocol
corresponding to cws,loc.

- processKeepalive(k): processes a keepalive message k received by dws,loc from one
of its content peers cws,loc. This method is invoked by the remote content protocol
corresponding to cws,loc.

- receiveSummary(d, s): receives and stores a directory-summary s from a directory
peer d (i.e., a neighbor of dws,loc′ on the D-ring, dws,loc′). This method is invoked by
a remote directory protocol corresponding to dws,loc′ .
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The directory protocol can invoke a method of the DHT layer:

- lookup(key): searches for the directory peer responsible of key. This is used
to route a query over D-ring towards its target directory peer. Such a query is
originated and sent by a new client (hosted by a remote user) that is using the curent
directory peer dws,loc as a bootstrap (cf. Section 5.2.2). The method lookup(key)
connects the local directory protocol to the target directory protocol so that it can
invoke processQuery(q) on the target component.

Content Protocol. It depicts the behavior of a content peer or a new client related
to query processing (cf. Section 3.4.2). It manages the data related to each content peer
cws,loc hosted by the user, which consists of the content objects locally cached by cws,loc
and the content-summaries received from remote content peers c′ws,loc. Upon running a
method, the content protocol can detect the target website and thus can manipulate the
corresponding data. For simplicity, we consider one content peer cws,loc hosted by the user
(i.e, the user is only interested in website ws).

The content protocol provides the method:

- processQuery(q): processes the query q according to Algorithm 6 (Chapter 3).
This method can be invoked by the interest manager for the user’s own queries as a
new client or a content peer. It can also be invoked by remote content and directory
protocols related to the same petal as cws,loc as pointed out in Section 3.4.2.

- processAnswer(a): processes an answer a that is received for a previously
submitted query of the user.

The content protocol can invoke a method of the DHT layer:

- tryJoin(key): tries to join D-ring as a directory peer according to Algorithm 12
and using key related to its locality loc and website ws.

Security Manager. It ensures the integrity of the content that is transferred to the
local user. In an open P2P environment, some peers may be malicious and corrupt the
shared content. This problem can be easily solved if web-servers provide digitally signed
certificates along with their content [Tay04]. The security manager only needs the website
public key to verify the digital signature of an object related to this website and received
by the user from some content peer. This solution is indifferent to peer dynamicity and
copes well with a loosely-trusted environment. To achieve this solution, it provides one
function:

- checkSignature(object,ws): invoked by content protocol upon downloading new
objects.
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Gossip Protocol. It is responsible of the gossip behavior of a peer. It manages the view
of every content or directory peer hosted by the local user. For simplicity, we consider
one local peer hosted by the user.

The gossip protocol provides a method to implement a gossip exchange between two
content peers as depicted in Algorithm 3 (Chapter 3:

- initializeView(v): sets v as an intial view of the local peer (new content peer).
This is invoked by a remote gossip protocol when the local peer has recently joined
its petal as a content peer.

- processGossip(g): processes a gossip message g. It is invoked by a remote gossip
protocol to initiate a gossip exchange with a local content peer.

The gossip protocol also interacts with the local components directory protocol and
content protocol to update the view of the associated directory or content protocol. The
associated methods are as follows:

- addContact(c): adds a new contact c to the view of the local peer.

- removeContact(c): removes the contact c from the view of the local peer.

- initialGossip(c): initiates a new client c for gossip exchanges. It consists in sending
to c a subset of the local view so that c can initialize its view and become a content
peer. This is invoked by a directory or content protocol when they get in touch with
a new client (cf. Section 3.4.1.1) .

- updateDir− info(d): updates the dir-info which refers to the view entry of the
local content peer referring to its current directory peer (cf. Section 3.4.1.3).

- receiveContentSummary(c, s): receives the content-summary s from another
content peer c that shares the same petal as the local content peer.

5.3.2.2 Components at Work

We have introduced the Flower-CDN components individually. We now present how they
work together by discussing two typical scenarios.

Scenario 1. In Figure 5.6, we consider the case where the component content protocol
representing a content peer cws,loc is invoked via processQuery(q). Four users are involved
in this scenario: the local user that hosts cws,loc, the remote user 1 that hosts the directory
peer dws,loc of the petal(ws, loc), the remote user 2 that hosts another content peer c′ws,loc
of the petal, and the remote user 3 that hosts the originator of the query q.

cws,loc handles the query according to Algorithm 6 (described in Chapter 3). In
case the object ows is locally cached, cws,loc answers the query and serves ows by calling
processAnswer(a) of the originator’s content protocol. If the latter is a new client, cws,loc
invokes the method initialGossip(c) of the local gossip protocol that also represents cws,loc.
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Eventually, the gossip protocol invokes initializeV iew(subset) on the gossip protocol of
the originator in order to initialize the originator’s view with a subset of view(cws,loc).

Now, let us look at all the other cases where the object ows is not in the local cache. In
case cws,loc needs to query the content-summaries for the requested object ows and has not
found any, it redirects the query to dws,loc by invoking processQuery(q) on the directory
protocol of the remote user 1.

In case cws,loc has found a content-summary related to c′ws,loc showing that the latter
might have a copy of ows, cws,loc redirects the query to c′ws,loc by invoking processQuery(q)
on the content protocol of the remote user 2.

However, if c′ws,loc is not alive (e.g., remote user 2 has disconnected), cws,loc removes it
from is view via its gossip protocol and redirects the query to the original web-server ws.

Scenario 2. In Figure 5.7, we consider the case where the component content protocol
representing a content peer cws,loc is invoked via processAnswer(a). Two users are
involved in this scenario: the local user that hosts cws,loc and the remote user 1 that
hosts the directory peer of the petal(ws, loc), i.e., dws,loc.

Once a requested object ows is downloaded, cws,loc checks its integrity by invoking
checkSignature(ows, ws) of the local interest manager. If validated, it caches the object.
Then, it performs the push behavior as depicted in Algorithm 4 of Chapter 3. It checks if
the number of changes in the local cache (i.e., content objects) has reached the threshold to
notify the directory peer dws,loc. In such a case, cws,loc sends a push message p to dws,loc by
invoking processPush(p) on the directory protocol of the remote user 1. Upon contacting
its dws,loc, cws,loc updates its directory address information via updateDir − info().

However, if dws,loc is not alive (e.g., remote user 1 has disconnected), cws,loc invokes
the method tryJoin(key) of the DHT layer in order to replace its directory peer. To
obtain the appropriate key with respect to its locality loc and website ws, it invokes
generateKey(ws, loc) of the local key manager. Then, it is redirected over D-ring towards
the target position. If cws,loc succeeds in replacing its directory peer, it informs the
interest manager about it via updateRole(ws, directory). Otherwise, i.e., if dws,loc has
been already replaced by another peer, cws,loc invokes updateDir − info() to store the
address information about the new dws,loc.

5.4 Conclusion
In this chapter, we presented how Flower-CDN can be implemented and used in practice.
The distinctive feature of Flower-CDN functionality is that it can be integrated into the
user web browser, allowing the user to transparently contribute and exploit the benefits
of Flower-CDN.

Furthermore, we showed that Flower-CDN functionality provides a highly flexible
configuration for the user; it can easily manage the different interests of the user and
their dynamic changes. We also sillustrated how the content authenticity can be ensured
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Figure 5.6: Scenario 1: processQuery(q) at content protocol

via a straigthforward solution. Finally, we designed the implementation architecture of
Flower-CDN, which constitues an important step towards the implementation of Flower-
CDN extension and its release for public use. Then each interested user can simply
download the extension and start using Flower-CDN.
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Figure 5.7: Scenario 2: processAnswer(q) at content protocol



Conclusion

In this chapter, we summarize our main contributions. Then we give an overview of how
we plan to pursue our thesis work.

Summary of Contributions
This thesis has addressed content distribution in P2P systems. It has been motivated by
the explosive growth of the Web and its urgent needs in terms of scalable, efficient and
low-cost infrastructures for content distribution. At the same time, the rise of Web 2.0
which encourages participation has shed light on P2P collaborations. Thus the aim of
this thesis has been to build a P2P infrastructure for content distribution. It has been
accomplished in four steps which are summarized below.

1. State-of-the-Art of P2P Content Distribution: Our first contribution aimed
at a comprehensive survey of P2P content distribution, in order to motivate our next
contributions and highlight the shortcomings that we should address. It helped us
identify several important observations that can be summarized as follows. First
CDNs have stringent requirements which are performance, scalability and reliability.
Performance refers to high hit ratio and short response times which can be achieved
via locality-aware routing. Scalability ensures that no bottlenecks or decline in
performance can result from an increase of the number of clients and queries.
Reliability implies that the CDN is robust and does not present any single-point-of
failures. Scalabilty is still an open issue as it requires additional investment and
prohibitive costs.

The second observation is that P2P systems are the perfect match to build
cheap and scalable CDN. They introduce fundamental requirements like autonomy,
expressiveness, efficiency, quality of service, and robustness. Moreover, there
are recent trends that refine the P2P overlay network for more performance and
efficiency in content distribution. Among these trends, we focused on locality-aware
and interest-aware overlay matching, gossip usage and overlay combination. The
challenges are to keep the solutions simple, avoid centralized management and large
overheads, operate fast and adapt to changes.
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Our third observation refers to P2P file sharing, one of the popular applications of
P2P content distribution. Such applications tolerate loose garantees on performance
as they adopt light-weight and best-effort approaches, and yet are accepted by the
user population. Nonetheless, these systems should rigorously aim at keeping the
network load at bay to enable a deployment over large-scales. A top priority is to
exploit locality-awareness in order to serve files from close-by locations. However,
most existing works do not address this issue.
Our final observation concerns P2P CDNs which should strictly meet the
requirements of P2P and CDN and cope with their correlations. Existing P2P
CDNs compromise one requirement for the other and most importantly, do not
address scalability.

2. Locaware: The second contribution focused on P2P file sharing, as a first effort
to build a basic infrastructure for content distribution with loose requirements.
The infrastructure relied on unstructured overlays as they are widely deployed in
the context of file sharing because of their flexibility. We addressed the problem
of bandwidth consumption, from two angles: search inefficiency and long-distance
file transfers. Our solution, Locaware, leverages inherent properties of P2P-file
sharing environments which consist of natural replication, temporal and network
localities. Locaware peforms index caching that selectively caches query responses
in the form of file indexes with locality-aware information. Moreover, Locaware
adapts its index caching scheme for keyword search and leverages the scheme
for query routing. These achievements are realized with a perfectly acceptable
overhead in terms of storage and bandwidth requirements. Through simulation, we
showed that Locaware significantly improves the success rate of selective indexing
caching solutions and reduces the traffic of flooding solutions. Most importantly,
the results demonstrated that Locaware can limit wasted bandwidth and reduce
network resource usage.
This contribution was published in [DPV07,DP09]. Our initial efforts on distributed
algorithms for P2P collaboration which have pioneered our work on locality-
awareness were subject to publication in [DMP07,MPDJP08].

3. Flower-CDN: The third contribution aimed towards a more sophisticated
infrastructure for content distribution. It targets the requirement of performance
through locality-awareness, the requirement of autonomy through interest-awareness
and the requirement of efficiency through overlay combination. Flower-CDN enables
any website to distribute its content, by strictly relying on the community interested
in its content. Flower-CDN builds a query routing infrastructure that intelligently
combines DHT efficiency with gossip robustness. Furthermore, it exploits peer
interests and localities for efficient collaboration and content distribution. The
P2P directory service, D-ring, relies on a novel DHT mechanism that can be easily
integrated into existing structured overlays, whereas the petals are constructed and
managed via cheap gossip protocols. We analytically and empirically analysed our
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gossip protocols to efficiently tune their parameters and control their overhead.
Through extensive simulations, Flower-CDN showed high performance because it
performs fast searches and finding close-by results. Furthermore, gossip incured
acceptable overhead in terms of bandwidth consumption, which could be adapted to
the available network resources and hit ratio requirements. Our results demonstrate
that the design choices of our hybrid architecture are perfectly adapted to the
context.

The initial proposal of Flower-CDN was published in [DPK09a] and an improved
proposal appeared in [DPK09d].

4. Robustness and Scalability for Flower-CDN: The fourth contribution focused
on the two requirements of CDN, scalability and reliability/robustness. For
scalability purposes, we proposed PetalUp-CDN that extends Flower-CDN to large
scales. To avoid overload situations, D-ring dynamically evolves with respect to the
needs of the petals while maintaining its locality- and interest-aware architecture
and high performance. Furthermore, we ensured the robustness of our approach
via maintenance protocols that are based on low-cost gossip. These protocols
efficiently detect failures and churn, and can recover the P2P CDN smoothly and
quickly. Simulation results showed that our approach successfully resists to churn
and leverages higher scales to achieve higher improvements. In summary, hit ratio
is ameliorated by 40% and response times reduced by a factor of 12, in comparison
with an existing P2P CDN.

An overview of this contribution first appeared in [DPK09c], then a more detailed
version was published in [DPK09b].

5. Flower-CDN Deployment: The final contribution provided the first guidelines
to make Flower-CDN available for public use. We proposed to implement Flower-
CDN functionality as an extension for the user’s web browser. As such, the user
enjoys a transparent, flexible and highly configurable experience with Flower-CDN.
We designed an implementation architecture that covers security and privacy issues
in a simple and practical manner.

Future Work
Our future work focuses on providing Flower-CDN with more advanced features and
extending it to other contexts. We present in the following a non-exhaustive list of work
that we plan to carry out.

1. Trace-Driven Experimentation: We are currently refining our simulation studies
by injecting real Web traces. Traces can accurately depict the user browsing
behavior and its variants. This can make the simulations more realistic.
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2. Flower-CDN Browser Extension: Another on-going work is to finalize and test
the implementation of Flower-CDN browser extension. We hope that interested
users would be able to download the browser extension and start using Flower-
CDN.

3. Semantic-Based Interests and Search: We intend to go one step further and
empower users to express their interests in more granular and complex ways. An
interest should reflect semantic preferences via ontologies, combination of topics,
etc. Accordingly, participants should be able to conduct semantic searches where
queries can be expressed with keywords or other semantic information rather than
strict URLs. This would help users navigate through available content and discover
objects that would interest them.

4. Social Content Sites: Web 2.0 is fostering the integration of content information
with the social information (profiles, connections and activities) of users, giving rise
to social content sites. Sites that started as pure content oriented (e.g., Youtube,
Yahoo Travel) or pure social networking (e.g., Facebook, MySpace) are rapidly
evolving towards such an integration. However, these sites are supported by a
centralized architecture, which incurs high cost and suffers from availability, privacy,
and scalability problems. To handle this, we envision the deployment of such sites
over the decentralized infrastructure of Flower-CDN. Obviously, such a proposal
requires a complete study of the changes that should target Flower-CDN like the
concept of interests, the search techniques, etc.

5. Extending IP Routing with Data Semantics for CDN: Finally, we plan to
deepen our investigation into locality-awareness and further refine the routing in
Flower-CDN. The IP routing protocol has proven to be highly scalable, supporting
millions of nodes, and allowing dynamic behavior of nodes which can be added or
removed autonomously. Thus, a promising research direction is to extend IP routing
with data semantics in order to better support CDN like queries in Flower-CDN.
The extensions should consider distributed data management techniques. This work
should be done in two steps. First, we need to better understand how P2P routing is
mapped into IP routing and to quantify the performance limitations resulting from
routing protocol translation. Second, based on this understanding, the goal is to
propose extensions to IP routing with data semantics to support CDN like queries.
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A
Résumé Étendu

A.1 Introduction

Tributaire de certaines technologies, le web 2.0 est avant tout un changement de
paradigme. L’usager n’est plus un simple consommateur d’informations (i.e., contenu);
il peut désormais devenir un acteur du réseau et un producteur de contenu. Il y a
une “architecture de participation” implicite, une éthique de coopération incorporée
dans laquelle les usagers peuvent interagir entre eux, créer et partager du contenu. Les
applications du web 2.0 fournissent un service qui s’améliore automatiquement quand
plus de gens l’utilisent. Quelques exemples d’applications web 2.0 sont l’encyclopédie en
ligne Wikipedia, qui permet aux particuliers de créer et modifier des articles (contenu),
les sites de réseaux sociaux comme Facebook, les sites de partage de photos et vidéos
comme YouTube et Flickr, ainsi que les wikis et les blogs.

À l’heure où l’Internet connaît une croissance foudroyante, le web 2.0 a favorisé
l’émergence de la technologie P2P comme un nouveau modèle de communication. Le
modèle P2P s’oppose au modèle traditionnel client-serveur, chaque pairétant à la fois
client et serveur. Ainsi, les réseaux P2P reposent sur un principe d’égalité et de partage
de ressources entre les pairs, en s’appuyant sur une organisation la plus décentralisée
possible. Par conséquent, ils garantissent le passage à l’échelle de l’Internet. Deux grandes
classes des réseaux P2P existent : non-structurés et structurés. Dans les réseaux non-
structurés chaque pair est complètement autonome et la propagation des requêtes se fait
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par inondation. Les mécanismes sont simples et flexibles mais posent des problémes
importants de performances et de passage à l’échelle. Les réseaux structurés organisent
les pairs ainsi que la répartition du contenu sur les pairs selon une structure stricte et
efficace, notamment une table de hachage distribuée (Distributed Hash Tables ou DHT).
Ils gagnent à la fois l’efficacité et la garantie de recherche. Le prix à payer est la perte
d’autonomie des pairs et le coût de maintenance élevé.

L’application la plus répandue du P2P est le partage de fichiers. Parmi les applications
les plus populaires, on peut distinguer BitTorrent [PGES05] et Gnutella [Gnu05]. Les
communautés de partage de fichiers favorisent les réseaux non structurés pour leur
grande flexibilité en termes de placement de pairs et de contenu. De plus, la recherche
de fichiers par les techniques d’inondation est simple, fiable et surtout flexible dans la
manière d’exprimer une requête (plutôt que d’exiger strictement le nom exact du fichier).
Cependant, cette inondation est coûteuse en bande passante en raison d’une recherche
aveugle et d’une redondance de messages, ce qui menace dangereusement le passage à
l’échelle. Pour palier à cela, la technique de index caching permet de créer et distribuer
des index de fichiers, de façon simple et pratique. L’idée clé est que les pairs conservent
en cache les réponses de requête transitant par leur biais. Les techniques existantes
[PH03,Sri01,WXLZ06] limitent la flexibilité de la recherche ou sont inefficaces en termes
de stockage et de maintenance d’index. En outre, ces techniques ne prennent pas en
compte la proximité physique entre le demandeur et le fournisseur du fichier, alors que les
fichiers populaires sont naturellement répliqués en différentes localités. Les conséquences
pourraient être désastreuses, notamment en surchargeant le réseau et dégradant les temps
de réponses [RFI02].

Aujourd’hui, la collaboration P2P va bien au-delà du simple partage de fichiers. Alors
que les usagers du web 2.0 deviennent de plus en plus impliqués, les réseaux P2P ont
permis la création de communautés à grandeéchelle pour le partage et la gestion de
contenu. Le succés de Wikipedia atteste que la collaboration P2P peut même aboutir
à une efficacité qui dépasse de loin celle des systèmes fermés.

Dans le cadre du web 1.0, le contenu des serveurs web est distribué au grand public via
les réseaux de distribution de contenu (CDN) [BPV08]. Le mécanisme de base consiste à
répliquer le contenu populaire sur des serveurs fiables et stratégiquemnt bien placés. Ce
mécanisme absorbe la surcharge des web serveurs, limitent les coûts de bande passante et
optimisent les temps de réponse. Cependant, un CDN requiert un investissement coûteux
qui augmente d’autant plus que le nombre de clients et de requêtes est important.étant
donné la forte croissance de la quantité de contenu web et du nombre des clients, les
réseaux P2P semblent la solution idéale pour construire des infrastructures peu coûteuses
pour la distribution de contenu. C’est parce qu’ils peuvent offrir plusieurs avantages
comme la décentralisation, l’auto-organisation, la tolérance aux pannes et le passage à
l’échelle. Dans un système P2P, les usagers peuvent servir les requêtes des autres en
partageant le contenu précédemment demandé.

Toutefois, le caractère décentralisé et ouvert des réseaux P2P complique l’exploitation
des avantages P2P. De nombreux défis doivent être surmontés lors de la construction
d’une infrastructure P2P qui est aussi scalable, robuste et performante qu’un CDN.
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Un enjeu majeur est de remédier au décalage entre le réseau P2P et le réseau physique
sous-jacent dont résultent deux problèmes. Le premier est la surexploitation des ressouces
réseau qui limite le passage à l’echelle [RFI02]. Le deuxième est la détérioration de
la performance en augmentant les temps de réponse. Pour une collaboration efficace
et une bonne qualité de service, les utilisateurs doivent accéder au contenu proche
physiquement et communiquer avec des pairsà proximité. Pour ce faire, le réseau P2P a
besoin d’intégrer une locality-awareness qui se réfèreà des informations sur l’emplacement
physique de pairs et de contenu.
Une autre problématique réside dans le fait que les pairs sont autonomes, dynamiques
et volatiles [SR06]. Dans ces conditions, il est difficile de garantir la fiabilité du sysème
et la disponibilité du contenu. Par ailleurs, le passage à l’échelle requiert l’équilibrage
de charge entre les pairs qui prend en compte leurs propres intérêts. Dans la littérature
P2P, plusieurs approches comme [IRD02, WNO+02, RY05, FFM04] proposent un P2P
CDN. Elles sont généralement confrontés à des compromis entre autonomie et fiabilité,
entre qualité de service et coût de maintenance [DGMY02]. En outre, elles n’abordent
pas le problème de passage à l’échelle.

L’ojectif de nos travaux de thèse est de construire une infrastructure P2P pour la
distribution de contenu. Notre infrastructure ne doit dépendre d’aucune administration
centralisée ni de serveurs dédiés. Elle doit exploiter les ressources des pairs et mettre en
valeurs leurs intérêts.

Le résumé étendu de cette thèse est organisé en respectant l’organisation en chapitres
de la thèse. Ainsi, chaque section du résumé correspond à un chapitre majeur de la
thèse. Dans la Section 2, nous décrivons brièvement notre solution pour les systèmes P2P
de partage de fichiers. La Section 3 résume Flower-CDN, notre infrastructure de P2P
CDN. Dans la Section 4, nous expliquons notre approche pour assurer la robustesse et le
passage à l’échelle du P2P CDN. La Section 5 décrit comment nous comptons déployer
Flower-CDN pour le public. Enfin dans la Section 6, nous présentons un résumé de nos
contributions principales, et proposons quelques directions de recherche futures.

A.2 Partage de fichiers avec Locaware
Dans cette section, nous présentons Locaware, la solution d’indexation et de routage pour
le partage de fichiers en P2P. Locaware fournit un support efficace pour les requêtes par
mots-clés par l’intermédiare des filtres de Bloom. D’autre part, il exploite les localités
physiques dans sa technique d’indexage.

A.2.1 Problématique étudiée
Le contexte de notre travail est les réseaux P2P non structurés comme Gnutella [Gnu05].
Les pairs sont dynamiques et autonomes, pouvant entrer ou quitter le réseau à tout
moment. Ils partagent des fichiers de tout type spécifié par l’application. Pour rechercher
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un fichier, un utilisateur exprime sa requête par une chaîne de mots-clés extraits du nom
du fichier cible. La requête est ensuite inondée sur le réseau P2P. Les pairs répondent
à la requête, avec des fichiers dont le nom comporte tous les mots-clés de la requête.
Une réponse à la requête contient le nom et l’adresse IP d’un pair fournissant le fichier
demandé. Les réponses aux requêtes suivent le chemin inverse des requête. Le pair ayant
généré la requête télécharge le fichier via une connexion directe avec le pair fournisseur et
finit par devenir un fournisseur du fichier en question.

Notre objectif est d’exploiter pleinement les avantages de la mise en cache d’index afin
de limiter la consommation de bande passante. Les critères qui ont orienté nos choix sont
les suivants.

• Flexibilité : la technique d’indexation devrait être couplée à une technique de
routage qui dirige les requêtes efficacement vers les index pertinents. Cette technique
devrait permettre les recherches par mots-clés qui sont très courantes dans les
systèmes de partage de fichiers.

• Locality-awareness : l’approche doit intégrer les localités afin d’optimiser le
transfert de fichiers. Les index ne doivent pas dirigent les requêtes de façon aléatoire
alors que les fichiers concernés sont disponibles dans des pairs à proximité.

• Disponibilité : l’appoche devrait tirer profit de la réplication naturelle des fichiers
afin de fournir des réponses aux requêtes avec de plus fortes garanties sur la
disponibilité du fichier.

A.2.2 Support pour les requêtes mots-clés
Chaque pair maintient un filtre de Bloom qui représente l’ensemble des mots clés de tous
les noms de fichiers en cache. Chaque fois que le pair met en cache l’index d’un fichier,
il insère tous les mot-clé du nom du fichier dans son filtre de Bloom. Le pair réplique
son filtre de Bloom et envoie une copie à chacun de ses voisins directs. Ainsi, les pairs
peuvent interroger les filtres de Bloom reçu de leurs voisins pour faire le routage d’une
requête.

A.2.3 Indexage basé sur les localités
L’espace des pairs est divisé en plusieurs groupes logiques, chacun ayant un identifiant
noté Gid. Chaque pair est attribué un groupe et donc un Gid aléatoire. Un pair met
en cache toute réponse de fichier dont le nom valide le Gid du pair via une fonction de
hachage.

L’espace des pairs est divisé en plusieurs localités physiques, chacune ayant un
identifiant noté locId. Chaque pair détecte sa localité via des mesures de RTT. Un pair
peut détenir pour un fichier donné les adresses de plusieurs pairs fournisseurs et leurs
locId. Pour cela, une réponse à la requête doit contenir à la fois l’adresse et le locId du
fournisseur. En outre, elle contient l’adresse et le locId de l’initiateur de la requête qui sera
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aussitôt considéré comme un nouveau fournisseur du fichier. Sur le chemin de retour de la
réponse, les pair mettent en cache la réponse si le nom du fichier valide leur Gid. Dans ce
cas, ils associent à l’index de ce fichier toutes les adresses de fournisseurs contenues dans
la réponse, y compris celle de l’initiateur de la requête. Ceci est illustré dans la figure A.1
où les pairs appartiennent à trois groupes G1, G2 and G3. P2 demande le fichier F dont
le nom valide G1; sa requête atteint un pair de G1 ayant un index de F qui référence le
fournisseur P1. Ce dernier génère une réponse de la forme de < F,P1, locId = 1 > et
met en cache un nouvel index pour F qui référence le fournisseur éventuel P2. Ensuite
les pairs de G1 qui transmettent la réponse stockent deux index pour F , un de P1 and
un autre de P2.

Figure A.1: Locaware : Mise en cache d’index du fichier F dont le nom valide G1.

A.2.4 Routage de requêtes
Locaware adapte le mécanisme de routage de requêtes afin de bénéficier pleinement des
index mis en cache. La requête est propagée avec les informations d’adresse de l’initiateur
de la requête q noté p(q). Tout pair qui reçoit la requête recherche d’abord dans son
cache l’index d’un fichier F qui peut satisfaire q; il collecte l’ensemble d’index liés à F
(noté I(F )) et en sélectionne ceux qui font référence à des fournisseurs de même locId
que l’initiateur de requête. En conséquence, la réponse de la requête peut contenir deux
ensembles d’index liés à F , celui qui est conforme au locId de l’initiateur de requête et
un autre qui se compose de locIds aléatoires pour des garanties de disponibilité. Au cas
où le pair n’a trouvé aucun indice qui puisse satify la requête (I(F ) est vide), la requête
est transmise à certains de ses voisins directs. Il vérifie, pour chaque voisin, si la requête
valide son filtre de Bloom et redirige en conséquence la requête.

A.2.5 Évaluation de performances
Nous avons réalisé des simulations avec PeerSim, pour comparer les performances de
Locaware avec deux autres algorithmes de base. Nous avons mesuré l’efficacité de la
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recherche de fichiers de deux points de vue : satisfaction de l’utilisateur et coût de la
recherche.

L’expérience illustrée par la figure A.2a, évalue le coût de recherche en terme de
trafic de messages générés. Locaware reduit le trafic de recherche par 98% par rapport
aux techniques d’inondation. Donc, Locaware présèrve le principal objectif de mise en
cache d’index sélective en limitant drastiquement les surcharges de recherche. Cette
réalisation est vitale pour le passage à l’échelle des systèmes P2P de partage de fichiers.
L’expérience qui met en relief l’aspect locality-awareness de Locaware mesure la distance

(a) Évolution du trafic de recherche. (b) Répartition des transferts de fichiers
locality-aware.

Figure A.2: Évaluation des performances de Locaware.

de transfert. C’est la disance réseau en terme de latence qui sépare le pair demandeur
du pair fournisseur et qui sera traversée par le fichier lors du transfert. La figure A.2b
montre le pourcentage de requêtes qui sont servies de la même localité des demandeurs
ou le pourcentage de trsnferts de fichiers qui sont locality-aware. Locaware réalise 27%
de tranferts locality-aware, une amélioration de 40% par rapport aux autres approches.

La distance de transfert a un impact considérable sur la performance et le passage
à l’échelle, surtout que nous parlons de transferts de fichiers volumineux. Des distances
courtes limitent le nombre de liens et noeuds physiques intermédiaires qui portent le
fardeau de données volumineux. Cela peut réduire considérablement les surcoûts du
réseau ainsi que le temps de réponse perçu par l’utilisateur.

Du point de vue satisfaction de l’utilisateur, nous avons comparé le taux de hit de
Flower-CDN par rapport à d’autres solutions de mise en cache séléctive. Les résultats
montrent que Locaware améliore le taux de hit de manière significative .

A.3 Infrastructure P2P CDN avec Flower-CDN
Le modèle P2P semble être la solution idéale pour construire un CDN efficace et scalable à
faibles coûts. Cependant, cette tâche se révèle très difficile à cause du caractère autonome
des pairs participants. Dans cette section, nous décrivons Flower-CDN, un P2P CDN qui
exploite et prend en considération les localités et les intérêts des pairs.
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A.3.1 Survol de Flower-CDN

Flower-CDN a pour objectif de distribuer le contenu d’un ensemble W de sites web ws
par l’intermédiare des clients intéressés par le contenu de ws. Nous supposons l’existence
de k localités physiques : 1 ≤ loc ≤ k . La figure A.3 montre un exemple d’architecture
de Flower-CDN.

Les participants appartenant à la même localité loc et intéressés par le même site
ws construisent ensemble un overlay non structuré noté petal(ws, loc), en utilisant les
protocoles gossip. Ces pairs, appelés content peers et notés cws,loc fournissent du contenus
de ws, permettant ainsi d’alléger le serveur ws. Flower-CDN charge un pair de chaque
petal(ws, loc), le rôle d’un directory peer (noté dws,loc) : dws,loc connaît l’ensemble des
pairs cws,loc etindexe leur contenu stocké. Les directory peers font aussi partie de D-ring,
un overlay structuré basé sur une DHT, afin de traiter les requêtes des nouveaux clients.
Donc Flower-CDN repose sur une architecture hybride composée d’un ensemble de pétales
indépendantes reliées par D-ring.

Au lieu d’interroger le serveur ws, un nouveau client situé dans loc, soumet sa requête
à D-ring et est dirigé vers le directory peer en charge de ws dans loc , soit dws,loc. Ensuite,
dws,loc tente de résoudre la requête en se basant sur sa pétale ou certains pétales voisines
liées à ws. La requête est donc dirigée vers un content peer cws,loc qui détient l’objet
demandé; cws,loc sert la requête en transfèrant l’objet au client. Ensuite, le client peut
intégrer petal(ws, loc) comme un content peer cws,loc. Pour les requêtes suivantes, cws,loc
recherche directement dans sa pétale au lieu de D-ring.

Figure A.3: Architecture de Flower-CDN avec 2 websites α & β et 4 localities.
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Figure A.4: Une requête pour F soumise par un nouveau client de β de localité loc = 1.

A.3.2 D-ring

D-ring est un overlay structuré qui repose sur une DHT, tout en tenant compte des intérêts
et des localités des pairs pour construire l’overlay et traiter les requêtes. Pour chaque site
ws, D-ring alloue k directory peers, k étant le nombre de localités. Chaque directory peer
dws,loc est attribué un ID en focntion du le site et la localité qu’il représente. Basé sur le
service de routage de la DHT, D-ring livre toute requête visant le site ws et la localité loc
à dws,loc.

D-ring agit comme un service d’annuaire P2P pour les clients souhaitant utiliser et
contribuer à Flower-CDN. Principalement, il offre deux fonctionnalités. Premièrement,
il soutient les premières requêtes en provenance de nouveaux clients et les gère au lieu
des serveurs web d’origine. Deuxièmement, D-ring permet un accès fiable à Flower-CDN
pour les nouveaux participants : en routant sa première requête de D-Ring, un client est
guidé vers la pétale liée à sa localité loc et son site d’intérêt ws. Ainsi, il peut faire partie
de Flower-CDN en tant que content peer ou directory peer.

La figure A.4 montre une partie de D-ring avec le directory peer dβ,1 et trois content
peers pour (β, 1), A, B et C. dβ,1 maintient un directory-index(β, 1) qui liste pour chaque
pair dans petal(β, 1), leurs objets (A stocke les objets x et y qui sont fournis par le site
β). De plus, dβ,1 stocke des résumés des directory-index de ses voisins directs, dβ,0 and
dβ,2.

Le nouveau client F du site β arrive avec une requête q pour l’objet x. En supposant
que F se trouve dans la localité loc = 1, q est transmise à dβ,1 qui recherche x dans son
directory-index. Ensuite, dβ,1 dirige q au content peer A ou C, qui ont une copie de x
et peuvent donc satisfaire la requête. Si F demande un objet tl que x′ ne se trouvant
pas dans petal(β, 1), dβ,1 vérifie ses résumés de directory-index pour (β, 0) et (β, 2) et en
conséquence dβ,1 envoie q à dβ,0 ou dβ,2. En dernier recours, dβ,1 redirige q au site β.
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A.3.3 Les Pétales
Une pétale petal(ws, loc) comporte le directory peer dws,loc et plusieurs content peers
cws,loc. Elle se développe au fur et à mesure que des clients de ws en loc rejoignent
Flower-CDN.

Chaque petal(ws, loc) fournit une infrastructure de recherche pour les requêtes des
content peers cws,loc. Dès qu’un client devient cws,loc, il résoud ses requêtes en se basant
sur sa pétale au lieu de D-ring. A cet effet, dans la pétale, les content peers découvrent
le contenu stocké par d’autres pairs cws,loc en échangeant des résumés de leurs contenus.
Ainsi, cws,loc peut fouiller dans les résumés pour voir où une copie de son objet demandé
pourrait être stockée.

Les protocoles gossips sont utilisés pour diffuser les résumés et leurs mises à jour de
façon épidémique. Les pairs peuvent également découvrir de nouveaux membres dans
leur pétale et détecter les pannes. L’algorithme gossip de base est comme suit. Un
pair p connaît un groupe de pairs ou contacts qui sont maintenus dans une liste appelée
vue. Périodiquement, p sélectionne un contact q, lui envoie ses informations, et reçoit en
contrepartie des informations de q.

Pour maintenir le directory-index à jour, chaque cws,loc envoie à dws,loc des mises à
jour sur son contenu en cache via des push messages. cws,loc surveille les changements (les
objets nouvellement stockés ou effacés) et chaque fois que le pourcentage de nouveaux
changements atteint un seuil prédéfini, cws,loc envoie la liste des changements à dws,loc.

A.3.4 Évaluation de performances
Nous avons mené une évaluation de performances détaillée via des simulations basées sur
PeerSim. Nous comparons Flower-CDN à un autre P2P CDN DHT-Directory. Ci-dessous,
nous résumons nos observations les plus significatives.

Premièrement, l’utilisation de gossip engendre des surfrais assez acceptables en termes
de bande passante : un algorithme de gossip opère au sein d’une pétale, et donc
implique des communications entre des pairs qui sont physiquement proches. En outre,
les paramètres de gossip (comme la périodicité) peuvent être ajustés afin d’adapter les
surfrais en fonction des ressource disponibles et des exigences en termes de hit ratio. La
figure A.5a montre l’évolution du taux de hit en même temps que le trafic de gossip. Le
taux de hit ne cesse d’augmenter avec le temps puisque le contenu demandé est répliqué
au fur et à mesure que les requêtes sont générées et satisfaites. En contrepartie, le trafic
de gossip se stabilise à 74 bps après 5 heures.

Deuxièmement, l’infrastructure de routage de Flower-CDN s’avère très efficace en
termes de recherches rapides et pertinentes. Elle repose sur l’architecture hybride qui
combine entre overlays structuré et basé sur gossip avec des considérations de localités
physiques. D’une part, grâce à la DHT, D-ring permet un lookup efficace et fiable qui
garantit que les nouveaux clients trouvent toujours leurs pétale en même temps que leur
première requête. Cependant, la taille de D-ring est limitée à un nombre restreint de
directory peers, minimisant ainsi le nombre de hops d’une requête. Ceci diminue la charge
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(a) Taux de hit et surcharge de bande passante. (b) Latence de lookup.

Figure A.5: Évaluation des performances de Flower-CDN.

de routage sur les pairs de la DHT ainsi que le temps de réponse de la requête. D’autre
part, une grande partie des requêtes est routée et résolue au sein des pétales qui sont à
base de localités. Ceci implique des recherches plus rapides que dans le cas d’une DHT.
En effet, la figure A.5a montre que 87% des requêtes de Flower-CDN sont satisfaites en
moins de 150 ms alors que 61% des requêtes de DHT-Directory mettent plus que 1050 ms.

Ces résultats démontrent que l’architecture hybride de Flower-CDN peut pleinement
satisfaire les exigences de CDN en termes de performances tout en respectant le caractère
autonome des pairs.

A.4 Robustesse et passage à l’échelle de
Flower-CDN

Une préoccupation majeure d’un P2P CDN est de gérer la participation dynamique et à
large échelle des pairs. Flower-CDN doit être robuste aux pannes et aux effets de churn :
ces événements fréquents ne doivent pas perturber son architecture et son fonctionnement.
En outre, Flower-CDN doit être en mesure de soutenir de grands nombres de participants
sans détérioration de performances ni goulets d’étranglement.

Dans cette section, nous présentons PetalUp-CDN pour assurer le passage à l’échelle de
Flower-CDN. Pour garantir la robustesse, nous proposons des protocoles de maintenance
qui gèrent les connexions et déconnexions des pairs via les protocoles de gossip.

A.4.1 PetalUp-CDN
PetalUp-CDN est une version scalable de Flower-CDN qui s’adapte dynamiquement à
des taux de participation de pairs variables. PetalUp-CDN est conçu d’une manière
qui permet à plusieurs directory peers de partager la gestion d’une même pétale. Pour
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maintenir les aspects de localité et d’intérêt de l’architecture ainsi que ses performances,
PetalUp-CDN vise à accomplir certains objectifs :

• adapter l’architecture de D-ring, afin de soutenir plusieurs directory peers par pétale.

• implémenter l’évolution de D-ring de façon dynamique qui n’affecte pas les
performances du service d’annuaire P2P.

• adapter la gestion d’une pétale aux changements afin de préserver l’efficacité de la
recherche de contenu dans un pétale.

La structure actuelle de D-ring ne permet qu’un seul directory peer par couple (ws, loc).
Puisque le problème réside dans le service de gestion de clés de D-ring, PetalUp-CDN
adapte ce service afin que D-ring passe à l’échelle. Plusieurs directory peers par couple
(ws, loc) vont intégrer D-ring consécutivement. Le nombre de directory peers en charge
de petal(ws, loc) augmente progressivement avec le le nombre de clients pour ws dans loc.

Figure A.6: Exemple de petal(β, 1) dans PetalUp-CDN.

En ayant différents directory peers en charge d’une pétale, la défaillance d’un ou
plusieurs de ces pairs ne causera pas une perte complète des informations d’indexation,
et permettra au système de continuer à fonctionner normalement. Par ailleurs, ces pairs
ne maintiennent pas des informations redondantes puisque chacun est responsable des
informations d’une partie de la pétale. Un exemple de PetalUp-CDN est illustré dans la
figure A.6 qui met en relief petal(β, 1). Deux directory peers d0

β,1 and d1
β,1 se partagent la

gestion de petal(β, 1). Ainsi ils gèrent chacun un sous-ensemble de content peers cβ,1.
Les directory peers de petal(ws, loc) sont créés séquentiellement à partir de d0

ws,loc. Un
nouveau directory peer est créé pour petal(ws, loc) dès que le nombre de content peers
cws,loc n’est plus gérable par les directory peers diws,loc existants. Ceci est détecté par
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ces directory peers au fur et à mesure qu’ils traitent de nouvelles requêtes et évaluent le
nombre de leurs content peers par rapport à une limite prédéfinie.

La requête d’un nouveau client qui vise petal(ws, loc) parcourt les directory peers
existants diws,loc à la recherche d’un directory peer non chargé. S’il n’existe pas encore, le
dernier créé diws,loc initie l’arrivée d’un nouveau directory peer di+1

ws,loc.
La taille d’une pétale évolue de façon dynamique : elle diminue lorsque les content

peers existants se déconnectent et augmente lorsque de nouveaux clients se connectent.
Par conséquent, un directory peer surchargé peut se retrouver avec moins de content
peers et se met donc à accepter de nouveaux clients. En outre, un site ws peut perdre sa
popularité avec le temps, les content peers désertant en permanence ses pétales. Dans ce
cas, les directory peers redondants sont éliminés progressivement pour éventuellement se
retrouver avec un seul directory peer pour gérer la pétale de taille réduite.

A.4.2 Protocoles de maintenance
Nos protocoles de maintenance font face au comportement dynamique des pairs afin
d’éviter toute dégradation de performances ou faille dans le fonctionnement de Flower-
CDN.

Les mécanismes de Flower-CDN dépendent largement du lien entre D-ring et les
pétales. Toutefois, le départ d’un directory peer peut déconnecter sa pétale de D-ring.
Pour maintenir le lien, nous nous appuyons sur deux éléments : les messages push et
keepalive d’une part, et l’échange de dir− info d’une autre part. Les content peers d’une
pétale peuvent détecter la vivacité de leur directory peer au moyen des messages push et
vice versa. Toutefois, ceci n’est pas suffisant parce que certains content peers n’ont pas
des changements fréquents dans leurs contenus et donc communiquent rarement avec leurs
directory peers au moyen des messages push. Pour cela nous exploitons une caractéristique
inhérente aux systèmes P2P, les messages keepalive qui sont échangés périodiquement pour
vérifier les liens entre les pairs. Ainsi, dws,loc supprime de son directory-index les entrées
qui ont déjà expiré.

Les effets de churn affectent aussi l’architecture et le fonctionnement de D-ring en
l’absence des protocoles de maintenance appropriés. Si un directory peer se déconnecte,
ses requêtes seront redirigées vers de faux directory peers et les clients ne seront pas en
mesure de rejoindre leurs pétales cibles. En se basant sur gossip, nos protocoles détectent
rapidement les directory peers déconnectés et les remplacent efficacement par des content
peers de la même pétale. En outre, pour soutenir la construction progressive, D-ring
permet aux pairs d’intégrer dynamiquement D-ring sans perturber l’architecture.

A.4.3 Évaluation de performances
Pour valider nos contributions, nous avons implémenté nos protocoles et simulé un
environnement P2P avec un taux de churn très élevé. Nos protocoles de maintenance
peuvent garantir un taux de hit très élevé et des temps de réponse réduits. En résumé,
le taux de hit est amélioré de 40% (Figure A.7a) et les temps de réponses sont réduits
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d’un facteur de 12. De plus, le mécanisme de détection par gossip est assez efficace et
ne génère pas des surcoûts significatifs. En outre, le mécanisme de reprise atténue la
perte d’informations et permet une transition en douceur. Donc, Flower-CDN et PetalUp
peuvent être extrêmement robustes malgré des taux de churn élevés.

(a) Taux de hit entre Flower-CDN et DHT-
Directory.

(b) Évolution du taux de hit.

Figure A.7: Évaluation des performances dans un environnement dynamique.

En ce qui concerne le passage à l’échelle, Flower-CDN montre de très bons gains
malgré la taille modeste des pétales (maximum 60 pairs). Nous croyons que des pétales
plus larges peuvent contribuer à accroître les gains. Pour les échelles supérieures, PetalUp-
CDN démontre sa capacité à éviter les situations de surcharge sans entraîner une baisse
de performances. Son approche qui tend à partager la gestion d’une pétale n’affecte pas
le taux de hit (Figure A.7b) ni les temps de réponse (Figure A.8) lors de la manipulation
des requêtes. Les résultats sont très prometteurs, prouvant que notre P2P CDN peut
passer à l’échelle.

En examinant l’évolution du taux de hit (Figure A.7b), nous observons que les quatre
approches parviennent à des résultats similaires. Ceci démontre que le “partitionnement”
d’une pétale n’affecte pas les performances de notre P2P CDN dans le traitement des
requêtes. Que l’ensemble des content peers soit géré par un seul directory peer ou réparti
sur plusieurs directory peers, le système réussit aussi bien à localiser le contenu demandé
et satisfaire les requêtes.

A.5 Déploiment de Flower-CDN
Le déploiment de Flower-CDN est assuré par les clients qui sont intéressés à un site
particulier et qui sont disposés à participer afin de profiter d’un meilleur accès au contenu
de leur intérêt. Un site web ws est soutenu par Flower-CDN tant qu’il y a un nombre
suffisant de clients pour le compte de ws. Plus précisément, plus un site ws est populaire,
plus les participants sont attirés par Flower-CDN pour peupler les pétales de ws et occuper
ses positions de directory peers. Pour un site non populaire, ses pétales ont tendance à
être vides et ses positions de directory peers non occupées.
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Figure A.8: Latence de lookup de PetalUp-CDN.

Un utilisateur accède au web via son navigateur web qui prend en charge ses demandes
HTTP et permet en conséquence la recherche et la visualisation du contenu web. Afin
d’utiliser et de contribuer à Flower-CDN d’une manière transparente, l’utilisateur doit
incorporer la fonctionnalité de Flower-CDN dans son navigateur.

Nous proposons une extension de navigateur pour Flower-CDN qui permet la
distribution de contenu en P2P en toute transparence et flexiblilité. En outre, la
configuration de cette extension permet aux utilisateurs de gérer dynamiquement leurs
intérêts et leurs préférences en matière de confidentialité, en précisant le contenu qu’ils
veulent partager. Enfin, nous adoptons un modèle de sécurité simple qui garantit
l’intégrité du contenu, même face à des pairs non fiables.

Dans cette section, nous décrivons l’extension proposée pour intégrer la fonctionalité
de Flower-CDN à un navigateur web. Puis, nous discutons brièvement de la configuration
de l’extension et concluons avec les questions de sécurité.

A.5.1 Extension pour le navigateur
La figure A.9a montre que Flower-CDN opère dans un navigateur via trois composants
principaux : un whitelist config manager, un HTTP request manager et un Flower-CDN
proxy. Le whitelist config manager maintient une liste configurée par l’utilisateur, la
whitelist de Flower-CDN, qui spécifie un ensemble de domaines se référant à des sites web
pour lesquels l’utilisateur participe à Flower-CDN. Le processus de navigation sur le web
est déclenché lorsque l’utilisateur saisit une URL dans le navigateur et lance une requête
HTTP. Cette requête est d’abord traitée par le HTTP request manager qui la transmet
au Flower-CDN proxy si l’URL correspond à la whitelist. Sinon, la requête HTTP suit le
processus de traitement standard du navigateur. À la réception de la requête, le Flower-
CDN proxy essaie d’abord de la résoudre localement avant d’avoir recours au réseau
Flower-CDN. L’utilisateur est connecté à ce réseau en tant que content peer ou directory
peer, via son proxy local qui communique avec d’autres Flower-CDN proxies hébergés par
des utilisateurs distants. Ainsi, un Flower-CDN proxy gère les demandes en provenance
des utilisateurs distants, en plus des demandes de l’utilisateur local.
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(a) Intégration dans un navigateur Web. (b) Un utilisateur en deux content peers.

Figure A.9: L’extension Flower-CDN pour un navigateur web.

A.5.2 Configuration

Le contenu que l’utilisateur partage en Flower-CDN est stocké dans une section délimitée
du cache du navigateur. Cela garantit la confidentialité de l’utilisateur, car il permet
d’isoler le contenu privé de l’utilisateur du contenu web qu’il veut partager. Limitée
par l’espace disque disponible pour le cache du navigateur, la quantité d’espace disque
alloué à Flower-CDN croît dynamiquement avec la quantité de contenu mis en cache. Les
politiques d’expiration adoptées par le cache du navigateur sont également utilisées pour
gérer le contenu de Flower-CDN. En outre, toutes les informations de vue et de directory-
index d’un pair sont stockées dans cette section de Flower-CDN et gérées en fonction des
échanges gossip et keepalive.

Un utilisateur peut s’intéresser à n sites différents pour lequels il veut utiliser Flower-
CDN. Or, dans Flower-CDN, les pairs qui sont liés à des sites différents sont impliqués
dans des pétales différentes et donc leurs comportements sont aucunement corrélés. Par
conséquent, l’utilisateur peut participer à Flower-CDN en tant n pairs différents. Il
précise, par l’intermédiaire du whitelist config manager, le nom des n sites de son intérêt
et la section de cache réservée à Flower-CDN est partitionnée en n sous-sections de taille
dynamique.

La figure A.9b montre comment l’utilisatrice Suzan est représentée dans le réseau
Flower-CDN. Suzan est dans la localité 2 et intéressée par deux sites α and β. Donc,
elle est représentée par deux content peers cα,2 et cβ,2. Le Flower-CDN proxy qui opère
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au sein du navigateur de Susan, gère deux sous-sections de cache différéntes, une pour
chaque content peer.

A.5.3 Sécurité
Dans un environnement P2P ouvert, des pairs peuvent être malveillants et tenter de
corrompre le contenu partagé. Ce problème peut être facilement résolu si les serveurs
web fournissent des certificats signés numériquement avec leur contenu. Le Flower-CDN
proxy local de l’utilisateur peut, à l’aide de la clé publique du site web, vérifier la signature
numérique d’un objet lié à ce site et en provenance d’un certain content peer distant. Cette
solution n’est nullement affectée par la dynamicité des pairs et s’accommode très bien avec
un environnement non fiable.

A.6 Conclusion
Dans cette section, nous résumons nos principales contributions. Ensuite, nous donnons
un aperçu de la façon dont nous envisageons poursuivre ce travail de thèse.

A.6.1 Contributions principales
Cette thèse a abordé la distribution de contenu dans les systèmes P2P. Le travail aété
réalisé en quatreétapes.

D’abord, nous avons entrepris une étude globale et approfondie des systèmes P2P
et de la distribution de contenu, afin de motiver nos prochaines contributions et de
souligner les lacunes que nous devons aborder. Les principales observations que nous
avons faites peuvent être résumés comme suit. Premièrement, les CDNs ont des exigences
très strictes en matière de performances, passage à l’échelle et fiabilité. Pour garantir
de hautes performance à large échelle, il faut inévitablement plus d’investissement en
matière de serveurs dédiés et donc coûteux. La seconde observation est que les systèmes
P2P introduisent des exigences fondamentales telles que l’autonomie, l’expressivité,
l’efficacité, la qualité de service et la robustesse. De plus, nous observons l’émergence de
nouvelles tendances qui visent à raffiner le réseau P2P pour davantage de performance
et d’efficacité. Parmi ces tendances, nous nous sommes intéressés aux shémas basés
sur la proximité physique ou sémantique, à l’emploi des protocoles de gossip et la
combinaison de réseaux P2P. Les défis sont de garder les solutions simples, d’éviter une
gestion centralisée ou coûteuse, d’opérer rapidement et de s’adapter aux changements
dynamiques. Notre troisième observation se rapporte au partage de fichiers P2P.
Néanmoins, ces systèmes devraient obligatoirement limiter la charge réseau. La priorité
est d’exploiter les localités physiques pour un transfet de fichier optimisé. Toutefois,
la majorité des travaux existant négligent cette priorité. Notre dernière observation
concerne les P2P CDNs. Ils doivent respecter les exigences P2P et CDN mais en réalité
sacrifient l’une pour l’autre. Surtout, ils n’abordent pas le passage à l’échelle.
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La deuxième contribution s’est focalisée sur le partage de fichiers en P2P, en vue d’une
infrastructure basique pour la distribution de contenu [DPV07,DP09]. L’infrastructure
repose sur un réseau overlay non structuré puisque ce type d’overlay est largement
déployé dans le cadre de partage de fichiers en raison de sa flexibilité. Nous avons abordé
le problème de consommation de bande passante sous deux angles : l’inefficacité de la
recherche et les transferts de fichiers longue distance. Notre solution, Locaware, tire
profit des propriétés intrinsèques du partage de fichiers P2P: la réplication naturelle des
fichiers, les localités temporelle et physique des requêtes. Locaware consiste à mettre
en cache des index de fichiers avec des informations sur leurs localités. Elle fournit
également un support efficace pour les requêtes par mots clés qui sont courantes dans ce
genre d’applications.

La troisième contribution a visé une infrastructure élaborée qui puisse remplacer
les CDNs commerciaux de par ses garanties en termes de performance et d’efficacité.
Flower-CDN permet à tout site populaire et sous-provisionné de distribuer son
contenu, par l’intermédiaire de sa communauté d’utilisateurs. Pour un routage efficace,
l’infrastructure Flower-CDN combine intelligemment différents types d’overlays avec des
protocoles épidémiques tout en exploitant les intérêts et les localités des pairs. Elle
fournit un accès fiable aux nouveaux participants par l’intermediaire de D-ring et leur
permet de s’organiser en pétales en fonction de leur localités et leurs intérêts. Les pétales
assurent des recherches rapides qui permettent au demandeur de localiser le contenu
disponible à proximité pour un transfert efficace.

La quatrième contribution avait pour objectif d’assurer le passage à l’échelle de
Flower-CDN. Pour cela, nous avons proposé PetalUp-CDN qui permet à Flower-CDN
de supporter des taux de participation considérables, et même variables. Pour éviter les
situations de surcharge, D-ring évolue de manière dynamique par rapport aux besoins
des pétales, tout en préservant l’aspect orienté localité et intérêt de l’architecture et en
maintenant les performances. Nous nous sommes également intéressés à la fiabilité de
Flower-CDN et avons conçu des protocoles de maintenance qui gèrent la dynamicité des
pairs et offrent un P2P CDN robuste.

Finalement, nous avons adressé le déploiement de Flower-CDN pour permettre à tout
client de participer au nom des web sites qui l’intéressent. Pour une participation flexible
et transparente, nous avons choisi d’implémenter la fonctionalité de Flower-CDN via une
extension qui peut être intégrée au navigateur web du client.

A.6.2 Travaux futurs
Nos travaux futurs visent à enrichir Flower-CDN avec des fonctionnalités plus avancées.
Nous présentons ci-suit une liste non exhaustive des travaux que nous envisageons de
réaliser.

1. Expérimentation avec traces réelles : Nous sommes entrain de raffiner nos
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expérimentations par l’injection de traces web réelles. Ainsi les simulations décriront
le comportement de l’utilisateur et ses variantes d’une manière plus fiable et réaliste.

2. Exension Flower-CDN pour les navigateurs : Un autre travail en cours est
de finaliser la mise en oeuvre de l’extension Flower-CDN pour un navigateur. Nous
espérons permettre aux utilisateurs intéressés de télécharger l’extension et d’utiliser
Flower-CDN.

3. Intérêts et recherche sémantiques : Nous avons l’intention de permettre aux
utilisateurs d’exprimer leurs intérêts d’une manière plus complexe. Un intérêt
refléterait les préférences sémantiques par le biais d’ontologies, de combinaison
de thèmes, etc. En conséquence, les participants seraient en mesure d’effectuer
des recherches sémantiques où les requêtes pourraient être exprimées avec des
mots clés ou autres informations sémantiques plutôt que des stricts URL. Ceci
permetterait aux utilisateurs de naviguer le contenu disponible et découvrir les
objets qui pourraient les intéresser.

4. Les sites sociaux de contenu : Le Web 2.0 a favorisé l’intégration de contenu avec
les informations d’ordre social des utilisateurs, ce qui a donné lieu aux sites sociaux
de contenu. Des sites qui étaient initialement orientés vers le contenu (par exemple,
Youtube, Yahoo Voyage) ou vers les réseaux sociaux (par exemple, Facebook,
MySpace) évoluent rapidement vers une telle intégration. Toutefois, ces sites
reposent sur des architectures centralisées ou dédiées, et donc peuvent souffrir de
problèmes de disponibilité, de confidentialité, et de passage à l’échelle. Pour pallier
ces problèmes, nous envisageons le déploiement de ces sites sur l’infrastructure
décentralisée de Flower-CDN. Évidemment, une telle perspective requiert une étude
approfondie des changements que devrait subir Flower-CDN, comme la notion
d’intérêt, les techniques de recherche, etc.

5. Extension du routage IP : Enfin, nous envisageons approfondir notre étude
sur les localités physiques et raffiner le routage dans Flower-CDN. Le protocole
de routage IP s’est avéré extrêmement scalable, soutenant des millions de noeuds
et gérant leur volatilité. Ainsi, une direction de recherche prometteuse consisteà
étendre le routage IP avec la sémantique des données, en vue d’un meilleur
soutien EUR comme des requêtesà Flower-CDN. Les extensions devraient envisager
distribués données techniques de gestion.


