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10 1.1 Formules analytiques en finance

Cette these développe une nouvelle méthodologie permettant d’établir des approximations analytiques
pour les prix des options européennes. Notre approche combine astucieusement des expansions stochas-
tiques et le calcul de Malliavin afin d’obtenir des formules explicites et des évaluations d’erreur précises.
L’intérét de ces formules réside dans leur temps de calcul qui est aussi rapide que celui de la formule de
Black et Scholes. Notre motivation vient du besoin croissant de calculs et de procédures de calibration
en temps réel, tout en contrélant les erreurs numériques reliées aux parametres du modele. Il existe dans
la littérature plusieurs maniéres d’établir des formules fermées soit par un calcul direct du probleme
d’évaluation d’option soit en utilisant des approximations. Pour des modeles ayant une densité explicite
du sous-jacent comme le modele de Black et Scholes, le modele CEV ou tout autre modele dont la fonc-
tion caractéristique de la distribution du sous-jacent est explicite (comme le modele de Heston ou les
modeles affines), on peut facilement trouver des formules analytiques (parfois aussi appelées formules
fermées par anglicisme). Ceci est a ’origine de résultats bien connus pour les calls et les puts. En re-
vanche, dans le cas de modeles n’ayant pas de densité explicite, on doit se tourner vers des méthodes
numériques (techniques d’EDP, simulations de Monte Carlo, ... ). Par contre, pour obtenir des formules
explicites, on doit établir des approximations analytiques en utilisant des méthodes de perturbation ou
I’analyse asymptotique. Les méthodes de perturbation sont tres générales. Pour les appliquer, on utilise
habituellement un modele simplifié (dit modele proxy), pour lequel les calculs sont plus simples et le
plus souvent explicites. Dans la section nous énumérons les modeles pour lesquels les prix des
call-put sont explicites: ces modeles peuvent étre utilisés par la suite comme des modeles proxy. Dans la
section[I.2] nous présentons des approximations analytiques pour des équations différentielles ordinaires
et stochastiques générales et leur domaine de validité. Le domaine de la validité spécifie les restrictions
de la méthode d’approximation. Dans la section [I.3] nous exposons bri¢vement les approximations ana-
lytiques utilisées en finance. La vue d’ensemble des méthodes précédentes nous donne une idée claire de
leurs limitations qui sont le point de départ de notre travail. Plus spécifiquement, si nous déployons une
perturbation basée sur les propriétés ergodiques, I’approximation est seulement valide pour les longues
maturités; si nous déployons une perturbation basée sur les propriétés géodésiques, I’approximation
est limitée aux maturités courtes ; de la méme maniere, si nous déployons une perturbation utilisant
I’opérateur d’EDP, I’approximation peut étre explicitée seulement pour des coefficients homogenes du
temps. Ces restrictions nous incitent a penser a une nouvelle méthodologie qui peut étre appliquée dans
un cadre plus large :maturité courte ou longue, parametres non homogenes en temps, . ... Cette nouvelle
méthodologie présentée dans la section[I.4]constitue le sujet de ce travail de these. On présente aussi une
comparaison détaillée de notre approche avec celle de Watanabe dans[I.5] La structure et les principaux
résultats sont énoncés dans la section

1.1 Formules analytiques en finance

Le modéele de Black et Scholes. Le modele de Black et Scholes (voir [22]) suppose que le sous-jacent
suit une loi lognormale avec une volatilité constante. Autrement dit, le sous-jacent (S;) suit la diffusion
suivante:

— = (r—q)dt+ cdW,,

S

ou W est un mouvement brownien, ¢ est une volatilité constante du sous-jacent, r (resp. ¢) est un taux
risque-neutre déterministe (resp. une taux de dividende continu déterministe). Cette dynamique est écrite
sous la mesure risque-neutre utilisée pour 1’évaluation d’options.
Le prix des options call et put dans ce modele a une formule fermée due au calcul explicite de la fonction
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de répartition de la loi normale. Le prix du call avec comme temps initial #, maturité 7', cours S, et prix
d’exercice K a une expression bien connue:

Callps(t,8;K,T) = Se~ 1T 4 (dy (T —1,5e"~ DT~ K)) —Ke " T~ (do(T — 1,80 T =) _K)).
ol do(t,x,y) = c%ﬁ log(}) — %ﬁ, dy(t,x,y) = %ﬁ log($) + %ﬂ et .4 est la fonction de répartition de la
loi normale. Une expression similaire est obtenue lorsque les parameétres r, g and o deviennent dépen-
dants du temps (car le cours S reste une variable lognormle).

Remarque 1.1.1. Quand o dépend seulement du sous-jacent, il n’existe seulement que quelques for-
mules fermées (voir []). De plus, si la volatilité ¢ est une fonction séparable du sous-jacent et du
temps, on peut établir une formule approchée pour le prix des options vanilles (call, put) en utilisant des
techniques de perturbation singuliére comme expliqué par Hagan et al dans [62)]. Mais, dans le cas de
formes générales de fonctions de volatilités dépendants a la fois du temps et du sous-jacent, il n’y a plus
de formule analytique pour les options call. Ces formes générales de volatilité sont incluses dans les
modeles a volatilités locales ou modeles a la Dupire (voir [40]).

Le modele de Merton. Le modele de Merton (voir [85]]) peut étre vu comme une extension du modele
de Black et Scholes en ajoutant des sauts de Poisson indépendants avec une amplitude de saut normale-
ment distribuée:

ds;

72
Sh=(r—q=201 — V) dt + 6dW, + (¢ — 1)dN,
t

* le processus de Poisson composé (J;) et le mouvement brownien (W;) sont indépendant,
o J = Z?/:’ Y; ou ¥; sont i.i.d. variables normales avec moyenne 1); et volatilit€ y;,

* N, est un processus de poisson avec intensité A.

En conditionnant par le nombre de saut Ny, on peut exprimer le prix du call dans le modele de Merton
comme une somme infinie de prix de type Black et Scholes:

> (A(T —1))! P 2
Callyerron(t,S:K,T) = Y ((i'))e_(“’)TBSCall <FTel<m+%>,1<, T—t,4/02+ T’”f) ,
i=0 : -

Fr = Se(r_q"‘)*(l—exp(m-i-}{,z/Z)))(T—t)’

et BSCall(S,K,T,v) est le prix Black-Scholes pour un call ayant le sous-jacent S; avec la condition
initiale So = S, la volatilité v, exercé a la maturité T et au strike K, ou le taux risque-neutre et le taux de
dividende sont nuls.

Remarque 1.1.2. Le prix du call dans le modele de Merton a encore une formule fermée quand les
parametres r, q and & deviennent dépendants du temps. En outre, quand la volatilité ¢ devient une
fonction a la fois du sous-jacent et du temps, on retrouve exactement la définition du modele d’Andersen
et Andreasen ([8|]). Dans un tel modéle, il y a des méthodes numériques efficaces comme la méthode
Forward PIDE utilisée pour le calcul des prix des calls (voir [8|] et [33|])). Mais, il n’y a plus de formule
analytique des prix de call dans le modele d’Andersen et Andreasen.
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Le modele CEV. Dans le cas du modele "Constant Elasticity of Variance" (connu comme le modele
CEV), les options call (put) ont des formules fermées. Dans ce cas, le sous-jacent (S;) suit la dynamique
suivante:

ds -

S—f = (r—q)dt+vSP~'aw,, S, > 0.

t

Le modele CEV a été étudié au début par Cox dans [34] pour le cas B < 1. Le cas B > 1 a été traité
apres par Emanuel et MacBeth dans [42]. Le prix du call dans ce modele peut étre calculé a I’aide de la
fonction complémentaire non centrée khi-carré Q:

Callcry (1,8:K,T) = e~ Q(2x,n,2y) — e "= Q(2y,n —2,2x) (1)
ol
1
n=2+ - ﬁ ,
(r—q)S*Z(ﬁfl)
X = v2([3 — ])(eZ(rquﬁ*l)(Tf;) — 1)7
(r—q)K—z(ﬁ—l)

' Vv2(B—1)(1 —e 2r—a)(B-1)(T-1))"

Le calcul de la distribution non centrée Chi-carré Q peut étre réalisé soit en utilisant un algorithme
récursif (voir 1’algorithme de Schroder dans [104]) soit en utilisant une intégration de fonctions de type
Bessel.

Remarque 1.1.3. Quand les paramétres r, g and v sont dépendants du temps, le prix du call a encore
une formule fermée en utilisant des techniques d’algébre de Lie (voir [66]). Mais, quand 3 devient
dépendent du temps, il n’y a plus de formule analytique a notre connaissance.

Le modéle de Heston. Le modele de Heston est une extension du modele de Black et Scholes pour le
sous-jacent (S;) mais avec une volatilité stochastique:

AX; = \/idW, — dt, Xo =xo, (1.2)
dv, = k(6 — v, )dt + &/ dBy, vo >0, (1.3)
d(W,B>t == [)dt7

ou

* X; est le logarithme du forward eld=")tS,. r and ¢ sont respectivement le taux risque neutre et le
taux de dividendes.

¢ v, est la valeur initiale de la volatilité,
* K est le parametre de retour a la moyenne,
* 0 est le niveau long-terme,

* & estla volatilité de la volatilité,
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* p est la corrélation.

Le calcul du prix du call-put dans le modele de Heston peut étre réalisé a 1’aide de I’inversion de Fourier;
ceci est du au fait que la fonction caractéristique du logarithme du sous-jacent est explicite dans ce cadre
(les parametres du modeles ne dépendent pas du temps). Le prix du call dans le modele de Heston peut
étre obtenu grace a la formule de Lewis F_-I (['79D):

Callyeston (I,S;,Vt;T, K) = Ste_q(T_t) - o

Kef(Tft)r %+w ) dz
1 2

N S —(T—t)q Xr—X,
ou X = log <%> et ¢r(z) = E(e?X1=X) | .7,).
La fonction caractéristique @7 (z) = E(e?X7~X)|.%,) est explicite quand les paramétres sont constants.
Quand les parameétres 6, & et p deviennent constants par morceaux, la fonction caractéristique ¢r(z) =

E(eZ(XT —X1) |-Z:) peut étre calculée récursivement en utilisant les méthodes d’EDP (voir [86]) ou un argu-
ment de Markov pour les modeles affines (voir [41]).

Remarque 1.1.4. Il n’existe plus de formule fermée quand on a une dépendance en temps générale des
parametres du modele de Heston. Le temps de calcul de la formule d’inversion de Fourier est loin d’étre
aussi rapide que celui de la formule de Black et Scholes ou Merton. En effet, 'inversion de Fourier
est tres coilteuse en temps et souffre d’instabilité pour des strikes grands et des maturités longues (voir

[68]).

1.2 Introduction générale sur les approximations analytiques

On a vu précédemment qu’on peut obtenir des formules fermées de 1’ option call ou put lorsque la densité
du sous-jacent est explicite ou sa fonction caractéristique est explicite. En dehors de ces deux cas,
il n’existe pas de formule fermée pour les options vanilles. Donc, on pourrait utiliser des méthodes
de perturbation. L’objectif de cette section est de donner une introduction courte et générale sur ces
méthodes de perturbation.

1.2.1 Les équations différentielles ordinaires

Dans cette sous-section, on introduit brievement les dites "méthodes de perturbations” utilisées dans la
littérature spécialement pour le probleme de perturbations singulieres.

Le développement asymptotique par recollement. Le principe de cette méthode consiste a diviser
le domaine de la solution en une séquence de deux ou trois sous-intervalles. On distingue souvent deux
types de solutions: la solution intérieure et la solution extérieure. Ces solutions sont nommés en raison
de leurs relations a la couche limite; la couche limite est située souvent dans les bords du probléme et
est la source de termes de correction non négligeables de la perturbation. Dans chaque intervalle, la
théorie de perturbation est appliquée afin d’obtenir une solution asymptotique valide dans cet intervalle.
Le recollement est demandé afin de combiner les solutions intérieures et extérieures de telle facon que
I’approximation a la méme forme fonctionnelle dans chacun de ces intervalles. Finalement, on obtient

10n verra les détails de I’autre formule de Heston ([63]) dans la partie [[II{sous-section
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une solution approchée valide pour le domaine entier. Considérons 1’exemple suivant extrait du chapitre
2 de [64]

gy(Z) (x) —|—2y(1)(x) +2y(x) =0, pour 0<x<lI,

ot y(0) =0, y(1) =1et0< e << 1. Ce type de probleme n’est pas évident. Si on prend € =0, on
retrouve le probléme suivant:

29 (x)+2y(x) =0, for 0<x<1.

La solution de cette équation a la forme y(x) = Ae* et les limites au bord 20 et 1 donnentA =0etA =e¢'.
Comme cette équation n’admet pas de solution, le probleme est un probléme de perturbation singuliere.
On peut appliquer la technique de perturbation comme suit: on trouve d’abord la solution intérieure et
extérieure du probléme, aprés on suppose que 0 est une couche limite EI et ensuite on combine les deux
solutions afin d’obtenir une solution adéquate pour le domaine entier (pour plus de détails, voir [64]).

La méthode a plusieurs échelles. Cette méthode commence de la solution générale et differe de la
méthode de développement asymptotique par recollement. En effet, elle introduit des coordonnées pour
chaque région; ces coordonnées sont mutuellement indépendantes. Donc, cette méthode rajoute de nou-
velles variables a I’équation différentielle ordinaire et la transforme en une équation différentielle par-
tielle. En physique, la méthode a échelles est utilisée souvent pour le temps tandis que la méthode de
recollement s’applique aux variables d’espace. Cette méthode a plusieurs échelles intervient quand les
termes de correction ne sont pas négligeables et peuvent étres non bornés. Donc, en utilisant ces nou-
velles variables, on permet a I’amplitude de varier lentement et on évite que les termes correctifs soient
non bornés (pour plus de détails, voir Chapitre 6 dans [87]]).

La méthode de WKB. Dans la méthode de recollement, on divise le domaine de la solution en sous-
intervalles afin de rendre explicite la dépendance de la solution en la couche limite. Pour la méthode
a plusieurs échelles, on utilisait la dépendance en une nouvelle échelle afin de résoudre une nouvelle
équation aux dérivées partielles. La méthode de WKB est un cas spécial de méthode a plusieurs échelles
et suppose une dépendance exponentielle de la solution. Cette méthode est utilisée pour résoudre des
équations ordinaires linéaires ou la dérivée du plus grand ordre est multipliée par un parametre petit €.
WKB est un acronyme pour la méthode d’approximation de Wentzel-Kramers-Brillouin. Les physiciens
Wentzel, Kramers et Brillouin ont développé cette théorie dans les années 1920. Apres, cette méthode a
été utilisée par Jeffreys afin de trouver une approximation adéquate pour I’équation de Schrodinger. A
partir d’une équation différentielle du type:

ey () + an-1y" () + -+ a1y (x) + aoy(x) = 0,
on suppose une série asymptotique de la solution de la forme:

y(x) — eﬁ Zn “nzn(x)

pour u proche de 0. En utilisant cette forme dans 1’équation différentielle, on obtient un nombre arbitraire
d’équations qui nous permettent de calculer d’une maniere récursive les solutions z,, (pour plus de détails
sur cette méthode, voir chapitre 10 dans [16]).

2Cet a priori hypothese est la seul fagon de trouver la vraie location de la couche limite (voir [T11])
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La méthode d’homogénéisation. Scientifiques et ingénieurs rencontrent des matériaux qui impliquent
des constituants hétérogenes (par exemple, on cite les plaques laminées et les fluides avec bulles). Bien
que hétérogene, pour les étudier on ne considere pas les propriétés de chaque sous-composant a part, mais
on suppose que le matériel est continfiment distribué et on moyenne les informations caractéristiques.
Cette méthode peut étre vue comme une extension de la méthode a plusieurs échelles pour deux espaces
(pour plus de détails, voir [15] et [64]

Autres approximations. On cite parmi ces approximations:

» L’expansion a plusieurs échelles pour les équations aux dérivées partielles: Ce type de prob-
lemes implique spécialement les équations aux dérivées partielles ayant pour variables, le temps
et I’espace (pour plus de détails, voir chapitre 6 in [30]).

* Variation de parametres et les méthodes de moyennisation: Cette méthode traite des coefficients
dépendants du temps pour des équations différentielles ordinaires ou partielles. Cette approxi-
mation suppose que les parametres bougent lentement dans le temps. Donc, on peut trouver des
parametres équivalents qui approchent la solution (voir chapitre 5 in [87]).

* Coordonnées tendues. Cette technique traite la non uniformité dans les développements asymp-
totiques. En effet, elle introduit des transformations proches de I’identité dans les variables de
I’équation différentielle afin d’obtenir des solutions approchées et uniformes (pour plus de détails,
voir chapitre 3 dans [87]]).

1.2.2 Les équations différentielles stochastiques

Perturbation a petit bruit (trajectoire). Freidlin et Wentzell ([47]) ont considéré le systéme dy-
namique aléatoire:

th = b(Xt£7 8&),

ol € est un parametre petit, b est une fonction continue, & est un processus aléatoire continu et la solution
XF part de la condition initiale xo. Les auteurs démontrent qu’on peut développer la solution (Xf) t€[0,7]
uniformément sur [0, 7] en puissance de &:

X+ eV 4 e+ o(e"),

ol x; est la solution du systtme dynamique non perturbé et la fonction b(x,y) a n+ 1 dérivées bornées
par rapport a x et y. (Pour plus de détails, voir chapitre 2 dans [47]). On cite également des résultats
analogues pour le flot des équations différentielles stochastiques (Kunita dans [[72]] pour les diffusions,
Fujiwara et Kunita dans [48]] pour les diffusions avec sauts).

Perturbation a parametre petit (distribution). Watanabe dans [112]] montre que pour toute fonction
bornée f et pour toute variable aléatoire F¢ réguliere en € et réguliere aussi au sens de Malliavin avec
la matrice de covariance y(F¢) qui est inversible et d’inverse intégrable autour de € = 0 qu’il existe un
développement faible de Taylor a tout ordre n > 0:

E[f(F&)] =E[f(F)+€G' +---+€'G"] +o(e"),
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ou les corrections G; vérifient 1’égalité:
E[G'] = E[f(F*)m],

et 7; sont des poids explicites a condition qu’on connaisse la matrice de Malliavin y(F°) et son inverse.

Mais, en pratique, la question d’identifier un petit parametre pertinent est primordiale et tres difficile.
Il y a plusieurs facon de paramétrer un modele et les approximations qui en découlent peuvent étre tres
différentes. On donne deux exemples.

* petit bruit:

dXE = b(XF)di + VE(XE)dW,. (14)

* temps petit:

On est intéressé par la loi de X; pour ¢ petit. Par un changement en espace et temps, (X;¢);>0 a la
méme loi que (Xf),>0 défini par

dXf = eb(XF)dt +/eo(XF)dW,.

Pour plus de détails sur la différence de notre approche avec celle de Watanabe, on renvoie a la section
I

Théorie des grandes déviations. La théorie des grandes déviations donne des estimations de la queue
de probabilité de certaines distributions (voir [110] pour détails). Freidlin et Wentzell dans [47] établis-
sent un Théoréme de grandes déviations pour les équations différentielles ordinaires perturbées par un
mouvement brownien (perturbation a petit bruit). Ils considérent I’équation différentielle stochastique
suivante:

dXF = b(XF)dt +/edW;, X§ = xo,

ol W est un mouvement brownien multidimensionnel de dimension d € N* et la fonction b : R¢ — R¢
est bornée et Lipschitz aussi. Si C and G sont respectivement des fermés et ouverts de 1’ensemble
{f:[0,T] - R9, f est continue, f est une fonction de carré intégrable, f(0) = xo}, on obtient alors:

limsupelogP(X® € C) < —fingl(f),
S

€l0
liminfelogP(X® > —inf [
imin elogP(X® € G) > }IEIG (f)s

ou I(f) = 1 J1fi = b(f;)|?dr. Les auteurs étendent aussi ce résultat pour Iéquation stochastique dif-
férentielle:

dXF = b(X?)dt + e (XF)dW,, X§ = xo,

ot 6 : RY = R? x R? est une fonction bornée et Lipschitz (pour plus de détails, voir Section 6 dans
[L10D).

Remarque 1.2.1. La théorie introduite par Freidlin et Wentzell est tres intéressante car elle décrit le
comportement asymptotique pour les distributions des équations stochastiques différentielles. Mais, elle
ne fournit que des estimations logarithmiques.
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Sensibilité par rapport a un parametre. Gobet et Munoz dans ([55]) considerent une diffusion mul-
tidimensionnelle (X,*), dont les dynamiques sous-jacentes dépendent d’un paramétre o. Ils expriment la
sensibilité duE[f(X,*)] pour une fonction bornée mesurable f comme une espérance impliquant seule-
ment f et non ses dérivées. On rencontre ce type de probléme dans la théorie du contrdle stochastique.
Les auteurs utilisent trois approches: Le calcul de Malliavin, 1’approche adjointe et I’approche martin-
gale. Des résultats numériques avec les erreurs associées aux schémas de discrétisation sont également
présentés.

La projection Markovienne. Gyongi dans [59] considere un processus stochastique (&;) partant de 0
de décomposition d’Itd :

dé = 6(t,0)dW, + B(t,w)dt,

ol W est un .%; adapté mouvement brownien, 8 et 8 sont bornées et sont des processus .%; adaptées avec
06" étant définie positive (uniformément). L’ auteur montre qu’il existe un processus markovien (X;) qui
a la méme marginale unidimensionnelle que (&) (i.e. Z(X;) =% (&) WVt), et qui est une solution faible
de I’équation ordinaire stochastique différentielle suivante:

dX[ - G(I,Xt)d‘/V, +B(t,X[)dt,X() - O,

6" (1,x) = E[85°(1)|& = a1, b(1,x) = E[B(1)|& = .
Brunick ([28]) relache 1’hypothese d’ellipticité 3.

Remarque 1.2.2. La projection Markovienne a été la clé de plusieurs approximations spécialement en
finance comme le calcul de la fonction de la volatilité locale pour les modeles a volatilité stochastique
(voir [194] et [[76]). Mais, aucun controle d’erreur n’a été établi pour ces approximations.

1.3 Les approximations analytiques appliquées a la finance

Apres avoir donné une idée générale sur les méthodes de perturbation, on se focalise ici sur la littérature
des méthodes de perturbation utilisées en finance. Cette section a pour objectif de présenter plusieurs
idées originales sur les méthodes de perturbation et leur limitations.

1.3.1 Les méthodes de perturbation

Dans ce domaine, on cite

* Le développement du prix par rapport a la corrélation entre le sous-jacent et sa volatilité. Antonelli
and Scarlatti considerent dans [[12]] un modele stochastique général et établissent un développement
en série du prix du Call en fonction de la corrélation. Leurs approximations incluent le modele
de Heston comme cas particulier. Chaque terme de correction est aussi approché avec une estima-
tion d’erreur. En plus, les bornes d’erreur de 1’approximation sont estimées; il faut préciser que
I’approximation est établie seulement pour des parametres homogenes en temps.
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» Développement en petite volatilité de volatilité. Lewis dans [79]] établit un développement du prix
du call en fonction de la volatilité de la volatilité. Son travail est basé sur un développement formel
de I’opérateur d’EDP pour la transformée de Fourier du prix du Call. Cette approximation est val-
able pour des modeles a volatilité stochastique comme les modeles de Heston, Heston généralisé et
GARCH. Par conséquence, 1’auteur établit des formules approchées pour les volatilités implicites
Black Scholes dans ces modeles a volatilité stochastique. L’ approximation est obtenue seulement
dans le cas de parametres constants.

* Technique de moyennisation. Cette technique, trés importante, a été introduite par Piterbarg [93]].
Elle peut étre vue comme une application en finance du Théoréeme de projection markovienne
établie par Gyongi. Piterbarg détermine des parametres équivalents constants pour un modele de
Heston dépendant du temps pour approcher le prix du Call. En effet, il établit dans le domaine des
dérivés des taux d’intéréts des formules pour les skew et la volatilité stochastique équivalents reliés
a des parametres dépendants du temps. La formule s’étend aussi a d’autres domaines comme les
dérivés actions ou change. L’ approximation est valable seulement dans le cas de corrélation nulle.

1.3.2 L’analyse asymptotique

Les strikes extrémes. Lee a montré dans [78] que la variance implicite est bornée par une fonction
linéaire a la moneyness ln(%) pour des strikes grands. L’auteur donne des formules explicites qui relient
les gradients des ailes de la borne supérieure de la variance implicite et les moments finis maximaux du
sous-jacent. Par exemple, il a montré pour I’aile gauche que si ¢* := sup{q : E[S}q] < oo} et
2
% . O-imp(T7K)T
B* :=limsup ———%——,
K—0+ ‘ln(f)’

alors B* € [0,2] et

1 ( 1 Vi [3*)2
T2 2
En plus, Benaim et Friz ([15)]) ont amélioré la formule de Lee. En effet, ils ont prouvé que la borne

supérieure de Lee peut devenir une limite a condition que certaines hypotheses techniques soient satis-
faites. Ces hypotheses sont réalisées pour une vaste classe de modeles.

Maturités longues. On cite le travail de Tehranchi ([108]) qui donne une formule asymptotique des
volatilités implicites Black et Scholes pour des maturités longues avec un contrdle précis de I’erreur. En
effet, il a montré sous I’hypothese que (S; — 0 presque slirement quand ¢ 1 o) que

762, (T.K) = 8/In(E(Sy A g)) — 41n(| In(E(S7 A g))\) +4ln(§)) ~ 4In(x) +8(ln(§)),T),

sup |e(x,T)| — O
~M<x<M Toeo
pour tout M > 0.
On cite aussi les travaux de Gatheral dans [49] qui donne des bornes d’arbitages pour le skew des volatil-
ités Black et Scholes implicites a la monnaie. Ces bornes d’arbitrages sont de I’ordre de O(T_%).
En plus, Rogers et Tehranchi ([99]]) ont démontré le Théoreme du smile conjecturé par S. Ross. En effet,
ils ont prouvé que la forme du smile ne peut pas bouger par décalage parallele.




1.3 Les approximations analytiques appliquées a la finance 19

1.3.3 Mélange de méthodes de perturbation et d’analyse asymptotique

I’approche ergodique. Fouque et al ([44]) considerent un modele a volatilité stochastique ou la
volatilité est une fonctionnelle de Y qui est un processus d’Ornshtein Uhlenbeck (on le dénote OU)
avec un temps de corrélation petit €:

dst

S—; = rdt + f(Y5)dW,,

t
W3

f

1
dyf = c —(m—=YF)dr+

(W,B) = pdt.

dBtv

La normalisation par rapport a € est réalisée de telle fagon que la distribution asymptotique de ¥;* quand
t tend vers I'infini soit une loi gaussienne 4" (m, v?).
Les auteurs écrivent le générateur infinitésimal .#¢ comme une sommation de trois termes:

e _ %g(o) + Lo g0 (1.6)

§~

ol

o« 20 =2 ay2 +(m— y) ay est le générateur infinitésimal du processus OU Y défini par:

dY, = (m—Y,)dt + v\/2dB,, 1.7)

= V2pxf(y ) 5y 3 contient les dérivées mixtes dues au terme de corrélation.

e (2 = % +3f (y)zng—;2 + r(x% —.) est ’opérateur Black et Scholes avec volatilité f(y).

Fouque et al ont supposé que le parametre € est petit ce qui fait du probleme un probléme de
perturbation singuliere. Ils ont développé le prix du call coté en ¢, avec maturité 7, cours S et strike K,
en puissance de /€:

Callf = CallBS + /eCorrection)) + .-

ou le terme de base est le prix Black-Scholes Callg? = Callps(t,S,K,T,5) et la variance 67 est la
moyenne de la fonction f par rapport la distribution invariante .4 (m,v?) de 1'OU (Y) défini par
I’équation (1.7):

= [P0 ay= () (1)

(0)

et les termes correctifs sont des combinaisons lin€aires de Grecques du terme principal Callgg:

528 Callps(1,5.K,T,6) | 538 Callgs(t,S,K,T,5)

ion)) = —
V€Correction') = —(T —¢)(V- 552 353 )
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ou les coefficients V, et V3 sont calculés comme la volatilité & dans 1’équation [1.8| utilisant 1’opérateur

(.):
Vo =v2pv(f¢’),

_ PV,
V3_\/§<f¢>,

et ¢ est la solution de 1’équation de Poisson:
L09(y) = f)* = ().

En plus, les auteurs ont démontré dans [45] que I’erreur d’approximation pour les options call(put) se
comporte comme:

. |(Call® — Callg)s) — /eCorrectionV)] —o
€l0 €|In(e)|1+p ’

pour tout p > 0.

Remarque 1.3.1. L’approximation est intéressante parce qu’elle donne une formule analytique rapide
exprimée comme combinaison du terme principal de Black et Scholes et ses Grecques. En plus, les
bornes d’erreurs sont données pour toutes les options call(put). Mais, cette approximation n’est pas
valide pour les maturités courtes car elle est reliée a la propriété de retour a la moyenne de la volatil-
ité, un comportement qui n’est pas instantané. En plus, elle est restreinte seulement a des coefficients
homogenes en temps parce qu’elle utilise le générateur d’EDP.

L’approche géodésique. Il existe plusieurs livres et papiers de recherche traitant 1’approche
géodésique et ses applications en finance:

* voir Chavel dans ([29]) pour une introduction a propos de la géométrie riemannienne et Varadhan
([109]) pour une asymptotique de la densité en temps petit,

* voir Berestycki et d’autres dans [21]], Labordere dans [74] and [75], Lewis dans [80], Forde dans
[43], Benhamou et autres dans [17] pour I’application de la géométrie Riemannienne en finance.

Ces travaux montrent que la fonction de Green 7 (la densité de valorisation) qui est solution de:

on L 0°m on
O N i or
o~ L8 g5 T LG

avec la condition initiale (29, So,%9,S) = 6(So = S), a un développement en temps petit:

—d%(50.5)

ir(l‘o,So,l‘,S) = 210 (GO(SO,S) + (l‘ —l‘o)Gl(So,S) + )

ol d(Sp,S) est la distance géodésique associée a 1’espace riemannien défini par la distance métrique
ds> = Y&, jdxidxj ou g;; est I'inverse de la matrice de g"/. Le terme Gy est relié a la distribution
gaussienne. En effet la densité de valorisation se comporte comme une gaussienne quand on utilise ces
nouvelles variables géodésiques. Le terme G est relié a la courbure riemannienne.
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De plus, Berestycki et al (voir Th 1.2 dans [21]) ont montré pour un modele de volatilité stochastique
générale que la volatilité implicite Black et Scholes pres de la maturité est:

In(%)

d(In(%), o)

ou t est le temps de cotation, 7' la maturité, S le cours, K le strike, yo la valeur initiale de la volatilité
stochastique et d est la distance géodésique signée qui résout 1’équation (1.12) du Théoreme 1.2 dans
[21]]. 11 convient aussi de remarquer que Berestycki et al ([21]) ont établi dans certains cas des termes
correctifs pour le développement en temps petit pour les volatilités implicites Black et Scholes.

lim 03 (T, K) = (1.9)

Remarque 1.3.2. Cette approche géodésique est trés intéressante du fait qu’elle donne des formules an-
alytiques pour la volatilité implicite Black et Scholes pres de la maturitdﬂ En outre, on peut dériver des
développements asymptotiques pour les volatilités implicites Black et Scholes pour des maturités cour-
tes. Mais, ces approximations sont restreintes seulement pour des maturités courtes et des paramétres
homogenes.

1.4 Les motivations et la méthodologie

A travers la section précédente, on a présenté plusieurs idées originales sur le calcul exact ou les méth-
odes analytiques. Remarquons aussi que les formules fermées couvrent une petite classe de modeles:
Black et Scholes, Merton, CEV, ...Pour des modeles plus généraux, on peut établir des techniques
d’approximation. Mais, ces formules analytiques ont été souvent obtenues sous des restrictions comme
courte maturité (le développement géodésique), longue maturité (I’approche ergodique), les strikes ex-
trémes (I’approche de Lee), corrélation nulle (I’approche de Piterbarg) ou des coefficients homogenes
en temps (toutes les précédentes méthodes de perturbation a part celle de Piterbarg). Notre objectif dans
cette these est d’élaborer une méthode d’approximation précise qui s’applique aux courtes et longues
maturités, aux petits et grands strikes, a des parametres non homogenes en temps ou a des corrélations
non nulles. Pour assurer qu’une méthode de perturbation soit utilisée efficacement en pratique, la quan-
tité d’intérét (i.e. le prix) devrait étre décomposée comme une sommation de termes explicites: un terme
principal auquel on rajoute quelques termes correctifs. Dans notre approche, la partie principale est cal-
culée par un modele proxy et les termes correctifs quantifient la distance entre le vrai modele et le modele
proxy; cette distance au modele proxy est caractérisée par un petit parametre A. Par exemple,

* dans le modele de Heston, un modele proxy possible peut étre le modele de Black et Scholes en
prenant la volatilité de la volatilité égal a 0. Dans ce cas, on peut définir A = &.

* dans les modeles a volatilité locale, le modele de Black et Scholes peut étre un modele proxy
en figeant la fonction de la volatilité locale o. Dans ce cas, A peut &tre la norme supérieure des
dérivées de ©.

En fait, cette analyse de la distance au modele proxy est trés grossiere et dans cette these, on donnera des
mesures précises pour cette distance par rapport au modele proxy. Maintenant, si on note (X;), le vrai
modele pour le prix du sous-jacent (ou du log du sous-jacent) et (X?), le modele proxy, on peut écrire,

3Remarquez aussi que ces calculs analytiques des volatilités implicites ne sont pas toujours explicites comme c’est le cas
du modele de Heston




22 1.4 Les motivations et la méthodologie

au moins formellement, un développement de Taylor pour le prix des options vanilles 4 pour le cours X
qui expirent a la date T

(Xr —X1)!

E[h(Xr)] = E(X7)]+ E[ (X7) (X —X7)] +--- +E[V (XF) 7

|+ Zesid;. (1.10)
Le terme principal E[k(XF)] est explicite, puisque souvent les prix dans le modele proxy sont explicites
(en effet, c’est une contrainte qu’on s’impose pour le choix du modele proxy). Le deuxieme terme
E[RM (XE) (X7 — XE)] jour le rdle du premier terme de correction, mais il n’est pas explicite pour des
processus généraux et doit étre approché. Pour mieux approcher ce terme, nous avons pensé a le décom-
poser comme une sommation de Grecques (dans le modele proxy) plus un résidu:

ERY (X7) (Xr — Z al OIE[A(XE +x)]|emo + O(AY). (1.11)

Les Grecques dans le modele proxy doivent étre explicites aussi. La réalisation de la décomposition est
fortement dépendante du modele et on peut 1’établir en utilisant le calcul de Malliavin combiné avec une
paramétrisation fine du modele de X. Il convient de préciser que cette étape est spécifique au modele,
on ne peut écrire une théorie générale et on se réfere a I'introduction de chaque partie de la thése pour
plus de détails. Pour aider le lecteur, on va expliquer pourquoi les Grecques apparaissent naturellement
dans (I.TT). L’identification en utilisant les Grecques peut étre considérée comme une procédure inverse
de celle utilisée dans la littérature pour la formule d’intégration par parties et le calcul de Malliavin
([46])). En effet, on sait que J/E[h(XE + x)]|x=0 = E[h)(XF)] = E[n(XF)H}] pour certains "poids de
Malliavin" HZ et pour établir (T.IT)), on devrait expliciter les (q; a )) afin que Y7, a( ) HT ~ (Xr — XF).
P Py (Xr— XT) ]
J!

Apres, on répéte la décomposition (T.TT) pour chaque terme du type E[1\/) (X£ et I’écrire aussi

de la forme E[n(/) (Xf)(xiﬂ] =Y aV IE[h(XF +x)]|x—o + O(AY). Finalement, on raméne tous ces

i=19;
éléments dans I’équation (I.10) jusqu’a I’ordre minimal ji qui vérifie Zesid;, = O(AX). Ceci implique:

E[h(Xr)] = E[h(X7)] +Z Za [A(X7 +2)]|s—o] + O(A%)

maxj<j nj - j

=E[h(XF)] + Z Za Li<n,)E[A(XF +x)]|x=0 + O(A").

La forme générale est la suivante:

E[h(X7)] = E[R(XF)] + Somme pondéree de Grecques OXE[h(XE + x)]|v—o + erreur. (1.12)

Evidemment, ces arguments formels ont besoin d’étre mathématiquement clarifiés en prenant en compte
les considérations suivantes:

* le payoff / n’est pas régulier (la dérivée seconde du payoff du call n’existe pas dans le sens clas-
sique, ce qui évite d’écrire directement (1.10)).

* on devrait utiliser prudemment le calcul de Malliavin pour établir des développements explicites

pour les coefficients (ay)).

» [’estimation d’erreur est une tache tres difficile car elle dépend du modele et du payoff.
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1.5 La comparaison avec I’approche de Watanabe

Il est utile de signaler que le cadre mathématique de Watanabe (voir [[112]) proposant les développements
asymptotiques pour approcher des fonctionnelles de Wiener est une référence trés importante, et qu’il
existe des similitudes et des différences significatives entre 1’approche de Watanabe et celle que nous
introduisons dans ce travail de thése. Dans ses travaux, Watanabe considere une famille (F¢).>o de
variables aléatoires définies dans 1’espace de Wiener et régulieres au sens de Malliavin. Supposons
qu’on puisse écrire un développement asymptotique de F¢ en puissance de € a tout ordre k:

FE—(fo+efi+ -+ €f)=0(e"") quand € - 0F (1.13)

Les variables aléatoires (f;); sont régulieres au sens de Malliavin et 1’égalité ci-dessus avec le symbole
de Landau est vraie dans les normes de Sobolev || - ||p.,. Supposons qu’on ait de plus une condition de
non dégénérescence uniforme:

limsup || det(¥y')||, < e pour tout p > 1 (1.14)
+

£-0

ol Yre est la matrice de covariance de Malliavin de F€. Watanabe montre que, pour toute fonction & avec
croissance polynomiale, on obtient:

E[h(F?)] = E[h(F°)] 4 eE[R(FO)m ] + - - - + e"B[h(FO)m] + O(eF) (1.15)

ou (7;); est une suite de variables aléatoires. Cette égalité peut étre étendue aux distributions 4 (Théoréme
2.3 dans [112]).

A premiere vue, les formules et sont du méme type en prenant X7 = F¢ ou F° = XF.
Avec cette analogie, on pourrait essayer de relier les Grecques dans (T.12) avec les termes (E[a(F°)m]);
dans (1.13), mais en fait cette identification est loin d’étre évidente.

Une caractéristique importante de 1’approche de Watanabe réside dans le fait que la précision du
développement est écrite en fonction du petit parametre €. Cette paramétrisation par rapport € est cruciale
comme le montre les exemples précédents dans les équations (I.4) and (I.5). Le dernier point a soulever,
qui a toute son importance, est le fait que I’impact des parametres des modeles n’est pas pris en compte
dans les estimations. Ce point est un inconvénient significatif de tels calculs. Pour illustrer ceci, on
considere le modele jouet:

F® = oW, +VeB
ol (W,B) est un mouvement brownien deux-dimensionnel, et ¢ est un nombre strictement positif.
Développons E[i(F¢)] en puissance de € pour i(x) = x* et h(x) = x*. On utilise le fait que F€ est
distribuée comme une .4 (0,62 + ¢€). Clairement F* = cW;.

1. Cas h(x) =x*>. Ona

E[h(F®)] = E[(F¢)’] =0 +¢
= E[h(F)] +e.
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2. Cas h(x) = x". En utilisant un changement d’échelle, on obtient:

E[h(F)] =V 02+ E[(W)) "]

_ "ZG?]E[(GWI)W
2
= E[(FO)] + 5 SE[W) ] +0( ).

Ces calculs sont cohérents avec les résultats du développement de Watanabe:
E[h(F?)] = E[R(F°)] + £c| 4+ O(&?).

On observe que les coefficients ¢; dépendent fortement du modele et de la fonction /4 (dans le second cas,
egc) = %%E[(Wl )™]). Dans le cas ol G est petit aussi, on remarque que la précision du développement est
fortement reliée au ratio £ et non seulement a €. Ceci représente un autre argument fort contre 1’approche
directe du développement asymptotique de Watanabe. Dans nos travaux, on donne des estimations non-
asymptotiques, qui nous permettent de déduire le domaine de validité de nos formules par rapport a
tous les parametres du modele. Autrement dit, une partie significative de nos travaux met en relief
I'impact des parametres du modele sur 1’approximation. Ceci est confirmé dans ce travail de these par
de nombreux résultats numériques (voir Chapitre [} [7} [I0} [[Z). On montre aussi que 1’ordre de grandeur
de I’erreur dépend de la régularité du payoff. L’exemple précédent est une illustration convaincante de
ce phénomene, tandis que dans 1’approche de Watanabe, la régularité du payoff ne joue aucun role dans
les estimations.

Maintenant, on discute en détail les différences entre les démonstrations et aussi entre les méthodolo-
gies.

1. Dans notre approche, on quantifie les erreurs par rapport a la régularité du payoff: on réalise un
développement de Taylor pour les options régulieres comme on a montré auparavant. On utilise
ensuite une méthode de régularisation et une intégration par parties (Calcul de Malliavin) afin de
majorer les erreurs et exprimer les termes tronqués comme une combinaison de Grecques du terme
principal.

2. Contrairement a notre approche, Watanabe donne un développement asymptotique pour la densité
d’un processus en exprimant la densité comme une espérance d’une distribution de Dirac. Dans
le théoreme 2.3 de [[112] pour I’approximation des distributions de fonctionnelles de Wiener: il
utilise I’intégration par parties (calcul de Malliavin) appliquée aux distributions afin de retrouver
des fonctions tests régulieres. Ensuite, il utilise un développement de Taylor afin d’exprimer les
corrections en fonction des dérivées de la distribution. On estime que le développement par la
formule d’intégration par partie en utilisant le calcul de Malliavin est moins souple comparé a notre
approche directe. Autrement dit, pour avoir des formules fermées, il est plus facile de "développer
et ensuite intégrer par parties" que "d’intégrer par parties et ensuite développer".

3. Un facteur commun entre les deux approches est qu’on suppose que le proxy (XF ou F 0y est relié
a un processus (variable aléatoire) gaussien. De plus, dans notre cas, on utilise des proxys log-
normaux.

4. Une autre différence technique réside dans les hypotheses utilisées dans le développement. Dans
les résultats de Watanabe, la régularité € pour les coefficients des modeles est requise. Dans
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notre cadre, on suppose une régularité optimale pour les hypotheses (par exemple, voir hypothese
(R4) dans la section {4.1). On traite aussi des cas non réguliers comme le modele de Heston (du a
la racine carré dans le coefficient de diffusion).

L’approche Watanabe en finance. Yoshida dans [[113]] [114]], Kunitomo et Takahashi dans [[73]]
appliquent I’approche de Watanabe en finance et utilisent le calcul de Malliavin pour le controle
de I’erreur. De plus, Yoshida affaiblit I’hypothese de non dégénérescence dans une version
localisée (permettant la dégénérescence sur un ensemble de mesure exponentiellement petite);
voir Théoreme 4.1 page 152 dans [113]]. Teichmann et Siopacha dans [[106] appliquent aussi les
résultats de Watanabe pour le modele du Libor en utilisant des simulations de Monte Carlo. Ils
obtiennent des expressions facilement utilisables pour une valorisation précise.

5. En ce qui concerne les calculs des termes correctifs, on utilise directement la formule d’intégration
par partie (comme on a montré auparavant) et on obtient que les termes correctifs sont une combi-
naison linéaire des Grecques dans le modele proxy avec des coefficients dépendant seulement des
parametres du modele. Yoshida (Théoreme 2.1 in [113], Théoreme 4.1 in [114]) and Takahashi
(Théoréme 3.3 in [73]]) utilisent des calculs explicites reliés a des espérances conditionnelles pour
des vecteurs gaussiens et expriment les termes correctifs comme une intégrale de produits d’une
densité gaussienne avec des polyndmes. En d’autre termes, la densité en question est approchée
par une combinaison linéaire de dérivées de la densité gaussienne, montrant ainsi une forte similar-
ité entre les différentes approches. Remarquons aussi que notre approche nous permette de traiter
aussi le cas d’un processus de Poisson avec des sauts gaussiens, en utilisant une paramétrisation
appropriée et dépendante du modele (voir Partie I).

1.6 La structure de la these et les principaux résultats

La these est divisée en quatre parties. Chaque partie traite des modeles spécifiques et contient trois
chapitres:

* Le premier chapitre donne une introduction pour le modele étudié. En plus, il présente les méth-
odes existantes numériques et analytiques utilisés pour la valorisation de options européennes dans
un tel modele. Finalement, il présente la motivation pour un tel travail et les résultats de la partie.

* Le deuxieme chapitre contient tous les résultats mathématiques et leur preuves.

* Le troisicme chapitre traite les résultats numériques, comme la robustesse de la procédure calibra-
tion et la précision de la formule pour des strikes extrémes et des maturités longues.

Partie[ll Dans cette partie, on considere le modele d’ Andersen et Andreasen ([8]) qui est un modele a
volatilité locale plus des sauts gaussiens:

dX, = o(t,X,-)dW, + p(t,X,-)dt + dJ,, Xo = xo, (1.16)

* X, est le logarithme du forward F;, = Stef(;(qf*“)d

le taux continu de dividende,

5, r est le taux déterministe risque neutre et g est
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* le processus de Poisson composé (J;) et le mouvement brownien (W;) sont indépendants,

Jr = Zévz’ 1 Y; etY; sont des variables normales i.i.d. avec moyenne 1); et volatilité€ y;,
* N, est un processus de Poisson avec intensité A,

2
o u(t,x)= —% +A(1—eW *y%) afin de garantir la propriété de martingale pour (e*).

Notre objectif dans cette partie est
¢ d’établir une approximation analytique précise pour I’option européenne:
E[h(Xr)]

ol & est une fonction non réguliére et 7 est la maturité de 1’option. Pour le cas d’une option de
call sans taux d’intéréts et sans versement de dividendes, on a h(x) = (¢* — K)™.

* de calibrer dans un temps de calcul inférieur a une seconde (1sec) tous les parametres du modele:
les parameétres de saut A , 17y, 9y et la fonction de volatilité o (z,x) .

On peut montrer qu’un bon modele proxy peut étre le modele de Merton:
dXM = o (t,x0)dW; + u(t,x0)dt +dJ;, X} = xo,
et I’option vanille dans un tel modele est:

E[h(X7)] = Merton price + corrections terms + errors, (1.17)

* Les termes correctifs de I’équation (1.17)) sont des combinaisons linéaires de Grecques (Delta,
Gamma, Epsilon) du modele de Merton (Il ne faut pas oublier que les Grecques ont des formules
fermées dans le cas du modele de Merton). Ces corrections sont explicitées dans le chapitre {] du
Theoreme 4211

* Le terme d’erreur errors dans 1’équation (3.8) est estimé pour les payoffs vanilles dans le chapitre
M) dans le Théoreme {.5.2] Une interprétation naive de I’erreur est la suivante: si les dérivées de
volatilité o et la taille des sauts impliqués dans 1’équation sont de I’ordre de A, alors le terme
d’erreur est de I’ordre de (Av/T)3.

Remarquons aussi que I’approximation établie dans le chapitre f] ne couvre pas seulement les options
Call-Put mais aussi les payoffs vanilles dépendants de Xy (réguliers, vanilles, digitales). En effet, les
erreurs sont analysées en fonction de la régularité du payoff (voir par exemple le Théoreme [@.5.1] pour
les payoffs réguliers en général, le Theoreme [4.5.2] pour les options vanilles, le Théoreme [4.5.3| pour les
options digitales). On montre aussi dans le chapitre [3|que la précision de notre formule s’avere excellente
(les erreurs pour les volatilités implicites n’excedent pas 2 points de base pour de nombreux strikes et
maturités). En conséquence, la calibration d’un tel modele devient tres rapide.

Le chapitre |3| donne une idée générale sur les méthodes utilisés pour générer le smile et on introduit
aussi le modele d’ Andersen et Andreasen. De plus, dans ce chapitre, on fournit des détails sur le modele
de Merton, la calibration utilisant la forward PIDE et on énonce finalement les résultats principaux de
la partie. Le chapitre 4] dans la partie [ est la reproduction exacte de I’article "smart expansion and fast
calibration for jump diffusions” publié dans la revue "Finance and Stochastics". Le chapitre [5 dans la
partie[| donne des résultats numériques supplémentaires concernant la précision de la formule quand on
stresse les parametres, sans oublier la robustesse de la calibration.
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Partie[ll, Dans cette partie, on s’intéresse a des modeles a volatilité locale([40]):
dX, = &(1,X,)dW, + (1, X)d1, Xo = xo, (1.18)

ol X; peut étre le sous-jacent ou son logarithme.

L’objectif de cette partie est d’établir des formules fermées pour les options vanilles dans un
modele a volatilité locale générale. Cette formule fermée est en effet un développement de Taylor et
peut étre tronqué facilement a tout ordre. Par conséquent, le prix de I’option vanille peut &tre écrit a tout
ordre comme la somme des termes suivants:

* le prix Black Scholes avec la volatilité a la monnaie. Comme dans la partie [l ce modele peut étre
vu comme un modele proxy pour le modele a volatilité locale. L’avantage de ce modele proxy
réside dans le calcul explicite des prix et des Grecques de 1’option vanille.

* Une combinaison linéaire des Grecques du prix Black Scholes avec des poids explicites dépendants
de la volatilité, de la dérive et leurs dérivées.

* Une erreur résiduelle avec des bornes explicites.

Ceci est réalisé dans le chapitre(/} L’approximation pour les options vanilles au second ordre est calculée
dans le Théoréme qui est un cas particulier du Théoreme {.2.1] du chapitre §] lorsqu’il n’y a pas
de sauts. De plus, le calcul explicite de I’approximation pour les options vanilles au troisieme ordre est
fournie dans le Théoreme[7.2.2] En outre, ces termes correctifs et les erreurs sont estimés pour tout ordre
dans les Théoremes([7.4.1H7.4.2}{7.4.3|en fonction de la régularité du payoff (réguliers, vanilles, digitales).
La précision de 1’approximation s’avere étre excellente. En plus, on n’a besoin que de quelques termes
pour donner des résultats précis pour les options vanilles. Cette méthodologie nous permet de calculer
des parametres équivalents pour un modele CEV dépendant du temps.

Le chapitre [ donne une introduction générale sur le modele a volatilité locale, le modele CEV et
les approximations analytiques existantes utilisées pour la valorisation d’un tel modele. En plus, on
détaille dans ce chapitre les motivations et les résultats principaux de la partie. Le chapitre [/| est la
reproduction exacte de I’article "Closed forms for European options in a local volatility model" accepté
pour publication dans le journal "International Journal of Theoretical and Applied Finance". Le chapitre
[8] détaille le comportement du smile pour le modeéle CEV quand on varie ses parameétres au cours du
temps. On fournit aussi des résultats numériques concernant la précision de 1’approximation pour des
strikes tres grands et aussi le domaine d’arbitrage des formules d’approximations.

Part[ITll} Cette partie traite le modele de Heston dépendant du temps ([63]]):

dX,:\/Eth—%dt, Xo = X0, (1.19)
dvy = K(6, — v;)dt + & /v dB;, vo, (1.20)

d<WaB>I = pldt7

* X, est le logarithme du forward e(4~")S,, r et ¢ sont respectivement le taux risque neutre et le taux
continu de dividende,

¢ v est la valeur initiale du carré de la volatilité,
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* K est le parametre de retour a la moyenne,
* 0 est le niveau long-terme,
o & estla volatilité de la volatilité,

* p est la corrélation
Notre objectif dans cette partie est
» d’établir une approximation analytique précise pour le prix de I’option Call-Put
¢ TR[(K — "= aT+Xr) ] (1.21)
¢ de travailler dans un cadre général de modéle de Heston dépendent du temps afin d’obtenir des

approximations qui couvrent a la fois des maturités courtes et longues, des parametres dépendant
du temps et des corrélations non nulles également.

* de réaliser un temps de calcul tres petit par rapport a I’inversion de Fourier (un gain par un
facteur de 100 ou plus).

Ceci est réalisé dans le chapitre (10| utilisant un développement précis en petite volatilité de volatilité
avec des techniques de calcul de Malliavin et quelques lemmes techniques.

Le modele proxy ici est le modele de Heston sans volatilité de volatilité. Autrement dit, c’est le
modele Black et Scholes avec une volatilité dépendante du temps:

BS Vo,
dXt = ./ V()thwlt -

dr, X, = X0
2 s A0 )
dlo,[ K(Gl l()"[)thO.

On prouve que:
e TE[(K — e 9TX1) | = Put Price in BS model

+ Correction terms—+ Errors.

* Les termes correctifs sont des combinaisons linéaires de Grecques du prix Black Scholes avec des
poids dépendant uniquement des parametres du modele. Ces calculs sont faits a I’aide du calcul
de Malliavin dans le Théoréme

* Les erreurs sont estimées dans le Théoreme [10.2.2] par:
Errors = O(|E|2T?).
Un choix possible de la mesure A peut étre la norme supérieure de la fonction vol de vol &.

A partir de la formule approchée, on déduit des corollaires reliés premiérement a des parametres équiv-
alents pour le modele de Heston (une extension du travail de Piterbarg pour les modeles a volatilité
stochastique) et deuxieémement pour la procédure de calibration en terme de problemes mal-posés (voir
section [10.2.6)).

Le chapitre [9] donne une introduction générale sur les formules d’inversion de Fourier et les approx-
imations analytiques dans un tel modele. De plus, on énonce les résultats principaux de la partie dans
ce chapitre. Le chapitre [10] est exactement la reproduction de I’article "Time dependent Heston model"
en révision pour la revue "SIAM Journal on Financial Mathematics". Le chapitre [IT] donne des résul-
tats numériques additionnels concernant le comportement du smile pour le modele de Heston avec des
parametres constants et dépendant du temps aussi. De plus, dans ce chapitre, on détaille des résultats
numériques concernant les moments négatifs de I’intégrale du processus de CIR.
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Partie Dans cette Partie on traite des modéles hybrides avec une composante action modélisée
avec une volatilité locale et une autre composante taux d’intérét stochastiques:

@ = rdt + o;dW;,
St
ot (S;) est le spot, (o;) sa volatilité aléatoire et (r,) est le taux stochastique de dynamique HIM.

L’ objectif de cette Partie est de calculer de nouvelles approximations pour les options européennes
dans un modele a volatilité locale et des taux stochastiques. Nous introduisons un modele de volatilité
locale sur le sous-jacent actualisé. Cette modélisation nous permet d’obtenir des formules faciles a
implémenter pour les options vanilles dans un tel modele.

Dans le Théoreme [12.2.1] on donne une formule d’approximation au second ordre pour les options
vanilles dans un modele a volatilité locale générale combiné avec des taux stochastiques Gaussiens qui
suivent le cadre HIM. Cette formule est la somme:

* du prix dans le modele proxy de Black et Scholes avec des taux stochastiques.

* et des termes correctifs qui sont une combinaison linéaire de Grecques du terme principal avec des
poids explicites dépendant des parametres de la diffusion et des taux stochastiques.

On donne aussi la formule d’approximation au troisieme ordre (voir Théoreme [12.2.2)) dans un tel mod-
¢le. Dans le cas de volatilité locale homogene avec un modele de Hull and White pour les taux, on
donne des calculs explicites pour les poids des corrections dans la sous-section [[2.2.1] On étend aussi
nos résultats pour le cas de dividendes stochastiques et aussi pour le cas des taux de convenance stochas-
tiques (voir Section [I2.3)). Par exemple, dans le domaine des matieres premieres, on peut voir notre
travail comme une extension du modele de Gibson Schwartz afin de supporter des fonctions de volatilité
locale. Dans la Section[I2.4] on donne des exemples numériques illustrant la précision de notre formule
d’approximation. En effet, on compare notre formule avec les simulations Monte Carlo avec variable de
contrdle. La précision de nos formules s’avere étre excellente.




30 1.6 La structure de la these et les principaux résultats




Chapter 2

Introduction

31



32 2.1 Closed-form formulas in finance

This thesis develops a new methodology for deriving analytical approximations of the prices of European
options. Our approach smartly combines stochastic expansions and Malliavin calculus to obtain explicit
formulas and tight error estimates. The striking feature of these formulas is their rapidity to be evaluated
(as quick as Black and Scholes formula). Our motivation comes from the increasing need for real-time
computations and calibration procedures, while controlling numerical errors with respect to the model
parameters. There are many ways to derive closed-form formulas, either by a straight computation of
the option pricing problem or by some approximations. For models with explicit density for the spot
like the Black Scholes model, CEV model or any model with explicit characteristic function of the spot
distribution (like the Heston or affine models), one can easily find closed-form formulas. It leads to well
known results for call and put options. In the case of non explicit density, one must turn to numeri-
cal methods (PDE techniques, Monte Carlo simulations, ...). But to obtain explicit formulas, one has
to derive analytical approximations (using perturbation methods or asymptotic analysis). Perturbation
methods are very general. But to perform this method, one usually relies on a known proxy, for which
the computations are simpler. In Section [2.1} we list the models where the prices of call-put are explicit
and that may be used as proxy models. In Section [2.2] we present analytical approximations for gen-
eral ordinary and stochastic differential equations and their domain of validity. The domain of validity
specifies the restrictions of the approximation method. In Section [2.3] we briefly expose the analytical
approximations used in finance. The overview of the previous methods gives us a clear idea about their
limitations which are the starting point for our work. More specifically, if we use a perturbation based on
ergodic properties, the approximation is only valid for long maturities; if we use one based on geodesic
properties, the approximation is restricted to short maturities; similarly, if we use a perturbation using the
PDE operator, the approximation can be explicitly worked out only for time homogeneous PDE coeftfi-
cients. These restrictions motivate us to think about a new methodology which can be applied to a wider
framework (short or long maturity, time inhomogeneous parameters,...). Our methodology is presented
in Section [2.4] and is the subject of this thesis. A comparison of our approach with Watanabe’s one is
detailed in Section[2.5] The outline and the main results of the thesis are given in Section [2.6]

2.1 Closed-form formulas in finance

Black Scholes model. The Black Scholes paradigm (see [22]]) assumes the spot to be a lognormal
diffusion with constant volatility. In other words, the spot (S;) follows the diffusion:

s,

= (r—q)dt + cdW,,
St

where W is a Brownian motion, ¢ is the constant volatility of the spot, r (resp. ¢) is the deterministic
risk free rate (resp. the deterministic dividend yield). This dynamics is written under the risk-neutral
measure used for the option valuation.

The price of call and put options in this model has a closed-form formula due to the explicit computation
of the cumulative function of the Gaussian variable. The price of the call with starting time ¢, expiry time
T, spot S and strike K has the following well known expression:

Callgs(t,8:K,T) = Se™ 1T (dy (T —1,8¢" DT K)) — Ke T4 (do(T — 1,8~ DT K)).

where do(t,x,y) = o%ﬁ log(3) — %ﬁ di(t,x,y) = ﬁ log(%) + %ﬂ and ./ is the cumulative function of

X
}7

the standard normal distribution. This closed-form formula can be extended easily when the parameters
r, ¢ and o are time dependent (since the spot S is still a lognormal variable).
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Remark 2.1.1. Note that when © depends only on the spot, there are a few closed-form formulas (see
[1\]). Moreover, when the volatility ¢ becomes a separable function on the spot and the time, one can
derive an asymptotic expansion for the price of vanilla options (call, put) using singular perturbation
techniques as explained by Hagan et al in [62|]. However, for general forms of a volatility functions ¢
depending on the spot and the time, there is no analytical formula for call options. These general forms
of volatility are included in local volatility models or models a la Dupire (see [40]).

Merton model. The Merton model (see [85]) can be seen as an extension of the Black Scholes model
with the addition of independent Poisson jumps with the jump size normally distributed:

ds 7

Sh=(r—g=A0 — V)t + 6dW, + (¢ — 1)dN,
t

where

* the compound Poisson process (J;) and the Brownian motion (W;) are independent,
o J = Zﬁvz’ 1 Y; and Y; are i.i.d. normal variables with mean 7); and volatility y;,

* N, is a Poisson process with intensity A.

Conditioning by the number of the jumps N7, one can express the call price in the Merton model as an
infinite sum of Black Scholes prices:

= (AT —1)) P 2
CallMe,wn(t,S;K,T) = E Me*(lJrr)TBSCall <FTel(17./+}g)’[{’T_t7 Gz—l— ;YIZ‘)’
i=0 L -

where

Fy — Selr—a+2(1=exp(n+73/2)(T—1),

and BSCall(S,K,T,v) is the Black-Scholes price for a call on an underlying S; with initial condition
So =S, volatility v, exercised at maturity 7" and strike K, where the risk-free rate and the dividend yield
are set at 0%.

Remark 2.1.2. The call price in the Merton model has still closed-form formula when the parameters
r, g and ¢ become time dependent. Moreover, when the volatility o becomes a function of both the spot
and the time, we retrieve exactly the definition of the Andersen Andreasen model ([|8]). In such a model,
there exist numerical methods like Forward PIDE method for the calculus of the call prices (see [8|] and
[33\]). However, there is no analytical formula for the call price in the Andersen Andreasen model.

CEV model. In the case of the Constant Elasticity of Variance model (known as CEV model), the call
(put) price has a closed-form formula. In that case, the spot (S;) has the following dynamics:

ds, _
S—’ = (r—q)dt+vSP'aw,, S, > 0.
t

The CEV model has been originally studied by Cox in [34] for the case 8 < 1. The case B > 1 has been
treated after by Emanuel and MacBeth in [42]]. The call price in this model can be computed using the
complementary non central Chi-square distribution Q:

Callcgy (t,8:K,T) = ¢ 170Q(2x,n,2y) —e " T Q(2y,n — 2,2x) 2.1)
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where
1
n=2+ —p
(r—q)s2F-
YT V(B 1) (2r—aB-DT) 1)’
(r—q)k -1

' V(B —1)(1 —e 20—a)(B-1)(T-1))"
The computation of the non central Chi-square distribution O can be performed using a recursive algo-

rithm (see Schroder algorithm in [[104]) or an integration of Bessel functions.

Remark 2.1.3. When the parameters r, q and v are time dependent, the Call price still has closed
formula using Lie-algebraic techniques (see [66)]). However, when B becomes time dependent, there is
no analytical formula to our knowledge.

Heston model. The Heston model is an extension of the Black Scholes model for the underlying (S;)
but with stochastic volatility:

dX, = /viaW, — Jdt, Xo = o, 2.2)
dv, == K(G - Vl)dt +€\/‘T[dB[, V() > O7 (23)
d(W,B)[ == l)dt7

where

* X, is the logarithm of the forward e(¢")S;, r and g are respectively the risk free rate and the
dividend yield,

* vy is the initial square of volatility,
* K is the mean reversion parameter,
* 0 is the long-term level,

e & is the volatility of volatility,

* p is the correlation.

The computation of the call-put price in the Heston model can be done using Fourier inversion since
the characteristic functions of the logarithm of the underlying is explicit in this framework (the model
parameters do not depend on time).

The call price in Heston’s model can be written using Lewis’ formulzﬂ (I79D):

Callyesion (I,S;,Vt; T, K) = Ste_q(T_l) _

Ke (T=0r pite dz
—or / e Xor(—z)5—

where X = log (ﬁ;jﬁﬁiﬁjif) and ¢r(z) = E(e?X7—X)|.7,).

The characteristic function ¢7(z) = E(e?X7~%)|.%,) is explicit when the parameters are constant. When
the parameters 6, & and p are piecewise constant, the characteristic function ¢7(z) = E(e?X7=X)|.2,) is
computed recursively using PDE methods (see [86]) or a Markov argument for affine models (see [41]).

IFor details on the other formula derived in [63], we refer to Part Subsectionm
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Remark 2.1.4. When the time-dependency of the Heston parameters becomes more general, there is
no analytical formula anymore. Remark also that the computation of the Fourier inversion formula is
far to be as quick as the Black Scholes or the Merton formulas. Indeed, this Fourier inversion is time-
consuming and suffers from instabilities for large strikes and long maturities (see [68]).

2.2 General overview on analytical approximations

We have seen that we can derive closed-form formulas for call or put option when the density of the
spot is explicit or its characteristic function is explicit. Otherwise, there is no closed formula. Then, one
may use perturbations methods. The aim of this section is to give a brief overview of these perturbation
methods in general.

2.2.1 Ordinary differential equations

In this subsection, we briefly introduce the so called "perturbations methods" used in the literature espe-
cially for the field of singular perturbation problem.

Matched asymptotic expansions. The principle of this method consists in splitting the domain of the
boundary value problem into a sequence of two or more subintervals. Often, we distinguish two kinds
of solutions: the inner solution and the outer solution. These solutions are named because of for their
relationships to the boundary layer; the boundary layer occurs often in the domain boundary and it is the
place of non negligible corrections terms for the perturbation method. In each interval, the perturbation
theory is used to obtain an asymptotic solution valid only on this interval. The matching is then required
in order to combine the outer and inner solutions in such a way that the approximation has the same
functional form on each of these intervals. Finally, this gives an approximate solution valid for the entire
domain.
Consider the following example borrowed to Chapter 2 in [64]:

ey () +2yV(x)+2y(x) =0, for 0<x<1,

where y(0) =0, y(1) =1 and 0 < € << 1. This kind of problem is not straightforward. If we directly
take € = 0, we retrieve the following problem:

2y (x)+2y(x) =0, for 0<x<Il.

The solution of this equation has the form y(x) = Ae™* and the boundary values at 0 and 1 gives A =0
and A = e!. Hence, the limit equation of that problem has no solution and makes this problem a singular
perturbation problem. One may apply the perturbation technique as follows: find the outer and inner
solution of that problem, assume that O is a boundary layelﬂ and then match the two solutions in order to
obtain an accurate solution for the whole domain (for more details see [64]).

The multiple scales method. This method starts from the general solution and differs from the
matched expansion method. Indeed, it introduces coordinates for each region; these coordinates are
mutually independent. Hence, this method consists in adding new variables to the initial ordinary differ-
ential equation problem and transforming it into a partial differential equation one. In physic systems,

2This a priori assumption is the only way to find the true location of the boundary layer (see [111]))
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this scaling method is often used for the time variable while the matching expansion method applies to
space variables. The multiple scales method intervenes when the corrections terms of the regular per-
turbation terms are not negligible and may be unbounded. Hence, using extra variables, we allow the
amplitude to vary slowly and we avoid unboundedness of the corrections terms (for details about this
expansion, we refer to Chapter 6 in [[87]).

The WKB method. In the matching method, we divide the domain of the boundary value problems
into subintervals in order to make explicit the dependence of the solution on the boundary layer variable.
For the multiple scales method, we use the dependence of a new timescale in order to solve a new
partial differential Equation. The WKB is a special case of the multiple scales method and assumes
an exponential dependence for the solution of the boundary value problem. This method is used to
solve linear differential equation where the higher derivative is multiplied by a small parameter €. WKB
is an acronym for Wentzel-Kramers-Brillouin approximation. The physicists Wentzel, Kramers, and
Brillouin developed this theory in the 1920s. This method was used by Jeffreys in order to give accurate
approximation for the Schrodinger equation. From a differential equation of the type:

ey (x) + a,_1y" (x) + - - -+ aryV (x) + agy(x) = 0,
we assume an asymptotic series of the solution in the form of:

1 n

y(x) = ekt X, W'zn(x)

for u close to 0. By using this form in the differential equation, we obtain an arbitrary number of
differential equations which allow us to get in a recursive manner the solutions z, (for more details about
the method, we refer to Chapter 10 in [16]).

The Homogenization method. Scientists and engineers encounter real problem and deal with ma-
terials involving heterogeneous constituents (for instance, we cite laminated plates and bubble fluids).
Hence, the scientists do not consider each component separately using its own information, own mass.
But, they assume the material to be continuously distributed and use averaged information for material
parameters like the mass density. This method can be viewed as an extension of the multiple scales
method in two space scales method (for details on this method, we refer to [S]] and [64]).

Alternative approaches. We cite among them:

* Multiple scale expansion for partial differential equations: This kind of problems involves espe-
cially partial differential problems with space and time variables (for more details see Chapter 6 in

[300).

* Parameters variations and averaging methods : This method deals with time dependent coeffi-
cients for ordinary or partial differential Equations. This method assumes that these parameters
evolve slowly in time. Hence, one can find equivalent constant parameters which approximates the
solution (see Chapter 5 in [87]).

* Strained coordinates. This technique deals with non uniformities on asymptotic expansions. In-
deed, it introduces near-identity transformations on the variables of the differential Equation in
order to obtain uniform approximate solutions (for more details about this technique we refer to
Chapter 3 in [87]).
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2.2.2 Stochastic differential equations

Small noise expansion (pathwise). Freidlin and Wentzell ([47]) consider the random dynamical sys-
tem:

th = b(Xtea 851)7

where € is a small parameter, b is a continuous function, & is a given continuous random process and
the solution X starts from the initial condition xo. The authors prove that we can expand the solution
(Xf)re(o,r) uniformly on [0,T] in powers of €:

X+ eV - Y +o(e"),

where x; is the solution of the non perturbed dynamical system and the function b(x,y) has n+ 1 bounded
derivatives with respect to x and y (for more details, see Chapter 2 in [47]]). We also cite analogous results
for the flow in stochastic differential equations (Kunita [72] for diffusions, Fujiwara and Kunita [48]] for
jump diffusions).

Small parameter expansion (distribution). Watanabe in [[112] shows that, for every random variable
F& smooth in € and in the Malliavin sense with Malliavin covariance matrix y(F¢) which is invertible
with integrable inverse around € = 0 and for every bounded function f, there exists a weak Taylor
approximation of any order n > 0:

E[f(F®)] =E[f(F) +€G' +---+€"G"] +o(e"),
where the corrections G; verify the Equality
E[G'] = E[f(F)m],

and 7; are explicit weights provided that we know the Malliavin matrix y(F) and its inverse.

However, in practice, the question of identifying a relevant small parameter is crucial and not simple.
There are usually many ways to define a parametrisation for the model and the resulting approximations
may be very different. We give two examples.

* small noise:
dXF = b(XF)dt +/eo(XF)dW,. (2.4)
* small time
dX; = b(X;)dt + o(X;)dW,. (2.5)

We are interested in the law of X; for r small. By a space-time scaling, (X;¢);>0 has the same law
than (X£);>o defined by

dXf = eb(XF)dt +eo (XF)dW,.

For more details on the difference of our approach with Watanabe’s one, we refer to Section[2.5]
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Large deviation theory. Large deviations theory provides tail estimates of certain distributions (see
[110] for details). Freidlin and Wentzell in [47] derive a large deviations Theorem for ordinary differen-
tial equations perturbed by a Brownian Motion (small noise perturbation). They consider the following
SDE:

dXf = b(XF)dt +/€dW;, X§ = xo,

where W is multidimensional Brownian motion with dimension d € N* and the function b : R? — R? is
bounded and Lipschitz as well. If C and G are respectively closed and open subsets in the set { f : [0,T] —
RY, f is continuous, f is a square integrable function, f(0) = xo}, then one obtains:

limsupelogP(X® € C) < —fi.ngl(f),
S

el
liminfelogP(X® > —inf/
iminfelog (Xt €G)> }EG (),

where I(f) = 5 Ji | f: = b(f,)|?dt. They also extended the result to the stochastic differential equation:
dXf = b(XF)dt +eo (XF)dW,,X§ = xo,
where 6 : R? - R? x R? is a bounded and Lipschitz function (for more details see Section 6 in [110]).

Remark 2.2.1. The theory introduced by Freidlin and Wentzell is interesting since it allows to emphasize
the asymptotic behavior for the distributions of stochastic differential Equations. However, it gives only
logarithmic estimates.

Parameter sensitivity. Gobet and Munos in ([55]) consider a multidimensional diffusion process
(X*); where the dynamics depend on a parameter a. They express the sensitivity dE[f(X*)] for a
bounded measurable function f as an expectation involving the function f and not its derivatives. This
kind of problem arises in stochastic control problems. The authors use three different methods: Malli-
avin calculus, adjoint approach and martingale approach. Numerical results with associated errors for
the corresponding discretization schemes are also given.

Markov projection. Gyongi in [59] considers a stochastic process (&) starting from 0 with the 1td
form:

d& = 8(t, 0)dW; + B(1, w)d,

where W is an .%;-adapted Brownian Motion, § and 8 are bounded and .%#;-adapted process with 6*
being uniform positive definite. He shows that there exists a Markovian process (X;) which has the
same one-dimensional marginal as (&) (i.e. £ (X;) = Z(&) WVt), and which is a weak solution to the
following stochastic differential equation:

dX, = o(t,X,)dW, + B(t,X,)dt,Xp = 0,
where
00" (1,x) = E[687(1)[& = A, b(t,x) = E[B(1)[& = ].
Brunick ([28])) relaxes the assumption of ellipticity on §.

Remark 2.2.2. This Markov projection method was the key for many approximations especially in fi-
nance like computing equivalent local volatility functions for stochastic volatility models (see [94] and
[76)]). However, no error estimates for these approximations are available.
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2.3 Analytical approximations applied to finance

In the previous Section, we have given a general overview about the perturbation methods. Here, we
focus on the literature related to the perturbation methods used in finance. This section aims at presenting
many original trends of used perturbation methods with their limitations.

2.3.1 Perturbation methods

In this field, we cite:

* Price expansion w.r.t. correlation between the spot and the volatility. Antonelli and Scarlatti con-
sider in [12]] a general stochastic model and derive a series expansion for the Call price w.r.t.
correlation; Their approximations includes Heston model as a particular case. Each correction
term is also approximated with estimates of the error. Moreover, the error bounds of the series ex-
pansion w.r.t. correlation are available; the approximation is available only for time homogeneous
parameters.

Small volatility of volatility expansion. Lewis in [[79] derives a call price expansion w.r.t. the
volatility of volatility. His work is based on formal expansion of the PDE operator for Fourier
transform of the Call price. This approximation handles general stochastic volatility models like
Heston, generalized Heston and GARCH models. As a consequence, he derives accurate formulas
for implied Black Scholes in these stochastic volatility models. The approximation is available
only for constant parameters.

Averaging technique. The averaging technique, introduced by Piterbarg [93]] has emerged as an
important technique. It can be viewed as an application in finance of the Markov projection the-
orem derived by Gyongi. Piterbarg derives averaging constant Heston parameters for time depen-
dent Heston model to approximate the call price. Indeed, he derives in the field of interest rate
derivatives, formulas for "effective" skew and stochastic volatility which are related to the time
dependent parameters. The application of the formula is also valid for Equity or FX derivatives.
The approximation is derived only for zero correlation.

2.3.2 Asymptotic analysis

Extreme strikes. Lee shows in [78] that the implied variance is bounded from above by a function
linear w.r.t. the log moneyness ln(g) for large strikes. He gives explicit formulas which relate the
gradients of the wings of the upper bound of the implied variance and the maximal finite moments of the
spot. For instance, for the left wing, he shows that if ¢* := sup{q : E[S;?] < e} and

2
o, (T,K)T
B* = limsuplm’xiK),
k-0t [In(F)]

then B* € [0,2] and

*_1(1_\/1?)2
TR 2

Moreover, Benaim and Friz in [[15] sharpen Lee’s formula. Indeed, they show that Lee’s upper bound
may become a limit under some technical conditions which are satisfied for a large class of models.
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Long maturities. We cite the work of Tehranchi in [108] that gives asymptotic formula for implied
Black Scholes volatilities far from maturity with precise control of the error. Assuming that, almost
surely S; — 0 as ¢ 1 oo, Tehranchi shows the following formula holds:

K K K K
TO',-%p(T,K) =8|In(E(St A —))| —4In(|In(E(Sr A —))|) +41In(=) —4In(7) + e(In(=),T),
So So So So
where
sup [e(x,T)| — O
—M<x<M T —oo
forall M > 0.

We also mention Gatheral’s work in [49] who derives arbitrage bounds on the skew of the implied
1
B-S volatility at-the-money. These bounds are of the order of O(7T ~2).

Moreover, Rogers and Tehranchi prove in [99]] the smile Theorem conjectured by S. Ross. Indeed,
they prove that the smile shape can not move by parallel shifts.

2.3.3 Combining perturbation methods and asymptotic analysis

Ergodic approach. Fouque et al in [44] consider a stochastic volatility model where the volatility is a
functional of ¥,* which is an Ornstein Uhlenbeck process (we denote it OU) with small correlation time
€:
dse
S7§3t = rdt + f(YF)dW,,
1 vvV2

VB,
\/g t

The normalisation w.r.t. € is such that the asymptotic distribution of Y¢ as ¢ goes to infinity is a Gaussian

law A (m, v?).
They write the infinitesimal generator .Z¢ as the summation of three terms

1 1
E= 0 — )y Q) 2.6
. + NG + ; (2.6)

where

e 20 = vzg—; +(m—y) a% is the infinitesimal generator of the OU process Y defined by
dY, = (m—Y,)dt + vV/2dB,, 2.7)

2 . . . .
o« ) = V2pxf (y) %{9)} contains the mixed derivatives due to the correlation term,

e 202 = % +3f (y)zxzt%zz + r(x% — .) is the Black-Scholes operator with volatility f(y).
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Fouque et al suppose that the parameter € is small which makes the problem to be a singular
perturbation problem. They expand the call price with starting time ¢, maturity 7, spot S and strike K, in

power of \/€:
Call® = Call{)) + v/eCorrection() + - -

where the leading term is the Black Scholes price Callg)s) = Callgs(t,S,K,T,5) and the variance 62 is

the averaging of the function f with respect to the invariant distribution .4 (m, v?) of the OU (Y) defined
in Equation (2.7):

6% =

1 5 f('zn‘:zy)z 2
Vr /R e 2 dy= (), 2.8)
(0)

and the correction term is a combination of Greeks of the leading term Callg:

0*Callps(t,S,K,T,&)
052

d3Callps(t,S,K,T,&)
as3 )7

VeCorrection) = —(T — 1) (V582 + V383

where the coefficients V, and V3 are computed like the volatility & in Equation using the operator (.):
V2 = \/Epv<f¢,>7
PV, .
V3 ="—= ,

and ¢ is a solution of the Poisson equation:

L99(y) = F)* = (2.

Moreover, the authors show in [45] that the error of the approximation for call(put) option behaves like:

i |Call® — Callg? — /gCorrection'!| 0
im =
€l0 €|In(e)|!*p ’

for any p > 0.

Remark 2.3.1. This approximation is interesting since it gives fast analytical formula of the price as a
combination of a leading Black Scholes price and some related Greeks. Moreover, the error bounds are
given for call (put) options. But, this approximation is not valid for small maturities since it relies on the
mean reverting property of the volatility, a behavior which is not instantaneous. Moreover, it is restricted
to homogeneous parameters in order to get explicit solutions to some PDE.

Geodesic approach. There are many interesting papers and books about the geodesic approach and its
applications in finance:

* see Chavel ([29])) for an introduction about Riemannian geometry and Varadhan ([[109]]) for an
asymptotic of the density for small time,

* see Berestycki et al [21], Labordere [[74] and [75], Lewis [80], Forde [43], Benhamou et al [17]
for the application of the Riemannian geometry in finance.
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These works show that the Green function 7 (the pricing density) which solves:

on L d'm on
O N i ar
5~ L8 G55 T LiGs

)

with initial condition (o, So,%0,S) = 8(So = S), has the short maturity expansion:

—d%(59.5)

7e(to,S0,t,5) = e 270 (Go(So,S) + (t —10)G1(S0,S) +---)

where d(Sp,S) is the geodesic distance associated with the Riemannian space defined by the metric
distance ds® = Y, ; g; jdx'dx’, where g; j is the inverse of the matrix g"/. The term Gy is related to the
Gaussian distribution. Indeed, the pricing density behaves like a Gaussian one when we use these new
geodesic variables. The term G is related to the curvature of the Riemannian space.

Moreover, Beresticky et al (see Th 1.2 in [21] ) show in a general stochastic volatility model that the
implied Black Scholes volatility near the expiry is:

ln(%)
d(In(%),yo)

where ¢ the starting time, 7' the maturity, S the spot, K the strike, yo the value of the initial stochastic
volatility and d is the signed geodesic distance that solves the Eikonal Equation (1.12) in Theorem 1.2 in
[21]]. Notice also that Beresticky et al in [21] derive corrections terms for the short time expansion of the
implied Black Scholes for some cases.

lim 03, (T K) = (2.9)

Remark 2.3.2. This geodesic approach is very interesting since it gives closed-form formulas for the
implied Black Scholes volatility near the expi Moreover, one can derive asymptotic expansion of the
implied Black Scholes for short maturities. However, these kinds of approximation are restricted to short
maturities and homogeneous parameters.

2.4 Motivation and methodology

Through the previous Section, we have seen many trends of original ideas for exact computation or fast
analytical methods. Note that the closed formulas cover a very small class of models: Black Scholes,
Merton, CEV, Heston,. . . For general models, one can perform approximation formulas. However, these
kinds of analytical formulas have been performed within some restriction like short maturity (Geodesic
expansion), long maturity (Ergodic approach), extreme strikes (Lee’s approach), zero correlation (Piter-
barg’s approach) or time homogeneous parameters (all the previous perturbation methods except Piter-
barg’s one). Our aim in this thesis is to design an accurate expansion method that applies to both short
and long maturities, to both small and large strikes, to time inhomogeneous parameters and to non null
correlations as well.

To ensure that a perturbation method can be efficiently used in practice, the quantity of interest (i.e.
the price) should be decomposed as a summation of explicit terms, namely a principal part plus some
correction terms. The main idea is that the principal part is given by the price in a proxy model. The
distance to the proxy model is represented by a small parameter A. For instance,

3Remark also that the analytical computation of the implied Black Scholes volatility is not always explicit like in the case
of Heston’s model.
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* in Heston model, a possible proxy could be a Black Scholes model by taking the vol of vol & equal
to 0. In that case, we could define A = &.

* in local volatility models, the Black Scholes model could be a proxy by freezing the local volatility
function ¢ at its initial value. In that case, A could be the sup norm of the derivatives of G.

Actually, this analysis of the distance to the proxy is too rough and in the thesis, we will provide much
more tight measures of this distance to proxy.

Now, if we denote (X; ), the true model for the underlying asset price (or log-asset price) and by (X7),
the proxy model, at least formally we can write a Taylor expansion for the price of a vanilla option / on
the asset X maturing at time 7'

(Xr —X7)/

E[h(X7)] = E[R(XE)] + B[RV (XF)(Xr — XP)] + - -+ E[Y) (xF) A |+ Resid;.  (2.10)

The leading term E[2(XZ%)] is explicit, because usually the prices in the proxy model are explicit (actually,
it is somehow a constraint in the choice of our proxy model). The second term E[A()(XE)(Xy — X£)]
plays the role of the first correction term, but it is not explicit for general processes and has to be ap-
proximated. The trick is to decompose this term as a summation of Greeks (in the proxy model) plus a
residual term:

E[RD(XF) (X7 — Z f AER(XE 4 x)]|x—0 + O(AY). (2.11)

The Greeks in the proxy model have to be explicit as well. The derivation of this decomposition is
strongly model-dependent and we derive it using Malliavin calculus combined with a smart parameter-
ization of the model for X. Since this step is very model-specific, it is not possible to write a general
theory and we refer for the details to the introduction of each part of the thesis. For the convenience of
the reader, we shall explain why Greeks appear naturally in (2.11)). The identification using Greeks can
be seen as an inverse procedure used in the literature about integration by parts formula and Malliavin
calculus ([46])). Indeed, we know that &/E[h(XE + x)]|x—0 = E[r) (X£)] = E[h(XE)HE] for some "Malli-
avin weights" H:. and to get (Z.I1), we should identify explicit (a;); such that Y7, a\" Hi. ~ (X; — XF).
(Xr—X7)’

Then, we repeat the decomposition for each term of the type E[hU)(XF) , by writing

E[hD)(XE )%] =y, l i iE[h (Xf +x)]|x=0 + O(A). Finally, we bring together all these contri-
butions in (2.10) up to the minimal order ji verifying Zesid;, = O(A¥). This gives

E[h(X7)] = E[h(XD)] +Z Za [h(XE 4 x)]|s—0] + O(AY)
j=1i=

maxj<j nj - j

= E[h(XF)] + Z Za Li<n;)AE[A(XF +x)]|x=0 + O(A").

The general form is the following:

E[h(Xr)] = E[A(XF)] + weighted sum of Greeks O'E[h(XF +x)]|x=0 + error. (2.12)

Of course, these formal arguments need to be mathematically clarified with many respects:
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* the payoff 4 is not smooth (the second derivative of a call payoff does not exist in the classical
sense, which avoids to write directly (2.10)).

* one has to carefully use Malliavin calculus to derive explicit expansions for the coefficients (ay)).

* the estimate of error terms is a very difficult task and actually, it depends on the model and the
payoff.

2.5 Comparison with Watanabe’s approach

It is worth emphasizing that the Watanabe approach ([112]) using an asymptotic expansion of Wiener
functionals is an important reference and there exist similarities and significant differences between
Watanabe’s approach and the one we introduce in this thesis. In his works, Watanabe considers a family
(F&)g>o of random variables defined on the Wiener space and smooth in the Malliavin sense. Below,
we follow his notation. Suppose that we can write an asymptotic expansion of F¢ in powers of € at any
order k:

FE—(fo+efi+-—+ef)=0(E"")ase - 0" (2.13)

The random variables ( f;); are smooth in the Malliavin sense and the above equality with Landau symbol
has to be understood in the Sobolev norms || - ||p.,. Assume additionally a uniform non degeneracy
condition:

limsup || det(¥y')||, < oo forall p > 1 (2.14)
e—-0+

where Yre is the Malliavin covariance matrix of F¢. Then, Watanabe shows that, for any function z with

polynomial growth, we have:

E[h(F?)] = E[A(F°)] + eRB[h(FO)m ] + - - + eE[h(F°)m] + O(eF™) (2.15)

where (7;); is a sequence of random variables. This equality can be extended to distributions / (Theorem
2.3 in [L12]).

At first sight, (2.12)) and (2.13) are of the same type by taking X7 = F€ and F* = X£. Within this
analogy, we may try to relate the Greeks in (2.12) with the terms (E[x(F°)x;]); in (2.13)), but actually this
identification is not straightforward at all.

An important feature of Watanabe’s approach is that the expansion accuracy is written in terms of
the small parameter €. The parameterization w.r.t. € is crucial (see previous examples in Equations [2.4]
and [2.5)). Last but not least, the impact of other model parameters do not enter in the estimates. And this
point is a significant drawback of such computations. To illustrate this, consider the toy model

F¢ =oW, +¢€B,

where (W,B) is a two-dimensional Brownian motions, and o is positive. Let us expand E[A(F?)] in
powers of € for h(x) = x*> and h(x) = x*. We use that F¢ is distributed as a .4 (0,62 +¢). Clearly
FO=oW,.

1. Case h(x) = x>. We have
E[h(F®)] = E[(F¢)?] =0 +¢
= E[h(F)] +e.
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2. Case h(x) = x*. By a scaling argument, we have:

E[h(F¢)] = Vo2 +€eE[(W))7]

o2+4¢

= 52 E[(GWl)ﬂ
2
= E[h(F%)]+ %EE[(Wl)ﬂ + 0(%).

These computations are coherent with the Watanabe expansion results:
E[h(F¢)] = E[h(F®)] + ec; +O(&?).

But we see that the coefficient ¢; depends strongly on the model and on the function /4 (in the second
case, £c; = 3 £E[(W;)*]). In case where o is small as well, we see that the expansion accuracy is heavily
related to ratio of £ and thus not only to €. This is another strong argument against a direct application of
the Watanabe asymptotic expansion. In our works, we provide non-asymptotic estimates, which crucially
enables us to deduce the domain of validity of our formulas regarding all the model parameters. In other
words, a significant part of our work emphasises the impact of model parameters on the approximation.
This is confirmed by numerous numerical experiments (see Chapters @] [7] [T0} [[2). We also show that the
magnitude of the error is impacted by the payoff smoothness. The previous toy example is a convincing
illustration of this phenomenon, whereas within Watanabe’s approach, the payoff regularity does not play
any role in the estimates.
We now discuss in more details the differences in the proofs and methodologies.

1. In our approach, we quantify the error according to the payoff smoothness: We perform a Taylor
expansion for smooth options as we show before. Then, we use a regularisation method and inte-
gration by parts (Malliavin calculus) in order to upper bound the errors and express the truncated
terms as a combination of Greeks of the first term.

2. As adifference, Watanabe gives asymptotic expansions of the density of the process by expressing
the density as an expectation of a Dirac distribution. In Theorem 2.3 in [[112]] for the pull-back of
distributions by Wiener functionals, he uses the integration by parts formula (Malliavin calculus)
applied to the distributions in order to retrieve smooth test functions. Then, he uses Taylor expan-
sions in order to express the corrections as a function of the distribution derivatives. We guess that
the expansion of Malliavin integration by parts formula is less tractable compared to our direct
approach. In other words, in view of having closed formulas, it is easier to "expand and integrate
by parts" than "integrate by parts and expand".

3. As a common fact within the two approaches, it is both assumed that the proxy model (X or F°)
is related to a Gaussian process/ random variable. Actually, in our case, we also use log-normal
Proxys.

4. Another technical difference lies in the assumptions used for the expansions. In Watanabe results,
¢ smoothness of the model coefficients is required. In our framework, we assume optimal regu-
larity assumptions (for instance, see Assumption (Ry4) in Section . We also handle non smooth
cases like Heston model (because of the square root in the diffusion coefficient).
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Watanabe approach in finance. Yoshida in [113] [114]] , Kunitomo and Takahashi in [[73]] ap-
plied Watanabe’s approach in finance and used also Malliavin calculus for the control of the error.
Actually, Yoshida weakens the non degeneracy Assumption in a localised version (allow-
ing the degeneracy on a set of exponentially small measure); see Theorem 4.1 page 152 in [[113]].
Teichmann and Siopacha in [106] applied also Watanabe’s result for Libor market model using
Monte Carlo simulations. They obtain easily tractable formulas for accurate pricing.

Regarding the computations of the correction terms, we directly use the inverse of the integration
by parts formula (as we explained before) and obtain that the correction terms are a linear com-
bination of Greeks in the proxy model with coefficients depending only on the model parameters.
Yoshida (Theorem 2.1 in [[113]], Theorem 4.1 in [[114]) and Takahashi (Theorem 3.3 in [73]]) used
explicit computations related to conditional expectations for Gaussian vectors and expressed the
correction terms as an integral of a products of Gaussian density and polynomials. In other way, the
density of interest is approximated by a linear combination of derivatives of the Gaussian density,
showing strong similarities between different approaches. Remark also that within our approach,
we can handle Poisson process with Gaussian jumps as well, using a suitable and model-adapted
parameterization (see Part I).

Structure of thesis and main results

The thesis is divided into four parts. Each part deals with a specific model and contain three Chapters:

the first Chapter gives an introduction about the model studied. Moreover, it presents the exist-
ing numerical and analytical methods used for the pricing of European options in such a model.
Finally, it provides the motivation of such works and the main results of the related part.

the second Chapter contains all the results of the current part and the technical proofs of these
theorems.

the third Chapter deals with numerical results like calibration, robustness procedure or accuracy of
the formula for extreme strikes and long maturities.

Part[lL In this part, we consider the Andersen Andreasen model ([8]]) which is a local volatility model
plus Gaussian jumps:

where

dX, = o(t,X,-)dW, + (¢, X,- )dt +dJ,, Xo = xo, (2.16)

X, is the logarithm of the forward F; = S,ef(; (@=7:)ds 'y is the deterministic risk free rate and q is the
deterministic dividend yield.

the compound Poisson process (J;) and the Brownian motion (W;) are independent.
Ji = Z?/:’ Y; and Y; are i.i.d. normal variables with mean 7); and volatility ;.

N; is a Poisson process with intensity A.

2
w(t,x) = —% +A(1—e€ J%) in order to ensure martingale properties for (e*).
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Our aim in this part is to
* give an accurate analytic approximation for the European option:
E[h(Xr)]

where 4 is a non smooth function and 7 is the maturity of the option. For the case of call option
without risk free rate and dividend yield, one has h(x) = (¢ — K)™.

 Calibrate within a computational time smaller than one second (1sec) all the model parameters:
the jump parameters A, 1, ¥y and the volatility function o (¢,x) .

We show that a good proxy for the model will be the following Merton model:
dxM = o (t,x0)dW, + pu(t,x0)dt +dJ,, X} = xo,
and that the vanilla price in such a model is:
E[h(X7)] = Merton price + corrections terms + errors, (2.17)
where

* The correction terms in Equation (2.17) are a combination of Greeks (Delta, Gamma, Epsilon)
of the Merton Model (keep in mind that Greeks have closed formula in Merton’s model). These
corrections terms are given explicitly in Chapter ] in Theorem 4.2.1]

* The error term errors in Equation (3.8) is estimated for vanilla payoft in Chapter [4] in Theorem
M.5.2] A naive interpretation of the error is the following: if the volatility derivatives o and the
jump size involved in the SDE (3.5)) are of the order of A, then the error term is of the order of

(AVT).

Note also that the approximation derived in Chapter [ covers not only call-put options but also all vanilla
payoffs depending on X7 (smooth, vanilla, binary). Indeed, the errors are analyzed according to the
payoff smoothness (see for instance Theorem for smooth payoff in general, Theorem for
vanilla options, Theorem [4.5.3] for binary options). We show also in Chapter 3] that the accuracy of our
formula turns out to be excellent (the errors for implied B-S volatilities are smaller than 2 bp for various
strikes and maturities). As a consequence, the calibration of such model becomes very fast.

Chapter [3] gives an overview about the different models used in order to manage the smile and one
introduces the Andersen Andreasen model. Moreover, in this Chapter, we gives details about the Merton
model, the calibration using the forward PIDE and we state finally the main results of the Part. Chapter[4]
in Part|l|is exactly the article "smart expansion and fast calibration for jump diffusions" published in the
journal "Finance and Stochastics", volume 13(4), pages 563:589, 2009. Chapter [5in Part[l| provides ad-
ditional numerical results concerning the accuracy of the approximation formula for bumped parameters
and calibration/optimization robustness as well.

Part[I_I} Now, we look at local volatility models ([40]):
dXt = G(tvxt)dvvt +:u'(t7Xt)dtaX0 = X0, (218)

where X; may be the asset of the log asset.

The aim of this part is to derive explicit closed formula for vanilla options for general forms of
local volatility functions. This closed formula is a Taylor expansion and can be truncated easily at any
order. Therefore, the expected price can be written at any order as a summation of:
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* The Black Scholes price with at the money volatility. As in Part|l} this model can be seen as the
proxy of the local volatility model. The advantage of this proxy lies in the explicit calculus of the
prices and the Greeks of vanilla options.

* A combination of the Greeks of the leading Black Scholes price with explicit weights depending
on the volatility, the drift functions and their derivatives.

* A residual error with explicit upper bounds.

This is achieved in Chapter [7] The approximation for vanilla options at the second order is computed in
Theorem[7.2.T|which is a particular case of Theorem.2.T|of Chapter[d] when there is no jump. Moreover,
the explicit calculus of the approximation for vanilla options at the third order is derived in Theorem
In addition, the corrections and the error terms at any order of the closed formula are estimated in
Theorems [7.4.17.4.21{7.4.3| according to the payoff smoothness (smooth, vanilla, digital). The accuracy
of the expansion turns out to be excellent. Moreover, we need only few terms to give accurate results
for vanilla options. As a consequence of our methodology, we derive averaging parameters for time
dependent CEV models.

Chapter[6]gives an overview about local volatility model, Dupire’s Formula, CEV model and existing
analytical approximation methods used for the pricing in such model. Moreover, we detail also in this
Chapter the motivations and main results of the Part [II} Chapter [/|is exactly the article "Closed forms
for European options in a local volatility model" accepted for publication in the journal "International
Journal of Theoretical and Applied Finance". The Chapter [§] presents smile behaviours for the CEV
model when varying its parameters through the time. We also provide numerical results concerning the
accuracy of the approximation formula for large strikes and concerning the domain of arbitrage of the
approximation formulas.

Part[Illl This parts deals with the time dependent Heston model ([63]]):

dX, = /vdW, — gdt, Xo = xo, (2.19)
dv, == K‘(@t - Vt)dt "‘ 6[\/‘7[dBt’ V() > O, (220)

d<WuB>t = ptdt)
where

* X, is the logarithm of the forward ¢S, r and ¢ are respectively the risk free rate and the
dividend yield,

* vy is the initial square of volatility,
* K is the mean reversion parameter,
* 0 is the long-term level,

e & is the vol of vol,

* p is the correlation.

Our aim in this part is to
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* give an accurate analytic approximation for the price of call-put option

¢ TE[(K — =0T+ ], (2.21)

* work in a very general time dependent Heston framework to obtain an approximation which
can be valid for both short and long maturities and can handle time dependent parameters and non
null correlation as well,

¢ achieve a computational time cheaper than Fourier inversion (gain by a factor 100 or more).

This is achieved in the Chapter [I0]using an accurate expansion on small volatility on volatility com-
bined with Malliavin calculus techniques and some technical Lemmas.

The proxy of this model is the Heston model without volatility of volatility. In other words, it is the
Black Scholes model with time dependent volatility:

AXPS = /i dW; — St X5 = x,
dV()J = K‘(Gt — VOJ)dt, Vo.
We prove that:

¢ "TR[(K — "= 9TX1) ] = Put Price in BS model + Correction terms~+ Errors.

* The corrections terms are a linear combination of Greeks of the leading Black Scholes price with
explicit weights depending only on the model parameters. These computations are done using
Malliavin calculus in Theorem[10.2.11

* The errors are estimated in Theorem [10.2.2] by:
Errors = O(|E|2T?).

A possible choice of the measure A here will be the sup norm of the time dependent vol of vol
function &.

From the approximative formula, we also derive some corollaries related first to equivalent Heston mod-
els (extending some work of Piterbarg on stochastic volatility models [93]]) and second, to the calibration
procedure in terms of ill-posed problems (see Subsection [T0.2.6)).

The Chapter 9| gives an overview about the Fourier inversion formulas, the analytical approximations
in such a model. Moreover, we state the main results in this Chapter. The Chapter [10] is exactly the
article "Time dependent Heston model" in revision for the journal "SIAM Journal on Financial Mathe-
matics". The Chapter [TT] provides numerical results concerning the smile behavior for Heston’s model
with constant and time dependent parameters as well. Moreover, in this Chapter, we review some results
concerning the negative moments of the integrated CIR process.

Part[IV] In this Part, we focus on hybrid models composed by the dynamics of the spot and the stochas-
tic rate as well:
ds;

—_—_ = r[dt+ thm,
S
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where (S;) is the spot, o is the random volatility and (r;) is the stochastic rate which follows the HIM
framework.

The aim of this Part is to derive new approximation formulas for European options on a local volatility
model with stochastic rates. Hence, we model the discounted spot. This modeling enable us to obtain
user’s friendly formulas for vanilla options in such a model.

In Theorem [12.2.1] we give a second approximation formula for vanilla options in a general local
volatility model combined with Gaussian stochastic rates following the HIM framework. This formula
is a sum of

* the price in the proxy Black-Scholes model with stochastic rates.

* the corrections terms which are a linear combination of Greeks of the leading term with explicit
weights depending on the diffusion and the stochastic rate parameters.

We give also third order approximation (see Theorem [12.2.2)) in such a model. In the case of time
homogenous local volatility and Hull and White model, we give nice computations of the corrections
weights in Subsection[I2.2.1] We extend also our results for stochastic dividends and convenience yields
(see Section [12.3). For example, in commodity field, our work can be seen as an extension to Gib-
son Schwartz model to handle local volatility functions. In Section [12.4] we give numerical examples
for the accuracy of our approximation formula. Indeed, we benchmark our formula with Monte Carlo
simulations and control variate. The accuracy of our approximation formulas turns out to be excellent.
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After the 1987 crash, practitioners realized that the standard Black Scholes model had serious flaws.
Among these, the assumption of constant implied volatility for all strikes and maturities had become
a great concern. In order to manage the so-called smile, academics and practitioners offered various
extensions which are briefly introduced in the following.

Local volatility models. Introduced by Dupire [40], Rubinstein [101]] and Derman Khani [36]], these

models do not assume anymore a constant volatility for all strikes but rather that the underlying (local)

volatility is now a function of the spot and the time. This allows to price consistently options with

different level of implied Black Scholes volatilities. Interestingly, one can derive an explicit formula for

the local volatility ¢ in terms of the call prices Call(T,K) for different strikes K and maturities 7
1K) 2 aCag(TT,K) Stk BCagléT,K)

5 92Call(T K)
K5

3.1

This equation is often referred as the Dupire’s formula (for more details about this model see Chapter|[6).
Moreover, local volatility models are consistent with the market completeness assumption.

Stochastic volatility models. The key idea in these models is to assume that the volatility itself (like
the stock price) is also stochastic. Theses types of models can generate easily different smiles and skews.
The most common stochastic models are

* The SABR model introduced by Hagan in [61]]:

dF, = 6,F W, . Fy = f,
do; = voydB;,0p = Q.
d<W,B>[ == pdt,

where (F;) is the forward and

— « is the initial volatility,
— B is the skew parameter,
— Vv is the volatility of volatility,
— p is the correlation.
This model can be viewed as an extension of a CEV model but with stochastic volatility. The

advantage of this model is that the implied Black Scholes volatility has an accurate analytic ex-
pression using geodesic transformations (see [61] and [[74]).

 The Heston model (see [63]) is an extension of Black Scholes model for the underlying (S;) with
stochastic volatility:

ds
< = (r—q)dr+/ndW,, Sy >0, (3.2)

t
dV[ = K‘(9 — Vt)dt +§WdBt7 Vo > O, (33)
d(W,B), = pdt, (3.4)

where
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r and g are respectively the risk free rate and the dividend yield,

vo is the initial square of volatility,

Kk is the mean reversion parameter,

0 is the long-term level,

& is the volatility of volatility,

— p is the correlation.

Call (and put) can be easily priced in this model using the characteristic function and Fourier
transform (for more details about Fourier transforms see Chapter [J).

In this class of models, as opposed to local volatility model, the assumption of market completeness
does not hold anymore as there are two source of risk (namely two Brownian motions) for one single
asset used to hedge the risk. To complete the market, one should use another option for the hedging (see
[LOQ]).

Exponential Levy models. In these models, the underlying is assumed to follow the exponential of a
Levy process (for an introduction of Lévy process see [[103]). In this model, one has

_ X,
S[ =e r’

where (X;) is Levy process. We cite among these models:

* Merton model: X, = yr+ oW, + Z{i 1 Y; where (N;)s>0 is the Poisson process counting the jumps
of X and the jump sizes ¥; are i.i.d. normal variables (for more details see [85]]).

* Koumodel: X; =yt 4+ oW, + Zﬁvz’ 1 Y; where (N;)¢>0 is the Poisson process counting the jumps of X
and the jump sizes Y; are distributed according to an asymmetric exponential law (for more details
see [[71]]).

* Infinite intensity models: Variance Gamma and NIG model (for details about these models see
[32]).

Note also that the market is still incomplete in these models (see [32]).

Local volatility plus Poisson jumps models. This kind of model has been introduced by Andersen
and Andreasen in [8]]. In this Part, we focus our work on this model.

The Andersen Andreasen model (we call it AA model) has been introduced after the 87 crash in order
to handle a larger smile for short maturities. Their model can be seen as a perturbation of local volatility
models by Poisson jumps. Then, the underlying in the AA model follows the stochastic differential
equation (SDE) :

dX, = o(t,X;-)dW, + u(t,X,-)dt + dJ;, Xo = xo, 3.5)
where

o X, =log(S;)+ fé (qs — ry)ds is the logarithm of the forward, r is the deterministic risk free rate and
q is the deterministic dividend yield,
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* the compound Poisson process (J;) and the Brownian motion (W;) are independent,

J; = Zﬁvz’ Y; and Y; are i.i.d. normal variables with mean 7); and volatility y;,

* N, is a Poisson process with intensity A,

}’2
o u(t,x)= —% 4+ A(1 — ¢ "7 ) in order to ensure martingale properties for (¢%).

The market is incomplete in such a model because of the presence of the jumps. Indeed, the class
of equivalent martingale measures is infinite (see Chapters 9 and 10 of [32]). Moreover, one can find a
martingale measure which is equivalent to a given prior and hence is able to reproduce quoted prices (see
[31]] and Chapter 13 of [32]).

Using standard arguments (see [8]), one can derive easily the backward partial integro differential
equation (denoted by PIDE) for the call price Call(z,S;T,K) which begins at time ¢ with spot S, expires
at maturity 7" and is exercised at strike K:

1 t
Call,(t,S)+ (r — g — Am)SCalls(t,S) + EGZ(I,/ (qs — r)ds +1n(S))S*Callss(t,S)
0
+ AE[Call(t,e"S) — Call(t,S)] — r;Call(t,S) = 0,

YZ
where m = eM/ 3 — 1.
Moreover, the European call satisfies the forward PIDE:

1 T
—Callr(T,K) + (g7 — rr — Am)KCallg(T,K) + EGZ(T,/ (rs—qs)ds +1n(K))K>*Callgg (T, K)
0
+AE[e’ Call(T,e ™" K) — (m+1)Call(T,K)] — qrCall(T,K) =0,

The proof is based on an application of the Tanaka-Meyer formula (see [8]).

3.1 Merton model

The AA model has closed-form formulas only when the function ¢ do not depend on the forward. In
other words, for every real number x, 6 (¢,x) = o(f,xp). In this case, we retrieve exactly Merton’s model:

dxM = o (t,x0)dW; + pu(t,x0)dt +dJ;, X! = xo. (3.6)

Then the call price in the Merton model is:

- i : o T 62(t,x0)dt + iy?
CallMer,(m(O,S;K,T) _ Z (k{) eflejoTr(u)duBSCall <FTez(n]+g)7K’ T, \/fO o ( 7);(,)) +l’}/J > ,
-0 b

where
Fr = eonerT(r(u)—q(u))dwr/l(1—€><p(m+1’12/2))T7
and BSCall(S,K,T,v) is the Black-Scholes price for a call on an underlying S, with initial condition

So = S, volatility v, exercised at maturity 7 and strike K, where the risk-free rate and the dividend yield
are set at 0%.
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Proof. For simplicity, we consider the functions r,q,c(.,xp) constant. In this case, the call price in
Merton’s model is:

Callyerion(0,8;:K,T) = e—rTE[(exw(r—leW—GXP(UJH’JZ/Z))—%2)T+GWT+Z],-V:Tl Y; —K)']

,rTE[E[( xo+(r—g+A(1—exp(ns+77/2)) 7%)T+GW7+): K>+‘NTH

_rTZ —/lT AT ( xo+(r—g+A(1—exp(ns+72/2)) 7%)T+GWT+ZI Y K)+]

| 52 *ns2
— —rT Z —lT BSC ll< X()-l-(r—q)T—&-l(l—eXp(T]J-‘rY]z/Z))T-i-i(nJ‘f‘é)7K’ T, g T;— IYJ > ’

where we have conditioned on the number of jumps N7 in the second Equality, we have used the inde-
pendence of the number of jumps Ny and the random variables (Wr, (Y;);>1) in the third Equality, we
have used the definition of the BSCall function and the independence of the Gaussian variables (Wr,
(Y:)i>1) for the last one. O

3.2 Forward PIDE and calibration

For general forms of the local volatility o, there are neither closed-form formulas nor efficient approxi-
mation formulas. Otherwise, one can use numerical methods and especially numerical partial differential
schemes applied to forward PIDE for calibration purpose. We recall that Forward PIDE means that PIDE
equation depends on forward parameters (strike and maturity) while Backward PIDE depends on back-
ward parameters (underlying and starting time). The advantage of such forward PIDE arises mainly
when one needs to compute the model price for many strikes and maturities. Indeed, the forward PIDE
gives the price function for any 7 and K (at fixed S and ¢), while there are as many backward PIDEs as
the number of couples (7,K) (which define the boundary condition). This need to compute model prices
for many 7" and K naturally arises in the calibration procedure, where we have to solve the following
optimization problem:

min Z (Model Call Price(7}, K;) — Market Call Price(T;, K;))*

Model parameters market data

+ eventually a volatility regularization temﬂ. 3.7

Each iteration in the optimization routine involves only the resolution of one PIDE, the forward one.
However, although using this trick, the calibration is computationally expensive and takes about one
minute ([8]).

3.3 Motivation and main results

Our aim in this Part is to

* give an accurate analytic approximation for the European option:

Elh(Xr)]

I'The calibration of jump diffusion is an ill posed problem. The regularization or the convex penalization term is chosen in
order to obtain a unique solution in a stable manner (for more details about possible choices see [31]]).
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where £ is a non smooth function and 7 is the maturity of the option. For the case of call option
without risk free rate and dividend yield, one has h(x) = (¢ — K)™.

 Calibrate within a computational time smaller than one second (1sec) all the model parameters:
the jump parameters A , 1, ¥ and the volatility function o(z,x) .

Intuition leading the choice of the proxy: In financial markets
* the volatility of the stock price is small,
* and the frequency (or the size) of the price jumps is small.

Therefore, the log price process (X;)o<;<r is not far from xo. Hence, by replacing X;,- by x¢ in the SDE
(3.5) of the AA model:

dX, = o(t,X,-)dW, + u(t,X,- )dt +dJ,, Xo = xo,
we retrieve exactly the Merton model (3.6):
dXM = o (t,x0)dW; + u(t,x0)dt +dJ;, X} = xo.

In other words, the Merton’s model is a good proxy for the AA model (3.3). However, it is not
enough to improve the approximation. We need to add some corrections in order to better approximate
the AA model. To achieve that, we use a suitable parameterization of this model as follows:

dXf =¢e(o(t,X5)dW, + u(t, X5 )dt +dJ;), X5 = xo

so that X! = X; and X° = X™. Therefore, we can perform a Taylor expansion w.r.t. € for € = 1 around 0:

' (XF) 9*(Xf)
XT :x0+ ag ‘8— 2882 |£—
=xM

Suppose & is smooth enough, then using a Taylor expansion for the function 4 at the first order, we get:
9*(X7)
20¢€?
= E[h(xi)] + Eln") (x})

E[h(Xr)] = E[h(X7' + le=0+-+)]

82(X )
29¢2 =0+
= Merton price + corrections terms + errors, (3.8)

where

2(ye
» The correction term E[r()(XM) azgg) le—o] in Equation (3.8) is a combination of Greek (Delta,
Gamma, Epsilon) of the Merton Model:

92(XE)

E[RM (XM) et

3 3
’g 0 Z Oti_,TGreekff (X;M) + Z ﬂ,‘le’GCkfl (XZM + Y,),
i=1 i=1

ZKeep in mind that Greeks have closed formula in Merton’s model
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where
Greek! (Z) =d/E[h(x + Z)]| -0,

1 2 3 2
apr :§C1 +l(€nl+7 — 1)C2, T = —ECI —l(enﬁ? — l)Cz,

BT =—0T—0T,
Bir =—2ANCo,Bor =AMy —17)Ca,
Bsr=—PBir—Bar,

and Cy = [y 62(t,x0) ([ 6(s5,%0)0:6(5,x0)ds), Co = [) t6(t,x0)0:0(t,x0)dt. These corrections
terms are made explicit in Chapter [d]in Theorem 4.2.1]

* The error term errors in Equation (3.8) is estimated for vanilla payoff in Chapter {4 in Theorem
A simple interpretation of the error is the following: if the volatility ¢ and the jump size
involved in the SDE (3.3)) are of the order of A, then the error term is of the order of (Av/T)?.

Note also that the approximation derived in Chapter[d covers not only call-put options but also all vanilla
payoffs depending on X7 (smooth, vanilla, binary). Indeed, the errors are analyzed according to the
payoff smoothness (see for instance Theorem for smooth payoff in general, Theorem for
vanilla options, Theorem [4.5.3|for binary options).

The following chapter is exactly the article "smart expansion and fast calibration for jump diffusions”
published in the journal "Finance and Stochastics", volume 13(4), pages 563:589, 2009. Chapter 5]
provides additional numerical results concerning the accuracy of the approximation formula for bumped
parameters and calibration/optimization robustness as well.
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Chapter 4

Smart expansion and fast calibration for
jump diffusion

Published in "Finance and Stochastics", volume 13(4), pages 563:589, 2009.
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Using Malliavin calculus techniques, we derive in this chapter an analytical formula for the price of
European options, for any model including local volatility and Poisson jump process. We show that the
accuracy of the formula depends on the smoothness of the payoff function. This approach relies on an
asymptotic expansion related to small diffusion and small jump frequency/size. The formula derived
in this chapter has excellent accuracy (the error on implied Black-Scholes volatilities for call option is
smaller than 2 bp for various strikes and maturities). As a result, model calibration becomes very rapid.

4.1 Introduction

The standard Black-Scholes formula (1973) was derived under the assumption of lognormal diffusion
with constant volatility to price calls and puts. However, this hypothesis is unrealistic under real market
conditions because we need to use different volatilities to equate different option strikes K and maturities
T. Market data shows that the shape of the implied volatilities takes the form of a smile or a skew.

In order to fit the smile or the skew, Dupire (in [40]) and Rubinstein (in [[LO1]) use a local volatility
Ooc(t, f) depending on time ¢ and state f to fit the market. This hypothesis of local volatility is interesting
for hedging because it maintains the completeness of the market. However, in a few cases [1]], one has
closed formulas. In the case of homogeneous volatility, singular perturbation techniques in [62] have
been used to obtain asymptotic expression for the price of vanilla options (call, put). Other cases have
been derived using an asymptotic expansion of the heat kernel for short maturity (see [74]).

But Andersen and Andreasen in [8]] show that this sole assumption of local volatility is not compatible
with empirical evidence (for instance, the post-crash of implied volatility of the S&P500 index). Hence,
they derived a model with local volatility plus a jump process to fit the smile (we write it AA model).
Their model may be seen as a perturbation of pure local volatility models. Of course, this is not the only
alternative modelinéﬂ The AA model fits some market data well (see calibration results in [8]] and those
in this work), although we are aware that it does not work systematically nicely. In the following, we
do not discuss the relevance of this model in specific situations. We simply focus on this model in order
to illustrate our new approach for numerical pricing and fast calibration. For an analogous study on the
time dependent Heston model, we refer to the chapter [[0] Andersen and Andreasen [8]] calibrate their
model by solving the equivalent forward PIDE. This sort of problem could be handled numerically using:
an ADI-FFT scheme in [8]], a Finite Element Method in [83l], an explicit implicit PIDE-FFT method for
general Lévy processes in [33] or Predictor Corrector methods to improve the accuracy of the PIDE in
[19]]. In the best case, all of these methods lead to a time of calibration of roughly one minute (see
[8]). Can we reduce this computational time? Is it possible to reach a time of calibration as short as the
computational time of a closed formula such as Merton’s [85]? Our present research responds positively
to the above questions.

In order to handle even more general situations we consider, for the one dimensional underlying state
process, the solution of the stochastic differential equation (SDE):

dXt == G(t,th)dm +,’-L(t,X[7)dt +d][, X() = XQ. (41)

For instance one may think of (X;), as the log asset price. Here (W;)o<,;<7 is a standard real Brownian
motion on a filtered probability space (Q,.%, (% )o<i<r,P) with the usual assumption on the filtration
(Z1)o<i<r and (J;)o<s<7 is a compound Poisson process independent of (W;), defined by: J;, = Zg\il Yi
where N; is a counting Poisson process with constant jump intensity A and (Y;);en+ are i.i.d. normal

Ifor instance, see the book by Lewis [[79] on stochastic volatility models or the one by Gatheral [50] on models explaining
the volatility surface.
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variables with mean 1); and volatility ;. Our main objective is to give an accurate analytic approximation
of the expected payoff (or fair price of this option)

E(h(Xr))

for a given terminal function 4 and for a fixed maturity 7.
The approximation can be applied to the following models:

Example 4.1.1. AA model on the log-asset.
In this case, (X;); is the logarithm of the underlying asset, 6(t,x) is its local volatility and W (t,x) =

A1 — ey _ @) ; X, ;
(I—e™'7) 5~ in order to guarantee the martingale property for (e*);. For a call exercised at
maturity T, with strike K, h(x) = el r(”)d”(efg (rw)=q)dugx _ K\ where r is the deterministic risk-free
rate term and q is the deterministic dividend term. This model was derived in [8|]. In this work we mainly
focus our discussion on this model.

Example 4.1.2. Jump diffusion model on the asset.

(X;); is the forward contract with maturity T, & (t,x) is its volatility and u(t,x) = —Any. For a call
exercised at maturity T, h(x) = el Wdu(x — K),. The primary focus of this model is the implied
normal volatility instead of standard implied Black-Scholes volatility (Japanese markets in [61]) and it
includes the presence of price jumps.

Heuristics of our approximation and model proxy. In practice, at first glance, it is reasonable to
think that (X;); (in the AA model) is approximated by a Merton model, where the coefficients pt and &
only depend on time. We denote this proxy by (X™), and it is defined by

dXM = o (t,x0)dW; + u(t,xo)dt +dJ;, X} = xo. 4.2)
This approximation can be justified by one of the following situations.

i) The functions p(-) and o(-) have small variations, which means that o(z,X;_) ~ o(¢,x0) and
analogously for u.

ii) The diffusion component is small (i.e. |U|e + |0 |w is small) and the jump component as well (i.e.
A(Ins]+7y) is small, meaning that the jump frequency or the jump size is small), which results in
X; =~ x¢. This case is not equivalent to situation i) because the functions may be small and yet have
large variations.

iti) Another obvious reason may be that the maturity 7 is small, leading to X7 = xo.

The heuristics i) and ii) are coherent with the parameter values taken in [8]. When the three conditions
are carried out at the same time, we expect our approximation to become even more accurate. Note
also that no jump cases (A = 0) are allowed. The above qualitative features i) and ii) are encoded into
quantitative constants My, M; and M; defined in @ and will be discussed later in this work. The above
heuristic rule implies that

E(h(X7)) = E(h(X})) +error.

The term E(h(X})) is the price in the Merton proxy which is explicit (see Remark [4.2.1). But this sole
approximation is too rough to be sufficiently accurate. Our work consists of deriving correction terms
for the above equality to attain a remarkably good approximation.
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Smart expansion. To perform a rigorous analysis, we use a suitable parameterization w.r.t. € € [0, 1]:
dXf =e(o(t, X7 )dW, + u(t, X5 )dt +dJ;), X5 = xo, (4.3)

so that X' = X,. We write
g(e) =E(h(X7)) (4.4)

and our approach consists of expanding the price (4.4) with respect to €. For related expansion results,
see [48] and [[106]]. But the accuracy of the expansion is not related to € because the value of interest
€ =1 is not small. This is a significant difference as compared with singular perturbation techniques.
Parameterization is just a tool to derive convenient representations. By using an asymptotic expansion in
the context of small diffusions and small jumps (relative to the frequency or to the size), we can establish
estimates of the derivatives. This allows us to make an explicit contribution at given order and to control
the error. This is achieved by using the infinite dimensional analysis of Malliavin calculus. Here, we
focus our analysis on the first termsﬂ for which we provide explicit formulas. We also give explicit upper
bounds of the errors for general forms of pi(-) and o(-). However, the smaller the parameters u(-),o(-)
and A (|n;|+ ;) are, the smaller the maturity 7 is, or the smaller the derivatives of the functions o(-) and
W () w.r.t. the second variable are, the more accurate the expansion is. Given realistic parameters, the
accuracy is indeed very good (less than 2bp in implied volatilities for various strikes and maturities). As
a result of these expansions, we prove that the price (4.4) in our general model equals the price in
the Merton model plus a combination of Greeks (still in the Merton model). Hence, numerical evaluation
of all these terms is straightforward, with a computational cost equivalent to the closed Merton formula.
The residual terms (otherwise stated as error) are also estimated and their amplitudes depend on the
smoothness of the payoff. We distinguish three cases: smooth, vanilla (call, put) and binary payoffs. In
practice, the vanilla case is likely to be the most useful.

This is our main contribution. Furthermore, from the approximation price we observe that one may
obtain a volatility smile for short maturities (since we use the Merton model as a proxy) and a volatility
skew for long maturities (due to local volatility function).

Comparison with the literature. We refer in particular to Hagan et al. in [61]] for the SABR model, to
Fouque et al. in [44]] for stochastic volatility models, or to Antonelli-Scarletti in [12]. In all these works,
as opposed to our approach, a perturbation analysis w.r.t. the volatility, the mean reversion parameters,
or the correlation, is performed and this leads to writing the price as a main term (essentially a Black-
Scholes price) plus an integral of Greeks over maturities. In the time homogeneous case, the authors
successfully compute or approximate this integral, which strongly relies on PDE arguments. In our case,
we do not approximate the underlying PDE (or the related operator) but owing to Malliavin calculus, we
directly focus on the law of the random variable X7 given Xy = x¢ and not necessarily on the process for
any initial condition. Thus, we are able to handle time inhomogeneous coefficients and jumps as well,
without extra effort. This is a very significant difference from previous research.

Outline of the chapter. In the following, we present some notations and assumptions that will be
used throughout the chapter. Section 4.2]is aimed at presenting our methodology in an heuristic way to
approximate the expected cost. Rigorous results are proved in Section .5] In Section [4.3] we derive
financial modeling consequences from these formulas. These observations lead to justifying simplified

2in the former version of this work, terms at any order have been analyzed.
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choices of the local volatility (of the CEV type), to predict the form of all attainable smiles with their
dynamics. In Section [4.4] we first give a methodology for implementing the approximation formula.
Secondly, we show how to efficiently use our formula for calibrating the model using a relevant algo-
rithm. Finally, we detail numerical applications in calibration for real market data using our simplified
form of local volatility. In Section4.5] we analyze the amplitude of the correction and error terms of the
approximation formula; the analysis depends on the kinds of payoff (smooth payoff in Theorem [4.5.1}
vanilla options in Theorem.5.2] binary options in Theorem 4.5.3).

Notations used throughout the chapter.
Differentiation. If these derivatives have a meaning, we write:

. ,@ (x) = g;’i' (t,x) for every function y of two variables.

e X = % le=o . These processes play a crucial role in the work that follows.

* When there is no ambiguity, we simply write o; = o (¢,x0), ; = H(t,x0), Gtm = %;‘f (t,x0), ,u,(i) =
ai
35 (t7x0)'

The following definition is used to distinguish the payoff functions 4.

Definition 4.1.1. As per usual, we define 6;°(R) as the space of real infinitely differentiable functions h
with compact support (smooth payoffs). The sup-norm of the function h is denoted by |h|. We define 7
as the space of functions with growth being at most exponential. In other words, a function h belongs to
A if |h(x)| < c1eP for any x, for two constants ¢\ and c.

The following notation provides a convenient representation of the correction terms.

Definition 4.1.2. Greeks. Let Z be a random variable. Given a payoff function h, we define the i’ Greek
for the variable Z by the quantity (when it has a meaning) :

Greek! (Z) = (ﬂE[iza(i—&—x)] | —o-

Given appropriate smoothness assumptions concerning h, one also has

Greek!(Z) = E[h\)(Z)].

Assumptions. In order to get accurate approximations, we may assume that coefficients ¢ and p are
smooth enough.

» Assumption (Rs). The functions o (-) and W (-) are continuously differentiable w.r.t. x up to order
4. In addition, these functions and their derivatives are uniformly bounded.

The functions and their derivatives could be piecewise continuous w.r.t. the time variable, without chang-
ing the following approximation formulas and the following error bounds.

The assumption (R4) seems to be restrictive because one requires o (+), i (-) and their derivatives w.r.t.
x to be bounded. On the one hand, this hypothesis is clearly too strong for us to use in the derivation
of our smart expansion: indeed, the reader may check that polynomial growth conditions are sufficient
for this purpose. On the other hand, assuming that the derivatives are bounded is much more convenient
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for explanation purposes. It enables us to state all our error estimates purely in terms of the following
constants:

My = maxi<i<q (|67 |+ [1].0),

My = maxp<i<a (|67 |+ [1].0), (4.5)

My= |njl+v.

M, My and M, play complementary roles.

a) The constant M| is a measure of the norm of the derivatives (w.r.t. x) of the objective functions
o(+) and p(-). All our error estimates (see Theorems [4.5.1H4.5.2H4.5.3)) are linear w.r.t. M}, which
corroborates the proxy intuition explained in item i). The smaller the value of M is, the closer X
and XM are, and as a result, approximation is increasingly accurate. At the limit M; = 0, the initial
model and the proxy coincide (X; = X™) and our approximation formula becomes exact.

b) The constants My and M; also include estimates of the amplitudes of o (-), () and of the jump
components. All our error estimates also depend on powers of My and M;. This mathematically
justifies proxy intuition ii). The smaller My and M; are, the better the resulting accuracy.

In our next theorems, we also clarify the dependence of our estimates regarding jump frequency A and
maturity 7, because as these parameters decrease, the approximation becomes increasingly accurate.

To perform the infinitesimal analysis, we rely on smoothness properties which are not provided
by the payoff functions, but rather by the law of the underlying stochastic models (this is related to
Malliavin calculus). The following ellipticity assumption on volatility combined with (R4) guarantees
these smoothness properties.

* Assumption (E). ¢ does not vanish and for a positive constant Cg, one has

[

<Cg
Oinf

where Gi,p = inf(; er+ xr O(t,%).

We also need to separate our analysis according to payoff smoothness. We thus divide our analysis into
three cases.

* Assumption (H,). h belongs to 65°(R). This case corresponds to smooth payoffs.

» Assumption (H;). h is almost everywhere differentiable. In addition, h and A belong to 7. This
case corresponds to vanilla options (call, put).

* Assumption (Hs). h belongs to 7. This case includes binary options (digital).

4.2 Smart Taylor Development

In this section, we formally show how to replace the price E(h(X7)) by using that found in the Merton
model E(h(X})) with appropriate correction terms. Rigorous justification of the following expansions
is postponed to Section 4.5}
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The initial trick of our smart expansion lies in the use of the parameterized process (Xf), for € € [0, 1],

defined in ( . Under assumption (Ry), almost surely for any ¢, X¢ is C3 w.r.t € (see Theorem 2.3 in

[48]). If we put X, it 88)8(, , we get

dXi, =01 (XF )dW, + (X )dt +dJ;
+ext, (o) (X )aw, + !V (X2 )dr), XEo=0.

From the definitions, X;, = aae, le=0, Gt( i) = ) (t,x0) and ,ut(i) = u(i) (t,x0), we easily get

dXo; =0, Xoo = xo,

dXy, =G,dW, + pdt +dJ,, Xy =0,

dXay =2X1,_ (o aw, + uVdr), X,0=0.
Thus, the Merton model is obtained by the first order expansion of X¢ at € = 0:

Xor+Xir=x0+X117= x¥

We now use the Taylor formula twice: first, for Xﬁ at the second order w.r.t € around € = 0, second for
smooth function  at the first order w.r.t x around xo + X; 7 = X}. One gets:

B[] =Efh(xo-+ Xu7 + 220 4--)] = Efu(xf)] + [ (x3)

Then, the price E[k(X7)] can be approximated by a summation of two terms :

Xor
2

]_|_...‘

* E[h(X}M)]: The leading order which corresponds to the Merton price (BS price when A = 0) for
the payoff h.

« E[p) (x4 )X2 =L]: The correction term which is made explicit in the next theorem.

Theorem 4.2.1. (Main approximation price formula).
Suppose that the process data fulfills (R4) and (E) and that the payoff function fulfills one of the assump-
tions (Hy), (Hy) or (Hz). Then

3 3
Elh(Xr)] =E[r(X7")]+ Y ot rGreek]! (X)) + Y B;.rGreek (X}’ +Y’) + Error, (4.6)
i=1 i=1

where

T T (1)
al’T:/o u,(/ Ws “ds)dt
t

%r :/T(Gf(/T wds) +uz(/tT o,01 " ds))dr,
03,1 :/ / 0,0, )ds)dt,

Bir =An; /0 tuVd,

Bor =2 /OTI(YJZ#,“) +ny0,06V)dt,

r
B3,T:)VYJZ/O 10:0; dl,
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Y' is an independent copy of the variables (Y;);icn-.
In addition, estimates for the error term Error in the cases (H,), (Hz) and (H3) are respectively given in

Theorems|.5.1| [4.5.2land[4.3.3)
Xor

To prove Theorem it remains to show that E[h(l)(X%’I )=5*] is equal to the two summations of
(@.6). The reader familiar with Malliavin calculus for the computations of Greeks (see [46], [54], ...)

may recognize in the expansion of E[r()(X2)221] the generic form of some derivatives (or Greeks) of

E[1(") (X})], derivatives which are written as the expectation of (1) (X) multiplied by random weights.
This is indeed our methodology to explicitly compute the correction terms in the formula (4.6)).

Proof. Define the new function G by G(x) = h(x+xo + f; tdt). One has:

B[O (X)) = |

Xor

T
G<1)(/ G dW, +J7)]
2 0

! (1) (1) w, "
= ([ X1-(! Wi+ 1 Va)G ([ W +-p).

Write (X, ), for the continuous part of (X ),. Using Lemma4.6.2|(since Jr is independent of (W;);c(o,77)
and Leb{r € [0,T] : X;, = X1 ,— } =0 a.s. (see Chapter 1, page 6, Equation (1.10) in [103]), one gets:

X T T
B[00 001 = B(( | 00! Vx5, GO [ oaWi+r)]

T T
+EI([ w"x;,anG ([ oidW+p)
() [T
+E[(/O 0,0, J,dt)G!' )(/O 6, dW, +J7)]
r €] (1) T
+EI([ WG ([ odw ).
Apply Lemmas and {4.6.4) and use Definition {.1.2] of Greeks to get the result. O

Remark 4.2.1. The above price approximation is a summation of three terms:

1. E[h(XM)]: The leading order corresponding to the price when the functions (o;); and (W), are
deterministic. We know that in this case, there is a closed formula : either the Merton closed
formula for call (put), or FFT tools for any other payoff because the characteristic function of XX
is explicit. For instance, the formula for a call in the Merton model (see [83]]) on the log asset is:

. ; )
(AT)' Ar—f vwdugge (FTei(mﬂf) k.71 Do Gr2df+l?’12)
l'! M ) M T M

Fr = e%oH'oT(r(u)*q(u))db”rfl(1*exp(nﬂr}'}‘/Z))T7

I

where

and BSCall(S,K,T,v) is the Black-Scholes price for a call on an underlying S; with initial con-
dition So = S, volatility v, exercised at maturity T and strike K, where the risk-free rate and the
dividend yield are set at 0%.
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2. Z?:l 0657TGreekf-’ (XM): The volatility and drift correction term which depends on the first deriva-
tives of L and ©. This term can be computed as easily as the main term.

3. 21‘3:1 ﬁ,-;Greekf’ (XM 1-Y'): The jump correction term which depends on the first derivatives of |,
o and on the jump parameters. Since Y’ is also Gaussian and independent of X%’[ , the computation
of these Greeks are similar to the previous ones, by adding to the mean fOT W, dt and variance
i odt the quantities m; and y3.

Remark 4.2.2. In the AA model on the log-asset, one has:
(1) 7 GGV
alT—z/ Gt / Gch a’s)dt+)L(e’”+2 —1)/ to;0; dt,
0

2

a3T_/ Gt / 0,0; )ds)dt,

ﬁl,T——an/ IO'G,( >dt,
T
por =20 =73) | 100,
T
Bsr :).sz/O t0,0, dt

T T P T
o =—= 6,2(/ GSGS(I)dS)dt —A(eVHT — 1)/ thO}(l)dt,
Jt 0

Thus, the computation of these constants is simply reduced to that of fo to; G, Dt and f 2 ( ftT GSGS(I)ds)dt.

We note that we can perform higher order approximation formulas that remain explicit. The only
difference is that the number of random variables used as arguments for the Greeks will increase with
each order, and it is within the set (X; 7+ Y|+ +Y/)ien.

4.3 Financial Modeling Consequences

For simplicity, we consider the AA model on the log-asset (an analogous statement would be available
for the jump diffusion model on the asset).

The standard Gaussian framework as developed by Black-Scholes (1973) and Merton (1976) is re-
alized by choosing a constant volatility function o(-) (the computation is still possible for a function
dependent only on time). In order to arrive at a coherent, appropriate analysis and modeling for a fixed
income market (without jump) Andersen and Andreasen [9]] take a parametric form for o

o(r,x) = v(r)ePO-1x, 4.7

where v (¢) the relative volatility function, f3(¢) is a time-dependent constant elasticity of variance (CEV).
PiterbargE] [91] uses the same form but applies it to Power Reverse Dual Currency swaps in order to
handle the skew for the FX.

]/2
Because of fi(f,x) = A(1 —eW+7) — 62(2[”‘), the approximation formula 1D depends only on
o(t,x0),61(t,x0),A,m; and ;. The volatility given in equation (4.7) may generate all possible

31f opy; is the local volatility used in [91]] and L(z) = eJo(r(m)=a(u)du_one hag o(t,x) = opit(t,Le").
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values of the following time-dependent functions & (t,x0) = v(1)eBO=Dx and ¢V (r,x9) = (B(r) —
1)v(1)eBO)=11% because it has two degrees of freedom v(¢) and (). So this kind of volatility poten-
tially creates all attainable prices in this class of models, and thus all attainable Black-Scholes smiles.
This justifies interest in CEV-type volatility (.7).

Attainable Black-Scholes smiles using the model. Can we predict the general form of the smiles
generated by this model?

* For short maturity: using our approach, the model is close to the Merton model related to XM.
Therefore, the shape of implied volatilities forms a smile centered on a point close to the money,

which is on the left when 1; + g > 0 (on the right when 1y + g <0).

Formal Proof: Using the approximation formula, the correction terms are O(T). So when T de-
creases to zero, the price converges to the Merton price. The second statement is easy to check.
One can follow the approach of ([84|] or [50] in Chapter 5 page 62 Equation (5.10)) using char-
acteristic functions, or can prove it directly using some derivations of the Merton formula [85|].

* For long maturity: the smile becomes a skew which is due to the local volatility function (because
the smile for the Merton model flattens for long maturity).

4.4 Numerical Experiments

In this section, we give details of the implementation for the approximation (4.6) and illustrate the accu-
racy of our formula. After that, a generic bootstrap algorithm for calibration purposes is derived. Finally,
a numerical application of this algorithm is applied to market data (currency options).

4.4.1 Numerical Implementation

The case of time homogeneous parameters Oy, G,(l),u, and ut(l) gives us the coefficients @ and 3 exactly

(see their expressions in Theorem . Indeed,in the case of constant parameters (we denote o; = O,
Gt(l) = o1 the same notation holds for i), one obtains that:

(2
o r :‘u‘uf’
s2u)  uoo

aZ,T :( g + ‘u ) )Tza

c3oT?
o3 7 :Tv

AnuOT
ﬁl,T :%a

Ay + 00T
ﬁZ,T — ) 5

AyiooUT
ﬁ3,T :f'

In addition, when these parameters are time-dependent, there are two cases.

* FEither the data are smooth. In this case, we use a Gauss-Legendre quadrature formula (see Chapter
4 section 5 page 151 in [95]) for the calculation of the coefficients & and f3.
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* Or the data are piecewise constant. In this case, we can give explicit expressions of o and f8

in terms of the piecewise constant data. Let 7o =0 < T} < --- < T, =T such that o;, 6,(1), Uy
and /.L,(l) are constant at each interval |7;, T;;] and are equal respectively to o7, , G}Bl , Ut , and

ugjl. Before giving the recursive formula, we need to introduce the following functions: @, =

fé Gszds, ;= fé Wds.

Proposition 4.4.1. Recursive formula.
For piecewise constant coefficients, one has:

1 Ti1—T;)? 1
oy 1., =0T, + (TiJrl - ]—;)“7("131 1 + ( as ) l) !'LE+1"'L7(}+)17

1 1
0.1, =001+ (Tit1 — Ti)(li%jl o171, + O, GH. w.1;)

(41 -T)%, 5 I
+%(O—Ti+lu;i+)1 +"'LTI'+'G7}+1G%'+)1)’
1 T —T)° 1

031, =031+ (TH-I - T;')GTHI 07(‘,»31 o1+ (HZZ)G%H 67(7'21 ’

(T3, —T7)
Bir, =B +lm%ufnfl,

(T3 -T2, ()
ﬁZ,TiH :BZT:' +Af(”“ml +n‘,GTi+IGTi+1)7
(T3, —T7) |
B3z =B +MJ%GTM o1

2
o1, =015+ (Ti1 — Ti)o7,

.1, =1+ (Tiv1 — TPy, -

Proof. According to Theorem §.2.1] one has:

T;

Ti Tit1 (1) Tit1 o)
o7, = /0 m[ o peds)dr+ /T w(f peds)dr

T; Tiv1 (1) Tit1 Tit1 (1)
=01+ /O e L ds)dr + /T w( | H'ds)dt
i i 4

Ti+1 (1) T; 7;'-%—1
=au,1;+ ( Us ds)/o thf+/T i (
i t

i

TH—] é(l)ds)dt

Ti1—T)?
=1, + (Tip1 — Ti)uéﬂ 1, + mz)u’nﬂﬂé& :

The other terms are calculated analogously. 0

4.4.2 Accuracy of the approximation

Here, we give a short example of the performance of our method. The jump parameters have been set to:
A =30%,n; = —8%,7y; = 35%. These parameters are not small, especially for the jump intensity A and
the jump volatility y;. The piecewise constant functions v and  defined in are equal respectively
at each interval of the form [%, %] to 25% —i % 0.11% and 100% — i x 0.75%. The spot, the risk-free
rate and the dividend yield are set respectively to 100,4% and 0%.
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We observe in the table below that the errors of implied Black-Scholes volatilities between our ap-
proximation and the price calculated using a PIDE method do not exceed 2 bp for a large range of strikes
and maturities. The computational time of our formula is less than four milliseconds on a 2.6 GHz
Pentium PC. The accuracy of our formula turns out to be excellent.

Table 4.1: Error in implied Black-Scholes volatilities (in bp=0.01%) between the approximation formula
and the PIDE method expressed as a function of maturities in fractions of years and relative strikes.

T/K 70% 85% 100% 120% 150%
3M 0.02 -0.03 -0.92 -0.07 -0.12
1Y 0.04 0.06 0.15 -0.11 0.01
3Y 0.22 -0.23 0.11 0.41 0.31
5Y 1.39 1.06 -0.01 1.85 1.76

4.4.3 Calibration issues

For this kind of model (AA model on the log asset or on the asset itself), calibration is still challenging
as this model has no analytical formula. We can still perform a numerical calibration using the forward
PIDE as explained in [8]], but the time of calibration remains quite long (about one minute). With our ap-
proach, we can shorten the duration of calibration to less than one second, because our computation of the
model price takes four milliseconds as previously mentioned. We achieve that by a simple bootstrapping
algorithm using the path dependent formula.

Bootstrap algorithm for piecewise data. Suppose that we want to fit option prices for n maturities
To=0<T <---<T, and m strikes K, - - - , K,,. First, we search the parameters A,7; and y; with best
fit. At each interval |7;_;,T;], the data o, 6(1), u and u(l) are constant, equal respectively to oz, G}il),

Uz, and ,u;il), and depending on the vector y; = (V(T;),B(T;)) (see formula . Starting at i = 1, we ex-

press the coefficients o 7; and B 7. as a function of J;, recursively using Proposition . We apply a
local minimization algorithm (for instance, the Levenberg-Marquardt as described in Chapter 15 section
5 page 683 in [95]) in order to fit the implied volatilities for all strikes Ki,-- -, K, at maturity 7; using
our approximation (4.6). Once the vector y; is found, we go to the next step i + 1, update o and 8 and
compute X41.

This calibration procedure is not completely safe. Sometimes we encounter instability problems.
The final parameters depend on the initial guess. Moreover, there are many local minima. To avoid
these problems, we could use a regularization method based on relative entropy (see [31]), but these
issues are not in direct relation with the accuracy of our formula. We think that the set of calibrated op-
tions (call/put) does not contain enough information on the future volatility to ensure a good calibration.
Therefore, it is presumably worth including volatility options in the set of calibrated instruments. This is
a topic for further research.

Calibration results. Here, we calibrate the EUR/USD exchange rate. The surface of implied Black-
Scholes volatility is given in table[5.2]
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Table 4.2: Implied Black-Scholes volatilities for the EUR/USD rate expressed as a function of maturities
in fractions of years and relative strikes. The spot is equal to 1.54.

T/K 92% 96% 100% 108%

6M  10.82% 10.65% 10.53% 10.56%
1Y 10.84% 10.70% 10.63% 10.66%
1.5Y 10.71% 10.60% 10.56% 10.58%
2Y 10.60% 10.48% 10.46% 10.47%

The jump parameters for the calibrated model are A = 1.21%, 11y = —19.07% and y; = 40.30%. The
diffusion parameters v and f for the calibrated model are given in table These values are realistic.
The errors between the implied volatilities generated by the calibrated model and the market data are

given in table[5.4]

Table 4.3: Calibrated values of the piecewise constant functions v and f3.

T v B

6M 10.31% 98.81%
1Y 1027% 100%
L.5Y 9.90% 100%
2Y 943% 100%

Table 4.4: Errors between implied Black-Scholes volatilities for the EUR/USD rate and those calculated
within the calibrated model (in bp) expressed as a function of maturities in fractions of years and relative

strikes. The spot is equal to 1.54.

T/K 92% 96% 100% 108%

6M -4 3 -1 -3
1Y 2 1 0 2
1.5Y -1 -3 -2 1
2Y 2 -1 1 4

The errors show that our model is a good model for the FX rate EUR/USD. Within our relevant
algorithm, we are able to fit a 4 x 4 grid of quoted prices in less than 1 s.
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4.5 Error Analysis

This section is devoted to the mathematical justification of Theorem and to the statement and
proofs of upper bounds for the error term in (@.6). For this, the analysis differs according to the payoff
smoothness (smooth, vanilla or binary). We start with the smooth case (subsection @, which is less
technical. Then, we handle the two other cases (call/put and binary options), which requires the use of
Malliavin calculus.

Throughout these computations, we aim at emphasizing the dependence of error upper bounds in
terms of: the constants My, M; and M; defined in , the jump frequency A and the maturity 7', in
order to support the heuristic choice of the model proxy (see the discussion in the introduction).

Additional notation.

* About floating constants and upper bounds. In the following statements and proofs, for the upper
bounds we use numerous constants, that are not relabelled during the computations. We simply
use the unique notation

A<.B

to assert that A < ¢B, where c is a positive constant depending on the model parameters My, M,
M;, A, T, Cg (defined in assumption (E)) and on other universal constants. The constant ¢ remains
bounded when the model parameters go to 0, and it is uniform w.r.t. the parameter € € [0, 1]. When
informative, we make clear the dependence of upper bounds w.r.t. My, My, M;, A and T.

* Miscellaneous. As usual, the L,-norm of a real random variable Z is denoted by || Z||, = [E|Z|"]'/7.

In the proofs, the derivatives of the parameterized process X¢ are useful: they are defined by
X£ o aiXIS
it~ Jdel

4.5.1 Error analysis for smooth payoff (under (H;))
We begin our error analysis with the case of smooth payoff (h € €;°(R)).

Theorem 4.5.1. Error for smooth payoff. Assume that (R4) holds and that the payoff function h fulfills
Assumption (H). Then the error term in Theorem satisfies the following estimate:

|Error| <. sup [k |(M\VT) ((MoVT)? +MjVAT). (4.8)

j=12

Let us briefly comment on the upper bound, making reference to the introduction. If the functions
o(-) and pu(-) are only time dependent (M; = 0), the approximation formula is exact (the model
and the proxy coincide). If they do not vary much w.r.t. x (M) is small), the accuracy is still good in
view of @.8). If the coefficients o(-), () and their derivatives and the jump size parameters are all
small, the formula becomes very accurate. For instance, in a multiplicative case where o (¢,x) = As(z,x),
w(t,x) = Am(t,x) and |1;| 4+ 77 < A for a small parameter A, it readily follows that M, My, M; = O(A).
Thus

|[Error| = O(A’T[VT +VA]).

Consequently, we may refer to the formula (4.6) in Theorem [4.2.1] as an approximation of order 2 w.r.t.
the amplitudes of the data (with error terms of order 3).
These features arise similarly for the other examples of payoff smoothness.
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Proof. 1t is divided into several steps. First, we write the SDEs satisfied by the three first derivatives
of Xf w.rt. €. Second, we give tight L, upper bounds on these derivatives. Finally, we combine these
estimates with our smart expansion to complete the proof of Theorem

Step 1. Differentiation of X¢. Under (R,), almost surely X£ is C* w.r.t € for any ¢ (see Theorem 2.3 in
[48]) and the derivatives are obtained by successive differentiations of the initial SDE (4.3). Thus, direct
computations lead to
dXE, =0, (XE )W, + e (XE )dt + dJ; + eXF,_ (0" (X2 )W, + u " (XE )dr), (4.9)
dxg, =[2xf, o (X2 ) + e(XF, )07 (X2 )] dW,
+2x8, V(X2 )+ e(XE, ) u (X2 ) de
+ex§,_ (o) (X8 )aw, + i (X2 )dr), (4.10)
dx$, =[3x5,_o\ " (XE) +3(X5,_) %0 (XE ) +3exf, X5, 0 (X2)
+e(Xf, ) o (X)W, +[3X5, u, < XE)+3(XF, )P (X0
+3eXf, X, w7 (XE) +e(xf, ) u (XS ))di
1

)

+ext, (ot (xE)aw, + M (xE )dr) @.11)

Their initial conditions are all equal to 0. Notice that unlike X¢ and X7, the processes X5 and X3 are
continuous.

Step 2. Tight upper bounds. We aim at proving the following estimates for any p > 2:

EIXE,|P <. (MoV'T)? +MYAT, 4.12)
E|X5, 17 <. (M VTP (MoVT)? + MYAT), (4.13)
E|X{, P <. (M\VT)? (MoVT)* +M;PAT), (4.14)

uniformly for ¢ < T.

The existence of any moment is easy to establish, but here, we emphasize the dependence of the upper
bounds w.r.t. the constants My, M;,M;,A and T. Let us first prove the inequality (4.12). From ({.9),
apply Lemma [4.6.5] to the jump component and Burkholder-Davis-Gundy inequalities to the Brownian
part, to deduce

t t
E|Xf,|P <ct?/*7! / E|o(X;)|Pds + 17" / E|us(X;7)|Pds + M) At
; 0 0
t t
w2t [ ol e s+t [ Bl () s
0 ’ ‘ 0 ) ‘
1
<TG+ MEAT + 7 mf [ BIXE [P
0 "

Using Gronwall’s lemma, we easily complete the proof of (4.12). For the second inequality (.13)), we
proceed analogously and we obtain:

EIXS, [P <.TPM] (supE|X{ |” +supE|X{ 7).
s<t s<t
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Thus, plugging the estimate ( into the previous inequality directly leads to (4.13). Now let us prove
the inequality (4.14). As before, apply BDG inequalities combined with Gronwall’s lemma to obtain that

E[X5,|P < TP/ZMP(SUPE|X2s|p + SUPE\Xl S‘Zp + supE[XF X5 (|7 +SUPE’X1 st)

s<t

Use E[Xf X5 P < (]E|X8 2P +E|X5 ?P) and the previous inequalities 1’ 4.13). Then bringing
together dlfferent contrlbutlons easily leads to the required estimate #@.14).

Step 3. Completion of the proof. We follow the formal computations done at the beginning of Section
H4.2] but more carefully. Let us introduce

(1-¢)?

1 1
Y212/ X5 (1 —é€)de, Ys,rz/ X5, de. (4.15)
0 ’ 0 ’

Then applications of Taylor expansions of X7 at € = 0 readily give these equalities:
M m, 1 v
Xr=Xr +Xor, Xr=Xr +§X2,T‘|‘X3,T

where we have used X} = xo + X; 7. Thus a second order Taylor expansion of / at point X writes

Xor

=E[(Xp")] +E[nY () =]+ ERY (X)) X5 1]

+/ ER® (1 —v)XM +vX7) (Xa.1)2)(1 = v)dv.

This proves that the Error term in for smooth payoff equals

Error = E[h) (XM)X 5 7 +/ (A =v)XM +vXr)(Xo1)?)(1 = v)dv. (4.16)
Then it readily follows that

1
[Error| < [hV].. sup (E|XS7[*)2 +[h?)]. sup E|XS [
£€(0,1] e€(0,1]

It is now straightforward to obtain Theorem[4.5.1] by using estimates (4.13}4.14) with p = 2. O

A careful inspection of the previous proof shows that assumption (R3) is sufficient to derive the error

estimate (4.8).

4.5.2 Error analysis for vanilla payoff (under (H))

This case has practical importance, because it includes call/put options. Regarding the error estimates
related to Theorem.2.1] we have paved the way with the case of smooth payoff. Nevertheless, there are
some technical differences. The main one is that our previous proof represents the error in terms of the
second derivative of the payoff, which is meaningless here. The additional ingredient is the Malliavin
calculus integration by parts formula to avoid this second derivative appearing. We now state our main
result when the payoff £ is almost everywhere differentiable (with sub-exponential growth conditions).
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Theorem 4.5.2. Error for vanilla payoff. Assume that (Rs) and (E) hold, and that the payoff function h
fulfills Assumption (Hy). Then the error term in Theorem satisfies to the following estimate:

1
Error| <. (I l+ [ IHO((1= X + ) fad)

« Mo (MiVT)((MoV'T)* +M3VAT). (4.17)

Oinf

The shape of the upper bound regarding 4 is used for convenience in the proof. In view of the growth
condition on 4V, the two first terms depending on 4! are finite and uniformly bounded as Mo, M, M;, A
andT go to 0.

Analogously to the smooth case (Theorem [#.5.1)), the approximation error in (4.6) is of order 3 w.r.t.
the amplitudes of the model data, meaning that (4.6) is a second order approximation formula.

Proof. We split the proof into several steps. First, we assume that the payoff is smooth and we establish
estimates that depend only on A", the first derivative of 4. For this, we need extra tools from Malliavin
calculus, together with tight estimates on the Malliavin derivatives of the parameterized process. Then,
we apply a density argument to approximate 4 under (H,) by a sequence of smooth payoffs.

Step 1. Malliavin calculus. For the usual Malliavin calculus on the Wiener space, we refer to Nualart
[88]. But our case is slighty different because of jumps. However, in the following, our Malliavin
differentiation is w.r.t. the Brownian motion W and not w.r.t. the Poisson measure k. Hence formally,
it is performed by leaving the jump component fixed, computing the Malliavin derivatives or integration
by parts w.r.t. W, and then integrating out w.r.t. the jumps. This principle has been formalized in several
papers, for instance in [25]] Section 3. We briefly recall a few facts using their notations.

The model jumps are associated with the Poisson measure k, with intensity gy, y, (x)dx Adt, where gy, 4,
is the Gaussian density on R with mean 7); and variance yjz. The set of integer-valued measures on [0, 7] x
R is denoted by Qy. For [(.) € .Z = L,([0,T],R), the Wiener stochastic integral [ I()dW, is denoted
by W(I). Let . denote the class of simple random variables of the form F = f(W(l),...,W(ly); k)
where N > 1, (I1,...,Iy) € LN, f: RY x Q, — R is bounded and infinitely differentiable w.r.t. its N first
components (with bounded derivatives). We denote by D the Malliavin derivative operator with respect
to the Brownian motion. For F' € ., it is defined as the .#’-valued random variable given by

D, F = i&xif(W(ll), ... ,W(ZN); K)l,'([).
i=1

The operator D is closable as an operator from L,(Q) to L,(Q,.Z), for any p > 1. Its domain is
denoted by D' with respect to the norm || - |1, given by ||F[|{ , = E[F| +E(J) |D:F|?dt)P/?. We can
define the iteration of the operator D in such a way that for a smooth random variable F, the derivative
DKF is a random variable with values in 2%k, As in the case k = 1, the operator DF is closable from
' C Ly(Q) into L, (Q;.£%%), p > 1. Its domain is denoted by D¥? w.r.t. the norm || F||¢, = [E|F|F +
):’;:1 E(|D/'F Hpjx j)]l/ P, With this construction, the operator D enjoys the same properties as the usual
operator on the Wiener space (see [25] for more details). This justifies, in the case under study, the
application of the usual results established without jumps (in particular the integration by parts formula

and the related general L, estimates, see the proof of Lemma.5.1)).
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Step 2. Estimates of Malliavin derivatives. Under our regularity assumptions (R4), we know that for
any t <T,any € € [0,1] and any p > 1, we have XF € D*?, X{, € D*7, X{, € D*P, X§, € D7 (see the
arguments in [23]). Actually, we aim at proving the following tight estimates for any p > 2:

E|D,X7|" <. |0, (4.18)
E|DXM P <. |02, (4.19)
E|DZ X7 P <. |olZM?, (4.20)
E|D, XEIP <. |o[2M;?, 4.21)
E|D,X{, | <. M}, (4.22)
E|D} Xf, |7 <. M{MY, (4.23)
E|D.X5,|P <. M} (MoV'T)? + MyAT), (4.24)
E|D} X5, P <. M§MY, (4.25)

E|D,X{, | <. M} (MoVT)* +M;PAT), (4.26)

uniformly in (r,5,¢,u) € [0,T]* and € € [0,1]. Here again, the existence of any moment is easy to es-
tablish and we will skip the details. We prefer to focus on the dependence of the upper bounds w.r.t.

Moy,My,M;,A and T. The bounds (4.23] 4.26)) are not used for vanilla payoffs, but only for binary
ones.

Proof of . For r > t, D,Xf = 0. Now take r <1, in this case (D,Xf),<;<r solves the following SDE
(see [23]):

!
DX =0, (X2 )+ [ DXL e(ol (X)W, + i (X)), “.27)

which defines a continuous process. Now, we proceed as in the proof of (4.12H4.1314.14), combining
BDG inequalities and Gronwall’s lemma. This gives

T
EID, XV < Elo,(XE ) + 772 M) [ EID X du <oz,

and proves the announced inequality. Besides, in light of (4.2) one has D, X" = 1,,0,, which directly

gives (4.19).

Proof of ([#20). Take for instance r < s < T, the other cases are handled in the same way. We have
D2 X8 —gD XS ( )(XS )

+ / DXt &(D,Xt_o\2 (X2 )dW, + D.XE_ p® (XE )du)

u—
+/ D2 XZ e(oy) (XE )W, + i (X )du),
which implies, in particular, that t — D2 JXf is continuous. It readily follows that

E|D? XF|P <. MYE|D,XE|P +TP?M! sup E|D,X:D,Xf|"
r<s<u<T
<cMPEID,X{)P+TPPM  sup (EIDX[* +E|D,X;|”) < |o|2M]

r<s<u<T
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where we have used the Young inequality ab < %(a2 + b?) in the second line and (4.18) in the last
inequality. The estimate (.21)) can be established in the same way.
Proof of . We only consider r < . Here one has

D,X{, =0,(X2) +ext, ol (X))

+ | DX (04 (XE) +eXf, o) (XE))aW,

+ [ XS (i (XE )+ exE, ) (X ))du

u
% (1) (1)
+ / D,XE, e(o) (XE )dW, + " (XE V).

r

It readily follows that
EID,X{, [P <, Blo,(X2) +eXf, o (XL)[P+ TP2M] sup (E|D,X{[P+EIDXEXE,|").
r<u<T
Since a fixed time r is equal to a jump time with null probability and thanks to the Young inequality, we
obtain
E|D,XE P < |o|2+MIEIXE,|P + TP M) supT(E|D,X5|1’ +E|D.XE | +E|XE,[*).
r<u<

It remains to take advantage of the inequalities and ([@.18), and to use |0 < Mo and M; < My to
complete the proof of (#.22).

Proof of (#.23H4.24}{4.2314.26)). They can be proved similarly, with long and tedious computations. Since
there is no extra difficulty, we will skip further details.

Step 3. Bounding the error using only A4(!), when £ is smooth. We come back to the representation
(.16) for the error. The first term can be estimated using a Cauchy-Schwartz inequality and (@.14):

B[R XX 5r)] <c BV X7 2 sup [1X57 ]2

£€(0,1]
< KO LM VT) (MVT)? + MIVAT).
This fits the required upper bound (.17) well, because My > Gy

The second term in (4.16) requires a little extra work because of A(2). For this, we state a lemma,
proof of which is given at the end.

Lemma 4.5.1. Assume (E) and (R3). Let Z belong to ﬂplez’P. For any v € [0,1], for k = 1,2, there
exists a random variable Z) in any Ly, (p > 1) such that for any function | € ¢5°(R), one has

E[I% (vXr 4+ (1 —v)XM)Z] = E[l(vX7r + (1 —v)X2)Z)].

121, 4 1
Moreover, one has ||Z))||, <. —2 yniformly in v.

(O VT’
Apply this Lemma with k = 1 and Z = (X,,7)? defined in (4.15). From the estimates (4.13}14.24), we

readily obtain
(M\VT)?*((MoV'T)? +M3VAT)
Ginfﬁ ‘

121 <

We have proved the upper bound (4.17).
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Step 4. Bounding the error under the sole assumption (H,). So far, our error estimates depend on
1), but they have been established for smooth payoffs /. It remains to justify that the error upper bound
still holds for payoffs that are only almost everywhere differentiable (assumption (H,)). We argue by
regularization, which is somewhat standard but a bit tricky here. We follow the proof of [55]].

Denote by p the measure defined by [pg(x)p(dx) = E(g(Xr)) + E(g(XM)) + E(g(XM +Y")) +
fol E(g(vXr + (1 —v)XM))dv. It is well known (see Chapter 3, Theorem 3.14 in [102] for instance)
that there exists a sequence (h,),en of smooth functions converging to / in Lz(p) as well as its first
derivative, as n goes to infinity. Thus, we can pass to the limit for E(h,(Xr)) and E(h,(X)). In view of
(#.T7), we can also pass to the limit for the error bound. It remains to pass to the limit for the corrections
terms, i.e. for the greeks Greek?” (XM) and Greekf.‘” (XM 1+ Y’). To accomplish this, we represent them as
E(h,(XM)Z;) and E(h, (X +Y')Z;) using Lemmawith Z = 1. Since Z; is in L35, we can pass to
the limit as 7 — oo to get E(h(XM)Z;) = Greek!(X¥) and E(h(XM +Y')Z;) = Greek! (XM +Y"). O

Proof of Lemmad.5.1l Take k=1 or 2.

Step 1. F, =vX7 + (1 — v)X}"’ is a non degenerate random variable (in the Malliavin sense). Under
(R4), we know that F, is in N,>;D*”. One has to prove that ¥z, = [if (DsF,)2ds is almost surely positive
and its inverse is in any L, (p > 1). From the linear SDE li satisfied by (D;X;)s</<T, We obtain

v = /OT<vos (X, ) o eyt (@ ) (1 _ )5, (o)) s,

which clearly leads to our claim. Besides, for any p > 1, we derive

||7’1~?V1 lp <e (Ginfﬁ)_z-

Step 2. Integration by Parts formula. Using Proposition 2.1.4 and Proposition 1.5.6 in [88]], one gets
the existence of Zj in L, with

—11k k
1205 <e 19 1 spap o IPFIE st oy 121 -

Step 3: Upper bound of || DF, x4, |77 x4 for ¢ >2.  On the one hand, using the inequalities |
M. T9H4.20H4.21)), we easily obtain
IDE ||ty <c |0|VT. (4.28)
On the other hand, with the same inequalities, we get sup,..; E|D,¥5, [P <. T?|c|2’M? and sup, . E| D2 ¥x [P <.
Tr |G|Z°”M12p for any p > 2. Then, after some computations, it follows that

MilolaT'? | MiloliT | Milol.T

) (4.29)
o f o f o f

H?’E,l 2.0 <c (Ginfﬁ)%(l +

for any p > 2. Finally using |0|. < Cg0j,s (assumption (E)) combined with (4.28) and (4.29), we get
17 1% 2t p2p s ) IPF G 2 pi2p s 1) Se (Gung VT) H(|01VT)* < (GunpVT) "

This completes our proof. O
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4.5.3 Error analysis for binary payoff (under (H3))

For this kind of option, the payoff /4 is not necessarily smooth. We only assume that % is in #. The
results below are easy extensions of the vanilla options case, we leave the proof to the reader.

Theorem 4.5.3. Error for binary payoff. Assume that (Rs) and (E) hold, and that the payoff function h
fulfills Assumption (Hs). Then the error term in Theorem satisfies the following estimate:

1
Ercor| <. (0K + [ I1A((1 = )X +3X7) )

My  M?

L+ SLY((MoVT)? +MIVAT).
O O 4

inf Ginf

Unlike the cases of smooth and vanilla payoff, for binary payoffs the approximation formula (#.6)) is
of first order w.r.t. the amplitudes of the model data (with error terms of order 2). This is inherent to the
lack of regularity of the payoft.

4.6 Appendix

4.6.1 Technical results related to explicit correction terms

In this subsection, we bring together the results (and their proofs) which allow us to derive the explicit
terms in the formula (4.6).

In the following, (i) (resp. (v;) and (v;)) are square integrable and predictable (resp. deterministic)
process and [ is a smooth function with compact support.

Lemma 4.6.1. For any continuous (or piecewise continuous) function f, any continuous semimartingale

Z vanishing at t=0, one has:
T T T
t

Proof. This follows from the It6 formula applied to the product ( ftT f5ds)Z;. O

Lemma 4.6.2. One has:

T T

([ wawi( [ vaw)] =l [ v [ vaw).

In the case of deterministic u, it is equal to [; viu;dt Greek! ([ vidW,).

Proof. We first give the proof in a particular case when u and v are equal to 1. By a usual integration by
parts formula, one has:

E[1(Wr)Wr] —/Zl(ﬁx)ﬁx;%dx—/ZTI(I)(\/TJC);;rdx—TE[I(I)(WT)].

For the general proof: apply the duality relationship of Malliavin calculus (see Lemma 1.2.1 in [88]]),
identifying Itd’s integral and Skorohod operator for adapted integrands. 0




82 4.6 Appendix

Lemma 4.6.3. Write (X{ ), for the continuous part of (X1,);. One has :

T T T T T
E|( / ViXE di)i( / v dW;)] = / 1o / vids)di Greekl ( / vdW,)
0 ’ 0 t 0
T
+/ /.L,/ Vids) dtGreekO(/ vedW;).

Proof. Applying first Lemmato f(t) = v, and Z, = X, one has:

([ vxt, i [ vaw) B[ [ vsyaxi i [ vaw)
T T T
B[ ([ vids)(oaWi-+ mn)l( [ vidw)
— /0 "o /, " vds)dn)E( /O AWl
+ (/OT u,(/tT Vsds)dt)E[l(/OT vidW,)],

and we have used Lemma [.6.2] for the last equality.

Lemma 4.6.4. One has:

T T
E[( / vidid)(Jr)] = A (1 / 1vydit Greekl (Jr +7")
0 0

T
—H/JZ/O tv,dt Greek!, (Jy +1")),

such that Y' is an independent copy of the variables (Y;)icn-

Proof. Using the independence of increments for J, one has:

E[(/OT V;Jtdl‘)l(JT)] - /OT VtE[Jtl(JT —Ji +Jt)]dt = /OT VtE[l (JT _J[)]dt'

Using a conditioning argument and since ):]J‘»zl Y; is a Gaussian random variable, one has:

1(x) =Bl (x+J)] = Y P(N: i m+ZY
keN* j=1 =
=) PN, = mEx+ZY4wm x+inm
keN* i=1 i
Jk—H k+1
= ZNMP’(M = k)(/E[l (x+ Zl Y]+ B (x+ Zl Yi)l)
ke Jj= j=

= 2t (ME[L(x+J +Y)+BEID (x4 J, +Y")),

with Y’ as in the lemma statement.
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4.6.2 Upper bound for compound Poisson process

Lemma 4.6.5. The L), norm (p > 1) of the compound Poisson process at time t < T can be estimated as
follows:

ElJ|P <. MFAt.

Proof. Set Z; = (Y; —ny)/7v;. The random variables (Z;); are i.i.d. Gaussian variables, with zero mean
and unit variance. Then

N; ]
Y zi| <m;(N+1 ) 7).
i=1 =1

N,
[i| = | Z Ny +WZ| < nsIN:+ 7|
] £ -

=

Now it only remains to compute the p-th moment of N, and K, = ‘27’:1 Zj|, which is considered a
standard exercise. We give few details about the second term K;. First compute the characteristic function

. <N

o(u) = E(e"Eim %) = exp(?tt(e*'lz/2 —1)). Then for an even integer p, one has E():ij’zl Z))P =E(K) =
i?@P)(0) = O(At). For odd values of p of the form p = 2k + 1, we apply the inequality ab < 3@ +b?)
to write K < %(K,Zk + K,2k+2). The result then follows by using the estimates from the previous case (p
even). ]
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Chapter 5

Appendix

5.1 Bumped parameters

In this section, we give numerical results concerning the accuracy of the formula for the AA model when
we bump one of the following CEV and Jump model parameters:

e the diffusion level v,
* or the diffusion skew f3,
* or the jump intensity A.

The aim of this section is to observe if the errors are still acceptable when we bump these parameters and
when they become large.
Here, we choose as initial parameters the following:

e So=1,
cr=q=0,
e T=1Y,

e 0 =0.25,

« B=0.95,

e =03,

e u; =—0.08,
* 05 =0.35.

In the table we give the implied Black Scholes volatilities using our approximation formula (4.6]),
the PDE method and give the related errors (in bp). Hence, we observe that the approximation formula
is still very good when & or A increase. Moreover, the errors increase slightly when 3 goes away from
1 and become large when f is close to 0. This is quite expected because in this case the AA model is far
from the proxy (Merton’s model).
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Table 5.1: Implied BS volatilities for the approximation formula, the PDE method and the errors (in bp).
App. form. | 80% 90% 100% 110% 120%

initial parameters | 30.98% | 30.36% | 30.09% | 30.05% | 30.21%

bumped parameters: f = 0.5 | 32.10% | 30.86% | 29.97% | 29.36% | 29.00%

B=0.1 | 33.08% | 31.31% | 29.86% | 28.75% | 27.91%

0=0.5 | 53.54% | 53.33% | 53.16% | 53.02% | 52.91%

A=1|41.71% | 40.88% | 40.46% | 40.38% | 40.56%

A=31]6377% | 63.24% | 62.91% | 62.76% | 62.75%

B=0.1,1=0.0| 27.42% | 26.18% | 25.00% | 23.92% | 22.90%

PDE Method | 80% 90% 100% 110% 120%
initial parameters | 30.96% | 30.36% | 30.09% | 30.07% | 30.24%
bumped parameters: $=0.5 | 32.04% | 30.91% | 30.12% | 29.63% | 29.42%
p=0.1 | 33.11% | 31.45% | 30.18% | 29.28% | 28.74%
0=0.5|53.54% | 53.34% | 53.19% | 53.07% | 52.98%
A=1141.69% | 40.89% | 40.50% | 40.45% | 40.65%
A=3|6381% | 63.32% | 63.03% | 62.91% | 62.93%
B=0.1,A=0.0 | 27.66% | 26.26% | 25.05% | 23.99% | 23.04%

Errors | 80% 90% 100% 110% 120%

initial parameters 1.97 0.54 -0.49 -1.75 -3.19

bumped parameters: $=0.5 5.88 -4.36 -14.94 | -26.77 | -41.94
p=0.1 | -3.37 -14.25 | -31.32 | -52.86 | -83.81

0=0.5 0.25 -1.64 -3.24 -5.34 -6.74

A=1 2.02 -1.17 -3.57 -6.68 -8.99

A=3 | -4.23 -8.47 -11.44 | -15.08 | -18.29

B=0.1,A=0.0 | -24.00 -8.25 -4.98 -6.52 -14.45

5.2 Calibration of Index option

Here, we calibrate the EURO STOXX 50 Index. The surface of implied Black Scholes volatility is given
in the table[5.2)and plotted in the figure[5.1]

We use in this example the same calibration procedure described in Subsection After cali-
bration, the jump parameters are A = 28.52%, 1y = —31.32% and y; = 5.11% and the time dependent
diffusion parameters v and 3 are given in the table The calibrated values are realistic.

The errors between the implied volatilities generated by the calibrated model and the market data are
given in the table [5.4]and plotted in figure[5.2] The errors show that our model is a good model for the
Index EURO STOXX 50. Within our relevant algorithm, we are able to fit a 6 x 5 grid of quoted prices
of Index options in less than 400 milliseconds.

5.3 Robustness of the parameters optimization/calibration
Through the following tests, we aim to check the robustness of our calibration. In other words, we want

to verify that we are able to retrieve the true model from an initial guess. To this end, we apply 3 tests
in a progressive way: In test 1, we treat the case of Merton’s model (8 = 1). In test 2, we allow f3 to be
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Figure 5.1: Market implied Black Scholes volatilities for Index option: EUROSTOXX 50.

Table 5.2: Implied B-S volatilities for the EURO STOXX Index expressed as a function of maturities in
fractions of years (7T") and relative strikes (K). The risk free rate is equal to 4.08%.

T/K  95% 97.5% 100% 102.5% 105%

3IM  20.88% 19.47% 18.13% 16.91% 15.85%
6M  21.12% 20.07% 19.26% 18.55% 17.70%
M  21.30% 20.47% 19.86% 19.33% 18.65%
1Y 21.39% 20.67% 20.16% 19.71% 19.11%
1.5Y 21.46% 20.90% 20.61% 20.40% 19.92%
2Y 21.89% 21.41% 21.18% 21.02% 20.61%

different than 1 which corresponds to CEV model with jump. In test 3, we treat the general case of CEV
model with jump and time dependent parameters.

Test 1. The set of calibration is a grid with relative strikes 80%,90%, 100%, 110%, 120% and ma-
turities: 3M and 6M. The spot is normalised and equal to 1. The parameter B is fixed to 1 (Merton’s
model). The results detailed in table [5.5] show that from an initial guess not far from the true model, we
can retrieve the true solution for the Merton’s model]

Test 2. CEV model with jumps. The set of calibration: relative strikes 80%,90%, 100%, 110%, 120%;
maturities: 3M and 6M. Spot=1. The results are shown in table 5.6 from which observe that the global
calibration of the five parameters still has good results and gives the true solution with small errors.

Test 3. CEV model with jumps and time dependent parameters. The set of calibration: relative
strikes 80%,90%, 100%, 110%, 120%; maturities: 3M, 6M, 9M, 1Y, 18M, 2Y. Spot=1. Here, we use the
algorithm developed in Subsection f.4.3] First, we calibrate the jumps parameters for the first maturi-

Notice for an initial guess far from the solution, a simple calibration is an ill posed problem and can have different mini-
mums (see [31]]). This justifies the need of a regularisation method or to take into the calibration set other financial instruments.
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Figure 5.2: Implied Black Scholes volatilities errors (in bp) between our approximation formula and the
PDE method.

Table 5.3: Calibrated values of the piecewise constant functions v and 3.
T v B

3IM  21.48% 94.36%
6M  18.73% 95.63%
OM  21.46% 93.81%
1Y 21.41% 93.39%
1.5Y 18.06% 96.60%
2Y 18.15% 98.38%

ties (which correspond to the two first maturities in the table [5.7). Second, we calibrate the diffusion
parameters v and 3. The table gives exhaustive results for the calibration of such a time dependent
model.
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Table 5.4: Errors (in bp) between implied B-S volatilities for the EURO STOXX 50 Index and those
calculated within the calibrated model expressed as a function of maturities in fractions of years (7') and
relative strikes (K). The risk free rate is equal to 4.08%.

T/K  95% 97.5% 100% 102.5% 105%
M 9 25 14 -16 54
6M 2 -5 1 7 -13
M 8 -6 -3 5 -8

1Y 22 1 -2 2 -13
1.5Y 22 -4 -4 4 -15
2Y 30 2 -2 2 -20

Table 5.5: Calibration for Merton’s model.

Parameters (in %) \% B A 1y, Y
True model 25 (100) | 10 -5 30
Initial guess 22 (100) 5 0 35

After optimization | 25.02 | (100) | 9.32 | -5.32 | 30.98

Table 5.6: Calibration for CEV model with jumps.

Parameters (in %) \% B A Wy Y
True model 25 95 10 -5 30
Initial guess 22 100 5 0 35

After optimization | 25.02 | 94.93 | 9.33 | -5.28 | 30.96

Table 5.7: Calibrated for CEV model with jumps and time dependent parameters. True jump parameters:
A =10%, u; = —5% vy = 30%. Jump parameters before optimization: A = 5%, u; = 0% y; = 35%.
Jump parameters after optimization: A = 9.32%, u; = —5.32% y; = 30.98%.

True Init. After
model guess opti-
miz.
Maturity|| vin% | B in || vin% | B in | vin% | B in
% % %
3M 25 (100) || 22 (100) 25 (100)
6M 25 (100) || 22 (100) 25 (100)
oM 23 98.30 || 22 100 24.12 | 97.24
1Y 22 9595 || 22 100 22.04 | 95.79
18M 21 94.03 || 22 100 21.02 | 94
2Y 20 93.05 || 22 100 20.01 | 92.90
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Part 11

Local volatility models
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Chapter 6

Introduction

93



94 6.1 CEV model

The local volatility models have been introduced by Dupire (in [40]) and Rubinstein (in [101]), in
order to quote different market prices for different strikes and maturities. Indeed, they derived an explicit
formula for the local volatility o in terms of the call prices for different strikes K and maturities 7':

dCall dCall
+rrK
X(T,K)=2-9T T 9Kk (6.1)

2 d2Call
oK?

This equatio is known as the Dupire’s formula and is derived from the Fokker Plank equation (also
known as the forward Kolmogorov Equation) and given by:

dCall 1 , )
— — T.K)K
or 29 (1K)

d%Call B dCall

oxz K =0

6.1 CEV model

In the case of Constant Elasticity Variance model (known as CEV model), call (and put) options have
closed form-formulas. In this model, the spot (S;) has a well known dynamics given by:

s,

o = (r—qdi+ vsP~law,, sy > 0.
t

The CEV model has been originally studied by Cox in [34]] for the case of B < 1. The case f > 1 has
been treated after by Emanuel and MacBeth in [42]. The Call price in this model can be computed using
the complementary non central Chi-square distribution Q:

Callcpy (S:K,T) = e 97 Q(2x,n,2y) —e T Q(2y,n —2,2x) (6.2)

where

1
n=2+ q,
(r—gq)s 2P~
vi(B— 1)(e2(r—q)(ﬁ—1)T — 1)’
(r—q)kK P Y
YTVB - 1)(1 — e 2r—aB-DTY’

The computation of the non central Chi-square distribution Q can be performed using a recursive algo-
rithm (see Schroder algorithm in [[L04]) or an integration of Bessel functions.

Proof. We briefly indicate here a probabilistic proof (see [104]) having the following steps:

* In the case of no drift (r— g = 0), remark that the variable (z, = ;ﬁ;ﬂ ) is a Bessel process of order

2/3%1 (see Revuz and Yor in [98] for an introduction to Bessel processes). Moreover, we exploit
the fact that the Bessel process has an explicit density (see Borodin and Salminen in [23]]).

IFrom this equation, one can derive an explicit equation that gives the local volatility in terms of the implied BS volatility
Oimp(T,K) and choose a smooth parameterization for the implied BS volatility to derive exact and instantaneous solution for
the local volatility (for more details, see Gatheral book [S0]).
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» After that, we express the drifted CEV process density in terms of the no drifted CEV process
density (see Goldenberg’s result in [57]).

* Then, we write the Call price in this model as a linear combination of two probabilities (like in the
proof of Black Scholes model).

* Finally we express these probabilities in terms of the non central Chi-square distribution Q.

O

Remark 6.1.1. Hsu et al in [65|]) derive another formula for the call price as a series of the complemen-
tary Gamma distribution. Their proof uses the fact that the fundamental solution of the related PDE can
be expressed as a series of modified Bessel functions.

6.2 Review of Analytical approximations

Only in a few cases the local volatility model admits closed form-formulas, as explained in [[1] (the CEV
model belongs to these cases). Otherwise, there are analytical approximations in the following cases.

Separable local volatility. In this case, the local volatility function is written as the product of two in-
dependent functions of time and underlying, o (¢, f) = a(¢)A(f). Hagan et al in [62] derive an asymptotic
expansion for the implied Black Scholes volatility using singular perturbation techniques.

Short maturity. In this framework, Berestycki et al in [20] derived, from Dupire formula’s, the local
volatility function o(z,x) in terms of the implied Black volatility ©;,,,(T,K) in the form of a parabolic
partial differential equation (the same relation has been derived also by Andersen and Brotherton-
Ratcliffe in [10]). Then, they gave explicit formula of the implied volatility near the expiry under an
ellipticity assumption:

1 ds
lim / / @ 6.3
70 Gy (T,K) fG o 71" o 50 ke D) 3

This formula means that the implied volatility near the expiry is approximately an harmonic mean of
local volatility from moneyness 0 to moneyness ln(%). If the local volatility ¢ has a limit for extreme
strikes (limy, g, o, Oimp (T, K) = 0+ (T)), then the implied Black volatilities is given by:

li (T,K) = s)ds) 1. 6.4
ln(Kl)T ooszp T/ G+ S (6.4)

Another type of asymptotic expansion can be also derived from an expansion of the heat kernel (see the
work of Labordere in [74]).

Long maturities. We cite the work of Tehranchi in [108]] that gives asymptotic formula for the implied
Black Scholes volatilities far from maturity with precise estimate of the error. Assuming that, almost
surely S; — 0 as ¢ 1 oo, Tehranchi shows the following formula holds:

)—4In(zm )—l—e(ln(K

K K
D) +4In(g 5

To2 (T,K) = 8|In(E (STAK))\—41n(|1n( E(Sr Ay, 5

lmp

), T),
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where

sup [e(x,T)| - 0
—M<x<M T —oo
for all M > 0.
We also mention Gatheral’s work in [49] who derives arbitrage bounds on the skew of the implied
at-the-money Black Scholes volatility. These bounds are of the order of O(T_%).
Moreover, Rogers and Tehranchi prove in [99] the smile Theorem conjectured by S. Ross. Indeed,
they prove that the smile shape can not move by parallel shifts.

Extreme strikes. Lee shows in [78]] that the implied variance ng p(T, K)T is bounded from above by

a function linear w.r.t. the log moneyness ln(%) for large strikes. He gives explicit formulas which relate
the gradients of the wings of the upper bound of the implied variance and the maximal finite moments of
the spot. For instance, for the left wing, he shows that if ¢* := sup{q : E[S;7] < oo} and
2
o, (T,K)T
B* :=limsup M,
k-0t |In(%)]

then B* € [0,2] and

T UF

Moreover, Benaim and Friz in [[15]] sharpen Lee’s formula. Indeed, they show that Lee’s upper bound
may become a limit provided some technical assumptions which are satisfied for a large class of models.

L, 11 \/E)z.

6.3 Motivation and main results

However in general cases of local volatility functions, there is no analytical formula. Therefore, the
aim of this Part is to derive an explicit closed formula for European options for general forms of local
volatility functions. This closed formula is a Taylor expansion and can be truncated easily at any order.
Therefore, the expected price can be written at any order as a summation of:

* The Black Scholes price with at the money volatility. As in Part[l] this model can be seen as the
proxy of the local volatility model. The advantage of this proxy lies in the explicit calculus of the
prices and the Greeks of vanilla options.

* A combination of the Greeks of the leading Black Scholes price with explicit weights depending
on the volatility, the drift functions and their derivativesﬂ

* A residual error with explicit upper bounds.

This is achieved in Chapter [7] The approximation for vanilla options at the second order is computed in
Theorem[7.2.T|which is a particular case of Theorem.2.T|of Chapter[d] when there is no jump. Moreover,
the explicit calculus of the approximation for vanilla options at the third order is derived in Theorem
In addition, the corrections and the error terms at any order of the closed formula are estimated in

ZWe do not give the expressions of the weight coefficients here because it does not enlighten more the result.
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Theorems [7.4.1}{7.4.2}{7.4.3| according to the payoff smoothness (smooth, vanilla, digital). The accuracy
of the expansion turns out to be excellent. Moreover, we need only few terms to give accurate results
for vanilla options. As a consequence of these expansions, we derive averaging parameters for time
dependent CEV models.

The following Chapter is exactly the article "Closed forms for European options in a local volatility
model" accepted in the journal "International Journal of Theoretical and Applied Finance". The Chapter
[8] details smile behaviors for the CEV model when varying its parameters through the time. We also
provide numerical results concerning the accuracy of the approximation formula for large strikes and
concerning the domain of "numerical” arbitrage of the approximation formulas.
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Chapter 7

Closed forms for European options in a
local volatility model

Accepted for Publication in "International Journal of Theoretical and Applied Finance".
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100 7.1 Introduction

Because of its very general formulation, the local volatility model does not have an analytical solution
for European options. In this Chapter, we present a new methodology to derive closed form solutions for
the price of any European options. The formula results from an asymptotic expansion, terms of which are
Black-Scholes price and related Greeks. The accuracy of the formula depends on the payoff smoothness
and it converges with very few terms.

7.1 Introduction

The local volatility model, introduced by Dupire [40]], Rubinstein [101] and Derman Khani[36], has
the main advantage of fitting all call and put option prices. However, in contrast to the seminal Black-
Scholes model, this model has no more closed form solution for general European options. This comes
from the very general form of the local volatility function. Only in a few cases this model admits closed
formulas, as explained in [1]. In the special case of a separable local volatility function written as the
product of two independent functions of time and underlying, 0j,.(z, f) = o (t)A(f), one can derive an
asymptotic expansion for the price of vanilla options (call, put) using singular perturbation techniques as
explained in [62]. Another type of asymptotic expansion can be also derived from an expansion of the
heat kernel as shown in [[74].However, for the general case, there is no methodology so far. This paper
tackles precisely this challenge.

The overall idea is to do an asymptotic expansion directly on the diffusion using Malliavin calculus.
We will consider a local volatility model, in which the underlying asset is classically related to the
diffusion process

dX; = o(t,X,)dW, + u(t,X;)dt, Xo = xo. 7.1

Typically, in the following, X stands for the log-price of the underlying asseﬂ o(t,X;) is the volatility
term whereas U (¢,X;) is the drift term. Our aim is to give an analytical accurat approximation of any
European option, written as the expected value under the risk neutral probability measure of a payoff
function h evaluated at the maturity time 7':

E(h(Xr)) (7.2)

where E stands for the standard expectation operator. To accomplish this, we introduce a parametrized
process given by:
dXf =€e(o(t,X")dW, + u(t,X5)dr),X§ = xo, (7.3)

where the parameter € lies in the range [0, 1]. Obviously, this parametrized process is equal to the initial
one for € = 1. Remarkably, it is much easier to calculate the price as an expansion formula with
respect to €. Once we have derived all the terms of the expansion, we see that the price of the European
option is obtained by taking € = 1.

Compared to standard expansion methods, the accuracy of this expansion is not related to the perturbation
parameter €. Indeed, the limit value € = 1 is not small at all. This is a significant difference compared to
singular perturbation techniques. Our expansion is just a way to derive convenient closed form solution.
This asymptotic expansion is achieved using the infinite dimensional analysis of Malliavin calculus. A
key feature of our approach is that we can provide explicit formulas for the terms at any order and explicit
upper bounds of the errors, for general forms of the drift term gt and the volatility term . The derivation
of expansion terms at any order completes for pure diffusion some earlier work done in Chapter 4]

Iwhen explicitely stated, X may alternatively stand for the asset price.
2in some sense detailed later in this Chapter
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In practice, we compute a limited number of terms. The main term is the price in a suitable Black-
Scholes model, while the other terms are a weighted summation of sensitivities (Greeks). These terms
are straightforward to evaluate numerically, with a computational cost equivalent to the Black-Scholes
formula. The smaller the parameters ¢ and ¢ are, the smaller the maturity 7 is, or the smaller the
derivatives of the functions y and ¢ with respect to their second variable are, the faster the convergence
of the expansion is. This means that in practice, we need to calculate the expansion up to the second order,
or possibly to the third order, to achieve an excellent accuracy (smaller than 2 bp on implied volatilities
for various strikes and maturities). In addition, as a consequence of our approximation formulas, we
establish that, for any fixed maturity, a time dependent CEV model is equivalent to a CEV model with
appropriate constant parameters (parameter averaging principle).

Outline of the Chapter. In the following, we give some notations and assumptions used throughout
the Chapter. The next section presents in an heuristic way our methodology to approximate the expected
cost. We provide approximation formulas at the second and third order, using a log-normal or a nor-
mal proxy. In Section [7.3] we detail the approximation formulas for the case of time dependent CEV
volatility. In Section we analyse the magnitude of the correction and error terms of the general
approximation formula (and at any order). The analysis depends on the payoff smoothness. The proofs
of the main theorems [7.4.TH7.4.21{7.4.3| are postponed to section In appendix we bring together
useful results to make our expansion explicit.

Definitions

Definition 7.1.1. As usual, we define €;°(R) as the space of real infinitely differentiable functions h with
compact support. We also define 7€ as the space of functions having at most an exponential growth. A
function h belongs to H if |h(x)| < c1e™ for any x, for two constants ¢| and c;.

Notations
The following notation will be used extensively throughout the Chapter.

Notation 7.1.1. Differentiation.
If these derivatives have a meaning, we write:

R [(i) (x) = ?;;Ii, (t,x) for any function y of two variables.

. X£ _ aith

it = ger is the i'" derivative of the parametrized process with respect to €.

aix£ . . .
* Xit = Sgr le—o . These processes play a crucial role in this work.

e 0, = 0 (t,%0), s = 1(t,x%0), 6" = O (1, x0), 1" = O (1, xp).

The following notation of Greeks will be useful for interpreting the expansion terms.

Notation 7.1.2. Greeks.
Let Z be a random variable. Given a payoff function h, we define the i'" Greek for the variable Z by the
quantity (if it has a meaning) :
J'E[h(Z+x)]
h
Greek} (Z) = T]xzo.

Assumptions. In order to derive accurate approximations, we may assume that coefficients o and

are smooth enough. In what follows, N is an integer greater than 4.
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 Assumption (Ry). The functions ¢ and | are bounded and of class CN w.r.t x. Their derivatives
up to order N are bounded.

This assumption may be restrictive because ¢ and u have to be bounded as well their derivatives. Actu-
ally, this statement is made only to simplify a bit our analysis, but we can prove that our approximation
remains valid if some boundedness requirements are partially relaxed.

Notation 7.1.3. Function amplitudes.
Under (Ry), we set

My :ma-x(yoyuw e 7|G(N)|°°7 |nu|°°7 e 7‘:u(N)|°°)7 (74)
My =max(|6V |, |6, |1y [ M]). (7.5)

Although My and My may depend on N, we remove this dependence in our notation, for the sake of
simplicity.

Remark 7.1.1. The constant My measures the amplitude of the objective functions UL, o and their deriva-
tives w.r.t. the second variable, whereas M| measures only the amplitude of their derivatives. Notice that
M, < My and in case of deterministic functions ¢ and |, one has M = 0.

To perform the infinitesimal analysis, we rely on smoothness properties not related to the payoff
function itself but rather to the law of the underlying stochastic models.

* Assumption (E). The function ¢ does not vanish and its oscillation is bounded, meaning 1 <

G o .
lTLf < Cg where Oyp = inf(; y)er+ xR O (£,X).

The assumption (E) is commonly called an ellipticity assumption.
We also need to divide our analysis according to the payoff smoothness. We split our analysis into
three cases.

» Assumption (H;). h belongs to €;°(R). This case corresponds to smooth payoffs.
o Assumption (H,). h and h'V) belongs to . This case corresponds to vanilla options (call-put).

e Assumption (Hs). h belongs to 7. This is the case of binary options (digital).

7.2 Smart Taylor Development

In the following, we provide several approximation formulas, at the second and third order. These
formulas are different if X models the logarithm of the underlying asset price or if it models directly the
asset price. In the first case, our approximation is equivalent to take a lognormal proxy (or Black-Scholes
proxy) for the asset price; in the second case, it is equivalent to use a normal proxy.

7.2.1 Second order approximation

Here, we consider that the dynamics for X models the logarithm of the underlying asset. In the case
of call option, the payoff is then i(x) = (¢* — K) ., where K is the strike price.

Our perturbation approach relies on the Taylor expansion of the parameterized process. We have
paved the way in our previous work Chapter[d](see Section[4.2). For the sake of completeness, we briefly
recall the main steps to achieve a closed approximative formula.
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iye
From the definitions, X;, = % le—0, we can expand the perturbed process X as follows:

2
€
X7 = Xf|e=o+ X117+ DTRC (7.6)

Indeed, under the assumption (Rs), .almost surely for any #, XF is C* w.r.t € (see Theorem 2.3 in [[72]).

The diffusion dynamics of (X, = %)Qo is obtained by a straight differentiation of the parameters of

the diffusion equation of X¥. The first order term Xﬁ, is easily obtained as follows:
det :G[ (th)dm + ”[ (th)dt
+eX¢, (0" (X2)aW, + " (XE)dr), XE o = 0. (1.7)

From the definitions, we have o; = o (t,x0), 1 = U(t,xo), Gt(i) = o@(r,xp) and [.L,(i) = u®(z,x0). Then,
we obtain

XmJ :thu/t + thl‘,XLO == 0,
dXzJ =2X VI(Gt(l)dVV; + ,llt(l)dt),X270 =0.

Applying the expansion at € = 1, we conclude that xo + Xj 7 is a proxy for Xr. This is a Gaussian
proxy for X, hence a lognormal proxy for the asset price (or Black-Scholes diffusion proxy). It justifies
the notation

t t
XEBS = xo+ X117 :x0+/ usder/ o, dW;. (7.8)
0 0

To obtain an approximation formula, we use the Taylor formula twice: first, for X; at the second order
w.r.t € around xo, secondly for smooth function 4 at the first order w.r.t x around X25. This leads to:
Xor Xor
Elh(Xr)] = B + 2T 4 .)] = E[(XFS) + EIn) (xF) 2T
To achieve an explicit formula, it remains to transform the correction term involving X, 7 into a sum-
mation of greeks computed in the Black-Scholes proxy. This is performed using the Malliavin calculus.
We refer to Chapter ] (Proof of Theorem [{.2.1)) where the computations are detailed, or to the proof of
Theorem[7.2.2]in this Chapter. This leads to the following theorem, which is a particular case of Theorem
|.2.T] of Chapter 4 when there is no jump.

1+

Theorem 7.2.1. (Second order approximation price formula using lognormal proxy).
Assume that the process (X;) fulfills (Rs) and (E), and that the payoff function fulfills one of the assump-
tions (Hy), (Hy) or (Hz). Then

3
Elh(Xr)] = E[R(X7*)]+ Y 0y rGreek}(X7°) + Resida, (7.9)
i=1

where

T T (1)
al,rz/o uz(/ s ds)dt,
t
TP L) ()
aZ’T:/o (o; (/ s ds)+u,(/ 0,05 'ds))dt,
13 t

T o " (1)
03,7 :/ o; (/ 0,0, 'ds)dt.
0 t
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Additionally, estimates of the error term Resid, (otherwise stated as residual terms) are given in Theo-
rems|7.4.1}|7.4.2land|7.4.3| according to the cases (H,), (Hz) or (H3).

Formula is refereed as a second order approximation formula because we establish, in Theorem
for call/put option, that the error term Resid, is of order three with respect to the amplitudes of
coefficients.

The above approximation of the price is a sum of two terms:

1. E[h(X25)] is the leading order, corresponding to the price when the parameters o and p are deter-
ministic. In the case of call/put option, it is given by the Black- Scholes formula. For other payoffs,
we can use numerical integration because the density of the random variable X}?S is explicit.

2. Y7 | a;rGreek! (XB5) are the volatility and drift correction terms, which depend on the first deriva-
tives of 1 and 0. These terms can be computed as easily as the main term.

The above formula may be simplified when the asset (i.e. (e¥);>0) is a martingale under the pricing
measur (also refered to Dupire model). Then, p(t,x) = —16?(t,x) and the formula writes
1 3
E[h(X7)] = E[h(XE5)] + CLT(EGreek}f(XIT?S) - EGreeké’(XfS) + Greek (X25)) + Resid,

with

LY L)
C1,T=/ o; (/ 0,05 'ds)dt. (7.10)
0 t

7.2.2 Third order approximation using a lognormal proxy

If the original model is close to its lognormal proxy, the formula is very accurate (see the nu-
merical results in Section [7.3). Otherwise, we can obtain higher accuracy by adding third order cor-
rection terms. The following result provides explicit expressions for these terms in the Dupire model
(u(t,x) = —302(t,x)) for vanilla payoffs. Before, we introduce an appropriate definition, which will
enable us to represent the coefficients of the greeks as iterated time integrals.

Definition 7.2.1. Integral Operator.
The integral operator @' is defined as follows: for any integrable function I, we set

T
o)l = / L, du
t
fort €[0,T]. Its n-times iteration is defined analogously: for any integrable functions (1,--- ,1,), we set
w(ll y T 7ln)tT - w(ll a)(127 e 7ll’l)T)tT
fort €[0,T].

Theorem 7.2.2. (Third order approximation price formula in the Dupire model using lognormal
proxy). Assume that the process (X;);>o fulfills (R7) and (E), and that the payoff function fulfills the
assumption (Hy). Then

6
Elh(Xr)] = E[(X£)] + Y nirGreeK] (X7°) + Resids, (7.11)
i=1

3for instance, when one models the evolution of the forward price.
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where
. :Cl,T Gr Gr Gr Gr Gr
M= 2 2 4 4 2
3Gy Gr Gr 5Cir 5SCr  1Cer Cir  Csr
Mr=-——t5 5ty 4 > T2 T
3C;
M3, 7 =Ci1,1 —2C47 —2Cs 7 —6Ce 1 —3C7 1 — ZS’T ;
13C 13C
Na1 =Ca1 +Cs1+3Cs 1 + 27’T + 48’T )
N5y =—6C;r —3Cs r,
Ne,r =2C; 7 +Cs 1,
and
Cir = 0(c?,66)], Cor = w(c?,(cV)?)f,
Cir = w(c?, 00N Cir = 0(c?,62,(cV)?){,
Csr = w(c?,6%,66%)], Cor = 0(0?,00" ),
Crr = 0(c?,6%,66", 66T, Csr = 0(c?,00,6%,606W)T.

In addition, the estimate of the error term Resids is given in Theorem

An application of Theorem yields that Resids is of order four with respect to the volatility
coefficient.
The proof of Theorem is postponed to subsection[7.6.3

7.2.3 Third order approximation using a normal proxy

In the previous third order approximation formula, numerous correction terms appear because the smart
expansion involves simultaneously the volatility and the drift coefficients. If we consider directly a
model on the asset price (and not on its logarithm), our expansion simplifies much because the drift in
the Dupire model vanishes:

The above function ¢ for the asset price X and the volatility function ¢ in for the log-asset are
different, they are simply related by a change of variables of exponential type. Similarly, here the call
payoff is equal to i(x) = (x— K ). Then, we can perform our expansion approach using the parametrized
process X ¢ that solves dXf = €o(1, X )dW;. We obtain that the model proxy for the asset price is defined
by

t
X,N:x0+/ o (s,x0)dW, (7.13)
0

which is a Gaussian process. We call it normal proxy. Formal computations of our smart expansion
are analogous to those done for the lognormal proxy. We will skip details regarding the proof and the
assumptions. We do not provide a rigorous estimation of the error term, we prefer to focus on the
expressions of correction terms to achieve a third order approximation formula.
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Theorem 7.2.3. (Third order approximation price formula in the Dupire model using normal proxy).
For a vanilla payoff h, we have

6
E[h(Xr)] = E[h(X7)] + Y ni7Greek] (X7 ) + Error, (7.14)
i=1
where
C C
M, =0, M = gT + 32’T, ns,r =Ci1,
Nar =Ca1+Cs7+3Ce 1, ns,r =0, Ne,r =2C71r +Cs 1.

The coefficients (Cjr)1< j<g are defined as in Theorem[7.2.2}

In the case of call/put option, the computations of the main term E[2(X¥ )] and of the related greeks
(Greek! (XY))1<i<¢ are straightforward because the proxy (7.13) is normal. Numerical results are re-
ported in Section[7.3]

If one prefers to restrict to a second order approximation formula, it simpy writes

E[h(Xr)] = E[R(X})] 4 Ci rGreeKi(XYN) + Error. (7.15)

7.2.4 Parameter averaging in CEV model

The time dependent CEV model on the underlying asset is defined by
dx, = v,xPaw,.

We suppose that the risk-free rate (r;), and the dividend yield (g, ), are both deterministic. For simplicity
in the following discussion, we assume Xp = 1 in order to have a normalized model.

As discussed in Chapter ] (see Section {.3), the time dependent CEV model is interesting because it
generates all the possible values of (o;), and (G,(l))t by appropriate choices of (v;); and (f),. Thus, in
view of and (7.15)), this model may potentially generate all the possible prices at the second order.

When the coefficients (v;), and (f;); are constant, there is a closed formula for the call price (see
[104]). For general time dependent coefficients, we may use our approximation formulas based on
log-normal or normal proxy. Alternatively, we may look for an equivalent CEV model with constant
coefficients ¥ and B, with which the prices coincide at the second order. This is possible maturity by
maturity. This principle has been studied for stochastic volatility models by Piterbarg [92]]. Owing to our
approximation formulas, we retrieve that

I v2dt
T

v? fé vids

V= £ 057
foT VP f(; vids

_ T
) B= / B:p.dt, with p, = (7.16)
0

Proof. In the context of lognormal proxy (f close to 1), we take
1 : .
o(t,x) =vieP= V% u(r,x) = —Ecz(t,x), h(x) = e*jOT’“‘ds(efor(’“%)dsex —K)4.
Then, our approximation formula (7.9) depends only on two constants fOT v2dt and fOT v? ftT(ﬁs -

1)v2dsdt. Consequently, two models must coincide with respect these two quantities in order to pro-
vide the same approximation formula (with lognormal proxy) up to second order. This easily leads to
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the identification (7.16).
When the model is close to normal proxy (f close to 0), we take

G(t,x) — V[Xﬁ’, u(t,x) — O’ h(x) — effoT rSdS(efOT(rS*q,q)dsx . K)+

Then, using a similar approach based on formula (7.13)), one retrieves exactly the same averaged param-
eters (7.16).

We conjecture that the averaging rule is true not only for 3 close to 0 or 1, but also for various
values in between. A numerical result (see Table illustrates this averaging property. O O

7.3 Numerical Experiments

In this section, we compare approximation formulas given in Theorem[7.2.1] Theorem[7.2.2]and Theorem
applied to Dupire model for call option. We assume that the risk-free rate and the dividend yield
are both set at 0. For the following numerical results, we choose a CEV-type function for the local
volatility. When the model is applied directly to the asset price (see (7.12) and Theorem[7.2.3)), we have

o(t,x)=vxP,  u@x)=0, h(x) =@Ex—K),.

When the model is used for the log-asset price (see (7.1]), Theorems and|/7.2.2)), we have
1
o(t,x) = v~ (s x) = —562(1‘,)6), h(x) = (¢" —K)4.

When the functions (v;),; and (f3;); do not depend on time (and thus are constant), we use the closed
formula for call price [104] as a benchmark. Otherwise, for time dependent functions, we use PDE
methods to obtain reference values.

7.3.1 Accuracy of the second order formula (7.9) (based on a log-normal proxy)

Constant parameters. In the case of time independent volatility, the coefficient C r becomes:

2
Cir= GSG(I)T—.
’ 2

In Table we report related numerical results, which show that our formula is very accurate (errors
in implied volatilities are smallelﬂ than 2 bp) for B close to 1. This is coherent with the estimate of the
error term Resid,, because this model is close to the lognormal one. In Table analogous tests are
reported with B = 0.2. Here, the errors are roughly equal to 20 bp, which is quite satisfactory. This case
motivates the use of the third order approximation formula to obtain a better accuracy, this is discussed

in the following subsection (see Table[7.6).

Piecewise constant parameters. Here, the functions v and 8 are piecewise constant on each interval
[T;, T;11 [ for each i < n. Therefore, C;  can be calculated recursively

(l)ii1 2 (Ti+1_7})2 3 (1)
Ciiy = Cup+ (T =Togoy” ), or (T =T+ ~—————01.07,,

=1

41 bp on implied volatilities is equal to 0.01%.
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Table 7.1: Errors on implied Black-Scholes volatilities (in bp) between the second order approximation
formula (7.9) and the closed formula for CEV model (6.2)), expressed as a function of maturities in
fractions of years and relative strikes. Parameters: f = 0.8, v = 0.2 and xo = 0.

T/K 80% 90% 100% 110% 120%
6M -1.63 -0.22 -0.08 -0.17 -0.86
1Y -1.11 -0.26 -0.15 -0.22 -0.63
1.5Y -0.98 -0.32 -0.21 -0.28 -0.60
2Y -0.95 -0.38 -0.28 -0.34 -0.62
3Y -0.98 -0.51 -0.41 -0.46 -0.69
5Y -1.16 -0.77 -0.67 -0.70 -0.89
10Y -1.70 -1.37 -1.26 -1.27 -1.40

Table 7.2: Errors on implied Black-Scholes volatilities (in bp) between the second order approximation
formula (7.9) and the closed formula for CEV model (6.2)), expressed as a function of maturities in
fractions of years and relative strikes. Parameters: f = 0.2, v = 0.2 and xo = 0.

T/K 80% 90% 100% 110% 120%
6M -22.85 -3.33 -1.07 -2.61 -14.87
1Y -16.60 -4.07 -2.14 -3.21 -10.20
1.5Y -15.21 -5.11 -3.21 -4.03 -9.31

2Y -15.13 -6.23 -4.27 -4.92 -9.29

3Y -16.36 -8.53 -6.39 -6.74 -10.12
5Y -20.47 -13.19 -10.60 -10.42 -12.74
10Y -32.01 -24.45 -20.77 -19.45 -20.26

: 1) 7,2 . . . :
with C1 7, = 0'3 0'(5 )%. In our tests, the piecewise constant functions v and 3 are equal respectively on

each interval of the form [2%, %[ to 25% — i < 0.11% and 100% — i x 0.75%. Results given in Table
show that our second order approximation formula is still very accurate for time dependent parameters
v and 3. Using the same time dependent coefficients, we test the parameter averaging principle, that is
described in paragraph[7.2.4] Results are reported in Table The accuracy is still very good.

7.3.2 Accuracy of the third order formula (7.11)

Constant parameters. Tables [7.5]and [7.6]show that the third order approximation (7.T1) is very good for
various values of 3. The use of this formula has much improved the accuracy in the case f = 0.2, for
which the model is not close to the log-normal proxy.

7.3.3 Accuracy of the third order formula using normal approximation

Constant parameters. Tables[7.7)and[7.8|show that the third order approximation (7.14)) is also very good
for various values of 8. The computation of this formula is slightly quicker than that with a log-normal
proxy, because there are fewer terms.
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Table 7.3: Errors on implied Black-Scholes volatilities (in bp) between the second order approximation
formula (7.9) and the PDE method, expressed as a function of maturities in fractions of years and relative
strikes. Parameters: time dependent v and 3, xo = 0.

T/K 80% 90% 100% 110% 120%
6M -0.67 -0.09 0.03 -0.07 -0.35
1Y -0.44 0.10 0.06 -0.09 -0.26
1.5Y -0.38 -0.13 0.09 0.11 -0.25
2Y 0.37 0.15 -0.11 -0.14 -0.26

Table 7.4: Errors on implied Black-Scholes volatilities (in bp) between the closed CEV formula (6.2))
applied to an equivalent CEV model (7.16) and the PDE method, expressed as a function of relative
strikes. Parameters: time dependent v and 8, xo =0and T = 1Y.

T/K 80% 90% 100% 110% 120%

1Y 0,09 -0,27 -0,20 -0,07 0,00

7.4 General results about error analysis

In this section, we analyse the error terms according to the payoff smoothness (smooth, vanilla or binary).
To accomplish this, we first give some notations that will be used throughout the theorems and the proofs.
Then, we provide a general expansion formula of the price E[A(Xr)] at any order, making explicit the
order of magnitude of each term. This expansion is different according to the payoff smoothness: smooth
payoff in Theorem vanilla payoff in Theorem under an additional ellipticity condition on ¢
and binay payoft in Theorem

For the three cases, we discuss the form of error estimates. We show that the second order approxi-
mation formula (and those at any order) is accurate under one of the following conditions:

* the maturity of the option 7 is small.

* the derivatives of the volatility ¢ and the drift ¢ w.r.t. the second variables are small. This is
measured by the constant M; defined in (7.5). In particular, the model and the proxy coincide
(X = X55) when these derivatives vanish (M; = 0, see remark . This is coherent with our
estimates since the correction and the error terms are estimated as O(M;) where O is the Landau
symbol.

* The volatility, the drift and their derivatives are small. This dependence is represented using the
constant My defined in (7.4).

Moreover, when the three conditions are all satisfied, the approximation formula becomes even more
accurate.
All the proofs are given in Section [7.5]

Notations.
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Table 7.5: Error in implied Black-Scholes volatilities (in bp) between the third order approximation
formula (7.1T)) and the closed formula for CEV model (6.2)), expressed as a function of maturities in
fractions of years and relative strikes. Parameters: f = 0.8, v = 0.2 and xo = 0.

T/K 80% 90% 100% 110% 120%
6M -0.08 -0.02 -0.01 0.00 0.00
1Y -0.06 -0.03 -0.01 -0.01 0.00
1.5Y -0.06 -0.03 -0.02 -0.01 0.00
2Y -0.06 -0.04 -0.02 -0.01 0.00
3Y -0.08 -0.05 -0.03 -0.01 0.00
5Y -0.10 -0.06 -0.04 -0.01 0.01
10Y -0.16 -0.10 -0.06 -0.02 0.01

Table 7.6: Error in implied Black-Scholes volatilities (in bp) between the third order approximation
formula (7.11)) and the closed formula for CEV model (6.2), expressed as a function of maturities in
fractions of years and relative strikes. Parameters: f = 0.2, v = 0.2 and xo = 0.

T/K 80% 90% 100% 110% 120%
6M -1.23 -0.18 -0.01 0.12 0.53
1Y -0.93 -0.34 -0.03 0.22 0.52
1.5Y -1.19 -0.51 -0.06 0.31 0.68
2Y -1.51 -0.68 -0.09 0.39 0.85
3Y -2.22 -1.05 -0.19 0.52 1.17
5Y -3.71 -1.87 -0.47 0.67 1.69
10Y -7.32 -4.13 -1.56 0.55 2.38

* About floating constants and upper bounds. In the following statements and proofs, for the upper
bounds we use numerous constants, that are not relabelled during the computations. We simply
use the unique notation

A< B

to assert that A < ¢B, where c is a positive constant depending on the model parameters My,
My, T, Cg (defined in assumption (E)) and on other universal constants. The constant ¢ remains
bounded when the model parameters go to 0, and it is uniform w.r.t. the parameter € € [0, 1]. When
informative, we make clear the dependence of upper bounds w.r.t. My, M| and T.

* Model differentiation. In the proofs, the derivatives of the parameterized process X¢ are useful:
I'XE

they are defined by X/, = 5 when these derivatives have a meaning. Additionally, we write:
JL((YEk
Y]{: = X; — (X() + SXLT), kafi,T - ((887;))7 Yk,i,T = Y]gi,Tv

1-1) 4
Jo Yii i pAid,

Riir = i
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Table 7.7: Error in implied Black-Scholes volatilities (in bp) between the third order approximation
formula (7.14) and the closed formula for CEV model (6.2)), expressed as a function of maturities in
fractions of years and relative strikes. Parameters: f = 0.8, v = 0.2 and xo = 0.

T/K 80% 90% 100% 110% 120%
6M -1.61 -0.07 -0.01 0.03 0.77
1Y -0.88 -0.08 -0.02 0.03 0.45
1.5Y -0.61 -0.11 -0.02 0.04 0.31
2Y -0.51 -0.15 -0.03 0.06 0.25
3Y -0.49 -0.23 -0.05 0.10 0.23
5Y -0.71 -0.44 -0.11 0.16 0.30
10Y -1.70 -1.09 -0.37 0.22 0.56

Table 7.8: Error in implied Black-Scholes volatilities (in bp) between the third order approximation
formula and the closed formula for CEV model (6.2), expressed as a function of maturities in
fractions of years and relative strikes. Parameters: f = 0.2, v = 0.2 and xo = 0.

T/K 80% 90% 100% 110% 120%
6M 0.22 0.06 -0.01 -0.06 -0.16
1Y 0.41 0.11 0.00 -0.10 -0.26
1.5Y 0.56 0.17 0.00 -0.13 -0.34
2Y 0.71 0.24 0.02 -0.16 -0.41
3Y 1.02 0.39 0.06 -0.20 -0.53
5Y 1.75 0.79 0.21 -0.23 -0.71
10Y 4.71 2.55 1.15 0.10 -0.84

* Miscellaneous. As usual, the L,-norm of a real random variable Z is denoted by || Z||, = [E|Z|"]'/7.

7.4.1 Error analysis for smooth payoff

Theorem 7.4.1. Asymptotic expansion for the price of smooth payoff ( h € 6;°(R)).
For m > 2 assume that (R, 12) holds. If the payoff h fulfills Assumption (H,), then one has
m
E[h(Xr)] =E[h(X?")|+ Y. Ord; + Resid,, (7.17)
i=2

where different terms are estimated as follows.

* The contribution for orderi € {2,...,m} : Ord; = Z,E%:JI E[h®) (XES) 1;1;';1'7] and it is estimated by

\Ord;| <. sup |h\) | MiMiT (VT (7.18)

1<j<[4]-1
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. The residual term for order m is : Resid,, = E[Z,[El Rk (X BS )R"k”,"
B4l

mJ, Jo REIED (X 4 (1 =) (XBS)) (1 — )51 av], such that

|Residyy| < sup|hY) | MyMJ (vV/T)"™ 1. (7.19)

|
1<j<| %]

In the multiplicative case (o (t,x) = Aa(t,x) and u(z,x) = Ab(t,x)), we have My <. A and M; <. A.
Thus, we obtain

Ord; = O((AVT))) for2 <i<m, Resid,, = O((AVT)™).

This justifies that Equation (7.17) should be viewed as an approximation formula of order m.

Notice that the above theorem provides which terms have to be computed to achieve a given accuracy.
But to effectively compute these terms as a summation of Greeks (as in Theorems [7.2.1]and [7.2.2), we
shall use results in Appendix

7.4.2 Error analysis for vanilla payoff

The payoff & for this kind of option is not necessarily smooth, it is almost everywhere differentiable and
belongs to the space .7¢. The previous expansion in the case of smooth payoff is no more valid. Indeed,
the i-th order contribution Ord; has been represented using the derivatives of (1) that do not necessarily
exist anymore Therefore we introduce some new variables in order to represent higher contributions
only using 2") (and not higher order derivatives).

Lemma 7.4.1. Given m > 2, assume (Rsy—2) and (E). Let v € [0,1]. There exist random variables
(Gi)a<i<msSmsIny € Np>1 Ly, such that for any | € €5°(R), one has

1

Yekrio, .
B 0P g =BG for2<i<m,

T =

1
B0 (X Ry g1 7] = B (XE5)S,),

I M§| il gl

1
< k!

E[ (;;Yzl)l)!l(’")(vXT + (1= v)XP)] = Bl (0Xr + (1= )Xy

Additionally, we have for any p > 1

Mo ;- i— i
IGilly <e (3,2 MaMy™ (VT (7.20)

m

My |
1Smllp + sup [[lmyllp <c ()" MMy (VT (7.21)

ve(0,1] inf

The proof of this lemma is postponed to Subsection
The random variables in the above lemma are now used to represent conveniently successive contri-
butions in the general approximation formula for vanilla payoffs. This is the following statement.
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Theorem 7.4.2. Asymptotic expansion for the price of vanilla payoff (h € 7 and I € 7).
Given m > 2, assume (R3p—2) and (E). If the payoff h fulfills Assumption (H,), then we have

E[h(Xr)] = E[h(XP)] + f Ord; + Resid,, (7.22)
=2

where different terms are estimated as follows.

* The contribution of order i € {2,...,m} is Ord; = E[h)(XES)G,] and it is estimated by:

My . . ,

0 <10 (XF) o) MM (VT (7.23)

* The residual for order m is Resid, = E[h")(XES)S,] + folE[h(l)(vXT + (1 = v)XES)1,,](1 —
v)’"*ldv, such that

[Residy| <c(Ih) (XF)||2+ sup [IA (vXr + (1 v)XF)]|2)
vel0,1]

My

= YU M (VT (7.24)
inf

(

Notice that the error term in Theorem for vanilla payoff is Resid,. For the third order approxi-
mation formula of Theorem|[7.2.2] it is Resids. Let us comment on the above theorem.

* The label Ord; is due to the fact that this term is bounded by MIM(")_1 (v/T)' multiplied by an
ellipticity factor of the form (%Of)” This ellipticity factor is new compared to the case of smooth
payoffs. To have a clear view on each contribution, one should have in mind the multiplicative

case (0 (t,x) = Aa(t,x) and u(t,x) = Ab(t,x)) which leads to max(M;,My) <. A and
Ord; = O((AVT)") for2 <i<m, Resid,, = O((AVT)™"1).
That is why we refer to Equation (7.22) as an approximation formula of order m.

» Correction terms are brought together in a different way than in the case of smooth payoffs. Indeed,
the hierarchy (in terms of amplitudes) is modified according to the payoff smoothness. However,
it is easy to check that the second order approximation is the same for smooth payoffs and vanilla
ones. For higher orders, there is no more coincidence with the smooth case.

 Similarly to the smooth case, the above formula provides the appropriate terms to compute to reach
a given level of accuracy. It remains to explicitly compute these terms as a summation of Greeks,
using results in Appendix This is done in Theorems|[7.2.1and [7.2.2]for m = 2 and m = 3.

* Finally to accommodate irregular payoffs, we require extra smoothness properties on ( and ©.

7.4.3 Error analysis for binary payoff

For this kind of option, the payoff / is not necessarily smooth, it is at least in .7Z. The results below are
easy extensions of the case of vanilla options, we leave the proof to the reader.
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Lemma 7.4.2. Given m > 1, assume (R3y+2) and (E). Let v € [0,1]. There exist random variables
(P)1<i<m>Om: Ty € Np>1 L, such that, for any | € €5°(R), one has:

Yi kvi .
_E[z@ (XB5) (Z’ji;} —E[I(XEP] for1<i<m,

-
==

~
Il
_

PR agb
| =

E[l(k) (ng)Rk,lﬁm.,T] = E[Z(Xygs)Qm]a

o~
Il

Y]L)mel

m!

&=

1) (X7 + (1 —v)XBS)) = B[l (vXr + (1 — WXENT,).

[

Moreover, they are estimated in the L, norm as follows:

My . - .
1By <YMy (VT

inf

inf

MO m m m
HQme"’ SuP]HTm,vnp <¢( ) +1M1M0 (\/T) .
€[o,1

ve| i
We are now in a position to state an expansion formula of order m.

Theorem 7.4.3. Asymptotic expansion for the price of binary payoff (h € ).
Given m > 1, assume (R3y+2) and (E). If the payoff h fulfills Assumption (H3), then we have

E[h(X7)] = E[R(XE5)] + i Ord; + Resid,, (7.25)

i=1
where different terms are as follows.

s The contribution for orderi € {1,...,m} is Ord; = E[h(XE5)P) and it is estimated by:

inf

(Ordi| <c [|H(XF) 2 =) MMy (VT (7.26)

« The residual term for order m is Residy, = E[h(XE5)Qu] + [y E[h(vXr + (1 = v)XE) T, ] (1 —
v)"dv, such that

[Resid| <c(|R(XF°) |2+ sup [[h(vXr + (1 —v)X7®)|2)

vel[0,1]
My m+1 m m+1
Ly v M (VT (7.27)

Oinf

(

Notice that the second order approximation for smooth payoffs and vanilla options is only a first
order approximation for binary options. This is due to the lack of regularity of the binary payoffs.

7.5 Proofs

For the following, we use the same definitions and notations as in Chapter 1 of [88]. Before giving
the proofs for the main theorems, we need to upper bound the L, norm of the derivatives X/, to state

Theorem , to upper bound also the L, norm of the Malliavin derivatives D‘[l -1 Xi7> and use the key
lemma [7.5.3[in order to state Theorems and
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7.5.1 Proof of Theorem (Smooth payoff)

The proof of Theorem[7.4.1]is performed through two steps:
* Step 1: Upper bound the L, norm of sz-
¢ Step 2: Completion of the proof of Theorem

We first recall that € — X£ is almost surely C¥~! w.r.t. € under assumption (Ry).

Step 1: Upper bounds for the L, norm of Xft
We aim at proving the following result, which may be useful, independently of our work.

Theorem 7.5.1. Given N > 2, assume (Ry). For every € € [0,1] and p > 1, we have
supl|XF, ||, <c MoV'T: (7.28)
1<T

sup X5 ||, <c MMy (VT), Vie{2,... ,N—1} (7.29)
t<T

A meaning of the first inequality is that the first derivative has the same amplitude as the implicit
total standard deviation Mo+/T. The second inequality shows that the bounds of the derivative estimates
decrease successively by the implicit total standard deviation My+/T . Furthermore, the dependence w.r.t.
the constant M; shows that the derivatives (X;,);>> are null if the function ¢ and u are deterministic (see
Remark [7.1.T)). In this case, X is the Black-Scholes model.

Proof. The existence of any moment is easy to establish, we will skip details. In the following, we rather
focus on their dependence w.r.t. My, M; and VT.

Clearly, it is sufficient to prove estimates for p > 2. Take p > 2, note that X{ is the solution of the
linear SDE: 7

dXE, = 0, (X2)dW, + by (X2 )dt + eXF (0" (X)W, + 'V (XE)dr),

To estimate the L, norm of the solution of the above linear equation, we state a lemma, that will be
repeatedly used in the following computations.

Lemma 7.5.1. Assume that Z is an It6 process such that
i) sup,<r|1Z|p < +oo for some p > 2;

ii) Z solves a linear equation
t t
Z; = /o Zs(asdW; + byds) +/O o, dWs + Byds,

where sup, .7 (|| 04|, + [|B|| ) < oo, a and b are bounded.

Then, for a constant c (depending only on p and T ), we have

sup |Zi[|, < esup(|a |, + [|Bi|p) /T e ll-tP1T7, (7.30)
t<T t<T
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The proof is quite standard: it results from easy calculations using BDG inequalities and Gronwall’s
lemma. We omit further details.
From this, it readily follows that

supl|XF, [, <c max(|e, [1]) VT <c MoV'T.
1<T
This proves the first inequality (7.28).

We now prove the second inequality which is not straightforward. To accomplish this, it is
useful to scale the parameters. Let us define the new variables:

Xe = x0T, (7.31)
- o(t,x) - u(z,x)
Gl ==, A =S (7.32)
From Equation (7.3), one obtains the dynamics of the rescaled process (X?);:
- ~oedWr oo dt o
dXf = e(6(XF)—= + 1 (X5)—=),X§ = xo, (7.33)

vT VT

where £ € [0, My\/T]. The advantage of this change of parameters is that the constant M associated to
the new coefficients 6 and [I is bounded by 1 (thus, it is model-free):

max (|G|, - 7‘5(N>‘w,m|m7... "Q(N)‘M) 1.

Additionally, there is a simple relation between derivatives of X¢ and those of X¢:

€

ge L QX _oXT) 1 w
M Qe del (MoT)i
Using this notation, the proof of Inequality is reduced to prove that
i M
sup [[X[lp < 3 (7.34)
1<T 0

for every € € [0,Myv/T] andi € {2,...,N—1}.

Proof of (7.34) . By successive differentiation of (7.33)), it is not hard to prove
sup [|X5 ][, <c 1. (7.35)
1<T

Indeed, we obtain linear SDE{] solved by Xf, to which we can apply Lemma It gives uniform

bounds because the arising processes (a,b, o, ) are proportional to 1/+/T and then multiplied by /7
in Lemma Another heuristic argument, to get that the bound (7.35)) is indeed equal to 1, is the
following: on the one hand, the integrands \V/V’T and ﬁ in the SDE (7.33)) are O(1) over the maturity 7.
On the other hand, the uniform bounds for the derivatives of & and {1 up to order N are smaller than 1.
Consequently, the L, estimates (7.35)) remain uniformly bounded.

However, the inequality 1| is not equivalent to the inequality (7.34) because % < 1. But this
preliminary estimate is useful to establish the final one as follows. To prove the required inequality, we

first show that X¥ solves a linear equation, this is stated in the following proposition.

Sthis is fully justified in Proposition[7.5.1}
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Proposition 7.5.1. Given N > 2, assume (Ry). For 2 <i <N —1, X; _is the solution of the linear SDE:

dXf; = dHf, + X{,dL}, X0 =0, (7.36)
dw; -\ dt
arf = e(6" (%) 2 + 5 (%) =),
t ( ( l) \/T H ( l‘) ﬁ)
dw; dt
dHj, Pélt\erPﬁ,t\f
where the processes (P ; ,)i>0 and (P ; ,)i>0 are defined in the proof.

Proof. Take i > 2, the SDE for the i/ derivative is obtained from Equation (7.33) using differentiation
under the integral sign (see [72]):

o D(eG(RE) AW, I(efu(RE) di .

dXj=————""—F—=+—-"—"7"">" ) &0

’ o€ \ﬁ Jde! \ﬁ ’

The application of the Leibniz formula for the i derivative of the product (that is (e f(¢))) = e £\ (e) +
ifi=1(g)) gives:

=0. (7.37)

d'(e6:(Xf)) _d'(&i(Xf)) .97 '(6(XY))
o¢! BT i dei-1

Using the Faa di Bruno formula for derivative of composite function (apply Lemma with g(x) =
6;(x) and f(€) = X?), one obtains

Mest X)) oy a9 e [T

i Jit
de k=(ky - k;)EN! Jj=1
Yoy jkj=i
1
: (E72hk) ‘
+i Z di 6,
k= (k1 ki) €N /:1
X jkj=i-1

Notice that the i component k; can take only two values 0 or 1 (because ik; < 232 1 jkj = i). When
ki =1, one has k; = 0 for j < iand di = 1 (see Lemma([7.6.4). Thus, we obtain

ai(Eé(t,th)) ~(1) /o

agi :ect (Xte )let
(k) ey T e 1o
+€ Y di6, EOTT&s ).
k=(ky, ki_1,0)ENI J=1
X5 k=i
, LK) e T oe
+1 Z 6, (X5) (ngt) !
k=(ky, ki1 )eN1 j=1
X jk=i—1

= &6\ (XE)XE, + PL,. (7.38)
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We define analogously Py ;, by replacing & by fi in the expression (7.38). It writes

Lt

di(efi(t, Xt ) e
( Iv;(gi D en gy 4 et (7.39)

The two equalities (7.38) and (7.39) plugged into the relation (7.37) give immediately the result. [ [

End of proof of (7.34). Owing to Equation (7.3.1)), X;  is the solution of a linear SDE, to which we
apply Lemma[7.5.1] We obtain

sup ||Xi?th <c sup ||Pc§y,i,t”p +sup ”Pﬁ,i,th'
t<T t<T t<T

In view of the expression of P§ ;, in Equation (7.38), using the Holder inequality and the preliminary
estimates (7.33), we obtain

~ (Yl ks _(yi-l g
SupHPg,i,tHP <c Z ‘G(Zlek’”m—l— Z ‘G( 1:1k1)|w
= k= (k1 -+ Ji1,0) NV k(o ohp 1 )N~
Lt k=i Tk jk=ie1

Since Z;-;l] Jkj > 1 and k; are integers, we have Z;;ll k; > 1. It readily follows

max(]c(l)\m, R ’G(Nil)“”)
My

sup||P i/l e max(|6V], -6 V].) = ¢
S

M,
éc PV
My

The same inequality holds for Pﬁ,i,z’ which finishes the proof of || Consequently, Theorem is
proved. g O

Step 2: Proof of Theorem [7.4.1 (Smooth payoff)

Before performing the Taylor expansion, we recall the notations:

ai YE k
Yr = X7 — (xo+€Xi1), Yiir= ((agT,-))a Yeir =Yiir,
1o(1=2) 4
Jo Yk(,i+l,T)le)L

Riir = i
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Clearly one has X7 = st +Y}. We write

3]
E[h(Xr)] =E[h(X7°)]+ ). EEW{) (X7) (Y1)
k=1""
G 2N I Ve B T
o E[( & Lm(jv b R (X + (1= v)XF5)]dv
||
=E[h(X7 )]‘FZEEW ) (x7 Yy z' +Rim,r)]
k=1"" i=2k :
")y E[( t Lm(jv e WD Xy + (1= v)XF5)|dv
2
BS o 1 (k) (yvBS Yiir
=E[h(X7 )]+Z EEVI (X7°) 1 ]
i=2k=1"" .
3] 4
+ Y —E[R%(XE)Ri )
Z k!
! (YTI)L%HI(I—V)L%J 4] BS
+/0 E[ BI WD (0Xr + (1= v)XF5)]dv
||
=E[h(X7*)]+ Y Ord; + Resid,y,

i=2

where we have used a Taylor expansion twice for the two first identities (notice that Yy ;7 = 0 for i <
2k — 1), and we have interchanged the summations for the third one. The equation is proved.

Now we establish estimates (7.18) and (7.19). By differentiation of composite function using the Faa
di Bruno formula (see Lemma(7.6.4|with g(x) = x* and f(€) = Y§), we obtain

k! et .
Yéir= Y do 7o ,(Yf)k Lim 4 TTVE ). (7.40)
o=(0y,,04)EN ( j:IQ/)' j=1
23:1 j(Xj:i, 23:1 OCjSk

Here, we restrict to the indices o such that Zé-:l oj < k because we have g()j:l %) (x) =0 when Z;:l o>
k. Using Equation (7.29), one deduces for each j € {2,...,i} that

. _
e rllp = IXF7llp <c MiMg ™ (VT) (7.41)

for any p > 1. For j = 1, the inequality is also available because we can write Y| , = [y X} pdA,
which readily implies

1Y 71l <c MMy(VT)? <. M\VT.

For any indices a, we have the rough estimate H(YTg)k_Zli:l %||, <c 1. Using the above estimate,
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and the Holder inequality, we finally get

Werlp<e X [I0aM] ' (/7))

o=(0y,,04)eN! j=1

Z;‘:lja.i:i
< y (%) f_:lajMOZ’jzljaj(ﬁ)z;:ljaj
. Mo
oa=(oy,,04)EN!
Yo joy=i
M, . . . .
<. ﬁlM(’)(\/f)’ = MM (VT (7.42)
0

where we used % <1 and 25:1 o > 1 (since (ot;); are integers that satisfy Z.’.,-:lja.,- =i>1). The
inequality gives immediately the inequality (7.I8). It also leads to

R lp <e MAMG (VT)" . (7.43)
Since Y} = Xo.7 + Ry 2.7, one has
Y71l < Xz llp+ IR 27l e MiMo(VT)? +MiMG(VT)? <c MiMo(VT)?
(recall our definition of generic constants). Therefore
IO, <emy T g (VT < (VT (7.44)

where we have used My < My and 2|5 | > m — 1. The inequalities (7.43) and (7.44) readily leads to the
inequality (7.19). The proof is complete. O

7.5.2 Proof of Lemma[7.4.1

For Malliavin calculus, we use the notation of Nualart [88] for the Sobolev spaces [y, associated to the
norm ||.|[x ,. We divide the proof of Lemma into three steps:

« Step 1: Upper bounds for the D*? norm of Xf,.

* Step 2: Statement of a suitable integration by parts formula (Lemma [7.5.3)) in order to handle the
irregularity of vanilla payoffs.

* Step 3: Completion of the proof of Lemma|[7.4.1

In all this subsection, we assume (R3,,—») for a given m > 2.

Step 1: Upper Bounds for the D" norm of X7,
The aim of this paragraph is to show that, for every € € [0, 1], we have

« Xf € D" 2% with

IDXF|[3m-3p <c |0]VT, (7.45)
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e foreachi€ {1,...,3m—3}, X belongs to D3 =3=1> with

IXE 7 ll3m—a,p <c MOV'T, (7.46)
X l3m—3—ip <c MMy (VT), i>2. (7.47)

Only the proofs of upper bounds need few details. To prove the inequality (7.43)), we use the following
lemma.

Lemma 7.5.2. For anyt € [0,T] and € € [0,1], X¢ belongs to D=2, Moreover, the j first Malliavin
derivatives of XF satisfy the following estimates:

sup HDtjl,~~~,t,Xt8”p <c |0l
(tlv"'Jj)E[OvT]jvte[OvT]

Proof. We first take j = 1; for #; € [0,], using formula (2.59) in [88]] p.126, we have

(Dy2
1 S
(Ls“’»z)

ot (1) (ye €
Dy X = 0(1y, X[ )l o (XM (ke JX)ds),

This leads to the announced estimate when j = 1. The result for j > 2 is easily obtained by induction.
O O

From the definition of the D” norm, it follows that

3m—3 T T 1
DX a2 = (X BIC[ o [ (D X)) )
j=1

w
3
w

I~

i 1
<(Yy 1*  swp |Df . XFlD)r <clolwVT
j=1 (llz"'atj)e[ovT]j

using Lemma([7.5.2]at the last inequality. This proves the first inequality (7.45).
Now, to establish the upper bounds (7.46) and (7.47), we note that it is equivalent to prove, for every
€ € [0,Mo+/T], that

X7 ll3m—ap <c 1, (7.48)
> M,
X5z ll3m3-ip <c 37 122, (7.49)
0

where (X£), is the rescaled process introduced in (7.3T)). Using similar arguments as for (7.33)), we obtain
X lIv-1-ip <c 1, (7.50)

for any € € [0,My\/T|. The inequality is proved but not ([7.49), because %‘) < 1. To establish
(7.49), we proceed as for the proof of Theorem[7.5.1] We will skip further details.
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Step 2: Statement of the integration by part Lemma

To handle non-smooth payoffs, our computations rely on a non-degenerate condition on the volatility
(stated in assumption (E)). This type of condition is essential to prove the following lemma.

Lemma 7.5.3. Assume (E) and (Ry11) for a given k > 1. Let Z belong to Np>D*P. For any v € [0,1],
there exists a random variable Z} in any Ly, (p > 1) such that for any function | € 65°(R), we have

E[I% (vXr 4 (1 —v)XE5)Z] = E[I(vXr + (1 —v)XE5)Z)).

HZHk,Zp
(Ging VT’

Moreover, we have || Z})||, <. uniformly in v.

This is a straightforward adaptation of Lemma[4.5.1]in Chapter[d] we omit the proof.

Step 3: Proof of Lemma
Starting from Equation (7.40) with i +k — 1 instead of i, we write

€ k! e\k—yiHE g kel
Yiivk—1r = Y _ (ZHk Ta)! (Yr)" == H

o=(0ty,,04)EN J=1
Y joy=itk—1X 7 o<k

(Y1'g,j,T)aj-

Using Equation (7.47)) one deduces, for 2 < j <i+k— 1, that
- ‘
”YleHk Lp = X T”k—LP SchMé (‘/T)]

This inequality is also available for j = 1, since
£
%8l = 1 || X rdAllerp <c MiMo(VT)? < MVT.

Additionally, we note that Y, ,_, , € D*~1*. Furthermore, using the Holder inequality for the spaces
Dk (see Proposition 1.5.6 in [88]]), we obtain

IYE kot lemrp e MIMGH 2 (VT (7.51)

We omit the details of the above computations because they are very similar to those used for (7.42)).
Then, Lemma ensures the existence of a random variable G; in L. Its L, norm is estimated using

Lemma and Inequality (7.5T):

. L i 2(i—1)—1 ;

Gl < ZZ]MIM(I)-HC 2(\/7)z+k 1 B MIMO(I ) (\/7)1

illp >c — =c i )
k=1 (Ging VT <! Gilnfz

us1ng G > 1. For S,, and I,, ,,, we proceed analogously.
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7.5.3 Statement of Theorem (Vanilla options)

We first assume that /4 is a smooth function. We have

E[n(Xr)] :E[h(Xz@S)]
m—1

o Yigrioir
E (k) (x BS L Ry ke
+ Z I (X7 )(i;rl Gti—1)! + Rk ktm—1.1)]

m m—1
+ / E[ ') A (vXr 4 (1 —v)XES)]dv

+'"Zl k‘E (X )Ricim1.7]
+ / ,) 1h<'"><vxr+(1 —V)X7)]dv
=E[h(X7")] +ZE J(XP°)Gi]
i=2
+E[R" )( X7°)S]
+/ DXy + (1= v)XE) 1) (1 = v)™ d,

where we have used a Taylor expansion in the first identity, interchanged the summations in the second
equality, and used the Lemma [7.4.T]in the last one. So yields the identity (7.22)) for smooth payoff.
Additionally, using estimates (7.20) and (7.21) from Lemma it is straightforward to deduce the

inequalities (7.23)) and (7.24).

It remains to extend the result to vanilla options (instead of smooth function 4). Since all the estimates
depend only on A1, it can be achieved by a standard density argument. We refer to Chapter [4| (see
Subsection for details.

7.6 Appendix

Here, we bring together the results (and their proofs) which allow us to derive the explicit terms in the

formulas (7.9), (7.11), (7.14) and (7.15).

In the following, (1) (resp. (v;)) is a square integrable and predictable (resp. deterministic) process and
[ is a smooth function with compact support.

7.6.1 Technical results related to explicit correction terms

The two first lemmas are proved in Chapter ] (see Section [4.6).

Lemma 7.6.1. For any continuous (or piecewise continuous) function f, any continuous semimartingale

/O "zt = /O " /, " sz,

Z vanishing at t=0, one has:
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Lemma 7.6.2. One has:

T T

verdt )1 /0 vedWy)].

T T
B[ wawi( [ vaw)) =El( [
0 0 0
In the case of deterministic u, it is equal to fOT voupdt Greek! ( fOT vidW).

7.6.2 Explicit correction in the case of Dupire model

In this case (U = —%62), the SDEs solved by the derivatives X;  become:

62
dX,, =o,dW, — T’dt,XLo =0,

dXa, =2X,,(0Vaw, — 6,6\ dt), X, 0 = 0,
dXs; =3(Xo, (6 aw, — o6 Vdr) + (X1 )2 (6 dW; — (6,62 + (6\")?)dt)), X3, = 0.

Lemma 7.6.3. We have

IE[(/OT VtXl,tdt)l(/OT c:dW;)] = w(Gz,v)g (E[l(‘)(/OT c:dW,)| — ;E[l(/OT thW;)]), (7.52)
E[(/OT VzX;[dt)l(/OT thvvt)] = (1)(62,66(1)7\))8 (E[Z(Z)(/OT O}dVV,)]

— ;E[l(l)(/oT thVV;ﬂ + ;E[l(/OT sz‘/Vt)]), (7.53)
E[(/OT v,(Xlz’t)zdt)l(/OT 6:dW;)] = (6%, 6%,v)§ (E[I(Z)(/OT o, dW;)] — E[l(l)(/oT 6 dW;)))

+ (%(D(G2, o’ V)b + ;w(62,v)g)E[l(/oT c:dW,)], (7.54)
E[( /0 ' otof”%dt)l( /O ' 6;dW;)| = (_%Cﬁ,T - %cw - %C&T)E[l( /O i 6, dW,)]

5 5 T
+(2Cs,7 + §C7,T + ZC&T)EU(I)(/O o, dW,)]

T
- (—4Cy 7 —2Cs 1) E[I?)( /O ,dW,)]

T
+(Crr+CoEIY)( [ odm), (755)
where
Cor = 0(0%,00, coc)] Crr = 0(c?,6%, 006, 66,
Csr = (0?00, 6% 65l
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Proof. Applying first Lemma to f(t) = v, and Z; = X; ;, we obtain:

E[( /O X /0 )] =E|( /O K [ Cvds)dxi i /0 " odw)]
= [(/OT(/tT vyds) (o, dW;, — Gz’zdt)l(/oT oidW; )]
:(/OT o}(/tT vsds)dt)E[l(l)(/OT ordW; )]
_ (/OT Cj(/tT vsds)dl‘)E[l(/oT o, dW;)],

and we have used Lemma [7.6.2] for the last equality. This gives (7.52).

To establish the equalities (7.53)), (7.534) and (7.33)), we proceed analogously. We only detail the
computations for (7.53). Using Lemma m (f(r) = o0\, 7, = %) to justify the first following
identity and Lemma(7.6.2] for the second one, we can write

T X T
IE[(/ 0,00 22 “dz)l(/ dW,)]
0 2 0

T
=5l([ 0o} (2, (o!"aw, ~ 6.0/ an)
0 ,

X 2 T
;” (G:dW, — %’dr) + 0,00 X; ,d1))I( /0 6.dW,)]
T T
—E[( [ a(oo) (- G,o,(l)X“—Gz%JrG,o;( X,)d)i( [ odw)

T
/ o(caM) (6,6!"x2, + o} ;’)dt)l( )(/0 o dW;)].

Then, we obtain the announced identity by an application of the three first identities (7.52)), (7.33) and

739 O O

7.6.3 Proof of Theorem [7.2.2
Proof. Using Theorem and Lemma the price is approximated at the third order by

Xor Xar (3
ED )]+ BT (%) 2T+ B (%) 27 4 =@ () -2
We compute each correction term separately.
Step 1: term with X, 7. Owing to Lemma(7.6.2] we have
(1) v BS\X2,T (1)
E[nV (X7*) =] = Xn Daw, - 6,6V ar))]

=E[h) (x75)( /0 cwf X1 )

T
— RO (X35 / 66X, dr)].
0
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Apply Lemma 7.6.3] (equality (7.52))) to obtain

X 3 1
B[ (xF*) 7] = Cur (B (X)) - SERD (X)) + SERD (X)),
where C) 7 = o(c?,601))].
Step 2: term with X; 7. From Lemma(7.6.1and[7.6.2} we obtain
(1) (yBS\ X3.T (2) (v BS Jo 6,6, Xy dt
B S B R
(1)
X5.d
_E[pD (XBs)fo 0,0; "X24 t]
T _ (2
0:0; " (X1,4)°d
+E[h(2)(X7§S)f0 ! 12( 11) ]
T (2) (1) 2
X14)°d
E[h(l)(XBs)fo (010 +(02t )7)(X1,) t]
An application of Lemma 7.6.3] (equalities (7.53)) and (7.54)) gives:
X1 1 1 1 1 1

1 5
+ (§C3,T +Cur + ch,r +2Cs.7)E[R) (XE5)]

5
+(—Cyr—2Cs7 — §C6,T)E[h(3) (X5
+(Csr+ C6,T)E[h(4) (XZQS)L

where

Cor = (%, ()T, Cyr = w(c?,60)T, Cir = (0?6, (cH)T,

Cst=0(c*,6%,66N Cor =w(c? 66", 606W)].
Step 3: term with (szr)z. Similarly, we have

(2) (yBS (XZTT)Z (2) (yBS T XXy (1) X1,:X2, oM XIZJ
BN () 2] =B () [ (02w, - o0 T+ (o] )
T X1:X
_E[R®) (x29) /0 (o0 22 ar

T
—E[h(z)(Xﬁs)/ (G,G,(I)XI’;XZJdZ‘]
0

T X2
FERD () [ (o)) L)
0
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Using Lemma (third and fourth equalities), it follows

E[h® (XBS)i(%T)Z] —Cesr i leir i 2cor+ Lo+ LanER® (x5
L) PV R R N T
7 3
+(=Ca1 — §C6,T =3Cyr — EC&T)E[h@) (X7°))
13 13
+ (Car+2Cs 1+ 7C7,T + ZC&T)E[/?M) (Xﬁs)]
+(—6C77 — 3C8,T)E[h(5) (X7%)]
+(2C7 1 + Co 1) B[RO (x75)),
where
C]./T = w(GZ,GG(I))g, CZ,T = (1)(02,(0'(1)>2)(];,
Car = o(c?,6, (6(1))2)5, Cor = o(o?, ooV, 60(1))5,
Crr = w(c?, 6%, 66, cal Csr = (0?00, 6%, 60)f.

Final step. To get the announced formula, we bring together all the previous contributions and use that
E(h)(X55)) = Greek! (X25). O
7.6.4 Faa di Bruno’s formula [37]

Lemma 7.6.4. If g and f are functions that are sufficiently differentiable, then

n

e =Y ag® (eI (e)",

k=(ky - k) EN" j=1
Y1 jkj=n
where dy, are integer numbers depending only on k. Notice that when k, =1 one hasky =---=k,_1 =0

and di = 1.
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Chapter 8

Appendix

8.1 Smile behaviors for CEV model

The aim of this section is to study the smile’s behavior induced by the CEV model. In all this section,
we take xog = 1 (S = 1), r = g = 0. The Black Scholes implied volatilities are computed in the following
cases (using one of the previous numerical methods):

» Constant parameters. In this case, we consider the constant CEV model with level v = 25% and
shift B = 30%. We plot the implied Black Scholes volatilities, in the figure for different
maturities; for each maturity, the implied Black Scholes volatilities are plotted as a function of the
log moneyness ln(g). From the figure we observe that the smile of implied Black volatilities
doesn’t change through the time. Moreover, in Figure we plot both local volatility at the
money and implied Black Scholes volatility for short maturity 3M. Then, we remark that the slope
of the local volatility is approximatively twice the slope of the implied Black Scholes, as it can be
derived from Equality (6.3) (see also page 88 in [50]).

 Time varying parameter v. In this case, we consider a CEV model with constant shift § = 30%
and piecewise constant level v which is equal to 25% — i < 0.11% on each interval of the form
(55 %[ We remark from the figure that the smile is shifted from maturity to maturity but
keeps the same shape for all the maturities. In other words, the smile is bumped from maturity to

maturity.

o Time varying parameter 3. In this case, we consider a CEV model with constant level v = 25%
and piecewise constant shift f which is equal to 25% — i x 0.11% on each interval of the form
[2%7 % [ We remark from the figure that the smile’s shape change from maturity to maturity
because of the changes of the shift 3.

o Time varying parameters v and 3. In this case, we consider a CEV model with piecewise constant
parameters v and 8 which are equal respectively to 25% — i x 0.11% and 30% +i x 0.35% on each
interval of the form [%, % [. We observe from the figure that the smile is bumped and that
its shape changes from maturity to maturity. We plot also the surface of implied Black Scholes

volatilities as a function of the maturities and strikeq'l

'In this example, the smile is emphasized for small maturities and becomes flat for large ones. This example coincides with
real market data.
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Figure 8.1: Implied Black Scholes volatilities for the constant CEV model.

To sum up, we deduce that the smile changes are due to the change of the shift § through the time and
the smile bumps are due to the change of the level v through the time. As a consequence, we remark that
if we want to reproduce real market smiles using local volatilities, we need to use time inhomogeneous
parameters in order to manage smile changes.

8.2 Large strikes

In this section, we detail results concerning the accuracy of the formulas (7.9), (7.11) for large strikes.
This is tested for the case of constant CEV model in the tables[8.1]for f = 0.8 and[8.2)for § = 0.2.
For instance, the cell of the table [8.1| at the maturity 4Y and for the relative strike 40% contains three

informations:

* 27.02% is the implied BS volatility using the second order lognormal approximation formula (7.9).

* 27.35% is the implied BS volatility using the third order lognormal approximation formula (7.1T).

* 27.37% is the implied BS volatility using the CEV closed formula (6.2)).

Therefore, we remark that our second order formula is still accurate for small skews (8 = 0.8) and less
accurate for large skews (8 = 0.2). Moreover, our third order approximation formula is still very accurate
for both small and large skews.




8.3 Arbitrage interval 131

40.00%

35.00% \\
30.00% h‘\%
25.00%

20 00% m-ﬁ N
Mot e e —+— Localvolatility
p (1]
10.00% ; ; e
. DD“/O —=— implied BS volatility
% 0
DDD% T T T T T T T T T T T T T T T
a0 [s}1e) oo ] (s ]1e) ahl Ll [a} () Yy [a}{e) e Ay [a} (e o Yy [a11c]
559\ f:\\ ,'b%\ :1?3\ (\,\\ o \Q\ \%\ rﬁj\' n}:‘ u'\\ &‘\\ %,,J\ %Q\ ah\ %Q\

Moneyness

Figure 8.2: Local and implied Black Scholes volatilities for the constant CEV model.

8.3 Arbitrage interval

In this section, we aim at exhibiting the domain where the call price obtained using our approximation
formulas belongs to the no-arbitrage interval |(e* — K)™*, ™[ (when r = ¢ = 0). Indeed, for some
numerical methods, the errors are sometimes so large that the resulting numerical price is out of the
range of the no-arbitrage bounds. This is potentially dramatic because one can make an arbitrage on
model prices.

In the following tables, we write:

* T (abbreviation of True) if the call price obtained using our second order approximation
belongs to the no-arbitrage interval.

« B (abbreviation of False) if the call price obtained using our second order approximation
doesn’t belong to the no-arbitrage interval.

We give the domain arbitrage in a progressive way for

* the second order approximation formula using a lognormal proxy (7.9). This is reported in tables

B3 and B4l

¢ the third order approximation formula using a lognormal proxy (7.11)). This is reported in tables
and

* the third order approximation formula using a normal proxy (7.14). This is reported in tables
and

We observe that our formula covers a very large domain of strikes which includes real market priced
options. Moreover, we remark that the domain of no arbitrage widens with the order of the approximation
formula. This shows that our formula is safe and trustful for large strikes and various maturities.
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Table 8.1: Implied Black-Scholes volatilities of the second, third order approximation formula ((7.9),
(7.11)) and the CEV closed formula (6.2)), expressed as a function of maturities in fractions of years and

relative strikes. Parameters: v =25%, 8 = 80%.
T/K 40 % 70 % 100% 150% 180 %

4Y 27.02% 27.02% 27.02% 27.02% 27.02%
2735% 2735% 27.35% 27.35% 27.35%
2737% 21.37% 2137% 2737% 27.37%
5Y 27.07% 27.07% 27.07% 27.07% 27.07%
27.36% 21.36% 21.36% 2736% 27.36%
27.38% 21.38% 21.38% 27.38% 27.38%
6Y 2711% 2711% 2711% 27.11% 27.11%
27137% 2137% 2137% 21.37% 27.37%
2738% 2738% 27.38% 27.38% 27.38%
7Y 27.13% 27.13% 27.13% 27.13% 27.13%
2737% 2737% 2737% 27.37% 27.37%
2738% 27.38% 27.38% 2738% 27.38%
8Y 2715% 2715% 27.15% 27.15% 27.15%
2738% 27.38% 21.38% 2738% 27.38%
2738% 2738% 27.38% 27.38% 27.38%
oY 2717% 2717% 2717% 27.17% 27.17%
27.38% 21.38% 21.38% 27.38% 27.38%
2739% 21.39% 27.39% 27.39% 27.39%
10Y 27.18% 27.18% 27.18% 27.18% 27.18%
2738% 2738% 2738% 27.38% 27.38%
2739% 27.39% 27.39% 27.39% 27.39%
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Figure 8.3: Implied Black Scholes volatilities for the CEV model with time varying parameter v.
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Figure 8.4: Implied Black Scholes volatilities for the CEV model with time varying parameter f3.
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Figure 8.5: Implied Black Scholes volatilities for the CEV model with time varying parameters v and f3.




8.3 Arbitrage interval 135

Table 8.2: Implied Black-Scholes volatilities of the second , third order approximation formula ((7.9),
(7-1T1)) and the CEV closed formula (6.2)), expressed as a function of maturities in fractions of years and

relative strikes. Parameters: v = 25%, 8 = 20%.
T/K 40 % 70 % 100% 150% 180 %

4Y 3145% 28.47% 25.00% 20.68% 17.20%
34.84% 28.89% 25.16% 21.33% 19.86%
3571% 28.98% 25.16% 21.26% 19.66%
5Y 31.87% 28.50% 25.00% 20.75% 17.80%
35.11% 28.93% 25.19% 21.36% 19.85%
35.80% 29.04% 25.20% 21.29% 19.68%
6Y 32.19% 28.52% 25.00% 20.79% 18.12%
35.30% 28.96% 25.23% 21.40% 19.86%
35.86% 29.10% 25.24% 21.31% 19.70%
7Y 3245% 28.53% 25.00% 20.83% 18.33%
3543% 29.00% 25.26% 21.43% 19.87%
3589% 29.15% 25.28% 21.34% 19.72%
8Y 32.66% 28.54% 25.00% 20.85% 18.48%
35.54% 29.03% 25.29% 21.46% 19.89%
35.89% 29.19% 25.32% 21.36% 19.74%
oY 32.84% 28.55% 25.00% 20.87% 18.58%
35.62% 29.07% 25.32% 21.49% 19.92%
3587% 29.22% 25.35% 21.38% 19.76%
10Y 3299% 28.56% 25.00% 20.89% 18.67%
35.70% 29.10% 25.35% 21.51% 19.94%
35.83% 29.24% 25.38% 21.41% 19.78%

Table 8.3: No-arbitrage domain for the second order formula (7.9) expressed in booleans (- for True
and [l for False) as a function of maturities and strikes. Parameters: v = 25%, B = 80%.
/K 0.1 0.30 050 0.70 090 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10

v [ @ @ @ @A E S S B B S E EEnE
oM [ [ [T [ i B EEERN [F|
ovM [l @ @ @ @ @ @@ @ i BB EEENE
Yy il i W W EEEESESESEEEENERE
280 B B N B NN NN N NN NN NN
sy [l [ i | @ @ @ | @ M EEFE .
sy il I B BB BB EEEEEERE
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Table 8.4: No-arbitrage domain for the second order formula (7.9) expressed in booleans (M for True
and . for False) as a function of maturities and strikes. Parameters: v =25%, B = 20%.
T/K 0.1 0.30 050 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10

v i @ @ EEEF S S EEEEEESE
oM [l [ @ @ @ @ @ BB BB EEETNE
ovm il @ @@ EE@E@EfFSESE S EEEENEDRE
Yy [l [ @ @ g S S EEEEESNE
y @ E EEEE@EESESFSEESEESEEENERE
sy i @ @ EEEE@EE@FSESEESEESEEENESRE
sy [l @ @ @ @ EEEEeEFEEEEnEns

Table 8.5: No-arbitrage domain for the third order approximation formula (7.11]) expressed in booleans
(I for True and [l for False) as a function of maturities and strikes. Parameters: v = 25%, B = 80%.
T/K 0.1 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10

M
6M
M
1Y
2Y
3Y
5Y

Table 8.6: No-arbitrage domain for the third approximation order formula (7.1T)) expressed in booleans
(- for True and . for False) as a function of maturities and strikes. Parameters: v =25%, 8 =20%.
T/K 0.1 030 050 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10

M H B E S EEEE S SEEEE-E~E
oM ll i i i i@ i@ i@ @ @ /| @ | | | | &=
oM [l I @ i i@ @ @ | @ | /@ /@ | | | o
Yy ll i i i W E W EEEME S EE &
¢ B B B B B R B R R B E N BN
sy H A I B B S B SN EEERE
sy i A B BB BN EEEEENE
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Table 8.7: No-arbitrage domain for the third order approximation formula (7.14) expressed in booleans
(- for True and . for False) as a function of maturities and strikes. Parameters: v =25%, 8 = 80%.
T/K 0.1 030 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10

Ml [ B @ @B @@ EEFEEEEEnsE
oM il i I | | @ @ @ @ @ @ @ E EBNE
oM il i I i@ @ @ @ @ @ @ /@ @ @ @B .
Yy il i @ | E EEEEEESESESEE-E
2y [ H i i@ i@ @ @ | @ | | | | | | e
5y HHH B B i@ i@ i@ @ @ @ @ | | | | &
sY ll @ @ A W AW EEEE R E§E &

Table 8.8: No-arbitrage domain for the third approximation order formula (7.14)) expressed in booleans
(I for True and [ for False) as a function of maturities and strikes. Parameters: v = 25%, B = 20%.
T/K 0.1 0.30 050 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10

v [ i i @ @ EEE S EEEEsE
oM [l i il i | E E E | | EEEEEN
ovM [l [ @ @ @ @ @ @ @ @@ FENEFENEN-E
1y il i H E E EEEESEESESEEER
xy A I A B S EEEENE
sy i A B A A BB EEEENE
sy A I I A S EEEEE




138 8.3 Arbitrage interval




Part 111

Stochastic volatility models

139






Chapter 9

Introduction

141



142 9.1 Heston model

Stochastic volatility models assumes the volatility of the spot itself to be stochastic, and then is
governed by a stochastic differential Equation. These kind of models manage better the smile than local
volatility models but they have the drawback of market incompleteness since they use two factors of
uncertainty in order to hedge one asset. We cite among these models: The SABR model (see [61]]) and
the Heston one (see [63]]). In this part, we focus our work on the Heston model.

The Heston model is an extension of the Black Scholes model for the underlying (S;) with stochastic
volatility:

dX; = \/idW, — dr, Xo = xo, 9.1)
dV[ == K(@, - V[)dt + é[\/‘}»[dB[, VO > O, (92)

d(W, B), = pydr,
where

* X; is the logarithm of the forward eld="tS, r and ¢ are respectively the risk free rate and the
dividend yield,

* vy is the initial square of volatility,

* K is the mean reversion parameter,

* 0 is the long-term level,

e & is the volatility of volatility (vol of vol),

* p is the correlation.

We assume that the above dynamics is directly given under the pricing measure.

9.1 Heston model

The computation of the call-put price in the Heston model can be done using Fourier inversion since the
characteristic function of the logarithm of the underlying is explicit when we have:

* either constant parameters 6, & and p,

* or piecewise constant parameters 6, & and p.

9.1.1 Lewis’ formula

The call price in Heston’s model can be written using the Lewis’ formula ([79]):
Callgesion(t,S;, v T, K) =S,e~97 1)

Kef(Tft)r /£+oo dz

—iX g
2 5;006 or( Z)z2

—iz
where X = log (%) and ¢7(z) = E(e?X7X)|.%,).
The characteristic function ¢7(z) = E(e2X7%)|.7,) is explicit when the parameters 6, £ and p
are constant.
Proof references:
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* PDE approach: The Heston model belongs to affine models and has an explicit characteristic
function, that is solution of Riccatti equations (see [163|]). This is derived using PDE arguments.

* Probabilist approach: The CIR process v is a time-space changed Bessel process (see [50]]).

Moreover, the characteristic function ¢r(z) = E(e?X7~X)|.%,) is computed recursively when the
parameters 0, & and p are piecewise constant.
Proof references:

» PDE approach: The characteristic function ¢r(z) can be computed recursively using nested Ric-
catti equations with constant coefficients (see [|S6)]).

* Probabilist approach: We use the Markov property in order to compute recursively the character-
istic function (see [41)]).
9.1.2 Heston’s formula

Heston’s formula for call option is an extension of Black Scholes formula for call option with spot S,
strike K and maturity 7'

Callgesson(t,S,ve, T, K) = Sye 1T P —Ke TPy, 9.3)

Using a change of numéraire, the probabilities P; can be considered as the conditional probability of
X j(T)Z
P;(logS;,ve,t,T;In(K)) = Prob[x;(T) > logK|x(t) =logS;,v;(t) = v/

where x; follows:

dxj(t) = ((r—q)+uj(0))dt+/v;(t)dW;
dvi(t) = (a—bw(t))di+&\/vi(1)dW/,
d<W17W2>t = pdt,

and u; = % U, = —%, a= kK0, by = kx—p&, b = k. We introduce the characteristic function

fi(x,V,t,T;¢) related to the complementary cumulative distribution P;(x,V,t,T;In(K)). Hence, using

the Fourier’s inversion formula:

_i‘pln(K)fj(xv Vuta T9 ¢)
i9

PV, T3n(K)) = 1 /2+% /0 " Rel[® 1dé ©9.4)

where fj(x,V,1;T, ¢) satisfies:

az . (92 . 32 . af; af; of; .
Weh +pEV s+ 1BV r— g+ uV) e+ (- bV) S+ =0 if0<t<T
fi(x,V,T;logK) = €'~ ift=T

For the proof of Fourier inversion, we refer to [58]] and [53]] and for financial application to [[13]] and [105]].

Using a PDE verification argument ([[79]], [63]], [77]) or the additivity property of the Bessel process
(see [98])), the solutions fj(x,V,t = 0,T;¢) have the form:

fj(-x7 V,I,T;(P) _ eC(T*I§¢)+D(T*I;¢)V+l'¢X7 9.5)
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where C;(7;¢) and D(7;¢), with T = T —t, satisfy the following ordinary differential equations:

{ 90 _ 4D i(t,9) — (r—q)9i =0,
(T &2D3 (139 . .
dDr0) _ DI04 (o pEGi)D (T, 9) — upi+ L9 =0

with Cj(0;¢) =0 and D;(0;¢) = 0. The solutions for Cj(7;¢) and D;(7;¢) are:

1—gjedi®

2

Ci(1:0) = <r—q>¢ir+g{wj—pémwj)r—mog[

bj—p&di+d; 1—edi®

D](T’(P) = &2 [1_gjedjT ?
o _ bj—pSoi+d;
& bj—pEpi—d;’

di = —\/(pEQI— by~ E2(2u;0i— 9).

Here we notice that the square root complex d; = —+/(pE¢i— b ;)2 — E2(2u;¢i — ¢2) is used to avoid
discontinuity (see [2]) instead of the original equation d; = \/(pE @i —b;)2 — E2(2u;9i — ¢2) derived in

d;:t
[63]]. Moreover, we refer to [[68] to handle the discontinuity of log[%]. Heston’s formula can be

improved using a control variate method which is related to the closest Black Scholes price (Heston’s
price with same parameters without volatility of volatility). Notice that there are other methods of Fourier
inversion formula and control variate methods in the excellent book of Lewis [79]].

When Heston’s parameters are piecewise constant, the characteristic function fj(x,V,t,T;¢) still
have closed formula. It is calculated recursively using PDE methods and nested Riccatti Equations (see
[86l) or a Markov argument for affine models (see [41]).

9.2 Review of Analytical approximations

In this section, we give the approaches existing in the literature.

Ergodic approach. Fouque et al in [44] consider a stochastic volatility model where the volatility is a
functional of ¥,# which is an Ornstein Uhlenbeck process (we denote it OU) with small correlation time
€:

dse

Si‘ts :rdt+f(l’,£)dﬂlt,
1 vv2
dYf = —(m—-Y%)dt+ —dB
' g(m ©)dt + NG 1

They write the infinitesimal generator .Z¢ as the summation of three terms

g é 204 L gy g0 9.6)

§~

where
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. g(O) — v2

g} ?2 +(m—y) a% is the infinitesimal generator of the OU process Y defined by

dY, = (m—Y,)dt + vv/2dB,, 9.7)

=2pxf (y) a a contains the mixed derivatives due to the correlation term,

RS % + 3 f(3)%x? g 5+ r( —.) is the Black-Scholes operator with volatility f(y).

Fouque et al suppose that the parameter € is small which makes the problem to be a singular
perturbation problem. They expand the call price with starting time ¢, maturity 7, spot S and strike K, in

power of \/€:

Callf = CallBS + v/eCorrection) + .-

where the leading term is the Black Scholes price Callg)s) = Callgs(t,S,K,T,5) and the variance 62 is
the averaging of the function f with respect to the invariant distribution .4 (m, v?) of the OU (Y) defined
in Equation (9.7):

vm/ P 5 dy= (), 9.8)
(0)

and the correction term is a combination of Greeks of the leading term Callyg:

,0%*Callps(t,S,K,T, &) 3 03Callgs(t,S,K,T,&)
. + W3S : ),
ds a8

where the coefficients V; and V3 are computed like the volatility & in Equationusing the operator (.):

VeCorrection!) = —(T —1) (V58

Vo =V2pv(f9"),

Vs = %W),

and ¢ is a solution of the Poisson equation:
LO9(y) =)= (%),

Moreover, the authors show in [45] that the error of the approximation for call(put) option behaves like:

|Call® — CallBS V€Correction'V |
im =0,
€l0 €|In(e)| 1P

for any p > 0. The drawback of such method is that the approximation is not valid for small maturities
since it uses the asymptotic regime as a model proxy.

Geodesic approach. There are many interesting papers and books about the geodesic approach and its
applications in finance:

* see Chavel [29] for an introduction about Riemannian geometry and Varadhan ([109]) for an
asymptotic of the density for small time,
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» see Berestycki et al [21], Labordere [[74] and [75], Lewis [80], Forde [43], Benhamou et al [17]
for the application of the Riemannian geometry in finance.

These works show that the Green function 7 (the pricing density) which solves:

on i 0°m on
- = 2y [
o~ L8 g5y T Lhigs

with initial condition 7 (ty, So,%,S) = 8(So = S), has the short maturity expansion:

—d%(80S)

7e(to,S0,t,S) = e 20 (Go(S0,S) + (t —10)G1(S0,S8) +--+)

where d(Sp,S) is the geodesic distance associated with the Riemannian space defined by the metric
distance ds*> = Y&, jdxidxj , Where g; ; is the inverse of the matrix g"/. The term G is related to the
Gaussian distribution. Indeed, the pricing density behaves like a Gaussian one when we use these new
geodesic variables. The term G is related to the curvature of the Riemannian space.

Moreover, Beresticky et al (see Th 1.2 in [21]] ) show in a general stochastic volatility model that the
implied Black Scholes volatility near the expiry is:

1n(%)

d(In(%),y0)

where ¢ the starting time, 7 the maturity, S the spot, K the strike, yo the value of the initial stochastic
volatility and d is the signed geodesic distance that solves the Eikonal Equation (1.12) in Theorem 1.12
in [21]]. Notice also that Beresticky et al in [21] derive corrections terms for the short time expansion of
the implied Black Scholes for some cases.

Hence, in general stochastic models, the explicit computation of the implied Black Scholes volatility
near the maturity requires the explicit computation of the geodesic distance d. Therefore, we give some
applications of these results in the case of SABR and Heston models.

lim 03, (7. K) = 9.9)

SABR model. We recall the SABR model introduced by Hagan in [[61]]. In this model, the spot
(S;) follows the dynamics:

ds, = rS,dt + oS aw;, S, > 0,
do; =vo,dB;, 00 = O,
d<W,B>[ == pdt,

where « is the initial volatility, B is the skew parameter, Vv is the volatility of volatility and p is the
correlation. The geodesic distance in this model can be computed explicitly (see paragraph 6.1 in [21] ):

1. vi—p++/1-2pvz+Vv2iz?
dlxy) = (=2 & )

dg
volatility near the maturity. Analogously, Hagan et al in [61] give an accurate analytic formula for the

implied Black Scholes using a short maturity expansion and related geodesic transformatio

where z = )y,?, 2=y This formula combined with Equation gives the implied Black Scholes

'However, Obloj shows in [89] that there is a difference between Hagan’s formula and the formula derived from Berestycki
et al in [21] and advices the formula derived by Berestycki et al since it gives more accurate results.
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Heston model. We recall that the Heston model (see [63]) is an extension of Black Scholes model
for the underlying (S,) with stochastic volatility:

d
% = rdt +\/vidW;, So > 0, (9.10)
t
dv, = k(0 —v,)dr + & /v dB;, vy >0, 9.11)
d(W,B), = pdt, 9.12)

where r is the risk free rate, vg is the initial square of volatility, x is the mean reversion parameter, 6 is
the long-term level, & is the volatility of volatility and p is the correlation. In the case of Heston’s model,
the geodesic distance (see [43]]) can be related to the Legendre transform A* of the function A : R - R

by:
d(x,+/vo) = /2A*(x), Vx€ER,

where

Alp) — Vop or o+l
P e i ) P
=oo  for pélp-.pil,

and the values p_, p; are computed in Theorem 1.1 in [43]. Notice also the interesting series expansion
for the geodesic distance in Heston’s model developed in [80].

However, these kind of expansions using geodesic approach are accurate only for short maturities
and valid for time homogeneous parameters.

Alternative approaches. There are various alternative approaches among which :

» Averaging technique. The averaging technique, introduced by Piterbarg [93]] has emerged as an
important technique. Piterbarg derives averaging constant Heston parameters for the Call price in
a time dependent Heston model; the approximation is derived only under zero correlation assump-
tion.

* Price expansion w.r.t. correlation. Antonelli and Scarlatti consider in [12] a general stochastic
model and derive a series expansion for the Call price w.r.t. correlation; the error bounds of
the series expansion w.r.t. correlation are available; the computations are available only for time
homogeneous parameters.

* Small volatility of volatility expansion. Lewis in [79] derives a call price expansion w.r.t. the
volatility of volatility. His work is based on formal expansion of the PDE operator for Fourier
transform of the Call price and restricted to constant parameters. His results are probably the
closest to ours.

9.3 Motivation and main results

Our aim in this Part is to
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* give an accurate analytic approximation for the price of call-put option

e TB[(K — e, 9.13)

* work in a very general time dependent Heston framework to obtain an approximation which
can be valid for both short and long maturities and can handle time dependent parameters and non
null correlation as well,

* achieve a computational time cheaper than Fourier inversion (gain by a factor 100 or more).

This is done in the chapter [I0] using an accurate expansion w.r.t. small volatility of volatility com-
bined with Malliavin calculus techniques and other stochastic analysis results.

Indeed, when the volatility of volatility equals to zero, the Heston model reduces to Black Scholes
model with time dependent volatility:

AXPS = /i dW; — St X5 = x,

dV()J = K(Oj — V()J)dt,V() > 0.

In this case, the put price is Pgs(xo, fy vo,dr), where the function (x,y) — Pss(x,y) is the put function
price in a BS model with spot e*, strike K, total variance y, risk-free rate r, dividend yield ¢ and maturity
T. We recall that Pgs(x,y) has the following explicit expression:

Posry) =KeTn (Liog(K )1 L 5
BS\X,Y) = \/y g exe_qT D) y
Ke T 1

1
_ e 4T — oo~ y— —
ee '/V(\/y Og(exe—qT) 2\/5)

Using a suitable parameterization
dvf = (6, —vi)dr + €&+/vEdB,,

we have v} = v, and V0 = vo;. Moreover, Xr = xo + fOT(\/vtdW, — %dt) conditioned on the sigma-

field 33%3 generated by the Brownian motion B is a Gaussian distribution with mean xg + fOT Pr/VidB; —
: fOT v,dt and variance fOT(l — p?)v,dt (see Renault and Touzi in [97]]). Then, the put price e ""E[(K —
e(’*‘I)TJFXT)Jr] is an expectation of a stochastic Black Scholes put price:

T ' p? r 2
E[Pas(xo + /0 pi/vidB, — /0 P v, /0 (1—p2)vdr)].

Therefore, using a Taylor expansion for the Pgg function at the second order combined with Malliavin
calculus techniques and some technical Lemmas, we show that

T
e TE[(K — 9T ] = PBS(XOa/O vo,dt)
+ Correction terms + Errors.

where
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* The corrections terms are a linear combination of Greeks of the leading Black Scholes price
Pgs(xo, fOT vo«dt) with weights depending only on the model parameters:

2 8i+1P T
Zai,riiBS(xo,/ vo,dt)
i=1 Ix'y 0

1 32i+2PBS T
b 1. T~ A~ ~ ,/ dt 5
—I—i;) 2i,T Ox2iy? (xo ) Vo )

Correction terms =

with
T T , ,
K —K
ayr = /0 / " py & vo e Pdhadty,
1
T pT T
arT = A / / eml ptl étl Vo1 ptz 5[28_’([3 dt3dt2dl1 s
n %)

T pT T
2Kt £2 —Kty ,—Kt
bO»T:/ / / e 1§t1V07t1€ Ze” "3drdtdty,
0 Jn Jn
2
arr
7

These computation are done using Malliavin calculus in Theorem [10.2.1]

byr =

* The errors are estimated in Theorem [[0.2.2] by:
Errors = O(|E|2T?).
The proof is based on some technical Lemmas.

Remark 9.3.1. * In case of the Heston model with constant parameters, one has:

air = pE(povo+p160), a1 = (pE)*(qov0 +q10),bo.r = E*(rovo +116).

where
e T (=T +e" —1) e T (kT + e (kT —2) +2)
po = 2 yP1 = 2 )
e T (=T (KT +2) +2¢" —2)
e T (2¢*" (kT — 3) + kT (kT +4) +6)
e 2T (—4e’<T KT + 26T — 2)
0= 43 ’
. e 2% (4e*T (kT + 1) + &**T (2kT —5) + 1)
4x3 '

* In case of Heston model with piecewise constant parameters, we use a recursive calculus of the

coefficients ay 1,a> 1,bo. 1 (see Subsection|10.2.5).

* From the approximation formula, we also derive some corollaries related first to equivalent Heston
models (extending some work of Piterbarg on stochastic volatility models [93]) and second, to the
calibration procedure in terms of ill-posed problems (see Subsection[I0.2.6)).
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The following chapter is exactly the article "Time dependent Heston model" is in revision for the journal
"SIAM on Financial Mathematics". The chapter [TT] presents numerical results concerning the smile
behavior for Heston’s model with constant and time dependent parameters as well. Moreover, in this
chapter, we review some results concerning the negative moments of the integrated CIR process.




Chapter 10

Time dependent Heston model

In revision for "SIAM Journal on Financial Mathematics".
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The use of the Heston model is still challenging because it has a closed formula only when the parameters
are constant [63] or piecewise constant [86]. Hence, using a small volatility of volatility expansion
and Malliavin calculus techniques, we derive an accurate analytical formula for the price of vanilla
options for any time dependent Heston model (the accuracy is less than a few bps for various strikes
and maturities). In addition, we establish tight error estimates. The advantage of this approach over
Fourier based methods is its rapidity (gain by a factor 100 or more), while maintaining a competitive
accuracy. From the approximative formula, we also derive some corollaries related first to equivalent
Heston models (extending some work of Piterbarg on stochastic volatility models [93]]) and second, to
the calibration procedure in terms of ill-posed problems.

10.1 Introduction

Stochastic volatility modeling has emerged in the late nineties as a way to manage the smile. In this work,
we focus on the Heston model which is a lognormal model where the square of volatility follows a CIRE]
process. The call (and put) price has a closed formula in this model thanks to a Fourier inversion of the
characteristic function (see Heston [63]], Lewis [[79] and Lipton [81]). When the parameters are piecewise
constant, one can still derive a recursive closed formula using a PDE method (see Mikhailov and Nogel
[86l) or a Markov argument in combination with affine models (see Elices [41]]), but formula evaluation
becomes increasingly time consuming. However, for general time dependent parameters there is no
analytical formula and one usually has to perform Monte Carlo simulations. This explains the interest
of recent works for designing more efficient Monte Carlo simulations: see Broadie and Kaya [27] for an
exact simulation and bias-free scheme based on Fourier integral inversion; see Andersen [[7] based on a
Gaussian moment matching method and a user friendly algorithm; see Smith [[107] relying on an almost
exact scheme; see Alfonsi [4] using higher order schemes and a recursive method for the CIR process.
For numerical partial differential equations, we refer the reader to Kluge’s doctoral dissertation [[70].

Comparison with the literature. A more recent trend in the quantitative literature has been the use
of the so called approximation method to derive analytical formulae. This has led to an impressive num-
ber of papers, with many original ideas. For instance, Alos et al. [6] have been studying the short time
behavior of implied volatility for stochastic volatility using an extension of Itd’s formula. Another trend
has focused on analytical techniques to derive the asymptotic expansion of the implied volatility near
expiry (see for instance Berestycki et al. [21]], Labordere [74)], Hagan et al. [61], Lewis [80], Osajima
[90] or Forde [43]). But in these works the implied volatility near expiry does not have a closed formula
because the related geodesic distance is not explicit. It can, however, be approximated by a series expan-
sion [80]. The drawback to these methods is their inability to handle non-homogeneous (that is to say
time dependent) parameters. For long maturities, another approach has been the asymptotic expansion
w.r.t. the mean reversion parameter of the volatility as shown in [44]]. In the case of zero correlation,
averaging techniques as exposed in [93] and [92] can be used. Antonelli and Scarlatti take another view
in [[12] and have suggested price expansion w.r.t. correlation. For all of these techniques, the domain
of availability of the expansion is restricted to either short or long maturities, to zero correlation, or to
homogeneous parameters. In our work, we aim to give an analytical formula which covers both short and
long maturities, that also handles time inhomogeneous parameters as well as non-null correlations. As a
difference with several previously quoted papers, our purpose consists also of justifying mathematically
our approximation.

The results closest to ours are probably those based on an expansion w.r.t. the volatility of volatility

Nice properties for the CIR process are derived by Dufresne [39]], Going-Jaeschke and Yor [56], Diop [38] and Alfonsi [3].
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by Lewis [[79]]: it is based on formal analytical arguments and is restricted to constant parameters. Our
formula can be viewed as an extension of Lewis’ formula in order to address a time dependent Heston
model, using a direct probabilistic approach. In addition, we prove an error estimate which shows that
our approximation formula for call/put is of order 2 w.r.t. the volatility of volatility. The advantage of
this current approximation is that the evaluation is about 100 to 1000 times quicker than a Fourier based
method (see our numerical tests).

Comparison with our previous works (see Chapters @ and [7). Our approach here consists of ex-
panding the price w.r.t. the volatility of volatility, and of computing the correction terms using Malliavin
calculus. In these respects, the current approach is similar to our previous works (see Chapters [4] and
[7), however, the techniques for estimating error are different. Indeed, we use the fact that the price of
vanilla options can be expressed as an expectation of a smooth price function for stochastic volatility
models. This is based on a conditioning argument as in [97]. Consequently, the smoothness hypotheses
(Hy,H,,Hs) of our previous Chapters are no longer required. Note also that the square root function
arising in the martingale part of the CIR process is not Lipschitz continuous. Hence, the Heston model
does not fit the smoothness framework previously used. Therefore, to overcome this difficulty, we derive
new technical results in order to prove the accuracy of the formula.

Contribution of the chapter. We give an explicit analytical formula for the price of vanilla options
in a time dependent Heston model. Our approach is based on an expansion w.r.t. a small volatility of
volatility. This is practically justified by the fact that this parameter is usually quite small (of order 1
or less, see [[79] or [27] for instance). The resulting formula is the sum of two terms: the leading term
is the Black-Scholes price for the model without volatility of volatility while the correction term is a
combination of Greeks of the leading term with explicit weights depending only on the model parameters.
Proving the accuracy of the expansion is far from straightforward, but with some technicalities and a
relevant analysis of error, we succeed in giving tight error estimates. Our expansion enables us to obtain
averaged parameters for the dynamic Heston model.

Formulation of the problem. We consider the solution of the stochastic differential equation (SDE):

dX, = /vdW, — %dt, Xo = xo, (10.1)
dv, = K‘(G, _Vt)dt+ ét\/‘TtdBta Vo, (102)

d(W,B), = p,dt,

where (B;,W;)o<i<r is a two-dimensional correlated Brownian motion on a filtered probability space
(Q,F,(F)o<i<r,P) with the usual assumptions on filtration (.%;)o<,<r. In our setting, (X;), is the
log of the forward price and (v;), is the square of the volatility which follows a CIR process with an
initial value vy > 0, a positive mean reversion k, a positive long-term level (6;),, a positive volatility of
volatility (&), and a correlation (p;),. These time dependent parameters are assumed to be measurable
and bounded on [0, T'].

To develop our approximation method, we will examine the following perturbed process w.r.t. € €
[0,1]:

£
dXE = \/vEdW, — %‘dt, X£ = xo,
dvf = (6, —v)dr + €&+/vEAB,, v = vo, (10.3)

so that our perturbed process coincides with the initial one for € = 1 : X,' = X;,v! = v,. For the existence
of the solution v¢, we refer to Chapter IX in [98] (moreover, the process is non-negative for k6, > 0, see
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also the proof of Lemma|10.4.2). Our main purpose is to give an accurate analytic approximation, in a
certain sense, of the expected payoff of a put option :

g(e) = e I MUE[(K — ol (n-a)dtXEy (10.4)

where r (resp. g) is the risk-free rate (resp. the dividend yield), T is the maturity and € = 1. Extensions
to call options and other payoffs are discussed later.

Outline of the chapter. In Section [10.2] we explain the methodology of the small volatility of
volatility expansion. An approximation formula is then derived in Theorem [10.2.1] and its accuracy
stated in Theorem[10.2.2] This section ends by explicitly expressing the formula’s coefficients for general
time dependent parameters (constant, smooth and piecewise constant). Our expansion allows us to give
equivalent constant parameters for the time dependent Heston model (see Subsection [I0.2.6). As a
second corollary, the options calibration for Heston’s model using only one maturity becomes an ill-
posed problem; we give numerical results to confirm this situation. In section|10.3] we provide numerical
tests to benchmark our formula with the closed formula in the case of constant and piecewise constant
parameters. In Section [I0.4] we prove the accuracy of the approximation stated in Theorem [10.2.2}
this section is the technical core of the chapter. In Section [I0.5] we establish lemmas used to make
the calculation of the correction terms explicit (those derived in Theorem [I0.2.T). In Section [10.6] we
conclude this work and give a few extensions. In the appendix, we recall details about the closed formula
(of Heston [63]] and Lewis [[79]) in the case of constant (and piecewise constant) parameters.

10.2 Smart Taylor expansion

10.2.1 Notations

Notation 10.2.1. Extremes of deterministic functions.
For a cadlag function 1 : [0,T] » R, we denote lj,y = infico,7) 1 and lsup = sup;cio 71 br-

Notation 10.2.2. Differentiation.
* For a smooth function x — 1(x), we denote by 1Y) (x) its i-th derivative.

* Given a fixed time t and for a function € — f£, we denote (if it has a meaning) the " derivative at
ai €
e=0by fir = Sk |emo.

10.2.2 Definitions

In order to make the approximation explicit, we introduce the following family of operators indexed by
maturity 7.

(

Definition 10.2.1. Integral Operator. We define the integral operator ® }') as follows:

* For any real number k and any integrable function I, we set

T
ot = /t l,du, Vit € [0,T).
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o For any real numbers (ky,--- ,k,) and for any integrable functions (I,- - - ,1,), the n-times iteration
is given by
(k2 )5y (knsln)
ki) s (Kol (krh o
wt(j’l% ! ):(D”} l ),VZ‘E[O,T].

o When the functions (I1,--- ,1,) are equal to the unity constant function 1, we simply write

~k s"'vkn _ (k171)7”'7(kn71)

a7 "= , Vre[0,T].

10.2.3 About the CIR process

Assumptions. In order to bound the approximation errors, we need a positivity assumption for the CIR
process.

Assumption (P). The parameters of the CIR process (|10.2)) verify the following conditions:
20
iny >0, (?)Inf > 1.

This assumption is crucial to ensure the positivity of the process on [0, 7], which is stated in detail in
Lemmal|l10.4.2|(remember that vy > 0). We have

PVt €[0,T]: v, >0)=1.
When the functions 6 and £ are constant, Assumption (P) coincides with the usual Feller test condition
26%9 > 1 (see [69]).

Note that the above assumption ensures that the positivity property also holds for the perturbed CIR

process ([10.3): for any € € [0, 1], we have

P(Vr€[0,T]: vi >0)=1

(see Lemma [10.4.2). We also need a uniform bound of the correlation in order to preserve the non
degeneracy of the SDE (10.1]) conditionally on (B;)o</<7-

Assumption (R). The correlation is bounded away from -1 and +1:

’p|sup <1.

10.2.4 Taylor Development

In this paragraph, we present the main steps leading to our results. Complete proofs are given later.

If (Z2), denotes the filtration generated by the Brownian motion B, the distribution of X£ con-
ditionally to ﬁf is a Gaussian distribution with mean xy + fo o2 \/; dB; — 2 0 v, €dr and variance
J (1= p2)vEdt (€ € [0,1]). Therefore, the function ( can be expressed as follows:

g(e) = E[Pss xo+/ pr/vEdB, — / fdt/ — pA)vEdr)], (10.5)
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where the function (x,y) — Pgs(x,y) is the put function price in a Black-Scholes model with spot e*,

strike K, total variance y, risk-free rate r,, = I ( Jdi , dividend yield g., = I qT( Jd and maturity 7. For

the sake of completeness, we recall that Pgg(x,y) has the following explicit expression

Ke el 1

)-3V5).

Ke Ty 1 ) (KefreqT)le\[ < y-de g 1 log(
e’ —log(———=)+ = —ere e —log(———=
\/y g exe_‘th 2 Y \/y g exe—tth
In the following, we expand Pgg(.,.) with respect to its two arguments. For this, we note that Pgg is a
smooth function (for y > 0). In addition, there is a simple relation between its partial derivatives:

0Pgg _ 1 82P35 dPgs
Ty(x7y>_§( 02 (x,y) Ox (x y)) VXER7V)7>0: (10-6)

which can be proved easily by a standard calculation left to the reader.
Under assumption (P), for any 7, v¢ is C? w.rt € at € = 0 (differentiation in L,-sense). This result will be

shown later. In addition, v* does not vanish (for any & € [0, 1]). Hence, by putting v{, = ‘3;&8 , we get

dVit KV] tdt + 5[ \VAZ dBt + 85[ dB[, Vio = 0,

f

8 8 [ ') }2
€ 1 Wt e
dv27t KVZ tdt + gl \/>d81 + 8&[ \/‘; (éf [ ]3 dBf? v270 =0.
From the definitions v;; = %i—g le—0, we easily deduce

ot

vor =e (v —I—/ ke 6,ds),
0

t
no=e [ g s, (10.7)
vas = e—'“/ e S _qp, (10.8)

(vo, s)

Note that vy, coincides also with the expected variance E(v;) because of the linearity of the drift coeffi-
cient of (v;),;. Now, to expand g(&), we use the Taylor formula twice, first applied to € — v¢ and /¢ at
€ = 1 using derivatives computed at € = 0:

27_|_...7

V1 %) V%
vi= ot — 5t — - —
f T 2(w,)t 4(w)r 8(woy)?

secondly for the smooth function Pgg at the second order w.r.t. the first and second variable around
2
(x0+ fOT Pr+/Vo,dB; — OT %’vo,tdt, fOT(l — p?2)vo,dt). For convenience, we simply write

T n2

P; T 2
S voudr, [ (1= pF)vo,dr), (10.9)

T
Pps =Pgs(x0+ /0 Pi\/vo dB; — 2

ai+jﬁ ai+jP T T ~2 T
axiyfs = axiyfs (XO—“‘/O Pm/VO,tdBt — 0 pTIVOJdZ‘,/O (1 —ptz)VO?tdt).
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Then, one gets

8(1) =E[Pgs] (10.10)
dPgs , (T Vit Vo Vz Pt V2
+E7/ 4+ I — -)dB / dr (10.11)
=5, ¢ A Pt(z(vm)% T000)] 8(v0,)7 = 5 )dr)]
OPys (T
B[S [T (1= 7)1+ 2 (10.12)
y Jo
aZPBS Tp2
+5 L 52 /p, Vo;) B, — [ Sovidt?] (10.13)
1_, 0%Pgs
B /0 (1—p?)vi,d)?] (10.14)
azpBS Tp2
HE[ /0 (1= p2)vn dr)( / P vm) R ) (10.15)
e (10.16)

where & is the error in our Taylor expansion. In fact, we notice that:
E[Pys] = E[E[e 0 % (K — 0o (i=a=5)dr JJ /o (pidBit/1-p7dBL )y | 2B))

T
= Pps(xo, /0 vodt),

where B is a Brownian motion independent on .%2. Furthermore, the relation (T0.6) remains the same
for Pgg and this enables us to simplify the expansmn above. This gives:

Proposition 10.2.1. The approximation (10.16) is equivalent to

T 1_.0%P T
/0 (41 +v2,)di] + S aygs( /O vt 4 6.

r -

g(l) = Pgs(xO,/ V()’,dl‘) +]E[aaﬁgs

0 y

The details of the proof are given in Subsection[I0.5.2] At first sight, the above formula looks like a

Taylor formula of Pgg w.r.t. the cumulated variance. In fact, it is different, note that the coefficient of v,
is not 1/2 but 1. We do not have any direct interpretation of this formula.

The next step consists of making explicit the correction terms as a combination of Greeks of the BS

price.

Theorem 10.2.1. Under assumptions (P) and (R), the puﬂ price is approximated by

7.4 T drxl 2 8i+1P
eif() 17 f]E[(K—efO (ri—qq)de+ T)+] :PBS(XO;VarT) +Zai7]‘Tiy(x0,VarT)

1 821+2P
+szlr iy (xo,varT)JréD, (10.17)

2The approximation formula for the call price is obtained using the call/put parity relation: in {10.17)), it consists of replacing
on the L.h.s. the put payoff by the call one, and on the r.h.s., the put price function Pgg by the similar call price function, while
coefficients remain the same.
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where
T
K,p&Evo,.),(—K,1 K,p6v0,.),(0,08),(—k,1
vary :/0 vodt, ar = w(gjpé 0,):( ), arr = a)é’Tp‘: 0.):(0,08),( )7
2
26,6200, ),(—k,1),(— K, 1 air
bor = wéﬁT 0,.),(—1,1),( )’ byr = S

The proof is postponed to Subsection Finally, we give an estimate regarding the error &
arising in the above theorem.

Theorem 10.2.2. Under assumptions (P) and (R), the error in the approximation (10.17) is estimated as
follows:

£=0 ([§Sup\/f}3\/?) .

In view of Theorem [10.2.2] we may refer to the formula (I0.17) as a second order approximation
formula w.r.t. the volatility of volatility.
10.2.5 Computation of coefficients

Constant parameters The case of constant parameters (6,&,p) gives us the coefficients a and b ex-
plicitly. Indeed in this case, the operator @ is a simple iterated integration of exponential functions.
Using Mathematica, we derive the following explicit expressions.

Proposition 10.2.2. Explicit computations. For constant parameters, one has:

vary =movo+m 0, arr =p&(povo+ p16),
arr =(p€)*(qovo+¢19), bor =E*(rovo +116).
where
efrcT -1 +eKT eftcT .| +6KT
my = ( ) , m =T— ( ) )
K K
e T (=T +e" — 1) e T (kT + T (kT —2) +2)
pPo = K2 ) P11 = K2 )
e M (=T (KT +2) +2¢*" —2) e ¥ (2" (KT —3) + kT (KT +4) +6)
qo0 = 53 o q1= 213 ;
e KT (—4eXT KT +2¢°*T —2) e KT (4*T (kT + 1) + &**T (2kT —5) + 1)
0= 453 ’ "= 4x3 '

Remark 10.2.1. In the case of constant parameters (0,&,p), we retrieve the usual Heston model. In
this particular case, our expansion coincides exactly with Lewis’ volatility of volatility series expansion
(see Equation (3.4), page 84 in [|79)] for Lewis’ expansion formula and page 93 in [|79] for the explicit
calculation of the coefficients J) with ¢ = %). Using his notation, we have ay r = JO), ar = JW and
bor =J0.

Smooth parameters In this case, we may use a Gauss-Legendre quadrature formula for the computa-
tion of the terms a and b.
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Piecewise constant parameters The computation of the variance varr is straightforward. Thus, it
remains to provide explicit expressions of @ and b as a function of the piecewise constant data. Let 7y =

0<T <---<T,=T suchthat 0,p,& are constant on each interval |7;, 7;, [ and are equal respectively

to 07, ,,p1.,,S1,,. Before giving the recursive relation, we need to introduce the following functions:
~ 25,E2 k, 0, 2k,E2 1

wlt _ wétpévo ), @y, = wétké 0,.) o w(gJ,Pf:Vo,.)( Pg)’ Bt _ w((),t &4v0,),(—K, ).

Proposition 10.2.3. Recursive calculations. For piecewise constant coefficients, one has:

aig,, =ain+ 055 O+ pn, & fie, (05,05 T T,
a1, = a1+ (DT T OT; + P14, §T:+1 wT T+1 o] T+ (meéTm) f;c O.T; (9T+|7Ti7Ti+1)7
bog., =bog+ @5 Br+ 0 "G5+ &7 flu (1.0 T T
o, = o+ 1, &y (Tt — T @17+ P, &7, 8y (871 T Tt
ﬁTiH = ﬁTi + d);}y’%+ld)27ﬂ + éT,-HgK'.V()T (GT+1 i, ]}-H)a
(D],Tiﬂ = (DLTi +pTi+1§Ti+1hrlc vo.T; (9T+1 ) Ti7Ti+1>7

A~ A 2 2
a)sziJrl =T + éT-HhK,voj <9T+1 ) Tia Ti+1)7

VoI, — € (T T)(VO T, — 9Ti+l) + 9T+17
where
01T 721<T( 2m(9—2v0)+621<r((—21<t+21<T—5)9+2v0)+4ex(r+r)((_KI+KT+1)9+K(Z_T)VO))
K'V()( 7t’ ) o ’
fK vo(e,l, T) 7;<T( ((*K‘t+KT72)9+v0)fe:2((Kt7K‘T72)97K‘tv0+KTv0+v0))’
e 3D (23T (16(T—1)—3) 9-+vg) +e2<+T) (i (1—T) —4) (1—=T)+6) 0 —(x(k(t—T)~2) (t=T)+2)v0))
fK . O’t’T) 253 ,
2e5T 9+ (k2 (t—T)*vo—(k(k(t—T)—2)(t—T)+2)8
gK'Vo(67t7T) ( ) )’
g (6,1,T) = e T (257 9> (8—2v)+2¢"+7) (i(t—T) (6 —v9) —v0))
K,v IAS) T ,
0(9 t T) KT9+em((’“*'<T*1)9+K(1;7t)vo)
Yo Y K )
eKT ercr(672v )*BKTG
I (8,1,T) = ()T 0202 0)
1 “ (- — tu tu_ ,Tu 2
and ®(T) = =<+ G0(T) = J(Wr+l)+e @ (T) = %

Proof. According to Theorem[10.2.1] one has :

T i+1 1)
Cll’THI :/0 e ptévO, T+I dt“—/ e p,’c_';tvo, T+{ dr
i+1 _1)
=a g _|_/ e p,étvota)r T+1 dt‘i‘/ e ptétvot T;H dr

T;
—x.1 K1
=ar. + (0;1711)/0 €Ktpzézvo,zdf +/T e ptétVOt TH' )dt

_ MK 1
=ar+ wTi77}+1 o1 + pTi+1§Ti+1fk,v0ﬂ (9i+1 T, ’I;'+1)7

where the functions f,;vO and @ ¥ are calculated analytically using Mathematica. The other terms are
calculated analogously. 0
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10.2.6 Corollaries of the approximation formula (10.17)

Averaging Heston’s model parameters We derive a first corollary of the approximation formula in
terms of equivalent Heston models. As explained in [93], this averaging principle may facilitate efficient
calibration. Namely, we search for equivalent constant parameters i, 0, &, p for the Heston mode

dX, = \/5,dW, — %dt,)_(o = xo,

dv; = (6, — 9)dt + E/5:dBy, %o = vo,
d<W,B>[ == [)d[,

that equalize the price of call/put options maturing at 7" in the time dependent model (equality up to the
approximation error &). The following rules give the equivalent parameters as a function of the variance
varr and the coefficients ai 1, a>r, bo,r that are computed in the time dependent model. Results are

expressed using
az,Tmi
a=—"— b=

_ airm P1 q1
b )
miqo — moqi mjpo —mopi

c=vary( - ,
mppo —mopi miqo — moq1

where mg,my, po, P1,40,91, "o and r; are given in Proposition|10.2.2,

Averaging rule in the case of zero correlation. If p, = 0, the equivalent constant parameters (for

maturity T) are
_ ~varr —mgyv z b _
K =K, 9:T7007 gz L_’ p:O
my rovo+r0

Proof. Two sets of prices coincide at maturity 7 if they have the same approximation formula (10.17)).
In this case aj .7 = ap 7 = by 7 = 0, thus the approximation formula depends only on two quantities varr
and b 7. It is quite clear that there is not a single choice of parameters to fit these two quantities. A
simple solution results from the choice of ¥ = k and p = 0: then, using Proposition [10.2.2] we obtain
the announced parameters 6 and E . O

Remark 10.2.2. In this case of zero correlation and 6 = vy = 0, we exactly retrieve Piterbarg’s results
for the averaged volatility of volatility & ( see [93]).

Averaging rule in the case of non zero correlation. We follow the same arguments as before. Now
the approximation formula also depends on the four quantities varr, ai 7, a> r and by r. Thus, equalizing
call/put prices at maturity 7 is equivalent to equalizing these four quantities in both models, by adjusting
«,0,E and p. Unfortunately, we have not found a closed expression for these equivalent parameters. An
alternative and simpler way of proceeding consists of modifying the unobserved initial value 7y of the
variance process while keeping k¥ = k. For non-vanishing correlation (p;),, it leads to two possibilities

_— (b++v/b*—4ac) pivarr g _rarr - moVo
Vo = - s =
2a mipo — mop1 m

el
Il

E . boj _ 2a
rovo+r16’ E(b+ /b —4ac)

3In this approach, we leave the initial value ¥y equal to vo. Indeed, it is not natural to modify its value since it is not a
parameter, but rather an unobserved factor.




10.3 Numerical accuracy of the approximation 161

In practice, only one solution gives realistic parameters. However, this rule is heuristic since there is a
priori no guarantee that these averaged parameters satisfy the assumption (P), which is the basis for the
arguments correctness.

Proof. Using Proposition[10.2.2] one has to solve the following system of equations
vary =movy+mi 0, ar.r =p&(povo+ p16),
arr =(p&)*(q0%0 +¢10), bo,r =&*(rovo+r16).

The first equation gives 6 = % Replacing this identity in a; 7 and a, 7 gives

air  pivarr mj
(p&) my * pomi—pimg’

dr  qivarr mj
(p&)? my " qomi —qimo

o =( o =(

1

It readily leads to a quadratic equation ax? 4+ bx+ ¢ = 0 with x = —. By solving this equation, we easily

it
[Ty

complete the proof of the result. 0

Collinearity effect in the Heston model Another corollary of the approximation formula (10.17) is
that we can obtain the same vanilla prices at time T with different sets of parameters. For instance, take

Table 10.1: Error in implied Black-Scholes volatilities (in bp) between the closed formulas (see ap-
pendix) of the two models M| and M, expressed as relative strikes. Maturity is equal to one year.

strikes K 80% 90% 100% 110% 120%
model M, 20.12% 19.64% 19.50% 19.62% 19.92%
model M, 20.11% 19.65% 19.51% 19.62% 19.92%
errors (bp) 0.69 -0.35 -0.81 -0.42 0.34

on the one hand vp = 6 = 4%, x; =2 and &; = 30% (model M;) and on the other hand vy = 6 = 4%,
K, = 3 and &, = 38.042% (model M>), both models having zero correlation. The resulting error between
implied volatilities within the two models are presented in Table[T0.1} they are so small that prices can
be considered as equal. Actually, this kind of example is easy to create even with non-null correlation: as
before, in view of the approximation formula (I0.17), it is sufficient to equalize the four quantities varr,
aynr,axr and bZ,T-

As a consequence, calibrating a Heston model using options with a single maturity is an ill-posed
problem, which is not a surprising fact.

10.3 Numerical accuracy of the approximation

We give numerical results of the performance of our method. In what follows, the spot Sy, the risk-free
rate r and the dividend yield g are set respectively to 100, 0% and 0%. The initial value of the variance
process is set to vo = 4% (initial volatility equal to 20%). Then we study the numerical accuracy w.r.t.
K, T, x, 6, & and p by testing different values for these parameters.

In order to present more interesting results for various relevant maturities and strikes, we allow the
range of strikes to vary over the maturities. The strike values evolve approximately as Sp exp(cx/ﬁ )
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Table 10.2: Set of maturities and strikes used for the numerical tests.

T/K

3M 70 80 90 100 110 120 125 130
6M 60 70 80 100 110 130 140 150
1Y 50 60 80 100 120 150 170 180
2Y 40 50 70 100 130 180 210 240
3Y 30 40 60 100 140 200 250 290
5Y 20 30 60 100 150 250 320 400
7Y 10 30 50 100 170 300 410 520
10Y 10 20 50 100 190 370 550 730

for some real numbers ¢ and 8 = 6%. The extreme values of ¢ are chosen to be equal to +£2.57, which
represents the 1%-99% quantile of the standard normal distribution. This corresponds to very out-of-the-
money options or very deep-in-the-money options. The set of pairs (maturity, strike) chosen for the tests

is given in Table

Constant parameters In Table we report the numerical results when 6 = 6%, k = 3, & = 30%
and p = 0%, giving the errors of implied Black-Scholes volatilities between our approximation formula
(see Equation (I0.17))) and the price calculated using the closed formula (see appendix), for the maturities
and strikes of Table [I0.2] The table should be read as follows: for example, for one year maturity and
strike equal to 170, the implied volatility is equal to 24.14% using the closed formula and 24.20% with
the approximation formula, giving an error of -6.33 bps. In Table[TI0.3] we observe that the errors do not
exceed 7 bps for a large range of strikes and maturities. We notice that the errors are surprisingly higher
for short maturities. At first sight, it is counterintuitive as one would expect our perturbation method to
work better for short maturities and worse for long maturities, since the difference between our proxy
model (BS with volatility (vo,),) and the original one is increasing w.r.t. time. In fact, this intuition is
true for prices but not for implied volatilities. When we compare the price errors (in Price b[ﬂ) for the
same data, we observe in Table [T0.4] that the error terms are not any bigger for short maturities but vary
slightly over time with two observed effects. The error term first increases over time as the error between
the proxy and the original model increases over time, as forecasted. But for long maturities, presumably
because the volatility converges to its stationary regime, errors decrease. When we convert these prices
to implied Black-Scholes volatilities, these error terms are dramatically amplified for short maturities
due to very small vega. Finally, note that for fixed maturity, price errors are quite uniform w.r.t. strike K.

Impact of the correlation Analogous results for correlations equal to —20%, 20% and —50% are
reported in Tables[T10.5H10.6] [10.7H10.8] and [T0.910.10] We notice that the errors are smaller for a corre-
lation close to zero and become larger when the absolute value of the correlation increases. However, for
realistic correlation values (-50% for instance), the accuracy for the usual maturities and strikes remains
excellent (error smaller than 20 bps), except for very extreme strikes.

Impact of the volatility of volatility In view of Theorem[I0.2.2] the smaller the volatility of volatility,
the more accurate the approximation. In the following numerical tests, we increase &, while maintaining

Price Approxu;;g:)nfTrue Price % 10000

“4Error price bp=
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Table 10.3: Implied Black-Scholes volatilities of the closed formula, of the approximation formula and
related errors (in bp), expressed as a function of maturities in fractions of years and relative strikes.
Parameters: 6 = 6%, k =3, £ =30% and p = 0%.

3M 2324% 22.14% 2143% 21.19% 21.39% 21.86% 22.14% 22.44%
23.06% 22.19% 21.42% 21.19% 21.38% 21.88% 22.19% 22.49%
18.01 -4.86 0.53 0.38 0.65 -2.68 -4.86 -4.71
6M 2432% 23.29% 22.55% 21.99% 22.10% 22.75% 23.17% 23.60%
24.12% 23.36% 22.57% 21.98% 22.09% 22.79% 23.24% 23.65%
19.69 =117 -1.89 0.93 1.05 -3.97 -7.12 -4.57
1Y 24.85% 24.06% 23.14% 2290% 23.06% 23.66% 24.14% 24.38%
2478% 24.12% 23.14% 22.89% 23.06% 23.71% 24.20% 24.42%
7.72 -6.49 0.26 1.12 0.72 -4.54 -6.33 -4.27
2Y 24.86% 24.36% 23.82% 23.61% 23.73% 24.16% 24.46% 24.76%
24.86% 24.40% 23.82% 23.61% 23.72% 24.19% 24.50% 24.78%
-0.21 -3.51 -0.12 0.68 0.37 -2.54 -3.62 -1.71

3Y 2495% 24.53% 24.10% 23.89% 23.98% 24.27% 24.53% 24.74%
2494% 24.55% 24.10% 23.89% 23.98% 2428% 24.55% 24.75%
1.80 -2.12 -0.33 0.39 0.19 -1.27 -2.12 -1.26

5Y 24.88% 24.56% 24.20% 24.12% 24.17% 2438% 24.53% 24.69%

24.86% 24.57% 24.20% 24.12% 24.17% 2439% 24.54% 24.70%
1.38 -0.96 0.03 0.17 0.10 -0.58 -0.95 -0.59
7Y 25.03% 24.46% 24.30% 2423% 2427% 2442% 24.54% 24.65%
2497% 24.46% 24.30% 2422% 2427% 2442% 24.55% 24.66%
5.72 -0.43 -0.02 0.09 0.04 -0.33 -0.54 -0.35
10Y 2472% 24.51% 24.34% 2430% 24.34% 2444% 24.54% 24.62%
2471% 24.51% 24.34% 2430% 24.34% 2444% 24.54% 24.62%
0.42 -0.28 0.02 0.05 0.02 -0.17 -0.29 -0.19

Assumption (P). Thus, the new Heston’s parameters are k = 10, & = 1 and p = —50%, the other
parameters remaining unchanged. The comparative results on implied volatilties and prices are presented
in Table [10.11|and [10.12] As expected, the approximation is less accurate than for & = 30%, but still
accurate enough to be efficiently used for fast calibration. The results for prices are more satisfactory
than for implied volatilities. Once again, for short maturities, the errors in implied volatilities may be
quite significant, except for options not-far-from-the-money.

Impact of the assumption (P) The assumption (P) is a technical assumption that we use to establish
error estimates for the approximation formula (TI0.17). In the test that follows, we relax this assumption
by taking new parameters 8 = 3%, k =2, & = 40% and p = 0% for which the ratio 2k0/£? =0.75 < 1.
Results are reported in Tables [10.13]and [10.14] We observe that the approximation formula still works
(errors are smaller than 20 bps) but it is less accurate (compare with Table [10.3] for which the ratio
2k6/E? is equal to 4 > 1). An extension of the validity of our formula by relaxing Assumption (P) is
presumably relevant. This investigation is left for further research.

Piecewise constant parameters Heston’s constant parameters have been set to: vo = 4%,k = 3. In
addition, the piecewise constant functions 6, & and p are equal respectively at each interval of the form
]ﬁ, %[ to 4% +i < 0.05%, 30% +i < 0.5% and —20% + i x 0.35%.

In the same Tables[I0.16|and[I0.17] we report values using three different formulas. For a given maturity,
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Table 10.4: Put prices of the closed formula, of the approximation formula and related errors (in bp),
expressed as a function of maturities in fractions of years and relative strikes. Parameters: 0 = 6%,
k=23,&=30% and p = 0%.

3M 30.00 20.08 10.87 4.22 1.14 0.24 0.10 0.04
30.00 20.08 10.87 4.22 1.14 0.24 0.10 0.04
0.03 -0.11 0.06 0.08 0.09 -0.15 -0.14 -0.07
6M 40.01 30.07 20.52 6.20 2.72 0.40 0.14 0.05
40.01 30.08 20.52 6.19 2.71 0.40 0.14 0.05
0.05 -0.16 -0.18 0.26 0.26 -0.34 -0.29 -0.08
1Y 50.01 40.11 21.84 9.12 3.08 0.51 0.15 0.09
50.01 40.11 21.84 9.11 3.07 0.52 0.16 0.09
0.04 -0.21 0.06 0.44 0.23 -0.51 -0.29 -0.12
2Y 60.03 50.20 32.08 13.26 4.71 0.79 0.28 0.11
60.03 50.20 32.08 13.26 4.71 0.79 0.29 0.11
0.00 -0.18 -0.03 0.38 0.17 -0.43 -0.29 -0.06
3Y 70.02 60.15 41.70 16.39 5.73 1.21 0.36 0.15
70.02 60.15 41.70 16.39 5.73 1.21 0.37 0.15
0.01 -0.09 -0.08 0.27 0.11 -0.31 -0.22 -0.07
5Y 80.01 70.15 43.80 21.26 8.50 1.61 0.58 0.21
80.01 70.15 43.80 21.26 8.50 1.61 0.58 0.21
0.01 -0.04 0.01 0.15 0.08 -0.19 -0.15 -0.04
7Y 90.00 70.42 53.15 25.14 9.32 1.97 0.66 0.26

90.00 70.42 53.15 25.14 9.32 1.97 0.67 0.26
0.00 -0.04 -0.01 0.09 0.04 -0.14 -0.10 -0.03
10Y 90.01 80.23 55.22 29.92 11.49 2.62 0.84 0.33
90.01 80.23 55.22 29.92 11.49 2.62 0.84 0.33
0.00 -0.02 0.01 0.06 0.03 -0.09 -0.07 -0.02

the first row is obtained using the closed formula with piecewise constant parameters (see appendix), the
second row uses our approximation formula and the third row uses the closed formula with
constant parameters computed by averaging (see Section [I0.2.6)). In order to give complete information
on our tests, we also report in Table[T0.15|the values used for the averaging parameters (following Section
[10.2.6).

Of course, the quickest approach is the use of the approximation formula (I0.17). As before, its
accuracy is very good, except for very extreme strikes. It is quite interesting is to observe that the
averaging rules that we propose are extremely accurate.

Computational time Regarding the computational time, the approximation formula yields es-
sentially the same computational cost as the Black-Scholes formula, while the closed formula requires
an additional space integration involving many exponential and trigonometric functions for which evalu-
ation costs are higher. For instance, using a 2,6 GHz Pentium PC, the computations of the 64 numerical
values in Table [10.3](10.5] [T0.7or[T10.9) take 4.71 ms using the approximation formula and 301 ms using
the closed formula. For the example with time dependent coefficients (reported in Table[10.16)), the com-
putational time for the 64 prices is about 40.2 ms using the approximation formula and 2574 ms using
the closed formula. Roughly speaking, the use of the approximation formula enables us to speed up the
valuation (and thus the calibration) by a factor 100 to 600.
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Table 10.5: Implied Black-Scholes volatilities of the closed formula, of the approximation formula and
related errors (in bp), expressed as a function of maturities in fractions of years and relative strikes.
Parameters: 8 = 6%, k =3, £ =30% and p = —20%.

3M 2450% 23.07% 21.92% 21.16% 20.84% 2091% 21.04% 2121%
24.04% 23.14% 21.93% 21.15% 20.82% 20.87% 21.06% 21.37%
45.76 -7.65 -1.25 0.38 2.35 3.68 -2.73 -16.51
6M 25.68% 24.38% 2331% 21.94% 21.65% 21.68% 21.88% 22.15%
25.19% 24.45% 2338% 21.93% 21.63% 21.64% 21.96% 22.47%
49.49 -1.75 -7.32 0.99 2.22 4.10 -8.10 -32.52
1Y 26.20% 25.14% 23.65% 22.82% 22.47% 2251% 22.72% 22.86%
2592% 2523% 23.68% 22.81% 22.44% 2249% 22.89% 23.17%
28.04 -8.22 -2.65 1.32 3.45 2.08 -16.41  -31.56
2Y 26.03% 2528% 24.29% 2351% 23.18% 23.09% 23.17% 23.29%
2595% 2535% 24.32% 23.50% 23.16% 23.08% 23.25% 23.56%
7.83 -6.41 -2.54 0.93 2.37 1.57 -8.04 -26.37
3Y 26.06% 25.40% 24.57% 23.78% 23.47% 23.34% 23.36% 23.42%
2595% 25.44% 24.60% 23.78% 23.45% 23.32% 23.41% 23.58%
11.21 -3.39 -2.44 0.61 1.65 1.71 -5.11 -16.68
5Y 25.83% 2528% 2447% 2401% 23.75% 23.57% 23.55% 23.55%
25.75% 2530% 24.47% 24.01% 23.74% 23.56% 23.56% 23.65%
8.29 -1.76 -0.65 0.32 0.84 1.01 -1.92 -9.38
7Y 26.02% 24.97% 24.56% 24.11% 23.86% 23.70% 23.65% 23.64%
25.82% 24.99% 24.57% 24.11% 23.85% 23.69% 23.67% 23.70%
20.23 -1.59 -0.59 0.21 0.60 0.69 -1.50 -6.16
10Y 2543% 24.99% 24.49% 24.19% 23.97% 23.81% 23.75% 23.72%
2540% 25.00% 24.49% 24.18% 23.96% 23.80% 23.76% 23.76%
3.46 -0.94 -0.20 0.14 0.38 0.48 -0.95 -3.98

10.4 Proof of Theorem [10.2.2]

The proof is divided into several steps. In Subsection we give the upper bounds for derivatives of
the put function Pgg, in Subsection [10.4.2] the conditions for positivity of the squared volatility process
v, in Subsection [10.4.3| the upper bounds for the negative moments of the integrated squared volatility
fOT vydt, in Subsection (10.4.4] the upper bounds for derivatives of functionals of the squared volatility
process v. Finally, in Subsection 10.4.5] we complete the proof of Theorem [10.2.2| using the previous
Subsections.

Notations In order to alleviate the proofs, we introduce some notations specific to this section.
Differentiation. For every process Z¢, we write (if these derivatives have a meaning):

9'Zf
* Zis = et |e=0s
ith - Z8 _ze _yi &,
¢ the /" Taylor residual by Ry, = Z; =0 71Zj.1-

Generic constants. We keep the same notation C for all non-negative constants
* depending on universal constants, on a number p > 1 arising in L, estimates, on 6y, vo and K;

* depending in a non decreasing way on K, \/%, Osup, 55,”,, Ef—:; and T.

1_‘p‘§up
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Table 10.6: Put prices of the closed formula, of the approximation formula and related errors (in bp),
expressed as a function of maturities in fractions of years and relative strikes. Parameters: 0 = 6%,
k=3,&=30% and p = —20%.

3M 30.01 20.10 10.93 4.22 1.07 0.19 0.07 0.03
30.00 20.11 10.93 4.22 1.06 0.19 0.07 0.03
0.10 -0.21 -0.15 0.08 0.32 0.18 -0.06 -0.18
6M 40.01 30.10 20.60 6.18 2.61 0.31 0.10 0.03
40.01 30.10 20.60 6.18 2.60 0.31 0.10 0.03
0.19 -0.22 -0.74 0.28 0.54 0.30 -0.26 -0.41
1Y 50.02 40.15 21.95 9.08 2.89 0.39 0.10 0.05
50.02 40.15 21.96 9.08 2.88 0.39 0.10 0.06
0.23 -0.32 -0.60 0.52 1.08 0.20 -0.57 -0.64
2Y 60.05 50.25 32.21 13.21 4.46 0.62 0.19 0.06
60.05 50.25 32.21 13.20 4.44 0.62 0.20 0.07
0.12 -0.39 -0.69 0.52 1.09 0.23 -0.50 -0.69
3Y 70.03 60.19 41.82 16.32 5.44 0.99 0.26 0.09
70.03 60.19 41.83 16.31 5.43 0.99 0.26 0.10
0.12 -0.17 -0.62 0.41 0.94 0.38 -0.42 -0.63
5Y 80.02 70.18 43.91 21.16 8.17 1.35 0.44 0.14
80.02 70.18 4391 21.16 8.16 1.35 0.44 0.14
0.06 -0.09 -0.28 0.28 0.66 0.30 -0.26 -0.51
7Y 90.00 70.47 53.25 25.02 8.94 1.68 0.51 0.18
90.00 70.47 53.26 25.02 8.93 1.68 0.51 0.18
0.02 -0.17 -0.24 0.21 0.55 0.26 -0.24 -0.44

10Y 90.01 80.26 55.30 29.78 11.07 2.29 0.66 0.24
90.01 80.26 55.30 29.78 11.06 2.29 0.67 0.24
0.02 -0.06 -0.11 0.16 0.43 0.24 -0.20 -0.38

We write A = O(B) when |A| < CB for a generic constant.
Miscellaneous.

* We write 6f = /v{ for the volatility for the perturbed process.

* if (Z),c[0,r) is a cadlag process, we denote by Z* its running extremum: Z; = sup |Z|, V¢ € [0, T].
s<t

« The L, norm of a random variable is denoted, as usual, by ||Z|, = E[|Z|]'/*.

10.4.1 Upper bounds for put derivatives

Lemma 10.4.1. For every (i, j) € N?, there exists a polynomial P with positive coefficients such that:

s o) < )

dxiy y Qiti D -

sup
xeR

Proof. Note that it is enough to prove the estimates for j = 0, owing to the relation (10.6). We now
take j = 0. For i = 0, the inequality holds because Pgs is bounded. Thus consider i > 1. Then by
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Table 10.7: Implied Black-Scholes volatilities of the closed formula, of the approximation formula and
related errors (in bp), expressed as a function of maturities in fractions of years and relative strikes.
Parameters: 6 = 6%, k =3, £ =30% and p = 20%.

3M 21.81% 21.10% 20.89% 21.22% 21.89% 22.71% 23.13% 23.54%
2241% 21.11% 20.87% 21.22% 21.90% 22.78% 23.20% 23.55%
-59.86  -1.80 2.68 0.27 -0.82 -7.12 -7.19 -1.20
6M 22.75% 22.05% 21.72% 22.04% 22.53% 23.71% 24.31% 24.47%
2341% 22.16% 21.66% 22.03% 22.53% 23.81% 24.40% 24.45%
-66.39 -1095 5.61 0.72 -0.08 -9.75 -8.77 2.21
1Y 2331% 22.83% 22.59% 2297% 23.62% 24.72% 25.41% 24.80%
23.83% 2291% 22.55% 22.96% 23.64% 24.82% 25.46% 24.81%
-52.67  -8.05 3.84 0.88 -1.65 -9.85 -4.37 -1.19
2Y 23.53% 2333% 2331% 23.70% 24.25% 25.16% 25.65% 24.93%
23.77% 2334% 23.28% 23.70% 24.27% 2522% 25.68% 24.93%
-23.90 -1.04 2.80 0.47 -1.42 -6.19 -3.19 -0.67
3Y 23.70% 23.56% 23.58% 23.99% 24.48% 25.15% 25.63% 24.83%
23.93% 23.58% 23.56% 23.99% 24.49% 25.19% 25.64% 24.84%
-23.06 -1.95 2.19 0.22 -1.15 -3.93 -1.70 -0.92
5Y 23.81% 23.76% 23.92% 2423% 24.59% 25.15% 25.46% 24.74%
2396% 23.77% 2391% 2423% 24.59% 25.17% 25.47% 24.74%
-14.87  -0.62 0.82 0.04 -0.59 -2.06 -0.94 -0.49
7Y 23.92% 23.90% 24.03% 2434% 24.68% 25.12% 2539% 24.68%
2421% 23.89% 24.02% 2434% 24.68% 25.13% 2539% 24.68%
-28.79  0.90 0.63 -0.01 -0.48 -1.30 -0.30 -0.30
10Y 2394% 23.99% 24.18% 2442% 24.770% 25.06% 2529% 24.63%
23.99% 23.99% 24.18% 24.42% 24.771% 25.07% 2529% 24.64%
-5.60 0.42 0.26 -0.03 -0.32 -0.79 -0.07 -0.17

differentiating the payoff, one gets:

9’ Pgs

aXi (_x?y) _ a}iE[efﬁ)Tndt<K_€X+Jg‘(rtiqt)dt7%+\/¥wy‘>+]

— —9" IR oI adi=3 /T

(ex+f07‘(r,—q,)dr7%+\/¥wr <K)
= 9 'E¥(x+G)]

where ¥ is a bounded function (by K) and G is a Gaussian variable with zero mean and variance equal to

y. For such a function, we write E[¥(x+ G)] = fR‘P(z)%dz and from this, it follows by a direct

computation that

— i—1

2

9B+ 6)]| <

<

for any x and y. We have proved the estimate for j =0 and i > 1. O

10.4.2 Positivity of the squared volatility process v

For a complete review related to time homogeneous CIR processes, we refer the reader to [S6)]. For time
dependent CIR process, see [[82]] where the existence and representation using squared Bessel processes
are provided.
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Table 10.8: Put prices of the closed formula, of the approximation formula and related errors (in bp),
expressed as a function of maturities in fractions of years and relative strikes. Parameters: 0 = 6%,

Kk =3,&=30% and p =20%.

3M

6M

1Y

2Y

3Y

5Y

7Y

10Y

30.00
30.00
-0.05

40.00
40.00
-0.11

50.01
50.01
-0.20

60.02
60.02
-0.20

70.01
70.01
-0.12

80.01
80.01
-0.06
90.00
90.00
-0.01

90.01
90.01
-0.02

20.06
20.06
-0.03
30.05
30.05
-0.19
40.08
40.08
-0.20
50.15
50.15
-0.04
60.11
60.11
-0.07
70.11
70.11
-0.02
70.36
70.36
0.08

80.20
80.19
0.02

10.81
10.81
0.30
20.45
20.44
0.49
21.72
21.71
0.83
31.94
31.94
0.73
41.58
41.57
0.53
43.68
43.67
0.35
53.04
53.04
0.25
55.13
55.13
0.15

423
4.23
0.05
6.21
6.21
0.20
9.14
9.14
0.35
13.31
13.31
0.26
16.46
16.46
0.15
21.36
21.35
0.03
25.25
25.25
-0.01
30.06
30.06
-0.04

1.22
1.22
-0.12
2.82
2.82
-0.02
3.26
3.26
-0.53
4.96
4.96
-0.67
6.02
6.03
-0.67
8.83
8.84
-0.48
9.69
9.70
-0.45
11.91
11.91
-0.37

0.28
0.29
-0.43
0.48
0.49
-0.92
0.64
0.65
-1.25
0.97
0.98
-1.18
1.44
1.45
-1.06
1.87
1.88
-0.74
2.26
2.27
-0.57
2.96
2.96
-0.45

0.13
0.13
-0.25
0.19
0.20
-0.43
0.22
0.22
-0.26
0.39
0.39
-0.32
0.49
0.49
-0.21
0.75
0.75
-0.18
0.84
0.84
-0.07
1.04
1.04
-0.02

0.06
0.06
-0.02
0.07
0.07
0.05
0.10
0.10
-0.04
0.11
0.11
-0.03
0.16
0.16
-0.05
0.21
0.21
-0.04
0.26
0.26
-0.03
0.34
0.34
-0.02

To prove the positivity of the process v, we show that it can be bounded from below by a suitable
time homogeneous CIR process, time scale being the only difference (see definition 5.1.2. in [98]). The
arguments are quite standard, but since we need a specific statement that is not available in the literature,

we detail the result and its proof. The time change 7 — A, is defined by

A
t:/ E2ds.
0

Because &7,y > 0, A is a continuous, strictly increasing time change and its inverse A~ enjoys the same

properties.

Lemma 10.4.2. Assume (P) and vy > 0. Denote by (ys), <s<A;! the CIR process defined by

dy, =

1 K
T E2
Inf

where B is the Brownian motion given by

~ Ar
B[ — 0 (:SdBS'

yl)dt + \/}TI‘dBlv Yo = Vo,

Then, a.s. one has v; > Vot foranyt €[0,T). In particular, (v)o<i<r is a.s. positive.

(10.18)
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Table 10.9: Implied Black-Scholes volatilities of the closed formula, of the approximation formula and
related errors (in bp), expressed as a function of maturities in fractions of years and relative strikes.
Parameters: 8 = 6%, k =3, £ =30% and p = —50%.

3M 26.13% 24.29% 22.60% 21.11% 19.95% 19.22% 19.03% 18.92%
2557% 24.43% 22.63% 21.11% 19.90% 18.99% 1891% 19.57%
56.55 -14.06  -2.51 0.19 4.35 23.24 11.67 -64.22
6M 2747% 2581% 2431% 21.85% 2092% 19.80% 19.55% 19.47%
26.89% 2597% 24.44% 21.84% 20.89% 19.50% 19.61% 21.11%
58.13 -16.68  -12.19  0.82 3.38 29.46 -5.28 -
164.16
1Y 2796% 26.57% 24.34% 22.68% 21.51% 2049% 20.19% 20.11%
27.67% 26.715% 24.39% 22.66% 21.43% 2024% 20.77% 21.73%
29.08 -18.08 -5.01 1.53 7.49 24.84 -58.18 -
162.76
2Y 27.56% 2651% 24.93% 2334% 2231% 21.30% 20.95% 20.73%
27.52% 26.65% 24.98% 2333% 22.25% 21.15% 21.19% 22.20%
4.11 -14.03  -4.75 1.43 5.50 14.43 -23.17 -
146.81
3Y 27.53% 26.56% 25.22% 23.61% 22.66% 21.81% 21.39% 21.16%
2742% 26.66% 25.26% 23.60% 22.62% 21.71% 21.53% 22.04%
11.28 -9.11 -4.59 1.06 3.97 9.79 -1443  -88.86
5Y 27.11% 2625% 24.83% 23.83% 23.10% 2228% 21.94% 21.66%
27.01% 2631% 24.84% 23.82% 23.08% 2223% 21.98% 22.14%
9.64 -5.22 -1.23 0.62 1.98 5.14 -4.04 -47.56
7Y 2735% 25.67% 24.92% 2393% 23.23% 22.55% 22.22% 21.98%
27.03% 2571% 24.93% 23.93% 2321% 22.52% 22.25% 22.28%
31.65 -3.57 -1.09 0.43 1.46 3.26 -3.91 -30.07
10Y 2640% 25.66% 24.70% 24.01% 23.40% 22.82% 22.50% 22.29%
26.36% 25.68% 24.710% 24.00% 23.39% 22.80% 22.53% 22.48%
4.15 -2.43 -0.35 0.29 0.93 2.02 -2.65 -18.89

Proof. Note that (E,)O <r<A7! is really a Brownian motion because by Lévy’s Characterization Theorem,

it is a continuous local martingale with <I§,I§>, =1t (see Proposition 5.1.5 [98]] for the computation of
the bracket). Now that we have set ¥; = v4,, our aim is to prove that ¥; >y, for tr € [(),A}l]. Using
Propositions 5.1.4 and 5.1.5 [98]], we write

Ay 1 K ~
5 = vo+/0 (K(6y — vy)ds + &/7;dBy) = vo+/0 (g (00, —7.)ds +Vid,).
Ay

Now we apply a comparison result for SDEs twice (see Proposition 5.2.18 in [69]).

1. First, one gets ¥, > n;, where (n;); is the (unique) solution of
K _
n; = 0 +/ —Tnsds + \/’7;ng,
o &i

because vp > 0 and E’%(BAS —x) > —%x, for all x € R and s € [0,A;']. Of course 1, = 0, thus 7,

is non-negative.
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Table 10.10: Put prices of the closed formula, of the approximation formula and related errors (in bp),
expressed as a function of maturities in fractions of years and relative strikes. Parameters: 0 = 6%,
k=3,&=30% and p = —50%.

3M 30.01 20.14 11.01 4.21 0.95 0.12 0.03 0.01
30.01 20.15 11.02 4.21 0.94 0.11 0.03 0.01
0.21 -0.47 -0.31 0.04 0.57 0.82 0.16 -0.36
6M 40.02 30.15 20.70 6.16 243 0.19 0.04 0.01
40.02 30.15 20.71 6.15 242 0.17 0.04 0.02
0.37 -0.59 -1.33 0.23 0.81 1.59 -0.09 -1.05
1Y 50.04 40.21 22.11 9.03 2.59 0.22 0.03 0.01
50.04 40.22 22.12 9.02 2.57 0.21 0.05 0.03
0.36 -0.88 -1.17 0.61 2.27 1.67 -1.05 -1.69
2Y 60.08 50.33 32.38 13.11 4.06 0.39 0.08 0.02
60.08 50.34 32.39 13.10 4.03 0.37 0.09 0.04
0.09 -1.00 -1.32 0.80 247 1.59 -0.84 -2.00
3Y 70.05 60.25 41.99 16.20 4.98 0.69 0.13 0.03
70.05 60.25 42.00 16.19 4.96 0.67 0.13 0.05
0.17 -0.54 -1.21 0.72 2.20 1.73 -0.74 -1.80
5Y 80.03 70.23 44.06 21.01 7.65 0.99 0.25 0.06
80.03 70.23 44.07 21.00 7.64 0.98 0.26 0.07
0.11 -0.30 -0.53 0.54 1.54 1.29 -0.38 -1.50
7Y 90.00 70.54 53.40 24.84 8.36 1.28 0.31 0.09
90.00 70.55 53.40 24.84 8.35 1.27 0.32 0.10
0.06 -0.41 -0.44 0.43 1.32 1.04 -0.45 -1.32

10Y 90.02 80.30 55.42 29.57 10.43 1.82 0.44 0.13
90.02 80.30 55.42 29.57 10.42 1.81 0.44 0.14
0.03 -0.18 -0.20 0.34 1.04 0.89 -0.42 -1.17

2. Secondly, using the non-negativity of ¥, we only need to compare drift coefficients for the non-
negative variable x. Under (P), since

K 1 K .
ai(e/* —x)> 5~ %x Vx>0,Ys € [0,A; ],

we obtain 7 >y, fort € [0,A7] as.

Moreover, the positivity of y (and consequently that of v) is standard: indeed, y is a 2-dimensional
squared Bessel process with a time/space scale change (see [56], or the proof of Lemma [T10.4.3| below).
O

10.4.3 Uzpper bound for negative moments of the integrated squared volatility process
fo tht

Lemma 10.4.3. Assume (P). Then for every p > 0, one has:

r C
sup E[( /0 OREE=

0<e<1
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Table 10.11: Implied Black-Scholes volatilities of the closed formula, of the approximation formula
and related errors (in bp), expressed as a function of maturities in fractions of years and relative strikes.
Parameters: 8 = 6%, k =10, £ = 1 and p = —50%.

3M 31.51% 28.04% 24.74% 21.83% 19.94% 19.45% 19.58% 19.85%
30.68% 28.99% 24.95% 21.71% 19.38% 18.05% 19.76% 22.93%
82.46 -94.66 -21.22 12.10 56.44 140.23 -18.10 -
308.17
6M 31.45% 28.86% 26.52% 22.69% 21.36% 20.11% 20.05% 20.20%
30.83% 29.59% 26.98% 22.58% 21.09% 19.14% 20.64% 24.03%
62.40 -73.58  -46.52 11.30 26.99 97.22 -59.12 -
383.12
1Y 30.09% 28.30% 25.44% 2334% 21.89% 20.76% 20.49% 20.45%
29.87% 28.72% 25.54% 23.28% 21.70% 20.30% 21.65% 23.17%
21.52 -42.32  -10.69  6.02 19.45 46.13 - -
115.72  271.22
2Y 2845% 2727% 25.51% 23.73% 22.58% 2148% 21.12% 20.90%
2846% 27.47% 25.57% 23.71% 22.50% 2128% 21.42% 22.75%
-0.53 -20.08  -6.39 242 8.11 19.97 -30.34 -
184.76

3Y 28.08% 27.05% 25.61% 23.88% 22.86% 21.96% 21.51% 21.27%
2798% 27.16% 25.66% 23.86% 22.81% 21.83% 21.67% 22.30%
9.78 -11.59 541 1.39 491 12.13 -16.04 -
102.46
5Y 2740% 26.52% 25.04% 24.00% 23.23% 2238% 22.03% 21.75%

2731% 26.58% 25.05% 23.99% 23.21% 2233% 22.07% 22.26%
9.15 -5.98 -1.31 0.71 2.20 5.85 -3.93 -51.20
7Y 27.56% 25.84% 25.06% 24.05% 23.33% 22.63% 22.29% 22.05%
2724% 25.88% 25.08% 24.05% 23.31% 22.59% 2233% 22.36%
32.00 -3.83 -1.14 0.47 1.57 3.57 -3.88 -31.56
10Y 26.53% 25.77% 24.80% 24.09% 23.47% 22.88% 22.55% 22.34%
2649% 25.80% 24.80% 24.09% 23.46% 22.86% 22.58% 22.53%
4.02 -2.57 -0.36 0.31 0.97 2.15 -2.64 -19.49

Before proving the result, we mention that analogous estimates appear in [?] (Lemmas A.1 and
A.2): some exponential moments are stated under stronger conditions than those in assumption (P). In
addition, the uniformity of the estimates w.r.t. & (or equivalently w.r.t. €) is not emphasized. In our
study, it is crucial to get uniform estimates w.r.t. €.

Proof. Fix p > % (forO0< p< %, we derive the result from the case p = % using the Holder inequality).

The proof is divided into two steps. We first prove the estimates in the case of constant coefficients x, 0,
& with k6 = %, € =1 and & = 1. Then, using the time change of Lemma we derive the result for
(vE);. The critical point is to get estimates that are uniform w.r.t. €.

Step 1. Take 6, =0, &, =1, k0 = % € =1 and consider

1
dy, = (5 — Ky;)dt + /y:dB;, yo = vo,

for a standard Brownian motion B. We represent y as a time space transformed squared Bessel process
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Table 10.12: Put prices of the closed formula, of the approximation formula and related errors (in bp),
expressed as a function of maturities in fractions of years and relative strikes. Parameters: 0 = 6%,
k=10, =1and p = —50%.

3M 30.05 20.30 11.28 4.35 0.95 0.13 0.04 0.01
30.04 20.35 11.31 4.33 0.87 0.08 0.05 0.05
0.99 -4.95 -2.80 241 7.37 4.62 -0.31 -3.51
6M 40.06 30.28 20.96 6.40 2.54 0.21 0.05 0.01
40.05 30.32 21.02 6.36 247 0.15 0.06 0.06
0.92 -3.90 -5.83 3.18 6.51 5.23 -1.28 -4.72
1Y 50.08 40.31 22.37 9.29 271 0.24 0.04 0.02
50.07 40.33 22.40 9.26 2.65 0.21 0.07 0.06
0.41 -2.60 -2.58 2.39 5.95 3.19 -2.52 -3.89
2Y 60.10 50.39 32.54 13.33 4.18 0.41 0.09 0.02
60.10 50.40 32.56 13.31 4.14 0.38 0.10 0.05
-0.01 -1.58 -1.82 1.35 3.67 2.26 -1.17 -2.89
3Y 70.06 60.28 42.09 16.38 5.09 0.71 0.13 0.03
70.05 60.28 42.11 16.37 5.06 0.69 0.14 0.06
0.17 -0.73 -1.46 0.94 2.74 2.19 -0.86 -2.22
5Y 80.04 70.25 44.15 21.15 7.76 1.02 0.26 0.06
80.03 70.25 44.16 21.15 7.74 1.01 0.27 0.08
0.11 -0.36 -0.57 0.61 1.72 1.49 -0.38 -1.68
7Y 90.00 70.56 53.46 24.96 8.45 1.31 0.32 0.09
90.00 70.57 53.46 24.96 8.44 1.30 0.32 0.10
0.06 -0.44 -0.47 0.47 1.42 1.16 -0.46 -1.42

10Y 90.02 80.31 55.47 29.67 10.51 1.85 0.44 0.13
90.02 80.31 55.48 29.67 10.50 1.84 0.45 0.14
0.03 -0.19 -0.20 0.36 1.09 0.95 -0.42 -1.23

(see [56])

—Kt
Yyt =€ Z (et —1)
4K

where z is a 2-dimensional squared Bessel process. Therefore, using a change of variable and the explicit
expression of Laplace transform for the integral of z (see [23] p.377), one obtains for any u > 0

(*T-1)

Efexp(—u /OTytdt)]gE[exp(—4ue_2KT /0 " ds)]
V31— Va1 — )

< cosh( )~ Lexp(—v2ue ¥ vy tanh( )).

2K 2K

Combining this with the identity x 7 = ﬁ Joo uP~ e du for x = fOT yydt, one gets:

E[(/OT)’zdt)_P] < 1/000 ul~! cosh(M)_] exp(—\/ﬂe_KTVOtanh(M))du'

~T(p) 2k 2K
Define the parameter A> = (6;27;01) and the new variable n = % = voe T A2\/2u. It readily

follows that

T kT oo
E[( / yidt)P) < C(5 )2 / 7271 cosh(n)~ exp(— BB 4,
0 A? 0 A?
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Table 10.13: Implied Black-Scholes volatilities of the closed formula, of the approximation formula
and related errors (in bp), expressed as a function of maturities in fractions of years and relative strikes.
Parameters: 6 = 3%, k =2, £ =40% and p = 0%.

3M 2327% 21.25% 19.59% 18.86% 19.47% 20.64% 21.25% 21.85%
22.35% 21.48% 19.56% 18.85% 19.43% 20.83% 21.48% 21.94%
92.35 -2293 2.23 1.62 3.51 -18.90  -22.93  -9.79
6M 24.10% 22.05% 2022% 18.21% 18.68% 20.75% 21.78% 22.72%
22.52% 22.26% 20.50% 18.14% 18.59% 21.16% 22.10% 22.51%
158.79 -20.74 -28.41  7.08 9.08 -40.69  -32.03  20.96
1Y 2396% 22.01% 18.89% 17.60% 18.51% 20.84% 22.23% 22.85%
2220% 22.14% 18.99% 17.45% 18.48% 21.42% 22.20% 22.30%
17541  -12.81 -10.17 14.90 2.60 -57.41 2.27 54.89
2Y 22.72% 21.05% 18.61% 17.24% 18.04% 20.26% 21.42% 22.42%
21.40% 21.20% 18.83% 17.10% 18.06% 20.72% 21.32% 21.42%
13235 -1449 -22.09 14.34 -1.35 -46.40  9.96 100.04
3Y 2244% 20.84% 18.66% 17.16% 17.88% 19.60% 20.84% 21.67%
20.74% 20.67% 18.93% 17.06% 17.91% 19.96% 20.67% 20.79%
170.16  16.92 -27.04 10.16 -3.17 -36.03  16.92 87.99
5Y 21.56% 20.09% 17.86% 17.16% 17.61% 19.08% 19.94% 20.75%
20.03% 19.88% 17.92% 17.10% 17.62% 19.28% 19.83% 20.03%
153.81  20.49 -5.89 5.27 -0.54 -19.86 1143 72.25
7Y 2193% 19.01% 17.88% 17.17% 17.60% 18.76% 19.54% 20.16%
19.51% 19.09% 17.95% 17.14% 17.62% 18.88% 19.39% 19.58%
24142 747 -6.53 3.16 -1.53 -1247 1441 58.41
10Y 2021% 18.92% 17.58% 17.20% 17.53% 18.42% 19.09% 19.61%
19.24% 18.88% 17.60% 17.18% 17.54% 18.49% 1897% 19.16%
96.63 4.46 -1.61 1.76 -0.93 -7.64 11.97 44.80

where C is a constant depending only on vy and p. We upper bound the above integral differently
according to the value of A.

e If A > 1, then
eKT

T (e}
E[( / yidr) 7] < C( 5 )P / n*~cosh(n)~'dn < Ce?P*T. (10.19)
0 0

o If A <1, split the integral into two parts, n < arctanh(A) and n > arctanh(A). For the first part,
simply use n > tanh(n) for any n. For the second part, use tanh(n) > A and cosh(n)~! < 1. This

gives
T kT arctanh(4) 2
BI( [ vy 7] <c Mz)z” f o enp( -5
0 0
+(e’<T)2p/°° WP Vexp(—2)dn| = C[F1 + ). (10.20)
A2 arctanh(A) A

We upper bound the two terms separately.
1. First term .7;. Using the change of variable m = % one has:

1
T < eszTA_“”“/ arctanh(Am)?”~! cosh(arctanh(Am)) exp(—m?)dm.
0
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Table 10.14: Put prices of the closed formula, of the approximation formula and related errors (in bp),
expressed as a function of maturities in fractions of years and relative strikes.
k=2, =40% and p = 0%.

Parameters: 6 = 3%,

3M

6M

1Y

2Y

3Y

5Y

7Y

10Y

30.00
30.00
0.12
40.01
40.00
0.29
50.01
50.00
0.55
60.01
60.01
0.63
70.01
70.00
0.36
80.00
80.00
0.15
90.00
90.00
0.01
90.00
90.00
0.04

20.06
20.07
-0.46
30.05
30.05
-0.37
40.06
40.06
-0.27
50.07
50.07
-0.39
60.04
60.04
0.28

70.03
70.02
0.26

70.07
70.08
-0.24
80.03
80.03
0.06

10.67
10.67
0.24

20.32
20.35
-2.15
20.98
21.00
-1.80
30.89
30.93
-4.17
40.60
40.64
-4.17
41.45
41.47
-1.76
51.04
51.06
-1.63
51.95
51.96
-0.64

3.76
3.76
0.32
5.13
5.11
1.99
7.01
6.95
5.92
9.70
9.62
8.03
11.82
11.75
6.94
15.21
15.16
4.61
17.97
17.94
3.25
21.43
21.41
2.14

0.88
0.88
0.45
1.91
1.89
2.06
1.73
1.73
0.70
2.28
2.29
-0.51
2.56
2.58
-1.42
3.75
3.75
-0.34
3.78
3.80
-1.07
4.55
4.56
-0.80

0.18
0.18
-0.88
0.25
0.27
-2.72
0.25
0.29
-4.43
0.28
0.33
-4.44
0.36
0.41
-4.48
0.38
0.40
-2.79
0.39
0.41
-1.94
0.46
0.48
-1.44

0.08
0.08

-0.58

0.09
0.10

-1.01

0.08
0.08
0.07
0.10
0.10
0.40
0.10
0.09
0.71
0.11
0.11
0.58
0.10
0.09
0.70
0.10
0.09
0.61

0.03
0.03
-0.13
0.04
0.03
0.29
0.05
0.04
0.98
0.04
0.03
1.61
0.04
0.03
1.54
0.04
0.02
1.24
0.03
0.02
1.00
0.03
0.02
0.76

Because of A < 1, we have the following inequalities for m € [0, 1[:

arctanh(Am) < Aarctanh(m),

Using 2p — 1 > 0, it readily follows that

2. Second term 7. Clearly, we have

e

S < (57

P < (=5

2T
)L2

Comblmng and ( 0 22), we 0bta1

inequality (¢*—1 > x,x > O) we have lz

available when A < 1.

eK‘T 5 oo . n eZK‘T
22 ) p/o n’ exp(—z)dn: (ﬁ
E[(fy yidt)™

(e 1) T

21(\/0 > T
T eZpKT

-p

E[( [ ) < ¢

7] <

which gives

(%

cosh(arctanh(Am)) < cosh(arctanh(m)).

1
)P / arctanh(m)?*”~! cosh(arctanh(m)) exp(—m?)dm.
0

)P / v levdy,
0

ZKT

(10.21)

(10.22)

)P. In view of the

(10.23)
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Table 10.15: Equivalent averaged parameters.

T 7o 0 13 p

3M 4% 4% 30 % 20 %
6M 3.97 % 4.04 % 30.12 % -19.93 %
1Y 3.28 % 4.38 % 30.89 % -19.72 %
2Y 4.64 % 4.02 % 31.12 % -18.95 %
3Y 56.24 % 4.04 % 32.10 % -18.20 %
5Y 28.58 % 2.68 % 33.63 % -16.52 %
7Y 84.92 % 0.59 % 35.41 % -14.80 %
10Y 14.54 % 4.57 % 39.98 % -12.32 %

To sum up (T0.19) and (10.23)), we have proved that
T 1
E[(/ yidt) 7] < Ce*P¥T (14 75) (10.24)
0

for a constant C depending only on p and vy.
Step 2. Take € €]0, 1]. We apply Lemma|10.4.2|to v#, in order to write v¢ > yfrl where r = fg‘s" (€&)%ds

~ Ag} .
and dyf = (5 — myf)dH— VYEdBE Y& = yo. Thus, we get [ vEdr > ([o* yéds)/(e€sup)? and in
view of (10.24)), it follows that

1

([ vian) 7] < (etou) B[ )7

2p zA;lT 1
< C<8§Sup)2pe (Sélnf) ’ (1 + 7)
- [Azrl?
Sup 2p
2pk 52T Eon 1
Sce élnf (éslfp—i— 21/;57 ﬁ)
élnf

where we have used 82512,sz < A;lT < 82<§S2MPT.
Note that the upper bound does not depend on € €]0, 1]. For € = 0, the upper bound in Lemma|10.4.3
is also true because (!), is deterministic and

max (vo, Osp) > V) > min(vg, B,7) > 0. (10.25)

O]

10.4.4 Upper bound for residuals of the Taylor development of g(¢) defined in (10.4)

Throughout the following paragraph, we assume that (P) is in force. We define the variables:
£ r € g pzz € £ ! 2\(4,€
Pi= [ pdof —ondsi— [ Poi—wan 0f= [ (1-p0f -0

. 2
Notice that (xo + fy pry/VosdB; — [y %vont,fOT(l — p2)vo,dt) + (PEOY) = (xo + [y piy/vIdB; —
T p? T
T8 vldr, 7 (1 - p?)vidn)
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Table 10.16: Implied Black-Scholes volatilities of the closed formula, of the approximation formula and
of the averaging formula, expressed as a function of maturities in fractions of years and relative strikes.

Piecewise constant parameters.

23.45%
22.73%
23.45%
24.09%
23.09%
24.09%
23.95%
23.12%
23.95%
23.26%
22.84%
23.26%
23.28%
22.81%
23.28%
23.22%
22.88%
23.22%
23.86%
23.25%
23.86%
23.59%
23.46%
23.59%

3M

6M

2Y

3Y

5Y

7Y

10Y

21.88%
21.96%
21.88%
22.59%
22.60%
22.59%
22.66%
22.66%
22.66%
22.30%
22.33%
22.30%
22.40%
22.38%
22.40%
22.46%
22.44%
22.46%
22.36%
22.39%
22.37%
22.96%
22.98%
22.96%

20.58%
20.60%
20.58%
21.30%
21.43%
21.30%
20.76%
20.81%
20.76%
21.01%
21.04%
21.01%
21.27%
21.33%
21.27%
21.34%
21.35%
21.34%
21.81%
21.82%
21.81%
22.30%
22.30%
22.30%

19.70%
19.69%
19.70%
19.63%
19.61%
19.63%
19.70%
19.68%
19.70%
19.99%
19.96%
19.98%
20.26%
20.24%
20.26%
20.77%
20.77%
20.77%
21.26%
21.26%
21.26%
21.97%
21.97%
21.97%

19.39%
19.35%
19.39%
19.33%
19.30%
19.33%
19.37%
19.32%
19.37%
19.66%
19.62%
19.66%
19.96%
19.93%
19.96%
20.54%
20.52%
20.54%
21.06%
21.05%
21.06%
21.82%
21.81%
21.82%

19.55%
19.53%
19.55%
19.58%
19.58%
19.58%
19.69%
19.78%
19.69%
19.83%
19.90%
19.83%
20.02%
20.04%
20.02%
20.54%
20.55%
20.54%
21.06%
21.07%
21.06%
21.83%
21.84%
21.83%

19.74%
19.84%
19.74%
19.92%
20.19%
19.92%
20.12%
20.62%
20.12%
20.09%
20.43%
20.09%
20.23%
20.47%
20.23%
20.65%
20.76%
20.64%
21.16%
21.23%
21.15%
21.92%
21.96%
21.92%

19.97%
20.28%
19.97%
20.31%
20.93%
20.31%
20.36%
21.05%
20.35%
20.37%
21.02%
20.37%
20.43%
20.90%
20.42%
20.80%
21.09%
20.79%
21.27%
21.45%
21.26%
22.02%
22.12%
22.01%

The main result of this subsection is the following proposition, the statement of which uses the notation

introduced at the beginning of Section [10.4]

Proposition 10.4.1. One has the following estimates for every p > 1

||PT||p <C(&supVTIVT,
IR Il <C(EsupV/T)VT,
IR Nl <CEsipVT)T,
1QHly <C(EsupVT)T,

||R2T||p <C(EsupV/T)’T
HRZT Iy <C(EsupVT)T,
IR 21l <C(EsipV/T)T3.

To estimate the derivatives and the residuals for the variables P;: and Q%, we need first to prove the
existence of the derivatives and the residuals of the volatility process 6 = /vy and its square v¢. Finally

we prove Proposition [10.4.1]
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Table 10.17: Put prices of the closed formula, of the approximation formula and of the averaging for-
mula, expressed as a function of maturities in fractions of years and relative strikes. Piecewise constant
parameters.

3M 30.00 20.07 10.78 393 0.87 0.13 0.05 0.02
30.00 20.08 10.78 3.93 0.87 0.13 0.05 0.02
30.00 20.07 10.78 393 0.87 0.13 0.05 0.02
6M 40.01 30.06 20.41 5.53 2.06 0.18 0.05 0.01
40.00 30.06 20.42 5.53 2.05 0.18 0.05 0.02
40.01 30.06 20.41 5.53 2.06 0.18 0.05 0.01
1Y 50.01 40.07 21.33 7.85 1.97 0.17 0.03 0.02
50.01 40.07 21.35 7.84 1.95 0.18 0.04 0.02
50.01 40.07 21.33 7.85 1.97 0.17 0.03 0.02
2Y 60.02 50.11 31.38 11.23 292 0.24 0.06 0.01
60.01 50.11 31.39 11.23 2.90 0.25 0.07 0.02
60.02 50.11 31.38 11.23 292 0.24 0.06 0.01
3Y 70.01 60.07 41.07 13.92 3.55 0.41 0.08 0.02
70.01 60.07 41.08 13.92 3.54 0.42 0.09 0.03
70.01 60.07 41.07 13.92 3.55 0.41 0.08 0.02
5Y 80.01 70.07 42.64 18.37 5.74 0.61 0.15 0.04
80.01 70.07 42.64 18.36 5.72 0.61 0.16 0.04
80.01 70.07 42.64 18.37 5.74 0.61 0.15 0.04
7Y 90.00 70.24 5222 22.15 6.46 0.86 0.21 0.06
90.00 70.24 52.22 22.15 6.45 0.86 0.21 0.07
90.00 70.24 52.22 22.15 6.46 0.86 0.21 0.06
10Y 90.01 80.14 54.13 27.17 8.71 1.42 0.35 0.11
90.01 80.14 54.13 27.16 8.70 1.42 0.36 0.12
90.01 80.14 54.13 27.17 8.71 1.42 0.35 0.11

Upper bounds for derivatives of ¢ and +¢

Under assumption (P), the volatility process ¢/ is governed by the SDE:

k6, €’ K
dof = ((—= — i)f — —of)dr + étdB,, o5 = \/vo, (10.26)
2 8 2 2
where we have used Ito’s Lemma and positivity of v (see Lemma|10.4.2). .
In order to estimate RO ;» We are going to prove that it verifies a linear equation (Lemma |10.4.4)) from
which we deduce an a priori upper bound (Propositio. We iterate the same analysis for the

residuals Ry T (Proposmon 10.4.3) and RS 2 (Pr0p0s1t10n 10.4.4). Analogously, we give upper bounds for
the residuals of v¢ (Proposition|10.4.1).

Lemma 10.4.4. Under (P), the process (RS, L =0f — 0)o<i<r is given by

ot € ! £\ — 2 32 ggs
Ry, =U, U ds+ — ,
0, t \/0 ( S) ( 8605 2 )

where
dUS = —(XgUedt, U,e =1,
k6, €& 1

of =(— —
! (2 8 ‘ofoy, 2
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Proof. From the definition (0y,); = (07), and the equation (T0.26)), one obtains the SDE

K0, K
doy,; = (Fott - EGOJ)dtp 00,0 = v/Vo-

Substitute this equation in (10.26) to obtain

e?&?
80 00,1

€ £ 8

Note that R°"_ is the solution of a linear SDE. Hence, it can be explicitly represented using the process
U¢ (see Th. 52 in [96])):

Jond € ! e\—1 2s2 8&?
RE =UF [ (U9 (~5 > ds+ 5aBy).
0 00,5

Proposition 10.4.2. Under (P), for every p > 1 one has
(RS )71l < Ce&supv/t.
In particular, the application € — Gf is continuousﬂ ate =0in L.

Proof. At first sight, the proof seems to be straightforward from Lemma [10.4.4] But actually, the dif-
ficulty lies in the fact that one can not uniformly in € upper bound Uf in L, (because of the term with
1/of in of).

Using Lemma and Ito’s formula for the product (Uf) ' (fg 5 £ 4p s), one has

]S =t [0 sma+ [ San o [ ([ Sramaw)

Under (P), one has of > k/2 > 0, which implies that ¢ — UF is decreasing and t — (U£)~" is increasing.
Thus, 0 < UE(UE)~! <1 for s € [0,¢]. Consequently, we deduce

RS y_/ Sd+/ €5 ap,) /Sé‘ By) (1 —U®)

2£2 :
</ s ds+(/ e&,dB,)? . (10.28)
0 800, 0
Now we easily complete the proof by observing that 6y, > min(y/6p,r,+/vo) and ||( [ &dBy); |, <
CéSup\/E' 0
We define

t
o =0p [ (005 as

5Note that from the upper bound (10.28) in the proof, we easily obtain that the continuity also holds a.s., and not only in Ly.
Since only the latter is needed in what follows, we do not go into detail.
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Therefore, (0 )o</<r solves the following SDE:

K06, K &
=525 —dB = 10.2
4915 = gy, + )0+ 398 010 =0 (1029)
and for every p > 1
1(01,)7 llp < Csup V1. (10.30)

Proposition 10.4.3. Under (P), the process (R‘I’; = of — 0 — €01, )o<i<r fulfills the equality:

. : £282 of " £262
R":Ug/ USHy '(—== +eo s RS,
L COM 800, * 1’S((Go,x ZGo,s) SGos))

Moreover, for every p > 1, one has
IRT )7 Ny < ClesupVt)*.

In particular, the application € — 6£ is €' at € =0 in L, sense with the first derivative at € = 0 equal to
o1, (justifying a posteriori the definition Rff ).

Proof. From Equations (10.27) and (10.29)), it readily follows that

K‘G, zét
dt — dt R =0.

€ €
dR7, = —afR?Jdt —e0y,(0f —

Because of the identity

K6 K_if_K)Gs 821’;2)
2(004)* 2 G0, 200, ' 8(0n,)?"

of £ ! e\—1 2 32 OCs‘g K of 82 s2
R?, =U, / UE) ' (— + €0 ds
1.t t ( S) ( 0.5 3(( 0.5 26()5) 0,s 8(607s>2))
Then
. 1 g2E2 of K c g2&?
RS </U8 Ué)~! —S+ec =4 — )RS |+ —3))d
ml< [ U |1,s|<<60S+260S> Ry
e/rre 2 2 252 ! E(T7E lag ot
Uf (UY) SEO' Sde/UU*ScRd
< [lu 101l g RS+ ey Vs e [ UEWE) o IRE.ds
22 2£2 of
€ K e 85 o1, Ry
< [ (=22 +elor|(=——|RS S V)ds + £(——2e)*
< /0 (5o ¢! 1»’<260J T+ o e

where we have used U (UE)~! < 1 for every s € [0,¢] and Uf [ af(Uf)"'ds = 1 — U# < 1 for the third
inequality Apply Proposition [10.4.2] and Inequality (10.30) to complete the proof of the estimate of
IRT)7 - =
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We define (02, )o<;<7 as the solution of the linear equation

K’@t K (G] [)2 étz
doy; = (—(7—+3)0; KO —= — dt, 0290 =0. 10.31
2,[ ( (2(607[)2 + 2) 2,1‘ + t (GO[)3 460/[) 9 2,0 ( )
Clearly, for p > 1, we have
102,71y < C(Esupv/1)*. (10.32)

Proposition 10.4.4. Under (P), the process (Rg j =o0f -0 — €0 — %2627,)0§th fulfills the equality:

. ' af Kk g €82 ons (014)?
RG :Ue/ U&‘ -1 82 s o S s K
2,1 t 0 ( s ) [ ((6075 26()s> O,S 8(6()/5)2)( 2 0075 )
af K o g €2E2
£ —— )R ——= )0} .4|ds.
+ ((Go,x 260,s) l,er 8(6()73)2) l,s] S

Moreover, for every p > 1, one has
IR )71l < C(e8supr)’.

In particular, the application € — of is €* at € =0 in L, sense with the second derivative at € = 0 equal
to GZJ.

Proof. The equality is easy to check. The estimate is proved in the same way as in the proof of Proposi-
tion[T0.4.3] we therefore skip the details. O

Corollary 10.4.1. The application € — V¢ is €* at € = 0 in L, sense. The residuals for the squared
volatility satisfy the following inequalities: for every p > 1, one has

RS )7 llp < Celsup V1,
IRY ) [l < Cle&sup Vi),
RS )7 Nl < Cle&sup V) .

Proof. Note that vé = (6£)% = (oo +R6’;)2 =V, +2607,R6’; + (Rg:)z. Thus, we have R(V)ft = ZGQJR(C)T; +

(Rg;)z, which leads to the required estimate using 6y, < max(/vo,/6s.p) and Proposition|10.4.2{ The
other estimates are proved analogously using Propositions[10.4.3|and[10.4.4] and Inequalities (10.30) and

(10.32). O

Proof of Proposition [10.4.1]
We can write
T T p2 T T 52
Pl = / RS dB, — / Pipsl ar, RE = / RS dB, — / PRy ar,
0 ’ 0 2 ) ) 0 ) 0 2 ’

Then, using Propositions[10.4.2] [10.4.4] and Corollary [10.4.1] we prove the two first estimates of Propo-
sition[T10.4.1] The others inequalities are proved in the same way.




10.4 Proof of Theorem|10.2.2 181

10.4.5 Proof of Theorem [10.2.2]
For convenience, we introduce the following notation for A € [0, 1]:
Pps(A) P35<x0+/ p((1=2)/vo, —i—)l[dB, / 2((1—l)vov,+lv})dt
S a=pda -2 aidiar),
9" Pgs 9" Pps p7 1
=5 0+/ pu(1 = 1) /77 + A/} B, — / P (1= vy + )
=B = )

Notice that Pgg (see (10.9)) is a particular case of Pgg for A = 0:

01t iPss _ 9" Py
oxiyl  oxiyl

Pps = Pps(0),

Now, we represent the error & in (10.16)) using the previous notations. A second order Taylor expansion
leads to
- — - l 2 — 1 (1 - A)Z 3 —
g(1) =E(Pgs(1)) = E(Pss(0) + 9, Prs(0) + E[&PBS(O) —i—/o d?LT&APBS(A)).
The first term E(Pgs(0)) is equal to (10.10). Approximations of the three above derivatives contribute to
the error &.

1. We have E(d; Pps(0)) = E(aPBS Pr+ ays Q). These two terms are equal to (10.11) and (10.12
plus an error equal to

G s

2. Regarding the second derivatives, we have E(307P3s(0)) = E(;‘?afgs (P})? + ;aaiBS(QT)

axy PIQIT). These terms are equal to (10.13)), (10.14) and (10.15)), plus an error equal to

10%Pgs (pry:  10°Pgs (o172 82PBSRP1Q1

g(- 28 - .
(2 ox2 2T 2 gy T dxy Z’T)

3. The last term with 82}_’35 is neglected and thus is considered as an error.

To sum up, we have shown that

oL 2 i 25 o
& ZE ! PBS (Pl)(Ql)l ]+ZQE[ a-PBS.(O)R(Pl)(QI)Z ]

xlll

_ 3 . ‘
+/ . Y GiEl ; ,;?SA )(PLY(QF)P]dA
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Using Lemma|10.4.1/and Assumption (R), one obtains for all A € [0, 1]

9"t/ Pgs
dxiyl

—(@2j+i-1)4
4

T
I (MI!zSCH(/O ((1=2)vo, +Avy)dr) ™=

—(2j+i —(2j+i-1

—1) T )
S AN v T )

<c(-A( [ vog

where we have applied a convexity argument. Finally, apply Lemma [10.4.3| with e =0 and € =1 to
conclude that Sitip
1522 M) < s
xiy (\/T)( JHi—1)4

uniformly w.r.t. A € [0,1]. Combining this with Proposition|10.4.1|yields that

VRS § ETRYs St JENG A ISy A
> =~ Sup (\/T)lfi = Sup (\/T)3*i =~ Sup (\/T)Sfi

< C(‘SSup\/T)s\/T.

Theorem [10.2.2]is proved.

10.5 Proof of Proposition [10.2.1 and Theorem [10.2.1]

10.5.1 Preliminary results

In this section, we bring together the results (and their proofs) which allow us to derive the explicit terms

in the formula (10.17).

In the following, o (resp. f;) is a square integrable and predictable process (resp. deterministic) and [ is
a smooth function with derivatives having, at most, exponential growth.
For the next Malliavin calculus computations, we freely use standard notations from [88]].

Lemma 10.5.1. (Lemma 1.2.1 in [88]) Let G € ]D)l"”(Q). One has

! t
E[G / By = / a,D(G)ds),
0 0
where DB(G) = (D3(G))s>0 is the first Malliavin derivative of G w.r.t. B.
Taking G = [( fOT Pry/vo:dB;) gives the following result.
Lemma 10.5.2. One has:

E[( /OT o dB,)I( /OT pry/0:dB;)] = E( /OTPrM“td’)’(l)(/oT” Pod)

Lemma 10.5.3. For any deterministic integrable function f and any continuous semimartingale Z van-
ishing at t=0, one has:
! AR
/ f(t)Z,dt = / o, 7’ dZ;.
0 0o

Proof. This is an application of the Itd formula to the product wt(%f ‘)Zt. O
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Lemma 10.5.4. One has:

T T
B[ pyioidB) [ B =l 0 / po/iadB),
T T (2K.E20,),(~2K.B)
E[I(A ptmdB[)/o Blvl,tdt a)OT E[l(/ p[\/VO ldBl‘)]
+2w(§7(p§"0 ), (Kvpév(),.)( 27(’3 / pt\/mdBt)]
! ! (k,pEv0,),(0.pE).(—
E[l(/o Pt\/‘EdBt)/o Biva,de] = O 7 / Prv/VodB;)].

Proof. Using Lemmasm(f(t) e B, 7 = fé ’“és\/mst) and | one has:
/ pr/07dB,) / Bivi de] = / pr/07dB,) / g, / ¢S E, /0 sdByd]
:E[l(/ pt\/mdBt)/ 0 *Pee, /7dB]
/ Pi+/v0,dB;) / a) 2P *p & v, dt,

which gives the first equality. The second and the third are proved in the same way.

Lemma 10.5.5. One has

0" Pgs. 9" Pys T

— | = — X(),/ V()tdt)
dxiyl dxiyl

Proof. One has

Jip T T 2 T
E[ axlf_s] a; —x PBS(XO+/0 p“/VOJdBt_/O %Voﬁtdl‘,/o (l—ptz)VOJdt)]

0P, r
= axljs (XO,/ V()Jd[).

Since Pgg verifies the following relation

dbgs 1 0% Pps B 5’sz)
dy 2% 0x? dx

we immediately obtain the result.

10.5.2 Proof of Proposition [10.2.1]

One has
S (AR S Ry L o
2(V0 t) 2 4("0;) 2 8(VQJ) 2 .NO
= [2(8;?3 35)1:5 / PR+ 2 )dr) - E[a;fgs/;’zf;dt]
_ aPBS/ pt 2t)dt] [a;fgs /OT I)éi‘;itdt]a

(10.33)

O]
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2| at the first equality and identity (10.33) at the second one. Plugging

where we have used Lemma|10.5.
this relation into the approximation (I0.16) and summing the second and third line, one has

184

o BS/ (v 1;+&)dt]
0 2

g(1) =E|[Pps] + E[ Iy
_E[E’;fgs OT’if;’dt]Jr;E[‘ﬁgs( /OTp, vo,% / —vl,dt
+;E[‘9§fﬁs ([ a-pmaa)
+E[a;f§5( /0 (1= p2)vi,dr)( / Py % / —vl,dt (10.34)
In addition, one has
52 [ ’;zvf o+ 0 Tptz(:o‘::);d& [ By
:E[a;fgs /OT(/Otpsz(:;’j)lst—/ol ’fvl,sds)(ptz(:;i)édB,—”jvl,,dz)]
S L

/ —vl sds)p; vlytdt],

8 2PBS / /
axy 2(vo.s) %

where we have used Ito’s Lemma for the square at the first equality, Lemma [10.5.2] at the second and
Identity at the third one. Substituting this relation in the approximation (10.34)) and summing the

second and fourth line, one gets

g(]):E[ﬁBs]—i—E[aaP?S/o (Vl,t V;l)dt]

PPy [T w
B[ ([ o ra,
Xy 0 Z(V()S)
+ (/ (1 _pt Vi tdt / p[ l / 7\)] tdt
0 vOl 2

1 0%Pgg
+2E[8yz(/0 (1—p})vide)?]+ 6.

/ jvl Sds)p, vy dt

(10.35)

We now study the second term of (10.33). In the computations below, we use Ito’s Lemma for the second
105.1/(G = 2y, ) for

and Identity (10.33) for the third equality and Lemma

10.5.2

equality, Lemma
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the fourth one; it gives

B, [T [ Vi ' p?
A=E / / - 4B —/fw ds)p2v; ,dt
[ axy ( 0 (0ps2(vos)l s 0 2 L,s )pt 1t

T T p?
+(/ (1= p7)vi,de)( / P — L dB — [ Ty dr)))]
0 /,)z 0o 2
0% Pgs ! Vi 1 p2 ) )
_E[ axy (/0 (/0 psmst— 0 7V17sds)(pt +1—p; )Vl,zdl‘
2
Vit P
P )v15ds)(pr 2(%)% Svid)]
_ [ E / ) / PLy ds)]
/0 [ axy p vos % V] S
0% Pgs

B [ (- pmaspin,al

a p 2 5
—/ BS vlJ(—/O p2v1 sds) +/ ps dl DBv1 +ds)

+ 5 n [ 2 Py, dsld +Ef ()yz /O ( /O (1= p2)v1 ods)p2v1 ]

From Equation (T0.7), one has DBv;, = e ek & 5. Hence it is deterministic. Thus, using Identity
(10.33)) and Lemma(10.5.2] for the first equality and Equation (I0.8) for the second equality, one has:

02Pgg (T [t .
=E(5 ) () penadsinade ([ (1= p2m asppPvan)
dy> Jo 0 0
IPss [T [" Vis ui ps
+E[8y/o ( o me &\ /v0,5dB;)dr]
?Pgs (T [ .
=E]| 9y2 /0 ((/0 pszvl,st)Vl,tdl“i‘ (/ (1 — Py )V1 st)P, Vi tdt)} +E[== 3 2,t 1.

Now, plug this last equality into (10.35) and use the identity

T t t 1 T
| p2vidsmiadr+ ([ (1=p2idoppivian + 5 ([ (1= pFsdn? =

T t t
| p2visasmisde+ ([ (1= p2iods)(pF+1 - pFviar) =

T t 5 5 1 T 5

[ 21 =p2widsvgdr = S( [ vy

0 0 2 Jo

it immediately gives the result.

10.5.3 Proof of Theorem [10.2.1]
Proof. Step 1: We show the equality

0Py 2 9 Py (xo, [ vo,dr)
E[ay/o (Vlt+v2t )dt] = ZazT Jxy )
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where

al,T — a)é;:pév(),-)v(_’q])’ aZ,T — a)é;:pév(),.)v(ovpé)ﬁ(_}(v]).

Actually, the result is an immediate application of Lemma[T0.5.4]and Lemma[T0.5.5]
Step 2: We show the equality

EE[ BS(/ vlyldt)2] = sz” 85 (X0, Jo vo.dr)
i=0

Tyz dx2iy2 )
where
bor = a)é?;v‘gzvo,,)v(*lﬁ',1)7(7;(71)7
by = @SPE RN (PSR g plepSi ) (kpbi ) (CrD(e D) azT.

Indeed, one has

1 aZPBS T 2 (92;’35 T t
SE G | s = Bl | ([ vrsdsyviar
2p T T t
= E[a PBS/ (/ e *ds) (e"vi dr 4 & v()te'“(/ Vi 4ds)dB;)]
ay* Jo i ’ ’ 0o

*Pgs (T (T 3Bgs (T -
~E52 () e ds)ed A + B | @5 D ar,

where we have used Lemma [10.5.3[ (f(t) = e, Z, = (J¢ v1+ds)(eX'v;)) for the second equality and
Lemmas [10.5.2)and (10.5.3|(f(r) = ([ e=**ds)p,&vo e, Zs = [iv1 4ds) for the last one.

An application of the first and second equality in Lemma[10.5.4] gives the announced result. Actually, it
remains to show that by 7 = a%T /2. Indeed, consider two cadlag functions f and g : [0,7] - R. Then

(f()Tft(j;Tgsds)dt)z :fOT fOTﬁl(j;]Tgt3dt3)ﬁz (ﬁZg;4dl‘4)dl‘2dt1
2 2
T T T T
=/0 f”(/,] /r. gt3f12(/tz 81, dt4)dr3dry )dry

T T T T
:/ ffl (/ ftz/ / gt3gt4dt3dt4dlz
0 1 1% 153

T T T
+ g,3/ ftz/ g,4dt4dt2dt3)dt1
151 3 1]

T T T T
—2 / fi / fi / 2, / g drsdiadindi
0 n 1% 13

T T T T
+ / N / 8n / I / 8, dtadtrdrzdr.
0 131 13 %)

2
Putting f() = p;vo e and g(t) = e ¥ in the previous equality readily gives by 7 = a]T‘T, which finishes
the proof. 0
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10.6 Conclusion

We have established an approximation pricing formula for call/put options in the time dependent Heston
models. We prove that the error is of order 3 w.r.t. the volatility of volatility and 2 w.r.t. the maturity. In
practice, taking the Fourier method as a benchmark, the accuracy is excellent for a large range of strikes
and maturities. In addition, the computational time is about 100 to 1000 times smaller than using an
efficient Fourier method.

Following the arguments in Chapter ] our formula extends immediately to other payoffs depending
on St (note that the identities (10.6)) and (10.33)) are valid for any payoff of this type). As explained in
Chapter 4] the smoother the payoff, the higher the error order w.r.t. T'; the less smooth the payoff, the
lower the error order w.r.t. 7. For digital options, the error order w.r.t. T becomes 3/2 instead of 2.

Extensions to exotic options and to the third order expansion formula w.r.t. the volatility of volatility
are left for further research.

10.7 Appendix: closed formulas in Heston model

There are few closed representations for the call/put prices written on the asset S; = elo(r—as)ds Xe i the
Heston model (defined in (I0.1) and (10.2))). We focus on the Heston formula [63] and on the Lewis
formula [[79]. Both of them rely on the knowledge of the characteristic function of the log-asset price
(X;); and on Fourier transform-based approaches.

* In [[63]], Heston obtains a representation in a Black-Scholes form:
Callyesson(t,Si,vy; T,K) = Sye= ¥ a54sp, — ge= ) rdsp,

where both probabilities P; and P> are equal to a one-dimensional integral of characteristic func-
tions.

* In [[79], Lewis takes advantage of the generalized Fourier transform, by using an integration along
a straight line in the complex plane parallel to the real axis. It is important to detect the strip where
the integration is safe. Lewis suggests the use of complex numbers z such that .#m(z) = % His
formula writes

CallHeston(t, S[, Vi T, K) = Stei LT qsds _

T i
Ke_ff rsds /2+°° efizX¢T(_Z) dz
27 i oo 2—iz

sye W asds

KeiftT rsds

where X = log ( ) and ¢7(z) = E(e?®7=%)|.%,). Then, the above integral is evaluated by

numerical integration.

Using PDE arguments in combination with affine models, we can obtain an explicit formula for ¢r(z)
in the case of constant Heston parameters. In addition, it can be computed without discontinuities in z,
following the arguments in [68]. For piecewise constant parameters, the characterictic function ¢r(z)
can be computed recursively using nested Riccatti equations with constant coefficients: we refer to the
work by Mikhailov and Nogel [86].

In our numerical tests, we prefer the Lewis formula which gives better numerical results, in particular
for very small or very large strikes, compared to the Heston formula.
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Chapter 11

Appendix

11.1 Smile behaviors for Heston model

The aim of this section is to study the impact of Heston model parameters on the smile behaviors through
time and for different strikes. This is done first for the constant Heston model and second for the time
dependent Heston model.

11.1.1 Constant Heston model
Impact of the correlation. We remark from the figure that

« for negative correlation, the center of the short maturity smile is shifted to the right. As the corre-
lation becomes negative, the smile shape changes from a symmetric shape to a negative skew.

* for zero correlation, the smile is symmetric w.r.t. the moneyness. This confirms the property
proved in [97].

» for positive correlation, the center of the short maturity smile is shifted to the left. As the correla-
tion becomes positive, the smile changes from a symmetric shape to a positive skew.

« for all the correlations, the smile flattens for long maturity and converges to the Valuem V0 as it is
proved in Chapter 6 page 182 Equation (2.3) of [79].

Impact of the volatility of volatility. We remark from the figure that

« for small volatility of volatility, the smile for short maturity is less emphasized and not far from a
flat surface.

* when the volatility of volatility increases, the smile for short maturity becomes noticeable and
looks like a U shape.

Impact of the long term variance. We remark from the figure that

* the value of the long term of variance doesn’t impact much the short-term smile.

'In this case, one can not observe the convergence towards v/6 since the initial value is already equal to \/vo = V6. We
will be able to observe the convergence phenomenon in the paragraph about the impact of log term variance.

189
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Figure 11.1: Implied Black Scholes volatilities for different correlations (on the left for p = —20%, at
the center for p = 0%, on the right for p = 20%) written as a function of log-moneyness and maturities
(in fractions of years). Parameters: xo =0, 0 = 6%, k = 3, £ = 30%.

Figure 11.2: Implied Black Scholes volatilities for different volatility of volatilities (on the left for & =
10%, at the center for & = 30%, on the right for & = 50%) written as a function of log-moneyness and
maturities (in fractions of years). Parameters: xg =0, 8 = 6%, k =3, p = 0%.

* this parameter impacts the implied Black Scholes volatility for long maturities. Indeed, as ex-
plained before, the limit of implied Black Scholes volatilities is the square root of the long term
variance.

Impact of the mean reversion. We remark from the figure [T1.4] that

* for higher mean reversion the smile for short maturity is less emphasized and not far from a Flat
surface.

* when the mean reversion parameter decreases, the smile for short maturity becomes more impor-
tant and takes the shape of U.

Indeed, this parameter plays a similar role than the volatility of volatility but in the inverse way. Then
we can find different Heston models which reproduce the same smile for one maturity and doesn’t have
the same parameters. This property has been proved in Chapter [I0] Subsection [10.2.6]

11.1.2 Time dependent Heston model

Impact of the time dependent correlation. In the figure we plot two surfaces of implied Black
Scholes volatilities: the first represents the implied Black Scholes volatilities with constant parameters
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Figure 11.3: Implied Black Scholes volatilities for different long term variances (on the left for 8 = 2%,
at the center for 8 = 4%, on the right for 8 = 5%) written as a function of log-moneyness and maturities
(in fractions of years). Parameters: xo =0, p = 0%, k = 3, £ = 30%.

Figure 11.4: Implied Black Scholes volatilities for different mean reversions (on the left for k = 200%,
at the center for kK = 300%, on the right for k¥ = 600%) written as a function of log-moneyness and
maturities (in fractions of years). Parameters: xo =0, 8 = 6%, p =0, § = 30%.

(0 =4%, k =3, & =30%) and correlation p = 0. The second one is obtained with the same parameters
(0 =6%, k=3, & =30%) and piecewise constant correlation p equal to 0% +i X —2.5% at each interval
of the form |, 21 [. Hence, we remark from the figure that:
* the short maturity smile is not much impacted by the correlation since for this example the corre-
lation for short maturity is not far from zero.

 for long maturities, there is an emphasized skew due to negative value of correlation for long
maturities.

Impact of the volatility of volatility. In the figure [[1.6] we plot two surfaces of implied Black Scholes
volatilities: The first represents the implied Black Scholes volatilities with constant parameters (8 = 4%,
kK =3, p = 0%) and volatility of volatility & = 30%. The second one is obtained with the same parameters
(0 =4%, x =3, p = 0%) and piecewise constant volatility of volatility & equal to 30% +i x 2.5% at
each interval of the form ]%, % [. Hence, we remark from the figure that:

* the short maturity smile is not really impacted by the piecewise constant volatility of volatility
since it is not far from the initial volatility of volatility.
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Figure 11.5: Implied Black Scholes volatilities for different correlations (on the left for constant pa-
rameters, on the right for piecewise constant correlation) written as a function of log-moneyness and
maturities (in fractions of years). Parameters: xo = 0.

* for long maturities, the flat curve is replaced by a small smile. In this example, the change of
the volatility of volatility makes the convergence of the implied Black Scholes volatilities at long
maturities slows down.

Maturities

033

&

0.55
1

Figure 11.6: Implied Black Scholes volatilities for different volatility of volatilities (on the left for con-
stant parameters, on the right for piecewise constant volatility of volatility) written as a function of
log-moneyness and maturities (in fractions of years). Parameters: xo = 0.

Impact of the long term variance. In the figure we plot two surfaces of implied Black Scholes
volatilities: The first represents the implied Black Scholes volatilities with constant parameters (& =
30%, k =3, p = 0%) and long term variance 6 = 4%. The second one is obtained with the same
parameters (& = 30%, k = 3, p = 0%) and piecewise constant long term variance 6 equal to 4% + i x
0.05% at each interval of the form ]ﬁ, % [. Hence, we remark from the ﬁgurethat:

* as before, the short maturity smile is not impacted.

« for long maturities, the surface of the implied Black Scholes volatility is not constant but is shifted
and changes with the maturity. Indeed, the implied Black Scholes variance for long maturities
changes since the long term variance parameter changes through maturities under our tests as-
sumptions.
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Figure 11.7: Implied Black Scholes volatilities for different long term variances (on the left for con-
stant parameters, on the right for piecewise constant long term variance) written as a function of log-
moneyness and maturities (in fractions of years). Parameters: xo = 0.

11.2 Literature on the negative moments of the integrated CIR process

In this section, we give results about the negative moments for the CIR process and the integrated CIR
process. Most of the results are stated in [39] and [24]]. Then, we focus our review on these articles and
some related results. We extract also some technical Lemmas from these results. These Lemmas are
interesting, but their domain of validity is restricted and the estimates are not uniform w.r.t. the volatility
of volatility. In order to obtain uniform estimates under not restricted assumptions, we refer to Chapter

Subsection [10.4.3]

11.2.1 The integrated square-root process by Dufresne [39]

Dufresene in [39]] derives interesting properties for the CIR process:
dvy = k(0 —v;)dt + & /vidB;,vo > 0. (11.1)

He calculates the CIR moments E[v/] recursively using linear ordinary differential equations. By ana-
lyzing the Laplace transform of the CIR process he shows that the CIR variable v, is a summation of
two independent variables: a Gamma one plus a compound Poisson variable. He shows that there is a

critical lower value of r for which the moment E[v;] becomes infinite. This critical value is —%:Lze. He

also consider the integrated CIR process Y, = fé veds. Analogously, he derives its moments and gives
explicit formula for the Laplace transform of the integrated CIR process. Hence, the process has finite
moments E[Y/] for any r € R. Because of the critical value for the negative moments of the process (v;),
the author conjecture that the Laplace transform Elexp(p | %dt)] is infinite for every positive index p.
The author gives also interesting results which relates the Laplace transform of a random variable U > 0

to the Laplace transform of its inverse 5

2The answer to this conjecture is negative, see Lemma|11.2.1|in the next Subsection
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11.2.2 An efficient discretization scheme for one dimensional SDEs by Bossy and Diop
[24]

In the paper [24], the authors give nice properties about the CIR process and generally every process of
the kind [l

dv, = k(0 —v;)dt + Ev¥dB;, vp. (11.2)

This SDE has been proposed by Cox (¢ = %) in [35]] and by Hull and White in [67] to model the short
term rate. They give estimates of the moments of this process for any p > 0
E[ sup /] < C(p)(1+vp).
1€[0,T]
Without extra effort, we can show that the constant C(p) derived in the proof of Lemma 2.1 [24] is non
decreasing on T, k and &. They give under the condition k6 > &£2, estimates for the p moment (with

pell, 25L29 — 1[) of the inverse of the CIR process (ot = %)

1 1 2e%
E[g] < @(@)p (11.3)

This is an interesting inequality but it said that these moments may explode when & or ¢ goes to 0.
The authors show the following Lemma for CIR process (o = %).

Lemma 11.2.1. (Lemma A.2 in [24]) If k0 > E2, then there exists a constant C depending on x, 0, &
and T such that

E[exp(vz;z/on)] <C(T)(1+vy ), (11.4)

where v = 2€L29 — 1 and the positive constant C(T) is non decreasing function w.r.t. T.
A nice consequence of this inequality is the following Proposition:

Proposition 11.2.1. If k8 > &E2, then for every p > 1 there exists a constant C depending on , 6, &, vy,
p and T such that

E[(/OTC”)”] <c(r), (11.5)

E[(/OT wary 7] < 1)

(11.6)

where C(T) is a non decreasing function w.r.t. T.

Proof. Using the inequality ;‘)—’; < ¢* for the value of x = % fOT “f—f and the inequality [11.4] one deduces

immediately the first inequality. For the second one, apply Cauchy-Schwartz inequality:

(/OTdt)2 < (/OTv,dt)(/OT :tdt)

Td P ! Tldp
1) < — —dt
</0 ) < ([ iy

and thus

which combined with the first inequality finishes the proof. O

3here we chose b(x) = k(6 —x).
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Notice that they give upper bound with precise information on the parameter 7', but the dependence
on k, & are not monotone. In the following Lemma, we give explicit upper bounds w.r.t. k,  and 7.

Lemma 11.2.2. If2x0 > E2, for every p €Jl, 29%9[ there exists a constant C depending only on p and vg
such that

T g4 2pkT
e (11.7)
t
T eZpKT
IE[(/O vidt) P] <C £ TP, (11.8)

Proof. Besides the CIR process v; is a time transformed Bessel square process:

Vy = e_KtZ§2(eKt,1) (119)
L

One has from Lemma ([138]], page 83)

T dr 1
B, 1< =
©20(p)I(p— 1)y’

Using Holder inequality, one has

T T
<[ G
0 Vr 0 V;

2(

E%(e

4e?PxTTr—1 - du
c eIt R
&2 0 z
which gives the first inequality. The second inequality is straightforward using Cauchy-Schwartz in-
equality. O

(11.10)
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This Chapter presents new approximation formulae of European options in a local volatility model with
stochastic interest rates. This is a companion Chapter to our work on perturbation methods for local
volatility models in Chapter [/| for the case of stochastic interest rates. The originality of this approach
is to model the local volatility of the discounted spot and to obtain accurate approximations with tight
estimates of the error terms. This approach can also be used in the case of stochastic dividends or
stochastic convenience yields. We finally provide numerical results to illustrate the accuracy with real
market data.

12.1 Introduction

Long term callable path dependent equity options have generated new modeling challenges as the path
dependency requires consistency in the asset diffusion while the early exercise on long period suggests
interest rates risk. To appropriately account both for the asset diffusion consistency and the interest rates
risk, we consider in this paper a local volatility model with stochastic interest rates. Recent works have
mostly focused on extending stochastic volatility models to stochastic interest rates, as described in [91]],
[14]], [11] or [60]. However, very few works have been done on extending local volatility models to
stochastic interest rates, except some work on the explicit bias between the local volatility in a stochastic
and deterministic interest models [18]].

Local volatility enables to infer a diffusion process, which is consistent with the whole volatility
surface as explained in [40]]. But the introduction of stochastic interest rates makes the calibration pro-
cess much harder: indeed, the forward PDE approach is now much more computationally expensive
as the forward PDE to solve includes an additional stochastic factor due to interest rates. In order to
achieve real-time pricing computations, we revisit our perturbation approach (see Chapter [/) to derive
approximation formulae in the case of stochastic interest rates.

As a preliminary to our computations, we briefly discuss the choice of the model for the volatility of
the spot process. First, owing to the absence of arbitrage, we know that if the spot process (S;); and the
interest rate instruments follow It6-type dynamics, then necessarily

ds,
571‘ = r,dt + G,dVth,

7 :f((),t)—/ol }/(s,t).F(s,t)ds+/Oty(s,t)st,

where (r;), is the short term interest rate, (f(0,¢)), is the forward rate curve at time 0 (deduced from
the initial yield curve), (o;), is the instantaneous volatility process, (I'(#, 7)), is the volatility of the zero
coupon bond (B(#,T)), paying 1€ at time T, y(¢t,T) = —dr['(¢,T) is the volatility of the forward rates
(this is the HIM framework). The above general decomposition is written under the risk-neutral measure
Q, under which W' and B= (B!, --- , B") are respectively a linear and a n-dimensional standard Brownian
motions. So far, we have not defined the model for (o;);, (I'(¢,T),); and the correlation between W' and
B: this is the topic of the following discussion. If our pricing problem were only for European options, a
standard market practice is to model the forward process and to perform a change of measure choosing
the forward measure as numéraire. Namely, consider the forward process F,! for the maturity date T
given by F,I = %. As shown in [51]], the pricing of a European option with final payoff ¢(S7) can be
reformulated in the forward measures as follows

Ele 1 5% ¢(Sr)] = B0, T)Er [@(Ff)] (12.1)
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where Er is the expectation under the forward measure Q7 . Interestingly, the forward process (F, )o<;<71
is a martingale under the forward measure Q7 , meaning that only its volatility needs to be specified (it is
known that it is equal to the difference of the volatilities of (S;); and (B(#,T)), up to correlation factors
between W! and B). Thus, the equation (T2.1) is illuminating as it shows that the stochastic interest rates
risk seems to be eliminated from the pricing/calibration problem. However, this approach that models
each forward process F7 under Q, leads to as many volatility models as the number of maturities (in
addition, each volatility model is written under a specific forward measure). Furthermore, in the case
of path dependent options, it is not enough to model each F” under Q7, since we can not extend the
representation (T2.1)) using only (F”). Thus, we are forced to model the full dynamics of S under Q.
This supports the choice of a local volatility model for S with stochastic interest rates. Being inspired by
the previous arguments on modeling the forward that is martingale under the suitable forward probability,
we choose to define a model on the discounted price process:

¢ = ¢~ lordsg,
which is also a martingale (under Q). We assume that

dS;J d d 1

Equivalently, we study the log discounted process X; = log(S?) = log(S;) — [s sds, whose dynamics is

2
X, = o(t,X,)dW,! — %(t,X,)dt, Xo = X0, (12.2)

where o (z,X;) is the volatility term that can be related to the local volatility of the discounted process
o(t,X;) = o(t,89).

Taking the log discounted process as a local volatility model is not very conventional as the local
volatility function is now a function of the log discounted process and not of the log process itself.
However, this new approach has the great advantage to remove the influence of stochastic interest rates
in the local volatility function and presumably to lead to intuitive approximations. In addition, this
approach leads to similar types of local volatility as the one for the forward process. Both approaches
model the local volatility functions of martingale processes. For a trader accustomed to quote local
volatility for the forward process, it becomes easy to shift to our approach.

To complete our preliminary discussion related to the choice of the model, it remains to specify the
assumptions of the volatility of interest rates and the correlation. We consider Gaussian model for interest
rates, by assuming that I',7 : Rt x R — R”" are deterministic functions (7 is the number of Gaussian
factors). The Brownian motions W! and B = (Bl,-~- ,B") are correlated using deterministic functions

(pf£r)i7l:
d(W' B, =p}/dt 1<i<n.

Now, our aim is to give an analytical accurate approximation of any European option price, written as the
expected value under the risk neutral probability measure of a payoff function /4 evaluated at the maturity
time 7T':

T
A =E[e sy / reds +Xr)), (12.3)
0

where h(x) = @(e*). The important cases are related to call/put for which h(x) = (¢* — K)™ and h(x) =
(K—e*)t.
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Using the zero coupon B((¢,T)); as a numéraire, one has
T
— B(0,T)Ex[h( / reds+Xr)], (12.4)
0

where [E7 is the expectation under the forward neutral probability Q7. The process (X;); has the following
dynamics under the probability Q7 :

2
dX, = o(t,X)dW,"T + (p>" T(t,T)o(t,X,) — %(I,X,))dt, Xo = xo, (12.5)

where (W'T), is a Brownian motion under Q7.
Black formula. An important case in our study is associated to time dependent volatility o (¢,x) = o;

for which the price is given explicitly by the Black formula for call/put payoffs. This feature relies on
the Gaussian property of fé reds + X7 under Q7. One has

T 1 (T T T
/ rids+Xr = / T, T)2dr — / (1, T)dB; + / £(0,0)dt
0 0 0 0

T 1 (T
+10g(So)—|—/ c,dW,! —f/ cldt
0 2 Jo

— log(— )+/TGdW1’T—/TF(t T)dB"
8,1y " Jy M )4

1T 1
—5/0 IF(t,T)lzdt—E/O dt+/ ip;" T(t,T)dt, (12.6)

where (W!T BT) is a QT -Brownian motion (with the same correlation than under Q). Denote by o Black

the equivalent Black volatility defined by

T
(GBlack)ZT _ / [612 + |F([, T)|2 _ ZthtS,r.F(t, T)}dl‘
0
Thus, [, rds+ Xy is Q7 -distributed as a Gaussian r.v. with mean log( Bi(gOT) )—3(0
(6B1ak)2T  In particular for call options (h(x) = (e — K)™), it follows that

SO 1 SO 1 Black 1 SO Black
I - T)—K I -
0.7 Gamargr 2 Gm ) T2 V) KA (g 8 g R 2 ;o)L

General local volatility models. Then, to obtain the analytical approximation for general local
volatility models, we follow the ideas from Chapter [/| and we introduce a parameterized process given
by:

Black\2T and variance

=B(0,T)]

A

2
axt = (o (1, X)W, + (T, T (1, X0) = - (1,X5))d), X§ = xo, (12.7)

where the parameter € lies in the range [0, 1]. Obviously, this parametrized process is equal to the initial
one for € = 1. Remarkably, it is much easier to calculate the price (I2.4)) as an expansion formula with
respect to € (this is related to Black formula). Once we have derived all the terms of the expansion, we
see that the price of the European option is obtained by taking € = 1 in the expansion.

Notations. The following notation will be used extensively throughout the paper.

Notation 12.1.1. Differentiation.
If these derivatives have a meaning, we write:
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. lllt(i) (x) = %l;’,/ (t,x) for any function y of two variables.

.0 = G(l‘,xo),Gt(i) = o¥(z,xp).

. Xg o aith

it = e is the i"" derivative of the parameterized process with respect to &.

iye
e X = % le—o - These processes play a crucial role in this work.

The following notation of Greeks will be useful for interpreting the expansion terms.

Notation 12.1.2. Greeks.
Let Z be a random variable. Given a payoff function h, we define the i'" Greek for the variable Z by the
quantity (if it has a meaning) :

I'Er[h(f) rds+Z+x)]
- oxi [e=o0-

Assumptions. In order to derive tight upper bounds for our expansions, we assume that the coeffi-
cient o is smooth enough. In what follows, N is an integer greater than 4.

Greek(Z)

 Assumption (Ry). The function o is bounded and of class CN w.r.t x. Its derivatives up to order
N are bounded.

This assumption may be restrictive because ¢ has to be bounded as well its derivatives. Actually, this
statement is made only to simplify a bit our analysis, but we can prove that our approximation remains
valid if some boundedness requirements are partially relaxed.

Notation 12.1.3. Function amplitudes.

Under (Ry), we set
Mo =max(|Glw, - ,|c™]..), (12.8)
My =max(|6W]a, -, |6™]). (12.9)

Although My and M\ may depend on N, we remove this dependence in our notation, for the sake of
simplicity. In our expansion, we expect these quantities to be small.

Remark 12.1.1. The constant My measures the amplitude of the objective function & and its derivatives
w.r.t. the second variable, whereas M| measures only the amplitude of its derivatives. Notice that My <
My and in case of deterministic function o, one has M| = 0.

In real market, the correlation between the asset and the short rate is close to zero (see table (I2.1))).
Therefore, the following assumption is consistent with real market data:

* Assumption (Rho). The asset is not perfectly correlated (positively or negatively) to the interest
rate:

S,r
P57 = sup [pS] < 1.
t€[0,7]

To perform the infinitesimal analysis, we rely on smoothness properties not related to the payoff function
itself but rather to the law of the underlying stochastic models.
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Table 12.1: Historical correlation between assets and short term interest rate EUR. Period: 23-Sep-2007
to 22-Sep-09.

Asset Historical correlation
ADIDAS 18.32%
BELGACOM 4.09%
CARREFOUR 7.08%

DAIMLER -0.94%

DANONE 7.23%

LVMH 4.53%

NOKIA 4.37%

PHILIPS 5.23%

* Assumption (E). The function ¢ does not vanish and its oscillation is bounded, meaning 1 <

ol .
% < Cg where G,y = inf(; \\cp+ g O(Z,X).

The assumption (E) is commonly called an ellipticity assumption.
Definitions.

Definition 12.1.1. As usual, we define ¢;°(R) as the space of real infinitely differentiable functions h
with compact support. We also define € as the space of functions with exponential growth.

As in Chapter [7} our analysis depend on the payoff smoothness. We split our analysis into three
cases.

* Assumption (H;). h belongs to €;°(R). This case corresponds to smooth payoffs.
* Assumption (H,). h and A belongs to . This case corresponds to vanilla options (call/put).

* Assumption (Hs). h belongs to 7. This is the case of binary options (digital).

12.2 Smart Taylor Development

Our perturbation approach relies on the Taylor expansion of the parameterized process. We have paved
the way in our previous work (see Chapter[7). In the quoted reference, the parameterized process has the
form

dXE = e(u(t,XF)dt + 0 (1, XE)dW;)

and the aim was to approximate E[2(X})]. Hence, compared to the current study, we take a specific
form for i, namely u(r,x) = p; " .I'(¢,T)o (t,x) — %: with this respect, the expansion on the process
(XF) is very similar to that of Chapter [l On the other hand, in our case, the quantity of interest is
Er[h(Jy reds+X})] and the extra term f; ryds induces significant differences when the correction terms
are computed. For the convenience of the reader, we briefly expose the computations when similar to
Chapter[7] and we detail the arguments when new compared to Chapter [7]
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iye
From the definitions, X;, = % le—0, we can expand the perturbed process X as follows:

&2

X; =Xfle=o+ X117+ 5

Xor+... (12.10)
Indeed, under the assumption (Rs), almost surely for any 7, X is C* w.r.t € (see Theorem 2.3 in [72])).

The diffusion dynamics of (Xft = %),20 is obtained by a straight differentiation of the parameters of
the diffusion equation of X¢. The first order term X}, is easily obtained as follows:

S € 1T S.r P Gzz(ng)
dXi, =0,(X")dW," +(p;" . T(t,T)or(X[)) — ———

+ext, (o (x2)aw T + (o5 .01, 7)oV (XF) — 0 (x5) 0 (X2))dr) XEg = 0. (12.11)

From the definitions, we have 6; = o(#,xp) and G,(i) = (¢, xp). Then, we obtain

2
O,
dX,; =c;dW,"" + (07" .T(t,T)o, — 7’)dt,X1 0=0, (12.12)

dXa, =2X1,(6Nawr T + (p3" T, T)0") — 6,6")dt), Xp0 = 0. (12.13)

Applying the expansion (T2.10) at € = 1, we conclude that xo + X; 7 is a proxy for X7. It follows the
notation:

T 02 T
XE —xo+ X1 :x0+/ (pff.r(s,T)aY—?S)der/ o, dWhT (12.14)
0 0

where the exponent B stands for Black, which is the proxy. To obtain an approximation formula as in
Chapter [7, we assume that /& is smooth and then, we obtain approximations which are valid even if 4 is
not smooth, which allows us to handle finally the case of arbitrary payoffs. Use the Taylor formula twice:
first, for X% at the second order w.r.t € around xg, secondly for smooth function % at the first order w.r.t x
around XZ. This leads to:

A=B(0,T)Er [h(/OT reds +Xr)] = B(0, T)Er[h(/OT reds+XB + % +.)]

T T X
— B(0, T)(IET[h(/O ruds+XB)] +ET[h<1>(/O rds+XP) 2]+ ).
Note that the first term is explicit for call/put options since it is given by the Black formula previously
mentioned. To achieve a fully explicit formula, it remains to transform the correction term involving
Xo,r into a summation of Greeks computed in the Black proxy. This is performed using the Malliavin
calculus.

Theorem 12.2.1. (Second order approximation price formula).
Assume that the model fulfills (Rs), (E) and (Rho), and that the payoff function fulfills one of the as-
sumptions (Hy), (Hy) or (H3). Then

T T 3 T
E[e*foT’Sdsh(/O ryds+Xr)] :B(O,T)(Er[h(/o reds +X7)] —i—Zai,TGreek?(/o reds+X7) + Residy),
i=1

(12.15)
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where

7 2 T
ar=— [ (o810 T)0~ ([ aol dsyar,
0 t

Cr=—0r—03T,

T T )
3,7 :/ ath(/ as05 ds)dt,
0 t
S
at :GI - pt 7r.r(t, T)
Additionally, estimates of the error term Residy is analysed according to the payoff smoothness.

» For smooth payoff (assumption (Hy)), one has:

|Resid| < Csup |hY) | MiMZ(VT)3.

|
1<j<|%]

 For vanilla payoff (assumption (H,)), one has:

T T
[Resid| gC(Hh(l)(/ rds+ X2l + sup Hh<1>(/ reds +vXp + (1= )X )
0 ve[0,1] 0

M\MG(VT)’.

Oinf 1-— ’PS’VEO

 For binary payoff (assumption (H3)), one has:

T T
|Resid2|§C(||h(/0 rods+XE) ||+ sup ||h(/0 ryds +vXr + (1= v)X2)||2)
vel[o,1]

)M Mo(VT)?.

Oing\/ 1= P52

In the above estimates, the constant C depends (in an increasing way) on the bounds of the model pa-

rameters and the maturity, and the norm |||, is the L, norm under the probability measure QT .

The proof of the above Theorem is postponed to Subsection[12.5.2]

Remark 12.2.1. The above approximation is a summation of the leading term and a combination of

some Greeks of the leading term:

1. B0, T)Er[h( [y rids+XE)] is the leading order; corresponding to the price when the parameters
O is deterministic. In the case of call/put option, it is given by the Black formula previously
mentioned. For other payoffs, we can use numerical integration because the law of the random

variable fOT rids+ X8 is Gaussian with known parameters.

2. B(0,T)Greek! ([ rids+ X&) is the i derivative of the leading term w.r.. the initial value xo =

log(So).

3. The coefficients o; 1 are explicit and depend on the function o, its derivative at the point x,
the zero coupon volatility T, its derivative 'y and the correlation pS’r. In the next subsection,
these constants will be made specified for some important case to enlighten more their simple

expressions w.r.t. the model parameters.
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As in Chapter [7] the accuracy of the approximation has different justifications which can be related
from the error estimates on Resid,. Either o is only time dependent (M; = 0) and the formula is exact
(Black formula). Or the shorter the maturity 7" or the smaller the volatility (measured by My), the more
the accurate the approximation.

12.2.1 The case of the one factor Hull and white model plus time homogeneous diffusion

Here, we consider the case of ¥, (¢, T) = ﬁe*"(T*’) , a constant correlation p and a homogeneous volatility
o(t,x) = 6(x). Then here 6(t,x0) = 6(x0) = 6 and 6*V) (r,xy) = (V) (xy) = o). Using Mathematica,
we can compute exactly the correction coefficients. Their expressions are

~2kT 5 5(1)
a7 :T(2p2§2 +2e p (ko (2T + 1) +2p (KT — 1)E)E

+ e (6 T?k* + po (kT (3kT —2) —2)Ex +2p* (kT — 1)%E?),
r=—or—m7,

e *Tool) (p& + e (GTKZ—I—pTéK—pé))Z
o = i .

12.2.2 Third order approximation formula

Notice also that in real market the amplitude of volatility of the Hull and White model is & ~ 1% while
for the asset 0 ~ 20%. Therefore, one has presumably |I'(.)| = O(M3). Thus, we expect that the third
order approximation formula w.r.t. M, does not yield additional interest rate corrections. The proof
follows the arguments of Chapter[7]and we skip the details. Therefore, in the following higher order, we
neglect terms related to additional stochastic rate corrections.

Theorem 12.2.2. (Third order approximation price formula).
Assume that the model fulfills (R7), (E) and (Rho) with |T'(.)|. = O(M3), and that the payoff function is
a vanilla payoff (assumption (H,)). Then

6 T /
Z B,'jGI‘CGk?(/O reds —I-Xﬁ) + Resid,),

Ble ([ s+ Xp)] = B(O,T)(Exlh / s+ XE) + 1

1

(12.16)
where
Bir =01 — Gr _Gr_ G Gr_ C67T’
TEAIT T T T T T 2
Bsr =037 —2Cs7 —2Cs 7 —6Ce 1 —3C7 1 — 3C§,T ’

13C;r  13Cgr
2 T4

Bar =Cs1+Cs1+3Ce 1+

Bsr =—6C; 1 —3Csr,
Bs.r =2C77+Cs 1,
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and
C2~,T = w(sz(G(l))z)g’ C37T = (0(62,66(2))(7;, C4,T = (0(62,62,(6(1))2)3,
Csr = w(c2,6%,66)T, Cor = o(c?,00", 66T,
Cr.r = 0(c?,62, ooV, o)l Csr = o(o? 06, 6%, 00V)f.

In the above definition of the constants, the notation ®() is defined by
T T T
o(fi, - fi) = /0 fl(rl)/ fa(r2)- / fi(r)dry---dre, k>0,
I Fk—1
In addition, the error term Resid; is estimated as follows

) T T
]Resid3]§C(Hh(l)(/o rods+ X2+ sup Hh<1>(/0 rods +vXr + (1= v)X)|2)
vel0,1]

1My (VT)!

cyinf 1— ’PS’VL%Q

r M,
RO [ s+ XP)a( " PMM(VTY,
0 Oinr\/1— P72

where the constant C depends (in an increasing way) on the bounds of the model parameters and the
maturity.

Proof. Using an adaptation of Theorem[7.4.2]in Chapter[7] one has

T T X
B[ rsy( /0 rds+Xr)] = B(0, T)(E[h( /O rods+ X5+ E[R( /0 rds+XF) 2L |
X
+E[RD( Trds+x )X |+ E[Rr?)( Trds—l—XB)(%)zH—Resid)
0 K3 T 31 0 K T ) 3).

The error Resids is estimated using an adaptation of Theorem [7.4.2] by :

T
|Resid3|§C(Hh(l)(/ rds+XB) |2+ sup [|A" (/ rods +vXr + (1= v)X2)|2)
0 ve[0,1] 0

1My(VT)*"

Oinfy/1— \pSvf!i

The first correction term E [ ([ ryds+ X2) @] is made explicit in Theorem|12.2.1| The other correc-

X
tion terms E[h() ([ ryds+X28)% S+ ERP(XE) (%)2] are computed using integration by parts (Malli-
avin calculus) and a truncation argument of the weights. The truncation argument consists in neglecting
the additional weights which are related to I" since |I'(.)|. = O(M3). Hence, the computation of these
corrections terms is reduced to the computation of the additional weights of the third order correction by
taking I = O (this is done in Theorem[7.2.2] of Chapter|[7). By easy but tedious computations that are not
detailed, we can prove that the related truncation error is estimated by:

| TruncationError| < CHh(l)(/ reds +XE) | Mi(VT)>.
0

0
Gll’lf /17| Sr‘2
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Note that the above error does not decrease to 0 as quickly as before w.r.t. the maturity T (the power is

equal to 3 instead of 4).
O

Remark 12.2.2. In the case of homogeneous volatility o(t,x) = o(x). We write o(t,x9) = 0O,
c0)(t,x0) = 6. Then

T2 T2
Cz,TZGZ(G(l))zj, C3T:G3G(2)77
T3 T3
Car = 64(6(1))2? =Ce,r, Cr=o G(z)gv
T4
C7T—G6(G(1))2ﬁ7 Cyr=Crr

12.3 Extension to stochastic dividend and convenience yield

The current framework can be easily adapted to deal with stochastic dividends or stochastic convenience
yield in a local volatility model applied to commodity models. This can be seen as an extension to Gibson
Schwartz model to handle local volatility functions for example. We recall the SDE of the underlying
spot in the Gibson Schwartz model [52]:

das;

S

dy, = k(04 —y;)dt + édeVtza
d(W', W?), = p.dt.

= (r, —y,)dt + cdW,

Here, the interest rate (r;), is deterministic. (oy); and (&), are time dependent functions. Therefore,
using similar modeling like for stochastic rates, we have the following framework:

o2(t,X,
dX, = o(t,X,)dW/ — (2”)dt,

dy; = k(0 — y)dt + EdW?,
d<W17W2>t = ptdt’

where S, = eXtelo(r=y:)ds gpg o (t,x) is the local volatility function. Hence, our aim is to estimate:
r T
e HBIh( [ (ro=yi)ds+ 1)) (12.17)
Analogously, the proxy X5 is:
o2
dX? = c;dw,' — dez,xg = xo.

Hence, we obtain analogous corrections results:
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Theorem 12.3.1. (Second order approximation price formula).
Assume that the model fulfills (Rs), (E) and (Rho), and that the payoff function fulfills one of the as-
sumptions (Hy), (Hy) or (H3). Then

e~ o Iy /0 (e yo)ds + Xp)] = e s B[ /0 (1~ yy)ds+ XE)]

3 T
+ Z li’TGreek?(/ (ry — ys)ds +XB) 4+ Resid,),
i=1 0
(12.18)

where

T ~2 T
Mt =/ ﬂ(/ o,0Vds)dt,
i o 2

T T (1)
A :—/ tht(/ 0,0, 'ds)d / / by GS ds
0 t

T T (1)
g = / bioi( / byoVds)dt,
0 t

T
bl :GI - ptét/ e_K(S_t)dS.
t

The error term Resid, is estimated as in Theorem[12.2.1]

12.4 Numerical Experiments

Here we give numerical examples for the accuracy of our approximation formula. As a benchmark, we
use Monte Carlo methods with a variance reduction technique. We consider the one factor Hull and
White model for interest rates, the CEV diffusion for the spot and constant correlation p. Then,

Y(1,T) = Ee T o(1,x) = velP~1,

In this case the correction coefficients are computed in Paragraph|12.2.2] We consider the call h(x) =
(e —K)*, ensuring that the price and the Greeks in the Black proxy are explicit.

12.4.1 Monte Carlo with Control variate

Using the HIM framework for the Hull and White short rate (r;), the integrated fOT rsds is a Gaussian
variable with mean m and variance v (see [26])

1

7(672KT - 1))7

—xT
m= /fOzdt+—(T+ (e =)=

2 —kT 1 —2xT 3
(T + — ~ 3¢ - ﬂ)
The simulated random variable is e~/ ”dt(efOT ndi+Xr _ K)*, In order to reduce the statistical er-
ror, we use a control variate method. Namely, the control variate is e~ Iy £04) ‘”(efo FONd+Xr _ )+
Ele =l 110, ’)d’(efo fO0ndi+Xr _ )] The latter expectation is approximated analytically using the third
order accurate formula using lognormal proxy approximation derived in Chapter 7]
We take null forward rates (f(0,7) = 0). Indeed, this choice is arbitrary, and it does not influence the
accuracy or the correction terms calculus.
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12.4.2 Accuracy of the second and third order approximation formulas (12.15)), (12.16])
In Tables [12.2} [12.3] [12.4} [12.3] [12.6] [12.7} [12.8] [12.9] (corresponding to the maturities 6M, 1Y, 5Y,

10Y for a small and a large skew), we give detailed numerical results about the accuracy of the second

order formula (12.135) and the third order formula (12.16). MC- and MC+ are the bounds of the 95%-
confidence interval of the Monte Carlo estimator. Remark also that we increase the range of strike

according to maturity in order to test our approximation formula for real quoted strikes. Therefore, we
see that our formula (T2.15) is very accurate (errors in implied volatilities are smallefl| than few bps)
for B close to 1. For various values of 3, we remark that our third order formula (I2.16)) is extremely

accurate.

Table 12.2: Implied Black-Scholes volatilities for the second order formula (12.13)), the third order
formula (12:16)) and the Monte Carlo simulations (3 x 10° simulations using Euler scheme with 20 time
steps) expressed as a function of strikes at the expiry T = 6M. Parameters: § = 0.8, v =0.2, £ =0.7%,
K=1%, p =15% and xy = 0.

Strikes 80% 90% 100% 110% 120%

Second Order formula 20.46% 20.24% 20.03% 19.84% 19.66%

Third Order formula 20.48% 20.24% 20.03% 19.84% 19.67%
MC with control variate 20.48% 20.24% 20.03% 19.84% 19.67%
MC- 20.28% 20.18% 20.00% 19.82% 19.64%
MC+ 20.68% 20.31% 20.07% 19.87% 19.70%

Table 12.3: Implied Black-Scholes volatilities for the second order formula (12.13)), the third order
formula (12.16)) and the Monte Carlo simulations (3 x 10° simulations using Euler scheme with 20 time
steps) expressed as a function of strikes at the expiry 7 = 6M. Parameters: § = 0.2, v =0.2, £ =0.7%,
K =1%, p = 15% and xy = 0.

Strikes 80% 90% 100% 110% 120%

Second Order formula 21.65% 20.86% 20.03% 19.26% 18.47%

Third Order formula 21.87% 20.89% 20.04% 19.29% 18.62%
MC with control variate 21.87% 20.90% 20.04% 19.29% 18.62%
MC- 21.70% 20.83% 20.01% 19.27% 18.60%
MC+ 22.04% 20.96% 20.08% 19.32% 18.65%

12.5 Appendix

Here, we bring together the results (and their proofs) which allow us to derive the explicit terms in the

formula (12.15)). In the following, () (resp. (v;)) is a square integrable and predictable (resp. determin-
istic) process and [ is a smooth function with compact support. We recall that a; = o; — p,S T, T).

11 bp on implied volatilities is equal to 0.01%.
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Table 12.4: Implied Black-Scholes volatilities for the second order formula (12.13)), the third order
formula (12:16)) and the Monte Carlo simulations (3 x 10° simulations using Euler scheme with 20 time
steps) expressed as a function of strikes at the expiry T = 1Y. Parameters: f = 0.8, v=0.2, £ = 0.7%,
K=1%,p = 15% and xo = 0.

Strikes 60% 80% 100% 120% 140%

Second Order formula 20.94% 20.50% 20.06% 19.69% 19.35%
Third Order formula 21.08% 20.51% 20.06% 19.70% 19.40%
MC with control variate 21.09% 20.51% 20.07% 19.70% 19.40%
MC- 19.29% 20.41% 20.03% 19.68% 19.37%
MC+ 22.27% 20.62% 20.10% 19.73% 19.43%

Table 12.5: Implied Black-Scholes volatilities for the second order formula (I2.15)), the third order
formula (12:16)) and the Monte Carlo simulations (3 x 10° simulations using Euler scheme with 20 time
steps) expressed as a function of strikes at the expiry T = 1Y. Parameters: f =0.2, v=0.2, £ =0.7%,
K=1%, p = 15% and xo = 0.

Strikes 60% 80% 100% 120% 140%

Second Order formula 22.77% 21.75% 20.06% 18.55% 16.49%
Third Order formula 24.02% 21.91% 20.08% 18.66% 17.59%
MC with control variate 24.03% 21.92% 20.09% 18.67% 17.61%
MC- 23.29% 21.82% 20.05% 18.64% 17.58%
MC+ 24.69% 22.01% 20.12% 18.69% 17.63%

12.5.1 Technical results related to explicit correction terms
The two first lemmas are proved in Section 4.6 of Chapter [

Lemma 12.5.1. For any continuous (or piecewise continuous) function f, any continuous semimartin-

gale Z vanishing at t=0, one has:
T T T
0 0 t
Lemma 12.5.2. One has:

e[ waw T [ aaw ) =l

T T T
a,utdt)l(l)(/ atd‘/V, ’ )]
0

If u is deterministic then Er[( [y utdW,I’T)l(fOT adW!")] = (Jo aruydt) B [1( fy adW" 4 x)] =0
Lemma 12.5.3.
T o (T
Erll( [ W )| i) =( |
0 0 0
T S,r Gtz r ! LT
(| 6 .16 =T ([ vids)dn)Erli( [ aaw! )]

T

T T
“f"’</ Vsds>dr>Er[z“></ adW;"")]
! 0
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Table 12.6: Implied Black-Scholes volatilities for the second order formula (12.13)), the third order
formula (12:16)) and the Monte Carlo simulations (3 x 10° simulations using Euler scheme with 20 time
steps) expressed as a function of strikes at the expiry T = 5Y. Parameters: f = 0.8, v=0.2, £ = 0.7%,
K=1%, p =15% and xy = 0.

Strikes 40%  70%  100% 140% 180%

Second Order formula  21.90% 21.04% 20.36% 19.70% 19.15%

Third Order formula 22.18% 21.07% 20.36% 19.72% 19.25%
MC with control vari- 22.22% 21.11% 20.40% 19.75% 19.28%

ate
MC- 21.68% 21.02% 20.36% 19.72% 19.25%
MC+ 22.72% 21.19% 20.44% 19.78% 19.31%

Table 12.7: Implied Black-Scholes volatilities for the second order formula (I2.15)), the third order
formula (12:16)) and the Monte Carlo simulations (3 x 10° simulations using Euler scheme with 20 time
steps) expressed as a function of strikes at the expiry T = 5Y. Parameters: § =0.2, v=0.2, £ =0.7%,
K=1%, p = 15% and xo = 0.

Strikes 40%  70% 100%  140%  180%

Second Order formula  25.15% 23.06% 20.37% 17.64% 13.91%

Third Order formula 27.79% 23.40% 20.47% 18.00% 16.48%
MC with control vari- 27.86% 23.42% 20.50% 18.02% 16.49%

ate
MC- 27.58% 23.34% 20.46% 17.98% 16.44%
MC+ 28.14% 23.50% 20.54% 18.05% 16.54%

Proof. Applying first Lemma(12.5.1|to f(¢) = v; and Z; = X; ;, we obtain:
T T T T
( / vyds)dX: )i /0 adw )]
t
r T 1T Gzz T LT
=Erl([ ([ vds)(oadW!™ + (o0 (0,7) = To)ani( [ aaw! )
t
T T T T
= / @ / veds)dt ) Er 10 / @ dW )]
0 t 0

2

+ (/OT(PtFI (t,T)— c;)(/IT Vsds)dt)ET[l(/OTatthLT)]’

Bl [ vl aaw ) =Bl |

0

where we have used Lemma [12.5.2]for the last equality. O

12.5.2 Proof of Theorem 12.2.1]

Using Equation (TZ.6), the r.v. ) ryds+ X2 can be projected on the Q7-Brownian motion W' as
follows:

T T
/ rsds+x7‘?:/ (6, —p>" .T(t,T))aw,"" +Dr,
0 0
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Table 12.8: Implied Black-Scholes volatilities for the second order formula (12.13)), the third order
formula (12:16)) and the Monte Carlo simulations (3 x 10° simulations using Euler scheme with 20 time
steps) expressed as a function of strikes at the expiry 7 = 10Y. Parameters: § = 0.8, v=0.2, & =0.7%,
K=1%, p =15% and xy = 0.

Strikes 30%  60%  100% 160%  220%

Second Order formula  22.82% 21.82% 20.88% 19.89% 19.34%
Third Order formula 23.19% 21.86% 20.89% 19.94% 19.49%
MC with control vari- 23.27% 21.93% 20.96% 19.99% 19.55%

ate
MC- 22.82% 21.83% 20.92% 19.96% 19.52%
MC+ 23.70% 22.03% 21.01% 20.03% 19.58%

Table 12.9: Implied Black-Scholes volatilities for the second order formula (12.13), the third order
formula (T2.16) and the Monte Carlo simulations (3 x 10 simulations using Euler scheme with 20 time
steps) expressed as a function of strikes at the expiry T = 10Y. Parameters: § =0.2, v=0.2, £ =0.7%,
K=1%, p = 15% and xy = 0.

Strikes 30% 60% 100% 160%  220%

Second Order formula 27.02% 24.57% 20.92% 16.71% 11.74%
Third Order formula 30.79% 25.29% 21.15% 17.66% 16.53%
MC with control vari- 30.98% 25.29% 21.17% 17.61% 16.43%

ate
MC- 30.74% 25.20% 21.13% 17.59% 16.40%
MC+ 31.22% 25.37% 21.21% 17.64% 16.47%

where Dr is a Gaussian random variable independent on (W,I’T),. Then using notation a, = o; —
S,r
p;" .I'(¢,T), one gets

)ﬂ]
2

T T T (1) o 1T | S (1) (1)
— Er[h( /O adW"" +Dr) /0 X1 (6N aw T 1 (057 T, 7)o" — 6,6)ar)).

T X T
Erlh | rids+ X)) =Erlh( | adW'" +Dy)
n, [T T T
:ET[h()(/ adW," +DT)/ a6, Xy ,dt)]
0 0
T T
[ /0 wdW"T +Dr) /O (5" T, 7)o" - 6,6")X, di],

where we have used Equation for second Equality and Lemma[12.5.2]for last one.
An application of Lemma[I2.5.3| gives immediately the Equality (I2.T5).

Error analysis. For the smooth case, we only need estimates on € — Xf and its derivatives, in terms
of My and M. This is very similar to our previous work (see Chapter|[7) and we skip the details (use our
discussion in the beginning of Section [I2.2). For the call/put case or digital case, once again we follow
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the lines of the proof of Chapters @ and[7] The computations and estimates remain the same, except for
Lemma in Chapter [7] and Lemma [4.5.1] in Chapter ] which now writes as follows. Here, appears
the correlation assumption (Rh0).

Lemma 12.5.4. Assume (E), (Rho) and (Ryy1) for a given k > 1. Let Z belong to ﬂplek’f’. For any
v € [0,1], there exists a random variable Z} in any L, (p > 1) such that for any function | € 6;°(R), we

have
T

T
Er 1% / reds +vXr + (1 —v)XE)Z) = Er[I(v / rds+Xr + (1 —v)XE)Z)).
0 0

1Zllk.2p

(V/1-1p2"Poinp VIR
on the bounds of the model coefficients and the maturity.

Moreover, we have ||Z}||, <C uniformly in v, where C depends (in an increasing way)

Proof. We follow the same approach from the quoted references. First, we prove that a suitable Malli-
avin covariance matrix is invertible and we estimate the L,-norm of its inverse. Second, we apply the
integration by parts from Malliavin calculus to get the existence of Z), and finally, we provide estimates
for its L,-norm. Only the first step is a bit different and is worth being detailed. For the other steps, we
refer to the proof of Lemma @ in Chapter Let us denote Fy, = fOT reds + vXr + (1 —v)XE. All the
calculus of stochastic variations will be performed relatively to the (74 1)-dimensional Brownian motion
(WL BT ... BnT). We define W' by the relation

AW =1 |p/ W +p;" dB],

from which we deduce that (W17T7B17T,--- ,B”’T) is indeed a standard Q”-Brownian motion. The
key feature in this choice is that the first component of the Malliavin derivative of fOT reds 18 zero:

DV’ (([OT ryds) = 0. Hence, we have:

D' E, = vo(t, )y 1 |57 el o w2 T ol ol ool )i | (1 vy, /1— oS,

and thus

DV F, > Gpy/1— |pST inf e o8 MWt pi TwT)ol ~0i o= (o) X,

0<t<T

It is easy to deduce that the Malliavin covariance matrix is bounded from below by:

LW
va Z 0 ’Dl‘ FV| dt
(1 _ 50 1

>T2,(1—[p"[2) inf_ e o EadWict (I Tw)oy 0l o3 (o)) ()

0<t<T ’

from which it readily follows (for p > 1)

19, 11y < C(Gins\/ 1= |PSTRVT) 2.
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