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ABSTRACT

In this thesis, an approach combining heterogeneous sensor data for recognizing
elderly activities at home is proposed. This approach consists in combining
data provided by video cameras with data provided by environmental sensors to
monitor the interaction of people with the environment.

The �rst contribution is a new sensor model able to give a coherent and
e�cient representation of the information provided by various types of physical
sensors. This sensor model includes an uncertainty in sensor measurement.
The second contribution is a multisensor based activity recognition approach.
This approach consists in detecting people, tracking people as they move,
recognizing human postures and recognizing activities of interest based on
multisensor analysis and human activity recognition. To address the problem of
heterogeneous sensor system, we choose to perform fusion at the high-level (i.e.
event level) by combining video events with environmental events.
The third contribution is the extension of a description language which lets users
(i.e. medical sta�) to describe the activities of interest into formal models.
The results of this approach are shown for the recognition of ADLs of real elderly
people evolving in an experimental apartment called Gerhome equipped with
video sensors and environmental sensors. The obtained results of the recognition
of the di�erent ADLs are encouraging.

Keywords: Activities of Daily Living (ADLs), sensor model, probability
density function (PDF), video events, environmental events, multimodal events,
multisensor activity recognition, Dempster Schäfer Theory (DST).
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Chapter 1

Introduction

Human activity recognition is an important part of cognitive vision systems
because it provides accurate information about the behavior of the observed
people. A major goal of current computer vision research is to recognize and
understand human motion, short-term activities and long-term activities. The
application areas for these vision systems are mostly surveillance and safety.
Activity recognition is becoming also important in the application area of
healthcare.
Demographic changes associated with the aging population and the increasing
numbers of elderly people living alone are leading to a signi�cant change in the
social and economic structure of our society. The elderly population is expected
to grow dramatically over the next 50 years. The proportion of people aged
60-plus around the world is expected to be doubled from the current 10% to 22%
[Jones, 2006]. The number of people requiring care will grow accordingly, while
the number of people able to provide this care will decrease. Without receiving
su�cient care, elderly are at risk of loosing their independence. It is well known
that even subtle changes in the behavior of the elderly can give important signs
of progression of certain diseases. Disturbed sleeping patterns could be caused,
for example, by heart failure and chronic disease. Changes in gait, on the other
hand, can be associated with early signs of neurological abnormalities linked
to several types of dementias. These examples highlight the importance of
continuous observation of behavioral changes in the elderly in order to detect
health deterioration before it becomes critical. Thus a system permitting to
analyse the elderly behaviours and looking for changes in their activities is more
than needed. With the increasingly accessible sensor technology, automatic
activity recognition is becoming a reality. By attaching di�erent types of sensors
on various objects, locations and on the human body, activities of a person can
be tracked and continuously monitored.

The following sections describe the motivations, the objectives of this the-
sis, the context of the study, my hypotheses, my contributions and the thesis
layout.
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1.1 Motivations

This work was greatly motivated by research done in understanding human ac-
tivity. Over the last several years much e�ort has been put into developing and
employing a variety of sensors to monitor activities at home. Most systems that
have been built to recognize home activities have been limited in the variety of
activities they recognize. In particular, most previous work on activity recogni-
tion has used sensors that provide only a very coarse idea of what is going on.
For example, by detecting only movement in a room, it is not possible to de-
tect which activity occurs in the room. In this work we propose an approach
to activity recognition that addresses these problems by combining the use of
video cameras with environmental sensors to determine when a person uses the
household equipment and to detect most of the activities at home. This approach
consists in analyzing human behaviors and looking for changes in their activities.
In particular, the goal is to collect and combine multisensor information to detect
activities and assess behavioral trends to provide di�erent services.
Our approach aims to provide several services for elderly people in order to help
them to retain their independence and to live safely longer at home.
In particular, elderly people are prone to accidents and falls in the home and can
often lie injured and undiscovered for long periods of time. The most important
provided service is concerned with medical monitoring. Medical monitoring in-
cludes handling emergencies (e.g. people falling, gas leakage or taking overdose of
medication) and the evaluation of frailty evolution of elderly people to prevent,
for instance, fall (see �gure 1.1) or depression. This type of services should be
designed by physicians who have speci�ed risky situations.

Figure 1.1: Example of person falling down
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1.2 Objectives

The main objective of this thesis is to propose a new cognitive approach based on
using ambient sensors technologies to recognize interesting activities at home.
This approach includes an algorithm for real-time recognition of primitive and
complex activities that have occurred in the observed scene by video cameras and
sensors attached to house furnishings. The proposed approach consists in detect-
ing people, tracking people as they move (see �gure 1.2), and recognizing activities
of interest based on multisensor analysis and human activity recognition.
This approach involves a complete framework for event recognition including

video frame segmentation, object classi�cation, object tracking, and event recog-
nition tasks:

1. First, at each video frame, a segmentation task detects the moving regions,
represented by bounding boxes enclosing them (see �gure 1.2(b)).

2. Second, to each moving region, a 3D classi�er associates an object class
label (e.g. person, vehicle) and a 3D parallelepiped described by its width,
height, length, position, and orientation (see �gure 1.2(c)).

3. Third, a tracking algorithm associates to each new classi�ed object a unique
identi�er and maintains it globally throughout the whole video (see �g-
ure 1.2(d)).

4. Finally, an adapted event recognition algorithm recognizes events occurring
in the observed scene (see �gure 1.2(e)).

1.3 Context of the Study

Healthcare technology for the elderly is a popular area of re-
search. This technology represents a sub-discipline of "gerontechnol-
ogy" [Bouma and Graafmans, 1993]. Automatic monitoring of Activities of
Daily Living (ADLs) has been a popular focus in gerontechnology. Activities of
Daily Living (ADLs) are routine activities that people tend to do everyday, such
as eating, bathing and toileting. These activities are used by physicians to bench-
mark the physical and cognitive abilities of patients. According to gerontologists,
identifying changes in daily living activities (ADLs) is often more important than
biometric information for the early detection of emerging physical and mental
health problems, particularly for the elderly [Manabe et al., 2000]. Typical ADLs
include preparing meals, eating, getting in and out of bed, using the toilet,
bathing or showering, dressing, using the telephone, housekeeping, doing laundry,
and managing medications. Detection of these activities would enable systems to
monitor and recognize changes in patterns of behavior that might be indicators
of developing physical or mental medical conditions. Similarly, it could help to
determine the level of independence of elderly. If it is possible to develop systems
that recognize such activities, the medical experts may be able to automatically
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detect changes in patterns of behavior of people at home that indicate declines
in health.
This PhD work has been conducted in the Pulsar team at INRIA Sophia Antipolis
in France. Pulsar is a multi-disciplinary team at the frontier of computer vision,
arti�cial intelligence and software engineering. Pulsar work focuses on two main
application areas: safety/security and healthcare. This work takes place in this
context and aims at recognizing human activities for healthcare applications. In
this study, we collaborate with gerontologists from Nice hospital to determine
which elder activities are most important to monitor.
Sensor technology plays a fundamental role in human activity analysis. In order
to test new sensors and new activity recognition techniques, we have set-up an
experimental laboratory at Sophia Antipolis together with CSTB (the French
scienti�c and technical center for building). This laboratory looks like a typical
apartment for elderly people and is equipped with many sensors such as video
cameras, contact sensors, pressure sensors, water sensors. We instrumented this
laboratory in order to conduct experiments using real data.

1.4 Hypotheses

This thesis assumes the following hypotheses:

• Fixed Video Camera: In this work we assume that the used video cam-
eras are �xed on a wall and without pan, tilt or zoom. In plus, we suppose
the availability of a model for transforming 2D image referential points to
3D scene referential points. The 3D information is obtained by using a cal-
ibration step which computes the transformation of a 2D image referential
point to a 3D scene referential point by supposing that the bottom of the
3D mobile object is on the ground �oor. There are no restrictions on video
cameras orientation.
The quality of the analyzed video sequence must be su�cient for detect-
ing the objects moving in the scene with an acceptable level of reliability.
Excessive video noise, too low video frame rate, or a big lack of contrast
between the objects and the background of the scene, among others, can be
the factors which prevent the right detection of an object. This constraint
does not mean that the interest is only centered in video sequences of high
de�nition and of high quality.

• Tracking one Individual: For medical reasons and for reason of an in-
creasing numbers of elderly people living alone at home, in this thesis we
assume that we track only one individual living alone in his/her apartment.
This hypothesis implies that the tracked person has only one identi�er dur-
ing the period of tracking. This identi�er changes if we loose the person
(e.g. when a person enters in a zone which is located outside of the �eld of
view of the video camera).
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1.5 Thesis Contributions

The global contributions of this work are the following:

• My �rst main contribution consists in a new sensor model which
is necessary for multisensor fusion systems. It includes uncertainty
in sensor measurement. This sensor model is able to give a coherent and
e�cient representation of the information provided by various types of sen-
sors. This representation provides means for recovery from sensor failure
and also facilitates recon�guration of the sensor system when adding or
replacing sensors. In the proposed sensor model we de�ne the type of infor-
mation (e.g. pressure, image, motion) and the measurement y which is the
value of the physical property measured by the sensor. We also de�ne the
uncertainty ∆y of measurement y.

• The second main contribution consists in a new cognitive approach
for activity recognition based on multisensor fusion data. This mul-
tisensor based activity recognition approach uses video cameras and environ-
mental sensors in order to recognize interesting human activities at home.
The input of the approach is the data provided by the di�erent sensors. We
use video cameras to detect and track mobile objects (mostly people) mov-
ing in the scene and environmental sensors (e.g. contact sensors, pressure
sensors, water sensors) attached to house furnishings to collect information
about the interactions with the objects in the scene. The output of the
approach is a set of XML �les, alarms and a 3D visualization of the recog-
nized events. The proposed approach consists in a 4D (3D + time) analysis
of multisensor data. It exploits three major sources of knowledge: the 3D
information of the scene, the 3D model of mobile objects (e.g. person), and
the models of activities prede�ned in collaboration with gerontologists.

• The third main contribution consists in a new set of 3D human
postures useful to recognize important activities at home. We pro-
pose ten 3D key human postures to detect typical body con�gurations (e.g.
sitting position) and critical situations for elderly (e.g. falling down).

• The fourth main contribution consists in a new set of computa-
tional models of interesting activities at home. We propose to repre-
sent the interesting activities in a formal model that satis�es a number of
constraints by using the event description language developed in the Pulsar
team [Vu et al., 2003]. We improved this language by adding information
provided by non vision algorithms. We propose a knowledge base of models
of interesting activities at home. These models of activities can be used in
other applications in di�erent environments. This proposed knowledge base
contains 100 events including 16 ADLs.
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1.6 Thesis Layout

This thesis is organized as follows:

• In chapter 2 we discuss related work in the area of ADLs monitoring.
We present di�erent technologies for monitoring human activities at home
and di�erent types of sensors and sensed data in healthcare monitoring are
brie�y introduced. After that we describe di�erent techniques for activity
recognition and for multisensor fusion data.

• In chapter 3 we present an overview of the proposed cognitive vision ap-
proach. We give a general architecture of the proposed multisensor based
activity recognition approach. We describe the inputs, the outputs and
the major sources of knowledge of our approach. We de�ne the activity
recognition problem as a key component of automatic health monitoring.

• In chapter 4 we describe the proposed sensor model which is used to per-
form the multisensor system. We present �rstly the physical sensors and
their characteristics. After that, we present the logical sensor modeling
with uncertainty.

• In chapter 5 we present the proposed multisensor activity recognition ap-
proach. This approach is based on using the combination of video cam-
eras and environmental sensors to collect data about people activities and
probabilistic models that are used to transform the raw sensor data into
higher-level descriptions of people behaviors. We demonstrate that by the
use of video sensors and environmental sensors, it is possible to provide rich
information that can be used for analyzing most types of human activities
at home. We present the activity recognition modeling. We present the
event modeling approach and the proposed knowledge base of activity mod-
els. We propose also to de�ne a behavioral pro�le for each person and we
also propose to compare these behavioral pro�les.

• In chapter 6 we evaluate our approach and we test our proposed activity
models in a set of scenarios performed in a realistic experimental laboratory.
We present separately the obtained results by the vision algorithm, the
obtained results by the environmental sensors and the obtained results by
the multisensor fusion algorithm, and we compare the results. Evaluations
are made using our datasets which contain sensors data of one human actor
(aged of 33 years) and also of fourteen elderly volunteers (aged from 60 to
85 years) observed in an experimental laboratory, each one during 4 hours.
The volunteers were given a sequence of activities to perform, like preparing
a meal, and taking a meal.

• Finally, in chapter 7 we conclude this work, by summarizing the contribu-
tions of this thesis, and by presenting short-term and long-term perspectives.
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Figure 1.2: Detection, classi�cation, tracking and recognition of activities of a person in an
experimental laboratory; (a) Represents the original image acquired by video camera, (b) the
moving pixels are highlighted in white and clustered into a mobile object enclosed in an orange
bounding box, (c) the mobile object is classi�ed as a person, (d) shows the individual identi�er
(IND 0) and a colored box associated to the tracked person, (e) shows the 3D visualization of
activity recognition.
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Chapter 2

State of the Art

As seen in the previous chapter, human activity recognition is an important part
of cognitive vision systems. In this chapter, previous work on monitoring elderly
activities at home is described in section 2.1.
Related work on human activity recognition techniques using video sensors is
described in section 2.2.1. Techniques using non-video sensors are described in
section 2.2.2. Finally, section 2.3 describes fusion techniques between multiple
and di�erent sensors to recognize human activities.

2.1 Elderly Care Monitoring at Home

Healthcare technology for the elderly is a popular area of re-
search. This technology represents a sub-discipline of "gerontechnol-
ogy" [Bouma and Graafmans, 1993]. Automatic monitoring of elderly activities
at home has been a common focus in gerontechnology.
In France, the proportion of people aged 75 and over in the population (approxi-
mately 7% in 2000) should reach nearly 10% in 2020 [Colin and Coutton, 2000].
In future years, the di�erence between the needs of the dependent elderly and
the number of places available in hospitals and in specialized centers will become
even more important than it is currently [Mesrine, 2003].
Healthcare technologies to maintain elderly at home allow the concerned person
to live in a familiar environment and to bene�t from a maximal independence. If
these technologies generally enable to delay the loss of autonomy, they present
however some risks at short-term (e.g. falls) and longer-term (e.g. bad feeding,
insu�cient hygiene, dementia).
Dependence of a person is de�ned as partial or total impossibility for a person
to perform, without technical or human assistance, one or many daily activi-
ties [CNEG, 2000]. It is the consequence of one or many incapacities, de�ciencies,
or diseases, leading to limitations of activity or restrictions of participation.
Autonomy can be de�ned as the absence of dependence.
Many scales were proposed to measure dependence of a person and among them
some are particularly used in geriatrics. We enumerate here three scales usable
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to measure the degree of dependence of elderly: the Katz ADL index, the Lawton
IADL scale and the AGGIR grid.

The Katz ADL index (Index of Independence in Activities of Daily Liv-
ing) [Katz et al., 1963], [Katz et al., 1970], [Katz, 1983] and the Lawton IADL
scale (Instrumental Activities Daily Living Scale) [Lawton and Brody, 1969] were
referred in the international literature as tools for assessment of the autonomy
centered on the person.
The AGGIR grid (Autonomie Gérontologique Groupes Iso
Ressources) [Benaim et al., 2005] is dedicated to evaluate cost of the de-
pendence, the load in care, and was registered in 1997 in the French law as a tool
for assessment of the dependence in order to determine if a person could have a
speci�c allocation of money.

2.1.1 Technologies for Monitoring Human Activities at Home

Tracking and identi�cation of daily physical activities are key factors to
evaluate the quality of life and health status of a person. Research on
this �eld is well recognized in rehabilitation, assessment of physical treat-
ment [Pentland, 2004], [Aggarwal and Cai, 1999] and is shown to have signi�cant
impacts on healthcare of elderly persons and patients [Naja� et al., 2003].

Monitoring activities at home by using ambient sensor technologies can
provide some proactive and situation aware assistance to sustain the autonomy
of the elderly. It also can be helpful in reducing costs for public health systems
and in providing advantages for older person by increasing his/her quality of life.

Over the last several years much e�ort has been put into devel-
oping and employing a variety of sensors to monitoring activities
at home. These sensors include camera networks for people track-
ing [Sidenbladh and Black, 2001], cameras and microphones for activity
recognition [Clarkson et al., 1998], [Moore et al., 1999], and embedded sensors
for activity detection [Moeslund et al., 2000], [Wang et al., 2007].

2.1.1.1 Sensing Modalities

Sensors are devices which can be used to detect the interaction between a person
and his/her environment. They are ultimately the source of all the input data
in a multisensor data fusion system [Fowler and Schmalzel, 2004]. The physical
sensor may be any device which is able of perceiving a physical property, or
environmental attribute, such as light, sound, pressure, motion, image. To be
useful, the sensor must transform the value of the property or attribute to a
quantitative measurement.
A sensor system that is able to automatically recognize activities at home
would allow many potential applications in healthcare area. The various sensor
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technologies di�er from each other in terms of price, ease of installation and the
type of data they output [Fogarty et al., 2006].

Figure 2.1 illustrates the range of sensor technologies that are being inves-
tigated for activity monitoring. As shown there, researchers are exploring
both environmental sensors and biosensors. The environmental sensors include
di�erent types of sensors such as motion and video sensors that determine the
location of the person, contact sensors on cabinets and refrigerator doors that
indicate whether they have been opened, pressure sensors that indicate whether a
person is sitting in a bed or a chair, and electrical sensors that indicate whether a
stove has been turned on. Biosensors are generally worn by a person to measure
vital signs such as heart rate and body temperature.

This range of sensors can be used to determine where a person is and
what household objects he/she has used, as well as to get a general sense of
his/her activity level. This information can be used to infer speci�c daily
activities performed, and in turn, that knowledge, perhaps combined with
biometric information, leads to a general assessment of health and wellbeing.

Table 2.1 illustrates a set of sensor types and some considerations of

Figure 2.1: Sensors for Activity Monitoring

their use. Each of the sensors described in table 2.1 has been assigned to one
or more of three types: activity, context and biomedical. Activity sensor types
may be used to infer activity or behaviors. This may be movement around the
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Sensor Considerations Type

Accelerometers Must be worn Activity
Motion Inability to distinguish be-

tween subjects
Activity

RFID Requires reader be worn and
tags installed

Activity

GPS Privacy Activity
Contact Inability to distinguish be-

tween subjects
Activity

Water Inability to distinguish be-
tween subjects

Context

Light Inability to distinguish be-
tween subjects

Context

Pressure Inability to distinguish be-
tween subjects

Activity, Biomedical

Presence Inability to distinguish be-
tween subjects

Activity

Temperature Inability to distinguish be-
tween subjects

Context, Biomedical

Video Privacy Context, Activity
Audio Privacy Context, Activity
Heart Rate Must be worn Biomedical
Pulse Oxymeter Must be worn Biomedical

Table 2.1: Sensor types, and considerations of their use

home, activities such as meal preparation or leisure activities like watching TV
or reading. Context sensors consist in sensors attached to house furnishings in
order to collect context information about the scene. These include light sensors,
water sensors, temperature sensors.
Biomedical sensors are designed to provide continuous monitoring of vital signs
and patient attributes. As we can see from the above table, biomedical sensors
include heart rate and pulse oxymeter as well as weight determined using a
pressure sensor. In healthcare applications, biomedical sensors play an important
role to obtain information of an elderly person. About the presented biomedical
sensors, they could indicate a decreasing for physical health of the person. For
example, decreased activity coupled with increasing weight of a person may
signal a physical health problem of a person with congestive heart failure.
Accelerometers, motion sensors, video sensors, audio sensors, GPS, and RFID
can be used in a home healthcare environment. All of these sensors can give us
an indication of where a person is and what the person is doing. If motion sensors
are placed in each zone in the home environment of the person, it is then easy to
see the movement of the person around his/her home. A similar argument is true
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for a GPS receiver worn about the person, although prior knowledge of the scene
are required. A carried RFID sensor could perform a similar job using RFID
tags �xed to objects that interact with the person. Video sensors can be used to
detect a change in posture, audio sensors to detect sound waves and body worn
accelerometers to detect a rapid change in acceleration.

2.1.1.2 Industrial and Research Projects for Monitoring ADLs

Medical professionals believe that one of the best ways to detect emerging
physical and mental health problems (before it becomes critical - particularly
for the elderly) is to look for changes in the activities of daily living (ADLs).
Typical ADLs are sleeping, food preparation, eating, housekeeping, bathing or
showering, dressing, using the toilet, doing laundry, and managing medications.
There are di�erent commercial systems available for monitoring elderly
activities at home. The best-known projects include the QuietCare sys-
tem [QuietCare, 2002], and the Japanese "i-pot" system [i pot, 2005]. QuietCare
system was created in 2002 by Living Independently, a next generation health
and eldercare company that has been helping seniors live with greater safety
in their own homes. This system is the result of 12 years of dedicated re-
search, design, and testing by Professors Anthony P. Glascock and David M.
Kutzik [Glascock and Kutzik, 2006] of Drexel University. Research was partially
funded by grants from the USA National Institute of Health and Aging. Qui-
etCare system uses wireless motion sensors to monitor the person in their own
home. These sensors are installed in the bedroom, the bathroom, the kitchen,
and in medication area in order to measure bathroom stays, use of medications,
and the number of times a person gets out of bed at night. The main limitation
of this commercial systems is that it provides a limited analysis of activity. For
example, by detecting only movement in a room, it is not possible to detect
which activity occurs in the room.
The Japanese "i-pot" system (information pot, see �gure 2.2) consists in an
electric kettle that keeps track of when it is used and sends a signal to a server
with the data. The idea is to detect a sudden change in an elderly person's tea
habits, in order to act as an early warning system in case of emergency. The
i-pot system is in use in Japan, where an increasing number of the elderly are
living, and dying, alone. Seniors who use the i-pot system report feeling less
alone, knowing that somebody else is able to monitor them via the data sent by
the kettle. The main limitation of the i-pot system is that it detect only one
activity.

Among the most important reasons for the transfer from home to insti-
tutional care are the security concerns. Hence, all means for improving security
for an independently living elderly person are essential. Among successful and
widely adopted methods to respond to this need are social alarm systems.
Traditional social alarm systems are based on a panic button, which is usually
worn on person's wrist or as a necklace. Vivago system (see �gure 2.3) is an active
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Figure 2.2: The Japanese i-pot system

social alarm system, which combines intelligent social alarms with continuous
remote monitoring of the user's activity pro�le [Sarela et al., 2003]. The system
can provide long-term monitoring of the user's circadian rhythm, which, in turn,
may be used to monitor changes in the wellbeing. The system has been especially
designed to �t the needs of elderly homecare and institutional care settings.
These social alarm systems are mostly closed, stand-alone systems with a limited
ability to describe the actual situation, often just too di�cult for the elderly
people to operate and useless in emergencies. The main problem with these
alarm systems is that a signi�cant portion, even 27-40% of the users, do not
wear the alarm device on daily basis [Porteus and Brownsell, 2002], in case of an
emergency the alarm is hence not possible. Furthermore, if the user is unable to
push the button (e.g. has loss his/her consciousness) no alarm is generated.
Another important aspect in supporting independent living is remote monitoring
of elderly health status in order to allow early intervention and monitoring
of changes in their general wellbeing. For example, the incidence of dementia
is increasing in the elderly population. Sleeping disorders are common in
demented person, and sleep/wake rhythm in Alzheimer's disease is extremely
disturbed. Reports of poor sleep correlate strongly with health complaints and
depression [Phillips and Ancoli-Israel, 2001].
There has also been a signi�cant amount of research work in the area of

recognition of Activities of Daily Living (ADLs). Recognition of ADLs can be
split into three subcomponents; feature detection, feature extraction and models
for recognition.
A currently popular technique for detecting features of ADLs collects a wide
range of sensor data. In [Philipose et al., 2004] from university of Washington,
for example, a set of household objects such as microwave and cupboards are
tagged with wireless sensors and transponders that transmit information via
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Figure 2.3: The Vivago system

an RFID (Radio Frequency Identi�cation) reader, mounted on hand glove (see
�gure 2.4), when the object is being used or touched.
Another technique for feature detection is the use of wearable sensors such as

Figure 2.4: RFID glove

wearable accelerometers that provide data about body motion and the surround-
ings where the data has been collected from. Previous work [Lester et al., 2005]
has shown that a variety of activities like climbing stairs and running can
be determined using this technique. The authors in [Wang et al., 2007] used
accelerometers to detect �ne-grained arm actions like "drink", "chop with knife".
These were then combined with object-use data to achieve accurate activity
recognition. The accurate recognition was based on a joint probabilistic model
of object-use activities, which showed that it was possible to combine the data
from both for accurate activity recognition.
Several projects have investigated the use of di�erent sensors to provide a "smart"
home for the observation of activities of daily living (ADLs). Examples include
Georgia Tech's �Aware Home� [Abowd et al., 2002], Imperial College's UbiMon
system [Yang et al., 2004], SAPHE project [Saphe, 2006], the Welfare-Techno
house in Japan [Tamura, 2005] and MIT's PlaceLab [Cook and Das, 2007].
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However, the use of heterogeneous sensors, including both wearable and ambient
sensors, in such large deployment projects poses a number of interesting chal-
lenges. These include dealing with energy constraints, memory and processing
power restrictions, as well as privacy and security issues.
Recent advances in miniaturization and wireless communication have seen the
emergence of a third approach to sensing. In this approach, sensors are directly
attached to many objects of interest. These sensors are either battery-free wireless
stickers called Radio Frequency Identi�cation (RFID) tags [Wyatt et al., 2005].
The sensors transmit the usage of the objects they are attached to by detecting
either motion or hand-proximity to the object.
At the University of Washington [Wang et al., 2007] an RFID reader bracelet
(see �gure 2.5) records information about objects being manipulated by a person.
A model of activities is obtained through web data mining techniques. While the
authors report positive results, there is one main disadvantage to this approach:
the inconvenience of wearing a bracelet. Ogawa, et al. [Ogawa et al., 2002] used

Figure 2.5: RFID reader bracelet (left), RFID tagged toothbrush and toothpaste (right), tags
circled

sensors to detect movement, use of appliances, and presence in a room and
from this information were able to analyze behavior patterns of two elderly
ladies living alone. Nambu, et al. [Nambu et al., 2005] found that analyzing
TV watching patterns alone was e�ective at identifying and analyzing behavior
patterns, without the need for additional customized sensors.
The Ailisa project [Noury et al., 2001] (Intelligent Apartments for e�ective
longevity) is an experimental platform to evaluate remote care and assistive
technologies in gerontology. This ambitious project regroups specialists of smart
home, networks and computing, electronics, and signal processing.
Overall the systems presented in this section lack one or more features to infer a
large number of users activities. More importantly the majority of these systems
rely on a single technology that e�ectively decreases the richness of information
generated as a result of user actions and behavior, which limits the number of
activities that can be recognized.

2.1.2 Acceptance of Technologies

A smart home is an environment equipped with technology that enhances safety
of patients at home and monitors their health conditions. Smart home technology
was initially developed for the elderly in order to give them a more independent
lifestyle. Many of the elderly are "well aware about their problems resulting from
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the age and the handicaps" and, "willing to accept the extra technical support
and costs, above all, if the only remaining option is to leave their home and their
well known environment in order to change to an old age home" [Brey, 2005].
Smart homes are greatly bene�cial to the elderly because it gives them much
more control over their environment and a �quality of life that they might not
have otherwise had�.
There are two main ways in which smart home technology can bene�t the elderly
and disabled. One way is by providing a monitoring system which can alert
a healthcare system or an emergency system in case that the person has an
accident or needs medical help. The second way is by giving the person access to
a system in which they can control the devices in their home and be alerted as
to actions so that they may control it. Monitoring the elderly in their home is a
way to provide them an extra measure of safety and care. For example, location
sensor technology can tell where the person is located in the house at all times.
If the monitoring system detects that the person has not moved from the same
position for a predetermined period of time, an alert is sent and the person is
either called or visited to ensure that all is okay.
The devices and sensors chosen to be installed and maintained in the el-
derly homes need to address functional limitations and social and healthcare
needs. Several pilot projects have introduced �smart home� technologies
both in the US and Europe. One such pilot project, the SmartBo project in
Sweden [Elger and Furugren, 1998], was created in a two-room ground �oor
demonstration apartment operated by the Swedish Handicap Institute. The
project utilizes solutions for elderly with mobility impairments and/or cognitive
disabilities (such as dementia). Devices and sensors control lighting, windows,
doors, locks, water pipes, and electrical outlets. A similar project for elderly was
introduced in the Netherlands [Berlo, 1998] using devices for control of lighting,
sensors for optimal processing of temperature and heating, and remote control
of several other functions. The project Prosafe in France [Chan et al., 1999]
identi�ed abnormal behavior of a monitored patient that can be interpreted as
an accident, by collecting representative data on a patient's nocturnal and daily
activity.

Little evaluation research exists on user acceptance of smart home tech-
nologies. There are only a few studies that investigate elderly perceptions of
smart home technologies or other home-based technological applications. One of
these studies that address this concept is by Vincent et al. [Vincent et al., 2002]
who examined the application of environmental control systems in the homes
of users and caregivers and concluded that the use of remote control by people
with moderate cognitive impairments was di�cult, while verbal reminders were
greatly appreciated.
A further study by Demiris et al. [Demiris et al., 2001] investigated elderly
perceptions of videophone and monitoring technology that can be installed in
their homes and found that the respondents had an overall positive attitude
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toward the use of home based technology. The �ndings from this study indicate
that privacy can be a barrier for elderly to adopt smart home technologies;
however their perception of their need for the technology may override their own
privacy concerns. Privacy was considered important by the elderly, but they
stated that when you need help it becomes less important;
Use and acceptance of technologies of monitoring human activities at home, and
technical devices depend on various factors: adequate design, �nancial resources,
the housing situation, which functions shall be compensated or strengthened by
technologies and which skills and competences still exist. Although it is quite
true that use and acceptance of innovations can only be roughly estimated today
we nevertheless can list a set of important aspects that should be considered
when speaking about user requirements and acceptance:

• People do not accept everything that is technologically possible and available

• Ambient Assisted Living concerns a heterogeneous group, where solutions
therefore are accordingly multifaceted. There is no such thing as a typical,
standard user or use rather a diversity of users and uses

• Acceptance by a user depends on the obvious advantages, functionality, util-
ity, usability, price/�nancial resources, (data)security and adequate design
of the device as well as on her biographical and technological experiences

• New products should consider "old" habits of the users

• The systems should stay user-determined. At any time user intervention
must be possible

• Information, training for usage, support, error diagnosis and error removal
has to be appropriate for the target group

• Technologies should provide an additional aid to improve social life condi-
tions; they can never replace social interaction

• The new living environment/ambiance should not generate new risks

• Integration into existing infrastructure should be easily accomplished

• Possibility of easy expansion/upgrades of products or integration of new
devices according to (changing) user requirements and �nancial boundary
conditions should be given.

According to the elderly, the cost of such a system was an important variable in
deciding whether they were going to use it or not. If they live alone and if they
can a�ord it, they would like to use and buy such a system. However, some of
them stated that security was more important than cost. Other elderly persons
did not care much about their privacy. As someone said: "What does privacy
matters at our age" [Brey, 2005].



2.2 Human Activity Recognition Approaches 19

2.2 Human Activity Recognition Approaches

The ability to recognize human activities is a key factor if computing systems
are to interact seamlessly with the persons environment. Research into enabling
computer systems to recognize human activities has emerged as an application
domain of computer vision research [Gavrila, 1999]. However, the more recent
trends in human activity recognition have witnessed the appearance of another
strand in this domain. Technological advancements have enabled instrumen-
tation of our living environments with a large variety of multimodal sensors.
Such environments possess the ability to monitor person behavior and provide
information pertaining to persons, which is then �ltered and processed in order
to infer persons activities.
Human activity recognition can be divided into three major approaches,
namely vision-based activity recognition, sensor-based activity recog-
nition and multisensor-based activity recognition. Many approaches
for human activity recognition have been proposed in the litera-
ture [Moeslund et al., 2006], [Gavrila, 1999]. Most of the work on activity
recognition has focused on either identifying single activities in a particular
scenario, or on analyzing sequences of activities.
Recognition of human activity has many important applications that rely on
linking observed behavior with particular actions. However, activity recognition
systems are usually built for speci�c applications, and the used architectures and
solutions are often not applicable in other domains.
In this section we present related work on human activity recognition approaches.
Firstly, we present the vision-based approaches and secondly, we present the
sensor-based approaches. In the next section, we present the multisensor-based
approaches .

2.2.1 Vision-Based Activity Recognition Approaches

The recognition of human activities from video sequences is a very important and
active area of research for applications in video surveillance, multimedia commu-
nications, and medical diagnosis. Video surveillance is of increasing importance to
many applications, such as security and healthcare of elderly [Harmo et al., 2005].
Automatic activity recognition plays an important part for video surveillance
applications. It has become an important research topic in computer vision in
recent years.
The problem of activity detection and recognition in the context of visual
surveillance has received considerable attention [Aggarwal and Cai, 1999]. There
been signi�cant work that span across techniques for low level event detec-
tion [Zelnik-Manor and Irani, 2001], [Cohen and Medioni, 1999] and for activity
modeling [Ivanov and Bobick, 2000], [Chowdhury and Chellappa, 2003].
A large number of di�erent approaches have been developed, whose complexity
and underlying models depend on the goals of the particular application which
is targeted.
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Many approaches to human activity recognition rely on background subtraction
for extracting the location and shape of people in video sequences. The largest
body on activity recognition is carried out using cameras and computer vision
techniques [Gavrila, 1999], [Moeslund et al., 2006].

2.2.1.1 Probabilistic and Stochastic Approaches

There is a vast amount of literature in the area of computer vision, where the
aim is to determine di�erent types of human activity, mostly motion, from video
images [Moeslund and Granum, 2001]. Usual modern methods applied include
variations of neural networks (NNs) and hidden Markov models (HMMs). They
are represented by graphs.
HMMs have been a popular tool for activity modeling, motivated primarily by its
successful use in speech recognition. An HMM is a stochastic �nite state machine
which models an activity pattern by learning transition probabilities among
its non-observable states such that the likelihood of observation of a temporal
sequence of symbols representing the activity is maximized. HMMs have been
used to model simple and more complex hand gestures [Oliver et al., 1999] and
layered HMMs [Oliver et al., 2002] have been proposed to model events such as
interaction between multiple mobile objects.
Chomat and Crowley [Chomat and Crowley, 1999] proposed a probabilistic
method for recognizing activities from local spatio-temporal appearance.
In [Yamato et al., 1992] the authors use HMM techniques to model human
activities and to perform behavior recognition, but they are only based on
representation of data.
Another popular approach for activity recognition is though the use of Bayesian
networks. The authors in [Carter et al., 2006] combined Bayesian networks
and Markov chains to recognize human behavior in airport apron scenes (AVI-
TRACK project). In [Kumar et al., 2005] the authors proposed a framework
for behavior understanding from tra�c. Recently, in [Hoey et al., 2007] the
authors successfully used only cameras to assist person with dementia during
hand-washing. The system uses only video inputs, and combines a Bayesian
sequential estimation framework for tracking hands and towel, with a decision
using a partially observable Markov decision process.
Most of these methods mainly focus on a speci�c human activity and their
description are not declarative and it is often di�cult to understand how they
work (especially for NNs). In consequence, it is relatively di�cult to modify
them or to add a priori knowledge.
The main advantage of Bayesian classi�er and HMM approaches is that they are
capable to model uncertainty by using probabilities. In the Bayesian classi�er
approaches the a priori probability needs to be learned and the learning stage is
often tiresome. The Bayesian approaches are not adapted to model the temporal
relations, because the time when the visual features have to be computed needs
to be explicitly indicated.
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Another advantage for the HMM approaches consists in their ability to recognize
sequences of events, but they are limited when the recognition involves several
mobile objects.

2.2.1.2 Constraint-Based Approaches

Constraint-based approaches have also been largely used to recognize ac-
tivities for few decades. The main trend consists in designing symbolic
networks whose nodes or predicates correspond to the Boolean recognition of
simpler events. The �rst constraint-based approaches have been developed
in the 70s and include plan recognition [Kautz and Allen, 1986] and event
calculus [Kowalski and Sergot, 1986]. However, these approaches have not
been applied to scene understanding based on real-world perceptual obser-
vations. Other approaches including Petri Net [C. Castel and Tessier, 1996]
and [Lesire and Tessier, 2005], logic programming [L. Davis and Shet, 2005],
script-based language, constraint resolution [Rota and Thonnat, 2000]
and [C. J. Needham and Cohn, 2005] and chronicle recognition [Ghallab, 1996]
and [C. Dousson and Ghallab, 1993], etc. have been adapted for recognizing ac-
tivities through videos. For instance, Lesire and Tessier [Lesire and Tessier, 2005]
have designed a Petri Net to recognize a given activity, whose nodes correspond
to typical situations and the tokens to the mobile objects involved in the
activity. But, this approach uses just one Petri Net to recognize one activity
type and cannot recognize all the occurrences of the same activity. Stochastic
grammar has been proposed to parse simple actions recognized by vision
modules [Ivanov and Bobick, 2000]. Logic and Prolog programming have also
been used to recognize activities de�ned as predicates [L. Davis and Shet, 2005].
Constraint Satisfaction Problem (CSP) has been applied to model activities as
constraint networks [Rota and Thonnat, 2000].
These last three approaches are interesting and have successfully recognized
complex activities. However, they do not have speci�c mechanisms to handle
temporal constraints so they have to explore all possible temporal combinations
of events and to store all totally recognized events to be used to recognize other
more complex events. In practice, these approaches can recognize in real-time
only activities involving a small number of physical objects.
Other techniques for the recognition of human activities have been proposed
to reduce this combinatorial explosion by propagating the temporal constraints
inside the constraint network. Then, the recognition is limited to only the
sub-networks (complying with the satis�ed temporal constraints) that can lead
to a possible activity. These approaches store all partially recognized events
and envisage all combinations that can occur and store only these predictions to
recognize complete events in the future. For instance, an e�cient version was
proposed by Pinhanez and Bobick who described a temporal constraint network
(called PNF for Past, Now and Future) to recognize activities. However, this net-
work cannot represent event duration and is mainly dedicated to the recognition
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of event sequences. More generally, the notion of chronicle was �rst introduced
in [Kumar and Mukerjee, 1987] (and called dynamic situation) and then extended
by Dousson and Ghallab [Ghallab, 1996] and [C. Dousson and Ghallab, 1993].
A chronicle is represented as a set of events (detected by speci�c routines)
and sub-chronicles (recognized by the recognition process) linked by temporal
constraints. The temporal aspects are the starting/ending time points of a
chronicle and also the delay between two chronicles.
This approach recognizes correctly prede�ned chronicles and makes the recogni-
tion of chronicles possible in real-time. This approach has been applied to the
video surveillance of metro stations [Chleq and Thonnat, 1996]. However, this
algorithm was designed to recognize mono-physical-object events (i.e. chroni-
cles), so, it contains a number of drawbacks for multi-physical-object events.
For a multi-physical-object events, the algorithm has to create all predictions
corresponding to all combinations of potential physical objects.

Techniques which are based on constraint resolution are among the most
sophisticated event recognition techniques to date. They are able to recognize
complex events involving multiple actors having complex temporal relationships.
These techniques are used in [Vu et al., 2003] where the authors use a declarative
representation of events which are de�ned as a set of spatio-temporal and logical
constraints. These techniques have the advantage of being easily since they are
based on constraints which are de�ned in a declarative way.

2.2.2 Sensor-Based Activity Recognition Approaches

An increasingly popular alternative approach is to use personalized sensors such
as accelerometers to get precise information about a particular small set of
features related to the person, such as limb-movement and person location. The
majority of research using wearable devices has concentrated on using multiple
sensors of a single modality, typically accelerometers on several locations on
the body [Kern et al., 2003]. The placement of sensors in multiple prede�ned
locations can be quite obtrusive and is one of the limitations of such an approach.
The authors in [Guralnik and Haigh, 2002] describe the approach of collected
data from a set of motion sensors installed in living environments. They used
sequential patterns learning algorithms to extract the behavior patterns of the
person (e.g. bathroom motion sensor �res between 7:00 am and 8:00 am after
bedroom motion sensor which �res between 6:45 am and 7:45 am at 75% of the
time). However, using only motion sensors is insu�cient to deduce activities
with high accuracy and also makes it very di�cult to understand speci�c user
behaviors. In [Kern et al., 2003], the authors describe a hardware platform
equipped with three-dimensional accelerometers. However, results reported
show only a small number of simple activities that are recognized including
sitting, standing, walking, which may be attributed to using only one type of
sensors. Bao and Intille [Bao and Intille, 2004] also propose recognizing human
activities based on accelerometers. Authors report recognition accuracy up to
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95%. However, their approach limits the number of activities the system can
recognize. Another initiative in activity inference comes from University of
Aarhus in Denmark [Bardram and Christensen, 2004]. Although the authors
describe the issues that surround the activity inference, with a special focus on
healthcare, inferring users activity based on the set of artifacts and other context
information was found to be di�cult, since activities are triggered by sources
that are too complex to capture.

2.3 Multisensor-Based Activity Recognition Ap-
proaches

2.3.1 De�nition of Sensor Fusion

Sensor Fusion is the combining of sensory data or data derived from sensory
data such that the resulting information is in some sense better than would be
possible when these sources were used individually. The main issue in sensor
fusion is to provide higher accuracy and improved robustness against uncertainty
and unreliable integration. The de�nition of sensor fusion does not say that input
from more than one sensor is required; it only says that sensor data have to be
combined in some sense. The de�nition also includes systems with a single sensor
that takes multiple measurements that later on are fused [Elmenreich et al., 2001].

A non sensor fusion system may have to manage with a lot of di�erent
sensor types and ambiguous and incomplete data from these. If the input is
fused prior it is sent to an application, the input interface of the application
can be standardized and the application does not have to consider which
sensor types that are used and by this reduce the complexity of the system.
In [Elmenreich et al., 2001] the authors list a number of problems that physical
sensor measurement can su�er from.

• Sensor loss: The loss of a sensor can cause a faulty observation of the
object.

• Limited spatial coverage: A sensor covers usually only a restricted area.

• Limited temporal coverage: Limitation in the frequency in the produc-
tion of measurements.

• Imprecision: The sensor may su�er from lack of precision.

• Uncertainty: May arise when the sensor fails to measure relevant at-
tributes. Uncertainty, in contrast to imprecision, depends on the object
being observed rather than the observing device. Uncertainty arises when
features are missing (e.g. occlusions), when the sensor cannot measure all
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relevant attributes of the percept, or when the observation is ambiguous.
A single sensor system is unable to reduce uncertainty in its perception
because of its limited view of the object.

One solution to the listed problems is to use sensor fusion.

2.3.2 Potential Advantages in Fusion of Multiple Sensors

The purpose of external sensors is to provide a system with useful information
concerning some features of interest in the system's environment. The potential
advantages in fusing information from multiple sensors are that the information
can be obtained more accurately, concerning features that are impossible to per-
ceive with individual sensors, in less time, and at a lesser cost. The following
advantages can be expected from the fusion of sensor data from a set of hetero-
geneous sensors [Grossmann, 1998]:

• Redundant information is provided from a group of sensors (or a single
sensor over time) when each sensor is perceiving, possibly with a di�erent
�delity, the same features in the environment. The integration or fusion
of redundant information can reduce overall uncertainty and thus serve to
increase the accuracy with which the features are perceived by the system.
Multiple sensors providing redundant information can also serve to increase
reliability in the case of sensor error or failure.

• Robustness and reliability: Despite partial system failure the system
can produce information depending on the redundancy in a system with
multiple sensors.

• Complementary information from multiple sensors allows features in
the environment to be perceived that are impossible to perceive using just
the information from each individual sensor operating separately. If the
features to be perceived are considered dimensions in a space of features,
then complementary information is provided when each sensor is only able
to provide information concerning a subset of features that form a subspace
in the feature space, i.e., each sensor can be said to perceive features that are
independent of the features perceived by the other sensors; conversely, the
dependent features perceived by sensors providing redundant information
would form a basis in the feature space.

• Extended spatial and temporal coverage, the combination of data
gives the system a better overview of the surroundings. As compared to the
speed at which it could be provided by a single sensor, may be provided by
multiple sensors due to either the actual speed of operation of each sensor,
or the processing parallelism that may be possible to achieve as part of the
fusion process.
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• Less costly information, in the context of a system with multiple sensors,
is information obtained at a lesser cost when compared to the equivalent
information that could be obtained from a single sensor. Unless the infor-
mation provided by the single sensor is being used for additional functions
in the system, the total cost of the single sensor should be compared to the
total cost of the integrated multisensor system.

• Increased con�dence: Information from more than one sensor covering
the same object can support each others observations.

• Reduced ambiguity and uncertainty: The fused information decreases
the ambiguity of the collected values.

A further advantage of sensor fusion is the possibility to reduce system com-
plexity. In a traditionally designed system the sensor measurements are fed into
the application, which has to cope with a big number of imprecise, ambiguous
and incomplete data streams. In a system where sensor data is preprocessed
by fusion methods, the input to the controlling application can be standardized
independently of the employed sensor types, thus facilitating application imple-
mentation and providing the possibility of modi�cations in the sensor system
regarding number and type of employed sensors without modi�cations of the
application software [Elmenreich and Pitzek, 2001].

The role of multisensor fusion in the overall operation of a system can be de�ned
as the degree to which each of these seven aspects is present in the information
provided by the sensors to the system. Redundant information can usually be
fused at a lower level of representation compared to complementary information
because it can more easily be made commensurate. Complementary information
is usually either fused at a symbolic level of representation, or provided directly
to di�erent parts of the system without being fused.

2.3.3 Possible Problems in Multisensor Fusion

Many of the possible problems associated with creating a general methodology
for multisensor fusion, as well as developing systems that use multiple sensors,
center around the methods used for modeling the error or uncertainty in the fusion
process, the sensory information, and the operation of the overall system including
the sensors. For the potential advantages in integrating multiple sensors to be
realized, solutions to these problems will have to be found that are practical.

• Error in the Fusion Process: The major problem in fusing redundant
information from multiple sensors is the determination that the informa-
tion from each sensor is referring to the same features in the environment.
This problem is termed the correspondence and data association problem
in stereo vision and multitarget tracking research, respectively. Barniv and
Casasent [Bamiv and Casasent, 1981] have used the correlation coe�cient
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between pixels in the gray level of images as a measure of the degree of
recording of objects in the images from multiple sensors. Hsiao [Hsiao, 1988]
has detailed the di�erent geometric transformations needed for recording.

• Error in Sensory Information: The error in sensory information is usu-
ally assumed to be caused by a random noise process that can be adequately
modeled as a probability distribution. The noise is usually assumed not to
be correlated in space or time (i.e., white), and Gaussian. The major reasons
that these assumptions are made is that they enable a variety of fusion tech-
niques to be used that have tractable mathematics and yield useful results in
many applications. If the noise is correlated in time (e.g., gyroscope error)
it is still sometimes possible to retain the whiteness assumption through the
use of a shaping �lter [Maybeck, 1982].
The Gaussian assumption can only be justi�ed if the noise is caused by a
number of small independent sources. In many fusion techniques the consis-
tency of the sensor measurements is increased by �rst eliminating spurious
sensor measurements so that they are not included in the fusion process.
Many of the techniques of robust statistics can be used to eliminated spu-
rious measurements.

• Error in System Operation: When error occurs during operation due to
possible coupling e�ects between components of a system, it may still be
possible to make the assumption that the sensor measurements are indepen-
dent if the error, after calibration, is incorporated into the system model
through the addition of an extra state variable. In well-known environments
the calibration of multiple sensors will usually not be a di�cult problem, but
when multisensor systems are used in unknown environments, it may not
be possible to calibrate the sensors. Possible solutions to this problem may
require the creation of detailed knowledge bases for each type of sensor so
that a system can autonomously calibrate itself. One other important fea-
ture required of any intelligent multisensor system is the ability to recognize
and recover from sensor failure [T.E. Bullock and Boudreau, 1988].

2.3.4 Sensor Fusion Levels

Sensor fusion can be classi�ed into di�erent levels according to the input and
output data types [Dasarathy, 1996], [Dasarathy, 1997]. The fusion may take
place at the data level also called signal level, feature level also called symbolic
level and decision level related to task level.
In data level fusion, each sensor observes an object and the raw output data of
sensors are combined [Luo and Kay, 1992]. Varieties of the methods are developed
in this level, and were applied in image processing [Goodridge and Kay, 1996]
and in visual and speech recognition [Kabre, 1995].
In feature level fusion, each sensor provides observational data from which a
feature vector is extracted. These vectors are then concatenated together into
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a single feature vector. Because most features have well-de�ned structures, the
fusion methods in this level can be based on statistical approaches and pattern
analysis approaches [Bajcsy et al., 1996], [MacLeod and Summer�eld, 1987].
Decision level fusion involves combination of sensor high level output data (e.g.
event). Decision fusion is a common problem in many research areas, such as
decision theory and arti�cial intelligence.
Di�erent levels of multisensor fusion can be used to provide information to a
system that can be used for a variety of purposes; e.g. data-level fusion can
be used in real-time applications and can be considered as just an additional
step in the overall processing of the signals, feature-level fusion can be used
to improve the performance of many image processing tasks like segmentation,
and decision-level fusion can be used to provide an object recognition system
with additional features that can be used to increase its recognition capabili-
ties [Luo and Kay, 1990]. Figure 2.6 summarizes these three sensor fusion levels.
Each of these fusion levels has distinct advantages and disadvantages in our
scenario.
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Inference Methods -Bayesian Inference
-Dempster-Shafer Method
-Evidence Processing

Estimation Methods -Maximum Likelihood
-Kalman Filter
-Particle Filter
-Bayesian Estimation

Classi�cation Methods -Cluster Analysis
-K-means Clustering

Table 2.2: Multisensor Fusion Methods

In data level fusion approach, sensors transmit all collected data without, or
with minimal processing to a centralized processing system for analysis. Since
reduction may now occur with all collected data available it is less likely that
patterns observable across multiple sensors will be missed. Also as minimal pro-
cessing is required by the sensors, these may be manufactured cheaply. This
scheme may be problematic for wireless sensors however, as the high volume of
communication may quickly diminish battery life.
The converse is true for decision level fusion, battery life may be traded for ac-
curacy in inference by transmitting data from sensors only at the decision level.
Unfortunately this burdens the sensors with a level of computation that may be
unfeasible depending on the nature of the inference algorithms implemented by
these sensor networks.
Feature level fusion stands in the middle ground between these two extremes.
Features are generated that are representative of individual signals and transmit-
ted onwards. Features are then composed, further reduced then used to classify
the phenomenon under observation. If features are su�ciently descriptive of their
signal then the loss of patterns across multiple sensors should not be a problem.
Communication overhead is reduced compared to data level fusion as are the
computation requirements over decision level fusion.

2.3.5 Sensor Fusion Approaches

As shown in Table 2.2, multisensor fusion algorithms can be broadly classi�ed as
follows: inference methods, estimation methods and classi�cation methods.

2.3.5.1 Inference Methods

Inference methods are often applied in decision fusion. In this case, a decision is
taken based on the knowledge of the observed situation. Here, inference refers to
the transition from one likely true proposition to another, whose truth is believed
to result from the previous one. Classical inference methods are based on Bayesian
inference and Dempster-Shafer Belief Accumulation theory.
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• Bayesian Inference: Information fusion based on Bayesian Inference o�ers
a formalism to combine evidence according to rules of probability theory.
The uncertainty is represented in terms of conditional probabilities describ-
ing the belief, and it can assume values in the [0, 1] interval, where 0 is
absolute disbelief and 1 is absolute belief. Bayesian inference is based on
the rather old Bayes rule, which states that:

Pr(Y |X) =
Pr(X|Y )Pr(Y )

Pr(X)
(2.1)

where the posterior probability Pr(Y |X) represents the belief of hypothesis
Y given the information X. This probability is obtained by multiplying
Pr(Y ), the prior probability of the hypothesis Y , by Pr(X|Y ), the prob-
ability of receiving X , given that Y is true; Pr(X) can be treated as a
normalizing constant. The main issue regarding Bayesian Inference is that
the probabilities Pr(X) and Pr(X|Y ) have to be estimated or guessed be-
forehand since they are unknown.
Coue et al. [Coue et al., 2002] use Bayesian programming, a general ap-
proach based on an implementation of Bayesian theory, to fuse data from
di�erent sensors (e.g. laser, radar, and video) to achieve better accuracy
and robustness of the information required for high-level driving assistance.
Work in event detection for wireless sensor networks is proposed by Kr-
ishnamachari and Iyengar [Krishnamachari and Iyengar, 2004] who explic-
itly consider measurement faults and develop a distributed and localized
Bayesian algorithm for detecting and correcting such faults. This work is
further extended by Luo et al. [Luo et al., 2006] who consider both mea-
surement errors and sensor faults in the detection task.

• Dempster-Shafer Inference: Dempster-Shafer Inference is based on the
Dempster-Shafer Belief Accumulation (also referred to as Theory of Evi-
dence or Dempster-Shafer Evidential Reasoning), which is a mathematical
theory introduced by Dempster [Dempster, 1968] and Shafer [Shafer, 1976]
that generalizes the Bayesian theory. It deals with beliefs or mass functions
just as Bayes rule does with probabilities. The Dempster-Shafer theory
provides a formalism that can be used for incomplete knowledge repre-
sentation, belief updates, and evidence combination [Provan, 1992]. The
theory is based on a number of key propositions which are summarized as
follows:
Frame of discernment: A sensor can have either a value of one (active)
or zero (inactive). The two values comprise the exhaustive set of mutually
exclusive values that the sensor can hold. In DS theory, the set is called
the frame of discernment of the sensor, denoted by Θ.
For example, swatr, ¬swatr is the frame of discernment for the water �ow
sensor, in which swatr means the sensor is active and ¬swatr means an
inactive sensor.
Mass function: Many factors surrounding the sensor have an impact
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on the quality of the sensor observation. For example, the person which
drops his bag on the chair, may activate the chair sensor (sensor in-
stalled under the chair) and giving a false result. The observation of
the sensor is inherently evidential. DS theory uses a number in the
range [0, 1] to represent the degree of belief in the observation. The
distribution of a unit of belief over the frame of discernment is called
evidence. A function m : 2Θ → [0, 1] is called a mass function, repre-
senting the distribution of belief and satisfying the following two conditions:

m(φ) = 0 (2.2)∑
A⊆Θ

m(A) = 1 (2.3)

Where: φ: is the empty set and A: is a sub-set of Θ.
Belief and plausibility: Dempster used a range of probability rather than
a single probabilistic number to represent uncertainty. The lower and upper
bounds of the probability are called the belief and plausibility respectively,
which can be de�ned by mass functions as follows:

Bel(A) =
∑
B⊆A

m(B) (2.4)

Pls(A) =
∑
B⊇A

m(B) (2.5)

Bel represents the degree of belief to which the evidence supports A.
Pls describes the degree of belief to which the evidence fails to refute A,
that is, the degree of belief to which it remains plausible.

The di�erence Pls(A) − Bel(A) describes the uncertainty concerning
the hypothesis A represented by the evidential interval, see �gure 2.7.

δ(A) = Pls(A)−Bel(A) (2.6)

2.3.5.2 Estimation Methods

Estimation methods were inherited from control theory and use the laws of proba-
bility to compute a process state vector from a measurement vector or a sequence
of measurement vectors [Bracio et al., 1997]. In this section, we present the es-
timation methods known as: Maximum Likelihood, Kalman �lter, and Particle
�lter.

• Maximum Likelihood (ML): Estimation methods based on Likelihood
are suitable when the state being estimated is not the outcome of a random
variable [Brown et al., 1992].
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Figure 2.7: Di�erence between the two concepts of Probability versus the concept of Dempster-
Shafer

In the context of information fusion, given x, the state being estimated, and
z = (z(1), ..., z(k)), a sequence of k observations of x, the likelihood function
λ(x) is de�ned as the probability density function (pdf) of the observation
sequence z given the true value of the state x:

λ(x) = P (z|x) (2.7)

The Maximum Likelihood (ML) searches for the value of x that maximizes
the likelihood function.

• Kalman Filter: The Kalman �lter is a very popular fusion method. It
was originally proposed in 1960 by Kalman [Kalman, 1960] and it has been
extensively studied since then [Luo and Kay, 1992].
The Kalman �lter is used to fuse low-level redundant data. If a linear model
can describe the system and the error can be modeled as Gaussian noise,
the Kalman �lter recursively retrieves statistically optimal estimates.

2.3.6 Sensor Fusion Work for Healthcare

This section presents some systems that perform elderly activity recognition with
the aid of sensor fusion techniques.

In [Mehboob et al., 1997], a method entitled Robust Sensor Fusion (RSF)
is used to fuse data from multiple, redundant sensors in order to obtain the
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most accurate estimate of heart rate. In addition to consistency of data between
multiple sensors RSF also utilizes temporal consistency at individual sensors
during operation. RSF allows the combination of heart rate signals from multiple
sensors such that the combined heart rate estimate is closer to the �true� value.
RSF also provides a con�dence value with every estimate indicating the likelihood
of its correctness.
The heart rate sensors considered are the electrocardiogram (ECG) and the
pulse oxymeter (SpO2). By fusing heart rate signals from each, the combined
accuracy would be above the accuracy of any single sensor alone. Furthermore,
the authors wished to examine whether this improved estimation would reduce
the frequency of false heart rate alarms.
The motivation for this work is that each of the above individual sensors have
independent causes of artifact. Heart rate estimate is calculated as a weighted
average of individual signals, taking into account also past estimates using
a Kalman �lter. To obtain higher accuracy in estimation, erroneous sensor
data are identi�ed and excluded from the weighted averaging process using the
consensus between measurements, the similarity of sensor data to an estimate
based upon past estimates only and also upon the physiological consistency of
these estimates.
French researchers Virone et al. [Virone et al., 2003], have experimented with
the fusion of audio and contact sensors for home healthcare applications in their
Smart Home Information System (HIS). The HIS consists of a multitude of
sensors (such as door contacts and tensiometers) and is augmented through the
use of 8 microphones linked to form a single smart audio sensor. The system is
capable of generating both short term alerts, those which are instantaneously
triggered on reception of a message from the HIS or audio sub-system, and long
term alerts, triggered after data analysis of more long term data is performed.
Minimal results are provided to show the advantage of sensor fusion for the
detection of pathological disease in a home healthcare scenario.
Di�erent types of Markov models have been used to carry out task identi�ca-
tion from a sequence of sensor events. One such approach was by Wilson et
al [Wilson et al., 2005], where episode recovery experiments were carried out
and analyzed by a Hidden Markov Model (HMM) using the Viterbi algorithm
which was responsible for determining which task is active from the sequence of
sensor events. Although this approach enabled unsupervised task identi�cation
it was not as e�cient when the tasks were carried out in a random order.
Other approaches that have been developed in order to carry out reliable
activity recognition and solve the incomplete sensor problem involve ontolo-
gies [Munguia-Tapia et al., 2006] and data mining techniques [Wyatt et al., 2005].
Ontologies have been utilized to construct reliable activity models that are able
to match an unknown sensor reading with a word in an ontology which is related
to the sensor event. For example, a Mug sensor event could be substituted by a
Cup event in the task identi�cation model "Make Tea" as it uses Cup.
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2.4 Conclusion

In this chapter, previous work on human activity recognition has been presented.
Most of the presented systems that have been built to recognize home activities
have been limited in the variety of activities they recognize. In particular, most
previous work on activity recognition has used sensors that provide only a very
coarse idea of what is going on. For example, by detecting only movement in a
room, it is not possible to detect which activity occurs in the room.
The accuracy of the techniques using a single type of sensor (video and non-video)
has been shown but they are limited for application. In contrary, multisensor tech-
niques are well adapted to healthcare applications and they are more generic than
approaches using single sensor.
As previously introduced, our objective is to propose an approach based on mul-
tisensor data fusion. This approach combines the advantages of the visions tech-
niques and the non-vision techniques and aims to determine when a person uses
the household equipment and to detect most of the activities at home.
In the next chapter, an overview of the proposed approach is given.



Chapter 3

Activity Recognition Approach

Overview

The goal of human activity recognition is to provide accurate information about
the behavior of a person observed in a scene. As seen in chapter 2, the activity
recognition problem has been treated with probabilistic approaches and constraint
resolution approaches. Our goal is to propose a framework that takes the advan-
tages of each approach.
The objectives are presented in section 3.1, an overview of the proposed cognitive
vision approach for activity recognition is described in section 3.2 and �nally, a
conclusion is presented in section 3.3.

3.1 Objectives

Determining the individual transition from the 3rd to the 4th or frailty phase of
life is important for both the safety of the older person and to support the care
provider. By being able to recognize and monitor activities of daily living such as
preparing a meal, eating, bathing, etc, automatic detection of changes in patterns
of behavior is possible. This information can reveal a decline in health, risks in
the environment, and emergency situations that may require the assistance of
caregivers.
The goal of this work is to propose an approach based on using ambient sensor
technologies to recognize interesting activities at home. This approach combines
data from video cameras with data from environmental sensors to analyze human
behaviors and looks for changes in activities by detecting the presence of people,
their movements, and automatically recognizing events and Activities of Daily
Living (ADLs). It includes an algorithm for real-time recognition of primitive
and complex activities that have occurred in the scene observed by video cam-
eras and sensors attached to house furnishings. The proposed approach consists
in detecting people, tracking people as they move, and recognizing activities of
interest based on multisensor analysis and human activity recognition.
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3.1.1 A Framework for Activity Recognition

In this section, we describe �rstly the challenges in activity recognition and after
that we describe our monitoring goals.

3.1.2 Challenges in Activity Recognition

To create algorithms that detect activities, computational models that capture the
structure of activities must be developed. The behavior of an individual can be
characterized by the temporal distribution of his/her activities such as patterns in
timing, duration, frequency, sequential order, and other factors such as location,
cultural habits, and age.
Based on the state of the art already presented in chapter 2, below are human
behavior attributes that present challenges for recognition:

• Multitasking: Individuals often perform several activities at the same time
when they do any kind of work that does not fully engage their attention.

• Periodic variations: Everyday activities are subject to periodic daily,
weekly, monthly, annual, and even seasonal variations. For example, a per-
son might typically prepare breakfast in 15 minutes on weekdays and for
one hour during weekends.

• Time scale: Human activities also occur at di�erent time scales. For
example, cooking lunch can take 25 minutes, while toileting may only take
a few minutes.

• Sequential order complexity: Sequential order, the position in time that
an activity has in relation to those activities preceding and following it, is
particularly important. The choice of what to do next as well as how that
activity is performed is strongly in�uenced by what one has already done
and what one will do after. For example, preparing lunch is very likely
followed by eating.

• False starts: A person may start an activity, and then suddenly begin a
new activity because something more important has caught his/her atten-
tion or because he/she simply forgot about the original activity.

• Location: Human behavior is also a�ected by location. For example, clean-
ing the kitchen involves a di�erent sequence of actions than cleaning the
bathroom.

• Cultural habits: Some cultural habits may be expressed by individuals in
typical sequences of activities. For example, in some cultures, people take
a nap after lunch while others have a cup of tea before having breakfast,
lunch or dinner.
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3.1.3 Monitoring Goals

As seen previously in chapter 1, monitoring activities at home is predominantly
composed of location and activity information. Below is a list of exactly what we
wish to automatically recognize:

• Presence: Determine whether one or several individuals are present in the
environment.

• People Tracking: Determine the location of each person (e.g. in the
kitchen).

• Posture: Recognize body con�guration such as standing, bending, sitting.

• Interactions: Recognize how a person interacts with the environment (e.g.
opens the fridge, sitting on a chair).

• Activities of Daily Living (ADLs): Recognize daily activities such as
cooking, eating, bathing, toileting [Katz et al., 1963], [Lawton, 1990].

3.2 Proposed Activity Recognition Approach

In this thesis, an approach for recognizing activities at home is proposed (e.g.
an elderly person living alone has taken a meal). The approach combines data
provided by video cameras with data provided by environmental sensors to mon-
itor the interaction of people with the environment. The environmental sensors
we used are attached to house furnishings. They are easy to install in home
environment and removable without damage to the cabinets or furniture. The
proposed sensors require no major modi�cations to existing homes and can be
easily retro�tted in real home environments.

3.2.1 Architecture of the Proposed Approach

The proposed approach consists in collecting multisensor data of the person in
order to build up a "normal" pro�le of his/her daily activity patterns (e.g. use
the refrigerator, prepare a meal, sitting on a chair, go to bed). Large deviations
from this pro�le should alert a human operator. The proposed multisensor based
activity recognition approach uses video cameras and environmental sensors.

As described in Figure 3.1, the input of the proposed approach consists in
the data provided by the di�erent sensors. Its output is a set of XML �les
and alarms and also a 3D visualization of the recognized events. The proposed
approach consists in a 4D (3D + time) analysis of multisensor data. It exploits
three major sources of knowledge: 3D models of person (e.g. 3D size of a person),
the models of events prede�ned in collaboration with gerontologists and the 3D
information of the scene (e.g. position and size of furniture, zones of interest).
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The proposed multisensor based activity recognition approach is composed of
four components:

1. Video Analysis: detects, tracks people moving in the scene, and also
detects the body con�guration of the person.

2. Sensor Analysis: collects information about interactions between people
and the contextual objects and process them.

3. Event Recognition: recognizes a set of simple video events (e.g. a person
leaves the kitchen) and also recognizes a set of simple environmental events
(e.g. the fridge is open).

4. Multisensor Event Fusion: recognizes complex (multimodal) events by
combining video events with environmental events (e.g. a person prepares
a meal).
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3.2.2 Video Analysis

In this section we �rstly describe person detection and person tracking methods.
After that we describe posture detection method. This method includes human
posture recognition algorithm, and a 3D human posture. Figure 3.2 illustrates
the video analysis component with our contributions.

Figure 3.2: The video analysis architecture. Our major contributions are represented in bold
lines with white background. Our minor contributions are represented with dashed background
and the existing methods are represented with gray background.

3.2.2.1 Person Detection and Person Tracking

Video analysis aims at detecting and tracking people moving in the scene. To
achieve this task, we have used a set of vision algorithms coming from a video
interpretation platform described in [Avanzi et al., 2005].
A �rst algorithm segments moving pixels in the video into a binary image by sub-
tracting the current image with the reference image. A background subtraction
method [Heikkila and Silven, 1999] segments the picture and compares intensity
and color with a periodically updated reference background image not containing
the moving object [McIvor, 2000]. The reference image is updated along the
time to take into account changes in the scene (e.g. light, object displacement,
shadows).

A 3D information is obtained by using a calibration step which computes
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Figure 3.3: Video Analysis. (a) Represents the original image, (b) the detection of moving
pixels which are highlighted in white and clustered into a mobile object, (c) the mobile object
is classi�ed as a person, (d) shows the tracking at 2 di�erent times of the same person (IND 0),
(e) shows the corresponding 3D posture of the tracked person in the 3D environment.

the transformation of a 2D image referential point to a 3D scene referential
point. The 3D position of the moving object is estimated from the detected blob
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and the calibration matrix associated with the video camera by supposing that
the bottom of the 3D moving object is on �oor level. When the legs of a person
are occluded by a speci�ed contextual object and therefore not visible by the
camera, the person is supposed to be just behind the object.

Internal parameters of the camera (image center, focal length and distortion
coe�cients) are combined with external parameters (position and orientation
relative to a world coordinate system) to compute the calibration matrix. In the
Tsai camera calibration method [Tsai, 1986], the 3D world coordinates of a point
in the image are computed under the assumption that the world point belongs to
a particular plane, in our case the �oor plane.

The moving pixels are then grouped into connected regions, called blobs.
A set of 3D features such as 3D position, width and height are computed for
each blob. Then, a classi�cation task uses the obtained 2D blobs, the calibration
matrix of the camera and prede�ned 3D parallelepiped models (described by
their width, height, length, position, and orientation) of the expected objects on
the scene, to de�ne the most likely 3D model for each object. Finally, a merging
task is performed to improve the classi�cation performance by assembling 2D
blobs showing a better 3D object likelihood.

For each moving region, a 3D classi�er adds an object class label (e.g.
person, vehicle) [M. Zúñiga, 2006]. After that, the tracking task adds a unique
identi�er to each new classi�ed blob, and maintains it globally throughout the
whole video (see Figure 3.4).

3.2.2.2 Posture Detection

In [Boulay et al., 2006] a very precise 3D model of human is utilized to detect
postures. Human posture is described by a set of 23 parameters. This human
model enables to generate 2D silhouettes to be compared with the one detected
for a person in the scene (see Figure 3.5).

• Human Posture Recognition Algorithm We have used a human pos-
ture recognition algorithm [Boulay et al., 2006] in order to recognize in real
time a set of human postures once the person moving in the scene is cor-
rectly detected. This algorithm determines the posture of the detected per-
son using the detected silhouette and its 3D position. The human posture
recognition algorithm is based on the combination between a set of 3D hu-
man models with a 2D approach. These 3D models are projected in a virtual
scene observed by a virtual camera which has the same characteristics (posi-
tion, orientation and �eld of view) than the real camera (see �gure 3.6). The
3D silhouettes are then extracted and compared to the detected silhouette
using a 2D technique which projects the silhouette pixels on the horizontal
and vertical axes. The most similar extracted 3D silhouette is considered to
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Figure 3.4: (a) Classi�cation of the object as a person with standing posture and a 3D paral-
lelepiped indicates the position and orientation of that person; (b) Tracking at 2 di�erent times
of the same person (IND 0)

Figure 3.5: Model of human posture described by a set of 23 parameters
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most accurately correspond to the current posture of the observed person.
The algorithm is real time (about eight frames per second), and does not
depend on camera position.

Figure 3.6: Simpli�ed scheme showing the posture recognition approach

• 3D Human Posture In this thesis, in collaboration with gerontologists and
geriatrics from the Nice hospital in France, we have proposed a set of 3D
human postures. These 3D human postures are based on a 3D geometrical
human model. For homecare applications we propose ten 3D key human
postures which are useful to recognize activities of interest at home. These
postures are displayed in �gure 3.7: standing (a), standing with arm up (b),
standing with hands up (c), bending (d), sitting on a chair (e), sitting on
the �oor with outstretched legs (f), sitting on the �oor with �exed legs (g),
slumping (h), lying on the side with �exed legs (i), and lying on the back
with outstretched legs (j).
Each of the proposed 3D human postures plays a signi�cant role in the
recognition of the targeted activities of daily living or of abnormal activities.
For example, the posture "standing with hands up" (see �gure 5.9) is used
to detect when a person is carrying an object such as plates. The posture
"standing with arm up" (see �gure 5.10) is used to detect when a person
reaches and opens kitchen cupboard and his/her ability to do it. These
proposed human postures are not an exhaustive list but represent the key
human postures taking part in everyday activities.

Figure 3.3 illustrates the detection, classi�cation, tracking and posture detec-
tion of a person in an experimental laboratory.
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Figure 3.7: The proposed 3D human postures.

3.2.3 Sensor Analysis

In this section, we describe the sensor processing and modeling method which
include the proposed sensor model which is necessary to fuse multisensor systems.
This sensor model includes an uncertainty in sensor measurements.
Figure 3.8 illustrates the sensor analysis component with our contributions.

3.2.3.1 Sensor Processing and Modeling

The physical sensor (e.g. electrical sensor) produces a response to the surrounding
environment. For instance the electrical sensor triggers a signal when an appliance
is used. The raw data collected by the physical sensors is processed to produce
high-level representations of sensed object. This process converts the physical sen-
sor response into a representative value of the raw environmental characteristics,
such as electrical current.

Handling Uncertainty in Sensor Measurement

Because each sensor type has di�erent characteristics and functional de-
scription, it is necessary to �nd a general model that is independent from the
physical sensors, and that enables comparison of the performance and robustness
of such sensors. For solving this issue we propose a generic sensor model in order
to develop a coherent and e�cient representation of the information provided
by sensors of di�erent types. This sensor model is able to give a coherent and
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Figure 3.8: The sensor analysis architecture. Our major contributions are represented in bold
lines with white background. Our minor contributions are represented with dashed background.

e�cient representation of the information provided by various types of sensors.
This representation provides means for recovery from sensor failure and also
facilitates recon�guration of the sensor system when adding or replacing sensors.
In the proposed sensor model we de�ne the type of information (e.g. pressure,
image, motion) and the measurement y which is the value of the physical property
measured by the sensor. We also de�ne the uncertainty ∆y of measurement y.
It includes errors in y, such as measurement errors. More details about sensor
modeling are described in chapter 4.

3.2.4 Event Recognition

In this work, we propose to represent the activities of interest into a formal model
that satis�es a number of constraints by using the event description language pro-
posed by Vu et al. [Vu et al., 2003]. We have extended this language to address
complex activity recognition involving several physical objects of di�erent types
(e.g. person, chair) in a scene observed by video cameras and environmental sen-
sors and over an extended period of time.
In this section, we �rstly describe the event modeling. After that we describe the
event recognition algorithm. Figure 3.9 illustrates the event recognition compo-
nent with our contributions.

3.2.4.1 Event Modeling

The event models correspond to the modeling of all the knowledge used by
the system to detect events occurring in the scene. The description of this
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Figure 3.9: The event recognition architecture. Our major contributions are represented in bold
lines with white background. Our minor contributions are represented with dashed background.

knowledge is declarative and intuitive (in natural terms), so that the experts
of the application domain can easily de�ne and modify it. Four types of event
can be de�ned: primitive state, composite state, primitive event and composite
event. A state is a spatio-temporal property valid at a given instant or stable
on a time interval, and can characterize several mobile objects. An event is one
or several state transitions at two successive time points or in a time interval.
A primitive state (e.g. a person is located inside a zone) corresponds to a
perceptual property characterizing one or several physical objects. A composite
state is a combination of primitive states. A primitive event corresponds to a
change of primitive state values (e.g. a person changes a zone). A composite
event is a combination of primitive states and/or primitive events.

An event model M of an event E is composed of �ve parts (see �gure 3.10):

• "Physical objects" which are a set of variables whose values correspond
to the physical objects involved in E,

• "Components" which are a set of variables whose values correspond to the
event instances composing E,
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• "Forbidden components" which are a set of variables corresponding to all
event instances that are not allowed to be recognized during the recognition
of E,

• "Constraints" which are a set of conditions between the physical objects
and/or the components to be veri�ed for the recognition of E, they include
symbolic, logical, spatial and temporal constraints (Allens interval algebra
operators [Allen, 1983]),

• "Alerts" which are an optional part of an event model which correspond
to a set of actions to be performed when E is recognized.

Figure 3.10: Model of Events.

A primitive state must contain at least, one physical object and one constraint.
A primitive and composite events must contain at least, one physical object, one
component and one constraint. Forbidden components and alerts are optional.

3.2.4.2 Event Recognition Algorithm

The event recognition process we used [Vu et al., 2003] is able to recognize which
events are occurring in the scene at each instant. To bene�t from all the knowl-
edge, the event recognition process uses the coherent tracked mobile objects, the
a priori knowledge of the scene and the prede�ned event models. To be e�cient,
the recognition algorithm processes in speci�c ways events depending on their
type. Moreover, this algorithm has also a speci�c process to search previously
recognized events to optimize the whole recognition. The algorithm is composed
of two main stages. First, at each step, it computes all possible primitive states
related to all mobile objects present in the scene. Second, it computes all possible
events (i.e. primitive events then composite states and events) that may end with
the recognized primitive states.
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3.2.5 Multisensor Event Fusion

By using only vision sensors, we can detect some simple activities of the observed
person such as the location and posture of the person in the apartment. Moni-
toring activities at home is predominantly composed of locations, postures and
interactions with equipments. For this we choose to use video cameras combined
with environmental sensors to determine when a person uses the household
equipment and to detect most of the activities at home.
The environmental sensors are more robust and precise but need to be installed
everywhere resulting on a prohibiting price (the cost of system is usually due to
the number of sensors, wiring and maintenance). The cameras are less precise
but more global and usually one camera can be enough to monitor one room.

In this section, we describe how to combine the video events with the en-
vironmental events and the activity recognition method.
Figure 3.11 illustrates the multisensor fusion event with our contribution. More
details of this multisensor fusion approach are described in chapter 5.

3.2.5.1 Video & Environmental Event Fusion

As described in chapter 2, sensor fusion can be classi�ed into di�erent levels ac-
cording to the input and output data types. Fusion may take place at the data
level, feature level and decision level. In data level fusion, raw output data of sen-
sors are combined. In feature level fusion, each sensor provides observational data
from which a feature vector is extracted. These vectors are then concatenated to-
gether into a single feature vector. The decision level fusion involves combination
of sensor high level output data (e.g. event).
The use of sensor fusion at the decision level facilitates an extensible sensor sys-
tem, because the number and types of sensors are not limited.
In our approach, we use a fusion process at the decision level to address the prob-
lem of heterogeneous sensor system. For this, we combine the video events with
the environmental events in order to detect rich and complex events (i.e. multi-
modal events). The environmental sensor data and the video sensor data are fused
at the level of event recognition. The multimodal events can include video event
and / or environmental event. Therefore, when the video and the environmental
events are recognized, then the global multimodal event is also recognized.

3.2.5.2 Activity Recognition

The multisensor event recognition algorithm takes as input sensor events (i.e.
video and environmental) and a priori knowledge of composite events to be
recognized. An event model M should be recognized at an instant t if all its
components have been recognized, its last (using the temporal order) component
being recognized at the given instant t.

The use of an heterogeneous sensor system involves a synchronization task
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Figure 3.11: The multisensor fusion event architecture. Our major contributions are represented
in bold lines with white background. Our minor contributions are represented with dashed
background.

to cope with the di�erent output data frequencies of the sensors. To solve this
issue, we currently use di�erent con�gurations of delays between components
composing a multimodal event. More precisely, we de�ne di�erent event models
corresponding to variations of delays between environmental and video sensor
outputs.

3.3 Conclusion

We have presented in this chapter an overview of the proposed approach to recog-
nize human activities at home. Human activity recognition is an important part
of cognitive vision systems as seen in chapter 1. Our approach consists in combin-
ing data provided by video sensors with data provided by environmental sensors.
A video analysis part consists in detecting people, and tracking people as they
move and detecting primitive activities related to the person location. The sensor
analysis part consists in processing raw sensor data in order to provide high-level
representations of sensed objects. The multisensor fusion part combines the video
event models with the environmental event models in order to recognize compos-
ite activities.
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In the next chapters, the proposed approach for activity recognition is described
in details.
In chapter 4, the proposed sensor modeling is described in more details. In chap-
ter 5, the multisensor activity recognition approach is described and the proposed
activity modeling is presented. The approach is evaluated in chapter 6.
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Chapter 4

Sensor Modeling

4.1 Introduction

Sensors are devices which can be used to detect the interaction between a person
and his/her environment. They are ultimately the source of all the input data
in a multisensor data fusion system [Fowler and Schmalzel, 2004]. The sensor
device used to detect this interaction is known as the physical sensor and may be
any device which is capable of perceiving a physical property, or environmental
attribute, such as light, sound, pressure or motion.

The sensing technologies provide a means to acquire data about the per-
son movement and interactions within the home environment [Loke, 2007]. This
data is then processed through an intelligent system which makes recommenda-
tions as to how the environment should be adapted to support the needs of the
user [Pollack, 2005]. As such, sensors provide the fundamental low level data
which forms the basis of how the smart home (see section 2.1.2) is able to provide
assistive living conditions and improved levels of independence for the persons.
The main concern is therefore that the data obtained from sensors within the
home environment may not be totally reliable and may present di�erent degrees
of uncertainty in the measurements they report [Ranganathan et al., 2004]. This
uncertainty may arise for a number of reasons. For example, it may be the case
that the sensor is faulty or malfunctioning, it may be that it can never be 100%
accurate due to the nature of what it is measuring.

Sensors must not only measure a physical property, but must also perform
additional functions. These functions can be described in terms of compensation,
data processing, communication and integration:

• Compensation. This refers to the ability of a sensor to detect and respond
to changes in the environment through self-diagnostic tests, self-calibration
and adaption.
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• Data processing. This refers to processes such as signal conditioning, data
reduction, event detection and decision-making, which enhance the infor-
mation content of the raw sensor measurements.

• Communication. This refers to the use of a standardized interface and a
standardized communication protocol for the transmission of information
between the sensor and the outside world.

• Integration. This refers to the coupling of the sensing and computa-
tion processes on the same silicon chip. Often this is implemented using
microelectro-mechanical systems (MEMS) technology.

A practical implementation of such a sensor is known as a smart, or intelligent,
sensor [W. Elmenreich, 2003].

In this chapter we describe �rstly a smart sensor, after that we describe
the proposed sensor model.

4.2 Smart Sensor

A smart sensor (see �gure 4.1) is a hardware/software device that comprises
in a compact small unit a physical sensor and the associated software for data
processing, calibration, and communication. The smart sensor transforms the
raw sensor signal to a standardized digital representation, checks and calibrates
the sensor, and transmits digital signal to the outside world via a standardized
interface using a standardized communication protocol.

The transfer of information between a smart sensor and the outside world
is achieved by reading (writing) the information from (to) an interface-�le system
(IFS) which is encapsulated in the smart sensor.
The IFS provides a structured (name) space which is used for communicating in-
formation between a smart sensor and the outside world [Elmenreich et al., 2001].

In this section we �rstly describe the physical sensor and their character-
istics. After that we describe the logical sensor.

4.2.1 Physical Sensors

The most frequently used types of sensors are physical ones. These hardware
sensors (e.g. video camera, audio sensor, light sensors, temperature sensors) can
detect almost any raw data, such as motion, audio, light, temperature.

4.2.1.1 Physical Sensor Characteristics

In selecting an appropriate sensor for a single sensor application, we need to
consider the individual sensor characteristics. These characteristics are grouped
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Figure 4.1: A smart sensor with a physical sensor and the encapsulated data processing functions
and the encapsulated Interface File System (IFS).

into the following four categories:

• Type: The sensors are classi�ed as being �xed on the person (i.e. wear-
able sensors) or on the environment (i.e. environmental sensors). Wearable
sensors are devices used to measure "internal" parameters of a person such
as pulse and circadian rhythm. Examples of such sensors include poten-
tiometers, ECG, etc. Environmental sensors are devices which are used to
monitor the interaction between a person and his/her environment. Exam-
ples of such sensors include video sensors, contact sensors, etc.

• Function: The sensors are classi�ed in terms of their functions, i.e. in terms
of the parameters, or measurements, which they measure. For example, the
measurement include velocity, acceleration, motion, etc.

• Performance: The sensors are classi�ed according to their performance
measures. These performance include accuracy, sensitivity, resolution, reli-
ability and range.

• Output: The sensors are classi�ed according to the nature of their output
signal: analog (a continuous output signal), digital (digital representation
of measurement) and frequency (use of output signal frequency).

4.2.1.2 Physical Sensor Observation

A physical sensor is characterized by various parameters such as the zone it
covers, the precision of its measurement through this zone, its placement and
the perturbations to which it is sensitive. The covered zone can be very variable
depending on the sensors. For a video camera, this zone is the �eld of view and
for a contact sensor this zone is reduced to a point.

In this work, we consider seven attributes associated with each sensor ob-
servation:
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• Sensor ID Id: Single sensor identi�er which is transmitting the data;

• Sensor Class c: This includes the name of the physical property (e.g.
temperature, light, pressure) which is measured by the sensor and the units
in which it is measured (e.g. Celsius).

• Sensor Location x: This is the 3D position of the physical sensor in the
scene referential.

• Time t: This is the time when the physical property is measured. In real-
time systems the timestamps of a measurement is often as important as the
value itself.

• Sensor Mode m: It represents the di�erent modes allowing the sensors to
provide their data (e.g. continuous, by event, on request).

• Measurement y: This is the value of the physical property as measured
by the sensor. The physical property may have more than one dimension
and this is the reason we represent it as a vector y.

• Uncertainty ∆y: This is a generic term and includes errors relatively to
y, such as measurement errors, and sensor failure errors.

Symbolically we represent a sensor observation using the following 7-tuples:

O =< Id, c, x, t,m, y,∆y > (4.1)

Sometimes not all the attributes are present. In this case we represent the missing
attributes by an asterix (*). For example, if the spatial location x is missing from
the physical sensor, then we write the corresponding sensor observation as:

O =< Id, c, ∗, t, y,m,∆y > (4.2)

4.2.2 Logical Sensor

Logical sensor detects raw data through events occurred in the system rather
than by physical sensors. For example, a logical sensor can be constructed to
detect the current position of a person by analyzing their movement and location.

Multisensor systems require a coherent and e�cient treatment of the in-
formation provided by the various physical sensors. For this we propose a
framework, the Logical Sensor Modeling (LSM), in which the sensors can be
de�ned abstractly.
Modelling the sensor characteristics to an appropriate level of detail has the
advantage of giving more accurate and robust mapping between the physical and
logical sensor, as well as a better understanding of environmental dependency
and its limitations.
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4.3 Logical Sensor Modeling (LSM)

As we explained in section 4.2, the smart sensor checks and calibrates the sensor
before it is transmitted to the outside world. In order to perform these functions,
we require a su�ciently rich sensor model which will provide us with a coherent
description of the sensors ability to extract information from its surroundings.
For this, we need to develop a model which can handle di�erent physical sensors
but provides a common interface to the multisensor fusion system. We do this by
quantifying the uncertainty through probabilistic models of the sensors, taking
into account their physical characteristics and interaction with the expected
environment.

With binary sensor observations, the probability of making a speci�c ob-
servation is governed by the probabilities of detection and false alarm for
the sensor making the observation. When non-binary sensor observations are
considered, however, a probability density function (pdf) is used to describe the
observation results.

In this section, we describe the proposed sensor model and how to model
uncertainty in sensor measurements.

4.3.1 Sensor Model with Uncertainty

Sensor data is usually prone to noise and sensing er-
rors [Henricksen and Indulska, 2006]. In many situations sensors can provide
uncertain measurements. A malfunctioning sensor gives invalid output data that
incorrectly re�ect the status of the equipment for example which it is associated
with. For instance the contact sensor installed on the door of a fridge may have
a technical problem. As such the zero data does not necessarily mean that the
person has not opened the fridge as it would whenever it is functioning correctly.
The main concern is therefore that the data obtained from sensors within the
home environment may not be totally reliable and may present di�erent degrees
of uncertainty in the measurements they report [Ranganathan et al., 2004].

Some sensors give information about contexts only at an abstract level.
For example, a contact sensor is installed on the door of the fridge. There
are many items contained in the fridge such as milk, juice, butter etc. When
the fridge sensor is triggered, the state of the fridge context is changed which
indicates the person interacts with the fridge (opening the fridge and getting
food out of the fridge).
However, it is not possible to infer what food is removed from the fridge by
simply considering the current state of the fridge door. Mapping from the
sensed fridge to the item removed from the fridge is dynamic and uncertain. For
example, if the person wants to make a cold drink, it is more likely that the juice
is removed from the fridge. If the person wants to make a hot drink, then it is
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more likely that he will remove milk from the fridge.

4.3.2 Binary Sensors

In the case on using binary sensors, the sensor framework presents a certain Pd
(probability of detection) and Pf (probability of false alarm). Assume we have
M binary sensors which give the state S for N physical objects and have binary
states: s = 1 or s = 0, representing "sensor active" and "sensor not active"
respectively. Sensor observations O are likewise binary, either "fridge is open" or
"fridge in not open (i.e. closed)". The probability that an observation is made is
determined by the Pd or Pf of the sensor making the observation. Letting Ok be
k sensor observations, the probabilities are:

P (Ok = 1|Ss = 1) = Pd

P (Ok = 0|Ss = 1) = 1− Pd (4.3)

P (Ok = 1|Ss = 0) = Pf

P (Ok = 0|Ss = 0) = 1− Pf (4.4)

4.3.3 Sensor Model

In this thesis we have de�ned the uncertainty ∆y of measurement y. This
uncertainty will also be required when we consider the fusion of multisensor
input data. This uncertainty represents the probability that a measurement is
erroneous due to the failure of the sensor.

Requisite output data from the intelligent (smart) sensor include estimates
of the measurement, plus an estimate of the measurement uncertainty level, for
use in processes such as data fusion of multiple sensors of di�erent modalities.
Intuitively, if the sensor data has low certainty, then its weighting in the data
fusion procedure can be correspondingly reduced. Statistically, this information
is completely described by the probability density function (pdf) for the measure-
ment, where the pdf mean value and variance correspond to the measurement
estimate and the measurement uncertainty respectively.
In the proposed sensor model, we distinguish between the variable Θ in which we
are interested, and a sensor measurement y. We directly observe N raw sensor
measurements yi, i ∈ {1,2,...,N}, while the variable of interest Θ is not directly
observed and must be inferred. In mathematical terms we interpret the task
of inferring θ as estimating the a posteriori probability, P (Θ = θ|y), where θ
represents the true value of the variable of interest Θ and y = (yT1 , y

T
2 , ..., y

T
N )T

denotes the vector of N sensor measurements.

The proposed sensor model is evaluated in chapter 6 using the Gerhome data.
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4.4 Conclusion

This chapter introduced a framework for processing sensor measurements.
The use of non-binary observations allows a more robust modeling capability for
the sensor manager. Uncertainty modeling is also essential because uncertainty
will be present in any real-world problem, and the modeling of that uncertainty
is vital to maintaining good sensor manager performance.
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Chapter 5

Multisensor Activity Recognition

5.1 Introduction

Sensors are scheduled to detect events which occur anytime and anywhere. The
information generated by sensors can be used to identify the activity that the
observed person performs.

Considerable research has been devoted towards activity recognition through the
deployment of sensing technology to detect interactions with objects, from visual
sensors like video cameras [Wu et al., 2002] to sensors which provide binary "on"
or "o�" outputs such as contact sensors that are used to detect for example a
door being opened or closed [Wilson and Atkeson, 2005], [Tran et al., 2004].

In this chapter, we �rstly describe the instrumentation of the home care
environment. After that we describe the proposed multisensor fusion approach.

5.2 Instrumentation of the Home

In this section, we describe which sensors we use and why. We list the sensors we
used in this work, their placement in a home and the selected mode to provide
their data.

5.2.1 Sensor Choice and Placement

In chapter 2 (see section 2.1.2), we found that cost of sensors and sensor
acceptance are pivotal issues, especially in the home. We found that people
are often hesitant, they forget to wear a badge, set of markers, or RFID tag.
In particular, elderly people are often very sensitive to small changes in their
environment [Burgio et al., 2001].
In this work, we choose to use commonly available sensors that they do not have
to wear or carry. These sensors include video sensors and environmental sensors.
The selected sensors can easily and quickly be installed in home environments
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and are removable without damage to the cabinets or furniture.
The used environmental sensors give at any given time binary value "on" and
"o�" ("on" if the sensor is activated and "o�" if the sensor is not activated).
Whenever the value of the sensor associated to a context (e.g. kitchen equipment)
changes the status of the associated context (i.e. equipment) changes also.

The list of sensors which we have selected and which we already installed
and plugged in the home care environment (i.e. experimental laboratory)
includes:

• Video cameras: These sensors are used to detect and track people evolving
in the scene. They are installed in all rooms but bathroom to locate people
at each time.

• Contact sensors: These inexpensive magnetic contact sensors indicate a
closed or open status. They are embedded on the kitchen furnitures and
bedroom closets. These sensors are useful in determining, for example, the
interaction with kitchen furnitures, such as cupboards, drawers, and fridge.

• Pressure sensors: These sensors are used to detect presence on chairs and
beds. They are placed under chairs, armchairs, and bed.

• Water �ow sensors: When placed in water pipes these sensors trigger a
signal when �ow exceeds some thresholds. They are placed on hot and cold
water pipes and toilets.

• Electrical sensors: These sensors measure consumption of the current �ow
in a circuit, reporting when current exceeds some thresholds, e.g., whenever
an appliance is used. They are placed on electrical outlets, to monitor the
amount of current �owing to circuits.

• Presence sensors: These sensors are installed in front of the sink, the
cooking stove and the washbowl to detect the presence of people nearby.

See �gure 5.1 for an overview of a typically instrumented home.

5.2.2 Sensor Mode

As previously described in section 4.2.1.2, in the world of the sensors, we �nd
various modes allowing the sensors to provide their data. These modes are listed
bellow:

• Continuous mode The sensor provides data without any interruption and
with a frequency that can be �xed or dynamically modi�ed.
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Figure 5.1: Overview of a typically instrumented home

• By event mode The sensor provides data when an event occurs. The
event provides information with higher semantics than for the sensor with
continuous transmission. For example we can think at a presence sensor
which provides a binary data corresponding or not to a person presence.

• On request mode The sensor provides data in response to a request of
an external entity. An external entity asks the sensor and is waiting for the
sensor response.

• By hybrid mode Combines the three previous modes.

In this work, we use a "continuous" mode for the video sensors and "by event"
mode for the environmental sensors. For instance, for the contact sensors installed
on kitchen cupboards, a binary data (i.e. On or O�) is received every time a
cupboard door is opened (i.e. a contact sensor is On) or closed (i.e. a contact
sensor is O�).

5.3 Sensor Fusion

In the next sections, we describe multisensor properties and approaches for sensor
fusion.

5.3.1 Multisensor Properties

In selecting a set of sensors for a multisensor application, we need to take into
account not only the individual sensor characteristics (discussed in section 4.2.1.1
in chapter 4) but also the multisensor properties [Bellot et al., 2002]. We classify
it in the following headings:

• Distributed: Sensors which give information on the same environment but
from di�erent points of view or from di�erent subsets of the environment.
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• Complementary: Sensors which together perceive the whole environment
but which individually only perceive a subset of the environment.

• Heterogeneous: Sensors which give data with completely di�erent char-
acteristics and types.

• Redundant: Sensors which perceive the same environment or phenomenon,
with little di�erences between them.

• Synchronous/Asynchronous: Sensors which provide data which are
temporally concordant or not.

Example: Physiological Measurements [Bellot et al., 2002] We consider
two physiological measurements made on a given patient: temperature and blood
pressure. The measurements are provided by two sensors: a thermometer and
a tensiometer. The two data sources are distributed, complementary and
heterogeneous as de�ned on the physiological space of the patient.

5.3.2 High-Level Sensor-Fusion

Within data processing various di�erent algorithm or special software are applied
to obtain derived information from raw sensor data. So objects and their features
can be derived from image data by segmentation algorithms, and the behaviour
of these objects in the observed scene can be described. Based on this informa-
tion, decisions can be made. Each processing step is equivalent to an increasing
information extraction level. Fusion with other sensors is possible on each level.
As described in chapter 2, basically, there are three possible levels on which to
perform sensor fusion [Hall and Llinas, 2001]: on raw sensor data, on features
extracted from raw data, and on the decision level (see �gure 5.2):

• Raw sensor data: Fusion on raw sensor data is only possible if the domain
of all sensors is the same, i.e. they are of the same type and measure the
same quantity. In our approach, this would be not possible because we used
di�erent types of sensors.

• Features: Feature extraction is a technique that reduces the amount of data
produced by a sensor and abstracts away all information that is irrelevant for
the task at hand-in case of a positioning system, only information relevant
to determining the current location is retained. Multiple sensors (working
on di�erent domains) can be combined after relevant features have been
extracted from the raw data.

• Decision: Currently, sensor fusion is performed mainly on the decision
level, i.e. each sensor module provides the system with a set of possible val-
ues (e.g. object locations) represented as a probability distribution. These
distributions are combined to compute a new probability distribution that
represents the most likely location of the object. This approach, sensor
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fusion at the decision level, facilitates a modular and extensible system ar-
chitecture. The number and types of sensors are not limited. Processing
the sensor data can be performed remotely (i.e., not on the object itself)
and pushed to the object in the form of an internal location event. When a
single sensor fails, the quality of the localization is a�ected, but the system
as a whole remains functional.
In this thesis we choose to make fusion at the decision level in order to
address the problem of heterogeneous sensor system.

Figure 5.2: Data level, feature level and decision level fusion

5.4 Activity Modeling

The aim of activity recognition is to provide a high level interpretation of the
tracked mobile objects in term of human behaviors. It consists in detecting
events which have been prede�ned by application experts or learned through
examples.
In order to express the semantics of the activities of interest of elderly at
home a modeling e�ort is needed. The models correspond to the modeling of
all the knowledge needed by the system to recognize events occurring in the scene.

To give the meaning of the activities of interest happening in the scene,
we have de�ned a new 3D model of an apartment (without mobile objects) and
a 3D model of the mobile objects present in the observed scene (e.g. a 3D model
of a person).

• The de�ned 3D model of an apartment contains both geometric and
semantic description of the speci�c zones, walls and the equipment located
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in the observed apartment and contains also geometric information of the
installed sensors.
In this 3D model, we have de�ned:
- A 3D referential which contains the calibration matrices and the position
of the video cameras;
- A list of an environmental sensor positions. To de�ne these positions,
we have de�ned for each installed sensor the location of the associated
equipment;
- A list of geometric areas corresponding to the di�erent rooms (i.e.
entrance, kitchen, livingroom, bedroom and bathroom) in the observed
environment (i.e. an apartment);
- A list of geometric zones corresponding to the di�erent zones of interest
in the observed environment (i.e. entering zone, exiting zone, cooking zone,
eating zone, sleeping zone and bathing zone);
- A list of walls to describe for instance home walls (e.g. kitchen north wall,
bedroom west wall);
- A list of the di�erent equipment present in the observed scene with its
characteristics (e.g. table, fridge, microwave);

The geometric description of areas contains a polygon de�ned in a
plane. The geometric description of equipment is de�ned by its size
(i.e. height, width, length) and its coordinates in a plane. The semantic
description of an area, of a zone, of a wall, and of an equipment contains
two attributes: its type (area, zone, wall or equipment) and its name (e.g.
kitchen, cooking zone, table).
The proposed 3D model of an apartment can be used in another en-
vironment, by rede�ning the geometric information of the observed
environment.

• A 3D model of a mobile object is composed by a name of a model, and by
a set of Gaussian functions which describe a 3D width, 3D height, and 3D
depth of a mobile object. The availability of a 3D model of mobile objects
allows us to have a more precise description of the mobile objects present
in the scene (e.g. person. pets).

In the next sections, we �rstly describe the proposed event modeling approach
which includes the event description language. Secondly, we describe the pro-
posed ontology for daily activities which we want to recognize and a graphical
representation of this ontology. Thirdly, we describe the proposed event models
for home care applications, which include the proposed video event models, the
proposed environmental event models and the proposed multimodal event models.
After that, we describe the proposed event recognition approach which includes
singlesensor event recognition algorithm and multisensor event recognition algo-
rithm. And �nally, we describe the proposed approach to handle uncertainty in
sensor measurements.



5.4 Activity Modeling 67

5.4.1 Event Modeling Approach

We have proposed a new representation formalism to help the experts to describe
the events of interest occurring in the observed scene. This formalism contains a
language called Video Event Description Language [Vu et al., 2003] which is both
declarative and intuitive (in natural terms) so that the experts of the application
domain can easily de�ne and modify the event models. This language represents
some signi�cant drawbacks for modeling daily activities. His �rst drawback is
that it is dedicated for data provided by only video cameras and does not take
into account data provided by other types of sensors. His second drawback is
that it does not allow to model complex activities by combining data from several
di�erent sensors.
For this, we have proposed 2 extensions of this language. The �rst extension
concerns the adding of data provided by non-video sensors. The second extension
allows the combination of several di�erent sensors in order to address complex
activity modeling in a scene observed by video cameras and environmental sensors
and over an extended period of time.
We call the new proposed language "Event Description Language" instead of
"Video Event Description Language".

5.4.1.1 Event Description Language (EDL)

The event description language uses a declarative representation of events that
are de�ned as a set of spatio-temporal and logical constraints.

The following concepts are de�ned in the event ontology [Vu et al., 2003].
Four di�erent types of events have been designed. The �rst distinction lies on
the temporal aspect of events : we distinguish states and events. A state is a
spatio-temporal property characterizing one or several mobile objects at time t or
a stable situation over a time interval. An event is one or several state transitions
at two successive time points or in a time interval. The second distinction lies
on the complexity aspect : a state/event can be primitive or composite. A
primitive state is a spatio-temporal property valid at a given instant or stable
over a time interval that is directly inferred from the visual attributes of physical
objects computed by vision routines (e.g. a person is located inside a kitchen)
or by other sensors (e.g. a fridge is open). A primitive event is a primitive
state transition and represents the �nest granularity of events (e.g. a person is
staying close to table). A composite event is a combination of primitive states
and events (e.g. a person is preparing a lunch). This is the coarsest granularity
of events. Composite events are also known in video understanding literature as
complex events, behaviors, and scenarios.
As described in section 3.2.4.1, a de�nition of an event E consists of: (i) an
event name, (ii) a list of physical objects involved in the event such as
contextual objects including static objects (i.e. equipment, wall and rooms)
and mobile objects (e.g. person, pets), (iii) a list of components (variable
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values) representing sub-events that describe simple activities concerned, (iv) a
list of forbidden components which are variables corresponding to all event
instances that are not allowed to be recognized during the recognition of the
event, (v) a list of constraints which are conditions among physical objects
and/or the components to be veri�ed for the recognition of the event, and (vi) a
list of alerts (Not-Urgent, Urgent and Very-Urgent) as an optional part of the
event model with a set of actions to be performed when the event is recognized
(e.g. activating an alarm or displaying a warning message). Constraints can be
logical, spatial or temporal [Allen, 1983] depending on their meaning, and can
have a symbolic or numeric form.

All these concepts describing mobile object interactions in a scene can in-
volve one or several (at least one) mobile objects (e.g. person) and zero or several
contextual objects (i.e. area, equipment).
The relations between the components and the physical objects indicate how
the components are inferred from the physical objects. There are two types of
relations: spatial and spatio-temporal relations. The spatial relations include
distance and geometrical relations. Spatio-temporal relations characterize the
evolution of spatial relations in time.
There are also two types of relations between the components: logical and tem-
poral relations. Logical relations includes and, or, and conditional "if .. then".
The temporal relations include Allen's Algebra operators and quantitative
relations between the durations, beginning and ending of events. There is
also relations between components which consists in a sequential order of
components.

A spatial symbolic constraint "person is close to table" is a spatial numeric
constraint that is de�ned as follows:

distance(person, table) <= 50[cm] (5.1)

A temporal constraint may also have a numeric form:

duration(event) >= 20[secs] (5.2)

5.4.1.2 Event Models

To model an event E, as described in section 5.4.1.1 we distinguish the set of
physical objects (e.g. persons, tables) involved in E, a set of components (i.e.
sub-events) composing E and a set of constraints on these physical objects and/or
these components (see �gure 5.3).

In this thesis, we have done a strong e�ort in event modeling. The result
is 100 models which is our knowledge base of events:
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• 58 customized video events for daily activities, among them 26 new posture-
based events,

• 26 new environmental event models,

• 16 new multimodal event models.

In more details, we have modeled:

• 26 primitive video states which include 10 primitive posture-based states,

• 16 composite video states which include 10 composite posture-based states,

• 16 primitive video events which include 6 primitive posture-based events,

• 10 primitive environmental states,

• 16 primitive environmental events,

• 16 composite multimodal events.

In the next sections, we present �rstly the proposed ontology (knowledge base)
for daily activities. After that we describe the proposed event models for daily
activities which include, a method to de�ne event durations, the proposed video
event models with the posture-based event models (see section 5.4.4.1), the pro-
posed environmental event models (see section 5.4.4.2) and the proposed multi-
modal event models (see section 5.4.4.3).

5.4.2 Ontology for Daily Activities

In this thesis, we have proposed an ontology for daily activities. This ontology
contains a set of physical objects (mobile objects and contextual objects) and a
set of states and events (body postures and daily activities) which we are inter-
esting to recognize.
Table 5.1 shows the proposed physical objects for home applications, including
mobile objects and contextual objects.
Table 5.2 shows the proposed body postures interesting to recognize.
Table 5.3 and table 5.4 show the proposed daily activities interesting to recognize.
Physical objects, body postures and daily activities shown in the previous tables
and presented in normal font are already implemented and used, and those pre-
sented in italic font are useful but not yet implemented.
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Figure 5.3: Model of composite event

Mobile Object Person, Pets, Chair, and Armchair

Contextual Object Kitchen, Livingroom, Bedroom, Bathroom, Entrance,
Cooking Zone, Entering Zone, Exiting Zone,
Eating Zone, Sleeping Zone and Bathing Zone,
Fridge, Stove, Microwave, Sink, Countertop,
Upper Right Cupboard, Upper Left Cupboard,
Lower Right Cupboard, Lower Left Cupboard,
Middle Cupboard, Right Drawer, Left Drawer, Chair,
Armchair, Table, TV, Closet, Bed,
Washbowl, Toilet, and Shower

Table 5.1: Physical objects for monitoring activities at home. Pets object is useful but not yet
implemented
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5.4.3 Ontology Hierarchy of Activities

5.4.3.1 Ontology Concepts

We refer to context as any information that can be used to characterize the
activity of the person, including the zone that the person is in, contextual objects
that the person interacts with, and the time of the day when an activity is being
performed. The state change of the contextual object involved in an activity can
be detected through low-level sensor data. When the value of a sensor changes,
the state of the associated contextual object of that sensor changes also. This
indicates that the person has just interacted with contextual objects related to
an activity, which can then be used to infer the activity that the person is doing.
The interaction with contextual objects involved in an activity are recorded
by associated sensors which send signals to the central system for processing.
The relationships between sensors, contextual objects and activities can be
represented by a hierarchical network of concepts.

In the �rst instance it is possible to recognize that a particular activity
can be performed or associated with a certain zone (e.g. the kitchen zone) in
the home. As our �rst attempt of introducing the hierarchy we therefore group
activities of daily living according to the spatial zone they can be performed in.
Each ontology represents hierarchical relationships (e.g. contact sensor activates
fridge door and fridge door is open) between sensors, related contextual objects
and relevant activities within a zone location.
On a hierarchical ontology, from the point of view of graphical representation,
a sensor is represented by a circular node. A rectangular node represents
respectively contextual objects and activities (i.e. sub-activity and activity).
A sensor node is directly connected to a contextual object node by an arrow.
Figure 5.4 summarizes the graphical notations of hierarchical ontology.
Given that some contextual objects are related to several activities, they can also
be connected to a set of activities (see �gure 5.5).

5.4.3.2 Examples

If we consider the scenario of identifying the type of a meal a person is preparing
it is possible to further expand on the concept of the ontology network. If for
the sake of simplicity we reduce the possible activities to preparing a hot or cold
meal, we begin to consider a simpli�ed kitchen environment and a set of sensors
which would be required to gather su�cient information to permit discrimination
between these two activities.
Contact sensors are installed on the fridge door and the kitchen cupboards, water
�ow sensors are installed on the water pipes, and electrical sensors are installed
on electrical outlets.

An ontology hierarchy for the activity "Prepare meal" being performed in the
kitchen can be constructed as shown in �gure 5.6.
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Figure 5.4: Graphical notation of hierarchical ontology

Figure 5.5: A general ontology network of Activities

5.4.4 The Proposed Event Models for Daily Activities

To estimate the performance of all the de�ned event models, and to de�ne the
values of all the following thresholds (i.e. the di�erent thresholds introduced in
the de�nition of event models in sections 5.4.4.1, 5.4.4.2, and 5.4.4.3), we have
proposed an estimation of the duration of each event. This estimation is done
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Figure 5.6: An ontology network of preparing a meal activity

by calculating the mean duration value of each event by using the leave-one-out
cross-validation (LOOCV). This technique involves a single observation as the
validation data, and the remaining observations as the training data. This is
repeated such that each observation is used once as the validation data.

To estimate threshold values we have used the ground truth for 5 observed old
persons among the experimental data, we calculate the mean duration of each
activity for a training set of data (i.e. at each time, we remove 1 person (a
testing set) and we used the 4 remaining as a training set). We calculate the
mean duration values of each event by using the following equation:

µEi,Pk =
∑Pj∈P,Pj 6=PkDEi,P j

K − 1
, ∀Pk ∈ P (5.3)

Where:

• µEi,Pk represents the mean duration for a given event Ei for each person
Pj without the person Pk;

• P = {P1, P2, P3, P4, P9};

• K − 1 represents the number of the training set (i.e. K − 1=4 in this case);

• DEi,P j represents the mean duration (ground truth duration) of each event
Ei for each person Pj.
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Event (Ei) Ground truth mean durations
DEi,P1 DEi,P2 DEi,P3 DEi,P4 DEi,P9

Using Fridge 00:00:15 00:00:16 00:00:10 00:00:29 00:00:18
Using Stove 00:00:18 00:00:11 00:00:25 00:00:11 00:00:15
Sitting on a Chair 00:04:33 00:06:03 00:22:16 00:05:42 00:51:27
Sitting on an Armchair 00:02:02 00:12:04 00:04:04 00:07:21 00:00:36

Table 5.5: Ground truth mean durations of 4 daily activities for 5 observed elderly persons.
Time unit is hh:mm:ss

Event (Ei) Mean durations µEi,Pk of each event Ei for 4 persons
µEi,P1 µEi,P2 µEi,P3 µEi,P4 µEi,P9

Using Fridge 0:00:18 00:00:18 00:00:20 00:00:15 00:00:17

Using Stove 0:00:16 00:00:17 00:00:14 00:00:17 00:00:16

Sitting on a Chair 0:21:22 00:21:00 00:16:56 00:21:05 00:09:39

Sitting on an Armchair 0:06:01 00:03:31 00:05:31 00:04:41 00:06:23

Table 5.6: Mean durations µEi,Pk of 4 daily activities Ei for 4 persons. Time unit is hh:mm:ss

Table 5.5 summarizes the ground truth mean durations of 4 daily activities for
5 observed elderly persons.

Table 5.6 summarizes the mean durations using the leave-one-out method of 4
daily activities for 5 observed elderly persons.

We have de�ned the thresholdi of each event Ei as following:

min {µEi,Pk} <= thresholdi <= max {µEi,Pk} (5.4)

For example (as shown in table 5.6) the threshold1 of the event E1 (Using Fridge)
is:

00 : 00 : 15 <= threshold1 <= 00 : 00 : 20 (5.5)

5.4.4.1 Video Event Models

We call video event each state and/or event detected by a video camera.
We have de�ned the following form for the provided video data:

• SensorID Id: Single sensor identi�er which is transmitting the data;

• SensorClass c: Represents the class of information provided by the sensor
(e.g. video);
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• SensorLocation x: This is the location of the physical sensor in the scene
referential;

• Time t: Represents the moment when the data was provided (YYMMDD-
HHMMSS.MS);

• SensorMode m: It represents the di�erent modes allowing the sensors to
provide their data (i.e. "continuous" mode for the video cameras);

• Measurement y: This is the value of the physical property as measured
by the sensor. The physical property may have more than one dimension
and this is the reason we represent it as a vector y. For video cameras, the
vector y represents the position of the person in the scene referential;

• SensorUncertainty ∆y: This is a generic term and includes errors rela-
tively to the measurement y.

Each provided video data is recorded with its date and time of occurrence.
These data are stored in an XML �le and transmitted via a parser to the event
detection process.
In this thesis, we have modeled 58 video event models which include 26 posture-
based event models.
We have modeled 16 primitive video states related to the location of the person
in each zone (e.g. inside kitchen, inside livingroom, outside kitchen) and his/her
location versus equipments in the observed scene (e.g. close to table, far from
armchair). We have also modeled 6 composite video states related to a person
staying in each zone (e.g. staying in the kitchen, staying in the bedroom) and 10
primitive video events related to time staying close to each equipment in the scene.

This section shows several examples of video event models using the pre-
sented event description language. Figure 5.7 shows the model of a primitive
state called "Inside Kitchen" expressing the status of a person being inside a
zone which name is kitchen . This video event involves two physical objects (a
person p and a zone z), one spatial constraints and one symbolical constraint.
The spatial constraint allows to verify whether p is geometrically inside the
zone z and the symbolical constraint allows to verify the name of the zone z
(i.e. kitchen). The operator "in" is a prede�ned spatial constraint involving
two physical objects p and z to verify whether p is geometrically inside z. The
evaluation of the spatial constraint is based on geometrical calculations.

Figure 5.8 shows an example of using spatial and temporal constraints to model
an event. The modeled event "Person Enters Bedroom" expresses a primitive
event where a person p is �rst located in livingroom (which is an adjacent zone to
the bedroom), after that he/she enters bedroom. This event is composed of three
physical objects (person p, zones z1 and z2), 2 components (i.e. �rst a person
is located inside the livingroom, after that he/she is located inside the bedroom)
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Figure 5.7: A representation of the "Inside Kitchen" primitive state to model the status of a
person p being geometrically inside a zone z which name is Kitchen

and four constraints. Two symbolical constraints are related to the names of the
two zones, one temporal constraint is related to the time staying inside a bedroom
and the last constraint is related to a symbolical temporal constraint to express
the sequence of c1 and c2: (c1 before meet c2).

Figure 5.8: A description of a "Person Enters Bedroom" primitive event.

Posture-Based Event Models

Using the proposed 3D human postures already described in section 3.2.2.2 in
chapter 3, we have modeled 26 posture-based events which are useful to recognize
activities of interest at home.

Each of the proposed 3D human postures plays a signi�cant role in the
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recognition of the targeted activities of daily living or of abnormal activities. For
example, the posture "standing with hands up" (see �gure 5.9) is used to detect
when a person is carrying an object such as plates. The posture "standing with
arm up" (see �gure 5.10) is used to detect when a person reaches and opens
kitchen cupboard and his/her ability to do it. These proposed human postures
are not an exhaustive list but represent the key human postures taking part in
everyday activities.

Figure 5.9: View and 3D visualization of a "hands-up" posture

Figure 5.10: View and 3D visualization of an "arm-up" posture

We have de�ned two types of avatar: an avatar for the man and an avatar for
the woman (see �gure 5.11). These de�ned avatars do not take into account the
shape of the person (i.e. a slim person, a fat person). But they take into account
the height of the person.
For each 3D human posture displayed in �gure 3.7 in chapter 3, we have

associated a numeric value. For example we have associated a value "104" to the
"standing" posture and a value "106" to the "bending" posture. These values
are independent of the type of the de�ned avatar. For example man avatar and
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(a) A man avatar (b) A woman avatar

Figure 5.11: Two de�ned avatars

women avatar have the same value for the "standing" posture.

In collaboration with gerontologists and geriatrics from the Nice hospital
in France, for homecare applications, we have modeled 10 primitive posture-
based states related to human postures (e.g. person is standing, person is
bending), and 10 composite posture-based states related to the human posture
with his/her location in the scene (e.g. person is standing in the kitchen).

Figure 5.12 shows the model of the "standing" posture and �gure 5.13
shows an example of the "standing" posture.

Figure 5.12: Primitive posture-based state representing the model of "standing" posture

1. Normal Activities: We have modeled 4 transitions in human postures re-
lated to normal activities using the proposed primitive posture-based states:
standing-up, sitting-down, sitting-up and lying-down. "Standing-up" (see
�gure 5.14) represents a transition from slumping and/or sitting to bending
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Figure 5.13: View and 3D visualization of "standing" posture

and/or standing, "sitting-down" (see �gure 5.16) from standing and/or
bending to sitting, "sitting-up" (see �gure 5.17) from lying to sitting,
"lying-down" (see �gure 5.18) from standing and/or, bending, sitting on
the �oor, to lying on the �oor.
Figure 5.15 shows "standing-up from the armchair" activity model which is
modeled as a primitive event.

Figure 5.14: Example of "standing-up from the armchair" activity.

2. Abnormal Activities: Elderly persons are typically at higher risk of
falls and other injuries. Elderly falling down have a high risk of injuring
themselves. In some cases the resulting injury may involve broken bones
and long recuperation times. Accidents are the �fth leading cause of death
in older adults, with falls constituting two thirds of these accidents. As we
age, we experience changes in vision, sensory processes, and hearing. Our
reaction time slows, and we might lose our balance. An elderly people gait
is often sti�er, less coordinated, and muscle strength and tone decline with
age. Gait problems are a common cause for falls and a common cause of
muscle weakness found in stroke, Parkinson, fractures, and arthritis.
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Figure 5.15: "Standing-up from the armchair" model

Figure 5.16: Example of "sitting-down" activity.

For all these reasons, in this thesis we have modeled 2 abnormal activities
of elderly living alone in his/her own home: fainting and falling-down.
These abnormal activities can indicate the presence of health disorders
(physical and/or mental) of elderly and can enable their early assistance.
"Fainting" which is the transition from standing and/or bending, to sitting
with �exed legs and sitting with outstretched legs, and "falling-down"
which is the transition from standing and/or bending, to sitting with �exed
legs and lying with outstretched legs.

These modeled abnormal situations are detailed below:

• Fainting. This activity has many forms (see �gure 5.19). In this
thesis we have de�ned two types of fainting situation: fainting without
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Figure 5.17: Example of "sitting-up" activity.

Figure 5.18: Example of "lying-down" activity.

loss of balance (see �gures 5.19(a), 5.19(c)) and fainting with loss of
balance (see �gure 5.19(b)) which is composed of the transition states
from standing to lying on the �oor with outstretched legs. Fainting
without loss of consciousness is composed of the transition states from
standing, bending to sitting (with �exed and outstretched legs), which
is modeled as described in �gure 5.20.

(a) Fainting on the
�oor

(b) Fainting with losing
balance

(c) Fainting on a chair

Figure 5.19: Di�erent forms of "fainting"
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Figure 5.20: Example of "Fainting" model

This "fainting" model contains 1 physical object (the person), 4 compo-
nents (human postures), 2 constraints and 1 alert. The �rst constraint
consists in sequential order between the components and the second
constraint represents the duration of the sitting posture. When these
components occurred and all the constraints are veri�ed, the fainting
event is recognized, and an alert is triggered.

• Falling-down. This activity has many forms. It is modeled by a
transition between states: standing, bending, sitting on the �oor (with
�exed or outstretched legs) and lying (with �exed or outstretched legs).
There are di�erent visual de�nition for describing a person falling
down. It depends on the wellness and the health of the person. Thus,
we have modeled the event "falling-down" with three models:

� Falling-down 1: Represents a change state from standing, sit-
ting on the �oor with �exed legs and lying with outstretched legs.
Figure 5.21 shows a model of falling-down 1 situation.
In this example, the "falling-down 1" model contains 1 physical
object (the person), 3 components (human postures), 2 temporal
constraints and 1 alert. The �rst constraint represents a symbol-
ical temporal constraint to express the sequence of 2 components
(pSit before meet pLay) and the second constraint represents
the duration of the laying posture. When these components oc-
curred and all the constraints are veri�ed, the falling-down event
is recognized, and an alert is triggered.

� Falling-down 2: Represents a change state from standing, bend-
ing and lying with outstretched legs (see �gure 5.22 (a)).

� Falling-down 3: Represents a change state from standing, sit-
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Figure 5.21: "Falling-down1" model

ting on the �oor with �exed legs and lying with �exed legs (see
�gure 5.22 (b)).

Figure 5.22: Illustration of elderly falls; (a) Example of "falling-down2" of elderly women; (b)
Example of "falling-down3" of elderly women

5.4.4.2 Environmental Events

We call environmental event each state and/or event detected by environmental
sensors (i.e. contact sensors, pressure sensors, electrical sensors, presence sensors,
and water sensors) except video cameras.
The environmental sensors provide data when its status changes. For in-
stance the contact sensor determines an opening and closing states for various
devices (i.e. kitchen cupboards, kitchen drawers, kitchen fridge, bedroom closets).
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For the provided environmental data, we have used the same form as used
for video cameras:

• SensorID Id: Single sensor identi�er which is transmitting the data;

• SensorClass c: Represents the class of information provided by the sensor
(e.g. pressure, electrical, contact);

• SensorLocation x: This is the location of the physical sensor in the scene
referential;

• Time t: Represents the moment when the data was provided (YYMMDD-
HHMMSS.MS);

• SensorMode m: It represents the di�erent modes allowing the sensors to
provide their data (i.e. "by event" for the environmental sensors);

• Measurement y: This is the value of the physical property as measured by
the sensor. The physical property may have more than one dimension and
this is the reason we represent it as a vector y. For environmental sensors,
the value of y is 0 if the status of the sensor is OFF and is 1 if the status of
the sensor is ON;

• SensorUncertainty ∆y: This is a generic term and includes errors rela-
tively to the measurement y.

Each provided environmental data is recorded with its date and time of oc-
currence. These data are stored in an XML �le and transmitted via a parser
to the event detection process. From these data, we infer the corresponding
environmental event. For example, if the provided data is "On" and the sensor
class is "contact" then we infer the contact event "Open". If the provided data
is "O�" and the sensor class is "contact" then we infer the contact event "Closed".

We have modeled 10 primitive environmental states related to the data provided
by the environmental sensors (i.e. a contact sensor provides "open/closed" events,
a pressure sensor provides "pressed/not-pressed" events, an electrical sensor pro-
vides "used/not-used" events, a presence sensor provides "present/not-present"
events, and a water sensor provides "water-consumed/water-not-consumed"
events).
Using these primitive states we have modeled 16 primitive environmental events
to describe the status of each equipment in the scene (e.g. microwave is used,
microwave is not-used, fridge is open, fridge is closed).
Figure 5.23 shows the two primitive environmental states related to the events
provided by a contact sensor.
Figure 5.24 shows the two primitive environmental states related to the events
provided by a pressure sensor.
Figure 5.25 shows the two primitive environmental states related to the events
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Figure 5.23: Primitive environmental states of events provided by contact sensor.

Figure 5.24: Primitive environmental states of events provided by pressure sensor.

Figure 5.25: Primitive environmental states of events provided by an electrical sensor.

provided by an electrical sensor.
Figure 5.26 shows the primitive environmental event model related to the

"Open" status of a fridge.
Figure 5.27 shows the primitive environmental event model related to the

"Used" status of a microwave.
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Figure 5.26: Primitive environmental event related to the status of a fridge.

Figure 5.27: Primitive environmental event related to the status of a microwave.

5.4.4.3 Multimodal Event Models

We call multimodal event each event detected by both video cameras and
environmental sensors.
In this thesis we have modeled 16 composite multimodal events: using (i) fridge,
(ii) cupboards, (iii) drawers, (iv) microwave (see �gure 5.28), (v) stove, (vi)
telephone, (vi) watching TV, (viii) dish washing, (ix) slumping in armchair,
(x) taking a meal, and (xi) 6 variations of preparing a meal: breakfast, lunch,
dinner, warming a meal, cold meal and hot meal. Each activity is modeled with
sub-activities relating to objects involved in that activity. For example, in the
de�nition of the model of preparing lunch, the person should be located close to
the countertop in the kitchen and staying at this location for a while, the person
opens cupboards to take ingredients and dishes (e.g. plates, fork, knife), opens
the fridge to take foods, uses the stove to cook the meal, and set up the table.
Figure 5.29 shows a composite multimodal event "Slumping in an Armchair"
combining both pressure sensor installed under armchair to detect when a person
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Figure 5.28: Illustration of "using microwave" activity

is sitting and video camera to detect a person approaching the armchair and to
detect the slumping posture (i.e. by using posture model). This event model is
currently used to detect when a person is slumping in an armchair which can
indicate an abnormal activity if a stove is still running.

On �gure 5.30 is depicted an example of a composite multimodal event,
"Using Microwave": a person p is using a microwave equipment. This scenario is
based on video and environmental events and will be recognized if a sequence of
�ve sub-events are recognized and four constraints described on �gure 5.31 has
been veri�ed.

• Preparing a Meal

We have de�ned the "preparing meal" activity as follows:
IF the person is located close to the countertop in the kitchen AND (a
person accesses to meal ingredients AND a person accesses plates or
utensil cupboards) AND a person uses an appliance (e.g. microwave,
stove) THEN a meal is prepared.

The location of a person close to the countertop in the kitchen last-
ing for a minimum period of time is detected by video camera. The use of
meal ingredients is detected by the use of a food storage cupboard (contact
sensor) and/or by the use of the fridge (contact sensor). The use of plates
and/or utensil is detected by the use of dishes cupboard and/or drawer
(contact sensor) and the use of appliance is detected by the use of stove or
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(a) An illustration of slumping activity

(b) Slumping model

Figure 5.29: An illustration of "slumping in an armchair" activity and a corresponding model

microwave (electrical sensor and presence sensor).

In this thesis, we have modeled 6 variations of preparing a meal:
breakfast, lunch, dinner, warming a meal, cold meal and hot meal.
Figure 5.32 shows a model of preparing lunch. This model involves 5
physical objects (the person, and 4 equipments), 4 components: stays at
countertop (video camera), and three composite multimodal events related
to the using of the kitchen equipment (Cupboards, Fridge and Stove) and
2 temporal constraints.

• Taking a Meal An example of the modeling event "taking a meal" is
presented in �gure 5.33.
This "taking a meal" model contains 5 physical objects (a person p, 2

zones: a kitchen and a livingroom, 2 equipments: a table and a chair), 4
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Figure 5.30: Using microwave model

Figure 5.31: Temporal constraints between states and events constituting a composite multi-
modal event "using microwave"

components, 4 spatio-temporal constraints and 1 alert. The components
are: a presence of preparing lunch in a kitchen, detection of a person enters
in a livingroom, detection of a person close to table, and the sitting posture
of the person in a chair. The spatio-temporal constraints are related to the
duration and to sequential order between the components. When these
components occurred and all the constraints are veri�ed, the taking meal
event is recognized and an alert is triggered.

We have de�ned another model "taking a meal 2" of activity with a
logical location where the person is supposed to have his/her meal. This
logical location can correspond to several real physical locations such as
kitchen table, livingroom table, livingroom armchair, etc (see �gure 5.34).
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Figure 5.32: Example of "preparing lunch" model

Figure 5.33: Taking a meal model

5.5 Activity Recognition

The automatic recognition of activities is a real challenge for cognitive vision
research because it addresses the recognition of complex activities. The challenge
is to perform a real-time event recognition algorithm able to e�ciently recognize
all the events occurring in the scene at each instant.
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Figure 5.34: Taking a meal model with a logical location

The event recognition process uses the tracking of mobile objects, the a
priori knowledge of the scene and prede�ned event models. The algorithm
operates in 2 stages: (i) at each incoming frame, it computes all possible
primitive states related to all mobile objects present in the scene, and (ii) it
computes all possible events (i.e. primitive events, and then composite states
and events) that may end with the previously recognized primitive states.

We have extended the existing event recognition algorithm [Vu et al., 2003]
to address complex activity recognition involving several physical objects of
di�erent types (e.g. persons, chairs) in a scene observed by video cameras and
environmental sensors over an extended period of time. We propose a method
to recognize video and environmental events based on spatio-temporal reasoning
taking full advantage of a priori knowledge about the observed environment and
of video and environmental event models.

In the next sections we describe �rstly the proposed algorithm for event
recognition using only video sensors or environmental sensors, after that we
describe the proposed algorithm for multisensor event recognition using the both
sensors.

5.5.1 Event Recognition Process

The proposed event recognition algorithm is able to recognize which video or en-
vironmental events are occurring in a scene at each instant. To bene�t from all
the knowledge, the event recognition algorithm uses the coherent tracked mobile
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objects, the a priori knowledge of the scene and the prede�ned video or envi-
ronmental event models. To be e�cient, the recognition algorithm processes in
speci�c ways video or environmental events depending on their type. Moreover,
this algorithm has also a speci�c process to search previously recognized video or
environmental events to optimize the whole recognition.

5.5.1.1 Video Event Recognition Process

Video events are �rst represented by experts using the event description language
(see section 5.4.1.1) by de�ning video event models. Then, video event models
are automatically (o�-line) parsed and analyzed to be used later during the recog-
nition process. Finally, analyzed video event models are automatically (on-line)
used with incoming low level video events to determinate which events are occur-
ring in the observed scene (see �gure 5.35).
In this section we describe �rstly the video event recognition process. After that
we describe the dedicated algorithm.

Figure 5.35: Processing of video event models

Recognition of Primitive Video States
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To recognize a primitive video state, the recognition algorithm performs a
loop of two operations:

1. The selection of a set of physical objects then

2. The veri�cation of the corresponding atemporal constraints until all combi-
nations of physical objects have been tested.

Once a set of physical objects satis�es all the atemporal constraints, the primitive
state is recognized. To enhance primitive event recognition, after a primitive state
has been recognized, event triggers are generated for each primitive event the last
component of which corresponds to the recognized primitive state. The event
trigger contains the list of the physical objects involved in the primitive state.

Recognition of Primitive Video Events

To recognize a primitive video event, given the event trigger partially in-
stantiated, the recognition algorithm consists in looking backward in the past for
a previously recognized primitive state matching the �rst component of the event
model. If these two recognized components verify the event model constraints,
the primitive event is recognized.
To enhance the composite video event recognition, after a primitive event has
been recognized, event triggers are generated for all composite events the last
component of which corresponds to the recognized primitive event.

Recognition of Composite Video States and Events

The recognition of composite video states and events usually implies a
large space search composed of all the possible combinations of components and
physical objects. All the composite states and events are decomposed into states
and events composed at the most of two components. Then the recognition of
composite states and events is performed similarly to the recognition of primitive
events.

To recognize the prede�ned event models at each instant, we �rst select a
set of event triggers that indicate which events can be recognized. These triggers
correspond to a video event (primitive state or event) or to a composite video
event that terminates with a component recognized at the previous or current
instant.
For each of these event triggers, solutions are found by looking for component
instances already recognized in the past to complete the recognition of event. A
solution of an event model M is a set of physical objects that are involved in the
recognized event and the list of corresponding component instances satisfying all
the constraints of M.
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Algorithm for Video Event Recognition

We de�ne a trigger as a video event which can be potentially recognized.
There are three types of triggers : the primitive video event models (type 1),
the composite video states (type 2) and the composite video events already
recognized at the previous instant (type 3) (see the algorithm 1).
We have initialized a list LT of triggers with all triggers of type 1 (i.e. primitive

Algorithm 1 V ideoEventRecognitionAlgorithm

For each primitive video state model
Create a trigger T of type 1 for the primitive video event model
For each solution ρe of T
If ρe is not extensible Then
Add ρe to the list of recognized video events
Add all triggers of type 2 of ρe to the list LT (List of Triggers)
If ρe is extensible with ρ

′
e recognized at previous instant Then

Merge ρe with event ρ
′
e

Add all triggers of type 2 and 3 of ρ
′
e to the list LT

While LT 6= �
Order LT by the inclusive relation of video event models
For each trigger T0 ∈ LT
For each solution ρ0 of T0

Add ρ0 to the list of recognized video events
Add all triggers of type 2 and 3 of ρ0 to the list LT

video event models). Once we have recognized a primitive video events ρe, we
try to extend ρe with a recognized video events ρ

′
e at the previous instant. If

ρe cannot be extended, we add the triggers of type 2 that terminate with ρe to
the list LT . If ρe is extended with ρ

′
e, we add the triggers of type 2 and 3 that

terminates with ρ
′
e. The triggers of type 2 are the instances of composite video

states of ρ
′
e and the triggers of type 3 are the composite video events ρ

′
e already

recognized at the previous instant and that terminates with ρ
′
e. After this step,

there is a loop process �rst to order the list LT by the inclusive relation of event
models contained in the triggers and second to solve the triggers of LT . If a
trigger contains an instance of video event ρ

′
0 that can be solved (i.e. totally

instantiated), we add the triggers of type 2 and 3 that terminate with ρ
′
0.

5.5.1.2 Environmental Event Recognition Process

Environmental events are �rstly parsed (using an XML parser) to the event de-
scription language (see section 5.4.4.2) by de�ning environmental event models.
Then, environmental event models are automatically (o�-line) analyzed to be used
later during the recognition process. Finally, these models are used (on-line) with
incoming low level environmental events to determine which events are occurring
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in the observed scene (see �gure 5.36).
In this section we describe �rstly the environmental event recognition process.
After that we describe the dedicated algorithm.

Figure 5.36: Processing of environmental event models

Recognition of Primitive Environmental States

After receiving data from the environmental sensors, we infer the occurred
environmental events.
To de�ne the primitive environmental states for each sensor, the recognition
algorithm associates for each provided data a corresponding state. When a sensor
is activated, a provided data is "On", then the recognition algorithm searches the
associated sensor class to de�ne which states are the current (e.g. open/closed
states, used/not-used states).
Symbolical constraint is used to de�ne each primitive environmental state. This
constraint is related to the status of the equipment associated to the environmen-
tal sensor. Once this constraint is satis�ed, the primitive environmental state is
recognized.



5.5 Activity Recognition 99

Recognition of Primitive Environmental Events

To recognize a primitive environmental event, the recognition algorithm
uses the previously recognized primitive environmental states matching with the
associated equipments.

Algorithm for Environmental Event Recognition

We have de�ned two types of environmental events: primitive environmen-
tal states (type 1) and primitive environmental events (type 2) (see algorithm 2).

Algorithm 2 EnvironmentalEventRecognitionAlgorithm

Initialize all the sensors status with the value "O�"
If the status of the sensor change to value "On" Then
Create a primitive state model which represents the new status of the sensor
For each primitive environmental state model
Create a variable V of type 1 for the primitive environmental event model
For each solution ρs of V
Add ρs to the list of recognized environmental events
Add all the variable of type 1 and 2 of ρs to the list of recognized environmental
events

5.5.2 Multisensor Event Recognition Process

This section presents the recognition of multisensor (i.e. multimodal) events (i.e.
video-environmental events). The multisensor event recognition process is able to
recognize which events are occurring in the scene at each instant. The recognition
process takes as input video and environmental events and the a priori knowledge
of multimodal events to be recognized. These events are �rst processed to synchro-
nize them. Then, the event recognition process takes as input the synchronized
events and tries to understand which events (i.e. video-environmental events or
activities) are occurring.
Figure 5.37 shows the process of recognizing multimodal events at each instant.
Our goal is to obtain an algorithm that is able to recognize in real-time (video
rate) multimodal events (or complex events) that totally occurred through videos.
Thus, there are two main issues to be focused on: (1) the fusion of environmental
and video events 5.5.2.1 to obtain better synchronized events as input, and (2)
the recognition of multimodal events 5.5.2.2.

5.5.2.1 Multisensor Event Fusion

The objective of event fusion is to synchronize dated events (i.e. time stamped
events) received from di�erent sources (e.g. video cameras and environmental
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Figure 5.37: The multisensor (video-environmental) event recognition process at each instant

sensors). Synchronization of events received from di�erent sources is an impor-
tant step to have all received events in the temporal order they occurred. The
need of event synchronization is due to delays because the information acquisi-
tion frequencies of di�erent sources are di�erent. For instance, video acquisition
frequency is 25 frames/second at the maximum.
To cope with the synchronization issue, we use di�erent con�gurations of delays
between components composing a multimodal video-environmental event for the
recognition algorithm to process temporal constraints with time tolerances. More
precisely, we de�ne di�erent event models corresponding to variations of delays
between non-video and video processing for modeling one multimodal event.
This method to cope with synchronization issue is not fully satisfactory, since the
time delays between the occurrences of video-environmental events should not im-
pose an order for the recognition of more complex events. However, experiments
for healthcare applications (see section 6.4.3) show that this method can be used
for the e�cient recognition of multimodal events in limited conditions (e.g. en-
vironmental events are only considered as additional information to con�rm the
recognition of complex events based on visual information).

5.5.2.2 Multimodal Event Recognition

After an initial work on simple activity recognition (primitive states and events)
to show the large diversity of events which can be addressed, the next challenge is
to handle automatic recognition of complex activities (i.e. multimodal events) by
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combining video events with environmental events already recognized. Complex
activities refers to the activities detected by both video and environmental
sensors during an extended time period.

The next section presents an algorithm for real-time recognition of complex events
that totally occurred in the observed scene depicted by video-environmental
sequences. We �rst specify the two hypotheses for the recognition.

• Hypothesis 1 (good video processing): all mobile objects are well
detected by vision algorithms.

• Hypothesis 2 (good sensor processing): all non-video data are well
detected by sensor processing algorithms.

These hypotheses sound strong and not realistic. Experimentally (see sec-
tion 6.4.3), environmental events and video events can be missed (rarely wrong)
due to segmentation errors and to sensor failures. Despite these errors, we have
managed to get successful overall results as shown in the section 6.4.3.

5.5.2.3 Algorithm for Multimodal Event Recognition

We de�ne variable V1 as a video event and a trigger V2 as an environmental event
which can be potentially recognized. There are 3 types of variables : the primitive
video event (type 1), the primitive environmental event (type 2), and the compos-
ite events already recognized at the previous instant (type 3) (see the algorithm 3).

Algorithm 3 MultimodalEventRecognitionAlgorithm

For each primitive video model and each primitive environmental model
Create variables V1 of type 1 and V2 of type 2 for the multimodal event model
For each solution δm of V1 and V2

Add δm to the list of recognized multimodal events
Create a variable V3 of type 3 for the multimodal event model Add all variables
of type 1,2, and 3 of δm to the list of recognized multimodal events

5.6 Behavioral Pro�le

The �rst step to establish a behavioral pro�le of an observed person is to
determine his/her daily activities. This behavioral pro�le is de�ned as a set of
the most frequent and interesting activities of an observed person. The basic goal
of determining a behavioral pro�le is to measure variables from persons during
their daily activities in order to capture deviations of activity and posture to
facilitate timely intervention or provide automatic alert in emergency cases.



102 Multisensor Activity Recognition

The obtained results of the behavioral pro�le for 9 elderly persons are de-
scribed in chapter 6 in section 6.5.2.

5.7 Discussion

The proposed event recognition algorithm is able to recognize which events occur
in the scene at each instant. The main problem of this algorithm is that it does
not take into account uncertainty in sensor measurements. For example, for a
pressure sensor, the person which drops his bag on the chair, may activate the
chair sensor (sensor installed under the chair) and giving a false alarm. The
false alarm is due when the person is located close to the chair (the same chair
where the person has drop his bag) with poor detection for a person (with video
camera). To reduce this kind of false alarm we propose to handle uncertainty in
sensor measurements by using Dempster-Shafer theory.

5.8 Handling Uncertainty in Sensor Measurements

Advances in technology have provided the ability to equip the home environment
with a large number of di�erent sensors like the ones described in the previous
section. These sensors may provide information about human activities. The
main problem is that data obtained from sensors have di�erent degrees of
uncertainty [Ranganathan et al., 2004]. This uncertainty may arise for a number
of reasons, as described in section 4.3.1. The question which is to be asked
is if a sensor provides a value of "on" or "o�" how sure can we be about this
measurement and how can we accommodate for any uncertainty that may exist.
Bayesian methods and Evidence Theory of which the Dempster-Shafer (DS)
theory of evidence (DS theory) is a major constituent are commonly used to
handle uncertainty.

In this section, we propose an evidential approach to reasoning under un-
certainty in the sensor measurements. The proposed approach is based on the
use of Dempster-Shafer theory through the fusion of contextual information
inferred from uncertain sensor data.
As described in section 2.3.5.1 in chapter 2, Dempster-Shafer (DS) theory of
evidence originated from Dempster work [Dempster, 1968] and further extended
by Shafer [Shafer, 1976], is a generalization of traditional probability which
allows us to better quantify uncertainty.
In plus to the basic concepts of Dempster-Shafer theory already described in
section 2.3.5.1, the following evidential operations are involved when inferring
activities along evidential networks:

• Reliability discounting: Some sensors are more vulnerable to misread-
ing or malfunctioning due to their type and location and where they are
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installed. The impact of evidence is discounted to re�ect the sensor's credi-
bility, in terms of discount rate r (0 ≤ r ≤ 1). The discounted mass function
for each A ⊂ Θ is de�ned as follows:

mr(A) = (1− r)m(A) (5.6)

Where:
- r=0; the source is absolutely reliable,
- 0<r<1; the source is reliable with a discount rate r,
- r=1; the source is completely unreliable.

• Multivalued mapping: Dempster used a multivalued mapping to re�ect
the relationship between two frames of discernment both representing evi-
dence to the same problem but from di�erent views.
For two frames of discernment ΘE and ΘH , a multivalued mapping Γ de-
scribes a mapping function Γ : ΘE ← 2ΘH , assigning to each element ei of
ΘE a subset Γei of ΘH .

• Translation: The evidential operation called translation can be used to
determine the impact of evidence originally appearing on a frame of discern-
ment upon elements of a compatibly related frame of discernment. Suppose
the frame of discernment ΘE carries a mass function m, the translated mass
function over the compatibly related frame of discernment ΘH is:

m
′
(Hj) =

∑
Γei=Hj

m(ei) (5.7)

Where:
- ei ∈ ΘE , Hj ⊆ ΘH , and Γ : ΘE ← 2ΘH is a multivalued mapping.

5.8.1 Applying Dempster-Shafer Theory of Evidence for Fusing
Sensors

In this thesis we used environmental sensors which provide two binary values
"On" if the sensor is activated and "O�" if the sensor is not activated.
The challenges posed with the use of binary sensor technology and the de-
termination if a sensor provides a value of "On" or "O�" are huge. By
applying Dempster-Shafer (DS) theory of evidence for the representation and
management of sensor uncertainty will provide a possible solution to this problem.

The Dempster-Shafer Theory provides a means to numerically represent
our belief on the value set of a variable in the form of a mass function.
The exhaustive set of mutually exclusive values that a variable can hold is
represented by the frame of discernment (Θ). For instance, an environmental
sensor denoted S can be in two states "On" and "O�". If we use "1" to represent
"On" and "0" to represent "O�". Then Θ = {1, 0} is a frame of discernment for
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the variable S.

A mass value can be committed to either a subset of Θ. This property
makes DS theory more expressive than probability theory. When a mass value is
committed to a subset that has more than one element, it is explicitly stating
that there is not enough information to distribute this belief more precisely to
each individual element in the subset. In particular, the total belief is assigned
to the whole frame of discernment, m(Θ) = 1, when there is no evidence about
Θ at all. In contrast, probability theory lacks this ability by dividing the total
belief equally among elements of Θ. If m(A) > 0, the subset A of Θ is called a
focal element of the belief distribution.

The main di�erence between these de�nitions and conventional probability
is that a mass value can be committed to either a subset of Θ. Mass functions
can be used to de�ne the lower and upper bounds of the probability. The lower
bound called the belief (Bel) represents the degree of belief in supporting A. The
upper bound called the plausibility (Pls) describes the degree of belief on failing
to refute A.

Combination Rule: One of the main advantages of Evidence Theory is
that Dempsters rule of combination allows us to accumulate evidence from
distinct sources. In the case of imperfect data (uncertain, imprecise and
incomplete), fusion is an interesting solution to obtain more relevant information.
Evidence theory o�ers appropriate aggregation tools. From the basic belief
assignment denoted mi obtained for each information source, it is possible to use
a combination rule in order to provide combined masses of the di�erent sources.
Let m1 and m2 be two mass functions on Θ. A new mass function m then is
formed by combining m1 and m2 as:

m(C) = (m1 ⊕m2)(C) =

∑
A

⋂
B=C 6=φm1(A)m2(B)

1−
∑

A
⋂
B=φm1(A)m2(B)

(5.8)

With A,B,C ∈ Θ.
In the equation 5.8, the numerator represents the accumulated evidence for
the sets A and B, which supports the hypothesis C, and the denominator sum
quanti�es the amount of con�ict between the two sets.

Maximization: "Preparing Cold Meal" and "Preparing Hot Meal" are two
alternative sub-activities of "Preparing Meal" activity.

We de�ne the maximization operation to calculate the aggregated belief
values on an activity contributed from its alternative sub-activities.

Bel(C) = max(Bel(A), Bel(B)), andP ls(C) = max(Pls(A), P ls(B))

Where C is the composite of alternatives A and B.
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5.8.2 Evidential Network for Activity Recognition

Sensors, once activated, present contextual evidence such as which room the per-
son is in, which objects the person is interacting with and whether or not a person
is moving around the home. All of this information provides valuable evidence
which in turn can be considered indicative as to what activities the person is
performing.
Based on the proposed concept of ontology networks of activity as presented in
the previous section, we propose evidential networks of activity inference. Lower
level activities can be considered as evidence of higher level activities where the
lowest level activities are inferred from sensed contexts. We propose two types of
evidential networks: activity type and sensor type.

• An activity network contains only activities in a tree hierarchy. An activity
can be composed by one or several sub-activities. An activity may also be
a sub-activity to another activity.

There are two types of connections between an activity and its sub-
activities.

� For the �rst type of connection, the activity is said to be carried out
only when any of its sub-activities have been performed (i.e. an ac-
tivity i is performed when his sub-activity i1 or his sub-activity i2 is
performed). Such a network is drawn as a tree in which the connections
between an activity and its sub-activities are represented by lines com-
ing from the sub-activities which then merge into a single line ended by
a triangle. For example, the network shown in �gure 5.38-a indicates
that preparing meal (activity) can be either the preparing cold meal
sub-activity or the preparing hot meal sub-activity.

Figure 5.38: Examples of evidential networks of activity type. (The graphical notations are
summarized in �gure 5.4)

� In the second type of connection, the activity is only considered com-
plete when all his sub-activities have been performed (i.e. an activity
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i is performed when his sub-activity i1 and his sub-activity i2 were
performed). This type of connection is drawn by lines from the sub-
activities which all merge into a single line ended by a square.

• A sensor network is also represented as a tree hierarchy in which sensors are
represented by circle nodes, contextual objects and activities are represented
by rectangular nodes. With di�erent involvements of contextual objects in
performing a given activity it is possible to divide them into two groups:
necessary and accessory contextual objects. Necessary contextual objects
are the compulsory contextual objects which must be interacted with when
performing a certain activity. Accessory contextual objects can be consid-
ered as optional and may or may not be involved in the performance of a
speci�c activity.
The connections between the necessary contextual objects with the activ-
ity are presented by lines coming from the contextual objects which then
merge into a single line ended by a square. The connections between ac-
cessory contextual objects and the activity are represented by lines coming
from the contextual objects which then merge into a single line ended by a
triangle.
Figure 5.39 displays two examples of sensor network type: Prepare cold meal
and Prepare hot meal. It is upon the ability to formalise the representa-
tion of ontology networks that we can now proceed and manage uncertainty
within sensed contexts.

5.8.3 Evidential inference of activities

Based on the simpli�ed ontology example as previously introduced in sec-
tion 5.4.3, we draw a scenario which will be used throughout this section to help
illustrate the Dempster-Shafer concepts and evidential operations.
Case study: There are many activities that can be performed in the kitchen,
such as "Prepare meal" ("Prepare Cold Meal" or "Prepare Hot Meal"). Based
on the simpli�ed ontology of activities in the kitchen as shown in Figure 5.6, we
can derive the evidential networks for "Prepare Meal", "Prepare Cold Meal",
and "Prepare Hot Meal", as shown in Figures 5.38(a), 5.39(a) and 5.39(b)
respectively. Inference through the evidential networks can then �nd out what
activity is most likely to have been performed in the kitchen.

Observations occur at the sensor nodes as shown in Figure 5.39. For ex-
ample, in "Prepare Cold Meal" activity the sensors sFrid, sCupb, sWatr and
sVideo were �red and were activated (see �gure 5.39(a)), the other sensors were
not activated (i.e. sMicr and sStov). The activity "Prepare Cold Meal" in
Figure 5.39, the activity "Prepare Hot Meal" in Figure 5.39(b) and the activity
"Prepare meal" in Figure 5.38 are the hypotheses to be deduced.
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Figure 5.39: Examples of evidential networks of sensor type; (a) Prepare Cold Meal, (b) Prepare
Hot Meal. Sensor abbreviations: SFrid: fridge sensor, SCupb: cupboard sensor, SStov: stove
sensor, SMicr: microwave sensor, SWatr: water sensor, SVideo: video sensor. (The graphical
notations are summarized in �gure 5.4)

5.8.4 Evidential network representation

Inferring activities starts from representing the evidential networks in evidential
forms. Each node is represented by the frame of discernment. For the case
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Name Type Frame of discernment

SFrid Sensor {SFrid,¬SFrid}

Frid Context (i.e. equipment) {Frid,¬Frid}

Prepare Cold Meal Activity {PrepareColdMeal,¬PrepareColdMeal}

Table 5.7: Examples of frames of discernment

study, table 5.7 shows an example of the frame of discernment for each type of
node. Sensor nodes can have two values: active and inactive, hence the frame of
discernment for a sensor is comprised of two elements. Each arc in an evidential
network represents the relationship between one node to another, which can be
represented by a multivalued mapping or an evidential mapping.

In the evidential networks of the case study, all relationships between a
sensor and its associated contextual object node, and an activity and its
sub-activity are compatible. Given this compatibility they are represented by
multivalued mappings. Table 5.8 shows examples of multivalued mappings.

5.8.5 Activity Inference on Evidential Network

Activity inference starts with the evidential networks of sensors, followed by
reasoning on activities networks.
In a sensor network, evidence appears on a sensor node associated with a contex-
tual object, which can be summed up onto a composite contextual object node
by an equally weighted sum operation that is then translated to the relevant ac-
tivity node, or propagated to a connected activity node by an evidential mapping.

On an activity node, several belief distributions can be combined by Dempster's
combination rule.
In the example showing "Prepare Cold Meal", �rstly, evidence on sensor nodes
are represented by mass functions as follows:

mSFrid({SFrid}) = 1; (5.9)

mSCupb({SCupb}) = 1; (5.10)

mSWatr({SWatr}) = 1; (5.11)

mSV ideo({SV ideo}) = 1; (5.12)

mSStov({¬SStov}) = 1; (5.13)

mSMicro({¬SMicro}) = 1; (5.14)

In the example showing "Prepare Hot Meal", �rstly, evidence on sensor nodes
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Relationship Multivalued mappings

SFrid→ Frid {SFrid} → {Frid};

{¬SFrid} → {¬Frid};

SCupb→ Cupb {SCupb} → {Cupb};

{¬SCupb} → {¬Cupb};

SWatr →Watr {SWatr} → {Watr};

{¬SWatr} → {¬Watr};

(SFrid, SCupb, SWatr)→ (Frid, Cupb,Watr) {(SFrid, SCupb, SWatr)} →
{(Frid, Cupb,Watr)};

{¬(SFrid, SCupb, SWatr)} →
{¬(Frid, Cupb,Watr)};

(Frid, Cupb,Watr)→ PrepareColdMeal {(Frid, Cupb,Watr)} →
{PrepareColdMeal};

{¬(Frid, Cupb,Watr)} →
{¬PrepareColdMeal};

PrepareColdMeal→ PrepareMeal {PrepareColdMeal} →
{PrepareMeal};

Table 5.8: Examples of multivalued mappings; SFrid: represents a fridge sensor (a contact
sensor associated to the contextual object "Fridge"), SCupb: represents a cupboard sensor (a
contact sensor associated to the contextual object "Cupboard"), and SWatr: represents a water
sensor (a water sensor associated to the contextual object "Water Pipe"), Frid: represents the
contextual object "Fridge", Cupb: represents the contextual object "Cupboard", and Watr:
represents the contextual object "Water Pipe"
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are represented by mass functions as follows:

mSFrid({SFrid}) = 1; (5.15)

mSCupb({SCupb}) = 1; (5.16)

mSWatr({SWatr}) = 1; (5.17)

mSV ideo({SV ideo}) = 1; (5.18)

mSStov({SStov}) = 1; (5.19)

mSMicro({SMicro}) = 1; (5.20)

The inference procedure consists of four steps of evidential operations.

• Step 1: Discounting sensor evidence.
In this study we assume that the video sensor is reliable at 100%.
Statistics (see section 6.4.2) using ground truth of 20 video sequences of one
human actor show that the used environmental sensors (in the kitchen and
in the livingroom) are working correctly at di�erent rates: 95% for contact
sensors including fridge and cupboard sensors, 90% for electrical sensors
including microwave and stove sensors, 85% for water �ow sensors including
water pipes sensors, 70% for pressure sensors and 70% for presence sensors.
So a discount rate of 5% is assigned to fridge and cupboard sensors, 10%
is assigned to electrical sensors including microwave and stove sensors, 15%
is assigned to water �ow sensors including water pipe sensors, and 20% is
assigned to pressure sensors and presence sensors. The discounted mass
functions of fridge, cupboard, stove, microwave, water and video sensors are
calculated as following:

mr
SFrid({SFrid}) =0.95; mr

SFrid({SFrid,¬SFrid}) = 0.05;
(5.21)

mr
SCupb({SCupb}) =0.95; mr

SCupb({SCupb,¬SCupb}) = 0.05;
(5.22)

mr
SStov({SStov}) =0.90; mr

SStov({SStov,¬SStov}) = 0.10;
(5.23)

mr
SMicro({SMicro}) =0.90; mr

SMicro({SMicro,¬SMicro}) = 0.10;
(5.24)

mr
SWatr({SWatr}) =0.85; mr

SWatr({SWatr,¬SWatr}) = 0.15;
(5.25)

mr
SV ideo({SV ideo}) =1.00; mr

SV ideo({SV ideo,¬SV ideo}) = 0.00;
(5.26)

• Step 2: Translating mass functions from sensors to associated contextual
objects. A sensor being active indicates the associated contextual object
has been interacted with. A sensor and the associated contextual object
maintain a compatible relationship which can be represented by a multival-
ued mapping as the examples shown in Table 5.9. The mass function on a
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Relationship Evidence mappings

SFrid→ Frid {SFrid} → {({Frid} , 0.95), ({SFrid,¬Frid} , 0.05)}

SCupb→ Cupb {SCupb} → {({Cupb} , 0.95), ({SCupb,¬Cupb} , 0.05)};

SWatr →Watr {SWatr} → {({Watr} , 0.85), ({SWatr,¬Watr} , 0.15)};

SStov → Stov {SStov} → {({Stov} , 0.90), ({SStov,¬Stov} , 0.10)};

SMicr →Micr {SMicr} → {({Micr} , 0.90), ({SMicr,¬Micr} , 0.10)};

Table 5.9: Examples of evidence mappings

sensor node can then be translated to the associated contextual object node
by using the multivalued mapping.

mFrid({Frid}) =mr
SFrid({SFrid}) = 0.95; (5.27)

mFrid({Frid,¬Frid}) =mr
SFrid({SFrid,¬SFrid}) = 0.05; (5.28)

mCupb({Cupb}) =mr
SCupb({SCupb}) = 0.95; (5.29)

mCupb({Cupb,¬Cupb}) =mr
SCupb({SCupb,¬SCupb}) = 0.05; (5.30)

mWatr({Watr}) =mr
SWatr({SWatr}) = 0.85; (5.31)

mWatr({Watr,¬Watr}) =mr
SWatr({SWatr,¬SWatr}) = 0.15; (5.32)

mStov({Stov}) =mr
SStov({SStov}) = 0.90; (5.33)

mStov({Stov,¬Stov}) =mr
SStov({SStov,¬SStov}) = 0.10; (5.34)

mMicr({Micr}) =mr
SMicr({SMicr}) = 0.90; (5.35)

mMicr({Micr,¬Micr}) =mr
SMicr({SMicr,¬SMicr}) = 0.10; (5.36)

• Step 3: Summing up on a composite contextual object node. On the
evidential network "Prepare Cold Meal", "Fridge, Cupb, Watr" is the
composite node formed by "Fridge", "Cupb" and "Watr". The three mass
functions translated from "Fridge", "Cupb" and "Watr" onto "Fridge,
Cupb, Watr" as calculated in the previous step are then summed up by the
equally weighted sum operator.
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mFrid,Cupb,Watr({Frid, Cupb,Watr})

=
1
3

(mFrid({Frid}) +mCupb({Cupb})

+mWatr({Watr})) =
1
3

(0.95 + 0.95 + 0.85) = 0.916 (5.37)

mFrid,Cupb,Watr({(Frid, Cupb,Watr),¬(Frid, Cupb,Watr)})

=
1
3

(mFrid({Frid,¬Frid})

+mCupb({Cupb,¬Cupb})
+mWatr({Watr,¬Watr}))

=
1
3

(0.05 + 0.05 + 0.15) = 0.083 (5.38)

The contexts "Microwave" and "Stove" are the two alternatives of context
"Microwave/Stove". The mass function on "Microwave/Stove" can be cal-
culated by the maximization operator as follows:

mMicr,Stov({Micr, Stov}) = max(mMicr({Micr}),mStov({Stov}))
= max(0.90, 0.90) = 0.90 (5.39)

mMicr,Stov({Micr, Stov} ,¬{Micr, Stov})
= max(mMicr({Micr,¬Micr}),mStov({Stov,¬Stov}))

= max(0.10, 0.10) = 0.10 (5.40)

(5.41)

On the evidential network "Prepare Hot Meal", "Fridge, Cupb, Watr, Micr,
Stov" is the composite node formed by "Fridge", "Cupb", "Watr", "Micr"
and "Stov". The �ve mass functions translated from "Fridge", "Cupb",
"Watr", "Micr" and "Stov" onto "Fridge, Cupb, Watr, Micr, Stov" as
calculated in the previous step are then summed up by the equally weighted
sum operator.

mFrid,Cupb,Watr,Micr,Stov({Frid, Cupb,Watr,Micr, Stov})
= 1

4
(mFrid({Frid}) +mCupb({Cupb})

+mWatr({Watr}) +mMicr,Stov({Micr, Stov}))
= 1

4
(0.95 + 0.95 + 0.85 + 0.90) = 0.912

(5.42)

mFrid,Cupb,Watr,Micr,Stov({(Frid, Cupb,Watr,Micr, Stov),¬(Frid, Cupb,Watr,Micr, Stov)})
= 1

4
(mFrid({Frid,¬Frid})

+mCupb({Cupb,¬Cupb})
+mWatr({Watr,¬Watr}))
+mMicr,Stov({Micr, Stov} ,¬{Micr, Stov})
= 1

4
(0.05 + 0.05 + 0.15 + 0.10) = 0.087

(5.43)

• Step 4: Translating from a composite contextual object node or propagat-
ing from an accessory contextual object node, to an activity node.
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On network "Prepare Cold Meal", the mass function on "Fridge, Cupboard,
Water" is translated to "Prepare Cold Meal".

mPrepareColdMeal({PrepareColdMeal})
= mFrid,Cupb,Watr({Frid, Cupb,Watr})

= 0.916
(5.44)

mPrepareColdMeal({PrepareColdMeal,¬PrepareColdMeal})
= mFrid,Cupb,Watr({(Frid, Cupb,Watr),¬(Frid, Cupb,Watr)}) = 0.083

(5.45)

On network "Prepare Hot Meal", the mass function on "Fridge, Cupboard,
Water, Microwave, Stove" is translated to "Prepare Hot Meal".

mPrepareHotMeal({PrepareHotMeal})
= mFrid,Cupb,Watr,Micr,Stov({Frid, Cupb,Watr,Micr, Stov})
= 0.912

(5.46)

mPrepareHotMeal({PrepareHotMeal,¬PrepareHotMeal})
= mFrid,Cupb,Watr,Micr,Stov({(Frid, Cupb,Watr,Micr, Stov),¬(Frid, Cupb,Watr,Micr, Stov)})
= 0.087

(5.47)

Calculating Bel and Pls: From mass function on "Prepare Cold Meal" and
"Prepare Hot Meal", we calculate the beliefs for "Prepare Cold Meal" and "Pre-
pare Hot Meal" as follows:

Bel(PrepareColdMeal) = m(PrepareColdMeal) = 0.916 (5.48)

Pls(PrepareColdMeal) = m(PrepareColdMeal)
+m(PrepareColdMeal,¬PrepareColdMeal)

= 0.916 + 0.083 = 0.999 (5.49)

Then the uncertainty µ of "Prepare Cold Meal" is calculated using the following
equation:

µ {PrepareColdMeal} = Pls(PrepareColdMeal)−Bel(PrepareColdMeal)
= 0.999− 0.916 = 0.083 (5.50)

Bel(PrepareHotMeal) = m(PrepareHotMeal) = 0.912 (5.51)

Pls(PrepareHotMeal) = m(PrepareHotMeal)
+m(PrepareHotMeal,¬PrepareHotMeal)

= 0.912 + 0.087 = 0.999 (5.52)
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Then the uncertainty µ of "Prepare Hot Meal" is calculated using the following
equation:

µ {PrepareHotMeal} = Pls(PrepareHotMeal)−Bel(PrepareHotMeal)
= 0.999− 0.912 = 0.087 (5.53)

Bel on "Preparing Cold Meal" is 0.916 with a value of 0.004 greater than that
on "Preparing Hot Meal", and (PlsBel) is smaller on "Preparing Cold Meal"
than "Preparing Hot Meal" (0.083 vs. 0.087). These results indicate that with a
high con�dence we can identify that the activity "Preparing Cold Meal" has been
performed in the kitchen.
In an evidential network of activity of type 1, the belief of an activity is the max-
imum of beliefs over its sub-activities.
On the evidential network of "Preparing Meal", "Preparing Cold Meal" and
"Preparing Hot Meal" are the two alternative sub-activities of "Preparing Meal"
activity. With the beliefs on "Preparing Cold Meal" and "Preparing Hot Meal"
calculated above, the belief about that the person is "Preparing Meal" is calcu-
lated by the maximization operator (see equation 5.9) as follows:

Bel(PreparingMeal) = max(Bel(PreparingColdMeal), Bel(PreparingHotMeal))
= max(0.916, 0.912) = 0.916

(5.54)

Pls(PreparingMeal) = max(Pls(PreparingColdMeal), P ls(PreparingHotMeal))
= max(0.999, 0.999) = 0.999

(5.55)

5.9 Conclusion

In this chapter we have introduced a framework within multisensor data can be
processed and fused for activity recognition. This fusion consists in combining
video events with environmental events. The proposed framework allows to
recognize a set of human activities at home with a low rate of false alarms.
We have done a strong e�ort in event modeling. The result is 100 models which
is our knowledge base of events.
We have also proposed an ontology for daily activities which can be used in other
applications in the same domain.
To handle with uncertainty in sensor measurements, we have proposed the use
of Dempster-Shafer theory of evidence. We have proposed evidential networks
to represent the hierarchy of inferring activities based on sensor data. Four
evidential operations have been formalized for activity inference on evidential
networks which can accommodate the fusion of di�erent types and sources of data.

In the next chapter, we evaluate the proposed approach using a set of
video and environmental sensors data.



Chapter 6

Evaluation and Results of the

Proposed Approach

In order to evaluate the whole proposed activity monitoring framework, several
experiments have been performed. The main objectives of these experiments are
to validate the di�erent phases of the activity monitoring framework, to highlight
interesting characteristic of the approach, and to evaluate the potential of the
framework for real world applications.

The performed evaluations consist of:

• First, an evaluation of the vision-based framework for real world applica-
tions. In this experiment, 15 videos were tested in an experimental labora-
tory (called Gerhome) for elderly care at home. For more details, refer to
section 6.4.1.

• Second, an evaluation of the proposed sensor-based model for real world
applications. In this experiment, we have used 20 video sequences of one
human actor to calculate the a posteriori probability for each environmental
sensor. For more details, refer to section 6.4.2.

• Third, an evaluation of the multisensor-based fusion framework in a real
world application is performed. It consists in analyzing sensors data and
video sequences in the same experimental site (i.e. Gerhome). This ex-
periment has multiple objectives, such as evaluating the in�uence of the
utilization of multiple sensors to recognize activities at home. The experi-
ment is detailed in section 6.4.3.

• Finally, medical evaluation using real data for 9 observed elderly volunteers
is performed. It consists in comparing the behavioral pro�le for 9 elderly
persons using results of 6 daily activities. The experiment is detailed in
section 6.5.

This chapter is organized as follows. First, section 6.1 describes the experi-
mental site, including the number and placement of installed sensors. Second, the
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metrics utilized in the evaluation of our framework are described in section 6.2.
Third, the di�erent performed experiments are described in section 6.3. Fourth,
the performance evaluation and the obtained results are described in section 6.4.
Fifth, medical evaluation is presented in section 6.5 and �nally, section 6.6 presents
a conclusion about the experiments.

6.1 Experimental Site

Developing and testing the impact of the activity monitoring solutions requires
a realistic environment in which training and evaluation can be performed. To
attain this goal we have set up an experimental laboratory (called Gerhome, see
�gure 6.1). This laboratory is located in the CSTB (Scienti�c Center of Technical
Building) at Sophia Antipolis in France.

Figure 6.1: External views of the Gerhome laboratory.

6.1.1 Gerhome Laboratory

Gerhome laboratory is equipped with the di�erent sensors previously cited in
section 5.2.1. This laboratory has been built to evaluate the performance of the
multisensor fusion approach and to explore the activities that can be recognized
by such approach. This laboratory looks like a typical apartment of an elderly
person: 41m2 with an entrance, a livingroom, a bedroom, a bathroom, and a
kitchen. The kitchen includes an electric stove, a microwave, a fridge, cupboards,
and drawers.

The Gerhome laboratory plays an important role in research and system
development in the domain of activity monitoring and of assisted living. Firstly,
it is used to collect data from the di�erent installed sensors. Secondly, it is used
as a demonstration platform in order to visualize the system results. Finally, it
is used to assess and test the usability of the system with elderly. Figure 6.2
and �gure 6.3 show respectively pictures and a 3D visualization of the Gerhome
laboratory.
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(a) The kitchen (b) The livingroom (c) The bathroom

Figure 6.2: Internal views of the Gerhome laboratory.

6.1.2 Video Cameras and Environmental Sensors

Gerhome is equipped with di�erent sensors (see �gure 6.4) to evaluate ADL sce-
narios prede�ned by investigating gerontologists from Nice hospital. Commer-
cially available sensing devices were used for data gathering including video cam-
eras, and environmental sensors embedded in the home infrastructure. We call
environmental sensors each sensor that measures environmental information such
as pressure, temperature, light (e.g. pressure sensors, electrical sensors, light sen-
sors).
To detect and track a person in Gerhome laboratory and to recognize his/her

activities and postures, four video cameras are installed in this laboratory. One
video camera is installed in the kitchen, two video cameras are installed in the
livingroom and the last one is installed in the bedroom. Figure 6.5 shows the
di�erent views of the installed video cameras.
Twelve contact sensors are mounted on many devices in the apartment for de-

tecting the opening and closing of cupboard doors, fridge door, drawers and closet
doors. Two electrical sensors for detecting electrical appliance use (i.e. microwave,
stove, phone and TV). Three presence sensors to detect the presence of people
near sinks, cooking stoves and washbowls. Four hot and cold water consumption
sensors in the kitchen and bathroom. Four pressure sensors located beneath 2
chairs, an armchair and a bed to detect when a person is sitting, sleeping or not.
Figure 6.6 shows some pictures of these installed sensors. The selected sensors can
easily and quickly be installed in home environments and are removable without
damage to the cabinets or furniture. These environmental sensors are based on
RF (radio frequency) transceiver with low battery consumption (i.e. lithium bat-
tery with a lifespan of 1 year). The number of installed sensors varies depending
on the room and the areas of interest (see Table 6.1). For example, in the bed-
room there are only one video camera, 2 contact sensors installed on closet doors
and one pressure detector that is installed under the bed. We have not installed
a video camera in the entrance and in the bathroom. In the entrance because the
second installed video camera in the livingroom has a �eld view to the entrance.
In the bathroom to save the privacy of the observed person.
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(a) View of the kitchen from the livingroom

(b) A top view

Figure 6.3: 3D visualization of the Gerhome laboratory.

6.2 Evaluation Metrics

Di�erent metrics have been used according to the nature of the experiment.

For the recognition of states and events, the utilized metrics are:

• True Positive (TP): An event Ei is correctly detected according to the



6.2 Evaluation Metrics 119

Figure 6.4: Position of the sensors in the Gerhome laboratory.

(a) Video camera 1 in the kitchen (b) Video camera 2 in the living-
room

(c) Video camera 3 in the living-
room

(d) Video camera 4 in the bedroom

Figure 6.5: Views from the installed video cameras in the Gerhome laboratory.

ground truth.

• False Positive (FP): An event Ei is wrongly detected according to the
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Figure 6.6: Views of some environmental sensors installed in the Gerhome laboratory. Sensors
are circled. (a) Contact sensor on cupboard door in the kitchen; (b) Electrical sensor on electrical
outlet in the kitchen; (c) Presence sensor in front of the washbowl in the bathroom; (d) Water
sensor on water pipe in the kitchen; (e) Pressure sensor under the armchair in the livingroom.

Sensors Entrance Livingroom Kitchen Bathroom Bedroom Total
Video Camera 0 2 1 0 1 4
Contact Sensor 0 0 9 0 2 11
Pressure Sensor 0 3 0 0 1 4
Water Flow Sensor 0 0 2 2 0 4
Electrical Sensor 0 1 1 0 0 2
Presence Sensor 0 0 2 1 0 3

Table 6.1: List of installed sensors per room

ground truth.

• False Negative (FN): A false negative occurs when an event Ei occurs
and a system does not report it.

• Precision (P): The precision metric can be seen as a measure of exactness
or �delity. The precision corresponds to the number of events correctly
detected divided by the total number of detected events. This metric is
formally de�ned as:

P =
TP

TP + FP
(6.1)

• Sensitivity (S): A sensitivity corresponds to the number of events correctly
detected divided by the total number of occurred events. A sensitivity of
100% means the recognition of the all occurring events. This metric is
formally de�ned as:

S =
TP

TP + FN
(6.2)

For the comparison of behaviors of 2 or more persons (see section 6.4.3.2), we
have used the following metrics:
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• Number of instance (i.e. n1, n2, ...): It corresponds to the number of
instance of a certain activity occurred during the experiment.

• Mean duration (i.e. m1, m2, ...): It corresponds to the mean duration
of a certain activity occurred during the experiment.

• Normalized Di�erence of mean durations of Activity (NDA): It
corresponds to the di�erence of two mean durations divided by their sum.
This metric is formally de�ned as:

NDA =
|m1−m2|
m1 +m2

(6.3)

• Normalized Di�erence of Instance number (NDI): It corresponds to
the di�erence of two number of instance divided by their sum. This metric
is formally de�ned as:

NDI =
|n1− n2|
n1 + n2

(6.4)

In addition to the metrics already cited, we have de�ned a 3D visualization
tool in order to visualize the recognized events.

A 3D Visualization Tool

In collaboration with Bernard Boulay from Pulsar team, we have devel-
oped a prototype of a 3D visualization tool which is useful for a demonstration
and debugging purposes. For example, we can verify the coherence of a proposed
event by visualizing it. A 3D visualization tool displays a 3D scene environment,
mobile objects (usually persons) and recognized events.

We have proposed a 3D engine based on OpenGL to display the 3D scene
environment. Each contextual object observable in the scene is manually
modeled with 3D colored and textured parallelepipeds (e.g. �oor, walls, table,
cupboard). A speci�c property is associated to the objects which can have
interaction with people evolving in the scene (e.g. microwave, fridge).

These objects are then highlighted as soon as a detected event involves
these objects. A 3D human model can be displayed with the recognized posture
at the detected 3D position. Finally, the di�erent recognized events are displayed
as overlay (see �gure 6.10(b) for example) in the 3D virtual scene: the location of
the detected person, the involved sensors (video camera or other sensors) and the
current detected activity. The tool takes as input the video and environmental
processing results. An illustration of a 3D visualization tool for the Gerhome
laboratory is shown in �gure 6.7.
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Figure 6.7: An illustration of a 3D visualization.

6.3 Performed Experiments

To evaluate the proposed activity monitoring framework we have tested a set of
human activities in the Gerhome laboratory.
In this section, we describe the prede�ned scenarios and the data collection.

6.3.1 Prede�ned Scenarios and Data Collection

In this thesis we mainly focus on activities taking place in the kitchen and in
the livingroom (e.g. person location in each zone in the laboratory, open kitchen
equipment, prepare a meal, take a meal). We study a range of activities that are
useful in a home health monitoring system.
Two validation experiments are performed (using our datasets acquired in the
Gerhome laboratory): The �rst one with one human actor, and the second one
with fourteen elderly people.

6.3.2 With One Human Actor

In the �rst experiment, one human actor (i.e. woman of 33 years) has tested
some household activities in the Gerhome laboratory such as: using fridge,
using microwave, preparing a meal. This actor has also tested some abnormal
situations of elderly living alone in his/her own home such as fainting and falling
down. She has also tested some activities occurring at the same time, for example
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slumping on armchair during preparing a meal. This may indicate that the
person feels ill or is sleepy (see �gure 6.8).

The given scenario is described as follow: "A person takes a ready meal
made from the fridge, and puts the meal in the microwave oven to warm it.
After that, the person leaves the kitchen and goes to the livingroom to sit in the
armchair. After some minutes the person slumped in the armchair with closed
eyes. The microwave oven is still running and this can cause �re".

Figure 6.8: A person is slumping in the armchair when he/she warms up a meal in the microwave
oven.

6.3.3 With Fourteen Elderly Volunteers

In the second experiment, fourteen volunteers (i.e. 6 women and 8 men aged
from 60 years to 85 years) were recruited by advertisements for a study of ways
to make sensing technologies easier to use in the home. A major goal of this
experiment is to analyze behavioral data that are as natural as possible.

While evolving in the Gerhome laboratory, the fourteen volunteers have
been observed, each one during 4 hours, and 56 video sequences have been
acquired by 4 video cameras (about ten frames per second), each video sequence
contains about 144 000 frames. The collected data includes the 56 video streams,
and also sensors data provided by the 24 environmental sensors. The access of
these data is limited (a password is necessary to have access to these data) and
not yet available 1.

The volunteers were encouraged to behave freely and to maintain as nor-
mal as possible their behaviors and were asked to perform a set of household
activities (for more detail about the proposed scenario see Appendix B), such

1http://www-sop.inria.fr/members/Francois.Bremond/topicsText/gerhomeProject.html
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as preparing meal, taking meal, washing dishes, cleaning the kitchen, watching
TV and taking a nap while staying at Gerhome laboratory. Each volunteer was
alone in the laboratory during the observation period and was observed during
4 hours (i.e. between 10h and 14h) by using the 4 installed video cameras (see
section 6.1.2).

All the volunteers were interviewed separately after the study about the
experience of living in the Gerhome laboratory. Volunteers were asked questions
about the proposed scenario, the acceptance of the sensor technologies and about
the Gerhome laboratory. The post study interviews with the volunteers who
have participated in the experiment indicate that the sensors do not impact of
their everyday behavior.

In this second experiment, using the video camera 2 installed in the livin-
groom, we have collected 56 hours of video data of the 14 volunteers. Our data
collection has several limitations. We mentioned here two limitations:

• The instrumented home was not the volunteers real home, volunteer's be-
havior was not completely natural (e.g. many volunteers have opened several
kitchen equipments before executing the prede�ned scenario).

• Our dataset is missing some activities (e.g. activities taking place in the
bedroom and in the bathroom). The bathroom was not observable by the
video camera, so many activities of potential interest related to personal
hygiene, and grooming are not collected.

Due to the tedious and therefore costly nature of annotation, our results use a
subset of 36 hours (i.e. 9x4) of the collected data. We have annotated only 20
hours (i.e. 5x4) from these 36 hours.

6.4 Performance Evaluation

In this section we describe the di�erent evaluations. First, we describe the evalua-
tion of the vision-based framework with the obtained results. Second, we describe
the evaluation of the sensor-based modeling framework with the obtained results.
Finally, we describe the evaluation of the multisensor-based framework with the
obtained results and also the obtained results with presence of uncertainty in
sensor measurements.

6.4.1 Evaluation of the Vision-Based Framework

To evaluate the vision-based framework, we have acquired 15 video sequences with
one human actor (woman of 33 years) (see section 6.3.2), and 14 video sequences
with fourteen elderly volunteers (see section 6.3.3).
The duration of each video, with the human actor, is about 20 minutes and each
video contains about 9600 frames (about eight frames per second).
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States and events GT TP FN FP P S

In the kitchen 45 40 5 3 93% 88%
In the livingroom 35 32 3 5 86% 91%

Standing 120 95 25 20 82% 79%
Sitting 80 58 22 18 76% 72%
Slumping 35 25 10 15 62% 71%
Lying 6 4 2 2 66% 66%
Bending 92 66 26 30 68% 71%
Standing up 57 36 21 6 85% 63%
Sitting down 65 41 24 8 83% 63%

Sitting up 6 4 2 1 80% 66%

Table 6.2: Results for recognition of a set of states and events by using video camera; Recognition
of person location in the kitchen and in the livingroom. Recognition of the di�erent human
postures.

The duration of each video, with the elderly volunteers, is about 4 hours and each
video contains about 144 000 frames (about ten frames per second).
Using only video cameras and video sequences with one human actor, we have
tested some normal activities of a person such as: di�erent human postures,
di�erent person location in the di�erent zones in the laboratory, di�erent person
location versus the di�erent equipments in the laboratory. We have also tested
two abnormal activities: "fainting" and "falling down".

Results and Discussion

Table 6.2 summarizes the ground truth (GT), the true positive (TP), the false
negative (FN), the false positive (FP), the precision (P) and the sensitivity (S)
of the recognition of a set of primitive states and events (i.e. person location in
the laboratory and the di�erent human postures).

The primitive states "in the kitchen" and "in the livingroom" are well
recognized by video cameras. The few errors in the recognition occur at the
border between livingroom and kitchen. These errors are due to noise and
shadow problems. The results of the recognition of the di�erent postures show a
sensitivity of 63-79% and a precision of 62-85% (see Table 6.2). When the system
fails in the recognition of postures, it mixes postures such as bending and sitting
(i.e. the bending posture instead the sitting one) due to segmentation errors
(shadow, light change) and object occlusions.

We have also tested a set of human postures for 5 elderly volunteers. Fig-
ure 6.9 shows the recognition of "bending in the kitchen" activity for one elderly
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volunteer (man of 64 years) among the 5 other, and the corresponding 3D
visualization of this recognition.
Results of recognition of "slumping in the armchair" (for the human actor) is

Figure 6.9: (a) Recognition of "bending in the kitchen" activity and (b) the 3D visualization of
this recognition.

shown in �gure 6.10, the person is recognized with the posture "slumping" and
"located in the livingroom". We have visualized the recognized events with the
3D visualization tool described in section 6.2.

In the 15 acquired videos with one actor, we have �lmed one "falling
down" event and two "fainting" events which have been correctly recognized.
These abnormal activities have only tested with the human actor, the geriatrics
have not accepted to test these abnormal activities with the elderly volunteers
for fear they would hurt.

Figure 6.11 and �gure 6.12 show respectively the recognition of "fainting"
and "falling down" abnormal activities, and the 3D visualization of these
recognition.
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(a) Original image showing a person slumping in the arm-
chair

(b) 3D visualization of the recognition of "slumping in
the armchair" activity

Figure 6.10: Visualization of the recognition of "slumping in the armchair" activity in the
Gerhome laboratory.
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States and events GT TP FN FP P S

In the kitchen 45 25 20 3 89% 55%
Sitting 80 64 16 5 92% 80%

Table 6.3: Results for recognition of a set of states and events by using environmental sensors

6.4.2 Evaluation of the Sensor-Based Framework

To evaluate the proposed sensor model, we have used a ground truth of 20 video
sequences of one human actor which contains data of environmental sensors. We
calculate the a posteriori probability P (Θ = θ|y) for each environmental sensor.
θ represents the true value of the variable of interest Θ and y = (yT1 , y

T
2 , ..., y

T
N )T

denotes the vector of N sensor measures.
The obtained results show that the used sensors (in the kitchen and in the
livingroom) are working correctly at di�erent rates: 95% for contact sensors
including fridge and cupboard sensors, 90% for electrical sensors including
microwave and stove sensors, 85% for water �ow sensors including water pipes
sensors, 70% for pressure sensors and 70% for presence sensors.

To evaluate the sensor-based framework, we have tested with one human
actor (woman of 33 years) a set of human activities in Gerhome laboratory. We
used the same data as in section 6.4.1, those with one human actor.
Table 6.3 summarizes the ground truth (GT), the true positive (TP), the false
negative (FN), the false positive (FP), the precision (P) and the sensitivity (S) of
the recognition of a set of primitive states and events (i.e. person location in the
kitchen and sitting posture) by using the environmental sensors (i.e. presence
sensors installed near sink and near stove in the kitchen, pressure sensors installed
under chair and armchair).

Results and Discussion

The obtained results show that the primitive state "in the kitchen" is not
well recognized by environmental sensors. This is due to the fact that the
presence sensor detects the presence of a person in the kitchen only when this
person is near stove or is near a sink. This is also due to the fact that the
presence sensor is activated when it detects variations of the illumination (e.g.
natural illumination like the sun).
The few errors in the recognition of the sitting posture is due to sensor failures
and also to the fact that the pressure sensor is active when a person puts his
bags on a chair.

Comparison between the obtained results using the environmental sensors
(see table 6.3) with the obtained results using the video camera (see table 6.2)
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Multimodal events GT TP FN FP P S

Using fridge 13 11 2 3 78% 84%
Using stove 40 35 5 2 94% 87%
Sitting on a Chair 12 9 3 4 69% 75%
Sitting in an Armchair 2 1 1 1 50% 50%

Table 6.4: Results for recognition of a set of multimodal events of one volunteer among the 5
volunteers with ground truth

shows:
- the primitive state "in the kitchen" has been better recognized by the video
sensor than by environmental sensor (sensitivity 88% vs. 55).
- the human posture "sitting" has been better recognized by the environmental
sensor than by video sensor (precision 92% vs. 72).

6.4.3 Evaluation of the Multisensor-Based Fusion Framework

To evaluate the multisensor-based fusion framework, we have used the same
video sequences as in section 6.4.1.
Using both video cameras and environmental sensors, we have tested a set of
the daily activities of a person such as: using kitchen equipment, using TV,
preparing meal, and taking meal. We have also compared two behavioral pro�les
of two elderly volunteers (see section 6.4.3.2). We have done this comparison
in order to bring out the possible di�erences in the behaviors of the two volunteers.

In the next section, we present �rstly the obtained results by using multi-
sensor data without taking into account the uncertainties of sensors. After that
we present the obtained results by using multisensor data with uncertainty in
sensor measurements.

6.4.3.1 Results of Recognition

Results of recognition of "using microwave" is shown in �gure 6.13, the person is
recognized with the posture "standing with one arm up", "located in the kitchen"
and "opening the microwave". We have visualized the recognized events with the
3D visualization tool described in section 6.2.

In the experiment with the fourteen volunteers, among all analyzed data, re-
sults for one volunteer (person P2) observed during 4 hours are shown in table 6.4.
This table summarizes the ground truth (GT), the true positive (TP), the false
negative (FN), the false positive (FP), the precision (P) and the sensitivity (S) of
the recognition of a set of multimodal events.

Table 6.5 and table 6.6 show the obtained results for 4 volunteers (persons
P1, P3, P4 and P9) also observed during 4 hours. These tables summarize the
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(a) Original image showing a person using a microwave

(b) 3D visualization of the recognition of "use microwave" activity

Figure 6.13: Visualization of the recognized events in the Gerhome laboratory.

ground truth (GT), the true positive (TP), the false negative (FN), the false
positive (FP), the precision (P) and the sensitivity (S) of the recognition of a set
of multimodal events.
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The recognition of the multimodal events showed:

• a sensitivity of 75-86% and a precision of 54-85% (Table 6.5) for the volun-
teer P1 (man, 71 years).

• a sensitivity of 50-87% and a precision of 50-91% (Table 6.4) for the volun-
teer P2 (man, 64 years).

• a sensitivity of 50-80% and a precision of 60-87% (Table 6.5) for the volun-
teer P3 (man, 66 years).

• a sensitivity of 50-88% and a precision of 64-100% (Table 6.6) for the vol-
unteer P4 (man, 68 years).

• a sensitivity of 66-98% and a precision of 57-84% (Table 6.6) for the volun-
teer P9 (woman, 85 years).

The multimodal events are well recognized, the errors in the recognition are
due to the sensor measurement errors (e.g. contact sensor is still active when a
person close the fridge, or when a person does not correctly closed the drawer
(see �gure 6.14) or another kitchen equipment) and to the fact that the person
which drops his bag on the chair or on the armchair, may activate the chair (or
armchair) sensor (sensor installed under the chair or under armchair) and gives a
false result.

Figure 6.15 shows the recognition of "preparing a meal" activities for the
volunteer P2, and the corresponding 3D visualization of this recognition.

Figure 6.16 shows the recognition of "taking a meal" activity for the vol-
unteer P9, and the corresponding 3D visualization of this recognition.

The obtained results demonstrate that the proposed method allows to
detect and recognize a set of activities of a person by using the data provided by
the combination of the selected sensors.

6.4.3.2 Results on Behavior for 2 Elderly Volunteers

Results comparing volunteer P2 (man of 64 years) and volunteer P9 (woman of
85 years), observed during 4 hours are shown in table 6.7 and table 6.8. These
tables summarize the mean duration, the total duration and the number of
instances of each monitored activity. Time unit is hh:mm:ss.
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Figure 6.14: The drawer is still open when the person does not use it
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(a) The recognition of: "prepare meal" activity

(b) The 3D visualization of the recognition of "prepare meal" activity

Figure 6.15: The recognition and the 3D visualization of the recognition of "preparing a meal"
activity.
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(a) The recognition of: "sitting in the livingroom" and of "person eats a meal" activities

(b) The 3D visualization of the recognition of "sitting in the livingroom" activity

Figure 6.16: The recognition and the 3D visualization of the recognition of "taking a meal"
activity.
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Among the 21 activities for which the 2 older volunteers were compared (see
Table 6.7 and Table 6.8) 10 activities show di�erences. Five activities among the
10 activities are considered meaningful and discriminative.

• Volunteer P2 of 64 years changed zones more often than the volunteer P9
of 85 years (for "entering livingroom" 20 vs. 13), and did this at a quicker
pace (00:01:15 vs. 00:02:42), showing a greater ability to walk.

• Volunteer P2 was more often seen "sitting on chair" (15 vs. 4, NDI=58%),
but volunteer P9 was "sitting on chair" for a longer duration (00:52:37 vs.
00:06:27, NDA=78%), showing also a greater ability for the volunteer P2 to
move in the apartment.

• Similarly volunteer P2 was "bending" twice as much as volunteer P9 (30 vs.
15, NDI=33%), and in a quicker way (00:00:03 vs. 00:00:12, NDA=60%),
showing greater dynamism for the younger volunteer.

• Volunteer P2 was using more the "upper cupboard" than the volunteer
P9 (22 vs. 9, NDI=42%), and in a quicker way (00:00:57 vs. 00:04:43,
NDA=65%).

• Volunteer P2 was more able to using the stove (less trials for "using stove"
35 vs. 106, NDI=50%).

All these measures show the greater ADL ability of the 64 years old adult as
compared to those of the 85 years old.

6.4.3.3 Results of the Recognition using DS Uncertainty

Using the Dempster-Shafer theory like described in chapter 5 in section 5.8,
we have calculate the uncertainty in sensor measurements of 4 activities for
volunteer P1 and volunteer P3.

The obtained results are shown in table 6.9.

6.4.3.4 Discussion

Comparison between the results obtained without using uncertainty (see table 6.6)
and the results obtained with using uncertainty (see table 6.9) shows some im-
provements in the recognition of activities. For example, the new results (using
uncertainty in sensor measurements) show a good recognition, compared to the
results obtained without using uncertainty in sensor measurements, of the "sitting
on a chair" (for volunteer P1: P= 93% vs. 78% and S= 93% vs. 86%, for volun-
teer P3: P= 83% vs. 60% and S= 83% vs. 50%) and of "sitting on an armchair"
(for volunteer P1: P= 77% vs. 54% and S= 87% vs. 75%, for volunteer P3: P=
93% vs. 66% and S= 93% vs. 80%) activities.
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P1 P3
Multimodal GT TP FN FP P S GT TP FN FP P S
events

Using Fridge 24 21 3 1 95% 87% 10 8 2 1 88% 80%
Using Stove 18 16 2 1 94% 88% 9 7 1 1 87% 77%
Sitting on
a Chair 29 27 2 2 93% 93% 6 5 1 1 83% 83%
Sitting in
an Armchair 8 7 1 2 77% 87% 15 14 2 1 93% 93%

Table 6.9: Results of recognition (using uncertainty) of a set of daily activities for 2 observed
elderly persons

6.5 Medical Evaluation

In this section, we compare the behavioral pro�le for 9 observed elderly volunteers
using results of 6 daily activities.

6.5.1 Events Durations for 9 Elderly Persons

Table 6.10 summarizes the duration of 6 daily activities for the 9 observed elderly
persons.
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Figure 6.17 shows the duration of each activity for the 9 elderly persons.

Figure 6.17: Duration of each activity for the 9 observed elderly persons

6.5.2 Leave-One-Out Cross Validation

In this section, for each observed elderly person among the 9 observed elderly
persons, we have done the leave-one-out cross validation on the activity duration
for the 9 observed old persons. When using the leave-one-out method, the learning
algorithm is trained multiple times, using all but one of the training set of data.
The form of the algorithm is as follows:
To do that, we calculate �rstly the mean duration of each activity for R persons

Algorithm 4 Leave−One−Out− Cross− V alidationAlgorithm
For K = 1 to R (where R is the number of training set of data)
- Temporarily remove the jth data from the training set
- Train the learning algorithm on the remaining R data
- Test the removed data
Calculate the mean error over all R data

among the all observed persons by using the following equation:

MDEi,P j =
∑Pk∈P,Pk 6=Pj dEi,Pk

R
, ∀Pj ∈ P (6.5)

Where:

• MDEi,P j represents the mean duration for a given event Ei for each person
without a person Pj;

• dEi,Pk represents the duration for each event Ei for each person Pk;

• P = {P1, P2, P3, P4, P4, P5, P6, P7, P8, P9};

• R represents the number of the training set of data (i.e. R=8 in this case).

Table 6.11 summarizes the mean durations of 6 activities.
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Secondly, we calculate the standard deviation σEi,P j (see table 6.12) for each
event Ei for each person without a person Pj by using the following equation:

σEi,P j =

√√√√ 1
R

R∑
k=1

(dEi,Pk −MDEi,P j)2 (6.6)

=

√√√√ 1
R

R∑
k=1

d2
Ei,Pk −MD2

Ei,P j

Where:

• σEi,P j represents the standart deviation for each event Ei for each person
without a person Pj;

• dEi,Pk represents the duration of an event Ei for a person Pk;

• MDEi,P j represents the mean duration for each event Ei for each person
without a person Pj;

• R represents the number of the training set of data (i.e. R=8 in this case).
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Thirdly, we calculate for each person and for each event the interval
IEi,P j = [MDEi,P j − σEi,P j ;MDEi,P j + σEi,P j ]

We have obtained 54 intervals as described in tables 6.13, 6.14.
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And �nally, we validate each activity by comparing the duration of each activity
for each person with the corresponding interval.
For example, for the person P1, to validate an event E1 which represents the
event "Using Fridge", we compare his duration value to the interval IE1,P1 =
[MDE1,P1 − σE1,P1;MDE1,P1 + σE1,P1].

• Table 6.15 shows the validation of the event "Using Fridge" of the 9 observed
persons, by comparing the value of the duration dE1,P j , with the interval
IE1,P j .
If this value belongs to interval IE1,P j , then the person has a normal be-
havior compared to the average. If not, then the person has a deviated (i.e.
di�erent) behavior compared to the average.
This table shows that the person P4 has used a fridge for long time com-

"Using Fridge"
durations compared to interval IE1,P j Person Pro�le on "Using Fridge"

dE1,P1 = 00 : 03 : 27 ∈ IE1,P1 A person P1 has a normal pro�le
dE1,P2 = 00 : 01 : 45 ∈ IE1,P2 A person P2 has a normal pro�le
dE1,P3 = 00 : 00 : 40 /∈ IE1,P3 A person P3 has a di�erent pro�le
dE1,P4 = 00 : 05 : 47 /∈ IE1,P4 A person P4 has a di�erent pro�le
dE1,P5 = 00 : 01 : 25 ∈ IE1,P5 A person P5 has a normal pro�le
dE1,P6 = 00 : 01 : 04 ∈ IE1,P6 A person P6 has a normal pro�le
dE1,P7 = 00 : 02 : 19 ∈ IE1,P7 A person P7 has a normal pro�le
dE1,P8 = 00 : 01 : 14 ∈ IE1,P8 A person P8 has a normal pro�le
dE1,P9 = 00 : 01 : 09 ∈ IE1,P9 A person P9 has a normal pro�le

Table 6.15: Comparison between the duration of the event "Using Fridge" and the interval
IE1,Pj

pared to the others, and person P3 has used a fridge for small time compared
to the others. We can deduce that the person P4 is more slowly than person
P3.

• Table 6.16 shows the validation of the event "Using Stove" of the 9 observed
persons, by comparing the value of the duration dE2,P j , with the interval
IE2,P j .
If this value belongs to interval IE2,P j , then the person has a normal be-
havior compared to the average. If not, then the person has a deviated (i.e.
di�erent) behavior compared to the average.

• Table 6.17 shows the validation of the event "Sitting on a Chair" of the 9
observed persons, by comparing the value of the duration dE3,P j , with the
interval IE3,P j .
If this value belongs to interval IE3,P j , then the person has a normal be-
havior compared to the average. If not, then the person has a deviated (i.e.
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"Using Stove"
durations compared to interval IE2,P j Person Pro�le on "Using Stove"

dE2,1 = 00 : 03 : 41 ∈ IE2,P1 A person P1 has a normal pro�le
dE2,2 = 00 : 04 : 52 ∈ IE2,P2 A person P2 has a normal pro�le
dE2,3 = 00 : 02 : 27 ∈ IE2,P3 A person P3 has a normal pro�le
dE2,4 = 00 : 00 : 08 ∈ IE2,P4 A person P4 has a normal pro�le
dE2,5 = 00 : 05 : 49 ∈ IE2,P5 A person P5 has a normal pro�le
dE2,6 = 00 : 03 : 31 ∈ IE2,P6 A person P6 has a normal pro�le
dE2,7 = 00 : 04 : 14 ∈ IE2,P7 A person P7 has a normal pro�le
dE2,8 = 00 : 02 : 34 ∈ IE2,P8 A person P8 has a normal pro�le
dE2,9 = 00 : 29 : 13 /∈ IE2,P9 A person P9 has a di�erent pro�le

Table 6.16: Comparison between the duration of the event "Using Stove" and the interval IE2,Pj

di�erent) behavior compared to the average.
This table shows that a person P9 was "sitting on a chair" for a longer

"Sitting on a Chair"
durations compared to interval IE3,P j Person Pro�le on "Sitting on a Chair"

dE3,1 = 01 : 58 : 00 ∈ IE3,P1 A person P1 has a normal pro�le
dE3,2 = 01 : 36 : 43 ∈ IE3,P2 A person P2 has a normal pro�le
dE3,3 = 01 : 08 : 48 ∈ IE3,P3 A person P3 has a normal pro�le
dE3,4 = 00 : 58 : 51 ∈ IE3,P4 A person P4 has a normal pro�le
dE3,5 = 00 : 50 : 39 ∈ IE3,P5 A person P5 has a normal pro�le
dE3,6 = 00 : 02 : 40 /∈ IE3,P6 A person P6 has a di�erent pro�le
dE3,7 = 00 : 26 : 25 ∈ IE3,P7 A person P7 has a normal pro�le
dE3,8 = 00 : 18 : 07 ∈ IE3,P8 A person P8 has a normal pro�le
dE3,9 = 03 : 30 : 29 /∈ IE3,P9 A person P9 has a di�erent pro�le

Table 6.17: Comparison between the duration of the event "Sitting on a Chair" and the interval
IE3,Pj

duration than the others, and person P6 was "sitting on a chair" for a short
time. Using these results, we can deduce that a person P6 is more able to
the person P9 to move in the apartment.

• Table 6.18 shows the validation of the event "Sitting on an Armchair" of
the 9 observed persons, by comparing the value of the duration dE4,P j , with
the interval IE4,P j .
If this value belongs to interval IE4,P j , then the person has a normal be-
havior compared to the average. If not, then the person has a deviated (i.e.
di�erent) behavior compared to the average.
This table shows that persons P4 and P6 were "sitting on a chair" for a

longer duration than the others, and person P9 was "sitting on a chair" for
a short time. Using these results, we can deduce that a person P6 prefers
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"Sitting on an Armchair"
durations compared to interval IE4,P j Person Pro�le on "Sitting on an Armchair"

dE4,1 = 00 : 12 : 57 ∈ IE4,P1 A person P1 has a normal pro�le
dE4,2 = 00 : 24 : 09 ∈ IE4,P2 A person P2 has a normal pro�le
dE4,3 = 00 : 52 : 58 ∈ IE4,P3 A person P3 has a normal pro�le
dE4,4 = 01 : 50 : 19 /∈ IE4,P4 A person P4 has a di�erent pro�le
dE4,5 = 00 : 57 : 14 ∈ IE4,P5 A person P5 has a normal pro�le
dE4,6 = 01 : 48 : 35 /∈ IE4,P6 A person P6 has a di�erent pro�le
dE4,7 = 00 : 16 : 07 ∈ IE4,P7 A person P7 has a normal pro�le
dE4,8 = 00 : 12 : 27 ∈ IE4,P8 A person P8 has a normal pro�le
dE4,9 = 00 : 05 : 46 /∈ IE4,P9 A person P9 has a di�erent pro�le

Table 6.18: Comparison between the duration of the event "Sitting on an Armchair" and the
interval IE4,Pj

to sit in an armchair instead the chair.

• Table 6.19 shows the validation of the event "Using TV" of the 9 observed
persons, by comparing the value of the duration dE5,P j , with the interval
IE5,P j .
If this value belongs to interval IE5,P j , then the person has a normal be-
havior compared to the average. If not, then the person has a deviated (i.e.
di�erent) behavior compared to the average.
This table shows that person P6 has used a TV for a short time (e.g.

"Using TV"
durations compared to interval IE5,P j Person Pro�le on "Using TV"

dE5,1 = 01 : 31 : 56 ∈ IE5,P1 A person P1 has a normal pro�le
dE5,2 = 02 : 49 : 53 /∈ IE5,P2 A person P2 has a di�erent pro�le
dE5,3 = 02 : 25 : 55 ∈ IE5,P3 A person P3 has a normal pro�le
dE5,4 = 02 : 47 : 44 /∈ IE5,P4 A person P4 has a di�erent pro�le
dE5,5 = 02 : 12 : 08 ∈ IE5,P5 A person P5 has a normal pro�le
dE5,6 = 00 : 05 : 12 /∈ IE5,P6 A person P6 has a di�erent pro�le
dE5,7 = 02 : 18 : 44 ∈ IE5,P7 A person P7 has a normal pro�le
dE5,8 = 01 : 47 : 34 ∈ IE5,P8 A person P8 has a normal pro�le
dE5,9 = 01 : 09 : 24 /∈ IE5,P9 A person P9 has a di�erent pro�le

Table 6.19: Comparison between the duration of the event "Using TV" and the interval IE5,Pj

00:05:12 for P6 vs. 02:25:55 for P3) than the others, and person P2 has
used a TV for longer duration (e.g. 02:49:53 for P2 vs. 01:31:56 for P1).

• Table 6.20 shows the validation of the event "Using Upper Cupboard" of
the 9 observed persons, by comparing the value of the duration dE6,P j , with
the interval IE6,P j .
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If this value belongs to interval IE6,P j , then the person has a normal be-
havior compared to the average. If not, then the person has a deviated (i.e.
di�erent) behavior compared to the average.
This table shows that person P9 has used uppercupboard for a very short

"Using Upper Cupboard"
durations compared to interval IE6,P j Person Pro�le on "Using Upper Cupboard"

dE6,1 = 00 : 03 : 40 ∈ IE6,P1 A person P1 has a normal pro�le
dE6,2 = 00 : 06 : 14 ∈ IE6,P2 A person P2 has a normal pro�le
dE6,3 = 00 : 00 : 43 ∈ IE6,P3 A person P3 has a normal pro�le
dE6,4 = 00 : 01 : 04 ∈ IE6,P4 A person P4 has a normal pro�le
dE6,5 = 00 : 23 : 15 /∈ IE6,P5 A person P5 has a di�erent pro�le
dE6,6 = 00 : 03 : 02 ∈ IE6,P6 A person P6 has a normal pro�le
dE6,7 = 00 : 17 : 31 /∈ IE6,P7 A person P7 has a di�erent pro�le
dE6,8 = 00 : 02 : 22 ∈ IE6,P8 A person P8 has a normal pro�le
dE6,9 = 00 : 00 : 15 ∈ IE6,P9 A person P9 has a normal pro�le

Table 6.20: Comparison between the duration of the event "Using Upper Cupboard" and the
interval IE6,Pj

time (e.g. 00:00:15 for P9 vs. 00:06:14 for P1) than the others, and person
P5 and P7 has used uppercupboard for longer duration (e.g. 00:23:15 for
P5 and 00:17:31 for P7).

6.5.3 Discussion

The main deductions of all the obtained results show that:

• The person P9 (woman of 85 years) has a fairly di�erent pro�le from the
others. This person shows some inabilities in using kitchen equipment (e.g.
on using stove) and also shows some di�culties to move in the laboratory
(e.g. sitting on a chair for a long duration), which may be the �rst sign of
the frailty of this person.

• The person P7 (woman of 66 years) and the person P5 (woman of 69 years)
show di�erent pro�le in using uppercupboard. After viewing the videos,
we found that these persons have forgotten to close the uppercupboard. It
could be due to the fact that these persons start a new activity and they
forgot to �nish the original activity (challenge of false starts introduced in
section 3.1.2 in chapter 3).

• The person P6 (woman of 70 years) shows di�erent pro�le in using TV, in
sitting on a chair and in sitting in an armchair. After viewing the videos, we
found that this person had di�culties in turning on the TV. This may be
due to the fact that this person does not have TV in her own home or has
di�culties using the remote control. About sitting on a chair and sitting in
an armchair it is due to the sensor failures.
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• The person P5 (woman of 69 years) shows di�erent pro�le in using upper-
cupboard. After viewing the videos, we found that this person has forgotten
to close the uppercupboard. It could be due to the fact that this person
starts a new activity and she forgot to �nish the original activity (challenge
of false starts introduced in section 3.1.2 in chapter 3).

• The person P4 (man of 66 years) shows di�erent pro�le in using TV, using
fridge and sitting in an armchair. After viewing the videos, we found that
this person was behaving weirdly but we do not know why. We may deduce
that this person was not motivated to do the experiments.

6.6 Conclusion

Several tests containing a large number of complex activities, including a test
lasting over two weeks have been realized. The obtained results show that
the proposed approach allows to recognize reliably with a low false alarm rate
a set of interesting activities at home from multisensor data (i.e. video and
environmental).

In the next chapter, we conclude our work and we propose some future
work to improve the activity recognition framework.
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Chapter 7

Conclusion and Future Work

In this thesis we have proposed a new approach for monitoring human activities at
home. This approach includes an algorithm for real-time (video rate) recognition
of primitive and composite activities that have occurred in the scene observed by
video cameras and sensors attached to house furnishings. The proposed approach
is based on combining video events with environmental events to recognize
human activities. The proposed approach consists in detecting people, tracking
people as they move, and recognizing activities of interest based on multisensor
analysis and human activity recognition.
The proposed approach takes as input the data provided by the di�erent sensors
and exploits three major sources of knowledge: the 3D model of the scene (i.e.
an apartment), the 3D model of mobile objects (e.g. person), and the models of
activities.

An overview of the contributions of this work is described in the next sec-
tion. Then a discussion is made to show the limitations of the proposed
approach. Finally, future works are proposed in section 7.3 to improve the
proposed approach.

7.1 Overview of the Contributions

In this section we describe an overview of our contributions in this work:

• A sensor model has been introduced as described in chapter 4. This sensor
model is able to give a coherent and e�cient representation of the informa-
tion provided by various physical sensors. The introduction of uncertainty
modeling in this sensor model is inspired by the real-world environment.
Consideration of the uncertainty is crucial in order to maintain a robust
sensor management performance.
The proposed sensor model contains six attributes which are the major
characteristics of the sensors in the world. This sensor model is indepen-
dent from the type of physical sensors installed in the observed scene. Un-
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certainty manifests itself in the sensor probabilities of detection and false
alarm.

• Amultisensor activity recognition framework is proposed in chapter 5
to recognize interesting human activities at home. A proposed approach
for multisensor activity recognition is based on fusing video events with
environmental events on the decision level. This approach is well adapted
to the fusion of heterogeneous data provided by di�erent types of sensor.
We have used Dempster-Shafer theory to model the uncertainties on the
sensor measurements. A set of mass functions are associated with each
combination of sensor measurement.

• A knowledge base of elderly activities is proposed in section 5.4.1.2 in
chapter 5. This knowledge base is based on modeling a set of interesting
activities at home. In this work we have modeled 100 events which include
58 video events, 26 environmental events and 16 multimodal events.

• An experimental study in a real world environment is described in
chapter 6. The results of the proposed approach, the recognized postures
and activities, have been described in section 6.3 in chapter 6. The approach
has been successfully tested for a set of ADLs of 9 elderly volunteers ob-
served in the Gerhome laboratory. The proposed posture-based event mod-
els are tested with a human actor and with the volunteers in the Gerhome
laboratory. We have also tested the two abnormal activities: fainting and
falling down with a human actor. We have obtained good results with few
false alarms. We have proposed a new dataset which contain 224 hours of
video stream for 14 elderly persons which have performed a set of household
activities. This dataset contains also 14 log �les of the non-video sensors.

7.2 Discussion

The proposed activity recognition approach shows the ability to help experts
to represent easily interesting events and the capacity of recognizing events
models related to daily activities at home. The proposed approach for activity
recognition gives good results. However, the approach has some limitations and
can be extended in a number of new studies and of new research directions.

The �rst limitation is that we are limited in terms of detection due to
segmentation errors (e.g. shadow, light change, strong illumination changes as
turning on the light) and to object occlusion. To solve this problem, currently
we use a set of background images to take into account the various changes.
More work on vision algorithms in particular in image segmentation is required
to solve this kind of problem.

The second limitation concerns the used of environmental sensors which
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give information about context only at an abstract level. For example, a contact
sensor is installed on the door of the fridge. There are many food items contained
in the fridge such as milk, juice, and butter. When the fridge sensor is triggered,
the state of the fridge is changed which indicates that the person interacts with
the fridge (opening the fridge and getting food out of the fridge). However, it
is not possible currently to infer which food item is removed from the fridge by
simply considering the current state of the fridge door. Knowing which food item
is removed from the fridge can help us to recognize �ner activities (e.g. recognize
a person taking a milk or taking a juice) than activities we currently recognize.

The mapping from the sensed fridge to the item removed from the fridge is dy-
namic and uncertain. Some improvements can be done to solve this limitation. In
particular a set of radio-frequency-identi�cation (RFID) tags [Tapia et al., 2004]
can be installed on objects of interest to detect object interactions (e.g. detect
what food item is removed from the fridge). Nevertheless, the constraint imposed
to ware a glove to sense tags makes it potentially less desirable to elderly or
disabled people in terms of their perceived desire to use such a solution.

Another solution to recognize �ner activities at home is image segmenta-
tion based on texture, colors and shape to distinguish between objects of interest
(e.g. using texture, colors and shape for example to distinguish between tomatoes
and cucumbers).

The proposed approach for activity monitoring can be applied in other en-
vironment equipped with the same requirements: stationary video camera, sensor
data with timestamps, tracking only one Individual.

7.3 Future Work

The purpose of this section is to analyze the future work, as extensions to the
approach and as possible solutions to its limitations. In this section we present
�rstly the proposed short-term perspectives, after that we present the proposed
long-term perspectives.

7.3.1 Short-Term Perspectives

In short term, the activity monitoring approach can be extended in several ways:

7.3.1.1 Improving Object Detection

The detection of errors in the segmentation task can be an interesting extension
of the approach. Reliability measures could be associated to the detected moving
regions in order to account for the quality of segmentation in terms of the in�uence
of illumination changes, level of contrast between the moving objects and the
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background of the scene, and the possibility of the presence of shadows, object
occlusion, among other aspects.

7.3.1.2 Learning Event Models and Learning Temporal Information
of Events

Both normal and abnormal behaviors can be modeled by experts of application
domains using the presented event description language and a dedicated ontology.
Nevertheless, de�ning event models is time consuming and an error prone process.
Thus, it will be interesting to learn automatically normal behaviors of every day
data, because normal behaviors are frequent and can be extracted from everyday
activities.

In everyday environments, any particular event may take variable time to
�nish. In a household kitchen for instance, the event of taking something out
of the refrigerator may take longer or shorter time depending on how many
items are being taken out and also depending on the individual who did it (e.g.
age and health of the person may in�uence the duration of that event). This
duration over which an event takes place can be an important discriminating
factor to distinguish amongst various activity classes. Furthermore, the event
duration can be an important indicator about whether the event was performed
correctly or not. At present, we only calculate the duration of events by using
leave-one-out method (see section 6.5.1 in chapter 6) and we are not learning
individual duration variation of each event depending on the person and the
number of items being taken out. Learning these durations needs an observation
of the old person during at least 2 weeks. A potential future direction of our
work might be to investigate the extent to which considering such temporal
information of events is useful for activity analysis.

7.3.1.3 Incorporate Another Uncertainty

The proposed uncertainty in sensor measurements is useful in multisensor systems
but it does not take into account the identity of the person using the sensor. There
is uncertainty which occurs when several persons trigger the same set of sensors.
In this type of uncertainty the system does not know which person has triggered
which sensor (i.e. which data to associate to which person). Managing this type
of uncertainty requires to identify the person by using for example an RFID tag
or by using face detection techniques. If the sensors were able to distinguish the
identity of the person activating them, it would be possible to create systems that
recognize activities in multiple person environments.

7.3.2 Long Term Perspectives

In long term, the activity monitoring approach can be extended in several ways:
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7.3.2.1 Activity Monitoring in Other Environment

In the current work, the proposed activity recognition approach was evaluated in
the experimental laboratory with fourteen elderly people. The next step of this
work requires to test this approach in nursing homes and in hospital environment
involving more people with di�erent wellness and di�erent health status. The
main advantage of these tests would be to develop a knowledge database so that
rules to monitor the functional health status of elderly people could be driven.
Possibilities of studies include:

• In nursing homes: Tests to validate the use of the proposed monitoring
activities for any change in the health status. This could include healthy
and frail elderly. At least 50 persons would be required for a period of at
least 6 months. This study would help to compare the obtained results in
the nursing homes to those obtained with the fourteen volunteers in the
Gerhome laboratory.

• In hospital environment: Tests to validate the proposed monitoring activi-
ties for di�erent persons with di�erent diseases. This could include patients
with chronic diseases (e.g. Alzheimer). At least 50 to 100 persons would be
required for a period of at least 6 months to one year. This study would
help to compare the obtained results with persons with di�erent diseases to
those obtained from the healthy persons in the nursing homes.
Currently, in Pulsar team a new PhD thesis has started which consists in
monitoring Alzheimer patient activities in Nice hospital. In this application,
(in plus of the environmental sensors) they also use an actimetry sensor.

7.3.2.2 Improve Activity Recognition Algorithms

In the future, it will be interesting to improve the activity recognition algorithms
to explore the following questions:

• Can activity recognition algorithms be improved to recognize not only the
activity but also the style of the activity? For instance, can we develop
algorithm that can detect not only "preparing dinner" but "preparing dinner
slowly"? Also, can we develop algorithm that can detect the way a person
takes his/her meal?

• Can multitasking activities be detected? For example when a person per-
forms several activities at the same time .

• How can algorithms that work for one individual at home can be extended
to multiple persons?
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7.3.2.3 Embedding the sensors into common architectural compo-
nents

Strategies for embedding the environmental sensors in objects such as cup-
boards, drawers and light switches could further simplify the installation in new
environments. Ultimately these sensors might be built into the architectural
components, and furniture at time of manufacture.
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Appendix B

Prede�ned Scenario

Here is a detail of the prede�ned scenario for the fourteen volunteers (see �g-
ures B.1, B.2, B.3). This scenario is de�ned in collaboration with Geriatrics and
Gerontologists from Nice hospital in France.
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Figure B.1: A prede�ned scenario (step 1) for the fourteen volunteers.
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Figure B.2: A prede�ned scenario (step 2) for the fourteen volunteers.
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Figure B.3: A prede�ned scenario (step 3) for the fourteen volunteers.
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Résumé

Dans cette thèse, une approche combinant des données issues de capteurs hétérogènes
pour la reconnaissance d'activités des personnes âgées à domicile est proposée. Cette
approche consiste à combiner les données fournies par des capteurs vidéo avec des don-
nées fournies par des capteurs environnementaux pour suivre l'interaction des personnes
avec l'environnement. La première contribution est un nouveau modèle de capteur ca-
pable de donner une représentation cohérente et e�cace des informations fournies par
di�érents types de capteurs physiques. Ce modèle inclue l'incertitude sur la mesure.
La deuxième contribution est une approche, basée sur une fusion multicapteurs, pour
la reconnaissance d'activités. Cette approche consiste à détecter la personne, suivre ses
mouvements, reconnaître ses postures et ses activités d'intérêt, par une analyse multi-
capteurs et une reconnaissance d'activités humaines. Pour résoudre le problème de la
présence de capteurs hétérogènes, nous avons choisi de réaliser la fusion à haut niveau
(niveau événement) des di�érentes données issues des di�érents capteurs, en combinant
les événements vidéo avec les événements environnementaux. La troisième contribution
est l'extension d'un langage de description qui permet aux utilisateurs (ex. le corps
médical) de décrire les activités d'intérêt dans des modèles formels. Les résultats de
cette approche sont montrés pour la reconnaissance des AVQ pour de vraies personnes
agées évoluant dans un appartement expérimental appelé GERHOME équipé de capteurs
vidéo et de capteurs environnementaux. Les résultats obtenus de la reconnaissance des
di�érentes AVQ sont encourageants.

Mots-clés: Activités de la Vie Quotidienne (AVQ), modèle de capteur, fonction de den-
sité de probabilité (PDF), événements vidéo, événements environnementaux, événement
multimodale, reconnaissance d'activités, théorie de Dempster Schäfer (DST).

Abstract

In this thesis, an approach combining heterogeneous sensor data for recognizing elderly
activities at home is proposed. This approach consists in combining data provided by
video cameras with data provided by environmental sensors to monitor the interaction of
people with the environment. The �rst contribution is a new sensor model able to give
a coherent and e�cient representation of the information provided by various types of
physical sensors. This sensor model includes an uncertainty in sensor measurement. The
second contribution is a multisensor based activity recognition approach. This approach
consists in detecting people, tracking people as they move, recognizing human postures
and recognizing activities of interest based on multisensor analysis and human activity
recognition. To address the problem of heterogeneous sensor system, we choose to per-
form fusion at the high-level (event level) by combining video events with environmental
events. The third contribution is the extension of a description language which lets users
(i.e. medical sta�) to describe the activities of interest into formal models. The results of
this approach are shown for the recognition of ADLs of real elderly people evolving in an
experimental apartment called Gerhome equipped with video sensors and environmental
sensors. The obtained results of the recognition of the di�erent ADLs are encouraging.

Keywords: Activities of Daily Living (ADLs), sensor model, probability density
function (PDF), video events, environmental events, multimodal events, multisensor ac-
tivity recognition, Dempster Schäfer Theory (DST).


