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Abstract

The dynamic interaction of the soil with a superstructure (DSSI) has been the subject of numerous
investigations assuming elasticity of both, superstructure and soil foundation behavior. Nevertheless,
the effect of DSSI may differ between elastic and inelastic systems. Thus, the current interaction
methodologies based on elastic response studies could not be directly applicable to structures ex-
pected to behave inelastically during severe earthquakes. Additionally, the soil is known to exhibit
inelastic behavior even for relatively weak to moderate ground motions. Consequently, ignoring these
characteristics in studying DSSI could lead to erroneous predictions of structural damage.

The main purpose of this work is to develop a general strategy to address the full DSSI problem in
the context of the seismic vulnerability analysis of structures. Thus, realistic Finite Elements models
are constructed and applied in a practical way to deal with these issues. These models cover a large
range of soil conditions and structural typologies under several earthquake databases. Some modeling
strategies are introduced and validated in order to reduce the computational cost. Therefore, an
equivalent 2D model is developed, implemented in GEFDyn and used in the large parametric study
conducted. Several indicators for both structural and soil responses are developed in order to synthesize
their behavior under seismic loading. Additionally, a vulnerability assessment strategy is presented in
terms of measures of information provided by a ground motion selection.

According to the investigation conducted in this work, there is in general a reduction of seismic
demand or structural damage when non-linear DSSI phenomenon is included. This reduction can
be associated fundamentally to two phenomena: radiative damping and hysteretic damping due to
non-linear soil behavior. Both effects take place simultaneously during the dynamic load and it is ex-
tremely difficult to separate the contribution of each part in reducing seismic demand. Indeed, effective
motion transmitted to the superstructure does not correspond to the free field motion because of the
geometrical and inertial interactions as well as the local modification of soil behavior, specially due
to the supplementary confinement imposed by the superstructure’s weight. A series of strong-motion
severity measures, structural damage measures and energy dissipation indicators have been introduced
and studied for this purpose. Nevertheless, results are erratic and consequently, generalization was
extremely difficult.

Despite these difficulties, the results illustrate the importance of accounting for the inelastic soil
behavior. The major part of the studied cases show beneficial effects such as the decrease of the
maximum seismic structural demand. However, the non-linear DSSI could increase or decrease the ex-
pected structural damage depending on the type of the structure, the input motion, and the dynamic
soil properties. Furthermore, there is an economic justification to take into account the modification
effects due to inelastic soil behavior.

Keywords: dynamic soil-structure interaction, non-linear behavior, finite elements, coupled for-
mulation, structural damage, ductility demand, seismic vulnerability





Résumé

L’interaction dynamique entre le sol et les structures (IDSS) a fait l’objet de nombreuses études
sous l’hypothèse de l’élasticité linéaire, bien que les effets de l’IDSS puissent être différents entre un
système élastique et un système inélastique. De fait, les méthodologies usuelles développées à partir
des études élastiques peuvent ne pas être adaptées aux bâtiments conçus pour dissiper de l’énergie par
de l’endommagement lors de séismes sévères. De plus, il est bien connu que la limite d’élasticité du
sol est normalement atteinte même pour de séismes relativement faibles. En conséquence, si les effets
inélastiques de l’ISS sont négligés, les études d’endommagement sismique des bâtiments peuvent être
très inexactes.

L’objectif de ce travail est de développer une stratégie générale pour l’étude du problème de
l’IDSS non-linéaire dans le contexte de l’analyse de la vulnérabilité sismique des bâtiments. Ainsi, des
modèles d’éléments finis réalistes sont développées et appliquées à des problèmes d’IDSS non-linéaires.
Les modèles couvrent une large gamme des conditions pour le sol et des typologies de bâtiments
soumis à plusieurs base de données sismique. Une stratégie de modélisation a été développée et
validée afin de réduire significativement le coût numérique. Pour cela, un modèle 2D équivalent a été
développé, implanté dans GEFDyn et utilisé pour effectuer un importante étude paramétrique. De
nombreux indicateurs de comportement non-linéaire de la structure et du sol ont été proposés pour
synthétiser leur fonctionnement lors du chargement sismique. De surcrôıt, une stratégie d’évaluation
de la vulnérabilité sismique basée sur l’information apportée par une base des données sismiques a été
développée.

De façon, générale, les résultats ont mis en évidence une réduction de la demande sismique lorsque
les effets inélastiques de l’IDSS sont pris en compte. Cette réduction est liée fondamentalement à deux
phénomènes : l’amortissement par radiation et l’amortissement hystérétique du sol. Ces deux effets
ont lieu simultanément pendant le mouvement sismique. Il est alors très difficile d’isoler l’influence de
ces deux phénomènes. En effet, le mouvement effectif transmis à la structure n’est pas le même que
celui en champs libre du aux effets d’interaction, ainsi qu’à la modification locale du comportement du
sol fortement lié aux poids du bâtiment. Une série de mesures de sévérité sismique et des mécanismes
de dissipation d’énergie au niveau du sol et du bâtiment a été introduite dans le but d’analyser ces
effets. Cependant, ces résultats sont en général très irréguliers et leur généralisation à été très difficile.

Néanmoins, ces résultats mettent en évidence l’importance de la prise en compte des effets du
comportement inélastique du sol. La plupart des cas étudiés ont montré un effet favorable de l’IDSS
non-linéaire. Mais, en général, l’IDSS peut augmenter ou diminuer la demande sismique en fonction
de la typologie de la structure, des caractéristiques du mouvement sismique et des propriétés du sol.
Tout de même, il y a une justification économique pour étudier les effets du comportement non-linéaire
du sol sur la réponse sismique.

Mots-clés: interaction dynamique sol-structure, comportement non-linéaire, éléments finis, for-
mulation couplé, endommagement, demande en ductilité, vulnérabilité sismique
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Introduction

Motivation

During the last years, significant advances in comprehensive strategies for seismic risk assessment
have been developed in Earthquake Engineering. Indeed, elaborated methods have been proposed
to quantify structural and non-structural damage, to estimate the number of casualties or to predict
the rehabilitation cost after major earthquakes. In this way, powerful analysis methods have been
developed to accurately analyze structural models and estimate the demands for different levels of
shaking. Nevertheless, the major part of these methods do not incorporate explicitly the foundation
conditions. Thus, the structure is supposed to be clumped on the foundation medium and local soil
conditions are solely included by selecting adequate ground motions compatible with the characteristics
of the soil deposit.

Both, research and practice, have shown that a structure founded on a deformable soil could
respond differently compared to a fixed base situation. Indeed, in flexible supported case, mutual
interaction between structure and adjacent soil takes place inducing modifications in the dynamic
response. The interaction of the soil with a superstructure has been the subject of numerous inves-
tigations assuming linearity of both, superstructure and soil foundation. Nevertheless, the effect of
dynamic soil-structure interaction (DSSI) may differ between elastic and inelastic systems. Thus, the
current interaction methodologies based on elastic response studies could not be directly applicable to
structures expected to behave inelastically during severe earthquakes. Additionally, the soil is known
to exhibit non-linear behavior even for relatively weak to moderate ground motions. Consequently,
ignoring the non-linear characteristics of the DSSI phenomenon could lead to erroneous predictions of
structural damage.

In every day engineering practice, static, dynamic or incremental dynamic, non-linear structural
seismic analysis procedures become more and more frequent. In contrast, full non-linear dynamic
soil-structure analysis is still out of the usual practice, and is restricted because of the high com-
putational cost of this kind of analysis. Consequently, it is a challenge for researchers to identify
configurations where the structural response is highly affected by the non-linear DSSI. As a general
rule, the soil-structure interaction effects are assumed beneficial and ignored. Nevertheless, a more
precise knowledge of the expected structural seismic response including DSSI effects could allow reduce
the cost of new structures with the same reliability and improve the earthquake engineering practice.

Objectives and scope

The goal of this work is to develop a general strategy to address the full non-linear DSSI problem.
This strategy includes:� the construction of an appropriate numerical model taking into account realistically the physical

phenomena encountered such as the wave propagation and the non-linear behavior of both
superstructure and soil, as well the soil-foundation contact problem� the selection of an adequate strong motion database



2 List of Figures� the identification of a set of suitable measures describing the earthquake, the soil and the struc-
ture dynamic responses� the inclusion of non-linear DSSI effects into a seismic vulnerability assessment

This work aims to show how realistic Finite Elements (FE) models can be constructed and applied
in a practical way to deal with the issues associated to non-linear DSSI. Some modeling strategies
are introduced and validated in order to reduce the computational cost for a given configuration.
Several indicators for both structural and soil responses are developed in order to summarize their
behavior under seismic loading. Additionally, a vulnerability assessment strategy is presented in terms
of measures of information provided by a ground motion selection.

Several single-degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) structures founded
on several soils are studied. In addition, two hydraulic conditions are considered: dry and fully satu-
rated. Conclusions, as general as possible, are derived for each case. General tendencies are identified
in several configurations.

The ultimate goal is to encourage practice towards the inclusion of DSSI phenomena in order to
improve the prediction of the structural response under weak to moderate ground motions. The near
to soil-failure case has been intentionally excluded from the scope of the present work.

Organization and outline

All chapters are written to be autonomous, each planned as a future publication. Some information re-
garding theoretical formulation of used constitutive models, considered structures’ details and selected
strong motions, have been placed in appendices to simplify the lecture of the document.

Chapter 1 establishes and defines the basic principles of the time-domain dynamic soil-structure
interaction problem. The theoretical strong formulation and the corresponding weak formulation for
a FE modeling are presented. Generalities about the time and the non-linear integration strategies
adopted in the used tool GEFDyn are also provided. The final part of this chapter describes in detail
the adopted criteria to model the DSSI problem by FE, and presents numerical validations of the used
models compared to the results obtained by a coupled BE-FE approach.

Chapter 2 summarizes the earliest stage of this work. The general strategy to define a set of
comparable data including and neglecting DSSI effects is presented in this chapter. Implications
of the non-linear DSSI in standard non-linear static procedures for seismic demand assessment are
investigated. The influence of the DSSI on the seismic structural demand is summarized in terms of
fragility curves. Three major issues are detected at this stage of the work: limitations associated to
a 2D plane-strain approach, contribution of the elastic part of the DSSI and influence of the seismic
database on the obtained fragility curves. These issues are explored in detail in Chapters 3, 4 and 5,
respectively.

Chapter 3 proposes a modified plane-strain approach to model the non-linear DSSI problem
for regular buildings. Multiple validations are provided to highlight the accuracy of the introduced
approach. A strong motion selection strategy is presented. An energy oriented analysis is introduced
to evaluate the response of the soil and the building. Two buildings founded on three different soils
are studied.

Chapter 4 explores the contribution of the elastic DSSI to the complete non-linear DSSI problem.
With this purpose, a set of 3D analyses are carried out for two SDOF structures laid on two soils.
General tendencies in terms of influence on the ductility demand are presented. Situations where
elastic DSSI considerations give an erroneous prediction are identified.

Chapter 5 introduces a vulnerability assessment strategy in terms of measures of the information
provided by a ground motion selection. The strategy is applied to a target building over a soil profile
composed of a mix of sandy and clayey soils. Full 3D and 2D modified plane-strain computations are
carried out. A strategy to construct an equivalent 2D model starting from a 3D regular enough building
is introduced. A detailed analysis of the influence of the motion database size on the vulnerability
assessment for the studied case is presented.
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4 1.1. Introduction

1.1 Introduction

The assessment of the dynamical soil-structure interaction phenomenon demands the study of several
aspects of the problem, among others: the definition of the seismic hazard, site topography and
ground water level, the non-linear soil behavior of the soil under cyclic loading, the spatial variation
of the soil properties, the non-linear dynamic soil response of the superstructure and the wave pattern
modification due to neighboring structures. Nevertheless, several simplifications must be done in order
to formulate a problem which can be solved with the today’s state of the art earthquake engineering
numerical methods.

In §1.2 a brief review of the governing equations of the dynamical soil-structure problem in view of
a material non-linear finite element numerical implementation is presented. Afterwards, some simpli-
fications introduced for the numerical modeling in earthquake engineering practice will be presented.
Section 1.3 presents the theoretical formulation and the implementation of the different constitutive
models used to take into account the material non-linear behavior of the different constituents of the
problem. Finally, §1.4 presents some special aspects of the numerical resolution of the dynamical non-
linear soil-structure interaction problem using the Finite Element Method. Some numerical validation
of the used finite element tool (GEFDyn ) under linear elastic behavior assumption is also presented
in this section.

1.2 Definition of the problem

1.2.1 Governing equations

To derive the basic motion governing equations, it is sufficient to examine a generic structure embedded
in soil under an incoming earthquake excitation ui(x, t) (Fig. 1.1). The dynamic system consists of
two sub-domains, the superstructure Ωb (bounded by Γb) and the soil (unbounded half-space). As it is
impossible to cover the unbounded domain with a finite element discretization, an artificial boundary
Γs has to be introduced for modeling purposes. In addition, appropriate boundary conditions must
be introduced to represent the missing soil (§1.2.3). Depending on the type of boundary condition
enforced, the location of the artificial boundary is a function of the level of material damping of the
soil, the frequency range of interest, the wave velocity, and the duration of the excitation (Wolf, 1985).
Therefore, the total domain can be decomposed in two bounded sub-domains: the soil Ωs (two-phases)
and the superstructure Ωb (one-phase). These domains are separated by an interface Σbs. Hereafter,
the displacements in the Ωs and Ωb due to a dynamic loading are denoted by us (x, t) and ub (x, t)
respectively. The mechanical problem consists in computing the stress field σ

s
(us) on the soil and

σ
b
(ub) on the superstructure domain verifying the momentum conservation.

Ωs

Γs

interface: Σbs

Ωb

Γb

ui
Figure 1.1: Definition of the global system

Assuming a fully saturated soil domain (Ωs), the total stress tensor σ
s

can be decomposed into an
effective stress tensor σ′

s
and the pore pressure p, according with the Therzaghi’s principle:
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σ
s

= σ′
s
− p.I (1.1)

where I is the second-order identity tensor. In (1.1) the continuum mechanic’s sign convention is
assumed, i.e. tractions are positive. This decomposition is strictly correct only if the increment of pore
pressure for a constant effective stress does not deforms the soil’s skeleton. The complete formulation
of the problem for the soil domain includes the conservation relations, the constitutive model, the
boundary and the initial conditions. Biot (1962) formulated for the first time the dynamic behavior of
saturated porous media. The latter author generalized the consolidation theory to three dimensional
case and introduced the inertia forces and the compressibility of pore water, but did not include the
Terzaghi’s principle in his formulation. The mathematical formulation of the complete problem can be
done using several choices of dependant variables. Either, the absolute displacements of the solid and
of the fluid and the pressure (us, uf , p) (Zienkiewicz and Shiomi, 1984) or the absolute displacements
of the solid, the relative displacement of the fluid and the pressure (us, urf , p) (Modaressi, 1987; Aubry
and Modaressi, 1992b) can be used. These approaches are interesting for higher frequencies. However,
for the frequency range suited in earthquake engineering some simplifications are possible. Zienkiewicz
et al. (1980) proposed a simplified formulation of Biot’s equation in dynamics (us − p formulation)
for low-frequency range. In this approach, the relative acceleration of the fluid to the solid phase is
neglected resulting in a reduction of unknowns. In this case, the momentum conservation may be
written as:

div σ′
s
− grad p+ ρ g = ρ üs (1.2)

where üs is the absolute acceleration vector of the solid skeleton and ρ is the mean soil’s specific mass:

ρ = (1− n) ρs + nρf (1.3)

where n is the porosity, ρs the density of the solid phase and ρf the density of the fluid.

The movement of one phase with respect to the other is controlled by the flow equation (generalized
Darcy’s law) for the simplified us − p approach:

u̇rf = K.
(
−grad p+ ρf

(
g − ρ üs

))
(1.4)

where u̇rf is the relative velocity vector between the solid phase and the fluid: urf = n
(
uf − us

)
and

K is the permeability tensor:

K =
k

ρf .g
(1.5)

in which k is the kinematic permeability tensor.

The combination of the mass conservation for each phase gives the following expression:

div u̇rf + div u̇s = −n ṗ

Kf
− (1− n)

ṗ

Ks
(1.6)

where Kf and Ks are the compressibility of the fluid and the solid skeleton, respectively. Using (1.4)
the relative displacement of the fluid may be eliminated:

div u̇s − div
(
K.grad

(
p− ρfg.x

))
− div

(
K.ρf üs

)
+
ṗ

Q
= 0 (1.7)

so that the solid phase displacement and the pore pressure are the only unknown variables. The
compressibility parameter Q is given by:

1

Q
=

n

Kf
+ (1− n)

1

Ks
(1.8)
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The main advantage of the simplified model is related to the reduction of the numerical cost. For
example, for a 3D finite element model the number of degrees of freedom at each node, in the soil
domain Ωs, is reduced from 6 to 4. The inaccuracies of the us− p simplified approach are pronounced
only in high-frequency, short-duration phenomena (Zienkiewicz et al., 1999). The limits of validity
of this approach are extensively studied by Zienkiewicz et al. (1980, 1999) following a comparative
one-dimensional analysis between the complete and the approximative formulation and the undrained
case assuming linear elastic soil’s skeleton behavior.

In summary, the two sets of equations which describe together with the initial and boundary
conditions (§1.2.2) the us − p formulation for the two-phases soil domain Ωs are given by:

div σ′
s
− grad p+ ρ g = ρüs ∀x ∈ Ωs (1.9)

div u̇s − div
(
K.grad

(
p− ρfg.x

))
− div

(
ρf K.üs

)
+
ṗ

Q
= 0 ∀x ∈ Ωs (1.10)

to this one should add the constitutive model (§1.3.4) for the soil skeleton.

It is also necessary to take into account the interaction between the two deformable domains by
writing the conditions of compatibility over the interface Σbs (§1.2.2).

The equilibrium equation for the superstructure domain (Ωb) can be written as:

div σ
b
+ ρb g = ρbüb ∀x ∈ Ωb (1.11)

where g is the acceleration of gravity and ρb the specific mass of the superstructure material.

b

b

er

es

et

b

p
0

b
p∗

b

b

b

x0

b

x∗

u0

u

Figure 1.2: Notation for continuous beam geometry and section

Concerning this domain (Ωb), we assume a Mindlin kinematics which describes the displacement by
two independent fields of translations and rotations. In this formulation the plane sections originally
normal to the mindlin axis remain plane and undistorted under deformation but not necessarily normal
to this axis. This assumption does not allow warping effects in torsion and corresponds to the Bernouilli
beam theory. The parametric description in the undeformed configuration of the domain Ωb is noted
as:

p(r, s, t) = p
0
(r) + ses + tet = p

0
+ p∗ (1.12)

where p
0
(r) is the position on the middle line and p∗ is the vector describing the section. After the

loading, the deformed configuration can be written under the assumption of a rigid section as:

x(r, s, t) = x0(r) + sR(s, t)es + tR(s, t)et = x0 + x∗ (1.13)

where R specifies the rotation of the section. If the rotation is small, it can be approached by:

R = I + U
1

(1.14)
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where U
1

is antisymmetric. The displacement field in Ωb is given by:

ub = x− p (1.15)

so that:

ub(r, s, t) = u0(r) + sU
1
(r)es + t U

1
(r)et = u0 + U

1
x∗ (1.16)

Therefore, the kinematic of the Ωb domain is dependent of only two variables, the vector field u0(r)
along the displacement axis and the small rotations antisymmetric operator U

1
(r). The operator U

1
is associated to a rotation vector u1 by a wedge product:

ub = u0 + u1 ∧ x∗ (1.17)

The gradient of the displacement field can be computed as:

gradub = ∂rub ⊗ er + ∂sub ⊗ es + ∂tub ⊗ et (1.18)

According to the kinematics defined by (1.16), the gradient can be written as:

gradub =
(

∂ru0 + ∂rU1
.x∗
)

⊗ er + U
1
(es ⊗ es) + U

1
(et ⊗ et)

=
(

∂ru0 + ∂rU1
.x∗
)

⊗ er + U
1

(
I − er ⊗ er

)

= (∂rub − u1 ∧ er)⊗ er + U
1

(1.19)

The strain tensor ε is related to ub by:

ε (ub) =
1

2

(

gradub + grad utb

)

(1.20)

Using the previous definitions, and using the antisymmetric property of U
1
, the strain tensor

becomes:

ε (ub) = (∂rub − u1 ∧ er)⊗s er =
(

∂ru0 − U1
er + ∂rU1

x∗
)

⊗s er (1.21)

Expanding the previous expression, we obtain:

ε (ub) =
(

∂ru0r +
(

∂rU1
x∗
)

.er

)

er ⊗ er +
(

∂ru0.es −
(

U
1
er

)

.es +
(

∂rU1
x∗
)

.es

)

es ⊗s er
+
(

∂ru0.et −
(

U
1
er

)

.et +
(

∂rU1
x∗
)

.et

)

et ⊗s er (1.22)

We verify that εss = εtt = εst = 0, which means that no deformation within each transverse section
exist. It is possible to identify the following terms

∂ru0r : axial strain

∂ru0.eα −
(

U
1
er

)

.eα with α = s, t : transverse shear strain
(

∂rU1
x∗
)

.er = (∂ru1 ∧ x∗) .er : bending strain
(

∂rU1
x∗
)

.eα = (∂ru1 ∧ x∗) .eα with α = s, t : torsional strain

The hypothesis of Bernouilli is adopted, i.e. it is assumed the orthogonality of the section with
respect to the deformed midline. This assumption implies that the transverse shear is zero:
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∂ru0.eα −
(

U
1
er

)

.eα = 0 with α = s, t (1.23)

In this case, the rotation associated with the bending can be expressed from the displacement of
the axis:

er ∧ (∂r (u0.es) es + ∂r (u0.et) et) = er ∧ (u1 ∧ er) = u1 − u1rer (1.24)

from which:

u1 = er ∧ (∂r (u0.es) es + ∂r (u0.et) et) + u1rer (1.25)

Replacing in the bending strain expression:

∂rU1
x∗ = ∂ru1 ∧ x∗

= (er ∧ (∂rr (u0.es) es + ∂rr (u0.et) et) + ∂ru1rer) ∧ x∗

= − (x∗. (∂rr (u0.es) es + ∂rr (u0.et) et)) er + ∂ru1rer ∧ x∗ (1.26)

And finally, the strain tensor can be written as:

ε (ub) = (∂ru0rer + ∂ru1 ∧ x∗)⊗s e3
= ((∂ru0r − x∗. (∂rr (u0.es) es + ∂rr (u0.et) et)) er + ∂ru1re3 ∧ x∗)⊗s er (1.27)

Therefore, the movement can be described by the vector field u0 and the twisting component u1r ,
both function of the spatial variable r.

1.2.2 Boundary and Interface Conditions

The boundary conditions for the soil domain Ωs will be more complex than for the superstructure
domain Ωb because they must be decomposed into boundary conditions relative to the solid phase and
in fluid flow.

For the superstructure, a traction boundary condition is applied (free surface in dynamics):

tb (x, t) = σ
b
. n = 0 ∀x ∈ Γbσ = Γb (1.28)

where tb is the stress vector following the exterior normal direction n of Γb. For some static com-
putations, this boundary condition is slightly modified using prescribed values for tractions t∗ over a
portion of the boundary Γ∗

bσ
(Γ∗
bσ
∩ Γbσ = ∅ and Γ∗

bσ
∪ Γbσ = Γb ):

tb (x) = 0 ∀x ∈ Γbσ

tb (x) = t∗ (x) ∀x ∈ Γ∗
bσ

(1.29)

Because of the equations (1.9) and (1.10), the boundary Γs of the domain Ωs is decomposed into
two types of partitioning. First (1.9) into two parts (mechanical boundary): Γsσ and Γsu . On Γsu the
displacement is imposed while the total traction boundary condition is retaining on Γsσ (Γsu ∩Γsσ = ∅
and Γsu ∪ Γsσ = Γs). For the fluid flow boundary conditions, another partition is considered: Γsp and
Γsϕ (Γsp ∩ Γsϕ = ∅ and Γsp ∪ Γsϕ = Γs). On Γp there is a pore pressure boundary condition while on
Γsϕ there is a condition on the flux:

u̇rf (x, t) .n = ϕ∗ (x, t) ∀x ∈ Γsϕ (1.30)

where n is the exterior normal vector over Γsϕ and ϕ∗ the prescribed value of the flux.
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Over the interface Σbs between both domains, the condition on the fluid can be either restricted
to the nullity of the fluid flow through the interface:

(
K . grad p(x, t)

)
. n = 0 ∀x ∈ Σbs (1.31)

or the atmospheric pressure. n is the exterior normal vector of Ωs over the interface Σbs. The continuity
of the stress vector must be verified over the interface (even if uplift appears):

tb (x, t) + ts (x, t) = 0 ∀x ∈ Σbs (1.32)

in which ts is the stress vector applied on Γs. Concerning the displacement, discontinuities are allowed
between Ωs and Ωb over the interface Σbs. If [·] represents the jump of a quantity, the jump of
displacements between the superstructure and the soil on the interface Σbf can written as:

[u(x, t)] = ub(x, t)− us(x, t) ∀x ∈ Σbs (1.33)

1.2.3 Earthquake input and dynamic boundary conditions

The specification of the earthquake input motion for a fixed base structure problem is usually done
by prescribing the base displacement ug(t) or base acceleration üg(t). In this approach, the problem
is usually formulated in terms of the displacement relative to this base movement, but can be also
formulated in terms of the total displacements.

Ωs′

Γs′

Ωs

Σ

Ωst

Σbs

ui

Figure 1.3: Domain decomposition for dynamic boundary conditions

In the case of an earthquake non-linear SSI problem treated by a finite elements approach, where a
truncated portion of the surrounding soil is added to the problem, the fixed base procedure is strictly
not applicable. In this case, the soil truncation boundary must allow the incoming seismic wave to
enter to the model, as well as to ensure that the outgoing waves are transmitted. In order to formulate
an appropriate absorbing/incident boundary model, the total unbounded soil domain can be divided
in two distinct sub-domains Ωs and Ωs′ (Fig. 1.3). The domain Ωs is non-linear and two phase, and
obeys the equations of the previous sections. The domains Ωs′ is assumed to be elastic, homogenous,
isotropic, monophasic and unbounded. The behavior of this last will be modelled by the paraxial
approximation of the elastodynamics equations (Modaressi, 1987; Engquist and Majda, 1977). If the
displacement field in Ωs′ is denoted by us′ , the equation of elastodynamics in time domain can be
written as:

(λ+ µ) grad (divus′) + µ△ us′ = ρs′ üs′ ∀x ∈ Ωs′ (1.34)

where λ and µ are the Lamé elastic constants and ρs′ the mass density. Free field conditions are
supposed on the boundary Γs′ of Ωs′ . The displacement field us′ must tend to incident field ui far
enough from the interface Σ between Ωs and Ωs′ :

lim
‖x‖→∞

us′ = ui (1.35)
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The stress tensor on Ωs′ can be decomposed in a static part σ0
s′

due to gravity and static loads,
and a dynamic part due to us′ :

σ
s′

= σ0
s′

+ σ
s′

(us′) (1.36)

At the interface Σ, the continuity of the displacements and the stress vector must be respected:

us′ = us and ts + ts′ (us′) = 0 (1.37)

It is assumed that an elastic monophasic transition soil portion Ωst exists between Σ and Ωs

(Fig. 1.3). This sub-domain obeys the elastodynamics equations. Finally, the initial conditions for
unbounded domain Ωs′ are:

us′ (0) = 0

σ
s′

(0) = σ0
s′

u̇s′ (0) = 0 (1.38)

Several authors have proposed perfectly boundary conditions for general classes of wave propaga-
tion problems. Unfortunately, these boundary conditions are necessarily nonlocal in both space and
time, and thus are not useful for practical calculations in time domain. In time domain, the simpler
solution is to use viscous dampers, but the efficacy of this approach decays when the outgoing wave
is not perfectly normal to the damper orientation. Additionally, a total displacement splitting in an
incoming wave and the displacement relative to the incoming displacement must be done for earth-
quake incident fields problems (Zienkiewicz et al., 1988). The paraxial approximation (Engquist and
Majda, 1977), allows to develop a local dynamic impedance in time and space on the interface Σ. This
kind of boundary approximation can be easily extended to be used simultaneously as an absorbing
boundary and as a tool to impose an incident field (Modaressi, 1987). Details about the derivation of
the paraxial approximation implemented in GEFDyn are provided in the Appendix A.

1.2.4 Variational formulation

The weak form of the governing equations can be obtained using a variational formulation. The set
of kinematically acceptable displacement fields Vb for the Ωb domain is defined as:

Vb = {wb |wb regular in Ωb , wb(x) = 0 on Γbu}
Similarly, for the Ωs domain a set of acceptable kinematically displacement fields Vs and a set of

admissible pressure fields Q can be defined:

Vs = {ws |ws regular in Ωs , ws(x) = 0 on Γsu}
Q =

{
q | q regular in Ωs , q(x) = 0 on Γsp

}

Considering the previous definitions, the variational formulation of (1.11) can be written as:

∫

Ωb

σ
b
: ε

b
(wb) dV +

∫

Ωb

ρbüb.wbdV =

∫

Ωb

ρb g.wbdV +

∫

Σbs

tb.wbdS +

∫

Γbσ

tb.wbdS (1.39)

using the Stoke’s formula and the boundary conditions described in the previous section. According
to (1.28), the last term vanishes for the dynamic case. ε

b
is the strain tensor associated to the virtual

displacement field wb. Using the kinematics imposed for the displacement field:

wb(r, s, t) = w0(r) + w1(r) ∧ x∗ (1.40)
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the inertia term in (1.39) can be computed as:

∫

Ωb

ρb üb.wbdV =

∫

L

∫

S

ρb (ü0 + ü1 ∧ x∗) . (ẅ0 + ẅ1 ∧ x∗) dSdl

=

∫

L

ρ̄ ü0.w0 + ρ̄x̄. (ü0 ∧ w1 − ü1 ∧ w0) +
(
J ü1

)
.w1 dl (1.41)

where dl and dS indicates integration following the midline and over the section, respectively. The
mass density per unit of length (ρ̄), the center of inertia of the section x̄ and the inertia operator of
the section (J) are defined by:

ρ̄ =

∫

S

ρb dS ; ρ̄x̄ =

∫

S

ρbx
∗ dS and J =

∫

S

ρ
(

|x∗|2 I − x∗ ⊗ x∗
)

dS

If the inertia center of the section is not on the midline, coupling effects appears between axial and
bending fields. The integration of internal force term can be also decomposed into the axial direction
and over the section. Using the imposed kinematics and the symmetry of the stress tensor, it can be
written as:

∫

Ωb

σ
b
: ε (wb) dV =

∫

L

∫

S

(

σ
b
er

)

. (∂rwb −w1 ∧ er) dSdl

=

∫

L

∫

S

(

−er ∧
(

σ
b
er

))

.w1 +
(

σ
b
er

)

.∂rwb dSdl

=

∫

L

(
−er ∧ q

)
.w1 + q.∂rw0 +m.∂rw1 dl (1.42)

where q and m are the resultant force and the bending moment over the section:

q =

∫

S

σ
b
er dS and m =

∫

S

x∗ ∧
(

σ
b
er

)

dS

The body forces can be computed by a similar way:

∫

Ωb

ρbg.wb dV =

∫

L

∫

S

ρg. (w0 + w1 ∧ x∗) dSdl

= ρ

∫

L

∫

S

g.w0 +
(
x∗ ∧ g

)
.w1 dSdl

=

∫

L

q
g
.w0 +mg.w1 dl (1.43)

where q
g

and mg are the section equivalent forces and moments due to body forces:

q
g

=

∫

S

ρb g dS and mg =

∫

S

ρb x
∗ ∧ g dS

Similarly, the variational formulation for the soil domain (1.10) is given by:
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∫

Ωs

ρ üs.ws dV +

∫

Ωs

σ′
s

: ε
s
(ws) dV −

∫

Ωs

p.div (ws) dv =

∫

Ωs

ρ g.wsdV +

∫

Γsσ

ts.wsdS +

∫

Σbs

ts.wsdS (1.44)

−
∫

Ωs

ρf div
(
K.üs

)
.qdV +

∫

Ωs

div u̇s.q dV +

∫

Ωs

ṗ

Q
.q dV

+

∫

Ωs

(
K.grad p

)
.grad q dV =

∫

Γϕ

ϕ∗.q dS

−
∫

Ωs

(
K.grad

(
ρfg.x

))
.grad q dV

(1.45)

where ε
s

is the strain tensor associated to the virtual displacement field, ws, in the soil domain. The
terms over the interface Σbs in (1.39) and (1.45) can be related using the relation between the jump
of the displacement [u] ([w] in the variational formulation) and the continuity of the stress vector
(ts = −tb), introducing coupling between the soil and the superstructure.

∫

Σbs

tb.wbdS +

∫

Σbs

ts.wsdS =

∫

Σbs

tbs. [w] dS (1.46)

where [w] = wb − ws denotes the jump of the virtual displacements fields between both domains and
tbs the stress vector over the interface Σbs.

When a deformable bedrock condition is considered, the first equation of the variational formulation
for the soil domain (1.44) can be slightly modified in order to introduce the paraxial approximation
at the boundary Σ:

∫

Ωs

ρ üs.ws dV +

∫

Ωs

σ′
s

: ε
s
(ws) dV

−
∫

Ωs

p.div (ws) dV =

∫

Ωs

ρ g.wsdV +

∫

Σbs

tbs. [w] dS

+

∫

Γsσ

ts.wsdS +

∫

Σ
ts.wsdS (1.47)

where Γs = Γsσ ∪ Σbs ∪ Σ, Γsσ ∩ Σbs = ∅, Γsσ ∩ Σ = ∅ and Σbs ∩ Σ = ∅. Introducing the zero-order
paraxial approximation (A.36) in the variational formulation:

∫

Ωs

ρ üs.ws dV +

∫

Ωs

σ′
s

: ε
s
(ws) dV

−
∫

Ωs

p.div (ws) dV +

∫

Σ
A0 (u̇s) .wsdS =

∫

Ωs

ρ g.wsdV +

∫

Σbs

tbs. [w] dS +

∫

Γsσ

ts.wsdS

+

∫

Σ
(−ts (ui) +A0 (u̇i)) .wsdS (1.48)

The discretization in space will be treated by finite elements and the discretization in time by a
Newmark method. The corresponding matrices are developed below.

1.2.5 Space discretization

A finite element approximation of ub, us and p defined by uhb , u
h
s and ph should be computed by

restricting the shape functions to finite dimensional spaces for the displacement and rotations of the
superstructure, displacements of the solid phase of the soil and the pressure.
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In the superstructure domain Ωb, we introducing the following finite element approximation uh0
and uh1 for the field displacement u0 and the rotations u1:

uh0 (x, t) =

3∑

i=1

nb∑

I=1

N I
0 (x) eiu0Ii

(t) ∀x ∈ Ω̄b

uh1 (x, t) =
3∑

i=1

nb∑

I=1

N I
1 (x) eiu1Ii

(t) ∀x ∈ Ω̄b (1.49)

where nb are the total node numbers where displacements and/or rotation are defined, Ω̄b denotes the
discretized domain and u0Ii

and u1Ii
are the nodal values. The index I stands for the nodes and i for

the DOFs associated to each node. It can be noticed that is not necessary to assume the same shape
functions for transverse and extensional displacement N I

1 or for bending and torsional rotations N I
0 .

In the soil domain Ωs, the finite element spaces have the usual finite element shape functions
NJ
s (x) .ej and NJ

p (x) where J stands for a node number and, ej is the unit basis vector of the
Euclidean space. Therefore the following expansion may be written:

uhs (x, t) =

3∑

i=1

ns∑

I=1

N I
s (x) ei uIi(t) ∀x ∈ Ω̄s

ph (x, t) =

np∑

I=1

N I
p (x) pI(t) ∀x ∈ Ω̄s (1.50)

where ns and np are the total node numbers, where solid phase displacement and fluid pressure are
defined, respectively; Ω̄b and Ω̄s are the discretized domains; uIi(t) and pI(t) are the nodal values
of displacements and pressures. For a 3D case, four degrees of freedom (3 displacements and 1 pore
pressure) can be defined in the discretized soil domain Ω̄s, but for the superstructure up to six degrees
of freedom can be required for each node (three displacements and three rotations).

The shape functions for the displacements or the pore pressures may be chosen differently and this
choice can influence the quality of the results. So, according to the previous space discretization, the
virtual test functions for variational formulation can be chosen successively equal to each member unit
basis, that is (Galerkin’s method):

wh,J0 =
3∑

j=1

NJ
0 ej ; wh,J1 =

3∑

j=1

NJ
1 ej ; wh,Js =

3∑

j=1

NJ
b ej ; ph,J = NJ

p (1.51)

Using the variational formulation of the equilibrium equation for the superstructure (1.39) and the
previous space discretization, the governing equation in the matrix form becomes:

[Mbb] {üb}+ {Bσb}+ {Bσb}bs = {fb} (1.52)

The matrix terms are defined by:

[Mbb]IiJj =

∫

L̄

ρ̄N I
0 ei.N

J
0 ej + ρ̄x̄.

(
N I

0 ei ∧NJ
1 ej −N I

1 ei ∧NJ
0 ej
)

+
(
J.N I

1 ei
)
.NJ

1 ej dl

{Bσb}Jj =

∫

L̄

(
−er ∧ q

)
.NJ

1 ej + q.∂rN
J
0 ej +m.∂rN

J
1 ej dl

{Bσb}bsJj = −
∫

Σ̄bs

tb.
(
NJ

0 ej +NJ
1 ej ∧ x∗

)
dS

{fb}Jj =

∫

L̄

q
g
.NJ

0 ej +mg.N
J
1 ejdl +

∫

Γbσ

tb.
(
NJ

0 ej +NJ
1 ej ∧ x∗

)
dS
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All the nodal unknowns in Ω̄b are regrouped into the vector {üb}. Similarly, the corresponding
matrix system for the set of equations (1.48) can be written as:

[Mss] {üs}+ [Css] {u̇s}+ {Bσs}+ {Bσs}bs + [Ksp] {p} = {fs}
[Mps] {üs}+ [Cps] {u̇s}+ [Cpp] {ṗ}+ [Kpp] {p} = {fp}

where the vectors {üs}, {u̇s}, {ṗ} and {p} regroup the nodal accelerations, velocities, pressure time
evolution and fluid pressures in the soil domain, respectively. The matrix terms are defined by:

[Mss]IiJj = δij

∫

Ω̄s

ρN I
s .N

J
s dV

{Bσs}Jj =

∫

Ω̄s

σ′
s

: ε
s

(
NJ
s ej
)
dV

{Bσs}bsJj = −
∫

Σ̄bs

ts.
(
NJ
s ej
)
dS

[Css]IiJj =

∫

Σ̄
A0

(
N I
s ei
)
.NJ

s ej dS

[Ksp]IJj = −
∫

Ω̄s

N I
p .div

(
NJ
s ej
)
dV

{fs}Jj =

∫

Ω̄s

ρ g.
(
NJ
s ej
)
dV +

∫

Σsσ

ts.
(
NJ
s ej
)
dS +

∫

Σ̄
(−ts(ui) +A0(u̇i)) .

(
NJ
s ej
)
dS

[Mps]IiJ =

∫

Ω̄s

ρf
(
K.
(
N I
s ei
))
.gradNJ

s dV

[Cps]IiJ =

∫

Ω̄s

div
(
N I
s ei
)
. NJ

p dV

[Cpp]IJ =

∫

Ω̄s

1

Q
N I
p .N

J
p dV

[Kpp]IJ =

∫

Ω̄s

(
K.gradN I

p

)
.gradNJ

p dV

{fp}J =

∫

Γ̄ϕ

ϕ∗.NJ
p dS −

∫

Ω̄s

(
K.grad

(
ρfg.x

))
.gradNJ

p dS

where δij denotes the Kronecker’s symbol. In the previous expressions [M·] have the structure of mass
matrix, whereas [K·] and [C·] have the structure of stiffness matrix. The vectors {f·} correspond to
external forces over the system. The vectors {Bσb} and {Bσs} are associated to internal forces and are
non-linearly dependent of the deformations of the system by the material constitutive model. Because
of the continuity of the stress vector over the interface Σbs (1.46):

{Bσb}bsJj + {Bσs}bsJj =

∫

Σ̄bs

tbs.
[
NJej

]
dS = {Bσbs}Jj (1.53)

1.2.6 Time discretization

For mechanical systems characterized by components with very different characteristic periods, a
numerical effective strategy for transient integration, is to partition the finite elements into im-
plicit/explicit groups (Hughes and Liu, 1977b,a; Hughes et al., 1979). The first step for an im-
plicit/explicit time integration is the definition of an implicit method. The predictor-corrector New-
mark scheme with standard parameters β and γ is used separating the unknown values into two sets:
let ({u}n, {v}n, {a}n) a series of approximative nodal values of displacements, velocities, accelerations
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at time step n (Ωs and Ωb domains), and similarly another series ({p}n, {s}n) of nodal pressures and
pressure time evolution at a time n (only Ωs domain). The Newmark predictor is then given by:

{ũ}n+1 = {u}n + ∆t {v}n + ∆t2
(

1

2
− β

)

{a}n
{ṽ}n+1 = {v}n + ∆t (1− γ) {a}n
{p̃}n+1 =

(
1

2
+

1

β

)

{p}n +

(
1

2
− 1

β

)

{p̃}n + ∆t {s}n

{s̃}n+1 =
1

γ
{s}n +

(

1− 1

γ

)

{s̃}n (1.54)

where ∆t is the time step, {ũ}n+1, {ṽ}n+1, {p̃}n+1 and {s̃}n+1 are the predictor values. The Newmark
corrector values {u}n+1, {v}n+1 and {s}n+1 are given by:

{u}n+1 = {ũ}n+1 + ∆t2β{a}n+1

{v}n+1 = {ṽ}n+1 + ∆t γ{a}n+1

{s}n+1 = {s̃}n+1 +
γ

∆tβ
({p}n+1 − {p̃}n+1) (1.55)

Using the previous expressions, the accelerations and velocities vectors, at time step n + 1, can
only be written in terms of the nodal displacements, pressures and the corresponding predictor values:

{a}n+1 =
1

β∆t2
({u}n+1 − {ũ}n+1)

{v}n+1 = {ṽ}n+1 +
γ

β∆t
({u}n+1 − {ũ}n+1)

{s}n+1 = {s̃}n+1 +
γ

β∆t
({p}n+1 − {p̃}n+1) (1.56)

The matrix form of the variational formulation of each domain (1.39) and (1.45) can be rewritten
by partitioning the domains into an explicit group of elements (superscript E) and an implicit group
(superscript I) at a time step n+ 1, by eliminating accelerations and velocities using the expressions
(1.56). For the superstructure domain, the corresponding matrix form is given by:

1

β∆t2
[Mbb] {ub}n+1 + {Bσb}In+1 + {Bσbs}In+1 = {fb}+

1

β∆t2
[Mbb] {ũb}n+1 − {Bσ}En+1 (1.57)

where:

{Bσb}In+1Jj
=

∫

L̄I

(
−er ∧ q ({ub}n+1)

)
.NJ

1 ej + q ({ub}n+1) .∂rN
J
0 ej +m ({ub}n+1) .∂rN

J
1 ej dl

{Bσb}En+1Jj
=

∫

L̄E

(
−er ∧ q ({ũb}n+1)

)
.NJ

1 ej + q ({ũb}n+1) .∂rN
J
0 ej +m ({ũb}n+1) .∂rN

J
1 ej dl

{Bσbs}In+1Jj
=

∫

Σ̄bs

tbs ({ũb}n+1) .
[
NJej

]
dS

In (1.57) it is assumed that the interface elements are integrated implicitly. Similarly, the corre-
sponding matrix system for the set of equations (1.53) can be written as:
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1

β∆t2
[Mss] {us}n+1 + {Bσs}In+1

+ [Ksp]
I {p}n+1 = {fs}+

1

β∆t2
[Mss] {ũs}n+1 − {Bσs}En+1

− [Ksp]
E {p̃}n+1 − [Css] {ṽs}n+1 (1.58)

γ

β∆t
[Cps]

I {us}n+1 +
γ

β∆t
[Cpp]

I {p}n+1

+ [Kpp]
I {p}n+1 = {fp}+

γ

β∆t
[Cps]

E {ũs}n+1 − [Cps] {ṽ}n+1

+
γ

β∆t
[Cpp]

E {p̃}n+1 − [Cpp] {s̃}n+1 − [Kpp]
E {p̃}n+1

− 1

β∆t2
[Mps] {us}n+1 +

1

β∆t2
[Mps] {ũs}n+1

(1.59)

where:

{Bσs}In+1Jj
=

∫

Ω̄I
s

σ′
s
({us}n+1) : ε

s

(
NJ
s ej
)
dV

[Ksp]
I

IJj
= −

∫

Ω̄I
s

N I
p .div

(
NJ
s ej
)
dV

{Bσs}En+1Jj
=

∫

Ω̄E
s

σ′
s
({ũs}n+1) : ε

s

(
NJ
s ej
)
dV

[Ksp]
I

IJj
= −

∫

Ω̄I
s

N I
p .div

(
NJ
s ej
)
dV

[Cps]
I

IiJ
=

∫

Ω̄I
s

div
(
N I
s ei
)
. NJ

p dV

[Cps]
E

IiJ
=

∫

Ω̄E
s

div
(
N I
s ei
)
. NJ

p dV

[Cpp]
I

IJ
=

∫

Ω̄I
s

1

Q
N I
p .N

J
p dV

[Cpp]
E

IJ
=

∫

Ω̄E
s

1

Q
N I
p .N

J
p dV

[Kpp]
I

IJ
=

∫

Ω̄I
s

(
K.gradN I

p

)
.gradNJ

p dV

[Kpp]
E

IJ
=

∫

Ω̄E
s

(
K.gradN I

p

)
.gradNJ

p dV

In order to preserve a symmetrical system, the underlined term in (1.59) is treated explicitly, i.e.
this value is computed using the displacement values at time step n and included in the right-hand
side evaluation. This term can also be neglected. The effect of this omission has been reported as
insignificant by several authors (Zienkiewicz and Shiomi, 1984; Chan, 1988).

The incident field appears explicitly at the right-hand side of (1.58) in {fs}. The underlined
term in (1.58) can be treated, explicitly or implicitly in general. In the current implementation in
GEFDyn this term is treated explicitly. A detailed study of the influence of this term in the numerical
stability depending on the adopted time integration scheme is presented in Aubert (1997). This work
is conducted using the zero-order monophasic formulation treated explicitly. With these assumptions,
the following conditions must be satisfied (Hughes and Liu, 1977b):
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γ ≥ 1

2

and if [M ] is defined as:

[M ] = [M ]E − ∆t

2
[C]E − ∆t2γ

2
[K]E

[M ] must be positive-definite, where [·]E denotes symbolically the system mass matrix, the system
stiffness matrix and the system damping matrix associated to explicitly treated element groups. Nev-
ertheless, the convergence of the explicit elements must be treated case to case, and usually will control
the maximum allowed time step ∆t for the global numerical stability.

The incident displacement and velocity field needed for computation are obtained by numerical
integration of the input accelerogram with respect to time. This integration requires initial values,
which are often unknown, due to recording techniques. A bad initial information leads to a purely
numerical drift on displacements when the numerical simulations are carried out. In order to avoid this
kind of numerical effect, one of the various base-line correction techniques available in the literature
must be used over the incident field.

1.2.7 Resolution of non-linear system

The system defined by the equations (1.57) and (1.59) is in general non-linear. Therefore, the resolu-
tion of the implicit terms must be carried out using an iterative algorithm. The iterative procedure
implemented in GEFDyn is a variation of the method of Newton, using a linearized version of the
non-linear system. If the total DOFs of the model are regrouped into a single vector {x}, the entire
non-linear system for a time step n+ 1 can be written as:

{G ({x}n+1)} = {R ({x}n+1)} − {F ({x}n+1)} = {0} ; {x}n+1 =







{ub}n+1

{us}n+1

{p}n+1






(1.60)

where {R}n+1 regroups the implicit terms and {F}n+1 the explicit terms and the external loading.
The strategy consists to replace {G}n+1 for the current iteration k + 1 by its linearization around
the previous iteration k ({x}kn+1 is known) following the incremental direction {δx}. The truncated
Taylor’s series (first order) is:

{

G
(

{x}k+1
n+1

)}

=
{

G
(

{x}kn+1

)}

+

[

{∂G}kn+1

{∂x}

]

.
(

{x}k+1
n+1 − {x}kn+1

)

(1.61)

with the definition of the unknown vector:

{δx}k+1
n+1 = {x}k+1

n+1 − {x}kn+1 (1.62)

The matrix

[
{∂G}k

n+1

{∂x}

]

corresponds to the tangent stiffness matrix [K]kn+1 for the iteration k and

load step (or time step) n+ 1. Assuming that the stiffness matrix is not singular, the equation (1.60)
can be rewritten as:

{δx}k+1
n+1 =

(

[K]kn+1

)−1 (

{F}n+1 − {R}kn+1

)

(1.63)

The exact Jacobian matrix is used as stiffness matrix for the iterative procedure. The computed
incremental correction {δx}k+1

n+1 is used to evaluate the new approximation of displacements and pres-
sures:

{x}k+1
n+1 = {x}kn+1 + {δx}k+1

n+1 (1.64)
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The total time consumption for a complete analysis is strongly dependent on the construction
and factorization of the Jacobian matrix. The classic implementation of Newton method updates the
tangent stiffness matrix at each iteration, but for large systems this strategy can be excessively time
consuming. The modified Newton method keeps the initial tangent matrix [K]0 during the complete
analysis. This strategy can increase significantly the number of iterations required to attempt the
convergence. The strategy adopted in GEFDyn is allows the user to select the number of loading steps
(or time steps) during which the tangent stiffness matrix is kept, then:

[K]q .{∂x}k+1
n+1 = {F}n+1 − {R}kn+1 with q < n+ 1 (1.65)

Additionally, the coefficients of the matrix [K]q can be given by the user (auxiliary stiffness values),

in order to improve the converge. The detailed expressions of {F}n+1 and {R}kn+1 can be derived
straightforward combining the incremental form of the unknowns for the time step n+ 1 at iteration
k + 1:

{δub}k+1
n+1 = {ub}k+1

n+1 − {ub}kn+1

{δus}k+1
n+1 = {us}k+1

n+1 − {us}kn+1

{δp}k+1
n+1 = {p}k+1

n+1 − {p}kn+1

{δũb}n+1 = {ũb}n+1 − {ub}kn+1

{δũs}n+1 = {ũs}n+1 − {us}kn+1

{δp̃}n+1 = {p̃}n+1 − {p}kn+1 (1.66)

with the equations (1.57) and (1.59). Concerning the convergence, the iterative procedure stops when
the relative norms of the displacements {u}, pressures {p} and the corresponding unbalanced forces
or right-hand side values of (1.60) {G ({u})} and {G ({p})} reach a defined tolerance value (utol, ptol,
Rutol and Rptol ):

‖{u}k+1
n+1 − {u}kn+1‖

‖{u}k+1
n+1 − {u}n‖

< utol

‖{p}k+1
n+1 − {p}kn+1‖

‖{p}k+1
n+1 − {p}n‖

< ptol

‖ {G ({u})}k+1
n+1‖

‖ {G ({u})}0n+1‖
< Rutol

‖ {G ({p})}k+1
n+1‖

‖ {G ({p})}0n+1‖
< Rptol (1.67)

where the norm is defined by:

‖{a}‖ =
√

{a}t.{a}
Usually, tolerance values near to 10−3 for displacements and pressures, and 10−2 for the right-hand

side terms give satisfactory results.

1.3 Non-linear constitutive models

The main sources of non-linearities in an earthquake SSI problem are related to material behavior
and second order geometrical effects, for instance P − ∆ effects of the superstructure. This work is
focused on the role of non-linear behavior of the soil and its effect on the non-linear dynamical soil-
structure interaction. According with this purpose, geometrical non-linearities are neglected and the
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small-strain assumption is kept for the formulation of the non-linear behavior of each component of
the complete model. The next sections describe the main aspects of each used non-linear constitutive
model for the soil, the interface and the superstructure.

1.3.1 Mechanical interfaces

The contact problem between the soil and the foundation was treated by interface elements. The
original formulation proposed by Aubry et al. (1990) was adapted for this work, using the same general
hypothesis and making the necessary modifications to integrate an initial thickness. Additionally,
the numeric integration quadrature was modified from Gauss to Newton-Cotes, in order to reduce
number of iterations. This numerical integration approach introduces a lumped stiffness matrix for
the interface, reducing the interaction with the opening or closing state of neighboring elements. As the
superstructure domain Ωb is assumed to be monophasic, the used interface model is purely mechanic
imposing a null normal flux from the soil domain Ωs. Details regarding the formulation, numerical
integration and model parameters are given in Appendix B.

The main purpose of introducing joint elements in this work is to improve the numerical treatment
of the stress concentration zone between the foundation and the soil, i.e. prevent the apparition of
traction in the soil. In fact, the stress concentration at the corners of the foundation can be reduced
allowing the sliding between the two solids. The problem of the uplift during the dynamic loading
appears usually for tall and slender structures, such as bridge piers, antennas or elevated water tanks.
As the focus of this work is the role of non-linear soil behavior in the dynamic response of medium
regular buildings, the set of parameters for the joint elements is selected in order to obtain sliding but
not uplift.

1.3.2 Continuous non-linear beam model

According to kinematic assumption presented in §1.2, the superstructure domain Ωb is modeled by
Bernouilli beams. The main assumption is related to the thinness of the beam element (transverse
section size compared to beam length) which allows to consider these elements as lines rather than
volumes.

The first version of continuous Bernoulli beam was developed and included by Aubry and Modaressi
(1996) in GEFDyn on the basis of the implementation proposed by Bathe (1996) for general curved
beam elements. Later, Pianka (1998) extends the formulation to thick beams. In this work, the
first formulation was used with some modifications and improvements concerning the consistent mass
matrix computation, the internal forces calculation and the integration of the constitutive model.
Details about the formulation and numerical integration of the used constitutive model are given in
Appendix C.

The integrals defining mass and stiffness matrices and body and external forces, are computed
numerically using a Newton-Cotes quadrature. The implementation in GEFDyn allows to choose
different order of integration following each local axis of the element r, s and t (Fig.1.2). When a non-
linear constitutive model is used, the order of integration must be high enough to assess the evolution
of the plastic zone during the load. For earthquake loading, the plastic zones are concentrated at
the ends of beams and columns, i.e. an elevated order of integration (over the spam and the flexural
direction) is required in these zones. A low order of integration can be used for mid spam elements or
for foundation beams.

1.3.3 Plastic hinges beam model

As previously noted, during an earthquake loading the nonlinearities of structural elements are con-
centrated near to ends of horizontal spam or extreme section of the columns. The beam element
developed in the previous section integrates a constitutive model across the entire element, i.e. over
some sections that remain essentially elastic during the dynamic response. The non-linear behavior
is expressed in terms of a strain-stress constitutive model, that is a suitable approach for example
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for steel structural elements. For reinforced concrete elements, this kind of approach is complex and
requires the definition of multi-fiber elements, including constitutive relation for concrete and steel
fibers that are integrated simultaneously using appropriate compatibility relations. As the emphasis of
this work is on the non-linear soil behavior, a more global approach is desirable to asses the non-linear
behavior of reinforced-concrete structural elements. According to this purpose, a concentrated plastic
hinge beam-column element has been introduced in GEFDyn during this work (Sáez, 2007).

The beam model added to GEFDyn has nonlinear hysteretic bending moment-end rotation char-
acteristics. The model is based on the two-component model presented by Giberson (1969) and the
modifications included in DRAIN-2DX (Prakash et al., 1993) and PC-ANSR (Maison, 1992) softwares
to take into account axial force and bending moment interaction. The basic DRAIN-2DX (2D) and
PC-ANSR (3D) model was extended to some features of GEFDyn : elementary body forces, consistent
and lumped elementary mass, sequential construction availability, etc. Details about the model are
provided in Appendix D.

1.3.4 Constitutive modeling of the soil

The ECP elastoplastic multi-mechanism model (Aubry et al., 1982; Hujeux, 1985), commonly called
Hujeux model is used to represent the soil behavior. This model can take into account the soil behavior
in a large range of deformations. The model is written in terms of effective stress. The representation of
all irreversible phenomena is made by four coupled elementary plastic mechanisms: three plane-strain
deviatoric plastic deformation mechanisms in three orthogonal planes and an isotropic one. The model
uses a Coulomb type failure criterion and the critical state concept. The evolution of hardening is based
on the plastic strain (deviatoric and volumetric strain for the deviatoric mechanisms and volumetric
strain for the isotropic one). To take into account the cyclic behavior a kinematical hardening based
on the state variables at the last load reversal is used. The soil behavior is decomposed into elastic,
pseudo-elastic, hysteretic and mobilized domains. In the Appendix E, the ECP elastoplastic multi-
mechanism model in its generic formulation is presented. A general description of the numerical
integration procedure is also provided in this Appendix.

In a general way, the number of parameters of a constitutive model is related to the number of
physical phenomena described by the model. Thus, for a very complex material behavior such as the
soil, we must accept an elevated number of parameters. In a practical point of view, we need to be able
to identify the model parameters in a simple way adapted to standard available data. According to
this goal, several works have been conducted at ECP in order to define sets of parameters for diverse
materials under different loading paths for the different versions of multimechanism model. These
parameters collections have been tested and validated in order to verify the performance in modeling
realistic soil behavior.

The numerical simulation of laboratory tests has been extensively studied by Hujeux (1979), Hajal
(1984), Rahma (1988), Michalski and Rahma (1989), Piccuezzu (1991), Hicher and Rahma (1994),
Michali (1994), Kordjani (1995) and Modaressi and Lopez-Caballero (2001), among others. Studies on
the accuracy of the model in applications related to earthquake engineering have been carried out by
Hujeux (1985), Modaressi (1987), Aubry and Modaressi (1989), Modaressi and Aubry (1989), Aubry
and Modaressi (1992b), Benzenatti (1992), Modaressi et al. (1995), Mellal (1997), Sica (2001) and
Lopez-Caballero and Modaressi (2002) among others. Other than Hujeux (1985) and Kordjani (1995),
the major part of these studies were oriented to monotonic loading. Recently, Lopez-Caballero (2003)
and Modaressi (2003) presented a strategy for parameters identification oriented to cyclic behavior.

A particular aspect of the multimechanism model presented in Appendix E is that it was written
for a large range of deformation. According to this, even if laboratory data is available, there are
practical difficulties to explode these results for very large deformation (near to critical state) or for
very small deformations (elastic range). In order to encompass these difficulties, the strategy proposed
by Lopez-Caballero and Modaressi-Farahmand Razavi (2008) takes into account several results of
different studies that highlight correlations between intrinsic characteristics of the soils (e.g. elastic
modulus or critical states parameters) to well-known properties traditionally used in soil mechanics
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(e.g. Atterberg’s limits or granulometry properties). These correlations and considerations on the
representation of physical aspects of the soil by the constitutive model are combined with several
reference curves in order to define a practical strategy to set-up the model parameters.

Concerning the identification of parameters for cyclic loading, the proposed strategy is based on
the numerical simulation of laboratory tests with special emphasis on modulus degradation G− γ and
damping D − γ curves. The goal is to identify a set of parameters using a minimum of laboratory
data and a maximum of information available from correlations. According with this purpose, a first
parameter classification can be done in terms of the role of each parameter in the model:� Elasticity: K, G, p′ref and ne� Plasticity and critical state: φ′pp, β, b and d� Hardening: ψ, a1, a2, np and c� Threshold domain: relk , rhysk , rmobk and reliso� Initial state: pc0

Table 1.1: Classification of the Elastoplastic model parameters

Stiffness State Hardening

Directly
measured

G, K and β φ′pp, ψ and d

Non-Directly
measured

a1 and a2 b
relak , rhysk ,
rmobk , np, c,
reliso and c

Concerning the role of each parameter related to soil behavior, the parameters can be separated
into three categories: parameters related to the stiffness (strain-stress relation), those associated to the
state independent of the loading history (e.g. φ′pp or b) and those related to the evolution of hardening
variables. Finally, the strategy proposed by Lopez-Caballero and Modaressi-Farahmand Razavi (2008)
proposes a separation related to the estimation method: those that can be directly measured from
either in-situ or laboratory test results as elastic or perfect plasticity parameters, and those which
cannot be directly measured (Table 1.1). The initial state parameter pc0 is directly measurable. The
reader is addressed to references for further details concerning the parameter identification strategy.
The numerical used values for each soil are given in the Appendix H. This appendix shows several
soil mechanics test simulations used to verify the accuracy of each parameter set.

1.3.5 General remarks

The general monophasic and/or two phase dynamic formulation, some specific elements and the con-
stitutive models used for the numerical modeling of the dynamical SSI problem were presented in the
previous sections and annexes. The GEFDyn code was enhanced by adding a new plastic-hinge beam
column element model. Other improvements have been done concerning the numerical integration of
interface elements and the dynamic formulation of continuous beam elements. A specific formulation
for the modeling of dynamical SSI problem for regular buildings by a modified plane-strain approach is
presented in Chapter 3. A large amount of work has been devoted to develop pre and post-treatment
tools required to perform numerically-costly applications presented in next chapters. In this way, sev-
eral improvements in run time and numerical capacity of GEFDyn have been performed during this
work.
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Next section is devoted to some specific aspects of the numerical modelization of dynamical SSI
concerning damping considerations and the treatment of the boundary conditions under dynamical
loading for the non-linear behavior case. With this purpose, some theoretical and numerical validations
are presented.

1.4 Special aspects of the numerical resolution of the dynamic SSI
problem with Finite Elements

As previously discussed in §1.2.3, when the dynamic SSI problem is treated by finite elements some
special considerations must be included in order to ensure that the truncated domain model be com-
patible with the unbounded nature of the real problem. If the soil remains elastic under dynamic
loading, the use of absorbing elements such as paraxial elements described in Appendix A provides a
relative simple way to modeling the unbounded soil domain. Even if several other forms of radiation
boundary conditions have been developed last years as discussed by Wolf and Song (1996), or more
recently by Basu and Chopra (2003), these forms are suitable only for linear elastic materials. As the
scope of this work is the non-linear material behavior, a tied lateral boundary approach (Zienkiewicz
et al., 1988, 1999) or repeatable approach is retained as modeling strategy (Fig.1.4).

b

repeatability
spacing

tied lateral
boundaries

incoming motion and
absorbing boundary

Figure 1.4: Tied lateral boundary approach

In a general way, if we consider a horizontally stratified soil with an incoming seismic input prop-
agating following the vertical direction, a superstructure can be interpreted as a perturbation to the
one-dimensional wave propagation problem. Due to this perturbation, the waves are reflected not only
in the vertical direction. Assuming that the model truncation is deep enough to verify elastic behavior
at the bottom, the last can be treated by previously described paraxial approximation. Thus, the
only additional problem arises from the appropriate treatment of the vertical lateral boundaries. In
these boundaries, it is necessary to allow the radiation of the waves caused by the superstructure.
These radiated waves can be expressed in terms of the difference between the free field solution (i.e.
the solution of the one-dimensional wave propagation problem) and the total field associated to the
soil-structure problem. Zienkiewicz et al. (1988) propose to write the equilibrium equations in terms
of the relative displacements to the incoming displacement field at the bottom truncation level and
add a fictitious transmitting layer interpreted as the last layer of elements along the lateral boundaries
of the mesh. These transmitting layers are used to transmit the perturbed motion caused by the
superstructure. The numerical procedure involves the parallel resolution of the main mesh and the
one-dimensional column, the resolution of the transmitting layer and the application of the obtained
difference field as nodal prescribed displacements to main mesh. Additionally, this approach requires
that the region near to truncation lateral boundary remains elastic and homogenous under the loading.

A simpler alternative to the treatment suggested by Zienkiewicz et al. (1988) is the tied lateral
boundary approach or repeatable boundary conditions which is illustrated in Fig.1.4. In this approach,
the periodic nature of the surface perturbation is assumed, thus a sequence of superstructures is placed
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at regular intervals (repeatability spacing). Consequently, the values of displacements, stresses, etc.
are identical on both vertical sections. This condition is explicitly imposed in GEFDyn by an equivalent
node concept including displacements and hydraulic DOFs. Of course, correct results must be obtained
if sufficiently large repeatability space is adopted. As the soil undergoes plastic deformation under
seismic excitation, the material damping ensures the decrease of the amplitude of the radiated waves
from the soil-foundation interface. As will be explained in following sections, a criterion associated
to spectral amplitudes of the radiated waves has been adopted to define an adequate repeatability
spacing case for each case. This approach is fully applicable to the non-linear earthquake analysis,
where the only maintained linear elastic material domain is the portion of soil above the arbitrary
bottom truncation level of the model.

Next sections present application of this approach to one-dimensional, bi-dimensional and three-
dimensional cases. The first example corresponds to the solution of the one-dimensional wave propa-
gation problem of a homogenous soil column. This example is validated with the theoretical solution
and it is used to discuss the numerical or algorithmic damping considerations retained in this work.
The second example shows the effectiveness of the tied lateral boundary strategy by comparing a
full three-dimension time domain finite element computation with a coupled boundary-finite element
computation in frequency domain for the same soil-structure interaction problem. Finally, the third
example presents a discussion about the repeatability spacing required for bi-dimensional FE compu-
tations in order to explore other strategies to treat the model truncation boundaries using the paraxial
implementation described in §1.2.3.

1.4.1 One-dimensional ground amplification problem and numerical damping

The transfer function modulus |T (ω)| of a homogenous elastic soil layer overlying a half-space bedrock
is defined as the ratio of the ground movement amplitude to a hypothetic outcrop bedrock outcrop
amplitude:

|T (ω)| = 1
√

cos2 iω
cs
h+ α2 sin2 iω

cs
h

(1.68)

where h is the soil depth, α is the impedance ratio between the elastic soil and the half-space bedrock,
cs is the shear wave velocity of the soil and ω the circular frequency. Details regarding the derivation
of this expression are provided in Appendix F.

The previous expression does not take into account material damping and only radiation damping
introduced by the unbounded bedrock is evaluated. A linear hysteretic damping independent of
the frequency can be introduced into the solution when working in the frequency domain by using
the correspondence principle (Wolf, 1985). According to this principle, the damped solution can be
obtained from the elastic one by replacing the elastics constants by the corresponding complex ones.
Thus, a complex shear wave velocity c∗s can be obtained from a frequency-independent complex shear
modulus µ∗:

c∗s =

√
µ∗

ρ
=

√

µ (1 + 2iζ)

ρ
≈
√
µ

ρ
(1 + iζ) = cs (1 + iζ) (1.69)

for small ζ damping ratio. Using the complex shear wave velocities in the previous expressions, an
equivalent viscous material damping can be introduced. This kind of equivalent viscous material is
often used in structural mechanics as a simple way to introduce material energy dissipation satisfying
linear elastic hypothesis. As the focus of this work is the material damping related to non-linear be-
havior (hysteretic damping), we do not use an explicit equivalent viscous damping. However, the use
of equivalent viscous damping permits to obtain some attenuation with time even at very small am-
plitudes. It is desirable to plot time response curves, specially in order to obtain decreasing amplitude
after the main shock when the response is near to free-oscillations. With this purpose, we introduce
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an algorithmic damping by the choice of the integration parameters β and γ of the predictor-corrector
Newmark scheme presented in §1.2.6.

In a general way, one of the purposes to introduce numerical damping is to remove the participation
of the high-frequency modes of the FE model. For Newmark method, a value of γ > 1

2 is required
to introduce high-frequency dissipation. For a fixed value of γ > 1

2 , the goal is to select the value
of β that maximizes the high-frequency dissipation. Conditions are derived from a stability analysis,
according to Hughes (2000) they can be summarized as:� Unconditional:

0 ≤ ζ < 1 ; γ ≥ 1

2
; β ≥

(
γ + 1

2

)2

4� Conditional:

0 ≤ ζ < 1 ; γ ≥ 1

2
; Ω < Ωbif

where Ωbif is the so-called sample bifurcation frequency. This value is related to eigenvalues of the
matrix associated to corresponding modal first order differential linear system equivalent to modal
second order differential system integrated by Newmark method. Ωbif is the value of sample frequency
of the system Ω = ωh∆t at which complex conjugate eigenvalues bifurcate into real distinct eigenvalues.
ωh is the maximum natural frequency of the system and ∆t is the integration time step. The value of
ωh can be bounded by the maximum frequency of the smallest element of the mesh (Hughes, 2000),
thus 2c

h
for solid elements. For the undamped case (i.e. without viscous damping), this bifurcation

frequency can be computed by:

Ωbif =
1

√

(γ+ 1
2)

2

4 − β
(1.70)

According to the previous expression, the most effective high-frequency filtering is achieved by

selecting β =
(γ+ 1

2)
2

4 . Choosing β value larger than the optimum value reduces the high-frequency
damping. Selecting a value of β inferior to optimum value (but larger than γ

2 to keep unconditional
stability), the high-frequency damping vanishes for sampling frequency larger than Ωbif . Thus, by
selecting β larger than the optimum some high-frequency damping is ensured.

By selecting a value of γ > 1
2 some high-frequency dissipation is introduced, but unfortunately,

the accuracy of the numerical method drops to first-order in the low modes. In order to measure
the numerical dissipation and dispersion introduced by the algorithm when a value of γ > 1

2 is used,
Hughes (1983) uses ζ̄ and ω̄h as the numerical counterparts of the viscous damping ζ and fundamental
frequency ωh of the system. This author proposes the algorithmic damping ratio ζ̄ and the relative
period error T̄−T

T
(T̄ = 2π

ω̄h and T = 2π
ωh ) as measures of numerical dissipation and dispersion. It is

difficult to obtain a general expression for these measures, but this author proposes:

ζ̄ = ζ +
1

2

(

γ − 1

2

)
(
Ω +O

(
Ω2
))

T̄ − T
T

= O
(
Ω2
)

(1.71)

from some analytical results. These expressions illustrate that the first-order error created by choosing
γ > 1

2 induces numerical dissipation but no period errors.
In order to choose a set of values for Newmark’s γ and β parameters and to evaluate the associated

numerical dissipation, we perform a simple one dimensional wave propagation test of a single elastic
30[m] depth homogenous layer overlying an elastic half-space bedrock. The material properties and the
used mesh are shown in Fig.1.5. Different colors displayed in the mesh indicate different vertical mesh
refinements, starting from a vertical space of 1[m] to 2.5[m] over the bedrock. This variable vertical
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mesh spacing is useful to increase the precision near to surface, thus near to the zone that concen-
trates significative stress variations due to surface perturbations (superstructures for SSI application
conducted in this work) or free surface. When a non uniform mesh is used in a FE wave propagation
problem, some numerical wave dispersion can appear due to wave reflection over the interface between
elements of different size. If the wave-length is larger than the length of some elements of the mesh, a
variation of size creates numerical dispersion. In a general way, numerical reflection is not important
if the wave-length is 10 times larger than the biggest element of the mesh. If the variation of size
of elements is progressive and the size ratio between neighboring element is no largen than 0.5, no
significative numerical reflection will appear. Additionally, the use of consistent mass matrices instead
of lumped mass matrices also reduces the numerical dispersion. These guidelines have been followed
during mesh generation for each problem studied in this work.
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ρ = 1755 [kg/m3]
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tied boundaries

paraxial element

Figure 1.5: FE element mesh of a homogenous elastic soil layer overlying a half-space bedrock used to
calibrate Newmark integration parameters γ and β

The one-dimensional nature of the problem is ensured by introducing lateral tied boundary con-
ditions over the depth. Only the first 5[m] of the bedrock are modelled by a single element. At the
bottom of the mesh, a single paraxial element is used to impose the incident field and ensure the
radiation condition for the outgoing vertical waves. Fig.1.5 shows relevant information concerning
material properties of both soil and bedrock. A Ricker pulse is assumed as input motion at outcrop
using paraxial elements (Fig.1.6a). Computations are carried out in time domain assuming linear
elastic behavior using two sets of integration parameters:

1. Second-order accuracy values (no numerical dissipation): γ = 1
2 and β = 1

4

2. First-order accuracy values (numerical dissipation induced): γ = 0.625 and β = 0.375

The first set is defined starting with γ = 1
2 and computing the corresponding β as the optimum

value for high-frequency filtering. The second set of parameters is calibrated imposing γ > 1
2 and β

larger or equal to the optimum value to ensure some high-frequency filtering. In this case, the values
are selected by comparison with the theoretical transfer function (F.12) for some viscous damping
characterized by the damping ratio ζ. The total duration of the analysis is 10 seconds in both cases,
using a time step ∆t = 1× 10−3[s] and consistent mass operator.

Fig.1.6b displays the first 4[s] of the acceleration response obtained at free field using both sets of
time integration parameters. As expected, it can be noticed that no significant variation is obtained
in period characteristic of the response. A slight reduction in peak amplitudes can be observed when
numerical dissipation is induced.
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Figure 1.6: Input acceleration motion and computed free field responses for an elastic homogeneous
soil overlying an elastic bedrock

Fig.1.7 shows the comparisons between the theoretical transfer function and the computed one,
defining the transfer function amplitude as the ratio between the observed free field acceleration and
a hypothetic bedrock outcrop (F.12). Fig.1.7a corresponds to second-order accuracy parameters, with
only high-frequency filtering as some numerical dispersion is present. This curve is compared to
analytical viscous undamped case (ζ = 0) where the only damping is related to wave radiation. In this
case, the amplitude and the frequency of the fundamental mode of deposit agree, but the quality of
the computation decays for the second mode. The reduction of the amplitude of the computed second
mode can be associated to numerical dispersion due to wave reflections, time and space discretizations.
It can be also noticed that the quality of the computation decays for very-low frequency. This range
of frequency is extremely sensitive to integration time step, thus a reduction in ∆t improves the
computation but increases significantly the numerical cost. As the FE models used in this work are
numerically costly, reduction in ∆t increases significantly the computing time. In a general way, a
value of ∆t = 1× 10−3 is kept as general rule and it is reduced only if strong non-linearities, specially
related to superstructure, are detected during the analysis.

Fig.1.7b shows the same comparison but including some viscous damping in the analytical solution
and numerical dissipation induced by the integration parameters. After a calibration procedure, we
obtain that γ = 0.625 and β = 0.375 values agree satisfactorily with a viscous damping of ζ = 0.8%.
The selected value of β is not optimum, but satisfies the condition to ensure high-frequency damping. It
can be concluded by comparison between the computed curves for numerically damped and undamped
cases that only a part of the reduction of the transfer function amplitude can be associated to numerical
dissipation. The amplitude of the first mode remains unchanged for practical purposes, and only a
reduction of the amplitude of the second mode can be observed. Indeed, the computed reduction
of the second mode transfer function amplitude is a combination of algorithmic dissipation, waves
dispersion and other effects associated to numerical resolution. Nevertheless, the value of ζ = 0.8%
gives an indicator of the total amount of damping associated to diverse numeric phenomena. The
main purpose of including some numerical dissipation in this work is to obtain an attenuation of the
time responses after the strongest part of each used earthquake, when the response is essentially in
free oscillations.

This total numerical damping depends on the problem and the used FE mesh. Other tests using
2D and 3D meshes for the same problem were conducted giving similar values for an equivalent viscous
damping. According to expressions provided by Hughes (2000) to estimate the algorithmic damping
ratio ζ̄ (1.71), the used mesh, the numerical values of integration parameters and used time step, may
introduce an algorithmic damping ratio near to ζ̄ ≈ 0.028 as upper bound, i.e. three times larger than
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Figure 1.7: Comparison between computed transfer function and theoretical solution of the one-
dimensional shear wave propagation problem including some viscous damping (ζ)

the obtained value by curve matching. The calibrated values of γ = 0.625 and β = 0.375 inducing
numerical dissipation will be used for all the computations conducted in this work.

1.4.2 3D linear elastic SSI numerical validation

This section describes a comparative test performed for a linear elastic dynamic SSI problem con-
ducted following time-domain FE and frequency-domain boundary-elements (BE) approaches. The
problem consists in a rigid base mat SDOF superstructure over two different 30 [m] depth soil pro-
files. The problem will be treated by the substructure method in frequency domain using MISS-3D
code (Clouteau, 2000, 2003), and by the direct method in time domain using GEFDyn FE software.
Appendix G presents a brief overview of the substructure approximation implemented in MISS-3D,
valid in the small elastic deformation range. The studied problem and both, BE and FE models, are
presented in §1.4.2.1. Finally, comparative results are presented and discussed in §1.4.2.2.

1.4.2.1 Soil-foundation-structure system and models

In order to study the accuracy of the tied-lateral boundary approach to simulate 3D dynamical soil-
structure interaction problems, we use a simple SDOF structure over two different soil profiles. The
dynamic properties for the SDOF were defined from mean values for low-rise concrete moment frames
proposed in HAZUS-MH MR3 (2003) (see §4.2.1 for more details). According to this document, a
typical low-rise concrete moment frame might be characterized by an equivalent SDOF of h̄ = 6[m]
of height, W = 1080[kN] of weight and a fundamental period T0 = 0.4[s]. Assuming a lumped mass
model (Fig.1.8) and using a Young modulus of E = 50×109[Pa], we can solve for a suitable equivalent
transversal square section. The foundation is supposed to be shallow, rigid and square of side a = 6[m].

Two elastic soil profiles were studied:

1. Homogenous soil profile of 30[m] depth overlying an elastic bedrock (Fig.1.8a)

2. Horizontally stratified soil of 30[m] depth overlying an elastic bedrock (Fig.1.8b)

These soil profiles are not arbitrary. The first one is selected with the purpose to obtain a fun-
damental soil frequency fsoil larger than the fixed base frequency of the structure f0 = 1

T0
= 2.5[Hz],

where according to our experience on this subject the DSSI effects are not significant. The second
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Figure 1.8: Schema of both soil-structure systems used for the linear elastic comparative analysis

profile corresponds to a simplification of a homogenous dry sand profile studied in chapters 2 and 3.
As it is explained in these chapters, when non-linear soil behavior is taken into account the initial state
of soil confinement is a key issue. The variation of initial confinement with effective vertical stress is
modeled by a non-linear elastic approach (E.4) in the multimechanism model. This vertical variation
produces a gradually increasing shear wave velocity profile with the depth. The soil profile in Fig.1.8b
correspond to a discretization of this vertical variation, assuming constant shear wave velocity in each
layer. In this case, the fundamental frequency of the soil fsoil is close to the fixed base frequency of
the superstructure f0. In this condition, resonance phenomena between soil and structure produce
significative soil-structure interaction. Densities of the soil and the bedrock are the same for both
profiles, they are omitted in Fig.1.8b for sake of simplicity.

Modeling assumptions and characteristics of each numerical model depends on the used code
and are detailed in the following. As MISS3D code requires linear elasticity, we used linear elastic
constitutive models for both soil and superstructure. We also impose that loss of contact between
soil and foundation do not take place, thus we assume continuity of displacement and stress over the
soil-structure interface Σbs.

1.4.2.1.1 Substructure approach As mentioned in §G, in this approach the unbounded soil
subdomain is modeled with BEM and its response is disjointed from the solution of the superstructural
subdomain. The superstructure is a FE model constructed using vertical beam elements and lumping
the mass at 6[m] hight above the foundation level. The foundation is modeled using a regular mesh of
solid 3D massless elements and imposing a kinematical constraint to ensure its rigidness. The surface
meshes required for the boundary of the soil over the soil-structure interface is deduced from the finite
element mesh of the superstructure. The coupling between FEM and BEM is conducted using a modal
reduction technique. We use the Craig-Bampton reduction technique to export the FE superstructure
model to MISS3D code accounting the six rigid body modes (3 translations and 3 rotations) and the
first fixed base mode (Fig.1.9). We add a very stiff foundation beam following the load direction y, in
order to avoid relative rotation between column and foundation.

Concerning the damping, we use two different values: the first one ζ0 is related to the superstructure
and the second one βs is assumed for the soil and the bedrock. The superstructure damping ratio ζ0
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Figure 1.9: FE superstructure model and its first fixed base mode used for the modal decomposition

is used to construct a damping matrix as a linear combination of stiffness and mass matrix following
traditional Rayleigh method. The value of βs representing the hysteretic soil damping, is introduced
into equations using the correspondence principle in frequency domain over the Lamé’s coefficients λs
and µs of the soil and bedrock:

λ∗s = λs (1 + iβs)

µ∗s = µs (1 + iβs)

These modified values account approximately for average energy dissipation by hysteresis in soil
and bedrock. The standard damping ratio ζ commonly used in structural mechanics is related to the
damping coefficient β through:

ζ =
β

2
(1.72)

Both, ζ0 and βs are computed by calibration, matching the obtained response with the one from
direct approach described below. In the later case, the damping is controlled by numerical integration
parameters as described in §1.4.1. BEM approach incorporates in its formulation radiation damp-
ing associated to outgoing waves, thus no special consideration must be added to account for this
phenomenon. As mentioned, computations are carried out in frequency domain.

1.4.2.1.2 Direct approach In this case, we need to construct a complete FE model of both
soil and structure. The same properties described before are retained for the superstructure and its
foundation. Thus, the structure is modeled by traditional beam elements, lumping the structural mass
at the top of the higher vertical beam element. The foundation is also modeled by solid 3D elements
with no mass. Beams in foundation are used to ensure rotation continuity between foundation and
structural beams. Between soil and foundation, continuity of both displacement and stresses are
ensured over the soil-structure interface, as no uplift or sliding is possible. The complete used mesh
is shown in Fig.1.10a. In this figure colors are related to diffrent group of elements required for the
second soil profile. For the homogenous deposit, the same mesh is used keeping the same material
properties for each soil element group.

Similarly to the one dimensional wave propagation case studied in §1.4.1, we include only the first
5[m] of the bedrock in the mesh. At the bottom of the model, paraxial elements ensure the radiation
condition and impose the incident field. The incident motion is imposed following the y direction. This
orientation defines the boundary conditions of the mesh. Imposing tied lateral boundaries described
before, we are assuming periodicity in x and y direction. As the motion will be imposed in y direction,
the mesh will be deformed as a shear-beam in y − z plane, but no significant deformation will be
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Figure 1.10: Finite element mesh and schematic representation of boundary conditions for direct
approach

obtained across x direction if the lateral limits following this direction are selected far enough to
eliminate border effects. In the y direction, the limits of the mesh must be selected far enough to
minimize the effects of reflected waves. As numerical dissipations are included by numerical integration
parameters, the reflection can be controlled with the dimension of the mesh along y direction. Indeed,
the wave front outgoing from the soil-structure interaction is approximately half-spherical, thus some
reflections also appear in x borders. By choosing a box-type mesh, the reflection of the same wave-
front on the x border occurs at different instants. Thus, the coherence of the waves are destructed
producing a favorable effect over the total wave reflections.

The lateral dimension across x and y has been selected by an iterative procedure, analyzing wave
reflections by Fourier transform over time responses on different meshes. The study presented in this
section supposes linear elastic behavior for both soil and structure. The major part of computations
carried out in this work include non-linear behavior, thus a significative damping is added by non-
linear hysteretic stress-strain responses. In these conditions, the attenuation of waves is significantly
increased reducing the problem of wave reflection over lateral borders of the mesh. For each studied
configuration, we choose the limits of the correspondent mesh under linear elastic hypothesis controlling
wave reflections, knowing that these reflections will be reduced in the target non-linear computation.
Of course, some concessions were done in order to obtain a satisfactory accuracy with a reasonable
numerical-cost.

The retained boundary conditions are illustrated in Fig.1.10. We accept that x dimension is large
enough to eliminate border effects, thus ux DOFs are removed over lateral sides (in x = 6 and x = −6
planes). In order to satisfy the periodicity across this direction, lateral nodes are tied for y and z
displacement directions. For lateral borders on y direction (y = −20 and y = 20 planes), three spatial
translations are kept but opposite nodes are tied in order to ensure periodicity and shear-beam type
deformation (standard 1D shear wave propagation). These boundary conditions will be used for all 3D
dynamical analyses conducted in this work. Some additional conditions will be added for two-phase
cases presented in next chapters.

As the soil is elastic in this case, no special considerations are required to initialize soil state and
the dynamic computation can be directly launched. For non-linear computations presented in next
chapters, dynamical phase is preceded by a static initialization of the stress and internal variables fields
of the soil model, and eventually the simulation of the sequential construction of the superstructure.
This initialization phase will be followed by a pre-dynamic analysis in some cases. The static phase is
specially delicate for two-phase cases, where the soil permeability controls the initialization procedure.
The boundary conditions represented in Fig.1.10 apply only for dynamic loading and are different of
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those imposed at static phase.

Numerical integration parameters derived from one dimensional wave propagation problem de-
scribed in §1.4.1 are kept, so that the a time step ∆t = 0.001[s], γ = 0.625 and β = 0.375. The
induced numerical damping for this case will be discusses regarding the calibration parameters ob-
tained for ζ0 and βs for the substructure approach.

1.4.2.2 Linear elastic SSI responses

The comparative results presented in this section are given in terms of different spectral ratio moduli,
corresponding to ratio between displacements computed at different points in frequency domain. We
define three key control points: the top of the structure (tp), a point on the free field (ff) and
the vertical projection of this free field point over the soil-bedrock interface (bd). Fig.1.11 shows
schematically the position of these control points. Some precisions must be given about the free field
control point. Indeed this point is defined as far as possible in the FE model, thus at 1[m] of the border
following y direction, at the center of the mesh in x direction from the superstructure. This point can
be selected arbitrarily far in MISS3D model, but in order to compare the response in the same place
we kept the same coordinates for the free field control point and the corresponding vertical projection
on the bedrock. We compute two different spectral ratios, between the top and the free field control
points (tp/ff) and between the free field and the bedrock (ff/bd). The purpose of the tp/ff spectral
ratio is to illustrate the degree of interaction between the superstructure and the soil. For an infinitely
rigid soil, this ratio gives the fixed base transfer function commonly used in earthquake engineering.
The second spectral ratio ff/bd permits to identify the relative position of the structure compared to
the soil and illustrate the clearness of the free field response, thus for a perfect free field condition
we might not find evidences of the neighboring superstructure. The clearness of this spectral ratio is
controlled by the generation and the attenuation of superficial waves, and its eventual reflections at
the border for the FE approach.

b×

×

×

top (tp)

free field (ff)

bedrock (bd)

Figure 1.11: Spectral ratio definitions

In order to obtain these spectral ratios we impose different input signals depending on the model.
For substructure approach, as the computation is conducted in frequency domain we do not need
a particular time input motion. In this case, it is possible to use a unitary SH wave input for the
entire studied frequency range. We obtain the displacements at different control points and the modal
participation factors that allow to reconstruct the response of the superstructure due to this unitary
input. On the contrary, for the direct approach we need the chronology of the input signal in order to
carry out the computation in time domain. As the comparison will be done in frequency domain, we
choose the Ricker wavelet used in the previous section (Fig.1.6a) for sake of simplicity. The MISS3D
computation is conducted several times in order to calibrate parameters ζ0 and βs controlling the
damping at the structure and soil, respectively, which math with the FE response obtained for the
selected integration parameters.

Fig.1.12a shows the comparison between the spectral ratio obtained for both computations and
the transfer function of the fixed base model. The agreement between both computations is excellent
in frequency and modulus. As expected, the relative value of the fixed base frequency f0 = 2.5[Hz]
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Figure 1.12: Comparison between computed spectral ratio moduli obtained with substructure and
direct method for the homogenous deposit

compared to the soil layer frequency fsoil ≈ 3[Hz] explains the relatively low soil-structure interaction.
Indeed, a little shift of the frequency is found and some reduction of amplitude can be noticed. The
agreement between ff/bd spectral ratio is also satisfactory in frequency and amplitude as can be
deduced from Fig.1.12b. In this plot, a little evidence of the structure is found near to its fixed
base resonance frequency on GEFDyn computed curve. This perturbation might be related to wave
reflections over the mesh border. Nevertheless, these little reflections are negligible for practical
purposes. The plots on Fig.1.12 were computed with a structural damping ratio of ζ0 = 0.1% and
soil damping coefficient βs = 0.15%. Regarding the soil damping coefficient, this value agrees with
the critical damping ratio ζ = 0.8% obtained by curve matching for the 1D wave propagation test
presented before, considering that by definition the soil damping coefficient is two times the usually
critical damping ratio. These values of damping are kept for MISS3D computation of the horizontally
stratified case.
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Figure 1.13: Comparison between computed spectral ratios modulus between substructure and direct
method for the horizontally stratified deposit
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Fig.1.13a displays the obtained response for the horizontally stratified soil using the damping
parameters defined above. It can be noticed that the agreement is still satisfactory in frequency and
modulus for this case. As the fixed base frequency of the superstructure and the soil are close (f0 ≈
fsoil ≈ 2.5[Hz]), soil-interaction effects are bigger compared to those of the previous case. In this curve,
the shift on the fundamental frequency and the reduction of amplitude related to radiation damping
are significantly larger compared to the homogenous soil case. The quality of the agreement between
both computations decays for the ff/bd spectral ratio as can be noted from Fig.1.13b. According to this
curve, the superstructure is significantly more visible for the FE computation than for substructure
one. The agreement is still excellent for the second resonance frequency. The differences between both
curves might be related to multiple wave reflections between both superficial layers and the resonance
condition between soil and soil profile. Even if some differences exist in frequency and amplitude
for the first mode of the soil profile, the spectral ratio involving the structure is quite satisfactory
for practical purpose. Indeed, the wave reflections should reduce by including hysteretic damping
associated to material non-linear behavior.

1.4.3 Investigation of boundary conditions modeling for elastic 2D SSI problem

Early stage of this work was devoted to define the better strategy to model the SSI problem following
a direct approach by FE. This investigation was conducted under linear elastic condition for both, soil
and structure, neglecting other possible sources of non-linear behavior as uplift over the soil-foundation
interface. A summary of this study is presented in this section.

We use the elastic homogenous soil profile defined in Fig.1.14a overlying an elastic bedrock. Numer-
ical integration parameters selected in §1.4.1 are kept in order to ensure some numerical dissipation.
As the bedrock is elastic, radiation damping is present. The test structure is selected following criteria
described in Chapter 2. We use only the structure of fundamental fixe base period T0 = 0.4[s] in the
following. This structure is used due to the value of its fundamental frequency f0 = 2.5[Hz] compared
to the first mode of the soil profile fsoil ≈ 2[Hz]. As previously indicated and showed in Chapter 2, for
structures of f0 between first and second modes of the soil profile, some soil-structure interaction ef-
fects appear. The used superstructure corresponds approximately to an equivalent SDOF for a regular
moment-frame structure of 3 or 4 levels (Fig.1.14b).

The study was focussed on different boundary condition configurations in order to minimize the
wave reflection at the borders of the mesh. We assume a plane-strain model for the soil, thus a
bidimensional mesh is used for each tested configuration. As it will be largely discussed in Chapters 3,
when non-linear soil-behavior is take into account, the hypothesis relative to load transfer between soil
and structure plays a key role in the numerical modeling of the SSI problem. For this example, the soil
is supposed to be elastic, thus no important effects related to over stress transmission are expected.
However, by modeling the problem using a 2D dimensional approach we are implicity assuming a
periodicity of 1[m] following the direction normal to the plane of the model. An extension of this
plane-strain approach for more general regular buildings will be presented in Chapter 3.

We study three different configurations. The first one corresponds to lateral tied boundaries
describes before (Tied). The second one, corresponds to the approach suggested by Modaressi (1987)
to study the effects of geometrical irregularities on the wave propagation in valleys (Inc.). Finally, in
the third configuration we include absorbing elements in lateral boundaries (Lat.).

Lateral tied approach (Tied) has the advantages of its simplicity and that it is suitable for general
non-linear soil models. The model is constructed in yz plane. In this case, tied DOFS are nodal
displacement uy and uz, across y and z respectively. For saturated case, if a simplified Biot formulation
is used, nodal pressure DOF p is also tied between lateral boundaries. Similarly to previous models, we
include only the first 5[m] of the bedrock adding a paraxial element at the bottom to satisfy radiation
condition and impose incoming waves. The total mesh has 200[m] width in y horizontal direction.
This dimension is chosen exceptionally big in order to make possible the comparison with the other
studied configurations. The used mesh is shown in Fig.1.15a, where colors are used to illustrate the
variation of vertical size of elements. This vertical variation is the same illustrated in Fig.1.5, the
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Figure 1.14: Schema of both soil profile and superstructure used for the investigation of boundary
conditions for elastic 2D SSI problems

horizontal spacing is regular and equal to 1[m].

In the second tested approach, the main difference is related to the incident field (Inc.). In this
case, we introduce the incoming wave across the entire boundary using paraxial elements with two
functions, to absorb the outgoing waves and to impose the incident field. As described in §1.2.3,
paraxial elements require locally elasticity condition. Thus, we need to use elastic solid elements at
least in the first range of elements neighbor to the boundary. This condition represents a limitation
for the non-linear case. In this situation, lateral limits must be chosen far enough of the superficial
perturbation to ensure elasticity behavior (Fig.1.15b). This conditions explains the large horizontal
dimension required for this model. Even if for this investigation we use elasticity condition we need
test configurations suitable for the general non-linear case. The same vertical discretization is kept.
Horizontal discretization is also the same in the center of the mesh and it is modified gradually
toward the borders to impose valley type geometry. Two layers of horizontal elements with 5[m] of
width are used adjacent to inclined paraxial elements. Lateral borders correspond to segments of
circumferences. We also test a mesh configuration including the complete circumferential region, but
we found equivalent responses with an important numerical-cost increase.

The third configuration studied has exactly the same mesh as tested with tied lateral approach,
but the tied border condition is removed and vertical paraxial elements are added (Lat.). Horizontal
paraxial elements at the bottom of the mesh are kept. Nevertheless, lateral paraxial elements are used
only as absorbing elements and no incident field is imposed laterally. Similarly to the previous case,
this approach requires elastic behavior close to lateral mesh borders, even if a non-linear computation
is conducted. Consequently, it also requires a relatively large mesh in the horizontal direction. The
use of lateral absorbing boundaries is often suggested in literature, but their use must be conducted
carefully. Their use is straightforward when the source is interior to the mesh and the displacement
field reaching the border must be completely absorbed. For earthquake engineering application, this
kind of lateral absorbing devices must be able to separate the incident field and the outgoing field,
and absorb only the last one. In this case, one option is to reformulate the problem separating fields
and solving the problem in two steps as suggested by Zienkiewicz et al. (1988). Both solutions are
combined to obtain the total response. For this test, lateral vertical absorbing boundaries are assumed
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(a) Tied lateral boundaries approach (Tied)

(b) Valley type approach (Inc.)

(c) Lateral absorbing boundaries (Lat.)

Figure 1.15: Different 2D meshes studied in order to define the better strategy to treat lateral bound-
aries in FE modeling approach

to be far enough in order to not perturb the incident field and to absorb essentially radiated wave
field. Therefore, the computation is carried out in total displacements directly.

1 2 3 4 5 6
0

10

20

30

40

50

60

f [Hz]

tp
/ff

  M
od

ul
us

Tied
Inc.
Lat.
Fixed base

(a) Computed spectral ratios tp/ff for three studied config-
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Figure 1.16: Comparison between computed spectral ratio moduli for three configurations of boundary
conditions for the SSI 2D elastic case

The three computations are conducted with GEFDyn in time domain using numerical dissipative
time integration parameters. The Ricker wavelet of the Fig.1.6 is used as the incident field in all
cases. The response will be compared firstly in frequency domain in terms of both spectral ratios tp/ff
and ff/bd defined in previous section (Fig.1.11). Fig.1.16 shows the obtained spectral ratio modulus
for three modelled configurations compared to fixed base transfer function amplitude. As expected,
significant SSI effects are visible in frequency and in amplitude. The predicted shift in the fundamental
period of the structure agrees for all three computations, but some differences appear concerning the
amplitude. Tied approach predicts a larger reduction of amplitude, whereas Inc. and Lat. approaches



36 1.4. Special aspects of the numerical resolution of the dynamic SSI problem with Finite Elements

give approximately the same amplitude. This differences might be related to confinement effect of the
lateral paraxial elements. Indeed, absorbing feature of paraxial elements introduces a normal stress
to the boundary similarly to a dashpot. This lateral stress contributes to relatively stiffening of the
soil deposits. This increase of stiffness might explain the relative reduction of the interaction and the
shift to high frequency of the fundamental mode of the deposit noticed in Fig.1.16b.
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Figure 1.17: Time responses obtained at top of the structure and free field for the three studied
configuration

Fig.1.16b shows that including lateral dissipative elements does not improve the solution at free
field. On the contrary, free field response of Inc. or Lat. models show a perturbation around the
fixed base frequency of the structure. This perturbation might be related to reflections of the surface
waves on the border of the mesh. Tied approach gives the cleaner spectral ratio function at free field.
Concerning the amplitudes, as expected, lateral absorbing strategy gives the minor amplitude values.
In this case, lateral paraxial elements provide supplementary radiation damping and consequently
the amplitudes diminish. Lateral incident approach provides an intermediary prediction in terms of
the amplitudes for the first mode, but the larger amplitude for the second mode. These free field
estimations were taken as far as possible from the structure for Tied and Lat. approaches. For the
Inc. case, free field condition was taken at the end of the rectangular part of the mesh, thus before
reaching the circumferential zone in order to prevent local effects due to relatively near incident field.

In order to illustrate the effects of these differences in time domain, Fig.1.17a shows computed
structural top displacement responses and Fig.1.17b the obtained accelerations at free field. The
differences of modulus noticed on computed tp/ff spectral ratio agrees with the variations of the
displacement amplitudes found at the top of the structure. Thus, the amplitude of displacement
obtained following Tied approach are slightly less than those obtained for other two strategies. No
significant variations on frequency are detected, but some differences related to decay of the curves
appear. Indeed, the reduction of top displacement of the structure seems to be low for the Tied
approach. This result might be related to the radiation damping. In fact Inc. and Lat. approaches
provide lateral absorption that increases the damping of the system. Variations depending upon the
adopted model are not significative in the observed free field acceleration (Fig.1.17). In this plot,
differences between three approaches are negligible for practical purposes.

In summary, no significant differences were found between three strategies studied here. In fre-
quency domain, Tied approach gives the cleaner solution. In time domain, obtained responses are
equivalent in acceleration but some differences were found in displacement responses. Nevertheless,
Tied approach has important advantages. In this approach lateral elastic elements are not required,
thus the size of the mesh can be significantly reduced. This feature is specially important for large
non-linear 3D models. Of course periodicity hypothesis implicit to Tied approach must be compatible
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with the problem studied. For more complicated geometrical situations, Inc. approach will be more
suitable. The use of lateral absorbing elements is adequate when the source is interior to the mesh or
if a rigid base relative-displacement approach is conducted. When the motion is imposed as incident
field, absorbing boundaries must be treated carefully using decomposition techniques as suggested by
Zienkiewicz et al. (1988).

1.5 Concluding remarks

The general dynamic soil-structure interaction problem was presented theoretically by the definition
of the related governing equations in the soil and structure domains, as well as conditions over their
interface. Special emphasis was put on dynamic boundary conditions concerning the truncation of the
unbounded domain for a finite element modeling.

The constitutive models used for the numerical modeling of soil, interface and structural compo-
nents were presented. These non-linear constitutive models take into account some important aspects
of the dynamic non-linear behavior of different involved materials. The used FE code GEFDyn was
enhanced by the implementation of a three dimensional plastic-hinge beam model, and the improve-
ment of several other available features related to interfaces, continuous beams, sequential construction
ability, among others. Special developments will be done, in order to increase the numerical capacity
of the code to run costly models as presented in next chapters.

Some special aspects of the numerical modeling of the dynamical SSI problems were presented. As
was mentioned, major issues are the treatment of the lateral boundaries and damping. These aspects
were presented in the form of 1D, 2D and 3D validations, in order to justify different modeling choices
adopted in this work.

The numerical simulations presented in this chapter were conducted in linear elasticity for both,
soil and structure. Next chapters are devoted to present several non-linear applications, including
some specific developments.
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2.1 Introduction

In the present earthquake engineering practice, the capacity spectrum method is widely used for
seismic performance evaluation of existing and new structures. Nevertheless, usually the effects of
dynamic soil-structure interaction (SSI) and the non-linear behaviour of the surrounding ground are
neglected.

Some simplified procedures taking into account the dynamic SSI effects on the determination of the
design earthquake forces and the corresponding displacements exist. For instance, FEMA 356 (2000)
and ATC 40 (1996) documents give some provisions to include ground flexibility in the structural
analysis model. Recently, FEMA 450 (2003) draft document proposes some techniques to improve
the traditional non-linear static seismic analysis. Concerning soil-structure interaction effects, this
document presents procedures to take into account kinematical effects as well as foundation damping
effects. Kinematical effects are related to filtering the ground shaking transmitted to the structure i.e. a
modification factor is applied to the input motion. Foundation damping is combined with the structural
damping to obtain a revised damping for the system. All these procedures are based on traditional
soil-structure interaction expressions with linear-elastic soil behaviour assumption. However, it is
well-known that the limit of linear-elastic soil behaviour is very low (γ < 10−5). This strain limit is
normally exceeded during a real motion.

In this work the influence of SSI effects on the seismic performance evaluation is investigated.
For this purpose, numerical simulations of pushover tests and non-linear dynamic analyses (i.e. non-
linearity of the soil and the structure behaviour) are performed in order to study the role of several
parameters on the seismic performance evaluation. This parametric study concerns the mechanical
properties of the soil foundation (e.g. Vs,30 and fundamental soil deposit frequency) and the structure
(i.e. fundamental period, effective height and mass) as well as the characteristics of the input motion
(i.e. amplitude and frequency content). Thus, several 2D finite element computations are carried out
using non-linear elastoplastic models to represent both the soil and the structure behaviour. Results
obtained by simplified computations performed following a two-step approach (which will be described
below), are compared with the ones obtained from fully non-linear time-history finite element modelling
analyses.

These results allow to identify and to quantify the differences between the two approaches. Thus, it
is possible to establish the situations for which the approximate techniques might tend to overestimate
or underestimate the displacement demand. We present a summary of the main findings including some
recommendations to consider in a performance evaluation following the Capacity Spectrum Method
(CSM).

2.2 Proposed approaches

In order to investigate the effect of non-linear soil behaviour on seismic demand evaluation, a com-
parative dynamic analysis is carried out. First, a complete finite element model including soil and
structural non-linear behaviour is used to asses the effect of non-linear dynamic soil-structure interac-
tion on the structural response. Secondly, a two-step approach is carried out where: a non-linear 1D
wave propagation problem is solved for a soil column of the foundation soil. Next, the obtained free
field motion is imposed as the ground motion to a fixed base structural model. The two approaches
are sketched in Fig.2.1.

The analysis is carried out for several non-linear SDOF models, with fundamental period varying
from 0.1[s] to 0.4[s]. The mass and height of each SDOF is obtained with typical weight and height
values, relating its fundamental period to the number of levels of the structure. The same infinitely
rigid shallow foundation is considered for all SDOF models.

In order to simulate the soil foundation, two non-linear homogenous dense sandy soil deposits were
used. The first one is in dry condition and the second one is fully saturated. The bedrock is placed
at the depth of 30[m]. Four Europeans earthquakes are considered, scaled to different maximum
outcropping acceleration values.
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Figure 2.1: Summary of proposed approaches

2.2.1 Soil constitutive model

The ECP’s elastoplastic multi-mechanism model (Aubry and Modaressi, 1992a; Hujeux, 1985) , com-
monly called Hujeux model is used to represent the soil behaviour. This model can take into account
the soil behaviour in a large range of deformations. The model is written in terms of effective stress.
The representation of all irreversible phenomena is made by four coupled elementary plastic mecha-
nisms: three plane-strain deviatoric plastic deformation mechanisms in three orthogonal planes and
an isotropic one. The model uses a Coulomb type failure criterion and the critical state concept. The
evolution of hardening is based on the plastic strain (deviatoric and volumetric strain for the deviatoric
mechanisms and volumetric strain for the isotropic one). To take into account the cyclic behaviour a
kinematical hardening based on the state variables at the last load reversal is used. The soil behaviour
is decomposed into pseudo-elastic, hysteretic and mobilized domains.

The model’s parameters of the soil are obtained using the methodology suggested by Lopez-
Caballero et al. (2003); Lopez-Caballero et al. (2007). In order to verify the model’s parameters,
the behaviour of the sand must be studied by simulating drained (DCS) and undrained cyclic shear
tests (UCS). The Fig.2.2a shows the response of a DCS test obtained by the model of the sand at an
effective stress of 100[kPa]. The test results are compared with the reference curves given by Iwasaki
et al. (1978).

In saturated conditions, the evolution of shear strain and pore pressure can be observed during the
UCS. The Fig.2.2c and Fig.2.2d shows the test simulation for a stress controlled shear test with the
same model’s parameters. The generation of pore pressure reduces the effective stress inducing cyclic
mobility without liquefaction.

Two levels of water table were considered: deeper than the model (dry) and at surface level
(saturated or wet). The shear wave velocity of the soil increases with depth (Fig.2.6a). The shear
wave velocity profile gives an average shear wave velocity in the upper 30[m] (Vs,30) of 232.8[m/s] for
dry conditions and 204.3[m/s] for saturated condition. This soil profile corresponds to a category C
site of Eurocode 8 (deep deposit of dense or medium dense soil) in both cases.

2.2.2 Structural model

The typical one-story frame chosen to represent each SDOF structure is shown in Fig.2.3a. The mass of
the building is assumed to be uniformly distributed along beam elements and the columns are supposed
massless. Non-linear material behaviour is taken into account through an elastic-perfect plastic strain-
stress relation. Fig.2.3b shows a normalized moment-curvature (M − Ψ) diagram obtained from the
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Figure 2.2: Simulated drained (DCS) and undrained (UCS) cyclic shear test results obtained with the
soil’s constitutive model.

computation of a simply fixed beam with this behaviour model. As it can be noticed, the stiffness
decreases when the elastic limit is reached (at My or Ψy), and under load reversal the curve forms
hysteresis loops. The maximum resisting moment remains constant under increasing deformation
and the member rotates as a hinge with this constant resisting moment. The value of stress yield is
supposed to be the same for all computations.

The elastic modulus (E) and the yielding stress (σy) of structural elements are 25.5[GPa] and
18[MPa], respectively. The mass and height of each SDOF is obtained with typical weight and height
values. A typical value of 20000[kg] is assumed for each level. A constant value of 2.5[m] is considered
for each interstory height. Thus, the equivalent SDOF corresponding to a building of n levels is
computed assuming a mass of 20000n[kg], a fixed base period of T0 = n

10 [s] and equivalent height
H = 2

3 × 2.5n[m], and finally solving for b and h (lateral stiffness). The Table 2.1 shows the basic
properties for the used SDOF.

A viscous damping of βi = 0.02 was considered for all computations. The same infinitely rigid
shallow foundation with a characteristic length of 6[m] was used for alls SDOF.
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Figure 2.3: Structural model description

Table 2.1: Properties of equivalent SDOF

T0[s] Mass [kg] Equivalent height [m] b [m] h [m]

0.10 20000 1.66 0.20 0.43
0.15 30000 2.50 0.23 0.50
0.20 40000 3.33 0.25 0.56
0.25 50000 4.17 0.30 0.61
0.30 60000 5.00 0.34 0.65
0.40 80000 6.67 0.39 0.74

2.2.3 Input earthquake motion

The used seismic input motions are the acceleration records of Friuli earthquake - San-Rocco site
(Italy-1976), Superstition Hills earthquake - Supers. Mountain site (USA-1987), Kozani earthquake
(Greece - 1995) and Aegion earthquake (Greece - 1995). The frequency content was characterized with
the mean period (Tm) Rathje et al. (1998) (Table 2.2). All signals are consistent with the response
spectra of Type A soil of Eurocode8.

Table 2.2: Used input earthquake motions

Earthquake Records Tm,out(s) Symbol for plots

Kozani (Greece) 0.28 ©
Superstition Hill (USA) 0.38 �

Friuli (Italy) 0.46 ♦
Aegion (Greece) 0.56 ▽

Each motion will be used as the outcropping motion and scaled to different values ranging from
0.15g to 0.30g linearly increased by an increment of 0.05g, resulting in a total of 16 events for each
frame on dry soil. For frames exhibiting important non-linear structural behavior, this range will be
extended to 0.35g (see section 2.4).
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2.2.4 Finite element approach (SSI-FE)

The Finite Element model is composed of: the structure, the soil foundation and a part of the bedrock.
The considered structure is a one-story, one bay frame. The 30[m] thick homogenous soil deposit is
modelled by 4 node linear elements. In the bottom, a layer of 5[m] of elastic bedrock (Vs = 1000[m/s]
and ρ = 2000[kg/m3]) is added to the model. The finite element mesh used for modelling this problem
is showed in Fig.2.4. Plane strain condition is assumed for the soil deposit and the bedrock.

As the main purpose of this paper is to investigate the role of the general parameters as T0, Tm,
aout,etc. in order to establish general tendencies of the results and identify when the non-linear SSI
is a major issue, the set of SDOFs analysed for this paper does not correspond to a specific set of
structures. They are idealizations of typical values of height, mass and fundamental periods. The
effect of the structural weight on the effective stress in the soil is neglected in this paper and will be
extensively treated in further works.

100[m]

35[m]

Figure 2.4: Finite element mesh

For the bedrock’s boundary condition, paraxial elements simulating a deformable unbounded bedrock
have been used. The incident waves, defined at the outcropping bedrock are introduced into the base of
the model after deconvolution. In the analysis, as the lateral limits of the problem are considered to be
far enough periodic conditions are verified. Then, only vertically propagating shear waves are studied
resulting in the free field response. Thus, equivalent boundaries have been imposed on the nodes of
these boundaries (i.e. the normal stress on these boundaries remains constant and the displacements
of nodes at the same depth in two opposite lateral boundaries are the same in all directions). Thus,
the obtained movement at the bedrock is composed of the incident waves and the reflected signal.
The computations are carried-out in the time domain. The simulations are performed with the Finite
Element tool GEFDYN (Aubry et al., 1985; Aubry and Modaressi, 1996).

2.2.5 Numerical tool Validation

Before proceeding to the non-linear analysis effects, a validation of the soil-structure interaction phe-
nomenon assuming linear elasticity behaviour for both the soil and the structure is performed (i.e. a
sample seismic signal is imposed at very low amplitude to ensure linear-elastic soil behaviour). A two-
story frame taken from Saez et al. (2006) (fixed base fundamental frequency of 4.25[Hz]) is supposed to
lie on the studied soil profile under dry condition. Fig.2.5 shows the obtained response of spectral ratio
amplitude between the displacements at the top and at the base (top/base) of the structure compared
with the response calculated using the numerical BE-FE tool MISS3D (Clouteau, 2003) for the dry
soil case. Fig.2.5 also shows the spectral ratio amplitude between the free field and the bedrock motion
(ff/bedrock) and the fixed base transfer function of the structure. For coupled BE-FE computations,
the analysis is directly carried out in the frequency domain.

For linear elastic SSI computations, the first two natural frequencies of the soil profile are 2.2 (Tsoil
= 0.46[s]) and 6.15[Hz] (Fig.2.5). Thus, due to the value of the fixed base fundamental frequency of
the structure compared to the one of elastic soil deposit (i.e. fstr > fsoil), it is expected that SSI
phenomena appears.
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Figure 2.5: Spectral ratio amplitudes obtained with the coupled BE-FE linear elastic tool MISS3D
compared to FE computations with GEFDYN for an elastic domain.

From the comparative results, it can be seen that the two different results obtained by the tools
are in perfect agreement. The shift of the main frequency of the structure to 4.17[Hz] results from the
flexibility of the foundation soil, whereas the change in the amplitude results from the material soil
and radiation damping added. The numerical value of period shifting is compatible with the standard
simple expression to compute linear-elastic soil-structure interaction provided in design codes.

2.2.6 Two-step approach

The first step is to solve a non-linear one-dimensional wave propagation problem for a soil column.
The mesh consists of one column of solid elements obeying the same constitutive model as in the
SSI-FE approach. The same boundary conditions have been imposed. The incident waves, defined
at the outcropping bedrock, are introduced into the base of the model after deconvolution. In the
second step, the obtained free field motion is imposed as the ground motion to a fixed base structural
model. This two-step approach neglects all SSI effects, but takes into account the effect of non-linearity
behaviour of both soil and structure.

2.3 Soil analysis and results

In order to define the input motion for the two-step approach, a free field dynamic analysis of the
soil profile is performed. The response of the free field soil profile is analysed for the four earthquake
records (Tab.2.2) as outcropping input with amplitudes increased with an increment of 0.05g from 0.1g
to 0.5g. The Fig.2.6b shows the obtained values and a tendency curve for the PGA (Peak Ground
Acceleration) with respect to maximum acceleration on the bedrock (amax,bedrock). These results
are compared with the one for an AB deep soil profile according to the classification proposed by
Dickenson and Seed (1996). It is possible to see that for weak base acceleration, the behaviour of both
dry and saturated soil deposits is similar and thus the reduction in the effective stress due the water
has not evident effect. It is noted that an amplification of the ground response for moderate range of
amax,bedrock is obtained. For strong base acceleration the soil weakening attenuates the seismic motion.
In saturated conditions, the pore pressure build-up acts as a frequency filter and the soil de-amplifies
the input motion for large amax,bedrock values (Ghosh and Madabhushi, 2003; Lopez-Caballero and
Modaressi-Farahmand Razavi, 2008).
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Figure 2.6: Effect of the presence of water on soil response

The influence of the inelastic behaviour of the soil deposit on the structural response can be directly
related to 2% damped pseudo-acceleration response spectra (PSA) at the free field. The comparison
between outcropping and obtained free field normalized PSA for different acceleration levels using
Friuli earthquake scaled to 0.10g (Fig.2.7a) and 0.35g (Fig. 2.7b) are shown in Fig.2.7. For weak
acceleration (aout = 0.1g), the computed PSA is similar for both dry and saturated cases showing
that the modification in the initial effective stress due to the presence of water has not a significant
influence.
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Figure 2.7: Effect of the water on PSA

According to Fig.2.7b (aout = 0.35g), the spectral amplitude of saturated soil is greater than that
of dry soil for large periods. This amplification of the PSA for the saturated soil with respect to dry
soil can be explained by the pore water pressure built up (Fig.2.8) phenomenon properly simulated
by the soil constitutive model (Lopez-Caballero and Modaressi-Farahmand Razavi, 2008). For short
periods, the spectral amplitude of saturated soil is smaller than that of dry soil. It can be noted that it
is not possible to identify this feature of soil behaviour using a simplified approach such as equivalent
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linear method.
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2.4 Non-linear SSI analysis and results

Concerning the seismic demand evaluation, the maximum top displacement D (top drift) and its
corresponding base shear, in terms of spectral acceleration A, are plotted for each studied SDOF
structure following the two approaches for dry soil. For each SDOF, the corresponding capacity curve
obtained by modelling the pushover test is also plotted (dashed lines in Fig.2.9a).
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Figure 2.9: Summary of computations

In the SSI-FE approach, the obtained structural response for SDOFs with T0 ≤ 0.25[s] is approx-
imately elastic even for high acceleration levels. The purpose of the paper is to investigate the role
of the non-linear soil behaviour on the computed structural damage (i.e. structural non-linear be-
haviour). In order to focus the analysis of the results on the SDOFs exhibiting non-linear behaviour,
the T0 = 0.3[s] and T0 = 0.4[s] SDOFs were studied for a slightly larger range of outcropping accel-
eration levels (0.1g − 0.35g) compared to 0.1g − 0.3g range used for the other SDOFs. Similary, the
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saturated soil case is carried out only for T0 = 0.3[s] and T0 = 0.4[s] frames.

To visualize the SSI effect on seismic demand evaluation, it is possible to take for example the
T0 = 0.4 (s) fundamental period SDOF (Fig.2.9b). Solid symbols correspond to the two-step approach,
while the hollow ones are obtained by the SSI-FE approach. Each point represents a response obtained
by one input motion scaled to a specific value.

The effect of the non-linear SSI on the seismic response can be represented by the ratio Dtwo−step/
DSSI−FE between the computed top drift obtained following the two-step approach (Dtwo−step) and
the computed value from the SSI-FE approach (DSSI−FE) for the same outcropping motion. Fig.2.10a
and 2.10b show this ratio in terms of the outcropping accelaration imposed (aout) for the four used
motions, with amplitudes varying from 0.1g to 0.35g with an increment of 0.05g.
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Figure 2.10: Top drift ratio between two-step computation (Dtwo−step) and SSI-FE approach DSSI−FE
for T0 = 0.3s (a) and 0.4s (b) frames in terms of the maximum imposed outcropping acceleration aout.

It is well-known that the stiffness degradation of the soil of the foundation introduces additional
damping in the system, modifying the structural response. Additionally, radiation damping appears.
According to our computations, the predicted top displacement obtained by the two-step approach
is conservative, i.e. larger than the one obtained in the SSI-FE approach if Tm . 1.3T0. On the
contrary, for mean periods Tm larger than approximately 1.3 times the fixed base fundamental period
of the frame T0, the two-step computations give smaller values compared to non-linear SSI approach.
Furthermore, the evolution of this ratio with the amplitude depends on the frame. For the T0 = 0.4[s],
the values of the ratio DItwo−step/DISSI−FE vary between 0.6 and 0.8 for motions with Tm . 1.3T0,
but for the T0 = 0.3[s] the ratio varies between 0.5 − 1.1 for the same range of Tm.

Fig.2.9a shows that, even for relatively weak motion, the SSI-FE dynamic response of the struc-
ture (hollow symbols)is not placed on the pushover curve. Then, the non linear soil behaviour and
the SSI effect induce a significant variation of the effective period (Teff ) of the structure and can
decrease/increase the top displacement depending on the motion characteristics (Tm and aout) and
the structure properties (T0 and m). In order to explain this behaviour, it is possible to see the distri-
bution of principal strains in the neighboring soil of the structure during the Friuli earthquake scaled
to 0.25g at outcropping (Fig.2.11a).

Fig.2.11b and 2.11c show the the principal strains distribution in two different steps of the analysis
(Fig.2.11a). After the first part of strong motion (t = 3.6s) the soil is extensively deformed, then
for the subsequent part of the motion its stiffness and damping differ considerably from their initial
values. After the strong motion (t = 12s), an asymmetrical distribution of irreversible deformations is
found. Permanent settlements are also generated. This soil deformation induces a high material soil
damping. This damping has a direct influence on the seismic response of the structure and it cannot
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Figure 2.11: Principal strains and the deformed mesh (scaled ×50) in the neighboring saturated soil
for two different steps of analysis for the T0 = 0.3s SDOF.

be properly evaluated following a fixed based approach or even if elastic SSI is taken into account.
Therefore, the total seismic demand is highly controlled by the surrounding non-linear soil behaviour.
For motions able to induce damage into a structure, the soil behaviour will be certainly non-linear.

To complete the previous analysis, the saturated soil results are also included in Fig.2.12a for the
T0 = 0.4[s] SDOF. The tendency of the results is the same. The computed results are clearly aligned
following an effective period. This value of Teff can be calculated from a linear fitting. After this
approximately linear portion, the computed values of seismic demand approach asymptotically the
fixed base capacity curve. The plateau of the curve does not change because it depends only upon
the strength of structural elements. For a given motion, it can be noticed that the Performance Point
(P.P.) from the two-step dynamic computation is approximately placed on the capacity curve; this
indicates that capacity spectrum method is adequate for fixed base analysis. However, when SSI effects
are taken into account, the P.P. from SSI-FE dynamic computation is placed approximately on the
modified capacity spectrum with Teff (Fig.2.12b).

2.4.1 Period lengthening due to SSI

The computed effective period (Teff ) may be related to the height (h), mass (m) and foundation
characteristic length (a) (Fig.2.13) of the SDOF structure by traditional linear elastic soil-structure
interaction expressions for rigid shallow foundations. With these expressions, an effective shear wave
velocity can be computed (Vs,eff ):

(
T0 Vs,eff

2πh

)2

=

a2(2−ν)
h2 + 3(1 − ν)

8ρa3

m

((
Teff

T0

)2
− 1

) (2.1)

where ν is the Poisson ratio and ρ is the mass per unit volume of the soil.
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It is possible to obtain for each SDOF, the variation of effective period and effective shear wave
velocity.

According to Fig.2.14a, soil-structure interaction effects seem important only for structures with
elastic periods placed between the two first elastic periods of the soil deposit (T 1

soil and T 2
soil). For

periods smaller than the second period of soil, the effective periods approach quickly that of the fixed
base value. The ratio between the fixed base value and effective value is near to 90% for this type of
soil.

From Fig.2.14b, it can be noticed that the effective shear wave velocity is approximately constant
for structures with fundamental periods between the two first ones of the soil. This value can be
considered like approximately constant and equal to two third of Vs,30 Eurocode 8’s parameter in this
case. Then, according to our results, a typical value of 2

3Vs,30 into traditional elastic SSI relations can
be used to compute an effective period for the used SDOFs.

2.4.2 Structural damping quantification

The application of the CSM procedure implies the computation of an equivalent viscous damping
coefficient at the performance point (βeq). This parameter includes the inherent structural damping
(βi) and the damping related to the damage of the structure (β0).

A bilinear representation of the capacity spectrum is constructed following ATC-40 guidelines to
estimate β0 (Fig.2.15a). The values of β0 are computed using fixed base capacity spectrum. Fig.2.15b
show the computed values of damping as a function of the peak ground acceleration at the free field
(amax,ff ) (solid symbols on Fig.2.15b). For SSI-FE computations, the capacity spectrum curve fitted
using the obtained results of the dynamic SSI computations was used. With this capacity spectrum,
the equivalent viscous damping β0 values are also computed using the bilinear approximation suggested
by ATC-40 (hollow symbols on Fig.2.15b). Some cases exhibiting structural linear behaviour have been
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Figure 2.14: Effective period and shear wave velocity values

omitted in Fig.2.15b: outcropping accelerations of 0.1g and Aegion earthquake.
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Figure 2.15: Equivalent damping computation.

It can be noticed that the damping developed in the structure is significantly reduced when SSI
effects are included in computations. According to our results, for motions with a frequency content
near to the fundamental period of the fixed base structure (i.e.

Tm,out

T0
≈ 1) the damping attains a

maximum, i.e. a higher level of damage. The damping added to the system by nonlinear soil behaviour
increases the energy dissipation mechanisms, then the expected damage in the structure is reduced.
When the ratio

Tm,out

Teff
is near to 1.4, the structural behaviour for fixed based condition is approximately

elastic. But, when SSI effects are taken into account, the structure develops nonlinear behaviour and
undergoes damage. In this case, the lengthening of fundamental period approaches the effective period
value to resonance condition and induces plasticity in the structure for moderate values of acceleration
thus increasing the damping.
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2.4.3 Damage index

The damage index used in this paper to evaluate the structural damage of the structures is based
on the Park & Ang damage model (Park and Ang, 1985) for reinforced concrete. The Park & Ang
damage model accounts for damage due to maximum inelastic excursions, as well as damage due to
the history of deformations. Both components of damage are linearly combined.

Two damage indices are computed using this damage model:� Local element damage index (DIloc): columns and beams.� Overall structure damage (DIov).

Since the inelastic behaviour is confined to plastic zones near the ends of some members, the relation
between element and overall structure integrity is not direct. According to the used structural non-
linear model, for each element section i, it is possible to compute a local index of damage (Fig.2.16a):

DIloc,i =
Ψm,i

Ψu
+

λp
ΨuMy

∫

dEi (2.2)

where Ψm,i is the maximum curvature reached during the load history, Ψu is the ultimate curvature
capacity of the section, My is the yield moment and Ei is the energy dissipated in the section. λp is a
model constant parameter. For nominal strength deterioration of reinforced concrete sections a value
of 0.1 for this parameter has been suggested by the same author (Park and Ang, 1985). The value of
My is computed for a simple fixed beam with the used structural non-linear model (Fig.2.3b). Finally,
the Ψu value corresponds to the most plastified section at the end of pushover test.

The overall damage index is computed using weighting factors based on dissipated hysteretic energy
at each component section i:

DIov =
∑

i

λiDIloc,i ; λi =
Ei
∑

iEi
(2.3)

where λi are the energy weighting factors of the section i.
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Figure 2.16: Damage index computation

Fig.2.16b displays the computed overall damage index of the T0 = 0.4s SDOF on dry soil for
SSI-FE computations (hollow symbols) and two-step approach (solid symbols) in terms of the Arias
intensity at the base of the structure (IAbase). When SSI effects are taken into account, in general a
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reduction of damage index is found. Assuming that a threshold limit for slight damage can be fixed
at DIov < 0.3, the SSI-FE computations shows that this limit is reached only if Tm is larger than
the SDOF’s effective fundamental period Teff . If Tm < Teff , the non-linear soil behavior avoids the
structural damage. Furthermore, only for fixed-based computation the total collapse is found, i.e. a
DIov near to 1.

2.5 Vulnerability Assessment

According to the results of the previous section, the dynamic non-linear soil-structure interaction
can significantly modify the structural damage induced by an earthquake, then a variation of seismic
vulnerability is expected. In order to investigate the effect of non-linear SSI on the vulnerability
assessment, a fragility curve approach is followed in terms of more representative index of structural
damage rather than an equivalent viscous damping coefficient βeq.

The likelihood of structural damage due to different levels of seismic ground motion can be ex-
pressed by a fragility curve. The fragility curve describes the damage probability corresponding to
specific damage state, for various earthquakes. If it is assumed that the fragility curve can be ex-
pressed in the form of two-parameters lognormal distribution function, the corresponding analytical
form (F (a)) is:

F (a) = Φ

(
log a

α

β

)

(2.4)

where a represents the Arias Intensity (IArias) (Arias, 1970) and Φ is the standardized normal distribu-
tion function. The distribution parameters α and β can be obtained following the maximum likelihood
method treating each event of damage as a realization from a Bernouilli experiment (Shinozuka, 1998).
The likelihood function is expressed as:

M =
N∏

k=1

(F (ak))
yk (1− F (ak))

1−yk (2.5)

where ak is the Arias Intensity of the k−th set of acceleration time histories to which each structure
is subjected, yk represents the realization of the Bernouilli random variable Yk with yk = 1 or 0
depending on whether or not the structure sustains the specific state of damage under the IArias equal
to ak, and N is the total number of sets of time histories for which the structure is analyzed. The
computation is performed numerically using a standard optimization algorithm.

Two different damage levels are defined in terms of the overall damage index DIov. The first one,
corresponds to a none to slight damage, and it is assumed for a value of DIov < 0.3. The second one,
associated with a moderate damage, is defined for a value of 0.3 ≤ DIov < 0.6.

For problems involving stiffness degradation, the duration and the frequency content of strong mo-
tion (i.e. severity intensity) have a great effect on the response of the system. A measure characterizing
the severity intensity of an earthquake can be the Arias Intensity.

Fig.2.17a and 2.17b displays the computed fragility curves for the damage states related to the
damage index defined below. Fig.2.17a shows the computed fragility curves by following the two-step
approach for the T0 = 0.4[s] SDOF. The fragility curves obtained for the second approach (SSI-FE) for
the same structure are showed in Fig.2.17b. The fragility curves reflect the variations of the computed
damage index obtained for each case (Fig.2.16b). In Fig.2.17a and 2.17b, black cross are used to plot
the corresponding values of yk (2.5) for slight damage levels and grey circles the corresponding values
of yk for moderate damage.

In the case when the SSI is taken into account directly, (SSI-FE) a significantly higher level of
seismic energy is required to induce a damage.
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Figure 2.17: Computed fragility curves

2.6 Conclusions

Non-linear dynamic soil-structure interaction analysis is a complex problem were several phenomena
take place and interact with each other. Some of these aspects have been studied in this paper in order
to highlight the influence of some parameters concerning the structure, the input signal and the soil.
The main conclusion of this study is that the soil-structure interaction with a non-linear soil model
varies significantly the response of the studied structure set with respect to the one with fixed base
condition.

It is well-known that the soil exhibits an elastic behaviour only in a very small range of distortion.
This range is certainly exceeded for a motion able to induce inelastic deformations in a structure. Thus,
a coupled approach using non-linear structural behaviour with linear soil hypothesis is not consistent.
In fact, the results show that when non-linear SSI is properly taken into account, the seismic demand
is not on the capacity curve.

According to our computations and for the studied cases, a first approximation for Teff may be
obtained with 2

3Vs,30 and with traditionally elastic SSI expressions. Nevertheless, the major challenge
to quantify the non-linear SSI effects in seismic demand evaluation is to predict an accurate global
damping, able to be related to a simpler approach.

Concerning the vulnerability assessment, according to our computations, if the SSI is taken into
account, a higher level of seismic energy is required to exceed a moderate damage level (DIov) for
a given likelihood. For none to slight damage level, the type of followed approach seems not to be
important for vulnerability evaluation purposes.

The results of the study illustrate clearly the importance of accounting for the non-linear soil
behaviour. In this case, the non-linear SSI has a favourable effect related to decreasing the maximum
top displacements and the base forces. However, the non-linear SSI could increase or decrease the
seismic demand depending on the type of the structure (e.g. m, h and T0), the input motion (e.g.
Tm), and the dynamic soil properties (e.g. Tsoil, Vs,30). Furthermore, there is an economic justification
to take into account the modification effects due to non-linear soil behaviour. Further investigations
in this way will be needed in order to obtain more general conclusions for diverse structure and soil
typologies.
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3.1 Introduction

In general, under earthquake loading, the soil reaches the limit of its elastic behavior before the
structural elements. Thus, an earthquake analysis approach assuming nonlinear structural behavior
under fixed base condition or with linear soil-structure interaction (SSI) hypothesis is not consistent.
In practice, there are several approaches to estimate the effect of the nonlinear soil behavior on
the seismic response of structures. As a non linear 3D analysis is costly, usually, 2D finite element
computations assuming plane-strain condition for the soil can be carried out in order to asses the role of
the non-linear soil behavior on the superstructure response. However, for this type of approach, special
assumptions related to the soil condition, the orientation of the seismic input and the superstructure
must be considered.

In this chapter, the influence of SSI effects on the response of regular multistory frames is inves-
tigated. For this purpose, a modified version of standard plane-strain model taking into account the
out-of-plane width of the soil is presented. Mathematical formulation and numerical validations are
provided in order to highlight the advantages of the proposed approach on a CPU time consumption
point of view.

Numerical simulations of fully non-linear dynamic analysis (i.e. non-linearity of the soil and the
structure behavior) are performed in order to study the role of the dynamic soil behavior on the seismic
response of buildings. Thus, several 2D plane-strain finite element computations are carried out using
non-linear elastoplastic models to represent both the soil and the structure behavior. Results obtained
by simplified computations performed following a two-step approach (it will be described below),
are compared with the ones obtained from fully SSI non-linear time-history finite element modeling
analyses. Two reinforced concrete moment resisting frame buildings are studied on a homogenous
sandy soil profile in two hydraulic conditions: dry and fully saturated. A strategy of earthquake
selection intended to maximize the information provided is presented. A detailed analysis of the
structural maximum responses is carried out in terms of several strong-motion parameters.

A set of energy measures are introduced in order to study the role of different energy dissipation
mechanisms when the non-linear SSI effects are considered. Structural and soil energy dissipation
indicators are introduced for this purpose. The structural energy dissipation indicator provides a
general measure of the hysteretic behavior developed in the superstructure, thus it can be used as a
structural damage measure. The effect of the superstructure over the initial state of the soil under the
foundation and during the earthquake motion is studied in detail in order to define the extension of
the soil influenced by the SSI phenomena.

Finally, the specific case of liquefiable soils is investigated. The same buildings placed over a
liquefiable soil deposit are studied using some motions of the selection triggering liquefaction. Ground
and structural responses are studied in terms of strong-motion parameters, standard liquefaction
parameters and energy dissipation indicators.

Results presented in this chapter show the advantages of the proposed approach and allow to
identify situations when neglecting dynamical SSI effects is highly conservative. Additionally, they
contribute to the understanding of both, the influence of the soil on the superstructure’s seismic
response, and the influence of the superstructure on the dynamic non-linear behavior of the soil
around the foundation.

3.2 Modified plane-strain approach

Assuming a standard 3D regular multistory building as sketched in Fig.3.1a, an equivalent 2D model
for the superstructure can be constructed straightforward for the shorter dimension. For this purpose,
a simple assumption is to take a typical transverse resistant axis (equally separated by la) loaded
by tributary weight/mass over the distance la in order to preserve approximately the internal forces
in structural elements. The stiffness contributions of the transverse elements across x axis (longer
direction) are neglected as shown if Fig.3.2.
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Figure 3.1: Typical regular multistory building model

If the foundation is supposed to be infinitely rigid for bending in xz plane, an equivalent plane-
strain foundation-soil model is still valid for periodic loading along x axis (Fig.3.2), typically static
body forces or seismic motion in yz plane. Consequently, for an arbitrary horizontal plane xy in the
soil, stress state following x direction is constant. Thus, standard plane strain-state is verified:

εxx(x, t) = γxz(x, t) = γxy(x, t) = 0 ∀ x ∈ Ωs ∪ Ωf (3.1)

according to definitions of domains presented in Fig.G.1 (pp.191). The same condition applies for the
soil-foundation interface and the foundation itself. More precisely, due to the fact that the superstruc-
ture motion is prescribed to yz, this condition also applies to its stress state. However, as this domain
is modelled by one-dimensional elements, no additional considerations are required.

la lala
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neglected
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×ui
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Figure 3.2: Typical axis showing out-of-plane periodicity

In order to properly take into account the SSI interaction effects between superstructure and
the plane-strain domain (soil, foundation and interface), the width la must be taken into account in
the equations for the soil-foundation part of the model. If this out-plane dimension is not included,
the stress state of the plane strain-domain will be la/1[-] times over or sub estimated depending on
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the numeric value of la compared to traditional unit length plane-strain formulation. This effect is
not important for the linear elastic case, but under non-linear material assumption, neglecting this
correction can considerably alter the soil behavior and thus the obtained response.

The variational formulation presented in §1.2.4 is still valid. We repeat here the expression (1.39)
for the superstructure domain Ωb for convenience:

∫

Ωb

σ
b
: ε

b
(wb) dV +

∫

Ωb

ρbüb.wbdV =

∫

Ωb

ρb g.wbdV +

∫

Σbf

tb.wbdS +

∫

Γbσ

tb.wbdS (3.2)

It can be noticed that the soil-structure interface Σbs in Eq.1.39 has been changed by structure-
foundation interface Σbf . In the foundation domain Ωf , integration of the weak formulation over the
domain must take into account the width la. In the previous expression, Ωb corresponds to a 3D
domain, even if it is constituted by one-dimensional elements. The corresponding weak formulation
for the foundation domain can be written as:

la

∫
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ρf üf .wfdS = la
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ρf g.wfdS +
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Σbf

t.wfdl + la
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t.wsfdl (3.3)

In (3.3), foundation domain is assumed rigid along x direction and one-phase. The correction factor
la appears in the volumetric integration of inertial and body forces. On the soil-foundation interface,
the width la must be also included. Free field condition is assumed over Γfσ

boundary. The modified
weak-formulation for the soil domain is given by the following momentum conservation equation:
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and the mass conservation:
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(3.5)

where the width la is included. The integration over Γsσ must be conducted carefully for the part
corresponding to soil domain truncation. As discussed in the previous chapter, in a part of this
boundary, dynamic conditions are used to ensure radiation condition and impose incident motion
(paraxial elements described in §1.2.3). The equilibrium equation of the global system is obtained
by the addition of equations (3.2), (3.3) and (3.4), where discontinuity of displacements between
foundation and soil are introduced.

Assembling procedure, mesh partitions and resolution schema remain unchanged. These modifica-
tions have been implemented and tested in GEFDyn code for solid 2D, interface and paraxial elements.
Validations comparing results obtained by this approach with full 3D computations are described in
the following sections. These validations have been also used to define some properties for the models
described below, more precisely, the required stiffness for the shallow foundation to ensure the validity
of plane-strain approach presented in this section.
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3.3 Proposed approaches

In order to investigate the effect of non-linear soil behavior on seismic demand evaluation, a compar-
ative dynamical analysis is carried out:

1. A complete finite element model including soil and structural non-linear behavior is used to asses
the effect of non-linear dynamic soil-structure interaction on the structural response (SSI-FE).

2. A two-step approach (T-S) is carried out in which:

(a) A non-linear 1D wave propagation problem is solved for a simple soil column of the foun-
dation soil.

(b) The obtained free field motion is imposed as ground motion to a fixed base structural model.

The two approaches are presented schematically in Fig.3.3. SSI-FE takes into accounts all material
non-linearities of soil, superstructure and interface, associated to seismic soil-structure interaction
problem. T-S approach takes into account non-linear behavior of soil and superstructure, but neglects
all interaction effects. This comparative approach was developed in order to provide two groups of
consistent responses. The simple comparison of the SSI-FE approach with the fixed base response
imposing outcropping bedrock input motion is not adequate, because site effects will be neglected. It
is well known that modifications of the input motion due to soil conditions play a decisive role on the
dynamic response of the superstructure.
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Figure 3.3: Proposed approaches

T-S approach corresponds to the state of the practice in earthquake engineering. In this work,
wave propagation part of the T-S approach is achieved using the elastoplastic soil constitutive model
presented in Appendix E. However, this step can be performed through the widely used equivalent-
liner approach (Schnabel et al., 1972), or by employing 1D constitutive models (Mellal, 1997; Modaressi
and Foerster, 2000) among others. The computed free field response can be injected later as input for
any commercial non-linear structural dynamic code. On the contrary, a complete non-linear dynamic
soil-structure interaction is still out of the today’s engineering practice. Nevertheless, some simplified
methods for taking into account the nonlinear soil behavior in the DSSI problem through an equivalent
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linear approach have been developed (Pitilakis, 2006). The comparison presented in this chapter
provides some guidelines about the importance of taking into account SSI effects, thus defines some
general situations when a T-S approach is too conservative or eventually unsafe.

3.3.1 Studied buildings

The analysis is conducted for two concrete multistory frames: b01 (2 levels) and b02 (7 levels). The
purpose of selecting two test buildings of very different sizes is to asses the role of the initial state of
the soil. Indeed, one of the differences between SSI-FE and T-S approaches is related to the initial
stress field in the soil model. For T-S case, effective stress distribution in the soil column is due only
to body forces, i.e. gravity. In the SSI-FE approach, overstress appears in the neighborhood of the
foundation due static forces applied by the superstructure. This loading modifies the soil confinement
and the initial density for the dynamic analysis.

Both reinforced concrete buildings were taken from Marante et al. (2005). Details of geometry
and transversal sections are given in Appendix I. Main characteristics are listed in Tab.3.1. The last
column in this Table shows the assumed out-of-plane spacing la required for the plane-strain SSI-FE
approach. This dimension can or not be included in the first step of T-S approach according to (3.5).
Indeed, the inclusion of this dimension in the soil column has no effect on the free field response.

Table 3.1: Properties of the buildings

Building
Mean

interstory
height [m]

Total
height [m]

Total Mass
[Ton]

First fixed
base period

T0[s]

Length of
found. [m]

Out-of-plane
spacing la[m]

b01 2.10 4.20 40 0.24 6.0 4.0

b02 2.60 20.12 390 0.76 10.0 6.0

The concrete structural elements are modeled by plastic hinge beam-column elements presented
in §1.3.3. The model is based on the two-component model presented by Giberson (1969) and the
modifications introduced by Prakash et al. (1993) to take into account axial force and bending moment
interaction. This model has been implemented and enhanced in GEFDyn by introducing lumped and
consistent mass formulations, body forces and sequential construction ability (Sáez, 2007).

3.3.2 Soil profiles

In a first stage, we consider a homogenous medium dense (Dr = 38%) Toyoura sand soil profile
of 30[m] depth, overlying an elastic bedrock. Two hydraulic conditions are studied: dry and fully
saturated. The effect of the stiffness increasing with the confinement is taken into account by a non-
linear elastic approach (E.4). Thus the low-strain shear wave profile increases with the depth as is
shown in Fig.3.4a. The shear wave velocity profile gives an average shear wave velocity in the upper
30[m] Vs,30 of 232.8[m/s] for dry condition and of 204.3[m/s] for saturated condition, corresponding
to a site category C of EUROCODE 8 (2003) (deep deposit of dense or medium dense soil) in both
cases. The low-strain frequency analysis gives a first elastic period Tsoil of 0.46[s] for the dry case and
0.54[s] for the fully saturated case (Fig.3.4b).

According to non-linear elastic approach, the reduction of effective stress due to pore water pressure
reduces the stiffness of the soil and consequently increases the elastic periods of the soil deposit. The
corresponding shift in frequency is noticed on Fig.3.4b, but no significant variation of damping is found
for low-strain response. As will be discussed later, strong variations in soil material damping will be
found in non-linear behavior range.

Relative positions of fixed base frequency f0 of both studied buildings are also shown in Fig.3.4b.
The fixed base frequency of b01 (f0 = 4.17[Hz]) is larger than the first mode of both studied profiles
fsoil. Thus, according to our experience, significant soil-structure interaction effects are expected. For
the b02 building, its fixed base frequency f0 = 1.32[Hz] is less than the fundamental frequency of both
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Figure 3.4: Low-strain characteristics of studied medium dense sand profile in dry and fully saturated
conditions

soil deposits. Thus no important SSI effects will take place. However, due to its relative big weight,
the initial state of the soil is altered producing strong modifications of the effective motion transmitted
to the structure as will be shown later.

3.3.3 Finite element (SSI-FE) and Two-Step (T-S) models

The Finite Element model is composed of: the structure, the soil foundation and a part of the bedrock.
The finite element meshes used for modeling this problem are shown in Fig.3.5. In dry condition,
soil is modelled by four node quadrilateral elements with two DOFs by node (displacements). In
saturated condition, ground water level is assumed at surface (z = 0[m]). The soil is idealized as a
two-phase porous material and discretized into four-node quadrilateral continuum two-phase porous
elements with three DOFs per node (two for solid phase displacement and one for water pressure).
At the bottom, a layer of 5[m] of elastic bedrock is added to the model. For the bedrock’s boundary
condition, paraxial elements simulating a deformable unbounded bedrock have been used (§1.2.3). The
incident waves, defined at the outcropping bedrock are introduced into the base of the model after
deconvolution. In the analysis, the lateral limits of the problem are considered to be far enough from
the structure so that periodic conditions are verified on them. Thus, tied conditions or equivalent node
condition have been imposed on the nodes of these boundaries. The definition of required horizontal
dimension of meshes has been carried-out following a similar procedure as that described in §1.4.3,
thus controlling the cleanness of the response at approximate free field location. As expected, for the
large building associated to a bigger mass, lateral limits must be extended to obtain a satisfactory free
field condition.

Colors in Fig.3.5 are associated to different vertical size of elements. A finer mesh is used in the
neighbor of the foundation to improve the approximation of strong non-linear behavior expected for
this neighborhood zone. The dark region below the superstructure will be used to compute some soil
non-linear behavior indicators associated to dissipated energy by hysteresis (§3.8) and pore pressure
built up for the saturated case. In order to prevent the apparition of traction between the foundation
and the surrounding soil, Mohr-Coulombs type interface elements have been positioned at the soil-
foundation interface.

Concerning the Two-Step approach, the first step is to solve a non-linear one-dimensional wave
propagation problem for a soil column. The mesh consists of one column of solid elements using the
same vertical spacing of SSI-FE meshes. The same tied boundary conditions have been imposed to
ensure 1D shear wave propagation kinematics. In the second step, the obtained free field motion is
imposed as ground motion to the fixed base structural model.
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Figure 3.5: Finite element meshes (SSI-FE approach)

Numerical computation of SSI-FE and column are carried out in two sequential steps:

1. Static computation that permits to initialize the stresses and the internal variables of both soil
and superstructure’s constitutive models.

2. Dynamic perturbation analysis around the stress state and internal material memory obtained
in the static computation.

For SSI-FE approach, the static computation includes initialization of stresses (and internal vari-
ables) in the soil deposit and sequential level-by-level construction of the superstructure. This se-
quential construction is numerically performed by consecutive global assembling of matrices and force
vectors, but using penalization over non-existent finite elements. This whole step is extremely delicate
for saturated case, in which time intervals must be carefully selected in order to allow to dissipate pore
pressure build up due to overload imposed by the superstructure. The apparition of tensile stresses
near to foundation corners is controlled by selecting appropriate parameters for the soil-foundation
interface, thus allowing some sliding.

Dynamic computation is conducted starting from the equilibrated state found at static initializa-
tion. Stresses, forces and constitutive models’ internal variables are stored in order to obtain only
the perturbations part due to dynamic loading. Consequently, strains, distortions, displacements and
accelerations given below are relative to initial static displacement field and its associated strain field
which has been put to zero at the beginning of the dynamic computation.

3.3.4 Materials parameters

3.3.4.1 Soil

The ECP’s elastoplastic cyclic multi-mechanism model (Aubry et al., 1982; Hujeux, 1985) is used to
represent the soil behavior. Theoretical formulation and physical interpretations of different param-
eters was extensively treated in Appendix E. The soil model’s parameters are obtained using the
methodology suggested by Lopez-Caballero et al. (2003) and Lopez-Caballero et al. (2007) described
briefly in §1.3.4. In order to verify the model’s parameters, the behavior of the sand has been studied
by simulating isotropically consolidated undrained monotonic triaxial test (CUD), drained (DCS) and
undrained cyclic shear tests (UCS). The tests results are compared with the reference curves given by
Ishihara (1993) for monotonic paths and by Iwasaki et al. (1978) for cyclic loading (Appendix H). The
set of parameters calibrated for a confinement of p′ = 100[kPa] in Tab.H.1 is used for the entire soil
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profile, for both, dry and saturated case. Thus, variation of initial critical pressure pc0 and hardening
variables with the in-situ density are neglected for sake of simplicity. Soil density is assumed constant
and equal to ρ = 1755[kg/m3], the initial earth pressure coefficient is fixed to k0 = 0.5.

In saturated conditions three additional parameters must be selected, the porosity n, the perme-
ability tensor K and the water compressibility Kf . A porosity of n = 0.54 is selected, in order to keep
approximately the same mean soil density as that of the dry case for grain’s mass of ρs = 2700[kg/m3].
The permeability is calibrated by imposing that the generation of pore pressure under seismic loading
does not induce liquefaction. The water bulk modulus is chosen small enough to prevent near to
incompressible behavior for approximate undrained behavior obtained for quick dynamic loading. Of
course, the calibration of the last two parameters must be performed together. An isotropic value
of ky = kz = 10−4[m/s] is assumed for permeability and a value of βf = 9.38 × 10−8[1/Pa] for fluid
compressibility.

Bedrock is assumed to behave elastically. A Young’s modulus of E = 5305[MPa] and a Poisson’s
ratio of ν = 0.3 is used. For both soil cases, bedrock is assumed to be a one-phase medium with a
density of ρ = 2000[Kg]. Paraxial elements placed at the bottom to simulate the half-space condition
use the same set of parameters.

3.3.4.2 Structure

Parameters for the plastic-hinge beams constituting superstructure models are derived directly from
material properties of concrete, reinforcement steel and reinforcement disposition in terms of axial
force-moment interaction diagrams. Numerical values of transverse section and materials properties
are given in Appendix I. Additionally, the hardening parameter p̃ that governs the stiffness distribution
between elastic and plastic components is fixed to p̃ = 0.05 for both buildings.

Foundation models are composed of the base mat and foundation beams that ensure zero relative
rotation between foundation and columns. In order to ensure the validity of modified plane strain
formulation, it must be rigid for out-plane bending. One option is to impose kinematical constraint
to ensure this condition, but another possibility is to use very stiff material parameters to impose
rigidness. We choose the second option in this work. These values are calibrated by comparison with
3D analysis results used for testing the implementation, as described below.

3.3.4.3 Interface

Interface between foundation and soil is used with the main purpose being to prevent apparition of
tensile stress in the soil at static initialization phase allowing sliding between soil and foundation.
A detailed study of the uplift problem is out of the scope of this work. In order to reduce stress
concentration at foundation corners but not to alter the dynamic response by uplift or excessive
sliding, we use a relatively large value for joint thickness eini combined with an elevated penalization
parameters E and G (Appendix B). No dilatancy is also imposed. Used values are shown in Tab.3.2.
These values were calibrated by controlling the stress state near to foundation after static initialization
and by comparing responses in dynamic condition with a no loss of contact case in frequency and time
domain.

3.4 Numerical validation

The pertinence of the proposed approach described in §3.2 is verified by comparison with a complete
3D model for the same problem. This verification also permits to define the required stiffness value
to be used for the foundation in order to ensure plane strain condition for the soil. Computations are
carried-out for both buildings and soil conditions, for static initialization phase and for a test dynamic
loading. Meshes used in 3D cases included explicitly the out-of-plane dimension la that is incorporated
in equations of the proposed plane-strain approach. Each couple of 2D and 3D meshes have the same
projection on y − z plane, thus the same size and number of elements. 3D mesh is constructed by
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Table 3.2: Parameters for soil-foundation interface model

Parameter Description

E 9× 1010[Pa]

G 4× 1010[Pa]

φ 23°
ψ 0°
eini 0.01[m]

c 6× 103[Pa]

extruding the 2D y − z plane mesh following x direction, a distance la/2, symmetrically from the
superstructure (Fig.3.6). Naturally, the numerical cost of the 3D model is increased several times due
to the number of elements and by including ux DOF. The time-consumption ratio is near to 5 times
for b01 building and near to 8 times for the bigger one, that proves the usefulness of the proposed 2D
formulation.
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Figure 3.6: Three-dimensional FE meshes for numerical validation

For the 3D model, displacements following x direction are allowed for all interior nodes. Nodes on
vertical planes at x = la

2 and x = − la
2 have ux DOF blocked. This kinematic assumption is only valid

if the superstructure is regular and periodic and if the incident field is independent of x coordinate.
For an input motion with components out of the yz plane, a complete 3D model including torsional
effects is required. Symmetry with respect to the frame axis is also imposed, thus ux DOF is also
blocked over x = 0 plane. Dynamical kinematic constraints sketched in Fig.1.10b are still valid for
this case.

3.4.1 Static initialization

The static initialization is conducted simulating the sequential level-by-level construction of each
building. Time step increment is not important for dry case, but is a critical aspect for saturated
soil. For this latter case, the time step is selected by controlling the required time to dissipate the
instantaneous generated pore pressure and to obtain the vertical overstress ∆σ′zz associated to the last
level added to the building, thus to let the load transmit from fluid phase to solid skeleton. Stabilized
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values of overstress distribution are shown in Fig.3.7 for b01 on dry soil and for b02 on saturated soil
in Fig.3.8. Both FE models are displayed in each figure.

(a) Vertical overstress ∆σ′

zz[kPa] distribu-
tion for 2D modified plane-strain approach

(b) Vertical overstress ∆σ′

zz[kPa] distribu-
tion for full 3D model

Figure 3.7: Vertical overstress distribution due to superstructure for b01 on dry soil. Window of
20× 12[m] under foundation. Deformation magnification factor=100

According to Fig.3.7, vertical overstress distribution for the 2D plane-strain proposed approach is
identical to the distribution of ∆σ′zz obtained in any vertical yz plane cut over the 3D model. This
observation is associated to the rigidness of the foundation of the superstructure, thus it must be
stiff enough to avoid relative vertical displacement across x axis. Rigid foundation condition across y
axis is not required, but we use a complete rigid foundation for sake of simplicity. For b01 building
on dry soil, the maximum vertical overstress obtained is approximately 20[kPa] near the foundation
corners. Foundation-soil joint elements were introduced to reduce this stress concentration and avoid
tensile stresses in the soil, however some small traction stresses up to 0.7[kPa] were found at shallow
integration points near the foundation border. These local traction stresses have a negligible effect
on the accuracy of the complete model. After superstructure’s sequential construction simulation,
a maximum settlement of 2.7[mm] is found in this case. Dynamic response will be computed as a
perturbation around this initial deformation.

(a) Vertical overstress ∆σ′

zz[kPa] distribution for
2D modified plane-strain approach

(b) Vertical overstress ∆σ′

zz[kPa] distribution for
full 3D model

Figure 3.8: Vertical overstress distribution due to superstructure for b02 on saturated soil. Window
of 40× 20[m] under foundation. Deformation magnification factor=100

Fig.3.8 shows stabilized effective overstress distribution for the b02 building on saturated soil. This
is the critical case in terms of soil deformations, because water reduces effective stresses under self
weight and consequently the initial confinement and b02 is the heavier building studied. In this case,
stabilized effective overstress values are up to 90[kPa]. The obtained settlement in this case is of
1.5[cm]. As this settlement is uniform, these soil deformations do not induce additional forces in the
superstructure. Differential settlements found under dynamic loading will be treated later. In spite
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of introducing sliding between soil and foundation, some tensile stress up to 4[kPa] appears in the
neighborhood of foundation corners. No convergency problems were found for this level of shallow
traction stresses in this configuration.

(a) Monotonic ray rm
yz distribution for 2D modi-

fied plane-strain approach
(b) Monotonic ray rm

yz distribution for full 3D
model

Figure 3.9: Degree of mobilization of yz deviatoric mechanism for b02 on dry soil. Window of 40×20[m]
under foundation. Deformation magnification factor=100

For the dynamic non-linear soil behavior studied in this work, initial state plays a key role on the
seismic response of the problem. In order to verify the accuracy of the implemented approach, internal
hardening variable of the soil’s constitutive model was also checked. Fig.3.9 shows the mobilization
of plasticity in deviatoric plane yz characterized by the monotonic radius rmyz, according to model
formulation described in §1.3.4. According to this figure, both plasticity mobilization distributions
are equivalent. Due to the geometry of the studied problem, this deviatoric plane will control the
overall non-linear soil response. The characteristic failure mechanism of shallow foundations can be
noticed, thus an active wedge formation under the structure and the transition to passive wedges.
However, this state is far from failure. Maximum plastic mobilization is approximately of 0.6 in stress
concentration zones, reminding that 1 means perfect plasticity state.
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Figure 3.10: Interface stresses for b01 building on dry soil using modified plane-strain approach and
3D model

According to expression (3.3), interface elements must be also modified to take into account soil
out-of-plane width. Fig.3.10 show distribution of tangential stresses σs and normal stresses σn over
the interface for b01 building on dry soil. The obtained curves for the 2D case and for any longitudinal
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cut over the foundation for 3D case agree perfectly. Under the columns, at y = 2[m] and y = −2[m],
tangential stress vanishes. Large sliding, or tangential displacement jump, takes place along the
interface between the foundation and the soil. Normal stress distribution coincides with the standard
normal pressures distribution under a rigid shallow foundation. As expected, stress concentration
takes place near the corners of the foundation despite relative soil-foundation displacements.

3.4.2 Comparative dynamic analysis

Dynamic comparative analysis is conducted using Friuli earthquake record at San Rocco site (Italy,
1976) as input acceleration. It is scaled to very-low amplitude to ensure elastic soil response. Obtained
spectral amplitude modulus ratios between the free field (ff) and its vertical projection over the bedrock
(bd), and between the top of the structure (tp) and the ff according to definitions of Fig.1.11 are shown
in Fig.3.11 for b01 building on dry soil. An excellent agreement between both computations is found,
for both ff/bd and tp/ff spectral ratios. Nevertheless, spectral ratios displayed in Fig.3.11a present
some frequency component arising from the structure for their two frequency modes (near to 4.1
and 5.7[Hz]). Some small amplitude differences are also found for the fundamental frequency of the
soil profile. For tp/ff spectral ratio (Fig.3.11), the agreement between both computations is quite
satisfactory. The predicted shift on fixed base frequency due to SSI effects coincides in both models.
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Figure 3.11: Frequency domain responses for b01 building on dry soil using modified plane-strain
approach and 3D model

Time domain responses at the top of the building and at free field are shown in Fig.3.12. It can be
noticed that small differences on soil amplification found in frequency analysis have a negligible effect
over the structural time response. Nevertheless, major differences are found at free field time responses
as is displayed in Fig.3.12. Indeed, even if stress field and other responses are properly simulated by
this approach, some differences persist concerning wave reflections over the mesh boundary. For 3D
model, front-wave pattern emitted by superstructure vibration is approximately a half-sphere. Thus,
reflection of waves takes places over both lateral boundaries. As these reflections occur at different
times over x limits of the mesh, successive reflections destroy the coherency of the wave producing a
beneficial effect over lateral wave reflection issue. This effect vanishes in 2D plane-strain condition.
In this case, the front-wave patterns outgoing the superstructure are approximately half-cylinders
with longitudinal axis across x. Thus, reflections takes places only in y borders of the mesh and no
destructive effect appears. Nevertheless, according to Fig.3.12, this effect does not affect computed
structural time response. Additionally, hysteretic damping due to non linear soil behaviour under
strong motion will contribute to attenuation of radiated waves before reaching mesh borders.

Finally, Fig.3.13 shows the computed distortion for an arbitrary point at 4[m] under one of the
columns of the b01 building on dry soil. Fig.3.13a displays the obtained shear strain for Friuli earth-
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Figure 3.12: Time domain responses for b01 building on dry soil using modified plane-strain approach
and 3D model

quake imposed at very low-amplitude to ensure globally elastic response, and Fig.3.13b the correspond-
ing response for the original amplitude of this ground motion. In both cases a satisfactory agreement
is found, that proves accuracy of the proposed approach in elastic or inelastic range. In Fig.3.13b the
apparition of permanent deformations due to the fact that soil behaves in a non-linear manner should
be noted. Indeed, the predicted co-seismic settlement at the center of the foundation is 2.2[cm].
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Figure 3.13: Time domain shear strain γyz evolution for b01 building on dry soil using modified
plane-strain approach and 3D model

Similar comparisons have been done for other combinations used in this work, thus for b02 building
in dry or saturated soil, as well as the liquefiable soil profile analyzed in §3.10. For all cases similar
agreement is found. Consequently, it can be conclude that the proposed modified plane-strain approach
gives equivalent results with a significative reduction in computational cost.

3.5 Earthquake selection

The purpose of this section is to describe the methodology used to select strong-motion records that will
be used as input in the computations. The adopted strategy is based on the methodology proposed
by Douglas (2006) in the framework of the VEDA (Seismic Vulnerability of structures: a Damage
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mechanics Approach) research project in which a part of this work was done.

At present there are many sources of earthquake strong-motion records that could provide thou-
sands of records as input to the structural models (Seekins et al., 1992; Ambraseys et al., 2004) or
other Internet databases. However, as the studied FE models are complex and consequently take
time to run, it is important that a small selection of strong-motion records be chosen in order to cut
down the number of runs required but allowing to obtain general tendencies. In order to select an
efficient set of input accelerograms some ideas from the theory of Design of Experiments (DOE) are
employed (NIST/SEMATECH, 2006). In the terminology of DOE, the FE model is the process and
the estimated responses from these models are the outputs. The controlled inputs (factors) are split
into the parameters defining the FE model (soil and superstructure properties) and the input ground
motions.

Since there is an infinite variety of possible earthquake ground motions it is useful to characterize
them using a number of scalar strong-motion parameters that approximately measure different prop-
erties of the motions (amplitude, frequency content, duration, etc.). Hence the set of strong-motion
parameters becomes the controlled inputs to the process. Unfortunately these strong-motion param-
eters do not perfectly characterize the ground motions, thus the use of strong-motion parameters
introduces uncontrolled factors (co-factors) due to the complexity of the motions not measured by the
strong-motion parameters chosen.

The geographical scope of this study is France. Metropolitan France has a seismic hazard that
is thought to be characterized by earthquakes of magnitudes (ML) less than or equal to 6.3 with an
average focal depth less than or equal to 12[km] (Marin et al., 2004). In view of this, the database of
strong-motion records developed by Ambraseys et al. (2004) has been chosen as the source of data for
this work since it provides a large set of data mainly from moderate (Mw < 6.5) shallow (h < 30[km])
earthquakes that occurred within Europe and the Middle East.

We select a full factorial design in two levels, thus each input factor set is split in two levels.
These levels are called high and low. A design with all possible high/low combinations of all the input
factors is a full factorial design in two levels. We consider a two-level of factorial design for three factors
(strong-motion parameters). This implies eight runs. Graphically, we can represent this design by the
cube shown in Fig.3.14. The arrows show the direction of increase of the factors. The numbers 1 to
8 at the corners of the design box reference correspond to non-randomized order of runs or standard
order according to NIST/SEMATECH (2006). One record is chosen to be at each corner of the cube.
Running the entire design more than once permits to obtain average values of the responses as well as
some ideas about the dispersion or variability due to uncontrolled factors.
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Figure 3.14: Illustration of two-level full factorial design with factors TSR, AI and Tm (adapted from
NIST/SEMATECH (2006)).

An earthquake can be characterized by measures of its frequency content, duration and sever-
ity/intensity measures. It is generally accepted that pure amplitude measures as PGA are not ideal
measures of the severity/intensity of earthquakes, as they do not contain any information about the
duration and the frequency content of strong ground motion, especially for problems involving stiffness
degradation (Koutsourelakis et al., 2002). Consequently, using parameters of severity/intensity includ-
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ing duration and frequency content information to characterize earthquake ground motions could lead
to an improved prediction of earthquake damage. According to this, we choose three strong-motion
parameters: significant duration TSR (Trifunac and Brady, 1975); Arias intensity AI (Arias, 1970)
and the mean period Tm (Rathje et al., 1998), associated to duration, energy and frequency content,
respectively. Additionally, as site effects are explicitly included in the FE model, only records on rock
or stiff soil (Vs,30 > 400[m/s]) were considered. The ranges of the low and high bins were chosen close
to mean values of selection strong-motion parameters of motions available in database satisfying the
geographical scope and recording conditions requirements. Selection bins range were adjusted in order
to have sufficient numbers of records within each bin category (Tab.3.3).

Table 3.3: Strong-motion parameters and ranges of low and high bins used for selecting records.

Parameter
Low bin
range

High bin
range

TSR ≤ 10[s] > 10[s]

AI ≤ 0.07[m/s] > 0.07[m/s]

Tm ≤ 0.5[s] > 0.5[s]

An experiment is constituted by 23 = 8 records (or runs). Each experiment was repeated four
times (4 earthquakes selection), thus a total of 32 runs were conducted for each building on each soil
type. Details about strong-parameters for the 32 used records are listed in Appendix J.1.

In order to study the earthquake selection on a statistical point of view, we use principal component
analysis technique (PCA), one of the mostly used tools in exploratory data analysis. In mathematical
terms, PCA is as an orthogonal linear transformation that transforms the n data to a new small k-
dimensional coordinate system. PCA is theoretically the optimum transform for a given data in least
square terms. Thus, it is obtained by maximization of projected inertia of n data over the sub-space
axis Fk. PCA involves the calculation of the eigenvalue decomposition of a data covariance matrix or
singular value decomposition of a data matrix, usually after mean centering the data for each attribute.
A detailed description of PCA is out of the scope of this presentation and can be found in Lebrat et al.
(2004) or Saporta (2006).

PCA is thus used to identify correlations in the data. According to selection criteria previously
defined, each record can be interpreted as a sample of three selection variables Tm, AI and TSR. In
order to maximize the information provided by the earthquake selection, selection variables must be as
independent as possible. A high correlation between two or more variables means that these variables
might be redundant for describing non-linear SSI effects studied here. Fig.3.15a presents a graphical
vector approach to verify correlations. In this representation, each selection variable is displayed as
a vector in the space of first and second principal components F1 and F2, respectively. Thus, the
variation of the variables across selected motions is indicated by the length and direction of the vector.
In this representation, vectors that are as right angles mean that their variation is independent. Vectors
pointed at similar direction, mean that they vary together. Vectors that are oppositely directed are
related and have inverse variation. According with these interpretations for relative orientations, it
can be noticed that selection variables AI and TSR are approximately independent of Tm, and AI
and TSR are inversely related. Consequently, these variable are not redundant to describe earthquake
hazard.

Next step in PCA analysis is to study data points, thus the 32 selected records in this case.
Fig.3.15b is generated by projecting data points on the plane spanned by first and second principal
components. Percents indicated in these axis mean that F1 and F2 are associated to 40.3% and 33.8%
of data inertia, thus 74.1% of the data information together. Representation of samples over the
principal component plane gives information about the distribution of data in order to detect zones of
different density. In this case, a small set of motions are slightly out of the global tendency (records
2, 12, 13, 21 and 28). These records have an excessive contribution to principal components and
might be a factor of instability, thus removing them might significantly alter result of the analysis.
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Figure 3.15: ACP analysis of selected input

Their relative position might also indicate some incoherency, for instance different geological recording
conditions. Therefore, runs corresponding to these motions must be carefully analyzed.

3.6 Soil analysis and results

In order to define the input motion for the T-S approach (corresponding to the first step), a free field
dynamic analysis of the soil profile, was performed. The response of the free field soil profile was
analyzed for the earthquake records selected for the outcropping bedrock as described in §3.5.

The Fig.3.16 shows the simulation results representing the peak ground acceleration (PGA) ob-
tained at free field with respect to maximum acceleration amplitude at outcropping (aout) for both,
dry and saturated soil conditions. It is possible to see that for weak base acceleration the behavior
of both soil deposits is similar: the amplification is near to 2.5 times the acceleration recorded at
outcropping. In this range, the reduction in the effective stress due to the water has not an evident
effect. It is noted that due to soil non-linearity the amplification of the ground response decays with
the input amplitude.
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Figure 3.16: Non-linear behavior of the column subjected to the selected earthquakes

The effect of the soil non-linearity over the input motion can be also studied in terms of the energy
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associated to each motion. The Arias intensity AI computed at outcropping (AIout) and computed
at free field (AIff ) are plotted in Fig.3.16b for both soil profiles. In this case, the amplification
behavior is similar compared to acceleration amplitude scheme. For weak AI, the amplification is
approximately constant and near to six times the outcropping value (low-strain domain). For AIout
larger than 0.1[m/s], the amplification diminishes due to the hysteresis energy dissipation in the soil.
In this range, in general terms, the amplification of the saturated soil is lower than the obtained one
for the dry case but it is more than two times the value computed at outcropping bedrock.

(a) Obtained pore pressure excess in the soil profile for
different used records

(b) Comparisons between dry and saturated response
spectra computed at free field

Figure 3.17: Effect of overburden pressure in free field response

In order to highlight differences between dry and saturated soil responses to be used as the input
motion to the structure’s, it is interesting to compare the induced pore pressure excess distribution
∆uw with depth for different input motions. Fig.3.17a displays the ∆uw profile at the end of each
strong motion signal tend and the initial vertical effective stress σ′zz profile. Envelope of these profiles
is presented in yellow. According to this figure, liquefaction takes places in the first 3[m] for some
motions, but for the major part of records liquefaction state is not reached. Only one motion is close
to induce liquefaction at 7[m] depth. There are, however, significant pore-water pressure build-up
and subsequent rigidity degradation at free field. Due to this coseismic softening, the signal might be
attenuated depending on its frequency content and its energy.

In order to illustrate the rigidity degradation effect over the effective input for T-S approach,
Fig.3.17b displays computed response spectrum envelopes at free field for dry and saturated condi-
tion. For weak motions (inferior limit of the envelope), no significant non-linear effects take place
and obtained envelopes coincide. In this case, soil behaves approximately elastic and no significant
pore pressure is generated. As both soil profiles have similar transfer functions in elastic range, re-
sponses at low-amplitude are equivalent. For strong motions, majors differences can be noticed. In
saturated conditions, for large Arias intensity the pore-pressure build-up acts as a frequency filter
for the high frequency component (Ghosh and Madabhushi, 2003; Lopez-Caballero and Modaressi-
Farahmand Razavi, 2008). In the present analysis, this phenomenon takes place for periods up to
0.7[s] approximately. For periods larger than 0.7[s], the computed response spectra indicates that a
large amount of seismic energy is transmitted to the structure in saturated condition compared to dry
situation. In terms of analyzed buildings, this means that significant differences might be found for
b01 building under strong-motions due to its fixed base period value. For b02 building, we expect
to find minor variations between dry and saturated soil conditions. These free field accelerations are
then used as the input of the dynamic fixed-base structural analysis of the T-S approach. The results
are then compare to the ones off SSI-FE computations in the next section.
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3.7 Effect of SSI on the dynamic response

The same set of input motions listed in Appendix J.1, are used in the SSI-FE simulations. In order
to assess the influence of the SSI effects on the dynamic non-linear structural response, the results of
the two approaches for each building and for each soil are shown in Figures 3.18, 3.19, 3.22 and 3.23.
Results are presented in the form of scatter plots of the maximum value of the computed inter-story
drift normalized by the corresponding inter-story height (ISDmax,%) for each record as a function
of the strong-motion parameters of the earthquakes. In order to use a common reference for both
T-S and SSI-FE approaches, severity measures computed at outcropping or free field might be used
for these figures on the x-axis. In general, it is accepted that acceleration amplitude as the measure
of severity of earthquakes is not ideal because it does not contain information about the duration
and frequency content. This aspect is critical for systems involving stiffness degradation, where the
duration and frequency content of strong motion have a profound effect on the response of the system
(Koutsourelakis et al., 2002). Correlations between several strong-motion parameters and the observed
responses will be discussed in the following.
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Figure 3.18: Scatter plots of maximum inter-story drift for b01 building on dry soil

Figures 3.18a and 3.18b provide scatter plots of the maximum response of ISDmax% in terms of
aout and AIout, respectively, for the b01 building on dry soil. According to these figures in a general
way, including non-linear SSI effects in the dynamic computation reduces the obtained maximum
inter-story drift. However, results present dispersion, thus for approximately the same value of input
severity large variation of ISDmax,% is found. In order to define the more suitable strong-motion
parameter to describe the computed seismic demand, correlation coefficients ρX,Y between ISDmax,%

and the maximum amplitude of the acceleration at outcropping bedrock (aout) and at free field (PGA),
the Arias intensity at outcropping bedrock (AIout) and at free field (AIff ), the mean period Tm and
the predominant period of the ground motion Tg (Miranda and Vertero, 1994), for each studied case
are listed in Tab.3.4.

According to Tab.3.4, correlation coefficients between free field or outcropping bedrock severity
measures are equivalent, thus corresponding ρX,Y values for aout compared to PGA or AIout compared
to AIff are similar. As computed values at outcropping bedrock depends only of the input motion
characteristics, we select outcropping measures to simplify the interpretation of results. Consequently,
hereinafter two alternative of measures are considered: the maximum amplitude of the acceleration
at outcropping bedrock aout and the corresponding Arias intensity AIout. According to values of ρX,Y
listed in Tab.3.4 for aout and AIout, depending on the building and the soil considered, one of them
might be better than the other to describe the expected maximum structural response. Indeed, values
of correlations coefficients are in general of the same order for both parameters. As a general rule,
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Table 3.4: Correlation coefficient ρX,Y between ISDmax,% and several strong-motion parameters

Building Soil Approach aout PGA AIout AIff Tm Tg

b01 Dry T-S 0.92 0.92 0.86 0.89 -0.06 -0.17

b02 Dry T-S 0.73 0.68 0.93 0.89 0.20 0.16

b01 Sat. T-S 0.72 0.82 0.51 0.61 -0.30 0.21

b02 Sat. T-S 0.64 0.68 0.66 0.79 0.08 0.55

b01 Dry SSI-FE 0.93 0.92 0.94 0.94 -0.08 0.16

b02 Dry SSI-FE 0.71 0.66 0.90 0.87 0.25 0.14

b01 Sat. SSI-FE 0.84 0.85 0.70 0.71 -0.24 0.31

b02 Sat. SSI-FE 0.68 0.65 0.77 0.89 0.26 0.71

we will use AIout to describe the severity/intensity of the used motions because this measure takes
into account the duration and the frequency content of the ground motion. Nevertheless, similar
conclusions can be derived in terms of aout. Concerning the frequency content measures Tm and Tg,
in general a poor correlation is found. Indeed, this kind of measures are not adequate because they do
not cause a monotonic increase in structural response with increasing values of the measure. However,
Tm will be used below to identify some close to structure-earthquake or soil-earthquake resonance
situations.
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Figure 3.19: Scatter plots of maximum inter-story drift for b01 building on saturated soil

For the saturated case (Fig.3.19a), the difference between both approaches is relatively constant
over the acceleration amplitude of the input motion. It can be noted that in all cases the structures on
the saturated soil are less damage (ISDmax% = 0.7 in dry soil and ISDmax% = 0.45 in saturated soil).
Additionally, this difference is larger than the dry case. This variation can be related to the different
deformations induced during the shaking in the soil. As the imposed shear stress is approximately the
same for both soils for the same motion, but the degree of confinement for the saturated case is less
than one for the dry case, thus the induced strains are larger and the obtained damping increases.
If the energy dissipation in the soil grows, the seismic demand of superstructure diminishes. In the
saturated case, approximately parallel curves are found for aout > 0.04[g] or AIout > 0.05[m/s], thus
when the energy of the input motion is high enough to induce inelastic behavior in soil.

The variations on computed responses can be partially explained by computing response spectra
of the effective motion imposed to superstructure, thus of the free field response for T-S approach or
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(a) Envelopes of response spectra for dry soil (b) Envelopes of response spectra for saturated case

Figure 3.20: Comparison between response spectra at the base of the superstructure following T-S
and SSI-FE approaches for b01 building

at the structure base level for the SSI-FE case. Fig.3.20a and b show the envelope of response spectra
computed at base level for the 32 considered records. The fixed base structural fundamental period is
also displayed in these figures. In both situations, dry or saturated soil, response spectra is reduced
when SSI effects are included. This attenuation might be related to initial state of the soil. When the
weight of superstructure is included, effective stress under foundation grows resulting into an increase
of the soil stiffness. But, at the same time, internal soil friction is mobilized altering the initial state
of the soil. Additionally, during the dynamic loading, soil dissipates energy by both radiation and
material damping reducing the effective energy transmitted to the superstructure. These soil’s energy
dissipation mechanisms will be explored in section §3.8.
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Figure 3.21: Scatter plots of maximum foundation co-seismic settlement

The attenuation of the motion due to soil stiffness degradation effect is evident comparing dry
and saturated soil spectra in Fig.3.20. Spectral ordinates for saturated case are significantly smaller
than dry situation. A reduction of the spectral ordinates around the fixed base period can be also
noticed for the saturated case, that explains the reduction of the computed ISDmax,%. Nevertheless,
this reduction of the superstructure displacement is accompanied by an increase up to four times of
the foundation co-seismic settlement as is depicted in Fig.3.21a. In this figure, we use logarithmic
y-axis due to large variability on the predicted coseismic settlement. These co-seismic settlements
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were computed with respect to the corresponding free field settlements.
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Figure 3.22: Scatter plots of maximum inter-story drift for b02 building on dry soil

In this study, superstructures are symmetric and the soil is supposed homogenous, thus differ-
ential settlements can be generated only by asymmetry of the record. Computed permanent tilts
are negligible in this case, but in more general situations for multi-supported irregular buildings in
non-homogeneous soils, large coseismic tilt might control the structural damage.

Figures 3.22a and b show the same comparison for the b02 building. As it can be noticed, the
effects of the SSI are less significant than for the b01 building. In this case, the fundamental period
of the superstructure is larger than the fundamental period of the soil (T0 > Tsoil). According to our
experience, in this condition the SSI effects can be generally neglected.
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Figure 3.23: Scatter plots of maximum inter-story drift for b02 building on saturated soil

Again, obtained scatter plots of the computed response spectra at free field (T-S approach) or
structural base (SSI-FE) agree. Fig.3.23a and b display the envelope of these spectra for both, dry
and saturated situations. It can be noticed that for dry soil, response spectra envelope remains
relatively unchanged around the fundamental fixed base period of b02 building. This means, that
amplitude and frequency content are approximately the same for both approaches. Consequently,
reductions displayed in scatter plots Fig.3.22 might be associated to added damping by radiation and
non-linear hysteretic soil behavior. The variations on hysteretic soil damping will be depicted below.
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(a) Envelopes of response spectra for dry soil (b) Envelopes of response spectra for saturated soil

Figure 3.24: Comparison between response spectra at the base of the superstructure following T-S
and SSI-FE approaches for b02 building

In saturated condition, similar reductions in maximum inter-story drift are found compared to the
dry case. However, the effect over the effective response spectra is quite different. For saturated case,
a general reduction in spectral amplitudes is found for periods between 0.2[s] and 1.2[s] approximately.
As the fixed base fundamental period of b02 lies in this interval, this means that a significant variation
of the effective amplitude is found in this case. However, not so large differences are obtained for this
building. This behavior might be related to the fact that the building responds essentially in elastic
range and no significant SSI effects takes place.

Similarly to b01 building, an increase of foundation settlements can be noticed for b02 building
on saturated soil according to Fig.3.21b. Again, this augmentation is related to reduction in soil
stiffness due to pore water pressure generation. Coseismic settlements are for both buildings of the
same order, and they are well correlated with Arias intensity. Increases of foundation settlements in
saturated condition are also approximately of the same order for b01 and b02, thus they are not a
relevant effect of the initial overstress over the coseismic settlement in this configuration, considering
that initial vertical overstress is approximately four times larger for b02 compared to b01. Therefore,
large inertial forces are compensated by the increase of soil stiffness due to effective stress in this case.

3.8 Energy oriented analysis of results

In order to identify the role of the different energy dissipation mechanisms in the problem and asses
the effects of the non-linear SSI, two energy dissipation indicators can be computed.

For the superstructure, the material non-linearity is concentrated in plastic hinges of beam-column
elements. Thus, an indicator of the amount of energy dissipated on the superstructure Istr can be
defined as:

Istr =
1

m

ng∑

k=1

∫

t

Mk
p (t) dθkp (t) + 1× 10−3 [J/m3] (3.6)

where Mk
p is the bending moment in plastic component and θkp the corresponding hinge rotation.

The superscript k corresponds to potential plastic hinge k of the superstructure. The total number
of potential plastic hinges is denoted ng and m corresponds to the total mass of the superstructure
(Tab.3.1). According to this definition, Istr corresponds to the average energy dissipated by unit of
volume. Other authors have proposed measures of dissipated energy normalized by ultimate values of
rotation and bending moment to compute a damage index (Park and Ang, 1985). A direct measure
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of energy is selected here in order to facilitate comparisons with soil energy dissipation measures
introduced below.

Interpretation of structural responses can be completed by including some measures about the
non-linear response of the soil. In particular, the analysis of the energy dissipated in soil by its no-
linear hysteretic behavior might give additional information on different damping mechanisms and
their interactions. For the soil, a normalized energy dissipation index can be computed by:

Isoil =
1

Ω

∫

Ω

∫

t

∆σ′ (x, t) : dε (x, t) dV [J/m3] (3.7)

where ∆σ′ and ε are the shear and strain tensors dynamic perturbations induced in the soil during the
dynamic loading at an interior material point x. This integration is performed over a control volume
Ω. The criterion adopted for the definition of the extension of this control volume is detailed in §3.8.2.
For the modified plane-strain approach in yz plane explored in this chapter, the previous expression
takes the form:

Isoil =
1

Ω

∫

Ω

∫

t

[
∆σ′yy dεyy + ∆σ′zz dεzz + ∆τyz dγyz

]
(x, t) dV [J/m3] (3.8)

The contribution of each term to the total value of Isoil depends on the characteristics of the
loading. As a result of the horizontal seismic motion (in yz plane) imposed in this case, the contribu-
tion of ∆σ′yy dεyy is negligible. According to our computations, the shear term ∆τyz dγyz represents
approximately the 98% and 95% of the total value of Isoil, for b01 and b02 respectively. Indeed,
for the weighter building, relatively larger variations of vertical stress and strains are induced by the
superstructure rocking. Consequently, the contribution of the vertical term ∆σ′zz dεzz increases.

3.8.1 Energy dissipated by the superstructure

Fig.3.25 shows computed structural indicator for b01 building, in both dry and saturated soil condi-
tions. In these plots, values of Istr = 1 × 10−3 means that no plastic rotations are induced in any
potential hinge for the corresponding motion.
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Figure 3.25: Scatter plots of energy dissipated by the superstructure for b01 building

According to Fig.3.25a, structural responses is in general elastic for AIout < 0.1[m/s]. For larger
input severity values, SSI effects reduce the energy dissipated by the structure, thus the coseismic
structural damage. Large differences between T-S and SSI-FE approaches are found for moderate
motions (0.1 < AIout < 0.3[m/s]). For strong motions, the energies dissipated in the structure
following both approaches are closer. It can be noticed that for T-S case input severity larger than
AIout > 0.1[m/s] is enough to induce inelastic structural behaviour. This threshold grows to 0.2[m/s]
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when SSI effects are included, thus for some records T-S predicts inelastic behavior whereas SSI-FE
gives structural elastic response. This variation on predicted Istr indicator becomes dramatic for the
saturated soil case. According to Fig.3.25b, structural damage vanishes when SSI effects are taken
into account. In opposition to dry case, superstructure undergoes plastic deformations for several
weak motions (AIout < 0.1[m/s]) in T-S approach. However for strong motions, the numerical values
of computed energy indicators of dry case are larger than the obtained ones for saturated condition.
These differences can be explained by the decreasing in amplification observed for severe motion in
saturated case (Fig.3.16b). It can be concluded that neglecting SSI effects for b01 building case give
conservative predictions of structural response.
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Figure 3.26: Scatter plots of energy dissipated by the superstructure for b02 building

Variations between T-S and SSI-FE approaches are in general terms less important for b02 building.
In Fig.3.26a and b, large differences are found only for some cases associated to weak motions (AIout <
0.1[m/s]). For large values, inelastic structural indicators are relatively close. Similarly to b01 building,
it can be noticed that there are more cases of moderate severity (0.1 < AIout < 0.3[m/s]) exhibiting
inelastic behavior for T-S approach in saturated condition than dry one. Thus, dry non-linear soil
effect in this range is benefic compared to saturated condition. They are two cases at approximately
AIout = 0.18 and 0.65[m/s] showing larger responses for SSI-FE than T-S approach. Despite these two
cases, the general tendency is that SSI effects reduce superstructure damage. However, the relative
reduction of Istr for b02 building is not as large as the corresponding for b01 building. Relative
position of fixed base frequency of the structure compared to modes of the soil profile will explain this
response.

3.8.2 Energy dissipated by the soil

In order to define a suitable control volume Ω, the variation of the Isoil index in terms of the integration
depth z over a unit with soil column according to schema of Fig.3.27a is studied.

Figures 3.27b and c show the evolution of Isoil index with z for dry and saturated conditions,
respectively, when studying the dynamic response of the soil column only. It can be noticed that
for weak motions relative larger values are found for saturated case. Under saturated condition soil
stiffness decreases. Assuming that the imposed shear stress field is approximately the same for both
soils, larger shear strains are obtained in saturated case. Stabilized values of Isoil are obtained for
depths below 10 or 15[m] in both cases. For depth lower than this level, the value of Isoil decays.
This means that the major part of non-linear soil behavior is in the top layers. In this zone, inelastic
response is highly affected by the degree of confinement. Deeper soil is stiffer due to larger effective
stress, and consequently damping associated to hysteretic behavior decreases.

Dynamic hysteretic behavior of soil is depicted in Fig.3.28a and b, for dry and saturated conditions
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Figure 3.27: Definition of the integration volume Ω to compute normalized energy dissipation index
Isoil
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Figure 3.28: Time domain shear stress-strain responses at three different depths for record number 5

respectively. These figures shows τyz−γyz curves at three different depths, computed for record number
5. The evolution of Isoil with the control volume for this motion is displayed in red on Fig.3.27. These
figures illustrate clearly the reduction of hysteretic damping with depth, associated to increase of soil
stiffness with the effective stress. It can be noticed that bigger loops are obtained for saturated case,
thus larger damping is induced but also larger permanent deformations are developed.

The definition of the volume of integration to compute Isoil for the SSI-FE is more complicated due
to horizontal and vertical variation of non-linear soil behavior near the superstructure. Far enough
from soil-structure interface following horizontal direction, equivalent behavior to one dimensional
column approach is reached. In order to highlight spatial variation of hysteretic damping in soil,
Fig.3.29 shows distribution of isoil:

isoil (x) =

∫

t

σ′ (x, t) : dε (x, t) [J/m3] (3.9)

for cases where b01 and b02 buildings lay on saturated soil subjected to record number 5.

The effect of the increase of the effective stresses due to the over stress imposed by the super-
structure’s weight is evident in Fig.3.29. For b02 building, large augmentation of confinement due to
superstructure self weight reduces inelastic behavior of soil below the foundation. Far from the foun-
dation, confinement effect vanishes and soil undergoes plastic deformation inducing large hysteretic
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(a) Spatial distribution of isoil[J/m3] for b01 building (b) Spatial distribution of isoil[J/m3] for b02 building

Figure 3.29: Spatial distribution of hysteretic damping in saturated soil subjected to record number 5

damping. As b01 building is relatively light, the over stress effect is less significative and hysteretic
damping near the foundation corners induced by stress concentration is approximately of the same
order as the free field inelastic material damping. These figures correspond to a single record, but the
same tendency is obtained for other motions considered in this work.

In order to take into account local modification in hysteretic damping induced by the superstruc-
ture, the index Isoil is computed over a variable volume of soil Ω(z) in terms of depth z from the
foundation level. Due to regular mesh used and with the purpose to make compatible the obtained
index with the computation conducted for the one dimensional column, a square control volume of
side z is assumed (Fig.3.30a).

Ω

z

z

(a) Square region of integration in
terms of depth z

Ω

2a

2a

a

(b) Adopted criterion to define Ω
in terms of characteristic length a

Figure 3.30: Definition of the integration volume Ω to compute normalized energy dissipation index
Isoil for SSI-FE approach

The dependency of Isoil with the volume of integration Ω for the b01 is depicted in Fig.3.31a and
b, for dry and saturated case, respectively. In general terms, similarly to free field case, hysteretic
damping for weak records increases in saturated condition. However, stabilization of Isoil indicator
with the depth z is faster compared to one-dimensional cases displayed in Fig.3.27. Indeed, according
to Fig.3.31 the value of Isoil does not change significantly for z > 8[m] approximately. Numerical
values of the indicator are equivalent as well. The effect of over stress imposed by the superstructure
is evident comparing the shape of Isoil − z curves for record number 5 highlighted in red in the plots.
The concentration of hysteretic damping near the surface is reduced when b01 is added to the model,
thus the maximum value of Isoil reached near to z = 5[m] for free field case disappears.

Similar behavior is found for b02 building (Fig.3.32). In this case, the high over stress imposed
under the foundation increases significantly the degree of confinement which results into reducing
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(a) B01 building on dry soil (b) B01 building on saturated soil

Figure 3.31: Variation of Isoil[J/m3] with the square volume of integration depending on depth z

coseismic deformations and the associated hysteretic damping. For both dry and saturated cases, the
computed value of Isoil is approximately constant for depths below 14[m]. Again, high values of Isoil
are obtained in saturated case because of the stiffness reduction induced by pore pressure build-up.

(a) B02 building on dry soil (b) B02 building on saturated soil

Figure 3.32: Variation of Isoil[J/m3] with the square volume of integration depending on depth z

In order to define a general criteria to define the control volume of the soil in which Isoil is computed,
two general aspects should be considered. We have decided to express this volume in terms of a the
characteristic length of the shallow foundation. According to the discussion above, by choosing a
square volume of side 2a local effects due to superstructure interaction are globally included in the
computation of Isoil. Of course, this criterion is purely geometric and clearly the superstructure’s
weight plays a key role in defining this influenced region. However, in practice both variables a and
superstructure’s weight are not completely independent for regular buildings. Thus, in this study, we
define the volume Ω in terms of only the characteristic length a for sake of simplicity (Fig.3.30b).
Characterizing the control zone in this way agrees satisfactorily with the author’s previous studies
concerning the definition of the surrounding soil that concentrates non-linear effects due to dynamic
soil-structure interaction (Sáez, 2005; Saez et al., 2007). These studies were conducted using an
equivalent-linear approach implemented in the coupled BE-FE code MISS3D (Clouteau and Aubry,
2001), defining an influence criteria in terms of the variation of the amplitude of computed shear strain
in frequency domain. Square regions of 12× 12[m] and 20× 20[m] defined below the foundation were
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used for b01 and b02 structures, respectively. They are shown in dark color in Fig.3.5a and b.
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Figure 3.33: Scatter plots of energy dissipated by the soil in terms of Isoil[J/m3] for b01 building

The computed values of Isoil over the control volume Ω for the b01 building on dry and saturated soil
are presented in scatter plots, on Fig.3.33a and b, in terms of AIout for each used record. According
to previous lines, the change in the initial state of soil below foundation and dynamic interaction
effects are not enough to alter significantly the hysteretic behavior of foundation’s neighboring soil.
In both, saturated and dry conditions, Isoil values in free field or in SSI-FE approach are similar.
Thus, differences found for the maximum interstory drift or structural dissipated energy measured by
Istr are related to the whole soil-structure interaction phenomena, and not only to material damping
induced by soil. This means that radiation damping, kinematical and inertial dynamical soil-structure
interaction neglected in the T-S approach explains the major part of variations obtained for b01
building. In other words, the effect of b01 building on the non-linear behavior of soil does not alter
enough the effective motion transmitted to the superstructure to influence the non-linear response of
the structure. Thus, strong differences found in structural response of b01 building must be associated
to radiative damping and support flexibility. Of course, other aspects such as frequency content of the
motion compared to the soil first elastic frequency and the superstructure also play a key role on the
structural response. Additionally, it can be noticed that for strong motions the soil energy dissipation
indicator is slightly larger for SSI-FE than those obtained in the free field (T-S approach). This might
indicate that for strong inputs, inertial SSI effects are large enough to increase significantly strains
in some regions inside the integration region Ω, probably near to the foundation corners and in the
transition zones between active and passive wedges below the structure.

Similarly, Fig.3.34a and b show the corresponding responses for b02 building. In this case, a
general reduction of the coseismic hysteretic damping is found for SSI-FE approach except for very
strong motions. These results are coherent with previous observations related to soil confinement
induced by the superstructure below the foundation. However, for very strong motions, inertial SSI
effects seem to be strong enough to induce large strains that compensate differences in initial state.
As fixed base frequency of b02 building is shorter than the fundamental frequency of soil profile,
dynamic SSI effects are not important. This explains relative small differences of structural responses
obtained between T-S and SSI-FE approaches. As the obtained Isoil for SSI-FE are smaller than those
obtained in T-S approach, variation of hysteretic non-linear behavior can not explain the general
reduction tendency found in the structural response. Thus, variations of ISDmax,% or Istr between
two conducted approaches might be related to radiative damping and modification of fundamental
frequency due to soil flexibility.
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Figure 3.34: Scatter plots of energy dissipated by the soil in terms of Isoil[J/m3] for b02 building

3.9 Results exploration

This section is devoted to the exploration of obtained results, in order to identify parameters that might
explain differences computed between T-S and SSI-FE approaches. The influence of SSI phenomenon
on the structural response will be measured in terms of relative variation of the computed maximum
interstory drift following both presented approaches according to:

∆ISD =
ISDT−S

max,% − ISD
SSI−FE
max,%

ISDT−S
max,%

(3.10)

where the superscript T − S or SSI − FE indicates the approach followed to obtain the value of
ISDmax,%. According to results presented in previous sections, the measure ∆ISD is positive except
for very few records. Thus, a positive value of ISDmax,% means a beneficial effect of the non-linear
dynamical SSI.
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Figure 3.35: Variation of ISDmax,% as a function of ratio Tm

Tsoil
for both studied buildings

Firstly, the influence of the frequency content of the input motion is studied in terms of the ratios
between mean period of each motion Tm and fundamental period of both, soil profile (Tsoil) and fixed
base structure (T0). Variation of the computed ISDmax,% in terms of Tm

T0
is depicted in Fig.3.35,

for b01 and b02 buildings. Record numbers are also displayed on scatter plots in Fig.3.35 near the
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corresponding point. For b01 on dry soil the ISDmax,% variation lies approximately between 0.15
and 0.55, whereas for saturated case the range is between 0.4 and 0.7. No particular tendency can be
detected between ∆ISD and the period ratio Tm

Tsoil
. The only motion that exhibits a negative ∆ISD

value for the b01 building is the motion number 16, however there is a second motion (number 8) with
approximately the same ratio Tm

Tsoil
with a positive ∆ISD. For b02 building on dry soil, records number

15 and 28 exhibit an exceptionally large variation of ISDmax,%. These records have a ratio Tm

Tsoil
value

near to unity, thus resonance between soil and input motion might have taken place. Negative values
of ∆ISD for some records of b02 building seem not to be related to Tm

Tsoil
ratio. Nevertheless, it can be

noticed that less dispersion is found for b02 building compared to b01. This reduction of dispersion
might be related to SSI. Indeed, as previously noted, due to its fixed base frequency is smaller than
the first fundamental frequency of the soil profile, reduced SSI effects take place in this case.
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Figure 3.36: Variation of ISDmax,% as a function of ratio Tm

T0
for both studied buildings

Computed ∆ISD in terms of the ratio between mean period of the motion and the structures
fundamental period Tm

T0
are depicted in Fig3.36. Similarly to previous analysis, no evident dependency

between the effect of the SSI and this frequency ratio can be detected. No particular behavior is found
near to the superstructure-motion resonance frequency, thus when Tm

T0
approaches to one. Particular

behavior found for some motions giving negative values of ∆ISD (number 16 for dry soil case and 16
on saturated soil case) seems not to be related with the motion frequency content compared to fixed
base fundamental period.

Table 3.5: Correlation coefficient ρX,Y between ∆ISD and several severity/intensity measures

Building Soil aout PGA AIout AIff

B01 Dry -0.27 -0.23 -0.33 -0.28

B02 Dry -0.10 0.04 -0.18 -0.18

B01 Sat. 0.39 0.38 0.40 0.40

B02 Sat. 0.07 0.16 -0.08 -0.08

Finally, we explore the motion severity as an explanatory variable of dynamic non-linear SSI
phenomena. In order to identify a suitable explanatory severity/intensity earthquake measure, Tab.3.5
displays the computed correlation coefficients between ∆ISD and aout, PGA, AIout and AIff . In a
general way, obtained values of ρX,Y are significantly inferior to those obtained for ISDmax,% (Tab.3.4).
Thus, the variation on the maximum structural response is not well described by severity/intensity
measures. Nevertheless, a graphic representation of ∆ISD in terms of a severity measure can provide
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some information about the influence of the soil condition (dry or saturated) on the effect of the SSI.
Among the parameters listed in Tab.3.5, AIout show the better correlation with ∆ISD, expect for b02
building on saturated soil. Hence, we will use this measure to describe the variations of ∆ISD as a
function of the motion severity (Fig.3.37).
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Figure 3.37: Variation of ISDmax,% as a function of ratio AIout for both studied buildings

As expected, no evident relation between SSI effects and AIout is detected in Fig.3.37. Nevertheless,
exceptional reduction found for b02 in dry soil using record number 28 might be related to its frequency
content compared to the first elastic frequency of the soil profile ( Tm

Tsoil
≈ 1) in combination with the

large severity of this motion. Additionally, according to this Figure, large variations of ISDmax,%

are obtained in saturated soil compared to dry one, for both studied buildings independently of the
severity of the motion.

In general terms, no evident relation between the input signals characteristics and non-linear SSI
effects was found. Statistical studies of obtained results were carried out without success. Poor
correlations were computed between ∆ISD and several strong-motion parameters (AIout, PGA, etc.).
Nevertheless, it is interesting to study particular cases detected in this study. Fig.3.38 shows some
response spectrum computed at free field (input for second step of T-S approach) and at the base of
the b01 building for the SSI-FE approach, thus the effective motion transmitted to the superstructure
for the dry soil condition. Fig.3.38a an b correspond to records number 8 and 16, respectively. Both
records have approximatively the same severity (AIout) and frequency content (Tm), nevertheless a
beneficial effect of SSI is obtained for record 8 (∆ISD ≈ 0.2) while for record 16 a detrimental effect
is obtained (∆ISD ≈ −0.1). As both motions are relatively weak, no structural damage is obtained
for these motions. Thus, the fundamental structural period lengthening is only related to soil support
flexibility. For small period lengthening, spectral ordinates of T-S approach are larger than SSI-FE
spectrum for record number 8, that is consistent with the positive value of ∆ISD found. Whereas,
ordinates of response spectra of SSI-FE approach for record number 16 are larger than that at free
field near the b01 building fixed base period. Consequently, detrimental effect of SSI in this case is
related to the characteristic of the motion in the period range of the b01 building (low amplitudes in
this case around the fixed base fundamental period T0).

Similar comparison is presented in Fig.3.39 for the two records where a negative value of ∆ISD
was obtained, thus a detrimental effect of SSI. Fig.3.39 presents the response spectrum obtained for the
dry soil condition using the record number 4. In this case, due to the severity of the motion and to the
high superstructure mass affecting both initial stress state and inertial soil-structure interaction, large
differences are found between computed spectra at free field and that obtained at the structure base
in SSI-FE case. For motion number 4, an increase of spectral ordinates is obtained near the b02 fixed
base period. Consequently, earthquake displacement demand rises for SSI-FE approach. For motion
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Figure 3.38: Comparison between response spectra in the dry soil condition at the free field (T-S) and
at the base (SSI-FE) of the b01 building

number 22 in saturated condition, variation of spectral ordinate is also evident. Nevertheless, near the
b02 fixed base period spectral ordinate is reduced in this case. However, record number 22 is a strong
motion that induces large inelastic deformations in both, superstructure and soil. Structural damage
contributes to its period lengthening due to the degradation of its elements stiffness. Surrounding soil
stiffness degradation contributes to the period shift due to induced foundation soil flexibility. The
combination of both phenomena introduces a large period shift. This large period lengthening might
drive the system to spectral zone where spectral ordinates of SSI-FE are slightly larger than T-S
approach.
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0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

← b02

Record #22 - Saturated soil

Period [s]

R
es

po
ns

e 
S

pe
ct

ru
m

 [g
]

SSI−FE
T−S

(b) Record number #16 (∆ISD < 0) on saturated soil

Figure 3.39: Comparison between response spectra at the free field (T-S) and at the base (SSI-FE) of
the b02 building

3.9.1 Concluding remarks

The influence of the inelastic behavior of the soil deposit on the soil-structure interaction effects has
been highlighted. Those effects result in a variation of the computed structural response compared
to that obtained with fixed base condition, even if the non-linear behavior of the soil is taken into
account in the study of the wave propagation in the soil deposit to estimate the free field motion.
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Evaluation of the dissipated energies has shown that the initial state modification induced by the
self weight of the superstructure contributes to increase the stiffness of the soil below the foundation.
This additional confinement reduces hysteretic behavior under dynamic loading, compensating strain
field generated by the superstructure’s oscillations. However, for strong motions, this compensation
seems to be surpassed by SSI inertial effects for low-rise buildings.

Generalization of SSI effects on displacement demand for a given building on a defined soil was
unsuccessful. Large dispersion of results can be associated to the complexity of natural earthquakes,
where spectral-amplitude characteristics can modify significantly the global response of the superstruc-
ture. This phenomenon was highlighted comparing response spectra of records showing detrimental
SSI effects.

The next section is devoted to apply the presented modified plane-strain approach to the particular
case of liquefiable soil. With this purpose, both studied buildings are analyzed on a locally liquefiable
profile following the same approaches presented before and using the same record database.

3.10 Liquefiable soil

This section is devoted to evaluate the influence of soil non-linearity on the soil-foundation-structure
interaction phenomena for a liquefiable soil. The purpose of this presentation is to better understand
the effect of the liquefaction on the superstructure’s response, as well as to investigate the modification
introduced in the liquefaction phenomena due to the presence of the superstructure.

This study is an extension of the investigation of Lopez-Caballero and Modaressi-Farahmand
Razavi (2008) conducted for three linear-elastic SDOFs on a liquefiable profile. In present study,
we introduce non-linear behavior for the superstructure and we apply the modified plane-strain con-
dition described previously. The fist study was conducted for four European earthquakes of very
different frequency contents scaled to several outcropping amplitudes. In the present study we take
advantage of the Design of Experiments methodology to select a motion database as is described in
§3.5. Thus, the analysis is conducted for b01 and b02 non-linear buildings described in appendix I for
the 32 records listed in appendix J.

The studied site is composed principally of clay layers overlaid by 22[m] of loose sand, i.e. relative
density of Dr < 50%. Site measurement of SPTN60 and low-strain shear wave velocities are given
in Fig.3.40. According to SPTN60 profile, liquefaction phenomenon might take places between 4
and 15[m], where SPTN60 value is lower than 10. Soil deeper than 22[m] is constituted mainly of
overconsolidated clay. Non-linear behavior is expected only for the first 29[m], thus isotropic linear
elastic behavior is assumed for soil deeper than 29[m]. The deformable bedrock is placed at 40[m]
depth.
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Figure 3.40: SPT and low-strain shear velocity profile of the studied site (after Lopez-Caballero and
Modaressi-Farahmand Razavi (2008))
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The ECP’s elastoplastic cyclic multi-mechanism model Aubry et al. (1982); Hujeux (1985) is used
to represent the soil behavior. Theoretical formulation and physical interpretations of different pa-
rameters was extensively treated in Appendix E. The soil model’s parameters are obtained using
the methodology suggested by Lopez-Caballero et al. (2003); Lopez-Caballero et al. (2007) described
briefly in §1.3.4. In order to verify the model’s parameters and to characterize the liquefaction resis-
tance of sand placed between 3.5 and 9[m] depth, the behavior is studied by simulating drained cyclic
shear (DCS) tests and undrained stress controlled cyclic shear test. Parameter sets and comparison
of simulations with references curves are provided in appendix H.2.

3.10.1 Ground response

According to approaches described in §3.3, first part of T-S strategy consists in obtaining the free field
response associated to record database selected for the analysis. Fig.3.41a presents the variation of
peak ground acceleration PGA at free field as function of the imposed peak acceleration at outcropping
bedrock aout. It can be noticed that amplification of the peak acceleration takes places for aout < 0.1[g].
Maximum amplification reached for this range of aout is approximately up to 2.5 times the amplitude of
the imposed motion. For amplitudes larger than 0.1[g], the apparition of the liquefaction phenomenon
attenuates strongly seismic motion resulting in a relative de-amplification of acceleration peaks.
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Figure 3.41: Effect of excess pore pressure on free field response

In order to define depth and thickness of zones where liquefaction might take place, Fig.3.41b shows
the envelope of induced pore pressure excess ∆uw profile at the end of the analyses (tend). Profiles
associated to each motion are displayed in dotted lines. It can be concluded, that depending on the
input, liquefaction take places between 2 and 10[m] approximately. However, only strong motions are
able to induce liquefaction. In order to study the influence of the frequency content and the severity
of the motion on triggering liquefaction, we define the mean liquefaction index Q(t) at a time t as:

Q(t) =
1

Ω

∫

Ω
Ru (x, t) dV =

1

Ω

∫

Ω

∆uw (x, t)

σ′zz (x, 0)
dV (3.11)

where Ru(x, t) is the pore pressure ratio at a material point x at a time t, computed from the pore
pressure excess ∆uw(x, t) and the initial vertical effective stress σ′zz(x, 0) at the same material point.
The control volume Ω is defined as presented in Fig.3.27a in terms of the depth z. According to pore
pressure built-up profile on Fig.3.41b, we select a volume of integration between z = 2 and z = 10[m],
where liquefaction phenomenon is expected. Fig.3.42a and b show computed liquefaction index for
the 32 used records in terms of aout and AI respectively. It can be noticed that a better correlation
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is found for Arias’s intensity than for outcrop acceleration amplitude, thus triggering of liquefaction
can be better explained by a measure of energy than by a simple amplitude parameter. In this case,
for AIout larger than 0.2[m/s] a liquefied zone is found (motions number 1, 2, 10, 11, 15, 21, 22, 28
and 29 highlighted in red dashed lines on Fig.3.41b). The computed Q(tend) for these records is larger
than 0.3 and the computed PGA is smaller or equal to aout.
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Figure 3.42: Obtained mean liquefaction index at tend in soil profile for different records

Several authors (Koutsourelakis et al., 2002; Popescu, 2002) have suggested that for motions able
to induce liquefaction, the liquefaction zone depends on the frequency content of the motion. Tab.3.6
shows soil depths where liquefaction takes places (Ru(tend) = 1) and the ratio Tm

Tsoil
between mean

period of the input and the first elastic mode of the soil profile Tsoil. As frequency contents and
amplitude change between records, it is difficult to obtain general tendencies. However, these results
indicate that liquefaction occurs between 2− 3[m] for records with Tm < Tsoil. When Tm value is near
to Tsoil, a deeper liquefaction zone appears (around 6[m]) in general terms. If Tm

Tsoils
> 1, a liquefaction

zone is placed near to 5[m]. Theses tendencies agree with the results provided by Lopez-Caballero and
Modaressi-Farahmand Razavi (2008) for the same soil profile using scaled natural motions.

Table 3.6: Region of soil where liquefaction is induced

Record Depth
Tm

Tsoil

1 3− 5 0.79
2 3− 8 1.07
6 2− 3 0.40
10 5− 6 0.42
11 2− 3 0.46
15 2− 3 and 6− 7 0.88
21 2− 5 and 7− 9 0.95
22 3− 5 1.07
28 3− 6 0.95
29 5− 6 1.05

Very strong motions inducing large liquefaction zones (record number 2, 21 and 28) were recorded
in geological conditions corresponding to stiff soil classification according to information available in
Ambraseys et al. (2004). This category is associated to a Vs,30 value larger than 400[m/s]. As concerns
these three motions, the range is between 400 − 450 [m/s], thus we cannot discard some site effects



Chapter 3. Non-linear SSI effects on regular buildings 91

related to amplification and frequency modification. These effects might explain exceptionally large
values of AIout and large zones of induced liquefaction. We decide not to remove these motions from
the database and use them to study high severity behavior.

3.10.2 SSI analysis

The SSI interaction problem on liquefiable soil was studied using the modified plane strain formulation
presented in §3.2. Same criteria as described in §3.3.3 were used to construct a suitable FE model
for both buildings on liquefiable soil profile. The used FE models are depicted in Fig.3.43. In this
case, the soil mesh vertical dimension is increased to 45[m] and a finer mesh is used in potentially
liquefiable layers. Total horizontal mesh dimension remains unchanged. Colors displayed in Fig.3.43
are related to different group of elements with different constitutive model parameters. Rectangular
regions below foundation correspond to zones where a more refined time step storing was used for
detailed post-treatments. As for sandy soil, a soil-foundation interface is included to avoid traction
near the foundation corners.
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Figure 3.43: Finite element meshes (SSI-FE approach) for liquefaction case

Each analysis is carried out in two steps, starting by a static initialization followed by a dynamical
analysis around the computed initial state. Similar validations by comparison with a complete 3D
model were carried out to validate the modified plane-strain implementation again. Details concerning
these validations are omitted here for sake of simplicity.

3.10.2.1 Dynamic low-strain SSI analysis

Before proceeding to the analysis of liquefaction effects on the non-linear response of the superstructure,
a computation of the SSI phenomenon at very low-strain, to ensure elastic behaviour, is performed.
Thus, spectral ratios according to schema in Fig.1.11 are computed.

Transfer function modulus of spectral ratios between free field and its vertical projection over
the bedrock (ff/bd), between top of the structure and free field (tp/ff) and fixed base are shown in
Fig.3.44a for b01 building. First (f1

soil) and second (f2
soil) modal frequencies of the soil profile appear at

1.86 [Hz] and 4.82[Hz], respectively. As the fixed base fundamental frequency of b01 is 4.27[Hz], thus
larger than the first mode of the soil profile, SSI effects take place inducing a shift of this frequency to
4.09[Hz] and a reduction of amplitude due to radiation. For b02 building (Fig.3.44b), SSI effects are
visible only for the second fixed base mode. In fact, fundamental fixed base frequency of 1.32[Hz] is
shorter than f1

soil and consequently this mode does not interact with soil. A shift of second fixed base
frequency from 4.35[Hz] to 4.19[Hz] is evident from this figure. However, this second mode mobilizes
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Figure 3.44: Computed spectral ratios modulus for liquefiable soil for b01 and b02 building

only 12% of the mass under seismic loading. Even if from low-strain analysis no significant effect of
SSI is expected for b02 building, large excess pore pressure generated in the soil alters significantly its
non-linear behavior under dynamic loading as will be shown in the next section.

3.10.2.2 Liquefaction below superstructure foundation

The presence of the superstructure imposes an increase in the overburden pressure in the soil below
the foundation, thus introduces an additional confinement that modifies the pore pressure build-up
under dynamic loading. A variation in extension of the liquefied zone and motion severity required to
trigger liquefaction is expected in comparison to free field case.

(a) Window of 24 × 15[m] below foundation for b01 (b) Window of 40 × 15[m] below foundation for b02

Figure 3.45: Spatial distribution of Ru(x, tend) for b01 and b02 buildings on liquefiable soil. Deforma-
tion magnification factor=5

Contours of Ru(x, tend) pore pressure ratio with respect to initial effective vertical stress at the end
of the analysis for record number 1 are shown in Fig.3.45. For b01 building, it can be noted that the
obtained pore pressure excess in the soil below the foundation is not significantly altered. Liquefaction
takes place between 3 − 5[m] as obtained for the free field condition. Nevertheless, for b02 building,
the pore pressure ratio is reduced specially near the corners of the foundation. There is, however,
significant pore-water pressure build-up and subsequent stiffness degradation below the foundation
even for b02 building. This softening generates large coseismic settlements as will be shown later. The
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reduction of Ru(x, tend) is a consequence of the increase of the effective vertical stress σ′zz in Eq.3.11
and the associated reduction of volumetric plastic strains.
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Figure 3.46: Comparison of computed mean liquefaction index at tend for SSI-FE and free field cases.

In order to investigate the effect of the increase of the overburden pressure due to the superstruc-
ture’s self-weight, Fig.3.46 shows the obtained liquefaction index Q(tend) at the end of the analysis for
both, SSI-FE and free field compuations. With the purpose to include perturbations below the foun-
dation, the control volume Ω considered for SSI case is defined by 2 times the characteristic length
of the foundation (2a) in horizontal direction, and from 2 to 10[m] depth in vertical sense. Thus,
12×8[m] for b01 and 20×8[m] for b02 building. According to this figure, not significative difference of
Q(tend) between the two cases is detected for motions of severity under AIout < 0.1[m/s]. In the range
of 0.1 ≤ AIout ≤ 0.3[m/s], some reductions and increases can be reported depending on the record. In
particular the motion number 1 (AIout = 0.21[m/s]) displayed in Fig.3.46 shows a very small increase
of Q(tend) when SSI is taken into account for b01 building and it is approximately constant for b02.
Thus, modifications reported in contours of Ru(tend) on Fig.3.45 compared to those at free field are
not enough to change the value of Q(tend). For very strong motions (i.e. AIout > 0.3[m/s]), some small
increases are obtained for b01 building but large reduction can be noticed for b02 building. It might
indicate that for this soil profile, the beneficial effect of overburden pressure on liquefaction appears
only for long period strong motions.

Before proceeding to study effect of SSI on liquefiable soil in non-linear structural response, it is
interesting to compare obtained response spectra at free field (input for T-S approach) and at the base
of the structure. Fig.3.47 shows this comparison for b01 and b02 buildings only for motions inducing
liquefaction (listed in Tab.3.6). From Fig.3.47a for b01 building, it can be noticed that no significative
variations of amplitude or frequency content is induced by the presence of this superstructure. In this
case, some peaks of spectra vanish in short period range and small increase in spectral ordinates is
found for large period range. These variations might be associated to modification of initial state and
wave radiation from soil-structure interface.

Corresponding comparison for b02 building is presented in Fig.3.47. In this plot, record number 2
has been removed due to some abnormalities detected in dynamic analysis. Accelerations computed
for this record at free field and base structure are shown in Fig.3.48. Important peak of accelerations at
structural base near to 7[s] can be noticed. It seems that this peak is associated to some failure at soil-
structure interface. We decide to remove this motion in the following. Concerning computed response
spectra for b02 building, large reduction of spectral ordinates are found around the fundamental fixed
base period of b02 probably due to wave radiation around b02 first period. For short period, increase of
overburden pressure due to b02 influence reduces pore pressure build-up compared to free field. Thus,
attenuation effect at high frequency due to this pore pressure increase is still small. Consequently,
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(a) Envelopes of records on Tab.3.6 for b01 building (b) Envelopes of records on Tab.3.6 for b02 building

Figure 3.47: Response spectra envelopes at the base of the superstructure for SSI-FE approach and
free field for records inducing liquefaction.
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Figure 3.48: Obtained accelerations at free field and base structure level for b02 building on liquefiable
soil for record number 2

larger spectral ordinates are found for SSI-FE case compared to free field response.

3.10.2.3 Effect on non-linear structural response

As concerns the influence on seismic structural response of non-linear SSI effects, Fig.3.49 presents the
maximum value of the normalized inter-story drift ISDmax,% in the form of scatters plots. According
to these results, significative reduction of the computed ISDmax,% are obtained for both b01 and
b02 building when the SSI is taken into account. For b01 building, this difference is approximately
constant for motions between 0.1 < AIout < 0.3[m/s]. This difference vanishes for strong motions when
liquefaction takes places. For b02 building, similar tendency is observed but with irregular differences.

According to computed response spectra for b01 building (Fig.3.47), these large differences can
not be explained by a significant modification of the effective input motion. Thus, large variations
found are associated to SSI effects such as radiation damping and fixed base period modification.
Nevertheless, differences found for b02 building are partially explained by strong modification of the
effective input motion at the structures’ base level as highlighted in response spectra envelopes on
Fig.3.47.

In order to investigate the effect of SSI on the non-linear behavior of superstructures, Fig.3.50
displays the energy dissipated by the structure (indicator defined in §3.8) as a function of the AIout
for both considered buildings. According to responses obtained for b01 building, including non-linear
SSI effects in the analysis produces nearly elastic response for the used records database. Thus,
damage in b01 building vanishes thanks to additional energy dissipation mechanism introduced by
the dynamic soil-structure interaction. For b02 building, a great reduction of the induced damage is
noticed, specially for very strong motions. In fact, this remarkable reduction of structural damage
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Figure 3.49: Scatter plots of maximum inter-story drift for b01 and b02 buildings on liquefiable soil
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Figure 3.50: Scatter plots of energy dissipated by the superstructures on liquefiable soil

is a consequence of massive liquefaction phenomenon at ground level. Due to significant increase
in pore-water pressure and subsequent soil stiffness degradation, both structures behave as a rigid
block compared to extensively yielded soil. Fig.3.51a illustrates the distribution of the pore pressure
increase ratio Ru (x, tend) at the end of record number 21 for the b02 buildings. According to Fig.3.50,
the superstructure behaves elastic for this motion due to the extension of the liquefied soil. This
phenomenon is also visible from computed ISDmax,% in Fig.3.49.

Large reduction of structural damage for large Arias intensity should not be misinterpreted as
a benefic situation. Even if computed seismic responses are smaller than those obtained for weak
motions, large coseismic settlements are associated to severe motions. Computed settlements for b01
and b02 buildings are displayed in Fig.3.51. According to this figure, settlements up to 0.1[m] are
computed for very strong motions for b02 building. For this level of deformations, the integrity of
the superstructure might be compromised. This phenomenon can explain the response of collapsed
structures observed during recent earthquakes, as it is reported by Tokimatsu et al. (1996) or Juang
et al. (2005), among others.
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(a) Contours of Ru(tend) for b02 associated to record
# 21. Deformation magnification factor=5
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Figure 3.51: Coseismic settlements in liquefiable SSI-FE analysis

3.10.3 Concluding remarks

The results of this section point out the important attenuation of incident field passing through a
potentially liquefiable soil region. In free field condition, liquefaction takes places for motions having
an Arias intensity larger than 0.2[m/s]. The influence of the frequency content on space distribution
of large pore pressure increments has been also highlighted. For strong enough records, the soil profile
deamplifies the input motion.

The comparison conducted between free field condition and SSI situation showed that pore water
pressure distribution after the stronger part of the motion is significantly modified only for the larger
studied superstructure. Effects of the light building seem to be negligible on effective input motion.

Despite relative position of structural fixed base frequency to soil’s fundamental modes, large
reduction in seismic demand due to SSI effects was found. These significative effects seem to be more
related to wave radiation than local soil influence or period lengthening.

In the case of severe motions inducing extensive pore pressure build-up and subsequent liquefac-
tion phenomenon, the superstructure behaves approximately elastic. In this case, structure responds
essentially as a rigid block compared to extensive softened soil.



Chapter 4

Effects of elastic and non-linear DSSI
on seismic demands of SDOF
structures

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Methods of analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.1 Superstructure modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.2 Soil profiles’ description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.3 Fixed base two-step analyses: TS-E and TS-N . . . . . . . . . . . . . . . . . . 102

4.2.4 Complete DSSI models: SSI-E and SSI-N . . . . . . . . . . . . . . . . . . . . . 102

4.2.5 Strong motion selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Elastic DSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Soil response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Effect of DSSI on the seismic displacement demand . . . . . . . . . . . . . . 107

4.5.1 C1L SDOF structure on dry soil . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.2 C1L SDOF structure on saturated soil . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.3 C1M SDOF structure on dry soil . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5.4 C1M SDOF structure on saturated soil . . . . . . . . . . . . . . . . . . . . . . 112

4.5.5 Effect of the DSSI on the displacement ductility demand ratio . . . . . . . . . 113

4.6 Energy oriented analysis of the results . . . . . . . . . . . . . . . . . . . . . . 116

4.6.1 Energy dissipated by the superstructure . . . . . . . . . . . . . . . . . . . . . . 118

4.6.2 Energy dissipated by the soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



98 4.1. Introduction

4.1 Introduction

The influence of the interaction of the soil with a superstructure on its dynamic behavior has been
the subject of numerous investigations assuming linearity of both, superstructure and soil foundation.
For elastic systems, first studies for soil-structure interacting systems were conducted by Jennings and
Bielak (1973); Veletsos and Meek (1974); Veletsos and Nair (1975) for surface-supported structures.
In these works, the effects of the inertial DSSI are summarized by an equivalent SDOF characterizing
support ground flexibility and the foundation damping. The effect of the flexible soil is included by
modifying the fixed base fundamental period. The foundation damping associated to radiation and
soil material damping is introduced by defining an effective damping of the superstructure-foundation
system as the sum of a term proportional to viscous damping in the structure plus an equivalent
viscous foundation damping. The increase of the natural period and the added foundation damping
have been extensively studied by several authors (e.g Veletsos 1977; Luco 1980; Wolf 1985; Avilés and
Pérez-Rocha 1996). Nevertheless, this replacement oscillator approach is strictly valid only for elastic
superstructure-foundation systems. This aspect is a significant limitation for earthquake engineering,
where inelastic superstructure behavior is intentionally accepted. Despite the elastic intrinsic assump-
tion, this approach has been included in several seismic design provisions (e.g. ATC 40 1996; FEMA
356 2000; FEMA 450 2003), using free-field response spectra combined with effective values of both,
fundamental period and equivalent viscous damping including elastic DSSI.

In principle, the effect of DSSI may differ between elastic and inelastic systems. Thus, the cur-
rent interaction provisions based on elastic response studies could not be directly applicable to seismic
design of typical buildings, expected to deform considerably beyond the yield limit during severe earth-
quakes (Avilés and Pérez-Rocha, 2003). According with the works of Veletsos (1977), the yielding of
the superstructure can be viewed as a general increase of the relative flexibility between the super-
structure and the soil, resulting into a reduction of DSSI effects. Unfortunately, the effects of the DSSI
on yielding superstructure systems have not been extensively studied. Theoretical studies conducted
by Priestley and Parck (1987) for elastoplastic bridge piers showed that the foundation compliance
reduces the ductility capacity of the system. More recently, several other studies using the replacement
oscillator technique (Ciampoli and Pinto, 1995; Rodriguez and Montes, 2000; Gazetas and Mylonakis,
2001; Avilés and Pérez-Rocha, 2003), have been conducted in order to elucidate the effect of the DSSI
on the maximum required ductility. Similarly, Ghannad and Jahankhah (2007) use the replacement
oscillator method to study the effect of DSSI on strength reduction factors of elastoplastic SDOFs.
These studies point out some configurations were the DSSI has a considerable effect on the ductility
demand of structures.

In the studies listed above, the soil replacement spring and dashpots are selected using frequency-
independent approximations of the solutions available for dynamic impedances of rigid footings on
elastic soil profiles, using Cone models, or using series of linear springs and dashpots attached to
the base foundation. Despite the used method, the numerical values of the soil replacement spring
and dashpot are dependent on the shear wave velocity. As shear wave velocity decreases when the
soil shear strain increases, some of these authors use degraded shear wave velocity values in their
models. Experimental results show that the limit of linear-elastic soil behavior is very low (γ < 10−5).
This shear strain limit is normally exceeded during motions inducing damage of superstructures.
Nevertheless, as described in Chapter 3, superstructure’s self weight increases the soil confinement
under the foundation reducing locally the energy dissipation by hysteresis. Indeed, larger soil energy
dissipation takes place in less confined zones. Consequently, the solely modification of the shear
wave velocity under the foundation does not seem an appropriate approach to take into account the
contribution of the non-linear soil behavior.

Results presented in other chapters of this work highlight the effect of the combined DSSI effects
and non-linear soil behavior on the computed structural response, the separation of the contribution
of each phenomenon to the total response is not easy to identify due to the complexity of the problem.
This chapter describes the investigation conducted in order to compare the contribution of elastic and
inelastic DSSI effects on the seismic response.
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4.2 Methods of analysis

In order to evaluate the contribution of the elastic DSSI in the modification of the structures’ dynamic
response studied in previous chapters, two kinds of dynamic time-domain analyses are conducted:

1. Non-linear dynamic fixed base superstructure computations using as input motion the free field
acceleration obtained for elastic (TS-E) and non-linear (TS-N) soil columns.

2. Complete dynamic soil-foundation-superstructure FE analyses, considering elastic (SSI-E) and
non-linear (SSI-N) soil behavior.

Both, TS-N and TS-E cases take into account non-linear structural behavior but neglect DSSI
effects. Complete DSSI analyses, SSI-E or SSI-N, include dynamic interaction effects and superstruc-
ture material non-linearities. Details regarding each model, assumptions and parameters are provided
in the following.

4.2.1 Superstructure modeling

The superstructures considered in this chapter are modeled by a massless continuous column (§1.3.2)
of height h with a single mass m on top. The foundation is assumed square of side a (Fig.4.1a). These
superstructures respond as a SDOF system with a fundamental period T0 in fixed-base condition.
Damping is assumed to be hysteretic, controlled by the non-linear constitutive model of the column.
Numerical values of properties characterizing each SDOF are selected on the basis of the classification
of building types used in HAZUS-MH MR3 (2003).

bm
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(a) Schematic representation of superstructure
model

D

A

Au

Du = µDy

Ay

Dy

Te

(b) Reference capacity curve according to HAZUS-MH
MR3 (2003)

Figure 4.1: Superstructure’s SDOF representation and generic capacity curve

According to this document, reinforced concrete moment frame buildings can be classified, as
shown in the first four columns of Tab.4.1, in terms of the total height and/or the number of stories.
In this work, only C1L (low-rise) and C1M (mid-rise) categories are explored. In order to define the
geometric parameters describing the SDOFs, we start assuming a height. The typical height suggested
in Tab.4.1 is selected as height of the equivalent SDOF, i.e. 6 and 15[m], for low-rise and mid-rise
structures, respectively. The choice of the foundation dimension a is based on the slender ratio h

a
.

As usually the slender ratio increase with the number of stories of a building, we select slender ratios
of 1 and 1.5 for C1L and C1M categories, respectively. The total weight/mass is defined assuming a
number of levels and a uniform weight distribution of ρg = 10[kN/m3] over each level. Assuming 3
and 5 levels, we obtain a total weight (mg) of 1080 and 5000[kN] for C1L and C1M, respectively.

In the HAZUS-MH MR3 (2003) methodology, some reference parameters are given to develop ca-
pacity curves (Fig.4.1b). The value of these parameters depend on the conformity of the studied build-
ing to modern seismic design provisions. In this way, four levels are defined: High-Code, Moderate-
Code, Low-Code and Pre-Code. Last four columns of Tab.4.1 show the reference fundamental-mode
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Table 4.1: Reinforced concrete moment frame classification and capacity parameters according to
HAZUS-MH MR3 (2003)

Building
type

Description
Stories
range

Typical
height [m]

Te [s] Ay range [g] Au range [g] µ range

C1L Low-rise 1− 3 6 0.4 0.040−0.160 0.119−0.479 8− 5

C1M Mid-rise 4− 7 15.2 0.75 0.033−0.133 0.099−0.399 5.3−3.3

C1H High-rise 8+ 36.6 1.45 0.014−0.055 0.042−0.166 4− 2.5

period Te of the building depending on its type, the ranges of the control points of the fragility curve
Ay and Au and the range of ductility µ, defined by different seismic code conformity. In this table,
Ay corresponds to the yield capacity representing the true lateral strength of the building and Au the
ultimate capacity when the system reaches the fully plastic state.
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Figure 4.2: Computed capacity curves for C1L and C1M SDOFs

The provided value of Te is fixed as the target value for T0. The stiffness of the cantilever column
of the SDOF model (Fig.4.1a) is computed using the value of T0 and m, assuming a constant square
transversal section and a fixed value of the Young modulus E. To model the post-yielding behavior,
we use the constitutive model described in Appendix C. Thus, the values of the hardening modulus Et
and initial yield stress σy are selected in order to obtain a capacity curve compatible with the ranges
defined in Tab.4.1. Parameters describing the used geometrical configuration and material properties
are listed in Tab.4.2. The corresponding capacity curves are shown in Fig.4.2. It can be noticed that
a maximum ductility µ of 7.6 and 3.7 are computed for C1L and C1M, respectively. These values,
satisfy the ranges displayed in Tab.4.1 and correspond approximately to a Moderate-Code conformity.

Table 4.2: Properties of studied studied SDOFs

Label T0 [s] h [m] a [m] b [m] E [MPa] σy [MPa] Et [Pa]

C1L 0.40 6.0 6.0 0.98 25.5×103 6.0 0.1

C1M 0.75 15.0 10.0 2.09 25.5×103 5.5 0.1
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4.2.2 Soil profiles’ description

In this chapter, we consider the same soil profiles as the previous chapter and described in §3.3.2. Thus,
a dry and a saturated homogenous dense Toyoura sand profiles of 30[m] depth, overlying an elastic
bedrock are used. The effect of the stiffness increasing with depth is shown in Fig.3.4a in terms of
free field low-strain shear velocity profile. As discussed in previous chapters, the superstructure’s self
weight increases locally the confinement below the foundation. This additional confinement increases
the low-strain shear wave velocity as shown in Fig.4.3 for both, dry and saturated cases. These profiles
were computed at the center of the foundation in the DSSI analyses using FE models described in
§4.2.4.
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Figure 4.3: Low-strain shear wave velocity profiles of studied medium dense sand profile under dry
and fully saturated conditions. Influence of superstructure’s self weight

According to Fig.4.3, the influence of the superstructure on the low-strain shear wave velocity
reaches approximately 7 and 15[m] depth, for C1L and C1M structures, respectively. Indeed, in the
saturated case, as the initial effective stresses are reduced due to the water table, the over stress
imposed by the superstructure has a relatively larger influence on the effective confinement and con-
sequently on the soil stiffness. Despite these variations, the spectral ratio amplitudes between free
field and bedrock, shown in Fig.3.4b, are not much modified and remain unchanged. The computed
values of the average shear wave velocity in the upper 30[m] (Vs,30) are shown in Fig.4.3 for each soil
column. The elastic first periods of the soils (Tsoil) are 0.46[s] and 0.54[s], for dry and saturated cases,
respectively.

As described above, two kind of constitutive models were used for describing the soil’s dynamic
behavior: a non-linear elastic model and an elasto-plastic one (Appendix E). In both constitutive
models, the influence of the soil confinement is taken into account by a non-linear approach governed
by the expression (E.4) in terms of reference elastic modulus (Kref and Gref ), the mean effective
compressive stress (p′) and the coefficient ne defining the degree of non-linearity. As identical values
of elastic parameters and ne coefficient have been used for both constitutive models, the low-strain
shear wave profiles shown in Fig.4.3 are valid for both cases. The parameters describing elasto-
plastic constitutive model have been calibrated by simulating laboratory soil test (Appendix H) for
both dry and saturated condition, using the methodology described in §1.3.4. Variations of initial
critical pressure pc0 and hardening variables due to in-situ densities are neglected, thus a homogenous
soil profile obeying the set of parameters provided in the second column of Tab.H.1 is assumed. In
saturated condition, a porosity n of 0.54 and an isotropic permeability of kx = ky = kz = 10−4[m/s]
are supposed. A compressibility of the fluid equal to Kf = 9.38 × 10−8[1/Pa] is adopted.



102 4.2. Methods of analysis

4.2.3 Fixed base two-step analyses: TS-E and TS-N

Similarly to other chapters, the approach consists in solving firstly the shear wave propagation problem
for a soil column model obeying the same constitutive model as the full 3D computations. In this case,
the corresponding FE model is composed of 3D solid elements using the same vertical discretization as
the one used for complete 3D DSSI models. The computed free field motion is imposed afterward as
input accelerogram to fixed base models described in §4.2.1. This approach takes into account inelastic
behavior of the soil (TS-N) and the superstructure (TS-E and TS-N), but neglects dynamical interac-
tion effects. As the wave propagation part of the problem is solved in free field condition, variations
of the low-strain shear wave profile due to over stress imposed by the weight of the superstructure are
not considered.

4.2.4 Complete DSSI models: SSI-E and SSI-N

Similarly to FE models described in other chapters, the complete DSSI models are composed of the
superstructure, the foundation, the soil and a part of the underlying bedrock. Due to 3D nature of
the problem, we use 3D meshes in this case. Indeed, modified-plane strain approach presented in §3.2
requires periodicity across an axis normal to dynamic loading and a rigid foundation. This requirement
is not satisfied for a general SDOF model on a finite foundation. This assumption of periodicity was
implicitly used in computations presented in Chapter 2. In the study presented in this part of the
work we relax this hypothesis analyzing the more general 3D case. Unfortunately, the required time of
run in this 3D case increases drastically compared to modified plane-strain approach. For this reason,
the number of ground motions considered was reduced.
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Figure 4.4: Finite element meshes for FE DSSI models corresponding to C1L superstructure

The 30[m] deep homogenous soil deposits considered are modeled by 8 nodes 3D solid elements
with displacements and pressure (in saturated case) DOFs. The foundation is supposed to be rigid
and modeled also by 8 node 3D volume elements with very stiff mechanical properties. In saturated
condition, the ground water level is assumed to be at surface (z=0[m]). The so-called u−p formulation
used in this case is described in §1.2. We assume impervious condition for both foundation and bedrock.
At the bottom of the mesh, paraxial elements described in Appendix A are used to impose the incident
motion and ensure damping by radiation. Lateral limits of the mesh are considered to be far enough
from the structure so that periodic condition are verified on them. Consequently, tied condition
discussed in §1.4 have been imposed on the lateral limits of the meshes. the lateral boundaries are
considered water tight too. The dimensions of each mesh have been chosen controlling the cleanness
of the responses in frequency domain at an approximate free field control point. Details about the
numerical validation of the used FE models by comparison with a substructure frequency-domain
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approach (Appendix G) are provided in §1.4.2. As expected, the size of the required mesh grows with
the mass of the superstructure. The DSSI FE meshes corresponding to C1L and C1M superstructures
are shown in Fig.4.4 and Fig.4.5, respectively.
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Figure 4.5: Finite element meshes for FE DSSI models corresponding to C1M superstructure

Colors displayed on meshes of these figures are related to different vertical dimension of elements.
Darker colors close to the foundations correspond to a finer mesh zone used to compute some non-linear
behavior indicators. It can be noticed that box soil geometries are used for dry cases and cylindrical
ones are used for saturated cases. Indeed, hydraulic boundary conditions at the corners of a box
mesh are delicate to model when the water table coincides with the free surface level in dynamics.
In these corners, null normal flow must be ensured for lateral boundaries and free surface condition
(p = 0) has to be imposed at z = 0 level. In the static initialization and superstructure construction
steps, no particular difficulties were encountered. Nevertheless, under dynamical load, a flow from the
superficial corners to the interior of the mesh takes place inducing unsaturation in these zones. Due
to this induced flow, the soil near to the mesh corners dilates unrealistically. Several tests varying
the geometry and the flow equation form were conducted in order to encompass these effects. Among
these tests, the best results were obtained when the corners are eliminated using a cylindrical mesh
for the soil (Fig.4.4b and Fig.4.5b).
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Figure 4.6: Tied nodes approach for cylindrical meshes

For these cylindrical meshes, the tied nodes approach described in §1.4 have been slightly adapted
in both static and dynamic analyses. The static configuration is shown in Fig.4.6a. In this part of
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the computation, we impose radial tied constraint as if the problem was axi-symmetric. Indeed, even
if the problem is not perfectly axi-symmetrical in statics due to the square form of the foundation,
we select lateral limits far enough to avoid border effects. In dynamic case, we impose tied nodes
across the direction of the imposed shaking in order to impose shear-beam-like kinematics. We impose
incident motions normal to one of the sides of square foundation for the sake of simplicity. Tied
conditions for box-type meshes are shown in Fig.1.10b. Dynamic part of the analysis is conducted
from the equilibrated state obtained in the static part of the analysis. Consequently, displacements,
deformations, velocities and accelerations field correspond to a dynamic perturbation field around the
static equilibrium.

4.2.5 Strong motion selection

Analogously to other studies conducted in this work for the strong motion, we use the selection criteria
described in §3.5. Due to significant time consumption of the full soil-superstructure 3D models used
in the analyses described in this chapter, each experiment was repeated only two times, thus a total
of 16 runs for each structure on each soil profile have been conducted. The corresponding motions are
the first two selections provided in Appendix J.1 compatible with Metropolitan France.

4.3 Elastic DSSI

In order to highlight the influence of the elastic DSSI on the elastic dynamic response of the studied
SDOFs, this section presents some spectral ratio amplitudes computed for C1L and C1M superstruc-
tures on both, dry and saturated homogenous sandy soils. We use the convention depicted in Fig.1.11
to indicate spectral ratios between free field and bedrock (ff/bd) and between the top of the structure
and free field (tp/ff). The free field (ff) and bedrock (bd) control points are placed as far as possible
from the superstructure, depending on the corresponding FE mesh. Indeed, the curves presented be-
low were used to control the cleanness of the free field responses obtained in order to define a suitable
mesh with a reasonable degree of wave reflections on its lateral borders.
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Figure 4.7: Elastic spectral ratio modulus between free field and vertical projection on bedrock

The obtained spectral ratio modulus between a free field control point and its vertical projection
on the bedrock are displayed in Fig.4.7. In dry soil condition (Fig.4.7a), some evidences of the
superstructure is found at the free field for the C1L SDOF structure. No perturbation appears for
the C1M superstructure. This result is related to the relative position of the fixed base fundamental
frequency of the superstructure compared to the elastic frequencies of the soil profile. In C1L case, its
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fundamental frequency is relatively close to first elastic period of the soil, thus some resonance between
both systems takes place. In the contrary, the first fixed base frequency of the C1M SDOF structure
is relatively far from the first elastic frequency of the soil profile. Similarly, in the saturated soil
case, some perturbations around the fundamental fixed base frequency of the C1L superstructure are
found. No effect of the C1M SDOF structure is noticed. Differences between spectral ratio amplitudes
computed for dry and saturated case are associated to the reduction of effective stresses due to the
presence of pore water. Some small frequency shifts of the first elastic mode as well as amplitude
variations can be noticed depending on the superstructure considered. This shift might be related to
local confinement variation below the superstructure foundation. However, as meshes used in both
cases are not identical, these variations could be also associated to wave dispersion and reflections.
Additionally, as computations are carried out in time domain, spectral ratio computations in frequency
domain involve interpolations, filtering and smoothing procedures. These numerical procedures could
also induce some shift in main frequencies and variation of amplitudes.
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Figure 4.8: Elastic spectral ratio modulus between free field and vertical projection on bedrock

Spectral ratio amplitudes between the top of the structure and the free field control point (tp/ff)
computed for both structures, in dry and saturated soils, are shown in Fig.4.8. According to Fig.4.8a for
the C1L SDOF structure, no significative interaction is found for dry soil. In the saturated case, a more
important shift in the fundamental frequency is found. No important modifications on the amplitudes
due to radiative damping is noticed for both soils. Regarding the C1M SDOF, relatively reduced DSSI
effects are found in both, dry and saturated cases. Nevertheless, in saturated soil condition, a slightly
larger shift in fundamental frequency can be noticed. Concerning the added damping, a very small
reduction in the amplitude of the spectral ratio is found in saturated condition.

4.4 Soil response

In order to define the input motion for TS-E and TS-N approaches, the wave propagation part of the
problem is solved using a 1D FE column. Fig.4.9 shows the responses for both soils in terms of the
amplitude of the acceleration at free field (PGA) and the amplitude of the acceleration imposed at
outcrop (aout) for the 16 motions considered in this part of the work.

When the elastoplastic behavior of the soil is taken into account, the amplification of the soil deposit
decays with the amplitude. Consequently, for strong motions, large accelerations are obtained when
the elastic model is used. At low amplitude, as the response is essentially elastic, responses computed
using both models are equivalent. The limit between elastic and non-linear behavior depends on
the soil. For dry case, motions having an aout large than 0.1g induce non-linearities that attenuate
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Figure 4.9: Computed PGA as a function of the acceleration amplitude imposed at outcropping
bedrock aout

the amplification. This limit is reduced when the soil is saturated. In this last case, for aout larger
than 0.03g the non-linear behavior takes place. The variation in this limit is related to the initial
stiffness of the soil. Assuming that a similar shear stress is imposed by an earthquake independently
of the soil properties, smaller strains are obtained for stiffer soils. Consequently, the saturated soil
undergoes larger shear strain producing more hysteretic behavior for small levels of imposed shear
stress compared to dry case. Differences between elastic and inelastic soil acceleration amplification
grow in general with the amplitude. In dry case, relatively small variations are obtained for aout < 0.2g
. For larger outcrop amplitudes, significant differences are noticed between two behaviors. In saturated
case, large differences start at 0.15g. In this last hydraulic condition, there are three moderate motions
(0.05g < aout < 0.1g) exhibiting larger amplification in the inelastic case compared to the elastic one.
This behavior might be related to the frequency content of the motion relative to inelastic transfer
function of the soil profile during the motion. As discussed in §3.6 in terms of free field response spectra,
the pore pressure build-up during the earthquake can acts as a frequency filter modifying significantly
the frequency characteristic of the obtained motion at free field. When an elastic behavior model is
considered, shear strains do not induce volumetric strains. Consequently, pore pressure build up does
not take place and the filter effect vanishes.

In order to illustrate differences of the soil amplification in frequency domain, Fig.4.10 shows the
envelopes of response spectra computed at free field for both soils, using the elastoplastic model and the
elastic one. In dry soil condition, large differences in spectral ordinates can be noticed between 0.2 and
0.6[s] approximately. For large periods, spectral amplitudes are equivalent. Consequently, the effective
motion transmitted to C1L SDOF in dry soil will be significantly different if an elastic or a plastic
model is used. For the C1M SDOF, spectral ordinates are similar for both soil constitutive models
in a practical point of view. For saturated soil, strong variations of spectral ordinates can be noticed
for periods small than 0.7[s] on Fig.4.10b. In this case, when the elastoplastic constitutive model is
used, large ordinates are computed in the range of 0.7 − 1.5[s]. Thus, large structural responses are
expected for C1L when the soil is assumed to behave elastically, but equivalent or even large structural
responses will be obtained when the soil behaves in a non-linear manner for the C1M superstructure.
Consequently, according to spectral envelopes displayed in Fig.4.10, neglecting non-linear soil behavior
is in principle non conservative for superstructures lying in the range of 0.7− 1.6[s] in terms of seismic
demand.
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(a) Envelopes of response spectra for dry soil (b) Envelopes of response spectra for saturated soil

Figure 4.10: Comparison between response at free field for dry and saturated soil using elastic an
elastoplastic constitutive models

4.5 Effect of DSSI on the seismic displacement demand

In order to study the influence of the elastic and inelastic DSSI on the superstructure, this section
presents computed displacement demand for different combinations of soil, superstructure and soil
constitutive models according to two-step and full 3D approaches described in §4.2. Results are
presented in the form of scatter plots of the computed ductility ratio demand µ defined as:

µ =
1

Dy
max
t

{

utop(t)− ubase(t)− h.θ(t)
}

(4.1)

where utop(t) and ubase(t) are the nodal displacement time histories computed at the top and at the
base of the SDOF in the direction of the seismic loading, respectively. θ(t) is the rigid body rotation
(tilt) time history of the superstructure in full 3D models and h is its height. Dy is the corresponding
yield displacement shown in Fig.4.2. If the obtained value of µ is less than 1, the structure behaves
elastically and a value of µ = 1 is imposed. For two-step computations, the base displacement ubase

and the rigid body rotation θ are equal to zero, thus the ductility ratio is directly computed with the
maximum top displacement and Dy.

In order to use a common reference for different type of computations, we use motion’s severity
measures at outcropping. Nevertheless, the effective motion transmitted to superstructure varies in
each case due to local soil condition and DSSI effects. As discussed in previous chapters, measures of
energy of the input motion show better correlation with the dynamic responses than pure amplitude
measures. Consequently, we use Arias intensities at outcropping AIout hereinafter. Concerning the
used strong motion database, unrealistic displacement demands were obtained for the record number
2 of Appendix J.1. Even if this motion has been reported as recorded on very stiff soil, an approxima-
tively two-times larger AIout is associated to this motion compared to other records in the selection,
suggesting some site effects. As results of these observations, we decide to remove this motion from
the set of results.

4.5.1 C1L SDOF structure on dry soil

Fig.4.11 shows the obtained ductility ratios for the C1L SDOF on dry soil, for both elastic and inelastic
soil constitutive models. Results displayed in Fig.4.11a correspond to SSI-N and TS-N computations,
thus considering hysteretic soil behavior. Those corresponding to elastic soil behavior are presented
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Figure 4.11: Computed ductility demand µ in terms of Arias intensity at outcropping bedrock for C1L
SDOF on the dry soil

in Fig.4.11b. We use logarithmic scale in µ axis to appreciate differences at low values of ductility
ratios. In both cases, for very weak motions (AIout < 0.03[m/s]), large ductility ratios are obtained
when DSSI effects are neglected, thus µ obtained in TS-N or TS-E approaches are larger than those
obtained for SSI-N or SSI-E computations. In the intermediary range (0.03 < AIout < 0.1), variations
are erratic, so that depending on the motion, DSSI has a favorable or a detrimental effect on the
computed ductility ratios. Clearer differences between two-step and full DSSI computations appear
for motions having AIout > 0.1. In this range, DSSI has, in general, a detrimental effect independently
of the constitutive model used for the soil.
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Figure 4.12: Structural drift and free field displacement uff of the C1L SDOF for some motions
assuming elastoplastic behavior for the soil

The reduction of µ for severe motions is in opposite to the tendency found in the others part
of this work. This unexpected behavior might be related to the modification of the properties of
the local soil below the foundation and the relative position of the fundamental frequencies of the
superstructure and the soil compared to the frequency content of the motions. In order to investigate
these explanations, Fig.4.12 and 4.13 show some time responses in terms of the structural drift and the
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free field displacement uff . We select two motions exhibiting opposite tendencies in terms of ductility
ratio but having an AIout larger than 0.1[m/s]. The free field displacements are provided to control
the clearness of the dynamic response of the complete 3D models.
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Figure 4.13: Structural drift and free field displacement uff for some motions assuming elastic behavior
for the soil. C1L SDOF

Fig.4.12 and 4.13 show the computed displacements for motions number 10 and 13 of Appendix J.1
using elastoplastic and elastic soil constitutive models, respectively. For motion number 10, DSSI has a
favorable effect, whereas DSSI has detrimental influence for motion number 13. For both motions, the
computed free field displacement using a simple column (TS-N or TS-E) is similar to those obtained at
free field control points of the full 3D computations (SSI-N or SSI-E). Due to the severity of the motion
number 10 (AIout = 0.27[m/s]), the soil undergoes plastic deformations when the elastoplastic model is
considered. Comparing the free field response for this motion between SSI-N/TS-N and SSI-E/TS-E,
a good agreement is in general found. However, the agreement is better in elastic cases. Consequently,
when soil’s non-linear behavior is taken into account, some influence of the superstructure takes place
at free field control point. Similar conclusions can be derived for motion number 13. These effects
might be reduced by increasing the size of the FE model with a consequent increase in the run time
consumption, nevertheless free field responses seem accurate enough from a practical point of view.

Concerning the structural drift, responses are clearly different in Figs.4.12a and 4.13a when DSSI
effects are taken into account for motion number 10. In these figures, differences in the structural
response appear at 2.8[s] approximately. This effect appears independently of the adopted model for
the soil, suggesting a pure DSSI influence. In this time step of analysis, it seems that strong non-
linearities take place in the superstructure modifying its subsequent dynamic response. Regarding the
motion number 13, differences between fixed base computations and fully 3D models are visible mainly
in peaks of time-drift response. As the main period of the motion Tm = 0.53[s] is close to the first
elastic period of the soil of 0.46[s], these differences could be associated to some resonance between
the input and the soil neglected when the analysis is decoupled in two steps.

4.5.2 C1L SDOF structure on saturated soil

Results in terms of the computed ductility ratio following SSI-N/TS-N and SSI-E/TS-E approaches
for the saturated soil are shown in Fig.4.14. Similar tendency as the one observed in dry case can be
noticed for very weak motions (AIout < 0.03[m/s]), thus a reduction of the computed ductility demand
ratio. As concerns the range 0.03 < AIout < 0.1[m/s], the responses are erratic, hence depending on
the motion an increase or a reduction in ductility demand is observed. For moderate to severe motion
(AIout > 0.1[m/s]) different conclusions can be derived depending on the assumption taken for the soil
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Figure 4.14: Computed ductility demand µ in terms of Arias intensity at outcropping bedrock for C1L
SDOF on saturated soil
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Figure 4.15: Structural drift and free field displacement uff obtained using motion number 13 for C1L
SDOF structure and saturated soil

behavior. In the inelastic soil case (Fig.4.14a), all the considered cases show a reduction on the ductility
demand when DSSI effects are taken into account. These results agree with the observations presented
in others chapters, when significative reductions of seismic displacement were found DSSI are included
in saturated soils. Under elastic soil assumption, this reduction is only noticed for motions for which
AIout > 0.2[m/s]. In fact, when the soil is modeled as a two-phase media and the inelastic soil’s skeleton
deformations are taken into account, volumetric deformations take place under dynamic loading. When
the soil is assumed to behave elastically, pure shear strains do not induce volumetric variations and
consequently the pore pressure build up does not take place. This pore pressure evolution contributes
hardly to soil stiffness degradation and to hysteric soil damping. Consequently, the elastic soil behavior
assumption is a crude hypothesis for the two-phase case. Additional details about the soil hysteretic
behavior during the load are provided in §4.6 in terms of some energy dissipation measures. In general,
comparing SSI versus TS responses, results are relatively close in elastic case (Fig.4.14b) compared to
the inelastic one (Fig.4.14a). Thus, for this particular case, pure elastic DSSI considerations can not
explain differences found for ductility demands when the inelastic soil behavior is taken into account
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in the DSSI problem.
Time responses of structural drift and free field displacement computed for the motion number

13 in saturated soil case are shown in Fig.4.15, for both inelastic and elastic soil models. Under
elastoplastic soil behavior assumption, DSSI are benefic in terms of ductility demand, whereas they are
detrimental when elastic behavior is assumed for the soil. Similarly to the dry case, a good agreement
is found between free field responses found in full 3D computation and 1D wave propagation model.
In fact, when the soil behaves elastically free field responses match perfectly. In inelastic case, some
slight differences are found. Regarding the structural response, large differences are found when the
soil behaves inelastically. In elastic case, variations are mainly associated to peak amplitudes. The
increment of the structural drift when DSSI effects are included might be related to some resonance
between the frequency content of the ground motion (Tm = 0.53[s]) and the first elastic period of the
soil (0.54[s] in saturated case). These effects do not take place when inelastic behavior is included
probably due to stiffness degradation of the soil and the filter effect of the water. Indeed, these effects
induce a reduction of the ductility demand when non-linear DSSI is included.

4.5.3 C1M SDOF structure on dry soil

As concerns mid-rise SDOF (C1M), obtained ductility demand ratios for dry soil case are shown
in Fig.4.16a and b, for elastoplastic and elastic soil models, respectively. The non-linear structural
behavior is developed for motions having a severity AIout > 0.03[m/s] approximately. The ductility
demand ratio grows in general monotonically with AIout, proving that this parameter is a suitable
measure to relate the input motion with the expected structural damage. Only the motion number 6
(AIout = 0.11[m/s]) does not show structural damage despite its severity. Indeed, this motion has a
mean period Tm of 0.23[s], hence the major part of the energy is delivered in a spectral range relatively
far from the fundamental period of the superstructure (T0 = 0.75[s]). This explanation is confirmed
by the motion number 13 (AIout = 0.13[m/s]), having Tm = 0.53[s] relatively close to fixed base
fundamental period of the C1M SDOF structure. For this last motion, inelastic structural behavior
takes place and the general tendency is confirmed.
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Figure 4.16: Computed ductility demand µ in terms of Arias intensity at outcropping for C1M SDOF
structure on dry soil

Regarding the effects of the DSSI on the superstructure response, the results depicted in Fig.4.16
agree with the tendency found in other parts of this work, thus a general reduction of the seismic
demand when DSSI are included. In contrast with responses obtained for C1L SDOF in dry soil
(Fig.4.11), only one motion exhibits a clear detrimental effect of DSSI. Time responses in terms of
structural drift and free field displacements are provided in Fig.4.17 for both, inelastic and elastic



112 4.5. Effect of DSSI on the seismic displacement demand

0 1 2 3 4 5 6 7
−0.06

−0.04

−0.02

0

0.02

0.04

AIout = 0.12[m/s]

t [s]

D
rif

t [
m

]

SSI−N (µ=4.2)
TS−N (µ=3.3)

0 1 2 3 4 5 6 7
−0.04

−0.02

0

0.02

0.04

t [s]

Tm = 0.53[s]

u ff [m
]

SSI−N
TS−N

(a) Elastoplastic soil model

0 1 2 3 4 5 6 7
−0.06

−0.04

−0.02

0

0.02

0.04

AIout = 0.12[m/s]

t [s]

D
rif

t [
m

]

SSI−E (µ=4.3)
TS−E (µ=3.3)

0 1 2 3 4 5 6 7
−0.04

−0.02

0

0.02

0.04

t [s]

Tm = 0.53[s]

u ff [m
]

SSI−E
TS−E

(b) Elastic soil model

Figure 4.17: Structural drift and free field displacement uff for motion number 13 in dry soil. C1M
SDOF

models. In both figures, responses at free field between 1D soil column and complete 3D models
are equivalent, thus no domain truncation effects seem to take place. As the mean period of this
motion (Tm = 0.53[s]) is relatively close to the first elastic period of the soil (0.46[s]), some resonance
phenomena between soil and input motion might explain these differences.

On the basis of the responses displayed in Fig.4.16 and Fig.4.11, the non-linear soil behavior has
a negligible effect on the superstructure’s dynamic response when the soil is in dry condition. Indeed,
the effect of the DSSI on the computed ductility demand is similar if the soil is assumed to behave
elastically or inelastically regardless of the soil behavior. Consequently, for this soil and in the range
of motion severities studied in this work, an elastic DSSI analysis seems to be accurate enough to take
into account interaction effects. Moreover, the effect of neglecting DSSI can be conservative or may
not depend on the considered motion as noticed for C1L SDOF structure. As C1M is more slender
and massive than C1L, larger dynamic soil-structure interaction effects seem to take place due to the
superstructure rocking.

4.5.4 C1M SDOF structure on saturated soil

Concerning C1M SDOF structure on saturated soil, Fig.4.18 shows seismic ductility demand ratios
computed following SSI-N/TS-N and SSI-E/TS-E approaches. Similarly to responses obtained for C1L
structure on saturated soil, when inelastic soil behavior is taken into account DSSI is benefic, thus a
reduction of µ is noticed for almost all the considered motions. When the soil is assumed to behave
elastically, the effect of DSSI can be beneficial or detrimental depending on the motion characteristics.
Consequently, in contrast with the tendency observed for dry soil, elastic soil behavior assumption is
a crude approximation to asses DSSI effects in this case. As previously indicated for elastic soil cases,
no coupling between shear and volumetric strains is obtained for pure cyclic shear loading. Hence,
variations on pore pressure during dynamic loading are neglected. In practice, depending on the soil
contraction/dilation characteristics, strong pore pressure build-up might take places inducing large
reductions in soil effective stresses which can result in soil stiffness degradation.
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Figure 4.18: Computed ductility demand µ in terms of Arias intensity at outcropping for C1M SDOF
structure on saturated soil

4.5.5 Effect of the DSSI on the displacement ductility demand ratio

In order to summarize the effect of taking into account or neglecting inelastic soil behavior on the
seismic demand, we compute the ratio:

µSSI
µTS

(4.2)

where µSSI and µTS are the displacement ductility demands obtained from SSI-N or SSI-E and TS-N
or TS-E, respectively. A value of this ratio larger than one means detrimental DSSI effects, and the
opposite when the value is inferior to the unity.
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Figure 4.19: Scatter plots of µ ratios for the C1L SDOF on dry soil

Fig.4.19 displays the ductility ratio for dry soil for the C1L SDOF, assuming elastoplastic or elastic
soil behaviors. According to this figure, assuming elastic or inelastic soil behavior does not modify the
general tendency of the DSSI. Hence, motions exhibiting values larger than one for elastic soil, are also
larger than one for inelastic soil. For this SDOF on dry soil, variations are inferior to ±25% for the
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major part of motions. In terms of the input motion severity (Fig.4.19a), the beneficial or detrimental
effect of the DSSI are erratic for motions with AIout < 0.1[m/s]. For stronger motions, the tendency
of the DSSI effect is in general detrimental except for the most severe motion considered (number 10).
In order to highlight the effect of the frequency content, Fig.4.19b shows the µ ratio in terms of the Tm
normalized by the first elastic soil period Tsoil (bottom horizontal axis) or the fixed base fundamental
period T0 (top horizontal axis). For relatively large Tm (Tm

T0
or Tm

Tsoils
large than 1.8), taking into account

DSSI tends to be beneficial. For short Tm periods (Tm

T0
or Tm

Tsoils
inferior to 0.8) the effect of DSSI is

beneficial or detrimental depending on the considered motion. In the approximate resonance range
between motion and soil ( Tm

Tsoil
relatively close to 1), the DSSI is detrimental or negligible. According to

our computations, results for C1L structure on dry soil are extremely erratic in general, consequently,
more motions should be analyzed before any general tendencies could be derived.
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Figure 4.20: Scatter plots of µ ratios for the C1M SDOF structure on dry soil

Concerning the mid-rise superstructure (C1M), obtained values of µ ratios for dry and saturated
soil cases are displayed in Fig.4.20. In this case, DSSI has a beneficial influence for the major part of
considered motions. Thus, damage in the superstructure is reduced when DSSI effects are included,
regardless if the soil behaves elastic or inelastically expect for one motion. According to Fig.4.20b,
the frequency content of this motion is very close to Tsoil ( Tm

Tsoil
close to 1). Thus, some resonance

between the input and the soil might take place. The tendency concerning the beneficial or detrimental
influence of DSSI on the dynamic response is unaltered by the constitutive soil model used for the
soil. Nevertheless, numerical values of µ vary significantly when DSSI is included. Indeed, reductions
of µ down to 30% can be noticed for strong motions. For both C1L and C1M structures on dry soil, it
can be noticed that variations appear between elastic and inelastic soil computations. In other words,
points do not coincide in previous µ ratio scatter plots for several motions. Thus, radiation damping
and soil flexibility associated to elastic DSSI can not explain completely differences observed on the
computed structural responses. However, as the effective motion transmitted to the structure is not
exactly the same in both elastic and inelastic soil cases, part of this differences could be related to the
non-linear behavior of the superstructure.

When the soil is saturated for the C1L SDOF structure case (Fig.4.21), the general reduction
tendency of the superstructure damage when inelastic DSSI is included is confirmed for moderate to
strong motions. Nevertheless, some weak motions (AIout < 0.1[m/s] in Fig.4.21a) show a detrimental
effect of DSSI. According to Fig.4.21b, motions exhibiting detrimental effect have a mean period Tm
close to Tsoil, thus some resonance between the input motion and the soil deposit might have taken
place. The computed ratios are quite erratic when the soil is assumed to behave elastically. In contrast
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Figure 4.21: Scatter plots of µ ratios for the C1L SDOF on saturated soil

with dry case, in saturated condition the same tendency is not always kept between elastic and inelastic
soil approaches. Additionally, variations of µ are significantly larger when the soil is inelastic. Thus,
linear elastic soil behavior assumption is quite conservative for seismic damage evaluation purposes of
this superstructure on the saturated sandy soil.

Similarly to the C1L SDOF structure case, elastic DSSI considerations are reasonably accurate
for the C1M on dry soil, but are not suitable when the soil is in saturated condition. According
to Fig.4.22, DSSI is invariantly favorable or negligible when the inelastic soil behavior is taken into
account. This tendency is not, in general, adequately predicted under elastic soil considerations.
Additionally, large differences are found in the computed µ ratio for the major part of motions, even
if the detrimental/favorable tendency is correctly predicted by the elastic soil approach.
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Figure 4.22: Scatter plots of µ ratio for the C1M SDOF structure on saturated soil

In summary the inelastic soil behavior seem to be not important for the structural dynamic response
of C1L SDOF in dry soil. In this case, a traditional elastic DSSI analysis seems to be accurate enough
to take into account interaction effects. For C1M SDOF on dry soil, some significant variation in
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structural damage are found when the soil behaves inelastically, and consequently, an inelastic soil
behavior evaluation is desirable for this structure in this soil. For both superstructures, large variations
on µ are found when the soil is saturated. Thus, a more precise assessment of the soil behavior might
alters significantly the DSSI contribution evaluation to superstructure dynamic response.

4.6 Energy oriented analysis of the results

Similarly to analyses presented in §3.8, a study of the role of the DSSI effects on the hysteretic energy
dissipation mechanisms in the system is conducted in this section.

The energy dissipated by the considered SDOF can be assessed in terms of a mean value computed
across each superstructure model. In this regard, the expression (3.6), introduced in Chapter 3, to
compute the amount of energy dissipated in the superstructure by inelastic behavior, must be adapted
to the constitutive model used in this case. Thus, the indicator of the energy dissipated by the
superstructure Istr can be computed as:

Istr =
1

m

∫

Ωb

∫

t

∆σ : dε dV + 1× 10−3

=
1

m

∫

Ωb

∫

t

∆σrr(x, t) dεrr(x, t) dV + 1× 10−3 [J/kg] (4.3)

where m denotes the mass of the SDOF, Ωb is the volume of the superstructure, ∆σ and ε are the
stress and strain tensor associated to dynamic perturbation. According to beam-kinematics and the
the constitutive model described in Appendix C, the energy dissipated by the superstructure can be
computed in terms of the axial stress ∆σrr and the axial strain εrr, hence, only flexural dissipated
energy is considered.

Similarly to analyses presented in §3.8, we will compute an average indicator of the energy dissi-
pated by hysteretic damping in the soil to asses the modification in the dynamic soil behavior. We
use the definition provided in (3.7) to compute Isoil over a control volume Ω. As the problem is 3D in
this case, this expression takes the form:

Isoil =
1

Ω

∫

Ω

∫

t

[
∆σ′xx dεxx + ∆σ′yy dεyy + ∆σ′zz dεzz

]
(x, t) dV

+
1

Ω

∫

Ω

∫

t

[∆τxz dγxz + ∆τxy dγxy + ∆τyz dγyz] (x, t) dV [J/m3] (4.4)

where ∆τij and ∆σij are the shear and normal stresses in ij plane according to axis shown in Fig.4.4.
γij and εij are the corresponding distortions and normal strains. As the earthquake is imposed across
yz plane, the major part of energy dissipated by the soil hysteresis takes place in this plane (92%
of Isoil approximately). The contribution of the shear over the plane xz and xy are negligible. The
integration is performed over a domain Ω.

The integration is performed over an approximate cubic domain Ω, as defined in Fig.3.30b adding
an out-of plane dimension 2a. Hence, the total volume Ω is equal to 8a3[m3]. For cylindrical meshes,
we use the cylindrical domain closest to the desired cube. These integration domains correspond to
darker zones in meshes displayed in figures 4.4 and 4.5. Verifications on the suitability of this volume
to capture the local soil behavior modification due to the presence of the superstructure have been
conducted, and are omitted here for the sake of simplicity.

With the purpose to highlight differences of the initial soil confinement, Fig.4.23 shows the distri-
bution of effective vertical overstress under the foundation of the C1L SDOF structure. We select a
window equal to domain of integration Ω for these plots. According to Fig.4.23, the effective vertical
overstress is approximately homogenous and equal to 20[kPa] under the foundation. Nevertheless,
some stress concentration takes place in the borders. In the saturated case, slightly larger values than
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(a) C1L on dry soil (b) C1L on saturated soil

Figure 4.23: Vertical overstress ∆σ′zz[kPa] distribution for C1L superstructure

those obtained in the dry case can be noticed near the corner of the foundation. Additionally, some
tensile stresses appear at the surface in the second row of solid elements starting from the foundation
border. Indeed, in this case, no interface elements have been used between soil and interface surfaces.
Hence, the apparition of this tensile zone due to foundation settlement was expected. Nevertheless,
this reduced traction zone should not influence the general dynamic responses. Concerning the vertical
extension of the confinement zone, it can be noticed that for this superstructure and for depth larger
than 6−7[m] (i.e. the foundation characteristic length a), the overstress imposed by the superstructure
vanishes at the center of the foundation.

(a) C1M on dry soil (b) C1M on saturated soil

Figure 4.24: Vertical overstress ∆σ′zz[kPa] distribution for C1M superstructure

Concerning the C1M SDOF structure, Fig.4.24 shows the corresponding effective vertical overstress
distribution ∆σ′zz for both dry and saturated soil cases. Similarly to the C1L case, stress concentration
zones take places across the border of the foundation and specially at the corners. The values of
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these stress concentrations are slightly larger in saturated case compared to dry case. However, the
concentration is more localized at the corners when the soil is saturated. These differences are related
to the used meshes. Indeed, in approximately cylindrical meshes used for the saturated soil there are
only two solid soil elements connected to the corners outside the foundation. In dry cases (box meshes),
there are three elements in these singularities. Hence, a better stress distribution is reached in dry
situation. Similar to meshes for C1L SDOF, first row of soil elements outside the foundation shows
some tensile stresses at surface due to structure settlement. Nevertheless, no particular influence of
these overloaded zones are expected on the structural response under the dynamic part of the loading.
For the mid-rise structure, the mean overstress under the foundation is approximately of 35[kPa] and
its influence vanishes approximately for a depth equivalent to the foundation characteristic’s length.
These values agree with the standard results of influence factors for stresses, derived assuming elastic
soil behavior (e.g. Poulos and Davis (1974)).

The purpose of displaying the additional confinement imposed by the superstructure is to illustrate
differences in the initial state of the soil for SSI-N/SSI-E computations, in comparison to the free field
situation used to define the input for TS-N/TS-E approaches. However, differences in the dynamic
inelastic soil behavior are not only due to this initial state difference. When the superstructure is
included, the waves reflected by the foundation and induced by the superstructure’s motion also
modify the response of the soil. In this regard, it is interesting to provide a global measure of the soil
behavior to make the comparison between the free field state and the one in the neighboring soil close
to the foundation possible.

4.6.1 Energy dissipated by the superstructure
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Figure 4.25: Scatter plots of energy dissipated by the C1L SDOF on dry soil

The structural energy dissipation index Istr obtained for the C1L SDOF structure on dry soil using
both soil models is shown in Fig.4.25. In this figure, values of Istr equal to 1 × 10−3 corresponds to
elastic structural behavior. The results show the same tendency as the one obtained in terms of the
ductility ratio demand illustrated in Fig.4.11, thus a detrimental effect of the DSSI on the expected
seismic damage. As discussed previously in terms of some time responses, this phenomenon might be
related to frequency content of the motion relative to the fixed base fundamental period. Similarly to
variations observed before, between inelastic and elastic soil conditions, elastic soil assumption provides
results accurate enough in terms of the influence of the DSSI. Nevertheless, larger effective motion is
transmitted to the superstructure due to lack of energy dissipation in the soil. It is interesting to note
that the ductility demand ratio computed as described in expression (4.1) provides an accurate enough
measure of the damage reached by the superstructure. This expression includes a rigid-body rotation
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and translation to avoid including components that do not induce strain in the superstructure. Other
propositions to compute ductility ratios for SDOF systems on flexible support have been provided
by Priestley and Parck (1987) or Ciampoli and Pinto (1995) and have been critically reviewed by
Gazetas and Mylonakis (2001). This definition of µ is computed only with maximum instantaneous
responses, hence it can be computed straightforwardly. The indicator introduced here (Istr), includes
the complete time history response at different sections of the superstructure and requires spatial and
temporary integrations. Consequently it is significantly more difficult to compute. Nevertheless, both
measures provide equivalent information in this case as the considered superstructure is a SDOF.
For general multi-degree of freedom structures, the information provided by a simple instantaneous
measure of an equivalent SDOF as µ could give an erroneous damage state evaluation. From this
point of view, the use of Istr might provide a better description of damage for more general systems.
The computation of this index for the C1M superstructure does not provide additional information
than that obtained for the ductility demand analysis provided in the previous section, and is omitted
here for the sake of conciseness.

4.6.2 Energy dissipated by the soil

In order to complete the study of the role of the inelastic soil behavior on the structural seismic
demand, we present in this section a study in terms of the Isoil indicator of the energy dissipated in
the soil during the dynamic loading.
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Figure 4.26: Scatter plots of energy dissipated in the soil in terms of Isoil[J/m3] for C1L SDOF

Scatter plots of the hysteretic energy dissipation Isoil for C1L superstructure are shown in Fig.4.26
for dry and saturated soil cases. Results using the control volume defined above for SSI-N cases
are compared to the one obtained in the 1D column model used to compute the free field for TS-N
approach. The integration is performed over a depth z = 2a for 1D column cases. As expected, the
evolution of Isoil is well correlated with the increase of the Arias intensity at outcrop AIout. According
to this figure, the general tendency is an increase of the energy dissipated in the soil when DSSI
effect are accounted for in the dry soil case. Nevertheless, it can be noticed that some motions exhibit
approximatively the same value of Isoil. Hence, in this case, the superstructure’s oscillations contribute
to increase strains in the soil and consequently the hysteretic damping. Thus, the stiffness effect due to
additional confinement under the foundation is compensated by the soil deformations induced by the
superstructure’s oscillation increase. Concerning saturated soil case, no significant variations can be
noticed comparing the analyses carried out with the superstructure or the to free field situation. Hence,
the additional strains imposed by the inertial soil-structure interaction are approximately compensated
by the supplementary confinement around the foundation. To complete this analysis it is interesting
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to compare the numerical values of the Isoil index. Generally speaking, it is clear that larger values
of hysteretic energy dissipation are found when the soil is saturated. As described in other parts of
this work, reduction of effective stress in soil induces a soil stiffness degradation and consequently an
increase of material damping.
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Figure 4.27: Scatter plots of energy dissipated in the soil in terms of Isoil[J/m3] for C1M SDOF

As concerns the C1M superstructure, the general tendency depicted in Fig.4.27 coincides with
observations regarding C1L SDOF. Thus, for dry soil condition the computed values of Isoil are larger
to those obtained for free field case. For saturated case, differences seem to be smaller. As a general
reduction of seismic structural demand has been noticed for this mid-rise SDOF, it is possible to
conclude that this increase of energy dissipation contributes to the reduction of the structural damage.
Indeed, as previously noted, differences of computed structural response are significative when elastic
soil is assumed. In this last case, no hysteretic dissipation takes place in the soil. Consequently, these
variations of Isoil confirm that the elastic soil assumption is not adequate for the C1M SDOF in dry
soil. In comparison with the C1L SDOF on saturated soil case, relative larger differences are found
for Isoil when the considered motion is relatively weak (AIout < 0.1[m/s]). However, for moderate
to strong motions, the computed values of Isoil for saturated soil case are equivalent for practical
purposes.

In order to highlight the modification of the soil response near the foundation, Fig.4.28 shows some
time responses under the foundation for both considered structures compared to the ones obtained
in the free field case. Results are presented in terms of the local index of energy dissipation isoil,
computed as:

isoil (x, t) =

∫

t

[
∆σ′xx dεxx + ∆σ′yy dεyy + ∆σ′zz dεzz

]
(x, t)

+

∫

t

[∆τxz dγxz + ∆τxy dγxy + ∆τyz dγyz] (x, t) [J/m3] (4.5)

with the same definitions provided for the expression (4.4). We choose an arbitrary point under the
foundation, placed approximately at 2[m] depth under the center of the superstructure. We select this
point in order to highlight both, the effects of the increase in the confinement and the strains induced
by the superstructure’s oscillations. We present in this figure responses corresponding to motion
number 3 as listed in Appendix J, as example. According to Fig.4.28 for dry soil case, an increase
of the energy dissipated by hysteretic soil behavior takes place when the mid-rise superstructure is
placed on the soil. For the C1L SDOF, the energy dissipated is larger than the one obtained in the
free field situation.
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Figure 4.28: isoil evolution at 2[m] depth under the center of foundation for two motions

The tendency is completely inverted for the saturated case shown in Fig.4.28b. In fact, in this case,
due to reduction of effective stresses, larger values of isoil are found for the free field case compared to
the DSSI models. At 2[m] depth, large confinement provided by the mid-rise SDOF structure increases
significantly the soil stiffness compared to the free field or the C1L structure model, and consequently
reduces the induced shear strains and energy dissipation. Indeed, at free field the situation is close to
liquefaction, and locally the induced hysteretic damping grows drastically. Nevertheless this situation
is local, the averaged effect over the control volume Ω has been shown in previous figures. However,
the implications of this local effects can be important in terms of settlements as discussed in §3.10.2.2.
The purpose of introducing this energy analysis was to complete the description of the superstructure
responses in order to relate detected variations with the soil inelastic state. In this regard, increases in
hysteretic damping highlighted for mid-rise SDOF structure in both dry and saturated soil cases, might
explain general reduction of expected structural damage. Concerning the low-rise SDOF structure,
results shown in this section suggest that DSSI effects are fundamentally elastic in dry case, and only
in saturated case an influence of inelastic soil behavior is clear.

4.7 Concluding remarks

This chapter was devoted to identify the contribution of the inelastic soil behavior to the general
non-linear DSSI problem. With this purpose, a comparative analysis between elastic and inelastic soil
behavior assumptions was presented. In order to make as general as possible our results, we selected
two generic SDOF structures taking generic values suggested in some design codes. As the general
problem of a shallow rigid foundation with SDOF structure is essentially three-dimensional, we used
3D FE models to analyze this problem. A homogenous medium dense sand soil profile in two hydraulic
conditions (dry and saturated) has been used.

The results point out that, in general, inelastic soil behavior plays a decisive role only when the
soil is saturated. When the soil is in dry condition, an elastic DSSI approach seems to be accurate
enough to take into account the modification of the structural response due to dynamic interaction
effects. Nevertheless, when the soil is saturated, large variations between elastic and inelastic DSSI
approaches are found. As noted, these differences are related to pore pressure generation induced in
the inelastic case which is neglected when elastic soil behavior is assumed.

Concerning the role of the DSSI on the dynamic response of both studied superstructures, the
influence of interaction phenomena for the low-rise SDOF structure is quite erratic. Hence, depending
on the characteristics of the ground motion DSSI effects are beneficial or detrimental in dry soil case. In
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saturated case, inelastic DSSI effects are in general beneficial. Regarding the mid-rise superstructure,
in both dry and saturated soil cases, the effects of the DSSI are favorable in reducing the expected
structural damage. These differences are probably due to the slenderness and mass of the mid-rise
structure. Hence, larger interaction effects take place due to the rotation component of this slender
superstructure.

To complete the presentation, an analysis in terms of some measures of energy dissipation was
conducted. For the superstructure, the simple use of global responses as ductility ratio demand
probes to be accurate enough to describe the damage state of this kind of structures. Concerning
the soil energy dissipation indicators, these measures contribute to clarify the observed responses for
mid-rise superstructures. In this case, the large amount of energy dissipated in the soil coincides with
the reduction of structural demand. For the low-rise structure, the same tendency is found regarding
the increase of soil energy dissipation in the DSSI case. However, structural demands also increase
for some motions when DSSI effects are included. Consequently, we can conclude that for the studied
superstructures and in dry soil, the DSSI phenomenon is mainly controlled by elastic effects, where
the frequency content of the motion with respect to the elastic frequencies of the soil and the structure
seem to define the role of the DSSI on the dynamic response of the structure system.
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5.1 Introduction

The assessment of seismic fragility of structures is a requirement for seismic loss estimation and risk
management. Although some fragility databases as ATC 13 (1985) or HAZUS-MH MR3 (2003) are
available, these earthquake motion-damage relations are developed for general types of structures with
several assumptions, strong simplifications and large uncertainties. Regarding soil effects, for example
HAZUS-MH MR3 (2003) takes into account the local soil conditions in terms of amplification factors
to be applied to the response spectra characterizing the ground shaking. This document also includes
guidelines to evaluate three types of ground failure: liquefaction, landsliding and surface fault rupture.
These ground failures are quantified by permanent ground deformations. Nevertheless, dynamic soil-
structure interaction phenomena are assumed benefic and neglected.

In order to assess the seismic fragility of general buildings, HAZUS-MH MR3 (2003) proposes a
methodology to develop functions for estimating building damage due to ground shaking in terms
of fragility curves. These curves are an illustrative way of expressing the probability of exceeding a
certain degree of structural response as a function of the load severity. This document also provides
reference building capacity curves to be used to determine peak building responses.

According to Shinozuka et al. (2000), the development of fragility curves will require synergistic
use of the following methods: (1) Professional judgement; (2) quasi-static and design code consistent
analysis; (3) utilization of damage data associated with past earthquakes; and (4) numerical simulation
of the seismic response of structures based on dynamic analysis. However, damage data in most high
seismicity regions are too scarce to provide sufficient statistical information. Additionally, fragility
curves derived from engineering judgement may not be reliable, because the opinions of a few experts
may dominate the results (Hwang and Huo, 1994). Consequently, fragility curves generated from
well-calibrated analytical approaches may be an adequate alternative.

Several analytical methods have been proposed to generate fragility curves of structures. The
traditional strategy in earthquake engineering consists in five steps: (1) probability-based scenario
establishment from a seismic hazard analysis, (2) earthquake generation based on a seismologically
base model, (3) definition of a numerical model for the target building, (4) non-linear seismic analysis
of the model and (5) reliability analysis to establish fragility curves. In Shinozuka et al. (2000) and
Shinozuka (1998), the authors introduce a statistical procedure appropriate for the reliability analysis
step under the assumption that they can be represented by two-parameter lognormal distribution
functions. They apply this technique to develop empirical and analytical fragility curves for bridges.
Other authors use a Monte Carlo approach for the reliability analysis step (Hwang and Huo, 1994;
Kafali and Grigoriu, 2007).

In general, fragility curves can include several sources of uncertainties: in the seismic loading,
the soil site and the structural parameters defining the system. Hwang and Huo (1994) include in
their work uncertainties in the seismic motion and in the structural parameters as viscous damping
ratio, strength and stiffness of structural materials. Shinozuka et al. (2000) also include variability
in structural model and input ground motion. Choi et al. (2004) use a similar strategy to generate
fragility curves for bridges, but using first-order reliability principles to combine component fragility
curves to generate the entire bridge system fragility curve. Popescu et al. (2005) use the method
presented by Shinozuka et al. (2000) to develop fragility curves in order to summarize the effect of
the variability of soil properties in the seismic liquefaction. In this work, as a first approach, only the
aspect of uncertainties in the seismic ground motion is addressed.

This chapter concentrates on the development of analytical fragility curves according to Method
4 as described above including DSSI effects, hence by numerical simulation of seismic response of
systems performing non-linear transient SSI-FE analysis. As recalled before, Shinozuka et al. (2000)
introduce a statistical procedure to develop fragility curves on the basis that they can be represented
by two-parameter lognormal distribution functions. These authors also present a procedure to test
the goodness of fit and to estimate interval of confidence for the two parameters controlling the shape
of the fragility curve. Unfortunately, this last step is often omitted by several authors. Frequently,
fragility curves are computed using a fixed database size and no statistical justifications are provided
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regarding the statistical confidence of the obtained fragility curve. The sensibility of the two parameters
defining the fragility curve on the database is studied in terms of the amount of information provided
by the ground motion selection. With this purpose, we develop analytical expression of the Fisher’s
information for a given soil and structure configuration. We present a study of the evolution of this
information measure in terms of the used database and the structural response level selected. With
these analytical results, we provide a geometrical interpretation and lower-bounds of the variance of
the parameters describing fragility curves.

5.2 Studied case description

In order to investigate the effect of DSSI on seismic demand evaluation, a comparative dynamic analysis
as described in §3.3 is conducted for a target building.

The studied building corresponds to a public building built in 1970 and placed in French Antilles.
The building has 8 levels and a total height of 28m. The lateral-force-resisting system is constituted
by moment resistant frames in longitudinal direction y and moment resistant frames and shear walls
in transversal sense x (Fig.5.1). The building is geometrically regular in plane, but some differences
exist in element dimensions and reinforcements between axes A, B, C and D, depending on the
level. Detailed information about geometry, element dimensions and reinforcement can be found in
Appendix I. These irregularities in stiffness distribution induce some torsion when the building is
loaded following y direction. Despite these irregularities, an equivalent two-dimensional model for the
structure is accurate enough to represent its dynamic response when the ground motion is imposed in
y direction (§5.2.2).
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Figure 5.1: Plane of a typical floor of the target building

Two different kinds of numerical analyses are carried out. The first one, consists in a complete
3D model for both superstructure and soil. The second one corresponds to a modified plane-strain
approach (§3.2). This second approach reduces significantly the required CPU-time modeling with a
reasonable degree of accuracy the dynamic nonlinear behavior of the superstructure and the soil.

5.2.1 Soil characterization

In order to identify the mechanical properties of the soil profile from the seismic response point of
view, we use some H/V measures available at several points of this soil deposit (Douglas et al., 2005).
According to these tests, the soil profile shows site effect for a frequency near to 1.7[Hz]. On the
other hand, concerning the mechanical properties of the soil, neither geotechnical tests nor a complete
geotechnical description were found. However, according to the geological information, the soil profile
must be composed of a mixture of sandy and clayey soils. According to the same study, the bedrock
or the rigid soil seems to be found at 30 or 35[m] depth.
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Due to lack of geotechnical information to identify the elastoplastic model parameters, we choose
a set of parameters representing a sandy soil profile, which gives a first natural frequency of the soil
profile near to the measured one. This can be justified because the scope of this chapter is only to
illustrate the effects that the presence of a soil foundation has on the seismic response of a structure.
The generalized typical layered soil/rock model parameters considered in this section are summarized
in Appendix H.3.

5.2.2 Finite element models for 2D and 3D cases

The superstructure’s FE models are constructed with one-dimensional beam-column elements and
thick plates (3D case). The fixed base fundamental period of the superstructure is near to 1s. The
foundation is modelled using solid infinitely stiff elements. Frictional interface elements with tension
cut-off properties are placed between foundation and soil. The 30[m] homogenous soil deposit is
modeled by solid linear elements. In the bottom, a layer of 5m of elastic bedrock is added to the
model. The finite element meshes used for modeling this problem are shown in Fig.5.2a. Colors in this
figure are associated to different vertical size of elements. A finer mesh is used in the neighborhood of
the foundation to improve the approximation of non-linear behavior in this zone. The characteristic
lengths of solid elements have been chosen small enough to prevent numerical dispersion problems.
The time integration is carried-out using an explicit-implicit split operator strategy (Hughes and Liu,
1977b,a) associated to Newmark method. Some algorithmic damping is used to remove spurious high-
frequencies. At each time step, the non-linear problem is solved by Newton-Raphson type iterations.
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Figure 5.2: Finite element meshes

Each numerical computation is conducted in two whole steps: a static computation that permits to
initialize the internal stress and internal constitutive model’s variables of both soil and superstructure,
followed by a dynamic perturbation analysis around the stress state and internal material memory
obtained in static step. For SSI-FE approach, the static whole step includes geostatic initialization of
stresses and level-by-level sequential construction of the superstructure.

Assuming an input motion across the y axis, the construction of the 2D model displayed in Fig.5.2b
starts from one of the longitudinal axes of the complete 3D model. As the building is reasonably regular
for loading in y sense, we take for example the axis A in Fig.5.1 to develop the equivalent 2D structural
model. We add to this structural axis, a tributary distributed mass/weight over 0.5× (6.40 + 4.42) =
5.41m in x sense. The contribution of out-plane structural elements (walls, slabs and beams) are
introduced adding dummy elastic parallel elements to non-linear structural columns of 2D model. The
equivalent two-dimensional model must respect dynamic properties and non-linear behavior of the
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original 3D model. In order to verify these requirements, elastic dynamical analyses and pushover
tests have been conducted to calibrate structural properties of the dummy parallel elements.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

5

10

15

20

25

30

35

40

f [Hz]

T
F

 M
od

ul
us

2D
3D

(a) Elastic fixed base transfer function modulus

0 0.05 0.1 0.15
0

0.5

1

1.5

T0 = 1s

D [m]

A
 [m

/s
2 ]

2D
3D

(b) Capacity curve

Figure 5.3: Verification of 2D equivalent model

Fig.5.3 displays elastic fixed base transfer function amplitudes of both models, obtained for to
a seismic loading following y direction. The first two elastic modes of the 3D model correspond to
approximately in-plane motion, thus, a satisfactory agreement is found in frequencies and amplitudes
for the two 2D and 3D models. Differences found for the third mode are associated to some torsion in
the original 3D model unable to be modelled in the 2D case. Modal analysis gives that approximately
76% and 11% of translational mass is associated to first and second modes, respectively. Consequently,
a good approximation of two first modes is accurate enough. Regarding non-linear structural behavior,
Fig.5.3b shows the computed capacity curve obtained for an incremental pushover loading using the
force distribution corresponding to the first elastic mode. A good agreement is found in elastic range
and near the ultimate load limit. As 3D model is more redundant in structural elements than the 2D
model, a more gradually yielding of the structural system is found.

Regarding the complete SSI-FE models in 2D or 3D, several verifications were conducted in order
to identify differences between both approaches. Concerning the static initialization phase, contours of
the distribution of the increase in the effective vertical stress ∆σ′zz due to the superstructure’s weight
are displayed in Fig.5.4. The distribution displayed in Fig.5.4b corresponds to a vertical section across
the longitudinal axis C of Fig.5.1. It can be noticed that stress distributions are similar in both cases.
Nevertheless, concentration of stress near the foundation corners is slightly larger for the 3D model
(up to 120[kPa]) compared to the equivalent plane-strain 2D case (up to 85[kPa]). Values under the
foundation are equivalent in both cases (40 to 50[kPa]). The attenuation of the increment with the
depth is faster in 3D case compared to the 2D model due to the imposed plane-strain condition. Thus,
at the bottom of the mesh (depth of 35[m]) and at the center of the superstructure, 3D model predicts
an increment of 10[kPa] compared to 25[kPa] computed in the 2D approach. Despite these differences,
the initial state for the dynamic computations are equivalent from a practical point of view.

The influence of the modeling approach on the DSSI phenomenon is studied in terms of the low-
stain responses in frequency domain. Obtained spectral amplitude modulus between free field (ff) and
its vertical projection over the bedrock (bd), and between the top of the building (tp) and free field
according to definitions of Fig.1.11 are shown in Fig.5.5. An excellent agreement is found between
both computations for the ff/bd spectral ratio. Nevertheless some frequency components of the second
and third structural fixed base modes appear near 3[Hz] and 5[Hz] according to Fig.5.3. Some small
differences in amplitude are found for this spectral ratio, specially for the second elastic mode. This
might be related to the constructive coherency of the reflected waves in the lateral boundaries for the
2D model. In the 3D case, this effect vanishes increasing the apparent damping.
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(a) Equivalent 2D model (b) Vertical section across axis C for the complete 3D model

Figure 5.4: Vertical overstress ∆σ′zz due to superstructure’s weight distribution in [kPa]. Deformation
magnification factor=100
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Figure 5.5: Frequency domain responses using equivalent 2D plane-strain and 3D models

Concerning the spectral ratio tp/ff displayed in Fig.5.5b, a satisfactorily agreement is found for
the first three fixed base modes. Fixed base transfer function modulus for the 3D model has been
added to this plot to simplify the comparison. The same shift regarding the third fixed base mode
(associated to a torsional component) is highlighted on this figure. Nevertheless, an additional peak
appears around 4[Hz]. This peak might be associated to a vertical mode of vibration activated by the
rocking of the superstructure-foundation system. This effect is not visible in 2D plane-strain model.
However, as almost 85% of the translational mass is associated to the first and second modes, these
short period modes seem not introduce significant modification of the dynamical non-linear response
as will be shown in §5.5.3.

As the purpose of this chapter is to study the role of the non-linear DSSI on the seismic vulnera-
bility, we will use global indicators of seismic response as maximum inter-story drift or damage index.
For this kind of indicators, the 2D model is accurate enough. Nevertheless, for a detailed study of the
damage of the superstructure a complete 3D model is more convenient. The main advantage of the
proposed equivalent 2D model lies in the reduction of computer runtime. Two-dimensional SSI-FE
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model has approximately 3000 degrees of freedom (DOFs), while full 3D model has approximately
30000 DOFs.

5.3 Definition of input motions for dynamic analyses

One of the major issues related to nonlinear dynamical analysis is to define appropriate input motions.
There are three basic options to define suitable time histories to represent seismic excitation. The
first approach is to use synthetic accelerogram generators producing realistic energy, duration and
frequency content motions compatible with some physical conditions. A second category of methods
for simulating ground-motion records are obtained by convolving the source, path and site effect (Aki
and Richards, 2002). However, these methods demand high computational resources and carry a
high-degree of uncertainty due to lack of information regarding parameter values. The third strategy
is to select real motions recorded during earthquakes. The increasing availability of strong-motion
accelerograms makes the use of real records an interesting alternative. Some guidelines to select
and scale real records are provided for example in Bommer and Acevedo (2004). In this study, we
use the first and the third options. Real motion selection strategy is adopted to define input to
3D dynamical analyses. For modified 2D plane-strain approach, we use a stochastic synthetic ground
motion generator due to large amount of analyses to be conducted and the lack of real records available
satisfying all requirements.

5.3.1 Real earthquake accelerograms selection strategy

The adopted strategy is based on the methodology proposed by Douglas (2006) in the framework of
the VEDA (Seismic Vulnerability of structures: a Damage mechanics Approach) research project in
whose framework this part of the work was done.

The geographical scope of this study is the French Antilles. According to Douglas (2006), buildings
in French Antilles are subjected to shaking from earthquakes related to the neighboring subduction
zone, which generates two types of events interface (shallow dipping thrust events) and intraslab
(deep generally normal-faulting events). In addition, large crustal events can occur. The results of the
disaggregation conducted by Martin et al. (2002) were used to define the most important earthquake
scenarii for sites of this geographical zone.

Based on the criteria described in §3.5, Table 5.1 lists the ranges of the low and high bins chosen
to undertake the selection of records. The ranges of the low and high bins were chosen in order to
have sufficient numbers of records within each bin for each type of event. In this table, Sd(ζ = 5%)
corresponds to 5% damped displacement response spectra at 0.1s and 1.0s and tSR is the significant
duration (Trifunac and Brady, 1975).

Table 5.1: Strong-motion parameters and ranges of low and high bins used for selecting records

Interface events Intraslab events Crustal events

Parameter
Low bin
range

High bin
range

Low bin
range

High bin
range

Low bin
range

High bin
range

Sd(ζ = 5%) at 0.1s ≤ 0.03cm > 0.03cm ≤ 0.03cm > 0.03cm ≤ 0.10cm > 0.10cm

Sd(ζ = 5%) at 1.0s ≤ 1.0cm > 1.0cm ≤ 0.5cm > 0.5cm ≤ 1.5cm > 1.5cm

tSR ≤ 14s > 14s ≤ 10s > 10s ≤ 10s > 10s

An experiment is constituted by 23 = 8 records (or runs). Each experiment was repeated five times
(5 earthquake selections), thus a total of 40 runs were conducted for the studied building. Additional
details about strong-motion parameters values of 40 used records as well earthquake magnitudes,
epicentral distance and focal depth can be found in Appendix J.2.
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5.3.2 Synthetic ground motion generation

There are many engineering methods for simulating ground motions. For example, procedures based
on random-vibration theory proposed by Saragoni and Hart (1974) or Nau et al. (1982) range from
filtering and windowing Gaussian noise to generate accelerograms. As these methods are disconnected
from specific geophysical parameters, the resulting time histories are poorly correlated in terms of
earthquake scaling parameters. Other approaches generate seismic ground motion time histories that
are compatible with a prescribed response spectra (e.g. Gasparini and Vanmarcke, 1979; Deodatis,
1996). The intrinsic problem of this kind of procedure is that in general the matching procedure may
generate an excessive number of cycles of strong motion, producing an unrealistic high energy content.

In the present work, we adopt the empirical strategy developed by Pousse et al. (2006) that improves
the stochastic model introduced by Sabetta and Pugliese (1996). In the method proposed by Sabetta
and Pugliese (1996), the simulation of ground motion is achieved through an empirical method where
time and frequency features of motion are derived from the signal spectogram PS(t, f) and depend on
few strong-motion indicators, such as Arias intensity (AI) (Arias, 1970) and the significant duration.
According to Sabetta and Pugliese (1996), the spectogram can be factorized as,

PS(t, f) = PSτ (f)Pa(t) (5.1)

where PSτ (f) is the power spectral density function at time τ and Pa(t) is the instantaneous average
power. In the original work of Sabetta and Pugliese (1996), PSτ (t) is represented by a collection
of power spectral densities described in terms of spectral moments. Pousse et al. (2006) propose to
replace this expression by the following function:

PSτ (f) =
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where S(f) is the Fourier spectra, fc is the corner frequency and Fc(τ) is the time evolution of the
central frequency. The original lognormal shape for S(f) introduced by Sabetta and Pugliese (1996)
was modified to a ω−square model to correct the deficit of energy in the low-frequency part of the
Fourier spectra. Additionally, Pousse et al. (2006) propose to model the instantaneous power as:
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in order to take into account the arrival time, energy, and broadening of the P and S pulses with
distance, as well as the existence of scattered waves that produce the coda of the accelerogram. In
the previous expression, µp, µs, σp and σs are the expected mean values and standard deviation of the
distribution of parameter t for the P and S pulses, respectively. The constant T and A are fixed by
the continuity condition of the function and its derivative at t = Tcoda. In equation (5.3), Qc is the
frequency dependent coda Q−value associated to coda decay.

Finally, the simulation of the ground motion is then performed summing Fourier series with time-
dependent coefficients derived from PS(fn, t):

a(t) = 2
N∑

n=1

√

2πf0 PS(fn, t) cos (n2πf0t+ φn) (5.4)

where a(t) is the acceleration, f0 is the fundamental frequency and φn the phases. In the original
Sabetta and Pugliese (1996) model the difference among the simulated accelerograms was only due to
random phase φn. To better capture the variability of the observed ground motion, a Monte Carlo
exploration of the strong-motion indicators (e.g. tSR and AI), source parameters and envelope form
(σs and Q(f)) was introduced to the model by Pousse et al. (2006).
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In the original work of Sabetta and Pugliese (1996), the model was calibrated using predictive
equation from Italian strong-motion dataset. In the paper of Pousse et al. (2006), the model was
calibrated with Japanese data recorded by the K-net array. The generation tool used here corresponds
to a calibration of the model conducted by the same authors, using the suitable west eurasia database
described in Fukushima et al. (2003).

Due to lack of near-fault records in the west Eurasian database, Fukushima et al. (2003) add
data from other tectonic regions. However, added records are associated with the same earthquake
category, i.e. shallow crustal earthquakes in active regions. According to Douglas (2006), suitable
crustal records for the French Antilles must be chosen conform to moment magnitude Mw between
5.3 and 7.5 and focal depth inferior to 30km. As earthquake records included in the database used
to calibrate synthetic generator satisfy these criteria, obtained motions agrees with expected crustal
motions for French Antilles.

5.4 Analytical fragility curves

This section describes the adopted methodology to construct fragility curves on the basis of nonlinear
dynamic analysis. The procedure used here for establishing the fragility curves for seismic structural
response follows that proposed by Shinozuka et al. (2000). A strategy to estimate the amount of in-
formation provided by an earthquake selection to construct fragility curves is developed and presented
in the following.

A Bernoulli experiment is a random experiment in which the outcome can be classified in one of
two mutually exclusive ways: success or failure. If F (θ) denote the probability of success on each trial
and Y the random variable itself, the probability density function (pdf) can be written as:

f(y, θ) = [F (θ)]y [1− F (θ)]1−y (5.5)

where y is a realization of the random variable Y and is equal to 1 for a success and equal to 0 for
a failure. θ regroups the parameters describing F (θ). A sequence of Bernoulli trials occurs when
a Bernoulli experiment is performed several independent times and that the probability of success
remains the same from trial to trial. For a sample y1, y2, . . . yn of n values from Y , the multivariate
probability density associated with our observed data f (y1, . . . , yn; θ) as a function of θ with y1, . . . , yn
fixed, is the likelihood function:

L
(
y; θ
)

=
N∏

k=1

[F (θ)]yk [1− F (θ)]1−yk (5.6)

F (·) can be interpreted as the probability of exceeding a specific value d of a response (usually
damage) for a given earthquake severity ak, thus the fragility curve F (d|ak; θ). Consequently, yk = 1
or 0 depending on whether or not the structure sustains the state d for an earthquake severity ak.
Under the log-normal assumption of Shinozuka et al. (2000), F (·) takes the analytical form:

F (d|ak;α, β) = Φ

[
1

β
ln
( ak
α ā

)]

= F (ak) (5.7)

in which Φ[·] is the standardized normal distribution function. α and β are two parameters describing
the fragility curve. We introduce here a normalization parameter ā to obtain a non-dimensional value
of α, for example, the mean value of AIout of the considered ground motions.

The method of maximum likelihood estimates α and β by finding the values that maximize
L(y;α, β). Since maxima are unaffected by monotonous transformations, the problem is equivalent to
maximize:

lnL =
n∑

k=1

[yk lnF (ak) + (1− yk) ln (1− F (ak))] (5.8)
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hence, solving:

∂ lnL
∂α

=
∂ lnL
∂β

= 0 (5.9)

Thus, after some algebra, the maximum condition can be expressed by:

n∑

k=1

Φ′(ak)
αβ

[

− yk
F (ak)

+
1− yk

1− F (ak)

]

=

n∑

k=1

Iα(yk) = 0 (5.10)

n∑

k=1

Φ′(ak)
β2

ln
( ak
α ā

)[

− yk
F (ak)

+
1− yk

1− F (ak)

]

=

n∑

k=1

Iβ(yk) = 0 (5.11)

The previous system of equations can be solved straightforwardly using standard optimization
algorithms. The amount of information of Fisher provided by a n-sample about the set of parameters
θ can be written as:

Ii,j(θ) = Cov

[
∂ lnL
∂θi

,
∂ lnL
∂θj

]

= E

[
∂ lnL
∂θi

.
∂ lnL
∂θj

]

− E
[
∂ lnL
∂θi

]

E

[
∂ lnL
∂θj

]

(5.12)

where Ii,j is the general term of the symmetrical positive-definite Fisher information matrix, Cov[·]
denotes the covariance and E[·] the expectation. This matrix corresponds to a measure of the ability
of the data to estimate the set of parameters α and β. Developing for the expectation value of the
partial derivative with respect to α:

E

[
∂ lnL
∂α

]

= E

[
n∑

k=1

Iα(Yk)

]

=

∫

y1

. . .

∫

yn

n∑

k=1

Iα(yk) f(y1)dy1 . . . f(yn)dyn

=

∫

y1

Iαf(y1)dy1

∫

y2

. . .

∫

yn

f(y2)dy2 . . . f(yn)dyn

︸ ︷︷ ︸

=1

+ . . .

+

∫

yn

Iαf(yn)dyn

∫

y1

. . .

∫

yn−1

f(y1)dy1 . . . f(yn−1)dyn−1

︸ ︷︷ ︸

=1

= nE [Iα(Y )] (5.13)

Now, using the properties of the pdf f(y) and assuming that the sample size n is a large value, the
expectation can be approximated by the mean:

E [Iα(Y )] ≈ 1

n

n∑

k=1

Iα(yk;α, β) (5.14)

If the estimators α̂ and β̂ values of the fragility curve are used, right-hand term of the previous
expression is approximatively equal to zero. Similar analysis can be conducted for the expected value of
the partial derivative with respect to β. Consequently, assuming a large number of sampling and using
maximum likelihood estimators, the general term of the Fisher information matrix can be estimated
as:

Îi,j(θ) ≈ E
[
∂ lnL
∂θi

.
∂ lnL
∂θj

]

(5.15)
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Developing for example the cross parameter term Îα,β:

E

[
∂ lnL
∂α

.
∂ lnL
∂β

]

=

∫

y1

. . .

∫

yn

(
n∑

k=1

Iα(yk)

)

.

(
n∑

k=1

Iβ(yk)

)

f(y1)dy1 . . . f(yn)dyn

=

∫

y1

Iα(y1)Iβ(y1)f(y1)dy1

∫

y2

. . .

∫

yn

f(y2)dy2 . . . f(yn)dyn

︸ ︷︷ ︸

=1

+ . . .

+

∫

y1

Iα(y1)f(y1)dy1

∫

yn

Iβ(yn)dyn

∫

y2

. . .

∫

yn−1

f(y2)dy2 . . . f(yn−1)dyn−1

︸ ︷︷ ︸

=1

+ . . .

. . .+

∫

yn

Iα(yn)Iβ(yn)f(yn)dyn

∫

y2

. . .

∫

yn−1

f(y2)dy2 . . . f(yn−1)dyn−1

︸ ︷︷ ︸

=1

= nE [Iα(Y ) Iβ(Y )] +
n!

(n− 2)!
E [Iα(Y )] .E [Iβ(Y )] (5.16)

where ·! denotes the factorial. In a similar manner, assuming a large number of sampling and using
maximum likelihood estimators, it is easy to probe that terms of estimators of Fisher information
matrix can be computed as:

Îα,α =
n∑

k=1

(
Φ′(ak)

α̂ β̂

)2 [

− yk
F (ak)

+
1− yk

1− F (ak)

]2

(5.17)

Îα,β =

n∑

k=1

(Φ′(ak))
2

α̂ β̂3
ln
ak
α̂ ā

[

− yk
F (ak)

+
1− yk

1− F (ak)

]2

(5.18)

Îβ,β =

n∑

k=1

(
φ′(ak)

β̂2

)2 (

ln
ak
α̂ ā

)2
[

− yk
F (ak)

+
1− yk

1− F (ak)

]2

(5.19)

In order to obtain a bound of the variance associated to estimators of parameters, it is possible to
use the Cramér-Rao inequality or the information inequality. For an estimator of a scalar parameter θ,
the variance of any unbiased estimator θ̂ of θ is lower-bounded by the inverse of the Fisher information
I(θ):

Var
[

θ̂
]

≥ 1

I(θ) (5.20)

where V [·] denotes the variance. For the multi-parameter case, if Θ denotes the estimator of a function
of the parameters θ and E[Θ] = ψ (θ), the Cramér-Rao bounds of the covariance matrix of Θ satisfies:

Cov [Θ] ≥
∂ψ(θ)

∂θ
[I(θ)]−1

(
∂ψ(θ)

∂θ

)t

(5.21)

where the upperscript t denotes the transpose. If Θ is an unbiased estimator of θ, i.e. ψ(θ) = θ, then
the Cramér-Rao bound reduces to:

Cov [θ] ≥ [I(θ)]−1 (5.22)

thus, the inverse of the Fisher information matrix provides the Cramér-Rao bounds, i.e. the relative
covariances of the simultaneous estimation of different parameters from a set of realizations. Under
certain weak regularity conditions, the maximum likelihood method is asymptotically optimal. Hence,
the bias of the estimator tends to zero as the sample size increase to infinity. Additionally, the method
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achieves the Cramér-Rao lower bound asymptotically. In practice, these properties are approximately
true when the sample size is moderately large (van der Vaart, 2000). Hence, assuming that the number
of observations is large enough to satisfy asymptotic properties, the Fisher information matrix can be
estimated by the observed information matrix.

Fisher information matrix is used in this chapter to control the amount of information provided by
a selection of ground motions to construct the fragility curve associated to the probability of exceeding
a specific value of a response. For example, if the studied response is a level of damage, intuitively a
large collection of ground motions is required to explore higher levels of damage (relative rare events)
in comparison to low levels of damage. Studying the evolution of the amount of information provided
with the increasing of the number of motions considered, some guidelines regarding the size of the
database required to obtain a reliable fragility curve for a specific level of damage can be derived.

5.5 Numerical results

As previously described, two kinds of dynamic analyses were carried out: a complete soil-foundation
SSI-FE approach and a two-step T-S strategy. Additionally, in order to reduce the CPU-runtime,
equivalents 2D models were constructed for both SSI-FE and T-S approaches. Full 3D models were
studied using the earthquake selection described in §5.3.1, thus a total of 40 dynamical analyses were
carried out for each SSI-FE and T-S approaches. Equivalents 2D models for both SSI-FE and T-S
approaches were subjected to synthetic ground motions. A total of 200 input motions were generated
using the nonstationary stochastic procedure described in §5.3.2. This number is justified below, in
terms of the amount of information provided to generate reliable fragility curves.

5.5.1 Input motions

In order to highlight the differences of the frequency contents between both earthquake collections at
outcropping level, Fig.5.6 displays 5% damped elastic response spectra shapes (normalized to ground
acceleration). Computed spectra for 40 selected real motions, spectra envelopes and reference spectrum
for soil class S0 in seismic zone III (French Antilles) according to French seismic design guidelines
defined in PS-92 (1999) are presented in Fig.5.6a. Fig.5.6b shows the spectral shape envelope, mean
shape, one standard deviation and code reference spectrum for the 200 generated motions.

(a) Real earthquake selection (b) Synthetic ground motions

Figure 5.6: 5% damped elastic response spectra shapes.

Most of the spectra shapes presented in Fig.5.6a are compatible with the French seismic design
spectrum. Nevertheless, some of them exhibit large long-period spectral ordinates. As described in
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§5.3.1, real earthquakes were selected from stations placed in geological conditions compatible with
French Antilles on the basis of strong-motion indicator values. Additionally, as site effects are explicitly
taken into account in our computations, only records on rock or stiff soil were used. Nevertheless,
long-period content noticed in some motions might indicate some site effect associated to the recording
site. In order to prevent strong incompatibilities between selected ground motions and a target design
spectrum, a spectral ordinates matching criteria can be added to the selection procedure as suggested
by Bommer and Acevedo (2004).

Generated ground motions shape spectra displayed in Fig.5.6b agrees satisfactorily with the French
design spectra. Indeed, spectral ordinates of mean spectrum for periods smaller than 0.5s approxi-
mately coincide with those of design spectrum. For periods large than 0.5s, spectral ordinates are in
general larger than those of the design spectrum, specially for periods larger than 1s.

5.5.2 Soil response

In order to define the input motion for the T-S approach (corresponding to the first step), a free field
dynamic analysis of the soil profile was performed. Figure 5.7 shows the simulation values representing
the peak ground acceleration (PGA) obtained at free field with respect to maximum acceleration
amplitude at outcropping bedrock (aout) for both, earthquake selections and synthetics motions. It
is possible to see that for weak base acceleration the amplification is near to 3 times the acceleration
imposed at outcropping. It is noted that due to soil non-linearity the amplification of the ground
response decays with the amplitude. For very strong motions in Fig.5.7a, the amplification vanishes
and de-amplification appears for two cases. A second order tendency curve is fitted by least-squares
to data and added to Fig.5.7a. This tendency curve has been plotted in Fig.5.7b too.
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Figure 5.7: Computed PGA in terms of the acceleration amplitude imposed at outcropping bedrock
aout

Concerning the acceleration amplitudes of both studied databases, outcropping acceleration of syn-
thetic ground motions lay approximately between 0.05g and 0.2g. In this range, the computed PGA
agrees satisfactorily with the tendency curve obtained from real ground motion selection. Dispersions
displayed in Fig.5.7b are related to variation of the frequency content of the input motion. Conse-
quently, in this interval, the observed soil response for synthetic ground motions agrees in this interval
with the responses obtained for the earthquake selection. For real motion selection, the acceleration
amplitude imposed at outcropping varies between 0.05g and 0.9g. Consequently, large variation of the
non-linear soil behavior is expected for this database.
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5.5.3 Effect of the DSSI on the dynamic response of the system

In order to assess the influence of the DSSI effects on the dynamic non-linear structural response,
the results of the two approaches (SSI-FE and T-S) for the studied building are shown in Fig.5.8a
for the full 3D model. Results are presented in the form of scatter plots of the maximum value of
the computed inter-story drift ISDmax,% normalized by the inter-story height that was observed for
each record as a function of the severity parameter of the earthquake. In order to use a common
reference for both T-S and SSI-FE approaches, severity measures at outcrop are used for these figures
on the x-axis. In general, it is accepted that the use of a pure acceleration amplitude as the measure
of severity of earthquakes is not ideal because it does not contain information about duration and
the frequency content. This aspect is critical for systems involving stiffness degradation, where the
duration and frequency content of strong motion have an important effect on the response of the
system (Koutsourelakis et al., 2002). Hereinafter, we use the Arias intensity of acceleration at outcrop
AIout as the ground motion severity measure.
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Figure 5.8: Effect of the DSSI on the dynamical response for the full 3D model under real ground
motion selection

Fragility curves usually express the probability of reaching a damage state for a given ground
motion severity. Similarly to §2.4.3, the damage index used in this chapter to evaluate the structural
damage of the structures is based on the damage model for reinforced concrete introduced by Park and
Ang (1985). Since the inelastic behavior is confined to plastic zones near the ends of some members, the
relation between element and overall structure integrity is not direct. According to the used structural
non-linear model, for each potential hinge i, it is possible to compute a local index of damage DIloc,i:

DIloc,i =
θpm,i
θpu

+ λp
1

Mp
y,i θ

p
u

∫

t

Mp
i dθ

p
i (5.23)

where θpm,i is the maximum rotation reached during the load history in the plastic component, θpu is
the ultimate rotation capacity, Mp

y,i is the yield moment of the plastic component and the integral
corresponds to the energy dissipated in the section. λp is a model constant parameter. For nominal
strength deterioration of reinforced concrete sections a value of 0.1 for this parameter has been sug-
gested by Park and Ang (1985). Finally, the θu value corresponds to the largest cumulated plastic
rotation of the hinges at the end of incremental pushover analysis.

Similarly to §2.4.3 and Hwang and Huo (1994), the overall damage index is computed using weight-
ing factors based on dissipated hysteretic energy at each potential hinge i:
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DIov =
∑

i

λiDIloc,i with λi =

∫

t
Mp
i dθ

p
i

∑

i

∫

t
Mp
i dθ

p
i

(5.24)

where λi is the energy weighting factor of the potential hinge i. This parameter was calibrated in
terms of ultimate plastic hinge rotations observed during incremental pushover test. Hence, the value
of DIov corresponds to a relative damage to pushover collapse damage state.

Fig.5.8b displays the computed overall damage index of the building for SSI-FE and T-S com-
putations using the 3D model. When DSSI effects are taken into account, in general a reduction of
damage index is found. Assuming that a threshold limit for slight structural damage can be fixed at
DIov < 0.2 (Hwang and Huo, 1994), the SSI-FE computations show that this limit is reached only
if AIout is larger than 0.1m/s. Furthermore, only for AIout > 1m/s the total collapse is found, i.e.
a DIov near to 1. For some motions in the intermediary range 0.1 < AIout < 1m/s, T-S approach
provides a conservative prediction of the expected damage. However, results given by two approaches
are relatively close.
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Figure 5.9: Comparison of dynamical non-linear responses using equivalent 2D and 3D models

In order to complete validations of the equivalent 2D model constructed for the target building,
Fig.5.9 shows the non-linear dynamical responses associated to 40 real motions in terms of the nor-
malized maximum interstory-drift ISDmax,% . Fig.5.9a displays the results obtained following T-S
approach, thus associated to fixed base structural model. In general, results follow the same tendency
with variable differences depending on the considered motion. Fig.5.9b presents the same comparison
for the SSI-FE computations. Similarly to T-S computations, results are relatively close, providing
over or under estimations of the ISDmax,% depending on the input motion. It can be concluded that
the accuracy of the proposed 2D equivalent models is more dependent on the frequency content than
the amplitude of the input motion. Indeed, depending on the frequency characteristics of the motion,
low period torsional modes (neglected in 2D models) might be activated. Nevertheless, responses are
in general accurate enough for the seismic vulnerability assessment sensibility analysis presented in
§5.5.5.

5.5.4 Fragility curves for real motions

Fragility curves generated describe the probability of reaching or exceeding a damage state as a function
of Arias intensity at outcropping AIout. In this study, two damage states are quantified in terms of
DIov: slight to minor (DIov ≤ 0.2) and moderate (0.2 < DIov ≤ 0.4), that agrees with the ranges
suggested by Hwang and Huo (1994).
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Figure 5.10: Computed fragility curves following both approaches for full 3D models

Fig.5.10 displays the computed fragility curves for the damage states related to the damage index
defined above for full 3D computations using the selection of 40 real motions. Fig.5.10a shows the
computed fragility curves for the first damage index threshold (DIov ≥ 0.2) obtained following T-S
and SSI-FE approaches. The fragility curves reflect the variations of the computed damage index
obtained for each case (Fig.5.8b), thus a general reduction of seismic demand tendency is observed
when DSSI effects are included. Indeed, during dynamic loading soil dissipates energy by both wave
radiation and material damping, reducing the effective energy transmitted to superstructure. In
contrast in T-S approach only material damping is included in the analysis. Nevertheless, the state
of soil in the vicinity of the foundation is not the same in both cases. When the superstructure is
included in the model, the effective stress under the foundation grows resulting into an increase of the
soil stiffness. This modification of stiffness alters hysteretic dissipation during the dynamic loading,
inducing in general, a reduction of material damping compared to free field situation. In this case, for
weak to moderate severity motions, added radiative damping compensates the stiffness-increase effect
producing a beneficial effect over the seismic response. Whereas, for strong motions, the benefic effect
of DSSI seems to vanish. Indeed, according to Fig.5.8b, predicted damage index for both T-S and
SSI-FE approaches are closer for severe motions compared to weak or moderate earthquakes. Fixing
second threshold at DIov = 0.4, responses are split in the same groups for both T-S and SSI-FE
approaches, consequently the same fragility curve is obtained (Fig.5.10b).

5.5.5 Fragility curves for synthetic motions

Fragility curve derived from 3D computations were constructed using a fixed data base of 40 motions.
However, from a statistical point of view, it is desirable to evaluate the reliability of these curves. To
reach this goal, we study the amount of information provided by the motion sample about the set of
parameters α and β controlling the shape of the fragility curve. Due to large number of realizations
required to conduct this analysis, we develop the equivalent 2D model described in §5.2.2. Each
realization consists in the non-linear time history analysis of the 2D plain-strain model for a synthetic
motion.

In order to highlight the effects of the DSSI on the dynamic response, Fig.5.11 shows the computed
normalized maximum interstory drift ISDmax,% and the overall damage index DIov obtained following
T-S and SSI-FE approaches. As for the 3D computations and real motions selection, the general
tendency is a reduction in ISDmax,% and consequently in damage. The beneficial effect of the DSSI
coincides with the previous observation (3D case) for the same range of Arias intensities. Similarly,
combined effect of radiative damping, modification of vibrating modes and hysteretic soil dissipation
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Figure 5.11: Effect of the DSSI on the dynamical response for the equivalent 2D models using synthetic
ground motions

due to its non-linear behavior, produces a general reduction of the structural seismic demand. Different
effects regarding the DSSI role on the dynamic response of systems have been extensively treated in
previous chapters and are omitted here. The problem addressed in this section is the construction of a
reliable fragility curve including DSSI effects. However, the statistical study described in the following
can be carried out for any other fragility analysis.
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Figure 5.12: Computed fragility curves following both approaches for equivalent 2D models

Assuming that the 200 synthetic motions provide enough information to estimate in a reliable
way the parameters defining the fragility curve, the maximum likelihood method can be used to
compute numeric values of the estimators α̂ and β̂. Using the procedure described in §5.4, Fig.5.12
shows computed fragility curves for two levels of damage DIov = 0.2 and 0.4 for both T-S and SSI-FE
approaches. It should be noted that an Arias intensity range of 0.05−0.47m/s is explored by synthetic
ground motions, while log-normal assumption allows extrapolation beyond this range. Doubtlessly, the
accuracy of computed fragility curve for large motion severity range is reduced. The obtained fragility
curve for the first level of damage (DIov > 0.2) agrees with the tendencies of the dynamical responses,
i.e. a general reduction when DSSIs are included. However, for the second level of damage, obtained
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fragility curves have an unexpected shape showing a crossing near AIout = 0.5[m/s]. In principle, this
abnormality might be attributed to a lack of information relative to this level of damage. In order
to quantify this aspect, we will study the evolution of the information provided by a variable size of
motion database over the parameters α and β describing the fragility curve.

The effect of parameters α and β on the shape of the fragility curve, can be highlighted by
developing the logarithmic argument of the corresponding analytical expression (5.7):

F (d|ak;α, β) = Φ

[
1

β
ln ak −

1

β
ln (α ā)

]

(5.25)

consequently α controls the relative position of the curve on the ak axis (AIout in Fig.5.12), and β
defines both the slope and the position. We repeat the computation of estimators of these parameters
for a motion database size increasing from 105 to 200 (Fig.5.13). The number of 105 was selected to
ensure at least one case surpassing the second level of damage for SSI-FE computation. Of course, as
synthetic motions are randomly generated, this minimum database size is controlled by the intrinsic
randomness of the synthetic generator. The normalization variable ᾱ has been computed as the mean
of the 200 AIout values and kept constant for this analysis.
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Figure 5.13: Evolution of parameters α and β with the number of samples considered

According to Fig.5.13, both α and β estimators have stable values after 105 realizations for the
first level of damage. In contrast with DIov > 0.2 level, the second level of damage shows strong
variation of estimated values for these parameters. When DSSI is included, estimated values of α and
β are approximately stable after 120 realization. For T-S approach two jumps can be noticed, close
to 150 and 180 realizations. These realizations corresponds to additional cases showing DIov > 0.4.
Consequently, for this size of database, general tendencies of the parameters are extremely sensible
to additional cases sustaining the studied level of damage. It can be concluded that despite relative
stability of the numeric values of the estimators, the study of the evolution with the number of
realizations can provide an erroneous idea of convergency.

Stoping the number of realizations at 140, the obtained fragility curves for the second level of
damage are displayed in Fig.5.14. These curves have a more reasonably shape than those in Fig.5.12b,
nevertheless, they include less information regarding α and β. According to expression (5.25), the
increase of the value in β for SSI-FE case close to realization number 150 reduces the slope of the
fragility curve and, combined with the increase of the value of α, shifts the fragility curve to the left.

In order to study the evolution of the information with the number of realizations, it is convenient
to introduce a geometric interpretation of the Fisher information matrix. Indeed, Fisher information
is the negative of the expectation of the second derivative of lnL (5.8) with respect to parameters.
Thus, it can be seen as a measure of the sharpness of lnL near the maximum likelihood estimate of
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Figure 5.14: Computed fragility curves following both approaches for DIov > 0.4 using 140 realizations

the parameters. In this case, lnL corresponds to a surface in the α− β plane. Consequently, a blunt
surface has low expected second derivative (low information), while a sharp one has a high expected
second derivatives (high information). In order to illustrate this geometrical interpretation in this
case, Fig.5.15 presents iso-values of lnL around the estimators α̂ and β̂ over a window of ±0.3 and
±0.2 for α and β axes, respectively. Ten contours are plotted in each case, thus relative separations
between successive iso-values indicate the sharpness of the surface lnL. Optimal value satisfying (5.9)
is represented by a red cross. It can be noticed that a sharper surface, i.e. with more associated
information, is found for T-S approach compared to SSI-FE approach for the same level of damage.
Thus, for the same number of realizations, T-S fragility curve is in some sense more reliable than the
one for SSI-FE approach.

DIov > 0.2 (T-S)
# of samples = 200

α [−]

β 
[−

]

0.6 0.7 0.8 0.9 1 1.1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(a) Two-step approach

DIov > 0.2 (SSI-FE)
# of samples = 200

α [−]

β 
[−

]

1.2 1.3 1.4 1.5 1.6 1.7

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

(b) SSI-FE approach

Figure 5.15: Contours of lnL around α̂± 0.3 and β̂ ± 0.2 for the level of damage DIov > 0.2

In order to associate this surface sharpness with a variability of the parameters α and β, Fig.5.16a
displays the evolution of the eigenvalues of the Fisher information matrix Ii,j(α, β) associated to the
first damage level as a function of the number of realizations (i.e. DIov > 0.2). Fig.5.16b shows the
corresponding orientation of eigenvectors using a polar reference in terms of the angle θ with respect
to the axis α.

Computed eigenvalues agree with the iso-values represented in Fig.5.15. Thus, for the first level
of damage, T-S provides more information (larger values of λ1 and λ2) compared to SSI case. Ad-
ditionally, values of both eigenvalues are of the same order after 130 realizations, that agrees with
the approximate round shape of contours of lnL. In SSI-FE case, first eigenvalue (λ1) is approxi-
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Figure 5.16: Eigenvalues and eigenvectors of Fisher information matrix evolution for DIov > 0.2

mately three times larger than λ2, producing approximately elliptic iso-values around the optimal. It
is also interesting to analyze the orientation of eigenvectors. In T-S approach, orientation of the first
eigenvector is close to α axis (θ1 ≈ 180°), thus a better description of this parameter is provided by
the database. In this case, the second eigenvector approximately coincides with β axis (θ2 ≈ −90°).
While, for SSI-FE approach, eigenvectors are rotated approximately 60° with respect to α − β axes.
Thus, there is a strong covariance between α and β in this case.
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Figure 5.17: Evolution of lower-bounds of parameters for the overall damage index DIov > 0.2

Concerning the evolution of eigenvalues, it can be noticed that eigenvalues grow linearly after 130
realizations in T-S case. That means that the amount of information grows with the same rate as that
of the number of samples n, i.e. λ

n
is approximately constant. A better way to study the evolution of

the information with the number of samples can be conducted in terms of the variance or the standard
deviation of the parameters. According to Cramér-Rao bound, the variance of any unbiased estimator
is at least as high as the inverse of the Fisher information. In terms of the eigenvalues, the variance of
the parameters following the direction of the eigenvectors i can be lower-bounded by 1

λi
. Or by 1√

λi

for the standard deviation.

Fig.5.17 shows the evolution of the lower bound of standard deviation of the parameters σi in the
eigenvalue direction i. Due to orientation of eigenvalues for T-S approach and for DIov > 0.2 damage
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level, the values of σ1 and σ2 can be interpreted directly as lower-bound of the standard deviation of
α and β, respectively. Thus, according to Fig.5.17a and Fig.5.12a, the value of α obtained with 200
realizations is approximately equal to 0.86 with a standard deviation of at least 0.04, similarly, 0.37
for β with a standard deviation of at least 0.045. Consequently, coefficients of variation of at least
5% and 12%, for α and β respectively are obtained. This information might be used to construct
confidence intervals for α and β and define families of fragility curves by varying the confidence on
the parameters for example. However, the strategy described before gives a lower-bound of standard
deviation of parameters defining fragility curve. Consequently, the use of this information to estimate
confidence intervals requires judgement.

Due to the orientation of eigenvectors for SSI-FE approach, the analysis of the variance of the
estimated parameters is conducted directly with the inverse of the Fisher information matrix according
to expression (5.22). Thus, Fig.5.17b displays the evolution of the lower-bounds of the covariance
matrix terms for both approaches associated to the first level of damage. It can be noticed that
the cross term Covα,β is near to zero after 130 samples in T-S case, while it is negative and of the
same order as the diagonal terms for the SSI-FE approach. These curves confirm the evolution of
orientations shown in Fig.5.16. Regarding the diagonal terms of the bound covariance matrix, large
uncertainty is associated to α parameter in comparison to β for SSI-FE case, that is the opposite of
T − S case. Additionally, variances in SSI-FE approach are significantly larger than those in the T-S
approach. Consequently, larger uncertainties are associated to the position rather than to the slope of
the fragility curve. These conclusions can not be derived directly from the evolution of α̂ or β̂ with the
number of samples (Fig.5.13). Thus, it can be concluded that the apparent stabilization of estimators
must not to be interpreted as a convergency of the fragility curves. In this case, curves associated to
SSI-FE are less reliable on a statistically point of view compared to those derived from T-S results.
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Figure 5.18: Contours of lnL around α̂± 0.4 and β̂ ± 0.3 for the level of damage DIov > 0.4

Concerning the second level of damage (DIov > 0.4), Fig.5.18 shows the iso-values of lnL for 200
realizations, around the optimal values of α̂ and β̂ for a window of ±0.4 and ±0.3 in α and β axes,
respectively. Ten contours are plotted in each case, to make comparisons between both approaches
possible. According to this figure, there are large uncertainties regarding one of the principal directions
(large separation in iso-values). Fig.5.19 shows the corresponding eigenvectors and eigenvalues.

It can be noticed that the first eigenvalue (λ1) is very close to β axis in both cases (θ1 ≈ 80°).
Consequently, second eigenvector corresponds approximately to α value. According to the numerical
value of λ2, there is very few information regarding α, i.e. the relative position of the fragility curve
in the AIout axis (Fig.5.12b). Additionally, according to the evolution of λ1 with the number of
samples, information provided by the motions in T-S case is very erratic, while λ1 for SSI-FE grows
monotonically with the number of samples. Indeed, there is an abrupt broke near to 150 realizations
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Figure 5.19: Eigenvalues and eigenvectors of Fisher information matrix evolution for DIov > 0.4

in T-S case due to the apparition of realizations satisfying the damage criterion. Thus, for this level of
damage, the database is not large enough and there is a great sensibility to additional cases sustaining
the studied level of damage. Even if evolution of λ1 for the SSI-FE analysis seems stabilized (λ1

n

approximately constant), the second eigenvalue λ2 is close to zero. Assuming that λ1 corresponds
approximately to the lower-bound of variance of β in SSI-FE case, for 200 realizations we obtain that
β̂ = 0.278 with a variance of at least 1√

λ1
≈ 0.06, thus a coefficient of variation of 20%. For the

second parameter α, as λ2 is close to zero we have a very large lower-bound standard deviation. In
conclusion, there is not enough information to construct fragility curves for this level of damage. On
the basis of these arguments, we need to increase significantly the number of realizations and/or to
add stronger records exploring a larger range of motion severity in order to increase data sustaining
the second level of damage.

Table 5.2: Eigenvalues and eigenvectors for real ground motion selection used for 3D models

T-S SSI-FE

Parameter DIov > 0.2 DIov > 0.4 DIov > 0.2 DIov > 0.4

λ1 66 21 50 33

θ1 −80° −60° −80° −70°
λ2 5 3 6 4

θ2 −170° −150° −170° −160°
To complete this analysis, it is interesting to estimate the information provided by real ground mo-

tion collection used to compute fragility curves for 3D models (§5.5.4). Rounded values of eigenvalues
and eigenvectors for T-S and SSI-FE approaches are summarized in Tab.5.2 for the 40 real motions
selected, and for the two levels of damages explored. According to eigenvector orientations, for all
combinations the first eigenvector is close to β axis (θ1 ≈ 80°) and the second eigenvector is close to
α axis, i.e. associated to the position of the fragility curve. In general, eigenvalues are significantly
smaller than those obtained for the synthetic motion study. For example, for the first level of damage
of T-S case, the lower bound of the standard deviation can be obtained as 1√

λ1
≈ 0.12. According to

the value of β̂ in Fig.5.10b, the corresponding coefficient of variation is at least of 33%. Performing the
same computation for the other parameters we obtain larger coefficients of variation. Consequently,
this 40 real motions selection give a poor description in a statistically point of view of the parameters
describing the fragility curve. This conclusion is not evident from the fragility curves, highlighting the
importance of the provided information analysis presented in this section.
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5.6 Concluding remarks

A study on the influence of DSSI on the assessment of the seismic vulnerability of buildings was
presented in this chapter. Two major aspects have been exposed. The first one consists in the devel-
opment of reasonably equivalent two-dimensional models for a given approximately regular building.
The model constructed is accurate enough for practical purposes and represents an important econ-
omy in consumption run-time. The second point is related to the development of fragility curves to
summarize results from dynamic time history analyses. A strategy to quantify the sufficiency of the
information provided by a data collection for the construction of fragility curves was introduced. This
strategy points out the importance to conduct a statistical analysis to verify the validity of the set
of parameters defining an analytical fragility curve. Unfortunately, this statistical analysis is often
neglected by many authors. Strategies exposed in this chapter were applied to a particular case of
DSSI, but they are flexible enough to be used for general situations involving soil-foundation-structure
interaction problems and fragility analyses.

Concerning the effect of the DSSI on the vulnerability assessment, according to our computations,
there is in general a reduction of seismic demand or damage when DSSI phenomena are included.
This reduction can be associated fundamentally to two phenomena: radiative damping and hysteretic
damping due to non-linear soil behavior. The two-step approach used here neglects radiation damp-
ing but includes the non-linear soil behavior in order to modify the effective motion applied to the
superstructure. Nevertheless, both effects take place simultaneously during the dynamic load and it
is extremely difficult to separate the contribution of each part in reducing seismic demand. Indeed,
effective motion transmitted to the superstructure does not correspond to the free field response be-
cause of the geometrical and inertial interactions as well as the local modification of soil behavior,
specially due to the supplementary confinement imposed by the superstructure. In summary, due to
beneficial effect of DSSI highlighted in this chapter, there is an economic justification to include DSSI
effects on seismic vulnerability analyses.
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Conclusions

Summary

In the preceding chapters we have investigated various aspects of the dynamical non-linear SSI. Even
if this problem has been the subject of numerous investigations, no simple realistic solution exists for
the introduction of the non-linear soil behavior. The major goal of this thesis was to contribute to the
understanding of the role of the non-linear soil behavior over the complete problem.

Chapter 1 provides theoretical basis for non-linear DSSI modeling using Finite Element Method.
Special developments in the used FE code GEFDyn were done, in order to increase the performance
of the code and enhance its capabilities to model structural non-linear behavior. The major issue
related to numerical modeling is the treatment of the lateral boundaries and damping. Modeling
issues associated to the treatment of the lateral boundaries and damping were explored in the form of
several numerical validations, in order to justify different adopted choices.

In Chapter 2 we looked into the influence of DSSI effects on the seismic performance evaluation of
structures. A parametric study concerning the structure, the input signal and the soil was conducted.
The main conclusion of this chapter was that the soil-structure interaction with a non-linear soil model
can vary significantly the response of the considered set of structures with respect to those with fixed
base condition. In terms of the Capacity Spectrum Method, this chapter points out that the major
challenge to quantify the non-linear SSI effects in seismic demand evaluation is to predict an accurate
global damping, able to be used in simpler approaches. Three important aspects of the problem were
detected: limitations associated to a 2D plane-strain approach, contribution of the elastic part of the
soil behavior to the DSSI and the influence of the seismic database on the obtained fragility curves.
Each aspect was studied in detail in the other chapters of this document.

In Chapter 3, a modified formulation of standard plane-strain model suitable for regular buildings
was presented. The main advantage of the proposed approach lies in the CPU time consumption
reduction. The approach was validated and successfully applied to two buildings on three different
soils. The effects of the non-linear DSSI result in a variation of the computed structural response
compared to that obtained with fixed base condition, even if the non-linear behavior of the soil is
taken into account to estimate the imposed free field motion. The evaluation of some energy dissipation
measure has been done to highlight the influence of the initial state modification induced by the self
weight of the superstructure. Though the self weigh contributes to increase the stiffness of the soil
below the foundation, this additional confinement reduces hysteretic behavior under dynamic loading,
compensating strain field generated by the superstructure oscillations. In the case of liquefiable soil,
severe motions inducing extensive pore pressure build-up result into approximately elastic structural
response. In these case, structure responds essentially as a rigid block compared to extensively stiffness
degraded soil. Generalization of DSSI effects on displacement demand for a given building on a defined
soil was unsuccessful. Large dispersion of results can be associated to the complexity of several non-
linear inter-dependant phenomena.

Chapter 4 describes the investigation conducted in order to define the contribution of the pure
elastic DSSI effects in the complete non-linear DSSI problem. With this purpose, a comparative anal-
ysis between elastic and inelastic soil behavior assumptions for two SDOF structures and two soils is
carried out. The results point out that, in general, inelastic soil behavior plays a decisive role only
when the soil is saturated. When the soil is in dry condition, an elastic DSSI approach seems to be
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accurate enough to take into account the modification of the structural response due to DSSI. Differ-
ences in structural dynamics responses are related to pore pressure generation induced in the inelastic
case and neglected when elastic soil behavior is assumed. The influence of interaction phenomenon for
the low-rise SDOF structure considered is quite erratic. Hence, depending on the characteristics of the
ground motion DSSI effects are beneficial or detrimental in dry soil case. In saturated case, inelastic
DSSI effects are in general beneficial. Regarding the studied mid-rise superstructure, in both dry
and saturated soil cases, the effects of the DSSI are favorable in reducing the expected displacement
ductility demand.

Finally, the Chapter 5, is devoted to the development of analytical fragility curves including DSSI
effects. Major attention is focused in the statistical confidence of the obtained fragility curve. With
this purpose, a strategy to study the sensibility of the two parameters defining the fragility curve
on the database in terms of the amount of information provided by the ground motion selection is
developed. A set of analytical expressions are derived in order to provide a geometrical interpretation
of the parameters describing fragility curves. Strategies presented in this chapter were applied to a
particular case of DSSI, but they are flexible enough to be used for general situations involving seismic
fragility analyses. The strategy presented points out the importance of conducting a statistical analysis
to verify the validity of the set of parameters defining an analytical fragility curve.

Overall conclusions

According to the investigation conducted in this work, except for some cases described in Chapter
4, there is in general a reduction of seismic demand or structural damage when non-linear DSSI
phenomenon is included. This reduction can be associated fundamentally to two phenomena: radiative
damping and hysteretic damping due to non-linear soil behavior. The two-step approach used as
reference throughout this work, neglects radiation damping but includes the non-linear soil behavior
in order to modify the effective motion applied to the superstructure. Nevertheless, both effects take
place simultaneously during the dynamic load and it is extremely difficult to separate the contribution
of each part in reducing seismic demand. Indeed, effective motion transmitted to the superstructure
does not correspond to the free field response because of the geometrical and inertial interactions as
well as the local modification of soil behavior, specially due to the supplementary confinement imposed
by the superstructure’s weight. Large efforts have been made in order to generalize findings with a
limited success. A series of strong-motion severity measures, structural damage measures and energy
dissipation indicators have been introduced and studied for this purpose. Nevertheless, results are in
general erratic and consequently, generalization was extremely difficult.

The results of the work illustrate clearly the importance of accounting for the non-linear soil
behavior. In this case, the major part of non-linear DSSI effects are beneficial related to decreasing
the maximum seismic structural demand. However, the non-linear DSSI could increase or decrease the
expected structural damage depending on the type of the structure, the input motion, and the dynamic
soil properties. Furthermore, there is an economic justification to take into account the modification
effects due to non-linear soil behavior. Further investigations in this direction are needed in order to
obtain more general conclusions for diverse structure and soil typologies.

Further research

The current seismic design philosophy is based on non-linear behavior of structures. Thus, design
base shear provided by design codes are intentionally much lower than the lateral strength required to
ensure an elastic structural behavior. The ratio between the lateral yielding strength required to avoid
inelastic behavior and the lateral yield required to sustain a ductility ratio demand µ is usually known
as strength reduction factor Rµ. During the last decades, several investigations have been conducted in
order to improve the reliability of the reduction factors in design provisions. Later, some investigations
were conducted in order to point out the effect of the soil conditions (e.g. Miranda and Vertero 1994).
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More recent investigations on site-dependent strength reduction factors for soil-structure interacting
systems (Ciampoli and Pinto, 1995; Rodriguez and Montes, 2000; Ghannad and Jahankhah, 2007;
Avilés and Pérez-Rocha, 2003) have shown the effects of the DSSI. Nevertheless, these studies have
been developed using standard approximations for linear elastic DSSI, thus, the effects of the non-linear
DSSI has not been considered yet. Findings presented in this work have illustrated the importance
of accounting for the non-linear soil behavior. Consequently, the development of Rµ including non-
linear site and non-linear DSSI effects can lead to a more reliable seismic design of structures. The
use of the methodology presented in this work can contribute to a better understanding of the DSSI
effects on the seismic structural design. Of course, the development of this kind of relations needs an
extensive parametric investigation on diverse soils, structures and foundations typologies. In addition,
the modified plane-strain approach presented in this work might considerably contribute to reduce the
CPU time required for such large parametric studies.

The assessment of building damage caused by ground motions requires the definition of building’s
capacity and vulnerability as a function of the demand. In this problem, there are several sources
of uncertainty: the earthquake (demand), the soil and the building itself. Only the problem of the
demand variability has been addressed in Chapter 5. Nevertheless in practice the properties of the soil
vary as much, exhibiting strong inhomogeneities very difficult to estimate. The risk of damage in soil-
structure systems including variability in both, soil and earthquake, has been studied for liquefiable
soils (Koutsourelakis et al., 2002; Popescu, 2002; Popescu et al., 2006). However, in these studies,
structural damage is estimated using foundation responses (settlement or tilt). Indeed, in these studies
the effect of the structural damage in the DSSI has been neglected assuming elastic structures. This
simplification is satisfactory for liquefiable soils when structure responds essentially as a rigid block.
However, for more general cases, the inelasticity of the superstructure must be included in the analysis.
The vulnerability assessment strategy developed in this work can be extended straightforwardly to
take into account soil variability. Indeed, the statistical confidence strategy presented in this work is
still valid for several sources of uncertainties. Consequently, this aspect could be easily studied.

Concerning the numerical modeling of the DSSI problem, this work was conducted using the so-
called direct method. The substructure method in frequency domain was employed as a tool for
numerical validation in elastic case. Nevertheless, there are methods that combine advantages of
both the direct and substructure method called hybrid method. Usually, a bounded soil domain
(near-field) is treated with FEM, while the unbounded soil domain (far-field) is treated with BEM.
When material non-linearities are taken into account in near-field, an iterative procedure is carried
out to compute interaction forces between both domains. Other sub-structuring methods as the
Domain Reduction Method (Bielak et al., 2003) can be used. These kinds of techniques are compatible
with the problem addressed in this work and might reduce some wave reflections detected when
a tied lateral approach is used. Similarly, other possible improvements to our computations are
associated to absorbing boundary conditions. In this work, we use paraxial approximation to compute
time domain impedances. This approximation is exact only for normal incident waves. Currently,
better approximations for this problem exist (e.g. Bérenger 1994; Basu and Chopra 2003). Therefore,
some reduction of wave reflections could be obtained by implementing these absorbing boundaries in
GEFDyn .

Finally, the main drawback of the adopted strategy is related to the large amount of parameters
associated to each FE model. The good performance of each model has been studied by numerical
validations under elastic assumption. The calibration of the soil constitutive model parameter has
been carried out using reference laboratory test results when available. Nevertheless, no experimental
calibrations of the complete non-linear FE models have been done. Doubtlessly, validations against
instrumented sites or physical experiments performed in a shaking table or in a centrifuge in inelastic
range are desirable.
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Appendix A

Paraxial approximation

In order to establish the paraxial approximation at the boundary Σ (Fig.1.3), the displacement us is
decomposed on a local coordinate system (e1, e2, e3) over a plane tangent to Σ (Fig. A.1a):

us = us′ = u1e1 + u2e2 + u3e3 (A.1)

x y

z

e1

e2

e3
Σ

(a) Local displacement decomposition on a tangent
plane to the boundary Σ

e1
e2

e3

kΣ

ek
uΣ (uΣ.ek)ek

e3 ∧ ek
(uΣ.(e3 ∧ ek)) (e3 ∧ ek)

(b) Definition of local coordinate system to decompose tangent
displacement on the basis (ek, e3 ∧ ek, e3)

Figure A.1: Local decomposition over a plane tangent to the boundary Σ

Using this local system, the elastodynamics equation (1.34) can be written as:

(
c2p − c2s

)
(∂11u1 + ∂12u2 + ∂13u3) + c2s (∂11u1 + ∂22u1 + ∂33u3)− ∂ttu1 = 0

(
c2p − c2s

)
(∂12u1 + ∂22u2 + ∂23u3) + c2s (∂11u2 + ∂22u2 + ∂33u2)− ∂ttu2 = 0

(
c2p − c2s

)
(∂13u1 + ∂23u2 + ∂33u3) + c2s (∂11u3 + ∂22u3 + ∂33u3)− ∂ttu3 = 0 (A.2)

where the Lamé coefficients have been replaced by the P-waves and S-waves propagation velocities

cp =
√

λ+µ
ρ

and cs =
√

µ
ρ
. Taking the Fourier transform defined by:

û = F (u) =

∫ ∞

−∞
u(t)e−i(k1x1+k2x2+ωt)dt (A.3)

the equation (A.2) in frequency domain can be rewritten as:

(
c2p − c2s

) (
−k2

1û1 − k1k2û2 + ik1∂3û3

)
+ c2s

(
−k2

1û1 − k2
2û1 + ik2∂3û3

)
+ ω2û1 = 0

(
c2p − c2s

) (
−k1k2û1 − k2

2û2 + ik2∂3û3

)
+ c2s

(
−k2

1û2 − k2
2û2 + ∂33û2

)
+ ω2û2 = 0

(
c2p − c2s

)
(ik1∂3û1 + ik2∂3û2 + ∂33û3) + c2s

(
−k2

1û3 − k2
2û3 + ∂33û3

)
+ ω2û3 = 0 (A.4)
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A.1 P, SV and SH wave decomposition

If the vector uΣ regroups the tangential motion:

uΣ = u1e1 + u2e2 and kΣ = k1e1 + k2e2 (A.5)

an equivalent form of (A.4) is:

(
cp

2 − c2s
)
(−kΣ.ûΣ + i∂3û3) .kΣ + c2s

(

− |kΣ|2 + ∂33

)

ûΣ + ω2ûΣ = 0

(
cp

2 − c2s
)
(ikΣ.∂3ûΣ + ∂33û3) + c2s

(

− |kΣ|2 + ∂33

)

û3 + ω2û3 = 0 (A.6)

The previous equations form a linear system for û3 that can be solved directly by diagonalization
using an appropriate change of variables. For example, using the standard decomposition of the
tangent displacement uΣ into P, SV and SH waves (Fig.A.1b):

uΣ = (uΣ.ek) ek + (uΣ. (e3 ∧ ek)) (e3 ∧ ek)

=

(

uΣ.
kσ
|kΣ|

)
kΣ

|kΣ|
+

(

uΣ.
e3 ∧ kΣ

|kΣ|

)
e3 ∧ kΣ

|kΣ|
= uPSV1 ek + uSH2 (e3 ∧ ek) (A.7)

where kΣ = |kΣ| ek. Replacing the tangent displacement decomposition in (A.6), and after some
simplifications we obtain:

((
ω2 − c2s |kΣ|+ c2p∂33

)
ûPSV1 + i |kΣ|

(
c2p − c2s

)
∂3û

PSV
3

)
ek+

(

c2s

(

− |kΣ|2 + ∂33

)

ûSHs + ω2ûSH2

)

︸ ︷︷ ︸

SH component

(e3 ∧ ek) = 0 (A.8)

((

ω2 − c2p |kΣ|2 + c2s∂33

)

ûPSV3 + i |kΣ|
(
c2p − c2s

)
∂3û

PSV
1

)

e3 = 0 (A.9)

The vectors ek and e3 ∧ ek are orthogonal, therefore the equation (A.8) is equivalent to two
equations. The underbraced term on (A.8) correspond to SH component and can be solved explicitly:

∂33û
SH
2 = −

(
ω2

c2s
− |kΣ|2

)

ûSH2 (A.10)

The expressions for the components P and SV form a coupled system:

∂33û
PSV
1 =

c2p |kΣ|2 − ω2

c2s
ûPSV1 − i |kΣ|

(
c2p − c2s

)
∂3û

PSV
3

∂33û
PSV
3 =

c2s |kΣ|2 − ω2

c2s
ûPSV3 − i |kΣ|

(
c2p − c2s

)
∂3û

PSV
1 (A.11)

Using the following notation:

ξ2p =
ω2

c2p
− |kΣ|2 and ξ2s =

ω2

c2s
− |kΣ|2 (A.12)

the above equations become:
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∂33û
SH
2 = 0

∂33û
PSV
1 = −

c2p
c2s
ξ2pû

PSV
1 − i

|kΣ|
(
c2p − c2s

)

c2s
∂3û

PSV
3

∂33û
PSV
3 = −c

2
s

c2p
ξ2s û

PSV
2 − i

|kΣ|
(
c2p − c2s

)

c2p
∂3û

PSV
1 (A.13)

The solution of the previous differential system can be easy carried out by replacing test solutions
of the form ui = eλxi . This substitution leads to a characteristic polynomial in terms of λ. As
we are interested only in the solutions propagating downwards (outgoing waves following −e3), only
the Im(λ) < 0 solutions are kept. Imposing these considerations, the solution for the displacement
components are:

ûPSV1 = AP e
−iξpx3 +ASV e

−iξsx3

ûSH2 = ASH e
−iξsx3

ûPSV3 = − ξp
|kΣ|

AP e
−iξpx3 +

|kΣ|
ξs

ASV e
−iξsx3 (A.14)

In order to compute the constants AP , ASH and ASV we suppose to know the displacement
us(x3 = 0) over the boundary Σ. Evaluating the system (A.14) for x3 = 0, and imposing the known
displacement values ûSH2 (x3 = 0), ûPSV1 (x3 = 0) and ûPSV3 (x3 = 0), we obtain:

ASH = ûSH20

AP =
|kΣ|2

ξpξs + |kΣ|2
ûPSV10

− ξs |kΣ|
ξpξs |kΣ|2

ûPSV30

ASV =
ξpξs

ξpξs + |kΣ|
ûPSV10

+
ξs |kΣ|

ξpξs + |kΣ|2
ûPSV30

(A.15)

A.2 Spectral impedance approximation

In order to construct the impedance over the boundary Σ, we need to evaluate the stress vector t(x, t)
applied on the plane perpendicular to e3. As it is assumed that the domain Ωs′ (and Ωst) is elastic:

t (x, t) =
(
λdiv (us′) I + 2µε

)
.e3 ∀x ∈ Σ (A.16)

The corresponding expression in frequency domain is:

t̂ (x, ω) = ρc2s (∂3û1 + ik1û3) e1 + ρc2s (∂3û2 + ik2û3) e2

+ρc2p
(
∂3û3ρ

(
c2p − 2c2s

)
(ik1û1 + ik2û2)

)
e3

= ρc2s (∂3ûΣ + iû3kΣ) +
(
iρ
(
c2p − 2c2s

)
kΣ.ûΣ + ρc2p∂3û3

)
e3 ∀x ∈ Σ (A.17)

The previous expression can be written in terms of the decomposition into P, SV and SH waves:

t̂ (x, ω) = ρc2s
(
∂3û

PSV
1 + iûPSV3 |kΣ|

)
ek + ρc2s∂3û

SH
2 (e3 ∧ ek)

+
(
iρ
(
c2p − 2c2s

)
|kΣ| ûPSV1 + ρc2s∂3û

PSV
3

)
e3 (A.18)

Using the displacement expressions previously obtained (A.14), it is possible to compute directly
the partial derivatives and replace them in (A.18):
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t̂ (x, ω) =
iρ

ξpξs + |kΣ|2
(

−ξpω2ûPSV10
+ c2s |kΣ|

(

|kΣ|2 + 2ξpξs − ξ2s
)

ûPSV30

)

ek

−iρc2sξsûSH20
(e3 ∧ ek) +

iρ

ξpξs + |kΣ|2
(

|kΣ|
(

ω2 − 2c2s

(

ξpξs + |kΣ|2
))

ûPSV10
− ξsω2ûPSV30

)

e3

(A.19)

The previous equation can be written in terms of a linear operator over the displacements at the
boundary:

t̂ (x, ω) = A (|kΣ| , ω) .û0 (kΣ, ω) (A.20)

where A (|kΣ| , ω) is the global impedance operator. By using an inverse Fourier transform, the corre-
sponding expression in time domain is:

t (x, t) =
1

8π3

∫ ∞

−∞
A (|kΣ| , ω) û0 (kΣ, ω) ei(kΣ.xΣ+ωt)dkΣ dω (A.21)

The equation (A.21) represents the spectral action imposed by outgoing waves propagating in −e3
direction from the boundary Σ. This action is nonlocal since depends on the displacements û0 (kΣ, ω),
i.e., the Fourier transform of u (xΣ, t) over the time t and the space xΣ. In order to obtain a local
approximation of the impedance Engquist and Majda (1977) proposed to expand the variables ξp and

ξs as a series of
|kΣ|
ξ

. For example, using a Taylor’s expansion for ξp:

ξp =
ω

cp

√

1−
c2p
ω2
|kΣ|2 =

ω

cp

(

1−
(cp
ω
|kΣ|

)2 1

2
+ . . .

)

(A.22)

Thus, the zero order and first order approximations are given by:

Zero order approximation : ξp =
ω

cp
+O

(

c2p
|kΣ|2
ω2

)

(A.23)

First order approximation : ξp =
ω

cp

(

1− 1

2

c2p
ω2
|kΣ|2

)

+O
(

c4p
|kΣ|4
ω4

)

(A.24)

The zero order approximation is the familiar solution for the one-dimensional wave propagation
problem and could be easily derived from physical considerations (Wolf, 1985; Wolf and Song, 1996).
For the three-dimensional case, the zero order approximation is accurate for high frequency waves
and for waves approximately normal to the boundary Σ (kΣ small). Some numerical instabilities are
found for high-order Taylor expansions (Engquist and Majda, 1977). An expansion using Padé series
encompasses this problem (Clayton and Engquist, 1977), in this case the series follows the recursive
form:

ξjp =
ω

cp




1−

(
cp|kΣ|
ω

)2

1 +
cp
ω
ξj−1
p

+ . . .




 with ξ1p =

ω

cp
(A.25)

In order to construct the paraxial approximation for the spectral impedance on the boundary Σ,
the expansions for ξp and ξs can be replaced in (A.19). After some simplifications, we obtain for the
zero order |kΣ| expansion:

t̂ (x, ω) = −iρcsω
(
ûPSV10

ek + ûSH20
(e3 ∧ ek)

)
− iρcpωûPSV30

e3 ∀x ∈ Σ (A.26)
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In the local reference system at the boundary (e1, e2, e3), the previous expression becomes:

t̂ (x, ω) = −iρcsωû10e1 − iρcsωû20e2 − iρcpωû30e3 ∀x ∈ Σ (A.27)

Taking inverse Fourier transform, the corresponding expression in time domain is:

t (x, t) = −ρcsu̇10e1 − ρcsu̇20e2 − ρcpu̇30e3 ∀x ∈ Σ (A.28)

If a first order |kΣ| expansion is used, the corresponding stress vector in frequency domain can be
written as:

t̂ (x, t) = (−iρcsωû10 + iρcs (2cs − cp) û30k1) e1 + (−iρcsωû20 + iρcs (2cs − cp) û30k2) e2

+ (−iρcpωû30 − iρcs (2cs − cp) (û10k1 + û20k2)) e3 ∀ x ∈ Σ (A.29)

The corresponding expression in time domain is:

t (x, t) = (−ρcsu̇10 + ρcs (2cs − cp) ∂1u30) e1 + (−ρcsu̇20 + ρcs (2cs − cp) ∂2u30) e2

(−ρcpu̇30 − ρcs (2cs − cp) (∂1u10 + ∂2u20)) e3 ∀x ∈ Σ (A.30)

It can be noticed that the previous expression is developed using only the first term of the expansion
(A.22) for ξp and ξs. In the last expression, the spatial derivatives lead to some numeric instabilities.
In this case, high order finite elements must be used to avoid strong discontinuities in the evaluation of
these terms. A detailed studied of the numerical dispersion of the paraxial approximation depending
on the order of the approximation can be found in Modaressi (1987); de Martin and Aochi (2008).

In a symbolic way, the previous relations in time domain can be summarized in terms of an operator
An for the n-order approximation over the displacement field us at the boundary Σ of the Ωs domain:

t (x, t) = A0 (u̇s) (A.31)

t (x, t) = A1

(
u̇s, ∂xus

)
(A.32)

Usually, the total displacement field on the unbounded domain Ωs′ is decomposed into an incident
field ui and into a radiant field ur:

us′ = ui + ur (A.33)

where the radiant field must vanish far enough from the boundary Σ:

lim
‖x‖→∞

ur = 0 (A.34)

At the boundary, the stress vector due to the diffraction can be computed as:

t (ur, t) = A0 (u̇r) or t (ur, t) = A1

(
u̇r, ∂xur

)
(A.35)

Using the continuity of the stress tensor at Σ and the assumption of linear elastic behaviour around
the boundary, the zero-order approximation for the total stress vector can be summarized as:

t (us, t) = −t (us′ , t)
= −t (ui, t)− t (ur, t)
= −t (ui, t)−A0 (u̇r)

= −t (ui, t)−A0 (u̇s) +A0 (u̇i) (A.36)

The extension for the case of saturated porous media is presented in Modaressi and Benzenati
(1994) for the u−p simplified dynamic Biot formulation. The extension of paraxial absorbing boundary
for a MESHLESS approach is extensively treated by Aubert (1997).
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Appendix B

Mechanical interfaces

The model takes into account the normal and the tangential discontinuities over the interface Σbs

between both solid domains Ωb and Ωs. It is assumed that both solid domains are in contact at initial
state and small-strains applies. Let n the normal vector over the interface oriented from Ωb to Ωs.
The jump of displacement defined in (1.33) can be decomposed into a normal component (gap [uN ])
and a relative tangential jump (slide [uT ]):

[uN ] = [u].n

[uT ] = [u]− [uN ]n (B.1)

If σ is the stress tensor of Ωs or Ωb, the normal stress σN and the tangential stress vector σT over
Σbs can be written as (Fig.B.1):

σN = n.σ.n

σT = σ.n− σNn (B.2)

σT

σ.n
σNn

n

Σbs

Figure B.1: Stress vector decomposition over the interface Σbs

According to action-reaction principle, the stress vector must be continuous over the interface even
if uplift or slide appears during the loading (1.32). Therefore, only displacement discontinuities are
allowed. Assuming a Mohr-Coulomb frictional behaviour, three different criteria must be satisfied:

1. No interpenetration criterion:
[uN ] ≥ 0

2. Uplift and free surface criterion:

If [uN ] > eini → σ.n = 0

where eini is the initial thickness of the interface.
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3. Contact-compression criterion:

If [uN ] ≤ eini → σN ≤ 0 and |σT | ≤ |σN | tan φ+ c

where φ is the friction angle of the interface� No sliding:

If |σT | ≤ |σN | tan φ+ c → [u̇T ] = 0� Sliding:

If |σT | = |σN | tan φ+ c → [u̇T ] = λ̇p
σT
|σT |

with λ̇p ≥ 0

where λ̇p is the plastic multiplier and c is the cohesion of the joint.

In the previous expressions | · | means the absolute value for scalars or modulus for vectors. The
condition λ̇p ≥ 0 means that if sliding occurs, it must follow the direction of the tangent stress
vector. The previous criteria are summarized graphically on the Fig. B.2a. in terms of the jump
of displacements and stresses. The uniqueness are not satisfied in these formulations, therefore as a
numerical point of view, these relations must be regularized. This regularization can be carried out
introducing an elastoplastic formulation for the jump-stress relation at the interface.

σN

[uN ]

eini

|σT |

|[uT ]|

(a) Mohr-Coulomb friction model

σN

[uN ]

eini

E

|σT |

|[uT ]|
G

(b) Regularized Mohr-Coulomb friction model

Figure B.2: Graphical representation of interface model

The jump-stress relations can be regularized introducing a set of penalization parameters E and
G related to the elastic stiffness of the interface to the normal and tangential relative displacement
(Fig.B.2b). According to general assumptions of an elastoplastic model, the normal and tangential
jump increments can be decomposed into an elastic and a plastic contribution:

[u̇T ] = [u̇eT ] +
[
u̇pT
]

[u̇N ] = [u̇eN ] +
[
u̇pN
]

(B.3)

where the upperscript e and p denote elastic and plastic contributions respectively. The evolution of
the stress vector is only related to elastic jump increments:

σ̇T = G [u̇eT ]

σ̇N = E [u̇eN ] (B.4)

The third criterion is now written in terms of plastic tangential jump:� No plastic sliding:

If |σT | < |σN | tan φ+ c →
[
u̇pT
]

= 0 and [u̇pN ] = 0
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If |σT | = |σN | tan φ+ c → ∃ λ̇p ≥ 0 t.q.

[
u̇pT
]

= λ̇p
σT
|σT |

[
u̇pN
]

= λ̇p tanψ

where ψ is the angle of dilatancy of the joint, which relates the plastic normal uplift with the plastic
sliding. For a zero value for ψ, the dilatancy vanishes and the formulation is equivalent to a Coulomb
pure friction model. When φ = ψ, the elastoplastic friction model is associated.

The computation of the plastic multiplier λ̇p can be easy carried out with the compatibility equation
derived from the friction threshold:

1

|σT |
(σT .σ̇T ) + σ̇N tanφ = 0 (B.5)

Injecting the jump-stress relations (B.4), the previous expression becomes:

G

|σT |
(σT . [u̇

e
T ]) + E[ueN ] tan φ = 0 (B.6)

Therefore, the plastic multiplier can be computed as:

λ̇p =

G
|σT | (σT . [u̇T ]) + E [u̇N ] tan φ

G+ E tan φ tanψ
(B.7)

Finally, the total stress increment at the joint is given by:

σ̇T = G [u̇T ]− λ̇pG σT
|σT |

σ̇N = E[u̇N ]− λ̇pE tanψ (B.8)

B.1 Numerical integration

The integration of the constitutive model is carried out following an explicit strategy. During a load
step n + 1, the total jump increment is divided in two parts: the first one correspond to elastic part
before reaching the limit of elasticity, and the second one is plastic increment. For an iteration k + 1
of the loading step n, the jump increments can be written as:

[u̇T ] = 1
∆t

[

uk+1
Tn+1

− uTn

]

=
1

∆t
[∆uT ]

[u̇N ] = 1
∆t

[

uk+1
Nn+1

− uNn

]

=
1

∆t
[∆uN ] (B.9)

where the time step increment ∆t is assumed to be constant during the analysis. Afterward, the step
increment is divided in two parts: γ∆t and (1− γ) ∆t. The first one is the elastic part of the increment
and second one the corresponding plastic part. The value of γ is computed as:

f
(
σTn

+ γ∆σT , σNn + γ∆σN
)
≤ 0 (B.10)

where:

f (σT , σN ) = |σT | − |σn| tanφ
∆σT = G [∆uT ]

∆σn = E [∆un]
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With γ, the elastic part of stress increment is known. Next, the plastic multiplier λ̇p is computed
with (B.7) using the plastic part of the jump increment:

[∆u∗T ] = (1− γ) [∆uT ]

[∆uN ]∗ = (1− γ) [∆uN ] (B.11)

for stress state:

σ∗T = σTn
+ γ∆σT

σ∗N = σNn + γ∆σN (B.12)

After the evaluation of the plastic multiplier, the stress increment can be written in a matrix form:

{
∆σT
∆σN

}

=




G− (1−γ)G2

H
− (1−γ)EG tanφ

H

− (1−γ)EG tanφ
H

E − (1−γ)E2 tanφ tanψ
H





{
[∆uT ]∗

[∆uN ]∗

}

(B.13)

where H = G+ E tanφ tanψ. Finally, the stress tensor at the interface for the iteration k + 1 of the
load step n+ 1 is obtained by:

σk+1
Tn+1

= σTn
+ ∆σT (B.14)

σk+1
Nn+1

= σNn + ∆σN (B.15)

The model parameters for the mechanical joint element are summarized in Table B.1.

Table B.1: Parameters for the Mohr-Coulomb joint constitutive model

Parameter Description

E normal stiffness modulus

G tangent stiffness modulus

φ friction angle

ψ dilatancy angle

eini joint thickness

c joint cohesion
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Continuous beam constitutive model

According to beam kinematics introduced in §1.2, assuming the transverse stresses are small with
respect to axial stress σ

b
er and the material is isotropic and elastic, the axial stress vector can be

computed as:

σ
b
er =

(

C : ε

)

er

=

(

C : (∂ru0rer + ∂ru1 ∧ x∗)⊗s e3
)

er (C.1)

where C is the elastic tensor of the material. In this work we are interested in material non-linear

behaviour, in this case, the axial stress vector can be written symbolically as:

σ
b
er = σ

b

(
ε
)
er = σ

b
((∂ru0rer + ∂ru1 ∧ x∗)⊗s e3) er (C.2)

It can be noticed that according to the this kinematics, the stress tensor can be written as:

σ
b
= σrr er ⊗ er + σrs er ⊗s es + σrt er ⊗s et (C.3)

C.1 Non-linear constitutive model

The non-linear material behavior is modelled by a Prandtl-Reuss elastoplastic constitutive model
(Lemaitre and Chaboche, 2001; Chen and Mizuno, 1990) with a Von Mises yield criterion and isotropic
hardening. Plastic incompressibility is assumed, i.e. the yield function f depends only of the invariants
of the deviatoric stress tensor s:

f
(

σ
b
, ǫp
)

= σeq −R− σy =
√

3J2

(
s
)
− k(ǫp)− σy (C.4)

where J2 is the second invariant of s, R = k(ǫp) is the isotropic hardening rule in terms of the
cumulative plastic strain ǫp:

ǫp =

∫ t

0

√

ε̇p(τ) : ε̇p(τ) dτ

and σy is the initial elastic limit stress. An associated flow rule and a normal hardening rule are used:

ε̇p = λ̇p
∂f

∂σ
b

=
3

2σeq
λ̇p s

ǫ̇p = −λ̇ ∂f
∂R

= λ̇p (C.5)

According to Bernouilli beams kinematics, the explicit form of s is given by:



166 C.1. Non-linear constitutive model

s =
2

3
σrr er ⊗ er −

1

3
σrr es ⊗ es −

1

3
σrr et ⊗ et + σrs er ⊗s es + σrt er ⊗s et (C.6)

When plasticity is activated, the consistency condition gives directly the plastic multiplier λ̇p:

ḟ = σ̇eq − k′(ǫp).ǫ̇p = 0 → λ̇p = ǫ̇p =
1

k′(ǫp)
σ̇eq (C.7)

Using the previous computed value of the plastic multiplier, the total incremental form can be
summarized as:

ε̇ = ε̇e + ε̇p

ε̇e =
1 + ν

E
σ̇b −

ν

E
tr
(

σ̇b

)

I

ε̇p =
3

2

1

k′(ǫp)σeq
σ̇eq s (C.8)

The expression for the hardening relation k(ǫp) can be easily derived from simple traction tests. In
this condition, the only non-zero component of the stress tensor is σ1 = σ, and the non null components
of the deviatoric stress tensor are s11 = 2

3σ and s22 = s33 = −1
3σ. The total plastic strain is ǫp = εp

and σeq = σ. In this case, the flow rule is:

ε̇p =
1

k′(εp)
σ̇ → k′(εp) =

∂σ

∂εp
(C.9)

According to the previous expression, the function R can be computed as:

R = k(εp) =

∫ ε

0
k′(εp)dεp =

∫ σ

σy

dσ = σ − σy (C.10)

Assuming a bilinear stress-strain relation (Fig.C.1), the tangent modulus k′(ǫp) can be expressed
by:

R = k(ǫp) =
E Et
E − Et

εp → k′(ǫp) =
E Et
E − Et

(C.11)

σ

εp

σy

σ
R

ǫp = εp

E

Et

Figure C.1: Graphical representation of a simple traction test and interpretation of hardening param-
eter R = k(ǫp) and k′(ǫp)

As explained in (§B.1), the numerical integration is carried out following and explicit strategy.
The strain increment predictor is divided into an elastic part and into a plastic part. Let ∆ε∗ the
plastic part of the total increment. By inverting the incremental relations (C.8), the stress increment
associated to ∆ε∗ can be computed as:

∆σ∗ = Cep
(
s, σeq

)
: ∆ε∗ (C.12)
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as the elastoplastic tensor Cep is a function of the deviatoric stress tensor, the equivalent stress σeq

and its derivative, the plastic increment is subdivided in several steps and the elastoplastic tensor
evaluated for the updated values of s , σeq and dσeq for each step.

The model parameters for the continuous beam element are summarized in the Table C.1. As
previously explained, these parameters are related to experimental results of a simple traction test.
The numerical used values are given for each example in the corresponding section.

Table C.1: Parameters for the Prandtl-Reuss constitutive model

Parameter Description

E elastic modulus

ν Poisson’s modulus

σy initial yield stress

Et hardening modulus
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Appendix D

Plastic hinges beam column elements

Beam column elements may be arbitrarily oriented in the global system. Each element must be
assigned an axial stiffness plus a major axis flexural stiffness. Torsional and minor axis flexural
stiffness may also be specified if necessary. Elements of variable cross section can be considered by
specifying appropriate flexural stiffness coefficients. Flexural shear deformations and the effects of
eccentric end connections can be taken into account too.

Yielding may take place only in concentrated plastic hinges at the element ends. Hinge deformation
is affected by the axial force and major axis bending moment only. That is, an element may be placed
in a three-dimensional frame, but is yield mechanism is only two-dimensional, in the plane of major
bending axis. The yield moments may be specified to be different at the two element ends, and for
positive and negative bending. The interaction between axial force and moment in producing yield is
taken into account approximately.

The model consists of a linear component and an ideally elastoplastic component (Fig. D.1a), so
that each beam can have only bilinear hysteresis loops at each end as a result of the nature of the
model. For this model, the initial slope on the moment-curvature diagram is determined from the
sum of the stiffness of both components while the second slope is determined by the stiffness of only
the linear component of the beam (Fig. D.1b). Plastic hinges that yield to constant moment form
an elastic-plastic component. The moments in the elastic component continue to increase, simulating
strain hardening.

rigid
zone

rigid
zone

Node I

Node J

elastic
component

elastic-plastic
component

(a) Parallel components

Ψ

M

My

elastic
component

elastic-plastic
component

complete
element

(b) Moment-curvature relationships

Figure D.1: Two-component model

D.1 Elastic stiffness matrix

An equivalent expression for the assumed displacement field u (1.15) is:
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ur = u0r − s u1t + t u1s

us = u0s − t u1r

ut = u0t + s u1r (D.1)

where u1r , u1s and u1t are the rotations around the local directions er, es and et respectively (Fig.D.2)
with the sign convention of the right-hand rule. We assume a homogenous isotropic material:

es

et

er

u0r

u0t

u0s

L

Figure D.2: Sign convention for displacements and rotations fields

σ = λ tr
(
ε
)
I + 2µε (D.2)

with the usual notation for the Lamé constants. According to beams kinematics, the previous relation
can be reduced to:

σrr = Eεrr ; σrs = 2µεrs and σrt = 2µεrt (D.3)

Similarly, the strain-displacements equations can be summarized as:

εrr = ∂ru0r − s ∂ru1t + t ∂ru1s

εrs =
1

2
(∂ru0t + s ∂ru1r + u1s)

εrt =
1

2
(∂ru0s − t ∂ru1r − u1s) (D.4)

According to (D.4), the shear strains γrs and γrt, the axial strain εrr and the twist ψ can obtained
as follows:

γs = ∂ru0t + u1s

γt = ∂ru0s − u1t

εr = ∂ru0r

ψ = ∂ru1r (D.5)

We also assume the local system of axes (r, s, t) are geometrical principal axes:

∫

S

s dS =

∫

S

t dS =

∫

S

s t dS = 0 (D.6)

With the definitions (D.5) for strains and twist, the components of the internal forces q and
moments m can be expressed as:
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qr =

∫

S

σrr dS =

∫

S

∂ru0r − s∂ru1t + t∂ru1s dS = EAεr

qs =

∫

S

σsr dS = µ

∫

S

∂ru0t + s∂ru1r + u1s dS = µAγs

qt =

∫

S

σst dS = µ

∫

S

∂ru0s − t∂ru1r − u1t dS = µAγt

mr =

∫

S

σrts− σrst dS = µ

∫

S

(∂ru0t + s∂ru1r + u1s) s− (∂ru0s − t∂ru1r − u1t) t dS = µJψ

ms =

∫

S

σrrt dS = E

∫

S

(∂ru0r − s∂ru1t + tu1s) t dS = EIsκs

mt =

∫

S

σrrs dS = E

∫

S

(∂ru0r − s∂ru1t + tu1s) s dS = −EItκt (D.7)

with the standard definitions for area A, moments of inertia Is and It and polar moment of inertia J :

Is =

∫

S

t2 dS ; It =

∫

S

s2 dS and J = Is + It

Decomposing the field test w in a similar manner, it is possible to compute the same expression
for γ̄rs, γ̄rt, ε̄rr, ψ̄, κ̄s and κ̄t (denoted with a bar to differentiate with these associated to the real
field u). Injecting these definition in (1.42) we obtain for a linear elastic isotropic beam:

∫

Ω
σ : ε̄ dV =

∫

L

(
γ̄sµA

s
sγs + γ̄tµA

s
tγt + κ̄sEIsκs + κ̄tEItκt + ε̄rEAεr + ψ̄EJψ

)
dl (D.8)

where Ass and Ast are effective shear area for the s and t directions, respectively. Introducing the finite
element approximation uh0 and uh1 (1.49), the elastic stiffness matrix can be computed straightforward
(Hughes, 2000).

D.2 Two-component stiffness matrix

Applying static condensation with respect to bending rotations in the local stiffness matrix defined by
(D.8), the local element bending stiffness relationships in r − s plane for the elastic element are:

{

mI,e
t

mJ,e
t

}

=
EIt
L

[
kII kIJ
kIJ kJJ

]{
θIt
θJt

}

(D.9)

where mI,e
t and mJ,e

t are the elastic end bending moments at nodes I and J in r− s plane (vectors in
et direction), θIt (or u1I3

) and θJt (or u1J3
) are the corresponding total end node rotations.

For a linear elastic uniform cross section element, the flexural stiffness coefficients are:

kII = kJJ = 4 and kIJ = 2 (D.10)

Usually it is assumed that the beam has a uniform cross section throughout the length, but elements
of variable cross section can be considered by specifying appropriate flexural stiffness coefficients for
the elastic beam. Elastic shear deformations can be included by specifying an effective shear area Ast .

A plastic hinge forms when the moment in the inelastic component of the element reaches its yield
value. A hinge is then introduced into this component, the elastic component remaining unchanged.
The measure of flexural plastic deformation is the plastic hinge rotation.

In order to obtain incremental moment-rotation equations, the total end rotation increments must
be related to rotations in both elastic and elastic-plastic components (Fig.D.3). In this figure mI

t and
mJ
t are the total bending moment at the ends I and J , mI,p

t and mJ,p
t are the bending moments at the
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mJ
tmI

t
θJ

t

θI
t

θ
J,p
t

θ
I,p
t

αJ
t

αI
t

elastic-plastic
component

elastic
component

(a) Two-component

mJ,e
tmI,e

t

θJ
t

θI
t

(b) Elastic component

mJ,p
tmI,p

t

θJ
t

θI
t

θ
J,p
t

θ
I,p
t

αJ
t

αI
t

(c) Elastic-plastic component

Figure D.3: Two-component notation

ends of the elastic-plastic component, θI,pt and θJ,pt the end rotations of the elastic-plastic component,
αIt and αJt the incurred plastic angle at the ends of the elastic-plastic component.

The rotational stiffness kt = 4EtI
L

(uniform cross section) of the total beam is divided into two
components:

ket = p̃ kt ; kpt = q̃ kt ; p̃+ q̃ = 1 (D.11)

where ket is the stiffness of the linear elastic component and kpt the stiffness of the elastic-plastic
component. The parameters p̃ and q̃ govern the stiffness distribution, usually p̃ ≈ 0.05.

From (D.9), the fundamental bending moment-end rotations equations for both components are:

mI,e
t = p̃kt

(

θIt +
1

2
θJt

)

; mJ,e
t = p̃kt

(
1

2
θIt + θJt

)

(Elastic)

mI,p
t = q̃kt

(

θI,pt +
1

2
θJ,pt

)

; mJ,p
t = q̃kt

(
1

2
θI,pt + θJ,pt

)

(Elastic-plastic) (D.12)

From Fig.D.3:

θI,pt = θIt − αIt ; θJ,pt = θJt − αJt (D.13)

Combining (D.12) and by substitution of (D.13), the incremental form of the bending-moment
relation can be written as:

ṁI,e
t = q̃kt

((

θ̇It − α̇It
)

+
1

2

(

θ̇Jt − α̇Jt
))

ṁJ,e
t = q̃kt

(
1

2

(

θ̇It − α̇It
)

+
(

θ̇Jt − α̇Jt
))

(D.14)
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The addition of bending moments at the ends of the elastic and the elastic-plastic components
gives the total bending moment:

mI
t = mI,e

t +mI,p
t ; mJ

t = mJ,e
t +mJ,p

t (D.15)

Finally, the fundamental bending-end rotation equations for the complete element are obtained:

ṁI
t = kt

((

θ̇It − q̃α̇It
)

+
1

2

(

θ̇Jt − q̃α̇Jt
))

ṁJ
t = kt

(
1

2

(

θ̇It − q̃α̇It
)

+
(

θ̇Jt − q̃α̇Jt
))

(D.16)

Assuming that the state of yield remains constant throughout each time increment, the incremental
bending moments ṁI

t and ṁJ
t are related to both incremental rotations θ̇It and θ̇Jt , and the incremental

plastic angles α̇It and α̇Jt . Now, for any state of yield which is held constant throughout a time

increment, it is possible to establish equations of the form α̇t = α̇t

(

θ̇It , θ̇
J
t

)

relating the incremental

plastic angles to the incremental end rotations. With these equations it is possible to eliminate the
incremental plastic angles from the incremental moment-rotation equations resulting in equations of

the form ṁt = ṁt

(

θ̇It , θ̇
J
t

)

.

When the state of yield is linear at end I or end J , or both, the corresponding incremental plastic
angle must be zero: α̇It = α̇Jt = 0.

When the state of yield is non-linear at end I or end J , or both, the corresponding incremental
total bending moments equals the incremental bending moment of the linear component, and the
incremental bending moment in the elastoplastic component is zero: at end I, ṁI

t = ṁI,e
t and ṁI,p

t = 0;

or at end J , ṁJ
t = ṁJ,e

t and ṁJ,p
t = 0; or both.

On the other hand, ṁI,e
t and ṁJ,e

t are dependent upon the same stiffness parameter p̃. Conse-
quently, this model can have hysteresis loops at the ends with only two slopes kt and p̃kt although the
yields levels may be different.

There are four possible states of yield for a beam:

(a) Linear at ends I and J .

(b) Non-linear at end I and linear at end J .

(c) Linear at end I and non-linear at end J .

(d) Non-linear at ends I and J .

Because the incremental bending moment-end rotation equations have a regular pattern for all
four states of yield, the following matrix equations using the effective stiffness parameters SA, SB and
SC can be established (Table D.1):

{
ṁI
t

ṁJ
t

}

=

[
SA SB
SB SC

]{
θ̇It
θ̇Jt

}

(D.17)

Even if the beam element can be placed arbitrarily in 3D, this two-component approach is taken
into account only in the local r−s plane (primary flexural plane), therefore the model is bidimensional
in a non-linear sense. The minor axis flexural stiffness (plane r − t) can be obtained by multiplying
the primary elastic stiffness by a specified factor α. The torsional deformation is related to torque mr

by:

ṁr =
µJ

L
α̇ (D.18)
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Table D.1: Effective stiffness coefficients

State SA SB SC

(a) kt
1
2kt kt

(b) p̃kt
1
2 p̃kt

(

1− q̃
4

)

kt

(c)
(

1− q̃
4

)

kt
1
2 p̃kt p̃kt

(d) p̃kt
1
2 p̃kt p̃kt

in which it is assumed that µ = 0.4E and:

J = α (kII + kJJ )
It
8

(D.19)

in which kII and kJJ are the primary flexural stiffness factors, after any modification for shear defor-
mations.

D.3 Yield surfaces

The effect of axial force on bending strength is taken into account by specifying P-M yield surfaces.
Yield interaction surface of three types may be specified for the ends of the beam element:� Beam type (Fig.D.4a) This type of surface should be specified where axial forces are small or

are ignored. Yielding is affected by bending moment only.� Steel column type (Fig.D.4b) This type of surface is intended for use with steel columns.� Concrete column type (Fig.D.4c). This type of surface is intended for use with concrete columns.
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ty

(b) Steel column type

mt
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q−ry

m−

ty

q+ry

m+
ty

(c) Concrete column type

Figure D.4: Yield interaction surfaces

For any combination of axial force and bending moment within a yield surface, the cross section is
assumed to be elastic. If the force-moment combination lies on or outside the surface, a plastic hinge is
introduced. Combinations outside the yield surface are permitted only temporarily, being compensated
by applying corrective loads in the succeeding step. This procedure is not strictly correct because the
axial and flexural deformations interact after yield, and it is therefore wrong to assume that only the
flexural stiffness changes whereas the axial stiffness remains unchanged.

If a force-moment combination goes from the elastic range to beyond the yield surface in any load
substep; an equilibrium correction is made as shown in Fig.D.5a. Because the axial stiffness is assumed



Appendix D. Plastic hinges beam column elements 175

to remain unchanged, in subsequent substeps the force-moment combination at a plastic hinge will
generally move away from the yield surface within any substep, as shown in Fig.D.5b. An equilibrium
correction, as shown, is therefore made.

mt

qr

mn+1
ty

mn
ty

substep n

substep n + 1

Equilibrium
correction

(a) Yield at an existing hinge

mt

qr

mn
tymn+1

ty

substep n

Yield
event

Equilibrium
correction

Overshoot
tolerance

(b) Formation of a new hinge

Figure D.5: Equilibrium correction for yield surface overshoot

The axial force in an element with a column-type interaction surface can, never exceed the yield
value for zero moment. However, because of the computational procedure which is used, axial forces
in excess of yield can be computed. For axial forces in excess of yield, the yield moment are assumed
to be zero.
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Appendix E

ECP multimechanism model

E.1 General hypotheses and characteristics of the model

E.1.1 Hypothesis 1

We assume that small-strains hypothesis is valid, i.e. the strain tensor increment can be decomposed
into an elastic part and a plastic part:

ε̇ = ε̇e + ε̇p (E.1)

consequently, the decomposition is also valid for volumetric ε̇v and deviatoric strains ˙̄ε increments:

ε̇v = ε̇ev + ε̇pv and ˙̄ε = ˙̄ε
e
+ ˙̄ε

p
(E.2)

E.1.2 Hypothesis 2

The effective stress principle applies.

E.1.3 Hypothesis 3

The elastic part of the behavior is isotropic:

ε̇ev =
1

K (p′)
ṗ′

˙̄ε
e

=
1

2G (p′)
ṡ (E.3)

where the bulk K = K(p′) and shear G = G(p′) moduli are function of the mean effective compressive
stress p′ by a non-linear relation:

K = Kref

(

p′

p′ref

)ne

G = Gref

(

p′

p′ref

)ne

(E.4)

where Kref and Gref are the bulk and shear moduli measured at the mean effective pressure p′ref and
ne is the degree of non-linearity. Therefore, there is no-coupling effect between the volumetric and
deviatoric elastic strain rates, i.e. ε̇ev is independent of ˙̄ε

e
, but ˙̄ε

e
depends on ε̇ev.
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E.1.4 Hypothesis 4

The behavior is divided in four sub-domains:

1. Elastic domain: no energy dissipation and reversible deformations

2. Hysteretic or pseudo-elastic domain (stabilized): energy dissipation by plastic deforma-
tion appears, but the volumetric plastic strain variation is neglected (ε̇pv = 0).

3. Intermediate domain (hysteretic unstabilized): the volumetric plastic strain variation is
no longer neglected.

4. Mobilized domain: the shear stress mobilizes completely the shear resistance of the solid
phase.

E.1.5 Hypothesis 5

The deviatoric plastic behavior is decomposed into three plane-strain elementary mechanisms, over
three orthogonal planes. The plastic energy dissipation is related to variations of Mohr circles in
the corresponding orthogonal plane. Each elementary deviatoric mechanism is equivalent to a Mohr-
Coulomb type criterion relative to its corresponding plane. The critical state into a plane corresponds
to the limit Mohr circle of each mechanism.

The yield surface of each deviatoric mechanism is a circle in a normalized deviatoric plane, con-
structed by a normalization factor. In this normalized plane, the flow rule is associated. The mobiliza-
tion of each deviatoric mechanism is progressive and depends on the behavior sub-domains (§E.1.4).
The hardening variable in the normalized plane is the degree of friction mobilization of the mechanism.

The material stores the historic loading by a double memory approach: the maximum primary
loading (historic memory) and the last load-reversal change (instantaneous memory).

The decomposition is constructed into a basis defined by the unitary vectors ei, ej and ek for the
deviatoric mechanism k. For all planes oriented by the normal vector ek, the plastic strains increments
exist only in the directions defined by ei and ej . These plastic strains increments are function only of
the stress state in this k−plane associated to the deviatoric mechanism k. Thus, the effective stress
tensor in the k−plane σ′

k
can be written as:

σ′
k

= σ′ii ei ⊗ ei + σ′jj ej ⊗ ej + σ′ij ei ⊗s ej (E.5)

The stress state in the k−plane is defined by its effective mean pressure p′k and its deviatoric stress
tensor s

k
(Fig.E.1a):

p′k =
1

2
tr
(

σ′
k

)

s
k

= σ′
k
− 1

2
tr
(

σ′
k

)

I
k

(E.6)

where I
k

= ei⊗ ei + ej ⊗ ej . The tensor s
k

can be seen as a deviatoric stress vector sk in the k−plane
of components and norm:

sk1 =
σ′ii − σ′jj

2
sk2 = σ′ij

|sk| =

√

1

4

(

σ′ii − σ′jj
)2

+ σ′ij
2 = qk (E.7)

where qk is the radius of the Mohr circle. The plane associated to deviatoric stress vector sk is the
diviatoric plane of the mechanism k (Fig.E.1b).
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(a) Mohr’s representation of the stress state in the i−j
plane of the mechanism k (k−plane)
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(b) Stress state of the deviatoric plane
of the mechanism k

Figure E.1: Stress state representations for deviatoric mechanism k

In a similar way, the strain stain in the plane of the mechanism k is defined by the volumetric
strain εvk

and the deviatoric strain tensor ε̄
k
:

ε
k

= εii ei ⊗ ei + εjj ej ⊗ ej + εij ei ⊗s ej
ε̄
k

= ε
k
− 1

2
tr
(

ε
k

)

I
k

εvk
= tr

(

ε
k

)

(E.8)

Similarly, the deviatoric strain tensor can be represented as a deviatoric strain vector ε̄k of com-
ponents and norm:

ε̄k1 = εii − εjj
ε̄k2 = 2εij

|ε̄k| = γk (E.9)

where γk is the distortion of the mechanism k and its value corresponds to two-times the radius of the
circle in Mohr’s representation (centered in 1

2εvk
Fig.E.2).

pure
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2
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εij
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εjj

1
2
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Figure E.2: Mohr’s representation of the strain state in the i− j plane of the mechanism k
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Adopting the soil mechanics sign convention (compression positive), the deviatoric primary yield
surface fk of the k plane is given by:

fk
(
p′k, sk, rk, ε

p
v

)
= qk − sinφ′pp p

′
k rk F

(
p′, εpv

)
(E.10)

where:

F
(
p′, εpv

)
= 1− b log

p′

pc

pc = pc0e
βε

p
v (E.11)

in which φ′pp is the friction angle at the perfect plasticity, pc0 is the critical mean effective stress
that corresponds to the initial state (defined by the initial void ratio), β is the plastic compressibility
modulus that introduces the influence of the densification of the material in the final resistance.
Both parameters are similar to the ones used in Cam-Clay model (Schofield and Wroth, 1968). The
parameter b controls the form of the yield surface in the p′k − qk plane and varies from b = 0 to 1
passing from a Coulomb type surface to a Cam-Clay type one (Fig. E.3). The parameter b governs the
influence of the density or the overconsolidation, thus its value is near to one for clays and very small
for sands. The function F , through the plastic volumetric strain εpv, introduces volumetric hardening
or softening with respect to the critical state due to plastic strains.

qk

p′kpc

φ′

pp

b = 1

b = .5

b = 0

Figure E.3: Influence of parameter b on the yield surface shape

The deviatoric primary yield surface of each k mechanism can be interpreted in the normalized
deviatoric plane of the mechanism s̃k1 − s̃k2 :

s̃k1 =
1

ηk
sk1 and s̃k2 =

1

ηk
sk2 (E.12)

the normalization factor ηk is given by:

ηk
(
p′k, ε

p
v

)
= sinφ′pp p

′
k F

(
p′, εpv

)
(E.13)

In this plane, the deviatoric yield surfaces are circles of radius rk. This hardening variable rk can
be interpreted as the degree of mobilization of the deviatoric mechanism k, i.e. the degree of friction
mobilization:

rk =
qk
ηk

=
qk
p′k

1

sinφ′pp F
(E.14)

The hardening variable rk corresponds to progressive plasticity evolution due to plastic shear
distortions γpk of the k mechanism. Thus, it accounts for the isotropic hardening generated by plastic
deviatoric strains ε̄pk or γpk . This variable varies from relk (elastic domain) to its limit unit value in the
perfect plasticity.



Appendix E. ECP multimechanism model 181

Under primary loading (superscript m to indicate monotonic loading), the surfaces associated to
deviatoric yield functions are the circles of radius rmk centered at the origin (Fig.E.5a):

fmk
(
p′k, sk, r

m
k , ε

p
v

)
= |s̃k| − rmk

rmk = relk +

(
γpk

a+ γpk

)np

γpk =

∫ t

0
γ̇pk dt (E.15)

where the parameter a controls the hardening evolution. The parameter np controls the evolution of
the degree of friction mobilization with the plastic strain. If np = 1 the evolution is hyperbolic as some
strain-stress curves, but it can be modified to take into account experimental data. The hardening
evolution rule can be derived from (E.15):

ṙmk = λ̇pk
np (rmk )np−1

a

(

1− (rmk )
1

np

)2

(E.16)

where λ̇pk is the plastic multiplier of the deviatoric k mechanism.

The parameter a in equation (E.15) is an important parameter of the model because it controls
the rigidity when the soil is in plastic domain. The simpler way is to use a constant value, but it is
also possible to modify its value as a function of the deviatoric plastic strains. Hujeux (1985) defined
a through the following relation:

a = a1 + (a2 − a1)α (rk) (E.17)

where α (rk) is defined through the behavior domains (§E.1.4) described below:

α (rk) =







0 if rk < rhysk pseudo-elastic domain
(

rk−rmob
k

rmob
k

−rhys
k

)m

if rhysk < rk < rmobk hysteretic domain

1 if rmobk < rk < 1 mobilized domain

(E.18)

in which rhysk and rmobk are the thresholds friction mobilization sub-domains associated to mechanism
k. According to Hujeux (1985), α (rk) γ̇

p
k can be interpreted as the portion of the plastic shear strain

increment related to relative tangent displacement between grains with total friction strength mobi-
lization. The portion of the increment induces a rearrangement of the grains and plastic volumetric
strain. On the contrary, (1− α (rk)) γ̇

p
k is the portion of the relative tangent displacements of grains

with partial friction mobilization, therefore without inducing volumetric plastic strains. Consequently,
the parameter α (rk) allows that for drained conditions, there is no volume variations until a certain
level of shearing is achieved. In addition, for undrained conditions, it allows that the evolution of
the pore pressure will depend on the level of deformations (Modaressi, 2003). The evolution into the
hysteretic domain is controlled by the value of m (Fig.E.4).

Concerning the cyclic loading (superscript c to indicate cyclic loading), the surfaces associated to
deviatoric yield functions are the circles of radius rck interior to circles of primary loading, both tangent
at the point dhk of exterior normal nhk:

f ck

(

p′k, sk, r
c
k, ε

p
v , d

h
k , n

h
k

)

=
∣
∣
∣s̃k −

(

dhk − rcknhk
)∣
∣
∣− rck (E.19)

where the point dhk corresponds to the last load reversal h of the mechanism k:

dhk =
qhk
p
′h
k

1

sinφ′pp F
(

p
′h, εp

h

v

) and nhk =
s̃hk∣
∣
∣s̃hk

∣
∣
∣

(E.20)
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Figure E.4: Graphic representation of α (rk) controlling the evolution of deviatoric mechanism k

The vector dhk − rcknhk corresponds to the vector going from the origin of the normalized deviatoric
plane to the center of the cyclic circle (Fig.E.5b). The hardening variable rck can be expressed in terms
of the position of the current stress state with respect to the position of the last load reversal. Its
initial value is relk :

rck = relk +





∣
∣
∣γ
p
k − γ

ph

k

∣
∣
∣

a+
∣
∣
∣γ
p
k − γ

ph

k

∣
∣
∣





np

(E.21)

in which γp
h

k is the plastic distortion of the mechanism k at the last load reversal h. The variable a
obeys the same relations as in monotonic loading (E.17). The vectors dhk and nhk are discontinuous
parameters introducing kinematic hardening to the model.
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Figure E.5: Evolution of deviatoric threshold in the normalized deviatoric plane of the k mechanism

In summary, the model keeps the memory by two ways:

1. The maximum friction mobilization reached with rmk .

2. The last load reversal with dhk and nhk. For each sign reversal, the value of dhk is reset to the
current value of s̃k, additionally rck is reset to the limit of the elastic domain relk .
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Concerning the evolution of the plastic strains and the hardening variables, it is supposed that the
evolution of the plastic deviatoric deformations follow an associated flow rule:

˙̄ε
p
k = λ̇pk

∂fk
∂sk

= λ̇pk
sk
|sk|

(E.22)

where λ̇pk is the plastic multiplier for the mechanism k, and can be obtained writing the consistency

relationships ḟk = 0 over all active mechanisms. The evolution of the volumetric plastic strains is
controlled by a flow rule based on a Roscoe-type dilatancy rule (Schofield and Wroth, 1968):

ε̇pk = λ̇pkΨk

Ψk = αψ α (rk)

(

sinψ − qk
pk

)

(E.23)

in which ψ is the characteristic angle (Luong, 1980) defining the limit between dilatancy (ε̇pv < 0) and
contractancy (ε̇pv > 0) of the material (Fig.E.6) and αψ is a constant parameter.
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Figure E.6: Critical state and characteristic state lines

E.1.6 Hypothesis 6

In order to model an isotropic path, a pure elato-plastic volumetric mechanism is included in the
model. In this consolidation mechanism, the mobilization is progressive using a hardening variable
related to plastic volumetric strain εpviso associated to this mechanism. In a similar way as that of the
deviatoric mechanisms, the yield function can be related to a normalized space. The flow-rule is also
associated. The memory of the mechanism is also controlled by a double-memory approach, storing
the monotonic loading and the last sign-reversal. This mechanism is only activated under isotropic
part of the loading and it produces just volume changes.

The expression for the yield function is:

fiso
(
p′, riso, pc

)
=
∣
∣p′
∣
∣− d pc riso (E.24)

with riso the degree of mobilization of the mechanism, varying from the limit of elastic domain reliso to
the unity according to:

riso = reliso +
εpviso

c pc

p′
ref

+ εpviso

(E.25)

where the volumetric plastic strain associated to isotropic mechanism can be computed as εpviso :
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εpviso
=

∫ t

0
ε̇pviso

dt (E.26)

The degree of mobilization riso starts from the elastic threshold reliso to the unity when the mecha-
nism is completely activated, i.e. p′ = d pc. The evolution of this degree of mobilization can be written
as:

ṙiso = ε̇pviso

(1− riso)2
c pc

pref

(E.27)

The parameter c governs the evolution of the mobilization of this mechanism, i.e. the isotropic
hardening. The flow rule is associated, the compatibility equation can be written as:

ṗ = d pc
(1− riso)2
c pc

pref

ε̇pviso
− riso d pc β ε̇pv = 0 (E.28)

The underlined term in the previous expression can be interpreted as the intrinsic hardening
modulus. According to this expression, the initial plastic modulus is independent of the initial value
of pc. Under isotropic loading, when the elastic threshold reliso is surpassed a generation of volumetric
plastic strain appears (ε̇pv > 0) and consequently the isotropic mechanism is mobilized (ṙiso > 0) and
the critical mean effective stress grows (ṗc > 0). When this mechanism is entirely mobilized: riso = 1
and p = d pc. This evolution matches with the experimental observations of consolidation curves,
thus an initial curve who tends to a straight isotropic consolidation line in the plane e − log p′. The
parameter d defines the distance of the isotropic consolidation line to the critical state line in this
plane e− log p′ (Fig.E.7). As these curves are parallel, it is possible to relate both curves by:

ε̇pv =
1

β

ṗ′

p′
=

1

β

ṗc
pc

(E.29)
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Figure E.7: Progressive mobilization of the isotropic mechanism

As for the deviatoric mechanism, the isotropic mechanism can be described in a normalized isotropic
axis p̃′ defined as:

p̃′ =
p′

ηiso
with ηiso = d pc (E.30)

where ηiso denotes the normalization factor. For primary loading, the threshold surface is orthogonal
plane to the axis p̃′, of a distance from the origin rmiso (Fig.E.8a):

fmiso
(
p̃′, rmiso, pc

)
=
∣
∣p̃′
∣
∣− rmiso (E.31)
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As for cyclic deviatoric cyclic mechanisms, the isotropic mechanism uses a double memory ap-
proach. Thus, under cyclic loading, the successive consolidation thresholds are orthogonal planes to
the axis p̃′ at a distance rciso of the load reversal point rhiso in the normalized space (Fig.E.8b):

f ciso

(

p̃′, rciso, pc, r
h
iso

)

=
∣
∣
∣p̃′ − rhiso

∣
∣
∣− rciso (E.32)

The variable riso can be also interpreted as the degree of mobilization of the consolidation mecha-
nism.
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Figure E.8: Evolution of isotropic threshold in the normalized axis of consolidation mechanism p̃′

E.1.7 Hypothesis 7

The four mechanisms are coupled through the hardening variable εpv. The critical effective stress is
common for the four mechanisms, thus the density hardening couples the mechanisms:

εpv =

3∑

k=1

εpvk
+ εviso

=
1

β
log

pc
pc0

(E.33)

where εpv is the variation of the plastic volumetric strain between the initial state (pc = pc0) and the
final state (pc). In general the four mechanisms can be active. In this case, the plastic multipliers
are the solution of a 4 × 4 non-linear system. The hardening is characterized by hardening modulus
matrix in which deviatoric terms appear only in the diagonal while the volumetric hardening appears
in all terms:� the softening is related to a global dilative behaviour: ṗc < 0 and pc0 > pc� the hardening is related to a global contractive behaviour: ṗc > 0 and pc0 < pc

E.1.8 Tensile stress

The natural stress state of the soil is in compression. Nevertheless, during the numerical integration
procedure or due to loading the soil can reach a tensional stress state locally in time or space. Thus, a
tension stress behavior must be defined for cohesionless materials in order to ensure the non-resistance
to tensile stresses.

The adopted criteria is a perfect elastoplastic yield function:

ftr
(
σ′
)

= max
{
σ′I , σ

′
II , σ

′
III

}
= σ′I ≥ 0 (E.34)

where σ′I , σ
′
II and σ′III are the principal effective stresses of the tensor σ′. The flow rule is associated:

ε̇p
tr

= λ̇ptr eI ⊗ eI (E.35)

where eI is the unitary vector associated to the maximum principal stress direction.
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E.2 Numerical integration

As extensively described in the previous section, each mechanism has its own yielding function fj,
flow rule Ψ

j
and plastic multiplier λ̇pj . The evolution of some hardening variables are specific to each

mechanism rj or common to the four mechanisms εpv. Thus, a non active mechanism can have evolution
of its hardening variables even if it is not active. The flow rule of each mechanism can be written in
a general form:

ε̇p
j

= λ̇pj Ψ
j

j = {1, 2, 3, iso} (E.36)

where the volumetric part of the plastic strain is controlled by the dilatancy law:

ε̇pvj
= λ̇pj Ψvj

(E.37)

The following relation is still valid, defining the conditions of plastic state for each mechanism:

λ̇pj ≥ 0 ; fj
(
σ′, rj , ε

p
v

)
≤ 0 ; λ̇pj fj

(
σ′, rj , ε

p
v

)
= 0 (E.38)

The evolution of the hardening variables are given by their evolution laws:

ṙj = λ̇pj Lrj (E.39)

and (E.37). The total increment of εpv is computed over the active mechanisms:

εpv =
∑

i

εpvi
i ∈Mp

act (E.40)

where Mp
act is the set of activated mechanisms. We make the difference between the set of potentially

active mechanism Mp
pact and the set of active mechanism Mp

act:

Mp
pact = {a | fa = 0}
Mp
act =

{

b ∈Mp
pact | λ̇b > 0

}

(E.41)

In the case of multimechanism plasticity, the denomination of the total load is used if all the
mechanisms are active, the denomination of partial load is used when not all mechanisms are activated
and the denomination of elastic regime when no mechanisms are activated.

The total strain increment can be written in terms of the contribution of active mechanisms:

ε̇ = ε̇e +
∑

b

ε̇p
b

b ∈Mp
act (E.42)

The active plastic multipliers are the solution of the non-linear system obtained using the compat-
ibility equations of the potentially active mechanism (ḟa = 0). We write for each potentially active
mechanism a, keeping only the terms of the active mechanism b (λ̇pb > 0):

∑

b

(

∂fa
∂σ′

: C : Ψ
b
− ∂rafa : Lraδab − ∂εp

v
fa : Ψvb

)

λ̇b =
∂fa
∂σ′

: C : ε̇ (E.43)

Similarly to the previous constitutive models, an explicit integration approach with variable time
step is adopted to perform the numerical integration of the soil constitutive model. For a load step
tn, the material state is characterized by the stress state σ′

n
and the hardening internal variables

regrouped in the vector η
n
. The goal is to compute the state of the material for the load step tn+1

characterized by σ′
n+1

and η
n+1

due to a strain increment ε̇
n+1

. The strain increment is approximated
by the relation:
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ε̇
n+1
≈
ε
n+1
− ε

n

∆tn+1
(E.44)

assumed to be constant during the interval ∆tn+1 = tn+1 − tn. The previous increment is calculated
iteratively, thus for an iteration k the approximation of the increment becomes:

ε̇k+1
n+1
≈
εk+1
n+1
− ε

n

∆tn+1
(E.45)

As high non-linearities can appear during the loading, the time step increment ∆tn+1 is subdivided
into a set of substeps δtm to improve the integration procedure:

∆tn+1 =
∑

m

δtm (E.46)

If the set of variables defining the material state is denoted by E (E =
{

σ′
n
, η

n

}

), the initial values

for the iteration procedure is taken from the converged values of the previous load step: E0
n+1 = En.

For a substep m associated to an iteration k of the load step n + 1, thus to a strain increment ε̇k
n+1

,

the set of variables defining the state of the material Em
k

n+1 can be obtained according to:

fm
k

j

(

σ′m
k

n+1
, ηm

k

n+1

)

≤ 0

δAm
k

n+1 = Am
k

n+1 −Am−1k

n+1 ∀ A ∈ E (E.47)

where:

∆Am
k

n+1 =
∑

m

δAm
k

n+1 (E.48)

The total increment of the load step for the variables which describe the state of the material can
be computed according to:

∆σ′k
n+1

=
∑

m

C
(

σ′m
k

n+1

)

:



ε̇k
n+1
−
∑

j

∑

m

λ̇p
m

j Ψmk

j





∆ηkjn+1
=

∑

m

λ̇p
m

j Lkηj
∀ j ∈Mp

act (E.49)

in order to compute the updated state of the material for the iteration k:

Akn+1 = An + ∆Akn+1 (E.50)
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Appendix F

One-dimensional linear elastic ground
response

The general solution of the equation of elastodynamics in time domain (1.34) can be obtained by
decomposition of the displacement field us into an irrotational field from a scalar potential φ and a
rotational field from a vectorial potential χ:

us = gradφ+ rotχ (F.1)

with divχ = 0. With this decomposition, the displacement field can be decoupled into two partial
difference equations:

△ φ =
1

c2p

∂2φ

∂t2

△χ =
1

c2s

∂2χ

∂t2
(F.2)

with the standard notation for the P-waves and S-waves wave propagation velocities. For a stationary
monochromatic wave of circular frequency ω, a general solution of F.2 is given by:

φ = Ae
iω
cp

(cpt−l.x)
= Afp

χ = Be
iω
cs

(cst−l.x) = Bfs (F.3)

where l is the unit director vector if all of the components are real and l.B = 0. Replacing in (F.1)
we obtain:

us = − iωA
cp

fp l +
iω

cs
fsB ⊗ l = Apfp l +

iω

cs
fsB ⊗ l (F.4)

The previous expressions show that for the P-waves the motion follows the direction of propagation
and that for the S-waves the motion takes place in a plane orthogonal to this direction. In this plane,
the S-waves can be decomposed into a SH and a SV component according to:

ASH =
iω

cs

Bz
√

l2x + l2y

ASV =
iω

cs

lxBy − lyBx
√

l2x + l2y

(F.5)

where ASH and ASV are the amplitudes of displacements of SH and SV waves. The general earth-
quake wave propagation problem is tridimensional, but in earthquake engineering context (near to the
surface) the problem can be treated as bidimensional assuming that the waves propagates parallel to
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a vertical plane (yz for instance), thus the motion is independent of the x coordinate. In this case,
the general solution can be written as (lx = 0):

us = ASV fslzex + (Apfply +ASHfslz) ey + (Apfplz −ASHfsly) ez (F.6)

The previous expression shows that for plane waves, the motion following x is decoupled from the
motion in the plane yz. The motion in this plane is governed by the P and S-waves. If the incident
field is vertical (lx = ly = 0), the problems becomes one-dimensional and the displacement field can
be written as:

us = ASV fsex +ASHfsey +Apfpez (F.7)
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Figure F.1: Homogenous elastic soil layer overlying a half-space bedrock

We consider now a homogenous elastic soil layer overlying a half-space elastic rock (Fig.F.1). The
horizontal displacement following y due to a vertically incident SH-waves in each material can be
written as:

us = Aise
iω
css

(css t+zs) +Arse
iω
css

(css t−zs)

ub = Aibe
iω
csb

(csb
t+zb)

+Arbe
iω
csb

(csb
t−zb)

(F.8)

where the upperscript i and r refer to incident and reflected field, and the subscript s and b refer to
soil and bedrock. The free surface condition (σyz = 0) imposes that Ars = Ais = As. The compatibility
of displacement and continuity of shear stress at the soil-bedrock interface require that:

As

(

e
iω
css

h − e−
iω
css

h
)

= Aib +Arb (F.9)

According to the definition of shear stress (τyz = µ∂u
∂z

), the relation between the amplitudes can
be summarized as (Pecker, 1984; Kramer, 1996):

Aib =
1

2
As

[

(1 + α) e
iω
css

h
+ (1− α) e

− iω
css

]

Aib =
1

2
As

[

(1− α) e
iω
css

h
+ (1 + α) e

− iω
css

]

(F.10)

where α is the impedance ratio defined by

α =

√
ρscss

ρbcsb

(F.11)

Defining the transfer function T (ω) as the ratio of the ground movement amplitude to a hypothetic
outcrop bedrock movement:

T (ω) =
2As
2Aib

=
1

cos iω
css
h+ iα sin iω

css
h

→ |T (ω)| = 1
√

cos2 iω
css
h+ α2 sin2 iω

css
h

(F.12)



Appendix G

Substructure SSI approximation in
frequency domain

Starting from the definition of the complete system shown in Fig.G.1, Aubry and Clouteau. (1992)
and Clouteau and Aubry (2003) developed an analytical formulation of the dynamic SSI phenomenon,
based on the substructure technique. This approach was integrated in the numerical code MISS3D,
performing SSI analysis in the linear elastic or viscoelastic domain. The physical domain is decomposed
into three subdomains: the unbounded soil denoted by Ωs, the bounded foundation denoted by Ωf

and the bounded structure Ωb. In comparison with the decomposition shown in Fig.1.1, there are two
main differences: the soil domain Ωs is unbounded and the superstructure is decomposed into a rigid
domain Ωf and a flexible domain Ωb. The interfaces are denoted respectively by Σbf and Σsf . Free
field conditions are assumed into the other part of their boundary Γs and Γb.

Ωs

Γs

Γ∞
s

Ωb

Γb
Ωf

Σbf

Σsf

ui

Figure G.1: Definition of the global system for substructure approach

The permanent displacements fields on Γs and Γb due to static loads (weight and dead and/or live
loads) are assumed to be known in the following. We keep the notation for the dynamic perturbations
fields due to dynamic loads us(x, t) and ub(x, t). In this case, they are assumed to be small enough to
satisfy linear elastic hypothesis around the equilibrated static state. The corresponding elastic stress
tensors due to dynamic perturbation are denoted by σ

s
and σ

b
.

The seismic loading is taken into account defining an incident field ui inside Ωs, defined as the
displacement field in the soil without superstructure and foundation due to seismic motion. Assuming
small deformations, the displacements fields us and ui verify elastodynamic equations in the soil:

div σ
s
(us) = ρsüs ∀ x ∈ Ωs

div σ
s
(ui) = ρsüi ∀ x ∈ Ωs (G.1)

while ub satisfies elastodynamic equation in the superstructure domain:



192 G.1. Rigid foundation

div σ
b
(ub) = ρbüb ∀ x ∈ Ωb (G.2)

Assuming that no uplift appears between soil and foundation, and no loss of contact takes place
between the structure and its foundation, the following kinematic conditions are verified over the
interfaces:

ub = uf ∀ x ∈ Σbf and us = uf ∀ x ∈ Σsf (G.3)

and continuity of traction over these interfaces. Free field conditions are also verified in Γs and Γb.

Due to linearity of equations (G.1) and (G.2) a Fourier transform can be applied to solve the
problem in the frequency domain. Thus, the superstructure field displacement verifies:

div σ
b
(ûb) + ρbω

2ûb = 0 ∀ x ∈ Ωb (G.4)

Using the same definition for the set of kinematically acceptable fields of §1.2.4, the weak formu-
lation can be written as:

∫

Ωb

σ
b
(ûb) : ε

b
(wb) dV − ω2

∫

Ωb

ρbûb.wb dV =

∫

Σbf

tb (ûb) .wb dS (G.5)

Choosing a rigid body mode ψ
n

as kinematical acceptable field, the following equation is obtained:

− ω2

∫

Ωb

ρbûb.ψn dV =

∫

Σbf

tb (ûb) .ψn dS (G.6)

for each rigid body mode ψ
n
. Previous expression takes into account the fact that rigid body modes

do not induce deformations.

G.1 Rigid foundation

Assuming a rigid foundation Ωf , the corresponding displacement field uf can be written in terms of
the rigid body modes ψ

m
(x):

ûf (x, ω) =
6∑

m=1

ĉm (ω)ψ
m

(x) ∀ x ∈ Ωf (G.7)

where the six rigid body modes are three translational and three rotational modes passing by the three
principal axis of the foundation. ĉm are the participation factors depending on the frequency. As the
foundation is rigid, the equilibrium in moments and forces in terms of test functions ŵf can be written
as:

∫

Σsf

ts (ûs) .wf dS +

∫

Σbf

tb (ûb) .wf dS − ω2

∫

Ωf

ρf ûf .wf dV = 0 (G.8)

Similarly to (G.6), by choosing rigid body modes ψ
n

as kinematical acceptable field, the previous
expression becomes:

∫

Σsf

ts (ûs) .ψn dS +

∫

Σbf

tb (ûb) .ψn dS − ω
2

∫

Ωf

ρf ûf .ψn dV = 0 (G.9)

for each rigid body mode ψ
n
.
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G.2 Decomposition of the displacement in the superstructure

The displacement field in the superstructure ûb can be decomposed in two modal basis: the rigid body
modal basis ûf due to rigid body modes of the foundation, and the flexible modal part ûb0 of the
structure under fixed base condition:

ûb = ûf + ûb0 ∀ x ∈ Ωb (G.10)

The flexible modal field ûb0 can be expressed in terms of the natural fixed base modes φ
j
:

ûb0 (x, ω) =
∑

j≥1

q̂j (ω)φ
j
(x) ∀ x ∈ Ωb (G.11)

where q̂j are the frequency-dependent modal participation factors. Using decompositions (G.7 and
(G.11), the total displacement field of the superstructure is given by:

ûb (x, ω) =
6∑

m=1

ĉm (ω)ψ
m

(x) +
∑

j≥1

q̂j (ω)φ
j
(x) ∀ x ∈ Ωb (G.12)

Introducing (G.12) in the variational formulation (G.6) and the equilibrium equation (G.9), we
obtain:

∫

σsf

ts (ûs) .ψn dS = ω2





6∑

m=1

ĉm

∫

Ωf

ρfψm.ψn dV +

6∑

m=1

ĉm

∫

Ωb

ρbψm.ψn dV +
∑

j≥1

q̂j

∫

Ωb

ρbφj.ψn dV





(G.13)
As the previous expression is still valid for each rigid body mode ψ

n
, it can be written in an

equivalent matrix form in frequency domain:

∫

Σsf

ts (ûs) .Ψ dS − ω2 ([Mf ] + [Mb] + [M∗
b (ω)]) {c} = {0} (G.14)

where Ψ regroups the rigid body modes and {c} the participation factors. [Mf ] and [Mb] are the mass
matrix of the foundation and the superstructure, respectively. Their components can be computed as:

[Mf ]mn =

∫

Ωf

ρf ψm.ψn dV

[Mb]mn =

∫

Ωb

ρb ψm.ψn dV

The third matrix in (G.14) represents the equivalent added structural mass matrix [M∗
b ] due to

the vibration of the flexible superstructure. It can be deduced by replacing the expression of mode
participation factors qj in frequency domain for the SSI case (assuming mass normalized modes:
∫

Ωb
ρb φj .φj dV = 1):

∑

j≥1

qj

∫

Ωb

ρb φj.ψn dV =

6∑

m=1

ĉm




∑

j≥1

ω2

ω2
j + 2iζjωωj − ω2

∫

Ωb

ρb ψm.φj dV

∫

Ωb

ρb φj .ψn dV



 (G.15)

where ωj and ζj are the natural frequency and modal damping associated to fixed base mode j. Thus,
each component of the [M∗

b ] matrix can be computed as:

[M∗
b ]mn =

∑

j≥1

ω2

ω2
j + 2iζjωωj − ω2

∫

Ωb

ρb ψm.φj dV

∫

Ωb

ρb φj.ψn dV (G.16)
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This matrix is complex and highly dependent on the frequency. When ω approaches a modal
frequency value ωj, this matrix is purely complex and acts as a dashpot pumping energy to resonance
modes. For ω > ωj this term is approximately a pure negative real reducing the effective mass of the
system. For ω < ωj the matrix is real and positive and tends towards zero for very low frequency
(static case).

G.3 Decomposition of the displacement in the soil

The kinematic continuity over the interface Σbf in frequency domain can be written as:

ûd (x, ω) = ûf (ω)− ûi (x, ω) =
6∑

m=1

ĉm (x, ω) ψ
m

(x)− ûi (x, ω) ∀ x ∈ Σbf (G.17)

where ûd is the displacement field due to total diffracted waves. This diffracted displacement field,
can be decomposed as follows:

ûd (x, ω) =

6∑

m=1

ûdm (x, ω) + ûd0 (x, ω) ∀ x ∈ Σbf (G.18)

The displacement field ûd0 is the displacement due to local diffraction of the incident wave field on
the foundation assumed fixed. It verifies the elastodynamics equation in the soil domain Ωs and free
field conditions at the boundary Γs:

divσ
s

(ûd0) + ρsω
2ûd0 = 0 in Ωs

ts (ûd0) = 0 on Γs

ûd0 = ûi on Σsf (G.19)

The second component ûdm corresponds to displacement due to radiation caused by a unitary
foundation movement along the rigid base mode m. Each component m also verifies:

div σ
s
(ûdm) + ρsω

2ûdm = 0 in Ωs

ts (ûdm) = 0 on Γs

ûdm = ψ
m

on Σsf (G.20)

Injecting decomposition (G.18) in (G.14) we obtain the general system of equations of soil-structure
interaction:

(
[Ks (ω)]− ω2 [Mf ] + [Mb] + [M∗

b (ω)]
)
{c} = {fs} (G.21)

where [Ks] is the generalized dynamic impedance of the soil and {fs} is the vector of induced seismic
forces introduced at the foundation level. Their components can be computed as:

[Ks]mn =

∫

Σsf

ts (ûdm) .ψ
n
dS

{fs}n = −
∫

Σsf

ts (ûi + ûd0) .ψn dS

The resolution of the previous system for each frequency ω gives the frequency-dependent modal
participation factors regrouped in vector {c}. These values allow to compute displacement fields in the
superstructure, foundation and soil. Compared to standard fixe base analysis, the previous expression
includes the soil stiffness associated to impedance [Ks] and the interface forces {fs} induced by the
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ground motion. Even if the solution procedure is straightforward, its direct application involves
assembling matrices and vectors depending on the solution of boundary value problems (G.19) and
(G.20). Thus, the Boundary Element Method is particulary well suited to these fields. Details about
the numerical approximation of these equations in the case of layered half-spaces implanted in MISS3D
are beyond of the scope of this presentation and can be found in Clouteau and Aubry (2001, 2003);
Clouteau (1990, 2000, 2003).
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Appendix H

Numerical simulation of laboratory soil
test using ECP multimechanism model

The purpose of this section is complete the information concerning the set of parameter used for
the ECP multimechanism model described in §1.3.4 used in each case. Several soil mechanics test
are modelled in order to show both a global view of the response of the constitutive model and the
coherence of the set of parameters proposed to simulate the non-linear soil behaviour.

The purpose of this section is complete the information concerning the set of parameter used for
the ECP multimechanism model described in §1.3.4 used in each case. Several soil mechanics test
are modelled in order to show both a global view of the response of the constitutive model and the
coherence of the set of parameters proposed to simulate the non-linear soil behaviour.

H.1 Toyoura sand, Dr = 38%

For this material, the simulated soil mechanics test concern both undrained monotonic triaxial test
and cyclic shear test at different consolidation pressures p′0. The available curves provided by Ishihara
(1993) for monotonic loading and by Iwasaki et al. (1978) and Yamashita et al. (2001) for cyclic loading
have been used as reference response path. According with these work, the main characteristics of the
Toyoura sand are:� d50 = 0.19 [mm]� d10 = 0.12 [mm]� Uc = 1.3 [mm]� emin = 0.597 [mm]� emax = 0.997 [mm]� φ′pp =31°� ψ =31°
whit the standard notation for grain diameter characteristics d50, d10 and Uc, minimum and maximum
void ratio emin and emax. φ

′
pp is the perfect plasticity friction angle and ψ the dilatancy angle. These

values are used as starting data for identification parameter strategy proposed by Lopez-Caballero
(2003), in order to define some key parameters of the model as the plastic compressibility modulus β.
Other parameters related to hardening and threshold domain are obtained using reference curves.

The simulations conducted for monotonic test correspond to an initial relative density ofDr = 38%.
Four initial confinement pressures p′0 (i.e. 0.1, 1, 2 and 3 [MPa]) are used for the triaxial undrained
tests. The simulation results are presented in both planes q − ε1 and q − p′. Figure H.1 show the
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response obtained for the sets of parameters given in Table H.1. It can be noticed that the simulations
agrees with the experimental data. Concerning the values of the parameters, those related to elastic
properties and to yield functions remains unchanged for the different values of confinement pressure
p′0. We accept a small reduction of the initial void ratio during the isotropic consolidation test phase.
This variation is introduced by a small augmentation of the initial critical pressure pc0 value with p′0.
The hardening variables have been slightly modified for each p′0 to improve the agreement between
experimental and simulated data. The threshold domain values remain unchanged with p′0. For the
homogenous Toyoura sandy soil deposits used in the FE models described in Chapters 2 and 3, we
neglect these variations on initial critical pressure and hardening variables. Thus, the set of parameter
computed for p′0 = 0.1 [MPa] is retained for the entire soil deposit. This hypothesis has a negligible
effect on the global response of the FE model and on the SSI effects studied in this work.
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Figure H.1: Simulated undrained triaxial test using ECP constitutive model compared to references
curves provided by Ishihara (1993) for Toyoura sand (Dr = 38%)
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Figure H.2: Simulated drained cyclic shear test using ECP constitutive model compared to references
curves provided by Iwasaki et al. (1978) for Toyoura sand (Dr = 38%)
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In order to verify the model’s parameters under cyclic loading, the behaviour of the sand must
be studied by simulating drained cyclic shear (DCS) tests. Fig.H.2 shows the responses of a DCS
test obtained by the model of the Toyoura sand at a initial confinement of p′0 = 100[kPa]. The test
results are compared with the reference curves given by Iwasaki et al. (1978). We can notice that the
obtained modulus degradation curve G

Gmax
− γ curves match satisfactorily. The damping increasing

curve D − γ agrees with the experimental data for strains less than 0.5%, while for large strains the
damping is overestimated.

Table H.1: Parameters of ECP model for Toyoura sand, Dr = 38%

Dr [%] 38
p′ [MPa] 0.1 1.0 2.0 3.0

Model parameters

Elasticity

Kref [MPa] 444 444 444 444
Gref [MPa] 222 222 222 222

ne 0.4 0.4 0.4 0.4
p′ref [MPa] 1.0 1.0 1.0 1.0

Yield function

φ′pp 31 31 31 31
β 43 43 43 43
d 3.5 3.5 3.5 3.5

b 0.2 0.2 0.2 0.2

Initial state

pc0 [MPa] 1.80 1.82 1.92 1.95
pc0
p′0

18 1.82 0.91 0.65

Hardening

a1 1× 10−4 3× 10−4 3× 10−4 2× 10−3

a2 4× 10−3 9× 10−3 1.8× 10−2 2.3 × 10−2

cm 6× 10−2 6× 10−2 3× 10−2 1.8 × 10−2

cc 3× 10−2 3× 10−2 1.5× 10−2 9× 10−3

m 1.0 1.0 1.0 1.0
np 1.0 1.0 1.0 1.0

Threshold domains

relk 5× 10−3 5× 10−3 5× 10−3 5× 10−3

rhysk
3× 10−2 3× 10−2 3× 10−2 3× 10−2

rmobk 8× 10−1 8× 10−1 8× 10−1 8× 10−1

reliso 1× 10−3 1× 10−3 1× 10−3 1× 10−3
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H.2 Liquefiable sand

The model parameters of each layer were determined with the methodology suggested by Lopez-
Caballero et al. (2007); Lopez-Caballero and Modaressi-Farahmand Razavi (2008) and they are given
in Tab.H.2 for each layer.

In order to verify the model’s parameters and to characterize the liquefaction resistance of sand
placed between 3.5 and 9[m] depth, the behaviour of the sand must be studied by simulating drained
cyclic shear (DCS) tests and undrained stress controlled cyclic shear tests. Fig.H.3 shows the responses
of these DCS tests obtained by the model of the loose sand at p′0 = 40 and 70[kPa]. The test results are
compared with the reference curves provided by Seed et al. (1986). We can notice that the obtained
modulus degradation curves match satisfactorily for strains less than 0.01%. The damping increasing
curve is underestimated for small strains (γ < 10−5), while for large strains it is overestimated.
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Figure H.3: Simulated drained cyclic shear test using ECP constitutive model compared to references
curves provided by Seed et al. (1986)

The obtained curve of cyclic stress ratio τd
p′0

as a function of the number of loading cycles to produce

liquefaction (N) for an initial confinement of p′0 = 40[kPa] is shown in Fig.H.4. The modelled test
result is compared with the reference curves given by Seed and Idriss (1982) for sands at different
densities (i.e. SPT values). It can be noticed that the obtained curve agrees with the reference curve
corresponding to SPT of N60 = 5.
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Table H.2: Parameters of ECP model for all soil profile layers

Layers 0− 2[m] 2− 9[m] 9− 16[m] 16− 22[m] 22− 29[m]

Model parameters

Permeability

ks [m/s] 1× 10−3 1× 10−5 1× 10−5 1× 10−4 1× 10−4

Elasticity

Kref [MPa] 90 628 628 628 444
Gref [MPa] 45 290 290 290 22.4

ne 0.0 0.5 0.5 0.5 0.4
p′ref [MPa] 1.0 1.0 1.0 1.0 1.0

Yield function

φ′pp° 31 30 30 30 31

β 20 33 33 33 43
d 2.0 2.0 2.0 2.0 3.5
b 0.2 0.2 0.2 0.2 0.2

Initial state

pc0 [MPa] 1.86 0.04 0.05 0.08 1.80

Hardening

ψ° 31 30 30 30 31
a1 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4

a2 2× 10−4 5× 10−3 5× 10−3 5× 10−3 5× 10−3

cm 1× 10−3 4× 10−3 4× 10−3 4× 10−3 6× 10−2

cc 5× 10−4 2× 10−3 2× 10−3 2× 10−3 3× 10−2

m 1.0 1.5 1.5 1.5 1.0

Threshold domains

relk 1.3 × 10−2 3× 10−2 3× 10−2 3× 10−2 5× 10−3

rhysk
2.2 × 10−1 4× 10−2 4× 10−2 4× 10−2 3× 10−2

rmobk 8× 10−1 8× 10−1 8× 10−1 8× 10−1 8× 10−1

reliso 4× 10−3 2× 10−2 2× 10−2 2× 10−2 1× 10−3
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H.3 French Antilles soil

The model parameters of each layer were selected from the material library of ECP and are given in
Tab.H.3 for each layer. We use the same set of parameters for layers between 2 and 30[m] depth for
the sake of simplicity.

Table H.3: Parameters of ECP model for all soil profile layers

Layers 0− 2[m] 2− 6[m] 6− 10[m] 10− 20[m] 20− 30[m]

Model parameters

Elasticity

Kref [MPa] 90 399 399 399 399
Gref [MPa] 45 184 184 184 184

ne 0.0 0.4 0.4 0.4 0.4
p′ref [MPa] 1.0 1.0 1.0 1.0 1.0

Yield function

φ′pp° 31 33 33 33 33

β 20 17 17 17 17
d 2.0 2.5 2.5 2.5 2.5
b 0.2 0.2 0.2 0.2 0.2

Initial state

pc0 [MPa] 1.86 7.20 7.20 7.20 7.20

Hardening

ψ° 31 33 33 33 33
a1 1× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4

a2 2.1× 10−4 1.8× 10−2 1.8× 10−2 1.8× 10−2 1.8 × 10−2

cm 1× 10−3 1× 10−4 1× 10−4 1× 10−4 1× 10−4

cc 5× 10−4 5× 10−5 5× 10−5 5× 10−5 3× 10−5

m 1.0 1.0 1.0 1.0 1.0

Threshold domains

relk 1.3× 10−2 1× 10−2 1× 10−2 1× 10−2 1× 10−3

rhysk
2.2× 10−1 5× 10−2 5× 10−2 5× 10−2 5× 10−2

rmobk 8× 10−1 9× 10−1 9× 10−1 9× 10−1 9× 10−1

reliso 4× 10−3 1× 10−4 1× 10−4 1× 10−4 1× 10−4
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In order to verify the model’s parameters under cyclic loading, the behaviour of the soil is studied
by simulating drained cyclic shear (DCS) tests. Fig.H.5 shows the responses of a DCS test obtained by
the model for the set of parameter used between 2−30[m] depth, for three different initial confinement
p0.
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Figure H.5: Simulated drained cyclic shear test using ECP constitutive model (2− 30[m] depth)
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Appendix I

Description of studied buildings

This appendix gives additional details concerning buildings studied in this work. General geometry
and reinforcement description are provided with the degree of detail required to be used in plastic-
hinge beam column elements of GEFDyn . Additional details concerning reinforcement diameters and
transversal reinforcement dispositions are omitted here for sake of simplicity.

I.1 Two-level building: b01

I.1.1 Geometry

The two-level b01 building extracted from Marante et al. (2005) corresponds to an adaption of a
true-scale model performed by Vecchio and Emara (1992). The general geometry, label identification
of sections and a schema of transversal properties required for plastic-hinge elements are shown in
FigI.1.
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Figure I.1: Geometry and transverse section descriptions of b01 building

I.1.2 Transverse sections

Table I.1 shows dimension of transverse sections, steel reinforcement area and unitary mass ρ. This
unitary mass takes into account the self weight of the frame and the tributary weight/loading across la
according to Fig.3.2. Last value is used to compute body forces due to gravity for static initialization
analysis and assemble the mass matrices for dynamic computations.

Table I.1: Transverse section properties

Label h[m] bs[m] dc[m] ds[m] As[cm2] Acs[cm2] ρ[kg/m3]

B1 0.4 0.3 0.03 0.37 11.4 11.4 42473

C1 0.4 0.4 0.02 0.38 11.4 11.4 -
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I.1.3 Materials

Numerical values of different mechanical properties are indicated in Tab.I.2, extracted from Marante
et al. (2005).

Table I.2: Mechanical properties of material for b01 building

Mechanical property Symbol Value

Resistance to
compressive stresses

fc 30[MPa]

Yield stress of steel fy 418[MPa]

Ultimate stress of steel fsu
596[MPa]

Elastic modulus of steel Es 210[GPa]

Elastic modulus of
concrete

Ec 26.5[GPa]

Crushing strain of
concrete

εc 0.0034

I.1.4 Axial load-moment interaction diagrams

Figure I.2 displays axial force-moment interaction diagrams that control non-linear behavior of plastic-
hinge beam elements of b01 building, computed using a resistance factor of φ = 0.9. It can be noticed
that no interaction is supposed for beams B1, thus plastic hinge apparition depends only on the
bending moments for these elements.
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Figure I.2: Axial force-moment interaction diagrams used for plastic-hinge beam-column elements of
b01 building
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I.2 Seven-level building: b02

I.2.1 Geometry

The seven-level b02 building extracted from Marante et al. (2005) corresponds to a residential building
placed in Mérida city, Venezuela. This building was designed according to seismic recommendations
of this country. The general geometry, label identification of sections and a schema of transversal
properties required for plastic-hinge elements are shown in Fig.I.3.
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Figure I.3: Geometry and transverse section descriptions of b02 building

I.2.2 Transverse sections

Table I.3 shows dimensions of transverse sections, steel reinforcement area and unitary mass ρ. This
unitary mass takes into account the self weight of the frame and the tributary weight/loading across la
according to Fig.3.2. Last value is used to compute body forces due to gravity for static initialization
analysis and assemble the mass matrices for dynamic computations.

I.2.3 Materials

Numerical values of different mechanical properties are indicated in Tab.I.4, extracted from Marante
et al. (2005).

I.2.4 Axial load-moment interaction diagrams

Figure I.4 displays axial force-moment interaction diagrams that control non-linear behavior of plastic-
hinge beam elements of b02 building, computed using a resistance factor of φ = 0.9. It can be noticed
that no interaction is supposed for beams, thus plastic hinge apparition depends only on the bending
moments of these elements.
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Table I.3: Transverse section properties

Label h[m] bs[m] dc[m] ds[m] As[cm2] Acs[cm2] ρ[kg/m3]

B1 0.6 0.3 0.04 0.56 25.34 25.34 34900

B2 0.7 0.3 0.04 0.66 11.40 11.40 30285

B3 0.3 0.2 0.04 0.26 8.55 8.55 70500

C1 0.6 0.5 0.04 0.56 40.54 40.54 -

C2 0.6 0.5 0.04 0.56 30.95 30.95 -

C3 0.6 0.4 0.04 0.56 40.54 40.54 -

C4 0.6 0.4 0.04 0.56 30.95 30.95 -

C5 0.6 0.4 0.04 0.56 14.41 14.41 -

Table I.4: Mechanical properties of material for b01 building

Mechanical property Symbol Value

Resistance to
compressive stresses

fc 25[MPa]

Yield stress of steel fy 440[MPa]

Ultimate stress of steel fsu
596[MPa]

Elastic modulus of steel Es 200[GPa]

Elastic modulus of
concrete

Ec 25.5[GPa]

Crushing strain of
concrete

εc 0.003
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Figure I.4: Axial force-moment interaction diagrams used for plastic-hinge beam-column elements of
b02 building
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I.3 Public building

I.3.1 Geometry

The public building considered in this work was built in 1970 and it is placed in French Antilles. The
general geometry, label identification of sections and a schema of transversal properties required for
plastic-hinge elements are shown in Fig.I.5 and I.6.
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Figure I.5: Geometry and transverse section descriptions of public building: longitudinal axes

I.3.2 Transverse sections

In the real building, some of the columns have an irregular cross section. They were approximated
by rectangular sections in order to compute axial force-bending interaction diagrams according to
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the geometry described in Fig.I.3. Table I.5 shows transverse sections properties: transverse area
A, transverse primary inertia I, factor α defining minor flexural properties (§D.2), reinforcement
according and unitary mass ρ. This unitary mass takes into account the self weight of the frame and
a part of the dead and live loads. Last value is used to compute body forces due to gravity for static
initialization analysis and assemble the mass matrices for dynamic computations.

Table I.5: Transverse section properties

Label A[m2] I[m4] α h[m] bs[m] dc[m] ds[m] As[cm2] Acs[cm2] ρ[kg/m3]

C1 0.44 0.014 1.5 0.6 0.8 0.02 0.58 25.1 25.1 2400

C2 0.44 0.014 1.5 0.6 0.8 0.02 0.58 15.7 15.7 2400

C3 0.21 0.002 6.19 0.3 0.8 0.03 0.28 15.7 12.6 7000

C4 0.21 0.002 6.19 0.3 0.8 0.03 0.28 10.1 8.0 7000

B5 0.31 0.013 0.41 0.7 0.45 0.66 0.04 10.8 10.8 7000

C6 0.48 0.014 1.77 0.45 0.3 0.02 0.44 4.5 4.5 2400

C7 0.24 0.002 7.11 0.3 0.8 0.02 0.58 25.1 25.1 14000

B8 0.18 0.005 0.25 0.6 0.3 0.02 0.58 10.8 10.8 14000

C9 0.14 0.002 0.44 0.45 0.3 0.02 0.44 4.5 4.5 14000

C10 0.11 0.001 0.73 0.35 0.3 0.02 0.33 4.5 4.5 14000

B11 0.08 0.002 0.09 0.5 0.15 0.02 0.48 8.0 9.6 2400

B12 0.024 0.007 0.44 0.6 0.4 0.02 0.58 10.8 10.8 2400

I.3.3 Materials

Numerical values of different mechanical properties are indicated in Tab.I.6.

Table I.6: Mechanical properties of material for public building

Mechanical property Symbol Value

Resistance to
compressive stresses

fc 27.5[MPa]

Yield stress of steel fy 420[MPa]

Ultimate stress of steel fsu
596[MPa]

Elastic modulus of steel Es 200[GPa]

Elastic modulus of
concrete

Ec 24.8[GPa]

Crushing strain of
concrete

εc 0.003
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Figure I.6: Geometry and transverse section descriptions of public building: transverse axes



Appendix J

List of strong-motion records selected

This appendix lists the sets of records chosen as input to the FE models.

J.1 List of records compatible with Metropolitan France

Table J.1: Strong-motion selection #1

Number Station Soil Vs,30[m/s] Waveform Mw TSR[s] AI[m/s] Tm[s]

1 San Rocco stiff 600 000147y 6.08 2.82 0.221 0.4504

2
Kalamata-
Prefecture

stiff 486 000413x 5.9 5.48 0.559 0.6103

3 Bevagna stiff > 600 000595y 5.72 22.31 0.078 0.6574

4
Preveza-OTE

Building
stiff – 000582y 5.4 14.24 0.025 0.6409

5 Monte Fegni rock – 000598y 6.04 10.86 0.008 0.1736

6
Atina-Pretura

Terrazza
rock – 000990y 5.53 15.22 0.111 0.2289

7 Argostoli-OTE stiff 405 001862y 5.35 7.50 0.017 0.1845

8 Irafoss rock – 005085y 5.45 7.77 0.004 0.8688
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Figure J.1: Time-histories and computed response spectra at outcropping bedrock. Strong-motion
selection #1
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Table J.2: Strong-motion selection #2

Number Station Soil Vs,30[m/s] Waveform Mw TSR[s] AI[m/s] Tm[s]

9
Forgaria-
Cornio

stiff 441 000114x 5.33 4.25 0.044 0.2455

10 Cascia rock – 000242x 5.8 5.47 0.257 0.2393

11
Valsamata-
Seismograph

Station
rock – 000428y 5.3 15.16 0.251 0.2574

12 Bevagna stiff > 600 000595x 5.72 24.47 0.046 0.5572

13 San Rocco stiff 600 000147x 6.08 4.99 0.118 0.5198

14 Matelica stiff > 600 000601x 5.72 11.63 0.021 0.2114

15
Cassino-
Sant’Elia

alluvium – 000378x 5.9 12.74 0.202 0.5044

16
Reykjavik
Heidmork

rock – 005089x 5.45 8.16 0.004 0.8811

Table J.3: Strong-motion selection #3

Number Station Soil Vs,30[m/s] Waveform Mw TSR[s] AI[m/s] Tm[s]

17 Akhalkalaki rock – 000487x 5.48 8.83 0.007 0.2346

18
Preveza-OTE

Building
stiff – 000582x 5.4 16.43 0.022 0.5649

19 Villeta-Borrea rock – 000384x 5.53 3.64 0.132 0.1870

20
Valsamata-
Seismograph

rock – 000428x 5.3 15.78 0.138 0.2521

21
Kalamata-
Prefecture

stiff 486 000413y 5.9 7.04 0.841 0.5354

22 Bevagna stiff > 600 000596y 6 20.27 0.190 0.6177

23 Vasiliki-Town stiff 490 001990y 5.42 10.90 0.066 0.3877

24 Irafoss rock – 005085x 5.45 9.36 0.003 0.6974
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Figure J.2: Time-histories and computed response spectra at outcropping bedrock. Strong-motion
selection #2
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Figure J.3: Time-histories and computed response spectra at outcropping bedrock. Strong-motion
selection #3
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Table J.4: Strong-motion selection #4

Number Station Soil Vs,30[m/s] Waveform Mw TSR[s] AI[m/s] Tm[s]

25 Oseyrabru rock – 005090x 5.4 12.75 0.008 0.4806

26
Athens-

Syntagma
stiff 372 001713y 6.04 5.91 0.059 0.5443

27 Bevagna stiff > 600 000620y 5.5 19.31 0.046 0.5828

28
Kalamata-

OTE
Building

stiff 399 000414y 5.9 6.21 0.742 0.5251

29 Bevagna stiff > 600 000596x 6 21.61 0.146 0.6063

30
Colfiorito-
Casermette

rock – 000651x 5.58 5.42 0.209 0.2383

31
Atina-Pretura

Terrazza
rock – 000990x 5.53 10.21 0.145 0.2130

32
Kyparrisia
Agriculture

rock 862 001900x 5.36 5.00 0.016 0.2745
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Figure J.4: Time-histories and computed response spectra at outcropping bedrock. Strong-motion
selection #4
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J.2 List of records compatible with French Antilles

Table J.5: Strong-motion selection #1: Interface records

Number Station Soil Vs,30[m/s] Waveform Mw
Sd,ζ=5% at
0.1s bin

Sd,ζ=5% at
1s bin

tSR
bin

1 Palma sur rock – 007786y 6.4 low low low

2
Corinto
Muelle
Norte

alluvium – 005387x 6.5 low low high

3 Savegre stiff – 007933x 6.2 low high low

4 Erimo – – 009161x 8.3 low high high

5 Quepos rock – 007927y 5.9 high low low

6
Chinandega
bomberos

soft – 007725y 6.5 high low high

7 Quepos rock 405 007932x 6.2 high high low

8 Toyokoro – – 011362y 8.3 high high high

Table J.6: Strong-motion selection #2: Interface records

Number Station Soil Vs,30[m/s] Waveform Mw
Sd,ζ=5% at
0.1s bin

Sd,ζ=5% at
1s bin

tSR
bin

9 Savegre stiff – 007928x 5.9 low low low

10 Savegre stiff – 007933x 6.2 low low high

11 Golfito rock – 007785y 6.4 low high low

12
Corinto
Muelle
Norte

alluvium – 005387x 6.5 low high high

13
Corinto

Muelle Sur
soft – 007733x 6.5 high low low

14
Corinto
Adm.

building
alluvium – 005385x 6.5 high low high

15 Guayabo stiff – 007886y 5.3 high high low

16 Infiernillo – – 003291y 8.0 high high high
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Table J.7: Strong-motion selection #3: Intraslab records

Number Station Soil Vs,30[m/s] Waveform Mw
Sd,ζ=5% at
0.1s bin

Sd,ζ=5% at
1s bin

tSR
bin

17 Golfito rock – 007918y 5.6 low low low

18 Tacuba alluvium – 005326x 6.0 low low high

19
San

Salvador
NGI

soft – 005348y 5.6 low high low

20

San
Salvador

Seismic Ob-
servatory

– – 005403y 5.7 low high high

21
Managua

Inst.
Śısmico

soft – 007758y 5.9 high low low

22
Managua
Coca-Cola

soft – 007759x 5.9 high low high

23
León Col.
Calazans

soft – 007753x 5.9 high high low

24
Atina-
Pretura
Terrazza

rock – 000990x 5.5 high high high

Table J.8: Strong-motion selection #4: Crustal records

Number Station Soil Vs,30[m/s] Waveform Mw
Sd,ζ=5% at
0.1s bin

Sd,ζ=5% at
1s bin

tSR
bin

25

Gilroy
Gavilan
College

stiff – 001040x 6.5 low low low

26 Uttarkasi rock – 007685y 6.8 low low high

27

Kobe Port
Island
Array

(surface)

soft – 002057x 6.9 low high low

28

Los Angeles
1100

Wilshire
Bd.

stiff – 002198y 6.7 low high high

29
San Vicente

Hospital
alluvium – 004654x 6.5 high low low

30
Muika

(surface)
– – 010156y 6.6 high low high

31
Nahanni
Station 2

rock – 001143x 6.7 high high low

32
Chi-Chi
TAP065

stiff > 750 – 7.6 high high high
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Table J.9: Strong-motion selection #5: Crustal records

Number Station Soil Vs,30[m/s] Waveform Mw
Sd,ζ=5% at
0.1s bin

Sd,ζ=5% at
1s bin

tSR
bin

33 Hella stiff – 006330x 6.4 low low low

34

Los
Angeles-

3620 South
Vermont

soft – 002664y 6.7 low low high

35
San Jose

IBM Build.
12

rock – 001043x 6.5 low high low

36
Brawley
Airport
Hangar

soft – 001016y 6.5 low high high

37

Superstition
Mountain
Camera
Site 8

soft – 001109x 6.5 high low low

38
Glendale
3320 Las

Palmas Av.
– – 002678y 6.7 high low high

39 Tsunan – – 008667y 6.6 high high low

40

El Centro
Array

Station 6
soft – 001022x 6.5 high high high
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Figure J.5: Time-histories and computed response spectra at outcropping bedrock. Strong-motion
selection #1: Interface records
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Figure J.6: Time-histories and computed response spectra at outcropping bedrock. Strong-motion
selection #2: Interface records
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Figure J.7: Time-histories and computed response spectra at outcropping bedrock. Strong-motion
selection #3: Intraslab records
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Figure J.8: Time-histories and computed response spectra at outcropping bedrock. Strong-motion
selection #4: Crustal records
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Figure J.9: Time-histories and computed response spectra at outcropping bedrock. Strong-motion
selection #5: Crustal records
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pour différents sols. 89 SGN 117 GEG, Bureau de Recherches Géologiques et Minières BRGM.
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