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Abstract

This thesis proposes and evaluates some online algorithms for machine schedul-
ing problems. Deterministic scheduling models have been extensively studied
in the literature. One of the basic assumptions of these models is that all the
information is known in advance. However, this assumption is usually not real-
istic. This observation promotes the emergence of online scheduling. In online
scheduling problems, an online algorithm has to make decisions without future
information. Competitive analysis is a method invented for analyzing online al-
gorithms, in which the performance of an online algorithm (which must satisfy
an unpredictable sequence of requests, completing each request without being
able to see the future) is compared with the performance of an a posteriori op-
timal solution where the sequence of requests is known. In the framework of
competitive analysis, the performance of an online algorithm is measured by its
competitive ratio.

We mainly deal with two online paradigms: the one where jobs arrive over
list and the one where jobs arrive over time. Based on these two paradigms,
we consider different models: single machine, two identical parallel machines,
two uniform parallel machines, batch processing machine and open shop. For
each of the problems, we prove a lower bound of competitive ratios and propose
online algorithms. Then we further measure the worst case performance of these
algorithms. For some problems, we can show that the algorithms we proposed
are optimal in the sense that their competitive ratios match the lower bounds.



Chapter 1

Introduction

This thesis is concerned with design and evaluation of algorithms for online ma-
chine scheduling problems. This chapter presents scheduling problems, shows
the motivations and the relevance of this research, and summarizes the contri-
butions of the thesis.

1.1 Scheduling

Scheduling deals with the allocation of scarce resources to activities (or tasks)
over time. It is a decision-making process to optimize one or more objective
functions while satisfying some constraints.

The resources and activities in an organization can take many forms. The
resources may be database servers in a network, machines in a workshop, crews
at a construction site, runways at an airport, CPU in a computer, and so on.
The activities may be data in a network, operations in a production process,
stages in a construction project, take-offs and landings at an airport, executions
of computer programs, and so on. Each activities may have some parameters,
such as a certain priority level, a weight, a grade of service request (GoS), a
release time, a due date, and so on. The objectives can also take many forms,
such as the minimization of makespan, the minimization of total completion
time, the minimization of total tardiness, the maximization of early jobs, and
so on.

Scheduling plays an important role in many manufacturing and production
systems as well as in many information-processing environments. In transporta-
tion and distribution environments, and other types of service industries, the
role of scheduling is also indispensable.

1.2 Motivations

Traditional scheduling theory assumes that complete knowledge of the problem
was available when it was to be solved. However, scheduling problems in the real
world face the possibility of lack of information (or knowledge). For example,
no one knows the exact number of phone calls that are going to reach a switch-
board during a certain period, nor do we know the exact length of each individual
call. Similarly, we do not know the exact number of tasks that are going to be
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executed on a time-shared multi-user computer system. Based on these scenarios
in reality, it is known that uncertainties frequently encountered in scheduling
environments include the appearance of new jobs and unknown processing times.
These reasons promote the emergence of online scheduling. Similar to classical
scheduling problems, online scheduling problems also originate from allocating
certain scarce resources to activities, but over time (or over list), without having
full knowledge of the future.

The notion of online algorithm is intended to formalize the realistic scenario
where the algorithm does not have access to the whole input instance, unlike the
(offline) algorithms for classical scheduling problems. Instead, it learns the input
piece by piece, and has to react to the new requests with only a partial knowledge
of the input. Its applications can be found in many areas as scheduling. This
thesis is devoted to such online scheduling problems with the aim of attaining
the highest resource utilization.

For instance, in real world, the following online scenario may happen in
electronic commerce if no a couple of jobs are allowed to share a same machine
during execution due to security reasons. A system owner provides m identical
parallel machines to his customers. These customers are independent from
each other. They submit their jobs dynamically over time. A customers job
always uses its assigned machine exclusively for its whole processing time (i.e.,
preemption is not allowed). The owner receives a fixed fee from a customer for
each minute a job of this customer occupies a machine. The customers do not
provide in advance the machine usage necessary to process their jobs. Forcing
the customers to provide the processing times of their jobs in advance may be
a hassle to those customers and is very unreliable.

It is reasonable to assume that the system owner primarily tries to maxi-
mize system utilization. The system owner has no information about any future
request. Therefore, without additional knowledge on the jobs, no job selection
strategy can guarantee a better schedule than any other. The system owner may
use a strategy by immediately assigning a free machine to an open request, that
is, he generates a greedy schedule. On the other hand, he postpones the assign-
ment of a job to a machine until a machine becomes available (for feasibility).
If several requests are open at the same time he may use any arbitrary policy
to pick any one of them. In such a situation, he is using an online algorithm
and more specifically he uses a list scheduling algorithm, which is a classical
algorithm in online scheduling.

1.3 Our contributions

In this thesis, we address some online scheduling problems by designing and
analyzing some algorithms. In online scheduling, any algorithm is a heuristic.
The performance of such heuristics can be evaluated either by average perfor-
mance or by worst-cast performance (the evaluation is done by comparing the
obtained solution with offline optimal solution. The average performance evalu-
ation needs assumptions on probability distribution of various parameters, such
as arrival interval or processing times. Furthermore, the structure of the dis-
tribution function must be special to obtain analytical expressions of expected
performance of both obtained solutions and optimal offline solutions.

Because of these restrictions, we focus on worst-case analysis, i.e., we provide
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a performance guarantee of algorithms. This thesis considers a wide range of
problems. for each problem, we try to establish a lower bound of the worst-
case performance and attempt to design an algorithm such that the worst-case
performance is as good as possible (as close as possible to the lower bound).

The next paragraphs summarize the main features of the problems consid-
ered in the thesis and illustrate the relevance of these problems. In this thesis,
we consider several scheduling models: single machine model, parallel machine
model, batch processing machine model, and open shop model. Different con-
straints are investigated, such as bounded delivery times, grade of service (GoS),
reassignment, bounded processing times and so on.

Delivery time has a great significance in modern logistics. In order to attain
a high integration, decision-makers usually consider jobs’ delivery times into
scheduling problems. Thus, we first study an online scheduling problem with
jobs’ delivery times. As we all know, each job’s processing time can not be
infinite. We consider the case where each job’s delivery time in not too larger
comparing to its processing time. In this scenario, we design an optimal online
algorithm.

Grade of Service (GoS) provision is an attracting research field, since it can
equip manufactures to guarantee high quality products for certain customers.
As the reason mentioned above, we deal with the variant with jobs’ bounded
processing times. Under certain conditions, we respectively give optimal algo-
rithms for different ranges (or intervals) of jobs’ processing times.

With the technological development, machine’s renovation happens more
and more frequently in factories. An effect of such development is reduction of
time (or cost) caused by processing the task, in other words, machine’s speed
has been increased. Machines with different speeds may run at the same time,
i.e., the scenario of uniform parallel machines. So we draw some results for two
uniform machine environment. After that, we further consider the problem with
reassignment, which allows us to reassign jobs in some conditions. Such research
is motivated by realistic phenomenon. For example, on the assembly line, a time
delay is existing between assignment and process. In the process of dealing with
all the jobs assigned, some newly arrived jobs may not have been processed yet.
In order to minimize the completion time, we need to reassign these jobs to
gain a better effect. In other cases, such as hotel or restaurant reservation and
reception, we can do some adjustment in order to gain more profits. For the two
uniform machine environment with reassignment, we design and analyze some
algorithms.

Everyone has a common experience: in school homework must be handed
in by a given due date. Similarly, many other assignments in the business and
public worlds have dates by which the task must be completed and returned to
the person who assigned the task, their due dates. Therefore, in this thesis, we
also consider due date constraint in online scheduling to maximize the number
of early jobs. We show the performance of an classical algorithm, called SRPT
or ECT, for preemption scenario.

Another kind of machine environment is batch processing machine. Batch
processing machine scheduling has been motivated by burn-in operations in the
final testing stage of semiconductor manufacturing. We consider two variants
on a single batch processing machine with jobs’ nondecreasing processing times
and jobs’ nonincreasing processing times, respectively. For these two special
cases, we respectively develop optimal algorithms.
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Open shop scheduling problems arise in several industrial situations. For
example, consider a large aircraft garage with specialized work-centers. An air-
plane may require repairs on its engine and electrical circuit system. These
two tasks may be carried out in any order but it is not possible to do these
tasks on the same plane simultaneously. There are other applications of open
shop scheduling problems in automobile repair, quality control centers, semicon-
ductor manufacturing, teacher-class assignments, examination scheduling, and
satellite communications. For two open machine environment with preemption,
considering jobs’ processing times, we obtain an optimal algorithm.

1.4 Outline of the thesis

This thesis focuses on the theory of scheduling, and deals with the detailed
sequencing and scheduling of jobs. It is divided into several parts.

We first discuss some models and results on online scheduling in Chapter 2.
In Chapter 3, we consider online scheduling on a single machine with bounded

delivery times. This chapter is mainly based on [70]. Jobs arrive over time. The
objective of this problem is to minimize the makespan considering jobs’ delivery
times. Note that makespan means the last moment by which all jobs have been
delivered to the customers. Based on the results of literature, we further con-
sider the situation where jobs’ delivery times are bounded. For this problem,
we give an optimal online algorithm, which is a generalization of the results in
the literature.

In Chapter 4, we deal with online scheduling on two identical parallel ma-
chines with grade of service provision (GoS). This chapter is mainly based on
[69]. The problem under consideration is to minimize the makespan. Jobs arrive
over list. By bounding jobs’ processing times, we divide the problem into differ-
ent subproblems. We analyze different subproblems and present some optimal
online algorithms under certain conditions. Further more, we suppose that the
total processing time is known. Under this assumption, we give an optimal
algorithm under some conditions.

Chapter 5 addresses the problem: online scheduling on two uniform (parallel)
machines to minimize the makespan. This chapter is mainly based on [74]. The
problems considered are: online scheduling under GoS and online scheduling
with reassignment. Jobs arrive over list. For the first problem, we obtain an
optimal algorithm under certain conditions. For the second problem, we give
some lower bounds and upper bounds.

In Chapter 6, we study the problem of online scheduling on m identical
parallel machines. The objective is to maximize the number of early jobs. This
chapter is mainly on the basis of [73]. The problem is online in the sense that
all jobs arrive over time. Each job’s characteristics, such as processing time and
due date, become known at its arrival time. We consider the preemption-restart
model, which means that preemption is allowed and once a job is restarted it
loses all the progress that has been made on this job so far. If in some schedule
a job is completed before or at its due date, then it is called early (or on time).
We show that an upper bound of competitive ratio is 1 − 1

2m and prove that
ECT (earliest completion time) algorithm is 1

2 -competitive.
In Chapter 7, we consider two semi-online scheduling problems on a single

batch (processing) machine with jobs’ nondecreasing processing times and jobs’
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nonincreasing processing times, respectively. This chapter is mainly based on
[71]. The objective is to minimize the makespan. A batch processing machine
can handle up to B jobs simultaneously. We study an unbounded model where
B = ∞. The jobs that are processed together construct a batch, and all jobs in
a batch start and complete at the same time. The processing time of a batch is
given by the longest processing time of any job in the batch. Jobs arrive over
time. Let pj denote the processing time of job Jj . Given job Jj and its following
job Jj+1, we assume that pj+1 ≥ αpj , where α ≥ 1 is a constant number, for
the first problem with jobs’ nondecreasing processing times. For the second
problem, we assume that pj+1 ≤ αpj , where 0 < α < 1 is a constant number.
We propose an optimal algorithm for both problems.

In Chapter 8, we deal with a two-machine open shop problem. This chapter
is mainly based on [68]. The objective is to minimize the makespan. Jobs arrive
over time. We study preemption-resume model, i.e., the currently processed job
may be preempted at any moment in time, and it may be resumed at any later
moment. Let p1,j and p2,j denote the processing time of job Jj on machines
M1 and M2, respectively. Bounded processing times mean that 1 ≤ pi,j ≤ α
(i = 1, 2) for each job Jj , where α ≥ 1 is a constant number. We obtain an
optimal online algorithm.

Finally, in Chapter 9, we give some conclusions from this research and dicuss
some further research directions.
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Chapter 2

State of the art

In this chapter, we review the literature on machine scheduling. Scheduling
problems can be distinguished into two categories: offline scheduling and online
scheduling. In offline scheduling models, it is assumed that the characteristics
of the activities and/or the resources are known in advance when establishing
the planning. As a consequence, offline models are deterministic models.

In practice, it is not always possible to have all the data concerning the jobs
and the resources. To deal with this situation, various models are developed,
especially stochastic scheduling models and online models.

In stochastic models, the unknown data are represented by random vari-
ables with known probability distribution. Among stochastic scheduling models,
queuing theory is widely used.

In contrast to offline deterministic models and stochastic models, online
scheduling make very few assumptions about the characteristics of jobs. This
thesis is focused on online scheduling models, that is why the remainder of the
chapter is mainly devoted to the literature review of online scheduling models.

2.1 Scheduling models

The models in machine scheduling problems are highly standardized. In all
the scheduling problems, the number of jobs and machines are assumed to be
finite. The number of jobs (or tasks/activities) is denoted by n and the number
of machines (or resources) by m. It is generally assumed that each machine
can process no more than one job at a time, except when the machines are
batch precessing machines. The aim is to optimize some objectives. Usually,
the subscript j refers to a job, whereas the subscript i refers to a machine. Jj

denotes a job and Mi denotes a machine. If a job requires a number of processing
operations, then Ji,j denotes the processing operation of job Jj on machine Mi.
Some parameters (or pieces of data) are associated with job Jj .

Release time (rj): the time when the job Jj arrives at the system, i.e.,
the earliest time at which job Jj can be processed. Release time is also called
release date, arrival date or arrival time.

Processing time (pi,j): the processing time of job Jj on machine Mi. If
the Jj ’s processing times on different machines are identical, we use pj instead
of pi,j to denote the processing time of Jj .
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Due date (dj): the committed completion date, i.e., the date the job is
promised to the customer.

Delivery time (qj): job Jj needs to be delivered after its processing on the
machine, which takes a certain time. This time is called delivery time.

Weight (wj): the importance of job Jj relative to the other jobs in the
system.

2.1.1 Variety of scheduling problems

A scheduling problem is described by a triplet α|β|γ. The α field describes the
machine environment and usually contains a single entry. The β field provides
details of processing characteristics and constraints and may contain no entry at
all or multiple entries. The γ field describes the objective to be minimized (or
maximized) and usually contains a single entry. The specification of a machine
scheduling model requires the description of a machine environment (α field),
job characteristics (β field), and an optimality criterion (γ field).

Some possible machine environments specified in the α field are:
Single machine (1): There is only one machine. A single machine is the

simplest of all possible machine environments.
Identical parallel machines (Pm): There are m identical machines in

parallel. Job Jj requires a single operation and can be processed on any one of
the m parallel machines.

Uniform parallel machines (Qm): There are m machines in parallel with
different speeds. The speed of machine Mi is denoted by si. The processing
time pi,j that job Jj spends on machine Mi is equal to pj/si (assuming job Jj is
not preempted). If all the machines have the same speed, then this environment
becomes identical parallel machines.

Unrelated parallel machines (Rm): This environment is a generalization
of the previous one. There are m parallel machines. Machine Mi can process
job Jj at speed si,j . The time pi,j that job Jj spends on machine Mi is equal
to pj/si,j (if this job is fully processed on machine Mi).

Open shop (Om): There are m machines. Each job has to be processed
again on each one of the m machines. There are no restrictions with regard to
the routing of each job through the machine environment. The decision maker
is allowed to determine a route for each job.

Flow shop (Fm): There are m machines in series. Each job has to be
processed on each one of the m machines. All jobs have to follow the same
route. After completion on one machine, a job joins the queue at the next
machine. If all queues operate under the First In First Out (FIFO) discipline,
the flow shop is referred to as a permutation flow shop.

Flexible flow shop (FFc): A flexible flow shop is a generalization of the
flow shop and the parallel machine environments. Instead of m machines in
series, there are c stage in series with a number of identical machines in parallel
at each stage. Each job has to be processed first at Stage 1, then Stage 2, and
so on. A stage functions as a bank of parallel machines; at each stage, job
Jj requires processing on only one machine and any machine can satisfy. The
queue at a stage may or may not operate according to the First Come first
Served (FCFS) discipline. This machine environment is also referred to as a
hybrid flow shop, compound flow shop, or multiprocessor flow shop.
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Job shop (Jm): In a job shop with m machines, each job has its own
predetermined route to follow.

Flexible job shop (FJc): A flexible job shop is a generalization of the job
shop and the parallel machine environments. Instead of m machines, there are c
work centers with a number of identical machines in parallel at each work center.
Each job has its own route to go through the shop. Job Jj requires processing
at each work center on only one machine and any machine can satisfy. If a job
on its route through the shop may visit a work center more than once, then the
β-field contains the entry recrc for the reason of recirculation.

The processing constraints are specified in the β field. These restrictions
may be:

Release times (rj): job Jj can not be processed before this time.
Preemptions (pmpt): The scheduler is allowed to interrupt the processing

of a job at any point in time and put a different job on the machine instead.
The preempted job may be continued at some time later. When a preempted
job is afterward put back on the machine (or another one), it may need be
processed for its remaining processing time or for its (original) processing time.
The former case is called resume, and the latter case is called restart.

Precedence constraints (prec): Precedence constraints may appear in
a single machine or in a parallel machine environment, requiring that one or
more jobs may have to be completed before another job is allowed to start its
processing. There are several special forms of precedence constraints: If each
job has at most one predecessor and at most one successor, the constraints are
referred to as chains. If each job has at most one successor, the constraints are
referred to as an intree or ”join” type. If each job has at most one predecessor,
the constraints are referred to as an outtree or ”fork” type.

Grade of Service (GoS): Grade of service (GoS) is a qualitative concept,
and it’s often translated into the level of access privilege of different service
provision. For example, suppose we have 2 machines (or processors). One of
them can provide high quality service (or high GoS) while the other one provides
normal service (or low GoS). Some jobs which request high quality must be
processed by high GoS machine, while other jobs with low quality requests can
be processed by both machines. GoS is also called hierarchy.

Availability constraint (h): There is non-availability interval [s, t] on
each of the machines. During this period, the machine cannot process any job.
There are two models divided by how to handle the crossover job, which is the
job affected by the non-availability interval i.e., the jobs starting beforing the
unavailability period but having to be completed afterward. The first is non-
resumable model where the crossover job that cannot be completed by time s is
restarted from scratch at time t. Under the resumable model, the crossover job
is interrupted at time s and resumed from the point of interruption at time t.

Machine eligibility restrictions (Mj): The Mj symbol may appear in
the β field when the machine environment is m machines in parallel. When the
Mj present, not all m machines are capable of processing job Jj . The set Mj

denotes the set of machines that can process job Jj .
Permutation (prmu): A constraint that may appear in the flow shop

environment is that the queues in front of each machine operate according to
the First In First Out (FIFO) discipline. This implies that the order in which
the jobs go through the first machine is maintained throughout the system.

Blocking (block): Blocking may occur in flow shop. If a flow shop has a
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limited buffer between two successive machines, then it may happen that when
the buffer is full the upstream machine is not allowed to release a completed
job.

No-wait (nwt): The nwt symbol may appear in flow shop. Jobs are not
allowed to wait between two successive machines. This implies that the starting
time of a job at the first machine has to be delayed to ensure that the job can go
through the flow shop without having to wait for any machine. It is clear that
under nwt constraint, the machines also operate under the FIFO discipline.

Recirculation (recrc): recrc may occur in a job shop or flexible job shop
when a job may visit a machine or work center more than once.

Online environment (online): This constraint means that decision must
be made without full knowledge of jobs’ information (or with partial jobs’ in-
formation). Jobs arrive one by one.

Nonincreasing processing times (nonincreasing): The nonincreasing
symbol may appear in the β field when the machine environment is online.
When this item is presented, jobs are sorted in the order of nonincreasing pro-
cessing times.

Nondecreasing processing times (nondecreasing): This symbol is de-
fined in the opposite way of the previous one.

Any other entry that appear in the β field is self-explanatory. For example,
pj = p implies that all processing times are equal, and similarly dj = d means
that all due dates are equal (also called common due date). If pj ≤ pj+1 appears
in β field, the processing time of job Jj is not greater than that of its following
job.

In order to present some possible entries in the γ field to be minimized, we
first give some basic functions.

The objective function is usually a function the completion times of the jobs.
The time job Jj exits the machine system is denoted by Cj , i.e., its completion
time on the last machine on which it requires processing. Given a due date dj

of job Jj , the lateness of Jj is defined as

Lj = Cj − dj ,

which is positive when Jj is completed late and negative when it completed
early. The tardiness of Jj is defined as

Tj = max{Lj , 0}.

The latter notation is more reasonable since the tardiness never is negative. The
unit penalty of Jj is defined as

Uj =
{

1 if Cj > dj

0 otherwise .

Some commonly discussed objective functions are:
Makespan (Cmax): The completion time of the last job completed in the

system. A minimum makespan usually signifies a high utilization of the ma-
chines, or a high throughput.

Total completion time (
∑

Cj): The sum of the completion times of all
jobs. This criterion indicates the total holding or inventory cost incurred by the
schedule.
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Total weighted completion time (
∑

wjCj): The sum of the weighted
completion times of all jobs.

Total weighted tardiness (
∑

wjTj): This is a more general cost function
than the total weighted completion time.

Weighted number of tardy jobs(
∑

wjUj): This objective has both aca-
demic and practical values.

All the objective functions listed above are called regular performance mea-
sures. Regular performance measures are functions that are nondecreasing in
C1, ..., Cn.

2.2 Online paradigms

In reality, it is unlikely to have all the information necessary to define a prob-
lem instance beforehand. This reason prompted the emergence of research on
online models. These models differ from each other with respect to the way
in which the algorithm has the information, step by step. Sgall distinguished
several paradigms in an excellent survey [93]. Note that the first two models
are commonly studied in the literature [87] and will be the main focus of this
thesis.

Jobs arrive over list (or in a list): In this model, the jobs are ordered in
some list and are presented one by one to the algorithm. When a job appears,
all its characteristics, such as its processing time, become known. The online
algorithm must assign the job immediately to a time slot and a machine before
the next job is seen, consistently with some restrictions given by the problem,
such as GoS. We are allowed to assign the jobs to arbitrary time intervals, i.e.,
they can be delayed. This assignment is irrevocable, i.e., the algorithm cannot
change it after it sees the next job in the list.

This model corresponds to the standard online model of request sequences.
It is used for problems such as bin packing, bin stretching, load balancing, graph
coloring, and paging. There is no release time in this model, the only online
feature is the limited information of future requests.

Jobs arrive over time: Jobs become available to the algorithm over time at
their release time. When a job arrives, all its characteristics, such as processing
time, due date, delivery time, are known by the algorithm. At each time when
the machine is idle, the online algorithm decides which one of the available jobs is
scheduled, if any. The online features of this model are the lack of knowledge of
future requests and of their arrival time. If preemptions or restarts are allowed,
the online algorithm can decide to preempt or stop any job that is currently
being processed.

Unknown processing times: The main online feature in this model is
that the processing time of a job is unknown until the job finishes. The online
algorithm only knows whether a job is still being processed or not. The jobs
may become available over time according to their release times or precedence
constraints, but the case where all jobs are available at the beginning plays an
important role in this model. If there are other characteristics of a job other
than its processing time, they are known when the job becomes available.

Interval scheduling: This model assumes that each job has to be executed
in a precisely given time interval. If this is impossible it may be rejected. This
scenario is very different from the previous three. For example, it is meaningless
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to measure the makespan or total completion time of the schedule; instead we
measure the number of accepted jobs. It is also related to load balancing.

If an online algorithm is clairvoyant , the processing time of a job becomes
known at its arrival. In contrast, if an online algorithm is non-clairvoyant ,
the processing time of each job is still unknown when the job is available; as
long as the job is not finished, a non-clairvoyant online algorithm only knows
whether it is still being processed or not.

Other than in offline scheduling, the option to preempt a job can be very
important in the online paradigms where jobs arrive over time. It enables the
scheduler to correct mistakes in a limited range. Restarts have the same effect.

In this thesis, we only consider two online models: the one where jobs arrive
over list and the one where jobs arrive over time. Most of the time, we focus on
clairvoyant algorithms.

2.3 Performance measures and computation

For a scheduling problem, we need an approach to measure the performance of
each algorithm for its solution. In this thesis, we use the competitive analysis
[12] to measure the performance of online algorithms. Precisely, we measure
the quality of an online algorithm by its competitive ratio, which is an upper
bound of the ratio of the objective function value given by the considered al-
gorithm over the optimal one obtained by offline optimal algorithm (which has
access to all information in advance).

In order to evaluate a competitive ratio, the online algorithm is compared
to an adversary. The adversary makes a sequence of requests, which have to
be processed by the online algorithm. The adversary itself also has to serve
the requests, but not necessarily at the same time as it creates them. A good
adversary tries to develop a sequence of request such that the cost for processing
the sequence by the online algorithm is as high as possible compared to its own
cost for serving the same sequence of requests.

There are three different kinds of adversaries introduced in [12]. The differ-
ence concerns the information about the online algorithm that is available to
the adversary and how the adversary processes the requests.

Oblivious adversary: He constructs the request sequence in advance,
based only on the description of the online algorithm, and processes the re-
quests himself optimally. This adversary knows the algorithm’s code, but does
not get to know the randomized results of the algorithm.

Adaptive online adversary: He makes the next request based on the
algorithm’s answers to previous ones, but processes it immediately. This ad-
versary must make its own decision before it is allowed to know the decision of
the algorithm. This adversary is stronger than the previous one, since he has
opportunity to change the request sequence.

Adaptive offline adversary: He makes the next request based on the
algorithm’s answers to previous ones and processes them optimally in the end.
This adversary knows everything, even the random number generator. This
adversary is so strong that randomization does not help against him.

The competitive ratio of an online algorithm is defined as follows. An online
algorithm is called ρ-competitive if for every possible request sequence gener-
ated by the adversary, the objective value of the schedule obtained by the online
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algorithm is at most ρ times the value of the schedule produced by the adver-
sary plus a constant. If we allow randomization, then we compare the expected
objective values, where the expectation is taken over the random choices of the
algorithm.

Due to lack of information in online scheduling, the quality of any online
schedule is normally not as good as an (offline) optimal schedule. Specifically, for
any input job sequence I, let CON (I) denote the objective value of the schedule
produced by the online algorithm AON and COPT (I) denote the objective value
of an (offline) optimal schedule. We say that AON is ρ-competitive if

CON (I) ≤ ρCOPT (I) + k

where k is a constant number. This inequality is a general form. Usually, we
omit the parameter k, i.e., k = 0. We also say that ρ is the competitive ratio of
AON . In other words, we measure the quality of an online algorithm AON , one
for the online scheduling problem, by its competitive ratio ρ, which is defined to
be (at least) the supremum of ratio CON (I)/COPT (I) over each of the problem
instances I.

In other words, if for each input instance the (expected) objective value
of the schedule produced by this algorithm is at most ρ times the value of the
optimal schedule plus a constant, then the deterministic (randomized) algorithm
has a competitive ratio ρ (also called upper bound). This corresponds to the
competitive ratio against an oblivious adversary. For a specific algorithm, we
can give a special instance to make the algorithm perform the worst possible
(i.e., the worst case). In this way, we obtain a lower bound (of competitive
ratio) of this algorithm. For this algorithm, if its competitive ratio matches it
lower bound, we say that this bound is tight.

If a part of information is known in advance, such as the total processing
time or the biggest processing time, the problem is called semi-online . When
all information is available at the beginning (before scheduling), the problem is
called offline .

Note that the above definition of competitive ratio is specified for minimiza-
tion problems and ρ ≥ 1. In maximization problems, for any input job sequence
I, we say that AON is ρ-competitive if

CON (I) ≥ ρCOPT (I).

We also say that ρ is the competitive ratio of AON . Clearly, 0 ≤ ρ ≤ 1. The
closer the ratio ρ comes to 1, the better the performance of the online algorithm
AON is.

Now the question is: “without future information, how well an online algo-
rithm can reach?”. This promotes the research of the (general) lower bound of
competitive ratios for all online algorithms (for minimization problems). For
a certain minimization problem, a lower bound of competitive ratios (also
called a lower bound of the problem) implies that there exists no online algo-
rithm with a competitive ratio less than this lower bound. Correspondingly, for
a maximization problem, an upper bound of competitive ratios (or the prob-
lem) means that no online algorithm has a competitive ratio higher than it.
This kind of upper bound is also referred to as a lower bound in the literature
for consistency. We use a minimization problem to explain how to draw a lower
bound. Usually, a lower bound of the problem is obtained by giving a specific
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job instance (sometimes, a set of job instances) on which no online algorithm
can performance very well. In this special instance, we first give several jobs
in order to detect online algorithms’ decisions. Depending on their decisions,
we further give jobs to make their decisions the worst possible. If after giving
these two sets of jobs, some online algorithms do not achieve their worst cases,
the third set of jobs arrive in the system. With the purpose to make any online
algorithm the worst possible, we carefully design the special job instance step
by step. At last, we will obtain a common value which can not be beaten by
any online algorithm. A fundamental principle to beat greedy algorithms is to
release jobs immediately after the algorithms schedule the previous jobs.

An online algorithm is considered to be best possible or optimal if its com-
petitive ratio matches the lower bound of competitive ratios (or the problem).
In this situation, we can also say that the bound is tight.

Readers should note that the difference between lower bound of the algorithm
and the lower bound of competitive ratios. The lower bound of an algorithm
means that for an online problem, this specific algorithm cannot have a compet-
itive ratio less than this lower bound. It is associated with a specific algorithm.
However, the lower bound of the problem is not specific for any algorithm, but
related to the problem. For an online problem, it is the lower bound of all
algorithms’ competitive ratios. The lower bound of the algorithm is worth to
research only in the case where the lower bound of the problem and the com-
petitive ratio of this algorithm do not match. The lower bound of the algorithm
can be obtained by designing a special instance for this specific algorithm such
that the algorithm performs as bas as possible.

There is also a relative concept, called upper bound of the problem. For an
online problem, an upper bound is determined by (or equal to) the competitive
ratio of an online algorithm which is currently known to be the best. When
the upper bound is equal to the lower bound of the problem, the problem is
solved. Usually, there is a gap between two bounds for an online problem. Our
task is to improve two bounds to decrease gap. For an online problem, if the
upper bound obtained by an algorithm is tight and there is also a gap between
this upper bound and the lower bound of the problem, the task is to seek new
algorithms with lower competitive ratio (or upper bound), or to improve the
lower bound of competitive ratio for the problem.

In order to prove the competitive ratio of an online algorithm, we usually use
a technique, called minimum counter example or smallest counter example.
Suppose that we want to prove that algorithm Aon is φ-competitive. We first
assume that there exists a smallest counter example I with the least jobs such
that Aon(I) > φAopt(I). Then based on this assumption, using the features of
the algorithm, we derive a contradiction. So we claim that such smallest counter
example does not exist. Therefore, we have the desired result.

Since this thesis is mainly concerned with the deterministic online algo-
rithms, two adaptive adversaries are equivalent. In this thesis, we consider the
competitive ratio against an adaptive (online) adversary. Competitive analy-
sis is a worst-case analysis which differs from an average-case analysis. This
measurement gives a kind of pessimistic impression.
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2.4 Modeling online scheduling problems

The basic situation of online scheduling problems is the following. We have
some sequence of jobs that have to be processed on the machines. In the most
basic problem, each job is characterized by its processing time and has to be
assigned on one of the machines. Jobs arrive with some online features. In
some complex variants, there may be additional restrictions or relaxations. We
usually want to schedule the jobs as efficiently as possible.

The concept of online algorithm is used to formalize the realistic scenario,
where the algorithm does not have the information of the whole input instance.
In contrast, the offline algorithms are assumed to have access to the whole input
instance. Online algorithms learn the input piece by piece, and has to react to
the new jobs with only a partial knowledge of the input.

When the theory of NP-completeness was developed, many scheduling prob-
lems have been shown to be NP-complete [28]. After the completeness of 18
basic scheduling problems had been shown [37], the focus shifted to designing
approximation algorithms. Online algorithms are basically kinds of approxima-
tion algorithms and many natural heuristics for scheduling are in fact online
algorithms.

In order to paraphrased the online models in a realistic way, we adopt some
examples illustrated in [108].

Example 1: A queue of cars is standing in front of a ferry-boat waiting
to be transported to the other shore. The ferry man that is standing in front
of this queue is given the task to assign each of the cars to a location on the
ferry-boat so as to minimize the free area of the ship. Because the view of the
ferry man is partially blocked, he can only see the first car in the queue at a
time. Once this car has been assigned to a position on the ship, the cars move
up and he sees the next car in the queue. Due to his years of experience, the
ferry man knows exactly the space needed by a car once he sees it. For obvious
reasons, the assignment of a car cannot be changed once the decision has been
made. To avoid chaos, the assignment of the cars to the deck of the ferry-boat
is highly structured. The deck of the ferry-boat is divided into parallel lanes of
equal width and equal length. Each lane is wide enough to be able to contain
any of the cars. Cars can only be assigned to the prescribed lanes and must be
located one after another in each of the lanes.

We can formulate this problem in terms of the online models mentioned in the
above section. Look for the machine environment (α field), job characteristics
(β field) and an optimality criterion (γ field). The jobs in this example are the
cars, and the processing time of a job is the length which the car requires. The
machines are the lanes into which the deck is partitioned. Every job can be
assigned to any lane and uses an amount of space that is independent of the
lane. This means that the environment corresponds to a set of identical parallel
machines. The objective is to minimize the free area, which is equivalent to
minimizing the total length of the cars left ashore. Define a due date and a
weight for each job to be equal to the length of the lanes and the length of the
car it represents, respectively. The objective hence is to minimize the weighted
number of tardy jobs. The online model is the one where jobs arrive over list.

Example 2: A factory faces a continuous demand for cardboard boxes of
various types. The boxes are produced by a group of machines. Every machine
can make a complete box from a single cardboard sheet. This includes printing
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in multi-colors, cutting, folding, and gluing. Because the machines were bought
over the years, they all have different processing speeds. Every order consists of
a specified number of boxes of a certain type. All orders have a due date, which
is the promised date of delivery. The decision makers have to decide how to
assign the orders to the machines so as to minimize the number of late orders.

Similar to the analysis of previous example, we should look for the machine
environment, job characteristics and an optimality criterion. The jobs in this
example are the orders that have to be produced, and the machines are simply
the machines in the factory. The objective is to minimize the number of tardy
jobs. Every job can be processed by processed by each of the machines. Con-
sidering the fact that all machines have different speeds, this implies that the
machine environment corresponds to a set of uniform parallel machines. The
online model is the one where jobs arrive over time.

Example 3: A computer network of several computers is used for trans-
mitting messages between the users of the network. Each computer has many
users who want to transmit messages via this network. Before transmitting a
message, a route is chosen along which the transmission should take place. Each
of the links in the route has a fixed bandwidth, i.e., the number of bits per sec-
ond that they can transmit is fixed. The requests for sending a message arrive
online over time at the computers, and each message has a size in bits, which
is unknown at the time of the request. No computer in the route can forward
a message until it has been received completely. Given the transmission route,
the aim is to find a protocol that regulates the communication traffic in such a
way that the average waiting time is minimized.

The jobs in this example are the messages. The links between the computers
can be viewed as machines. All messages are traveling via a route that is
known in advance, and the order in which the machines are visited is known
beforehand. The objective is to minimize the average waiting time. This is the
same as minimizing the total waiting time. By adding all jobs’ processing times
(transmission times in the network without waiting), the objective function
becomes the minimization of total completion time. The problem therefore can
be formulated as a job shop to minimize the total completion time. The online
feature that is used is obviously the model where jobs arrive over time and only
non-clairvoyant algorithms have to be considered.

2.5 Literature review of online scheduling

There are hundreds of online scheduling results associated with different online
paradigms in the literature, but our work is with regard to two kinds of online
paradigms: jobs arrive over list, and jobs arrive over time. Since our research
does not involve randomization, we mainly present the results of deterministic
algorithms. In order to organize these results, we respectively state them in
different online paradigms.

Before categorizing, we show some general results. The first one is LIST
algorithm, which was given by Graham [40]. He studied a simple greedy algo-
rithm.

He investigated a basic model, where we have m identical machines and
a sequence of jobs characterized by their processing times. The objective is to
minimize the makespan. We assume that all jobs are arranged in a list according
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to their release times, even if some of them do not arrive. Whenever a machine
is available, LIST algorithm schedules the first job in the list on this machine.
The list is formed online (no matter jobs arrive over time or over list). Since
LIST algorithm does not use the information of processing times, so it also hold
the online feature of unknown running times. Therefore, LIST algorithm works
in the first three online paradigms.

Graham showed that the competitive ratio of LIST is 2− 1
m . In the following

paper [41], Graham showed that the factor of 2 decreases if we modify the
algorithm so that some number of long jobs is scheduled first using an optimal
schedule, and the rest is scheduled by LIST algorithm. Clearly, this algorithm
is no longer online in any of the paradigms. However, this gives an intuition to
design approximation algorithms [62] and online algorithma [23].

2.5.1 Jobs arrive over list

This online model corresponds most closely to the standard model of request
sequence in competitive analysis. In this paradigm, there is no release times
and precedence constraints, since these restrictions appear to be unnatural with
scheduling jobs in a list. In most variants, it is not necessary to introduce idle
time on any machine.

Minimizing makespan

The basic model is that: we have m machines in parallel and a sequence of jobs
characterized by their processing times. The jobs arrive one by one, and we have
to schedule each job before we see the next one. The objective is to minimize the
makespan. Each job is assigned to a single machine. Each machine can process
at most one job at a time. There is no additional constraints. Preemption is
not allowed, and all the machines are identical.

LIST algorithm [40] is (2 − 1
m )-competitive. This algorithm is optimal for

m = 2, 3, but for larger m we should develop optimal algorithms [33]. We
know that there is a weakness of LIST algorithm. If currently all machines
have equal loads and a job with long processing time arrives, LIST algorithm
obtains a schedule which is almost twice as long as the optimal one. So here
is the problem: if the scheduled jobs are sufficiently small, and the optimal
schedule consists of scheduling them evenly on m− 1 machines in parallel with
the last long job on the remaining machine. Observing this fact, to obtain
a better scheme, we have to create some imbalance and keep some machines
lightly loaded (for the use by long jobs).

To attain a competitive ratio σ, a natural idea is to assign the current job
to any machine such that immediately after this assignment the competitive
ratio is at most σ. In order to avoid the weakness of LIST algorithm, suppose
we always choose the most loaded of the machines to create as large imbalance
as possible. Nevertheless, it does not work. If this algorithm faces a sequence
of jobs with identical processing times, it assigns them evenly on a constant
fraction of the machines, with only one job scheduled on each of the remaining
machines. Now a sequence of long jobs presents. The algorithm first makes the
load distributed evenly on all machines, then has to force the schedule to be too
long. Thus, this natural method fails again.
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To design a good algorithm, two different approaches are commonly used.
One is to schedule each job on one of the two currently least loaded machines
[36, 19]. This method yields better results than LIST for any m ≥ 4 and achieves
the currently best upper bounds for small m. However, the competitive ratio
approaches 2 when m is large. This approach leaves at most one lightly loaded
machine. In order to obtain a better upper bound for large m, it is necessary
to keep some constant fraction of machines lightly loaded. Based on this idea,
several algorithms were developed [9, 59, 1].

We know that LIST algorithm always assigns the incoming job to the least
loaded machine. Based on this algorithm, Cho and Shani [24] further studied
the two-uniform-machine environment (where the speeds of machines are 1 and
s ≥ 1 respectively) and proved that LIST algorithm is 1+

√
5

2 -competitive for
all s and the bound is tight when s = 1+

√
5

2 . Epstein et al. [30] provided
randomized algorithms with better performance than LIST algorithm in the
case where no preemption is allowed. In the same paper, for the problem with
preemption, they proposed an optimal (1 + s

s2+s+1 )-competitive algorithm for
all s ≥ 1, which cannot be beaten by any randomized algorithm [109]. Angelelli
et al. [3] considered the semi-online scheduling on two uniform processors in the
case where the total processing time of jobs is known in advance and presented
algorithms which are optimal for s ≥ √

3, s = 1 and 1+
√

17
4 ≤ s ≤ 1+

√
3

2 . In
that paper, they first showed that the LIST algorithm does not improve its
performance when the total sum of the tasks is fixed with respect to (pure)
online problem, and then they presented three different algorithms that are
optimal in some intervals of the values of the speed s. The idea of these three
algorithms are simple. First assign the current job to a machine and when the
load of that machine exceeds a value (or function of s), then schedule this job
on a specified machine. These three algorithms differ one from another each
other with regard to the function of s and the specified machine.

Minimizing makespan with GoS

GoS is a qualitative concept, and it is often translated into the level of ac-
cess privilege of different service provision. One simple scheme for providing
differentiated service is to label machines and jobs with pre-specified grade of
service (or GoS) levels and allow each job to be processed by a particular ma-
chine only when the GoS level of the job is no less than the GoS level of the
machine. In effect, the processing capability of the machines labeled with high
GoS levels tends to be reserved for the jobs with high GoS levels. Hence, if we
label relatively higher GoS levels on the jobs from valued customers, we can
ensure better service to more valued customers. In such a situation, assigning
jobs to the machines becomes a parallel machine scheduling problem with a
special eligibility constraint. For example, suppose that we have two machines
(or processors). One of them can provide higher service quality (higher GoS)
while the other one is normal (lower GoS). Some jobs which are requested to
have higher quality must be processed by the higher GoS machine. While the
normal jobs can be processed by both machines whenever they are available.
Within an offline context, the concept of GoS was introduced and analyzed in
[55]. They proposed a simple algorithm, called lowest grade-longest processing
times first (LG-LPT) whose computational complexity is strongly polynomial
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and the worst-case makespan of the generated schedule is no more than twice
the optimum. In particular, the makespan of the schedule generated by the pro-
posed algorithm is proven to be no more than 5/4 for m = 2 and 2− 1/(m− 1)
for m ≥ 3 times the optimum. The idea of algorithm LG-LPT comes from
a classical algorithm LPT for problem Pm||Cmax. Considering the GoS con-
traint, they modified the LPT algorithm by sorting the job sequence in a order
of increasing GoS where ties are broken by LPT rule. In other words, LG-LPT
algorithm assigns the jobs in the order of increasing GoS and when several jobs
have the same GoS, they are scheduled by LPT rule.

Park et al. [82] studied the online scheduling of two machines under a grade
of service (GoS) provision and its semi-online variant where the total processing
time is known. They gave an optimal online algorithm whose competitive ratio
is 5

3 and an optimal semi-online algorithm with a competitive ratio 3
2 . The idea

of online algorithm they proposed is try to assign jobs with lower GoS as many
as possible on lower-GoS machine. To be more specific, when a higher-GoS job
arrives, we have to assign it to the higher-GoS machine. When a lower-GoS
job is presented, we need to determine which machine should process this job.
If the load of lower-GoS machine (after assigning the current lower-GoS job on
that machine) is not bigger than a certain value (or a function of previous jobs’
processing times), then we do schedule lower-GoS job on lower-GoS machine.
Otherwise, schedule it on the higher-GoS machine. But the criterion (or function
of previous jobs’ processing times) is a little difficult to design. In order to
prove the online algorithm is σ-competitive, they first showed a lower bound
(also a function of previous jobs’ processing times) of optimal value. The first
principle is to assign lower-GoS jobs as many as possible on lower-GoS machines.
The second principle is to prevent the makespan from exceeding σ times the
optimal value (after scheduling the currently by the first principle). Thus, if
this the makespan is bigger than the criterion, the algorithm has to assign this
job on a higher-GoS machine. Based on the idea of this online algorithm, by
slightly changing the lower bound of optimal value with the information of total
processing times, Park et al. [82] proposed an optimal semi-online algorithm in
the same paper.

Jiang [57] extensively investigated the problem of online scheduling on par-
allel machines with two GoS levels. He assumed that the number of machines
providing high GoS is not known before scheduling and decisions must be made
without knowledge of the exact number of machines providing higher GoS.
In other words, we only know that in all 10 parallel machines there are k
(1 ≤ k ≤ 9) machines which can provide higher GoS. Under this considera-
tion, he proved that 2 is a lower bound of online algorithms and proposed an
online algorithm with a competitive ratio of 12+4

√
2

7 . The online algorithm they
designed is with many details. The general idea is also to use some criterion
to distinguish different situations. Some criteria are chosen in a similar way as
that in [82].

To the best of our knowledge, the most recent results with GoS constraint
are the research of online scheduling on two uniform machines [74, 67].

Minimizing makespan plus penalties

In this variant, jobs may be rejected at a certain penalty. Each job is charac-
terized by the processing time and the penalty. A job can either be rejected
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by paying its penalty or scheduled on one of the machines. The objective is to
minimize the makespan of the schedule for accepted jobs plus the sum of the
penalties of all rejected jobs. The purpose of an online algorithm is to balance
the penalties and the increase in the makespan. (It is a little puzzling to add
two different quantities together as one objective function. Given two weights
on two kinds of quantities, this objective can be viewed as a multiple-objective
decision.)

This problem of Multiprocessor Scheduling with Rejection (MSR) was intro-
duced by Bartal et al. [10]. The main goal of an algorithm designed for online
MSR problem is to choose the proper balance between the penalties yielded by
rejecting jobs and the increase in the makespan for the accepted jobs. At the
beginning it might have to reject some jobs if the penalty for their rejections is
small compared to their processing times. However, at a certain point, it would
be better to schedule some of the previously rejected jobs since the increase
in the makespan due to scheduling those jobs in parallel is less than the total
penalty incurred. In this scenario, the online MSR problem can be seen as a
nontrivial generalization of the well known Rudolph’s ski rental problem. (In
that problem, a skier has to choose whether to rent skis for the cost of 1 per trip,
or to buy them for the cost of c without knowing the future number of trips.
The best possible deterministic strategy is to rent for the first c trips and buy
afterwards. In online MSR problem, rejecting jobs is analogous to renting while
scheduling one job is analogous to buying.) They showed an 1 + φ ≈ 2.618-
competitive algorithm, where φ is the golden ratio. Their algorithm used two
simple rules. First, all jobs in the set B are rejected, where B denote the set of
jobs such that each jobs’ penalty is smaller than its load. The second rule that
a job is rejected unless its penalty added to the total penalty of the hitherto
rejected jobs would be higher than some prescribed fraction of its processing
time. This rule is inspired by the relation of MSR to the ski-rental problem.
The algorithms of Bartal et al. [10] consist of two parts, a rejection scheme,
which decides which jobs are rejected, and a scheduling algorithm, which assigns
accepted jobs to a machine. The rejection schemes are combined with Graham’s
LIST algorithm.

If preemption is allowed, Seiden [92] gave an 4+
√

10
3 ≈ 2.38743-competitive

algorithm and showed a lower bound of 2.12457. The algorithms they proposed
also consist of two parts, a rejection scheme and a scheduling algorithm. In
fact, the rejection schemes given in [10] can be combined with any scheduling
algorithm. The general idea in [92] is that by combining the rejection schemes
with algorithms for different scheduling models, Seiden get new algorithms for
scheduling with rejection.

Gyorgy an Imreh [42] investigated a new scheduling model where the number
of machines is not fixed, the algorithm has to purchase the used machines, and
the jobs can be rejected. They presented an algorithm OPTCOPY with a
competitive ratio 2.618. The basic idea behind this algorithm is to consider a
relaxed version where we replace part of the cost of the schedule (purchasing
cost of machines plus the makespan) with a lower bound of it. Imreh [56] further
considered the problem with general machine cost functions.

Online scheduling of open shop scheduling problem was studied in [21, 18].
There are not many results in this research field, and all this kind of research
concentrates on looking for permutation algorithms, where the schedule has the
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same job sequence on each of the machines.

Machine covering problems

The machine covering problem deals with partitioning a sequence of jobs among
a set of machines, so as to maximize the completion time of the least loaded
machine, where the load of a machine is the total time required to complete all
jobs assigned to it. Machine covering problem is also called the Santa Claus
problem, where n indivisible goods are to be partitioned among m clients. The
goal is to distribute the goods in a way that the least satisfied client is still
as pleased as possible. The offline problem is strongly NP-hard. The online
machine covering is associated with the online paradigm where jobs arrive one
by one, since there is no need to refer to release times. The objective of online
machine covering problems is to maximize the minimum load of any machine
(denoted by Cmin).

Maximizing the minimum machine completion time is NP-complete in the
strong sense. Deuermeyer et al. [11] examined the behavior of the Longest
Processing Time (LPT) rule to approximate the optimum solution. The LPT
rule sorts all jobs into a sequence of nonincreasing processing times and then
sequentially assigns each job to the next machine available. They showed that
the minimum completion time in the schedule produced by LPT is at least 3/4
times the minimum completion time in the optimum schedule. Csirik et al. [25]
tightened the analysis of LPT by showing that the LPT remains within a factor
of (3m − 1)/(4m − 2) of the optimum solution and that this bound is tight.
Observe that in the online paradigm where jobs arrive list, LIST algorithm
behaves like LPT, but starts with an unsorted list (partial unknown). Thus, in
the research of online machine covering, LIST and LPT are the same.

For m identical machine environment, Woeginger [110] analyzed an simple
online algorithm LPT which assigns a new job to the least loaded machine and
showed that LPT is best possible with a competitive ratio m. Obviously, LPT
is a kind of greedy algorithm.

After that, some scholars tried to overcome high competitive ratio by using
additional information, i.e., they studied semi-online variants. Azar and Regev
[6] considered those problems whose optimal objective function value is known
in advance (denoted by opt). Kellerer et al. [60] considered the problem that
the total processing time of all the jobs is known in advance (denoted by sum).
He and Zhang [46] considered the problem that the largest processing time of
all jobs is known in advance (denoted by max ). In the same paper, they also
considered the problem that the processing time of jobs are tightly-grouped or
bounded in a interval (denoted by tightly-grouped). Seiden et al. [91] considered
the information that jobs are arriving in nonincreasing processing time order
(denoted by decr). For problem Pm|online, tightly − grouped|Cmin, He Yong
[44] proved that LIST algorithm is still optimal.

Azar and Epstein [4] proposed an algorithm FILL for Pm|opt|Cmin with a
competitive ratio 2−1/m , and it is optimal for m = 2, 3, 4. In contrast to LIST
algorithm which tries to assign jobs to all the machines evenly, FILL works as
follows (The optimal solution is 1.):
“If there are no empty machines, assign a new job to the least loaded machine.
Otherwise, if the processing time of the new job is at least m/(2m−1), assign it
to an empty machine. If the processing time of the job is less than m/(2m− 1)
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assign it to the active machine if exists, and otherwise to an empty machine.”
At first, the FILL algorithm tries to keep a certain load difference between

all empty machines and non empty machines. If there exist no empty machine,
FILL algorithms works as LIST.

Tan and Wu [102] investigated the semi-online machine covering problems
on m ≥ 3 parallel identical machines. Three different semi-online versions are
studied and optimal algorithms are proposed in that paper. They proved that
if the total processing time of all jobs or the largest processing time of all jobs
is known in advance, the competitive ratios of the optimal algorithms are both
m − 1. If the total processing time and the largest processing time of all jobs
are both known in advance, the competitive ratios of the optimal algorithms are
3/2 when m = 3, and m − 2 when m ≥ 4. Generally speaking, all these three
semi-online algorithms are designed based on LIST algorithm.

Another part of semi-online research concentrates on two uniform machines.
Epstein [29] analyzed LPT algorithm with the knowledge of optimal value on two
uniform machines, where the speeds of two machines are s and 1 respectively.
He showed that LPT is s + 1-competitive. In the same machine environment,
the case where total processing time is known in advance was studied in [99].
Cao and Tan [15] considered the case where the size of the largest job is declared
in advance.

Minimizing makespan with parallel jobs

First note that parallel jobs are also called multi-processor jobs. In practice
(i.e., in parallel supercomputers) some jobs can only be processed on several
processors in parallel. The online problem of parallel job scheduling can be
described as follows. A job Jj = (s, p) is associated with two parameters p
and s, where p is the processing time of the job and s is the width (or number
of machines) required for simultaneous processing. The jobs arrive over list.
Preemption and reassignment are not allowed. The goal is to minimize the
makespan.

It has been shown that LIST algorithm is best possible in the online models:
the one where jobs arrive over time and the one with unknown processing times
[94].

In general, if a job can request any number of available machines, Johannes
[58] presented an online algorithm with competitive ratio 12. She also proved
that no online algorithm is better than 2.25-competitive. Johannes’ algorithm
consists of two parts: partition part and schedule part. In partition part, the
time axis is divided into different length intervals with such that the length is
doubled at each time (i.e., intervals Ii := [2i, 2i+1], i = 0, 1...). The purpose of
this step is to contain waiting strategy in the algorithm. In the second part, the
algorithm schedules the job with bigger width as late as possible and the one
with smaller width as early as possible. We call it small early big late principle.

Ye and Zhang [111] improved the upper bound by giving an 8-competitive
on-line algorithm DW. The nature of DW algorithm is also a combination of
waiting strategy and a principle of small early big late. But DW algorithm
differs from Johannes’ algorithm in the aspect of waiting time. There were also
some results for the cases where some extra information on the jobs is known
in advance, i.e., semi-online algorithms. If the jobs arrive in a non-increasing
order of processing times, Ye and Zhang proved that greedy strategy works well
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by showing that greedy algorithm is 2-competitive [111]. In this situation, there
is no need to introduce waiting strategy.

Recent results of online scheduling on parallel jobs focus mostly on a special
case with two machines. We know that greedy algorithm simply schedules all
jobs one after another leaving no idle time between jobs. Chan et al. [16]
mentioned that greedy algorithm is 2-competitive and proved a lower bound
1 +

√
2/3. It seems that greedy algorithm works well in this machine setting.

Hurink and Paulus [54] further revealed that the lower bound is 2, which means
that greedy algorithm is the best possible in two machine environment. For two
machine scheduling problem, to improve the competitive ratio, Chan et al. [16]
proved that greedy algorithm is optimal with a competitive ratio 3/2 in the case
where jobs arrive in a non-decreasing order of processing times. In contrast, in
the case where jobs arrive in a non-increasing order of processing times, greedy
was shown to be 4/3-competitive [16].

Minimizing total completion time plus penalties

This objective is rarely studied in the online paradigm where jobs arrive over
list. Epstein et al. [31] investigated a single machine environment to minimize
the total completion time plus penalties. Even if the machine environment is
relatively simple compared to those of the previous section, but the objective
is more difficult. To solve such a problem, they had to appeal to a strong
assumption that jobs’ processing times are identical. Otherwise, they showed
that there exist no online algorithm with finite competitive ratio. The main idea
of their algorithm is not difficult to understand. The nature of their algorithm
is to select a criterion to determine accepting or rejecting a current job, as those
algorithms mentioned in the previous section. Since all jobs have identical
processing times, the number of accepted jobs can denote the total completion
time.

Algorithm GREEDY they proposed is a quite simple greedy-type algorithm:
when deciding about job Jj , it has the choice between processing the job at a
cost (a function of the number of currently accepted jobs), and rejecting the
job at a cost. In the function of currently accepted jobs’ number, GREEDY
multiplies a factor for the reason that an accepted job is more dangerous since
it may increase the cost of later jobs, whereas a rejected job cannot. A benefit of
this factor is easy to adjust the algorithm in order to achieve a small competitive
ratio.

Semi-online scheduling problems

Some scholars tried to improve the algorithm by considering additional jobs’
information. Some constraints are extensively studied in the literature. He and
Dosa [45], as well as Du [27], considered the constraint that jobs’ processing
times are bounded in a certain interval. Cheng et al. [22] investigated the
semi-online problems with knowledge of total processing times.

Tan and He [100] investigated the semi-on-line versions of scheduling problem
with combination of two types of information which belong to five basic types.
These types of information are the total processing times (sum), the largest
processing time (max), non-increasing processing times (decr), the knowledge
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of last job arriving (sugg), the knowledge of last job with the largest processing
time (LL).

Tan and He [101] further studied semi-online scheduling problems with the
assumption that some partial additional information is not exactly known in
advance. Three versions were considered [101], where we know in advance that
the total size of all jobs, the optimal value, and the largest job size are in given
intervals, respectively, while their exact values are unknown.

2.5.2 Jobs arrive over time

In this online paradigm, online features are the existence of the jobs whose
release time does not pass yet and the specific release time.

Minimizing makespan

If preemption is allowed, there exists an optimal online algorithm which is 1-
competitive for identical machine scheduling [38, 49]. The idea behind the
algorithm is that whenever a new job arrives, we reschedule the unfinished
parts of previous jobs and all unscheduled jobs so that they are finished as early
as possible. For uniformly related machines, an optimal algorithm exists if and
only if the speeds of machines satisfy si−1

si
≤ si

si+1
, where si is the speed of ith

fastest machine [107].
Without preemption, the best upper bound for parallel machine scheduling

was obtained for the simple algorithm which always schedules the longest job
within available jobs. This algorithm is 3

2 -competitive and a lower bound of
1.3473 is shown [20].

If we consider jobs’ delivery times, the objective function makespan shifts to
the maximum time by which all jobs have been delivered. For a single machine
scheduling problem, Hoogeveen and Vestjens [51] proposed an optimal online
algorithm D-LDT which is

√
5+1
2 -competitive. The idea of algorithm D-LDT

is that if no jobs with a large processing requirement are available, then we
should schedule the job with the largest delivery time; otherwise, we should
decide whether to schedule the large job, the job with the largest delivery time,
or no job at all. Based on this idea, the situation with bounded delivery times
was further considered in [105, 70]. For parallel machine environment, Vestjens
[108] gave a lower bound 1.5.

For open shop scheduling on two machines, the greedy algorithm is optimal
with a competitive ratio 3

2 [108]. If preemption is considered, he developed an
optimal 5

4 -competitive algorithm [108].

Minimizing makespan on batch machine environment

When the machine environment shifts to batch processing machine, the results
get scarce, especially for open shop and flow shop problems. A batch processing
machine can handle up to B (the capacity of a machine) jobs simultaneously.
The jobs that are processed together form a batch, and all jobs in a batch start
and complete at the same time. The processing time of a batch is given by
the longest processing time of any job in the batch. Jobs arrive over time.
The objective is to minimize the makespan. For the unbounded case where the
capacity B is sufficiently large (i.e., all jobs can be processed simultaneously
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in a single batch), Zhang et al. [113] designed an optimal
√

5+1
2 -competitive

algorithm H∞. The intuition behind this algorithm is that jobs should rather
wait for a while than being processed immediately after they arrive, i.e., waiting
strategy. In order to show the algorithm is σ-competitive, the waiting time is
determined for the purpose that the completion time of one job can not exceed
σ times the optimal value, i.e., the completion time of that job in an optimal
schedule.

For parallel batch machine environment, the difficulty of the problems in-
crease dramatically. Zhang et al. [114] further considered the problem on m
identical parallel batch machines. When the batch capacity is infinite, i.e., un-
bounded case, we need not only to group the jobs into batches as for the single
machine problem, but also to choose a machine for an available batch. Under
the assumption that jobs’ processing times are identical, Zhang et al. [114]
proposed a best possible online algorithm with competitive ratio 1 + βm, where
βm is the positive solution of equation (1 + βm)m+1 = βm + 2. The intuition
behind this algorithm is similar to the algorithm H∞ they proposed for a single
batch machine environment. The main idea is also to postpone the processing
of jobs. The algorithm for m batch machines contains a waiting time, which is
determined in order to control the completion time of one job not greater than
σ times the optimal value (i.e., the completion time of that job in an optimal
schedule). When the batch capacity is finite, they provided a best possible on-
line algorithm Ab(α) with a competitive ratio α =

√
5+1
2 . For this algorithm,

the basic idea is also to postpone the starting times of jobs such that their com-
pletion times can not exceed α times the optimal value. In the algorithm, we
also have to make sure that the capacity of a batch does not exceed its capacity.
This character is due to the machine environment, i.e., the batch capacity is
finite.

Here is a question: “Does there exist an optimal algorithm for parallel batch
machines without any restriction?” Nong et al. [81] investigated the problem on
two parallel batch machines with infinite capacity. They provided an algorithm
with a competitive ratio

√
2. The idea of their algorithm is similar to Zhang’s

algorithm. Use waiting strategy to design the algorithm and control the com-
pletion time of a job not bigger than

√
2 times the optimal one. Tian et al.

[106] showed a lower bound
√

2 of competitive ratio, which means that Nong’s
algorithm is optimal. They also proposed a new algorithm also using waiting
strategy, which is more efficient than Nong’s algorithm.

Considering delivery time in batch machine scheduling, Tian et al. [104]
provided an online algorithm H∞

1 with a competitive ratio 2 for infinite batch
machine situation and an algorithm HB with a competitive ratio 3 for finite
batch situation. The idea of algorithm H∞

1 is to use a forwards dynamic pro-
gramming proposed in [14] as a component to schedule current arriving jobs. For
algorithm HB , the idea is similar to regular one which uses a waiting strategy
and controls the completion time of one job not bigger than 3 times the optimal
value. The speciality of this problem is that jobs’ delivery times contribute to
their completion times. It is also necessary to make sure that the capacity of a
batch does not exceed its capacity.

Since no optimal algorithm for the problems with delivery times had been
obtained, Yuan et al. [112] considered two restricted models: (1) the jobs have
small delivery times, i.e., for each job Jj its delivery time qj is not bigger than
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its processing time, (2) the jobs have agreeable processing and delivery times,
i.e., for any two jobs Ji and Jj , pi > pj implies qi ≥ qj . They proposed an
optimal algorithm for these two restricted situation. The intuition behind this
algorithm is also to postpone the starting time of batch.

There are other papers which studied batch machine scheduling models with
additional constraints. Ridouard et al. [88] also considered agreeable processing
times constraint. Fu et al. [35, 34] investigated the problems with restarts. Nong
et al. [80] addressed the problem with family jobs.

Minimizing total completion time

For preemptive scheduling on a single machine, it is easy to construct an optimal
schedule by always scheduling the job with shortest remaining processing time.
The same rule yields a 2-competitive algorithm for identical machine problem
[83].

For single machine problem, if preemption is not allowed, 2-competitive al-
gorithms were given and they are optimal [108, 77]. The idea behind these
algorithms (such as Delayed SPT [108]) is to shift release times, then schedule
them by SPT (shortest processing time) rule.

Stee and Poutre [98] investigated single machine variant with restarts. Al-
lowing restarts means that the processing of a job may be interrupted, losing all
the work done on it. In this case, the job must be started again later (restarted),
until it is completed without interruptions. By using restarts, Stee and Poutre
[98] designed an algorithm RSPT (restarting SPT) with a competitive ratio 3

2 .
RSPT bases the decision about whether or not it will interrupt a current pro-
cessing job Jj for an arriving job Jj′ solely on Jj and Jj′ . It ignores, for example,
all other jobs that are waiting to be processed. RSPT only interrupts a job Jj

for jobs that are smaller and that can finish earlier than Jj . In fact, RSPT
algorithm is identical to SRPT (Shortest Remaining Processing Time) rule and
ECT (Earliest Completion Time) rule. Their results showed that restarts help.

For minimizing total weighted completion time, a slight modification of
Delayed-SPT also yields an optimal online algorithm with a competitive ra-
tio 2 [2]. The intuition behind this modification Delayed SWPT is to shift the
release times, then schedule them by SWPT (shortest weighted processing time)
rule.

For parallel machine variants, Vestjens [108] showed a lower bound 1.309. Liu
and Lu [75] developed a slightly modified algorithm DSPT with a competitive
ratio 2. Their algorithm DSPT differs from Delayed SPT in choosing one of
the available machines. In the preemption-resume environment, the currently
known lower bound is 22

21 given by Vestjens [108].
Chekuri et al. [17] presented a relaxation technique that converts a schedul-

ing problem of parallel machines to a preemptive scheduling problem on a single
machine. Based on this technique, they gave a (3− 1

m )-competitive algorithm for
P |rj , online|∑Cj . Recently, Liu and Lu [76] studied two uniform machine vari-
ant and presented a 2.618-competitive algorithm FCFS for Q2|rj , online|∑Cj .
They also used this relaxation technique to convert the original problem to a
preemptive single machine problem, and then applied SRPT rule for this relax-
ation problem. FCFS algorithm uses the new schedule obtained by solving the
relaxation problem to determine how to assign the current job. Since SRPT rule
works online, the FCFS is an online algorithm. For two uniform machine en-
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vironment, they further considered the weights of jobs and preemption-resume
setting, i.e., Q2|rj , online, pmtn|∑wjCj . Suppose two machines are M1 with
speed 1 and M2 with speed s, respectively. They showed that WSPT (Weighted
SPT) algorithm is 2-competitive. We say that one job Jj with a lower value of
the ratio pj/wj has a higher priority, where pj is the processing time, and wj

is the weight. WSPT rule always schedules the job with the highest priority
among available processing jobs on M2, then schedule the job with the highest
priority among remaining available processing jobs on M1, if any. This algo-
rithm is a extension of WSPT rule for parallel machine situations. Liu et al.
[72] further studied Q|rj , online|∑Cj and Q|rj , online, pmtn|∑wjCj .

Maximization the number of early jobs

Maximization problems were rarely studied. In offline scheduling, a similar
objective function, minimizing the number of late jobs (or weighted number
of late jobs), was widely studied [7, 8, 63, 79, 86]. Other objective functions
related to earliness and tardiness were also investigated in offline framework
[97, 96, 47, 48, 89].

In online scheduling, for maximizing the number of early jobs on a single
machine in the preemption-restart model, Hoogeveen et al. [50] provided an
optimal algorithm SRPT with a competitive ratio 1/2. This algorithm is based
on the SRPT (shortest remaining processing time) rule or ECT (earliest com-
pletion time) rule. Further study for parallel machines were investigated by Liu
et al. [73].

Other constraints and objectives were also studied in the literature. Epstein
and Stee [32] investigated the model with restarts. Azar and Epstein [5], as
well as Huo et al. [53], studied online scheduling with precedence constraints.
Kellerer et al. dealt with the objective of minimizing total flow time. Megow
and Schulz [78] addressed the online problem to minimize average completion
time revisited. Zheng et al. [115] considered online scheduling with cancelation.
Havill and Mao [43] considered online scheduling of perfectly malleable jobs with
setup times. Zheng et al. [116] investigated semi-online variant with lookahead
information.

2.5.3 Summary

Greedy and waiting strategies are often used in designing the algorithms. In par-
allel machine scheduling, LIST algorithm plays an important role. The golden
ratio occurs in the computation of competitive ratio. (Is this a coincidence or
the beauty of mathematics?)

Even if hundreds of online scheduling problems and models have been studied
and analyzed in the past, there are still a lot of problems which have not been
employed or perfectly solved.
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Chapter 3

Single machine model

We study an online scheduling problem on a single machine with delivery times.
The problem is online in the sense that all jobs arrive over time. Each job’s
characteristics, such as processing time and delivery time, become known at
its arrival time. Preemption is not allowed and once the processing of a job is
completed we delivery it to the destination by a vehicle. The objective is to
minimize the time by which all jobs have been delivered. In this chapter, we
assume that all jobs have bounded delivery times, which means that given a
certain positive number β ≥ 1

2 , for each job Jj , we have a release time rj ≥ 0
and βqj ≤ pj , where pj , qj denote the processing time and the delivery time of
job Jj , respectively. We use 1|online, rj , βqj ≤ pj |Lmax to denote the problem
for short, where Lmax denote the time by which all jobs have been delivered. We
prove a lower bound of competitive ratios for all online algorithms and propose
an optimal online algorithm with a competitive ratio of 1

2 (
√

5 + β2 + 2β+1−β).

3.1 Introduction

Makespan, the completion time of last job in the schedule, is commonly re-
searched in the literature. This is an objective in the aspect of manufacturers.
In order to consider the problems in the aspect of the clients, we focus our atten-
tion on the time when each client receive his demanded job (or product), that
is the sum of completion time and delivery time of that job. In practice, a job’s
delivery time cannot be unlimited. These reasons motivate us to investigate
online scheduling problem on a single machine with bounded delivery times.

The problem considered can be described as follows. There are n jobs, a
single machine and sufficiently many vehicles. Each job has an arrival time, a
processing time, and a bounded delivery time. These characteristics of a job
are unknown until it arrives. Once the processing of a job is completed on a
machine, we deliver it to the destination by a vehicle. No preemption is allowed.
The objective is to minimize the time by which all jobs have been delivered. We
use rj , pj and qj to denote the arrival time, the processing time and the delivery
time of job Jj , respectively. The bounded delivery time means that there is a
certain positive number β ≥ 1

2 , such that βqj ≤ pj for any j such that 1 ≤ j ≤ n.
Suppose that σ is a schedule of the jobs. We use Sj(σ), Cj(σ) and Lj(σ) to
denote the starting time of Jj , the completion time of Jj and the time by which
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Jj has been delivered in schedule σ. The objective function of the considered
problem can be expressed as follows,

Lmax(σ) = max{Lj(σ) : Lj(σ) = Cj(σ) + qj , 1 ≤ j ≤ n}.
Under offline setting, there are many results about scheduling problem with

the objective to minimize the time by which all jobs have been delivered. A well
known algorithm called the LDT rule (largest delivery time first) is optimal for
the problem 1||Lmax. For problem 1|rj |Lmax, Kise et al. [61] proved that the
LDT rule is 2-approximate and Lawer et al. [64] proved that the problem is
strongly NP-hard. While under online setting, Hoogeveen et al. [52] provided
an optimal online algorithm with a competitive ratio of

√
5+1
2 for the problem

1|online, rj |Lmax. Based on these results, Tian et al. [105] showed a better
online algorithm with competitive ratio of

√
2 for the problem 1|online, rj , qj ≤

pj |Lmax.
In this chapter, we consider the problem 1|online, rj , βqj ≤ pj |Lmax, where

β ≥ 1
2 . The rest of this chapter is organized as follows. In Section 2, we show

that no online algorithm has a competitive ratio less than 1
2 (

√
5 + β2 + 2β +

1−β). In section 3, we propose an online algorithm for this problem. In Section
4, we prove the algorithm proposed in section 3 is optimal.

3.2 A lower bound of competitive ratio

In this section, we present a lower bound of competitive ratio for the problem,
i.e., ϕ = 1

2 (
√

5 + β2 + 2β +1−β). Note that in the following proof, we consider
the problem where β > 0. And the result is a general lower bound containing
the case where β ≥ 1

2 .
For simplicity of expression, let ϕ = 1

2 (
√

5 + β2 + 2β + 1− β), where β > 0.
We derive a simple but important equality, which will be used in the following
proofs.

Lemma 1 1
ϕ+β = ϕ − 1 = 1+ϕ−ϕ2

β > 0.

Proof.

1
ϕ + β

=
2√

5 + β2 + 2β + 1 + β
=

2(
√

5 + β2 + 2β − (1 + β))
5 + β2 + 2β − (1 + β)2

=
1
2
(
√

5 + β2 + 2β − 1 − β) = ϕ − 1.

ϕ2 =
1
4
[5 + β2 + 2β + 1 + β2 − 2β + 2(1 − β)

√
5 + β2 + 2β]

=
1
2
[3 + β2 + (1 − β)

√
5 + β2 + 2β].

1 + ϕ − ϕ2

β
=

β
√

5 + β2 + 2β − β − β2

2β
=

1
2
(
√

5 + β2 + 2β − 1 − β) = ϕ − 1.

ϕ − 1 =
1
2
(
√

5 + β2 + 2β − 1 − β) =
1
2
[
√

4 + (1 + β)2 − (1 + β)] > 0.

According to the above equalities and inequality, we have the desired result.

28



Theorem 1 For the problem 1|online, rj , βqj ≤ pj |Lmax, no online algorithm
has a competitive ratio less than ϕ = 1

2 (
√

5 + β2 + 2β + 1 − β), where β > 0.

Proof. For any online algorithm A, we consider the following instance. Let π
and σ denote an optimal offline schedule and the schedule produced by online
algorithm A for the instance, respectively. We use Jj = (pj , qj) to denote
a job Jj , where pj and qj are the processing time and the delivery time of
Jj , respectively. The first job J1 = (1, 0) arrives at time 0. We assume that
algorithm A schedules J1 = (1, 0) at time TA ≥ 0. From Lemma 1, we know
that ϕ − 1 > 0. Depending on TA, we consider two cases as follows. (Job
J1 = (1, 0) is constructed in order to avoid algorithm A schedules it too early,
i.e., before time ϕ − 1).

Case 1: TA ≥ ϕ − 1.
In the worst-case, no jobs arrive any more. In an optimal situation, J1 =

(1, 0) is scheduled at time 0, which gives Lmax(π) = 1. Then

Lmax(σ)
Lmax(π)

=
TA + 1

1
≥ ϕ.

Case 2: 0 ≤ TA < ϕ − 1.
In the worst-case, the second job J2 = (β, 1) arrives at time TA. The optimal

solution consists of scheduling J2 then J1. Thus

Lmax(σ)
Lmax(π)

=
TA + 1 + β + 1

TA + β + 1
= 1 +

1
TA + β + 1

> 1 +
1

ϕ + β
.

From Lemma 1, it follows that 1 + 1
ϕ+β = 1 + ϕ − 1 = ϕ. Therefore, we have

Lmax(σ)
Lmax(π)

> ϕ (ε → 0).

The theorem follows.

Remark 1 For the problem 1|online, rj |Lmax, let β → 0, then we obtain the
lower bound of

√
5+1
2 proved in [52].

Remark 2 For the problem 1|online, rj , qj ≤ pj |Lmax, which is a special case
of our model with β = 1, we obtain the lower bound of

√
2 proposed in [105].

The lower bound 1
2 (

√
5 + β2 + 2β + 1 − β), where β > 0, is a generalized

lower bound.

3.3 An online algorithm EX-D-LDT

The idea of the algorithm is originated from D-LDT algorithm (delayed LDT-
rule) proposed in [52]. Considering the proof of the lower bound, we know that
if an algorithm wants to guarantee a better performance bound, then it needs a
waiting strategy. Therefore, we modify the LDT (Largest Delivery Time) rule
and add some waiting times. Since we use the same idea as for D-LDT algorithm,
we must mention the idea first. The basic idea behind D-LDT algorithm is that,
if no jobs with a large processing requirement are available, then we schedule the
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job with the largest delivery time; otherwise, we decide whether to schedule the
large job, the job with the largest delivery time, or no job at all. The algorithm
EX-D-LDT (Extended D-LDT) described in the following has a few differences
from that in [52]. For the case where β ≥ 1

2 , we have

1 < ϕ ≤ 3
2
. (3.1)

First, adopt some notations from [52] and [105].
-p(S) denotes the total processing time of all jobs in the set S, i.e., p(S) =∑

Jj∈S pj ;
-J(t) is the set containing all jobs that arrived at or before time t;
-U(t) is the set containing all jobs in J(t) that have not been started at

time t;
-t1 denotes the start time of the last idle time period before time t; if there

is no idle time, then define t1 = 0;
-A job Jj is said to be big if pj > 1

ϕp((J(t)\J(t1))
⋃

U(t1));
-pmax(t) denotes the index of the job with the largest processing time in

U(t);
-qmax(t) denotes the index of the job with the largest delivery time in U(t).

Note that (J(t)\J(t1))
⋃

U(t1) contains the jobs which arrive from time t1 to t
and the jobs which were not started (or completed, since t1 is the start time of
idle time) at time t1; if t1 = 0, (J(t)\J(t1))

⋃
U(t1) = J(t) for any t. And also,

from equality (3.1), we have 1
ϕ ≥ 2

3 > 1
2 . Therefore, there is at most one big job

at any time t. The online algorithm runs as follows.
Algorithm EX-D-LDT

Step 1: Wait until a decision point, where the machine is idle and a job is
available (if all jobs have been scheduled, output the schedule). Suppose this
happens at time t. Determine pmax(t) and qmax(t).
Step 2: If there is no big job available, then schedule Jqmax(t). Go to Step 1.
Step 3: If Jpmax(t) is the only available job, then wait (or keep idle) until a new
job arrives or until time rpmax(t) + (ϕ − 1)ppmax(t), whichever happens first;

otherwise,
If t + p(U(t)) > rpmax(t) + ϕppmax(t),

(3.1) If qqmax(t) > (ϕ − 1)ppmax(t), schedule Jqmax(t);
(3.2) otherwise, schedule Jpmax(t);

else,
(3.3) If qmax(t) �= pmax(t), then schedule Jqmax(t);
(3.4) otherwise, schedule the job with the second largest de-

livery time, if any.
Step 4: Go to Step 1.

The lower bound ϕ is a key parameter in the algorithm. In Step 1 the
algorithm wait to a decision point and find the job with the largest processing
time Jpmax(t) and the job with the largest delivery time Jqmax(t). If all jobs
in the job instance have been scheduled, the algorithm stop and output the
schedule. In Step 2, we divide into two cases. If there is no big job available,
schedule the job with the largest delivery time Jqmax(t); otherwise, go to Step
3. In Step 3, we have a precondition that there is a big job Jpmax(t). If this big
job is the only available job, the algorithm wait until a new decision point or
time rpmax(t) +(ϕ−1)ppmax(t). Because the algorithm cannot wait infinite time.
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Figure 3.1: Structure of a counterexample

Note that the expression rpmax(t) +(ϕ−1)ppmax(t) contains a parameter ϕ which
is the lower bound we have proved. This time is chosen in order that when this
job is the only one in job instance, the competitive ratio of the algorithm is

ρ ≤ rpmax(t) + (ϕ − 1)ppmax(t) + ppmax(t) + qpmax(t)

rpmax(t) + ppmax(t) + qpmax(t)

≤ max
{

rpmax(t)

rpmax(t)
,
ϕppmax(t)

ppmax(t)
,
qpmax(t)

qpmax(t)

}
= ϕ.

Otherwise, i.e., the big job Jpmax(t) is not the only available job. We divided
into cases in order that the competitive ratio of the algorithm is not greater
than ϕ. In Step 3.2, Jpmax(t) is chosen in order that when no job arrives in
future, the competitive ratio of the algorithm is

ρ ≤ t + ppmax(t) + p(U(t)\ppmax(t)) + qqmax(t)

t + ppmax(t) + p(U(t)\ppmax(t))
≤ ppmax(t) + qqmax(t)

ppmax(t)
≤ ϕ.

This is an example. The purpose of Step 3 is to guarantee the competitive ratio
of the algorithm not more than ϕ. Readers can find more details in Theorem 2.

In order to prove that algorithm EX-D-LDT has a competitive ratio of ϕ
by contradiction in the next section, we assume that there exists a smallest
counterexample consisting of a minimum number of jobs. For this smallest
counterexample (like for all other counterexample), the competitive ratio of
EX-D-LDT algorithm is greater than ϕ.

In the following, we will show several properties of this smallest counterex-
ample, denoted by I. Let σ and π be the schedules produced by EX-D-LDT
and offline optimal schedule, respectively. Let Sj(σ) denote the start time of
job Jj in σ. Let Jl denote the first job in σ that assumes (or determines) the
value Lmax(σ), i.e., Ll(σ) = Lmax(σ). Similar to the lemmas proved in [52] and
[105], we obtain several structural properties that schedule σ satisfies.

Lemma 2 The schedule σ consists of a single block: it starts at a nonnegative
time and after that all jobs are processed contiguously.

Proof. By contradiction. Suppose that σ consists of more than one block (see
Fig.3.1). Let B be the block that contains job Jl,

Ll(σ) = Lmax(σ). (3.2)

(1) The first step is to reduce the jobs’ number of the smallest counterex-
ample by its definition.
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Figure 3.2: Structure of a smaller counterexample

Figure 3.3: Structure of the smallest counterexample I

Consider any block that precedes B. Since the algorithm bases its choices
on the set (J(t)\J(t1))

⋃
U(t1) (considering the definition of the big job), the

existence of the jobs that are completed before the start of block B does not
influence the start time of B and the order in which the jobs are executed.
Therefore, we delete all jobs completed before the start of block B without
changing the value Lmax(σ) and increasing Lmax(π). Similarly, we can remove
all jobs from I that are released after the start time Sl(σ) of Jl in σ.

(2) The second step is to form a new counterexample.
From the minimization of I, we assume that our counterexample consists

of the jobs which arrives before time Sl(σ) from block B, which form a new
block B′, and the jobs that are available at the start time Sl(σ) of Jl in σ but
that are scheduled in another block. We keep these jobs in the counterexample
since they result in the start time Sl(σ) of job Jl by the algorithm. Note that
there indeed exists the jobs which are available at the start time Sl(σ) of Jl in
σ but are scheduled in another block. B′ must be a continuous block, since the
algorithm always starts a job if more than one job is available and the machine
is idle (by Step 1 of the algorithm). For the same reason, there is at most one
job that is available at time Sl(σ) and does not belong to B′ and this job must
exist, otherwise the lemma holds. Moreover, this job, denoted by Ji, must be
marked as big (by Step 2 of the algorithm). Otherwise, Ji must be scheduled
following the last job in B′. Therefore, we have the new counterexample formed
by B′ and Ji (See Fig.3.2).

(3) The third step is to prove that there is a contradiction if Ji exists.
Let S(B′) and C(B′) denote the start time of the first job and the completion

time of the last job in B′. We know that C(B′) ≥ Sl(σ) + pl.
Since Ji is big and the only job at time C(B′), by Step 3 of the algorithm,

we know that Si(σ) > C(B′) ≥ Sl(σ) + pl. Then, Li(σ) = Si(σ) + pi + qi >
Sl(σ) + pl + pi + qi > Sl(σ) + pl + pi. From equality (3.2), we have Lmax(σ) =
Sl(σ) + pl + ql. Therefore, Lmax(σ) − Li(σ) < ql − pi. Since Ji is a big job,
pi > 1

ϕp(I) > 1
ϕ (pi+pl). Then, we have pl < (ϕ−1)pi. Since βql ≤ pl, it follows

that Lmax(σ) − Li(σ) < ql − pi ≤ 1
β pl − pi < 1

β (ϕ − 1)pi − pi = (ϕ−1
β − 1)pi.
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Since β ≥ 1
2 , considering inequality (3.1), we have that

ϕ − 1
β

− 1 ≤ 1
2β

− 1 ≤ 0.

Therefore, Lmax(σ)−Li(σ) < 0. This contradicts the assumption that Jl is the
first job in σ assuming the value Lmax(σ). Therefore, The schedule σ consists
of a single block B′ (see Fig.3.3) and the lemma follows.

From now on, let J0 be the job that arrives first in I. Without loss of
generality, we assume that r0 = 0.

Lemma 3 In the optimal schedule π,
(a) if J0 is the first scheduled job, we have Lmax(σ) − Lmax(π) ≤ (ϕ −

1)p0 + ql;
(b) if J0 is not the first scheduled job, we have Lmax(σ) − Lmax(π) ≤ ql.

Proof. By lemma 2, σ consists of a single block B′. Since Jl is the first job in
σ that assumes the value Lmax(σ), then Lmax(σ) = Cl(σ) + ql ≤ C(B′) + ql =
S(B′) + p(I) + ql. By the algorithm, we have

S(B′) = min{(ϕ − 1)p0, r1}, (3.3)

where r1 is the arrival time of the second available job. This equality will be
used in the following lemmas. If J0 is the first scheduled job in π, we have
Lmax(π) ≥ p(I). Hence, it follows that Lmax(σ) − Lmax(π) ≤ S(B′) + ql ≤
(ϕ − 1)p0 + ql. Therefore, (a) follows. If J0 is not the first scheduled job
in π, we have Lmax(π) ≥ r1 + p(I) ≥ S(B′) + p(I). Hence, it follows that
Lmax(σ) − Lmax(π) ≤ ql. Thus, (b) holds.

As in [52] and [105], let Jk be the last job scheduled in σ before Jl with a
delivery time smaller than ql, if any. If Jk exists, let G(l) denote the set of all
jobs between Jk and Jl in σ, including Jl. Note that each job in G(l) has a
delivery time greater than or equal to ql. We name Jk as the interference job
for schedule.

The purpose of the following lemma is to prove there there exists an inter-
ference job in σ. This job will be used in the proof of Theorem 2.

Lemma 4 Schedule σ contains an interference job Jk scheduled before Jl such
that qk ≤ ql.

Proof. By contradiction. We assume that this interference job Jk does not
exist in σ. We also use G(l) denote all jobs scheduling Jl, including Jl. Note
that each job in G(l) has a delivery time greater than or equal to ql since Jk

does not exist. We know that in the smallest counterexample I, the competitive
ratio of the algorithm is greater than ϕ.

Since each job in G(l) has a delivery time greater than or equal to ql, we
have

Lmax(π) ≥ p(G(l)) + ql.

That is to say, in set G(l), job Jl must be the last job in σ according to their
positions (or completion times); otherwise, the objective value must increase.
By the algorithm, the first job in the block starts at time (ϕ−1)p0 at the latest,
considering equality (3.3). Therefore, it follows that

Lmax(σ) = Cl(σ) + ql ≤ (ϕ − 1)p0 + p(G(l)) + ql.
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Therefore, Lmax(σ)−Lmax(π) ≤ (ϕ−1)p0 ≤ (ϕ−1)Lmax(π). That is to say, the
competitive ratio of the algorithm is not greater than ϕ. Thus, this contradicts
to the fact that we consider a counterexample where the competitive ratio of
the algorithm is greater than ϕ. Therefore, the lemma follows.

Lemma 5 pk > (ϕ − 1)p(I).

Proof. By contradiction. We assume that pk ≤ (ϕ − 1)p(I). There are two
possibilities for the algorithm to select Jk and not one of the jobs from G(l).

(1) All jobs in G(l) have a release date larger than Sk(σ).
(2) There is one job from G(l) available, which we denote by J1, that is

marked as big and cannot be started yet. Note that since J1 cannot be started
yet, corresponding to Step 3.4 of the algorithm, we must have that Sk(σ)+pk ≤
r1 + (ϕ − 1)p1.

For case (1), we have that

Lmax(π) ≥ min
Jj∈G(l)

rj + p(G(l)) + ql > Sk(σ) + p(G(l)) + ql.

Since Lmax(σ) = Cl(σ) + ql = Sk(σ) + pk + p(G(l)) + ql, it follows that

Lmax(σ) − Lmax(π) < pk ≤ (ϕ − 1)p(I) ≤ (ϕ − 1)Lmax(π).

This contradicts to the fact that we consider a counterexample.
Considering case (2), we have that

Lmax(π) ≥ min
Jj∈G(l)

rj + p(G(l)) + ql > r1 + p(G(l)) + ql.

Since Lmax(σ) = Cl(σ) + ql = Sk(σ) + pk + p(G(l)) + ql, it follows that

Lmax(σ) − Lmax(π) < Sk(σ) + pk − r1 ≤ r1 + (ϕ − 1)p1 − r1 = (ϕ − 1)p1

≤ (ϕ − 1)Lmax(π).

This also contradicts to the fact that we consider a counterexample. Therefore,
the lemma follows.

Lemma 6 For all Jj ∈ I\{J0}, we have pj ≤ 1
ϕp(I).

Proof. By contradiction. We assume that there exists at least one job Ji with
ri ≥ r0, which satisfies that pi > 1

ϕp(I). Then we know that pi is the only big
job at any time after its arrival (by the definition of big job). We divide set J(t)
into two independent parts: J(t)\U(t) and U(t).

Suppose that at time t such that t ∈ [S(B′), S(B′) + p(J(I))], since pi >
1
ϕp(I) ≥ 1

ϕp(J(t)), we have ϕpi > p(J(t)\U(t)) + p(U(t)). Note that J(t)\U(t)
denotes the set of jobs which have been scheduled at time t. By the algorithm,
we have S(B′) ≤ ri, considering equality (3.3). We know that the schedule
σ consists of a single block. By the construction of this block, we know that
t = S(B′) + p(J(t)\U(t)). Therefore,

t+p(U(t)) = S(B′)+p(J(t)\U(t))+p(U(t)) ≤ ri+p(J(t)) ≤ ri+p(I) < ri+ϕpi.

Note that among Step 3.1, 3.2, 3.3 and 3.4, the big job can be scheduled only
in Step 3.2. Since t+ p(U(t)) < ri +ϕpi always holds, Step 3.2 can not execute.
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Thus, the big job can be scheduled only in the case where time t ≥ ri +(ϕ−1)pi

(by Step 3). That is to say, Ji cannot be scheduled before time ri + (ϕ − 1)pi.
Thus, Ci(σ) ≥ ri + (ϕ− 1)pi + pi = ri + ϕpi. Since Ci(σ) ≤ S(B′) + p(I) <

S(B′) + ϕpi, we have ri + ϕpi < S(B′) + ϕpi. Therefore, ri < S(B′). This is a
contradiction to S(B′) ≤ ri. So the lemma follows.

Lemma 7 In the case where each job in G(l) arrives after time Sk(σ) and Jk

is a big job at time Sk(σ), we have Sk(σ) ≥ rk + (ϕ − 1)pk.

Proof. By contradiction. Assume that job Jk’s start time Sk(σ) < rk + (ϕ −
1)pk. We discuss the following two cases.

Case 1: Jk is the only available job at time Sk(σ).
From Step 3 of the algorithm, we know that Jk cannot be scheduled before

a new job arrives or rk + (ϕ− 1)pk. Since Sk(σ) < rk + (ϕ− 1)pk, Jk cannot be
scheduled at time Sk(σ). There is a contradiction.

Case 2: Jk is not the only available job at time Sk(σ).
It follows that set U(Sk(σ))\{Jk} �= ∅ and the jobs in this set are sched-

uled after job Jl. We can delete these jobs in I without decreasing Lmax(σ)
and increasing Lmax(π). Because Jl should be scheduled at last in G(l); other-
wise, Lmax(σ) increases. This contradicts to the minimization of the smallest
counterexample I.

Therefore, the lemma follows.

3.4 The proof of optimality of EX-D-LDT

By the lemmas proved in the above section, we can show the following theorem.
The idea of proof of the following theorem originated from [105]. The idea is
that we discuss three different possibilities which result in that algorithm EX-D-
LDT select interface job Jk instead of one of the jobs from G(l) at time Sk(σ).
The method is to prove that there are contradictions.

Theorem 2 The online algorithm EX-D-LDT has an optimal competitive ratio
of ϕ = 1

2 (
√

5 + β2 + 2β + 1 − β), when β ≥ 1
2 .

Proof. We assume that there exists a smallest counterexample I such that
Lmax(σ) > ϕLmax(π), where σ and π denote the schedule obtained by algorithm
EX-D-LDT for instance I and the offline optimal schedule, respectively. Due to
Lemma 2 and Lemma 4, we know that σ consists of a single block and contains
an interference job Jk. In order to show that such a counterexample does not
exist, we need to prove that Lmax(σ) ≤ ϕLmax(π) or Lmax(σ) − Lmax(π) ≤
(ϕ − 1)Lmax(π).

Considering the interference job Jk, we have

Lmax(σ) = Sk(σ) + pk + p(G(l)) + ql. (3.4)

There are three possible reasons that algorithm EX-D-LDT selected Jk instead
of one of the jobs from G(l) at time Sk(σ).
(1) No jobs in G(l) is available at time Sk(σ).
(2) There is a big job Ji ∈ G(l) available at time Sk(σ), and algorithm EX-D-
LDT is not allowed to schedule it at time Sk(σ). This corresponds to Step 3.4.
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(Jk is not a big job.)
(3) Jk is a big job at time Sk(σ), and all jobs from G(l) that are available at
time Sk(σ) have a delivery time of at most (ϕ− 1)pk. This corresponds to Step
3.2.

In the following, we discuss these three cases, respectively.
Case 1: No jobs in G(l) is available at time Sk(σ).
Since all jobs in G(l) arrive after time Sk(σ), we have

Lmax(π) > Sk(σ) + p(G(l)) + ql. (3.5)

From equality (3.4), we have Lmax(σ) − Lmax(π) < pk. From Lemma 5, we
have

pk > (ϕ − 1)p(I). (3.6)

In the following, considering whether Jk is or not a big job at time Sk(σ), we
consider two subcases.

Case 1.1: Jk is not a big job at time Sk(σ).
We have pk ≤ 1

ϕp(J(Sk(σ))). It follows that

p(J(Sk(σ))) ≥ ϕpk. (3.7)

It can be observed that

Lmax(π) ≥ p(I) ≥ p(J(Sk(σ))) + p(G(l)) (3.8)

Therefore, from inequalities (3.6), (3.7) and (3.8), we must have that

pk > (ϕ − 1)[p(J(Sk(σ))) + p(G(l)] ≥ (ϕ − 1)[ϕpk + p(G(l)]. (3.9)

Therefore, it follows that

p(G(l)) <
1 + ϕ − ϕ2

ϕ − 1
pk. (3.10)

Note that βql ≤ pl and pl ≤ p(G(l)). From inequality (3.10) and Lemma 1,
we have

ql ≤ 1
β

pl ≤ 1
β

p(G(l)) <
1 + ϕ − ϕ2

β(ϕ − 1)
pk = pk. (3.11)

We distinguish two possibilities according to where J0 is scheduled in π.
Case 1.1.1: J0 is not the first scheduled job in π.
By lemma 3, we have Lmax(σ)−Lmax(π) ≤ ql. From inequalities (3.7), (3.8)

and (3.11) and Lemma 1, it follows that

Lmax(σ) − Lmax(π)
Lmax(π)

≤ ql

p(J((Sk(σ))) + p(G(l))
≤ ql

ϕpk + βql
<

1
ϕ + β

= ϕ − 1.

Case 1.1.2: J0 is the first scheduled job in π.
We use Bk(σ) to denote the set of jobs which arrive at or before time Sk(σ)

and are scheduled before job Jk in σ. Let Al(σ) denote the set of jobs which
arrive at or before time Sk(σ) and are scheduled after job Jl in σ. Then we can
divide J(Sk(σ)) into 3 parts, Bk(σ), pk, Al(σ). Therefore, we know

Sk(σ) = S(B′) + p(Bk(σ)). (3.12)
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and J(Sk(σ)) = Bk(σ)
⋃

Jk

⋃
Al(σ), which deduces that

p(Jk(σ)) = p(Bk(σ)) + pk + p(Al(σ)). (3.13)

Note that Bk(σ) and Al(σ) may be empty. Then p(Bk(σ)) ≥ 0 and P (Al(σ)) ≥
0. We will consider two subcases divided by whether Jk is scheduled after all
jobs in G(l) in π or not.

Case 1.1.2.1: Jk is not scheduled after all jobs in G(l) in π.
Considering that S(B′) = {(ϕ− 1)p0, r1}, where r1 is the arrival time of the

second available job, we have

S(B′) ≤ (ϕ − 1)p0. (3.14)

Since it is possible that Jk ≡ J0, we further discuss the following two sub-
cases.

Subcase 1: Jk �= J0.
It follows that Bk(σ) must contain J0. Therefore, p(Bk(σ)) ≥ p0. Then we

have
Lmax(π) ≥ p0 + pk + p(G(l)) + ql ≥ p0 + pk + pl + ql. (3.15)

Considering equality (3.4) and inequality (3.8), we have

Lmax(σ) − Lmax(π) ≤ Sk(σ) + pk + ql − p(Jk(σ)).

From equalities (3.12) and (3.13), it follows that

Lmax(σ) − Lmax(π) ≤ S(B′) + ql − p(Al(σ)) ≤ S(B′) + ql. (3.16)

Therefore, from inequalities (3.16) and (3.14), we have

Lmax(σ) − Lmax(π) ≤ (ϕ − 1)p0 + ql. (3.17)

Considering inequalities (3.15), we have

Lmax(σ) − Lmax(π)
Lmax(π)

≤ (ϕ − 1)p0 + ql

p0 + pk + pl + ql
≤ max

{
ϕ − 1,

ql

pk + pl + ql

}
.

From inequalities (3.1) and (3.11) and Lemma 1, it follows that

ql

pk + pl + ql
<

1
2 + β

<
1

ϕ + β
= ϕ − 1.

Therefore, we have
Lmax(σ) − Lmax(π)

Lmax(π)
≤ ϕ − 1.

Subcase 2: Jk = J0.
In this case Jk is the first job in σ, we have Bk(σ) = ∅ and Sk(σ) = S(B′).

Considering inequality (3.14), it follows that Sk(σ) ≤ (ϕ − 1)p0. From equality
(3.4) and Lmax(π) ≥ pk + p(G(l)) + ql, we have

Lmax(σ) − Lmax(π) ≤ Sk(σ) ≤ (ϕ − 1)p0 < (ϕ − 1)Lmax(π).

Case 1.1.2.2: Jk is scheduled after all jobs in G(l) in π.
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We have
Lmax(π) > Sk(σ) + p(G(l)) + pk + qk. (3.18)

Since Jk is not a big job, we have

p(J(Sk(σ))) ≥ ϕpk. (3.19)

Considering equality (3.4) and inequality (3.18), we have

Lmax(σ) − Lmax(π) < ql − qk ≤ ql. (3.20)

From inequalities (3.8), (3.11), (3.19) and (3.20) and Lemma 1, it follows
that

Lmax(σ) − Lmax(π)
Lmax(π)

<
ql

p(J(Sk(σ))) + p(G(l))
<

ql

ϕpk + βql
<

1
ϕ + β

= ϕ − 1.

Case 1.2: Jk is a big job at time Sk(σ).
From Lemma 7, we have

Sk(σ) ≥ rk + (ϕ − 1)pk ≥ (ϕ − 1)pk. (3.21)

We consider the following two subcases divided by whether Jk is scheduled
after all jobs in G(l) in π or not.

Case 1.2.1: Jk is scheduled after all jobs in G(l) in π.
If ql ≥ pk, from inequality (3.5), we have

Lmax(π) > Sk(σ) + p(G(l)) + ql ≥ Sk(σ) + pl + ql = Sk(σ) + (β + 1)ql

≥ Sk(σ) + (β + 1)pk. (3.22)

From equality (3.4), inequalities (3.5), (3.21) and (3.22) and Lemma 1, we have

Lmax(σ) − Lmax(π)
Lmax(π)

<
pk

Sk(σ) + (β + 1)pk
≤ pk

(ϕ + β)pk
= ϕ − 1.

Otherwise, i.e., ql < pk. Then we have

Lmax(π) > Sk(σ) + p(G(l)) + pk + qk. (3.23)

From equation (3.4), inequalities (3.11), (3.21) and (3.23), and Lemma 1, it
follows that,

Lmax(σ) − Lmax(π)
Lmax(π)

<
ql − qk

Sk(σ) + p(G(l)) + pk + qk
≤ ql

Sk(σ) + pl + pk

<
ql

ϕpk + pl
<

1
ϕ + β

= ϕ − 1.

Case 1.2.2: Jk is not scheduled after all jobs in G(l) in π.
Recall the definition of Bk(σ), we have Bk(σ)

⋃{Jk} = U(J(Sk(σ))). We
know that

Lmax(π) ≥ pk + p(G(l)) + ql. (3.24)

If Bk(σ) = ∅, we know
Sk(σ) = rk + (ϕ − 1)pk. (3.25)
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Considering that Jk is not scheduled after all jobs in G(l) in π, we know that
Jl must be scheduled at last in the set G(l)

⋃
Jk in π.

If Jk is scheduled before all jobs in G(l) in π, we have Lmax(π) ≥ rk + pk +
p(G(l)) + ql. Otherwise, i.e., if Jk is not scheduled before all jobs in G(l) in π,
there must be Lmax(π) > rk + pk + p(G(l)) + ql.

Considering above two situations, we have

Lmax(π) > rk + pk + p(G(l)) + ql. (3.26)

From equalities (3.4) and (3.25) and inequality (3.26), it follows that

Lmax(σ) − Lmax(π) ≤ Sk(σ) − rk = (ϕ − 1)pk < (ϕ − 1)Lmax(π).

Then, we suppose that Bk(σ) �= ∅. So we have that Jk �= J0. Let Ji be the job
completed at time Sk(σ) in σ. So we have

Sk(σ) = Si(σ) + pi. (3.27)

It follows that

Lmax(σ) = Si(σ) + pi + pk + p(G(l)) + ql. (3.28)

Since Jk is big, from equality (3.13), we have ϕpk > p(Bk(σ)) + pk + p(Al(σ)).
It follows that

p(Bk(σ)) < (ϕ − 1)pk − p(Al(σ)) ≤ (ϕ − 1)pk. (3.29)

We consider two possibilities distinguished by whether rk ≤ Si(σ) or not.
Case 1.2.2.1: rk ≤ Si(σ).
From inequality (3.21) and equality (3.27), we have Si(σ)+pi ≥ rk+(ϕ−1)pk.

Therefore, Si(σ) + pi + pk ≥ rk + ϕpk. If Sk(σ) = rk + (ϕ− 1)pk, from equality
(3.4) and inequality (3.26), we have

Lmax(σ) − Lmax(π)
Lmax(π)

≤ Sk(σ) − rk

rk + pk + p(G(l)) + ql
<

(ϕ − 1)pk

pk
= ϕ − 1.

Then we consider the case where Sk(σ) > rk + (ϕ − 1)pk. By the algorithm,
Step 3.1 must occur at time Si(σ). Therefore, we have

qi > (ϕ − 1)pk. (3.30)

Then we consider the following two subcases divided by whether Ji is sched-
uled after all jobs in G(l) in π or not.

Subcase 1: Ji is scheduled after all jobs in G(l) in π.
Since Bk(σ) �= ∅, we know that J0 �= Jk. It follows that

rk ≥ S(B′) (3.31)

and that
Sk(σ) = S(B′) + p(Bk(σ)). (3.32)

In this subcase, Ji is scheduled after all jobs in the set G(l)
⋃

Jk in π. Con-
sidering that Jk is not scheduled after all jobs in G(l) in π, we know that Jl

must be scheduled at last in the set G(l)
⋃

Jk in π. If pi + qi ≥ ql, we have
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Lmax(π) ≥ rk + pk + p(G(l)) + pi + qi. Otherwise, if pi + qi < ql, we have
Lmax(π) ≥ rk + pk + p(G(l)) + ql. Therefore, we have

Lmax(π) ≥ rk + pk + p(G(l)) + max{pi + qi, ql}. (3.33)

From equalities (3.4) and (3.32), we know

Lmax(σ) = S(B′) + p(Bk(σ)) + pk + p(G(l)) + ql. (3.34)

From inequalities (3.31) and (3.33) and equality (3.34), it follows that

Lmax(σ) − Lmax(π) ≤ p(Bk(σ)) + ql − pi − qi + (S(B′) − rk)
≤ p(Bk(σ)) + ql − pi − qi. (3.35)

Considering inequality (3.30) and pi ≥ βqi, we have

pi > β(ϕ − 1)pk. (3.36)

From inequalities (3.29), (3.30), (3.35) and (3.36), we have

Lmax(σ) − Lmax(π) < (ϕ − 1)pk + ql − β(ϕ − 1)pk − (ϕ − 1)pk

= ql − β(ϕ − 1)pk < ql.

From inequality (3.24), we know

Lmax(π) ≥ pk + p(G(l)) + ql ≥ pk + pl + ql ≥ pk + (β + 1)ql.

Since I is a counterexample, we must have

ql > (ϕ − 1)Lmax(π) ≥ (ϕ − 1)pk + (ϕ − 1)(β + 1)ql. (3.37)

Therefore, Considering Lemma 1, we have

pk <

(
1

ϕ − 1
− β − 1

)
ql = (ϕ + β − β − 1)ql = (ϕ − 1)ql. (3.38)

From equality (3.4) and inequalities (3.5) and (3.38), we have

Lmax(σ) − Lmax(π) < pk < (ϕ − 1)ql < (ϕ − 1)Lmax(π).

Subcase 2: Ji is not scheduled after all job in G(l) in π.
We have

Lmax(π) ≥ pk + pi + p(G(l)) + ql. (3.39)

Since Bk(σ) �= ∅, we know that J0 �= Jk. It follows that

Lmax(σ) = S(B′) + p(Bk(σ)) + pk + p(G(l)) + ql (3.40)

and that
Lmax(π) > p0 + pk. (3.41)

From inequalities (3.39) and (3.40), we have

Lmax(σ) − Lmax(π) ≤ S(B′) + p(Bk(σ)) − pi ≤ S(B′) + p(Bk(σ)). (3.42)
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Since S(B′) = min{(ϕ − 1)p0, r1}, we have

S(B′) ≤ (ϕ − 1)p0. (3.43)

From inequalities (3.29), (3.41), (3.42) and (3.43), it follows that

Lmax(σ)−Lmax(π) < (ϕ−1)p0+(ϕ−1)pk < (ϕ−1)(p0+pk) < (ϕ−1)Lmax(π).

Case 1.2.2.2: rk > Si(σ).
We know that

Lmax(π) ≥ rk + pk + p(G(l)) + ql. (3.44)

From equality (3.28) and inequality (3.44), we have

Lmax(σ) − Lmax(π) ≤ Si(σ) + pi − rk < pi ≤ p(Bk(σ)). (3.45)

From inequalities (3.29) and (3.45), it follows that

Lmax(σ) − Lmax(π) < p(Bk(σ)) < (ϕ − 1)pk < (ϕ − 1)Lmax(π).

Case 2: There is a big job Ji ∈ G(l) available at time Sk(σ) and algorithm
EX-D-LDT is not allowed to schedule it at time Sk(σ). This corresponds to
Step 3.4. (Jk is not a big job.)

We claim that Ji must be the only job from G(l) available at time Sk(σ).
Suppose to the contrary that there is another job Jj from G(l) except Ji available
at time Sk(σ). According to the definition of G(l), we have qk < min{qi, qj}.
By Step 3.3 and 3.4 of the algorithm, Jk must not be selected to schedule at
time Sk(σ). There is a contradiction.

Therefore, we have that

Lmax(π) ≥ ri + p(G(l)) + ql. (3.46)

By the above claim, we know that Ji is both the job with largest delivery
time and the job with largest processing time at time Sk(σ). So, we know the
index pmax(Sk(σ)) = qmax(Sk(σ)). Therefore, Step 3.4 of the algorithm must
occur at time Sk(σ). This implies that Sk(σ) + pk + pi ≤ ri + ϕpi. Therefore,
we have

Sk(σ) + pk ≤ ri + (ϕ − 1)pi. (3.47)

From equality (3.4) and inequalities (3.46) and (3.47) we have

Lmax(σ) − Lmax(π) ≤ Sk(σ) + pk − ri ≤ ri + (ϕ − 1)pi − ri = (ϕ − 1)pi

≤ (ϕ − 1)Lmax(π).

Case 3: Jk is a big job at time Sk(σ), and all of the jobs from G(l) that
are available at time Sk(σ) have a delivery time of at most (ϕ − 1)pk. This
corresponds to Step 3.2.

Since Jl is the job with minimum delivery time in G(l), we have

ql ≤ (ϕ − 1)pk. (3.48)

Consider the following two cases.
Case 3.1: J0 is not the first job in π.
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From Lemma 3 and inequality (3.48), we have that

Lmax(σ) − Lmax(π) ≤ ql ≤ (ϕ − 1)pk < (ϕ − 1)Lmax(π).

Case 3.2: J0 is the first job in π.
From Lemma 3 and inequality (3.48), we have

Lmax(σ) − Lmax(π) ≤ (ϕ − 1)p0 + ql ≤ (ϕ − 1)(p0 + pk). (3.49)

If J0 �= Jk, we have Lmax(π) > p0 + pk. Therefore, from inequality (3.49), it
follows that

Lmax(σ) − Lmax(π) ≤ (ϕ − 1)(p0 + pk) < (ϕ − 1)Lmax(π).

If J0 = Jk, then Jk is the first job in π. therefore, we have

Lmax(π) ≥ pk + p(G(l)) + ql. (3.50)

Therefore, from equality (3.4), we have

Lmax(σ) − Lmax(π) ≤ Sk(σ). (3.51)

Since I is a counterexample, we must have Sk(σ) > (ϕ − 1)pk. (Note that
rk = 0.) This implies that the algorithm must run Step 3.1 at least once. Let
T be the starting time of the first job completed after time (ϕ − 1)pk. Let Q
denote the set of jobs processed from time T to time Sk(σ) in σ. So we know
that

T ≤ (ϕ − 1)pk (3.52)

and Q
⋂

G(l) = ∅. Since Jk is a big job and the jobs in Q are scheduled before
Jk in σ, from Step 3.1, we have that each job in Q has a delivery time more
than (ϕ − 1)pk. From inequality (3.48), ql ≤ (ϕ − 1)pk, we know that each job
in Q

⋃
G(l) has a delivery time at least ql. Therefore, we have

Lmax(π) ≥ pk+p(Q)+p(G(l))+ min
Jj∈Q

⋃
G(l)

qj = pk+p(Q)+p(G(l))+ql. (3.53)

We also know that

Lmax(σ) = T + p(Q) + pk + p(G(l)) + ql. (3.54)

From equalities (3.52), (3.53) and (3.54), it follows that

Lmax(σ) − Lmax(π) ≤ T ≤ (ϕ − 1)pk < (ϕ − 1)Lmax(π).

The theorem follows.
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Chapter 4

Two identical parallel
machine model

We study the problem of semi-online scheduling on 2 machines under a grade of
service (GoS). GoS means that some jobs have to be processed by some machines
to be guaranteed a high quality. The problem is online in the sense that jobs
are presented one by one, and each job shall be assigned to a time slot on its
arrival. Assume that the processing time pi of every job Ji is bounded by an
interval [a, αa], where a > 0 and α > 1 are two constant numbers. By knowing
the bound of jobs’ processing times, we denote it by semi-online problem. We
deal with two semi-online problems.

The first one concerns about bounded processing time constraint. First, we
show that a lower bound of competitive ratio is: (1) 1+α

2 in the case where
1 < α < 2; (2) 3

2 in the case where 2 ≤ α < 5; and (3) 4+α
6 in the case where

5 ≤ α < 6. We further propose an algorithm, called B-ONLINE, and prove that
in the case where 25

14 ≤ α and the optimal makespan COPT ≥ 20a, B-ONLINE
algorithm is optimal.

For the second problem, we further know the sum of jobs’ processing times
Σ in advance. We first show a lower bound 1+α

2 in the case where 1 < α < 2,
then we propose an algorithm B-SUM-ONLINE which is optimal in the case
where Σ ≥ 2α

α−1a and 1 < α < 2.

4.1 Introduction

Grade of service (GoS) is a qualitative concept, and it’s often translated into
the level of access privilege of different service provision. For example, suppose
we have 2 machines (or processors). One of them can provide high quality
service (or high GoS) while the other one provides normal service (or low GoS).
Some jobs which request high quality must be processed by high GoS machine,
while other jobs with low quality requests can be processed by both machines
whenever they are available. For more recent development on GoS, see [55].
The problem is online in the sense that when receiving a job and before the
next job is presented, we must irrevocably assign the job to a time slot of the
schedule. The assignment of each job shall be made on its arrival and the
next job arrives immediately after the assignment, i.e., the difference of arrival
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times of two continual jobs is ignorable. Preemption and re-assignment are not
allowed. The objective is to minimize the makespan, that is the completion time
of the last job in the schedule. When all information is available at one time
before scheduling, the problem is called offline. We call a problem semi-online
if we know some information of jobs in advance, i.e., jobs’ total processing time.

Hwang et al. [55] first study the (offline) problem of parallel machine schedul-
ing with GoS eligibility. They proposed an approximation algorithm LG-LPT,
and proved that its makespan is not greater than 5

4 times the optimal makespan
for m = 2 and not greater than 2− 1

m−1 times the optimal makespan for m ≥ 3.
However, online scheduling under GoS eligibility was first studied by Park et
al. [82] and Jiang et al. [?]. For the problem of online scheduling on 2 ma-
chines with GoS constraint, they respectively proposed an optimal algorithm
with a competitive ratio of 5

3 . Jiang [57] further investigated the problem of
online scheduling on parallel machines with two GoS levels. He assumed that
the number of machines providing high GoS is not known before scheduling and
decisions must be made without knowledge of the exact number of machines
providing high GoS. I.e., we only know that in 10 parallel machines there are
k (1 ≤ k ≤ 9) machines which can provide high GoS. Under this consideration,
he proved that 2 is a lower bound of online algorithms and proposed an online
algorithm with a competitive ratio of 12+4

√
2

7 .
He et al. [46] investigated two different semi on-line scheduling problems on

a two-machine system. In the first problem, they assumed that all jobs have
their processing times in between p and rp (p > 0, r ≥ 1). They showed that
LS is optimal with a competitive ratio (r + 1)/2 in the case where 1 ≤ r < 2
and 3/2 in the case where r ≥ 2. In the second problem, they supposed that the
largest processing time is known in advance. They showed that PLS algorithm
is optimal with a competitive ratio 4/3.

In this chapter we will consider semi-online scheduling on two machines
under a grade of service provision with jobs’ processing times bounded by an
interval [a, αa], where a > 0 and α > 1 are two constant numbers. For simplicity,
we use online algorithm to denote semi-algorithm in the remainder.

The rest of this chapter is organized as follows. In Section 2.1, we will
describe the problem and introduce some basic notations. Section 2.2 will show
some lower bounds of competitive ratio considering different values of α. In
section 2.3, we will propose an algorithm B-ONLINE, and prove that in the
case where 25

14 ≤ α and the optimal makespan COPT ≥ 20a, B-ONLINE is
optimal. In section 3.1, we will give some problem definitions and notations.
Section 3.2 will present a lower bound of competitive ratio. In section 3.3, we
will show an algorithm B-SUM-ONLINE and prove that it is optimal in the
case Σ ≥ 2α

α−1a and 1 < α < 2.

4.2 Online scheduling on 2 machines with GoS
and bounded processing times

In this section, we study the problem of online scheduling on 2 machines under
a grade of service provision with bounded processing times.
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4.2.1 Problem definitions and notations

We are given 2 machines with speed of 1. Without loss of generality, we denote
the one that can provide both high and low GoSs by M1, and the other one
that only provides low GoS by M2. We denote each job by Ji = (pi, gi), where
pi is the processing time of Ji and gi ∈ {1, 2} is the GoS of the job. gi = 1
if Ji must be processed by M1 and gi = 2 if it can be processed by either of
the two machines. pi and gi are not known unless Ji arrives. A sequence of
jobs σ = {J1, J2, ..., Jn} which arrive online have to be scheduled irrevocably on
one of the two machines on their arrivals. Each job Ji is presented immediately
after Ji−1 is scheduled. The schedule can be seen as a partition of job sequence
σ into two subsequences, denoted by S1 and S2, where S1 and S2 consist of
jobs assigned to M1 and M2, respectively. Let L1 = t(S1) =

∑
Ji∈S1

pi and
L2 = t(S2) =

∑
Ji∈S2

pi denote the loads (or total processing times) of M1 and
M2, respectively. Hence, the makespan of one schedule is max{L1, L2}. The
online problem can be written as:

Given σ, find S1 and S2 to minimize max{L1, L2}.
Let CON and COPT denote the makespan of online algorithm and offline

optimal algorithm (for short, offline algorithm), respectively.

4.2.2 Lower bounds of competitive ratio

In this section, we will show some lower bounds of the competitive ratio of online
algorithms for different values of α. If α = 1, online algorithms can reach the
optimal makespan. An algorithm is optimal if it assigns the jobs as many as
possible on M2 when the difference of the loads of two machines is not greater
than 1. Moreover, for the case where α ≥ 6, the lower bound of 5

3 has been
proved in [82]. So, we will focus on the case where 1 < α < 6.

Theorem 3 For the problem of online scheduling on two machines under GoS
constraint with jobs’ processing times bounded within interval [a, αa], there exists
no algorithm with a competitive ratio less than: (1) 1+α

2 in the case where
1 < α < 2; (2) 3

2 in the case where 2 ≤ α < 5; and (3) 4+α
6 in the case where

5 ≤ α < 6.

Proof.
Without loss of generality, let a = 1. We will discuss the three cases of α in

the following.
Case 1. 1 < α < 2.
Let ϕ = 1+α

2 . We will generate a job sequence ρ consisting of at most 3
jobs, which arrive one by one. Once the ratio of makespans between online
and offline algorithms is at least ϕ after some job is assigned, no more jobs will
be presented and we stop. We begin with job J1 = (1, 2). If online algorithm
assigns J1 to M1, we further generate job J2 = (1, 1). Since offline algorithm
will assign J1 to M2, CON

COP T
= 2 > ϕ and we stop. Otherwise if online algorithm

assigns J1 to M2, we generate job J2 = (1, 2). If J2 is assigned to M2, we have
CON

COP T
= 2 > ϕ. Otherwise if J2 is assigned to M1, we generate job J3 = (α, 1).

We have CON

COP T
= 1+α

2 = ϕ in this case.
Case 2. 2 ≤ α < 5.
Similar to the analysis in Case 1, we begin with jobs J1 = J2 = (1, 2). If

online algorithm assigns both of them to one of the two machines, we have
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CON

COP T
= 2 > 3

2 . Otherwise, we further generate job J3 = (2, 1). Then we have
CON = 3 and COPT = 2, since the optimal solution consists of scheduling J1,
J2 on M2 and J3 on M1. It follows that CON

COP T
= 3

2 .
Case 3. 5 ≤ α < 6.
Let ϕ = 4+α

6 . We will generate a job sequence which consists of at most 5
jobs in this case. Similarly, we begin with jobs J1 = J2 = (1, 2) and observe
the behavior of online algorithm. If both of them are assigned to one of the
two machines, CON

COP T
= 2 > ϕ and we stop. Otherwise, we further generate

job J3 = (1, 2). If J3 is assigned to M1, we give job J4 = (3, 1) and then
CON

COP T
= 1+1+3

3 = 5
3 > ϕ. Otherwise if J3 is assigned to M2, we further generate

job J4 = (3, 2). If J4 is assigned to M2, it follows that CON

COP T
= 1+1+3

3 = 5
3 > ϕ.

Otherwise if J4 is assigned to M1, we give the last job J5 = (α, 1), and then
CON

COP T
= 1+3+α

6 = 4+α
6 = ϕ.

Therefore, the theorem follows.

Remark 3 In the case where α ≥ 6, the tight lower bound of competitive ratio
is 5

3 (see [82]).

4.2.3 B-ONLINE algorithm

Combining the ONLINE algorithm proposed in [82] with bounded jobs’ pro-
cessing time of job, we will give a modified algorithm called B-ONLINE. Before
describing the algorithm, we give some notations on B-ONLINE ’s schedules as
follows.

At the arrival of each job, P and T are updated to become the maximum pro-
cessing time and a half of total processing times of all arrived jobs, respectively.
D is updated to be the total processing time of all arrived jobs with gi = 1.
Let L = max{T, P, D}. Thus, we have COPT ≥ L. For analysis convenience,
we define P i, T i, Di, Li, Si

1 and Si
2 to be the P, T, D,L, S1 and S2 respectively

immediately after job Ji is assigned, and let P 0 = T 0 = D0 = L0 = 0 and
S0

1 = S0
2 = ∅.

According to Theorem 1 on lower bounds, we define various values of pa-
rameter ϕ as follows. (1) ϕ = 1+α

2 in the case where 25
14 ≤ α ≤ 2; (2) ϕ = 3

2 in
the case where 2 ≤ α ≤ 5; (3) ϕ = 4+α

6 in the case where 5 ≤ α < 6; and (4)
ϕ = 5

3 in the case where α ≥ 6.
B-ONLINE behaves as follows:

Step 1: Let S1 = ∅, S2 = ∅, P = 0, T = 0, D = 0;
Step 2: Receive job Ji = (pi, gi). P = max{P, pi} and T = T + pi

2 ;
Step 3: If gi = 1, let S1 = S1

⋃{Ji} and D = D + pi. Go to Step 5;
Step 4: Let L = max{T,D, P}, if t(S2) + pi ≤ ϕL, let S2 = S2

⋃{Ji}; else ,
let S1 = S1

⋃{Ji};
Step 5: If no more jobs arrive, stop and output S1 and S2; Else, let i = i + 1
and go to Step 2.

B-ONLINE has the same performance in competitiveness as ONLINE in
the case where α ≥ 6, i.e., both of them have a competitive ratio of 5

3 in the
case (please refer to [82] for details). So, we will focus our attention on the case
where 25

14 ≤ α < 6 later on.

Lemma 8 Given a constant number a, in the case where 25
14 ≤ α < 6, if job

Ji = (pi, 2) is scheduled on M1 by B-ONLINE algorithm, there must be t(Si
1) <
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2−ϕ
ϕ t(Si

2) + 2αa
ϕ , where (1) ϕ = 1+α

2 in the case where 25
14 ≤ α ≤ 2; (2) ϕ = 3

2

in the case where 2 ≤ α ≤ 5; (3) ϕ = 4+α
6 in the case where 5 ≤ α < 6.

Proof. If Ji = (pi, 2) is scheduled on M1, there must be t(Si−1
2 ) + pi > ϕLi.

Since t(Si
2) = t(Si−1

2 ) and pi ∈ [a, αa], we have t(Si
2) = t(Si−1

2 ) > ϕLi − αa. In
another aspect, because Li ≥ T i = 1

2 [t(Si
1) + t(Si

2)], we have

t(Si
2) >

ϕ

2
[t(Si

1) + t(Si
2)] − αa. (4.1)

It follows that t(Si
1) < 2−ϕ

ϕ t(Si
2) + 2αa

ϕ . The lemma follows.

Theorem 4 Given a constant number a, in the case where 25
14 ≤ α < 6 and

COPT ≥ 20a , B-ONLINE is optimal with a competitive ratio ϕ such that (1)
ϕ = 1+α

2 in the case where 25
14 ≤ α ≤ 2; (2) ϕ = 3

2 in the case where 2 ≤ α ≤ 5;
(3) ϕ = 4+α

6 in the case where 5 ≤ α < 6.

Proof. We define Ci
ON and Ci

OPT to be CON and COPT respectively immedi-
ately after job Ji is scheduled. Thus, Ci

OPT ≥ Ci−1
OPT for i ≥ 1.

We first assume that the theorem is false, implying that there must exist at
least one instance, called counter example, which derives CON

COP T
> ϕ. Among all

such counter examples, let ς be the one with the least number n of jobs, called
minimal counter example. By the definition of minimal counter example, the
makespan of ς is not determined until the arrival of job Jn. Therefore,

Cn
ON = max{t(Sn

1 ), t(Sn
2 )} > ϕCn

OPT ; (4.2)

max{t(Sn−1
1 ), t(Sn−1

2 )} ≤ ϕCn−1
OPT . (4.3)

Case 1. gn = 2.
If Jn = (pn, 2) is scheduled on M2, then t(Sn−1

2 ) + pn ≤ ϕLn ≤ ϕCn
OPT . This

implies that ϕCn
OPT < Cn

ON = t(Sn
1 ) = t(Sn−1

1 ) ≤ ϕCn−1
OPT . Since Cn

OPT ≥
Cn−1

OPT , There is a contradiction. Therefore, Jn must be assigned to M1 and we
have

t(Sn−1
2 ) + pn > ϕLn. (4.4)

Since Tn = 1
2 [t(Sn−1

1 ) + t(Sn−1
2 ) + pn] ≤ Ln, together with inequality (4.4), we

have t(Sn−1
1 ) < (2−ϕ)Ln. Since Ln ≤ Cn

OPT , we have t(Sn−1
1 ) < (2−ϕ)Cn

OPT .
Considering pn ∈ [a, αa], it follows Cn

ON = t(Sn
1 ) = t(Sn−1

1 ) + pn < (2 −
ϕ)Cn

OPT + αa. Since Cn
OPT ≥ 20a, we have

Cn
ON

Cn
OPT

= (2 − ϕ) +
αa

Cn
OPT

≤ 2 − ϕ +
α

20
.

To prove the theorem, we need to derive a contradiction to the assumption, i.e.,
to prove Cn

ON

Cn
OP T

≤ ϕ. That means 2 − ϕ + α
20 ≤ ϕ or 2 + α

20 − 2ϕ ≤ 0.

Case 1.1. 25
14 ≤ α ≤ 2.

In this subcase, ϕ = 1+α
2 , and then

2 +
α

20
− 2ϕ = 2 +

α

20
− 1 − α = 1 − 19α

20
< 0.

It contradicts to the assumption.
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Case 1.2. 2 ≤ α ≤ 5.
In this subcase, ϕ = 3

2 and then

2 +
α

20
− 2ϕ = 2 +

α

20
− 3 =

α

20
− 1 < −3

4
< 0.

Again, there is a contradiction to the assumption.
Case 1.3. 5 ≤ α < 6.

In this subcase, ϕ = 4+α
6 .

2 +
α

20
− 2ϕ = 2 +

α

20
− 4 + α

3
=

40 − 17α

60
≤ −3

4
< 0.

Again, there is a contradiction.
Case 2. gn = 1.

According to the definition of minimal counter example,

Cn
ON = t(Sn

1 ) > ϕCn
OPT (4.5)

Since Cn
OPT is at least the sum of processing times of jobs with gi = 1, inequality

(4.5) means that S1 must contain at least one job, named Jk, with gk = 2. Let
JK be the last job with gK = 2 assigned to M1. Let AK(S1) be the set of
jobs assigned to M1 after JK has been assigned to M1. Thus, t(Sn

1 ) = t(Sk
1 ) +

t(AK(S1)). Since Cn
OPT cannot be less than the sum of processing times of jobs

with gi = 1, we have t(AK(S1)) ≤ Cn
OPT . Therefore, t(Sn

1 ) ≤ t(Sk
1 ) + Cn

OPT .
Together with Lemma 8,

t(Sn
1 ) ≤ 2 − ϕ

ϕ
t(Sk

2 ) +
2αa

ϕ
+ Cn

OPT (4.6)

Since the total processing time of jobs doesn’t vary among different algorithms,
we have t(Sn

1 )+ t(Sn
2 ) ≤ 2Cn

OPT . Considering inequality (4.5), we have t(Sn
2 ) <

(2 − ϕ)Cn
OPT . Since t(Sk

2 ) ≤ t(Sn
2 ), together with inequality (4.6), we have

t(Sn
1 ) <

(
(2 − ϕ)2

ϕ
+ 1

)
Cn

OPT +
2αa

ϕ

Therefore,

Cn
ON

Cn
OPT

<
(2 − ϕ)2

ϕ
+ 1 +

2αa

ϕCn
OPT

≤ (2 − ϕ)2

ϕ
+ 1 +

α

10ϕ
.

Similar to Case 1, we need to derive a contradiction to the assumption to prove
the theorem, i.e., to prove Cn

ON

Cn
OP T

≤ ϕ. That means (2−ϕ)2

ϕ + 1 + α
10ϕ ≤ ϕ or

4 + α
10 − 3ϕ ≤ 0.
Case 2.1. 25

14 ≤ α ≤ 2.
In this subcase, ϕ = 1+α

2 . Therefore,

4 +
α

10
− 3ϕ = 4 +

α

10
− 3(1 + α)

2
=

25 − 14α

10
≤ 0.

It contradicts to the assumption.
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Case 2.2. 2 ≤ α ≤ 5.
In this subcase, ϕ = 3

2 , and then

4 +
α

10
− 3ϕ = 4 +

α

10
− 9

2
=

α − 5
10

< 0.

Again, there is a contradiction.
Case 2.3. 5 ≤ α < 6.

In this subcase, ϕ = 4+α
6 and thus

4 +
α

10
− 3ϕ = 4 +

α

10
− 4 + α

2
=

2(5 − α)
5

≤ 0.

There is a contradiction to the assumption.
According to the analysis in Cases 1 and 2, the theorem follows.

4.3 Online scheduling on 2 machines with the
total processing time

In this section, we further know jobs’ total processing time in advance. We also
study the problem of online scheduling on 2 machines with GoS and bounded
processing times.

4.3.1 Problem definitions and notations

We are given 2 machines with speed of 1 and jobs’ total processing time Σ.
Without loss of generality, we denote the machine that can provide both high
and low GoSs by M1, and the other one that only provides low GoS by M2.
We denote each job by Ji = (pi, gi), where pi is the processing time of Ji and
gi ∈ {1, 2} is the GoS of the job. gi = 1 if Ji must be processed by M1 and
gi = 2 if it can be processed by either of the two machines. pi and gi are not
known unless Ji arrives. A sequence of jobs σ = {J1, J2, ..., Jn} which arrive
online have to be scheduled irrevocably on one of the two machines on their
arrivals. Each job Ji is presented immediately after Ji−1 is scheduled. The
schedule can be seen as a partition of job sequence σ into two subsequences,
denoted by S1 and S2, where S1 and S2 consist of jobs assigned to M1 and M2,
respectively. Note that Σ = t(S1) + t(S2). Let L1 = t(S1) =

∑
Ji∈S1

pi and
L2 = t(S2) =

∑
Ji∈S2

pi denote the loads (or total processing times) of M1 and
M2, respectively. Hence, the makespan of one schedule is max{L1, L2}. The
online problem can be written as:

Given σ, find S1 and S2 to minimize max{L1, L2}.
Let CS−ON and COPT denote the makespan of online algorithm and offline

optimal algorithm (for short, offline algorithm), respectively.

4.3.2 Lower bounds of competitive ratio

In this section, we will show some lower bounds of competitive ratio of online
algorithm considering difference values of α. If α = 1, online algorithms can
reach the optimal makespan. I.e., one algorithm is optimal if it assigns the jobs
as many as possible on M2 when the difference of the loads of two machines is
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not greater than 1. Moreover, for the case where α ≥ 2, the lower bound of 3
2

has been proved in [82]. So, we will focus on the case where 1 < α < 2.

Theorem 5 For the problem of online scheduling on two machines under GoS
constraint with (1) knowledge of total processing time and (2) jobs’ processing
times bounded within interval [a, αa], there exists no online algorithm with a
competitive ratio less than 1+α

2 in the case where 1 < α < 2.

Proof. Without loss of generality, let a = 1 and the sum of jobs’ processing
times be 2 + α. We will generate a job sequence which consists of at most 3
jobs, which arrive one by one. Once the ratio of makespans between online and
offline algorithms is at least 1 + 1

α after some job is assigned, no more jobs will
be presented and we stop. We begin with job J1 = (1, 2). If online algorithm
assigns J1 to M1, we further generate job J2 = (α, 1) and J3 = (1, 2). Since
offline algorithm will assign J1, J3 to M2 and J2 to M1, it follows CON

COP T
≥ 1+α

2
and we stop. Otherwise if online algorithm assigns J1 to M2, we generate job
J2 = (α, 2) and J3 = (1, 1). If J2 is assigned to M2, since offline algorithm will
scheduling J1, J3 on M1 and J2 on M2, we have CON

COP T
≥ 1+α

2 . Otherwise if J2

is assigned to M1, we also generate job J3 = (1, 1). We have CON

COP T
= 1+α

2 in
this case, since offline algorithm will assign J1, J3 on M1 and J2 on M2.

Remark 4 In the case where α ≥ 2, the tight lower bound of competitive ratio
is 3

2 (see [82]).

4.3.3 B-SUM-ONLINE algorithm

Combining the SEMI-ONLINE algorithm proposed in [82] with bounded jobs’
processing times, we will give a modified algorithm called B-SUM-ONLINE.
Before describing the algorithm, we give some notations on B-SUM-ONLINE ’s
schedules as follows.

Let Σ be the sum of jobs’ processing times. Let L = Σ
2 . Thus, we have

COPT ≥ L. B-SUM-ONLINE behaves as follows:
Step 1: Let S1 = ∅, S2 = ∅;

Step 2: Receive job Ji = (pi, gi);
Step 3: If gi = 1, let S1 = S1

⋃{Ji}. Go to Step 5;
Step 4: If t(S2) + pi ≤ 1+α

2 L, let S2 = S2

⋃{Ji}; else , let S1 = S1

⋃{Ji};
Step 5: If no more jobs arrive, stop and output S1 and S2; Else, let i = i + 1
and go to Step 2.

B-SUM-ONLINE has the same performance in competitiveness as SEMI-
ONLINE in the case where α ≥ 2, i.e., both of them have competitive ratio of
3
2 in the case (please refer to [82] for details). So, we will focus our attention on
the case where 1 < α < 2 later on.

The proof of the competitive ratio of B-SUM-ONLINE algorithm is by con-
tradiction. We assume that there exists a job instance, called counter example,
for which B-SUM-ONLINE algorithm yields a schedule with makespan greater
than 1+α

2 times of the optimum. We further define the counter example with
the least number of jobs as minimal counter example. For a minimal counter
example I, let J1 = {Ji|gi = 1, Ji ∈ I} and J2 = {Ji|gi = 2, Ji ∈ I}. We use
σ to denote the schedule generated by B-SUM-ONLINE algorithm for I. Let
CS−ON and COPT denote the makespan of B-SUM-ONLINE algorithm and the
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optimal algorithm for I, respectively. We define Sj
1 and Sj

2 to be S1 and S2 that
we have immediately after we schedule job Jj . S0

1 = S0
2 = ∅.

Lemma 9 t(J2) > 1+α
2 L.

Proof. Suppose t(J2) ≤ 1+α
2 L. For any job Jj = (pj , 2), since t(Sj−1

2 ) + pj ≤
t(J2) and t(J2) ≤ 1+α

2 L, we have t(Sj−1
2 ) + pj ≤ 1+α

2 L. From Step 4 of the
algorithm, we get S1 = J1 and S2 = J2. Since t(S1) = t(J1) ≤ COPT , we know
CS−ON �= t(S1). Therefore, CS−ON = t(S2) = t(J2) ≤ 1+α

2 L ≤ 1+α
2 COPT .

There exists a contradiction.

Theorem 6 Given Σ ≥ 2α
α−1a, B-SUM-ONLINE algorithm is optimal with a

competitive ratio of 1+α
2 in the case 1 < α < 2.

Proof. Let ϕ = 1+α
2 . We assume that the theorem is false and there exists a

minimal counter example I = {J1, ..., Jn}. Therefore, we have

Cn
S−ON = max{t(Sn

1 ), t(Sn
2 )} > ϕCn

OPT , (4.7)

max{t(Sn−1
1 ), t(Sn−1

2 )} ≤ ϕCn−1
OPT . (4.8)

Our aim is to prove for this instance, Cn
S−ON

Cn
OP T

≤ ϕ holds.
Case 1. gn = 2.

If Jn is assigned to M2, we have t(Sn−1
2 ) + pn ≤ ϕL ≤ ϕCn

OPT and t(Sn−1
1 ) =

t(Sn
1 ). By inequality (4.7), it follows that t(Sn−1

1 ) > ϕCn
OPT ≥ ϕCn−1

OPT . This
contradicts inequality (4.8).

So Jn must be assigned to M1, which implies t(Sn−1
2 ) + pn > ϕL, Cn

S−ON =
t(Sn

1 ) > ϕCn
OPT and t(Sn

2 ) = t(Sn−1
2 ). Since t(Sn

1 )+t(Sn
2 ) = 2L and Cn

OPT ≥ L,

Cn
S−ON − Cn

OPT ≤ t(Sn
1 ) − L = L − t(Sn

2 ) = L − t(Sn−1
2 ). (4.9)

Since t(Sn−1
2 ) + pn > ϕL, together with the above inequality,

Cn
S−ON − Cn

OPT < L − (ϕL − pn) = pn − (ϕ − 1)L. (4.10)

If pn > (α−1)L, considering pn ∈ [a, αa], it follows αa > (α−1)L. This implies
L < α

α−1a. Since Σ = 2L, we have Σ < 2α
α−1a. This contradicts the assumption

Σ ≥ 2α
α−1 . So

pn ≤ (α − 1)L. (4.11)

Together with inequality (4.10), it follows that

Cn
S−ON − Cn

OPT < (α − 1)L − (ϕ − 1)L <
α − 1

2
L = (ϕ − 1)L < (ϕ − 1)Cn

OPT .

Therefore, Cn
S−ON

Cn
OP T

< ϕ, there exists a contradiction.
Case 2. gn = 1.

From the minimality, we have Cn
S−ON = t(Sn

1 ). By Lemma 9, we know that

there is at least one job in J2 scheduled on M1. Otherwise, we have Cn
S−ON

Cn
OP T

< ϕ

and there exists a contradiction. Let Jk = (pk, 2) denote the last job with gi = 2
in I scheduled on M1, i.e., I = {J1, ..., Jk−1, Jk, Jk+1..., Jn}. In this case, by
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taking out Jk and putting it at last position in I, we get a new instance I ′,
i.e., I ′ = {J1, ..., Jk−1, Jk+1, ..., Jn, Jk}. Note that for this new instance I ′, the
performance of B-SUM-ONLINE algorithm does not become worse, by Step 4
of the algorithm. Now, we renew the indexes of jobs in I ′ by their positions,
i.e., I ′ = {J ′

1 = J1, .., J
′
k−1 = Jk−1, J

′
k = Jk−1, ..., J

′
n−1 = J ′

n, J ′
n = Jk}. Since

g′n = 1, we have the result of Case 1.
Therefore, the theorem follows.
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Chapter 5

Two uniform parallel
machine models

We consider two problems of online scheduling on two uniform machines: online
scheduling under a grade of service (GoS) and online scheduling with reassign-
ment. These problems are online in the sense that when a job presents, we have
to irrevocably assign it to one of the machines before the next job is seen. The
objective is to minimize the makespan.

In the first problem, GoS means that some jobs have to be processed by
some machine so that they can be guaranteed a higher quality. Assume that
the speed of the higher GoS machine is normalized to 1, while the speed of the
other one is s. We show that a lower bound of competitive ratio is 1+ 2s

s+2 in the
case 0 < s ≤ 1 and 1 + s+1

s(2s+1) in the case s > 1. Then we propose and analyze
an online algorithms HSF. HSF is optimal in the case where s > 1 and Σ1 ≥ Σ2

s ,
where Σ1 and Σ2 denote the total processing time of jobs which request higher
GoS machine and the total processing time of jobs which request the normal
one, respectively.

In the second problem, we study two subproblems PL and PA proposed
in [103]. Assume that the speeds of 2 uniform machines are 1 and s ≥ 1,
respectively. For PL where we can reassign the last k jobs of the sequence,
we show a lower bound of competitive ratio 1 + 1

1+s . For PA where we can

reassign arbitrary k jobs, we show a lower bound of competitive ratio (s+1)2

s2+s+1 .
We propose a s+1

s -competitive algorithm HSF-1 for both PL and PA. For PA,

we propose a (s+1)2

s+2 -competitive algorithm EX-RA, which is superior to HSF-1
when 1 ≤ s ≤ √

2.

5.1 Introduction

In the classical uniform machine scheduling problem, there are m ≥ 2 machines
with different speeds. A list of n independent jobs with nonnegative processing
times has to be scheduled non-preemptively on these machines with the objective
of minimizing the makespan, which is the completion time of the last job in the
schedule. This chapter studies the online version of this problem with two
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uniform machines. We are given a sequence of independent jobs which arrive in
a list. We have to assign a job to one of the two uniform machines before the
next job shows up.

In the first problem, we deal with online scheduling under a grade of service
(GoS). Within an offline context, the concept of GoS was introduced and ana-
lyzed in [55]. For the online problem, the well-known List algorithm introduced
by Graham [40] has been proved to be the best possible for the case of identi-
cal machines. The List algorithm assigns the incoming job to the least loaded
machine. Cho and Shani [24] proved that List algorithm is 1+

√
5

2 -competitive
for all s and the bound is tight when s = 1+

√
5

2 . Epstein et al. [30] provided
randomized algorithms with better performance than List algorithm in the case
where no preemption is allowed. In the same paper, for the problem with pre-
emption, they proposed an optimal (1 + s

s2+s+1 )-competitive algorithm for all
s ≥ 1, which cannot be beaten by any randomized algorithm [109]. Angelelli et
al. [3] considered the semi-online scheduling on two uniform processors in the
case where the total processing time of jobs is known in advance and presented
algorithms which are optimal for s ≥ √

3, s = 1 and 1+
√

17
4 ≤ s ≤ 1+

√
3

2 . Jongho
Park et al. [82] studied the online scheduling of two machines under a grade of
service (GoS) provision and its semi-online variant where the total processing
time is known. They gave an optimal online algorithm whose competitive ratio
is 5

3 and an optimal semi-online algorithm with a competitive ratio 3
2 .

In the second problem, we consider online scheduling with reassignment. In
the classical online scheduling problem, jobs cannot be reassigned after they have
been assigned to machines. However, it may not be the case in the real world,
such as hotel or restaurant reservation and reception. In order to minimize the
makespan, we need to reassign some jobs to gain a better effect. Three problems
of online scheduling with reassignment have been proposed in [103]. In the first
problem PL, we can reassign the last k jobs of the sequence. Tan et al. [103]
proved that List algorithm [40] is optimal with a competitive ratio of 3

2 . In the
second problem PE where we can reassign the last job of each machine, they
proposed an optimal algorithm RE with a competitive ratio of

√
2. In the third

problem PA, we can reassign arbitrary k jobs. They obtained lower bound 4
3

and presented an optimal algorithm RA. Kellerer et al. [60] studied two models.
In one of them, a buffer is available to maintain those arrived but unassigned
jobs. In the other, there exists two parallel processors and we need to choose
the better one as output. They obtained two optimal algorithms which are 4

3 -
competitive. Sanders et al. [90] discussed another kind of reassignment model.
When a new job is arriving, we are allowed to migrate some pervious jobs to
other machines provided that the total processing time of migrated jobs is not
greater than β times of the processing of the new job. They gave an algorithm
with a competitive ratio 3

2 for β = 4
3 on m machines, and an algorithm with

a competitive ratio 7
6 for β = 1 on two machines. Moreover, they also gave

a family of algorithms with competitive ratio 1 + ε for a constant β(ε) on m
machines for any fixed ε.

The rest of this chapter is organized as follows. In Section 2, we deal with
the problem of online scheduling under a grade of service. In subsection 2.1,
we describe the problem and introduce some notations. In subsection 2.2, we
show that 1 + 2s

s+2 is a lower bound of competitive ratio in the case where
0 < s ≤ 1 and 1 + s+1

s(2s+1) in the case where s > 1. In subsection 2.3, we
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show some upper bounds of competitive ratio by proposing and analyzing an
online algorithms HSF algorithm. In section 3, we deal with the problem of
online scheduling with reassignment. In subsection 3.1, we show that a lower
bound of competitive ratio for PL is 1 + 1

1+s . In subsection 3.2, we show that

a lower bound of competitive ratio for PA is (s+1)2

s2+s+1 . In subsection 3.3, we give
an upper bound of competitive ratio for both PL and PA by proposing and
analyzing HSF-1 algorithm. In subsection 3.4, we prove that EX-RA algorithm
is (s+1)2

s+2 -competitive.

5.2 Online scheduling under GoS

In this section we consider the problem of online scheduling on two uniform
machines under GoS.

5.2.1 Problem definition and notations

We are given two uniform machines. Without loss of generality, we denote
the one which can provide higher GoS and whose speed is 1 by M1, while
the other one with lower GoS and speed s by Ms. Note that M1 can also
provide lower GoS, instead of Ms, whenever it is available. A sequence of jobs
I = {J1, J2, ..., Jn} which arrive online have to be scheduled irrevocably on one
of the machines at the time of their arrivals. The new job shows up only after
the current job is scheduled. We denote a job by Ji = (pi, gi), where the first
item pi is the processing time of job Ji and the second item gi ∈ {1, 2} denotes
the GoS assigned to the job Ji, which is 1 if the job must be processed only
by M1 and 2 if it can be processed by either of two machines. pi and gi are
not known until the previous job Ji−1 has been scheduled, except job J1. The
schedule can be seen as a partition of job sequence I into two subsets, denote by
S1 and S2, where S1 and S2 consist of jobs assigned to M1 and Ms, respectively.
Let L1 =

∑
Ji∈S1

pi and L2 = 1
s

∑
Ji∈S2

pi denote the workload of M1 and Ms,
respectively. The makespan of the schedule is max{L1, L2}. The online problem
can be written as:

Given I, find S1 and S2 to minimize max{L1, L2}.

5.2.2 Lower bounds of competitive ratio

In this subsection, we show some lower bounds of competitive ratio in different
cases.

Theorem 7 For the problem of scheduling two uniform machines(with different
speeds, s and 1) under GoS, there is no online algorithm with competitive ratio
less than: (1) 1 + 2s

s+2 in the case where 0 < s ≤ 1; (2) 1 + s+1
s(2s+1) in the case

where s > 1.

Proof. We discuss two cases in the theorem according to the value of s.
(1) 0 < s ≤ 1.
For simplicity of expression, let ϕ = 1 + 2s

s+2 and θ = 1
s . It follows θ ≥ 1.

The problem is then converted to that the speeds of M1 and Ms are θ and 1,
respectively. The desired lower bound is ϕ = 1 + 2

2θ+1 . We give a job input
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sequence to show that there is no online algorithm whose competitive ratio is
less than ϕ. The job sequence consists of at most 5 jobs which arrive in the
order {J1, J2, J3, J4, J5}. Let J1 = (θ, 2).

Case 1. J1 is scheduled on M1.
Let J2 = (θ2, 1). Therefore, CON ≥ 1

θ (θ + θ2) = 1 + θ. An optimal solution
consists of assigning J1 and J2 to Ms and M1, respectively. Thus, COPT = θ
and CON

COP T
≥ 1+θ

θ > ϕ.
Case 2. J1 is scheduled on Ms.

Then we further generate J2 = (θ2, 2).
Case 2.1. J2 is assigned to Ms.

It follows CON ≥ θ + θ2. In an optimal solution, J1 and J2 are scheduled on
Ms and M1, respectively. Thus, COPT = θ and CON

COP T
≥ θ+θ2

θ = 1 + θ > ϕ.
Case 2.2. J2 is assigned to M1.

We generate J3 = (θ2, 2).
Case 2.2.1. J3 is scheduled on M1.

Let J4 = (2θ3 + θ2, 1). Therefore, CON ≥ 1
θ (θ2 + θ2 + 2θ3 + θ2) = 3θ + 2θ2.

An optimal schedule consists of assigning J1, J2, J3 to Ms and J4 to M1. Thus,
COPT = 1

θ (2θ3 + θ2) = 2θ2 + θ. It follows

CON

COPT
≥ 3θ + 2θ2

2θ2 + θ
= 1 +

2
2θ + 1

= ϕ.

Case 2.2.2. J3 is scheduled on Ms.
We further generate J4 = (2θ3 + θ2, 2).

Case 2.2.2.1. J4 is assigned to Ms.
It follows CON ≥ θ + θ2 + 2θ3 + θ2 = θ + 2θ2 + 2θ3. An optimal solution
can assign J1, J2, J3 to Ms and J4 to M1. Therefore, it follows that COPT =
1
θ (2θ3 + θ2) = 2θ2 + θ. Then

CON

COPT
≥ θ + 2θ2 + 2θ3

2θ2 + θ
= 1 +

2θ2

2θ + 1
≥ ϕ.

Case 2.2.2.2. J4 is assigned to M1.
Let J5 = (2θ4+3θ3+θ2, 1). It follows CON ≥ 1

θ (θ2+2θ3+θ2+2θ4+3θ3+θ2) =
2θ3 + 5θ2 + 3θ. An optimal schedule can assign J1, J2, J3, J4 to Ms and J5 to
M1. Thus, COPT = 1

θ (2θ4 + 3θ3 + θ2) = 2θ3 + 3θ2 + θ. It follows

CON

COPT
≥ 2θ3 + 5θ2 + 3θ

2θ3 + 3θ2 + θ
= 1 +

2
2θ + 1

= ϕ.

(2) s > 1.
In this case, we also give a job sequence which consists of at most 5 jobs

to show that the competitive ratio of any online algorithm cannot be less than
1 + s+1

s(2s+1) . Let ϕ = 1 + s+1
s(2s+1) . We begin with J1 = (s, 2).

Case 1. J1 is assigned to M1.
Let J2 = (1, 1). It follows CON ≥ s + 1. An optimal schedule can assign J1 to
Ms and J2 to M1. Thus, COPT = 1 and CON

COP T
≥ s + 1 ≥ ϕ.

Case 2. J1 is assigned to Ms.
We further generate J2 = (1, 2).

Case 2.1. J2 is scheduled on Ms.
It follows CON ≥ 1

s (s + 1) = 1 + 1
s . An optimal solution can assign J1 to Ms

and J2 to M1. Therefore, COPT = 1 and CON

COP T
≥ 1 + 1

s > ϕ.
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Case 2.2. J2 is scheduled on M1.
We further generate J3 = (s, 2).

Case 2.2.1. J3 is assigned to M1.
Let J4 = (2+ 1

s , 1). Thus, CON ≥ 1+s+2+ 1
s = 3+s+ 1

s . An optimal schedule
can assign J1, J2, J3 to Ms and J4 to M1. It follows COPT = 2+ 1

s . Since s > 1,

CON

COPT
≥ 3 + s + 1

s

2 + 1
s

= 1 +
s(s + 1)
2s + 1

> ϕ.

Case 2.2.2. J3 is assigned to Ms.
Then we generate J4 = (2 + 1

s , 2).
Case 2.2.2.1. J4 is scheduled on Ms.

It follows CON ≥ 1
s (s+ s+2+ 1

s ) = 2+ 2
s + 1

s2 . An optimal schedule can assign
J1, J2, J3 to Ms and J4 to M1. Thus, COPT = 2 + 1

s , and

CON

COPT
≥ 2 + 2

s + 1
s2

2 + 1
s

= 1 +
s + 1

s(2s + 1)
= ϕ.

Case 2.2.2.2. J4 is scheduled on M1.
We further generate J5 = (2+ 3

s + 1
s2 , 1). Therefore CON ≥ 1+2+ 1

s +2+ 3
s + 1

s2 =
5 + 4

s + 1
s2 . An optimal solution can assign J1, J2, J3, J4 to Ms and J5 to M1.

Thus, COPT = 2 + 3
s + 1

s2 . Since s > 1,

CON

COPT
≥ 5 + 4

s + 1
s2

2 + 3
s + 1

s2

= 1 +
s(3s + 1)

(2s + 1)(s + 1)
> 1 +

s + 1
s(2s + 1)

= ϕ.

The theorem follows.

Remark 5 In the case where s = 1, a lower bound of competitive ratio for all
online algorithms is 5

3 .

This is the lower bound proved in [82]. When s = 1, our online problem
reduces to the one in [82].

5.2.3 Upper bounds of competitive ratio

In this subsection we show an upper bound of competitive ratio by giving an
algorithms HSF. Let Σ1 and Σ2 denote the total processing time of jobs with
gi = 1 and with gi = 2, respectively. We first prove that in the case where s > 1
and Σ1 ≥ Σ2

s , HSF is optimal.

HSF algorithm

There is a straightforward algorithm called HSF algorithm (higher speed ma-
chine first). HSF algorithm schedules jobs as many as possible on higher speed
machine. I.e., if 0 < s ≤ 1, HSF algorithm schedules all the jobs on M1; else,
HSF algorithm schedules all jobs with gi = 2 on Ms, and the others on M1.

Lemma 10 In the case 0 < s ≤ 1, HSF is (s + 1)-competitive.
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Proof. By the definition of HSF algorithm, CON = Σ1 + Σ2. On the other
hand, the offline adversary can generate a job sequence which can be perfectly
distributed to both machines in order to maintain a load balance between two
machines; i.e., Σ1 = Σ2

s . Therefore,

CON

COPT
≤ (Σ1 + Σ2)

Σ1+Σ2
s+1

= s + 1.

Lemma 11 In the case where s > 1, if Σ1 ≥ Σ2
s , HSF is optimal.

Proof. Since COPT = max{Σ1,
Σ2
s } = Σ1 and CON = max{Σ1,

Σ2
s } = Σ1, the

lemma follows.

Lemma 12 In the case where s > 1, if Σ1 < Σ2
s , HSF is s+1

s -competitive.

Proof. Since Σ1 < Σ2
s , CON = max{Σ1,

Σ2
s } = Σ2

s . On the other hand, the
offline adversary can generate a job sequence which can be perfectly distributed
to both machines. Let Σ1

Σ2
= ε (0 < ε < 1

s ). Then

CON

COPT
≤ Σ2

s
· s + 1
Σ1 + Σ2

=
s + 1

s(1 + ε)
.

Let ε → 0, we have the desired result.

5.3 Online scheduling with reassignment

In this section we consider the problem of online scheduling on two uniform
machines with reassignment. Without loss of generality, we denote the machine
with speed 1 by M1 and the other one with speed s by Ms, where s ≥ 1. We
use CON and COPT to denote the makespan of an online algorithm and that of
offline optimal algorithm (after reassignment), respectively.

5.3.1 Lower bound of competitive ratio for PL (last k jobs
can be reassigned)

In this subsection, we show a lower bound 1 + 1
1+s of competitive ratio.

Theorem 8 For PL, there is no online algorithm with a competitive ratio less
than 1 + 1

1+s .

Proof. Let ε be a sufficiently small positive number. For simplicity of expres-
sion, let ϕ = 1 + 1

1+s . We generate job J1 with p1 = s, and discuss two cases
according to the assignment of J1 by the online algorithm in below.

Case 1: J1 is assigned to M1.
We generate J2 with p2 = s2. If J2 is assigned to M1, we further generate
last k jobs with processing time ε. It follows CON ≥ s + s2. The offline
algorithm may assign jobs to the two machines with equivalent workload, i.e.,
COPT = s+s2+kε

1+s = s + kε
1+s < s + kε. So,

CON

COPT
>

s + s2

s + kε
→ 1 + s ≥ ϕ. (ε → 0)
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Otherwise if J2 is assigned to Ms, we generate job J3 with p3 = s2(s+1) and
further generate last k jobs with processing time ε. J3 is assigned to either M1 or
Ms. In either case, CON ≥ 1

s (s2+s2(s+1)) = s2+2s. The offline algorithm can

make the two machines have equal workload, i.e., COPT = s+s2+s2(s+1)+kε
1+s <

s + s2 + kε. Hence,

CON

COPT
>

s2 + 2s

s + s2 + kε
→ 1 +

1
1 + s

= ϕ. (ε → 0)

Case 2: J1 is assigned to Ms.
We generate job J2 with p2 = 1. If J2 is assigned to Ms, we further generate
last k jobs with processing time ε. It follows CON ≥ 1 + 1

s . On the other hand,
COPT = s+1+kε

1+s < 1 + kε.

CON

COPT
>

1 + 1
s

1 + kε
→ 1 +

1
s

> ϕ. (ε → 0)

If job J2 is assigned to M1, we generate job J3 with p3 = s + s2 and then
further generate last k jobs with processing time ε. Therefore, CON ≥ 1

s (s +

s + s2) = 2 + s. On the other hand, COPT = s+1+(s+s2)+kε
1+s < 1 + s + kε.

CON

COPT
>

2 + s

1 + s + kε
→ 1 +

1
1 + s

= ϕ. (ε → 0)

The theorem follows.

Remark 6 For PL, if the speeds of two machines are identical, a lower bound
of competitive ratio is 3

2 .

The result in [103] is a special case of Theorem 8. Note that when s = 1,
List algorithm is optimal [24].

5.3.2 Lower bound of competitive ratio for PA (we can
reassign arbitrary k jobs)

In this subsection, we show a lower bound (s+1)2

s2+s+1 of competitive ratio for
PA. For an arbitrary online algorithm AON , let L1 =

∑
Ji∈S1

pi and L2 =
1
s

∑
Ji∈S2

pi denote the workloads of M1 and Ms before reassignment, respec-
tively.

Theorem 9 For PA, there is no online algorithm with competitive ratio less
than (s+1)2

s2+s+1 .

Proof. We begin with Mn jobs with processing time 1, where M and n are
two positive integers.

Since the total processing time of the Mn jobs is Mn, L1 + sL2 = Mn. For
simplicity, let x = L1

Mn and y = L2
Mn . Thus,

x + sy = 1. (5.1)

Let ϕ = (s+1)2

s2+s+1 . Consider the following two cases.
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Case 1: 0 ≤ L2 ≤ L1.
It follows

0 ≤ y ≤ x ≤ 1. (5.2)

By equation (5.1) and inequality (5.2), x is bounded such that 1
s+1 ≤ x ≤ 1.

Since s ≥ 1, 1
s+1 < 1+s

s2+s+1 < 1. In below we further discuss two subcases
according to the bound of x.

Case 1.1: 1+s
s2+s+1 < x ≤ 1.

No more jobs arrive. CON > L1 − k since AON can at most move k jobs from
M1 to Ms during reassignment, while COPT = Mn

1+s . So,

CON

COPT
≥ L1 − k

Mn
1+s

→ (1 + s)x >
(s + 1)2

s2 + s + 1
= ϕ. (n → ∞)

Case 1.2: 1
1+s ≤ x ≤ 1+s

s2+s+1 .
We further generate the last job with processing time sMn. With similar rea-
soning as that in Case 1.1,

CON

COPT
≥ L2 + Mn − k

s

Mn
→ y + 1 =

1 − x

s
+ 1 ≥ (1 + s)2

s2 + s + 1
= ϕ. (n → ∞)

Case 2: 0 ≤ L1 ≤ L2.
Together with equation (7),

0 ≤ x ≤ y ≤ 1
s
. (5.3)

By equation (5.1) and inequality (5.3), x is bounded such that 0 ≤ x ≤ 1
s+1 .

We divide the case into two subcases according to the bound of s in below.
Case 2.1: s >

√
5+1
2 .

We further generate the last job with processing time sMn. Since s >
√

5+1
2 ,

1 + s − s2 < 0. Together with 0 ≤ x ≤ 1
s+1 , we have x + s > y + 1. As n → ∞,

CON

COPT
≥ min{L1 + sMn,L2 + Mn} − k

Mn
→ min {x + s, y + 1}

= y + 1 =
1 − x

s
+ 1 ≥ s + 2

s + 1
> ϕ.

Case 2.2: 1 ≤ s ≤
√

5+1
2 .

It follows 0 ≤ 1+s−s2

s+1 ≤ 1
s+1 .

Case 2.2.1: 0 ≤ x ≤ 1+s−s2

2s+1 .
No more jobs arrive. CON > L2 − k

s with similar reasoning as that in Case 1.1.
So,

CON

COPT
≥ L2 − k

s
Mn
1+s

→ (1 + s)y =
(1 + s)(1 − x)

s
≥ (1 + s)2

2s + 1
≥ ϕ. (n → ∞)

Case 2.2.2: 1+s−s2

2s+1 < x ≤ 1+s−s2

s+1 .
We further generate the last job with processing time sMn. x + s ≤ y + 1 due
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to x ≤ 1+s−s2

s+1 . It follows

CON

COPT
≥ min{L1 + sMn,L2 + Mn} − k

s

Mn
→ min {x + s, y + 1}

= x + s >
(1 + s)2

2s + 1
≥ ϕ. (n → ∞)

Case 2.2.3: 1+s−s2

s+1 < x ≤ 1
s+1 .

We further generate the last job with processing time sMn. Since 1+s−s2

s+1 < x,
x + s > y + 1. Therefore,

CON

COPT
≥ min{L1 + sMn,L2 + Mn} − k

s

Mn
→ min {x + s, y + 1}

= y + 1 ≥ s + 2
s + 1

> ϕ. (n → ∞)

The theorem follows.

Remark 7 For PA, there is no online algorithm with a competitive ratio less
than 4

3 .

The result analyzed in [103] is a special case of Theorem 9.

5.3.3 Upper bound of competitive ratio for PL and PA

In this subsection, we propose a straightforward algorithm named HSF-1(higher
speed machine first). HSF-1 schedules all the jobs on Ms (s ≥ 1).

Given a job sequence I, let Σ =
∑

Ji∈I pi be the total processing time of
jobs in I.

Lemma 13 HSF-1 is s+1
s -competitive for PL and PA.

Proof. By the definition of HSF algorithm, CON = Σ
s . While, the offline

adversary can generate a job sequence which can be perfectly distributed to
both machines to maintain a load balance between two machines. Therefore,

CON

COPT
≤

Σ
s
Σ

s+1

=
s + 1

s
.

5.3.4 EX-RA algorithm for PA

In this subsection, we propose another online algorithm called EX-RA, which
is superior to HSF in competitiveness when 1 ≤ s ≤ √

2. We define L1 and L2

to be the workloads of M1 and Ms (after reassignment), respectively. In the
following we first give a lemma.

Lemma 14 Given that r ≥ 1, for any online algorithm AON , if L2 ≤ L1 ≤
rL2 or L1 ≤ L2 ≤ rL1, then the competitive ratio of AON is at most r(s+1)

r+s .
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Proof. We discuss the two cases in the lemma.
Case 1. L2 ≤ L1 ≤ rL2.

CON

COPT
≤ L1

L1+sL2
s+1

≤ (s + 1)L1

L1 + s
rL1

=
r(s + 1)
r + s

.

Case 2. L1 ≤ L2 ≤ rL1.

CON

COPT
≤ L2

L1+sL2
s+1

≤ (s + 1)L2
1
rL2 + sL2

=
r(s + 1)
r + s

.

The lemma follows.
EX-RA algorithm is an extension from the RA algorithm proposed in [103].

Before describing EX-RA, we introduce some notations. Let L2
1 and L2

2 denote
the workloads of M1 and Ms just after the first two jobs J1 and J2 (before
the third job) have been scheduled, respectively. If there is only one job in the
job sequence, we also use L2

1 and L2
2 to denote the workloads (of M1 and Ms

after scheduling the only job). Let M1 = max{L2
1, L

2
2} denote higher workload

machine just after scheduling the first two jobs (before scheduling the third job)
and M2 = min{L2

1, L
2
2} denote the other one. Note that M1 and M2 are deter-

mined just after scheduling two jobs in the job sequence and in the following
loops the machine which is denoted by M1 (or M2) does not change. For exam-
ple, just after the first two jobs (before the third job) have been scheduled, if
Ms is the higher workload machine, M1 denotes Ms. When the following jobs
arrive, M1 always denotes Ms. We define M i

1 and M i
2 to be M1 and M2 just

before job Ji (i ≥ 3) has been scheduled, respectively. We use s(M1) to denote
the speed of M1. I.e., if M1 denotes Ms, then s(M1) = s. Let Mθ

1 and Mθ
2

denote the workloads of M1 and M2 after all jobs have been scheduled (just
before reassignment), respectively. Let Mπ

1 and Mπ
2 denote the workloads of

M1 and M2 after reassignment, respectively. It follows CON = max{Mπ
1 ,Mπ

2 }.
EX-RA algorithm consists of two parts: assignment and reassignment. In

assignment, the algorithm firstly assigns two jobs to different machines. Then
it denote the higher workload machine with M1 and the lower one with M2. It
maintains the workload of M1 not greater than (s + 1) times of the workload of
M2. In reassignment, the EX-RA algorithm tries to maintain the workload of
M2 not greater than (s + 1) times of that of M1.

EX-RA algorithm works as follows:
Step 1: Assign the first two jobs to two different machines. Let M1 =
max{L2

1, L
2
2} and M2 = min{L2

1, L
2
2}. If no job arrives in future, go to Step 5.

Step 2: Receive job Ji.
Step 3: If M i

1 + pi

s(Mi
1)

≤ (s + 1)M i
2, assign Ji to M i

1;

otherwise, assign Ji to M i
2.

Step 4: If no job arrives in future, go to Step 5;
otherwise, i := i + 1 and go to Step 2.

Step 5: If Mθ
2 ≤ (s + 1)Mθ

1 , let Mπ
1 := Mθ

1 and Mπ
2 := Mθ

2 ;
otherwise, reassign the last second job of Mθ

2 to Mθ
1 and update

Mθ
1 and Mθ

2 to be Mπ
1 and Mπ

2 .
Step 6: Output Mπ

1 and Mπ
2 .

Theorem 10 For problem PA of two uniform machines, EX-RA algorithm is
(s+1)2

s+2 -competitive, where 1 ≤ s ≤
√

5+1
2 .
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Proof. Let ϕ = (s+1)2

s+2 . If there is only one job, it is trivial that CON

COP T
≤ s < ϕ.

If there are only two jobs J1 and J2, without loss of generality, let p1 ≤ p2.
Thus, CON ≤ p2 and COPT ≥ max{p1,

p2
s }. If p2 ≤ sp1,

CON

COPT
≤ p2

max{p1,
p2
s } =

p2

p1
< s < ϕ.

Otherwise if p2 > sp1,

CON

COPT
≤ p2

max{p1,
p2
s } =

p2
p2
s

= s < ϕ.

In the rest proof, we assume that there are more than two jobs in the job
input sequence.

Case 1: Mθ
1 ≥ Mθ

2 .
It follows Mθ

2 ≤ (s + 1)Mθ
1 . By Step 5,

Mπ
1 = Mθ

1 , Mπ
2 = Mθ

2 . (5.4)

If no job is assigned to M1 in Step 3, let Jk with processing time pk denote
the job assigned to M1. Therefore, CON = Mπ

1 = pk. Since COPT ≥ pk

s ,

CON

COPT
≤ pk

pk

s

= s < ϕ.

Otherwise if some jobs are assigned to M1 in Step 3, Mθ
1 ≤ (s + 1)Mθ

2 .
By equation (5.4), it follows Mπ

2 ≤ Mπ
1 ≤ (s + 1)Mπ

2 . By Lemma 14, EX-RA
algorithm is ϕ-competitive.

Case 2: Mθ
1 < Mθ

2 .
If Mθ

2 ≤ (s + 1)Mθ
1 , EX-RA algorithm is ϕ-competitive due to Step 5 and

Lemma 14. Therefore, in the following we focus on the case where Mθ
2 >

(s + 1)Mθ
1 , which implies that at least two jobs are assigned to M2. Let Jy

and Jx be the last two jobs on M2 before reassignment such that Jy arrives
before Jx. Let B be the total processing time of jobs arriving between Jy and
Jx (except Jy and Jx). Let A be the total processing time of jobs coming after
Jx. These jobs are assigned to M1.

Case 2.1: M1 denotes M1.
Considering jobs Jx and Jy, we have

My
1 + py > (s + 1)My

2 , (5.5)

My
1 + B + px > (s + 1)

(
My

2 +
py

s

)
. (5.6)

By Mθ
2 > (s + 1)Mθ

1 and Step 5, the reassignment consists of moving Jy

from Ms to M1. Before reassignment,

Mθ
1 = My

1 + B + A, Mθ
2 = My

2 +
py

s
+

px

s
. (5.7)

Since Mθ
2 > (s + 1)Mθ

1 ,

My
2 +

py

s
+

px

s
> (s + 1)(My

1 + B + A). (5.8)
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After reassignment,

Mπ
1 = My

1 + B + A + py, Mπ
2 = My

2 +
px

s
. (5.9)

Case 2.1.1: Mπ
2 > (s + 1)Mπ

1 .
It follows COPT = Mπ

2 . By inequality (5.5) and equation (5.9),

px > s[(s + 1)(My
1 + B + A + py) − My

2 ] ≥ s[(s + 1)(My
1 + py) − My

2 ]
≥ s2(s + 2)My

2 .

Since COPT ≥ px/s,

CON

COPT
≤ Mπ

2
px

s

=
My

2 + px

s
px

s

<
1

s(s + 2)
+ 1 ≤ ϕ.

Case 2.1.2: Mπ
1 ≤ Mπ

2 ≤ (s + 1)Mπ
1 .

It follows CON/COPT ≤ ϕ by Lemma 14.
Case 2.1.3: Mπ

2 < Mπ
1 .

It follows CON = Mπ
1 .

Let both sides of inequality (5.6) multiply a factor s2+s+1
2s+1 and add to both

sides of inequality (5.8), considering equation (5.9), it follows that

Mπ
2 < Mπ

1 = My
1 + B + A + py <

s3 + s2 + 3s + 1
s2(s + 2)

px

≤ s3 + s2 + 3s + 1
s(s + 2)

Mπ
2 ≤ (s + 1)Mπ

2 .

It follows CON/COPT ≤ ϕ by Lemma 14.
Case 2.2: M1 denotes Ms.

Considering jobs Jx and Jy, we have

My
1 +

py

s
> (s + 1)My

2 , (5.10)

My
1 +

B

s
+

px

s
> (s + 1) (My

2 + Py) . (5.11)

Combining Mθ
2 > (s + 1)Mθ

1 with Step 5, the reassignment consists of
shifting Jy from M1 to Ms. Before reassignment,

Mθ
1 = My

1 +
B

s
+

A

s
, Mθ

2 = My
2 + py + px. (5.12)

Since Mθ
2 > (s + 1)Mθ

1 ,

My
2 + py + px > (s + 1)

(
My

1 +
B

s
+

A

s

)
. (5.13)

After reassignment,

Mπ
1 = My

1 +
B

s
+

A

s
+

py

s
, Mπ

2 = My
2 + px. (5.14)
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Case 2.2.1: Mπ
2 > (s + 1)Mπ

1 .
It follows CON = Mπ

2 . Considering inequality (5.10) and equation (5.14), it
follows that

Px > [(s+1)(My
1 +

B

s
+

A

s
+

py

s
)−My

2 ] ≥ [(s+1)(My
1 +

py

s
)−My

2 ] ≥ s(s+2)My
2 .

Since COPT ≥ px

s ,

CON

COPT
≤ Mπ

2
Px

s

=
My

2 + Px

Px

s

< s

(
1

s(s + 2)
+ 1

)
=

(s + 1)2

s + 2
= ϕ.

Case 2.2.2: Mπ
1 ≤ Mπ

2 ≤ (s + 1)Mπ
1 .

It follows CON/COPT ≤ ϕ by Lemma 14.
Case 2.2.3: Mπ

2 < Mπ
1 .

Let both sides of inequality (5.13) multiply a factor s2+s+1
2s+1 and add to both

sides of inequality (5.11), considering equation (5.14),

Mπ
2 < Mπ

1 = My
1 +

B

s
+

A

s
+

py

s
<

s3 + s2 + 3s + 1
s3(s + 2)

px

≤ s3 + s2 + 3s + 1
s3(s + 2)

Mπ
2 ≤ (s + 1)Mπ

2 .

It follows CON/COPT ≤ ϕ by Lemma 14.
According to the above discussion, the theorem follows.

Remark 8 EX-RA algorithm is superior to HSF algorithm in the case where
1 ≤ s ≤ √

2.

Remark 9 EX-RA algorithm is optimal in the case where s = 1.

As a consequence, Theorem 10 generalizes the result in [103].
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Chapter 6

M identical parallel
machine model

We study a maximization problem: online scheduling on m identical machines
to maximize the number of early jobs. The problem is online in the sense that
all jobs arrive over time. Each job’s characteristics, such as processing time and
due date, become known at its arrival time. We consider the preemption-restart
model, which means that preemption is allowed and once a job is restarted it
loses all the progress that has been made on this job so far. If in some schedule
a job is completed before or at its due date, then it is called early (or on time).
The objective is to maximize the number of early jobs. For m identical machines,
we show that an upper bound of competitive ratio is 1− 1

2m and prove that ECT
(earliest completion time) algorithm is 1

2 -competitive.

6.1 Introduction

In this chapter, we consider the third model where jobs arrive over time. There
are also three models for online scheduling where jobs arrive over time. The
first one, called non-preemptive model, assumes that once a job is started on
the machine, it must run to completion. The second one, named preemption-
resume model, assume the currently processed job may be preempted at any
moment in time, and it may be resumed at any later moment in time. The
third one is preemption-restart model. It assumes that the currently processed
job may be preempted at any moment in time. However, by preempting a job,
all the progress that has been made on this job so far is lost. In this model, the
finally constructed schedule is non-preemptive. In this paper, we focus on the
preemption-restart model in the online setting where jobs arrive over time. Note
that we investigate a maximization problem in this chapter. Correspondingly,
the competitive ratio form changes.

Sgall et al. [93] gave a survey on online scheduling. There are many results
in the non-preemptive and in the preemption-resume model. Shmoys et al.
[95] introduced the preemption-restart model and presented several results for
scheduling m parallel machines to minimize the makespan. They studied the
minimization problems. Maximization problems are rarely researched in the
online settings. Hoogeveen et al. [50] studied the online scheduling on a single
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machine to maximize the number of early jobs in the preemption-restart model.
They proved that the shortest remaining processing time(SRPT) rule yields an
optimal online algorithm with competitive ratio 1

2 . Note that SRPT rule implies
earliest completion time (ECT) rule. Our results in the paper are generalizations
of his results.

The rest of this chapter is organized as follows. In section 2, we introduce
some definitions and notations. In section 3, we show that 1 − 1

2m is an upper
bound of competitive ratio for all online algorithms. In section 4, we present an
online algorithm ECT based on the earliest completion time (ECT) rule, and
prove that it is 1

2 -competitive.

6.2 Problem definition and notations

We are given m identical machines. Without loss of generality, we denote them
by M1, ..., Mm, respectively. A sequence of jobs I = {J1, ..., Jn} arrive over
time. Each machine can process at most one job at a time. The model considered
is a preemption-restart model. Preemption is allowed, and by preempting a job,
all the progress that has been made on this job so far is lost. Each job has a
due date. If job is completed before or at its due date, then it is called early (or
on time). The objective is to maximize the number of early job.

We introduce some definitions and notations as follows.
early job: a job is completed before or at its due date in some schedule. (The

opposite is tardy job.)
pj: the processing time of job Jj .
rj: the release time of job Jj .
dj: the due date of job Jj .
feasible schedule: a schedule of early jobs.
current workload (of a machine): the total processing time of all jobs currently
assigned to that machine.

Since the tardy jobs in a schedule cannot influence the objective value for
this problem, we only consider the feasible schedule (omitting the tardy jobs).
Thus, we use a feasible schedule to replace a schedule in the remainder.

At any time t, let pj denote the remaining processing time of job Jj with
rj ≤ t. From this definition, pj = pj it no machine processes Jj immediately
before time t. On the other hand, if one machine processes Jj throughout some
time interval [s, t], but Jj is not processed immediately before time s, then
pj = pj − (t − s).

6.3 Upper bound of competitive ratio

In order to show the upper bound of competitive ratio for all online algorithms,
we use the following lemma.

Lemma 15 In m identical machine scheduling problem, for every integer k ≥ 0
and for all real numbers r and d with r < d, there exists an adversary strategy
Sm = Sm(k, r, d) with the following properties.
(1) Sm creates (2k + 1)m jobs. The earliest release time of these jobs is r, and
the latest due date of these jobs is d.
(2) There exists a feasible schedule in which all (2k+1)m jobs are early. In such
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a schedule, the machines are continuously busy throughout the interval [r, d].
(3) If u ∈ {0, 1, ..., m} machines are unavailable throughout the interval [r, d],
the adversary strategy Sm can prevent any online algorithm from scheduling
more than (2k + 1)(m − u) jobs to be early.
(4) The adversary strategy Sm can prevent any online algorithm from scheduling
more than (2m−1)k +m jobs to be early. (i.e., the adversary strategy can force
any online algorithm to have at least k tardy jobs.)

Proof. The proof is by induction on k. For k = 0, the adversary Sm releases
m jobs with processing time d − r at time r. For k ≥ 1, the adversary Sm

proceeds as follows. Let L = d−r
8 , and note that d = r + 8L. The adversary

releases 2m jobs J1, J2, ..., J2m with processing times pi = 3L and pm+i = 4L for
i = 1, 2, ..., m at time r. All these 2m jobs have due date d. Then the adversary
waits until r + 2L.

Case 1. If at time r + 2L the online algorithm is processing at least one
job Ji for i ∈ {1, 2, ..., m} (i.e.,pi = 3L), then Sm calls the sub-adversary
Sm(k − 1, r + 4L, r + 5L).
Case 2. Otherwise, Sm calls the sub-adversary Sm(k − 1, r + 3L, r + 4L).

(1) The proof of Property (1).
When k = 0, Property (1) holds. Considering k ≥ 1. We assume that

Property (1) follows for k − 1. Our aim is to prove that Property (1) holds for
k. Since Sm creates 2m new jobs J1, J2, ..., J2m together with the (2k − 1)m
jobs generated by the sub-adversary, Property (1) holds for k.

(2) The proof of Property (2).
To prove Property (2), we consider the following schedules with all jobs

early. In case 1, we schedule jobs J1, J2, ..., Jm at each of the m machines
during the interval [r + 5L, d] respectively; we assign jobs Jm+1, Jm+2, ..., J2m

to all m machines during the interval [r, r + 4L], respectively. Then we process
all jobs of the sub-adversary by induction. Similarly, in case 2, we schedule
J1, J2, ..., Jm at all m machines during the interval [r, r + 3L], respectively; we
assign Jm+1, Jm+2, ..., J2m to all m machines during the interval [r + 4L, d],
respectively. Then we process all jobs of the sub-adversary by induction.

(3) The proof of Property (3).
Assume that u ∈ {0, 1, ..., m} machines are unavailable throughout the in-

terval [r, d]. We prove Property (3) by induction on k. For k = 0 Property
(3) holds, i.e., Sm can prevent any online algorithm from scheduling more than
(m− u) jobs to be early with the precondition that u machines are unavailable
throughout the interval [r, d]. We assume that for k − 1 (in k ≥ 1 case), Prop-
erty (3) holds, i.e., considering the assumption that u machines are unavailable
throughout the interval [r, d], Sm(k − 1, r, d) can prevent any online algorithm
from scheduling more than (2k − 1)(m − u) jobs to be early. Our aim is to
prove that Property (3) holds for k. Because the processing times of all 2m
jobs released by Sm, we know that m−u machines can not schedule more than
2(m−u) jobs. No matter how these 2m jobs are scheduled, at most m machines
have a common available interval [r + 3L, r + 4L] or [r + 4L, r + 5L].

In case 1, by assumption that Sm can prevent any online algorithm from
scheduling more than (2k−1)(m−u) jobs to be early with the precondition that
u machines are unavailable, Property (3) holds, since the online algorithm can
schedule at most 2(m− u) jobs (in 2m jobs) together with the (2k − 1)(m− u)
jobs generated by the sub-adversary. In case 2, similarly, Property (3) holds.
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Considering (2k + 1)(m − u), the more machines are available, the more jobs
the online algorithm can schedule to be early.

(4) The proof of Property (4).
Now we show that Property (4) holds by induction on k. For k = 0, Property

(4) holds because Sm creates m jobs. We assume that for k−1 (in k ≥ 1 case),
Property (4) holds, i.e., Sm(k − 1, r, d) can prevent any online algorithm from
scheduling more than (2m− 1)(k− 1) + m jobs to be early. Our aim is to prove
that Property (4) holds for k.

Firstly, we assume that the online algorithm schedules all 2m jobs J1, J2, ...,
J2m to be early. Then in case 1, there must be one job Jj for j ∈ {m + 1,m +
2, ..., 2m} (i.e.,pj = 4L) which covers the interval [r+4L, r+5L] on one machine.
That is to say, throughout the interval [r + 4L, r + 5L], at least one machine is
unavailable. Then we calls sub-adversary Sm = Sm(k − 1, r + 4L, r + 5L). By
Property (3), throughout the interval [r + 4L, r + 5L] the online algorithm can
schedule at most (2k − 1)(m − 1) jobs to be early. Therefore,

2m + (2k − 1)(m − 1) = (2m − 1)k + m + (1 − k) ≤ (2m − 1)k + m.

Property (4) holds.
Secondly, we assume that the online algorithm does not schedule all 2m jobs

J1, J2, ...J2m to be early, i.e., the online algorithm schedules at most 2m − 1
jobs of these 2m jobs to be early. In case 1, if all m machines are available at
interval [r + 4L, r + 5L], by assumption for k − 1, the sub-adversary Sm(k −
1, r + 4L, r + 5L) can prevent any online algorithm from scheduling more than
(2m− 1)(k − 1) + m jobs to be early in the interval [r + 4L, r + 5L]. That is to
say, the online algorithm can schedule at most (2m − 1)(k − 1) + m jobs to be
early in the interval [r + 4L, r + 5L]. Together with at most 2m − 1 early jobs
scheduled by the online algorithm, we know that (2m−1)+(2m−1)(k−1)+m =
(2m− 1)k + m. Property (4) follows. Otherwise, in Case 1, not all m machines
are available at interval [r + 4L, r + 5L], i.e., u ≥ 1. By Property (3), we
know that the sub-adversary Sm(k − 1, r + 4L, r + 5L) can prevent any online
algorithm from scheduling more that (2k − 1)(m − u) jobs to be early in the
interval [r+4L, r+5L]. Since u ≥ 1, we have (2k−1)(m−u) ≤ (2k−1)(m−1).
Together with at most 2m− 1 early jobs scheduled by the online algorithm, we
have

2m − 1 + (2k − 1)(m − 1) = (2m − 2)k + m < (2m − 1)k + m.

Property (4) follows. In case 2, similar to the proof of case 1, by changing the
interval from [r +4L, r +5L] to [r +3L, r +4L], we show that Property (4) also
holds.

Remark 10 The Lemma 2 in [3] is a special case of Lemma 1 such that m = 1.

Theorem 11 For the online problem of scheduling m machines to maximize
the number of early jobs, every online algorithm A has a competitive ratio ρA ≤
1 − 1

2m .

Proof. Let COPT and CON denote the number of early jobs of an offline optimal
algorithm (offline algorithm for short) and that of online algorithm, respectively.
By Lemma 15, we have COPT = (2k+1)m and CON ≤ (2m−1)k+m. Therefore,

CON

COPT
≤ (2m − 1)k + m

(2k + 1)m
→ 1 − 1

2m
, k → ∞.
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The theorem follows.

Remark 11 The Theorem 3 in [3] is a special case of Theorem 1 such that
m = 1.

6.4 ECT algorithm

In this section, we describe and analyze online algorithm ECT, which is based on
the shortest remaining processing time (SRPT) or ECT rule. Algorithm ECT
constructs a schedule of early jobs only, since any tardy jobs can be appended
to this schedule in an arbitrary order.

Given a job instance I, algorithm ECT runs as follows.
Step 1: Wait until a decision point t, at which a new job is released or at least
one of m identical machines becomes available (idle).
Step 2: At any decision point, if there is no idle machine, schedule job Ji

such that pi = min{pk|Jk ∈ I, rk ≤ t, pk > 0, t + pk ≤ dk} (shortest remaining
processing time) to process on the machine with the least current workload;
otherwise, schedule job Ji on one of idle machines. Ties are broken by alphabetic
order.
Step 3: If at some decision point t, no jobs are subsequently released and
t + pk > dk for all jobs Jk with rk ≤ t and pk > 0, stop; else, go to Step 1.

Note that ECT algorithm is based on the earliest completion time (ECT)
policy, i.e., when ECT algorithm makes a decision to schedule a job Jj with
the shortest remaining processing time among available jobs, then if it is not
preempted, Jj completes no later than if any other available job were to be
processed next. Therefore, a job is preempted only if a newly released job can
complete earlier.

Without loss of generality, we assume that the machines are reindexed in
increasing order of the job scheduled at the first position. Let N(S) be the
number of jobs scheduled in S. Let −→S and S∗ be the (feasible) schedule obtained
by ECT algorithm and an optimal (feasible) schedule, respectively. Let Jk(S)
be the job with the kth smallest completion time in schedule S. If two jobs are
completed at the same time, the job completed on the smallest indexed machine
is considered to be completed earlier.

Note that −→S only contains early jobs and algorithm ECT terminates at time
t when all unscheduled jobs in I cannot meet their respective due dates (i.e.,
any job Jj ∈ I\J(−→S ) satisfies the conditions that t+pj > dj and pj > 0). That
is to say, once algorithm ECT stops, no job in I\J(−→S ) can be scheduled to be
early (by any algorithm).

Theorem 12 Algorithm ECT is 1
2 -competitive.

Proof. If S∗ = −→
S , the theorem follows. Therefore, in the following proof, we

assume that S∗ �= −→
S . In order to prove the theorem, it is sufficient to prove

that N(−→S ) ≥ N(S∗)
2 .

For this purpose, we construct a series of feasible schedules S0, S1, ..., Sh =−→
S such that S0 = S∗ and S1, ..., Sh−1 are different from −→

S . Schedule Sq is
obtained from Sq−1 for q = 1, ..., h as follows.
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Let k′(q) be the smallest k such that Jk(Sq−1) �= Jk(−→S ) for 1 ≤ k ≤ N(−→S ).
Such a k necessarily exists, since Sq−1 is different from −→

S . From the notation,
we have either k′(q) = 1 or

Jk(Sq−1) = Jk(−→S ), k ∈ {1, ..., k′(q) − 1}. (6.1)

Sq is obtained by
( i) Deleting job Jk′(q)(Sq−1) from Sq−1;
(ii) Moving or adding job Jk′(q)(

−→
S ) to the place of Jk′(q)(Sq−1) depending on

whether the job appears in Sq−1.
By construction, Sq is necessarily feasible since Jk′(q)(

−→
S ) is the job that can

be completed the earliest among all remaining jobs at that time (ECT policy).
Furthermore, for q = 1, ..., h, we have either Sq = −→

S or

k′(q) > k′(q − 1), (6.2)

N(Sq) ≥ N(Sq−1) − 1. (6.3)

From inequality (6.2), we obtain

h ≤ N(−→S ). (6.4)

From inequalities (6.3) and (6.4), we obtain

N(−→S ) = N(Sh) ≥ N(Sh−1) − 1 ≥ N(Sh−2) − 2 ≥ ... ≥ N(S0) − h

= N(S∗) − h ≥ N(S∗) − N(−→S ).

As a consequence, N(−→S ) ≥ N(S∗)
2 and the theorem follows.
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Chapter 7

Single batch processing
machine model

We consider two semi-online scheduling problems on a single batch (processing)
machine with jobs’ nondecreasing processing times and jobs’ nonincreasing pro-
cessing times, respectively. Our objective is to minimize the makespan. A batch
processing machine can handle up to B jobs simultaneously. We study an un-
bounded model where B = ∞. The jobs that are processed together construct
a batch, and all jobs in a batch start and complete at the same time. The pro-
cessing time of a batch is given by the longest processing time of any job in the
batch. Jobs arrive over time. Let pj denote the processing time of job Jj . Given
job Jj and its following job Jj+1, we assume that pj+1 ≥ αpj , where α ≥ 1 is
a constant number, for the first problem with jobs’ nondecreasing processing
times. For the second problem, we assume that pj+1 ≤ αpj , where 0 < α < 1 is
a constant number. We propose an optimal algorithm for both problems with a
competitive ratio

√
α2+4−α

2 +1 for the first problem and
√

4α+1+1
2 for the second

problem.

7.1 Introduction

Batch processing machine scheduling has been motivated by burn-in operations
in the final testing stage of semiconductor manufacturing in [66] and [65]. Batch
scheduling means that a machine can process up to B jobs simultaneously as
a batch, and the processing time of a batch is equal to the longest processing
time of the jobs assigned to it. Unbounded model means that B is sufficiently
large and the bounded model means that B is a constant positive integer.

In this chapter, we consider the third model where jobs arrive over time.
Zhang et al. [113] considered the problem of online scheduling on a batch pro-
cessing machine. They provided an optimal online algorithm with a competitive
ratio

√
5+1
2 . Based on their results, we study the semi-online problems by using

additional jobs’ information. We present an optimal semi-online algorithm with
a competitive ratio no more than

√
5+1
2 . Let pj denote the processing time of job

Jj . Given job Jj and its following job Jj+1, we assume that pj+1 ≥ αpj , α ≥ 1
is a constant number, in the first problem with jobs’ nondecreasing processing

72



times. For the second problem, we assume that pj+1 ≤ αpj , 0 < α < 1 is a
constant number.

Online scheduling on a (parallel) batch processing machine has been studied
in the last decade. In the unbounded model, for the problem of online scheduling
on a single batch machine to minimize the makespan, Zhang et al. [113] and
Deng et al. [26] independently provided an online algorithm with a competitive
ratio

√
5+1
2 . Poon et al. [85] showed that for the same problem in the bounded

model, any FBLPT-based (Full Batch Longest Processing Time) algorithm is
2-competitive. Moreover, they presented an algorithm with a competitive ratio
7
4 for batch size B = 2. If a batch is allowed to restart, Fu et al. [35] showed
that for minimizing makespan on an unbounded batch machine there is no
algorithm with a competitive ratio less than 5−√

5
2 . Further, they provided

an online algorithm with a competitive ratio 3
2 . For this problem, Fu et al.

[34] further considered limited restarts which means that any batch containing
a job has already been restarted once cannot be restarted any more. They
present an optimal algorithm with a competitive ratio 3

2 . Recently, Nong et al.
[80] considered family jobs constraint in the single batch machine scheduling
problem. For the unbounded case, they provided an optimal online algorithm
with a competitive ratio 2. For the bounded case, they gave a 2-competitive
algorithm.

For convenience, we use online algorithm to denote semi-online algorithm in
the remainder. The rest of this chapter is organized as follows. In section 2,
we give the problem definitions and some notations. In section 3, we present a
lower bound ϕ =

√
α2+4−α

2 + 1 (α ≥ 1) for the first problem and a lower bound
ϕ =

√
4α+1+1

2 (0 < α < 1) for the second problem, respectively. In section 4,
we use the lower bounds obtained in the above section to design algorithm H∞

α .
After that, we prove that this algorithm is optimal for both problems.

7.2 Problem definitions and notations

We are given a job instance I = {J1, ..., Jn} (n ≥ 2) where each job Jj is
associated with a release time rj and a processing time pj . The jobs are
to be processed by a batch processing machine of capacity B = ∞, i.e., we
study unbounded model. The processing time of a batch is the longest pro-
cessing time of any job in the batch. Jobs arrive over time, i.e., each job’s
character, such as processing time, becomes known at its arrival. Let pj de-
note the processing time of job Jj . Let Ji+1 denote the following job of Ji.
In the first problem with jobs’ nondecreasing processing times, we assume
that pj+1 ≥ αpj , where α ≥ 1 is a constant number. For the second prob-
lem, we assume that pj+1 ≤ αpj , where 0 < α < 1 is a constant number.
Our objective is to minimize the makespan. Using three field notations, our
problems can be denoted by 1|online, rj , B = ∞, nondecreasing|Cmax and
1|online, rj , B = ∞, nonincreasing|Cmax, respectively.

We use U(t) to denote the set of unscheduled jobs available at time t.
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7.3 Lower bounds for both problems

In this section, we deal with the problems of online scheduling on a batch ma-
chine with jobs’ nondecreasing processing times and jobs’ nonincreasing pro-
cessing times, respectively. We study unbounded model, i.e., the batch’s size is
sufficiently large. We first respectively give a lower bound of competitive ratio
for each problem, then we provide an optimal algorithm for both problems. Let
ϕ =

√
α2+4−α

2 + 1 when α ≥ 1 and ϕ =
√

4α+1+1
2 when 0 < α < 1. Note that

1 < ϕ ≤
√

5+1
2 and we will use it in the remainder for simplicity.

Given an job instance I, let CON and COPT denote the makespan obtained
by an online algorithm AON and the value of an optimal (offline) schedule,
respectively.

Lemma 16 For 1|online, rj , B = ∞, nondecreasing|Cmax, there is no algo-
rithm with a competitive ratio less than

√
α2+4−α

2 + 1, where α ≥ 1.

Proof. For any online algorithm AON , we construct a special job instance I
such that CON/COPT is as large as possible. Let ε be a sufficiently small positive
number. At time 0, we give the first job J1 with p1 = 1. We assume that AON

schedules this job at time TA. Depending on TA, we discuss the following two
cases.

Case 1. TA ≥
√

α2+4−α
2 .

No job arrives in future. We know that CON ≥
√

α2+4−α
2 + 1. An optimal

scheme consists of scheduling J1 at time 0, i.e., COPT = 1. Therefore,

CON

COPT
≥

√
α2 + 4 − α

2
+ 1 = ϕ.

Case 2. 0 ≤ TA <
√

α2+4−α
2 .

We further generate job J2 with p2 = α at time TA + ε. We obtain CON ≥
TA + 1 + α. An optimal schedule consists of scheduling J1 and J2 in a batch at
time TA + ε. Therefore, COPT = TA + ε + α due to α ≥ 1. It follows that

CON

COPT
≥ TA + 1 + α

TA + ε + α
= 1 +

1
TA + α

> 1 +
1

√
α2+4−α

2 + α
= ϕ, ε → 0.

According to the above two cases, the lemma holds.

Lemma 17 For 1|online, rj , B = ∞, nonincreasing|Cmax, there is no algo-
rithm with a competitive ratio less than

√
4α+1+1

2 , where 0 < α < 1.

Proof. For any online algorithm AON , we construct a special job instance I
such that CON/COPT is as large as possible. Let ε be a sufficiently small positive
number. At time 0, we give the first job J1 with p1 = 1. We assume that AON

scheduling this job at time TA. Depending on TA, we discuss the following two
cases.

Case 1. TA ≥
√

4α+1−1
2 .

No job arrives in future. We know that CON ≥
√

4α+1+1
2 . An optimal

scheme consists of scheduling J1 at time 0, i.e., COPT = 1. Therefore,

CON

COPT
≥

√
4α + 1 + 1

2
= ϕ.
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Case 2. 0 ≤ TA <
√

4α+1−1
2 .

We further give job J2 with p2 = α at time TA + ε. We obtain CON ≥
TA + 1 + α. An optimal schedule consists of scheduling J1 and J2 in a batch at
time TA + ε. Therefore, COPT = TA + ε + 1 due to α < 1. It follows that

CON

COPT
≥ TA + 1 + α

TA + ε + 1
= 1 +

α

TA + 1
> 1 +

α
√

4α+1−1
2 + 1

= ϕ, ε → 0.

According to the above cases, the lemma holds.

7.4 An optimal algorithm for both problems

Considering the proofs of two lower bounds of competitive ratios, we realize
that the algorithm should wait for a while rather than scheduling the jobs im-
mediately after their arrivals. We shift the release time of job Jj to rj =
ϕrj +(ϕ− 1)pj in order to contain the waiting time. This equation can guaran-
tee that if Jj is scheduled at time ϕrj + (ϕ − 1)pj , its completion time cannot
exceed ϕ times the optimal value, i.e., ϕrj + (ϕ − 1)pj + pj = ϕ(rj + pj). This
idea is used in [113]. We design the following algorithm using the same idea.

Algorithm H∞
α works as follows.

Step 1: Wait until a decision point, where the batch machine is idle and at
least one job is available (If all jobs have been scheduled, output the schedule).
Suppose this happens at time t. Choose a job Jj with the longest processing
time in U(t).
Step 2: If rj ≤ t, schedule all jobs in U(t) as a single batch;

otherwise, wait until a new job arrive or until time rj , whichever
happens first.
Step 3: Go to Step 1.

We adopt some notations and definitions from [113]. Given an job instance,
we assume that H∞

α generate m batches in total. We index these batches in
nondecreasing order of their completion times. For convenience, in batch i,
denote by J(i) the job with the longest processing time in that batch. Let p(i)

and r(i) be the processing time and the release time (or arrival time) of job
J(i), respectively. Let s(i) be the starting time of batch i. Note that batch i is
processed either at time ϕr(i) +(ϕ−1)p(i) or after batch i−1 is finished at time
s(i−1) + p(i−1).

If batch i starts at time ϕr(i)+(ϕ−1)p(i), we call it a regular batch; otherwise,
it is called a delayed batch.

Similar to Lemma 2 in [113], we have the following lemma.

Lemma 18 If batch i is a regular batch, then batch i + 1 or batch i + 2 is also
a regular batch.

Proof. We prove this lemma for two cases: α ≥ 1 and 0 < α < 1.
(1) α ≥ 1.
By contradiction. Suppose both batches i + 1 and i + 2 are delayed batches.

We know that each job in batch i + 1 arrives later than the starting time of
batch i. Therefore, considering job J(i+1), we have r(i+1) > ϕr(i) + (ϕ − 1)p(i).
Since batch i + 1 is a delayed batch, we obtain

ϕ(r(i) + p(i)) > ϕr(i+1) + (ϕ − 1)p(i+1) > ϕ2r(i) + ϕ(ϕ − 1)p(i) + (ϕ − 1)p(i+1).
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It follows that

(2ϕ − ϕ2)p(i) > (ϕ2 − ϕ)r(i) + (ϕ − 1)p(i+1) ≥ (ϕ − 1)p(i+1). (7.1)

Considering ϕ =
√

α2+4−α
2 + 1 and α ≥ 1, we have

p(i+1) <
2ϕ − ϕ2

ϕ − 1
p(i) =

[
1

ϕ − 1
− (ϕ − 1)

]
p(i) = αp(i).

This contradicts to the assumption that p(i+1) ≥ αp(i) for 1|online, rj , B =
∞, nondecreasing|Cmax.

(2) 0 < α < 1.
By contradiction. Suppose both batches i + 1 and i + 2 are delayed batches.

We know that each job in batch i + 2 arrives later than the starting time of
batch i + 1. Therefore, considering job J(i+2), we have r(i+2) > ϕ(r(i) + p(i)).
Since batch i + 2 is a delayed batch, we obtain

ϕ(r(i) + p(i)) + p(i+1) > ϕr(i+2) + (ϕ− 1)p(i+2) > ϕ2(r(i) + p(i)) + (ϕ− 1)p(i+2).

It follows that

p(i+1) > (ϕ2−ϕ)(r(i) +p(i))+(ϕ−1)p(i+2) ≥ (ϕ2−ϕ)p(i) = ϕ(ϕ−1)p(i). (7.2)

Considering ϕ =
√

4α+1+1
2 and α < 1, we have ϕ(ϕ − 1) = α, which implies

p(i+1) > αp(i).

This contradicts to the assumption that p(i+1) ≤ αp(i) for 1|online, rj , B =
∞, nonincreasing|Cmax.

The lemma follows.

Corollary 1 In the schedule obtained by algorithm H∞
α , there do not exist two

successive delayed batches.

Proof. By the algorithm, the first batch must be a regular batch. Then we
have the desired result.

Let CH and C∗ denote the value obtained by algorithm H∞
α and the optimal

objective value (for an instance), respectively.

Lemma 19 If the last batch is a regular batch, i.e., s(m) = ϕr(m) +(ϕ−1)p(m),
then CH/C∗ ≤ ϕ.

Proof. Since CH = s(m) + p(m) = ϕ(r(m) + p(m)) and C∗ ≥ r(m) + p(m), the
lemma follows.

Theorem 13 Algorithm H∞
α is optimal for both problems: 1|online, rj , B =

∞, nondecreasing|Cmax and 1|online, rj , B = ∞, nonincreasing|Cmax. (α ≥ 1
in the first problem and 0 < α < 1 in the second problem.)

Proof. By contradiction. By Lemma 19, we only need to consider the case
where the last batch m is a delayed batch. By algorithm, we know that the first
batches must be a regular batch. Thus, in this case, there must be some batch
processed before batch m. By Corollary 1, there do not exist two successive
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delayed batches in the schedule obtained by algorithm H∞
α . Therefore, batch

m − 1 must be a regular batch. It follows that

s(m−1) = ϕr(m−1) + (ϕ − 1)p(m−1) ≥ (ϕ − 1)p(m−1). (7.3)

We know
CH = s(m−1) + p(m−1) + p(m). (7.4)

Note that
r(m) > s(m−1). (7.5)

In the following, we respectively discuss two cases: α ≥ 1 and 0 < α < 1.
(1) α ≥ 1.
We further discuss two cases depending on whether J(m) and J(m−1) are in

the same batch in an optimal schedule.
Case 1. In an optimal schedule, J(m) and J(m−1) are in the same batch.
By the assumption that pj+1 ≥ αpj , we have C∗ ≥ r(m) + p(m) and p(m) ≥

αp(m−1). Note that ϕ =
√

α2+4−α
2 + 1.

Considering equation (7.4) and inequalities (7.3) and (7.5), it follows

CH

C∗ ≤ s(m−1) + p(m−1) + p(m)

r(m) + p(m)
< 1 +

p(m−1)

s(m−1) + p(m)
≤ 1 +

1
ϕ − 1 + α

= ϕ.

Case 2. In an optimal schedule, J(m) and J(m−1) are in different batches.
It follows that C∗ ≥ r(m−1) + p(m−1) + p(m). Considering equations (7.4)

and (7.3), we have

CH

C∗ ≤ s(m−1) + p(m−1) + p(m)

r(m−1) + p(m−1) + p(m)
=

ϕ(r(m−1) + p(m−1)) + p(m)

r(m−1) + p(m−1) + p(m)
< ϕ.

(2) 0 < α < 1.
We discuss two cases depending on whether J(m) and J(m−1) are in the same

batch in an optimal schedule.
Case 1. In an optimal schedule, J(m) and J(m−1) are in the same batch.
By the assumption that pj+1 ≤ αpj , we have C∗ ≥ r(m) + p(m−1) and

p(m) ≤ αp(m−1). Note that ϕ =
√

4α+1+1
2 .

Considering equation (7.4) and inequalities (7.3) and (7.5), it follows

CH

C∗ ≤ s(m−1) + p(m−1) + p(m)

r(m) + p(m−1)
< 1 +

p(m)

s(m−1) + p(m−1)
≤ 1 +

α

ϕ
= ϕ.

Case 2. In an optimal schedule, J(m) and J(m−1) are in different batches.
It follows that C∗ ≥ r(m−1) + p(m−1) + p(m). Considering equations (7.4)

and (7.3), we have

CH

C∗ ≤ s(m−1) + p(m−1) + p(m)

r(m−1) + p(m−1) + p(m)
=

ϕ(r(m−1) + p(m−1)) + p(m)

r(m−1) + p(m−1) + p(m)
< ϕ.

The theorem follows.
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Chapter 8

Open shop model

This chapter deals with a two-machine open shop problem. The objective is to
minimize the makespan. Jobs arrive over time. We study preemption-resume
model, i.e., the currently processed job may be preempted at any moment in
time, and it may be resumed at any later moment in time. Let p1,j and p2,j

denote the processing time of job Jj on machines M1 and M2, respectively.
Bounded processing times mean that 1 ≤ pi,j ≤ α (i = 1, 2) for each job Jj ,
where α ≥ 1 is a constant number. We propose an optimal online algorithm
with a competitive ratio 5α−1

4α .

8.1 Introduction

In this chapter, we consider the online model where jobs arrive over time. In
reality, the processing time of a job could not be enormously large. So we focus
on the problem with jobs’ bounded processing times. In the literature, there are
some results about (offline) shop scheduling problems [84, 13]. This chapter con-
cerns about online shop scheduling problem. Chen et al. [18] investigated the
problem of on-line scheduling open shops of two and three machines to minimize
the makespan. They studied the first online model where jobs arrive one by one.
They proposed a 1.848-competitive algorithm for the non-preemptive scheduling
problem of two machines and showed a lower bound of 1.754. Then they devel-
oped a (27/19)-competitive algorithm for the preemptive scheduling problem of
three machines. A.P.A. Vestjens [108] addressed the online two-machine open
shop scheduling problem. They considered the third model where jobs arrive
over time. They proposed an optimal algorithm with a competitive ratio 3/2
for non-preemptive situation. Moreover, they studied the preemptive-resume
scenario, and presented a 5/4-competitive algorithm which was shown to be op-
timal later. Based on the results of Vestjens, we further consider the situation
with jobs’ bounded processing times, which is more practical. For instance,
jobs’ processing times are bounded in a interval [1, α] where α ≥ 1.

The remainder of this chapter is organized as follows. Section 2 contains the
problem definition, some notations and preliminaries. In section 3, we show a
lower bound of competitive ratio 5α−1

4α . In section 4, we propose an algorithm
SLICE-α and show that it is optimal with a competitive ratio 5α−1

4α .
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8.2 Problem definition, notations and prelimi-
naries

We are given two machines, denoted by M1 and M2, and an job instance I =
{J1, ..., Jn}. Each job Jj is released at time rj . We denote each job Jj by
an ordered pair (p1,j , p2,j), where p1,j and p2,j are the processing times of two
operations O1,j and O2,j on machines M1 and M2. We study the open shop
problem, i.e., job Jj may be processed first on M1 then on M2 or vice versa;
the decision maker may determine the routes. We study the preemption-resume
model, which means that the currently processed job may be preempted at any
moment in time, and it may be resumed at any later moment in time. Jobs
arrive over time, i.e., each job’s character, such as processing time, becomes
known at its arrival. We assume that 1 ≤ p1,j , p2,j ≤ α, where α ≥ 1 is a
constant number. Our objective is to minimize the makespan. Using three-field
notation, the problem can be denoted by O2|online, rj , 1 ≤ p·,j ≤ α|Cmax.

Let Cmax(σ) denote the makespan of the schedule σ obtained by an algo-
rithm. For a set of jobs, say S ∈ I, let P1(S) =

∑
Jj∈S p1,j , P2(S) =

∑
Jj∈S p2,j

and L(S) = maxJj∈S{rj + p1,j + p2,j}. Let r(S) = minJj∈Srj . We de-
fine Z∗ = maxS⊆I{r(S) + P1(S), r(S) + P2(S), L(S)}. Clearly, the minimum
makespans of an optimal preemptive schedule � and an optimal non-preemptive
schedule π satisfy Cmax(π) ≥ Cmax(�) ≥ Z∗.

We introduce a lemma which states some structural information of an op-
timal schedule. We will use these structural information to design algorithm
SLICE-α and to prove the optimality of the algorithm.

Lemma 20 [39] For any instance I of the two-machine open shop with all jobs
being released at time 0, Cmax(π) ≥ Cmax(�) ≥ Z∗ = max{P1(I), P2(I), L(I)}.
Furthermore, the structure of any optimal schedule is as follows:
(1) If P1(I) ≥ max{P2(I), L(I)}, then M1 is busy all the time.
(2) If P2(I) ≥ max{P1(I), L(I)}, then M1 is busy all the time.
(3) If L(I) > max{P1(I), P2(I)}, then the job Jj such that p1,j +p2,j = L(I) is
processed all the time either on M1 or on M2, and all other jobs are processed
in the remaining available machine time.

8.3 A lower bound

In this section, we deal with the two-machine open shop problem with bounded
processing times. We give the following lemma to show a lower bound of the
competitive ratio.

Given a job instance I, let CON and COPT denote the makespan obtained
by an online algorithm AON and the makespan of an optimal (offline) schedule,
respectively. Let φ = 5α−1

4α and we use this notation in the remainder for
simplicity.

Theorem 14 For O2|online, rj , 1 ≤ p·j ≤ α|Cmax, there is no algorithm with
a competitive ratio less than φ.

Proof. For any online algorithm AON , we construct a special job instance I
such that CON/COPT is as large as possible. At time 0, we give the first job
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J1 = (α, α). We assume that AON schedules this job at time T . Depending on
T , we discuss the following two cases. Note that α − 1 ≥ 0.

Case 1. T ≥ α − 1.
No job arrives in future. We know that CON ≥ T +2α ≥ 3α−1. An optimal

scheme consists of scheduling J1 at time 0, i.e., COPT = 2α. Therefore,

CON

COPT
≥ 3α − 1

2α
= 1 +

α − 1
2α

> 1 +
α − 1
4α

= φ.

Case 2. 0 ≤ T < α − 1.
We know α − T > 1. We denote by pl

1,1 and pl
2,1 the respective parts of

O1,1 and O2,1 that have been processed by time α − 1, and by pr
1,1 and pr

2,l

the respective parts of O1,1 and O2,1 that are processed after α − 1. It follows
that pl

1,1 + pl
2,1 ≤ α − 1 − T , which also implies that none of the operations is

completed at time α − 1. By symmetry, without loss of generality, we assume
that pl

1,1 ≥ pl
2,1. Therefore, pl

2,1 ≤ α−1−T
2 . Considering pl

2,1 + pr
2,1 = α, we have

pr
2,1 ≥ α+1+T

2 .
We further generate job J2 = (1, α) at time α − 1. Since pr

2,1 ≥ α+1+T
2 and

T ≥ 0, we have CON ≥ (α− 1)+α+ pr
2,1 ≥ 5α−1

2 . An optimal schedule consists
of processing O2,1 at time 0 on M2 followed by O2,2 and processing O1,2 at time
α − 1 on M1 followed by O1,1. Thus, COPT = 2α. It follows

CON

COPT
≥ 5α − 1

4α
= φ.

The theorem follows.

8.4 An optimal algorithm

In this section, we show an optimal online algorithm SLICE-α with a com-
petitive ratio which matches the lower bound φ. Based on SLICE Algorithm
proposed in [108], we develop a new algorithm for the concerning problem. Since
φ ≤ 5

4 , we will show that SLICE-α algorithm outperforms SLICE algorithm un-
der the considered circumstances.

For a job instance, let σ denote the schedule obtained by algorithm SLICE-
α. We first recall some notations used in [3]. For any time t, define the surviving
job of a job Jj to be the part of Jj that still needs to be processed in σ after
time t. Let p1,j(t) and p2,j(t) denote the (remaining) processing times of this
surviving job Jj at time t. We denote by S(t) the set of surviving jobs at
time t. We denote by P1(t) the total processing times of M1 operations in
S(t), i.e., P1(t) =

∑
Jj∈S(t) p1,j(t), by P2(t) the total processing times of M2

operations in S(t), i.e., P2(t) =
∑

Jj∈S(t) p2,j(t). We use L(t) to denote the
total processing time of the largest job Jk in S(t), i.e., L(t) = p1,k(t)+p2,k(t) =
maxJj∈S(t){p1,j(t) + p2,j(t)}. We also say that Jk determines L(t). Note that,
given S(t), if no more jobs are released after time t, then the optimal makespan
is t + max{P1(t), P2(t), L(t)} according to Lemma 20.

Algorithm SLICE-α works as follows.
Step 1: Wait until a release time rj of job Jj , compute P1(rj) , P2(rj) and
L(rj) (If all jobs have been scheduled, output the schedule).
Step 2: If L(rj) > max{P1(rj), P2(rj)}, do the following until a new job is
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released (and go to Step 1).
Step 2.1: If Jj determines L(rj), do the following.
Step 2.1.1: At time rj process O1,j until time rj +min{p1,j , (φ−1)(p1,j +p2,j)}
on M1.
Step 2.1.2: if p2,j > min{p1,j , (φ − 1)(p1,j + p2,j)}, process O2,j until time
rj + p2,j on M2.
Step 2.1.3: Processing the remaining portion of O1,j on M1, which is followed
by the remaining portion of O2,j on M2.
Step 2.2: If another job Jl determines L(rj), then maintain the schedule for
Jl determined at the previous release time.
Step 2.3: Process the other jobs in S(rj) on both machines as much as possible,
and preempt if necessary.
Step 3: If L(rj) ≤ max{P1(rj), P2(rj)}, do the following schedule S until a
new job is released (and go to Step 1). Construct an optimal schedule S for
the jobs in S(rj), satisfying the extra condition that at the beginning both ma-
chines are busy and in the remaining part only one machine is busy. This can
easily be done according to Lemma 20, and by preempting a few jobs if necessary.

The intuitive idea behind algorithm SLICE-α is similar to that of algorithm
SLICE. At time rj , a busiest slice of an optimal schedule for all jobs in S(rj)
is assigned into the interval [rj , rj+1]. At time rj , if the largest surviving job
determines the makespan of the optimal schedule for all jobs in S(rj), this slice
is scheduled in such a way that the two operations of the largest surviving
job are reduced in a proper amount related to their processing times. The
algorithm tries to remain the currently largest job to be largest one at the next
release time rj+1, except for possibly Jj+1. If the total processing time on one
machine determines the makespan, the algorithm keeps both machines busy
during [rj , rj+1] as long as possible.

In order to prove that algorithm SLICE-α is φ-competitive by contradiction,
we assume that there exists a smallest counterexample, denoted by I, which
consists of a minimum number of jobs. For this smallest counterexample I,
the competitive ratio of algorithm SLICE-α is greater than φ. This idea was
used in [108] to prove that SLICE algorithm is 5/4-competitive. We first show
several properties of this smallest counterexample. Then we will derive a con-
tradiction to the existence of such a counterexample. We use σ and π to denote
the schedule obtained by algorithm SLICE-α and an optimal schedule for this
smallest counterexample I, respectively. Thus, Cmax(σ) and Cmax(π) denote
the makespan obtained by SLICE-α and that of an optimal schedule for I,
respectively.

Lemma 21 In σ, there is no simultaneous idle time on both machines before
time Cmax(σ).

Proof. By contradiction. Suppose that there exists simultaneous idle time
on both machines before Cmax(σ). Deleting all jobs scheduled before this idle
time neither decreases Cmax(σ) nor increases COPT (π). This contradicts the
minimality of I. Therefore, the lemma follows.

Furthermore, if we modify the smallest counterexample I by decreasing all
release times such that the first job arrives (or is released) at time 0, the modified
instance is a smallest counterexample too. Because this modification does not
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decrease the value of Cmax(σ)/Cmax(π). Therefore, without loss of generality,
we assume that the first job in I is released at time 0. By symmetry of two
machines, without loss of generality, we assume that M2 finishes last in σ.

Lemma 22 In σ, there exists idle time on M2.

Proof. By contradiction. Suppose that there is no idle time on M2. Since the
first job arrives at time 0 and M2 finishes last in σ, we know that σ is an optimal
schedule. There is a contradiction and the lemma follows.

Let rk ≥ 0 be the last release time before the last idle time on M2 finishes.
We know that idle time exists at sometime during [rk, Cmax(σ)]. Let Jk+1 be
the following job of Jk such that rk+1 > rk in I. We have the following lemma.

Lemma 23 In σ, there is no idle time on M2 throughout [rk+1, Cmax(σ)].

Proof. By contradiction. Suppose that there is idle time on M2 during
[rk+1, Cmax(σ)]. This contradicts to the definition of rk.

Corollary 2 In σ, there is idle time on M2 during [rk, rk+1].

Lemma 24 Algorithm SLICE-α executes Step 2 (not Step 3) at release time
rk.

Proof. By contradiction. Suppose that SLICE-α executes Step 3 (not Step 2) at
time rk. Then the algorithm must create a schedule in which M2 is contiguously
busy until all jobs in S(rk) are finished on this machine. By Corollary 2, all
jobs in S(rk) must finish earlier than rk+1 on M2. This implies that all jobs
processed on M2 after (or at) time rk+1 are released at time rk+1 or later. By
Lemma 23, we have that σ is an optimal schedule. There is a contradiction.
The lemma holds.

Let Jl be the largest job in S(rk) and hence determine L(rk). We can observe
that Jl is the only job in S(rk) that may still need processing on M2 after time
rk. The following lemma indicates that the surviving job of Jl has been the
largest job from its release time rl.

Lemma 25 At any release time t such that rl ≤ t ≤ rk, SLICE-α executes Step
2 (not Step 3) and the surviving job of Jl always determines L(t).

Proof. By induction. By Lemma 24, we know that at time rk the algorithm
executes Step 2. By the definition of Jl, we know that the surviving job of
Jl determines L(rk). Assume that at release time rj such that rl < rj ≤ rk,
the algorithm executes Step 2 and the surviving job of Jl determines L(rj).
Therefore, at rj the algorithm must execute Step 2.2 since Jl is released before
rj . The execution of Step 2.2 implies that at the previous release time tj−1, Jl

determines L(rj−1), i.e., L(rj−1) = p1,l(rj−1) + p2,l(rj−1). Therefore, we only
need to show that at release time rj−1, the algorithm also executes Step 2.

By contradiction. Suppose that at time rj−1, the algorithm executes Step 3
(not Step 2). By Lemma 20, all jobs in S(rj−1), including the surviving job of
Jl at rj−1 must be scheduled in such a way that they are processed in a period
of length max{P1(rj−1), P2(rj−1)}. This implies that

rj−1 + max{P1(rj−1), P2(rj−1)} ≥ rj + p1,l(rj) + p2,l(rj). (8.1)
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Since at time rj , the algorithm executes Step 2 and the surviving job Jl =
(p1,l(rj), p2,l(rj)) is the largest surviving job. Then we have p1,l(rj)+p2,l(rj) >
max{P1(rj), P2(rj)}. Together with inequality (8.1),

rj−1 + max{P1(rj−1), P2(rj−1)} > rj + max{P1(rj), P2(rj)}.
It follows that

max{P1(rj−1), P2(rj−1)} − (rj − rj−1) > max{P1(rj), P2(rj)}. (8.2)

We further consider two possible cases.
Case 1. P1(rj−1) ≥ P2(rj−1).
By Lemma 20 and the fact that there is no idle time on M2 throughout

[0, rk], we know M1 is busy throughout [rj−1, rj ]. This implies that

P1(rj−1) − P1(rj) = rj − rj−1. (8.3)

Consider inequality (8.2), we have that

P1(rj−1) > rj − rj−1 + max{P1(rj), P2(rj)} ≥ rj − rj−1 + P1(rj).

This contradicts to inequality (8.3).
Case 2. P1(rj−1) < P2(rj−1).
Since there is no idle time on M2 throughout [0, rk], we know M2 is busy

throughout [rj−1, rj ]. This implies that

P2(rj−1) − P2(rj) = rj − rj−1. (8.4)

Consider inequality (8.2), we have that

P2(rj−1) > rj − rj−1 + max{P1(rj), P2(rj)} ≥ rj − rj−1 + P2(rj).

This contradicts to inequality (8.4).
Therefore, the lemma follows.

Lemma 26 In σ, Jl cannot be completed before time rk+1.

Proof. By contradiction. Suppose that Jl is completed at time Cl(σ) such
that rk ≤ Cl(σ) < rk+1. By Step 2 of the algorithm, all jobs in S(rk) are
completed not later than Cl(σ). There exists simultaneous idle time throughout
[Cl(σ), rk+1]. This contradiction to Lemma 21. The lemma holds.

Corollary 3 Jl is processed thoughout [rl, rk+1], either on M1 or on M2.

We denote by pl
1,l and pl

2,l the respective parts of O1,l and O2,l that have
been processed by time rk+1, and by pr

1,l and pr
2,l the respective parts that are

processed after rk+1. We know that

pl
1,l + pr

1,l = p1,l. (8.5)

pl
2,l + pr

2,l = p2,l. (8.6)

By Corollary 3, we further have

pl
1,l + pl

2,l = rk+1 − rl. (8.7)

Recall that φ = 5α−1
4α and α ≥ 1.
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Lemma 27 pl
1,l > (φ − 1)Cmax(π) and pr

2,l > (φ − 1)Cmax(π).

Proof. Let P 2 be the total time spent by M2 on processing jobs other than
Jl from time rk+1 onwards, i.e., P 2 = Cmax(σ) − rk+1 − pr

2,l,. Because I is a
counterexample, we have

φCmax(π) < Cmax(σ) = rk+1 + pr
2,l + P 2. (8.8)

By Corollary 2, we know that all jobs that contribute to P 2 are released at
time rk+1 or later. Otherwise, M2 could not be idle sometime during [rk, rk+1].
Therefore, rk+1 + P 2 ≤ Cmax(π). Together with inequality (8.8), we have

φCmax(π) ≤ Cmax(π) + pr
2,l.

It follows that pr
2,l > (φ − 1)Cmax(π).

Due to inequality (8.8) and equations (8.7) and (8.6), we obtain

φCmax(π) < pl
1,l + pl

2,l + rl + pr
2,l + P 2 = rl + pl

1,l + p2,l + P 2. (8.9)

Since Jl and all jobs that contribute to P 2 are released at time rl or later,
we have rl + p2,l + P 2 ≤ Cmax(π). Together with inequality (8.9), we have

φCmax(π) < Cmax(π) + pl
1,l.

This implies pl
1,l > (φ − 1)Cmax(π). This completes the proof.

Theorem 15 For O2|online, rj , 1 ≤ p·,j ≤ α|Cmax, algorithm SLICE-α is op-
timal with a competitive ratio φ.

Proof. By contradiction. We will show that there is a contradiction to Lemma
27 in order to prove that the smallest counterexample I does not exist. We only
need to prove pl

1,l ≤ (φ − 1)Cmax(π) or pr
2,l ≤ (φ − 1)Cmax(π). Note that if

min{p1,l, p2,l} ≤ (φ − 1)(p1,l + p2,l), then min{pl
1,l, p

r
2,l} ≤ (φ − 1)Cmax(π) and

the theorem follows. Therefore, we assume that the processing times of both
operations are at least φ − 1 of the total processing time of the job, i.e.,

min{p1,l, p2,l} > (φ − 1)(p1,l + p2,l). (8.10)

This implies

min{p1,l, (φ − 1)(p1,l + p2,l)} = (φ − 1)(p1,l + p2,l). (8.11)

We know that if pl
1,l ≤ (φ− 1)Cmax(π), the theorem follows. So we suppose

that pl
1,l > (φ − 1)Cmax(π). It follows that

pl
1,l > (φ − 1)(p1,l + p2,l). (8.12)

By Step 2 and Lemma 25, we know that Jl was first processed on M1 from
time rl. Due to inequality (8.10) and equation (8.11), we know that p2,l > (φ−
1)(p1,l+p2,l) = min{p1,l, (φ−1)(p1,l+p2,l)}. Considering Step 2 of the algorithm,
this inequality means that O2,l is processed sometime during [rl, rk+1]. By Step
2 of the algorithm and equalition (8.11), we know that Jl must be processed on
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M1 at time rk+1. Otherwise, pl
1,l = (φ − 1)(p1,l + p2,l) and this contradicts to

inequality (8.12).
By inequality (8.12) and Step 2 of the algorithm, we know that at least a

portion p2,l − (φ − 1)(p1,l + p2,l) of O2,l has been processed, i.e., pl
2,l ≥ p2,l −

(φ − 1)(p1,l + p2,l). Together with equation (8.6), we obtain

pr
2,l = p2,l − pl

2,l ≤ (φ − 1)(p1,l + p2,l) ≤ (φ − 1)Cmax(π).

This completes the proof.

Remark 12 When α → ∞, we have φ = 5/4 which is the competitive ratio of
algorithm SLICE proposed in [108].

Remark 13 φ = 1 when α = 1.
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Chapter 9

Conclusion

The main topic of this thesis has been the evaluation of online algorithms for
machine scheduling problems. We used the concept of competitive ratio to
measure the performance of online algorithms. For each minimization problem,
we gave a lower bound of competitive ratio to establish a bound below which
there exists no online algorithm. In contrast, for the maximization problem,
we showed an upper bound of competitive ratio to construct a bound over
which there exists no online algorithm. By proving that the competitive ratio
of an online algorithm matches the lower bound, we showed that the algorithm
is optimal. This method has been commonly used in the research of online
algorithm.

In this chapter, we generally summarize what we learned from studying
online scheduling problems.

9.1 Approximation ratio and competitive ratio

For offline scheduling problems, the number of jobs are finite. By enumerating
all possible job sequences, we can obtain an optimal solution. Since enumeration
method requires a lot of time, it is impractical. Polynomial approximation
algorithms are developed due to this reason.

Approximation algorithms are algorithms used to find approximate solutions
to optimization problems. Approximation algorithms are often associated with
NP-hard problems; since it is unlikely that there can ever be efficient polynomial
time exact algorithms solving NP-hard problems, one settles for polynomial time
suboptimal solutions. Unlike heuristics, which usually only find reasonably good
solutions reasonably fast, one wants provable solution quality and provable run
time bounds. Ideally, the approximation is optimal up to a small constant factor.
Approximation algorithms are increasingly being used for problems where exact
polynomial-time algorithms are known but are too expensive due to the input
size.

Similarity. The performance of an approximation algorithm is measured
by its approximative ratio. Similarly, the performance of an online algorithm
is measured by its competitive ratio. The definitions of two ratios are similar.
They are all worst-case analysis. Usually, online algorithms are polynomial as
approximation algorithms.
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Difference. The environment of the problem are different. An online algo-
rithm makes decision without future information, while an approximation algo-
rithm does with all information. The input size of job sequences are different;
for an online problem, an job sequence can be infinite.

9.2 Getting a better online algorithm

First, develop some feeling for online algorithms by carefully considering the
proof of the lower bound of competitive ratio. An online algorithm tries to avoid
the worst-case. Note the threshold values which cause case-by-case discussion
in the proof. Some times we can use the lower bound of competitive ratio to
design an online algorithm.

Second, design an simple algorithm with an assumption that no new job
arrive any more. Such an algorithm makes its decision purely on the basis of all
available information, disregarding any possible event in the future.

Third, consider waiting strategy. This means that postponing the decision
to avoid the decision too greedy. An greedy algorithm some times causes the
performance drastically decreases.

9.3 Drawbacks of online scheduling problems

First, the more complex the machine environment is, the less results online
algorithms have. For example, for the problem of online scheduling on two
flow shop, there are scare results. Normally, an online algorithm cannot be
too complex since the proof of competitive ratio could be dramatically difficult.
This reason causes the limited usage of online algorithms.

Second, the input sequence of online problem could be infinite. This yields
that one cannot firstly consider a simple case with several jobs in order to attack
the difficult case with infinite jobs.

Third, competitive analysis is worst-case analysis. Unlike average-case anal-
ysis, it gives a rather pessimistic impression. It often yields unrealistically high
competitive ratios for typical instances. An algorithm which does not consider
the worst case works well in practice.

9.4 Future works

Although a lot of results have been obtained in recent years, there exist numbers
of unexploited areas and some unsolved problems.

As we all know, when the machine environment gets complicated, the results
of online algorithms get scare. In a decade, there are less results about online
scheduling on open shop, flow shop and job shop. Considering this situation,
the following problems are my future works.

Problem 1: Design a better algorithm for online scheduling on two-machine
flow shop.

Problem 2: Establish a lower bound and an upper bound for online schedul-
ing on m-machine flow shop and open shop.

Problem 3: Consider batch-machine environment in flow shop and open
shop scheduling problems.
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Problem 4: Consider availability constraint in two-machine flow shop and
open shop scheduling problems.

Problem 5: Consider delivery time in two-machine flow shop and open
shop scheduling problems.

Problem 6: Design semi-online algorithm for flow shop and open shop
scheduling problems.
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