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Résumé : À l'ère de la  mondialisation, l’environnement industriel et économique a subi 
plusieurs changements majeurs. Les chaînes logistiques sont en train de devenir de plus en plus 
de complexes réseaux composés de nombreux acteurs qui sont tantôt en concurrence et tantôt 
coopèrent pour répondre aux incessantes exigences des consommateurs. Dans un tel contexte, les 
entreprises se sont rapidement rendu compte de la limite du modèle complètement décentralisé 
où chacune d’entre elles optimise sa propre chaîne logistique indépendamment des autres acteurs. 
Afin de trouver de nouvelles sources de compétitivité et de faire face à la perpétuelle complexité 
de l’environnement économique, les entreprises tentent de dépasser la frontière des actions 
individuelles favorisant les actions coordonnées et centralisées. Désormais, la coopération entre 
les diverses chaînes logistiques et la formation d’alliances se trouvent au cœur des préoccupations 
des entreprises. En effet, en mutualisant les moyens logistiques, la coopération permet une 
meilleure exploitation des ressources et par le biais des actions collectives, elle permet de mieux 
bénéficier des économies d’échelles conduisant à réduire significativement les coûts et à générer 
des bénéfices considérables. Toutefois, dans de tels systèmes coopératifs, les acteurs sont 
indépendants et par ailleurs toujours intéressés en priorité par leurs profits individuels. De ce fait, 
la coopération soulève deux enjeux essentiels : (1) Quelles sont les alliances qui sont susceptibles 
de se former ? Et (2), comment partager les bénéfices réalisés sur les différents acteurs 
coopérants ?  
Dans cette thèse, nous nous intéressons au phénomène de la coopération dans les chaînes 
logistiques. Particulièrement, nous posons les précédentes questions dans des chaînes logistiques 
ou plusieurs firmes peuvent réduire leurs coûts logistiques en optant pour une gestion collective 
des stocks.  Les principaux résultats de cette thèse portent sur l’utilisation des principes de la 
théorie des jeux coopératifs pour déterminer les alliances les plus profitables ainsi que la portion 
de profit que chaque  firme doit recevoir afin de garder la stabilité des alliances formées. 
 

Mots clefs : Chaînes logistiques, Coopération, Formation d’alliances, Allocation des coûts, 
Stabilité, Théorie des jeux coopératifs. 
 
 

Abstract: In the age of outsourcing and globalization, the economic and industrial landscape 
has seen many radical changes. In such context, supply chains are becoming complex networks of 
a large number of entities that sometimes compete and sometimes cooperate to fulfill customers’ 
needs. Standalone supply chains, where each entity makes its decisions so as to maximize its own 
profits according to its own objectives, often lead to a loss of efficiency and fail to face the 
complexity of the economic environment they are facing with. Cooperative structures, however, 
where resources/service facilities are shared and decisions are made to maximize the global 
profit, prove to be more beneficial and efficient. Consequentially, many companies are 
fundamentally changing their way of doing business by exceeding the border of standalone and 
individual actions toward collective actions and cooperative strategies. Therefore, building 
alliances appears as a successful strategy in modern supply chain networks. In general, 
cooperation enables a better exploitation of the system’s resources and offers the opportunity to 
get benefit from large economies of scope, which in turn reduces the total cost/increases the total 
savings.  However, it raises two natural questions that need to be addressed: (1) Which coalitions 
can be expected to be formed? And, (2) How will the cooperating actors share their total profit? 
In this Ph.D. dissertation, we tempt to address these questions in retail supply chains where 
independent retailers coordinate their replenishment from a supplier in order to save on delivery 
costs. Considering various joint replenishment environments, our principal contribution is to use 
principles from cooperative game theory to identify the most profitable alliances and to determine 
the portion of profit that would be allocated to each actor in order to guarantee the stability of the 
formed alliances. 
 
Keywords: Supply chain management, Cooperation, Joint replenishment, Coalition formation, 
Cost allocation, Stability, Cooperative game theory. 
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Chapter 1

Introduction

The aim of this chapter is to give a general introduction to this Ph.D. thesis. First,

we provide problem statement of our work. Second, we highlight some research

questions that we answer in this dissertation. Finally, we present the structure of the

manuscript.

1



2 Introduction

1.1 Cooperation: A Successful Strategy in "Business Jungle"

I am very pleased to begin this manuscript with a very nice Ascop1's fable written around the

6th century B.C.,

The Four Oxen and the Lion 2

"Those oxen are too good friends to suit me," said a hungry lion. "They are never far apart, and

when I am near them they turn their tails to one another and show long sharp horns on every

side. They even walk down to the river together when they become thirsty. If I could catch one

of them by himself, I should have a feast."

But one day the oxen had a quarrel.

"The grass is freshest over in the valley," said one of them. "Let us go there."

"Oh, I don't like the grass there," said another. "It is better on the side of the hill. Let us spend

the day there."

"I do not want to climb the hill," said the third ox. "The grass right here suits me best."

"I do not like any of the places of which you speak," said the fourth ox. "Come with me and I

will �nd you the best grass you ever tasted."

"I am going to the valley," said the �rst ox. "You three may go where you please."

"And I shall go to the hill," said the second ox. "I think you are mean not to go with me."

"And I," said the third ox, "shall stay right here. You may all be sorry if you leave me. The lion

may catch you."

"I am not afraid of the lion," said the fourth ox; "and if none of you will go with me, I shall

go by myself to hunt a better pasture than any of you can �nd. I am older than you and I know

where the best grass grows. You had better follow me."

"We will not do it," said the other three oxen. "You are not our leader if you are older."

So the four oxen separated. One went to the valley. The lion was down by the river and saw him

coming. He waited quietly until the ox was very near; then he pounced upon him and killed him.

Then the lion looked about for the other oxen. One of them was feeding on the hill. He saw the

lion coming, but, he could not get away. He could not defend himself with only one pair of horns;

so he too was killed. As the other two oxen were far apart, it was an easy matter for the lion to

kill them also. And that is the way the quarrel ended.

As one can easily guess, the moral lesson of this fable is "United we stand, Divided we fall"

said also "Unity is Strength" or "Power lies in Unity". Such expressions have been and continue
1Aesop (also spelled Esop) is said to have lived during the 6th century B.C. (620-560 BC) in Greece. Known

to be the founding father of fables, i.e., short stories taught as moral lessons.
2Ascop's fable, rewritten by Lida Brown McMurry in Fifty Famous Fables
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to be the moral lessons of a wide number of fables, stories and adages. In general, fables are the

result of narrators' pure imagination, however the fables with moral lessons about cooperation

and unity's strengths in the jungle world are not so imaginative because nature constitutes the

best example of cooperation. For instance, contrary to the image of a struggle to death between

human beings, the jungle is actually the theatre of much more symbiosis than competition. The

study of real jungles proves that life since its birth on Earth, worked in�nitely more often on

the mode of cooperation than on that of domination, otherwise the world would be �nished for

a long time. In our famous and familiar metaphor "Business is Jungle", a jungle is assumed

to be nothing more than a de�ned area where things eat each other to survive. This metaphor

appeared as a perfect metaphor for business because, for a long time, we believed that companies

are doomed to be developed only in the military metaphor "business is war" ("outsmarting the

competition, capturing market share, making a killing, �ghting brands, beating up supplier") or

in the old "business is jungle" metaphor ("the strongest that abolishes the weakest" ). Under

business-as-war and business-as-jungle, self criterion is the only criterion for action and there

are the victors and the vanquished: business is then nothing more than a win-lose game. This

"predatory " logic of the liberal system is reaching its limits, and companies are actually adopt-

ing the real jungle life mode where surviving and gaining power is not only made by "abolishing

the weakest" but somewhat by making friends, building alliances, and deploying coordinated

actions. Business is no longer a win-lose game but rather a win-win game.

This change in the way of doing business radically revolutionizes supply chain con�gurations.

Indeed, in the age of outsourcing and globalization, supply chains are becoming complex net-

works of a large number of entities that sometimes compete and sometimes cooperate to ful�ll

customers' needs. Standalone supply chains, where each entity makes its decisions so as to max-

imize its own pro�ts according to its own objectives quite often lead to a loss of e�ciency and

fail to face the complexity of the economic environment. Cooperative structures, however, where

resources/service facilities are shared and decisions are made to maximize the global pro�t, prove

to be more bene�cial and e�cient. Consequentially, many companies are fundamentally changing

their way of doing business by exceeding the border of standalone and individual actions toward

collective actions and cooperative strategies. Therefore coalition/alliance formation appears as a

key strategy in current supply chain networks. Alliance building promises to continue growing as

the information and communication advances continue to make available new technologies and

knowledge. These information infrastructures fundamentally change the way of doing business

by making the distinct actors able to access high quality information on each other. In general,

cooperation enables a better exploitation of the system's resources, o�ers the opportunity to
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bene�t from large economies of scale, reduces the risk and enhances the negotiation power: this

in turn reduces the total cost/increases the total savings. At this point, there are a number of

questions that are raised:

• Why is cooperation emerging now as a major brand in supply chain management?

• Is cooperation really highly Bene�cial?

• Is it di�cult to build alliances?

To answer these questions, I will go back to "The Four Oxen and the Lion" Aesop's fable. I

�nd this fable particularly fascinating because in this story old than more twenty-�ve centuries,

Aesop did not only emphasize his moral lesson about the powerfulness of unity but rather, without

knowing it, described and nicely pointed out the major challenges of the cooperation. On the one

hand Aesop well illustrated the value that the cooperation brings into the Oxen's group - their

risk management becomes collective and their global power is enhanced - on the other hand, he

nicely showed how the success and the stability of an alliance are fragile - the cooperating actors

(the oxen) do not have a shared vision which created some con�icts and quarrels between them,

which in turn causes the disbanding of the coalition. More than twenty-�ve centuries later, in

modern social science the questions raised by the cooperation are commonly called cooperative

behavior questions and are mainly divided in two major questions. The �rst one concerns the

formation of alliances, and the second one is devoted to the "quantitative" and "qualitative"

factors that can hinder or foster the success of alliances. "Qualitative" factors include human

moral values such as trust, rivalry, communication, compatibility among the various cooperating

actors. "Quantitative" factors concern the attempt to claim an unfair share of the value created

by the cooperation. We should note that in supply chain management, the outcome or the

value created by the cooperation is often modelled as money savings. Therefore, the question of

splitting these created gains seems particularly relevant. Thus, any unfair share of the created

value may give rise to defecting actors. This means that unsatis�ed actors skip from their

alliances to work for their own or to join other alliances. This is commonly called "stability"

problem. To conclude, when dealing with the cooperation in supply chain networks, there are

two questions that need to be dealt with: (1) Which alliances can be expected to be formed?

And, (2) How will the cooperating actors allocate their total cost/apportion their total pro�t?

Obviously the activities of alliance formation and pro�t allocation are dependent. For in-

stance, the coalition that an actor wants to join depends on the portion of savings that the

actor in question would gain in each potential coalition. Thus, the payo�s in�uence the coali-

tion structure and vice versa. In supply chain networks, as well as in general social networks,
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cooperative game theory have been quite often used to deal with cooperative behavior questions.

The main contribution of cooperative game theory is to provide methods that characterize situ-

ations where all cooperating agents agree on how to allocate resulting costs or to share resulting

bene�ts. This means that each party would feel that acting as a coalition is worthwhile for its

own sake. The alliance in question is then called "stable". In supply chain management (as

well as in general social science) most of the considered games were superadditive in the sense

that any two or more disjoint coalitions, when acting together, can get at least as much as they

can when acting separately. In such situations, there are good reasons to expect the formation

of the grand coalition (the set grouping all cooperating actors). Therefore, most of early work

focuses on the "stability" of the grand coalition, i.e., dealing with the question of distributing

the gain available to the grand coalition to participants. However, as one can expect, many

situations are not superadditive and the formation of the grand coalition itself may be quite

di�cult because acting together is costly or the cooperating actors do not wish to do so because

they prefer smaller alliances. In these cases, the question of alliance formation is as challenging

as the question of pro�t allocation.

In keeping with the recent trends in supply chain practice, the goal of this dissertation

is to develop a modeling framework and theoretical understanding of cooperative behavior in

retail supply chains. In particular, we consider both superadditive and non-superadditive joint

replenishment environments, where independent �rms coordinate their replenishment from a

supplier in order to save on delivery costs. Our aim is to use principles from cooperative game

theory to identify the most e�cient alliances and to determine the portion of pro�t that would

be allocated to each �rm in order to guarantee the stability of the formed alliances. We use the

term independent �rms broadly to include economic entities that are independently owned and

also entities, such as decentralized sub-divisions having the same owner. What is important to

our analysis is that these entities are empowered to make independent decisions that minimize

their individual costs/maximize their individual pro�t.

1.2 Scope of the Dissertation

In order to achieve our goals, this dissertation will analyze joint replenishment games with the

following primary objectives:

• Provide a detailed analysis of the cooperation phenomenon and alliance formation in supply

chain networks,

• Provide a critical review of the literature on the analysis of the cooperation in supply chains
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by means of cooperative game theory,

• Develop and solve cooperative games with applications in supply/replenishment chains,

• Stress the limits of superadditive games and the lack of prior attention to study non-

superadditive games,

• Point out the drawbacks and the limits of studying totally centralized supply chain and de-

velop more practical solutions that simultaneously treat the problems of alliance formation

and pro�t allocation.

1.3 Thesis structure

The remaining part of this Ph.D. dissertation contains height chapters which are:

Chapter 2 : Introduction to Supply chain. This chapter aims at introducing and

de�ning some concepts related to the supply chain used in this thesis. We begin by giving some

insights into the history and advancement of logistics and supply chain. Then, we focus on some

key components of supply chain management. The second part of the chapter is devoted to state

this Ph.D. dissertation's work. To achieve this objective, we de�ne the functions and the goals

of Joint Replenishment Problems and focus on our research topic; Joint Replenishment Games

(JRP-Games). We mainly explain how our work di�ers from that done in traditional Joint

replenishment Problems and introduce the JRP-games (models) studied in this dissertation.

Chapter 3 : Preliminaries on Cooperative Game Theory. This chapter aims at in-

troducing and de�ning some concepts of cooperative game theory that we use throughout this

dissertation. We begin by giving a brief historical note on game theory, in which we cover its

historical roots prior to its formal de�nition in 1944. After that, we give formal de�nitions of

n-person cooperative games. We then present the core concept and Shapley Value in addition to

some basic allocations such as equal allocations and proportional allocations. After emphasizing

alliance formation problems, we devote the last section of this chapter to cooperative games with

coalition structures, i.e. situations where the players (participants) are organized in various dis-

joint coalitions. We formally de�ne such games and discuss their most central stability concepts:

the coalition structure core, individual stability and farsighted stability.

Chapter 4 : Cooperation in Supply Chain Networks. This chapter is devoted the to

phenomenon of cooperation in supply chain networks. The goal is to understand why alliance

building is being a key of competitiveness in modern supply chain networks. In the �rst part of the

chapter, we introduce and discuss the concepts of cooperation in supply chain networks. While,

the second part of the chapter is devoted to review the emerging literature on the analysis of
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cooperation in supply chains by means of cooperative game theory. We conclude by highlighting

some non-covered issues, and stressing the contributions of this Ph.D thesis to this new supply

chain management research stream.

Chapter 5 : Pro�t sharing in one-supplier multi-retailer inventory system with
full TruckLoad shipments. In this chapter, we are concerned with the problems of alliance

formation and cost allocation in one-supplier multi-retailer inventory systems with full Truck-

Load shipments. The retailers have to replenish their inventory from the supplier to satisfy a

deterministic and constant rate demand of �nal customers with full truckload shipments. Each

full-truck order is associated with a �xed transportation cost. The storage of products involve

linear holding costs at the retailers' warehouses. Both cost components are supported by the

retailers. To reduce their costs, retailers may choose to cooperate by making joint orders. The

main goal of this chapter is to study the arising cooperative game called Joint Replenishment

Game with Full TruckLoad shipments (for short, FTLJRP-game). We focus on the core and

Shapley value; two of the most central solutions in cooperative game theory. Under the above

cost structure the FTLJRP-game is superadditive. We mainly show that its core is non-empty

and provide a core allocation. This core allocation is then compared to Shapley value. The

comparison is based on four criteria: stability, complexity, fairness and practical setting.

Chapter 6 : Coalition Formation and Cost Allocation for Joint Replenishment
Systems. This chapter aims at studying the issues of coalition formation and pro�t alloca-

tion in joint replenishment systems. Under this model, the reorder cost associated with an

alliance/coalition of retailers placing an order at the same time equals some alliance-independent

cost plus retailer-dependent costs. In addition, each retailer is associated with a retailer-dependent

holding-cost rate. Despite early works on this �eld, we do not aim at optimizing the supply chain

as whole. In our analysis, we focus on a supply chain where the cooperation cannot be forced,

i.e, each retailer joins the coalition he/she wants to belong to. We present an iterative procedure

to form the coalitions and focus on analyzing the merits of such achieved "e�cient coalition

structure". Without too much loss of global supply chain performance, when considering the

cost-based proportional rule, the e�cient coalition structure is individually and weakly stable.

We provide a condition under which the strong stability (stability in the sense of coalition struc-

ture core) holds.

Chapter 7 : Stability of Hedonic Joint Replenishment Games with General Cost
Function: Application to the one-supplier multi-retailer joint replenishment system
with full Truckload shipments. In this chapter we analyze cooperative behavior questions in

joint replenishment systems with general cost function. Using the notions of preference relations
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(each actor has his own preferences among the coalitions to which he could belong), we give a

new formal representation of the cooperative game - called Hedonic Game. This mainly allow

us to discuss the issue of treating the questions of alliance formation and pro�t allocation simul-

taneously. We show that under cost-based proportional allocations and equal allocations, there

always exist at least two "e�cient" coalition structures that are individually and weakly stable

and may be strongly stable under some assumptions. Further, we apply this general approach to

a FTLJRP-game with three components cost structure (�xed and variable transportation cost

and holding cost).

Chapter 8 : Extensions and Future Research Directions. Using cooperative game

theory seems to be a natural and great framework to model cooperation in supply chains. How-

ever, this research area is a rather new stream of research in supply chain management, and

several future developments can be done. In this chapter, we aim at introducing some extensions

closely related to the present Ph.D thesis. We mainly discuss four topics including (1) Inven-

tory centralization games with explicit transportation costs, (2) Cooperative games with explicit

cost formation process, (3) Cooperation in multi-item inventory systems, and (4) Cooperation

in service systems.

Chapter 9 : Conclusion. This chapter is devoted to the general conclusions of this work.



Chapter 2

Introduction to Supply Chain

This chapter aims at introducing and de�ning some concepts related to the supply

chain used in this thesis. We begin by giving some insights into the history and

advancement of logistics and supply chain. Then, we focus on some key components

of supply chain management. The second part of the chapter is devoted to state

this Ph.D. dissertation's work. To achieve this objective, we de�ne the functions and

the goals of Joint Replenishment Problems and focus on our research topic; Joint

Replenishment Games (JRP-Games). We mainly explain how our work di�ers from

that done in traditional Joint replenishment Problems and introduce the JRP-games

(models) studied in this dissertation.

9
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2.1 Historical Background

The history of logistics goes a long way since humanity learned how to organize and build its

own organizations. Its modern roots can be traced back to its military origins when modern

armies started to consider logistics or the supply chain as part of their strategies (Pimor, 2005).

In fact, modern practices of supply chain management in business follows the general pattern as

with managing logistics for defence or making war.

In war, logistics is the art of moving supplies and reinforcements along a supply chain in

order to support the war e�ort and keep soldiers well-fed and ready to �ght. Even the greatest

army must be properly supplied to achieve victory. In business, logistics is the art of moving the

product or service to the customer where and when the customer needs it and to be fast and

�exible enough to win the customer's business. The same fundamental truth that governs war

also governs business: without an e�cient supply chain, victory is impossible. An army without

supplies cannot win wars, just as a business that fails to deliver its product on time cannot win

customers. In business, as in war, superior logistics makes all the di�erence.

During the Second World War, highly complex military supply chains have been set up. This

induced considerable developments, such as transportation management and the use of complex

production and transportation planing methods. Managerial logistics emerged out of military

logistics in the middle of the twentieth century, and turned into a very important component in

industry applications. In the same time, science landscape has seen the birth of the "Operational

Research" domain.

In the second half of the twentieth century, the industry went through a lot of changes. The

most signi�cant ones were the important rise of the number of companies sharing the same market

segment and the growth of technological and information advances. In this new environment,

manufacturing industries based on mass-production have reached their limit. It became therefore

necessary to take into account not only production activities, but also all industrial activities,

including supply, distribution and other activities that are related to production process. As

a consequence, the "modern" supply chain was born. This area has been widely improved

after the development of "Computer Science" and "Operations Research". Since that, many

�elds of logistics like "Production Planning", "Inventory Management" and "Transportation

Management" are knowing very important improvements and continuing to trigger the interest

of researchers and practitioners.
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2.2 The Supply Chain Concept

2.2.1 De�nition

A supply chain (Figure 2.1) is a network of facilities and distribution options that performs the

functions of procurement of materials, transformation of these materials into intermediate and

�nished products, and the distribution of these �nished products to customers. More generally,

a supply chain may be de�ned as the set of parties and agents (such as suppliers, manufacturers,

transporters, retailers, etc.) involved, directly or indirectly, in ful�lling a customer's request

(Chopra and Meindl, 2007; Sarmah et al., 1993). In fact, supply chains exist in both service

and manufacturing organizations, although the complexity of the chain may vary greatly from

industry to industry and from �rm to �rm.
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Figure 2.1: A simple supply chain illustration

The objective of each supply chain is to maximize the overall generated value. The value a

supply chain generates is the di�erence between what the �nal product is worth to the customer

and the costs the supply chain incurs in �lling the customer's requests. At the same time, other

objective would be the increase of the customer's service level in order to satisfy its require-

ments in an optimal manner. Both objectives could of course be connected via some costs (like

backlogging costs)(Simchi-Levi et al., 2000).

The di�erent entities and agents appear to be somewhat disparate, because in most cases, they

are owned by several individuals/organisations. Nevertheless, they are all linked by the integrated

nature of the supply chain business. Thus, a local weakness may a�ect the whole performance of

the supply chain. This strategic viewpoint has created the challenge of coordinating e�ectively

the entire supply chain, from upstream to downstream activities. A well-integrated supply chain

requires coordination among all entities and agents. It should involve coordinating the �ows of



12 Introduction to Supply Chain

materials and information between suppliers, manufacturers, and customers (Narasimhan and

Carter, 1998).

2.2.2 Supply Chain Management

Supply chain management (SCM) can be de�ned as the process of planning, implementing and

monitoring the everyday operations of a supply chain. Supply chain management is an all

encompassing process as it undertakes the management of availability of raw materials, their

processing into �nished goods and the distributions of these goods to �nal customers. The aim

of all this is to provide the highest level of satisfaction to the customer, thus increasing the

business of the company.

With the increasing complexity of the supply chain, supply chain management has also be-

come about coordinating and collaborating with the di�erent trade partners now involved in

the supply chain. Under this strategic point-of-view, Cooper and Ellram (1993) compare supply

chain management to a well-balanced and well-practiced relay team. Such a team is more com-

petitive when each player knows how to be positioned for the hand-o�. The relationships are

the strongest between players who directly pass the baton, but the entire team needs to make a

coordinated e�ort to win the race.

2.2.3 Supply Chain Decisions

Supply chain management decisions can be classi�ed into three broad categories: strategic,

tactical and operational (see Figure 2.2).

As the term implies, strategic decisions are typically made over a longer time horizon. These

are closely linked to the corporate strategy and guide supply chain policies from a design per-

spective. Among these decisions, we �nd the number, location and size of the warehouses, of

the distribution centers and of the facilities. Strategic decisions may also include the decisions

related to Information and Technology infrastructure that support the supply chain operations,

and to strategic partnership.

Tactical (or mid term) decisions include planning decisions aiming at balancing charge and

capacity. Such decisions include the production (contracting, locations, scheduling and planning

process de�nition), the inventory (quantity, location and quantity of inventory), the sourcing

contracts and other purchasing decisions.

Finally, the operational decision level is divided in two sub-levels. The so-called "�ow manage-

ment" level is relative to short time decisions, such as the decisions of launching the production,

ordering and transportation orders. The second sub-level, called "scheduling," is relative to very
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Figure 2.2: Decision levels in a supply chain (Dallery, 2000)

short-term decisions including the decisions of scheduling the di�erent tasks inside a workshop.

The e�ort in the tactical and operational levels is to e�ectively and e�ciently manage the

product �ow in the "strategically" planned supply chain.

2.3 Joint Replenishment Problem and Joint Replenishment Game

As mentioned before, the goal of this Ph.d dissertation is to understand cooperative behavior of

retail supply chains. The main of this section is to show how our work di�ers from that done

in retail supply chain management. To achieve this goal, we introduce in the following joint

replenishment problems -one of the most addressed issue in retail supply chains- then we focus

on our concern : joint replenishment games.

2.3.1 Joint Replenishment Problem (JRP)

In the basic JRP (Figure 2.3(a)), a single facility replenishes a set of items over a �nite horizon.

Whenever the facility places an order for a subset of the items, two types of costs are incurred:

A joint set-up cost and an item-dependent set-up cost. Called also, major set-up cost and minor

set-up cost. These costs are stationary. The objective in the joint replenishment problem is to

decide when and how many units to order for each item so as to minimize inventory holding and

ordering costs over the planning horizon (see for example (Chakravarty, 1985; Bastian, 1986).
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Figure 2.3: Joint Replenishment Models

We should note that the joint replenishment problem has been also studied for the one-supplier

multi-retailer systems under the same cost structure. For instance, in these problems, n retailers

replenishes their inventory form a single supplier via direct shipments. Fixed and variable costs

are incurred for each truck dispatched and all trucks have the same capacity limit. Demands

for the n retailers over a planning horizon of T periods are given. The objective is to �nd the

shipment quantities over the planning horizon to satisfy all demands at minimum system-wide

inventory and transportation costs without backlogging. We should note that in the multi-retailer

systems, a second version (more studied) of the JRP is considered. In this problem version (see

Figure 2.3(b)), the retailers order goods from a warehouse whose inventory is in turn replenished

by an external supplier, the holding cost at the centralized warehouse is included in the model.

The One-Supplier Multi-Retailer systems (in all its versions) with stationary �xed charge costs

and constant demand over a �nite/in�nite horizon has been extensively studied. The most early

ones can be traced back to (Schwarz, 1973; Roundy, 1985). We should mention that in basic joint

replenishment problems, the considered cost structure has been concerned with only inventory

costs.

In modern supply chains transportation plays a fundamental role as it allows production

and consumption to take place at locations that are several hundreds or thousands of miles

away from each other (Chopra and Meindl, 2007). Moreover Transportation costs accounts for

a signi�cation part ( often between one-third and two-thirds) of the logistics costs (Tseng et al.,

2005). As a result, recent versions of the joint replenishment problem take into account trans-

portation decisions in considering explicit transportation costs as in (Mutlu, 2006; Sindhuchao

et al., 2005) or in modelling new supply chain trends such transportation with full truckload
shipments. This transportation mode consists in moving a full load directly from its origin to

its destination in a single trip. As emphasized by Jin and Muriel (2009) this shipment mode
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is actually the most common mode of transportation in industry applications. In keeping with

this trend, some authors have studied the one-supplier multi-retailer joint replenishment prob-

lem with Full TruckLoad Shipments. This means that all shipments from supplier/warehouse to

retailers are full TruckLoad and direct shipments; that is, trucks move a full load directly from

supplier/warehouse to a single retailer and back (all trucks have the same capacity limit)(see for

example (Jin and Muriel, 2009)).

Joint replenishment problems are computationally complex problems. For instance, the basic

joint replenishment problem has been shown to be NP-hard (Arkin et al., 1989). Besides, the

Single-supplier Multi-Retailer problem is also NP-hard with or without full TruckLoad shipment

variant (Jin and Muriel, 2009). Therefore, the main goal of papers in this research topic was

often to provide polynomial solutions or fast heuristics.

In this dissertation our interest is di�erent, we are aiming to focus on the Joint Replenishment

Game instead of traditional Joint Replenishment Problem.

2.3.2 Joint Replenishment Game (JRP-game)

The Single-Supplier Multi-Retailer Joint replenishment Game (JRP-Game) can be

stated as follows: A number of independent retail facilities faces known demands of a single

product (the products can be identical or not) over an in�nite planning horizon. They order

goods from the same external supplier. All shipments from supplier's warehouse to retailers are

direct; that is, trucks travel directly from the warehouse to a single retailer and back, see (Gallego

and Simchi-Levi, 1990). There is no limit on the quantity ordered each period. There are a �xed

and a variable cost per truck dispatched from supplier to retailers, and linear holding costs at the

retailers' warehouses. All costs are stationary costs; i.e., the �xed and variable transportation

charges and the linear holding costs do not change over time. Both of transportation costs and

linear inventory holding costs involved by products' storage are supported by the retailer.

The term game is broadly used to include that the retailer are independent and freely

interacting in the afore-described supply chain. This means that the cooperation cannot be

forced. Hence, unlike the traditional Joint Replenishment Problem we do not aim at optimizing

the chain as whole. What is important to our analysis is that the retailers are empowered

to make independent decisions that minimize their individual costs/maximize their individual

pro�t. That is, each one of them may keep a standalone strategy where he/she optimizes his

own system independently from the other retailers. Going from this decentralized situation, if

they �nd it bene�cial form them to do so, a group of retailers may form an alliance and replenish

their inventory jointly to save on delivery costs. The objective is to study the formation of such
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alliances and to answer the related challenging questions. Particulary, Which are the alliances

that are more likely to be formed? And giving a set of retailers willing to form an alliance,

when and how many units to ship from supplier to each period so as to minimize their total

transportation and holding costs without any shortages. And more importantly, how should

these retailers "fairly" apportion their achieved savings? To deal with theses questions, we mainly

use principles from cooperative game theory; a science especially designed to help cooperative

behavior's understanding.

When considering full truckload shipments from the supplier to retailers, without loss of

generality, we assume that the demand at each retailer in each period is less than a full truckload

and all trucks have the same capacity limit. We refer to this version of the problem as the

Single-Supplier Multi-Retailer Full Truckload Shipments Joint replenishment Game
(FTLJRP-Game).

2.4 Dissertation's Models Description

In this Ph.D thesis, we consider the Single-Supplier Multi-Retailer Joint replenishment Games

with/and without FTL Shipments (JRP-Games and FTLJRP-Games) under the afore-described

three-components cost structure ,i.e.,

• Holding Costs: The storage of products in each retailer's warehouse involves a linear in-

ventory holding cost.

Transportation costs, from the supplier to retailer's warehouse, involves two cost components:

• Fixed Transportation Cost: a retailer non-dependent cost involved per each truck dis-

patched. Called also, �xed ordering cost.

• Variable Transportation Cost : a retailer dependent cost involved per each truck dispatched.

Called also, individual cost.

More speci�cally, in chapter 5, 6 and 7, we investigate the following four joint replenishment

game variants.

2.4.1 One-Supplier Multi-Retailer Full TruckLoad Joint Replenishment Games

In these games we consider joint replenishment systems where each retailer replenishes his/her

inventory using full truckload shipments. Let us denote, the truck capacity by CAP and product

volume (weight) by V i. Varying the cost structure, we dealt with two models :
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Figure 2.4: One-Supplier Multi-Retailer Full TruckLoad Joint Replenishment Games

1. In the �rst model (Figure (2.4(a))), transportation costs, from the supplier to retailer's

warehouse, involve only a �xed cost (a retailer-non dependent),A, per truck dispatched,.

With inventory holding costs, the standalone cost of retailer i ordering for a quantity Qi

is:

C(Qi) =
(

A.
Di

Qi

)

︸ ︷︷ ︸
Transportation cost

+
(

hi.Qi

2

)

︸ ︷︷ ︸
Holding cost

, such that: (Qi.Vi = CAP )︸ ︷︷ ︸
Full truckload shipments

(2.1)

2. In the second model (Figure (2.4(b))), transportation costs, from supplier to retailer's

warehouse, involve two cost components: a �xed (a retailer-non-dependent) cost, A, and a

variable (retailer-dependent cost), Gi, per truck dispatched. With inventory holding costs,

the standalone cost of retailer i ordering for a quantity Qi is:

C(Qi) =
(

(A + Gi).
Di

Qi

)

︸ ︷︷ ︸
Transportation costs

+
(

hi.Qi

2

)

︸ ︷︷ ︸
Holding cost

, such that: (Qi.Vi = CAP )︸ ︷︷ ︸
Full truckload shipments

(2.2)

2.4.2 One-Supplier Multi-Retailer Joint Replenishment Games

Here we consider joint replenishment games (JRP-games). Varying the cost structure, we dealt

with two games:

1. In the �rst model (Figure (2.5(a))), transportation costs, from supplier to retailer's ware-

house, involve two cost components: a �xed (a retailer-non-dependent) cost, A, and a

variable (retailer-dependent cost), Gi, per truck dispatched. With inventory holding costs,
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Figure 2.5: One-Supplier Multi-Retailer Joint Replenishment Games

the standalone cost of retailer i ordering for a quantity Qi is:

C(Qi) =
(

(A + Gi).
Di

Qi

)

︸ ︷︷ ︸
Transportation costs

+
(

hi.Qi

2

)

︸ ︷︷ ︸
Holding cost

(2.3)

2. In the second model (Figure (2.5(b))), we deal with general cost functions.

C(Qi) = (C(i))︸ ︷︷ ︸
General Cost Function

(2.4)

The well-known Economic Order Quantity (EQO) (see Harris (1913); Silver et al. (1998)) is

used as a reorder policy for both standalone and cooperative situation in our models.

2.5 Conclusion

This chapter constituted an introduction to the supply chain concepts and especially to the joint

replenishment notions. We have begun by giving a brief historical background of the military

origins of the supply chain. Then, we have de�ned the main notations and decision levels of the

supply chain. Another important aspect of our work, which has been studied in this chapter is

the de�nition of joint replenishment problems and the statement of joint replenishment games.

The main idea is that in traditional Joint Replenishment Problems, the goal was to optimize

the supply chain as a whole, however, in this dissertation the focus will be on Joint Replenishment

Games where the main goal is to study the di�erent interactions between the independent entities

that constitute the supply chain. To achieve our goals, we need many principles from cooperative

game theory: a science specially designed to understand networks cooperative behavior.
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The principal concepts of cooperative game theory will be strongly introduced and studied

in the next chapter. While in chapter 4, we focus on the analysis of the cooperation in supply

chain by means of cooperative game theory.



20 Introduction to Supply Chain



Chapter 3

Preliminaries on Cooperative Game
Theory

This chapter aims at introducing and de�ning some concepts of cooperative game

theory that we use throughout this dissertation. We begin by giving a brief historical

note on game theory, in which we cover its historical roots prior to its formal de�n-

ition in 1944. After that, we give formal de�nitions of n-person cooperative games.

We then present the core concept and Shapley Value in addition to some basic al-

locations such as equal allocations and proportional allocations. After emphasizing

alliance formation problems, we devote the last section of this chapter to cooperative

games with coalition structures, i.e. situations where the players (participants) are

organized in various disjoint coalitions. We formally de�ne such games and discuss

their most central stability concepts: the coalition structure core, individual stability

and farsighted stability.

21
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3.1 Background

Since humanity birth, man realizes that he is interacting, and in competition, with other indi-

viduals who are, themselves, aware of this. Thus he must (a) outsmart others, (b) learn from

others' behavior, (c) cooperate with others, (d) bargain with others (Gambarelli and Owen, 2004).

This constitute the main fundamental ideas of game theory which is about what happens when

people-or genes, or nations- interact (Camerer, 2003). Social scientists have long attempted to

understand the fundamental causes of con�ict and cooperation in human societies. The advent

of game theory in the middle of the twentieth century led to major new insights and enabled

researchers to analyze the subject with mathematical rigor. As such, the modern de�nition of

game theory �is the study of mathematical models of con�ict and cooperation between intelligent

rational decision makers" (Myerson, 1986).

Earlier game theory's roots can be traced back to the beginning of the 18th century. For

instance, the �rst work on this area can be attributed to James Waldegrave and Pierre-Remond de

Montmort for their analysis of the card game "Le Her" (De Montmort, 1713). The main concept

of the analysis at that time was the minimax problem (i.e., the existence of equilibrium strategies

minimizing the maximum expected loss for each player). Later Bernoulli, while studying "Le

Her", introduced the concept of expected utility and demonstrated its potential applications in

Economics (Bernoulli, 1738). Numerous other works could be cited until the beginning of the

20th century. A relevant detailed historical note is found in (Gambarelli and Owen, 2004).

As the 19th century turned into the 20th, numerous works mainly on strategies and two-

person games arise. This includes for example (Zermelo, 1913; Bertrand, 1924; Borel, 1921;

Von Neumann, 1928, 1937). In this period, and particularly in the decade 1930-1940, the science

landscape has seen fundamental changes. The synergies of experts from di�erent �elds give birth

to many new theories in physics, computer science, mathematics, economics. From this, and at

Princeton University, game theory emerged from the collaboration of the mathematician John

von Neumann 1 and the economist Oscar Morgenstern 2 through their book The Theory of
Games and Economic Behavior published in 1944. This book is universally known to give

the starting point of game theory as a formal science. Earlier studies, even those by von Neumann

himself, had not been introduced in the context of a precise science, which the publication of the

above book created.

The real beginnings of Modern Game Theory can be dated from 1944 for two reasons:
1John von Neumann (December 28, 1903-February 8, 1957) was a Hungarian American mathematician who

made major contributions to a vast range of �elds, including set theory, functional analysis, quantum mechanics,
economics and game theory, computer science, as well as many other mathematical �elds.

2Oskar Morgenstern (January 24, 1902- July 26, 1977) was a German-born Austrian economist.He helped
found the mathematical �eld of game theory.
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�rst, previous works were fragmentary and lacked organization; second, these works

did not attract much attention. With the publication of von Neumann and Morgen-

stern's book, the Theory of Games had its own concrete organization of fundamental

topics at both competitive and cooperative levels. Furthermore, the reputation of the

two authors attracted the attention of both mathematicians and economists.

Gambarelli and Owen (2004), page 6.

Von Neumann and Morgenstern (1944)'s book gave formal de�nitions and interesting dis-

cussions of many concepts in game theory. Such concepts were reinforced by the publication of

the second edition of the book in (1947) where the focus was on the development of the utility

theory. This new research stream attracted the attention of many mathematicians and econo-

mists. Particulary, young Princeton mathematicians who have focused to develop and deeply

extend Neumann and Morgenstern's work. Among these mathematicians were John Nash 3,

Lloyd Shapley. 4 and Donald Gillies 5 As a result, major changes and theoretical contributions

were made to game theory.

As mentioned above, Von Neumann and Morgenstern (1944)'s work cover the two fundamen-

tal behavioral social notions: con�ict (competition) and cooperation. As such, since its origin,

the theory of games was divided into two distinct branches, called non-cooperative game
theory and cooperative game theory. The two branches of game theory di�er in the way

they formalize interdependence among the players. In non-cooperative theory, a game is a de-

tailed model of all the moves available to the players. By contrast, cooperative theory abstracts

away from this level of detail, and only describes the outcomes that result when the players come

together in di�erent combinations (Brandenburger, 2007). In what follows, we continue to give

some insights on the advancement of each of both game theory branches.

3.1.1 Non-Cooperative Game Theory

Non-cooperative game theory is concerned with the problem of one individual who has to choose

among various risky options or to choose a best strategy from several possible choices. However,

the preferences that an agent has on his actions depend on which actions the other parties take.
3John Forbes Nash (born June 13, 1928) is an American mathematician and economist who worked on game

theory, di�erential geometry, and partial di�erential equations, as well as many other mathematical �elds. He
shared the 1994 Nobel Memorial Prize in Economic Sciences with game theorists Reinhard Selten and John
Harsanyi.

4Lloyd Stowell Shapley (born June 2, 1923) is a distinguished American mathematician and economist. He
has contributed to the �elds of mathematical economics and especially game theory.

5Donald Bruce Gillies (October 15, 1928 - July 17, 1975) was a Canadian mathematician and computer
scientist, known for his work in game theory, computer design, and minicomputer programming environments.
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Thus, his action depends on his beliefs about what the others are willing to do. Of course, what

the others do depends on their beliefs about what each agent does.

The main idea of non-cooperative game theory is then to analyze and understand such Mul-

tiperson Decisionmaking Process. For instance, the various options and payo�s are often rep-

resented in a matrix which allows the calculation of the best single strategy or combination of

strategy -one strategy for each player. Matrix algebra and techniques from linear programming

are used quite often. The theory of non-cooperative game was mainly enhanced by John Nash's

works (Nash, 1950b,a, 1951, 1953). A detailed biography of John Nash has been written by

Nasar (1994). An interesting and detailed note on the history of Nash's work may be found in

(Myerson, 1999).

The most central solution concept in non-cooperative game theory is that of Nash equilib-

rium. Nash's concept, based on the idea of equilibrium in a physical system, was that players

would adjust their strategies until no player could bene�t from changing. All players are then

choosing strategies that are best (utility-maximizing) responses to all the other players' strategies

(Camerer, 2003).

Nash formally de�ned an equilibrium of a noncooperative game to be a pro�le of

strategies, one for each player in the game, such that each player's strategy maximizes

his expected utility payo� against the given strategies of the other players....Nash's

theory of noncooperative games should now be recognized as one of the outstanding

intellectual advances of the twentieth century. The formulation of Nash equilibrium

has had a fundamental and pervasive impact in economics and the social sciences

which is comparable to that of the discovery of the DNA double helix in the biological

sciences.

Myerson (1999), page 3.

Later, John Harsanyi (1968b,a, 1967) showed that Nash's solution concept could be gener-

alized to games with incomplete information (that is, where players do not know each others'

preferences). Reinhard Selten (1973, 1974) demonstrated that it could be re�ned for dynamic

games and for games where players make mistakes with (in�nitesimally) small probabilities. The

great intellectual achievements of these researchers that fundamentally change the economic sci-

ence landscape have been recompensed in 1994, when John Nash, John Harsanyi, and Reinhard

Selten shared the Nobel Prize in Economic Science.

For better understanding of non-cooperative game theory, the reader is referred to the books:

(Fudenberg and Tirole, 1991), (Myerson, 1997) and (Camerer, 2003).
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3.1.2 Cooperative Game Theory

Cooperative game theory is primarily concerned with coalitions- groups of players- who coor-

dinate their actions and pool their winnings. The central problem here is to divide the extra

earnings (or cost savings) among the members of the formed coalition (Branzei et al., 2005).

Consequently, in a cooperative game, the players focus on the choice of �stable" payo� vectors

and not on the choice of a �stable" pro�le of strategies as in non-cooperative game (Peleg and

Sudholter, 2003). In other words, in non-cooperative game theory, the players cannot make

binding agreements about what to do, so they must guess what others will do. Cooperative

game theory deals with how players divide the spoils after they have made binding agreements

(Camerer, 2003).

Like non-cooperative games, the basis of this theory is attributed to Neumann and Mor-

genstern with their work on coalitional games in characteristic function form, also known as

transferable utility games (TU-games). Since then several interesting concepts for cooperative

game have been proposed. For instance, when continuing the enumeration of young Princeton

mathematicians' contributions, Dobald Gillies (1953) in his Ph.D. thesis at the Department of

Mathematics developed the concept of the core using the notion of domination presented by

Neumann and Morgenstern. This concept represents the set of nondominated imputations called

"stable" imputations. In other words, the core is the set of imputations having the propriety

that no group of players would have the incentive to leave the system and form a coalition be-

cause they collectively receive at least as much as they could obtain for themselves as a coalition

(Gillies, 1959). The core was criticized to be in some cases empty or to contain many imputations

in other cases.

As John Nash revolutionized non-cooperative game theory, Lloyd Shapley revolutionized

cooperative game theory. For instance, the well-known Shapley value was introduced in 1953

(Shapley, 1953b). The value concept solved the afore problems of existence and uniqueness that

had until then e�ectively stopped the development of n-person cooperative games (Gambarelli

and Owen, 2004). Shapley set quite reasonable axioms (a detailed explanation of such axioms will

be provided later) and determined that there was a unique function (the value) satisfying these

axioms for any n-person cooperative games with transferable utility. The main idea of Shapley

was to award, to each player, the average of his marginal contributions to each coalition. There

are many historical and theoretical notes on Shapley value, same of them are (Winter, 2002; Béal

et al., 2008). Shapley (1953a) also made an important stride in the development of dynamic games

by introducing stochastic games, in which the game passes from position to position according

to probability distributions in�uenced by players. Shapley proved the existence of a value for
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these games, though they are formally in�nite, and found ways of computing optimal strategies.

Shapley (1965) simultaneously and independently with Bondareva (1962) describes, in what we

call today the �Bondareva-Shapley theorem", a necessary and su�cient condition for the non-

emptiness of the core of a cooperative game. Speci�cally, the game's core is non-empty if and

only if the game is balanced. Later, Shapley (1971) applied these results to the particular class

of convex games.

Early works on cooperative game theory supposed that the game is �superadditive" in the

sense that any two disjoint coalitions, when acting together, can get at least as much as they can

when acting separately. In such situations, there are good reasons to expect the formation of

the grand coalition (the coalition grouping all the players in the system). Therefore, these works

focused on describing plausible ways of distributing the gain available to the grand coalition to

individuals.

The 2005 Nobel Economics Prize (shared with Thomas Schelling) Robert John Aumann

made an important stride in the development of cooperative game theory by studying coalition

formation problems or the so-called games with coalition structures, i.e, an n-person cooperative

games where the players are organized in several disjoint coalitions, forming a partition formally

called coalition structure. The �rst note on this context was perhaps that of (Aumann, 1964). A

more detailed and generalized study may be found in (Aumann and Drèze, 1974). Aumann and

Drèze (1974) warn that in some cases "acting together may be di�cult, costly or illegal, or the

players may for various personal reasons not wish to do so". In addition to a nice explanation

on coalition formation problems, Aumann and Drèze (1974) characterized the pro�t sharing in a

context where many disjoint coalitions are involved. Their main remark is that in such context,

the reward should be allocated in a way that there is no side-payment between the coalitions,

i.e, the players within the same coalition share what they win by themselves (their coalition).

Moreover, Aumann and Drèze (1974) extend the grand coalition-solutions (the core, Shapley

value , etc) to games with coalition structures. For detailed notes on coalition formation, the

reader is referred to (Drèze and Greenberg, 1980; Greenberg, 2002; Ray, 2008).

At this point, we only have emphasized some of Shapley and Aummann contributions. How-

ever we should mention that many other scientists were involved in the advancement of coop-

erative game. We should also mention that the Core and Shapley value presented up to now

are the most famous known solution concepts in cooperative game theory. Nevertheless there

were indeed other solutions (not covered here) such as: the kernel, the nucleolus, von Neumann-

Morgenstern solutions, bargaining sets, and others. For detailed accounts of cooperative game

theory, the reader is referred to (Curiel, 1997), (Slikker and Van-Den Nouweland, 2001), (Peleg
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and Sudholter, 2003), (Branzei et al., 2005) and (Brandenburger, 2007).

The rest of the chapter is devoted to cooperative games with transferable utility (TU-game).

We should note that a cooperative game might be a non-transferable utility game (NTU-game);

the reader is referred to (Peleg and Sudholter, 2003) and (Tijs, 2003) for an introduction to

NTU-games. In the following, we only present the concepts used throughout this dissertation

and used in supply chain management literature in general. This includes, the core, the coalition

structure core, Shapley value and farsighted Stability.

3.2 Cooperative Games: Representations and De�nitions

Let N = {1, ..., n} be a non-empty �nite set of agents (players) who consider di�erent cooperation

possibilities. Each subset S ⊆ N is referred to as a coalition or alliance. The set N is called the

grand coalition and ∅ the empty set. We denote the collection of coalitions, i.e. the set of all

subsets of N by Ω. The number of coalitions in Ω is 2n (|Ω| = 2n). For each S ∈ Ω, |S| refers to
the number of agents in S.

De�nition 1 A cooperative game with transferable utility (TU-game) is a pair (N, v)

where N is the player set and v is the characteristic function, i.e. a function that associates a

real number v(S) to each subset S of N . v : Ω −→ R and v(∅) = 0

The real v(S) can be interpreted as the maximal worth of cost savings that the members

of S would divide among themselves if they were to cooperate together and with no player

outside S. A game (N, v) is often identi�ed with its characteristic function v. Note that the

characteristic function may be a cost function that assigns to each group of players forming

a coalition S the corresponding cost (C(S)). In this form, the game is called a cost game.

While the �rst game is called savings game. Of course, both de�nitions are interrelated, since

a cost game may be reformulated as a savings game with a worth function de�ned as: v(S) =

(
∑

i∈S C({i}) − C(S)). The subgame (S, vS) de�nes the restriction of the game on coalition

S, S ⊂ N. A cooperative game with transferable utility is also called a cooperative game in

characteristic form or a coalitional game with transferable utility. In the rest of this chapter and

over this dissertation a cooperative game (or simply, a game) is referred to as a transferable

utility game (TU-game).

De�nition 2 A game (N, v) is superadditive if:

(S, T ⊆ N and S ∩ T = ∅) =⇒ v(S ∪ T ) ≥ v(S) + v(T ). (3.1)
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The following weak version of superadditivity is very useful.

De�nition 3 A game (N, v) is weakly superadditive if:

v(S ∪ {i}) ≥ v(S) + v({i}) for all S ⊆ N and i 6∈ S.

Condition (3.1) is satis�ed in most of the applications of cooperative games (Nagarajan and

So²i¢, 2008; Hajduková, 2004). It means that any two disjoint coalitions, when acting together,

can get at least as much as they can when acting separately. Therefore, the grand coalition N

is formed quite often, i.e., it is bene�cial for all the players to cooperate together.

De�nition 4 :

• A game (N, v) is convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N . Convex

games appear in some important applications of game theory (Shapley, 1971).

• A game (N, v) is positive if v(S) ≥ 0 for all S ⊆ N

• A game (N, v) is monotone if v(S) ≤ v(T ) for any pair of coalitions (S, T ) such that

S ⊆ T

• A game (N, v) is symmetric if v(S) = v(T ) for any couple of coalitions (S, T ) such that

|S| = |T |. In such games, only the cardinality (the size) of coalitions is important.

The players in a game are usually interested in what they individually will get out of the

cooperation. The question of savings allocation is then the central question in cooperative game

theory. In what follows, we present some de�nitions related to the sharing of the created value

in cooperative games.

De�nition 5 The marginal contribution of player i to the coalition S, i ∈ S, is MCi(S, v) :=

v(S)− v(S\{i}).

In words, the marginal contribution of a player to the coalition that he belongs to is the

amount by which the coalition's value would shrink if this player were to defect from this coalition.

De�nition 6 An allocation (x1, x2, ..., xn) is a division of the overall created value. It speci�es

for each player i ∈ N the pro�t portion (value) xi that this player will receive when he cooperates

with the other players.

De�nition 7 :
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• An allocation (x1, x2, ..., xn) is individually rational if xi ≥ v({i}) for all i.

• An allocation (x1, x2, ..., xn) is e�cient if ∑|N |
i=1 x(i) = v(N).

• An imputation is an e�cient and individually rational allocation.

The above de�nition is quite intuitive. Indeed, individual rationality means that a division of

the overall value (i.e. an allocation) must give each player as much value as that player receives

without interacting with the other players (single coalition). E�ciency, means that all the value

that can be created, i.e., the quantity v(N), is in fact divided.

3.3 The Core

To de�ne the core, some additional notations will be useful. For any subset S of the set of players

N, let x(S) =
∑

i∈S x(i). In words, the term x(S) denotes the sum of the values received by each

of the players i in the subset S.

De�nition 8 An allocation (x1, x2, ..., xn) is collectively rational if x(S) ≥ v(S) for all S ⊆
N .

The collective rationality is an extension of the individual rationality to all possible coalitions.

It means that each coalition gets a total pro�t portion higher than what the coalition in question

can realize by its own.

De�nition 9 The core (Gillies, 1959) is the set of e�cient allocations satisfying the collective

rationality.

Co(N, v) =
{
x ∈ RN\x(N) = v(N) and ∀S ⊆ N,x(S) ≥ v(S)

}
(3.2)

In a game (N, v), if any group of players, say S, anticipated capturing less value in total than

the group could create on its own, i.e., if x(S) < v(S), then this group of players would do better

to create a coalition apart ,S, and divide the value v(S) by themselves. This would not happen

under core allocations. In summary, the core has the interesting interpretation that the total

created value is allocated in such a way that no group of players would have the incentive to leave

the system (the grand coalition N) and form a coalition apart because they collectively receive

at least as much value as they could obtain for themselves as a coalition. The grand coalition is

then immune to coalitional deviations, this concept has been called, the core stability.

De�nition 10 The grand coalition N is said to be stable or core stable if it has a non-empty

core.
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For better understanding of the core concept, we present the following example (presented

in (Béal, 2009)). Consider a 3-player cooperative game (N, v) such that v({i}) = 0 for all

i ∈ N = {1, 2, 3}, v({i, j}) = a for all i, j ∈ N, i 6= j and v(N)=6. We consider two cases, a = 2

and a = 5. As showed in equation (3.6), the core of the game is de�ned by the following system

of equations: 



x1 + x2 + x3 = 6

xi + xj ≥ a, ∀i, j ∈ N, i 6= j

xi ≥ 0, ∀i ∈ N

By considering the projection in the plane of equation (x1 +x2 +x3 = 6) we can easily represent

the core in a 2-dimensional space. The result of the two cases (a=2 and a=5) is reported in (Figure

3.1). It is clear that the core contains an in�nity of allocations for a=2 while it prescribes the

empty set for a =5. This simple example emphasizes two of the major challenging problems of

the core. Indeed, on the one hand, the core may contain many allocations, and on the other

hand the core may be empty. A game with an empty core is to be understood as a situation of

strong instability, as any allocation proposed to the grand coalition is vulnerable to coalitional

deviations. When the core contains several allocations the question is which one to choose. In

this case, the literature on cooperative games generally has a list of desirable requirements that

allocation rules may need to satisfy, such as equity, the list is long and is often depending on the

context. In the next section we present some of these particular allocations.

The Core

x2=(0,6,0)x1=(6,0,0)

x3=(0,0,6)

x({1,3})=2

x({1,2})=2

x({2,3})=2

Player 2Player 1

Player 3

x2=(0,6,0)x1=(6,0,0)

x3=(0,0,6)

x({2,3})=5

x({1,2})=5

x({1,3})=5

Player 2Player 1

Player 3

a=2 a=5

The Core

x2=(0,6,0)x1=(6,0,0)

x3=(0,0,6)

x({1,3})=2

x({1,2})=2

x({2,3})=2

Player 2Player 1

Player 3

x2=(0,6,0)x1=(6,0,0)

x3=(0,0,6)

x({2,3})=5

x({1,2})=5

x({1,3})=5

Player 2Player 1

Player 3

a=2 a=5

Figure 3.1: The core (Béal, 2009)
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3.4 Basic Allocation Rules

In this section, we turn our attention to describing the three allocation rules that we use in the

rest of the dissertation. This includes, equal allocations, proportional allocations and Shapley

Value allocations.

3.4.1 Shapley Value Allocations

This section is devoted to introduce the concepts and axioms of Shapley value (Shapley, 1953b),

one of the most central solution concepts in game theory. Shapley value is a solution that

prescribes a single payo� for each player, which is the average of all marginal contributions of

that player to each coalition he is a member of. It satis�es the following axioms:

• (i) E�ciency: The payo�s must add up to v(N), which means that all the grand coalition

surplus is allocated.

• (ii) Symmetry: If two players are substitutable because they contribute the same to each

coalition, the solution should treat them equally.

• (iii) Additivity: The solution to the sum of two TU-games must be the sum of what it

awards to each of the two games.

• (iv) Dummy player: If a player contributes nothing to every coalition, the solution should

pay him nothing.

The main result of Shapley (1953b) is that:

Theorem 3.1 (Shapley, 1953b): There is a unique single-valued solution to TU-games sat-

isfying e�ciency, symmetry, additivity and dummy. It is what we call today the Shapley value,

the function that assigns to each player i the payo�:

Sh(N, v)(i) =
∑

S⊆N :i∈S

(|S| − 1)!(|N | − |S|)!
|N |! (v(S)− v(S \ {i}))

Shapley value awards to each player the average of his marginal contributions to each coali-

tion. The marginal contribution of a player i with respect to a given ordering is de�ned as his

marginal worth to the players before him in the order, v({1, 2, ..., i− 1, i}) − v({1, 2, ..., i− 1}),
where 1, 2, ..., i−1 are the players preceding i in the given ordering. Shapley value is obtained by

averaging the marginal contributions for all possible orderings. In taking this average, all orders

of the players are considered to be equally likely.
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Shapley value is usually viewed as a good normative answer to the question posed in cooper-

ative game theory. That is, those who contribute more to the groups that they belong to should

be paid more. However, Shapley value may be not stable in the sense of the core. For instance,

it may allocate a negative value to some players. Besides, Shapley value may lie outside the core

unless for some special games like convex games (Shapley, 1971). For a recent study on Shapley

value's stability see (Béal et al., 2008).

3.4.2 Equal Allocations

The simplest allocation of savings would be to give an equal portion to each player.

ϕE
i =

v(N)
n

(3.3)

3.4.3 Proportional allocations

Another simple way of allocating savings would be to distribute them proportionally to the initial

inputs (contributions) of di�erent players. For example, consider a savings game (N, v) such that

v(S) = (
∑

i∈S C(i)−C(S)) for any coalition S, the function C is the cost characteristic function.

The savings may be allocated proportionally to the standalone cost (initial cost) of each player,

this what it is called the cost-based proportional rule. Each player i gets,

ϕP
i =

C(i)∑
j∈N C(j)

.v(N) (3.4)

So player i is paying,

C(i)− ϕP
i =

C(i)∑
j∈N C(j)

.C(N)

3.5 Games with Coalition Structures

Early work on cooperative game theory supposed that the games are superadditive. In the

previous sections, we focused on describing plausible ways of distributing the gain available to

the grand coalition N to individuals. Nevertheless, superadditivity is quite often violated, or

large coalitions fail to be formed. The following section is devoted to underline the main solution

concepts in such situations.

De�nition 11 A coalition structure for N is a partition of the player set N , i.e. P =

{S1, ..., Sm} is a coalition structure for N ⇐⇒ (Si ∩ Sj = ∅ for i 6= j and
⋃i=m

i=1 Si = N).
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Let P be the �nite set of coalition structures. The value or the savings associated to a coalition

structure, P = {S1, ..., Sm}, is equal to the sum of the savings of the coalitions forming it, i.e.,

v(P ) =
∑

Sj∈P

v(Sj) (3.5)

De�nition 12 If (N, v) is a game and P is a coalition structure for N , the triple (N, v, P ) is

then called a game with coalition structure.

Clearly, (N, v) ≡ (N, v, {N}) hence we shall write (N, v) instead of (N, v, {N}).
In words, a game with coalition structure refers to a situation where the cooperating players

are organized in many disjoint coalitions forming a coalition structure (partition).

�The scenario usually associated with the coalition structure idea is as follows: the

players consider forming the coalitions S1, ..., Sm; one may think of them as go-

ing to business lunches in m di�erent groups, each Sk forming a group. At these

lunches they negotiate the division of the payo�, on the assumption that the coali-

tions S1, ..., Sm will be formed".

Aumann and Drèze (1974), page 231-232.

3.5.1 Stability Concepts of Games with Coalition Structures

In a game with coalition structure (N, v, P ), each allocation or payo� vector, x, need to satisfy

the propriety ,(x(Si) = v(Si), ∀Si ∈ P ). This means that no side-payments is allowed between

the various coalitions; the players within the same coalition would divide the value created by

themselves (the quantity v(S)). As emphasized by Aumann and Drèze (1974), this axiom is the

major axiom required for games with coalition structures.

�For a given characteristic function v, the major element introduced by the coalition

structure P lies in the condition x(Sk) = v(Sk), which constrain the solution to

allocate exactly among the members of each coalition the total payo� of that coalition".

Aumann and Drèze (1974), page 231.

3.5.2 The Coalition Structure Core

Aumann and Drèze (1974) re�ne the concept of the core to de�ne the coalition structure core.

In addition to the collective or group rationality, they consider the above constraint emplaning

that there is no side-payments between coalitions.
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De�nition 13 The coalition structure core of a game (N, v, P ) is as follows:

Co(N, v, P ) =
{
x ∈ RN\x(Si) = v(Si), Si ∈ P and ∀S ⊆ N, x(S) ≥ v(S)

}
(3.6)

A coalition structure P is then stable if its coalition structure core contains at least one

allocation. Such stability will be referred as the strong stability.
The coalition structure core stability means that no group of players (belonging to the same

coalition or member of disjoint coalitions) will have the incentive to deviate. As such, the payo�

inside coalition Sk involves a mixture of considerations which are endogenous to Sk (no group

of players inside Sk will defect) and of considerations which are exogenous to Sk re�ecting the

"outside opportunities" of the members of Sk (coalition that "cut across" the Sk cannot be

formed). It is always di�cult to prove the non-emptiness of the coalition structure core and to

�nd coalition structure core allocations. For this reason, the following weak version of coalition

structure core is very useful.

The weak version of the coalition structure core is obtained by ignoring the movement of

groups of players that "cut across" two or more coalitions. In other word, the collective rationality

will be restricted to group of players that are member of the same coalition. This has another

interesting interpretation: it means that each coalition taken separately is core stable.

De�nition 14 A coalition structure P = {S1, ..., Sm} is said to be weakly stable if all subgames

(Si, vSi) are core stable, i.e., there exists an allocation x such that: x ∈ Co(Si, vSi), ∀Si ∈ P .

We should note that as underlined by Aumann and Drèze (1974), x ∈ Co(Si, vSi), ∀Si ∈ P

does not imply that x ∈ Co(N, v, P ). For this reason, the presented concept is weaker than the

coalition structure core.

3.5.3 Individual Stability

The stability concepts exposed above are used in models where a partition is considered to be

stable if it is immune to coalition or group deviations. When only the immunity of individual

move is required, we get the individual stability concept, which is also a weak concept. Individual

stability was inspired by the classical notion of Nash equilibrium and was introduced to game

theory by Drèze and Greenberg (1980). This stability concept only ensures immunity to those

movements of individuals where an unsatis�ed player can defect from his coalition and join a

new one. We should note that the defection is only accomplished when this move is bene�cial

for the player and the coalition he joins no matter whether the coalition he leaves loses or wins.
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De�nition 15 . Individual stability. A coalition structure is said to be individually stable if

no player can bene�t from moving from his coalition S to another existing coalition T while not

making the members of T worse o�.

3.5.4 Farsighted Stability

The core/coalition structure core concept presented in the previous sections has been- and con-

tinue to be- the most central solutions in cooperative game theory. Nevertheless, the core (along

with the majority of solution concepts commonly used in game theory) has been criticized to be

usually empty and too static or myopic. To understand this criticism, we consider the following

situation. Assume that the grand coalition is formed, and suppose that the overall value is shared

in a way that a given subset of players (coalition) can generate on its own more than the sum of

allocations assigned to its members. In this case, the existing static concepts will immediately

conclude that the grand coalition is not stable, because they assume that the subset of players

in question will defect and form their own coalition. There are two main problems with such

conclusion (the instability of the grand coalition). First, will the deviating coalition be stable? If

not, why should we conclude that the move from the grand coalition will ever happen? Secondly,

the static analysis does not check if a further defection will occur (Nagarajan et al., 2009). Core's

myopia is then re�ected by the fact that a coalition does not take into account the possibility

that the rest of the players may do. That is, after a group of individuals moves, another group

and then a third group of individuals would move, and so on. Players are farsighted when they

take into account such a sequence of moves and evaluate their payo�s in the end.

A solution concept that allows players to consider multiple possible further deviations is

the largest consistent set (LCS) presented by Chwe (1994). It is known and used as farsighted

stability. The main idea of Chwe (1994) was to replace the direct dominance relation de�ning

the core by some �indirect dominance� relation, which captures the fact that farsighted players

consider the �nal alternatives that their moves may lead to. He de�nes his LCS as follows:

�I de�ne the largest consistent set, a solution concept which applies to situations in

which coalitions freely form but cannot make binding contracts, act publicly, and are

fully �farsighted" in that a coalition considers the possibility that once it acts, an-

other coalition might react, a third coalition might in turn react, and so on, without

limit.....The largest consistent set de�ned here solves these two problems simultane-

ously: It takes �farsightedness" fully into account and is non-empty in wide range of

environment".

Chwe (1994), page 299-300.
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We should mention that following Chwe's work, many authors prove the existence, uniqueness,

and non-emptiness of the largest consistent set (see for example (Béal et al., 2008)). There are

many strands of the literature that have emerged in the framework considered by Chwe (1994).

Now we brie�y review Chwe's formal de�nition of farsighted stability. Let P = {S1, ..., Sm} a

coalition structure and let ϕi(P ) denotes the payo� obtained by player i in coalition structure

P . Let us denote by ≺i the players' strong preference relations, described as follows: for two

coalition structures, P1 and P2, P1 ≺i P2 ⇐⇒ ϕi(P1) < ϕi(P2), where ϕi(P1) and ϕi(P2) denote

respectively the retailer i's allocation of saving in the coalition structures in coalition structures

P1 and P2. If there exists a non empty coalition S such that P1 ≺i P2 for all i ∈ S, we write

P1 ≺S P2. Let us denote by ⇀S the following relation: P1 ⇀S P2 if the coalition structure P2 is

obtained when S deviates from the coalition structure P1. We say that P1 is directly dominated

by P2, denoted by P1 < P2, if there exists an S such that P1 ⇀S P2, and P1 ≺S P2. We say that

P1 is indirectly dominated by Pm, denoted by P1 << Pm, if there exists P1, P2, P3, ..., Pm and

S1, S2, ..., Sm−1 such that Pi ⇀Si Pi+1 and Pi ≺Si Pm for i = 1, 2, 3, ..., m− 1.

A set Y is called consistent if P ∈ Y if and only if for all Z and S, such that P ⇀S Z,

there is an B ∈ Y , where Z = B or Z << B, such that Z 6≺ B. Like the core, LCS su�ers

from a number of drawbacks, some of them have been pointed out by Chwe himself. Xue (1998)

has re�ned Chwe's LCS by introducing the notion of perfect foresight. Recently, Mauleon and

Vannetelbosch (2004) have re�ned Chwe's LCS by introducing the notion of cautiousness.

3.6 Conclusion

This chapter constituted an introduction to some principles of cooperative game theory. We

began by giving a brief historical note on game theory covering its historical roots prior to its

formal de�nition in 1944. After that, we focused on the cooperative game's concepts we need in

this thesis. We �rst gave formal de�nitions and properties of n-person cooperative games, and

then presented the core concept and Shapley Value in addition to some basic allocations such

as equal allocations and proportional allocations. The last section of the chapter was devoted

to the main stability concepts (this includes the coalition structure core, individual stability and

farsighted stability) of games with coalition structures.

In the next chapter we will motivate our interest to study the cooperation in supply chain

and we will discuss, through a detailed literature review, how the afore presented cooperative

game theory concepts contributed to model and to understand supply chain cooperative systems.



Chapter 4

Cooperation in Supply Chain Networks

This chapter is devoted the to phenomenon of cooperation in supply chain networks.

The goal is to understand why alliance building is being a key of competitiveness in

modern supply chain networks. In the �rst part of the chapter, we introduce and

discuss the concepts of cooperation in supply chain networks. While, the second

part of the chapter is devoted to review the emerging literature on the analysis of

cooperation in supply chains by means of cooperative game theory. We conclude by

highlighting some non-covered issues, and stressing the contributions of this Ph.D

thesis to this new supply chain management research stream.

37
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4.1 Supply chain Changes and Challenges

Today's competitive, fast-moving business environment has irrevocably changed the supply chain

and the management of its functions. For instance, the main idea of supply chain was referring

to "something that consists of elements that are linked to each of their two immediate neighbors

and which jointly provide a strong but �exible connection" (Rolf et al., 2007). This traditional

view of "chain" where di�erent functions/�rms are linked in a linear and simple fashion is no

longer a reality given the complicated and global rate at which business is now conducted (Ladd,

2004). The paradigm of today's supply chain must be metamorphosed into a non-linear, complex

network that allows e�cient interaction among thousands of suppliers and partners regardless of

their size, location or number of products. We no longer talk about "supply chain" but rather

about "supply chain network."

Authors like Omta et al. (2001), Harland (1999), Dyer and Nobeoka (2000); Dyer and Singh

(1998), Lazzarini et al. (2001) and Netessine (2009) have emphasized the network character

of SCM. In this growing literature, many terminologies have been proposed. Harland (1999)

and Nassimbeni (1998) introduce "Supply Network", Lazzarini et al. (2001) propose the term

"Netchain" while Netessine (2009) talks about "Supply Chain Networks".

The key word in these de�nitions is the term "Network". This term has been de�ned by Powell

(1990) as a lateral and horizontal exchange of resources and communication between independent

partners. As pointed out by García and García (2007) the de�nitions of networks are grouped

around two key concepts: (1) a model of interaction based on exchange and relationships, and

(2) a �ow of resources between independent units.

The network character of supply chain has been the topic of several textbooks up to now.

Many authors studied supply chain networks form a strategic and social point of view (Dyer and

Nobeoka, 2000; Lazzarini et al., 2001). Other references focused on pointing out the changes

in many examples of industries. For instance, Frank and Henderson (1992) have studied the

vertical coordination aspects in U.S.Food Industries. Fearne (1998) presented insights on the

evolution of partnerships in Meat Industry networks. García and García (2006, 2007) focused on

the network character of Agri-Food industry. Netessine (2009) gives many telling examples that

nicely illustrate the typical challenges that the automotive, the aerospace and defense industries

are facing. The author ended his paper by an emphasis on academic research in supply chain

network area. Early research framework was pointed out by Omta et al. (2001).

Given the current economic climate and the complexity of supply chain networks mentioned

above, companies looking to enhance their competitive advantage in the marketplace have im-

peratively to develop and to keep close relationship with each other. As such, the trend in
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modern supply chain networks is to seek partnerships in order to improve the e�ciency in the

face of increasing globalization and outsourcing. For instance, in recent years and particularly

in the last decade, we have all heard and continue to hear the term "supply chain cooperation"

and "supply chain coordination" quite often. Its buzz quotient has been on the rise because of

business landscape's changes. Indeed, in current supply chain networks, the organizations are

considering the cooperation and the coordination in their business processes more strategically

and look for more re�ned and closed relations with the other supply chain network participants.

These strategies appear as a key factor of competitiveness. However, even if it is a controversial

topic in both academia and industry, the de�nition of supply chain cooperation/supply chain

coordination continues to elude many. For instance, with all recent articles on this topic and the

growing number of companies choosing such strategies to manage their supply chains, there still

remains a great deal of confusion. On evaluating the related huge body of literature, we fail to

identify one single consistent de�nition of the concepts. Indeed, people are using many terms,

mainly: "cooperation" often used interchangeably with "coordination" and sometimes with "col-

laboration". However, these terms actually describe di�erent levels of supply chain relationships.

In what follows, based on organizational studies and supply chain network related texts, we will

try to make clear the boundaries of each term.

4.1.1 Coordination

In supply chain network, companies have individual (private) goals and objectives that they can

achieve by themselves. In this case, they can control and execute their plans independently.

However, all companies are linked by the integrated nature of the supply chain business they

are doing and are thus operating in the same environment. In such environment, con�icts may

arise. Therefore, they need to synchronize their course of actions in order to avoid harmful inter-

actions. Such process is called coordination. In other words, coordination within a supply chain

is a strategic response to the problems that arise from inter-organizational dependencies within

the chain. Coordination takes place between two or more �rms where tight control is involved

through a coordination mechanism that synchronizes two or more speci�c functions (Mentzer,

2000). In today supply chain networks, as information technology is getting cheaper to deploy,

�rms' information systems are more strongly linked, and �rms engage in more coordination mech-

anisms, such as Collaborative Planning, Forecasting and Vendor Managed Inventories (VMI) to

get a better handle on demand information (Arabe, 2003). More generally, in supply chain lit-

erature, the term "coordination" was used quite often to qualify Buyer-Supplier (or bilateral)

relationships.
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4.1.2 Cooperation

Cooperation also noted co-operation, takes its origins from the Latin co, meaning "together," and

operari, meaning "to work". As such, cooperation refers to situations where many participants

work together to achieve mutual goals. Cooperation has been de�ned as joint striving toward

a common object or goal (Stern, 1971). According to Stern and Reve (1980), cooperation is an

activity in which potential collaborators are viewed as providing the means by which a divisible

goal or object desired by the parties may be obtained and shared. In summary, cooperation is

conceptualized as " a set of joint actions of �rms in close relationship to accomplish a common set

of goals that bring mutual bene�ts" (Mentzer, 2000). By working together and coordinating their

actions, the supply chain participants become partners in an alliance (Monczka et al., 1998). The

term "alliance" is commonly used to give shape to cooperative behaviors in an inter�rm context.

Lambe and Spekman (1997) de�ne an alliance as a collaborative relationship among �rms to

achieve a common goal that each �rm could not easily accomplish alone. Similarly, Zeng and

Chen (2003) de�ned an alliance as a broad term referring to collaborative arrangements in which

participants explicitly agree to work together in the belief that, by doing so, they are more likely

to succeed than by working alone. Gulati (1995) suggests that alliances encompass a variety of

agreements whereby two or more �rms agree to pool their resources to pursue speci�c market

opportunities.

In this dissertation the focus will be on the cooperation and strategic alliances as a key of

business success and competitiveness in supply chain networks.

4.2 The Cooperation: Motives, Outcomes and Barriers

The cooperation and alliance formation appear as a successfully strategy and interesting trend

in supply chain networks, however it raises a variety of challenging questions. For instance,

• Why Cooperate?

• How to cooperate?

• What are the outcomes of the cooperation?

• What factors can hinder the achievement of the cooperation?

The answers to the above questions is summarized in Figure (4.1) and commented in what

follows.
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Outcomes 
 

Competitive Advantages: 
- Lower cost, 
- Higher value added, 
- High customer satisfaction, 
- Better service, 
- Better risk management, 
- High bargaining power, 
- Etc.  

Cooperation Mechanisms 
 

- Joint ventures, 
- Mergers, 
- Joint investments in specific assets, 
- Shared communication, 
- Joint planning and problem solving, 
- Joint-replenishment,  
- Shipment consolidation,  
- Etc.  

Barriers 
 
- Trust, 
- Compromise, 
- Interdependency, 
- Inter-organizational compatibility, 
- Shared vision and key processes, 
- Leading role in the cooperation, 
- Created value sharing, 
- Etc. 

Motives 
 

- Economic factors, 
- Technological advances, 
- Political-legal factors, 
- Socio-cultural factors, 
- Consumer’s expectations, 
- Products’ complexity,   
- Spatial dispersion of production,  
- Etc. 

Traditional Supply Chain 

Supply Chain Network 

Figure 4.1: Cooperation in supply chain networks
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4.2.1 Why Cooperate?

The business world is a rapidly changing landscape marked by unprecedented complexity. In-

creased global trade makes supply chains even longer and more dynamic. This profound impact

of globalization on traditional supply chains makes many companies exceeding the border of

individual actions toward collective actions/stategies to better deal with the geographical dis-

persion of supply chain entities, di�erent laws and customs. Such cooperative strategies were also

reinforced by the creation of new supply chain concepts such as Third-Party Logistics Providers

(Simchi-Levi et al., 2000; Marasco, 2008).

The information and communication technologies (ICT) advances have also played a key role

in changing the way of doing business. Thereby making distinct supply chain entities able to

access high quality information of each other, new challenges and trends have emerged in sup-

ply chains. With the proliferation of the Internet and e-commerce, time becomes compressed.

The �ow of information and orders becomes nearly instantaneous, especially where procurement

systems were electronically integrated with the sales and production systems of their suppliers.

Among these new technologies, we may mention Radio Frequency Identi�cation (RFID) technol-

ogy and Electronic Data Interchange (EDI). For a detailed description of new trends in supply

chain design and management with an emphasis on technologies and methodologies we refer the

reader to (Jung et al., 2007).

4.2.2 How to Cooperate?

To compete successfully, companies may use of several forms of cooperation such as mergers, joint

ventures, joint investment in speci�c assets, joint replenishment and shipment consolidation. The

detailed description of these mechanisms is out of the scope of this thesis. But the main idea of the

cooperation in supply chain networks is that independent �rms share their holding infrastructures

and ordering channels. Therefore, when an alliance of �rms is to form, each �rm works with the

best holding technology and ordering channels among the members of the coalition. This means

that the members of that coalition manage their cost components (purchasing, holding inventory

etc.) at the minimum cost of the coalition members (Ozen and So²i¢, 2006). In other words,

cooperation refers to situations where the activities and/or the resources of some independent

�rms are pooled and joint problems are solved. As one can expect, information sharing is a key

determinant of success and achievement of supply chain partnerships (Lascelles and Dale, 1989;

Galt and Dale, 1991; Krause, 1999). For instance, in order to �nd joint solutions to their joint

problems, supply chain actors must agree on sharing information related to these problems (Carr

and Pearson, 1999).
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4.2.3 What are the Outcomes of the Cooperation

When cooperating, companies win new business, achieve market penetration, improve their per-

formance and increase their pro�tability. Thus, cooperative strategies enable �rms to keep costs

down-all while improving their levels of service to meet the growing expectations of customers. In

general, the values that cooperation brings into supply chain networks are threefold: reduction of

the costs, risk pooling and negotiation power enhancing. The �rst major advantage of coopera-

tion is the reduction of costs through shared resources and economies of scale. Indeed, depending

on the form of cooperation, the inventory levels and/or transportation costs are often reduced.

Moreover, with joint orders, many economies of scale can be achieved and signi�cant savings can

be reached when joint investments in speci�c assets are done. A second issue is that of better

risk management. Indeed, within a supply chain, an actor is no longer alone to deal with the

internal and external disturbances facing him. In a given alliance, the risk management becomes

collective, whereas it was individual. Finally, the last issue is that of power. When several actors

are willing to cooperate, they create an entity that federates and pools their forces. Therefore,

these actors bene�t from a greater power during their negotiations with their environment. This

includes for example the case of several actors deciding to join together to impose lowest prices

to their supplier.

4.2.4 What Factors Can Hinder the Success of the Cooperation?

Many studies in both industry and academia have emphasized the importance of cooperation in

supply chain as a key topic given the current economic climate. However, many supply chain

cooperative structures fail to realize such bene�ts (Boddy et al., 1998). Similar to the body of

literature focused on the contribution and the impact of the cooperation on the e�ectiveness of

logistics networks, the barriers that may hinder the success of supply chain networks cooperative

structures have been the topic of a separate body of literature. See for example (Boddy et al.,

1998; Park and Ungson, 2001; McCarter and Northcraft, 2007). In such literature, several scholars

suggest that conceptualizing strategic alliances as social dilemmas helps to understand how

cooperation in strategic alliances can be achieved and sustained over time (Zeng and Chen, 2003).

It has been shown that the success of supply chain alliances is not only related to the intention

to cooperate. For instance, the fact that supply chain partners willingly choose to cooperate

does not necessarily ensures that they will do so successfully. There are a number of factors

that can hinder the development and the success of partnership in supply chain networks. This

includes, trust between partners, compromise, interdependency or mutual dependency between

partners, organizational compatibility (i.e., goals, objectives, shared operational philosophy and
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corporate culture), shared vision and key processes (Mentzer et al., 2001). In addition to "inter-

�rm rivalry"(Park and Ungson, 2001) or misalignments in allying �rms' e�orts to cooperate,

including reluctance to share information, skills and processes, and opportunistic behavior (Dyer

and Nobeoka, 2000; Fawcett and Magnan, 2002).

In addition to the elements cited previously and that may cause the failure of a partnership

even before its formation, there is another type of barrier that seems particularly relevant to the

success of supply chain alliances. Such barrier does not occur in the form of not contributing to

the creation of value, but in the attempt to claim an unfair share of the value that is created

(Gilbert and Cvsa, 2003). Indeed, getting the cooperating agents to agree on how to share costs

or divide the bene�ts, they jointly created, was identi�ed as the major obstacle to collaborative

structures (Chen, 2009). Therefore, any unfair share of the created value may give rise to

defecting actors. Defection here is a general term referring to any form of non-cooperative

behavior by participants in a social dilemma (McCarter and Northcraft, 2007). Commonly, in

supply chain networks, defection is used to refer to the fact that one (or more) participant skips

from his/her alliance (network) to work for his/her own or to join another existing alliance.

In social networks as in supply chain networks, cooperative game theory is used to deal with

these problems. Particularly, one of the principal contribution of cooperative game theory is to

provide methods that get all cooperating agents agree on how to allocate resulting costs or to

share resulting bene�ts in a way that each party would feel that acting as a coalition is worthwhile

for its own sake (Anily and Haviv, 2007).

4.2.5 The Challenges of Cooperation

The above questions raised by coalitional behavior and cooperative strategies may be classi�ed

into two major problems (see Figure 4.2): (1) Alliance formation, and (2) Pro�t/Cost allocation.

• Alliance Formation: This problem concerns the formation of alliances/coalitions by the

supply chain agents. In other words, this means partitioning the set of cooperating actors

into exhaustive and disjoint alliances forming the so-called coalition structure (partition).

For each coalition, an associated optimization problem should be solved. This means

pooling the activities and/or resources of the agents in the coalition, and solving this joint

problem. For example, in joint replenishment system, the optimal reorder policy of each

coalition has to be determined.

• Pro�t/Cost Allocation: Once the questions of alliance formation and joint problem

optimization are solved, the problem that arises is how to divide the created overall value

among the cooperations actors. This means that each actor would be associated to a
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portion of the savings generated by his/her coalition. This problem is no less important

than alliance formation, because each actor is usually interested by what he will individually

get out from the cooperation. Moreover, any "unfair" allocation immediately causes the

disbanding of the alliance. For these reasons, cooperative game theory- with the so-called

core allocations- is used quite often to deal with payo� division question.

Coalitional Behavior 

Alliance formation Cost /Savings allocation

Coalitional Behavior 

Alliance formation Cost /Savings allocation

Figure 4.2: Coalitional Behavior's Challenges

Obviously, the problems of alliance formation and pro�t allocation are dependent. Shenoy

(1979) emphasized that these two aspects of coalitional behavior are closely related. On the one

hand, the �nal allocation of payo�s to the players depends on the coalitions that �nally form,

and, on the other hand, coalitions that �nally form depend on the payo�s available to each player

in each of these coalitions. In other words, the coalition that an actor wants to join depends on

the portion of savings that the actor in question would gain in each potential coalition. Thus,

the payo�s in�uence the coalition structure and vice versa.

4.3 Literature Review

The above discussions clearly emphasize the revolutionizing move from simple supply chains

toward supply chain networks in which �rms sometimes compete and sometimes cooperate to

achieve sustainable advantages. Academic literature on supply chain management has reacted to

these changes and advances by providing both analytical and theoretical supports and method-

ologies on the subjects of competition, cooperation and coordination in supply chain networks.

Game theory with its cooperative and non-cooperative branches has played a great potential role

in the analysis and the understanding of cooperative and competitive interactions of supply chain

participants. Nalebu� and Brandenburger (2002) give many telling examples of competition and

cooperation in business landscape.
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In what follows, we give a brief description of competition and coordination in supply chain.

After that, the focus will be to give a detailed overview of the study of the cooperation in supply

chain networks by means of cooperative game theory.

4.3.1 Buyer-Supplier Coordination

There is an impressive body of literature on buyer-supplier bilateral relationships understanding.

The goal here is to identify operational plans to align both objectives of the buyer and the

supplier in order to ensure better performance and cost minimization of the chain. In this

setting, coordination mechanisms may be de�ned as a joint policy achieved by both parties

and characterized by an agreement or contract such as quantity discount, credit option, buy

back/return policies, quantity �exibility, commitment of purchase quantity, etc. (see Cachon

(2003); Sarmah et al. (2006)). More generally, this body of literature may be characterized by

the study of competitive and cooperative inventory policy in the vendor-buyer system. Many

papers have appeared under this topic, including (Bylka, 2003; Cachon and Zipkin, 1999; Cachon

and Harker, 2002). We should mention that many coordination mechanisms were extended to

systems with multiple retailers (see, Cachon (2001); Chen et al. (2001)). Non-cooperative game

theory was quite often used to understand buyer-supplier interactions. Indeed, the buyer and the

supplier inventory situations were modelled as a two-person games (competitive games) where

the main solution concept is to �nd an equilibrium strategy (such as Pareto, Nash, Stackelberg

equilibria). Detailed surveys on this topic are found in (Cachon and Netessine, 2004) and (Leng

and Parlar, 2005).

4.3.2 Inventory Centralization Games

For a long time, cooperative game theory has not enjoyed as much attention in economics liter-

ature as non-cooperative game theory. Therefore, papers studying supply chain management by

means of cooperative game theory were scarce compared to papers employing non-cooperative

games. Nevertheless, since the last few years, many academics as well as practitioners have been

focusing on the great potential that cooperative game theory can o�er to understand several

business and supply chain applications. As such, the analysis of problems in Operations Re-

search by means of cooperative game theory is becoming one of the trends and pillars of modern

supply chain management literature.

Cooperative game theory mainly focuses on the outcome of the game in terms of the value

created through cooperation of many actors (players). Hence, its major contribution to supply

chain management is to allow modelling of outcomes of complex business process and supply
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chains with centralized decisions and actions. The e�ect of cooperation and centralization (in

terms of created value and outcomes) itself is not a new topic in supply chain management

literature. For instance, inventory management centralization and multi-retailer inventory joint

replenishment systems were extensively investigated since the Eighties. (see (Eppen, 1979; Chen

and Lin, 1989; Chakravarty, 1985; Bastian, 1986; Jackson et al., 1985; Roundy, 1985)). In

inventory management centralization and joint replenishment frameworks, totally centralized

chains have been shown to be more e�cient than decentralized ones and solutions minimizing

the total systemwide costs/maximizing the total systemwide pro�ts have been found. However

in most of these papers, supply chains were assumed to belong to one actor. As a consequence,

the study of the interactions and relationship between the supply chain participants as well

as the question of splitting the created value, were completely omitted for long years. Under

cooperative game theory settings, such situations as well as new ones are modelled distinctively,

with a central concern devoted to the questions of stability and savings splitting.

Given a supply chain, the participants may keep total decentralized strategies, which means

that each of them will keep his standalone situation where he will look to optimize his own

system regarding his own economic parameters and objectives. Going away from decentralized

strategies, the supply chain participants may adopt cooperative strategies by centralizing their

decisions and operating jointly, (e.g., they may share/mutualize some physical resources such as

warehouses or vehicle �eet or may do some project jointly such as shipment consolidation, joint

replenishment). In this case, each of them will get a portion of the achieved savings. Inventory

centralization games, refers to the study of cooperative behavior questions -alliance formation and

savings allocation- in such centralized supply chains. To each centralized model, a cooperative

game in which the supply chain participants are the players is associated. The value of a coalition

of players is the savings/value that the players have achieved jointly and would divide among

themselves. Of course, the allocation of the value created should ful�l many properties. For

example the stability propriety is ful�lled by the so-called core allocations , i.e., allocation of the

created value among the cooperating actors such that no group of actors would like to cooperate

on its own.

Recently, many inventory centralization games have been studied in various multi-retailer

inventory systems. Some papers are reviewed in (Cachon and Netessine, 2004; Leng and Parlar,

2005). Nagarajan and So²i¢ (2008) give a fascinating and detailed survey of exclusive cooperative

game theory use in supply chain management. In what follows, we will cover some inventory

centralization games closely related to this Ph.D. dissertation. We propose to classify the intro-

duced games in terms of the used inventory model. For instance, we distinct two main classes;
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Stochastic and Deterministic environments. In stochastic inventory environment, we basically

identify the Newsvendor games. In deterministic environment, we identify Economic lot sizing

games and inventory games. Our last focus will be on games with coalition structures. The

resulting classi�cation is presented in Figure (4.3).

Analysis of the cooperation in Supply Chains 
by means of Cooperative Game Theory

Stability of the grand coalition Games with Coalition Structures 

Stochastic Deterministic 

The core

Analysis of the cooperation in Supply Chains 
by means of Cooperative Game Theory

Stability of the grand coalition Games with Coalition Structures 

Stochastic Deterministic 

The core

Figure 4.3: Classi�cation of supply chain cooperative games

4.3.3 Newsvendor Games

The newsvendor problem refers to a situation where a store (newsvendor) is facing a random

demand (of newspapers) by ordering an amount of newspapers at the beginning of each day

(period). Given their nature, the newspapers can be sold only in the day when they are ordered.

Then, at the end of the day (period) the non-sold newspapers are lost or discounted. We refer
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to (Khouja, 1999) for a detailed review of newsvendor models.

Newsvendor games are concerned with situations involving multiple newsvendors who make

joint orders to satisfy the total demand they are faced with. The achieved savings is then allocated

in a way that is advantageous to all the newsvendors. Probably, (Wang and Parlar, 1994) is

the �rst investigation in this area. Wang and Parlar (1994) studied a three-player newsvendor

game in both cooperative and non-cooperative settings. Later, Hartman et al. (2000) studied a

multi-retailers cooperative game, each of them facing a newsvendor problem. They conditioned

the non-emptiness of the core of the game by some assumptions on the demand distribution.

This result was generalized by (Muller et al., 2002) who showed that whatever the demand

distribution, the cores of newsvendor games are non-empty. Ozen et al. (2004) consider multiple-

newsvendors game with multiple warehouses with the assumptions that the ordered amounts of

goods become available after a non-null lead time. The authors showed that the retailers can

increase their expected joint pro�ts by coordinating their orders and making allocations after

the demand realization. They also proved that the associated game has a non-empty core.

A similar model was developed with the assumption that reallocation of inventories happens

after a demand signal observation (Ozen and So²i¢, 2006). The signal updates the information

about the demand distribution. The authors discussed the impact of two classic contracting

mechanisms (the wholesale price contract and the buy-back contract) in three di�erent scenarios;

non-cooperating retailers, cooperating retailers, and manufactures resale of the returned items.

Slikker et al. (2005) studied the cooperation between multiple newsvendors, with the inclusion

of non-identical selling and purchasing prices and with transshipment. The main result of this

study is that the cooperative newsvendor games with transshipment have a non empty core.

The transshipment was considered later in another game (Huang and So²i¢, 2006). Hartman

and Dror (2003) have focused on pro�t sharing mechanisms. They studied a cooperative game

between several retailers with normally distributed and correlated individual demand. They

showed that when holding and penalty shortage costs are identical for all subsets of stores, a

game based on optimal expected costs (or the corresponding bene�ts) is subadditive and for

normally distributed demands, whatever the correlations the core is never empty. When the

stores' holding and penalty costs di�er, the corresponding game may have an empty core. A

similar result was given by Hartman and Dror (2005), who show that multiple newsvendors

cooperative games with non-identical holding and penalty costs may have an empty core.
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4.3.4 Economic Lot Sizing Games

The economic lot-sizing model is one of the well-known model in inventory theory. It consists

of facing a demand for an identical (possibly di�erent) product during each of a consecutive

time period. The demand in a given time period can be ful�lled by orders in that period or

at previous periods. The objective is to decide the order quantity (lot) at each time period to

satisfy the total demand at a minimum total cost (Heuvel, 2006). Detailed survey on lot-sizing

models are found in (Heuvel, 2006; Jans and Degraeve, 2006; Drexl and Kimms, 2007; Ben-

Daya et al., 2008). Now, consider a situation where several retailers are operating in lot-sizing

environment. In the decentralized case, each retailer would solve a classic economic lot-sizing

problem to determine his optimal ordering policy. In the centralized case, the retailers may

reduce their ordering cost by making joint orders. Under cooperative game theory setting, this

situation is called economic lot-sizing game (ELS game). The standard form of this game was

studied by Heuvel et al. (2007). The authors consider a set of retailers selling the same item

purchased at the same supplier. The demand of the items is known over a multi-period horizon

time. When an order is placed the manufacturer charges ordering cost and production cost which

is linear in the amount of the ordered items. In addition to these costs, retailers are supposed

to carry inventory holding cost whenever an amount of item is kept in stock from one period

to another. Heuvel et al. (2007) showed that it is always pro�table for a collective of retailers

to cooperate. It means that making joint orders leads to some savings. When dealing with the

problem of savings sharing, Heuvel et al. (2007) show that the ELS game have a nonempty core.

Chen and Zhang (2006) consider a cooperative game between multiple retailers that are facing an

economic lot-sizing problem with general concave ordering cost (the ordering cost is supposed to

be a concave function of the order quantity). When they cooperate, the retailers form a coalition

and place joint orders to a single supplier in order to reduce ordering cost. The demand of a

given period can be backlogged and ful�lled by orders at later periods. The unful�lled demand

incurs penalty cost to the retailer. Chen and Zhang (2006) showed that the core of the ELS game

with backlogging costs is nonempty. Moreover, using a method based on linear programming

duality, a core allocation may be computed in polynomial time.

4.3.5 Inventory Games

The class of inventory games refers to inventory cooperative situations, like those described above

with the distinctiveness of considering continuous time model assumptions. The Economic Order

Quantity (EQO) is quite often used as a reorder policy in this class of inventory centralization

games. The EQO model has a great use and in�uence in the production and inventory literature.
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Its root goes back to Harris (1913) and its basic form concerns inventory situations with in�nite

time horizon and constant demand rate (Heuvel, 2006). Tijs et al. (2005) studied the so-called

holding game where a collective of retailers may cooperate by sharing a storage capacity for

their inventories. In other word, this holding game involves many agents; one of them has a

capacitated storage facility. Available goods of other agents can be partially stored in the facility

generating certain bene�t. The main addressed questions were to �nd an optimal holding plan

and to distribute the achieved bene�t. Meca et al. (2005) consider a replenishment function

based on the economic production quantity (EPQ) model where the ordered arrives gradually.

In addition to joint their orders, the retailers share holding facilities. This means that the �rms

make their orders jointly and store their items in the cheapest warehouse. The authors proved

that this game called inventory-production game is totally balanced and then has a nonempty

core. Guardiola et al. (2009) discussed a similar class of inventory-production games. They

consider a situation where a collective of retailers can share their production and inventory

facilities. That is, the required items are produced, stored and backlogged by the player having

the lowest production, holding and backlogging costs. The arising production-inventory game

was showed to have the nice propriety of totally balancedness which means that the game has

at least one core allocation.

Meca et al. (2004) consider a set of retailers; each of them uses the E.O.Q model as a reorder

policy to face a deterministic demand rate. Each retailer supports a linear holding cost, and a

�xed ordering cost. The retailers may save part of the �xed ordering by making joint orders. In

this case, the sum of the ordering costs is reduced to only one cost supported by the coalition

of retailers. This inventory centralization is called inventory game. Meca et al. (2004) focus on

allocating the joint pro�ts among the di�erent retailers. They show that the game has a non-

empty core and they prove that proportional allocating rules belong to core. Dror and Hartman

(2007) extend the model studied by Meca et al. (2004); in their cost structure, a major setup cost

is incurred for each order, which is independent of the set of retailers that places the order. In

addition, a minor setup cost is incurred for each retailer that is included in the joint order. The

authors focus on characterizing a necessary and su�cient condition, which is a threshold value

for the shared ordering cost, under which it is optimal for all the retailers to order together and to

have a non-empty core for the game. Anily and Haviv (2007) study the same model as Dror and

Hartman (2007) but their focus is mainly on studying a class of easy to implement policies, called

power-of-two policies. They show that under the optimal power-of-two policy, the cooperative

game associated with the joint replenishment model with �rst-order interaction is concave and

thus has a non-empty core. Zhang (2009) extend the model of Anily and Haviv (2007) to a more
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general game. He studied a cooperative game associated with the joint replenishment model

where the joint setup cost is a submodular function of the set of retailers that places the order

together. Like in Anily and Haviv (2007), the game is de�ned under an optimal power-of-two

policy. Zhang (2009) used the strong duality theorem to prove that the game has a non empty

core.

In the afore mentioned references, cooperative games only involve the set of �rms/retailers

in the system. The other supply chain parties such as suppliers are not formally included in the

cooperative game. In the literature, we have identi�ed only one paper, (Guardiola et al., 2007),

where the supplier is explicitly taking part of the cooperation. Guardiola et al. (2007) studied the

coordination of actions and the allocation of pro�ts in a supply chain where the supplier o�ers

wholesale prices to induce the retailers to make large orders. Two kinds of cooperation situations

are compared: in the �rst one, the supplier is not considered as a cooperating agent, while in the

second situation, the supplier may cooperate with the retailers. The authors showed that it is

preferable to include the supplier as a player in the cooperative game. They demonstrated that

the pro�t in this case is higher than an exclusive retailers cooperation situation.

4.3.6 Inventory Games with Coalition Structures

Alliance formation topic and games with coalition structures have received very little attention

in supply chain management literature. Papers employing cooperative game theory to study the

formations and the interactions of alliances in supply chains are scarce as well: there are maybe

ten or so of these. To the best of knowledge, no paper uses the coalition structure core to analyze

a game with coalition structure in supply chain management research area. However, there have

been quite a few papers that have analyzed farsighted satiability of coalition structures in some

supply chain games. This includes, Granot and Yin (2004); Granot and So²i¢ (2005); Nagarajan

and So²i¢ (2007, 2009) and Nagarajan et al. (2009). Most of these references deal with coalition

stability in assembly models excepting Nagarajan et al. (2009) who deal with group buying

organizations' stability. Granot and So²i¢ (2005) are probably the �rst authors to deal with

farsighted stability in supply chain management literature. They mainly focus on what coalition

structures are the farsighted stable outcomes in a three-retailers cooperative game. Granot and

Yin (2004) analyze two contracting systems between an assembler and his suppliers. The push

system allows the suppliers to set price �rst and the assembler orders second. Despite the push

system, in the pull system the assembler o�ers price to each supplier �rst, and suppliers then

determine quantity. The grand coalition is shown to be the farsighted coalition structure in the

push system, while under the pull system, any coalition structure can be farsighted stable. Also,
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in assembly supply chain, Nagarajan and So²i¢ (2009) consider an assembler who purchases n

components from n suppliers to build and sell the �nal product. First, the authors consider the

same cases as (Granot and Yin, 2004); in one case the suppliers are the Stackelberg leaders and

in the second case, the assembler is the Stackelberg leader. Moreover, they consider the case

where the assembler and the suppliers make decisions simultaneously. In this case, the authors

characterize the farsighted coalition structures formed by the suppliers. Nagarajan and So²i¢

(2007) study dynamic alliance formation among agents in competitive markets. They consider

the problem of price competition in a n-agents game. The di�erent agents are selling substitutable

products and facing both deterministic and stochastic demand. The farsighted agents may form

alliances in order to determine common price and compete against each other. Nagarajan et al.

(2009) analyze the farsighted stability of group purchasing organizations. Group purchasing,

also called, Group buying refers to group of many �rms (buyers) that pool their purchasing

requirements and buy large quantity of a particular product from a seller. This allows them to

take advantage of signi�cant quantity discounts from the seller. Nagarajan et al. (2009) mainly

consider the three well known allocations (proportional allocations, equal allocations and shapely

value allocations), under which the farsighted stability of several group purchasing models were

investigated.

4.4 Supply Chain Games: Literature Analysis and Problem Set-
ting

In this section, we discuss some non-covered issues in supply chain games literature and give

brief description of our formal models, and outpoint our contributions to this literature.

4.4.1 Lack of Prior Attention

Analyzing the cooperation in supply chain networks by means of cooperative game theory is a

rather new stream of research in supply chain management. As such, several questions were

not well investigated or are not covered yet. On analyzing the afore cited references, one can

easily conclude that most of early studies seem to be only interested in the stability of one set of

agents. For instance, early works (see Figure (4.4)) supposed that the games are superadditive

in the sense that it is bene�cial for all supply chain agents to cooperate together. Therefore,

the non-emptiness of the core and the distribution of the savings available to the grand coalition

to individuals appear as the most investigated questions. The questions of core's non-emptiness

and games' superadditivity are interesting questions from a theoretical point of view. We should
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mention that superadditive games were deeply studied, even in the theory of games itself, because

they have nice theoretical properties. Nevertheless, we think that theses issues are not su�cient

to model the cooperation in supply chain networks. Deeper and more detailed analysis are

required to understand the interactions of �rms in supply chain networks.
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Figure 4.4: Traditional supply chain games approaches

In many situations, it is not su�cient to declare that the game admits a non-empty core

but we need to identify one such core allocation. And even a core allocation is found it is not

su�cient to declare that the supply chain participants will use such allocation. Because, core

allocations only guarantee the immunity to group deviations (stability). However, there might

be some core allocations which are costly or complicated to put into practice (for example they

require a Third Party to manage the money's transfer between the partners). Moreover, core

allocations often do not take into account the comparison between the payo�s attributed to each

actor, and do not guarantee that the actors who contribute more to the alliance they belong

to are paid more. In these situations, it is easy to expect the disbanding of such alliance. We

believe that the above questions among many others should be well investigated in supply chain

networks where cooperation do not means �rms' rivalry elimination.

Above we warned that most of the studied supply chain cooperative games are superadditive.

In what follows, we will explain how this assumption is restrictive in supply chain models. In sup-

ply chain networks, as well as in general social networks, many situations are not superadditive
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by nature. And, in the absence of superadditivity, forming the grand coalition is not necessarily

e�cient, because a higher aggregate payo� can be obtained from a di�erent coalition structure.

Besides, the superadditivity itself can be called into question. There are many reasons that

raise doubts concerning the formation of the grand coalition. For instance, as explained by Au-

mann and Drèze (1974), "acting together may be di�cult, costly or illegal, or the players may

for various personal reasons not to do so". To form and to manage an alliance there might be

some relevant costs of formation/management process that include for example, coordination

overhead like communication costs and Third Logistic Party costs (when such party is used). Al-

liance formation/management cost process had not been considered in early cooperative games,

however we believe that such cost component actually has a relevant importance in practice.

When considering this cost the grand coalition may appear interesting with regards to a smaller

coalition. Moreover, in many cases acting together is di�cult even impossible for practical rea-

sons (as the geographic locations of the supply chain members) or because of some constraints

in the supply chain. For example, in early inventory games, the supplier (or the external ware-

house) is supposed to have an in�nite production capacity thus he can ful�l the large quantities

ordered by the grand coalition. However, as one can expect this assumption is quite far from real

economic situations. Finally, the grand coalition may fail to be formed because of �rms' rivalry

and competition: There might be some "competitors" who do not wish to cooperate with each

other, even if it is bene�cial for them to do so.

Before ending this section, we would like to emphasize that in addition to the focus on the

core and superadditivity, most of early supply chain cooperative games are dealing with the coop-

eration in exclusive inventory-cost models. We �nd it quite important to involve transportation

decisions in supply chain cooperative models. Indeed, transportation costs may be as important

as inventory costs, and including such costs would allow modelling more real-life situations and

would put the accent on modern supply chain trends, such as green supply chains (for example

through the consideration of greenhouse gas emissions).

4.4.2 Problem Setting

This Ph.D thesis contributes to the emerging literature on the analysis of issues in Management

Science by means of cooperative game theory. Our motivation is twofold. First, our interest

to study the cooperation in supply chain was stimulated by the increasing appeal of alliance

formation in current logistic networks. In such complex and dynamic networks, the coordination

of actions and cooperative behaviors are becoming key strategies to win new business and to

face the global trade changes. Second, alliance formation and payo� allocation problems are
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becoming imperative optimization topics for both academics and practitioners. However, this

research area is a rather new stream in supply chain management research and many non-covered

topics still exist. In this Ph.D thesis, we hope providing answers to some non-covered questions

and outpoint some new challenges.
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Figure 4.5: Structure and Contributions of the Ph.D thesis

As summarized in Figure (4.5), the structure of our models is split in three parts. In chapter

5, we study the full truck shipment consolidation problem in a one-supplier multi-retailer supply

chain. We call this game the full-truck joint replenishment game. We show that this superadditive

game has a non-empty core. We then identify a particular core allocation and discuss its main

properties comparing to that of Shapley value. In the end of this chapter, we discuss the issue

of imposing some constraints that hinder the formation of the grand coalition, and discuss the

arising problem. In Chapter 6, we studied a non-superaddtive joint replenishment game. We

begin our discussions by emphasizing that generating the coalition structure that optimizes
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the whole supply chain (full-cooperative coalition structure) is not a viable objective in our

considered "independent" �rms. After that we focuss on giving a procedure that generates a

more appropriate coalition structure which we call e�cient coalition structure. Such e�cient

partition is then showed to satisfy a set of desirable stability properties. Finally, in chapter 7,

we extend the procedure presented in chapter 6 to inventory games with general cost functions.

We mainly present a new formal representation of the e�cient coalition structure generation

procedure. In this representation, the questions of alliance formation and pro�t allocation are

treated simultaneously. The general results of this chapter are then applied in a non-superadditive

full truckload joint replenishment game.

To conclude, our main contributions in these models are as follows: (1) We focus on trans-

portation decisions by studying the cooperation in a context of inventory systems with full

truckload shipments. (2) We push the discussion on payo� division so far exceeding the notions

of stability to discuss the issues of giving a higher importance to the gap of the allocated value to

agents within the same alliance. (3) We give much attention to study non-superadditive games.

In these games, we give the question of alliance formation as much attention as the question of

payo� division and try to present approaches that treat both questions simultaneously.

4.5 Conclusion

This chapter was devoted to understand the phenomenon of cooperation in supply chain networks.

We begun by emphasizing the network character of supply chains and stressing the great potential

of alliance building as a key of competitiveness. Then, we provided a detailed comprehension of

the cooperation in supply chains. After that, we reviewed and classi�ed the emerging literature

on the analysis of the cooperation in supply chain by means of cooperative game theory. Finally,

we emphasized some non-covered issues in this literature, motivated our work and highlighted

our contributions.
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Chapter 5

Pro�t sharing in one-supplier
multi-retailer inventory system with
full TruckLoad shipments

In this chapter, we are concerned with the problems of alliance formation and cost

allocation in one-supplier multi-retailer inventory systems with full TruckLoad ship-

ments. The retailers have to replenish their inventory from the supplier to satisfy a

deterministic and constant rate demand of �nal customers with full truckload ship-

ments. Each full-truck order is associated with a �xed transportation cost. The

storage of products involve linear holding costs at the retailers' warehouses. Both

cost components are supported by the retailers. To reduce their costs, retailers may

choose to cooperate by making joint orders. The main goal of this chapter is to study

the arising cooperative game called Joint Replenishment Game with Full TruckLoad

shipments (for short, FTLJRP-game). We focus on the core and Shapley value; two

of the most central solutions in cooperative game theory. Under the above cost struc-

ture the FTLJRP-game is superadditive. We mainly show that its core is non-empty

and provide a core allocation. This core allocation is then compared to Shapley value.

The comparison is based on four criteria: stability, complexity, fairness and practical

setting.

59



60 Pro�t sharing in one-supplier multi-retailer inventory system with FTL shipments

5.1 Introduction

This chapter examines the subject of cooperation in full-truck joint replenishment systems. In

particular, we consider a single supplier multi-retailer distribution system in which the retail

facilities face known demands of a single item (the items may be identical or not, what is im-

portant to our analysis is that the items are compatible to be delivered jointly). Each retailer

replenishes his/her inventory using full truckload shipments. Transportation costs, from supplier

to retailer's warehouse, involve a �xed cost per truck dispatched. The storage of the products

involves linear inventory holding costs. Both costs are supported by the retailer.

The retailers may follow a total decentralized strategy, which means that each of them will

try to optimize his/her own system regarding his/her own economic parameters and objectives.

Going away from the decentralized strategy, the retailers may adopt a cooperative strategy. In

this case, signi�cant savings can be achieved by coordinating shipment decisions across them.

The focus of the paper is to identify the optimal cooperative con�guration and to �nd a fair way

of sharing the savings resulting from the cooperation among the retailers. In the remainder of

the paper, a coalition or an alliance refers to a set of retailers that agree to make joint orders.

The partition formed by these separate alliances is called coalition structure. The set grouping

all retailers is called the grand coalition. Single coalition or stand-alone coalition refers to retailer

acting individually.

The motivation of this work is twofold. First, our interest to study the cooperation in supply

chain was stimulated by the increasing appeal of alliance formation in current logistic networks.

In such complex and dynamic networks, the coordination and cooperation are becoming imper-

ative optimization topics. Second, the full truckload mode is becoming the most common mode

of transportation used in industry applications. The use of such transportation mode integrates

climate change and global warning considerations through the reduction of greenhouse gas emis-

sions, as well as reducing considerably the logistics costs. Thus, combining both problems, by

studying the cooperation in a context of inventory systems with full truckload shipments appears

as a good participation and contribution for analyzing current logistic networks and enhancing

their performance.

To achieve this goal, we mainly use cooperative game theory. We associate to the above de-

scribed distribution chain a cooperative game in which the di�erent retailers are the players. The

value of a coalition of players equals the optimal joint pro�t they can achieve. We refer to this

game as the full truckload joint replenishment game, hereafter FTLJR-game. We show

that this game is superadditive, that is, every set of disjoint coalitions increases their savings

when they merge into one coalition. Consequentially, the grand coalition is the most optimal
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cooperative con�guration. To examine the question of pro�ts distribution, we focus on the core

(Gillies, 1959) and Shapley value (Shapley, 1953b), two of the most central solution concepts in

cooperative game theory. We show that the core of FTLJR-game is never empty, which implies

that all retailers in the chain are willing to cooperate because there exist stable distributions of

the total pro�t among the retailers upon which no coalition can improve. The stability in the

sense of the core means that no group of retailers would have the incentive to leave the grand

coalition and form a smaller coalition because they collectively receive at least as much as they

could obtain for themselves as a coalition. Further, we introduce a speci�c allocation of the prof-

its, the so-called holding-cost based solution (HCB-solution). This solution is stable, that is, it

always belongs to the core of the game, and it possesses several nice properties. In particular, it

is a simple and practical solution under which no explicit transfer of savings between the retailers

is used: The pro�t portion attributed to each retailer equals to its holding cost savings. After

that, we turn our attention to study the properties of Shapley value. We show that Shapley

value may lie outside the core of FTLJR-game, and we give some conditions under which it is a

core stable allocation. Even though it may non-stable in the sense of the core, Shapley value is

always farsighted stable.

Finally, a comparison between the HCB-solution and Shapley value is provided. The com-

parison involves four criteria: stability, computational complexity, fairness and practical setting.

In term of stability, each of the two solutions guarantees one stability concept; HCB-solution

is core stable while Shapley value is farsighted stable. However, computing Shapley value is

much more time consuming than computing HCB-solution. Before discussing whether Shapley

value or HCB-solution is fair, we should make clear the meaning of fairness. Fairness is often

confused with stability in cooperative games. In this case, the meaning is di�erent; a fair alloca-

tion implies that each participant is satis�ed with his/her allocated pro�t portion according to

his/her contribution and/or to his/her partners' earnings. In this particular sense, Shapley value

may be considered as one of the most fair solution concept in game theory. It distributes the

rewards according to participants' marginal contribution. Thus, those who contribute more are

paid more. We show through a counterexample that HCB-solution may fail to guarantee such

propriety. From a practical point of view, the establishment of Shapley value is less convenient

as, it requires a third party to manage the system, while HCB-solution does not.

The contents of this chapter are as follows. In section 5.2 we study the model and introduce

the game. In section 5.3, we address the core stability of the grand coalition and study the prop-

erties of Shapley value. Moreover, we compare Shapley value to the proposed core allocation.

In section 5.4, in order to motivate the work in the rest of this dissertation, we analyze the case
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where the formation of the grand coalition can be constrained. We conclude by summarizing the

main insights of our results and discuss some extensions in section 5.5.

5.2 Model Description and Notations

We consider alliance formation and cost allocation problems in an in�nite-time-horizon one-

supplier n retailers joint replenishment model. Each retailer i is associated to an item charac-

terized by a volume (or a weight) denoted by Vi. We should note that the di�erent items are

assumed to be compatible to be delivered jointly. The demand rate, Di, of retailer i is supposed

to be a deterministic and has a constant rate. The cost of holding one unit of product per unit

of time at this retailer location is hi. For simpli�cation, we let Hi = hi.Di
2 be the holding cost

parameter of retailer i. We assume identical and constant lead times, and without loss of gener-

ality, are equal to zero. The inventory replenishment is made only by full truckload shipments.

A �xed ordering cost A is charged for each full truckload delivery.

 

Coalition 2 

Supplier 

Retailer 2 
Retailer 1 

Retailer 3 Retailer 4 Retailer 5 
Retailer 6 Coalition 1 

Figure 5.1: One supplier multi-retailer full-truck load joint replenishment system

As mentioned in Figure 5.1, we deal with a joint replenishment system. So a group of retailers

may form an alliance or a coalition S, by joining their orders as a single large order. Similarly to

the case where a retailer is ordering alone, the group of retailers can only order for full truckload

delivery. Let the common ordering cycle time be denoted by TS . The corresponding frequency

is denoted by NS . All notations and parameters are summarized below:

• N = {1, ..., n}: The set of retailers.

• Di: The deterministic demand of retailer i ∈ N .
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• hi: The holding cost per time unit of retailer i ∈ N .

• Hi = hi.Di
2 : The holding cost parameter of retailer i ∈ N .

• Vi: The volume/ weight of product i associated to retailer i ∈ N .

• A: The �xed ordering cost.

• CAP: The vehicle capacity.

• Qi: The order size of retailer i ∈ N .

• Ti: The ordering cycle time of retailer i ∈ N .

• Ni: The ordering frequency of retailer i ∈ N .

• C(i): The average total cost per time unit of retailer i ∈ N .

• TS : The ordering cycle time of coalition S, ∅ ⊂ S ⊆ N .

• NS : The ordering frequency of coalition S, ∅ ⊂ S ⊆ N .

• C(S): The average total cost per time unit of coalition S, ∅ ⊂ S ⊆ N .

When ordering alone, the optimal replenishment strategy under full truckload shipments

considerations for a retailer i is to order a full truck corresponding to the quantity Qi = CAP
Vi

every Ti = Qi

Di
= CAP

Vi.Di
unit of time. In other terms, the optimal replenishment policy for a retailer

i is to order a full truck with a frequency of Ni = Vi.Di
CAP . The total average cost corresponding

to such replenishment strategy is composed by two cost components. The �rst one is related to

the ordering cost occurred each time an order is made and is equal to A.Ni. The second cost

component corresponds to the holding cost (hi.Qi/2). As a result, the total average cost equals

C(i) = A.Ni + hi.Qi

2 . Since Ni = Di
Qi

, rewriting C(i) as a function of the frequency Ni gives :

C(i) = A.Ni +
Hi

Ni
, and Ni =

Vi.Di

CAP
.∀i ∈ {1, ..., n}. (5.1)

Above, we have determined the optimal replenishment policy for any retailer operating as a

single-coalition (standalone situation). Hereafter, we focus on the case where a group of retailers

cooperate by joining their orders. Consider a non-empty coalition of retailers S ⊆ N , if the

retailers in S cooperate they will make their orders at the same time, thus they will have the

same cycle time and the same ordering frequency respectively denoted by TS and NS . In coalition

S each retailer i is ordering the quantity Qi,S = Di
NS

. Since we suppose that only full truck orders

are authorized and no shortage is allowed, the total quantity delivered to coalition S equals the
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truck capacity CAP , i.e.,
∑

i∈S
Di.Vi
NS

= CAP . This means that the common ordering frequency

is the sum of the standalone ordering frequencies i.e.,

NS =
∑

i∈S

Di.Vi

CAP
=

∑

i∈S

Ni, ∅ ⊂ S ⊆ N (5.2)

Hence, coalition S charges (A.NS) ordering cost. The delivered products are stored in local

warehouses where every retailer supports his/her own holding cost, the holding cost charged by

the coalition is the sum of the individual holding costs. As a result, the average total cost for

an alliance S, C(S), is given by C(S) = A.NS +
P

i∈S hi.Qi,S

2 . Expressing the order size Qi,S as a

function of NS leads to : Qi,S = Di
NS

. The total average cost of coalition S is expressed as follows:

C(S) = A.NS +
HS

NS
= A.

∑

i∈S

Ni +
∑

i∈S Hi∑
i∈S Ni

, ∅ ⊂ S ⊆ N (5.3)

The saving or the worth of this coalition corresponds to the cost reduction between the

standalone situation and the cooperative situation, i.e:

v(S) =
∑

i∈S

C(i)− C(S) =
∑

i∈S

Hi

Ni
−

∑
i∈S Hi∑
i∈S Ni

, ∅ ⊂ S ⊆ N (5.4)

In the rest of the paper we will consider the savings full truckload joint replenishment game

(FTLJR-game), that will be denoted by (N, v). Where N denotes the set of retailers in the

distribution chain. v refers to the corresponding saving function; it assigns to each coalition its

corresponding worth: v : Ω → R such that v(S) =
∑

i∈S
Hi
Ni
−
P

i∈S HiP
i∈S Ni

and v(∅) = 0. We should

note that v(i) = 0 forall i ∈ N , this expresses the fact the standalone situation is our reference

situation.

Proposition 5.1 Any coalition is pro�table, i.e, v(S) ≥ 0 or C(S) ≤ ∑
i∈S C(i), ∀S ⊆ N .

Proof: LetS be a non-empty coalition. As showed in equation (5.3): C(S) = A.
∑

i∈S Ni +P
i∈S HiP
i∈S Ni

≤ A.
∑

i∈S Ni +
∑

i∈S
Hi
Ni

=
∑

i∈S C(i). ¤

Proposition 5.2 The FTLJR-game is superadditive, i.e, every disjoint coalitions are better o�

by merging into one coalition, i.e; C(S) + C(T ) ≥ C(S ∪ T ), ∀S, T ∈ Ω and S ∩ T = ∅.

Proof: Let S and T two disjoint and non-empty coalitions:

C(S) + C(T ) = A.(
∑

i∈S Ni +
∑

i∈T Ni) +
P

i∈S HiP
i∈S Ni

+
P

i∈T HiP
i∈T Ni

≥ A.(
∑

i∈S Ni +
∑

i∈S Ni) +P
i∈S Hi+

P
i∈T HiP

i∈S Ni+
P

i∈T Ni
= A.(

∑
i∈S∪T Ni +

P
i∈S∪T HiP
i∈S∪T Ni

= C(S ∪ T ). ¤

FTLJR-game is superadditive. Consequentially, the grand coalition is the most pro�table

coalition structure for the whole system. This has the following interpretation: the total pro�t
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under full cooperation (grand coalition) is larger than the pro�t of any other coalition structure

(the pro�t of a coalition structure is the sum of the pro�ts of the coalitions forming it). In what

follows, the focus will be on the problem of rewards distribution. The proposal is to identify,

whether there exist, stable allocations of the total pro�t among the retailers. Stability here refers

to stability in the sense of the core or in the farsighted sense.

5.3 Grand Coalition stability

5.3.1 Core Stability

When a group of retailers decides to cooperate, they will order jointly. As mentioned in equation

(7.9), due to the full truckload shipment considerations, the common frequency of a coalition S

equals the sum of the single-coalitions frequency of the member of coalition S. As a result, the

total ordering cost is unchanged: A.NS = A.
∑

i∈S Ni. However, the total holding cost is reduced

to (
P

i∈S HiP
i∈S Ni

) while it was (
∑

i∈S
Hi
Ni

). Consequentially, the full truckload joint replenishment leads

to reduce the holding costs; while in classic joint replenishment games, the savings are often

induced by the reduction of the ordering costs (or set up costs).

Hence, intuitively, one would like to allocate the joint costs in a way that each retailer

supports the same ordering cost he/she supports when ordering alone, plus the holding cost

occurred in the cooperative situation. Thus, a retailer i member of coalition S, ∅ ⊂ S ⊆ N will

pay A.Ni + HiP
j∈S Nj

while he/she was paying C(i) = A.Ni + Hi
Ni

. As a result, retailer i's savings

will be : X(i) = Hi
Ni
− HiP

j∈S Nj
. This pro�t allocation will refer to us the Holding Cost Based

solution (HCB-solution).

Theorem 5.1 The HCB-solution, X = (X1, ..., Xn) ∈ Rn, that assigns to each retailer i in

coalition S, ∅ ⊂ S ⊆ N , the sum of his/her single-coalition ordering cost and his/her cooperative

holding cost is a core allocation. X ∈ Co(N, v)

Proof: Forall i ∈ N,X(i) = Hi
Ni
− HiP

j∈N Nj
= Hi

Ni
− Hi

NN
, HCB-solution satis�es the following

axioms:

i) Individual rationality: ∀i ∈ N , NN ≥ Ni, then: Xi = Hi
Ni
− Hi

NN
≥ 0 = v(i)

ii) E�ciency: X(N) =
∑

i∈N Xi =
∑

i∈N (Hi
Ni
− Hi

NN
) =

∑
i∈N

Hi
Ni
−
P

i∈N Hi

NN
= v(N)

iii) Collective rationality (Core stability): ∀∅ ⊂ S ⊆ N, X(S) =
∑

i∈S Xi =
∑

i∈S
Hi
Ni
−
P

i∈S Hi

NN
≥

∑
i∈S

Hi
Ni
−
P

i∈S Hi

NS
= v(S) (Because NS =

∑
i∈S Ni ≤ NN =

∑
i∈N Ni). ¤
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5.3.2 Shapley value

In this section, our aim is to study the properties of Shapley value as a reward distribution

solution in the FTLJR-game.

Theorem 5.2 :

• (i) Shapley value is an imputation: Sh(N, v) ∈ I(N, v), it guarantees the individual ratio-

nality.

• (ii) Shapley value does not guarantee the stability in the sense of core.

Proof: • (i) The superadditivity of the game showed in proposition (5.2) implies that (v(S)−
v(S \ {i})) > v(i) = 0 for all i ∈ S ⊆ N .

Rewriting the Shapley Value of retailer i leads to:

Sh(N, v)(i) =
∑

S⊆N :i∈S

(|S| − 1)!(|N | − |S|)!
|N |! (v(S)− v(S \ {i}))

≥ v(i).
∑

S⊆N :i∈S

(|S| − 1)!(|N | − |S|)!
|N |! = 0

• (ii) To prove that Shapley value is out of the core, we use the following example. We

consider a system of three retailers. Their corresponding parameters, costs and Shapley

values are reported in Table 6.1. In Table 6.2, to each non-single coalition, we associate

its value and corresponding Shapley value. Since v({1, 2}) ≥ Sh(N, v)({1, 2}), it is better

for retailers 1 and 2 to deviate from the grand coalition {1, 2, 3} and work for their own

by forming coalition {1, 2}. Hence, Shapley value does not guarantee the core-stability of

coalition {1, 2, 3}.

Table 5.1: Retailers parameters and Shapley value
Retailer Di hi Vi Cap A C(i) Sh(N, v)(i)

{1} 100 6 1 20 20 160 36.99
{2} 800 1 1 20 20 810 15.11
{3} 700 1 1 20 20 710 14.76
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Table 5.2: Core stability of Shapley value
Coalition v(S) Sh(N, v)(S)

{1, 2, 3} 66.875 66.875
{1, 2} 54.44 52.10
{1, 3} 53.75 51.75
{2, 3} 10 29.88

Above, we showed that the Shapley value may lie outside the core. However it may be in

the core under some assumptions. For instance, when all holding costs and volumes are equal,

Shapley value is a core allocation.

Theorem 5.3 If for all i ∈ N, Hi = H and Vi = V then Sh(N, v) ∈ Co(N, v).

Proof: For any non-empty coalition, S ⊆ N , v(S) = (
∑

k∈S
hk.Dk
2.Nk

−
P

k∈S hk.Dk

2
P

k∈S Nk
) and Nk =

Dk.Vk
CAP . If we assume that all holding costs and products volumes are equal, i.e, ∀k ∈ N, hk = h

and Vk = V , the worth of coalition S, v(S) is simpli�ed to: v(S) = h.CAP
2.V .(|S| − 1). Hence,

∀i ∈ N and ∀S ⊆ N, v(S) − v(S \ {i}) = h.CAP
2.V . Rewriting the Shapley Value of any retailer i

leads to:

Sh(N, v)(i) =
h.CAP

2.V
.

∑

S⊆N :i∈S

(|S| − 1)!(|N | − |S|)!
|N |! (5.5)

For |S| = 1, there is only one coalition containing retailer i, in this case (|S|−1)!(|N |−|S|)!
|N |! = 0.

For |S| = 2, ..., |N |, there exists (|S|−1
|N |−1) coalitions with cardinality |S| that contain retailer i.

Equation (5.5) may be rewritten as;

Sh(N, v)(i) =
h.CAP

2.V
.

|N |∑

|S|=2

(|S| − 1)!(|N | − |S|)!
|N |! .(|S|−1

|N |−1)

=
h.CAP

2.V
.

|N |∑

|S|=2

(|S| − 1)!(|N | − |S|)!
|N |! .

(|N | − 1)!
(|S| − 1)!(|N | − |S|)!

=
h.CAP

2.V
.

|N |∑

|S|=2

(|N | − 1)!
|N |!

=
h.CAP

2.V
.

|N |∑

|S|=2

1
|N |

=
h.CAP

2.V

(|N | − 1)
|N | ≥ v(i) = 0

Above we showed that Shapley value is an imputation, to prove that Shapley value belongs to the
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core of the game (N, v) reduces to prove that it satis�es the collective rationality property, that

is we have to show that for every non-empty coalition S ⊆ N , Sh(N, v)(S) ≥ v(S).

For any non-empty coalition S ⊆ N We have,

Sh(N, v)(S) =
∑

i∈S

Sh(N, v)(i) =
∑

i∈S

h.CAP

2.V

(|N | − 1)
|N | =

h.CAP

2.V

(|N | − 1)
|N | .|S|

Since |N | ≥ |S| we have (|N |−1)
|N | ≥ (|S|−1)

|S| , as result;

Sh(N, v)(S) =
h.CAP

2.V

(|N | − 1)
|N | .|S| ≥ h.CAP

2.V

(|S| − 1)
|S| .|S| = h.CAP

2.V
(|S| − 1) = v(S).¤

Above we showed that Shapley value may not guarantee the core stability. However, Shapley

value is always a farsighted stable imputation.

Theorem 5.4 : Sh(N, v) guarantee the farsighted stability of the grand coalition N .

Proof: The proof of this theorem arises immediately from the results of Béal et al. (2008). The

authors show that for all superadditive games (N, v), Shapley value is core stable or farsighted

stable. Above we showed that Shapley value may lie outside the core, which proves the theorem.

¤

5.3.3 Comparison

In this section, we aim at addressing the main advantages and weaknesses of HCB-solution and

Shapley value.

We proved that HCB-solution, assigning to each retailer the sum of his/her single-coalition

ordering cost and his/her cooperative holding cost, is a core allocation. In addition of satisfying

the stability of the grand coalition, this allocation has the merit to be a practical and simple

allocation. In fact, the worth of each cooperating retailer equals the gap in holding cost between

the stand-alone situation and the cooperative situation. Hence, there will be no explicit money

transfer between the cooperating retailers. And there will be no need to have a third party to

manage the rewards distribution.

The portion of the pro�t of each retailer is function of his/her holding cost. However, the

holding parameter of each retailer may be kept as private information. Only ordering frequen-

cies are necessary for the cooperation. As a result, the savings of each retailer may be private

information. This observation has the following interesting interpretation: It means that HCB-

solution does not alter the "competition" and "rivalry" between the retailers. As such, in the

one hand, each retailer may keep his savings as private information. In the other hand, he/she
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may enhance his/her savings on improving his/her own holding parameters.

After presenting some merits of HCB-solution, in what follows, we discuss its drawbacks

and limitations. Even it though guarantees the core stability, there are some situations where

the proposed core allocation lead to some "unfairness". For instance, when the ordering cost

is important, the savings of the retailer having the highest ordering frequency would be not

important enough compared to that of his/her partners. The same problem happens when the

retailer having the highest ordering frequency has the lowest holding cost and the retailers hav-

ing much lower ordering frequency have much higher holding cost. In both situations, retailer

having the highest ordering frequency contributes more to the advantage of the other retailers

then to his/her own advantage. For a better comprehension of these insights, we address below

an example. Let us consider three retailers forming the alliance denoted by N = {1, 2, 3}. The

retailers' parameters and standalone costs are reported in Table 7.2, coalitions' costs and values

are reported in Table 5.4. HCB-solution is reported in Table 5.4.

Table 5.3: Retailers' Costs and Parameters (Decentralized case)

Retailer Di hi Vi Cap A Ni Ordering Cost Holding Cost Total Cost: C(i)

{1} 600 1 1 50 20 12 240 25 265

{2} 100 2 1 50 20 2 40 50 90

{3} 50 4 1 50 20 1 20 100 120

Table 5.4: Coalitions' Costs and Savings
Coalition (S) C(S) v(S)

{1} 265 0

{2} 90 0

{3} 120 0

{1, 2} 308.33 46.67

{1, 3} 290.76 94.23

{2, 3} 126.66 83.33

{1, 2, 3} 333.33 141.66
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Table 5.5: HCB-solution

Retailer Ordering Cost Holding Cost allocated Total Cost Pro�t amount: X(i) Pro�t ratio
{1} 240 20 260 5 1.86%
{2} 40 6.66 46.66 43.33 48.14%
{3} 20 6.66 26.66 93.33 77.77%

It is obvious that the grand coalition {1,2,3} is stable in the sense of the core. In fact no sub-

coalition will have the intention to defect from alliance {1,2,3} otherwise it will get less savings.

For instance, v({1, 2}) = 46.42 < X({1, 2}) = 48.33, v({1, 3}) = 94.23 < X({1, 3}) = 98.33 and

v({2, 3}) = 83.33 < X({2, 3}) = 136.66.

The holding cost allocated to each retailer is proportional to the common ordering frequency

N{1,2,3} = N1 + N2 + N3. Hence, retailers 2 and 3 bene�t from the large ordering frequency of

retailer 1. As a result, retailer 3 having the lowest ordering frequency and the highest holding

cost has the biggest pro�t: he/she gets a pro�t ratio of 77.9%, while retailer 1 having the largest

ordering frequency only gets a pro�t ratio of 1.86%. Hence, it is easy to conclude that retailer

1 contributes to the advantage of retailers 2 and 3 more than to his/her own advantage. This

may be possibly interpreted as an unfairness. Retailer 1 may cause the disbanding of coalition

{1,2,3} because his/her savings would not seem important enough to cover the cooperation

setting e�ort and investment. Moreover, in practice, a retailer taking part in a cooperation

is not only interested in his/her own pro�t, but he/she is always interested in his/her pro�t

regarding the pro�ts of his/her partners. For this reason, when there is a huge gap between the

pro�ts of retailers forming an alliance, a retailer may be nonrational and can give up his/her

negligible pro�t to deprive his/her partners ("rival/compititor") to have a more important pro�t:

the stability of the alliance is no longer guaranteed even if the pro�ts are allocated by respect to

game theory rules.

To avoid the above described limitation, one would think to look for allocations having

the following propriety: those who contribute more to the groups that include them should be

paid more. Shapley value (Shapley, 1953b) is usually viewed as a good normative answer to that

question. Its major contribution is to distribute the rewards by respect to the contribution of each

retailer. Hence, the pro�t portion attributed to each retailer depends on his/her contribution. In

this sense, Shapley value is fairer than HCB-solution. To illustrate this statement let us consider

the same example described in Table 7.2. The marginal contribution of the di�erent retailers

is reported in Table 5.6. Shapley value is obtained by averaging the marginal contributions for

all possible orderings. The result is reported in Table 5.7. As one can remark, the pro�t rate
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of retailer 1 under Shapley value is around ten times his/her pro�t rate under HCB-solution.

We should note that retailer 1 cannot be paid more because when increasing the total ordering

frequency (which is bene�cial for retailers 2 and 3), retailer 1 is also increasing the total cost.

Table 5.6: Retailers' marginal contribution
Permutation Retailer

{1} {2} {3}
1 2 3 0 46.42 95.23
1 3 2 0 47.43 94.23
2 1 3 46.42 0 95.23
2 3 1 58.33 0 83.33
3 1 2 94.23 47.43 0
3 2 1 58.33 83.33 0
Total 257.32 224.63 368.04

Table 5.7: Shapley Value allocation
Retailer allocated Total Cost: C(i)-Sh(N,v)(i) Pro�t amount: Sh(N,v)(i) Pro�t ratio
{1} 222.11 42.88 16.18%
{2} 52.56 37.43 41.59%
{3} 58.65 61.34 51.11%

Shapley value is one of the key solution concepts in cooperative game theory. As discussed

above, its main advantage is that it is a fair allocation, but its main problem is that, for many

games, Shapley value cannot be determined in polynomial time. Especially, when we deal with a

game with large number of retailers, the problem of computing Shapley value becomes very time

consuming. In addition to the computational aspect, Shapley value presents another limitation:

it may be less easy to put into practice than HCB-solution. For instance, under HCB-solution

the pro�t of each retailer holds by reducing the holding costs. As a result, each retailer would

take pro�t form the cooperating by himself/herself by improving his/her holding costs. However,

under Shapley value, there must be an explicit transfer of value (money) between the di�erent

retailers; the presence of a Third Party to mange such situation may be required, which in turn

generates additional charges.

We conclude this section by summarizing the main advantages and drawbacks of HCB-

solution and Shapley value, see Table 5.8. Each of the two allocations guarantees the stability of

the grand coalition. Shapley value ensures the farsighted stability while HCB-solution guarantee

the stability in the sense of the core. In term of computational complexity, Shapley value is more

complex than HCB-solution. However, Shapley value seems to be more fair than HCB-solution,

in the sense that the retailers who contribute more are paid more. Nevertheless, compared to
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HCB-solution, the establishment of Shapley value solution is less practical and requires more

coordination mechanisms and in turn may be more costly.

Table 5.8: Comparison between Shapley value and HCB-solution
Stability Complexity Fairness Practical setting

Shapley Value + - + -
Core allocation X + + - +

5.4 Cooperation under additional constraints

Above, we showed that due to the superadditivity and without additional constraints, the grand

coalition grouping all retailers is the most bene�cial coalition structure. However, as one can

expect, grouping all retailers in a single (large) coalition cannot be easily achieved. For instance,

in addition to traditional "social" barriers that privileged small size coalitions to large size

ones, there might be some exogenous or endogenous constraints that may hinder the formation

of the grand coalition. For example, there might be constraints on the supplier's production

capacity (it was assumed in the one-supplier multi-retailer inventory games, that the supplier

production system is incapacitated and thus can ful�l large ordered quantities). Also, there

might be constraints on the number of coalitions, or on the sizes of coalitions (the number

of agents per coalition does not exceed a threshold number). With any additional constraint,

the grand coalition cannot be formed and the di�erent retailers will form separate and disjoint

coalitions forming a coalition structure (partition). The question now is how to form and to

search for such coalition structure. Intuitively, as the concern of supply chain models was quite

often to optimize the chain as a whole, one can look to �nd the partition that minimizes the

total systemwide costs/maximizes the total systemwide savings (see Figure 5.2). Such coalition

structure will refers as the optimal coalition structure (or full-cooperative coalition structure).
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Figure 5.2: Additional constraints' e�ects on the superadditivity

For instance, when constraining the cardinality of the coalition structure (the number of

coalitions in the system at least equals a threshold value, L ≥ 2) the optimization problem will

be

P ∗
1 = argmax

P∈Pv(P ) such that |P | ≥ L (5.6)

Similarly, the optimization problem of searching for the optimal coalition structure that

maximizes the total systemwide savings under the constraint that the number of retailers per

coalition is limited to m, 2 ≤ m < n, is as follows

P ∗
2 = argmax

P∈Pv(P ) such that ∀Sj ∈ P, |Sj | ≤ m, 2 ≤ m < n (5.7)

Proposition 5.3 The problem of searching for the optimal coalition structure that contains at

least L coalitions is equivalent to the problem of searching for the optimal coalition structure that

contains exactly L coalitions.

P ∗
1 = argmax

P∈Pv(P ) such that |P | ≥ L ⇐⇒ P ∗
1 = argmax

P∈Pv(P ) such that |P | = L

Proof: The proof of the proposition arises immediately from the superadditivity of the game.
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Let us suppose that the optimal coalition structure is formed by (L + 1) coalitions, i,e : P ∗
1 =

{S1, ..., SL, SL+1} = argmax
P∈Pv(P ). Let P ′ be the coalition structure obtained by the merging

of coalitions SL and SL+1 so P ′ = {S1, ..., SL−1, SL ∪ SL+1}. The superadditivity of the game

gives v(SL ∪ SL+1) ≤ v(SL) + v(SL+1) then v(P ′) ≥ v(P ∗
1 ),which proves the proposition. ¤

Proposition 5.4 The coalition structure maximizing the total systemwide pro�ts with the con-

straint that the number of retailers within the same coalition does not exceed m, 2 ≤ m < n

retailers is formed by exactly d n
me coalitions, i.e.,

P ∗
2 = argmax

P∈Pv(P ) such that ∀Sj ∈ P, |Sj | ≤ m =⇒ |P ∗
2 | = d n

m
e

Proof: Let P ∗
2 = {S1, ..., SL} suppose that |P ∗

2 | < d n
me this means that the coalition structure

P ∗
2 contains at maximum d n

me − 1 coalitions (|P ∗
2 | ≤ d n

me − 1). Since the coalitions' cardinality

is limited to m, the maximum of retailers in the coalition structure P ∗
2 is m.(d n

me − 1) < n. As

a result, the coalition structure P ∗
2 should contain at least d n

me coalitions, i.e., |P ∗
2 | ≥ d n

me. Now
to prove that the optimal coalition structure should contain exactly d n

me, we show in what follows

that for any coalition structure formed by more than d n
me coalitions, there exists a more pro�table

coalition structure containing exactly d n
me coalitions.

For any n,m ∈ N such that n ≥ m, there exists at least one coalition structure formed by d n
me

coalitions: each of them do not exceed m retailers. And then, any coalition structure formed by

more than d n
me coalitions may be transformed into a coalition structure formed by exactly d n

me;
each of them does not exceed m retailers. To achieve such transformation, two operations are

used: merging and splitting. The margining consists in gathering the coalitions whose sum of

members does not exceed m actors in only one coalition. When the merging is impossible, the

splitting is used. It consists in disbanding one or more coalitions and to assign their various

members to the other coalitions while respecting the constraint of cardinality. We should note

that the choice of the coalition to split is not arbitrary and should concern the coalition having

the lowest ordering frequency. Since we deal with a superadditive game where every set of disjoint

coalitions are better o� by merging into one, the operations of merging or splitting exposed above

lead to a more pro�table coalition structure formed by exactly d n
me, which proves the proposition.¤

For a better understanding of the problem of constraining the formation of the grand coalition, we

present in the following a small numerical example that will allow us to discuss and to motivate

some future results. We consider a supply chain formed by 10 retailers. Their corresponding

parameters (random parameters) and the outcome of the game are reported in Table 5.9.

Without any additional constraint it is bene�cial for all the retailers to form the grand coali-
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Table 5.9: A 10-retailers totally centralized system
Retailer Di hi Vi Cap A Cost: C(i)
{1} 468 7 1 50 100 1111
{2} 478 1 1 50 100 981
{3} 372 8 1 50 100 944
{4} 291 6 1 50 100 732
{5} 469 10 1 50 100 1188
{6} 144 9 1 50 100 513
{7} 89 7 1 50 100 353
{8} 269 2 1 50 100 588
{9} 40 3 1 50 100 155
{10} 137 6 1 50 100 424

Total Decentralized System Cost: 6989
Centralized System

Without Additional Constraints:
N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 5664

With Cardinality Constraints:
P ∗ = {{1, 3, 4, 5}{2, 6, 7, 10}{8, 9}} 5860

tion, when considering coalitions' cardinality constraints (the number of retailers per coalition

is limited to 4 retailers), the coalition structure that optimizes the whole supply chain is P ∗ =

argmax
P∈Pv(P ) such that ∀Sj ∈ P, |Sj | ≤ 4 = {{1, 3, 4, 5}{2, 6, 7, 10}{8, 9}}. Once the optimal

(centralized) coalition structure P ∗ is determined, the next natural question to be asked is how to

allocate the total cost (C(P ∗) = 5860) / divide the total savings (v(P ∗) = 6989− 5860 = 1129)

among the various retailers that compose the system.

To deal with the pro�t sharing question, we should come back to the question of alliance for-

mation, because both cooperative behavior problems are interrelated and thus cannot be treated

separately. In our case, the coalitions are generated in a way that optimizes the supply chain as

a whole. The question that immediately arises here is to determine whether the con�guration

that optimizes the chain as a whole is the most individually bene�cial con�guration for the re-

tailers. The second interesting question is whether a set of completely independent retailers will

naturally form the "full-cooperative" coalition structure. If not, how do the di�erent retailers

form their alliances?

These questions constitute our main motivation for the rest of the dissertation. In the next

chapter, we will show that the "full-cooperative" coalition structure is not a viable objective in n-

independent retailer cooperative games and will propose a more appropriate coalition formation

approach.
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5.5 Conclusion

In this chapter, we were concerned with alliance formation and cost allocation in a one supplier

multiple-retailer full truckload joint replenishment game. We considered a system where n retail-

ers buy one or a set of products from the same supplier to meet a deterministic market demand.

The retailers may follow a total decentralized strategy, which means that each of them will look

to optimize his/her own system regarding his/her own economic parameters and objectives. Go-

ing away from the decentralized strategy, the retailers may follow a cooperative strategy where

they manage their system collectively, by making joint orders, to achieve some savings. In both

structures, the delivery are made with full truckload shipments. A �xed ordering cost is incurred

for each dispatched truck. The delivered products are stored in local warehouses where holding

costs are generated for each retailer.

The arising cooperative game is showed to be superadditive, that is without additional con-

straints, the grand coalition is the most pro�table con�guration. Since the cooperation between

retailers is essentially motivated by their own pro�t, and any unstable cost allocation may in-

duce the disbanding of the grand coalition, we gave much attention to study the question of

savings sharing and grand coalition stability. We mainly considered two stability concepts; the

core stability and the farsighted stability. We showed that the core of the game is never empty

and a core allocation was provided. After that, we turned our attention to investigate Shapley

value properties. We showed that Shapeley value may lie outside the core; however, it is always

farsighted stable. We then focused on a detailed comparison and discussion on the advantages

and drawbacks of our proposed core allocation and Sahpley value solution. The comparison was

mainly based on four aspects; stability, complexity, fairness and practical setting.

Finally, in the last section of the chapter, we discussed the issue of considering some con-

straints that hinder the formation of the grand coalition. The question that has been asked is

how to form the alliances. We discussed the intuitive way of generating the coalition structure

that optimizes the whole supply chain. The answer to this question will be more developed in

chapter 6, where we will consider a non-supperadditive joint replenishment game.



Chapter 6

Coalition Formation and Cost
Allocation for Joint Replenishment
Systems

This chapter aims at studying the issues of coalition formation and pro�t allocation

in joint replenishment systems. Under this model, the reorder cost associated with an

alliance/coalition of retailers placing an order at the same time equals some alliance-

independent cost plus retailer-dependent costs. In addition, each retailer is associated

with a retailer-dependent holding-cost rate. Despite early works on this �eld, we do

not aim at optimizing the supply chain as whole. In our analysis, we focus on a supply

chain where the cooperation cannot be forced, i.e, each retailer joins the coalition

he/she wants to belong to. We present an iterative procedure to form the coalitions

and focus on analyzing the merits of such achieved "e�cient coalition structure".

Without too much loss of global supply chain performance, when considering the cost-

based proportional rule, the e�cient coalition structure is individually and weakly

stable. We provide a condition under which the strong stability (stability in the sense

of coalition structure core) holds.

77
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6.1 Introduction

This chapter examines the subject of cooperation in joint replenishment systems. In particular,

we consider a decentralized supply chain formed by one supplier and n retailers belonging to

di�erent �rms (or are decentralized divisions of the same �rm). Each retailer buys only one

product from the supplier (products bought by di�erent retailers may be identical or speci�c to

each retailer) to meet a deterministic market demand. In order to save on delivery costs, a set

of retailers may cooperate by joining their orders as a large order. In such cooperative structure,

a �xed ordering cost is incurred for each order, which is independent of the set of retailers that

places the order. In addition, an individual ordering cost is incurred for each retailer included in

the joint order. When a retailer manages his/her inventory individually, he/she has to support

a total delivery cost which consists of the �xed ordering cost and an individual ordering cost.

The former denotes the �xed �nancial charges of placing an order. The later may include

transportation costs and all additional charges related to the characteristics and resources of

the retailer (geographic location, handling resources, etc.). The individual costs are supposed

to be independent of the quantities. We assume that the delivered products are stored in local

warehouses where holding costs are supported by each retailer. Our interest is to look at the

afore-described supply chain and to study the alliances that the retailers may possibly form.

Furthermore, we provide insights on how to divide the pro�t among the cooperating retailers.

This chapter contributes to the emerging literature on the analysis of problems of distribution

channel cooperation by means of cooperative game theory. Closely related to our work are the

papers (Dror and Hartman, 2007; Anily and Haviv, 2007; Zhang, 2009), see chapter 4 for a

review. As emphasized in Chapter 3, alliance formation topic has received very little attention in

supply chain management literature. This literature seems so far to have been interested only in

the stability of one set of agents. Indeed, early works supposed that the games are superadditive

in the sense that any two or more disjoint coalitions, when acting together, can get at least as

much as they can when acting separately. In such situations there are good reasons to expect

the formation of the grand coalition. However, many situations (as in the case of our model) are

not superadditive. In this case, there are two fundamental questions that need to be answered:

(1) Which coalitions can be expected to be formed? and (2) How will the players of coalitions

that are actually formed apportion their joint pro�t?

In this chapter, the focus will be to answer the above cooperative behavior questions using

some principles of cooperative game theory, particularly the concept of "coalition structure core".

We wish to point out that, to the best of our knowledge, there is no paper in the supply chain

management literature that has addressed explicitly the above two questions and this is the �rst
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paper that uses the "coalition structure core" in such literature.

Most of the research on supply chain coordination/cooperation particularly in joint replen-

ishment frame works, has been concerned with optimizing the whole supply chain. The main

goal was to show that totally centralized structures are more e�cient than decentralized one by

�nding the solution/policy that minimizes the total systemwide costs/maximizes the total sys-

temwide pro�ts. Therefore, to answer the question concerning coalition formation problem, one

would look to optimize the whole considered distribution chain by �nding the coalition structure

that optimizes the global system performance.

Optimizing the whole supply chain requires full cooperation between the di�erent retailers.

Thus, looking for such "full cooperative " structure is a viable objective when the system belongs

to a single actor or is managed by one decision maker. In the current model we deal with

totally independent retailers/�rms. Therefore, there are good reasons to expect that such "full

cooperative" structure fails to form, because acting together may be di�cult. The factors of

competition, rivalry, con�dence and fairness constitute the major barriers for achieving such

objective. This motivates us to propose a new formulation of the coalition formation problem.

Our focus will be on a coalition structure where the di�erent coalitions can compete against

each other and the cooperation cannot be forced. The e�ciency of a given coalition is measured

according to its pro�t rate. To build the desired e�cient coalition structure (ECS), we use an

iterative procedure that generates one e�cient coalition at a time. That is, once the most e�cient

alliance is formed (the coalition having the highest pro�t rate), a group of retailers may react

and form a second e�cient coalition, a third one and so on until the formation of the coalition

structure.

The activities of coalition formation and pro�t allocation are closely related. On the one

hand, the �nal allocation of payo�s to the players depends on the coalitions that are formed,

and on the other hand, coalitions that are �nally formed depend on the payo�s available to each

player in each of these coalitions. Thus, we �nd it interesting to link the pro�t allocation to

coalition formation's criterion, which is the pro�t rate here. Therefore, the retailers within the

same coalition get the same pro�t rate, the resulting allocation is the well-known cost-based

proportional rule. Under this pro�t allocation, no retailer would have the incentive to leave

his/her coalition to join another existing one. The e�cient coalition structure is then individually

stable. We also show that no group of retailers that are members of the same coalition would

defect from their coalition to create a new alliance. This interesting group deviation immunity is

referred to as a weak stability concept. We then provide some conditions under which the strong

stability or the stability in the coalition structure core holds. Under strong stability, the e�cient
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coalition structure will also be immune to the deviation of group of retailers that are members

of distinct coalitions.

To build the e�cient coalition, we need to explore the space of all possible coalitions which

is not a viable method except for a small number of retailers. To �nd an exact solution to

the problem of coalition formation, we mainly use fractional programming, which is a technique

developed in operations research to deal with optimization problem having a ratio objective

function. That is, we reformulate the problem of �nding the e�cient coalitions as a single-

ratio fractional program that is then linearized and showed to be solvable in a polynomial time.

Before looking for this solution, our ambition was to know whether it is possible to predict who

are the retailers that are likely to form an e�cient coalition only by looking and comparing their

parameters. In the hope of answering this question, we concentrated our investigations on �nding

a kind of "neighborhood logic" or "grouping sense" that the retailers in the e�cient coalition

would be likely to follow. We succeeded to �nd an interesting neighborhood logic in two special

cases of our problem (the case where all retailers' individual costs are equal and the case where

all retailers' equal cycle time lengths are equal). Because of the complex form of the pro�t rate

function, the grouping logic we found fails to be applied in the general case. Nevertheless, it

gives very encouraging results and hence provides good heuristic solution.

The rest of the chapter is organized as follows. In section 6.2, we introduce and study our

model. In section 6.3, we motivate our coalition structure approach and explain how to build

the e�cient coalitions. Section 6.4 is devoted to addressing the question of pro�t allocation

and e�cient coalition structure's stability. We propose, in section 6.5, an exact solution based

on fractional programming techniques in addition to a grouping heuristic that is showed to be

optimal for two particular cases of our model. Section 6.6 gives a numerical study in which

we evaluate the algorithmic solution performance and compare our e�cient coalition structure

(ECS) to the optimal supply chain con�guration. We conclude by summarizing the main insights

of our results in section 6.7.

6.2 Model Description and Notations

6.2.1 The Model

We consider the problems of alliance formation and cost allocation in an in�nite-horizon one-

supplier n retailers joint replenishment system. Each retailer i is assumed to face a deterministic,

constant demand rate denoted by Di. The cost of holding one unit of product per unit of time at

this retailer is hi. For simpli�cation, we let Hi = hi.Di
2 be the holding cost parameter of retailer
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i. We assume identical and constant lead times, without loss of generality, assumed to zero.

Each time a delivery is requested by a retailer i, a �xed ordering cost A is charged. In addition

a retailer-dependent cost Gi, called individual cost is supported.

A group of retailers may form an alliance or a coalition S, by joining their orders as a single

large order. In this case, the total ordering cost KS equals A +
∑

i∈S Gi. For simpli�cation we

let GS =
∑

i∈S Gi be the total individual ordering cost of coalition S and HS =
∑

i∈S
hi.Di

2 its

holding cost parameter. The EOQ (Economic order quantity) is used as a reorder policy. The

notations and parameters are summarized below:

• N={1,...,n}: The set of retailers.

• Di: The deterministic demand of retailer i ∈ N .

• hi: The holding cost per time unit of retailer i ∈ N .

• A: The �xed ordering cost.

• Gi: The individual ordering cost of retailer i ∈ N .

• Qi: The order size of retailer i ∈ N .

• Hi = hi.Di
2 : The holding cost parameter of retailer i ∈ N .

• Ki = A + Gi: The total ordering cost of retailer i ∈ N .

• C(i): The average total cost per time unit of retailer i ∈ N .

• Ti: The ordering cycle time of retailer i ∈ N .

• GS =
∑

i∈S Gi: The total individual ordering cost of coalition S, ∅ ⊂ S ⊆ N .

• KS = A + GS : The total ordering cost of coalition S, ∅ ⊂ S ⊆ N .

• HS =
∑

i∈S
hi.Di

2 : The holding parameter of coalition S, ∅ ⊂ S ⊆ N .

• TS : The ordering cycle time of coalition S, ∅ ⊂ S ⊆ N .

When ordering alone, the optimal replenishment parameters of a retailer i may be described

by the triplet (Ti
∗, Q∗

i , C
∗(i)). Where Q∗

i refers to the optimal ordering quantity and is equal to

Di.
√

Ki
Hi

. This quantity is ordered every Ti
∗ =

√
Ki
Hi

unit of time. The total average cost is then

C∗(i) = 2.
√

Ki.Hi.
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Above, we have determined the optimal replenishment policy for any retailer operating as an

independent economic entity. Hereafter, we focus on the case where a group of retailers cooperate

by joining their orders as a single large order, in order to achieve some savings by supporting

only one �xed ordering cost. Consider a non-empty coalition of retailers S ⊆ N , if the retailers in

S cooperate they will make their orders at the same time, thus they will have equal cycle times:

∀i ∈ S ⊆ N, Ti = TS , TS denotes the common cycle time. Let i ∈ S any retailer. Expressing the

order size Qi as a function of TS leads to : Qi = Di.TS . When joining their orders, the retailers

charge one ordering cost. The total ordering cost induced by the joint orders is then given by

: KS = A + GS . Since we suppose that the delivered products are stored in local warehouses

where every retailer supports his/her own holding cost, the holding cost charged by the coalition

is the sum of the individual holding costs. As a result, the average total cost for an alliance S,

C(S), is given by :

C(S) =
(A +

∑
i∈S Gi)

TS
+

∑

i∈S

hi.Qi

2
=

KS

TS
+ HS .TS , ∅ ⊂ S ⊆ N (6.1)

Minimizing the total cost with respect to TS gives the following results: the common optimal

cycle time length is T ∗S =
√

KS
HS

. The optimal lot size ordered by a retailer i member of coalition

S is Q∗
i,S = Di.T

∗
S =

√
KS .D2

i
HS

. The optimal cost of coalition S is obtained by substituting T ∗S in

equation (6.1):

C∗(S) = 2.
√

HS .KS , ∅ ⊂ S ⊆ N (6.2)

In summary, the optimal replenishment policy for a non-empty coalition S ⊆ N may be described

by the tuple (T ∗S , Q∗
i,S , C∗(S)).

For a system with a set of n retailers interested in a cooperative behavior, the question is

how to �nd the most advantageous alliances. In the next section, we give an analysis concerning

cooperation mechanisms. In section 4, we will address the question of generating the alliances.

6.2.2 Cooperative System Analysis

To deal with the problems of alliance formation and pro�t allocation we mainly use cooperative

game theory. We associate to the above described distribution chain a cooperative game with

coalition structure referred to us as the joint replenishment game, hereafter JR-game and

will be denoted by (N, v, P ). Where N = {1, 2, ..., n} is the set of all �rms/retailers and P is

any coalition structure from P the �nite set of coalition structures.

As mentioned in equation (6.2), C(S) speci�es for each non-empty coalition S, the cost of

its optimal inventory replenishment policy, i.e, the minimal total cost that the �rms in S can
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achieve when they operate jointly. To evaluate the savings achieved by any coalition S, we need

to compare the cooperative situation to the decentralized situation where each retailer in S is

working individually. The resulting savings function v is as follows:

v : Ω −→ R

S ½ v(S) = (
∑

i∈S C(i)− C(S))
(6.3)

The saving function v describes for each coalition of players, S ∈ Ω, the maximal worth

v(s) that they would divide among themselves if they were to cooperate together and with no

player outside S. The decentralized situation where each retailer operates for his/her own is the

situation of reference thus, the worth of single coalition is supposed to be null, i.e, i ∈ N, v(i) = 0.

Intuitively, a group of retailers decides to cooperate and to form a coalition only when their

joint cost is less than the sum of their costs when each of them was operating alone. Such

coalitions are called pro�table.

De�nition 16 A coalition S is pro�table or attractive if it has a positive worth ,i.e, v(S) ≥ 0

or C(S) ≤ ∑
i∈S C(i), ∀S ∈ Ω.

The �rst point to note in this model is that the pro�tability condition is not guaranteed for

all possible coalitions. To illustrate this observation, we present the following example. Let us

consider a chain formed by a set of three retailers. The corresponding parameters and costs are

reported in Table 6.1. In Table 6.2, we compute the savings achieved by all possible coalitions.

Therefore, we remark that the grand coalition {1, 2, 3} and coalition {1, 2} are not pro�table.

Table 6.1: Retailers' parameters and costs
Retailer A Gi Di hi C(i)
{1} 100 70 100 1 184.3
{2} 100 10 950 3 791.8
{3} 100 80 250 1 300

Table 6.2: Coalitions' costs and savings
Coalition C(S) v(S)

{1, 2} 1030.53 -54.3
{1, 3} 418.33 66.06
{2, 3} 1085.35 6.47
{1, 2, 3} 1289.96 -13.73
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Following the last remark, we should note that all coalitions will be pro�table in the special

case where retailers' individual costs are equal to zero. The resulting situation corresponds to

the model studied in (Meca et al., 2004).

Proposition 6.1 When individual costs are null, every alliance is pro�table.i.e:

If ∀ i ∈ N, Gi = 0 then ∀ ∅ ⊂ S ⊆ N : C(S) ≤
∑

i∈S

C(i)

Proof: Let us denote by C ′(S) and C ′(i) the optimal cost respectively for a coalition S and for

a retailer i. C ′(i) =
√

2AhiDi and C ′(S) =
√

2A
∑

i∈S hiDi.

For A ≥ 0, C ′(S) =
√

2A
√∑

i∈S hiDi ≤
√

2A
∑

i∈S

√
hiDi =

∑
i∈S C ′(i).¤

Adding a third cost component (individual cost) to the previous model changed its characteristics,

thus it is not su�cient anymore to have a non-null ordering cost to get pro�table coalitions.

Hereafter, we give some insights about the conditions under which a coalition is pro�table and

we explain why others are not.

As mentioned in Figure 6.1, if a retailer i deviates from his/her optimal cycle time T ∗i to

order at another cycle time T ∗S , his/her total cost is increased as a function of this deviation.
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Figure 6.1: Illustration of cycle time deviation

Let us de�ne by αi = T ∗S
T ∗i

, αi > 0. C(T ∗S) = Ki
T ∗S

+ Hi.T
∗
S = Ki

αi.T ∗i
+ Hi.αi.T

∗
i by substituting

T ∗i by its expression T ∗i =
√

Ki
Hi

we get: C(T ∗S) =
√

Ki.Hi
αi

+ αi.
√

Ki.Hi = ( 1
αi

+ αi)
C(T ∗i )

2 . The

cost rise of retailer i is then as follows: 4i(αi) = C(T ∗S)− C(T ∗i ) = (αi−1)2

2.αi
.C(T ∗i ). As a result,

the total cost deviation of the retailers forming a coalition S, characterized by the common cycle

time T ∗S is as follows :

4S =
∑

i∈S

(C(T ∗S)− C(T ∗i )) =
∑

i∈S

(αi − 1)2

2.αi
.C(T ∗i ). ∅ ⊂ S ⊆ N. (6.4)

On the other hand by making joint orders, the retailers reduce their ordering costs: each of

them was used to pay one ordering cost when he/she works individually by opposition to only
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one ordering cost in the case of an alliance. Indeed, for an alliance, S, formed by |S| retailers,
the savings per unit of time is expressed by the following equation.

πS =
(|S| − 1).A

T ∗S
, for all ∅ ⊂ S ⊆ N. (6.5)

Proposition 6.2 A coalition S is pro�table or attractive only beyond a threshold value of the

ordering cost Amin given by:

Amin = (|S| − 1).
∑

i∈S

(αi − 1)2T ∗i .C∗(i) (6.6)

Proof: A coalition S is pro�table only if the cost rise induced by the cycle time deviation is

balanced by the savings of ordering costs, i.e. πS ≥ 4S.

C(S) ≤ ∑
i∈S C(i) ⇐⇒ (|S|−1).A

T ∗S
≥ ∑

i∈S
(αi−1)2

2.αi
.C(T ∗i ) ⇐⇒ A ≥ (|S|−1).

∑
i∈S(αi−1)2T ∗i .C∗(i).¤

The pro�tability condition here has another crucial interpretation. It means that the game

is not superadditive in the sense that it is not guaranteed that any two or more disjoint coali-

tions, when merging into one coalition, increase their savings. As a result, the grand coalition

grouping all retailers may not be pro�table (see example Table 6.2). Therefore, the question that

immediately arises and needs to be answered is: Which coalitions can be expected to be formed?

6.3 E�cient Coalition Structure Generation

Most of the research on supply chain coordination has been concerned with optimizing the whole

supply chain. It has been shown that decentralized structures where each retailer makes his/her

decisions so as to minimize his/her own costs often lead to a loss of e�ciency for the chain as

a whole. However, totally centralized structures where decisions are made to minimize the total

systemwide costs (maximize the total systemwide pro�ts), prove to be more e�cient (Li and

Wang, 2007). Therefore, to answer the question concerning coalition formation problem, one

would look to optimize the whole considered distribution chain by �nding the coalition structure

that optimizes the global system performance i.e.,

P ∗ = argmaxP∈Pv(P ) (6.7)

The result of the above optimization problem will be a partition (Optimal Coalition Structure)

where the retailers are organized in many disjoint coalitions. Of course, the optimal coalition

structure may be the grand coalition N , but this is not true in general because the game is not

superadditive.
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It is obvious that achieving the above goal requires a full cooperation between the di�erent

retailers. Hence, looking for such "full cooperative " structure will be a viable objective only

when the system belongs to a single actor or is managed by one decision maker. In the current

model, we deal with totally independent retailers. Therefore, there are good reasons to expect

that "full cooperative" structure fails to be formed because as warned by Aumann and Drèze

(1974) "acting together may be di�cult or costly or the retailers may for various personal and

economic reasons not wish to do so". The factors of competition, rivalry, con�dence and fairness

constitute the major barriers of achieving such objective.

More importantly, since the retailers are independent actors, when cooperating, each one of

them is mainly interested in his/her own pro�t and his/her own system performance. Pro�t

sharing is therefore a fundamental question here. As exposed in cooperative game theory's

preliminary chapter (see chapter 3), in a game with coalition structure, the payo� is distributed

in a way that there is no-side payment between the distinct coalitions. The players within the

same coalition would divide among themselves the worth achieved by their own coalition. Thus,

each player's payo� is completely determined by the identity of the other members of his/her

coalition, no matter the payo� of other coalitions. Therefore, any retailer is only interested in

the pro�t of the coalition he/she wants to join and does not care about the total systemwide

pro�t.

Thus, global optimization or full cooperative system is not a viable objective in our n-

independent retailer cooperative game. The focus here is to discuss the issue of generating

an e�cient coalition structure for n-independent retailer cooperative game. We propose to build

the di�erent coalitions in a completely independent manner privileging individual coalition's per-

formance to that of the global system. Each retailer should have his/her own preferences over

coalitions to which he/she could belong. To do so he/she needs to compare coalitions' perfor-

mance. The question now is: is it su�cient to compare two coalitions only by their respective

savings? We �nd savings amount criterion not su�cient to compare two distinct coalitions with

possibly di�erent retailers' parameters. For instance, consider the example of a retailer i that

needs to choose between two coalitions, S 3 i and T 3 i with equal cardinal. Let us assume

that, C(S) = 100 and
∑

j∈S C(j) = 200, coalition S's savings is then equal to 100. Suppose

that, C(T ) = 9000 and
∑

j∈T C(j) = 10000, coalition T 's savings is then equal to 1000. It is

obvious that coalition T 's savings is ten times coalition S's savings. However, retailer i would

choose coalition S, because it has a higher pro�t rate. Thus, we found it more judicious and

more interesting to compare coalitions' performance or e�ciency regarding their respective pro�t

rate than their savings.
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De�nition 17 : The pro�t rate of a given coalition S is the ratio of its savings to its decen-

tralized cost,

π(S) =
v(S)∑
i∈S C(i)

=
∑

i∈S C(i)− C(S)∑
i∈S C(i)

(%), S ∈ Ω. (6.8)

Following the characterization of coalitions' e�ciency, we turn our attention to focus on

coalitions having higher pro�t rate. The coalition having the highest pro�t rate will be referred

as the most e�cient coalition and is de�ned as follows :

De�nition 18 The most e�cient coalition refers to the coalition that guarantees the highest

pro�t rate:

Sz
1 = argmaxS⊆N{π(S)} (6.9)

The most e�cient coalition Sz
1 has the following interesting interpretation. Since it guar-

antees the highest pro�t rate, coalition Sz
1 will be the most preferred coalition for each one of

its members. At the same time, this coalition is "saturated" in the sense that the adhesion of

any retailer or group or retailers outside Sz
1 will be rejected, because by construction, this will

decrease the coalition's pro�t rate. Now suppose that coalition Sz
1 is formed, the question is how

should the retailers outside Sz
1 organize themselves to cooperate. To answer to this question, we

�rst consider the new system, or the updated system N \ Sz
1 and we suppose that, similarly to

Sz
1 , the most e�cient coalition Sz

2 in the new system N \ Sz
1 will arise.

Sz
2 = argmaxS⊆(N\Sz

1 ){π(S)} (6.10)

Now the procedure is simple, we assume that the remaining set of retailers N \ (Sz
1 ∪ Sz

2 )

will react in the same manner, that is a third e�cient coalition Sz
3 will be formed, a fourth and

so on until assigning all retailers to their e�cient coalitions. It is clear that, by construction, the

e�cient coalitions are disjoint, therefore they form a partition of N . This partition will refers to

the e�cient coalition structure and will be denoted by Pz.

De�nition 19 : The E�cient Coalition Structure (ECS) Pz refers to the partition that

holds when each �rm/retailer joins his/her e�cient coalition, i.e, Pz = {Sz
1 , Sz

2 , ..., Sz
m} such

that each coalition Sz
i satis�es the equation:

Sz
i = argmax

S⊆(N\∪j=i−1
j=1 Sz

j )
{π(S)}, Sz

i ∈ Pz (6.11)

To conclude, the positioning of the above proposed e�cient coalition structure in games with

coalition structures is well illustrated by Figure (6.2 ).
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Figure 6.2: E�cient Coalition Structure Positioning

On analyzing the merits of the e�cient coalition structure, Pz, the �rst point to note is that

this partition always exists and is easy to form. Second, Pz is formed by totally independent

coalitions. This makes the management of such coalition structure easier than that of any other

coalition structure. For instance, there is no need to have a third party to manage the whole

system, each coalition is working for its own and since it contains a restricted number of �rms

compared to that of the grand coalition, mutual agreements can be found and the cooperation

process can be put into practice easily. Moreover, e�cient coalition structure Pz has another

interesting interpretation. It does not alter the competition between the coalitions. That is when

the most e�cient coalition (the coalition having the highest power) is formed, some retailers react

by forming a second e�cient coalition and so on. The e�cient coalition structure Pz is then

original in the sense that it combines competition and cooperation. Indeed, the retailers �rst

compete among each other to form the most e�cient coalition for their own sake, knowing that

within the coalition they will be part of, they will cooperate with other retailers, that are part of

the same coalition. This observation is extremely important since the wide supply chain literature

was only concentrated in studying completely competitive situations or completely cooperative

ones.

In coalition formation games, the quality of a coalition structure is often evaluated according

to its stability. To know whether ECS is stable or not, we should answer the question : How will

the retailers of coalitions that are actually formed apportion their joint pro�t?
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6.4 Pro�t Sharing and Stability

The focus of this section will be to address the question of pro�t sharing through which the

stability of e�cient coalition structure Pz will be investigated. The �rst point to note is that

even if they are treated separately, the two aspects of coalitional behavior, coalition formation and

pro�t allocation, are closely related. On the one hand, the �nal allocation of payo�s to the players

depends on the coalitions that are �nally formed and, on the other hand, coalitions that �nally

form depend on the payo�s available to each player in each of these coalitions. Thus, the payo�s

in�uence the coalition structure and vice versa. In our case, the e�cient coalition structure Pz

is formed in a way that each retailer joins the coalition that guarantees the maximum possible

pro�t rate. We should remember that coalition's pro�t rate was de�ned as the ratio of coalition's

savings to coalition's decentralized cost. Intuitively, one way to satisfy the cooperating retailers

within the same coalition is to pay them proportionally to their standalone costs. The resulting

allocation is the well-known proportional rule. In what follows, we �rst remember the cost-based

proportional rule, the allocation that we use in the rest of the chapter. Then, we turn our

attention to focus on coalition structure Pz's stability.

De�nition 20 : Proportional allocation
The cost-based proportional rule consists in allocating the savings in proportion with the initial

cost of di�erent retailers. Thus, in the e�cient coalition structure Pz each retailer i member of

coalition Sz
k gets,

X(i, Sz
k ) =

C(i)∑
j∈Sz

k
C(j)

.v(Sz
k ) = C(i).π(Sz

k ). i ∈ Sz
k ∈ Pz. (6.12)

Following the de�nition of the savings allocation rule, one can compute the pro�t rate of each

retailer. The pro�t rate is the ratio of the attributed savings to the standalone (initial) cost of

each retailer. In the e�cient coalition structure Pz, the pro�t ratio of a retailer i member of

coalition Sz
k is as follows:

π(i, Sz
k ) =

X(i, Sz
k )

C(i)
= π(Sz

k ), i ∈ Sz
k ∈ Pz. (6.13)

The cost-based proportional rule has the interesting propriety that the retailers within the same

coalition get the same pro�t ratio.

For a better understanding of the afore described e�cient coalition structure and cost-based

allocation, we present the following numerical example. We consider a 10-retailer coalition for-

mation game. Retailers' parameters and the main outcomes of the game are reported in Table
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6.3. The e�cient coalition structure is Pz = {{5, 6, 9}, {3, 4, 8, 10}, {1, 7}, {2}}. The coalitions

here are ranked by their pro�t rate, which corresponds to their order of formation. When cost-

based proportional allocation is used, the retailers within the same e�cient coalition get the

same pro�t ratio.

Table 6.3: Pro�t allocation in a 10-retailer coalition formation game

E�cient Coalition:Sz π(Sz) Retailer's parameters Retailer's savings
{i} Gi Di hi C(i) X(i, Sz) π(i, Sz)

{5,6,9} 16.60% {5} 1 3821 3 1521.68 252.81 16.60%
{6} 130 4897 4 3001.74 498.2 16.60%
{9} 191 4949 3 2939.54 487.9 16.60%

{3,4,8,10} 8.38% {3} 206 5384 9 5445.647 456.3 8.38%
{4} 411 6725 6 6421.65 538.1 8.38%
{8} 400 61160 8 7019.97 588.2 8.38%
{10} 263 4280 6 4317.83 361.83 8.38%

{1,7} 2.87% {1} 620 2088 9 5201.96 149.2 2.87%
{7} 867 6253 5 7776.02 223.17 2.87%

{2} 0% {2} 496 9647 4 6782 0 0%

Now we turn our attention to discuss whether the e�cient coalition structure is stable or not.

We analyze the three stability notions de�ned in Chapter 3.

Theorem 6.1 : Individual stability: The e�cient coalition structure Pz is individually sta-

ble, i.e, it is immune to individual retailer deviations.

Proof: The proof of this theorem is valid by construction of the e�cient coalition structure. For

instance, let us discuss whether it is possible for a retailer i member of coalition Sz
k to deviate

and to join another coalition Sz
t (Sz

k 6= Sz
t ∈ Pz). Assume that retailer i defect from coalition

Sz
k to join Sz

t . By construction we have π(Sz
t ∪ {i}) ≤ π(Sz

k ), otherwise, coalition (Sz
t ∪ {i})

would have been selected by the algorithm instead of Sz
k . The move of retailer i from coalition

Sz
k to coalition Sz

t will make him/her worse o� .¤

The individual stability of e�cient coalition structure Pz means that no retailer will switch

unilaterally from his/her current coalition to another existing one. This stability concept, only

taking into account individual deviations, seems suitable whenever the cost of coordinating move-

ments to form a new coalition is high, or there are some other economic restrictions for building

new coalitions. Going away from individual move's immunity, the question now is whether the

coalition structure Pz is immune to group deviation.
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Theorem 6.2 : Weak stability: The e�cient coalition structure Pz is weakly stable. This

means that all separate coalitions are core stable. The cost-based proportional rule is in the core

of any subgame (Sz
k , vSz

k
),i.e, X ∈ Co(Sz

k , vSz
k

) for all Sz
k ∈ Pz

Proof: Let Sz
k ∈ Pz any coalition. The cost-based proportional rule allocate to each retailer

i, the pro�t portion: X(i, Sz
k ) = C(i)P

j∈Sz
k

C(j) .v(Sz
k ) = C(i).π(Sz

k ). This allocation possesses the

following properties:

i) X(i, Sz
k ) ≥ 0.

ii)
∑

i∈Sz
k

X(i, Sz
k ) =

∑
i∈Sz

k

C(i)P
j∈Sz

k
C(j) .v(Sz

k ) = v(Sz
k ).

iii)For all coalition T ⊆ Sz
k , we have X(T ) =

∑
i∈T C(i).π(Sz

k ). By construction T is less

e�cient than Sz
k , i.e, π(T ) ≤ π(Sz

k ); otherwise T would have been selected by the algorithm

instead of Sz
k . Consequentially, X(T ) =

∑
i∈T C(i).π(Sz

k ) ≥ ∑
i∈T C(i).π(T ) = v(T ). The

Cost-based proportional rule is then in the core of the subgame (Sz
k , vSz

k
).¤

The coalition structure core is a stronger stability concept than the weak stability concept

presented above since under coalition structure core stability, no group of retailers (member of

the same coalition or member of distinct coalitions) will have the incentive to deviate. However,

in practice, the group of retailers that are members of the same coalition are the most likely to

deviate. For instance, the retailers that want to form a new coalition should have access to high

quality information on each other and would have many meetings and appointments in order

to �nd mutual agreements, etc. For this reason, new alliances have more chance to be formed

by retailers belonging to the same coalition than by retailers belonging to disjoint coalitions.

This is true because, on the one hand, retailers that are members of the same coalition have

more access to information on each other, hence they may easily �nd mutual agreements to

coordinate their movements to form a new coalition. On the other hand, coordinating the actions

of retailers member of several coalitions seems to be more complex because it requires much

more coordination mechanisms. Consequentially, the weak stability under which the immunity

is restricted to deviations of group of retailers member of the same coalition may be su�cient

in this sense to address the stability of the e�cient coalition structure Pz. This stability is also

reinforced by the proprieties of the cost-based proportional rule. Under this rule, the retailers

within the same coalition get equal pro�t ratios. This equity aspect or fairness federates the

intentions of retailers to cooperate.

E�cient coalition structure Pz, where retailers within the same coalition get the same pro�t

ratio, is likely to be more stable than a coalition structure where the attributed pro�ts are

disproportionate. This is true because a cooperating retailer is not only interested in his/her

own pro�t, but always he/she is interested in his/her pro�t regarding the pro�ts of his/her
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partners. When there is huge gap between the pro�ts of retailers forming the same alliance, an

unsatis�ed retailer may be nonrational and can give up his/her pro�t to deprive a "competitor"

having a more important pro�t: the stability of the alliance is no longer guaranteed.

To take into account pro�t ratio equity, one would extend the meaning of rationality which

traditionally reduces the motivation to cooperate to a resulting "positive" pro�t. Under pro�t

rate equity, a rational retailer will not cooperate as soon as he/she has a positive pro�t, he/she

will cooperate only when his/her resulting pro�t rate is similar to that of his/her partners. In this

case, cost-based proportional rule ensures the strong stability of the e�cient coalition structure

Pz. In other words, cost-based proportional rule will be in the coalition structure core of Pz if

it is the most privileged allocation. We should note that there are good reasons to expect that

the cost-based proportional rule will be a privileged allocation, because, in addition to be fair in

the sense of pro�t equity distribution, it is one of the most simple and practical allocations.

Theorem 6.3 : Strong stability: When the cost-based proportional rule is the most privi-

leged allocation in the system, the e�cient coalition structure Pz is strongly stable, i.e, X ∈
Co(N, v, Pz).

Proof: Assume that the cost-based proportional rule is the most privileged allocation in the

system, it is then easy to prove that this rule belongs to the coalition structure core of Pz. To

prove that, we should show that no group of retailers would have the intention to deviate and

form new coalition. The weak stability of coalition structure Pz shows that no group of retailers

belonging to the same coalition will deviate. Hence the question of stability remains only for group

of retailers that are members of at least two distinct coalitions. Let T be a group of retailers that

are members of di�erent coalitions. That is there exists a set of coalitions {Sz
k , ..., Sz

l } ⊆ Pz such

that T ⊂ (
⋃j=l

j=k Sz
k ) and T ∩ Sz

j 6= ∅ ∀j ∈ {k, .., l}. Without loss of generality we suppose that

Sz
k = argmax(π(Sz

k ), ..., π(Sz
l )). By construction, coalition Sz

k is more e�cient than coalition

T (π(T ) ≤ π(Sz
k ), otherwise coalition T would have been selected by the algorithm and would

belongs to the e�cient coalition structure Pz. Since we deal with cost-based proportional rule,

each retailer i member of the subset T ∩ Sz
k will actually have a pro�t ratio of π(i, T ) = π(T )

which is less than what he/she gains before (π(Sz
k )). Consequentially, coalition T cannot be

formed.¤
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6.5 An Optimal Algorithm for ECS Generation

6.5.1 Complexity Analysis

The e�cient coalition structure Pz = {Sz
1 , Sz

2 , ..., Sz
m} is obtained by a sequential approach

generating an e�cient coalition at a time. Each e�cient coalition Sz
i is the solution to the

optimization problem (equation (6.11)): Sz
i = argmax

S⊆(N\∪j=i−1
j=1 Sz

j )
{π(S)}, Sz

i ∈ Pz. The

worst case is to select coalitions containing only two retailers for all steps. In this case, in a

system with n retailers, we need bn
2 c iterations to build the e�cient coalition structure. The

number of necessary iterations does not really matter since it equals at worst to bn
2 c iterations.

However, to �nd the most e�cient coalition, Sz
1 = argmax

S⊆N
{π(S)}, we need to enumerate all

possible coalitions. In a system of n retailers there are (2n− 1) possible coalitions. This number

doubles with each retailer added to the system. Consequentially, when the number of retailers is

large, there will be too many possible coalitions to allow exhaustive search for the most e�cient

one. For example, in a system of 20 retailers there are 1.048.575 possible coalitions. As a result,

exhaustive enumeration is not a viable method for searching for an e�cient coalition structure

unless when the number of retailers is small.

In the next section, we propose an optimal algorithmic solution for generating the e�cient

coalition structure. The algorithm we propose is based on single ratio fractional programming

techniques. Moreover, we propose a heuristic solution that is showed to be optimal for two

interesting particular cases, in the �rst case, all individual costs are equal (∀i ∈ N,Gi = G), and

in the second case all retailers' cycle time lengths are equal.

6.5.2 Optimal Algorithm for the General Case

The proposal of this section is to provide an exact solution for searching for the e�cient coalitions.

As explained above, we will focus on the optimization problem to generate the most e�cient

coalition:

Sz
1 = argmaxS⊆N{π(S)}

Proposition 6.3 : Maximizing the pro�t ratio is equivalent to minimize the ratio of the coali-

tion's cost to its corresponding decentralized cost:

Sz
1 = argminS⊆N (

C(S)∑
i∈S C(i)

) = argminS⊆N (

√
(A + GS).HDS∑

i∈S C(i)
) (6.14)
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Proof:
Sz

1 = argmaxS⊆N{π(S)} = argmaxS⊆N (
∑

i∈S C(i)− C(S)∑
i∈S C(i)

)

= argmaxS⊆N (1− C(S)∑
i∈S C(i)

) = argminS⊆N (
C(S)∑
i∈S C(i)

).¤

In what follows, for simplicity we will consider the minimization problem (7.13). The ratio
C(S)P
i∈S C(i) will refers to us as the cost ratio and will be denoted by CR(S).

The optimization problem (7.13) may be formulated as the following linear program. The

decisions variables Xj address the selection of one coalition from all possible 2n − 1 coalitions.

Xj=





1 : if coalition j is selected

0 : otherwise
(FORMULATION − I)

min
2n−1∑

j=1

(
C(S)∑
i∈S C(i)

).Xj (6.15)

2n−1∑

j=1

Xj = 1 (6.16)

Xj ∈ {0, 1},∀j = 1, 2, ..., 2n − 1 (6.17)

Since we deal with an objective function that aims at minimizing a ratio of two functions,

single-ratio fractional programming theory (Schaible, 1995; Radzik, 1998) may be used. How-

ever, the square root form of the objective function (6.15) makes it impossible to reformu-

late the above problem as a fractional program. Therefore, since the optimization problem

Sz
1 = argminS⊆N{( C(S)P

i∈S C(i))} is equivalent to

Sz
1 = argminS⊆N{( C(S)∑

i∈S C(i)
)2} = argminS⊆N{(

(A +
∑

i∈S Gi)
∑

i∈S HDi

(
∑

i∈S C(i))2
)}

The last square form factor may substitute the objective function (6.15). The resulting new

objective function is then :

(A +
∑

i∈S Gi)
∑

i∈S HDi

(
∑

i∈S C(i))2
(6.18)

Now let us de�ne the new decision variables Yi, i = 1, .., n such that each Yi refers to whether

retailer i is member of the e�cient coalition or not.
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Yi=





1 : if retailer i is in the e�cient coalition

0 : otherwise

Rewriting the objective function (6.18) by introducing the binary variables Yi gives:

(A +
∑n

i=1 Gi.Yi)(
∑n

i=1 HDi.Yi)
(
∑n

i=1 C(i).Yi)2
=

A.
∑n

i=1 HDi.Yi +
∑n

i=1

∑n
j=1 HDi.Gi.Yi.Yj

(
∑n

i=1

∑n
j=1 C(i).C(j).Yi.Yj)

(6.19)

For simpli�cation, for any couple of retailers i and j, we note Gj .HDi by GHDij and

C(i).C(j) by Cij . The objective function (6.19) is then as follows:

A.
∑n

i=1 HDi.Yi +
∑n

i=1

∑n
j=1 GHDij .Yi.Yj

(
∑n

i=1

∑n
j=1 Cij .Yi.Yj)

(6.20)

Finally, the 0-1 fractional program reformulation is as follows:

(FORMULATION − II)

min
A.

∑n
i=1 HDi.Yi +

∑n
i=1

∑n
j=1 GHDij .Yi.Yj

(
∑n

i=1

∑n
j=1 Cij .Yi.Yj)

(6.21)

n∑

j=1

Yi >= 1 (6.22)

Yi ∈ {0, 1}, ∀i = 1, 2, ..., n (6.23)

The objective function (6.21) denotes the ratio to be minimized. Constraint (6.22) ensures that

the e�cient coalition contains at least one retailer, and constraints (6.23) represent the binary

form of the decision variables Yi. It is obvious that, this reformulation considerably reduces the

number of variables compared to (FORMULATION − I). There is only n variables while in

(FORMULATION −I) there are (2n−1) variables. However, as one can expect, the fractional

program cannot be solved in its current form (the objective function is non-linear) the state-of-

the-art of mixed-integer linear programming (MILP) cannot be used. The focus in what follows

will be to linearize the fractional program exposed above. We should note that linearization

techniques are used quite often in fractional programming literature (Falk and Paloscay, 1992;

Li, 1994; Wu, 1997; Radzik, 1998). Some recent 0-1 fractional program linearization are found

in (Tawarmalani et al., 2002; Prokopyev et al., 2009). Their main ideas are presented by the

following propositions that we will apply in our model.
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Proposition 6.4 (Prokopyev et al., 2009) .A polynomial mixed 0 − 1 term z = x.y where x is

a 0 − 1 variable, and y is a nonnegative continuous variable, can be equivalently represented by

the following four linear inequalities: (1)z ≥ y−M(1− x); (2)z ≤ y; (3)z ≤ Mx; (4)z ≥ 0, where

M is an upper bound on y, i.e., 0 ≤ y ≤ M .

Proposition 6.5 (Prokopyev et al., 2009) .A polynomial mixed 0 − 1 term z = x1.x2.y where

x1 and x2 are a 0− 1 variables, and y is a nonnegative continuous variable, can be equivalently

represented by the following �ve linear inequalities: (1)z ≥ y −M(1− x1 − x2); (2)z ≤ y; (3)z ≤
Mx1; (4)z ≤ Mx2; (5)z ≥ 0, where M is an upper bound on y, i.e., 0 ≤ y ≤ M .

In order to reformulate the objective function (6.21) as a linear function, we de�ne the new

variable T such that:

T =
1∑n

i=1

∑n
j=1 Cij .Yi.Yj

(6.24)

This de�nition is equivalent to:

n∑

i=1

n∑

j=1

Cij .Yi.Yj .T = 1 (6.25)

With the newly introduced variable T , the fractional program (FORMULATION − II) can be

rewritten as:

(FORMULATION − III)

minT,Y A.
n∑

i=1

HDi.Yi.T +
n∑

i=1

n∑

j=1

GHDij .Yi.Yj .T (6.26)

n∑

i=1

Yi ≥ 1 (6.27)

n∑

i=1

n∑

j=1

Cij .Yi.Yj .T = 1 (6.28)

Yi ∈ {0, 1}, ∀i = 1, 2, ..., n (6.29)

Next, nonlinear terms Yi.T and Yi.Yj .T can be linearized by introducing additional variables

Zi and Zij (Zi = Zii) and applying the results of propositions 6.4 and 6.5. The parameter M

can be set to 1. The resulting linear mixed-integer program is as follows:
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(FORMULATION − IV )

minY,T,Z A.
n∑

i=1

HDi.Zii +
n∑

i=1

n∑

j=1

GHDij .Zij (6.30)

n∑

i=1

Yi ≥ 1 (6.31)

n∑

i=1

n∑

j=1

Cij .Zij = 1 (6.32)

T − Zij ≤ (2− Yi − Yj), i = 1, 2, ..., n,∀j = 1, 2, ..., n (6.33)

Zij ≤ T,∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (6.34)

Zij ≤ Yi, ∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (6.35)

Zij ≤ Yj , ∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (6.36)

Zij ≥ 0, ∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (6.37)

Yi ∈ {0, 1}, ∀i = 1, 2, ..., n (6.38)

The total number of variables in the model is (n(n+1)+1) where n are binary variables and

(n2 + 1) are continuous. The total number of constraints is (5n2 + 3) composed by 1 equality

constraint, (n2) positivity constraints and (4n2 + 2) inequalities.

Proposition 6.6 By construction, (FORMULATION − I) and (FORMULATION − IV )

are equivalent, i.e., (6.15)-(6.17) ⇔ (6.30)-(6.38)

6.5.3 Heuristic Solution

Before thinking about the exact algorithmic solution presented above, our ambition was to know

whether it is possible to predict who are the retailers that are likely to form an e�cient coalition

only by looking and comparing their standalone parameters/costs. In the hope of answering

this question, we concentrated our investigations on �nding a kind of "neighborhood logic"

or "grouping sense" that the retailers in the e�cient coalition would be likely to follow. We

succeeded to �nd an interesting neighborhood logic in two special cases of our problem (he case

where all retailers' individual costs are equal and the case where all retailers' equal cycle time

lengths are equal). Because of the complex form of the pro�t rate function, the grouping logic

we found fail to be applied in the general case, nevertheless it gives very encouraging results.

That is why we present it as a heuristic solution. The rest of the section will be organized as

follows. We will be starting by giving the main idea of the grouping logic heuristic. After that

we show that this heuristic is optimal for the two particular cases of our model (the case where
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all retailers' individual costs are equal and the case where all retailers' equal cycle time lengths

are equal).

Neighborhood Logic Heuristic

To give the main idea of the heuristic, we need the following de�nition.

De�nition 21 Assume that the di�erent retailers are sorted by their increasing ratio of HDi
Gi

. A

coalition S is a consecutive coalition if it satis�es the following condition: For i, j, k ∈ N, i 6=
j 6= k such that HDi

Gi
≤ HDk

Gk
≤ HDj

Gj
: {i, j} ⊂ S implies k ∈ S

The heuristic supposes that all e�cient coalitions are consecutive coalitions. Thus, to �nd

the e�cient coalitions, we do not need to enumerate all possible coalitions; the research space is

restricted to consecutive coalitions. The main steps of the heuristic are :

• The retailers are sorted by their increasing ratio HDi
Gi

, i.e, HD1
G1

≤ HD2
G2

≤ ... ≤ HDn
Gn

.

• The set of all possible consecutive coalitions is generated.

• Selection of e�cient coalitions iteratively.

For a system with n retailers, there are (n+1)n
2 consecutive coalitions. This number is very

small compared to that of all possible coalitions (2n − 1). For example, in a system with 20 re-

tailers there are 1.048.575 possible coalitions, only 210 of them are consecutive. Consequentially,

the size of the problem becomes manageable and exhaustive enumeration may be used even for

large size system.

Particular case 1: Equal individual costs

Theorem 6.4 When all retailers' individual costs are equal, all e�cient coalitions are consecu-

tive coalitions. ∀i ∈ N,Gi = G =⇒ ∀Sz
i ∈ Pz, Sz

i is a consecutive coalition.

Proof: To prove this theorem, we prove that for any non-consecutive coalition, there exists at

least one consecutive coalition more e�cient than it. We remember that a coalition S is more

e�cient than a coalition T , means that coalition S ensures a higher pro�t rate or a lower cost

rate. (π(S) ≥ π(T ) or CR(S) ≤ CR(T )). In the following, for simplicity, we use cost rate

parameter.

When all retailers' individual costs are equal, i.e, ∀i ∈ N, Gi = G, the cost rate of any

coalition S is, CR(S) =
√

(A+|S|.G).
P

i∈S HDiP
i∈S

√
(A+G).HDi

. Now suppose that the retailers are sorted by their

increasing holding cost parameter HDi, i.e. HD1 ≤ HD2 ≤ ... ≤ HDn.



An Optimal Algorithm for ECS Generation 99

Let T = {i, ..., j − 1, j + 1, ..., t} be a coalition. Since T presents a hole (j 6∈ T ), T is a

non-consecutive coalition. We have to construct a consecutive coalition T ′ more e�cient then T ,

i.e. CR(T ′) ≤ CR(T ).

Let S be any coalition of N and {x} be any retailer such that {x} 6∈ S. The retailer {x} is

characterized by its holding parameter HDx, for simplicity noted X. Let us de�ne the following

function representing coalition (S ∪ {x})'s cost rate:

f : (2n − 1)×<+ → <+

(S, X) ½ f(S, X) = CR(S ∪ {x}) =
√

(A+(|S|+1).G)(
P

i∈S HDi+X)

(A+G)(
P

i∈S

√
HDi+

√
X)

(6.39)

The function f is a positive convex function that reaches its minimum for minS = (
P

i∈S HDi)
2

(
P

i∈S

√
HDi)2

.

The function f is decreasing for X ∈ [0,minS ] and is increasing function for X ∈ [minS , +∞[.

Let us consider the coalitions S and S′ such that S = {i, ..., j − 1, j + 1, ..., t − 1} and S′ =

{i + 1, ..., j − 1, j + 1, ..., t}.
• If HDj ≥ mins, since (minS ≤ HDj ≤ HDt) and the function f is increasing thus:

f(S, HDj) ≤ f(S, HDt), i.e, CR(T ′ = S ∪ {j}) ≤ CR(T = S ∪ {t}). The consecutive coalition

T ′ = {i, ..., j − 1, j, j + 1, ..., t− 1} is then more e�cient than coalition T .

• Else HDj < minS. First we need to present the following proposition:

Proposition 7: For n reals (R1, ..., Rn) such that ∀i ∈ {1, ..., n− 1} : 1 ≤ Ri ≤ Ri+1 we have:Pi=n−1
i=1 RiPi=n−1

i=1

√
Ri
≤

Pi=n
i=2 RiPi=n

i=2

√
Ri

.

Proposition 7: RN = (
∑i=n

i=2 Ri)(
∑i=n−1

i=1

√
Ri)− (

∑i=n
i=2

√
Ri)(

∑i=n−1
i=1 Ri) after simpli�cation

equals: RN = (
√

Rn −
√

R1)(
∑i=n−1

i=2 (
√

Rn.
√

Ri − Ri) +
√

R1.(
∑i=n−1

i=2

√
Ri +

√
Rn)). We have

Rn ≥ Ri, ∀i ∈ {1, ..., n} so (
√

Rn.
√

Ri −Ri) ≥ 0 and (
√

Rn −
√

R1) ≥ 0, thus RN ≥ 0.¤

From proposition 7 we have minS′ ≥ minS, in this case we have HDi ≤ HDj ≤ minS′ the

function f is decreasing then f(S′,HDj) ≤ f(S′,HDi), i.e, CR(T ′′ = S′ ∪ {j}) ≤ CR(T =

S′ ∪ {i}). The consecutive coalition T ′′ = {i + 1, ..., j − 1, j, j + 1, ..., t} is more e�cient than

coalition T .

Note that when the non-consecutive coalition T presents more than one hole, the theorem is

still true, with the proof di�ering only in the construction of T ′ and T ′′.¤

Particular case 2: Equal cycle time lengths

Here we consider the particular case where all retailers' cycle time length (similarly ordering

frequencies) are equal. The e�cient coalitions are consecutive coalitions, and the most e�cient

coalitions are formed by the retailers having the lowest holding parameters. These theorems are

considered to re�ne the heuristic solution.
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Theorem 6.5 When all retailers' cycle time length are equal, all e�cient coalitions are consec-

utive coalitions, i.e; ∀i, j ∈ N, i 6= j : T ∗i = T ∗j , =⇒ ∀Sz
i ∈ Pz, Sz

i is a consecutive coalition.

Proof: Like in the proof of theorem 4, we prove that for any non-consecutive coalition, there

exists at least one consecutive coalition more e�cient than it. Suppose that the retailers are sorted

by their increasing holding parameter HDi, suppose without loss of generality that the resulting

order is : HD1 ≤ HD2 ≤ ... ≤ HDn.

Assuming equal cycle time length leads to, ∀i, j ∈ N, i 6= j, T ∗i = T ∗j = T , and T ∗i =√
2.(a+Gi)

HDi
. Let V be a strictly positive constant such that, ∀i ∈ N : (A+Gi) = V.HDi. Rewriting

the cost rate of a coalition, S, with the newly parameter leads to :

CR(S) =

√
2.(A +

∑
i∈S Gi).

∑
i∈S HDi∑

i∈S

√
2.(A + Gi).HDi

=

√
1− (|s| − 1)A

V.
∑

i∈S HDi
(6.40)

Let T = {1, 2, ..., t − 3, t − 2, t}, be a non consecutive coalition ({t − 1} 6∈ T ) and let us build a

more e�cient consecutive coalition T ′ (i.e, CR(T ′) ≤ CR(T )).

Let T ′ the coalition that holds when we substitute retailer {t} by retailer {t−1} in coalition T ,

thus T ′ = {1, 2, ..., t− 3, t− 2, t− 1}. It is obvious that ∑
i∈T ′ HDi ≤

∑
i∈T HDi and |T | = |T ′|,

then from equation (6.40) we get CR(T ′) ≤ CR(T ). Note that when the non consecutive coalition

T presents more than one hole, the theorem is still true, with the proof di�ering only in the

construction of T ′.¤

Theorem 6.6 The consecutive coalition formed by the retailers having the lowest holding para-

meters is more e�cient then any other consecutive coalition with equal cardinal, that is,

∀k ∈ {2, ..., n} and T ⊆ N such that |T | = k we have : CR(S = {1, 2, ..., k}) ≤ CR(T ).

Proof: Let S = {1, 2, ..., k}, k ∈ {2, ..., n} be the coalition of k retailers and let T any coalition

of k retailers, T ⊆ N, |T | = k. As showed in the proof of the previous theorem, CR(S) =√
1− (k−1)A

V.
P

i∈S HDi
and CR(T ) =

√
1− (k−1)A

V.
P

i∈T HDi
. Since the retailers are ranked sequentially in

increasing order of HDi,
∑

i∈S HDi ≤
∑

i∈T HDi then CR(S) ≤ CR(T ) .¤

Now let us reformulate the procedure of generating the e�cient coalitions taking into ac-

count the last two theorems. Suppose that the retailers are ranked by their holding parame-

ters, without loss of generality let the order be, HD1 ≤ HD2 ≤ ... ≤ HDn. From theorem

6.6, the most e�cient coalition Sz
1 can be determined by comparing the n − 1 possible con-

secutive coalitions {1, 2, ..., k}, k ∈ {2, ..., n}, that is: Sz
1 = {1, 2, ..., l}=argmin{CR({1, 2})

, ...,CR({1, 2, ..., k}),CR({1, 2, ..., k + 1}), ..., CR({1, 2, ..., n})}. The most e�cient coalition Sz
2

in the remaining set of retailers {l, l + 1, ..., n} is determined in the same way. That is,Sz
2 =
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argmin{CR({l+1, l+2}), ..., CR({l+1, l+2, ..., k}),CR({l+1, l+2, ..., k+1}),..., CR({l+1, l+

2, ..., n})}. The procedure is then repeated until that the set of remaining retailers is empty.

To �nd the e�cient coalition Sz
1 only n− 1 coalitions are compared. This number decreases

considerably for other e�cient coalitions; it depends on the cardinal of the selected coalitions.

In general, to �nd e�cient coalition Sz
i , i ≥ 2, (n − ∑k=i−1

k=1 |Sz
k | − 1) coalitions should to be

compared. The worst case is to get e�cient coalitions formed by a couple of retailers (|Sz
k | = 2).

In this case, we need to generate, (bn
2 c) e�cient coalitions by comparing (n − 2.(i − 1) + 1)

coalitions when forming e�cient coalition Sz
i . The total number of coalitions compared over the

generation of the e�cient coalition structure is then:
∑i=bn

2
c

i=1 (n − 2(i − 1) + 1) this equals to

(n
2 )2 when n is even, and equals to n−1

2 (n−1
2 + 1) otherwise.

6.6 Numerical Study

Our numerical study is twofold. First, we use a set of numerical tests to evaluate the performance

of our proposed exact solution and heuristic. A second numerical set is devoted to compare the

e�cient coalition structure to the optimal coalition structure. In both numerical sets, the demand

characterizing each retailer, Di, is generated randomly in the interval [1, 500]. The corresponding

holding cost hi is generated randomly in the interval [1, 10]. The individual cost Gi is generated

randomly in the interval [1, 50]. We consider three possible values of the �xed ordering cost,

A = 10, 30, 50. The number of the retailers in the system was varied in {5, 10, 15, 20, 25}. And

for each value of n we dealt with 10 instances. All computational experiments were performed

on a PC with Intel Core 2 CPU of 3 Ghz and RAM of 0.99 GB. All instances were solved using

ILOG OPL Development Studio 5.2 solver with default parameters. We also imposed 1 hour

time limit.

6.6.1 Exact solution and Heuristic Performance

Our experiment here is to appreciate the performance of the proposed mixed-integer linear pro-

gram FORMULATION − IV (exact solution) and the heuristic. To achieve this goal, we con-

sider the problem of �nding the most e�cient coalition. For each instance, we compute the time

used (seconds) and the pro�t rate for the exact solution, FORMULATION − IV , (ExactSOL),

the heuristic (HeuristicSOL), and exhaustive enumeration-based solution, FORMULATION−I

(ExhaustSOL). The resulting numerical results are reported in Table 6.4. When analyzing the

numerical results, the �rst remark is that even if it gives faster results for small size system,

exhaustive enumeration-based solution is not viable for large size systems (n ≥ 20). The exact

algorithm provides good results, for n = 25 the exact solution is found in approximatively 13
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minutes. However, when the number of retailers becomes too large, the algorithm needs more

than one hour to give the exact solution. We should note that in this chapter, we are dealing

with the basic exact solution which is a mixed-integer linear program. This solution can be easily

improved by using the wide mixed-integer programming literature. This was not possible when

dealing with the square-root and fractional form of the problem. The heuristic solutions gives

very encouraging results. On the one hand, the mean value of the pro�t gap does not exceed

(3%) and a maximal gap of about (4%), on the other hand, the heuristic is too much faster than

the exact solution. It requires less than one second time running while exact solution takes more

than 700 seconds for higher instances.

6.6.2 E�cient Coalition Structure vs Optimal Coalition Structure

The focus of this section is to use a set of numerical studies to compare the e�cient coalition

(ECS) Pz we de�ned in this chapter, and the optimal coalition structure (OCS) P ∗, the coalition

structure that optimizes the whole system. The comparison will be done according to two main

criteria : the global pro�t ratio (π(P ) = v(P )P
i∈N C(i)) and the number of coalitions in each coalition

structure(|P |). The resulting numerical results are reported in Table 6.5. We should note that

in column (∆(P ∗−Pz)), we give the gap between optimal coalition structure's criteria and that

of the e�cient coalition structure. That is, ∆π = π(P ∗)− π(Pz) and ∆|P | = |P ∗| − |Pz|.
On analyzing the numerical results, the �rst point to note is that the average value of the gap

pro�t does not exceed (5%), hence the e�cient coalition structure does not signi�cantly a�ect

the whole supply chain pro�t. By comparing the number of coalitions in both structures, one can

easily see that the retailers are organized in many small size coalitions in the e�cient coalition

structure, while the optimal coalition structure is formed by a restricted number of large-size

coalitions. This observation may has an interesting interpretation if one considers additional

factors that are modelled such as cost and information exchange. E�cient coalitions are likely to

be easier to form than optimal coalitions. That is, acting in a small coalition is often less costly

than acting in a large one. Moreover, to cooperate, the di�erent actors should coordinate their

actions and exchange many information, that is often, con�dential information. Since we deal

with totally independent retailers, it seems obvious that in this case the smaller is the number

of cooperating actors fewer are the barriers to cooperate. As a result, the e�cient coalition

structure provides strong incentives for the retailers to cooperate.
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6.7 Conclusion

In this chapter, we are concerned with alliance formation and cost allocation issues in a one

supplier multiple-independent-retailer joint replenishment system. We show that research aiming

at optimizing the whole (full cooperative approach) supply chain may present some drawbacks

and is not appropriate for our n-independent retailers cooperative game. In our analysis, we

focus on a supply chain where cooperation cannot be forced, i.e, each retailer joins the coalition

he/she desires. We propose to build the di�erent coalitions in a completely independent manner

privileging individual coalition's performance to that of the global system. We presented an

iterative procedure to form such coalitions and focused on analyzing the merits of such achieved

e�cient coalition structure.

The e�cient coalition structure does not signi�cantly a�ect the global supply chain perfor-

mance and has the merit to guarantee a set of stability notions. That is, under cost-based

proportional rule, the retailers within the same coalition will get equal pro�t ratios. This makes

the e�cient coalition structure immune to individual-retailer deviations. That is, no retailer

would leave his/her coalition to join another existing one. When analyzing group deviations, we

show that no group of retailers members of the same coalition will defect from their coalition

and we provide some conditions and analysis under which the strong stability, i.e, the stability

in the sense of the coalition structure core, holds. Equal pro�t ratio allocation and coalitions

interdependency are then showed to provide strong incentives for the retailers to cooperate. Our

last contribution was to analyze the afore-described coalition formation procedure from a com-

putational complexity point of view. The procedure in its general form is based on exhaustive

enumeration, which is not a viable optimization method except for small size systems. An in-

teresting heuristic solution and a Polynomial-Time exact algorithm were provided. This exact

solution was mainly based on 0-1 fractional programming techniques.

Motivated by the results we obtained in this chapter, we tempt in the following chapter

to extend the notions of e�cient coalitions to more general models. However, in addition to

consider general cost functions, the model we will provide di�ers in the formal representation of

the game and the analysis of the cooperation. We mainly, suppose that the cooperative game

will be de�ned by a preference relation pro�le that speci�es for each retailer his/her preferences

to the coalition he/she desires.
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Chapter 7

Stability of Hedonic Joint
Replenishment Games with General
Cost Function : Application to
one-supplier multi-retailer joint
replenishment systems with full
Truckload shipments

In this chapter we analyze cooperative behavior questions in joint replenishment

systems with general cost function. Using the notions of preference relations (each

actor has his own preferences among the coalitions to which he could belong), we give

a new formal representation of the cooperative game - called Hedonic Game. This

mainly allow us to discuss the issue of treating the questions of alliance formation

and pro�t allocation simultaneously. We show that under cost-based proportional

allocations and equal allocations, there always exist at least two "e�cient" coalition

structures that are individually and weakly stable and may be strongly stable under

some assumptions. Further, we apply this general approach to a FTLJRP-game with

three components cost structure (�xed and variable transportation cost and holding

cost).

107
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7.1 Introduction

As stressed in the previous chapters, the questions related to cooperative behavior in supply chain

networks as well as in general social networks concern the interdependent problems of alliance

formation and pro�t allocation. The aim of this chapter is to discuss a general approach that

address both questions simultaneously. This work is motivated by the lack of prior attention to

this research area in general. To the best of our knowledge, the wide literature on cooperative

games in supply chain management as well as in multi-agent management systems (see Sandholm

et al. (1999)) does not investigate both cooperative behaviors simultaneously.

To discussed the issue of generating stable coalition structures in inventory games with general

cost function, we based our analysis on the principles of hedonic cooperative games. In this

theory, the outcome of a given actor is totaly determined by the identity of the other members

of his/her coalition. This class of cooperative games is formally de�ned by a pair (N,P), where

N = {1, 2, ..., n} is the set of players, and P = (º1,º2, ...,ºn) denotes the preference pro�le,

specifying for each player i ∈ N his/her preference relation ºi,i.e. a re�exive, complete and

transitive binary relation on set Ni = {S ⊆ N : i ∈ S}. The main idea of hedonic games is the

partitioning of a society into coalitions where each player's payo� is completely determined by

the identity of other members of his/her coalition (Bogomolnaia and Jackson, 2002; Hajduková,

2004).

In this chapter, we consider the hedonic settings to study the formation of stable coalition

structures in inventory games with general cost function. In particular, we consider a set of

�rms/retailers N = {1, 2, ..., n}. The �rms may form coalitions to achieve some savings. We

assume that �rms' preference relations are completely determined by the payo� (the portion of

savings) that they would gain in each potential coalition. Therefore, each �rm would like to

join the coalition o�ering the highest pro�t portion. However, to join this coalition, this �rm

should make all the members of the coalition in question better o�, otherwise they would not

accept his/her membership. Even though the �rm makes all other members better o�, this do

not guarantee that this coalition will be formed as it may not be the "most preferred" coalition

for some �rms. Thus, the "ideal" situation is that a set of �rms form a coalition that is "the

most preferred" coalition for each one of them. In this case there will be no reason for one or

more �rms to defect from this coalition. Such coalition will be referred to as e�cient coalition.

However, the existence or not of such "e�cient" coalitions is closely related to the preference

relation which is itself determined by the allocation rule used to split the achieved savings. Our

interest in this chapter -considering general cost functions- is to determine whether there exists

some allocation rules under which, when �rms freely interact form "e�cient" coalitions. Our
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focus will be then to provide insights on the "stability" of the formed structures and determine

the related algorithmic complexity.

Under the cost-based proportional rules and equal allocation rules, we show that e�cient

coalition structures always exist and are stable coalition structures. However, the problem of

�nding the e�cient coalitions -in the general case- is an exponentially complex problem.

Further, we focus on partitioning the set of �rms into e�cient coalitions that form what we

call the e�cient coalition structure. The problem is showed to be exponentially complex and

both e�cient coalition structures (one generated with cost-based proportional rule and the other

with equal allocation rule) are showed to be stable coalition structures.

In the second part of the chapter, we applied the results valid for games with general cost

function to a concrete supply chain game. We consider the issue of generating the afore-described

coalition structures, in the one-supplier multi-retailer full TruckLoad shipments Joint replenish-

ment Game (FTLJRP-Game)under three cost-components ( �xed and variable Transportation

costs and Holding Cost), i.e., in this model, we consider the same cost structure as in the JRP-

game studied in Chapter (5) while we keep the assumption of full truckload shipment as in the

model studied in Chapter (4). For this non-superadditive FTLJRP-Game we provide a polyno-

mial algorithmic solution to identify e�cient coalitions. And, using a set of numerical results,

we compare both coalition structures (one generated with cost-based proportional rule and the

other with equal allocation rule). We show that no partition dominates the other, nevertheless,

the use of equal allocations may lead in some cases to "unsatis�ed" �rms.

The rest of the chapter is organized as follows. In section 7.2, we introduce the general model

and the associated hedonic game. Section 7.3 describes the formation of stable e�cient coalition

structures when cost-based proportional allocation and equal allocation are respectively used.

Section 7.4 is devoted to the application of our general results to FTLJRP-Games. We conclude

by summarizing the main insights of our results and discuss some extensions in section 7.5.

7.2 The Model and the Game

In this section, we �rst present the general joint replenishment model we deal with. We then

focuss on the introduction of the associated n-person hedonic cooperative game.

7.2.1 The Model

In this chapter we do not restrict ourselves to a particular supply chain con�guration or cost

structure. We are developing a general approach that can be applied to all joint replenishment

games as well as to group buying games. In this model, we are given a set of n retailers (for
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convenience we will use the term �rm interchangeably with the term retailer), denoted by N =

{1, 2, ..., n}. Retailers place orders to a single supplier to satisfy customer demands. The cost

of the optimal inventory replenishment policy of a retailer i working individually (the minimal

cost that retailer i can achieve by himself/herself) is denoted C(i). When an alliance is to form,

i.e., when a set of retailers , S, decide to cooperate and manage their inventories together by

making joint orders, the cost of the optimal inventory replenishment policy of coalition S (the

minimal cost that the retailers in S can achieve when they operate jointly without the retailers

outside coalition S) is denoted C(S). The incentives to cooperate are not speci�ed here and may

include bene�ts from economies of scale o�ered by the supplier or/and savings generated by a

resources mutualization etc. As mentioned above we develop here a general approach (the results

can be applied not only for JRP-games but also to general cooperative situations). Therefore the

cost function, C, is a general function that not need to have special proprieties like concavity,

convexity or superadditivity.

To evaluate whether a coalition is pro�table or not, we need to compare the cooperative

situation to the decentralized situation/ the standalone situation where each �rm is working

individually. To achieve this goal, we let Ω be the space of the 2n − 1 possible non-empty

coalitions in N and let v a savings function de�ned as follows:

v : Ω −→ R

S ½ v(S) = (
∑

i∈S C(i)− C(S))
(7.1)

De�nition 22 A coalition S is pro�table if and only if it has a positive worth (v(S) ≥ 0).

The saving function describes for each coalition of �rms, S ∈ Ω, the maximal worth v(s) that

they would divide among themselves if they were to cooperate together and with no �rm outside

S. The standalone situation where each retailer works on its own constitutes - by construction

of function v- the situation of reference. For this reason, the worth of single coalition is null, i.e,

i ∈ N, v(i) = 0.

7.2.2 The Game

Most of this section is based on the papers of (Bogomolnaia and Jackson, 2002; Hajduková,

2004). Let P be the �nite set of coalition structures. The n-person cooperative game we are

concerned with may be de�ned by the tuple (N, v, P ) where N = {1, 2, ..., n} is the set of �rms

(the players), P = {S1, ..., Sm} is any coalition structure and v the characteristic function of

the game is the savings function de�ned above (equation (7.1)). We should remember that the

savings of a given coalition structure P = {S1, ..., Sm} is the sum of the savings of the coalitions



Stable Hedonic Coalition Structures Generation 111

forming it, v(P ) =
∑i=m

i=1 v(Si). In this model, we consider purely hedonic settings, that is

each retailer's payo� is completely determined by the identity of the other members of his/her

coalition. Formally, each retailer is supposed to have his/her own preferences over coalitions

to which he/she could belong. Let us denote by R = (º1,º2, ...,ºn) the preference pro�le,

specifying for each retailer i ∈ N his/her preference relation ºi ,i.e., a re�exive, complete and

transitive binary relation on set Ni = {S ⊆ N : i ∈ S}. In this model, retailer's preferences are

related to the payo� that this retailer will get in each coalition. Thus, if we denote by ϕ(S, i) the

expected worth of retailer i in coalition S, S ∈ Ni, asserting that retailer i prefers coalition S to

coalition T is equivalent to asserting that his/her corresponding savings is higher in coalition S

than in coalition T , i.e.,

S, T ∈ Ni : S ºi T ⇐⇒ ϕ(S, i) ≥ ϕ(T, i)

Strict preference relations and indi�erence relations of a player i are respectively denoted by

Âi and ∼i. Retailer i strictly prefers coalition S to coalition T , means that his/her payo� in

coalition S is strictly higher than his/her payo� in coalition T , i.e.,

S, T ∈ Ni : S Âi T ⇐⇒ ϕ(S, i) > ϕ(T, i)

Finally, indi�erence relations mean that retailer i's payo� is equal in both coalitions S, T , i.e,

S, T ∈ Ni : S ∼i T ⇐⇒ ϕ(S, i) = ϕ(T, i)

Formally, the game in coalition structure (N, v, P ) may now be de�ned as a hedonic game

de�ned by the couple (N,R). However one can wonder how to de�ne the payo� allocation

function ϕ(., .). In keeping with the notions of stability our aim in what follows is to answer

simultaneously cooperative behavior questions of alliance formation and pro�t allocation. In

other words, we are looking for an algorithm, which for any hedonic game (N,R) �nds a stable

partition. This is equivalent to say, given a �xed allocation rule, we are looking for an algorithm

that builds a stable coalition structure.

7.3 Stable Hedonic Coalition Structures Generation

Given an allocation rule ϕ(., .), or equivalently a preference pro�le R, our focus is to study the

outcome of the hedonic coalition formation game.

As de�ned above, �rms' preferences are directly related to the pro�t portion that will be
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allocated to each �rm in each coalition. Thus �rm i prefers joining coalition S than coalition

T only if its payo� in coalition (S ∪ {i}) is higher that its payo� in coalition (T ∪ {i}), i.e.,
(S ∪ {i} ºi T ∪ {i} ⇐⇒ (ϕ((S ∪ {i}), i) ≥ ϕ((T ∪ {i}), i)). However, to concretely join coalition

S, it is not su�cient that �rm i prefers coalition S to T . It is necessary that all the members of

coalition S agree to accept �rm i. In earlier cooperative game theory works, it was assumed that

it is su�cient that at least one member of coalition S is better o� and the others are not worst

o�, to guarantee the acceptance of �rm i's membership. In other cases, retailer i's membership

will be accomplished even when the members of coalition S are not worst o� (each one of them

wins at least as much as without player i). In our context, since the �rms are independent and

the preference criterion is based on the expected worth, we �nd it reasonable to say that the

members of coalition S will accept the membership of �rm i only when this will make each one

of them "strictly" better o�. In this case, coalition S is called a feasible coalition for �rm i, and

the set of all feasible coalitions for a �rm i is denoted by N f
i .

De�nition 23 : A coalition S, S 6∈ Ni is a feasible coalition for �rm i if �rm i can join

coalition S such feasible move is denoted i ⇀ S. This means that �rm i prefers coalition S at

least than staying alone and all the members of coalition S will be strictly better o� when �rm i

joins their coalition. Formally,

i ⇀ S ⇐⇒




(S ∪ {i}) ºi {i}
(S ∪ {i}) Âj S, ∀j ∈ S

(7.2)

Since each retailer is principally interested in his/her own pro�t, it is easy to expect that

he/she would like to join the coalition guarantying the maximum worth. In other words, each

retailer would like to join his/her most preferred coalition

Sz,i ∈ N f
i such that ∀T ∈ N f

i , Sz,i ºi T (7.3)

Above, we discussed the way the "game" can be played from only one player's (retailer) point

of view. Therefore, even if coalition Sz,i is the most bene�cial (and feasible) coalition for retailer

i this do not mean that this coalition will be formed, because obviously coalition Sz,i may not be

the most preferred coalition for the other (one or more) coalition's members. So the "ideal" is to

�nd a coalition that is the best (the most preferred) coalition simultaneously for all its members,

such coalition will be referred to as an e�cient coalition.

De�nition 24 : A coalition Sz is an e�cient coalition only when it is the most preferred
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coalition to each one of its members,

Sz is e�cient ⇐⇒ ∀i ∈ Sz, ∀T ∈ N f
i ; Sz ºi T (7.4)

Proposition 7.1 Each e�cient coalition is "saturated" in the sense that the adhesion of new

members is not accepted.

Proof: Considering an e�cient coalition Sz and a player j outside Sz(j 6∈ Sz), by construc-

tion coalition Sz is the most preferable coalition for all its members, therefore, ∀i ∈ Sz, Sz ºi

(Sz ∪ {j}). ¤

Another interpretation of the above proposition is that when Sz is an e�cient coalition, no

player outside Sz can join it because this will make him/her worse o� or will make coalition

Sz's members worse o�. Thus, the worth of each �rm inside the e�cient coalition is completely

dependent by the identity of its other partners without the implication of �rms or coalitions

outside this coalition.

It is easy to remark that the e�cient coalitions are disjoint (by construction). In what

follows, the focus will be to address the proprieties of the e�cient coalition structure Pz =

{Sz
1 , Sz

2 , ..., Sz
m} referring to the partition that holds when each �rm joins its e�cient coalition.

However, before moving to this discussion, some natural questions about the e�cient coalitions

need to be answered. For instance, do the e�cient coalitions always exist? If not, what are

the conditions under which their existence is guaranteed? And how to �nd or to build such

coalitions?

The concept of e�cient coalitions have been de�ned through players' preferences relations.

These preference relations were themselves directly related to the pro�t portion expected by

each player. Therefore, the existence or not of e�cient coalitions cannot be studied separately

from the allocation rule used to de�ne the preference relations pro�le. In what follows, we show

that e�cient coalitions exist at least for two allocation rules; Equal allocations and Proportional

allocations. Only both of these allocations will be considered over the rest of the chapter.

De�nition 25 : Proportional allocations
The proportional allocation rule distributes the rewards proportionally to the standalone costs. A

�rm i, member of coalition S will receive the worth

ϕP (S, i) =
C(i).v(S)∑

j∈S C(j)
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De�nition 26 : Equal allocations
This allocation rule assigns an equal savings portion to each �rm. Thus, a �rm i, member of

coalition S will receive the worth

ϕE(S, i) =
v(S)
|S|

Theorem 7.1 In a hedonic game (N,R) where the preference pro�le is determined by cost-

based proportional allocations or equal allocations, ϕ(., .) ∈ {ϕP (., .), ϕE(., .)}, e�cient coalitions

always exist and are expressed as follows:

• ϕ(., .) ≡ ϕP (., .) : Sz,P
1 = argmax

S⊆N
( v(S)P

j∈S C(j))

• ϕ(., .) ≡ ϕE(., .) : Sz,E
1 = argmax

S⊆N
(v(S)
|S| )

Proof: The coalition Sz,P
1 = argmax

S⊆N
( v(S)P

j∈S C(j)) always exists by nature of the optimization

problem. To show that coalition Sz,P
1 is an e�cient coalition, we should show that any �rm in

Sz,P
1 prefers this coalition to any other coalition. So let us consider a �rm i and a coalition

T, T ∈ Ni, by construction of Sz,P
1 we have:

v(Sz,P
1 )∑

j∈S
z,P
1

C(j)
≥ (

v(T )∑
j∈T C(j)

) ⇐⇒ C(i).
v(Sz,P

1 )∑
j∈S

z,P
1

C(j)
≥ C(i)(

v(T )∑
j∈T C(j)

)

⇐⇒ ϕP (Sz,P
1 , i) ≥ ϕP (T, i) ⇐⇒ Sz,P

1 ºi T, T ∈ Ni

Coalition Sz,P
1 is then e�cient. The proof is similar when we consider equal allocations. ¤

Now let us consider e�cient coalition formation under proportional allocations. Once coali-

tion Sz,P
1 is formed, we suppose that the �rms in the new system N \ Sz,P

1 will react similarly,

that is the e�cient coalition Sz,P
2 will be formed.

Sz,P
2 = argmax

S⊆(N\Sz,P
1 )

{( v(S)∑
j∈S C(j)

)} (7.5)

Now the procedure is reapplied; a third e�cient coalition Sz,P
3 will be formed, a fourth and

so on until assigning all retailers to their e�cient coalitions. It is clear that, by construction, the

e�cient coalitions are disjoint, therefore they form a partition of N . This partition will refers

to the e�cient coalition structure and will be denoted by Pz,P . When considering, equal

allocations, the e�cient coalition structure Pz,E will be formed in the same way as Pz,P . To

summarize both partitions are formally de�ned as follows:



Stable Hedonic Coalition Structures Generation 115

De�nition 27 : E�cient Coalition Structures (ECS) Pz,P , Pz,E, refers to the partitions

that respectively hold when each �rm joins its e�cient coalition under equal allocations and

proportional allocations, i.e., Pz,P = {Sz,P
1 , Sz,P

2 , ..., Sz,P
m } and Pz,E = {Sz,E

1 , Sz,E
2 , ..., Sz,E

l }
such that:

Sz,P
i = argmax

S⊆(N\∪j=i−1
j=1 Sz,P

j )
{( v(S)∑

j∈S C(j)
)}, Sz,P

i ∈ Pz,P (7.6)

Sz,E
i = argmax

S⊆(N\∪j=i−1
j=1 Sz,E

j )
{(v(S)
|S| )}, Sz,E

i ∈ Pz,E (7.7)

After describing the formation of e�cient coalitions, the focus in the rest of the chapter is

twofold. First we will analyze the above structures from a cooperative game point of view and

secondly, we will compare both partitions.

The characterization of e�cient coalitions was de�ned through �rms' preference relations.

Thus, it may be easy to see that at the individual level each �rm will be satis�ed to be in its

e�cient coalition (its most preferred coalition). When extending this analysis to a group of

�rms, we remark that any sub-set of �rms (within the same e�cient coalition) feel that acting in

e�cient coalition is worthwihle for its own sake and therefore will not defect to form a separate

coalition. In keeping with cooperative game theory principles, we can conclude that any e�cient

coalition is core stable.

Theorem 7.2 The core of any e�cient coalition is non-empty.

Proof: To prove this theorem we should show that the core of any coalition in Pz,P , or in Pz,E

is non-empty. Without loss of generality, let us consider, Sz,P
1 and Sz,E

1 . Since proportional

and equal allocations are imputations, proving the non-emptiness of the core reduces to prove that

any sub-set of �rm in an e�cient coalition gains at least as much as they can get by themselves

if they were to deviate and to form their own coalition. Let us consider e�cient coalition Sz,P
1 .

Let T be sub-coalition of Sz,P
1 , T ⊂ Sz,P

1 and let us show that
∑

i∈T ϕP (Sz,P
1 , i) ≥ v(T ).

∑

i∈T

ϕP (Sz,P
1 , i) =

∑

i∈T

C(i).
v(Sz,P

1 )∑
j∈Sz,P

1
C(j)

≥ v(T )

Because by construction of Sz,P
1 we have

v(Sz,P
1 )∑

j∈S
z,P
1

C(j)
≥ (

v(T )∑
j∈T C(j)

)
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This means that sub-set T will not defect from e�cient coalition Sz,P
1 , cost based allocation,

ϕP (Sz,P
1 , .) is then a core allocation for the game (Sz,P

1 , v). Similarly, equal allocation, ϕE(Sz,E
1 , .)

is a core allocation for the game (Sz,E
1 , v).¤

At this level of our analysis, we only focus on the propriety of an e�cient coalition without

the implication of �rms and the other alliances outside this e�cient coalition. However, as one

can expect studying the stability of a coalition structure in general, particularly that of partitions

Pz,P and Pz,E , implies the study of possible interactions between coalitions, i.e., the possible

moves of groups of �rms that are not only in the same coalition but also belonging to several

coalitions.

When dealing with this issue, i.e., the stability of coalition structures Pz,P and Pz,E , the

�rst point to note is that both of coalition structures Pz,P and Pz,E are weakly stable (this is

an immediate result from Theorem (7.2).

Theorem 7.3 : Weak stability: E�cient coalition structures Pz,P and Pz,E are weakly stable

in the sense that the cost based proportional rule is in the core of any coalition of Pz,P and equal

allocation is in the core of any coalition of Pz,E

ϕP (Sz,P
k , .) ∈ Co(Sz,P

k , v) for all Sz,P
k ∈ Pz,P

ϕP (Sz,E
k , .) ∈ Co(Sz,E

k , v) for all Sz,E
k ∈ Pz,E¤

The weak stability exposed above means that in the e�cient coalitions no group of �rms

within the same e�cient coalition will have the incentive to deviate. When extending this

analysis to include the movement of group of �rms that may belong to several coalitions, we

have the following results.

Theorem 7.4 : Strong stability (stability in the sense of coalition structure core (see chapter

3)):

1. Given the coast based proportional allocation, ϕP (., .), e�cient coalition Pz,P is a stable

coalition structure.

2. Given equal allocation rule, ϕE(., .), e�cient coalition Pz,E is a stable coalition structure.

Proof: The proof of the strong stability is strictly the same for both coalitions structures Pz,P

and Pz,E and is, like in the above theorems, valid by construction. Let us assume that the cost
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based proportional rule is the allocation used in the system and let us focus on the stability of

Pz,P . Since we know that the proportional rule ensures the weak stability of Pz,P , studying the

strong stability is equivalent to studying the possible moves of �rms that are members of at least

two distinct coalitions. Thus, we should show that such a sub-coalitions cannot be formed.

Let T be a group of �rms members of di�erent coalitions. That is, there exists a set of coali-

tions {Sz,P
k , ..., Sz,P

l } ⊆ Pz,P such that T ⊂ (
⋃j=l

j=k Sz,P
k ) and T ∩ Sz,P

j 6= ∅ ∀j ∈ {k, .., l}.
Without loss of generality we suppose that Sz,P

k is the coalition having the maximum rate value

( v(Sz,P
k )P

j∈S
z,P
k

C(j)) among coalitions {Sz,P
k , ..., Sz,P

l }. This implies that ( v(Sz,P
k )P

j∈S
z,P
k

C(j)) ≥ ( v(T )P
j∈T C(j)),

otherwise coalition Sz,P
k is not satisfying the criteria of e�ciency and coalition T would be an

e�cient coalition, which is not the case. With these introduced proprieties, let us look to the the

sub-coalition T ′ = T∩Sz,P
k . These �rms if they were to deviate from their coalition Sz,P

k to coali-

tion T , the worth of each one of them will decrease because, ϕP (Sz,P
k , i) = C(i).( v(Sz,P

k )P
j∈S

z,P
k

C(j)) ≥

ϕP (T, i) = C(i).( v(T )P
j∈T C(j)). Consequentially, coalition T cannot be formed. As mentioned above,

the proof is the same when we consider equal allocation. ¤

7.3.1 Complexity Analysis

In this section, our aim is to highlight the computational complexity of generating coalition

structures Pz,P and Pz,E . As mentioned in equation (7.6,7.7), the formation of coalitions

structures Pz,P and Pz,E implies solving the respective optimization problems,

Sz,P
i = argmax

S⊆(N\∪j=i−1
j=1 Sz,P

j )
{( v(S)∑

j∈S C(j)
)} and Sz,E

i = argmax
S⊆(N\∪j=i−1

j=1 Sz,E
j )

{(v(S)
|S| )}

Of course, since the solution of each one of the above optimization problems is only one e�cient

coalition, the procedure should be repeated until partitioning all the �rms in coalitions. The worst

case is to select coalitions containing only two �rms for all steps. In this case bn
2 c iterations are

needed for partitioning all the �rms.

To �nd the most e�cient coalitions Sz,P
1 and Sz,E

1 , the space of all possible coalitions is

explored. However, in a system of n �rms, there are (2n − 1) possible coalitions. This number

doubles with each �rm added to the system. Therefore, when we deal with a large number

of �rms, there will be too much possible coalitions to allow exhaustive search for the most

e�cient ones. Both problems of generating e�cient coalition structures Pz,P and Pz,E are

with exponential complexity. At this level of the study, we cannot provide a solution for this

exponential complexity; Any solution would be closely related to the form of the cost function

C. Up to this level, we are dealing with general functions however, we would like to outpoint the
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fact that both optimization problems include functions in ratio forms. This makes the traditional

linear programming theory unusefull, and we think that fractional programming theory is more

appropriate here.

7.3.2 Comparisons

After discussing the main proprieties of coalition structures Pz,P and Pz,E from both coopera-

tive game theory and computational point of views, the next natural question to be asked is how

to compare these coalitions structures. We should note that with the use of cooperative game

theory the quality of any coalition structure is quite often evaluated to its stability. However,

in the current work both coalition structures ful�l the same stability proprieties. To compare

coalition structures Pz,P and Pz,E we should include more criteria and ask other questions,

for instance: Do �rms prefer one coalition structure to another? Does one of the two partitions

contains more coalitions or is more pro�table than the other?

As one can expect, it is impossible to answer the above questions in the current general form

of the cooperative game. To achieve our goal, we need to apply the afore-described results in

an example of supply chain game with an explicit cost structure. This will be our focus in the

rest of the chapter. We will consider both scenarios in a one-supplier multi-retailer full truckload

shipments joint replenishment game (FTLJRP-game). In the �rst scenario the �rms will form

e�cient coalition structure Pz,P whereas in the second one coalition structure Pz,E will be

considered. Since the questions of stability and gains splitting are valid in the general case,

we will mainly investigate two topics : (1) The algorithmic question of generating the e�cient

coalitions, and (2) the comparison of the two scenarios.

7.4 Application: One-Supplier Multi-Retailer Full TruckLoad Ship-
ments Joint Replenishment Game (FTLJRP-Game)

7.4.1 Model Description and Notations

We consider the issue of generating the afore-studied coalition structures Pz,P and Pz,E Single-
Supplier Multi-Retailer Full Truckload Shipments Joint replenishment Game (FTLJRP-
Game).

This FTLJRP-Game (Figure (7.1(a))) can be stated as follows: A number of independent

retail facilities, N = {1, ..., n}, faces known demands, Di, of a single product -characterized by

a volume (or a weight) Vi- over an in�nite planning horizon. They order goods from the same

external supplier. All shipments from supplier's warehouse to retailers are direct full truckload
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shipments, all trucks have the same capacity limit called CAP . There are a �xed ,A, and a

variable ,Gi, costs per truck dispatched from the supplier to retailers, and linear holding costs

at the retailers' warehouses. The cost of holding one unit of product per unit of time at retailer

i is hi. For simpli�cation, we let Hi = hi.Di
2 be the holding cost parameter of retailer i. All costs

are stationary costs; i.e., the �xed and variable transportation charges and the linear holding

costs do not change over time. Both of transportation costs and linear inventory holding costs

involved by products' storage are supported by the retailer.

7.4.2 One-Supplier Multi-Retailer Full TruckLoad Joint Replenishment Games
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Figure 7.1: One-Supplier Multi-Retailer Full TruckLoad Joint Replenishment Game with three
cost components : Holding Cost, Fixed and Variable Transportation Costs

Each time a full truckload delivery is requested by a retailer i, a �xed ordering cost A is

charged. In addition a retailer-dependent cost Gi, called individual cost is supported. When a

group of retailers form an alliance S, by joining their orders as a single large order, they will

pay only one ordering cost A for the full truck shipment while all individual costs will be kept

(See Figure (7.1(b))). This means that the delivery cost will be A +
∑

i∈S Gi. When ordering

jointly, the common ordering cycle time is denoted by TS and the corresponding frequency is

denoted by NS . The EOQ (Economic order quantity) is used as a reorder policy. The notations

and parameters of the model are summarized below:

• N = {1, ..., n}: The set of retailers.

• Di: The deterministic demand of retailer i ∈ N .

• Gi: The individual ordering cost of retailer i ∈ N .

• hi: The holding cost per time unit of retailer i ∈ N .

• Vi: The volume/ weight of product i associated to retailer i ∈ N .
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• A: The �xed ordering cost.

• CAP: The vehicle capacity.

• Ti: The ordering cycle time of retailer i ∈ N .

• Ni: The ordering frequency of retailer i ∈ N .

• Qi: The order size of retailer i ∈ N .

• Hi = hi.Di
2 : The holding cost parameter of retailer i ∈ N .

• C(i): The average total cost per time unit of retailer i ∈ N .

• TS : The ordering cycle time of coalition S, ∅ ⊂ S ⊆ N .

• NS : The ordering frequency of coalition S, ∅ ⊂ S ⊆ N .

• C(S): The average total cost per time unit of coalition S, ∅ ⊂ S ⊆ N .

When ordering alone, the optimal replenishment strategy for a retailer i is to order a full truck

corresponding to the quantity Qi = CAP
Vi

every Ti = Qi
Di

= CAP
Vi.Di

unit of time. The corresponding

ordering frequency is then : Ni = Vi.Di
CAP . Retailer i charges a total delivery cost of (A + Gi).Ni

plus a total holding cost (hi.Qi/2). Consequentially the total average cost of retailer i equals

C(i) = (A + Gi).Ni + hi.Qi

2 . Since Ni = Di
Qi

, rewriting C(i) as a function of the frequency Ni

gives :

C(i) = (A + Gi).Ni +
Hi

Ni
, and Ni =

Vi.Di

CAP
.∀i ∈ {1, ..., n}. (7.8)

Above, we have determined the standalone optimal replenishment policy for any �rm. In

what follows, we focus on the cooperative situation. Consider a non-empty set of �rms that

decide to form a coalition ,S, to manage their inventory collectively by making joint orders. In

this case it is obvious that in this cooperative structure all these �rms will have one common

cycle time TS and a common ordering frequency NS . Since we suppose that only full truck orders

are authorized and no shortage is allowed it is easy to check that the common ordering frequency

is the sum of the standalone ordering frequency, i.e.,

NS =
∑

i∈S

Ni, ∅ ⊂ S ⊆ N (7.9)

As mentioned above, in the cooperative situation, only one ordering cost is supported. Thus,

coalition S charges ((A+
∑

i∈S Gi).NS) delivery cost. The delivered products are stored in local
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warehouses where every retailer supports his/her own holding cost; the holding cost charged by

the coalition is the sum of the individual holding costs. As a result, the average total cost of

alliance S, C(S), is C(S) = (A +
∑

i∈S Gi).NS +
P

i∈S hi.Qi

2 . Expressing the order size Qi as a

function of NS leads to : Qi = Di
NS

. The total average cost of coalition S is then expressed as

follows:

C(S) = (A +
∑

i∈S

Gi).NS +
∑

i∈S Hi

NS
= (A +

∑

i∈S

Gi).
∑

i∈S

Ni +
∑

i∈S Hi∑
i∈S Ni

, ∅ ⊂ S ⊆ N (7.10)

Table 7.1: Standalone situation vs Cooperative Situation

Standalone situation Cooperative Situation variation Gap
Delivery costs

P
i∈S(A + Gi).Ni (A +

P
i∈S Gi).

P
i∈S Ni ↗ -

P
i∈S

P
j∈S,i6=j Gi.Nj

Holding costs
P

i∈S
Hi
Ni

P
i∈S HiP
i∈S Ni

↘ +
P

i∈S
Hi
Ni
−
P

i∈S HiP
i∈S Ni

Now to discuss whether it is interesting or not for a given set of retailers to cooperate we should

compare the cost in the cooperative situation, C(S) to that in the standalone (decentralized)

situation
∑

i∈S C(i). As summarized in Table (7.1), on the one hand the cooperative situation

leads to a rise in the delivery costs due to the increase of the individual costs charge increase,

on the other hand the holding costs in the cooperative situation are lower than the stand alone

situation. Pro�tability is then not guaranteed for all possible coalitions. To be pro�table, a given

coalition should satisfy the propriety of proposition (7.2).

Proposition 7.2 A non-empty coalition S ⊆ N is only pro�table when the individual cost raising

is balanced by the holding cost decrease.

C(S) ≤
∑

i∈S

C(i) ⇐⇒
∑

i,j∈S,i6=j

Gi.Nj ≤
∑

i∈S

HDi

Ni
−

∑
i∈S HDi∑
i∈S Ni

A direct consequence of proposition (7.2) is that the merging of two or more coalitions into

one coalition does not guarantee a total cost decrease. Consequentially, the grand coalition may

be non-pro�table: The game is non-superadditive.

In the rest of the chapter the aim will be to study the following games with coalition struc-

tures: (N, v, Pz,P ) and (N, v, Pz,E). Where N is the �rms, v is the savings function.

v : Ω −→ R

S ½ v(S) = (
∑

i∈S C(i)− C(S))
(7.11)
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Pz,P and Pz,E are the e�cient coalition structures studied above (see De�nition (27)).

Pz,P = {Sz,P
1 , Sz,P

2 , ..., Sz,P
m } such that:

Sz,P
i = argmax

S⊆(N\∪j=i−1
j=1 Sz,P

j )
{( v(S)∑

j∈S C(j)
)}, Sz,P

i ∈ Pz,P

And Pz,E = {Sz,E
1 , Sz,E

2 , ..., Sz,E
l } such that:

Sz,E
i = argmax

S⊆(N\∪j=i−1
j=1 Sz,E

j )
{(v(S)
|S| )}, Sz,E

i ∈ Pz,E

The rest of the chapter is organized as follows. First, the aim will be to study the optimization

problems of e�cient alliance formation. Particularly, we will focus on solving the following

optimization problems:

Sz,P
1 = argmaxS⊆N{( v(S)∑

j∈S C(j)
)} and Sz,E

1 = argmaxS⊆N{(v(S)
|S| )}

Once alliance formation problems are solved, we used a set of numerical tests to compare both

coalition structures.

7.4.3 Scenario 1 : Coalition Structure Pz,P

The proposal of this section is to provide an exact solution for searching for the e�cient coalition

structure Pz,P . As explained above, we will focus on the optimization problem of generating

the most e�cient coalition:

Sz,P
1 = argmaxS⊆N{( v(S)∑

j∈S C(j)
)} (7.12)

Proposition 7.3 : Maximizing the pro�t ratio is equivalent to minimize the ratio of the coali-

tion's cost to its corresponding decentralized cost:

Sz
1 = argminS⊆N (

C(S)∑
i∈S C(i)

) (7.13)

Proof: Sz
1 = argmaxS⊆N (

P
i∈S C(i)−C(S)P

i∈S C(i) ) = argmaxS⊆N (1− C(S)P
i∈S C(i))= argminS⊆N ( C(S)P

i∈S C(i)).¤

In what follows, for simplicity, we will consider the minimization problem (7.13). The ratio
C(S)P
i∈S C(i) will refer to us as the cost ratio and will be denoted by CR(S).

The optimization problem (7.13) may be formulated as the following linear program. The

decisions variables Xj address the selection of one coalition from all possible 2n − 1 coalitions.
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Xj=





1 : if coalition j is selected

0 : otherwise
(F.I)

min
2n−1∑

j=1

(
C(S)∑
i∈S C(i)

).Xj (7.14)

2n−1∑

j=1

Xj = 1 (7.15)

Xj ∈ {0, 1},∀j = 1, 2, ..., 2n − 1 (7.16)

Because of its exponential complexity, the current (F.I) may be only used for systems with a

small number of �rms. When dealing with a large number, the problem becomes too complex to

allow the use of exhaustive enumeration. Since we deal with an objective function that aims at

minimizing a ratio of two functions, fractional programming theory may be used to reformulate

the problem (we used the same technique as in Chapter 5). To achieve 0-1 fractional program

formulation, we de�ne the following new decision variables:

Yi=





1 : if retailer i is in coalition S

0 : otherwise

Expressing the cost reduction ratio of one coalition S with the newly added decision variables

Yi gives the following 0-1 fractional ratio that represents the objective function (for simplicity

C(i) will be replaced by Ci).

CR(S) =
(A +

∑n
i=1 Gi.Yi)

∑n
i=1 Ni.Yi +

Pn
i=1 Hi.YiPn
i=1 Ni.Yi∑n

i=1 Ci.Yi

=
A.

∑n
i=1 Ni.Yi∑n

i=1 Ci.Yi
+

(
∑n

i=1 Gi.Yi).(
∑n

i=1 Ni.Yi)∑n
i=1 Ci.Yi

+
∑n

i=1 Hi.Yi

(
∑n

i=1 Ni.Yi).(
∑n

i=1 Ci.Yi)

=
A.

∑n
i=1 Ni.Yi∑n

i=1 Ci.Yi
+

∑n
i=1

∑n
j=1 Gi.Ni.Yi.Yj∑n
i=1 Ci.Yi

+
∑n

i=1 Hi.Yi∑n
i=1

∑n
j=1 Ni.Cj .Yi.Yj

Formulation (F.I) is then equivalent to the following formulation.

(F.II)

min
A.

∑n
i=1 Ni.Yi∑n

i=1 Ci.Yi
+

∑n
i=1

∑n
j=1 Ni.Gj .Yi.Yj∑n
i=1 Ci.Yi

+
∑n

i=1 Hi.Yi∑n
i=1

∑n
j=1 Ni.Cj .Yi.Yj

(7.17)



124 Stability of Hedonic JRP-Games with General Cost Function

n∑

i=1

Yi ≥ 1 (7.18)

Yi ∈ {0, 1},∀i = 1, 2, ..., n (7.19)

The objective function is represented by constraint (7.17). The constraint (7.18) ensures that

the selected coalition is non-empty. Binary decision variables Yi are represented by constraints

(7.19).

In order to linearize the objective function (7.17), let us de�ne two new variables R and T such

that:

T =
1∑n

i=1 Ci.Yi
and R =

1∑n
i=1

∑n
j=1 Ni.Cj .Yi.Yj

(7.20)

This de�nition is equivalent to:

n∑

i=1

Ci.Yi.T = 1 and
n∑

i=1

n∑

j=1

Ni.Cj .Yi.Yj .R = 1 (7.21)

With the newly introduced variables R and T , formulation (F.II) can be rewritten as :

(F.III)

min A.
n∑

i=1

Ni.Yi.T +
n∑

i=1

n∑

j=1

Ni.Gj .Yj .Yi.T +
n∑

i=1

Hi.Yi.R (7.22)

n∑

i=1

Yi ≥ 1 (7.23)

n∑

i=1

Ci.Yi.T = 1 (7.24)

n∑

i=1

n∑

j=1

Ni.Cj .Yi.Yj .R = 1 (7.25)

Yi ∈ {0, 1}, ∀i = 1, 2, ..., n (7.26)

Next, nonlinear terms Yi.R , Yi.T , Yi.Yj .T and Yi.Yj .R can be linearized by introducing addi-

tional variables Tij and Rij . (F.IV )

min A.
n∑

i=1

Ni.Tii +
n∑

i=1

n∑

j=1

Ni.GjTij +
n∑

i=1

Hi.Ri (7.27)

n∑

i=1

Yi ≥ 1 (7.28)
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n∑

i=1

Ci.Tii = 1 (7.29)

n∑

i=1

n∑

j=1

Ni.Cj .Rij = 1 (7.30)

T − Ti,j ≤ (2− Yi − Yj), ∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.31)

Tij ≤ T,∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.32)

Tij ≤ Yi,∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.33)

Tij ≤ Yj ,∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.34)

Tij ≥ 0,∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.35)

R−Ri,j ≤ (2− Yi − Yj),∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.36)

Rij ≤ T,∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.37)

Rij ≤ Yi, ∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.38)

Rij ≤ Yj , ∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.39)

Rij ≥ 0, ∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.40)
n∑

i=1

Yi ≥ 1 (7.41)

Yi ∈ {0, 1},∀i = 1, 2, ..., n (7.42)

As summarized in Table 7.2, the total number of variables in model (F.IV ) is (2n2 + n + 2)

where n are binary variables and (n2 + 2) are continuous. The total number of constraints is

(10n2+3) where 2 constraints are equality constraints, (2.n2) positivity constraints and (8.n2+1)

inequalities.

Table 7.2: Model (F.IV )'s complexity
Variables Constraints

Binary Continuous ” = ” ≥ / ≤ ≥ 0

n 2n2 + 2 2 8n2 + 1 2n2

Total 2n2 + n + 2 10n2 + 3

Proposition 7.4 The exponentially complex optimization (F.I) problem is equivalent to the poly-

nomial complex optimization problem (F.IV ), i.e., equations (7.14, 7.16) ⇐⇒ equations (7.27,

7.42).
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7.4.4 Scenario 2: Coalition Structure Pz,E

In this section, we aim at studying the second scenario where the e�cient coalition structure

Pz,E is to form. Similarly to the previous section, the focus will be on the following optimization

problem

Sz,E
1 = argmaxS⊆N{v(S)

|S| } (7.43)

The optimization problem (7.43) may be formulated as the following linear program. The

decisions variables Xj address the selection of one coalition from all possible (2n − 1) coalitions.

Xj=





1 : if coalition j is selected

0 : otherwise

FE.I :

max
2n−1∑

j=1

v(Sj)
|Sj | .Xj (7.44)

2n−1∑

j=1

Xj = 1 (7.45)

Xj ∈ {0, 1},∀j = 1, 2, ..., 2n − 1 (7.46)

We use the same technique in the previous section to reformulate the problem into 0-1 frac-

tional program that we linearize in a second time. To achieve the 0-1 fractional program we

de�ne the following new decision variables:

Yi=





1 : if retailer i is in coalition S

0 : otherwise

Expressing the objective function (7.44) with the newly added decision variables Yi gives the

following result:

v(S)
|S| =

∑n
i=1(

Hi
Ni

).Yi∑n
i=1 Yi

−
∑n

i=1 Hi.Yi∑n
i=1

∑n
j=1 Ni.Yi.Yj

−
∑n

i=1

∑n
j=1,j 6=i Ni.GjYi.Yj∑n

i=1 Yi

Rewriting the problem (FE.I) with the new form of the objective function gives :
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FE.II :

max

∑n
i=1(

Hi
Ni

).Yi∑n
i=1 Yi

−
∑n

i=1 Hi.Yi∑n
i=1

∑n
j=1 Ni.Yi.Yj

−
∑n

i=1

∑n
j=1,j 6=i Ni.GjYi.Yj∑n

i=1 Yi
(7.47)

n∑

i=1

Yi ≥ 1 (7.48)

Yi ∈ {0, 1},∀i = 1, 2, ..., n (7.49)

The objective function is represented by constraint (7.47). The constraint (7.48) ensures

that the selected coalition is non-empty. The binary decision variables Yi are represented by

constraints (7.49). In order to linearize the objective function (7.47), we de�ne two new variables

R and T such that:

T =
1∑n

i=1 Yi
and R =

1∑n
i=1

∑n
j=1 Ni.Yi.Yj

(7.50)

This de�nition is equivalent to:

n∑

i=1

Yi.T = 1 and
n∑

i=1

n∑

j=1

Ni.Yi.Yj .R = 1 (7.51)

With the newly introduced variables R and T , formulation (FE.II) can be rewritten as :

FE.III :

max
n∑

i=1

(
Hi

Ni
).T.Yi −

n∑

i=1

Hi.Yi.R−
n∑

i=1

n∑

j=1,j 6=i

Ni.Gj .T.Yi.Yj (7.52)

n∑

i=1

Yi ≥ 1 (7.53)

n∑

i=1

Yi.T = 1 (7.54)

n∑

i=1

n∑

j=1

Ni.Yi.Yj .R = 1 (7.55)

Yi ∈ {0, 1}, ∀i = 1, 2, ..., n (7.56)

Next, nonlinear terms Yi.R , YiT , Yi.Yj .T and Yi.Yj .R can be linearized by introducing additional

variables Tij and Rij . The resulting linear mixed-integer program is as follows:
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FE.IV :

max
n∑

i=1

(
Hi

Ni
).Tii −

n∑

i=1

Hi.Rii −
n∑

i=1

n∑

j=1,j 6=i

Ni.Gj .Tij (7.57)

n∑

i=1

Yi ≥ 1 (7.58)

n∑

i=1

Tii = 1 (7.59)

n∑

i=1

n∑

j=1

Ni.Rij = 1 (7.60)

T − Ti,j ≤ (2− Yi − Yj), ∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.61)

Tij ≤ T,∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.62)

Tij ≤ Yi,∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.63)

Tij ≤ Yj ,∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.64)

Tij ≥ 0,∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.65)

R−Ri,j ≤ (2− Yi − Yj),∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.66)

Rij ≤ T,∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.67)

Rij ≤ Yi, ∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.68)

Rij ≤ Yj , ∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.69)

Rij ≥ 0, ∀i = 1, 2, ..., n,∀j = 1, 2, ..., n (7.70)
n∑

i=1

Yi ≥ 1 (7.71)

Yi ∈ {0, 1},∀i = 1, 2, ..., n (7.72)

As summarized in Table 7.3, the total number of variables in model (PA(IV )) is (2n2+n+2)

where n are binary variables and (n2 + 2) are continuous. The total number of constraints is

(10n2+3) where 2 constraints are equality constraints, (2.n2) positivity constraints and (8.n2+1)

inequalities.

Table 7.3: Model (FE.IV )'s complexity
Variables Constraints

Binary Continuous ” = ” ≥ / ≤ ≥ 0

n 2n2 + 2 2 8n2 + 1 2n2

Total 2n2 + n + 2 10n2 + 3
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Proposition 7.5 The exponentially complex optimization (FE.I) problem is equivalent to the

polynomial complex optimization problem (FE.IV ), i.e., equations (7.44, 7.46) ⇐⇒ equations

(7.57, 7.72).

7.4.5 Numerical Results and Comparisons

The focus of this section is to compare e�cient coalition structures Pz,P and Pz,E . Using a set

of numerical tests, we will discuss whether partition Pz,P or Pz,E di�ers by more coalitions or

by a higher global pro�t rate.

We randomly generated the game's parameters. For instance, we used uniform distributions

U[100; 500], U[0; 100] and U[1; 10] to respectively generate each demand rate, Di, each individual

cost Gi and each holding cost hi. In these numerical studies, the ordering cost A and the truck

capacity CAP were set respectively to 100 and 200. We considered the simple case of identical

products' volume and set this parameter to Vi = 1. The number of �rms in the cooperative game

was varied in {5, 10, 15} and for each value of n we dealt with 10 instances. All computational

experiments were performed on a PC with Intel Core 2 CPU of 3 Ghz and RAM of 0.99 GB. All

instances were solved using ILOG OPL Development Studio 5.2 solver with default parameters.

As mentioned above, the comparison between both coalition structures Pz,P and Pz,E will

be done according to two criteria: the global pro�t ratio (π(P ) = v(P )P
i∈N C(i) , P ∈ {Pz,P , Pz,E})

and the number of coalitions in each coalition structure (|P |, P ∈ {Pz,P , Pz,E}). Our numerical

results are reported in Table (7.4). We should note that in column (∆(Pz,P−Pz,E)), we compute

the di�erence between both coalition structure's criteria. That is, ∆π = π(Pz,P )−π(Pz,E) and

∆|P | = |Pz,P | − |Pz,E |.

Table 7.4: Computing results for Pz,P vs Pz,E

Problem size P z,P P z,E ∆P z,P−P z,E

|P z,P | π(P z,P ) |P z,E | π(P z,E) ∆|P | ∆π

Max 3 39,56 % 3 40,75 % 0 3 %
n=5 Mean 2,3 28,57 % 2,6 28,56 % -0,3 0 %

Min 2 15,29 % 2 17,99 % -1 -3,43 %
Max 5 39,74 % 6 37,94 % 1 4,7 %

n=10 Mean 4,7 29,85 % 5 29,4 % -0,2 0,44 %
Min 4 19,45 % 4 21,9 % -1 -2,46 %
Max 10 46,67 % 9 48,25 % 1 1,61 %

n=15 Mean 8 26,57 % 8 26,69 % -0,2 -0,11 %
Min 5 13,17 % 6 16,11 % -2 -2,94 %
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On analyzing the above numerical results, the �rst point to note is that coalition structures

Pz,P and Pz,E are closely similar in terms of their global pro�t rate and number of coalitions.

Consequentially, neither Pz,P nor Pz,E is a strictly dominating coalition structure. The analysis

above does not take the individual preferences of �rms into account. To determine whether �rms

prefer one coalition structure to the other one we should compare �rms' worth in both structures.

In the e�cient coalition structure Pz,P , the savings are attributed proportionally to the

standalone cost of each �rm. As a result the value attributed to �rm i member of coalition Sz,P
k

is :

ϕP (Sz,P
k , i) = C(i).(

v(Sz,P
k )∑

j∈Sz,P
k

C(j)
), Sz,P

k ∈ Pz,P

The cost based proportional rule has the interesting propriety that the �rms within the same

coalition get the same pro�t ratio. For instance, the pro�t rate of a �rm i in coalition Sz,P
k (the

ratio of its allocated value to its standalone cost) is as follows:

Π(Sz,P
k , i) =

ϕP (Sz,P
k , i)

C(i)
= (

v(Sz,P
k )∑

j∈Sz,P
k

C(j)
)

Contrary to Pz,P , in the e�cient coalition structure Pz,E , the savings are divided equally. It

results that the �rms within the same coalition gains the same portion of savings (in term of

amount).

ϕE(Sz,E
k , i) = (

v(Sz,P
k )

|Sz,E
k |

), Sz,E
k ∈ Pz,E

In this case, the pro�t rate of a �rm i member of coalition Sz,E
k is as follows:

Π(Sz,E
k , i) = (

v(Sz,P
k )

C(i)|Sz,E
k |

)

To discuss whether it is better for �rms forming an e�cient coalition to have the same portion

of savings or to have the same pro�t ratio, we consider in the following a 10-�rm cooperative

game and we compare the value allocated to each �rm in both partitions Pz,P and Pz,E . The

�rms' parameters are reported in Table (7.5).

The outcome of the game is summarized in Table (7.6). E�cient coalition structure is Pz,P =

{{4, 5, 7}, {3, 6, 10}, {8, 9}, {1}, {2}} and e�cient coalition structure is Pz,E = {{3, 5, 7}, {4, 6, 10},
{1, 9}, {2, 8}}. In both partitions, coalitions are ranked by their order of formation (e�ciency).

We reported in Table (7.6) the worth of each �rm: we reported the allocated savings portion (in

one case the proportional rule is used while in the second case equal allocation is used) as well



Application to the FTLJRP-Game 131

Table 7.5: Firms' parameters
Firm {i} Di Gi hi

{1} 534 91 7
{2} 105 90 1
{3} 496 28 8
{4} 355 28 6
{5} 242 7 10
{6} 232 83 9
{7} 533 9 7
{8} 187 52 2
{9} 274 40 3
{10} 287 50 6

as the corresponding pro�t rate. In order to compare �rms' created values we present in Figure

(7.2) the pro�t rate pro�le in both coalition structures Pz,P and Pz,E .

When observing the pro�t rate diagram below, we remark that neither Pz,P nor Pz,P is

strictly better for all the �rms. For instance, when moving from one scenario to the other some

�rms become better o�, however, some others become worse o�.

Table 7.6: Formation of coalition structures Pz,P and Pz,E in a 10-�rm cooperative game
Coalition Structure P z,P Coalition Structure P z,E

Sz,P
k Firms's outcome Sz,E

k Firms's outcome
{i} C(i) ϕP (Sz,P

k , i) Π(Sz,P
k , i) {i} C(i) ϕE(Sz,E

k , i) Π(Sz,E
k , i)

{4, 5, 7} {4} 827,2 393,08 47,52 % {3, 5, 7} {3} 1117,4 508,71 45,52 %
{5} 1129,5 536,73 47,52 % {5} 1129,5 508,71 45 %
{7} 990,49 470,68 47,52 % {7} 990,49 508,71 51,4 %

{3, 6, 10} {3} 1117,4 350,08 31,33 % {4, 6, 10} {4} 827,2 311,5 37,65 %
{6} 1112,3 348,48 31,33 % {6} 1112,3 311,5 28 %
{10} 815,25 255,41 31,33 % {10} 815,25 311,5 38,2 %

{8, 9} {8} 342,12 54,1 15,81 % {1, 9} {1} 1210 102 8,42 %
{9} 491,8 77,8 15,81 % {9} 491,8 102 20,74 %

{1} {1} 1210 0 0 % {2, 8} {2} 199,75 12,25 6,13 %
{2} {2} 199,75 0 0 % {8} 342,12 12,25 3,58 %

To conclude, as discussed above both coalitions structures Pz,P and Pz,E seem to have

the same proprieties. However, we need to be careful when interpreting these results. For

instance, despite the apparent "fairness" in coalition structure Pz,E , the portions of savings are

completely independent of the contributions of the cooperating �rms. As result, we think that

equal allocation may lead to a situation where those who contribute more are not paid more.



132 Stability of Hedonic JRP-Games with General Cost Function

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Firm

P
ro

fit
(%

)

Proportional  Equal 

Figure 7.2: Firms' Pro�t Pro�le in partitions Pz,P and Pz,E

This would create "unsatis�ed" �rms and may thus constitute a motivation for the disbanding

of the coalition structure.

7.5 Conclusion and Extensions

In this chapter, we discussed the issue of generating stable coalition structures in games with

general cost function. We based our analysis on the principles of hedonic cooperative games. In

this theory, the outcome of a given actor is totaly determined by the identity of the other members

of his/her coalition. Moreover, the formal representation of such games is based on the so called

preference pro�le that speci�es for each actor his/her preferences among the coalitions he/she

wants to belong to. In this work, we assumed that �rms' preference relations are linked to the

portion of savings that they would gain in each potential coalition. Therefore, each �rm would

like to join the coalition o�ering the highest pro�t portion. Such coalitions, when they exist, are

called e�cient. Our �rst contribution was to show that when cost-based proportional rule and

equal allocation rule are used to divide the total created value, the e�cient coalitions always

exist and satisfy a set of desirable proprieties. For instance, both of e�cient coalition structures

generated respectively with proportional allocation and equal allocation are stable in the sense

of coalition structure core. Further, we stressed the exponential complexity of generating such

e�cient coalition structures.

Our second contribution was to apply the notions that we developed for general models to

some concrete joint replenishment games. To achieve this goal, we consider a non-superadditive
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joint replenishment game with full truckload shipments. Since the question of forming the e�cient

coalitions as well as the question of pro�t allocation are valid in the general case, in the studied

FTLJRP-game, we mainly provided a polynomial algorithmic solution to generate the coalitions.

Then, using a set of numerical results, compared both coalition structures. We showed that in

these games no partition dominates the other. Nevertheless, we warned that equal allocations

may lead to "unsatis�ed" �rms, because such allocation ignore �rms' contributions.

Finally, future research on this topic could be aimed at answering the question of whether

there exist some other allocation rules that guarantee the existence of e�cient coalition struc-

tures. We think that the allocations based on marginal contributions such as Shapley value and

marginal contribution-based proportional allocation do not ful�l this propriety. We believe that

it will be a very interesting contribution to show whether the cost-based proportional allocation

and equal allocation are the unique rules that guarantee the existence of e�cient coalitions. An-

other interesting extension of this work is to analyze the issue of considering coalition structures

with mixed allocation rules, i.e., the �rms express their preference relations according to di�erent

allocation rules. We should note that in this model as well as in the theory of games it-self a

coalition structure is always assumed to apply the same allocation rule. Even though it will be

a di�cult problem from theoretical point of view, we believe that investigating such research

direction will provide relevant methods to understand real-world cooperative structures.

Above, we detailed some extensions closely related this chapter's work. In the following

chapter, the focus will be to emphasis more general research directions in the issue of analyzing

the cooperation by means of cooperative game theory.



134 Stability of Hedonic JRP-Games with General Cost Function



Chapter 8

Extensions and Future Research
Directions

Using cooperative game theory seems to be a natural and great framework to model

cooperation in supply chains. However, this research area is a rather new stream

of research in supply chain management, and several future developments can be

done. In this chapter, we aim at introducing some extensions closely related to the

present Ph.D thesis. We mainly discuss four topics including (1) Inventory central-

ization games with explicit transportation costs, (2) Cooperative games with explicit

cost formation process, (3) Cooperation in multi-item inventory systems, and (4)

Cooperation in service systems.

135



136 Extensions and Future Research Directions

8.1 Cooperative games with explicit transportation costs

8.1.1 Motivation

Nowadays, the geographical dispersion of production and commercial processes is among the

major characteristics of supply chains. Managing such spatial dispersed customers, suppliers and

partners imperatively involves a well developed transportation systems. Without well developed

transportation systems, logistics could not bring its advantages into full play. It has been shown

that around one third to two thirds of the expenses of companies' logistics costs are spent on

transportation (Tseng et al., 2005; Pimor, 2005). Motivated by the transportation decisions'

critical role we think that it would be worth investigating cooperative situations with explicit

transportation costs. The term "explicit" here refers to the inclusion of parameters such as,

distance, vehicles' greenhouse gas emissions, vehicle capacity, etc. Even if it seems to be an

interesting research topic, involving transportation decisions in supply chain games rises several

challenging questions, for instance : What would be the value that transportation costs bring

into inventory games? Which transportation cost function to include? What would be its impact

on the games' structures and properties?

The answer to the �rst question is intuitive, for instance the added value of considering

transportation costs in inventory cooperative games is twofold. First, more practical situations

can be modelled and more supply chain e�ciency can be realized. Second, including explicit

transportation costs would allow us to model other cooperative behavior outcomes as well as

new supply chain trends, such as green issues. The trend towards developing a green supply

chain is now gaining popularity. Consumer are becoming more and more sensitive to the quality

and protection of the environment. As a result, they are being more careful about products envi-

ronmental labelling and carbon footprints in supply chains. To ful�l customers' needs, managers

are being compelled to consider the most e�cient and environmentally friendly way to deal with

transportation. In this context, mutualization of transportation resources seems to be a valuable

way to help �rms to cut the environmental impact of their supply chains.

Before giving some insights in the other questions, we would like to mention that even in the

buyer-supplier contracting literature, few are the studies that explicitly consider transportation

costs and their impact on channel coordination. See for example, (Toptal, 2003; Toptal and

Çetinkaya, 2004, 2006). A detailed study on transportation functions and their impact on channel

coordination and contractual agreements is found in (Mutlu, 2006).
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8.1.2 Some Transportation Cost Functions

Now let us focus on the transportation cost function and impacts on inventory games. In the

literature, there are mainly two traditional transportation cost functions (many hybrid forms

exist). In the �rst structure, the delivery is made by a number of trucks (the number of trucks

is not often a constraint), each with a certain capacity P and a �xed operating cost RT . Hence,

letting Q the quantity ordered by a given retailer, the truck cost is dQ
P eRT . Often a per unit

transportation cost denoted by cT is considered. As a result, the total cost for carrying Q units

of product is

dQ
P
eRT + cT .Q (8.1)

The second classic transportation function's form is to include the notion of distance. Letting

di,j the distance that separates location i and location j, and δT a per distance-unit transportation

cost, the transportation cost is δT .di,j . A �xed cost or a per unit transportation cost is often

included. When considering a per unit transportation cost, the total cost for carrying the ordered

quantity Q is

δT .di,j + cT .Q (8.2)

8.1.3 Inventory-Routing Game

To emphasize the challenges and impacts that an eventual transportation cost function can have

on a traditional inventory game we address below what we call the inventory-routing games. 1

This game may be considered as an extension of the model studied in chapter 5; we consider

the same joint replenishment situation where both of ordering and holding cost components are

kept whole individual cost component is replaced by an explicit transportation function which a

variant of the cost function in equation (8.2).

In particular, we consider a distribution system where a set of retailers may order a single

product from a unique supplier to satisfy a deterministic and constant rate demand of �nal

customers. Each retailer, when ordering for a quantity of product, has to pay a �xed ordering

cost and a transportation cost. Moreover, the delivered products generate some holding cost.

The transportation cost is function of the distance separating the supplier from the retailer.

Retailers may choose to cooperate in order to realize some cost saving bene�ts. In this case,
1Extended versions of this analysis are:

1: El Omri, A. , Ga�ari, A., Jemai, Z. and Dallery, Y.(2007a). Multiple Retailers Cooperation For Joint
Transportation and Inventory Decisions. Proceedings of 19th International Conference on Production Research
(ICPR19), Valparaiso, Chili.
2: El Omri, A. , Ga�ari, A., Jemai, Z. and Dallery, Y.(2007b). La théorie des jeux pour la modélisation �dun
problème de coopération multi-clients. Proceedings of FRANCORO/ROADEF07, Grenoble, France
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they make joint orders and to minimize the transportation costs, retailers are delivered during

the same truck trip, that we model as a travelling salesman tour. To summarize the model,

each retailer i is assumed to face a deterministic, constant demand rate denoted by Di. The

cost of holding one unit of product per unit of time at this retailer is hi. We assume identical

and constant lead times, without loss of generality, assumed to zero. Each time a delivery is

requested by a retailer i, a �xed ordering cost A is charged. Moreover, the retailer is supposed to

pay a direct shipping cost which is two times the distance separating the retailer in question from

the supplier di,0 multiplied by a per distance-unit transportation cost, δT . The EOQ (Economic

order quantity) is used as a reorder policy. The model's notations are summarized below:

• N={1,...,n}: The set of retailers, {0} refers to the supplier.

• Di: The deterministic demand of retailer i ∈ N .

• hi: The holding cost per time unit of retailer i ∈ N .

• A: The �xed ordering cost.

• dij : The distance separating two locations i and j, where i, j ∈ N ∪ {0}.

• Qi: The order size of retailer i ∈ N .

• C(i): The average total cost per time unit of retailer i ∈ N .

• Ti: The ordering cycle time of retailer i ∈ N .

• mi: The ordering cycle time of retailer i ∈ N .

• TS : The ordering cycle time of coalition S, ∅ ⊂ S ⊆ N .

• mS : The ordering frequency of coalition S, ∅ ⊂ S ⊆ N .

Letting the Economic Order Quantity be the reorder policy, the total average cost per time

unit paid by any retailer i ∈ N is the sum of his/her ordering cost, transportation cost and

holding cost.

C(Qi) =
(

2.δT .di,0.
Di

Qi

)

︸ ︷︷ ︸
Transportation cost

+
(

A.
Di

Qi

)

︸ ︷︷ ︸
Ordering cost

+
(

hi.Qi

2

)

︸ ︷︷ ︸
Holding cost

The minimization of the above expression gives us the optimal total average cost, C(Q∗
i )

noted C∗(i) for seek of simpli�cation:
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C∗(i) =
√

2.(A + 2.δT .di,0).Dihi = 2.(A + 2.δT .di,0).m∗
i , i ∈ N. (8.3)

Above, we have determined the optimal replenishment policy for any standalone situation.

Now let us focus on the cooperative situation where a group of retailers, S, decides to cooperate

by ordering jointly and delivered in a TSP tour. In this case the cooperating retailers will have

the same ordering frequency mi = mS , ∀i ∈ S ⊆ N and the total average cost of the coalition is

as follows:

C(Qi) = (δT .TSP (S).mS)︸ ︷︷ ︸
Transportation cost

+ (A.mS)︸ ︷︷ ︸
Ordering cost

+

(∑

i∈S

hi.Di

2.mS

)

︸ ︷︷ ︸
Holding cost

Coalition S's optimal total cost is obtained by the minimization of the above total cost with

respect to the ordering frequency ms. The result is as follows:

C∗(S) =
√

2.(A + δT .TSP (S)).
∑

i∈S

Dihi = 2.(A + δT .TSP (S)).m∗
S , S ⊆ N. (8.4)

In what follows for better understanding of the model, we present a small numerical example

that will also allow us to highlight the challenges that the transportation cost function brings into

the model. We consider a 3-retailer cooperative game, in Figure 8.1(a) we present the standalone

situation in addition to the retailers parameters. In Figure 8.1(b) we present all possible alliances.
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Figure 8.1: a 3-retailer inventory-routing game

As one can easily remark, retailer 3 is quite far from the supplier and both of retailers 1 and

2 are not. For this reason, it is bene�cial for retailer 1 and 2 to operate jointly without retailer

3. The grand coalition {1,2,3} is then non pro�table (v({1, 2, 3}) =
∑i=3

i=1 C∗(i)−C∗({1, 2, 3}) =



140 Extensions and Future Research Directions

720− 717 = −3). Therefore the pro�tability is not guaranteed for all possible coalitions because

in some cases, the ordering cost savings is exceeded by a rise in the transportation cost and/or

in the holding cost. A necessary condition for the pro�tability of a non-empty coalition S is as

follows:

Proposition 8.1 Giving a group of retailers. If their respective standalone ordering frequency

is increased when they were to cooperate together then their alliance is pro�table, i.e.,

If m∗
S ≥ m∗

i ,∀i ∈ S ⇒ C∗(S) ≤
∑

i∈S

C∗(i)

Proof: The optimal quantity of a retailer i in the standalone situation is Q∗
i = Di

m∗
i
. In the co-

operative situation, the optimal quantity of a retailer i member of coalition S is Q∗
S,i = Di

m∗
S
.

m∗
S ≥ m∗

i , ∀i ∈ S ⇒ Q∗
S,i ≤ Q∗

i , ∀i ∈ S ⇒ ∑
i∈S

hi.Q
∗
S,i

2 ≤ ∑
i∈S

hi.Q
∗
i

2 . In both optimal

standalone or optimal cooperative situations, the holding cost equal the delivery (transporta-

tion + ordering) cost. Consequentially,
∑

i∈S

hi.Q
∗
S,i

2 ≤ ∑
i∈S

hi.Q
∗
i

2 ⇒ (A + δT .TSP (S)).m∗
S ≤∑

i∈S(A + 2.δT .di,0).m∗
i ⇒ C∗(S) ≤ ∑

i∈S C∗(i).

The above example shows that the game is a non-superadditive game and thus both coalitional

behavior questions have to be answered here. To deal with the questions of alliance formation

and pro�t allocation, one would think to apply the same procedure -generation of the E�cient

Coalition Structure- as in chapter 6 or chapter 7. We think that doing so would be quite di�cult

because to generate an e�cient coalition, we should solve the following optimization problem:

Sz = argmin
S⊆N

{
√

2.(A + δT .TSP (S)).
∑

i∈S Dihi√
2.(A + 2.δT .di,0).Dihi

} (8.5)

In addition to the complexity of the TSP problem itself, the square root and the fractional form

of the function in equation (8.5) makes it probably di�cult to �nd a solution. We should mention

that an optimization problem with a similar cost function is found in (Sindhuchao et al., 2005).

The authors studied an integrated inventory-routing system for multi-item joint replenishment

system, they model the transportation cost as TSP function and then discussed the problem of

partitioning the set of items in order to optimize the whole system. The problem is showed to

be NP-hard and a branch-and-bound solution was provided.

Even if the coalition structure is given exogenously, the problem of �nding a stable outcome

will be as much hard as the optimization problem. Because, traditionally the problems of deter-

mining wether an allocation is in the core are computationally hard (Nagarajan and So²i¢, 2008)

independently of the cost function. However, in the current problem the cost function itself is
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rather a complex function. To conclude, including explicit transportation cost would give us

the opportunity to better model and understand more practical cooperative situations in supply

chains. However the computational aspect of the resulting problems will be quite hard and needs

high level computer science and operation research mastery.

8.2 Cooperative Games with Explicit Cost Formation Process

In this section, we are interested in emphasizing the consideration of the coalition cost process in

cooperative supply chain games. Our aim is to discuss the following pair of questions, (1) How

to model alliance formation's cost ? (2) Which are the in�uences of such cost on the mathematic

and strategic levels of traditionally inventory games? 2 In almost all supply chain games, the

cost of coalition formation process was ignored. For instance, to the best of our knowledge, in

supply chain management literature there is no paper that includes explicitly the cost of forming

the alliances. However, when forming an alliance, there might be many coordination overhead

like communication costs or third-logistic-provider cost when the alliance is managed by a third

logistic party. Obviously, it is unreasonable assumption to consider a �xed cost per coalition

because it is critical that the coalition cost formation should re�ects the amount of investment

speci�c to each coalition. Therefore, the larger is the coalition, the higher is the cost formation.

One simple way to take this last remark into account is to model the alliance cost formation as

a function of the alliance's cardinal. Therefore, letting α a �xed cost coe�cient and S a given

coalition formed by |S| agents, the cost of forming this coalition will be:

ACF (S) = α.|S|, |S| ≥ 2 (8.6)

In the above-presented formulation, alliance cost formation is assumed to be a linear function

of alliance's cardinal. We believe that it will be also interesting to extend and to generalize this

linear function by introducing a positive factor k that allows the alliance cost formation to be a

polynomial function of alliance's cardinal.

ACF (S) = α.|S|k, k ≥ 1, |S| ≥ 2 (8.7)

The coalitions are often to form in highly competitive environments, where making agreements

between a huge number of agents is quite di�cult or too much costly. In this case, using the

polynomial form seems to be an interesting way to penalize large size coalitions by varying the

factor k (See Figure 8.2).
2I thank Professor Michel Minoux for helping me to discuss these questions
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Figure 8.2: Alliance Cost Formation

Following the proposed alliance cost formation function, one can now rewrite the total cost

or the total savings of a given coalition S. Letting C(S) the optimal joint cost of coalition S

without considering the formation penalties, the total cost , CT (S) is then as follows :

CT (S) = C(S) + α.|S|k, |S| ≥ 2, α > 0 and k ≥ 1 (8.8)

Including alliance cost formation to the traditional models often induces major changes in

the characteristics of the games. For example, it is not guaranteed anymore to have pro�table

coalitions and thus superadditive games. The pro�tability is closely related to the coe�cient

of alliance cost formation α. For instance, a non-single coalition is pro�table if and only if α

satis�es the following condition:

α ≤
∑

i∈S C(i)− C(S)
|S|k (8.9)

In this section, we have brie�y highlighted the importance of including the coalition cost

formation process in cooperative games. This cost component actually has two major advantages.

On the one hand, it allows us to model and to take into account a non-negligible charge that

has been ignored in almost all games. On the other hand, the alliance cost formation penalizes

large size coalitions and thus helping to deal with more practical and realistic models where the

cooperating actors are organized in many small size groups instead of the grand coalition or

large size groups. Going away from the strategic usefulness of considering the cost of forming the

alliances, at the practical and mathematical level, the consideration of coalition cost formation

will put in advance the question of coalition formation since the superadditivity will be no longer
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guaranteed.

8.3 Multi-Item inventory games

Our survey of the models using cooperative game theory to study cooperation in supply chain

reveals that most of the inventory centralization games concern single-item joint replenishment

system. This means that, the studied cooperative situations involve many retailers each of

them is associated to a single (often identical) product purchased from the same supplier and/or

shipped from the same warehouse. To the best of our knowledge, there is no paper that has

studied the questions of alliance formation and pro�t allocation in n-retailer cooperative game

where each retailer is operating in a multi-item environment. We feel that generalizing and

extending the study of cooperation from the one-supplier multi-retailer inventory systems to

multi-item multi-retailer inventory system with single/multiple suppliers (see Figure 8.3) is a

great-potential research stream in supply chain management.
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Figure 8.3: The cooperation in multistage systems

The motivation to deal with the cooperation in multi-item inventory system is twofold. On

the one hand, this will allow us to have models that are more closer to supply chain real-situations.

On the other hand multi-item inventory games will rise several new useful and topic questions.

In addition to the traditional complexity of multi-item inventory management, the problem of

coalition formation is very challenging here. For instance, one can imagine a con�guration where

the alliances are formed around the various items. That is, the distinct items are managed

separately by applying traditional inventory games results to each item. In this case, several

coalition structures are to form and a given retailer may be member of many distinct coalitions.

In spite of this decentralized way to manage the distinct items, one can think at looking for a

single coalition structure where the retailers within the same coalition manage a set of items

collectively.
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In other words, the consideration of multi-item environment rise the fundamental question

about what would be better to form; "dynamic alliances" or "strategic alliances". We should

mention that "dynamic alliances" refer to alliances that are changing over time, while "strategic"

ones refer to alliances that are strategically designed for long/mid term time horizon. Each

of these two coalition formation mode involves a distinct view of the cooperation and has its

own advantages and limitations. For instance, when forming "dynamic alliances", the agents

can rapidly react to face the economic changes of their environment. However, this involves

computationally complex problems. Under "strategic alliances" system view, defecting from

a coalition and/or creating or joining a new one are strategically complex decisions. Because

such decisions imply the rise of all the challenges related to cooperative behavior (such as,

trust, "con�dential" information sharing with new partners, rivalry, etc.). For this reason, the

formation of an alliance is a long term (mid term decision in some cases) decision. However,

designing such "static" alliances involves the question of "robustness". As such, "strategic"

alliances should be "robust" in the sense that are capable of coping well with variations in

their operating environment (for example agents parameters variations) with minimal damage,

alteration and/or loss of e�ciency. We believe that investigating the issues of "dynamic" alliance

formation and "robust" alliance formation is very great research topic that will provide more

comprehension of the cooperation in supply chain networks. We should note that such issues are

capturing the attentions of some academics. Probably (Nagarajan and So²i¢, 2007) are the �rst

authors that dealt with dynamic alliance formation in supply chain.

8.4 Cooperation in Service System

The wide literature on the study of cooperation in supply chain has been concentrated on an-

alyzing activities' pooling in various retailing and manufacturing systems. The most common

analyzed situations are situations where for example, many retailers coordinate their replenish-

ment from a supplier in order to save on delivery costs, and where many manufacturers coordinate

the operations of various stages in the production process in order to save on the holding costs.

In general, due to the economies of scales and other motives, cooperation enables a signi�cant

reduction of the total cost. Once the operational policy of the supply chain is determined, the

next natural question that has been asked is how to allocate the total cost among the various

retailers/manufacturers that compose the system.

As in retailing and manufacturing systems, the cooperation among several service providers

enables a better exploitation of the system's resources, which in turn reduces the total cost.

Research in this area is to pose similar questions (alliance formation and cost allocation) in
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service management systems and to employ principles from cooperative game theory to answer

them. Detailed discussions on this research topic as well as many telling examples that motivate

and enhance the interest to study the cooperation in service systems are found in Anily and

Haviv (2008). Research in this area is very new stream, and related papers are quite rare (see

Anily and Haviv (2008); Yu et al. (2009)), but we expect seeing more models in the future. Yu

et al. (2009) analyze the bene�t of service capacity sharing for a set of independent �rms. Firms

have the choice to either operate on their own service facilities or to invest in a facility that is

shared. Facilities are modeled as queueing systems with in�nite service rates. Firms decide on

capacity levels (the service rate) to minimize delay costs and capacity investment costs possibly

subject to service level constraints. The situation in which the �rms decide to share a facility is

formulated as a cooperative game, and a core allocation has been identi�ed. Anily and Haviv

(2008) consider a number of servers that may improve the e�ciency of the system by pooling

their service capacities to serve the union of the individual streams of customers. This economy

of scope phenomenon is due to the reduction in the steady-state mean total number of customers

in system. The authors suppose that the individual incoming streams of customers form Poisson

processes and individual service times are exponential. To deal with the question of splitting the

cost of the pooled system among the servers, Anily and Haviv (2008) de�ne a transferable utility

cooperative game in which the cost of a coalition is the mean number of customers (or jobs) in

the pooled system. This game has been showed to have a non-empty core, and core allocations

were identi�ed.

8.5 Conclusion

In this chapter we pointed out some extensions and future developments in the area of studying

the cooperation in supply chain by means of cooperative game theory. We mainly motivated and

covered four topics including: (1) Inventory centralization games with explicit transportation

costs, (2) Cooperative games with explicit cost formation process, (3) Cooperation in multi-item

inventory systems, and (4) Cooperation in service systems. In addition to the afore-described

"strategic" aspects, cooperative games involve another non-less important aspect: the complexity

of computing stable outcomes. For instance, when dealing with cooperative games one has to

ask and to answer one of these questions:

• Given a game (N, v), does there exists a stable partition for this game?

• Given a game (N, v) and an allocation ϕ, is allocation ϕ in the core?

• Given a game (N, v), an allocation ϕ and a partition P , is P stable with respect to ϕ?
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As warned by Nagarajan and So²i¢ (2008) and Hajduková (2004), in general, these decision

problems are computationally hard. However, related algorithms and their complexity have

received less attention in the literature. For theses reasons, we stress the great potential and

usefulness of this research direction.



Chapter 9

Conclusion

In this chapter, we give general concluding remarks of this Ph.D dissertation.
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Conclusion

In the age of outsourcing and globalization, the economic and industrial landscape has seen

many radical changes. In such context, supply chains are becoming complex networks of a large

number of entities that sometimes compete and sometimes cooperate to ful�ll customers' needs.

Standalone supply chains, where each entity makes its decisions so as to maximize its own pro�ts

according to its own objectives, often lead to a loss of e�ciency and fail to face the complexity

of the economic environment they are facing with. Cooperative structures, however, where

resources/service facilities are shared and decisions are made to maximize the global pro�t, prove

to be more bene�cial and e�cient. Consequentially, many companies are fundamentally changing

their way of doing business by exceeding the border of standalone and individual actions toward

collective actions and cooperative strategies. Therefore, building alliances appears as a successful

strategy in modern supply chain networks. In general, cooperation enables a better exploitation

of the system's resources and o�ers the opportunity to get bene�t from large economies of scope,

which in turn reduces the total cost/increases the total savings. However, cooperative behavior

raises two challenging questions that constituted the main topics of this Ph.D thesis: (1) Which

coalitions can be expected to be formed? And, (2) How will the cooperating actors share their

total pro�t?

The aim of this dissertation is to develop a modeling framework and theoretical understanding

of the cooperation in supply chain networks. In particular, we considered both superadditive and

non-superadditive joint replenishment environments, where independent �rms coordinate their

replenishment from a supplier in order to save on delivery costs. In such environments, we used

principles from cooperative game theory to deal with cooperative behavior questions: alliance

formation and pro�t allocation. Our main contributions are detailed in eight chapters that may

be organized in four parts:

The �rst part (chapters 1, 2 and 3) constituted an introducing issue for this Ph.D thesis.

Indeed, after giving a general introduction in chapter 1, we presented, in chapter 2, an overview

of the Supply Chain and de�ned its related aspects and issues. While in chapter 3, we focused

on introducing the principles of cooperative game theory that are used to answer cooperative

behavior questions.

The second part (chapters 4) of this Ph.D dissertation was devoted to understand the phe-

nomenon of cooperation in supply chain networks. To achieve this goal we:

• Provided a detailed analysis of the cooperation phenomenon and alliance formation in

supply chain networks,
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• Provided a critical review of the literature on the analysis of the cooperation in supply

chains by means of cooperative game theory, and

• Highlighted some non-covered issues which are of special interest. In particular, we stressed

the limits of superadditive games and the lack of prior attention to study non-superadditive

games.

In keeping with the lack of prior attention of the literature to some special issues, in the third

part (chapters 5, 6 and 7) of this Ph.D thesis we mainly developed and solved three models. The

main contributions may be summarized as follows:

• A study of cooperative games covering both superadditive and non-superadditive applica-

tions in supply/repleinshment chains,

• A focus on transportation decisions by studying the cooperation in a context of inventory

systems with full truckload shipments,

• Discussions on payo� division exceeding the traditional notions of stability to involve issues

that take into account cooperating �rms' rivalry,

• The emphasis of the limits of studying totally centralized supply chain in n-independent

�rms cooperative games,

• Development of practical solutions for non-superadditive games that may be applied in

general cases, and

• The simultaneous consideration of alliance formation and pro�t allocation.

Results obtained in this Ph.D thesis provide interesting theoretical and managerial insights

and stimulate the development of future research. Some research perspectives was detailed in the

last part (chapter 8) of this dissertation. We mainly addressed four topics including: (1) Inventory

centralization games with explicit transportation costs, (2) cooperative games with explicit cost

formation process, (3) Cooperation in multi-echelon inventory systems, and (4) Cooperation in

service systems. Nevertheless, we think that the list of interesting future research topics is still

long and we hope to see many more papers in this area in the future.
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