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Abstract

For operational and unpredictable reasons, many small incidents occur day after day in
rail transportation systems. Most of them have a local impact; but, in some cases, mini-
mal disruptions can spread out through the whole network and affect significantly the
train schedules. In this Thesis, we present the Railway Rescheduling Problem (RRP) as
the problem of finding a new schedule of trains after one or several incidents by mini-
mizing some measure of the effect, e.g., the total delay. This Thesis has been developed
in the context of the MAGES project that builds mathematical models and algorithms
for optimizing railway operations.

Two complementary formulations are proposed to model this problem: Mixed-
Integer Programming (MIP) and Constraint Programming (CP). Because of the impos-
sibility of solving real-world instances by using standard solvers, we propose several
solutions methods: right-shift rescheduling; a MIP-based local search method; Statisti-
cal Analysis of Propagation of Incidents (SAPI); and a CP-based approach. Some meth-
ods are presented in different versions by extending them to iterative approaches.

Among them; SAPI is one of the major contributions of this Thesis. It integrates the
concepts of right-shift rescheduling and the MIP-based local search method by fixing
integer variables and adding linear inequalities (cuts). SAPI assumes that the effects
of disruptions can be propagated to other upcoming events. Nevertheless, this prop-
agation is not uniform to all events and could be forecasted by a statistical analysis.
Different versions of the methods are compared in two different networks located in
France and Chile. From the results, it is possible to conclude that SAPI finds good so-
lutions faster than the other methods, while a cooperative CP/MIP approach that takes
advantage of both formulations seems to be appropriate for large instances.

Because of the difficulty to compare SAPI to other methods presented in the litera-
ture due to lack of public benchmarks, we applied it to another problem where public
instances are available. Hence, the methodology was adapted and applied to the prob-
lem of rescheduling passengers, flights, and aircraft under disrupted operations in the
context of the ROADEF challenge 2009. SAPI took the third position on this compe-
tition, showing that the method seems to be effective solving such type of problems
efficiently.
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Résumé (French)

En raison de problèmes opérationnels et d’autres événements inattendus, un grand
nombre d’incidents se produisent quotidiennement dans les systèmes de transport fe-
rroviaire. Certains d’entre eux ont un impact local, mais quelques fois, essentiellement
dans les réseaux ferroviaires plus saturés, des petits incidents peuvent se propager
à travers tout le réseau et perturber de manière significative les horaires des trains.
Dans cette thèse doctorale, nous présentons le problème de réordonnancement de plan
de circulation ferroviaire en cas d’incident comme la problématique de créer un plan
de circulation provisoire de manière à minimiser les effets de la propagation des inci-
dents. Ce travail est issu du projet MAGES (Module d’Aide à la Gestion des Sillons)
qui développe des systèmes de régulation pour le trafic ferroviaire.

Nous présentons deux modèles différents qui permettent de trouver des solutions
à ce problème : Programmation Linéaire en Nombres Entiers (PLNE) et Programma-
tion Par Contraintes (PPC). Du fait de la nature fortement combinatoire du problème
et de la nécessité de répondre rapidement aux incidents, il ne paraît pas raisonnable
d’envisager une résolution exacte. Les méthodes correctives proposées consistent donc
à explorer un voisinage restreint des solutions : right-shift rescheduling; une méthode
basée sur des coupes de proximité; une méthode d’analyse statistique de la propagation
des incidents (SAPI) et un méthode basée sur la PPC. Additionnellement, certaines de
ces méthodes ont été adaptées sous forme d’algorithmes itératifs avec l’objectif d’améliorer
progressivement la solution quand le temps d’exécution le permet.

SAPI est une des principales contributions de cette thèse. SAPI intègre les concepts
de right-shift rescheduling avec les coupes de proximité. Du fait de la taille des réseaux
en jeu et du nombre de circulations, les phénomènes complexes de propagation d’un
incident font qu’il est très difficile de connaitre de manière précise les événements qui
seront affectés. Toutefois, il est tout de même envisageable d’évaluer la probabilité
qu’un événement soit affecté. Pour calculer cette probabilité, un modèle de régression
logistique est utilisé avec des variables explicatives dérivées du réseau et des circula-
tions. Diverses variantes de ces méthodes sont évaluées et comparées en utilisant deux
réseaux ferroviaires localisés en France et au Chili. À partir des résultats obtenus, il est
possible de conclure que SAPI est meilleure que les autres méthodes en terme de vitesse
de convergence vers l’optimum pour les instances de petite taille et moyenne alors
qu’une méthode coopérative PNLE/PPC est capable de trouver des solutions pour les
instances de plus grande taille.

La difficulté de comparer SAPI avec d’autres méthodes présentées dans la littérature
nous a encouragés à appliquer la méthode à un autre problème. Ainsi, cette méthodolo-
gie a été également adaptée au problème de réordonnancement de passagers, vols et
appareils (avions) en cas de perturbations, problème originalement proposé dans le
contexte du Challenge ROADEF 2009. Les résultats montrent que SAPI est efficace
pour résoudre ce problème avec des solutions au-dessus de la moyenne des équipes
finalistes en obtenant la troisième place du challenge.
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Resumen (Spanish)

Debido a problemas operacionales y otros eventos inesperados, numerosos incidentes
ocurren a diario en los sistemas ferroviarios. Muchos de ellos tienen un impacto local,
sin embargo, sobre todo en redes de alta densidad, pequeñas perturbaciones pueden
extenderse por toda la red y afectar significativamente los horarios de varios trenes.
En esta tesis doctoral, se trata el problema de replanificación de trenes (RRP: Railway
Rescheduling Problem) como el proceso de construir un nuevo plan horario reaccionando
a incidentes. La construcción de este nuevo plan debe realizarse minimizando el im-
pacto de las perturbaciones, por ejemplo, minimizando el atraso total. Este problema ha
sido definido en el contexto del proyecto MAGES que desarrolla modelos matemáticos
y algoritmos para operaciones ferroviarias optimizadas.

Para modelar este problema, dos formulaciones complementarias son propuestas:
un modelo de programación matemática en números enteros (MIP: Mixed-Integer Pro-
gramming) y un modelo de programación por restricciones (CP: Constraint Program-
ming). Debido a que es imposible solucionar instancias reales de este problema usando
software generales de optimización, se han propuesto diferentes métodos de resolu-
ción: right-shift rescheduling; un método de búsqueda local basado en el modelo MIP,
análisis estadístico de propagación de incidentes (SAPI: Statistical Analysis of Propaga-
tion of Incidents) y un algoritmo basado en el modelo CP. Adicionalmente, algunos de
estos procedimientos fueron adaptados como algoritmos iterativos con el objetivo de
mejorar progresivamente la solución.

SAPI es una de las principales contribuciones de esta tesis. El integra los conceptos
de right-shift rescheduling y el método de búsqueda local basado en el modelo MIP. El
se fundamenta en el supuesto que los efectos de las perturbaciones son propagados de
una manera no uniforme. De esta manera, con la ayuda de un análisis estadístico, SAPI
estudia la probabilidad de que un evento particular sea afectado por las perturbaciones.
Esta información es luego utilizanda para fijar variables de decisión enteras y agregar
inecuaciones válidas (cortes). Diferentes variaciones de estos métodos son probados
y comparados usando dos diferentes redes ferroviarias las cuales están localizadas en
Francia y Chile. A partir de los resultados obtenidos, es posible concluir que SAPI es
el procedimiento que entrega soluciones de buena calidad con la mayor velocidad de
convergencia al óptimo. A su vez, un algoritmo cooperativo CP/MIP que considera
las ventajas de ambos modelos, muestra ser el más apropiado para instancias de gran
tamaño.

Debido a la dificultad de comparar SAPI con otros métodos presentes en la litera-
tura, se ha aplicado a otro problema del cual existen instancias públicas y resultados de
otros autores. Así, esta metodología fue empleada para la replanificación de pasajeros,
vuelos y aviones bajo operaciones perturbadas; problema propuesto en el contexto del
desafío ROADEF 2009. SAPI obtuvo el tercer lugar de la competencia, mostrando ser
eficiente para resolver este tipo de problemas.
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Chapter 1

Introduction

The Operations Research (OR) community has been working for many decades in com-
putational solutions to many combinatorial problems in railways. In spite of the im-
provements in solution methods and hardware, it is a fact that the complexity of these
problems has significantly increased in the last years and many problems are still open
due to several reasons such as new regulation rules and an increasing demand of rail-
way services.

First, in Europe and particularly in France, new regulation rules specifies that in-
frastructure administration and operations of trains have to be performed by separate
entities. Thereby, infrastructure management should be guaranteed by governments
while train operations (cargo and passengers) should be carried out by independent
companies based on a commercial basis.

In France, the infrastructure network is now managed by the Railway Network of
France (RFF)1. On this network operates the (historical) French National Railway Com-
pany (SNCF)2 for both passenger and freight transportation; however since the liber-
alization of freight traffic in 2006, the network is open to other private companies. In
the same way, railway passenger traffic will be also open to other companies in January
2010. This new situation is particularly complicated for traffic control. For example in
France, this task is still assured by SNCF and RFF must pay for this service while SNCF
pay to RFF for using the infrastructure3. This situation may change in the future and
more than 14000 employees charged of these tasks (traffic control) should pass from
SNCF to a new filial of RFF (Honore, 2008).

In the second place, geographic mobility has increased in the last years. This fact
is particularly true in Europe where real and psychological frontiers are disappearing
progressively. This is one of the main reasons why the demand of passengers has in-
creased in both national and international trips. It is also expected that the irruption
of new competitors in 2010 helps to decrease the price of tickets and so the demand

1RFF: Réseau Ferré de France
2SNCF: Société Nationale des Chemins de fer Français
3RFF payed 2700 millon of euros to SNCF in 2007 (Bauer, 2008) (RFF, 2009)
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Chapter 1. Introduction

of train tickets would augment because some price-sensitive passengers will pass from
other means of transportation. An instructive example is the intention of Air France to
operate their own trains for routes where they have closed their flights definitely, e.g.,
Paris - Brussels (Lomazzi, 2008)4.

As a consequence, European railway networks are every day more and more satu-
rated and there is no evidence that this trend will change in the next few years. It is
then a necessity to manage the capacity of the network adequately in order to maintain
a good service for passengers and rentable operations for all implied companies.

A railway schedule includes arrival/departure times of a set of trains at each station
of a railway subnetwork and should also include an assignment of railway resources,
e.g., tracks and platforms. During the planning phase, managers try to minimize op-
erational costs by meeting the requirements of customers and respecting operational,
marketing, political, and other kinds of constraints.

However, planning is only half part of the whole process. No matter how good the
original schedule is, in the execution phase, unexpected events (such as bad weather
conditions, equipment breakdowns, and accidents) disturb the system making the plan
suboptimal or infeasible. In that case, conflicts in the use of tracks and platforms may
cause further propagation of disturbances. At this point, a reschedule procedure is
needed to suggest new arrival and departure times and a new assignment of resources
in a best possible way. As a consequence, traffic dispatchers have to take several deci-
sions including changes in the order of trains, performing unplanned stops, and reas-
signing tracks and platforms. In parallel, they need to assure that the new assignment is
as similar as possible to the original (optimized) schedule with the aim of guaranteeing
the stability of the system. In the temporal dimension, this is equivalent to minimize the
total delay of trains. The main problem treated in this Thesis is to construct a new pro-
visional (temporary) train schedule after disruptions by respecting all these constraints
and minimizing the impact of the incidents. We refer to this problem as the Railway
Rescheduling Problem (RRP).

This Thesis is developed in the context of the MAGES project that had the goal to
develop mathematical models and algorithms for optimizing railway operations5. The
project was supervised by the PREDIT with a financial support of ADEME and one
important partner organization: SNCF 6 7. In particular, along this document we try to
answer one of the main questions proposed in the project8:

How could a train schedule be repaired in real-time after an incident?

This question is vital for SNCF and RFF. Note that SNCF is still assuming all traffic

4Air France: French airline and one of the world’s largest airlines: http://www.airfrance.com
5MAGES: Modules d’Aide à la GEstion des Sillons (Assistance Modules for Managing Tracks)

http://awal.univ-lehavre.fr/ lmah/mages/
6PREDIT: Programme de Recherche et D’Innovation dans les Transport terrestres (Innovation and

Recherche Program in Ground Transportation) http://www.predit.prd.fr
7ADEME: Agence de l’Environnement et de la Maîtrise de l’Energie (French Environment and Energy

Management Agency) http://www.ademe.fr/
8For more information about the objectives of the MAGES project see (Gueye, 2008)
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control tasks; and RFF is the legal responsible but will be the exclusive executor of these
tasks in the future.

Therefore, our work is about the development of new models and solution methods
based on OR techniques for the RRP in the context of the MAGES project. For the
purpose of answering the question proposed in the MAGES project, the objectives of
this Thesis are to:

• study the railway rescheduling problem (RRP).

• develop complementary mathematical models (formulations) for the RRP.

• find, describe, implement and test new solution methods to solve the RRP.

• develop a new general method that may apply to any rescheduling problem in
the transportation industry.

These objectives are answered though different chapters of this Thesis. The doc-
ument is thereby organized in four parts: I) Introduction and General Concepts, II)
Modeling and Solving the Railway Rescheduling Problem, III) Generalization of SAPI,
and IV) Conclusions and Appendices.

The first part presents general concepts needed to understand the RRP. Chapter 2
introduces the reader to the main optimization problems in railways in order to grasp
the context and the relationship of RRP with other important problems in railways.
Chapter 3 presents general concepts of Disruption Management, and describes deeper
the RRP with an analysis of the literature on this problem.

The second part of the Thesis, II) Modeling and Solving the Railway Reschedul-
ing Problem, explains the proposed approaches for modeling and solving the problem.
In Chapter 4, we present a Mixed Integer Programming (MIP) formulation and some
solution methods based on this model. Chapter 5 presents a new solution approach
called Statistical Analysis of Propagation of Incidents (SAPI). This method is one of the
most important contributions of this Thesis because of its originality, the quality of the
results and its applicability to other rescheduling problems. A Constraint Programming
(CP) approach is then presented in Chapter 6. This method is a response to an incon-
venient of the MIP model: large instances imply a huge number of binary variables.
The CP formulation requires less number of variables and constraints and a coopera-
tive approach mixing MIP and CP is developed to take into account the advantages of
both paradigms. This cooperative method shows to be appropriate for solving large
instances.

The third part of this Thesis, III) Generalization of SAPI, presents a generalization
of SAPI and an additional application. Chapter 7 gives an explanation of a general
methodology for disruption management. This approach is then completed by an ad-
ditional application of SAPI for rescheduling flights, aircraft, and passengers under
disrupted operations applied in the context of ROADEF challenge 2009 (Chapter 8).
The results show that SAPI is also efficient for this additional application and seems
to be appropriate to any kind of rescheduling problem. Finally, the conclusions, future
directions of research, and the appendices are summed up in the last part of the Thesis.
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Operations Research in Railways
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Abstract of the Chapter

This chapter introduces the main decision problems in rail transportation that have
been studied by the Operations Research (OR) community. The objective is to under-
stand the context of the railway rescheduling problem and show the relationship with
other problems. This analysis is based on a hierarchical two-dimensional (time/space)
classification.

2.1 Introduction

Rail transport consists in moving goods or passengers using railroads or railways. A
railroad is composed of two parallel rails (steel or iron), attached perpendicularly to
beams 1 (wood, steel or concrete) to keep a constant distance apart.

1called "sleepers" in U.K. and Australia and "crossties" or "ties" in U.S. and Canada.
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The vehicles moving over the rails are arranged in a train: a set of vehicles coupled
together. These vehicles could be classified in powered and unpowered. Powered ve-
hicles are referred to as locomotive while unpowered vehicles are referred to as cars,
carriages, wagons or coaches (for passengers).

When cars are moving over railways, they make much less friction than do vehicles
with tires over paved roads. Actually, in a steel-on-steel rail system the coefficient of
adhesion is eight times less than in road traffic (Pachl, 2004). As a result a train requires
less energy to transport a given tonnage of freight, or a given number of passengers,
than does road transport. Therefore, rail transport is the most energy-efficient land
transportation system. Nevertheless, it is also a capital-intensive mean of transport,
because of the investments needed to create, maintain and operate the whole railway
network.

As other means of transport, rail transport is a combination of many components
that give several optimization problems studied in operations research. This chapter
focuses on the classification and a brief description of the main problems studied in the
literature.

A two-dimensional classification of rail transportation problems and their relation-
ship is then presented. This classification consists of two basic aspects of decision: time
(when) and space (where). A two-dimensional approach was also presented in (Huis-
man et al., 2005), but is extended in this chapter for studying the relationship between
different decision problems. This interaction of problems is interesting to evaluate the
possibility of future integrated procedures by unifying horizontal and/or vertical adja-
cent decision problems and to evaluate eventual repercussions to other problems.

This chapter is organized as follows. Section 2.2 gives the classification and rela-
tionship of the problems in railway transportation. This section has been divided in
several subsections explaining individually the most relevant decision problems. The
last section draws concluding remarks for the chapter.

2.2 Classification Hierarchy

Figure 2.1 presents a two-dimensional point of view of planning problems in rail trans-
portation: time and space. A relationship of these decisions (arrows connecting prob-
lems) is also presented with the purpose for describing how a decision impacts to others
and to study the possibility of integration of problems. Depending on the robustness of
the current solutions, changes in upper levels could affect lower levels. It is also impor-
tant to remark that this chapter is mainly based on passenger trains and some exclusive
cargo problems such as car blocking, train routing, and empty car distribution are not
covered.

Note that Figure 2.1 only includes relations (arrows) between adjacent problems.
For example, some of the inputs of "Line Planning" are the output of "Demand Anal-
ysis", nevertheless there is no arrow connecting them because there is an indirect rela-
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tion, passing through "Network Planning", that connects these problems. This was a
convention taken in order to keep this figure as simple as possible.

The first dimension is time. Railways problems have been classified according to
the planning horizon in previous surveys as (Bussieck et al., 1997; Cordeau et al., 1998;
Huisman et al., 2005; Caprara et al., 2007). The long-term planning horizon is also
called strategic level and is focused on durable acquisition/planning of resources. Tac-
tical planning concerns mid-term decisions while operational problems deal with the
construction of detailed plans. The last horizon is the very short-term and corresponds
to the control of railway operations and the response to disruptions.

The second dimension is space. Let consider the whole rail network as a graph:
a node represents a station or a bifurcation gate, and an arc represents the railways
connecting two nodes. While central decisions involve solving problems related to the
graph (entire network), local decisions concern the problems related only to one arc or
one node of this graph representation. Note that a node can be composed of several
internal tracks (or platforms).

The possibility of integration is an important result of this classification. The progress
in OR methods can be employed to solve simultaneously more than one individual
problems in order to find a more "global" solution taking into account more precisely
the objectives of the organization. This integration can be considered for related prob-
lems in both dimensions: horizontal and vertical.

2.2.1 Strategic Decisions

A strategy is a long-term coherent plan made to achieve a certain objective. In con-
trast to operational and tactical levels, the strategic level always has a global vision
focused on a long-term success. Thus, in the context of railway operations, strategic
decisions are concerned with the development of the network and long-term acquisi-
tion of resources, e.g., Network Planning, Rolling Stock Acquisition, Crew Planning, and
Line Planning. However, models for long-term decisions also have to include traffic
demand data. For this reason, Demand Analysis is also considered at this level.

Demand Analysis

Demand Analysis involves to determine appropriately the future demand for rail trans-
portation considering both: passengers and freight. As can be seen in Figure 2.1, de-
mand analysis is the base of planning problems and gives one of the most important
inputs for constructing the network and determining the magnitude of operations.

The estimation of demand for traveling is based on "traffic counts" or passenger
surveys on some existing or future sections of the network. This problem consists in
constructing the origin-destination matrix (OD matrix). This matrix contains informa-
tion about the traffic between different zones of the network. However, because of
some practical issues, e.g., the samples are not taken simultaneously, data from "traffic
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Figure 2.1: Two-dimensional classification of rail transportation problems

counts" present inconsistencies. Thus several approaches have been developed to ob-
tain OD matrices using traffic counts. A good survey of these approaches can be found
in (Abrahamsson, 1998). In this analysis, the network is divided in zones, where every
zone has a representative point called centroid. It is assumed that all trips are between
centroids, but in practice, centroids could constitute a subset of the nodes. The problem
is that there are many OD matrices reproducing the observed traffic counts. The goal
is to find the "best" OD matrix causing the observed traffic counts. After this, it is nec-
essary to assign an OD matrix to a transportation network, i.e., to allocate the demand
between every pair of zones to available routes in the network.

24



2.2. Classification Hierarchy

Network Planning

The Network Planning Problem deals with the design of railroad networks. The complex-
ity of this problem has increased in the last years, and making good decisions implies
to consider new kinds of trains, new stations, new routes, changes in demand, and
also to take into account the development of other means of transport. The complex-
ity of the whole network requires managing several railroad subsystems separately.
Furthermore, the infrastructure is shared by different types of services: long distance,
medium/short distances, and freight trains.

Due to the fact that investment decisions require important amount of money and
are taken for many years, this problem is classified as a strategic problem. It is im-
portant to remark that this problematic is more difficult to handle by optimization ap-
proaches than tactical and operational issues due to the extremely long planning hori-
zons that are involved. This is the main reason why network planning decisions are
taken using economic analysis considering several aspects: financial, political, environ-
mental, and technological.

Like other capital budgeting projects, railway network planning requires to use clas-
sical economic evaluation methods as net present value analysis (NPV), profitability in-
dex, internal rate of return (IRR), and equivalent annuity. These methods use the incre-
mental cash flows from the investment as new acquisition/constructions and modifi-
cation/maintenances of the infrastructure.

Nevertheless, a pure economic analysis is not usually used to this kind of invest-
ment, because of the social nature of the railway context and political factors. Conse-
quently, other tools like Social Return on Investment (SROI) have to be considered (REDF,
2001). SROI is an attempt to measure the social (and also financial) value created by a
project in a long-term horizon.

Even though these tools are related to finances, operations research techniques could
be used to help taking technical decisions as the location of stations and the capacity of
the infrastructure. A good review for facility location in networks can be find in (Mesa
and Boffey, 1996).

Rolling Stock Acquisition

Rolling Stock Acquisition corresponds to the decision of buying, selling, leasing, hiring,
or wasting locomotives and cars. As shown in Figure 2.1, this decision depends on
other important decisions: network planning and indirectly on demand analysis. With
these decisions, it is possible to estimate the magnitude of the needed vehicles, but it is
still necessarily to decide the quantity, the type, and the location of each one. This prob-
lem is considered as a strategic planning process because of the cost and the expected
lifetime of the units, e.g., the expected lifetime of rolling stock in France varies between
10 and 30 years (SNCF-Group, 2005).

In the scientific world, long-term rolling stock management has not received as

25



Chapter 2. Operations Research in Railways

much attention as the operational and tactical versions of rolling stock problems (al-
location and circulation of rolling stock). Thus, quantitative methods on scenario anal-
ysis have been used rather than operational research models even though rolling stock
acquisition has direct implications in the quality of the service and the total cost. An
instructive example can be seen in the French railways where the SNCF manages more
than 7000 locomotives, 400 high speed trains (TGV) 2, and more than 47000 cars; with
an investment over 1000 millions of EUROS per year (SNCF-Group, 2005).

Operators have to decide: selection of the type of rolling stock, acquisition of new
rolling stock, hiring or leasing of rolling stock, lifetime extension of existing rolling
stock, selling redundant rolling stock and destruction of obsolete rolling stock. For ac-
quisition, it is necessary to determine not only the number of units, but also the capacity
of every subcategory, i.e., first and second classes for passenger units.

Additionally, some tradeoffs can be tackled by OR techniques. For example big
capacity units are less flexible with regard to operations, but the smaller ones are rel-
atively more expensive. It is also important to consider the differences between peak
demand and off-peak demand. If the difference is high, it might be more advisable
to acquire small units, using a big number of them in peak periods. Another impor-
tant factor is the distance of the trajectories. It is reasonable to think that long distance
services are better with large units. There is no doubt that all these aspects could be
modeled by OR techniques.

In conclusion, the problem is to determine the number of units (using an appropri-
ate aggregation level of details) respecting a given service level while minimizing the
expected life cycle costs of the rolling stock.

Crew Planning (Long-Term)

Crew Planning is a very well known problem historically associated with airlines and
mass transit companies. Long-term crew planning is related to the problem of deciding
the labor levels for long periods of time. The decision is the quantity of contracted
persons for every zone (or station). This decision depends on the estimation of the
trips, labor laws, professional offer and other related constraints. The objective is to
minimize the total cost of the long-term crew plan, considering not only the number
of persons, but also the place where they are hired because of the difference of salaries
and eventually hotels and travel allowances when the person has to stay in a different
city.

Line Planning

A line is a route in a railway network that connects two terminal stations. In addition,
a line frequency corresponds to the number of trains that use a line in a fixed interval,
e.g., one hour.

2TGV: Train à Grande Vitesse
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The Line Planning Problem corresponds to the problem of selecting the set of lines and
their frequencies in order to satisfy the demand while optimizing a fitness measure (see
Figure 2.2). There are two main conflicting objectives: minimizing the operational costs
of the railway system, and maximizing the number of travelers with direct connections.

Página 1

Line Planning

Objectives

Result

OD Matrix

Network

Line Plan
Frequencies 

Paths

Line Planning

Minimization of 
costs

Maximizing the 
number of travelers 

with direct 
connection

Input

Figure 2.2: The Line Planning Problem.

Maximizing the number of travelers with direct connections results in long lines,
i.e., the longer a line, the more passengers traveling with direct trips. Nevertheless, long
lines propagate delays more easily and deny an efficient allocation of rolling stock.

On the other hand, minimizing operational costs of the railway system implies
shorter lines and passengers may perform changes in trains (connections). It is ob-
served in previous surveys that both objectives have been studied, but the combination
of the two in one model has not been described yet (Caprara et al., 2007).

As can be seen in Figures 2.1 and 2.2, the main input for the line planning problem
are the railway infrastructure and the expected demand for railway transportation rep-
resented by an origin/destination matrix. In spite of the fact that the demand is not
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symmetric because of the peak hours, line systems are usually symmetric, e.g., for each
pair of stations (Station A and Station B), the number of direct trains from Station A
to Station B is approximately the same as the number of direct trains from Station B to
Station A.

2.2.2 Tactical Decisions

Tactical planning concerns mid-term decisions, e.g., once per year. In this section we
present two different problems: rolling stock scheduling and train scheduling. They both
involve centralized decision. In the literature there is not a clear consensus about the
difference between tactical and operational decision in railways. That is, rolling stock
scheduling and rolling stock circulation are in general the same problem. Some authors
uses more clear names in order to be more precise in the definition of the problem,
e.g., (Fioole et al., 2006) deals with the weekly rolling stock planning problem. In our
analysis, we separate tactical and operational problems with the aim of differentiating
aggregated plans to detailed schedules.

Rolling Stock Scheduling (Tactical)

Rolling stock is a collection of available equipments like locomotives and railroad cars.
Because of the limited stock of railway units, the problem of assigning them does not
have a trivial solution. Moreover, some aspects have to be considered as maintenance
of units and location of warehouses. Thus, the problem corresponds to assign the avail-
able stock of locomotives and cars while minimizing the total cost and satisfying all the
constraints.

The objectives of the Rolling Stock Scheduling problem are: service quality, efficiency
and robustness. The objective of service quality could be the minimization of seat short-
age, efficiency the minimization of carriage kilometers and finally robustness the min-
imization of shunting. In principle, this tactical version of rolling stock scheduling
should address to aggregated plan of all the vehicles that move on a railway and not
necessary a detailed plan. This aggregated information is employed for planning mid-
term operations and defining the budget of operations. Later, this aggregated plan
must be converted to a detailed one.

Train Scheduling (Tactical)

Train scheduling corresponds to the problem of constructing the timetable of trains
based on the line plan (see Section 2.2.1). In other words, a train schedule defines the
arrival and departing time of the trains in a regular period. In the process of construc-
tion, several operational and marketing constraints have to be considered. Maximal
speed of trains, minimal headway between consecutive trains, and maximal admitted
longitude of the trains in stations are examples of operational constraints. On the other

28



2.2. Classification Hierarchy

hand, some examples of marketing constraints are the minimal and maximal stopping
time in stations and minimal and maximal time for connections of trains. Usually, the
objective is to minimize the total transit of passengers, e.g., to minimize the total time
used by the passengers in the system (including the travel and waiting time).

In real systems, an optimized procedure could give a good base solution that expe-
rienced human planners must adapt taking account of several local constraints that are
difficult to include in mathematical models.

2.2.3 Operational Decisions

Operational problems deal with the construction of detailed plans. In this category we
include the problems solved for horizons shorter than one year excluding very-short
term problem that are treated in Section 2.2.4. Thus, this category includes: detailed
timetabling, rolling stock circulation, crew scheduling, platform assignment, and shunting.

Detailed Timetabling (Operational)

The objective of this problem is to construct a detailed timetable for a set of trains on
a certain part of the railway network valid during the planning horizon. Two kinds of
timetables are identified in the literature: cyclical and noncyclical timetables.

On the one hand, cyclical timetables define a frequency of trains that are usually
easy to remember for passengers. Nevertheless, they are relatively more expensive
than noncyclical timetables and do not adapt to the changes in demand optimally (peak
hours versus off-peak hours). In a rigid cyclical timetable, the only possible solution for
these variations is to change the length of trains, adapting the capacity of the system.
Some interesting works in this kind of timetables are (Caprara et al., 2001, 2002). They
build a periodic timetable in a unidirectional track by representing the problem using a
directed graph. The graph is then transformed to an integer programming model that
is solved by a lagrangian relaxation procedure.

On the other hand, noncyclical timetables are more relevant when it is not pos-
sible (or too expensive) to follow a rigid timetable. Good examples are heavy-traffic
and long-distance networks. The headway of train operators and the infrastructure
manager will imply that each operator will submit requests for trips (including ideal
arrival/departure times) and the infrastructure manager after processing this informa-
tion will run the timetable procedure (optimization tool) to assign all requests while
maximizing the total profit and respecting several operational constraints.

This is one of the most referred railways problems in the literature. Many works
are based on the Periodic Event Scheduling Problem (PESP) introduced by (Serafini and
Ukovich, 1989). The PESP considers the problem of scheduling a set of periodically re-
curring events under time-windows constraints. An alternative approach is to consider
this problem as a special case of the job-shop scheduling problem. In that case, jobs are
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trains and resources are tracks (Silva de Oliveira, 2001). This approach is solved by a
hybrid algorithm based on Constraint Programming.

Most papers found in literature are actually based on mixed integer programming
(MIP) formulations. Continuous variables are added for modeling time (arrival and
departure) while integer (binary) variables are included for modeling the order of trains
at each component of the network (stations). Some of the works based on this kind of
models are (Szpigel, 1973), (Jovanovic and Harker, 1991), (Cai and Goh, 1994), (Carey
and Lockwood, 1995), (Higgings et al., 1997).

Rolling Stock Circulation (Operational)

The Rolling Stock Circulation problem is an important problem for railways operators all
around the world. Acquisition decisions of rolling materials are taken for a long period
of time and so, the efficiency of assigning the current vehicles are crucial.

The problem is defined as follows. Given a planned timetable and the expected
number of passengers (demand), the model determines an allocation of rolling stock
to the services. The model can consider the possibility to add or remove cars to trains
in some stations in order to accomplish the demand. Moreover, it is viable to consider
splitting or combining two or more trains. Simultaneously, several constraints have to
be satisfied such as the order of the cars within the trains and the different natures of the
train units. Some of the objectives are the minimization of the expected seat shortages,
the maximization of a measure of robustness, or the minimization of the total cost of
the rolling stock circulation.

Various versions of this problem have been identified in the literature depending on
the nature of the network and the equipment (Caprara et al., 2007). Concerning the na-
ture of the network, two different cases are possible: sparse networks (long distances,
long travel times and low frequencies of trains); and dense networks (high frequency
of trains and relatively short distances). For sparse networks, the assignment of units
is usually determined in detail, i.e., it includes the identification code of each unit. On
the contrary, in dense networks the problem is usually anonymous (and so aggregated)
because the short distances permit to exchange units easily in order to assure the main-
tenance events.

Authors that have studied this problem recognize the importance of the work of
(Schrijver, 1993) as one of the first papers dealing with this problem. The article con-
siders the problem of minimizing the number of train units of different subtypes for
an hourly line while satisfying a given seat demand of passengers. More recently,
(M. Peeters, 2008) gives a more complete version of the problem that takes into ac-
count the changes in the composition of trains with the aim of having an indication of
the robustness of the solution.

For dense networks, (Fioole et al., 2006) is one of the last articles and also gives more
recent references that can be consulted to study this problem deeply.
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On the other hand, (Cordeau et al., 2001) presents a model for sparse networks.
The article considers a time-space network representing all possible consecutive train
sequences that available units can make. The LP relaxation of this model is solved by
column generation and integer solutions are then obtained heuristically. In this kind
of networks, the rolling stock schedule must be adjusted because of the maintenance.
(Maróti and Kroon, 2007) presents an integer programming model for the problem of
routing train units in order to reach regular preventive maintenance. Finally, for more
information, (Maróti, 2006) is a complete work (Ph.D. Thesis) entirely dedicated to this
problem.

Crew Scheduling (Operational)

Every train has to be operated by a crew including the machinist and his companions.
Train crew scheduling corresponds to the development of a timetable for each member
of the crew, to cover a given train timetable. Technical, educational, and legal con-
straints must be taken into account.

A good definition can be found in (Caprara et al., 1999). The authors define this
problem as follows. A planned timetable for the train services is given that has to be
performed every day for a certain time period. Also, every service is divided in several
trips that is the minimal route served by the same crew. Additionally, every trip starts
at a defined time in a depart station and ends in the arrival station. A roster is defined
as a cyclical sequence of trips performed by each crew. It is necessary that each trip
is performed by one crew. Therefore, the crew scheduling problem consist in finding
a set of rosters covering every trip once, satisfying all the operational constraints with
the minimum cost, more precisely minimizing the number of crew members needed to
perform all the trips for a given planning horizon.

According to (Caprara et al., 2007), crew planning is normally approached in two
phases: crew scheduling and crew rostering. The first one consists in selecting the
duties to cover all the trips by respecting several kinds of constraints. Complementary,
crew rostering obtains the final rosters by sequencing these duties.

The first works on this topic found in the literature come from applications in air-
lines. In railways, (Caprara et al., 1997) gives a survey for this problem. It should be
noted that most of the methods are focused on the first phase (crew scheduling) solving
a set covering problem, some of them with additional constraints. For the second phase,
only the Italian case is refereed in the literature in railways (Caprara et al., 2007). This
work corresponds to (Caprara et al., 1998) that proposes a model using a lagrangian
lower bound based on the solution of an assignment problem.

Platform Assignment (Operational)

Previously, we have presented some centralized problems such as rolling stock schedul-
ing, crew scheduling and train scheduling. All these decisions give feasible solutions
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valid for the whole network (or an important part). At this point, it is still necessary
to transform them to a feasible detailed plan for real operations at each station. The
question to answer is how to route the trains through the infrastructure in a specific
station limits. This problem is also found in the literature as "train platforming".

Because of the demand, railway operators have to construct train schedules near-
ing full capacity without considering all the elements of the network (like junctions).
Hence, given a timetable (arrival and departure times), the local station limits infras-
tructure, and the safety system; the routing problem at this level aims at routing all
trains optimizing a fitness function, e.g., minimizing the sum of delays.

The input of this problem includes the directions of the trains, their original (ideal)
scheduled arrival/departure time, and complete information about the topology of
platforms. It should be considered not only trains that pass the station, but also those
trains or locomotives coming (going) from (to) the shunting area.

Unlike other decision problems described in this chapter, this problem have not
received too much attention by the OR community. (Billionnet, 2003) presents one of
the first advances on this topic after the original work of (DeLuca-Cardillo and Mione,
1998). They both formulated the problem as a graph-coloring problem. Another point
of view is considered in (Zwaneveld et al., 1996) that models the problem as a node
packing problem solved by a procedure based on branch-and-cut.

Shunting (Operational)

Shunting3 is the process of sorting and parking units of rolling stock that are not nec-
essary in the current timetable. Unused units have to be parked at shunt yards other-
wise they could interfere with the normal operation of planned trains. This is a local
decision because only one station is considered. The objective is to choose the config-
uration and location of units at the rail yards in such way that it will be necessary to
perform the minimal movements possible to accomplish the future movements of the
timetable. While the process is called shunting, the corresponding planning problem is
often called the Train Unit Shunting Problem (TUSP).

There are some aspects to be considered in the model. The first one is that there
are different kinds of units according to the use and the length of them. The type and
subtype of the unit could limit the possible shunt tracks available, for example electric
units can be only parked in tracks with catenaries. Also, some tracks can be accessed
by only one side (LIFO: last in last out- tracks) and other from both sides (free tracks).
Additionally, train units of the same subtype can be used interchangeably while other
units could be fixed for a particular circulation.

The TUSP is defined as follows: given a railway station, a shunt yard, and a timetable;
the Train Unit Shunting Problem consists in matching the arriving and departing units,
and parking these shunt units on the shunt tracks, such that the total shunting costs are

3Shunting is a term used in Great Britain, the United States equivalent is switching
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minimal and no crossing occur (Huisman et al., 2005; Freling et al., 2002; Kroon et al.,
2007). A crossing is when a train blocks another one during its departure or arrival.
Therefore, a feasible solution to the TUSP assigns arriving shunt units to departing
ones and to a shunt track. Moreover, if such a track can be approached from both sides,
the solution also describes the arrival and departure sides for each train unit parked at
the track.

2.2.4 Very Short-Term

The very short-term corresponds to the control of railway operations. We consider
problems related to recovering railways operations after disruptions also referred as
Disruption Management in Railway Transportation. Disruption management in railways
is mainly related to timetabling, the rolling stock circulation and the crew scheduling.
A very good introduction to this topic can be found in (Jespersen-Groth et al., 2007).

It is possible to observe that all planning problems presented earlier (from strategic
to operational decision) try to find optimal or near optimal operation guides, i.e., the
best allocation of resources (crew, rolling stock and tracks) that maximizes the efficiency
of the operations. As a consequence, any kind of disruption moves away the operation
from the optimal. The goal of these problems presented in this section is to react to
disturbances in order to return as soon as possible to normal operations. Five different
decision problems are identified: crew scheduling, rolling stock circulation, timetabling,
platform assignment, and shunting.

Timetabling (Very Short-Term)

Operational train scheduling (timetabling) gives the itineraries of the trains. That is
the corresponding arrival and departure times of every train, for every element of the
network. This planning gives a "theoretical scheduling plan". In daily operation, inci-
dents often take place which would usually affect the plan. In some cases, mainly in
dense networks, minimal disturbances can imply a large impact in the whole network.
The objective in the Timetabling Daily Decision Problem is to minimize the impact of
incidents (disruptions).

The first element in this process it is to define a measure of the difference between
the theoretical plan and the new provisional one. A very common approach is to con-
sider the total delay: the sum of all differences in the arrival times of the trains in the
stations. For example, (Semet and Schoenauer, 2006) stated that in the French railroad
company (SNCF) each minute of delay costs 1000 EUROS. Other names for the same
problem are railway traffic rescheduling, train dispatching, and train scheduling under
disturbances.

This is the main problem treated in this Thesis and will be described deeply in Chap-
ter 3.
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Rolling Stock Circulation (Very Short-Term)

Disruption management in rolling stock circulation has to deal with the problem of
finding a new assignment of train units after disturbances. As other reactive problems,
the main objective is to go back as soon as possible to normal operations. Going back
to planned rolling stock assignment guaranties optimal operations.

As the original rolling stock circulation problem, there are commercial and technical
constraints to be considered. Firstly, the rolling stock has to assure the operation of the
timetable, i.e., all trips must be served by rolling stock units. Additionally, the rolling
stock type has to be compatible with the assigned service and trajectory. For exam-
ple, only passenger cars can be assigned to passenger services, only diesel locomotives
can be used in non electrified lines, and trains should not be longer than the shortest
platform on its trajectory.

Normally, this problem appears when a new provisional timetable has been con-
structed after a disrupted situation. Then, the goal is to construct a new rolling stock
schedule considering the new situation with a minimum cost and passenger inconve-
niences. Nevertheless, there are also other situations when it is necessary to reconstruct
the plan. For example when rolling stock units fail or when they need urgent or un-
planned maintenance services.

A good reference to this problem is given in (Maróti, 2006).

Crew Scheduling (Very Short-Term)

Because of some disruptions, the current list of crew may be affected. The disturbances
could be from different sources, as changes in circulations and health problem of the
persons. Another important input of this problem is the solution of the previous dis-
ruption management problems (timetabling and rolling stock circulation). In fact, crew
schedules need to be updated to be sure that all services on the modified timetable will
have drivers and will respect the minimal crew requirements.

The objective of this problem is a combination of feasibility, minimization of opera-
tional costs, and maximization of stability (Jespersen-Groth et al., 2007). The feasibility
aspect is not evident for this problem and so, decisions as cancelation of trains have to
be also considered because sometimes there are not enough available crew members to
cover all services. Cancelations can be modeled as penalties on the objective function.
This last aspect shows that this problem is strongly related to timetabling and rolling
stock circulation because cancelations will affect them. Concerning operational cost,
the cost of repositioning and transportation for crews should be also considered. Fi-
nally, stability is an important objective of any disruption management problem, in this
particular case a solution is more stable if the number of modified duties is smaller.

Only few papers deal with this problem. (Jespersen-Groth et al., 2007) show this
problem as part of the whole process of disruption management at DSB S-tog and NS
(Denmark and Netherlands), while the paper of (Walker et al., 2005) deals with this
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problem directly. This paper presents a model divided in two parts: a timetable adjust-
ment and a set partitioning model for the crew schedules.

Platform assignment (Very Short-Term)

This problem deals with the construction of train routes in order to avoid conflicts and
delays with the maximum level of detail possible. Normally, this problem appears
when a new provisional timetable has been constructed after a disrupted situation and,
subsequently, it is necessary to re-route the trains at the local level.

There are only few papers dealing with this problem and one example is given by
(Rodriguez, 2007) using constraint programming for the routing and train scheduling
at junctions in real-time.

Note that the solution of this problem can be integrated with the solution of timetabling.
A very good example is the problem solved in this Thesis, where the construction of a
new provisional schedule is accompanied with a new plan of tracks and platforms.
Nevertheless, our application only includes the trains going (from/to) or passing a
station, but it does not include all shunting movements that can use the tracks and
platform considered in the problem.

Shunting (Very Short-Term)

Shunting operations (see Section 2.2.3) are also affected by disturbances and some train
units could not finish the day at the location where they were planned (see Section
2.2.4). As a result, the number of units per type at the end of the day could be different
than the real one. Therefore, in the next morning, additional trips are needed to go
back to the planned situation. The shunting problem in the very short-time deals with
disruptions during normal operations. Then, it is not only the process of sorting and
parking units of rolling stock that are not necessary in the current timetable, but also
utilizing parked units demanded by the new conditions, i.e., after disturbances.

We include this problem in this classification because it seems that OR techniques
can improve the performance of the system in case of disruptions as it has been already
proved in other problems like rolling stock circulation, timetabling and crew schedul-
ing. Another prospect utilization of this problem is to consider it within a more gen-
eral integrated recovering system. For example it appears to be appropriate to include
shunting aspects in disruption management for rolling stock circulation.

Nevertheless, to the best of our knowledge, there are no papers dealing with this
problem. An explication of this fact is given by (Jespersen-Groth et al., 2007). They
state that shunting decisions are taken after all other decisions were taken and in case
of a disruption; and, in practice, shunting operations are reduced as much as possi-
ble. In our opinion, rather than reducing these operations, it would be interesting to
adapt them in order to achieve the objective of returning as fast as possible to normal
operations.
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2.3 Conclusions

In this chapter, we have presented a classification of several planning problems in rail-
way transportation systems. Historically, these problems have been organized accord-
ing to the time horizon that they consider: strategic, tactical, operational, and very
short-term planning. Past surveys have been concentrated from strategic to operational
levels where all well-studied classical problems are concentrated, e.g., line planning,
train scheduling, crew planning and rolling stock scheduling. In this chapter we in-
clude not only these problems, but also very short-term problems that are part of the
problems studied in disruption management in railway transportation. This is a promising
research area as it already is in other fields of Operations Research such as airlines.

This classification has to be understood as a reference to different generic problems
in railways and their relationship. As a consequence, it does not represent any par-
ticular network/organization/country because of the nature of the infrastructure and
the policy of the concerned organizations. Additionally, some recent research papers
do not deal with a pure isolated problem defined in a square of Figure 2.1. In fact,
real implementations should consider aspects of several individual problems and the
repercussions in the rest of the system. This classification helps to identify the imme-
diately affected problems and so a possible integration in both vertical and horizontal
dimensions.

Another important conclusion of this chapter concerns the railway rescheduling
problem (RRP). The version of the RRP presented in this Thesis is a horizontal inte-
gration of two generic decision problems: "time tabling daily" taking some aspects of
"detailed platform assignment daily". Using the proposed classification, we also con-
clude that this problem is strongly related to the disruption management versions of
"crew scheduling", "rolling stock", and "shunting". That is, the solution of the RRP has
a direct impact on these problems and vice versa. Therefore, real implementations of
the methods proposed in this Thesis should take into account the repercussions of so-
lutions to the other problems. The next chapter gives a general overview of Disruption
Management and a deeper description of the RRP.
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Abstract of the Chapter

This chapter describes the Railway Rescheduling Problem (RRP). It includes an introduc-
tion to Disruption Management, a complete definition of the RRP detailing the opera-
tional aspect to be considered, and a literature review. Finally, the scope of this Thesis
is presented using the same aspects as considered in the analysis of the literature.

3.1 Introduction to Disruption Management

For many years Operations Research (OR) methods were used in the planning process
obtaining optimal or near-optimal operational plans. Nevertheless, when an operation
plan is executed, unexpected problems may occur and the current plan could not re-
main optimal or even feasible. Figure 3.1 presents different approaches to deal with
unexpected events. In this Thesis we are interesting in Disruption Management be-
cause it is the approach that seems to fit best with the proposed problem in the context
of the MAGES project. It is able to cope with all disruptions without knowing them
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in advance and a published schedule have to be used as reference in order to return to
normal operations as soon as possible.

In this context, unexpected events are often called disruptions. Thus, Disruption
Management is the process of revising dynamically the original plan and obtaining a
new one that reflects the constraints and objectives of the evolved environment while
minimizing the negative impact of the disruption. A complete introduction to disrup-
tion management can be found in (Clausen et al., 2001; Yu and Qi, 2004).

 
Approach Description Advantages Disadvantages 
Contingency 
planning 
(Proactive) 

It is completely scenario-based. 
Thus, for each scenario, it must 
be identified the options and 
costs. Finally, documentation 
for each scenario is constructed 
and it must be follow in case of 
disruptions. 

It permits to study the 
consequence of possible 
future disruptions. 

It can only handle a limited 
set of disruptions. When an 
unprepared scenario occurs, 
the performance of the 
system may worsen.  

Stochastic 
Models 
(Proactive) 

An operational plan is 
constructed optimal in terms of 
the average outcome. 

Ideally, if all future 
possibilities are 
considerate, no real-time 
re-planning is needed. 
Is has been approved to 
be effective in many 
situations. 

The precise probability 
distributions of possible 
uncertainties have to be 
known in advance. 

Robust 
Optimization 
(Proactive) 
 

It generates a plan that is good 
for most scenarios and 
acceptable for the worst. 

Probability distributions 
are not required.  
It generates a robust 
plan. 

All possible scenarios have 
to be specified, with their 
probabilities. The 
operational plan could be too 
conservative if the worst-
case scenario has a very 
small probability.  

Recoverable 
Robustness 
(Proactive/ 
Reactive) 

It integrates recoverability and 
robustness in a unified 
framework. 

The solution no longer 
has to be feasible for all 
possible scenarios, but a 
recovery phase is 
allowed to turn an 
infeasible solution into a 
feasible one. 

Two compatible algorithms 
need to be developed: a 
robust algorithm and a 
recovery algorithm. This 
approach does not take care 
of defining details about 
these algorithms. 

Disruption 
Management 
(Reactive) 

It is a reparation approach that 
considers both: original 
objectives and deviation costs, 
minimizing the negative impact 
of the disruption. 

It is able to cope with all 
disruptions without 
knowing them in 
advance. 

It requires a published 
schedule in advance. Ideally, 
has to be complemented 
with a good proactive 
approach. 

Pure  
Reparation 
Rescheduling 
(Reactive) 

It is a reconstruction of the plan 
considering exactly the same 
objectives and constraint used in 
the first schedule. 

It is a good approach 
when it is not needed to 
have a published 
schedule in advance.  

It does not take into account 
the deviation costs. Thus, it 
produces suboptimal 
solutions.  

 
Figure 3.1: Approaches to uncertainties. The main approach considered in this Thesis is Disruption
Management

Railway Disruption Management is defined as "the joint approach of the involved or-
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ganizations to deal with the impact of disruptions in order to ensure the best possible
service for the passengers" (Jespersen-Groth et al., 2007). This is done by modifying
the current schedules of rolling stock, crew, and trains (timetable); during and after
disruptions.

OR methods have proven to be effective for supporting disruption management
processes in the airline context. For example Continental Airlines1 estimates that in
2001 the CrewSolver2 system helped it save approximately US $40 million for major
disruptions (Yu et al., 2003). This is the reason why we believe that OR community can
play a more important role to minimize the impact of disruptions and to improve the
performance of railway systems.

 

Main Aspects 
in Disruption 
Management 

Real‐time 
reponse

Deviation 
costs

Multicriteria

Return to the 
original plan

Limited time 
horizon

Multiple 
solutions

Partial 
solutions

Figure 3.2: Aspects in Disruption Management

Figure 3.2 presents the main aspects in disruption management applications:

Real-time: Disruption management is a real-time practice and requires a fast so-
lution when interferences occur. Often, disruptions take place in the execution phase
(i.e., only in few particular cases, it is possible to know a disruption in-advance), and a
provisional plan has to be provided quickly. Thus, it is necessary to construct efficient
algorithms to have good solution in minutes; and in large scale systems, this task could
be a very hard job.

Deviation costs: Dealing with disruptions, it is necessary to identify and define a
measure of deviation costs. Maybe, it is not easy to assign a real cost to deviation from
the original plan, but it has to be taken into consideration in the solution method to
assure having a solution as close as possible to the original plan. In real systems, the

1Contineal Airlines (http://www.continental.com)
2CALEB Technologies developed the CrewSolver decision-support system for Continental Airlines to

generate globally optimal, or near optimal, crew-recovery solutions (http://www.calebtech.com/)
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plan is connected with actions in different sections of the same organization and with
external components that are prepared, even optimized, to work according to the pub-
lished schedule. As a consequence, a quantification of the difference with the published
plan and the provisional one should always be included in the construction of the new
provisional plan.

Multicriteria: As a consequence of the deviation costs, a disruption management
problem should be modeled as a multicriteria decision making problem. The first cri-
terion to consider is exactly the criterion used to construct the original plan. On the
other hand, there is a new criterion: the deviation of the original plan. One of the ways
to deal with this is to include an objective function that weights different criteria. The
weights should be flexible to study different solutions.

Return to the original plan: In some case, the provisional plan has to converge
to the original. This is especially true, when the activities are repeated in the long
term as occur in transportation schedules. Then, one of the main goals in disruption
management is to return to the original plan as soon as possible.

Disruption management time horizon: After a disruption, the planner has to define
an appropriate time point when the plan returns to normal operations. This is the
disruption management time horizon. By setting a time windows, the consequences of
the disruptions could be limited to a time period. As it is expected, in practice there is
a trade-off between the size of the time window and the quality of the solution. That is,
a short time window could imply a high recuperation cost.

Multiple solutions: Because of the multiple criteria used and the time limited so-
lution approach, it should be desired to generate multiple solutions. Multiple high-
quality solutions with different emphasis (depending on the optimization criteria) or
with different constraints are presented to a human (or many) planner.

Partial solutions: As we said before, this is a real time problem and, in order to put
into execution immediately, it is possible to ignore some less important constraints or
related to future events. Thus, partial solutions are allowed, where a partial solution
refers to a solution that does not satisfy all the original constraints. One approach to
deal with this is to classify all constraints in two groups: hard and soft constraints. On
the one hand, hard constraints must be respected in any feasible solution. In other
words, if one of the constraints is violated the solution is automatically considered
unfeasible and cannot be implemented. On the other hand, soft constraints could be
interpreted as "desirable" requests and they contribute to a penalty if they are violated.
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3.2 The Railway Rescheduling Problem (RRP)

Daily trips of trains are usually implemented according to train schedules defined by
rail transportation companies at a tactical level. These schedules are valid for long peri-
ods of time and are periodically revised (says once a year) to take into account changes
in the demand or other factors, e.g., political decisions. Yet, for operational and unpre-
dictable reasons, many small incidents occur day after day. Most of them have a very
local impact, but, in some cases, mainly in dense networks, minimal disruptions can
spread out through the whole network and affect the complete train schedule signifi-
cantly. Table 3.1 shows possible incidents and their average duration calculated using
historical data of the regional railway network in Asturias, Spain (Adenso-Diaz et al.,
1999). These events are difficult to take into consideration when generating the initial
schedules. As a consequence, repair procedures are needed to react to incidents and
minimize as possible their effects on the performance of the system.

Incident Average duration (min)
Engine breakdown 19.9
Manoeuvering delays in stations 17.5
External causes (weather conditions and others) 13.7
Signal problems 11.8
Catenary problems 10.7
Human Errors in circulation 9.0
Staff shortages 7.0
Incident on the track 5.2
Various 8.9

Table 3.1: List of possible incidents in rail transportation (Adenso-Diaz et al., 1999).

The literature on railway systems shows important efforts spent on the development
of methods able to generate optimal or near-optimal schedules from scratch. On the
contrary, very few papers deal with rescheduling problems. In more general schedul-
ing problems, this is also true. Thus, though the standard three-fields classification
scheme proposed by Graham et al. (Graham et al., 1979) is commonly used for schedul-
ing problems, no standard classification scheme exists for rescheduling. For this rea-
son, we propose to classify our problem with the framework presented by (Vieira et al.,
2003). This framework defines four important dimensions for any kind of rescheduling
problem: rescheduling environment, rescheduling strategy, rescheduling policy and reschedul-
ing method. Figures 3.3, 3.4 and 3.5 show the complete rescheduling framework.

A rescheduling environment identifies the set of jobs (or trains in our specific case)
to be taken into consideration in the schedule (see Figure 3.3). Two different types of
environments can be defined: static and dynamic. Static environments consider a finite
set of jobs, all known from the beginning. In dynamic environments, one has to deal
with an infinite set of jobs, that is, new jobs (unknown in advance) continue arriving in
the system after the incident. In this work, we consider a static environment: the set of
passengers and stops scheduled in the stations are given and fixed.
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Figure 3.3: Rescheduling Framework: Environments (Vieira et al., 2003)

This framework identifies two kinds of static environments: deterministic or stochas-
tic. In deterministic static rescheduling problems, it is assumed that data are not subject
to any kind of uncertainty. In contrast, in stochastic environments, some variables are
uncertain (e.g., travel times in a railway context). In this Thesis, we consider the envi-
ronment as deterministic, i.e., it is assumed that all information is known in advance.

The second dimension is the rescheduling strategy (see Figure 3.4). There are two
generic rescheduling strategies: dynamic and predictive-reactive. Dynamic strategies
have been used for years in rail transportation systems. These strategies do not create
a provisional schedule. Instead, trains are dispatched using local information with a
decentralized control method (e.g., priority rules). Such control system is usually easy
to implement, but provides rarely satisfactory solutions. On the other hand, predictive-
reactive strategies update the whole schedule at once. Rescheduling then relies on a
global view of the system and is expected to reach better solutions. This is the strategy
investigated in this Thesis. It is noticeable that the resulting rescheduling problem is
quite different than the problem of generating the initial schedule. Indeed, this latter
does not share the same objective, does not have to be computed in real time and often
depends on several other factors (technical, economic and even political). Extensive
surveys of methods that have been used to generate train schedules can be found in
(Assad, 1980; Bussieck et al., 1997; Cordeau et al., 1998; Huisman et al., 2005).

To implement a predictive-reactive rescheduling strategy, a rescheduling policy is
needed. In the literature, it is possible to identify two generic types of policies: peri-
odic and event-driven. These policies define how are controlled the plan updates. A
periodic policy performs a rescheduling procedure after a predefined time interval. For
example, a railway operator could check and reschedule every hour. On the other hand,
an event-driven policy reacts after every relevant incident. It is the incident (event) that
triggers a change of the plan. A third possibility is to use a mixed policy, called hybrid.

The moment in time when the schedule is revised is called the rescheduling point.
The rescheduling period is the time between two consecutive rescheduling points. If the
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Figure 3.4: Rescheduling Framework: Strategies (Vieira et al., 2003)

rescheduling policy is periodic, this value is going to be constant; then, the rescheduling
frequency is the inverse of the rescheduling period. The model presented in this Thesis
allows including more than one incident and, as a consequence, can be used with the
three kinds of policies.

The fourth and last dimension of a rescheduling framework is the solution method
(see Figure 3.5). Three generic methods are used to update infeasible schedules: right-
shift rescheduling, partial rescheduling and complete regeneration. Right-shift rescheduling
is the easiest way to repair the schedule. In a train system, it maintains both the original
relative order of trains and the original track assignments. Obviously, the delays caused
by the incidents are going to be propagated easily.

Secondly, a partial rescheduling method will consider other possible types of changes
(delay some trains to prioritize others, change tracks. . . ), but will be restricted to a sub-
problem. Some examples of how the subproblem could be constructed are: selecting a
subset of trains, selecting just some network components (stations), limiting the time
period, or simply combining these possibilities. Actually, the appropriate construction
of this subproblem is very difficult by itself. Finally, a complete regeneration of the
schedule is also possible. The strong drawback here is the computing time needed to
generate the new schedule. The models presented in this Thesis allow using any of
these methods.

An important concept related to the solution methodology is the notion of schedul-
ing stability (or, conversely, nervousness). It measures the number of changes implied
by the rescheduling. For example, in a "nervous" train system, each rescheduling results
in many changes and the system presents little predictability. This can be troublesome
for the safety of the system. Successive changes increase risks of human errors, which
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might induce grave accidents. This can also be problematic for passengers: last-minute
changes of platforms in stations can provoke passengers missing their train. Recapit-
ulating, Table 3.2 summarizes the railway rescheduling problem treated in this Thesis
using the framework of (Vieira et al., 2003).
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Figure 3.5: Rescheduling Framework: Methods (Vieira et al., 2003)

Dimension Classification
Environment Static and deterministic
Strategy Predictive-Reactive
Policy Periodic, event-driven, hybrid
Method Right-shift rescheduling, partial rescheduling, complete regeneration

Table 3.2: Rescheduling framework (Vieira et al., 2003) for the railway rescheduling problem in
this Thesis.

Note that another line of research for limiting impacts of disruptions is the gener-
ation of robust schedules. Here, incidents are anticipated during the construction of
the schedule. One thus expects to define schedules able to cope with "most" scenarios
and also acceptable for the "worst". The problem with robust optimization is the risk
to define too conservative schedules and, so, underutilizing the available resources.
Several approaches have been developed in the context of manufacturing systems, but
very few works exist in rail transportation environments. A recent work can however
be found in (Herrmann, 2006). It is also important to remark that the generation of
robust schedules is completely compatible with rescheduling, even desirable, and so a
complementary line of research.

3.3 Operational Aspects of the RRP

As we stated in the previous chapter, rail transportation is the movement of passengers
or freight over railways. There are several distinctive characteristics:

• It is a one-dimension system, i.e., changes of direction are not allowed;
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• The adherence between wheels and rails is low; this permits to use a low quantity
of energy, either to transport heavy convoys or to move fast passenger trains.

As a consequence of these characteristics, a precise schedule is needed to organize
the traffic in the network and several constraints have to be introduced. First, two trains
cannot share the same track in opposite directions at the same time. Also, because of the
low friction between wheels and railways, trains need a long distance to stop. There-
fore, trains using the same track in the same direction have to be sufficiently separated.
A solution of these problems is the so called block system (see Figure 3.6). At any time, at
most one train is allowed per block (for each direction). This principle forms the basis
of most railway safety systems. In most systems, blocks are fixed, that is, they demar-
cate a section of track between two fixed points (stations or signals). Usually, however,
the length of the blocks is not fixed. Low density lines use blocks that are many kilo-
meters long, while high density lines (as urban trains) can have blocks a few hundred
meters long. For high speed lines the rule can be different. For example, a train is only
allowed to enter a block if the two next blocks are empty. In order to increase the capac-
ity of the line, some countries prefer using moving blocks. An appropriate safe spacing is
then constantly maintained between trains. Such system requires to know exactly the
position, speed and direction of every train and to calculate in real time the spacing.

block blockblock
Station
block

Figure 3.6: Representation of the block system.

Another important feature of a railway network is the possibility of driving along
the tracks in different directions. In some systems, tracks are constrained to a single
direction, while the two opposite directions are authorized in others. Also, networks
might combine single and bidirectional lines.

Junctions of lines that permit to perform changes of ways, also represent a diffi-
culty. There are four generic type of junctions: simple branching, triple branching, sim-
ple crossing and double crossing junctions (Figure 3.7). For safety reasons, two trains
cannot be on the same junction at the same time.

Besides these physical aspects, other technical or commercial constraints have to be
considered. The minimum and maximum idle time of a train in a station is imposed
by the marketing department. Passengers neither desire short pauses, which might
prevent them entering or leaving the train comfortably, nor long pauses that are under-
stood as waste of times. The upper limit can however understandably be adapted in
case of connections.
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The maximal speed of trains needs also to be considered. It is remarkable that the
maximal speed authorized does not necessarily coincide with the maximal speed sup-
ported technically by trains. The speed might indeed be limited for many reasons re-
lated to maintenance policies, spacing between trains, security, costs, etc. This is for
example true in the case of the TGVs (French high speed trains) that could technically
run quite faster than they normally do.

a) b)

d)c) e)

Figure 3.7: Different type of junctions: a) simple branching, b) triple branching, c) simple crossing
junction, d) double crossing junction, e) real double crossing junction (Flickr.com, 2006)

All the characteristics presented before remain true both for the initial schedule gen-
eration and the rescheduling. Some additional features are specific for rescheduling.
First, the new schedule has to be reasonably similar to the original plan. Therefore,
an appropriate fitness measure is needed to evaluate the difference. A very common
measure is to consider the total delay induced by the rescheduling. Nevertheless, other
measures are possible like minimizing the changes in the allocation of tracks and plat-
forms. Secondly, the new provisional schedule has to be consistent with the current
state of the system. That is, the model has to consider that some trains are already
delayed at the moment of generating the new plan.

For solving this problem, there are several possible actions, but only some of them
can be completely automatized using computer software. Table 3.3 presents a list of
possible actions or decisions that can be considered after disruptions (adapted from
(Norio et al., 2005)).

3.4 Analysis of the Literature on the RRP

This section reviews research published in the last years that are related to the problem
of minimizing the impact of the deviations of train schedules after disruption. Authors
have given different names to this problem depending on several aspect, e.g., the em-
phasis, the scope, and the origin (North American railways versus European railways).
For example in the literature, it is possible to find the Train Dispatching Problem (TDP)
that deals practically with the same problem as the RRP. The main difference between
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Method Description
Cancelation To cancel operation of trains
Partial cancelation To cancel a part of operating area of trains
Extra train To operate an extra train which is not

contained in the original schedule
Extension of train To extend the operating section of a train
Change of operation schedule To change the operation schedule of a train-set
Change of track To change the track of a train in a station or section
Change of departing order To change the departing order of trains

(often, change the station where a rapid train
passes a local train)

Change of meeting order To change the meeting order of trains
(either in single track line or at a station where two
lines come together)

Change of stop/pass To make a train stop at a station in which it was
originally scheduled to pass

Change of train types To change the type of a train
(to change a rapid train to a local train, etc.)

Change the speed to change the speed of trains

Table 3.3: Actions to reschedule trains, adapted from (Norio et al., 2005).

them is that TDP is focused in solving conflicts to avoid delays and congestions. Thus,
one of the main tasks of the TDP is conflict detection and evaluation of possible solu-
tions. On the other hand, the RRP studied in this document allows changing assigned
tracks and platform without previous conflicts in order to find a global optimal solu-
tion. Another important difference is the horizon, TDP is normally limited to one or
two hours in one or few stations while, for the RRP, we are interested in finding good
solutions for longer horizons and many stations.

Because of the large number of papers considered in this review, we decide to sum-
marize them with the aim of describing the trends, common aspects, and difference of
them rather than studying each of them individually. The papers considered in this
analysis are presented in Tables 3.4 and 3.5. The main aspects to classify them are: type
of the system, railway topology, and formulation/solution of the problem.

Two types of system are identified: centralized and decentralized. Most of the stud-
ied papers implement centralized solution methods. Centralized methods obtain bet-
ter solutions near to the global optimum, while decentralized approaches are faster but
clearly suboptimal. Some papers based on decentralized methods are: (Vernazza and
Zunino, 1990), (Jia and Zhang, 1994), (Iyer and Ghosh, 1995), (Lamma et al., 1997), and
(Missikoff, 1997).

Previous works differ significantly regarding the system topology. Some papers
are based on railway lines, while other on general networks. A railway line is a set of
consecutive stations and segments limited by two extreme stations. On the other hand,
a network is a set of railway lines, where one station can be connected directly with
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two or more stations. Another important aspect is the type of tracks and platforms:
directional/unidirectional and single/parallel tracks. These aspects constitute a very
important factor of complexity, as a consequence, in most cases, the representation is
simplified. It should be noted that, in general, the most complex models cannot deal
efficiently with more than 30 trains. Some papers considering general network topolo-
gies are: (Vernazza and Zunino, 1990), (Schaefer and Pferdmenges, 1994), (Iyer and
Ghosh, 1995), (Larroche et al., 1996), (Missikoff, 1997), (Lamma et al., 1997), (Vieira et al.,
1999), (Ho and Yeung, 2001), (Törnquist and Davidsson, 2002), (Wegele and Schnieder,
2004a,b), (Tornquist, 2006a), (Tornquist and Persson, 2005), (Sahin et al., 2005), (Torn-
quist, 2006b), (Törnquist, 2007), (Törnquist and Persson, 2007), (D’Ariano et al., 2007),
and (D’Ariano et al., 2008).

We also study the formulation and solution of the problem. Most of the authors
agree in the definition of an objective function: minimization of the delay. Neverthe-
less, it is possible to observe some variations, for example the introduction of weights
to emphasize the delay of some trains or penalizing changes in the resource assign-
ment. Mixed integer linear programming (MIP) formulations and graph theory are the
approaches generally used by authors. In general, methods consider continuous vari-
ables to represent arrival/departure times of trains, and integer variables are added
for modeling the sequence of trains. Within the works based on a MIP, we distinguish
(Tornquist, 2006b) and (Törnquist and Persson, 2007) that are the base of the MIP model
presented in this Thesis (see Chapter 4).

Regarding the solution methods, there is no dominance of anyone: branch and
bound (Wegele and Schnieder, 2004a,b; Tornquist, 2006b; Törnquist and Persson, 2007),
metaheuristics such as simulated annealing (Ho and Yeung, 2001; Tornquist and Pers-
son, 2005), tabu search (Ho and Yeung, 2001; Tornquist and Persson, 2005), and genetic
algorithms (Ho and Yeung, 2001; Ping et al., 2001; Wegele and Schnieder, 2004a,b) have
shown to be effective to solve different versions of this problem. Other families of al-
gorithms are also used such as greedy algorithms (Schaefer and Pferdmenges, 1994;
D’Ariano et al., 2007, 2008), simulation heuristics (Sahin et al., 2005), and fuzzy-based
algorithms (Vieira et al., 1999). In spite of the fact that constraint programming (CP) has
shown to be appropriated for scheduling problems, few papers deal with rescheduling.

Briefly, it is possible to find several applications dealing with scheduling and reschedul-
ing in railways. It is possible to compare the type of systems, the infrastructure and
models, but comparing the efficiency of these algorithms is however very difficult, due
to the differences in the infrastructure representations and the lack of benchmark in-
stances.

3.5 Scope of the RRP in this Thesis

The scope of the RRP in this Thesis is defined using the aspects discussed in the previ-
ous sections: type of the system, topology, formulation & solution, and actions (deci-
sions). Figure 3.8 sums up all these aspects.
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First, our system is centralized, that is a new provisional schedule is constructed
for several stations and trains by minimizing the global cost. The justification is that
decentralized strategies could imply suboptimal, less robust and undependable solu-
tions. Undependable solutions imply that there are several independent solutions, says
one per station, that cannot be connected. We take over the difficulties in handling
large problems and scalability for centralized system. This is the reason why, this The-
sis is mainly focused on setting up efficient solution methods in order to tackle these
difficulties.

Concerning the topology of the system, our model works with general networks
and railway lines, accepts bidirectional and several parallel tracks in sections and par-
allel platforms in stations. Some additional real-life characteristics are also considered:
variable-speed, unplanned stops, extra time for acceleration & brake, and connection
of trains.

Third, regarding the formulation and solution, we have proposed a MIP and a CP
models that permit to develop both: exact and heuristic procedures. The models and
solution methods are presented in the next part of this Thesis (Chapters 4, 6 and 5).

The last aspect is the set of actions (decisions) taken by the models. These actions are
very important to define the decision variables of the models adequately. It is important
to comment that the definition of decision variables depends mainly on the nature of
the model. Thus, order of trains and assignment of tracks will be carried out by binary
integer variables in the MIP model. In contrast, CP permits to consider more natural
ways of modeling decision variables. The actions are then assured by the definition of
constraints and by the interpretation of the values of decision variables in the solution.

 

Type of the system
•Centralized

Railway Topology
•General networks
•Bidirectional 
multi‐tracked lines

•Additional features: 
unplanned stops, 
connectionof trains,  
acceleration/braking extra 
time

Formulation / Solution
•MIP: Heuristic & Exact
•CP:  Heuristic

Actions (Decisions)
•Change of track 
•Change of operation 
schedule 

•Change of departing order 
•Change of meeting order 
•Change of stop/pass 
•Change the speed

Figure 3.8: Scope of this Thesis: type, topology, formulation & solution, and actions
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3.6 Conclusions

We began this chapter introducing Disruption Management (DM) as the process of re-
vising the original plan to obtain a new one while minimizing the negative impact of
disruptions. We have identified the key aspects to be considered in any DM application
that are employed not only in the definition of the problem, but also when design-
ing the models, solution methods, and tests. We have described deeper the railway
rescheduling problem (RRP) as the problem of finding a new provisional timetable af-
ter disrupted operations considering the operational aspects presented in this chapter.

A literature review was also presented. Several papers dealing with scheduling and
rescheduling in rail transportation were found. It is possible to compare the type of sys-
tems, the infrastructure and models, but comparing the efficiency of these algorithms is
however very difficult, due to the differences in the infrastructure representations and
the lack of benchmark instances.

Another important result of this chapter is the definition of the scope of this Thesis
considering the type of the system, topology, formulation & solution, and the actions
of the problem. This scope is taken into account in the next chapters where different
models and solution methods for this problem will be developed.
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Title Year Reference
On-line timetable re-scheduling in regional
train services

1999 (Adenso-Diaz et al.,
1999)

Scheduling railway traffic at a construction site 2002 (Brucker et al., 2002)
A study of the expert system for train dispatch-
ing

1993 (Cai and Wang, 1993)

From timetabling to train regulation - A new
train operation model

2005 (Chang and Chung,
2005)

Hybrid simulation for resolving resource con-
flicts in train traffic rescheduling

1998 (Cheng, 1998)

A Constraint-Based Interactive Train
Rescheduling Tool

2002 (Chiu et al., 2002)

Conflict Resolution and Train Speed Coordina-
tion for Solving Real-Time Timetable Perturba-
tions

2007 (D’Ariano et al., 2007)

Assessment of flexible timetables in real-time
traffic management of a railway bottleneck

2008 (D’Ariano et al., 2008)

An algorithm for train rescheduling using
rescheduling pattern description language R

2006 (Hirai et al., 2006)

Railway junction traffic control by heuristic
methods

2001 (Ho and Yeung, 2001)

DARYN, A Distributed Decision-Making Algo-
rithm for Railway Networks: Modeling and
Simulation

1995 (Iyer and Ghosh, 1995)

Disruption management in passenger railway
transportation

2007 (Jespersen-Groth et al.,
2007)

Distributed intelligent railway traffic control
based on fuzzy decision making

1993 (Jia and Zhang, 1994)

Autonomous Decentralized Traffic Manage-
ment System

2000 (Kitahara et al., 2000)

SEPIA: a real-time expert system that auto-
mates train route management

1996 (Larroche et al., 1996)

A distributed constraint-based scheduler 1997 (Lamma et al., 1997)
An object-oriented approach to an information
and decision support system for railway traffic
control

1997 (Missikoff, 1997)

Heuristic approach to train rescheduling 2007 (Mladenović and Čan-
galović, 2007)

Rescheduling method based on distributed co-
operative problem solving model

1996 (Nobuyuki et al., 1996)

Table 3.4: Papers related to the railway rescheduling problem (I)
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Title Year Reference
Train Rescheduling Algorithm Which Mini-
mizes Passengers Dissatisfaction

2005 (Norio et al., 2005)

Study on intelligent train dispatching 2001 (Ping et al., 2001)
Distrain: A simulation tool for train dispatch-
ing

2005 (Rebreyend, 2005)

A Dispatching Tool for Railway Transportation 2006 (Rebreyend, 2006)
A constraint programming model for real-time
train scheduling at junctions

2007 (Rodriguez, 2007)

Railway traffic control and train scheduling
based on inter-train conflict management

1999 (Şahin, 1999)

New approaches for the train dispatching prob-
lem

2005 (Sahin et al., 2005)

An expert system for real-time train dispatch-
ing

1994 (Schaefer and Pferd-
menges, 1994)

An efficient memetic, permutation-based
evolutionary algorithm for real-world train
timetabling

2005 (Schoenauer and
Semet, 2005)

On the benefits of inoculation, an example in
train scheduling

2006 (Semet and Schoe-
nauer, 2006)

Fuzzy algorithm for real-time train dispatch
and control

2005 (Tazoniero et al., 2005)

A Multi-Agent System Approach to Train De-
lay Handling

2002 (Törnquist and Davids-
son, 2002)

Railway traffic disturbance management - An
Experimental analysis of disturbance complex-
ity, management objectives and limitations in
planning horizon

2007 (Törnquist, 2007)

N-tracked railway traffic re-scheduling during
disturbances

2006 (Törnquist and Pers-
son, 2007)

A distributed intelligence methodology for rail-
way traffic control

1990 (Vernazza and Zunino,
1990)

Railway dispatch planning and control 1999 (Vieira et al., 1999)
Automated dispatching of train operations us-
ing genetic algorithms

2004 (Wegele and Schnieder,
2004a)

Table 3.5: Papers related to the railway rescheduling problem (II)
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Modeling and Solving the Railway
Rescheduling Problem
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Mixed Integer Programming
Approaches
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Abstract of the Chapter

In this chapter, some mixed integer linear programming (MIP) approaches for the rail-
way rescheduling problem are presented. The MIP formulation models bidirectional
multi-tracked lines for general networks, considering some additional aspects such as
acceleration & braking time, combination of trains, and unplanned stops. The main
solution method presented in this chapter is based on local branching cuts added to the
model in order to reduce the feasible region to solutions "near" to the original sched-
ule. This chapter also includes computational experiments in two different networks
located in France and Chile. The results show that these methods are viable in practice
for real-life instance.
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4.1 Introduction

In this chapter we present a mixed integer programming (MIP) formulation for the rail-
way rescheduling problem (RRP). In the previous chapter we have described the RRP
as the problem to find a new provisional timetable after disrupted operations respect-
ing several operational and marketing constraints and minimizing the total impact of
disruptions (see Chapter 3).

This MIP formulation responds to the scope of the RRP in this Thesis (see Section
3.5). First and foremost, our system is centralized, that is a new provisional schedule is
constructed for several stations and trains. Secondly, the formulation works with gen-
eral networks and lines accepting bidirectional parallel tracks. Third, some additional
real-life characteristics are also considered: variable-speed, unplanned stops, extra time
for accelerating & braking, and connection of trains.

Lastly, it is also very important to define the real actions (or decisions) that this
model helps to take. A complete list of all possible actions taken to reschedule trains af-
ter disturbances are exposed in Table 3.3. It may be noticed that only some of them are
feasible to be automatized by computer software. In particular, we consider only the
decisions that do not require changing the assignment of resources other than tracks.
For example, extension of a train, extra trains, and cancelation of trains involve impor-
tant changes in rolling stock assignment, and so they are not considered in this model.
It should be noted also that the actions taken into consideration for this MIP formula-
tion were defined according to the objectives of the MAGES project.

Method Description
Change of track To change the track of a train in a station or section
Change of operation schedule To change the operation schedule of a train-set
Change of departing order To change the departing orders of trains
Change of meeting order To change the meeting orders of trains

(either in single track line or at a station where two
lines come together)

Change of stop/pass To make a train stop at a station which it was
originally scheduled to pass

Change the speed to change the speed of trains

Table 4.1: Actions to reschedule trains considered in the MIP formulation.

Table 4.1 presents the actions considered in this MIP formulation. All these actions
are associated to the definition of the decision variables. Thus, "changes of track" are
assured by binary integer variables modeling the assignment of tracks and platforms.
"Changes of departing (meeting) order" are evaluated using binary variables that de-
termine if trains need to be rescheduled or need to keep the same order as the original
plan. The special decision of stopping or passing in a station is also modeled by binary
variables. These variables permit to adapt arrival and departure times considering a
minimal extra time because of acceleration and braking. The last actions, "changes of
speed", are assured by (real) decision variables that model the time of arrival and de-
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parture events. These variables are constrained in order to guarantee that trains do not
overpass the speed limit of sections and locomotives.

The rest of the chapter is organized as follows. Section 4.2 describes the MIP for-
mulation deeply. First, we develop a base model assuming that the composition of
the sections and blocks is completely known (see Section 4.2.1). This model is then ex-
tended in Section 4.2.2 to the special case when the exact composition of blocks is not
available.

Because of the impossibility of solving real-size instances of this formulation using
MIP solvers, some solution methods are developed in Section 4.3. The fastest approach
is right-shift rescheduling presented in Section 4.3.1. It keeps the same order of trains
and does not allow changes in the assignment of tracks. These facts are modeled as
fixation of integer variables that permits to solve the problem quickly. Nevertheless,
the quality of the solution is not good enough because of the extreme propagation of
delays. Because its speed, this approach shows to be appropriate to calculate initial
solutions that are exploited by the other solution methods developed in this Thesis.

The second method is described in Section 4.3.2. This approach is based on local
branching cuts added to the model in order to reduce the feasible region finding so-
lutions "near" to the original schedule. This method is then extended to an iterative
approach in Section 4.3.3 where the bounds of local branching cuts are updated in or-
der to increase progressively the search space. Section 4.5 evaluates the methods in
different networks located in France and Chile. Finally the conclusions are summed up
in the last section of this chapter.

4.2 MIP Formulation for the RRP

In this section we present two MIP formulations: a base model and an extended version.
The first one models the fixed block system explicitly. The principle of this kind of
system is that trains cannot use a block section when the block is occupied by another
train. A more detailed definition of the block system and other operational aspects in
this problem were presented in the previous chapter (see Section 3.3).

Unfortunately, the information about the exact composition and position of blocks
is not always available. The second MIP formulation presents some modifications of
the base model in order to take into account the block system implicitly. Therefore, we
consider sections (set of blocks) rather than blocks individually. As a consequence some
constraints are adapted to assure the minimal headway1 in both: at the beginning and
at the end of the section.

1Headway: The time interval between two successive trains.
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4.2.1 Base Model

The mathematical formulation presented in this chapter is an extension of the model
presented by (Törnquist and Persson, 2007) and uses basically the same notation. There
are two main differences between both models. First, this formulation considers explic-
itly the fact that unplanned stops will change the minimal and maximal allowed travel
time because of acceleration and braking. The model presented by (Törnquist and
Persson, 2007) is based on the block system where only one train is admitted in a block
at a given time. More information about the block system and other operational aspects
of this problem can be found in Section 3.3.

The second difference is the modification of some constraints to admit more than
one train in the same section running in the same direction. That is valid when a section
is composed of several blocks whose exact number and positions are unknown. In that
case some modifications are made to assure the spacing not only at the beginning but
also at the ending of the section (see Section 4.2.2).

In order to model the block system, a set of sections F and a set of blocks B are
defined (see Figure 3.6). Let indices s and j respectively be associated to sections and
blocks. The set of blocks in a section s is denoted by Gs. Without loss of generality, we
consider that a station is a particular section with only one block. Every section s has
a set of parallel tracks Rs. As a consequence, a block j also has a set of parallel tracks
Pj = {1, . . . , pj}.

Let T be the set of trains. A train corresponds to one or more items of rolling stock
coupled together (at least one is a locomotive) that have to fulfill a predefined set of
stations in a given order. Note that some authors rather call trains services or circulations.
Let index i be related to trains. The base of the schedule is a set of events E. An event
corresponds to a block request by a train. Let index k be associated to events. The set of
events is divided in two subsets E = Est

⋃
Esec, where Est is the set of events occurring

in stations, and Esec is the set of events occurring in other sections. Let parameter rk = 1,
if event k occurs in a station and rk = 0 if the event occurs in another section. Also, let
oE

k be the sense (direction) of the event k, for example: north or south (even or odd).

We define Ki ⊆ E as the ordered set of events of train i. In this definition, ordered
set means the event order in the original (non-disrupted) schedule. The first event of
train i is k0

i and the last event is kni
i . Thus, ni corresponds to the last event of train i.

Additionally, Is,i is the ordered set of events for train i in section s. Two other sets are
needed. First, Lj ⊆ E is the ordered set of the events associated with block j. Let mj be
the number of events of set Lj. This set is very important to define an adequate number
of schedule variables. Indeed, only trains sharing a block in their schedules have to be
safely spaced. Additionally, the fact that this set is ordered will help to avoid symmetries
in the model. Secondly, Hs corresponds to the set of trains using section s.

To model safety distance for blocks, spacing parameters are introduced. ∆M
j corre-

sponds to the amount of time between the moment when a train leaves block j and the
other one enters it. ∆F

j is the minimal interval of time separating two trains arriving
to block j in the same sense, and using the same track. Without loss of generality, we
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assume that these values are constant in a same block and are valid for every kind of
trains.

There are two types of tracks: unidirectional and bidirectional. Unidirectional tracks
only accept flow in one direction while bidirectional tracks admit it in both senses. For
a given track t, we define ct = 0 if track t is unidirectional, and ct = 1 if track t is
bidirectional. Additionally, for every unidirectional track t, parameter oT

t defines the
direction.

It is not always possible for a train in a section to change to another track. In that
case, parameter ft = 1 indicates that every event using the track t is not allowed to
change to another track. In contrast, if ft = 0, some changes are allowed for certain
compatible tracks. For a given track t and a particular event k, let Nk,t be the set of
incompatible tracks. That is, if an event k is using the track t, then the next event of the
same train, event k + 1, cannot use any track belonging to Nk,t.

The last set to be defined corresponds to connections of trains. This set is denoted
C. Thus, (k, k̂) belongs to C, if event k has to arrive (to the station associated with k)
before k̂. Parameters gmin

k,k̂ and gmax
k,k̂ correspond to the minimal and maximal connection

times from event k to event k̂.

Summarizing, the indices are:

i : Index for trains.
s : Index for sections.
j : Index for blocks.
k : Index for events.
t : Index for tracks.

The data sets are:

T : Set of trains.
F : Set of sections.
B : Set of blocks.
E : Set of events.
Esec : Set of events in sections.
Est : Set of events in stations.
Rs : Set of tracks for section s.
Gs : Set of blocks for section s.
Hs : Set of trains using section s.
Is,i : Set of events for train i in section s.
Ki : Set of events for train i.
Lj : Set of mj events for block j.
Pj : Set of pj tracks for block j.
Nk,t : Set of tracks tincomp that are not allowed to be used after event k in track t.
C : Set of pair of events (k, k̂), where event k has a connection with event k̂.
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Other parameters are:

pj : Number of parallel tracks of block j.
rk : =1, if event k occurs in a station and rk = 0 otherwise
oE

k : Sense (direction) of event k.
ni : Last event of train i.
mj : Number of events of set Lj.
∆M

j : Min. interval between a train leaves block j and the other one enters it
∆F

j : Min. interval separating two trains arriving to block j (same track, same sense)
ct : =1 if track t is bidirectional and 0 otherwise.
oT

t : Sense (direction) of track t.
ft : =1 if all events using track t are not allowed to change to another track, 0 otherwise.
binitial

k : Starting time of event k in the original plan.
einitial

k : Ending time of event k in the original plan.
bincident

k : Real starting time of event k after incidents.
eincident

k : Real ending time of event k after incidents.
dmin

k : Minimal stopping or running time of event k.
dmax

k : Maximal duration of event k.
dbrake

k : Minimal extra time for braking taking by the event precedent of k.
dacc

k : Minimal extra time for accelerating taking by the next event after k.
M : Large constant.
hk : =1 is event k is a planned stop in the original schedule and 0 otherwise

In case of disruptions, the current state of the system is modeled with some addi-
tional parameters. First, let binitial

k and einitial
k be the starting and ending times of event k

in the original schedule. Second, let parameters bincident
k and eincident

k be the real starting
and ending times of an event k, using the information about the incident. All the events
strictly before the incident are not considered in the model since they are not relevant.

Decision variables related to time are:

xbegin
k : starting time of event k ∈ E;

xend
k : ending time of event k ∈ E;

zk : lateness of event k ∈ E.

Considering the speed of trains and commercial minimal stopping times in stations,
another parameter denoted dmin

k is used. In the first place, if event k ∈ Est, dmin
k is

the minimal stopping time of the train in the corresponding station. Secondly, if event
k ∈ Esec, dmin

k is the minimal running time depending on the maximal speed of the train.
Similarly, we also define dmax

k as the maximal duration of event k. If no upper limit is
imposed, dmax

k = M where M is a large constant.

In the original schedule, some events are planned stops. In that case, dmin
k already

includes the braking and accelerating times. Nevertheless, for additional (unplanned)
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stops, it is necessary to adjust these values. Parameter hk = 1 if event k is a planned stop
in the original schedule, hk = 0 otherwise. Let parameter dbrake

k be the minimal extra
time for braking taken by the previous event before to stop. Similarly, the same train
will need also an additional time to accelerate. Let parameter dacc

k be the minimal extra
time for accelerating taken by the next event after to stop. Finally, unplanned stops are
modeled using the followings decision variables:

yk =
{

1, if an unplanned stop is added during event k, k ∈ E ;
0, otherwise.

Another important aspect of this model is the assignment of trains to tracks and
platforms. Thus, we define the following decision variables:

qkt =
{

1, if event k uses track t, where k ∈ Lj, t ∈ Pj, j ∈ B;
0, otherwise.

Using the same notation, some parameters are used to penalize changes of tracks
and platforms. Let q0

kt = 1, if event k uses track t in the original schedule, q0
kt = 0

otherwise.

In order to determine the order of events, it is necessary to introduce some disjunc-
tive variables used frequently in scheduling problems:

γkk̂ =


1, if event k occurs before event k̂, where k, k̂ ∈ Lj,

j ∈ B, and k̂ is any event following event k
with respect to the original schedule;

0, otherwise.

λkk̂ =


1, if event k is rescheduled to occur after event k̂,

where k, k̂ ∈ Lj, j ∈ B, and k̂ is any event
following event k with respect to the original schedule;

0, otherwise.

It is necessary to clarify the differences between variables γ and λ. On the one hand,
variables γ are used to keep the same order of trains than the original schedule. On the
other hand, variables λ takes the value 1, if the original order of train is altered, i.e.,
they are rescheduled. As a consequence, if there are no incidents and the order of trains
is kept intact to the original schedule, all variables λ will have the value 0.

Furthermore, we define parameters γ0
kk̂ = 1, if event k occurs before event k̂ in the

original schedule and q0
kt = q0

k̂t = 1, t ∈ Pj, with k, k̂ ∈ Lj, j ∈ B, γ0
kk̂ = 0 otherwise.

The objective function in our model is composed of different costs. We define two
parameters used for penalizing delays: CD (Cost of Delay) and CFD (Cost of Final
Delay). These correspond to the cost of every time unit of delay at every planned stop
and the cost of every time unit of delay in the last station respectively. Also, we utilize
two different costs to penalize changes of tracks/platforms: CCT (Cost of Change a
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Track) and CCP (Cost of Change a Platform). These costs are a penalization associated
with every change of track/platform compared with the original schedule. Finally,
CUS is the unitary cost incurred by each unplanned stop.

The complete MIP model is:

Minimize : CD ∑
i ∈ T

k ∈ Ki

hkzk + CFD ∑
i∈T

zkni + CCT ∑
t ∈ Pj , j ∈ B
k ∈ Lj ∩ Esec

qkt(1− q0
kt)+

CCP ∑
t ∈ Pj , j ∈ B
k ∈ Lj ∩ Est

qkt(1− q0
kt) + CUS ∑

k ∈ Est
hk = 0

yk (4.1)

Subject to:

xend
k = xbegin

k+1 ∀k ∈ Ki, i ∈ T : k 6= kni (4.2)

xend
k ≥ xbegin

k + dmin
k + dbrake

k yk+1 + dacc
k yk−1 ∀k ∈ Ki, i ∈ T : rk = 0 (4.3)

xend
k ≥ xbegin

k + dmin
k ∀k ∈ E : hk = 1∧ rk = 1 (4.4)

xend
k ≥ xbegin

k + ykdmin
k ∀k ∈ E : hk = 0∧ rk = 1 (4.5)

xend
k ≤ xbegin

k + ykdmax
k ∀k ∈ E : hk = 0∧ rk = 1 (4.6)

xend
k ≤ xbegin

k + dmax
k ∀k ∈ E : bincident

k = eincident
k = 0 (4.7)

xbegin
k ≥ binitial

k ∀k ∈ E : hk = 1 (4.8)

xbegin
k ≥ bincident

k ∀k ∈ E : bincident
k > 0 (4.9)

xend
k ≥ eincident

k ∀k ∈ E : eincident
k > 0 (4.10)

xbegin
k − binitial

k ≤ zk ∀k ∈ E (4.11)

∑
t∈Pj

qkt = 1 ∀k ∈ Lj, j ∈ B (4.12)

qkt + qk̂t − 1 ≤ λkk̂ + γkk̂ ∀k, k̂ ∈ Lj, t ∈ Pj, j ∈ B : k < k̂ (4.13)

λkk̂ + γkk̂ ≤ 1 ∀k, k̂ ∈ Lj, j ∈ B : k < k̂ (4.14)

xbegin
k̂
− xend

k ≥ ∆M
j γkk̂ −M(1− γkk̂) ∀k, k̂ ∈ Lj, j ∈ B : k < k̂, oE

k 6= oE
k̂ (4.15)

xbegin
k̂
− xend

k ≥ ∆F
j γkk̂ −M(1− γkk̂) ∀k, k̂ ∈ Lj, j ∈ B : k < k̂, oE

k = oE
k̂ (4.16)

xbegin
k − xend

k̂ ≥ ∆M
j λkk̂ −M(1− λkk̂) ∀k, k̂ ∈ Lj, j ∈ B : k < k̂, oE

k 6= oE
k̂ (4.17)

xbegin
k − xend

k̂ ≥ ∆F
j λkk̂ −M(1− λkk̂) ∀k, k̂ ∈ Lj, j ∈ B : k < k̂, oE

k = oE
k̂ (4.18)
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Figure 4.1: Illustration of time variables, parameters and constraints

qkt = qk+1,t ∀k ∈ Is,i : k 6= kn
i , i ∈ Hs, t ∈ Rs : ft = 1, s ∈ F (4.19)

qkt = 0 ∀k ∈ Lj, t ∈ Pj, j ∈ B : oT
t 6= oE

k ∧ ct = 0 (4.20)

qkt + ∑
tinc∈Nk,t

qk+1,tincomp ≤ 1 ∀k ∈ Is,i : k 6= kn
i , i ∈ Hs, t ∈ Rs : ft = 0, s ∈ F (4.21)

xend
k̂ ≥ xbegin

k + gmin
kk̂ ∀(k, k̂) ∈ C (4.22)

xend
k̂ ≤ xbegin

k + gmax
kk̂ ∀(k, k̂) ∈ C (4.23)

yk = 0 ∀k ∈ E : hk = 1∧ rk = 1 (4.24)
yk = 0 ∀k ∈ E : rk = 0 (4.25)

xbegin
k , xend

k , zk ≥ 0 ∀k ∈ E (4.26)

γkk̂, λkk̂ ∈ {0, 1} ∀k, k̂ ∈ Lj, j ∈ B : k < k̂ (4.27)

qkt ∈ {0, 1} ∀k ∈ Lj, t ∈ Pj, j ∈ B (4.28)

yk ∈ {0, 1} ∀k ∈ E (4.29)

Objective function (4.1) corresponds to the total rescheduling cost. This cost is equal
to the sum of delays for all planned stops, plus the sum of delays of trains in their
last station, plus the total cost of changing tracks/platforms, plus the total cost of un-
planned stops.

Set of constraints (4.2) ensures the continuity of events. When a train leaves a block,
it immediately enters the next one (see Figure 4.1). For every event in sections, con-
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Figure 4.2: Time-distance diagram: An example for variables and constraints in the MIP model

straints (4.3) guarantee the minimum traveling time dmin
k . If the next (resp. previous)

event of a train is an unplanned stop, the minimal travel time has to be increased be-
cause of an extra time needed for braking (resp. accelerating).

For a planned stop in a station (i.e., hk = 1 ∧ rk = 1) the minimal stopping time
is guaranteed by constraints (4.4). In contrast, for events that do not have a planned
stop in a station (i.e., hk = 0 ∧ rk = 1), constraints (4.5, 4.6) state that the minimal and
maximal stopping time is only valid if they stop.

For events without incidents (i.e., bincident
k = eincident

k = 0), a maximal duration is
defined using constraints (4.7). Note that these constraints are not applied to other
events because the condition could be invalidated by the incident. Constraints (4.8)
ensure that trains with a planned stop cannot leave a station before the time originally
scheduled.

As it has been previously commented, it is necessary to respect the current status
of circulations. Consequently, constrains (4.9, 4.10) inject the incidents into the model.
These constraints force new starting (ending) times to be greater or equal to the time of
the first indication of the incident (see Figure 4.1).

Set of constraints (4.11) is used to define the delay as the difference between the
starting time in the new provisional schedule and the starting time in the initial (non-
disrupted) schedule. Actually, the delay for events in stations is calculated using the
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difference of the arrival times. In contrast, some authors use the departing times to
measure the delay.

Constraints (4.12) are introduced to ensure that one train uses strictly one track in
every block. If two events use the same track, constraints (4.13) check that either γkk̂
or λkk̂ takes value 1. Constraints (4.14) impose that γkk̂ and λkk̂ cannot be equal to 1
simultaneously. The case when both γkk̂ and λkk̂ are equal to zero occurs when a block
is used simultaneously by two trains on different tracks, and so there is no conflict.

Another basic aspect considered in this model is the safety spacing of trains. Set
of constraints (4.15, 4.16, 4.17, 4.18) specify the minimal spacing between two trains
that share the same track in the same block depending on the direction they run (see
Figure 4.2). For instance, if two trains share the same track in the same block and run
in opposite directions, constraints (4.15) ensure a minimal time interval (∆M

j ) between
the entrance and the exit of the trains in the block. In these constraints, constant M is a
very large positive number.

This model also includes restrictions about the capability of changes in the allocation
of tracks/platforms. Constraints (4.19) state that it is not possible to change to another
track if track t does not allow changes inside a section ( ft = 1). That is, if a train
takes a track entering a section, it has to stay on the same track until arriving to the
next station. Constraints (4.20) prohibit using a unidirectional track t for every event k
defined in opposite direction. For some particular sections, a train has the possibility of
changing to another track using a junction ( ft = 0). In that case, constraints (4.21) state
that all variables qkt associated to incompatible tracks are fixed to zero.

Constraints (4.22, 4.23) ensure the minimal and maximal time for connections be-
tween events k and k̂. Constraints (4.24) guarantee that events in stations with planned
stops cannot be rescheduled as unplanned stops. Additionally, the fact that the trains
are allowed to stop only in stations is ensured by constraints (4.25). Finally, constraints
(4.26, 4.27, 4.28, 4.29) define the domain of the decision variables.

65



Chapter 4. Mixed Integer Programming Approaches

4.2.2 Extensions

In this section we indicate how this formulation can be extended when the composition
of blocks is unknown. In this special case, we need to remove constraints (4.16, 4.18);
because two trains in the same direction can use the same section simultaneously. A
minimal headway time is introduced, using the following constraints:

xbegin
k̂
− xbegin

k ≥ SPkk̂γkk̂ −M(1− γkk̂) ∀k, k̂ ∈ Lj, j ∈ B : k < k̂, oE
k = oE

k̂ , rk = 0 (4.30)

xbegin
k − xbegin

k̂
≥ SPk̂kλkk̂ −M(1− λkk̂) ∀k, k̂ ∈ Lj, j ∈ B : k < k̂, oE

k = oE
k̂ , rk = 0 (4.31)

xend
k̂ − xend

k ≥ SPkk̂γkk̂ −M(1− γkk̂) ∀k, k̂ ∈ Lj, j ∈ B : k < k̂, oE
k = oE

k̂ , rk = 0 (4.32)

xend
k − xend

k̂ ≥ SPk̂kλkk̂ −M(1− λkk̂) ∀k, k̂ ∈ Lj, j ∈ B : k < k̂, oE
k = oE

k̂ , rk = 0 (4.33)

xbegin
k̂
− xend

k ≥ ∆F
j γkk̂ −M(1− γkk̂) ∀k, k̂ ∈ Lj, j ∈ B : k < k̂, oE

k = oE
k̂ , rk = 1 (4.34)

xbegin
k − xend

k̂ ≥ ∆F
j λkk̂ −M(1− λkk̂) ∀k, k̂ ∈ Lj, j ∈ B : k < k̂, oE

k = oE
k̂ , rk = 1 (4.35)

Two different cases must be considered: events in sections and events in stations.
For the first case, constraints (4.30) and (4.31) enforce the minimal time interval, where
SPk̂k is a value depending on the characteristics of the trains and lines associated to
events k and k̂. Constraints (4.32) and (4.33) are added to ensure that a train cannot
overpass a precedent train on the same track, and M is a very large positive number.

On the other hand, if the event is performed in a station, we keep the original con-
straints. Indeed in this special case, we consider that a station is composed exactly of
one block. Thus, constraints (4.16, 4.18) become (4.34, 4.35) respectively.

4.3 Solution Methods

In this section we develop three solution methods. The first one is right-shift reschedul-
ing. It is the fastest but its solutions are not good enough because the method is based
on a simplification of the problem where order of trains, assignment of tracks, and
planned stops cannot be altered. In spite of the quality of the solution, right-shift
rescheduling is exploited by other methods for calculating initial solutions.

The second solution method is based on local branching cuts. The objective is to
search solution "near" to the original schedule by exploring a neighborhood defined by
these cuts. The good results obtained by this method can be explained from the fact
that the original schedule contains important information that this method exploits ap-
propriately. Finally, the method is extended to an iterative version that tries to improve
the current solution by modifying the bounds of the cuts.
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4.3.1 Right-shift Rescheduling

The original schedule contains important information that can be used while solving
the rescheduling problem. Right-shift rescheduling (RS) provides a solution maintain-
ing the original order of trains in sections/stations, keeping the original allocation of
tracks/platforms, and forbidding unplanned stops. This procedure is general, in the
sense that it can be applied to any rescheduling problem (Ovacik and Uzsoy, 1992).
Therefore, some additional constraints are introduced in order to fix all integer vari-
ables:

λkk̂ = 0 ∀k, k̂ ∈ Lj, j ∈ B : k < k̂ (4.36)

γkk̂ = γ0
kk̂ ∀k, k̂ ∈ Lj, j ∈ B : k < k̂ (4.37)

qkt = q0
kt ∀k ∈ Lj, t ∈ Pj, j ∈ B (4.38)

yk = 0 ∀k ∈ E (4.39)

These additional constraints imply a drastic reduction of complexity because the re-
maining problem does not contain any integer variable. In addition, it is to be noted
that constraints (4.14, 4.17, 4.18) could be removed of the model because λkk̂ = 0. As
a consequence, the computing time needed for the solution of this problem falls con-
siderably in practice. In spite of this advantage, however, it is expected that the quality
of this solution will not be good. Essentially, delays will be propagated until idle time
permit to absorb them.

4.3.2 MIP-based Local Search Method

This method is inspired from the local branching principle (Fischetti and Lodi, 2003). The
solution space explored is composed of the subset of solutions "near" the original (non-
disrupted) schedule. The goal of the original local branching approach is to improve
the performance of a given MIP solver without losing the guarantee of optimality. In
contrast, we use this idea as a heuristic: to find good solutions (perhaps suboptimal),
in a reasonable time. Therefore, one of the branches derived from the cut is discarded
in order to limit the search to a limited neighborhood.

Consider the MIP formulation presented in Section 4.2. Let Q0 be the vector of
the values q0

kt∀k ∈ Lj, t ∈ Pj, j ∈ B (the original allocation of tracks/platforms). For two
given parameters LBq and LBλ, neighborhood N(Q0, LBq, LBλ) can be defined as the set
of feasible solutions of the problem satisfying the following local branching constraints:
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∑
k ∈ Lj

t ∈ Pj , j ∈ B

(qkt − q0
kt)

2 ≤ 2LBq (4.40)

∑
k, k̂ ∈ Lj : k < k̂

j ∈ B

λkk̂
2 ≤ LBλ (4.41)

These cuts limit both the number of changes of tracks/platforms and the number of
inversion of events in time, compared to the initial planning. Note that variables λkk̂
are equal to 0 when the respective order of events k and k̂ is conserved.

Constraints (4.40) and (4.41) can be linearized easily, using the following property
of binary integers: x ∈ {0, 1} ⇒ x2 = x. With this property, constraint (4.41) is simply
rewritten

∑
k, k̂ ∈ Lj : k < k̂

j ∈ B

λkk̂ ≤ LBλ (4.42)

The linearization of constraint (4.40) implies to define the following sets S′ and S′′:

S′ = {(j, k, t)|k ∈ Lj, t ∈ Pj, j ∈ B ∧ q0
kt = 1} (4.43)

S′′ = {(j, k, t)|k ∈ Lj, t ∈ Pj, j ∈ B ∧ q0
kt = 0} (4.44)

Seeing that constraint (4.40) is equivalently

∑
k ∈ Lj

t ∈ Pj , j ∈ B

(qkt)2 − 2qktq0
kt + (q0

kt)
2 ≤ 2LBq (4.45)

it can be rewritten:

∑
(j,k,t)∈S′

(1− qkt) + ∑
(j,k,t)∈S′′

qkt ≤ 2LBq (4.46)

The cardinality of the binary support concerning variables qkt of any feasible solu-
tion is a constant. In fact, the number of variables qkt taking the value 1 is always equal
to |E| (the total number of events). This is true because each event has to be assigned
exactly to one track (see constraints (4.12)). As a consequence, if a variable qkt change
from 0 to 1, another one must change its value from 1 to 0. As a result, we have:
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∑
(j,k,t)∈S′

(1− qkt) = ∑
(j,k,t)∈S′′

qkt (4.47)

Using (4.47) in (4.46), the constraint can be written in its "asymmetric" form (see
(Fischetti and Lodi, 2003)):

2 ∑
(j,k,t)∈S′′

qkt ≤ 2LBq

that is

∑
(j,k,t)∈S′′

qkt ≤ LBq (4.48)

The MIP-based local search method (LS) consists in solving the model presented in
Section 4.2 adding the local branching cuts (4.42) and (4.48).

We cannot ignore the problem of determining an appropriate value for LBq and
LBλ. Clearly, there exists a tradeoff between quality of solution and computing time.
On one hand, relative small values will limit the search in a small neighborhood, and
probably the problem can be solved quickly. On the other hand, a large value for these
parameters will increase the computing time but better solutions should be obtained.

4.3.3 Iterative MIP-based Local Search

The Iterative MIP-based local search algorithm (I-LS) is developed from the MIP-based lo-
cal search method described above. First, right-shift rescheduling is used to find an ini-
tial feasible solution quickly. Then, an iterative procedure tries to improve the current
solution using the MIP-based local search approach, with value LBq and LBλ iteratively
adjusted.

Algorithm 1 presents the pseudocode of this method. The inputs are P0, LB0
q , LB0

λ,
δLBq , δLBλ . P0 is the MIP formulation of an instance of the problem, using the model
presented in Section 4.2. LB0

q , LB0
λ are the initial values of the right-hand sides of the

local branching cuts. Finally, δLBq and δLBλ denote the changes that are to be applied at
each iteration to these values.

To avoid exploring twice the same feasible region during the different iterations, a
reformulation of cuts (4.42) and (4.48) is required:

LB1
q ≤ ∑

(j,k,t)∈S′′
qkt ≤ LB2

q (4.49)

LB1
λ ≤ ∑

k, k̂ ∈ Lj : k < k̂
j ∈ B

λkk̂ ≤ LB2
λ (4.50)
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Figure 4.3 shows how this algorithm creates a non-overlapped feasible region at
every iteration (denoted by numbers 1, 2, 3, 4, 5, . . . ) using different values of LB1

q , LB2
q ,

LB1
λ, and LB2

λ.

Algorithm 1 can be precisely described as follows. The first step is to define the
ending criteria. Some possibilities are the number of iterations, a number of iterations
without changes in the solution or a time limit. This latter possibility was chosen for our
experiments. Line 1 assigns the value False to a boolean variable called EndingCriteria.

The original schedule is used to compute an initial solution by calling function
RightShift() (line 2). This function returns a feasible solution using the right-shift
rescheduling approach presented in Section 4.3.1. Then, the objective value and the
ending criteria are evaluated.

The control structure while (lines 10 to 30) defines one iteration of the procedure.
At line 11, a subproblem P1 is created. This subproblem corresponds to the original
problem (P0) plus constraints (4.49) and (4.50). Once the new subproblem is created,
line 12 solves P1 using Z as the cut off value.

The current subproblem could be infeasible because of the cut off value and the
changes of the bounds of the local branching cuts. Note that if the subproblem is feasi-
ble but not solved optimally (which might happen when computing time is limited) or
is solved optimally (line 13), the solution found is necessarily better than the one found
in the preceding iteration. The current solution and the cut off value are then updated
(lines 14 and 15).

Block IF of lines 17 to 22 is executed when the next iteration implies to increase the
bounds for local branching cut (4.50), (e.g., during iterations 2 and 4 in Figure 4.3). In
the same way, block IF of lines 23 to 28 is executed when the next iteration implies
to increase the bounds for local branching cut (4.49). The goal of these blocks is to
enlarge the search space avoiding the exploration of solutions already evaluated. It
is important to remark that this procedure never deteriorates the value of the current
solution because of the cut off parameter.

Once the iteration is finished, the ending criteria is evaluated and the block 10 to
30 is repeated until function EvaluateEndingCriteria() returns true. In that case,
line 31 is executed, returning the last solution found.
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Algorithm 1 I-LS: Iterative MIP-based local search

Require: P0, LBq, LBλ, δLBq , δLBλ

1: EndingCriteria⇐ False
2: X ⇐ RightShift(P0)
3: Z ⇐ ObjectiveValue(X)
4: EndingCriteria⇐ EvaluateEndingCriteria()
5: LB1

q ⇐ 0
6: LB1

λ ⇐ 0
7: LB2

q ⇐ LBq

8: LB2
λ ⇐ LBλ

9: NextCase⇐ 1
10: while (EndingCriteria 6= True) do
11: P1 ⇐ P0 adding constraints (4.49) and (4.49)
12: X1 ⇐MipSolve(P1, CutUp(Z), MaxTime)
13: if (GetStatus(P1)=Feasible) OR (GetStatus(P1)=Optimal) then
14: X ⇐ X1
15: Z ⇐ ObjectiveValue(X)
16: end if
17: if NextCase = 1 then
18: LB1

λ ⇐ LB2
λ

19: LB2
λ ⇐ LB2

λ + δLBλ

20: LB1
q ⇐ 0

21: NextCase⇐ 2
22: end if
23: if NextCase = 2 then
24: LB1

λ ⇐ 0
25: LB1

q ⇐ LB2
q

26: LB2
q ⇐ LB2

q + δLBq

27: NextCase⇐ 1
28: end if
29: EndingCriteria⇐ EvaluateEndingCriteria()
30: end while
31: return X
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Figure 4.3: Search space of Iterative MIP-based local search. The numbers in the areas represent the
feasible search space at each iteration.

4.4 Finding optimal solutions

The proposed approaches presented in this chapter are heuristic methods, do not prove
optimality and do not give a measure of the quality of the solution. In this section we
propose a simple exact algorithm for finding optimal solutions with the objective to
evaluate and compare the solution methods.

Once we built the MIP model and had problem instances, we tried to solve it directly
in a standard MIP solver. As we expected, this method was not efficient. For example,
the solver needed many hours to find a first feasible solution for many of the instances.
This fact can be explained by analyzing the nature of the model. Note that the model
is composed of binary variables and constraints with large M constants. These both
facts imply that the solution of the linear programming relaxation is normally far away
from the optimal solution. As a consequence, a branch and bound method may take
too much time before to find a feasible solution and so to prove optimality.

We propose an alternative procedure to calculate optimal solutions. The idea is to
use the output solution of the proposed methods (i.e., right-shift rescheduling, the MIP-
based local search and its iterative version) as an initial solution for a MIP solver. Two
important advantage must be noted: the possibility of finding optimal solutions, and
the possibility of measuring the quality of any feasible solution. Concerning the second
advantage, an exact method based on branch and bound permits to calculate a MIP
gap expressed as a percentage of the incumbent solution. It is important to remark that
the facts discussed in this section were applied in IBM ILOG CPLEX 11, but it could be
perfectly valid for other state-of-the-art software packages.
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Algorithm 2 is a generic procedure that employs a standard MIP solver with the
functionality of accepting feasible solutions as start parameters. The input of this al-
gorithm is P0. Let P0 be the MIP formulation of an instance of the problem, using the
model presented in Section 4.2. The first step is to calculate a good solution of the
problem instance by using one of the methods proposed in this chapter (line 1). The
application of this method could imply that the MIP model change because of the local
branching cuts. This is the reason why Line 2 removes all additional cuts in the MIP.
As a consequence, the feasible region associated to P0 corresponds to the search space
of the original problem and so an optimal solution for P0 is also an optimal solution for
the original problem.

In Line 3, this solution is then employed as a MIP start data in a MIP solver that
allows starting values. The MIP solver processes this current solution before starting
branch & cut. After checking feasibility, the solver installs the solution as the incum-
bent solution. Having an incumbent from at the beginning of branch & cut permits to
eliminate portions of the search space and, in practice, it result in smaller search trees.
The existence of an incumbent solution also allows the solver to use other integrated
heuristics, such as relaxation induced neighborhood search (RINS heuristic) or solution
polishing (both valid in the last versions of IBM ILOG CPLEX) to improve the current
solution.

Assuming that a given problem instance is feasible, the natural output of the MIP
solver is an optimal solution. The last line of the algorithm returns this solution to the
user. Nevertheless, even if the heuristic gives a very good solution, this procedure could
take too much time in practice. It is then possible to stop the search before obtaining a
prove of optimality by using an alternative ending criterion such as a time limit. In that
case, it should be interesting to know both: the best integer (feasible) solution found so
far, and the quality of this solution expressed for example as a MIP gap.

Algorithm 2 Exact algorithm based on a heuristic method
Require: P0

1: X0 ⇐ HeuristicSolver(P0)
2: P0 ⇐ RemoveCut (P0)
3: X ⇐MIPSolver(P0, X0)
4: return X

4.5 Computational Experiments

The goals of the computational experiments are to evaluate performance of the sug-
gested methods and to study the impact of different objectives on the total delay. To
achieve these objectives, we solved a heterogeneous set of instances using different
combination of the coefficients in the objective function.

The algorithms were coded in Visual Studio 20052 (C]) using IBM ILOG CPLEX
2http://www.microsoft.com/visualstudio
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version 11.1 as a black-box MIP solver 3. Our system runs on a single processor IBM
compatible PC Intel Core 2, 1.66 GHz, and 2 GB of main memory.

The code was integrated to Railway Rescheduling Tool, software developed for this
Thesis. You will find a description of the software in Chapter 10.

We compare the following methods:

• Method O1, RS: Right-shift rescheduling (see Section 4.3.1).

• Method O2, LS: MIP-based local search method using RS as initial solution. This
algorithm performs the method described in Section 4.3.2.

• Method O3, LS + CPLEX: MIP-based local search method + CPLEX. This method
uses the output of Method O2 as an initial solution of ILOG CPLEX removing
any additional cut. Because all cuts are removed, the feasible region corresponds
to the original search space. As a result, the optimal solution of this method coin-
cides with the optimal solution of the original problem. The goal of this method
is to obtain an optimal solution to be used as a reference to evaluate the quality of
the solutions found with other methods. (see Section 4.4).

• Method O4, I-LS (5 minutes): Iterative MIP-based local search algorithm limited to 5
minutes of running time (see Section 4.3.3). We limit the processing time in order
to respond to real requirements of railway companies. The algorithm performs
only one iteration.

For the tests we used LBq = 10, LBλ = 100 and δLBq = δLBλ = 10. The values LBq
and LBλ have been chosen following recommendations of Local Branching cuts authors
in (Fischetti and Lodi, 2003) and our own numerical experiments.

To evaluate the impact of different objectives on the total delay, three scenarios of
instances, each one emphasizing one aspect of the objective function, have been con-
sidered. The scenarios are:

• Emphasize minimization of delay: The coefficients in the objective function strongly
penalize the delays. The coefficients are CD = 1000, CFD = 1000, CCT = 1,
CCP = 1, and CUS = 1. Every second of delay cost 1000 times more than a
simple change of tracks/platforms/stops.

• Emphasize stability: we consider that the number of changes of track/platform/stops
is inversely proportional to the stability of the schedule. Thus, the coefficients in
the objective function strongly penalize the changes of tracks/platforms/stops.
The coefficients are CD = 1, CFD = 1, CCT = 1000, CCP = 1000, and CUS =
1000.

• Balance stability and minimizing delay: an equilibrated combination of coef-
ficients in the objective function is considered. The coefficients are CD = 1,
CFD = 1, CCT = 30, CCP = 30, and CUS = 15. These values were selected
to permit some changes of track/platform/stops if delays become too large.

3http://www.ilog.com
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Two different networks have been used for the computational experiments. The
first one is a line located in France, and the second one a network, with a tree topology,
located in Chile.

Network 1. Monts-Ruffec, France

This network corresponds to a real French line connecting two cities: Monts and Ruffec
(Figure 4.4). For the experiments a time horizon of 7 hours is considered. In that period
of time, the original schedule is composed of 67 trains passing through 43 stations, and
corresponding to 3424 events to be rescheduled. This railway line is used by different
kind of trains: freight, regional express, and high speed trains.

Monts

Monts

Ruffec

France
Ruffec

Figure 4.4: Network 1. Left: Stations and sections of the line. Right: Location of the line in France.

An original schedule is known (i.e., allocation of tracks/platforms, arrival/departure
times for every train in each station/section of the network). This data was obtained
from the research department of SNCF (French National Railway Company) in the con-
text of the MAGES project (Acuna-Agost and Gueye, 2006). The composition of blocks
in sections is unknown and the extended version of the formulation is used (see Section
4.2.2).

The original schedule is described in Figure 4.5 in a time-distance diagram, usually
called traffic diagram or string graph (in North American railways). Each line of this
diagram represents a train circulation over time and space.

For the experiments, we disturbed trains on extreme nodes (Monts and Ruffec) in
order to affect a large number of trains. Figure 4.6 shows a complete description of
the MIP instances constructed using this network. Note that 6 different instances are
defined (france_1 to france_6), with different characteristics for the incident. Also, these
6 instances are successively assessed with the three objective functions described above.
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Figure 4.5: Traffic diagram for Network 1 (France). Every line represents a train, x-axis corresponds
to the time in seconds, and y-axis represents a relative distance (without real units).

One or two trains are directly implicated in the incident. Three delay values have
been considered for these trains: 10, 20, and 30 minutes long. We do not take into ac-
count shorter delays because of the recovery times introduced to absorb small delays.
Indeed, a recovery time is normally added to the running time of trains when construct-
ing the initial schedule, which is defined as a percentage of the normal running time.
The typical additional amount of time is 3 to 7% on European railways (Pachl, 2004). It
enables a train to recover small delays and prevents against small delay propagations
on other trains. On the other hand, longer delays are out of the scope of this Thesis
since, they are limited to average delays corresponding to incidents described in Figure
3.1.
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N° Name CD CFD CCT CCP CUS

1 france_1_a_7 10 1 7 1 1 30 15 10
2 france_2_a_7 20 1 7 1 1 30 15 10
3 france_3_a_7 30 1 7 1 1 30 15 10
4 france 4 a 7 10 2 7 1 1 30 15 10nc
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Unitary costsTotal 
Perturbed 
Trains

Time 
Horizon 
[hr]

Incident 
Delay 
[min]

Instance

4 france_4_a_7 10 2 7 1 1 30 15 10
5 france_5_a_7 20 2 7 1 1 30 15 10
6 france_6_a_7 30 2 7 1 1 30 15 10
7 france_1_b_7 10 1 7 1 1 P P P
8 france_2_b_7 20 1 7 1 1 P P P
9 france_3_b_7 30 1 7 1 1 P P P
10 france_4_b_7 10 2 7 1 1 P P P
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11 france_5_b_7 20 2 7 1 1 P P P
12 france_6_b_7 30 2 7 1 1 P P P
13 france_1_c_7 10 1 7 P P 1 1 1
14 france_2_c_7 20 1 7 P P 1 1 1
15 france_3_c_7 30 1 7 P P 1 1 1
16 france_4_c_7 10 2 7 P P 1 1 1
17 france 5 c 7 20 2 7 P P 1 1 1
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17 france_5_c_7 20 2 7 P P 1 1 1
18 france_6_c_7 30 2 7 P P 1 1 1

P = 1000

c
m
i

Figure 4.6: Set of instances for Network 1 (France).

Network 2. South of Chile

This network corresponds to a real Chilean network composed of 140 trains, 49 sta-
tions, and 1378 events in a horizon of 24 hours (see Figure 4.7). The network is used
by different kind of trains: freight, short distance passenger trains, and long distance
passenger trains.

The original schedule was taken from public information given by EFE (Chilean
State Railways)4 and FEPASA (the largest freight railroad company in Chile)5. For the
experiments, we considered that all sections are double-tracked and all stations have
four platforms. The reason for this simplification is that the information on the detailed
network layout is very difficult to find. The composition of blocks in sections is also
unknown and the extended version of the formulation is again used (see Section 4.2.2).

A significant difference with the French network has to be noticed. In Network
2, there is no train circulation covering the whole network. That is the reason why
perturbations have been introduced on four cities: Santiago, Chillán, Concepción, and
Puerto Montt.

4http://www.efe.cl
5http://www.fepasa.cl
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Santiago

ChillánConcepción

Puerto Montt

Santiago

Puerto 
Montt

South America

Figure 4.7: Network 2. Left: Stations and sections of the network. Right: Location of the network
in Chile.

Santiago is the biggest city of the country and a large number of trains depart from
its station. Chillán is the final destination for long distance trains going to and com-
ing from Santiago. Concepción has been selected since it is the main city of the south
of Chile with the most important train traffic after Santiago. Finally, Puerto Montt is
located at the south extremity of our network.

To compare traffics in Network 1 and 2 we have also reported in Figure 4.8 an extract
of the traffic diagram for the Chilean network.

For the experiments, delays have been considered on one to four train(s) departing
from the selected cities. Delays are again either be set to 10, 20, or 30 minutes. Figure 4.9
shows a complete list of MIP instances for this network. Note that 12 different instances
are defined (chile_1 to chile_12).
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Figure 4.8: Traffic diagram for Network 2 (Chile). Every line represents a train, x-axis corresponds
to the time in seconds, and y-axis represents a relative distance (without real units).

Results

Performance of the Suggested Methods

In Figures 4.11 and 4.10, comparisons of the different methods for each instance are re-
ported. Column (Cost [$]) is for the value of the objective function. Column (CPU [sec])
is the total execution time of the methods in seconds. Column GAP [%] is the relative
deviation between the optimal solution (y∗) and the heuristic solution (y) for the cor-
responding method (Method O1, O2 or O4). Let us recall that the optimal solution of
our rescheduling problem is found by Method O3. This gap is computed as follows:
GAPy = (y− y∗)/y∗.

This analysis is complemented by Figures 4.12 and 4.13. They show the CPU time
required for computing the best solution has been found. As it is possible to observe,
in some cases an important amount of time is actually used to prove optimality. In
both Networks, the CPU time to the best solution coincide with the CPU time that the
algorithm stops for Method O1. In average, Method O2 only needs 37% (85%) of the
total time to find the best solution for Network 1 (Network 2). In the same way, we
obtain 19% (27%) for O3 and 57% for O4 (85%) for Network 1 (Network 2). It should be
noted that Method O4 obtains the best compromise quality/speed if we consider the
CPU time to the best solution.

The results show that instances of Network 1 are harder to solve than instances
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of Network 2. Such results may be explained by a greater number of events to be
rescheduled in Network 1, a higher traffic density, and the correlation between these
events. Indeed, Network 1 has 67 trains scheduled in 7 hours while Network 2 has 140
trains scheduled in 24 hours. Moreover, most of the trains of Network 1 go across the
entire line and then affect a large number of other trains. In contrast, trains of Network
2 have shorter itineraries and a more local impact (see Figures 4.5 and 4.8).

The first method, RS, is the fastest. Recall that RS provides a solution maintaining
the original order of trains in sections/stations and keeping the original allocation of
tracks/platforms. In average, RS is able to compute a feasible solution in 3 seconds for
instances of Network 1 and 1 second for Network 2. The average gap obtained by RS for
all instances in Network 1 and Network 2 are respectively : 141.93% and 17.07% (thus
showing that instances of Network 2 are easier to solve for RS). In fact, since incidents
on trains of Network 2 have a local impact, keeping the original order and avoiding
changes is sufficient for many of them. On the contrary, in Network 1, such approach
performs very badly since a greater number of trains are affected simultaneously by an
incident.

Method O2 (LS: Heuristic, see Section 4.2) finds the optimal (without proof) for all
instances. Its average total running times are 400 seconds for Network 1 and 21 seconds
for Network 2.

Method O3 (LS + CPLEX, see Section 4.2) is the exact solution scheme. The proce-
dure is approximately two times slower than Method O2 for Network 1 and three times
slower for Network 2.

Finally, the average gap of Method O4 (I-LS (5 minutes), see Section 4.2) is 0.04%
for Network 1 and 0.00% for Network 2, with average CPU times of 185 seconds for
Network 1 and 21 seconds for Network 2.

In conclusion, RS is the fastest method and can very conveniently be used to gen-
erate quickly a solution. However, depending of the network, this solution can really
be very bad. Conversely, the MIP-based local search procedure always obtain optimal
solutions (on our cases) but with computing times that might sometimes be considered
as unacceptable. The best compromise is obtained with the Iterative MIP-based local
search procedure that is able to obtain very good solutions (average gap less than 1%)
within 5 minutes of computing time and thus proves to be viable in practice.

Impact of Different Objectives on the Total Delay

Figure 4.14 highlights the impact of the different objectives on the total delay. This table
presents the optimal results depending on the type of objectives the emphasis is put on.

Column Optimal Solution - Cost [$] gives the value of the optimal solution calculated
by Method 3. Column Total Delay [sec] is the total delay (in seconds) of the optimal
solution. In contrast to the solution cost, the total delay can be used to compare two
solutions of the same instance but different objective function. Column Delay GAP [%]
is the relative difference between the optimal total delay, calculated using Emphasize
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minimizing delay, and the total delay of the current solution. Last column Average Delay
GAP [%] gives the average of gap per type of objective.

The conclusion that can be drawn from this table is that the total delay is not sig-
nificantly affected by changes in the coefficients of the objective function. In average
strategy Emphasize stability only deteriorates by 2.06% and 3.01% the total delay for
Network 1 and Network 2 respectively. Practically, it shows that quite stable schedules
(in terms of tracks and platforms) can be obtained without deteriorating dramatically
the quality of service (delay) for the customers.

Right-shift rescheduling was the first solution method presented in this document.
This procedure fixes some integer variables keeping the order of trains and the alloca-
tion of tracks/platforms. By fixing integer variables, the problem becomes easy to solve
by a MIP solver, but the solutions are often of poor quality.

The second approach is a MIP-based local search method. The difference with tra-
ditional local search mechanisms is that neighborhoods are obtained through linear
inequalities, called local-branching cuts, added to the MIP model. In addition, infor-
mation about the original schedule is used to generate these cuts.

4.6 Conclusions

A MIP formulation was presented for this problem. This model includes many practical
rules and constraints, which explains its relative complexity compared to other models
presented in the literature. Thus, it supports allocation of tracks (and platforms) con-
nection between trains, bidirectional/multi-track lines and extra time for accelerating
and braking. As a consequence, the difficulty of resolution increases significantly. In
fact, with a relative large number of trains and stations, a standard MIP solver was not
able to solve the test instances in a reasonable time.

The problem is addressed with a local search method based on this formulation.
The method uses the original (non-disrupted) schedule to compute the new one. This
is particularly useful for rescheduling problems, where one expects to limit the impact
of the disruption to the schedule, that is, the difference between the schedule computed
after disruptions and the initial one.

Right-shift rescheduling was the first solution method presented in this chapter.
This procedure fixes some integer variables keeping the order of trains and the allo-
cation of tracks/platforms. By fixing integer variables, the problem becomes easier to
solve by a MIP solver, but the solutions are generally far away from the optimum.

The second approach is a MIP-based local search method. The big difference with
traditional local search mechanisms is that neighborhoods are obtained through the
introduction, in the MIP model, of linear inequalities called local-branching cuts. In
addition, information about the original schedule is used to construct these cuts.

An iterative variant of this approach, the iterative MIP-based local search method,
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proved to be viable in practice, obtaining near optimal solutions with a computing time
compatible with the context of rescheduling.

Finally, it is important to remark that it was not possible to compare these methods
with other ones because of the lack of public benchmarks. Nevertheless, the compu-
tation experiments show that these methods are more efficient than a standard MIP
solver.

Another important limitation of MIP formulations for scheduling (and reschedul-
ing) problems is the exponential number of variables and constraints used to model the
order of tasks (trains). As a consequence, it is not possible to construct MIP models for
large instances, i.e., the same network with a longer time horizon, because of memory
limits. For that reason an alternative formulation is studied in Chapter 6.
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N° Name CD CFD CCT CCP CUS

19 chile 1 a 10 1 24 1 1 30 15 10g 
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Delay 
[min]
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19 chile_1_a 10 1 24 1 1 30 15 10
20 chile_2_a 20 1 24 1 1 30 15 10
21 chile_3_a 30 1 24 1 1 30 15 10
22 chile_4_a 10 2 24 1 1 30 15 10
23 chile_5_a 20 2 24 1 1 30 15 10
24 chile_6_a 30 2 24 1 1 30 15 10
25 chile_7_a 10 3 24 1 1 30 15 10
26 chile_8_a 20 3 24 1 1 30 15 10st
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27 chile_9_a 30 3 24 1 1 30 15 10
28 chile_10_a 10 4 24 1 1 30 15 10
29 chile_11_a 20 4 24 1 1 30 15 10
30 chile_12_a 30 4 24 1 1 30 15 10
31 chile_1_b 10 1 24 1 1 P P P
32 chile_2_b 20 1 24 1 1 P P P
33 chile_3_b 30 1 24 1 1 P P P
34 chile 4 b 10 2 24 1 1 P P P
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34 chile_4_b 10 2 24 1 1 P P P
35 chile_5_b 20 2 24 1 1 P P P
36 chile_6_b 30 2 24 1 1 P P P
37 chile_7_b 10 3 24 1 1 P P P
38 chile_8_b 20 3 24 1 1 P P P
39 chile_9_b 30 3 24 1 1 P P P
40 chile_10_b 10 4 24 1 1 P P P
41 chile_11_b 20 4 24 1 1 P P P
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42 chile_12_b 30 4 24 1 1 P P P
43 chile_1_c 10 1 24 P P 1 1 1
44 chile_2_c 20 1 24 P P 1 1 1
45 chile_3_c 30 1 24 P P 1 1 1
46 chile_4_c 10 2 24 P P 1 1 1
47 chile_5_c 20 2 24 P P 1 1 1
48 chile_6_c 30 2 24 P P 1 1 1
49 hil 7 10 3 24 P P 1 1 1m
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49 chile_7_c 10 3 24 P P 1 1 1
50 chile_8_c 20 3 24 P P 1 1 1
51 chile_9_c 30 3 24 P P 1 1 1
52 chile_10_c 10 4 24 P P 1 1 1
53 chile_11_c 20 4 24 P P 1 1 1
54 chile_12_c 30 4 24 P P 1 1 1

P=1000
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Figure 4.9: Set of instances for Network 2 (Chile).
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N° Name Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

1 france_1_a_7 6 103 64.32% 3 3 714 0.00% 88 3 714 0.00% 366 3 714 0.00% 88
2 france_2_a_7 22 405 196.91% 4 7 546 0.00% 64 7 546 0.00% 231 7 546 0.00% 64
3 france_3_a_7 48 469 272.09% 3 13 026 0.00% 255 13 026 0.00% 714 13 026 0.00% 255
4 france_4_a_7 6 819 9.45% 3 6 230 0.00% 89 6 230 0.00% 322 6 230 0.00% 89
5 france_5_a_7 32 692 122.35% 3 14 703 0.00% 335 14 703 0.00% 710 14 703 0.00% 300
6 france_6_a_7 68 329 175.21% 3 24 828 0.00% 2 339 24 828 0.00% 3 348 24 903 0.30% 300
7 france_1_b_7 6 103 52.38% 3 4 005 0.00% 91 4 005 0.00% 501 4 005 0.00% 91
8 france_2_b_7 22 405 196.91% 3 7 546 0.00% 67 7 546 0.00% 210 7 546 0.00% 67
9 france_3_b_7 48 469 270.61% 3 13 078 0.00% 445 13 078 0.00% 829 13 078 0.00% 300
10 france_4_b_7 8 619 32.17% 3 6 521 0.00% 101 6 521 0.00% 488 6 521 0.00% 101
11 france_5_b_7 32 692 122.35% 3 14 703 0.00% 486 14 703 0.00% 820 14 703 0.00% 300
12 france_6_b_7 68 329 164.18% 4 25 865 0.00% 291 25 865 0.00% 824 25 865 0.00% 291
13 france_1_c_7 6 103 000 67.02% 3 3 654 002 0.00% 78 3 654 002 0.00% 366 3 654 002 0.00% 78
14 france_2_c_7 22 405 000 196.91% 3 7 546 000 0.00% 68 7 546 000 0.00% 248 7 546 000 0.00% 68
15 france_3_c_7 48 469 000 273.82% 3 12 966 004 0.00% 267 12 966 004 0.00% 828 12 966 004 0.00% 267
16 france_4_c_7 8 619 000 39.69% 3 6 170 002 0.00% 84 6 170 002 0.00% 365 6 170 002 0.00% 84
17 france_5_c_7 32 692 000 122.35% 3 14 703 000 0.00% 287 14 703 000 0.00% 682 14 703 000 0.00% 287
18 france_6_c_7 68 328 900 176.07% 4 24 751 006 0.00% 1 768 24 751 006 0.00% 2 123 24 835 010 0.34% 300

Average: 141.93% 3 0.00% 400 0.00% 776 0.04% 185

GAP_Y = (Y ‐Y*)/Y* Y* : Optimal Solution
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Figure 4.10: Results for instances of Network 1 (France).
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N° Name Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

19 chile_1_a 8 340 2.77% 1 8 115 0.00% 41 8 115 0.00% 51 8 115 0.00% 41
20 chile_2_a 18 300 15.75% 1 15 810 0.00% 14 15 810 0.00% 65 15 810 0.00% 14
21 chile_3_a 31 380 24.67% 1 25 170 0.00% 36 25 170 0.00% 85 25 170 0.00% 36
22 chile_4_a 8 580 4.00% 1 8 250 0.00% 13 8 250 0.00% 58 8 250 0.00% 13
23 chile_5_a 22 680 20.19% 1 18 870 0.00% 14 18 870 0.00% 74 18 870 0.00% 14
24 chile_6_a 47 580 52.35% 1 31 230 0.00% 41 31 230 0.00% 101 31 230 0.00% 41
25 chile_7_a 10 800 3.15% 1 10 470 0.00% 12 10 470 0.00% 59 10 470 0.00% 12
26 chile_8_a 30 800 14.12% 1 26 990 0.00% 14 26 990 0.00% 73 26 990 0.00% 14
27 chile_9_a 63 500 34.68% 1 47 150 0.00% 41 47 150 0.00% 106 47 150 0.00% 41
28 chile_10_a 12 600 2.69% 1 12 270 0.00% 12 12 270 0.00% 63 12 270 0.00% 12
29 chile_11_a 34 400 12.46% 1 30 590 0.00% 15 30 590 0.00% 70 30 590 0.00% 15
30 chile_12_a 68 900 31.11% 1 52 550 0.00% 40 52 550 0.00% 93 52 550 0.00% 40
31 chile_1_b 8 340 2.21% 1 8 160 0.00% 11 8 160 0.00% 51 8 160 0.00% 11
32 chile_2_b 18 300 9.32% 1 16 740 0.00% 13 16 740 0.00% 67 16 740 0.00% 13
33 chile_3_b 31 380 19.13% 1 26 340 0.00% 21 26 340 0.00% 75 26 340 0.00% 21
34 chile_4_b 8 580 2.14% 1 8 400 0.00% 12 8 400 0.00% 50 8 400 0.00% 12
35 chile_5_b 22 680 14.55% 1 19 800 0.00% 13 19 800 0.00% 65 19 800 0.00% 13
36 chile_6_b 47 580 46.85% 1 32 400 0.00% 18 32 400 0.00% 64 32 400 0.00% 18
37 chile_7_b 10 800 1.69% 1 10 620 0.00% 13 10 620 0.00% 51 10 620 0.00% 13
38 chile_8_b 30 800 10.32% 1 27 920 0.00% 13 27 920 0.00% 52 27 920 0.00% 13
39 chile_9_b 63 500 31.42% 1 48 320 0.00% 20 48 320 0.00% 73 48 320 0.00% 20
40 chile_10_b 12 600 1.45% 1 12 420 0.00% 13 12 420 0.00% 53 12 420 0.00% 13
41 chile_11_b 34 400 9.14% 1 31 520 0.00% 14 31 520 0.00% 53 31 520 0.00% 14
42 chile_12_b 68 900 28.26% 1 53 720 0.00% 20 53 720 0.00% 72 53 720 0.00% 20
43 chile_1_c 8 340 000 2.96% 1 8 100 001 0.00% 11 8 100 001 0.00% 50 8 100 001 0.00% 11
44 chile_2_c 18 300 000 15.97% 1 15 780 002 0.00% 14 15 780 002 0.00% 64 15 780 002 0.00% 14
45 chile_3_c 31 380 000 24.82% 1 25 140 002 0.00% 39 25 140 002 0.00% 92 25 140 002 0.00% 39
46 chile_4_c 8 580 000 4.38% 1 8 220 002 0.00% 12 8 220 002 0.00% 53 8 220 002 0.00% 12
47 chile_5_c 22 680 000 20.38% 1 18 840 002 0.00% 15 18 840 002 0.00% 69 18 840 002 0.00% 15
48 chile_6_c 47 580 000 52.50% 1 31 200 002 0.00% 45 31 200 002 0.00% 107 31 200 002 0.00% 45
49 chile_7_c 10 800 000 3.45% 1 10 440 002 0.00% 13 10 440 002 0.00% 56 10 440 002 0.00% 13
50 chile_8_c 30 800 000 14.24% 1 26 960 002 0.00% 17 26 960 002 0.00% 88 26 960 002 0.00% 17
51 chile_9_c 63 500 000 34.76% 1 47 120 003 0.00% 43 47 120 003 0.00% 93 47 120 003 0.00% 43
52 chile_10_c 12 600 000 2.94% 1 12 240 002 0.00% 13 12 240 002 0.00% 55 12 240 002 0.00% 13
53 chile_11_c 34 400 000 12.57% 1 30 560 002 0.00% 16 30 560 002 0.00% 69 30 560 002 0.00% 16
54 chile_12_c 68 900 000 31.19% 1 52 520 003 0.00% 42 52 520 003 0.00% 112 52 520 003 0.00% 42

Average: 17.07% 1 0.00% 21 0.00% 70 0.00% 21
GAP_Y = (Y ‐Y*)/Y* Y* : Optimal Solution

(5 minutes) : Heuristic
Method O4: I‐LS
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Figure 4.11: Results for instances of Network 2 (Chile).
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N° Name Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

1 france_1_a_7 6 103 64.32% 3 3 714 0.00% 78 3 714 0.00% 78 3 714 0.00% 78

2 france_2_a_7 22 405 196.91% 4 7 546 0.00% 53 7 546 0.00% 53 7 546 0.00% 53

3 france_3_a_7 48 469 272.09% 3 13 026 0.00% 245 13 026 0.00% 245 13 026 0.00% 245

4 france 4 a 7 6 819 9 45% 3 6 230 0 00% 81 6 230 0 00% 81 6 230 0 00% 81

Method O1: Right‐shift

e 
st
ab
ili
ty
 a
nd

 
iz
in
g 
de

la
y

ExactHeuristic

Method O3: LS + CPLEXMethod O2: LS

Heuristic

Method O4: I‐LS

Heuristic
Instance

4 france_4_a_7 6 819 9.45% 3 6 230 0.00% 81 6 230 0.00% 81 6 230 0.00% 81

5 france_5_a_7 32 692 122.35% 3 14 703 0.00% 70 14 703 0.00% 70 14 703 0.00% 70

6 france_6_a_7 68 329 175.21% 3 24 828 0.00% 622 24 828 0.00% 622 24 903 0.30% 256

7 france_1_b_7 6 103 52.38% 3 4 005 0.00% 55 4 005 0.00% 55 4 005 0.00% 55

8 france_2_b_7 22 405 196.91% 3 7 546 0.00% 52 7 546 0.00% 52 7 546 0.00% 52

9 france_3_b_7 48 469 270.61% 3 13 078 0.00% 81 13 078 0.00% 81 13 078 0.00% 81

10 france_4_b_7 8 619 32.17% 3 6 521 0.00% 58 6 521 0.00% 58 6 521 0.00% 58
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11 france_5_b_7 32 692 122.35% 3 14 703 0.00% 57 14 703 0.00% 57 14 703 0.00% 57

12 france_6_b_7 68 329 164.18% 4 25 865 0.00% 186 25 865 0.00% 186 25 865 0.00% 186

13 france_1_c_7 6 103 000 67.02% 3 3 654 002 0.00% 55 3 654 002 0.00% 55 3 654 002 0.00% 55

14 france_2_c_7 22 405 000 196.91% 3 7 546 000 0.00% 54 7 546 000 0.00% 54 7 546 000 0.00% 54

15 france_3_c_7 48 469 000 273.82% 3 12 966 004 0.00% 107 12 966 004 0.00% 107 12 966 004 0.00% 107

16 france_4_c_7 8 619 000 39.69% 3 6 170 002 0.00% 85 6 170 002 0.00% 85 6 170 002 0.00% 85
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17 france_5_c_7 32 692 000 122.35% 3 14 703 000 0.00% 67 14 703 000 0.00% 67 14 703 000 0.00% 67

18 france_6_c_7 68 328 900 176.07% 4 24 751 006 0.00% 690 24 751 006 0.00% 690 24 835 010 0.34% 261

Average: 141.93% 3 0.00% 150 0.00% 150 0.04% 105

GAP_Y = (Y ‐Y*)/Y* Y* : Optimal Solution

c
m
in

Figure 4.12: CPU time required for computing the best solution. Network 1 (France).
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4.6. Conclusions

N° Name Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

19 chile_1_a 8 340 2.77% 1 8 115 0.00% 33.62 8 115 0.00% 33.62 8 115 0.00% 33.62
20 chile_2_a 18 300 15.75% 1 15 810 0.00% 13.72 15 810 0.00% 13.72 15 810 0.00% 13.72
21 chile_3_a 31 380 24.67% 1 25 170 0.00% 35.64 25 170 0.00% 35.64 25 170 0.00% 35.64
22 chile_4_a 8 580 4.00% 1 8 250 0.00% 11.44 8 250 0.00% 11.44 8 250 0.00% 11.44

Method O3: LS + CPLEX Method O4: I‐LS
Exact Heuristic

Method O1: Right‐shift
Heuristic Heuristic

im
iz
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g 
de
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y

Instance
Method O2: LS

23 chile_5_a 22 680 20.19% 1 18 870 0.00% 12.60 18 870 0.00% 12.60 18 870 0.00% 12.60
24 chile_6_a 47 580 52.35% 1 31 230 0.00% 41.00 31 230 0.00% 41.00 31 230 0.00% 41.00
25 chile_7_a 10 800 3.15% 1 10 470 0.00% 9.84 10 470 0.00% 9.84 10 470 0.00% 9.84
26 chile_8_a 30 800 14.12% 1 26 990 0.00% 13.86 26 990 0.00% 13.86 26 990 0.00% 13.86
27 chile_9_a 63 500 34.68% 1 47 150 0.00% 35.67 47 150 0.00% 35.67 47 150 0.00% 35.67
28 chile_10_a 12 600 2.69% 1 12 270 0.00% 10.08 12 270 0.00% 10.08 12 270 0.00% 10.08
29 chile_11_a 34 400 12.46% 1 30 590 0.00% 14.85 30 590 0.00% 14.85 30 590 0.00% 14.85
30 chile_12_a 68 900 31.11% 1 52 550 0.00% 35.60 52 550 0.00% 35.60 52 550 0.00% 35.60
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31 chile_1_b 8 340 2.21% 1 8 160 0.00% 9.79 8 160 0.00% 9.79 8 160 0.00% 9.79
32 chile_2_b 18 300 9.32% 1 16 740 0.00% 12.87 16 740 0.00% 12.87 16 740 0.00% 12.87
33 chile_3_b 31 380 19.13% 1 26 340 0.00% 21.00 26 340 0.00% 21.00 26 340 0.00% 21.00
34 chile_4_b 8 580 2.14% 1 8 400 0.00% 12.00 8 400 0.00% 12.00 8 400 0.00% 12.00
35 chile_5_b 22 680 14.55% 1 19 800 0.00% 11.18 19 800 0.00% 11.18 19 800 0.00% 11.18
36 chile_6_b 47 580 46.85% 1 32 400 0.00% 16.56 32 400 0.00% 16.56 32 400 0.00% 16.56
37 chile_7_b 10 800 1.69% 1 10 620 0.00% 11.83 10 620 0.00% 11.83 10 620 0.00% 11.83
38 chile_8_b 30 800 10.32% 1 27 920 0.00% 10.79 27 920 0.00% 10.79 27 920 0.00% 10.79
39 hil 9 b 63 500 31 42% 1 48 320 0 00% 18 60 48 320 0 00% 18 60 48 320 0 00% 18 60) E

m
ph
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ty

39 chile_9_b 63 500 31.42% 1 48 320 0.00% 18.60 48 320 0.00% 18.60 48 320 0.00% 18.60
40 chile_10_b 12 600 1.45% 1 12 420 0.00% 11.44 12 420 0.00% 11.44 12 420 0.00% 11.44
41 chile_11_b 34 400 9.14% 1 31 520 0.00% 11.90 31 520 0.00% 11.90 31 520 0.00% 11.90
42 chile_12_b 68 900 28.26% 1 53 720 0.00% 16.20 53 720 0.00% 16.20 53 720 0.00% 16.20
43 chile_1_c 8 340 000 2.96% 1 8 100 001 0.00% 9.68 8 100 001 0.00% 9.68 8 100 001 0.00% 9.68
44 chile_2_c 18 300 000 15.97% 1 15 780 002 0.00% 11.48 15 780 002 0.00% 11.48 15 780 002 0.00% 11.48
45 chile_3_c 31 380 000 24.82% 1 25 140 002 0.00% 34.71 25 140 002 0.00% 34.71 25 140 002 0.00% 34.71
46 chile_4_c 8 580 000 4.38% 1 8 220 002 0.00% 11.04 8 220 002 0.00% 11.04 8 220 002 0.00% 11.04
47 hil 5 22 680 000 20 38% 1 18 840 002 0 00% 13 05 18 840 002 0 00% 13 05 18 840 002 0 00% 13 05

b)
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47 chile_5_c 22 680 000 20.38% 1 18 840 002 0.00% 13.05 18 840 002 0.00% 13.05 18 840 002 0.00% 13.05
48 chile_6_c 47 580 000 52.50% 1 31 200 002 0.00% 43.20 31 200 002 0.00% 43.20 31 200 002 0.00% 43.20
49 chile_7_c 10 800 000 3.45% 1 10 440 002 0.00% 12.48 10 440 002 0.00% 12.48 10 440 002 0.00% 12.48
50 chile_8_c 30 800 000 14.24% 1 26 960 002 0.00% 16.32 26 960 002 0.00% 16.32 26 960 002 0.00% 16.32
51 chile_9_c 63 500 000 34.76% 1 47 120 003 0.00% 36.98 47 120 003 0.00% 36.98 47 120 003 0.00% 36.98
52 chile_10_c 12 600 000 2.94% 1 12 240 002 0.00% 11.44 12 240 002 0.00% 11.44 12 240 002 0.00% 11.44
53 chile_11_c 34 400 000 12.57% 1 30 560 002 0.00% 15.04 30 560 002 0.00% 15.04 30 560 002 0.00% 15.04
54 chile_12_c 68 900 000 31.19% 1 52 520 003 0.00% 34.02 52 520 003 0.00% 34.02 52 520 003 0.00% 34.02

Average: 17 07% 1 0 00% 18 93 0 00% 18 93 0 00% 18 93
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Average: 17.07% 1 0.00% 18.93 0.00% 18.93 0.00% 18.93

Figure 4.13: CPU time required for computing the best solution. Network 2 (Chile).
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france_1_a_7 3714 3077 0.00% chile_1_a 8115 7375 0.00%
chile_2_a 15810 14515 0.00%

france_2_a_7 7546 6589 0.00% chile_3_a 25170 23160 0.00%
chile_4_a 8250 7495 0.00%

france_3_a_7 13026 11268 0.00% chile_5_a 18870 16995 0.00%
chile_6_a 31230 28038 0.00%

france_4_a_7 6230 5336 0.00% chile_7_a 10470 9714 0.00%
chile_8_a 26990 24970 0.00%

france_5_a_7 14703 12828 0.00% chile_9_a 47150 43218 0.00%
chile_10_a 12270 10914 0.00%

france_6_a_7 24828 21551 0.01% chile_11_a 30590 27370 0.00%
chile_12_a 52550 46818 0.00%

france_1_b_7 4005 3292 6.99% chile_1_b 8160 7435 0.81%
chile_2_b 16740 15475 6.61%

france_2_b_7 7546 6589 0.00% chile_3_b 26340 24111 4.11%
chile_4_b 8400 7615 1.60%

france_3_b_7 13078 11365 0.86% chile_5_b 19800 17954 5.64%
chile_6_b 32400 29000 3.43%

france_4_b_7 6521 5553 4.07% chile_7_b 10620 9834 1.24%
chile_8_b 27920 25929 3.84%

france_5_b_7 14703 12828 0.00% chile_9_b 48320 44173 2.21%
chile_10_b 12420 11034 1.10%

france_6_b_7 25865 21648 0.46% chile_11_b 31520 28329 3.50%
chile_12_b 53720 47775 2.04%

france_1_c_7 3654002 3077 0.00% chile_1_c 8100001 7375 0.00%
chile_2_c 15780002 14515 0.00%

france_2_c_7 7546000 6589 0.00% chile_3_c 25140002 23160 0.00%
chile_4_c 8220002 7495 0.00%

france_3_c_7 12966004 11268 0.00% chile_5_c 18840002 16995 0.00%
chile_6_c 31200002 28038 0.00%

france_4_c_7 6170002 5336 0.00% chile_7_c 10440002 9714 0.00%
chile_8_c 26960002 24970 0.00%

france_5_c_7 14703000 12828 0.00% chile_9_c 47120003 43218 0.00%
chile_10_c 12240002 10914 0.00%

france_6_c_7 24751006 21549 0.00% chile_11_c 30560002 27370 0.00%
chile_12_c 52520003 46818 0.00%

Delay GAP = (Delay of Solution ‐ D*)/D*
D* = Optimal Delay

0.00%
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Figure 4.14: Impact of different objective functions on the total delay. Left: Results for Network 1.
Right: Results for Network 2
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SAPI: Statistical Analysis of
Propagation of Incidents
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Abstract of the Chapter

In this chapter you will discover SAPI (Statistical Analysis of Propagation of Incidents),
an original method to solve the railway rescheduling problem. This method analyzes
several factors for predicting the consequences of disruptions and uses this informa-
tion to reduce the search space of the inherent optimization problem. We applied this
method using the MIP formulation presented in Chapter 4. SAPI is tested and com-
pared with the other methods presented in this Thesis, showing that it is faster than the
other MIP-based methods.

5.1 Description of the Method

We propose a method called SAPI (Statistical Analysis of Propagation of Incidents) that
performs a statistical analysis of possible propagation of the incidents before solving
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the MIP presented in Chapter 4. This analysis helps to reduce the problem and to
concentrate the effort in concerned trains. A sequence of the steps of this method is
showed in Figure 5.1.

The thesis of this method is that events could be affected for a given incident with a
certain probability. SAPI calculates these probabilities using a logistic regression model
where the predictor variables are easy to calculate. With these probabilities, the method
reduces the problem by hard and soft fixing integer variables in the MIP, without losing
much of the quality of the solution.

Fix variables
Add cuts

Return 
Solution

Regression 
Model: Calculate 

b b l

Calculate an 
initial solution

Call a MIP 
SolverAdd cuts Solution

probabilities
initial solution Solver

Fix variables
Regression 

M d l C l l t
Calculate 

i iti l
Call a MIP 

Add cuts
Model: Calculate 
probabilities

an initial 
solution

Solver Decrease 
number of  

fixed 
variables

Ending 
criteria 
t ?

variables

Increase 
bounds of 

= true?

yes

no cuts

Return 
Solution

Figure 5.1: Sequential steps of SAPI method

5.1.1 Initial Solution

The first step is the construction of an initial solution. This solution is needed to calcu-
late some of the predictor variables of the regression model. Also, we use the objective
function value of this solution as an upper bound in the next call of the MIP Solver.

The fastest way to have a feasible (initial) solution is right-shift rescheduling (RS) (see
Section 4.3.1). RS gives a solution maintaining the original order of trains, keeping the
current assignment of tracks/platforms, and forbidding unplanned stops. To achieve
this objective, some additional constraints are added to the MIP model presented in
Chapter 4:

λkk̂ = 0 ∀k, k̂ ∈ Lj, j ∈ B : k < k̂
γkk̂ = γ0

kk̂ ∀k, k̂ ∈ Lj, j ∈ B : k < k̂
qkt = q0

kt ∀k ∈ Lj, t ∈ Pj, j ∈ B
yk = 0 ∀k ∈ E

Where k < k̂ means that k̂ is any event following event k, in relation to the original
schedule.

Parameters γ0
kk̂ = 1, if event k occurs before event k̂ in the original schedule and

q0
kt = q0

k̂t = 1, t ∈ Pj, with k, k̂ ∈ Lj, j ∈ B, γ0
kk̂ = 0 otherwise.

After these modifications all integer variables are fixed and solving this problem
is easy. Nevertheless, the quality of this solution is not good enough, because tracks
having idle capacity are not correctly exploited. Moreover, delays are easily propagate
since changing the order of trains is not allowed, i.e., a delayed train will propagate it
to all the following trains along its itinerary.
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5.1.2 Logistic Regression

An interesting aspect of SAPI is how to calculate the probabilities. We propose to use
a logistic regression model that has been used in many fields from medicine to social
sciences.

Logistic regression is part of a category of statistical models called generalized lin-
ear models. General linear models analyze one or more continuous dependent vari-
ables and one or more independent variables. In particular, logistic regression analysis
allows estimating multiple regression models when the response can be scored 0 or 1.

Here we consider two possible outcomes: 1, if the variable associated to an event
is affected by the incidents, and 0 otherwise. Thus, the dependent variable is dichoto-
mous, that is, it can take the value 1 with a probability of success θ, or the value 0 with
probability of failure 1 − θ. On the other hand, independent (predictor) variables in
logistic regression can take any form. That is, logistic regression makes no assumption
about the distribution of the independent variables, i.e., they do not have to be normally
distributed, linearly related or of equal variance within each group.

The procedure uses the probabilities estimated by the logistic regression model to
reduce the number of integer variables and the size of the feasible region. In particular,
we reduce the combinatory of rescheduling variables (λ). For the rest of the integer
variables (γ, y, q) it was not possible to find predictor variables statistically significant.

The regression model is defined by the following equation:

θλ
kk̂ =

exp(η)
1 + exp(η)

∀k, k̂ ∈ Lj, j ∈ B : k < k̂ (5.1)

Where:

η = αλ + β1
λρ1

k + β2
λρ2

k + β3
λρ3

k + β4
λρ4

kk̂ + εkk̂

θλ
kk̂ : Probability that variable λkk̂ 6= 0 in the

optimal solution, where k, k̂ ∈ Lj, j ∈ B : k < k̂
αλ : Constant of the regression equation.
βi

λ : Regression coefficient of the predictor variable i.
εkk̂ : Error term.

k < k̂ means that k̂ is any event following event k, in relation to the original schedule.

Section 5.1.4 details the process of estimating the coefficients for the regression model
and also discuss the study of the statistical significance of the model.

The predictor variables are:
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ρ1
k Measure of the density near to event k. We use the average time between trains

divided by the number of trains in the block associated with the current event. To
calculate this, we just considerate the trains in the interval two times longer than the
largest incident. Finally, this value is divided by the duration of the longer delay. We
expect that variables associated with dense blocks are prone to be affected by an incident.

ρ2
k The relative difference of arrival times between event k to the last known incident.

This value is calculated as the time interval, using the original schedule, between the
event k and the last incident, only if this value is a positive number, otherwise it is zero.
In order to obtain a relative value, this value is then divided by the duration of the
longest delay.

ρ3
k Measure of the impact of the incidents in event k. To compute this value, we calcu-

late the difference of the arrival time between the initial solution (calculated by right-
shift rescheduling) and the original plan. This value corresponds to the delay of the
event after right-shift rescheduling. We expected that events with a large impact are
more concerned by a possible reassignment of track/platform or to be rescheduled.

ρ4
kk̂ The relative difference of arrival times between event k̂ and event k. When a train

is late, it could be interesting to change the order of trains to minimize the impact of
incidents. Then, we expect to have a negative correlation between this distance and the
possibility of changing the order of the trains in a block. For example, if a train has
a delay in the morning, the optimal solution of this problem might require changing
the order of this train with other trains in the morning. However, there is a very low
probability that the same train must change its order with trains late in the afternoon.
Obviously, the number of probable trains affected is proportional to the length of the
delay, which explains why we use a relative measure of this distance, i.e., we divide the
time interval by the length of the largest incident.

It should be noted that we preferred to use relative values rather than absolute ones.
The explication is quite simple: the goal is that the values of the regression parameters
remain valid for any kind of instance and not only for the one used as statistical sample.

Once the probabilities are calculated, it is possible to define three different subsets
for the variables λ. The first subset U1 corresponds to the set of indices of variables
with the lower probability of being affected by incidents. For selecting these variables,
we choose the variables with a probability in the interval [0, φ1

λ]. Because they have
a very low probability of being affected, we fix them using their value in the original
schedule. A second subset U2 is composed by the indices of the variables that have a
probability in the interval ]φ1

λ, φ2
λ]. As these variables have a higher probability to have

a different value in the optimal solution, we should leave them free. However, not all
the variables in this subset are going to change, then we limited the number of changes
by a local branching cut, originally proposed in (Fischetti and Lodi, 2003) and applied
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to this problem in Chapter 4. The last subset to be defined is U3 with the indices of
the rest of the variables (i.e., with probabilities in ]φ2

λ, 1]) and a local branching cut is
also utilized for these variables. The decision of adding local branching cuts also in
this last subset is explained by empirical results. The experiments have shown that not
all the variables in U3 are already affected by the incidents and adding local branching
cuts in this subset has a marginal (but positive) impact in the processing time without
degrading the quality of the solution. Thus, we have:

U1 , {(k, k̂)|k, k̂ ∈ Lj, j ∈ B : k < k̂ ∧ θλ
kk̂ ∈ [0, φ1

λ]}
U2 , {(k, k̂)|k, k̂ ∈ Lj, j ∈ B : k < k̂ ∧ θλ

kk̂ ∈]φ1
λ, φ2

λ]}
U3 , {(k, k̂)|k, k̂ ∈ Lj, j ∈ B : k < k̂ ∧ θλ

kk̂ ∈]φ2
λ, 1]}

Recall that k < k̂ means that k̂ is any event following event k, in relation to the orig-
inal schedule.

Finally, with this information, we could add the next constraints into the original
model:

λkk̂ = 0 ∀(k, k̂) ∈ U1 (5.2)

∑
(k,k̂)∈U2

λkk̂ ≤ LB1
λ (5.3)

∑
(k,k̂)∈U3

λkk̂ ≤ LB2
λ (5.4)

Where LB1
λ and LB2

λ are parameters of the method. They represent the maximal
number of events that are going to change their initial schedule.

5.1.3 Creating and Solving the Reduced Subproblem

The last step is to add constraints (5.2, 5.3, 5.4) to the original MIP model. Thanks to
them, the solution of this reduced MIP model is much easier than the original one and
these simple changes in the original MIP model have a strong impact on the processing
time.

Note that many integer variables are directly fixed because of Constraints (5.2).
Moreover, adding these constraints may imply that the preprocessing procedure of the
MIP solver will eliminate not only variables λ, but also many other variables and con-
strains because of the nature of the model. Consider, for example, Constraints (4.17)
and (4.18). For these constraint, λkk̂ = 0 implies that they become inactive and the
preprocessing could eliminate them.

In addition, a limited number of changes are allowed for the rest of the variables
because of Constraints (5.3) and (5.4). We have shown in Chapter 4 that this kind of
cuts helps to solve this problem quickly.
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5.1.4 Estimating Parameters and Regression Coefficients of SAPI

To use SAPI, it is necessary to evaluate all parameters of the method. There are three
types of parameters: cuts parameters, regression coefficients, and limits of the intervals
(cutoffs)

Cuts parameters

The first are the parameters for the cuts: LB1
λ, LB2

λ. Relative small values will limit the
search in a small neighborhood, and probably the problem can be solved quickly. In
contrast, large values for these parameters will increase the computing time but better
solutions should be obtained. In practice, a good combination of these parameter can
be found empirically.

Regression coefficients

Other important parameters are the coefficients for the regression model: αλ, β1
λ, β2

λ,
β3

λ and β4
λ. A statistical sample is needed to make inference of these coefficients. To

achieve this objective we use a train network and solve the original MIP model opti-
mally with different kinds of incidents using the exact method presented in Chapter
4. Because it is a training process, the processing time has not the same importance as
solving real instances, with real incidents, where a real-time solution is required. It is
important to remark that these estimations (of parameters) can be improved gradually
using continuously this method, says daily. Indeed, we increase the size of the sample,
gaining more and more information each time we use SAPI.

In logistic regression, as other regression models, the coefficients could be estimated
by maximum likelihood (interested readers can find in (Aldrich, 1997) a good intro-
duction to this method). The objective of maximum likelihood parameter estimation
is to find the values for the regression coefficients that maximize the probability or
likelihood of the statistical sample data. This non-constrained optimization problem
is solved by finding the values where the derivative of the function is equal to zero.
In practice, approximative numerical algorithms are used to estimate the coefficients
for logistic regression model. One example is Newton-Raphson that chooses arbitrary
initial estimates of the regression coefficients, such as αλ = 0. Then, at each iteration,
the value of the coefficients are updated until the difference between the values of two
consecutive iterations is less than a tolerance limit.

Nevertheless, estimating the values of the coefficients is only half part of the whole
process. Thus, it is very important to study the statistical significance for the regression
model in general and for every coefficient in particular.

i) Significance of the regression model (Analysis of Deviance):

An Analysis of Deviance table summarizes information about the variation in the
response for the set of data. For an example, see Table 5.1. In this case we have two

94



5.1. Description of the Method

source of variability: the model and the residual. The residual (i.e., error) is the remain-
der that is not systematically explained by the model.

In order to validate the results of the estimation, we expect that a large proportion
of the total variance is explained by the model. Statistically, it is possible to determine
this proportion using the "p-value" associated to the model (see for example the first
line of Table 5.1).

To calculate the p-value, it is necessary to determine the degree-of-freedom (Df) of
each component of variance. For the model, this value corresponds to the total number
of regression coefficients less 1 (e.g., in this case we have 5 regression coefficients less 1
=⇒ D f = 4). The total Df is calculated by the total number of elements in the sample
less one. Therefore, the Df for the residual is just the difference between these two
values.

A correct interpretation of this analysis is: if the p-value for the model is less than α,
there is a statistically significance relationship between all the explicative variables and
the response variable at the (1− α) ∗ 100 % confidence level. On the other hand, if the
p-value for the residuals is greater than δ, the model is not significantly worse than the
best possible model for this data at the (1− δ) ∗ 100 % or higher confidence level.

We are interested to have higher confidence level for the model. As a consequence,
the smaller p-value for the model, the more sure we are to believe that the regression
model fits adequately to data i.e., there is no evidence to think the contrary.

ii) Significance of regression coefficients (Likelihood-ratio test):

We use this test to determine if the coefficients of the regression model are signi-
ficative individually. For an example see Table 5.2. In this table, the column "Estimate"
corresponds to the estimated values for the coefficients. Additionally, the "p-value" is
used to determine the significance of each coefficient.

The correct interpretation is: if the p-value for the regression coefficient is less than
α, the estimate is statistically significance at the (1− α) ∗ 100 % confidence level. As a
consequence, the smaller the likelihood ratio (p-value), the stronger the relationship.

It should be noted that there are other interesting statistical tests, tables and graphics
that can be used in logistic regression models. Some examples are: Chi-Square good-
ness of fit test, correlation matrix for coefficient estimates, influential points for value,
analysis of residuals, prediction histograms, and many others. We consider that the
tests presented in this section are enough to achieve the objectives for our application.

Limits of the intervals (cutoffs)

The last parameters are the limits of the intervals of probabilities (cutoffs): φ1
λ, φ2

λ. There
is a tradeoff between performance and quality of the solution. Thus, the more the value
of φ1

λ is close to 1, the more we are going to have a solution quickly. To estimate these
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values, we study the prediction performance of the regression model defining the inter-
val to the desired percentage of events correctly predicted (for an example see Section
5.3).

5.2 Iterative SAPI

In our first experiments we noted that SAPI obtained solution faster than we expected.
We were then immediately interested in using more processor time to improve the cur-
rent solution. In this section we present an iterative SAPI method that improves the
current solution increasing the search space with two strategies: decrease the number
of fixed variables and increase the size of the feasible region by increasing the upper
bound of the added local branching cuts. Figure 5.2 shows the basic structure of this
method.

Fix variables
Add cuts

Return 
Solution

Regression 
Model: Calculate 

b b l

Calculate an 
initial solution

Call a MIP 
SolverAdd cuts Solution

probabilities
initial solution Solver

Fix variables
Regression 

M d l C l l t
Calculate 

i iti l
Call a MIP 

Add cuts
Model: Calculate 
probabilities

an initial 
solution

Solver Decrease 
number of  

fixed 
variables

Ending 
criteria 
t ?

variables

Increase 
bounds of 

= true?

yes

no cuts

Return 
Solution

Figure 5.2: Sequential steps of Iterative SAPI method

Algorithm 3 presents the pseudocode of this method. We could divide the parame-
ters of this algorithm in five: mathematical problem, cuts parameters, SAPI limit prob-
abilities, iteration parameters and regression coefficients. The mathematical problem
P0 is an instance using the formulation presented in the Chapter 4. Cuts parameters
are LB1

λ and LB2
λ. They are integer values corresponding to the initial value of the right

side for the constraints (5.3) and (5.4). The cutoff parameters are φ1
λ, φ2

λ used to delimit
the subsets of indices U1, U2, U3. The parameters used to increase the search space are
δLBλ , δφ1

, δφ2
. The first one, (δLBλ ), denotes the change, at each iteration, of the right side

for constraints (5.3) and (5.4). In contrast, δφ1
, δφ2

establish the changes for the construc-
tion of the subsets U1, U2, and U3 that define a stratification of the variables. Finally, the
last parameters of this algorithm correspond to the coefficients of the regression models
αλ, β1

λ, β2
λ, β3

λ. These parameters have to be estimated before using this algorithm and
could be fixed for all instances in the same network.
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The first step is to define the ending criteria for this procedure. Some possibilities are
the number of iterations, a time limit or a number of iterations without changes in the
solution. Thus, Line 1 assigns the value False to a boolean variable called EndingCriteria.
We employ the knowledge of this problem to compute quickly an initial solution (Line
2) using a function called RightShift(P0). This function gives a feasible solution
using the approach presented in Section 5.1.1. This solution helps also to calculate the
values of the probabilities.

Lines 3 to 9 are used to calculate the probability of each variable λ to be affected by
the incidents in the current instance. Then, for every event k it is necessary to calculate
the predictor factors with function EvaluateFactor(k). With the value of these fac-
tors and the value of the regression coefficients, the probability is calculated on Line 8.
After this step, the method evaluate a boolean function called EvaluateEndingCriteria().
The answer is True or False depending on the current status (for example the elapsed
time) and the ending criteria used.

The control structure while (Lines 11 to 20) defines one iteration of this procedure.
The condition to execute the iteration is the ending criteria. To create (update) the
stratification of the variables depending on their probabilities for being affected by the
incidents a function called GenerateStratification(φ1

λ, φ2
λ)) is used on Line 12.

This function modifies the composition of the subsets of indices U1, U2, U3. Then, Line
13 creates a subproblem, denoted by P1, that corresponds the original problem (P0)
plus the local branching cuts defined by Constraints (5.2), (5.3), and (5.4). Once the
new subproblem is created, Line 14 solves P1 using the previous solution X as starting
values and limiting the processing to the remaining time.

Lines 15 to 18 change the values of LB1
λ, LB2

λ,φ1
λ, φ2

λ for the next iteration. The goal is
to enlarge the search space, allowing more changes of tracks and changes of orders of
trains with respect to the original schedule and also fixing fewer variables. It is impor-
tant to remark that this procedure always improves (or conserves) the current solution
since it defines a relaxation of the previous subproblem. Finally, the ending criteria is
reevaluated on Line 19 and Line 11 is performed again. This procedure continues un-
til the function EvaluateEndingCriteria() returns true. In that case, Line 21 is
executed returning the last (and best) solution found so far.

5.3 Computational Experiments

The goal of the computational experiments is to evaluate the performance of the sug-
gested methods. To achieve this objective, we considered a heterogeneous set of in-
stances using different combination of the coefficients in the objective function. The
results are compared with several methods proposed in Chapter 4, under the same en-
vironment: algorithm coded in Visual Studio 2005 (C]) using IBM ILOG CPLEX version
11.13 as a black-box MIP solver and running on a single processor IBM compatible PC
Intel Core 2, 1.66 GHz, and 2 GB of main memory.

3http://www.ilog.com

97



Chapter 5. SAPI: Statistical Analysis of Propagation of Incidents

Algorithm 3 Iterative SAPI Method

Require: P0, LB1
λ, LB2

λ, φ1
λ, φ2

λ, δLBλ , δφ1
, δφ2

, αλ, β1
λ, β2

λ, β3
λ , β4

λ

1: EndingCriteria⇐ False
2: X ⇐ RightShift(P0)
3: for all λkk̂ with k, k̂ ∈ Lj, j ∈ B : k < k̂ do
4: for all PredictorVariablei i = 1, 2, 3 do
5: ρi

k ⇐ EvaluateFactori(k)
6: end for
7: ρ4

kk̂ ⇐ EvaluateFactor4(kk̂)
8: θλ

kk̂ ⇐ EvaluateRegressionλ(ρ1
k , ρ2

k , ρ3
k , ρ4

kk̂)
9: end for

10: EndingCriteria⇐ EvaluateEndingCriteria()
11: while (EndingCriteria 6= True) do
12: (U1, U2, U3)⇐ GenerateStratification(φ1

λ, φ2
λ)

13: P1 ⇐ P0 adding constraints (5.2), (5.3), and (5.4)
14: X ⇐MipSolve(P1,StartSolution(X))
15: LB1

λ ⇐ LB1
λ + δLBλ

16: LB2
λ ⇐ LB2

λ + δLBλ

17: φ1
λ ⇐ φ1

λ − δφ1

18: φ2
λ ⇐ φ2

λ − δφ2

19: EndingCriteria⇐ EvaluateEndingCriteria()
20: end while
21: return X
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We tested the following methods:

• Method S1 (SAPI Heuristic, stop criterion: 5 minutes): SAPI algorithm limited to
300 seconds of running time.

• Method S2 (SAPI Heuristic, stop criterion: 5 iterations): SAPI algorithm limited
to 5 iterations.

• Method S3 (SAPI Heuristic, stop criteria: 1 iteration (or) 5 minutes): SAPI algo-
rithm limited to 5 minutes of running time or one complete iteration. The limit of
the processing time responds to real requirements of railway companies. Addi-
tionally, the algorithm performs only one iteration, i.e., if the first iteration finishes
before 5 minutes, the algorithm stops.

• Method S4 (SAPI Exact, 1 iteration of SAPI + CPLEX) This method uses the out-
put of Method S3 as an initial solution for IBM ILOG CPLEX removing any ad-
ditional cut and letting all variable be free. As a consequence, the feasible region
corresponds to the original search space and the optimal solution of this method
coincides with the optimal solution of the original problem. This method is de-
scribed in Section 4.4 using SAPI as the heuristic method.

They are compared with the following methods proposed in Chapter 4:

• Method O1 (Right-shift Heuristic), Right-shift rescheduling The initial solution of
SAPI.

• Method O4 (I-LS Heuristic. Stop criteria: 1 iteration), MIP-based local search method
using right-shift as initial solution. It limits the search space around the original
non-disrupted schedule with local-branching-type cuts added to the model.

• Method O3 (LS + CPLEX Exact): MIP-based local search method + CPLEX. This is a
variation of Method O4 which, in a second phase, solves the original (complete)
MIP formulation with an improved upper bound. (see Section 4.4)

In order to compare, we use exactly the same scenarios for the objective function
coefficients considered in Chapter 4:

• Emphasize minimization of delay: the coefficients in the objective function strongly
penalize the delays.

• Emphasize stability: we consider that the number of changes of track/platform/stops
is inversely proportional to the stability of the schedule. Thus, the coefficients in
the objective function strongly penalize the changes of tracks/platforms/stops.

• Balance stability and minimizing delay: an equilibrated combination of coeffi-
cients in the objective function is considered.

Two different networks have been used for the computational experiments. The first
is a line, consecutive set of stations and sections, located in France. The second one is a
network, with a topology of a tree where a station can be connected by more than two
sections, located in Chile. Both were described in Chapter 4. The values used in the
experiments for the parameters associates to cuts were LB1

λ = 100, LB2
λ = 100. These
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values have been chosen following recommendations of Local Branching cuts authors
in (Fischetti and Lodi, 2003) and our own numerical experiments.

Estimating Regression Coefficients

In this subsection we estimate the coefficients of the regression model used in the exper-
iments. First, we explain the statistical sample used for the estimation. Then, we study
the significance of the regression model in general and of each regression coefficient in
particular.

The sample

A statistical sample is needed to estimate the regression coefficients. We considered one
additional instance of Network 1 (i.e., the French railway network presented in Section
4.5) to be used as a sample. This instance is composed of 26 trains running over 43
stations by limiting the recovery horizon to 3 hours after the first incident. A total of
1431 events are rescheduled after 2 incidents located in the both extreme of the network.
Each incident causes an initial delay of 20 minutes.

This is a very little instance in relation to those used in the experiments. Then, it was
easy to find an optimal solution executing the algorithm described in Section 4.4. Using
this optimal solution, we prepared a statistical sample with the value of the decision
variables (λ) and the value of the predictor variables (ρ). This sample does not contain
the values for all variables λkk̂ because of the large number of them. We select the first
4999 variables ordered by the original arrival time of event k. Note that the first events
are the more affected by the incidents. This sample was then processed by a statistical
software namely Statgraphics 4.

It is very important to understand that this instance is only used for this estimation
and not for the rest of the experiments. In the same way, we expressly did not choose
the same perturbed trains for the rest of the experiments. In order to demonstrate that
the quality of the coefficients does not depend on the instance, we decide to use the
same coefficients for all problem instances in both networks.

Significance of the regression model

Table 5.1 presents an Analysis of Deviance used to evaluate the significance of the re-
gression model. For the reason that the P-value for the model in the analysis of deviance
is also less than 0.01, there is a statistically significant relationship between the variables
at the 99% confidence level. In addition, the P-value for the residuals is greater than
0.10, indicating that the model is not significantly worse than the best possible model
for this data at the 90% or higher confidence level.

The percentage of deviance explained by the model is equal to 86.56 (see Table 5.1).
This statistic is similar to the usual R2 statistic. That is, 86.56% of the variability of the
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Source Deviance Df P-Value
Model 1381.31 4 0
Residual 214.53 4994 1
Total (corr.) 1595.84 4998

Table 5.1: Analysis of Deviance: Percentage of deviance explained by model = 86.56

value of variables λ in the optimal solution can be explained by this regression model
without solving the problem. In order to compare this regression model, we evaluate
also the R2 for a linear (multiple) regression model, using the same sample and the
same predictor variables. The result was R2

linear = 29.88%. In conclusion, this logistic
regression is more adequate to predict the optimal value of variables λ than a linear
(multiple) regression model using the same predictor variables.

Significance of each regression coefficient individually

Table 5.2 shows estimated values for the regression parameters and the Likelihood-
ratio test. Notice that the highest P-value (likelihood ratio) is 0.0020, for parameter β2

λ

(see Table 5.2). Because the P-values are less than 0.01, the estimates are statistically
significant at the 99% confidence level. Consequently, we do not consider removing
any variables from the model.

Parameter Estimate P-Value
αλ -117.60 -
β1

λ 25.90 0.0000
β2

λ 8.33 0.0020
β3

λ 117.54 0.0000
β4

λ -5.49 0.0000

Table 5.2: Estimated Regression Model (Maximum Likelihood and Likelihood-ratio test)

Prediction capability

Figure 5.3 shows a summary of the prediction capability of the fitted regression model.
If the predicted value is larger than the cutoff (φ1

λ), the response is predicted to be TRUE.
In our application, TRUE means that variable λkk̂ 6= 0 (in the optimal solution) and
this variable is not fixed. If the predicted value is less than or equal to the cutoff, the
response is predicted to be FALSE. In that case, variable λkk̂ = 0. The figure shows the
percent of the observed data correctly predicted for various cutoff values in the sample.
For example, using a cutoff equal to 0.4, 98.93% of all TRUE responses were correctly
predicted, while 99.31% of all FALSE responses were correctly predicted, for a total of
99.30%. This cutoff value maximizes the total percentage of correct TRUE and FALSE
responses and thus may provide a good value for predicting additional individuals.
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Figure 5.3: Prediction performance of the regression model.

Nevertheless, we do not use this cutoff value for the experiments, because fixing
less variables should help calculating a better solution. In particular we define the cut-
off value φ1

λ = 0.01, where 100% of all TRUE responses in the sample were correctly
predicted, while 97.87% of all FALSE responses were correctly predicted, for a total of
97.99%. On the other hand, we choose arbitrarily the value of φ2

λ = 0.5. Some experi-
ments showed that varying this value does not affect significantly the final results.

5.4 Results and Conclusions

Figure 5.4 shows the results of the experiments carried out on the two networks with
regression coefficients defined as explained above. Column (Cost [$]) is for the value of
the objective function. Column (CPU [sec]) is the total execution time of the methods
in seconds. Column GAP [%] is the relative deviation between the optimal solution
(y∗) and the heuristic solution (y) for the corresponding method. Let us recall that the
optimal solution of our rescheduling problem is found by Method S4 or O3. This gap
is computed as follows: GAPy = (y− y∗)/y∗.

The results show that instances of Network 1 are harder to solve than instances
of Network 2. Such results may be explained by a greater number of events to be
rescheduled on Network 1, a higher traffic density, and the correlation between these
events.
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Four different variations of SAPI are presented in Figure 5.4. In addition, Figure 5.5
and 5.6 present the results of SAPI compared with those obtained in Chapter 4. The
results obtained by the different methods are:

Method S1: (SAPI Heuristic, stop criteria: 5 minutes). The method iterative per-
forms as many iterations as possible in 300 seconds. The average gap is 0.49% for Net-
work 1 and 0.05% for Network 2.

Method S2: (SAPI Heuristic, stop criteria: 5 iterations). This variation performs 5
iterations of the algorithm presented in Section 5.2. It is possible to appreciate that
it is able to find the optimum for all instances of Network 1 but the average for the
processing time was 1031 seconds. The results for Network 2 are quite different. The
quality of solutions is similar than Method S1, but in average is faster.

Method S3: (SAPI Heuristic, stop criteria: 1 iteration or 5 minutes). The average
gap is 0.49% for Network 1 and 0.05% for Network 2. Its average total running times
are 128 seconds for Network 1 and 15 seconds for Network 2. This method is selected
to be compared with Method O4 because both are heuristic and consider the same end
criteria (see Figure 5.5). Analyzing these results it is possible to conclude that SAPI is
faster finding good solutions, but with a small possibility to return a suboptimal so-
lution. That is the case for 6 of 54 instances. Probably, some instances require making
non-evident changes in the order of trains, and these changes have a very low probabil-
ity in the regression model. SAPI assures good forecasting for most of the cases with an
average gap less than 1%. There are two instances where we calculate the result corre-
sponding to 1 iteration without the limit of 300 seconds: Instances 6 and 12 of Network
1. For Instance 6 we have a cost of $24828 (gap = 0%) using a CPU time of 645 seconds
(not reported in the Figure). For Instance 12 we have a cost of $25865 (gap = 0%) using
a CPU time of 961 seconds (not reported in the Figure). The CPU time to calculate the
best solution using S3 is 86 and 14 seconds for Network 1 and Network 2 respectively
(Figure 5.6). An important observation is the fact that Method S2 needs more than 5
times the time of S3 when the time limit is not reached. We estimate that this is due
to the different size of the remained MIP solved by each iteration. Indeed, the size of
iteration 2 could more than twice the size of iteration 1 because of the reduction of the
cutoff parameters φ1

λ and φ2
λ (see lines 17 and 18 of Algorithm 3).

Method S4: (SAPI Exact, 1 iteration of SAPI + CPLEX). It finds the optimal solution
for all instances. Its average total running times are 498 seconds for Network 1 and 33
seconds for Network 2. Because both methods are exact, Method S4 is comparable with
Method O3 (see Figure 5.5). The results show that in average SAPI (Exact) is 35.82% and
52.86% faster than Method O3 for Networks 1 and 2 respectively. Actually, only 4 of 54
instances are solved faster by Method O4. The CPU time to calculate the best solution
using S4 is 135 and 15 seconds for Network 1 and Network 2 respectively (Figure 5.6).

Method O1: (Right-shift Heuristic) Right-shift rescheduling is the fastest. In aver-
age, RS is able to compute a feasible solution in 3 seconds for instances of Network
1 and 1 second for Network 2. The average gap obtained by RS for all instances on
Network 1 and Network 2 are respectively: 141.93% and 17.07% (thus showing that
instances of Network 2 are easier to solve for RS). In fact, since incidents on trains of
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Network 2 have a local impact, keeping the original order and avoiding changes is suf-
ficient for many of them. On the contrary, in Network 1, such approach performs very
badly since a greater number of trains are affected simultaneously by an incident.

Method O4: (I-LS Heuristic. Stop criteria: 1 iteration or 5 minutes). This is the
heuristic solution scheme presented in Chapter 4. Its average total running times are
400 seconds for Network 1 and 21 seconds for Network 2. Note that for these experi-
ments the method is able to find an optimal solution for all instances of both networks,
but without proof of optimality. This algorithm is limited to 5 minutes of running time
and performs only one iteration. The CPU time to calculate the best solution using O4
is 105 and 19 seconds for Network 1 and Network 2 respectively (Figure 5.6).

Method O3: (LS + CPLEX Exact). This method is the exact solution scheme pro-
posed in Chapter 4. Its average total running times are 776 seconds for Network 1 and
70 seconds for Network 2. The CPU time to calculate the best solution using O3 is 150
and 19 seconds for Network 1 and Network 2 respectively (Figure 5.6).

In conclusion, right-shift rescheduling shown to be the fastest method and is con-
venient to generate initial solutions. There is no a clear dominance between Method S3
and O4, while one is faster the other one obtains better solutions in average. Consid-
ering that operators could be more interesting in having good solutions quickly rather
than optimal solutions, the best compromise is obtained with Method S3 that is able
to obtain very good solutions (average GAP less than 1%) within 5 minutes of com-
puting time and thus proves to be viable in practice. On the other hand, Method O4
obtains better solutions values with slightly larger CPU times. Finally, regarding exact
methods, SAPI (Method S4) is in average faster than Method O3.

We address the RRP with a new solution scheme called SAPI. The method uses the
original (non-disrupted) schedule to compute the new one calculating the probability
that train are affected given a set of incidents expressed as delays of some trains. This
procedure fixes some integer variables and adds linear inequalities (cuts) to keep the
order of trains when the probability to be affected is not significant.

An iterative variant of this approach is used to improve the solution when some
extra processing time is viable. Using this method we obtain near optimal solutions
with a computing time compatible with the context of rescheduling.

It should be noted that the proposed approach is based on the assumption that all
incidents are known, i.e., deterministic. However, it is evident that upcoming opera-
tions, during the recovery horizon, can also be affected by future incidents. A way of
dealing with this problem and mitigating the effects of these possible unknown dis-
ruptions is developing a robust optimization procedure where some coefficients in the
MIP model are known within certain bounds. Definitely, the study of the robust railway
rescheduling problem constitutes a line for future research.
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5.4. Results and Conclusions

N° Name Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU [sec] Cost [$]
GAP  
[%]

CPU 
[sec]

1 france_1_a_7 3 714 0.00% 300 3 714 0.00% 761 3 714 0.00% 77 3 714 0.00% 213
2 france_2_a_7 7 546 0.00% 300 7 546 0.00% 715 7 546 0.00% 60 7 546 0.00% 263
3 france_3_a_7 13 026 0.00% 300 13 026 0.00% 1 105 13 026 0.00% 139 13 026 0.00% 372
4 france_4_a_7 6 230 0.00% 300 6 230 0.00% 673 6 230 0.00% 75 6 230 0.00% 194
5 france_5_a_7 14 703 0.00% 300 14 703 0.00% 739 14 703 0.00% 78 14 703 0.00% 285
6 france_6_a_7 26 460 6.57% 300 24 828 0.00% 2 653 26 460 6.57% 300 24 828 0.00% 1 739
7 france_1_b_7 4 005 0.00% 300 4 005 0.00% 793 4 005 0.00% 83 4 005 0.00% 239
8 france_2_b_7 7 546 0.00% 300 7 546 0.00% 745 7 546 0.00% 74 7 546 0.00% 229
9 france_3_b_7 13 078 0.00% 300 13 078 0.00% 1 037 13 078 0.00% 122 13 078 0.00% 329
10 france_4_b_7 6 521 0.00% 300 6 521 0.00% 752 6 521 0.00% 96 6 521 0.00% 241
11 france_5_b_7 14 703 0.00% 300 14 703 0.00% 699 14 703 0.00% 88 14 703 0.00% 291
12 france_6_b_7 26 461 2.30% 300 25 865 0.00% 2 166 26 461 2.30% 300 25 865 0.00% 1 870
13 france_1_c_7 3 654 002 0.00% 300 3 654 002 0.00% 667 3 654 002 0.00% 82 3 654 002 0.00% 192
14 france_2_c_7 7 546 000 0.00% 300 7 546 000 0.00% 760 7 546 000 0.00% 75 7 546 000 0.00% 258
15 france_3_c_7 12 966 004 0.00% 300 12 966 004 0.00% 1 117 12 966 004 0.00% 199 12 966 004 0.00% 413
16 france_4_c_7 6 170 002 0.00% 300 6 170 002 0.00% 697 6 170 002 0.00% 92 6 170 002 0.00% 202
17 france_5_c_7 14 703 000 0.00% 300 14 703 000 0.00% 851 14 703 000 0.00% 90 14 703 000 0.00% 338
18 france_6_c_7 24 751 006 0.00% 300 24 751 006 0.00% 1 625 24 751 006 0.00% 277 24 751 006 0.00% 1 292

Average: 0.49% 300 0.00% 1 031 0.49% 128 0.00% 498

N° Name Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU [sec] Cost [$]
GAP  
[%]

CPU 
[sec]

19 chile_1_a 8 115 0.00% 300 8 115 0.00% 129 8 115 0.00% 12 8 115 0.00% 21
20 chile_2_a 15 810 0.00% 300 15 810 0.00% 139 15 810 0.00% 15 15 810 0.00% 24
21 chile_3_a 25 170 0.00% 300 25 170 0.00% 128 25 170 0.00% 19 25 170 0.00% 34
22 chile_4_a 8 250 0.00% 300 8 250 0.00% 112 8 250 0.00% 13 8 250 0.00% 21
23 chile_5_a 18 870 0.00% 300 18 870 0.00% 118 18 870 0.00% 14 18 870 0.00% 27
24 chile_6_a 31 230 0.00% 300 31 230 0.00% 130 31 230 0.00% 19 31 230 0.00% 49
25 chile_7_a 10 470 0.00% 300 10 470 0.00% 106 10 470 0.00% 14 10 470 0.00% 23
26 chile_8_a 26 990 0.00% 300 26 990 0.00% 133 26 990 0.00% 14 26 990 0.00% 27
27 chile_9_a 47 150 0.00% 300 47 150 0.00% 152 47 150 0.00% 16 47 150 0.00% 48
28 chile_10_a 12 270 0.00% 300 12 270 0.00% 128 12 270 0.00% 13 12 270 0.00% 23
29 chile_11_a 30 590 0.00% 300 30 590 0.00% 133 30 590 0.00% 13 30 590 0.00% 28
30 chile_12_a 52 550 0.00% 300 52 550 0.00% 151 52 550 0.00% 16 52 550 0.00% 50
31 chile_1_b 8 160 0.00% 300 8 160 0.00% 122 8 160 0.00% 12 8 160 0.00% 20
32 chile_2_b 16 740 0.00% 300 16 740 0.00% 140 16 740 0.00% 13 16 740 0.00% 27
33 chile_3_b 26 520 0.68% 300 26 520 0.68% 173 26 520 0.68% 14 26 340 0.00% 47
34 chile_4_b 8 400 0.00% 300 8 400 0.00% 127 8 400 0.00% 11 8 400 0.00% 22
35 chile_5_b 19 800 0.00% 300 19 800 0.00% 143 19 800 0.00% 14 19 800 0.00% 28
36 chile_6_b 32 580 0.56% 300 32 580 0.56% 182 32 580 0.56% 19 32 400 0.00% 53
37 chile_7_b 10 620 0.00% 300 10 620 0.00% 135 10 620 0.00% 15 10 620 0.00% 23
38 chile_8_b 27 920 0.00% 300 27 920 0.00% 115 27 920 0.00% 13 27 920 0.00% 31
39 chile_9_b 48 500 0.37% 300 48 500 0.37% 153 48 500 0.37% 24 48 320 0.00% 66
40 chile_10_b 12 420 0.00% 300 12 420 0.00% 137 12 420 0.00% 13 12 420 0.00% 28
41 chile_11_b 31 520 0.00% 300 31 520 0.00% 144 31 520 0.00% 13 31 520 0.00% 33
42 chile_12_b 53 900 0.34% 300 53 900 0.34% 194 53 900 0.34% 21 53 720 0.00% 68
43 chile_1_c 8 100 001 0.00% 300 8 100 001 0.00% 141 8 100 001 0.00% 15 8 100 001 0.00% 20
44 chile_2_c 15 780 002 0.00% 300 15 780 002 0.00% 144 15 780 002 0.00% 13 15 780 002 0.00% 25
45 chile_3_c 25 140 002 0.00% 300 25 140 002 0.00% 172 25 140 002 0.00% 16 25 140 002 0.00% 36
46 chile_4_c 8 220 002 0.00% 300 8 220 002 0.00% 130 8 220 002 0.00% 13 8 220 002 0.00% 23
47 chile_5_c 18 840 002 0.00% 300 18 840 002 0.00% 173 18 840 002 0.00% 14 18 840 002 0.00% 27
48 chile_6_c 31 200 002 0.00% 300 31 200 002 0.00% 170 31 200 002 0.00% 21 31 200 002 0.00% 47
49 chile_7_c 10 440 002 0.00% 300 10 440 002 0.00% 119 10 440 002 0.00% 13 10 440 002 0.00% 23
50 chile_8_c 26 960 002 0.00% 300 26 960 002 0.00% 151 26 960 002 0.00% 20 26 960 002 0.00% 32
51 chile_9_c 47 120 003 0.00% 300 47 120 003 0.00% 155 47 120 003 0.00% 23 47 120 003 0.00% 50
52 chile_10_c 12 240 002 0.00% 300 12 240 002 0.00% 132 12 240 002 0.00% 13 12 240 002 0.00% 22
53 chile_11_c 30 560 002 0.00% 300 30 560 002 0.00% 119 30 560 002 0.00% 15 30 560 002 0.00% 33
54 chile_12_c 52 520 003 0.00% 300 52 520 003 0.00% 158 52 520 003 0.00% 20 52 520 003 0.00% 45

Average: 0.05% 300 0.05% 141 0.05% 15 0.00% 33

GAP_Y = (Y ‐Y*)/Y*

(1 Iteration + CPLEX) : Exact

a)
 B
al
an
ce
 s
ta
bi
lit
y 
an
d 
m
in
im

iz
in
g 
de

la
y

a)
 B
al
an
ce
 s
ta
bi
lit
y 

an
d 
m
in
im

iz
in
g 

de
la
y

b)
 E
m
ph

as
iz
e 
   
   
 

st
ab
ili
ty

c)
 E
m
ph

as
iz
e 
   
  

m
in
im

iz
in
g 
de

la
y

Instance
Method S1: SAPI Method S2: SAPI Method S3: SAPI Method S4: SAPI

Method S4: SAPI

(5 min) ‐ Heuristic (5 Iterations) ‐ Heuristic (1 Iteration or 5 min) ‐ Heuristic (1 Iteration + CPLEX ) ‐ Exact

b)
 E
m
ph

as
iz
e 
st
ab
ili
ty

c)
 E
m
ph

as
iz
e 
m
in
im

iz
in
g 
de

la
y

Method S1: SAPI Method S2: SAPI Method S3: SAPI

(5 min) ‐ Heuristic (5 Iterations) ‐ Heuristic (1 Iteration or 5 min) ‐ Heuristic

Instance

Figure 5.4: Results of SAPI on Network 1 (France) and Network 2 (Chile)
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Chapter 5. SAPI: Statistical Analysis of Propagation of Incidents

N° Name Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU [sec] Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

1 france_1_a_7 6 103 64.32% 3 3 714 0.00% 88 3 714 0.00% 366 3 714 0.00% 77 3 714 0.00% 213
2 france_2_a_7 22 405 196.91% 4 7 546 0.00% 64 7 546 0.00% 231 7 546 0.00% 60 7 546 0.00% 263
3 france_3_a_7 48 469 272.09% 3 13 026 0.00% 255 13 026 0.00% 714 13 026 0.00% 139 13 026 0.00% 372
4 france_4_a_7 6 819 9.45% 3 6 230 0.00% 89 6 230 0.00% 322 6 230 0.00% 75 6 230 0.00% 194
5 france_5_a_7 32 692 122.35% 3 14 703 0.00% 300 14 703 0.00% 710 14 703 0.00% 78 14 703 0.00% 285
6 france_6_a_7 68 329 175.21% 3 24 903 0.30% 300 24 828 0.00% 3 348 26 460 6.57% 300 24 828 0.00% 1 739
7 france_1_b_7 6 103 52.38% 3 4 005 0.00% 91 4 005 0.00% 501 4 005 0.00% 83 4 005 0.00% 239
8 france_2_b_7 22 405 196.91% 3 7 546 0.00% 67 7 546 0.00% 210 7 546 0.00% 74 7 546 0.00% 229
9 france_3_b_7 48 469 270.61% 3 13 078 0.00% 300 13 078 0.00% 829 13 078 0.00% 122 13 078 0.00% 329
10 france_4_b_7 8 619 32.17% 3 6 521 0.00% 101 6 521 0.00% 488 6 521 0.00% 96 6 521 0.00% 241
11 france_5_b_7 32 692 122.35% 3 14 703 0.00% 300 14 703 0.00% 820 14 703 0.00% 88 14 703 0.00% 291
12 france_6_b_7 68 329 164.18% 4 25 865 0.00% 291 25 865 0.00% 824 26 461 2.30% 300 25 865 0.00% 1 870
13 france_1_c_7 6 103 000 67.02% 3 3 654 002 0.00% 78 3 654 002 0.00% 366 3 654 002 0.00% 82 3 654 002 0.00% 192
14 france_2_c_7 22 405 000 196.91% 3 7 546 000 0.00% 68 7 546 000 0.00% 248 7 546 000 0.00% 75 7 546 000 0.00% 258
15 france_3_c_7 48 469 000 273.82% 3 12 966 004 0.00% 267 12 966 004 0.00% 828 12 966 004 0.00% 199 12 966 004 0.00% 413
16 france_4_c_7 8 619 000 39.69% 3 6 170 002 0.00% 84 6 170 002 0.00% 365 6 170 002 0.00% 92 6 170 002 0.00% 202
17 france_5_c_7 32 692 000 122.35% 3 14 703 000 0.00% 287 14 703 000 0.00% 682 14 703 000 0.00% 90 14 703 000 0.00% 338
18 france_6_c_7 68 328 900 176.07% 4 24 835 010 0.34% 300 24 751 006 0.00% 2 123 24 751 006 0.00% 277 24 751 006 0.00% 1 292

Average: 141.93% 3 0.04% 185 0.00% 776 0.49% 128 0.00% 498

N° Name Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU [sec] Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

19 chile_1_a 8 340 2.77% 1 8 115 0.00% 41 8 115 0.00% 51 8 115 0.00% 12 8 115 0.00% 21
20 chile_2_a 18 300 15.75% 1 15 810 0.00% 14 15 810 0.00% 65 15 810 0.00% 15 15 810 0.00% 24
21 chile_3_a 31 380 24.67% 1 25 170 0.00% 36 25 170 0.00% 85 25 170 0.00% 19 25 170 0.00% 34
22 chile_4_a 8 580 4.00% 1 8 250 0.00% 13 8 250 0.00% 58 8 250 0.00% 13 8 250 0.00% 21
23 chile_5_a 22 680 20.19% 1 18 870 0.00% 14 18 870 0.00% 74 18 870 0.00% 14 18 870 0.00% 27
24 chile_6_a 47 580 52.35% 1 31 230 0.00% 41 31 230 0.00% 101 31 230 0.00% 19 31 230 0.00% 49
25 chile_7_a 10 800 3.15% 1 10 470 0.00% 12 10 470 0.00% 59 10 470 0.00% 14 10 470 0.00% 23
26 chile_8_a 30 800 14.12% 1 26 990 0.00% 14 26 990 0.00% 73 26 990 0.00% 14 26 990 0.00% 27
27 chile_9_a 63 500 34.68% 1 47 150 0.00% 41 47 150 0.00% 106 47 150 0.00% 16 47 150 0.00% 48
28 chile_10_a 12 600 2.69% 1 12 270 0.00% 12 12 270 0.00% 63 12 270 0.00% 13 12 270 0.00% 23
29 chile_11_a 34 400 12.46% 1 30 590 0.00% 15 30 590 0.00% 70 30 590 0.00% 13 30 590 0.00% 28
30 chile_12_a 68 900 31.11% 1 52 550 0.00% 40 52 550 0.00% 93 52 550 0.00% 16 52 550 0.00% 50
31 chile_1_b 8 340 2.21% 1 8 160 0.00% 11 8 160 0.00% 51 8 160 0.00% 12 8 160 0.00% 20
32 chile_2_b 18 300 9.32% 1 16 740 0.00% 13 16 740 0.00% 67 16 740 0.00% 13 16 740 0.00% 27
33 chile_3_b 31 380 19.13% 1 26 340 0.00% 21 26 340 0.00% 75 26 520 0.68% 14 26 340 0.00% 47
34 chile_4_b 8 580 2.14% 1 8 400 0.00% 12 8 400 0.00% 50 8 400 0.00% 11 8 400 0.00% 22
35 chile_5_b 22 680 14.55% 1 19 800 0.00% 13 19 800 0.00% 65 19 800 0.00% 14 19 800 0.00% 28
36 chile_6_b 47 580 46.85% 1 32 400 0.00% 18 32 400 0.00% 64 32 580 0.56% 19 32 400 0.00% 53
37 chile_7_b 10 800 1.69% 1 10 620 0.00% 13 10 620 0.00% 51 10 620 0.00% 15 10 620 0.00% 23
38 chile_8_b 30 800 10.32% 1 27 920 0.00% 13 27 920 0.00% 52 27 920 0.00% 13 27 920 0.00% 31
39 chile_9_b 63 500 31.42% 1 48 320 0.00% 20 48 320 0.00% 73 48 500 0.37% 24 48 320 0.00% 66
40 chile_10_b 12 600 1.45% 1 12 420 0.00% 13 12 420 0.00% 53 12 420 0.00% 13 12 420 0.00% 28
41 chile_11_b 34 400 9.14% 1 31 520 0.00% 14 31 520 0.00% 53 31 520 0.00% 13 31 520 0.00% 33
42 chile_12_b 68 900 28.26% 1 53 720 0.00% 20 53 720 0.00% 72 53 900 0.34% 21 53 720 0.00% 68
43 chile_1_c 8 340 000 2.96% 1 8 100 001 0.00% 11 8 100 001 0.00% 50 8 100 001 0.00% 15 8 100 001 0.00% 20
44 chile_2_c 18 300 000 15.97% 1 15 780 002 0.00% 14 15 780 002 0.00% 64 15 780 002 0.00% 13 15 780 002 0.00% 25
45 chile_3_c 31 380 000 24.82% 1 25 140 002 0.00% 39 25 140 002 0.00% 92 25 140 002 0.00% 16 25 140 002 0.00% 36
46 chile_4_c 8 580 000 4.38% 1 8 220 002 0.00% 12 8 220 002 0.00% 53 8 220 002 0.00% 13 8 220 002 0.00% 23
47 chile_5_c 22 680 000 20.38% 1 18 840 002 0.00% 15 18 840 002 0.00% 69 18 840 002 0.00% 14 18 840 002 0.00% 27
48 chile_6_c 47 580 000 52.50% 1 31 200 002 0.00% 45 31 200 002 0.00% 107 31 200 002 0.00% 21 31 200 002 0.00% 47
49 chile_7_c 10 800 000 3.45% 1 10 440 002 0.00% 13 10 440 002 0.00% 56 10 440 002 0.00% 13 10 440 002 0.00% 23
50 chile_8_c 30 800 000 14.24% 1 26 960 002 0.00% 17 26 960 002 0.00% 88 26 960 002 0.00% 20 26 960 002 0.00% 32
51 chile_9_c 63 500 000 34.76% 1 47 120 003 0.00% 43 47 120 003 0.00% 93 47 120 003 0.00% 23 47 120 003 0.00% 50
52 chile_10_c 12 600 000 2.94% 1 12 240 002 0.00% 13 12 240 002 0.00% 55 12 240 002 0.00% 13 12 240 002 0.00% 22
53 chile_11_c 34 400 000 12.57% 1 30 560 002 0.00% 16 30 560 002 0.00% 69 30 560 002 0.00% 15 30 560 002 0.00% 33
54 chile_12_c 68 900 000 31.19% 1 52 520 003 0.00% 42 52 520 003 0.00% 112 52 520 003 0.00% 20 52 520 003 0.00% 45

Average: 17.07% 1 0.00% 21 0.00% 70 0.05% 15 0.00% 33
GAP_Y = (Y ‐Y*)/Y*
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Figure 5.5: Results of SAPI compared to other methods.
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5.4. Results and Conclusions

N° Name Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

1 france_1_a_7 3 714 0.00% 78 3 714 0.00% 78 3 714 0.00% 72 3 714 0.00% 72
2 france_2_a_7 7 546 0.00% 53 7 546 0.00% 53 7 546 0.00% 74 7 546 0.00% 74
3 france_3_a_7 13 026 0.00% 245 13 026 0.00% 245 13 026 0.00% 122 13 026 0.00% 122
4 france_4_a_7 6 230 0.00% 81 6 230 0.00% 81 6 230 0.00% 71 6 230 0.00% 71
5 france_5_a_7 14 703 0.00% 70 14 703 0.00% 70 14 703 0.00% 61 14 703 0.00% 61
6 france_6_a_7 24 903 0.30% 256 24 828 0.00% 622 26 460 6.57% 78 24 828 0.00% 525
7 france_1_b_7 4 005 0.00% 55 4 005 0.00% 55 4 005 0.00% 58 4 005 0.00% 58
8 france_2_b_7 7 546 0.00% 52 7 546 0.00% 52 7 546 0.00% 66 7 546 0.00% 66
9 france_3_b_7 13 078 0.00% 81 13 078 0.00% 81 13 078 0.00% 82 13 078 0.00% 82
10 france_4_b_7 6 521 0.00% 58 6 521 0.00% 58 6 521 0.00% 63 6 521 0.00% 63
11 france_5_b_7 14 703 0.00% 57 14 703 0.00% 57 14 703 0.00% 59 14 703 0.00% 59
12 france_6_b_7 25 865 0.00% 186 25 865 0.00% 186 26 461 2.30% 210 25 865 0.00% 210
13 france_1_c_7 3 654 002 0.00% 55 3 654 002 0.00% 55 3 654 002 0.00% 76 3 654 002 0.00% 76
14 france_2_c_7 7 546 000 0.00% 54 7 546 000 0.00% 54 7 546 000 0.00% 95 7 546 000 0.00% 95
15 france_3_c_7 12 966 004 0.00% 107 12 966 004 0.00% 107 12 966 004 0.00% 138 12 966 004 0.00% 138
16 france_4_c_7 6 170 002 0.00% 85 6 170 002 0.00% 85 6 170 002 0.00% 73 6 170 002 0.00% 73
17 france_5_c_7 14 703 000 0.00% 67 14 703 000 0.00% 67 14 703 000 0.00% 68 14 703 000 0.00% 68
18 france_6_c_7 24 835 010 0.34% 261 24 751 006 0.00% 690 24 751 006 0.00% 89 24 751 006 0.00% 523

Average: 0.04% 105 0.00% 150 0.49% 86 0.00% 135

N° Name Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

19 chile_1_a 8 115 0.00% 33.62 8 115 0.00% 33.62 8 115 0.00% 11.75 8 115 0.00% 11.75
20 chile_2_a 15 810 0.00% 13.72 15 810 0.00% 13.72 15 810 0.00% 11.63 15 810 0.00% 11.63
21 chile_3_a 25 170 0.00% 35.64 25 170 0.00% 35.64 25 170 0.00% 17.53 25 170 0.00% 17.53
22 chile_4_a 8 250 0.00% 11.44 8 250 0.00% 11.44 8 250 0.00% 13.24 8 250 0.00% 13.24
23 chile_5_a 18 870 0.00% 12.60 18 870 0.00% 12.60 18 870 0.00% 13.57 18 870 0.00% 13.57
24 chile_6_a 31 230 0.00% 41.00 31 230 0.00% 41.00 31 230 0.00% 16.04 31 230 0.00% 16.04
25 chile_7_a 10 470 0.00% 9.84 10 470 0.00% 9.84 10 470 0.00% 11.93 10 470 0.00% 11.93
26 chile_8_a 26 990 0.00% 13.86 26 990 0.00% 13.86 26 990 0.00% 14.09 26 990 0.00% 14.09
27 chile_9_a 47 150 0.00% 35.67 47 150 0.00% 35.67 47 150 0.00% 16.21 47 150 0.00% 16.21
28 chile_10_a 12 270 0.00% 10.08 12 270 0.00% 10.08 12 270 0.00% 13.46 12 270 0.00% 13.46
29 chile_11_a 30 590 0.00% 14.85 30 590 0.00% 14.85 30 590 0.00% 13.21 30 590 0.00% 13.21
30 chile_12_a 52 550 0.00% 35.60 52 550 0.00% 35.60 52 550 0.00% 13.77 52 550 0.00% 13.77
31 chile_1_b 8 160 0.00% 9.79 8 160 0.00% 9.79 8 160 0.00% 9.66 8 160 0.00% 9.66
32 chile_2_b 16 740 0.00% 12.87 16 740 0.00% 12.87 16 740 0.00% 11.18 16 740 0.00% 11.18
33 chile_3_b 26 340 0.00% 21.00 26 340 0.00% 21.00 26 520 0.68% 13.10 26 340 0.00% 35.14
34 chile_4_b 8 400 0.00% 12.00 8 400 0.00% 12.00 8 400 0.00% 11.32 8 400 0.00% 11.32
35 chile_5_b 19 800 0.00% 11.18 19 800 0.00% 11.18 19 800 0.00% 11.83 19 800 0.00% 11.83
36 chile_6_b 32 400 0.00% 16.56 32 400 0.00% 16.56 32 580 0.56% 13.72 32 400 0.00% 29.85
37 chile_7_b 10 620 0.00% 11.83 10 620 0.00% 11.83 10 620 0.00% 11.74 10 620 0.00% 11.74
38 chile_8_b 27 920 0.00% 10.79 27 920 0.00% 10.79 27 920 0.00% 11.76 27 920 0.00% 11.76
39 chile_9_b 48 320 0.00% 18.60 48 320 0.00% 18.60 48 500 0.37% 15.55 48 320 0.00% 28.68
40 chile_10_b 12 420 0.00% 11.44 12 420 0.00% 11.44 12 420 0.00% 11.98 12 420 0.00% 11.98
41 chile_11_b 31 520 0.00% 11.90 31 520 0.00% 11.90 31 520 0.00% 13.27 31 520 0.00% 13.27
42 chile_12_b 53 720 0.00% 16.20 53 720 0.00% 16.20 53 900 0.34% 16.04 53 720 0.00% 33.87
43 chile_1_c 8 100 001 0.00% 9.68 8 100 001 0.00% 9.68 8 100 001 0.00% 10.74 8 100 001 0.00% 10.74
44 chile_2_c 15 780 002 0.00% 11.48 15 780 002 0.00% 11.48 15 780 002 0.00% 11.86 15 780 002 0.00% 11.86
45 chile_3_c 25 140 002 0.00% 34.71 25 140 002 0.00% 34.71 25 140 002 0.00% 16.32 25 140 002 0.00% 16.32
46 chile_4_c 8 220 002 0.00% 11.04 8 220 002 0.00% 11.04 8 220 002 0.00% 11.57 8 220 002 0.00% 11.57
47 chile_5_c 18 840 002 0.00% 13.05 18 840 002 0.00% 13.05 18 840 002 0.00% 11.69 18 840 002 0.00% 11.69
48 chile_6_c 31 200 002 0.00% 43.20 31 200 002 0.00% 43.20 31 200 002 0.00% 18.55 31 200 002 0.00% 18.55
49 chile_7_c 10 440 002 0.00% 12.48 10 440 002 0.00% 12.48 10 440 002 0.00% 11.70 10 440 002 0.00% 11.70
50 chile_8_c 26 960 002 0.00% 16.32 26 960 002 0.00% 16.32 26 960 002 0.00% 11.87 26 960 002 0.00% 11.87
51 chile_9_c 47 120 003 0.00% 36.98 47 120 003 0.00% 36.98 47 120 003 0.00% 20.69 47 120 003 0.00% 20.69
52 chile_10_c 12 240 002 0.00% 11.44 12 240 002 0.00% 11.44 12 240 002 0.00% 11.28 12 240 002 0.00% 11.28
53 chile_11_c 30 560 002 0.00% 15.04 30 560 002 0.00% 15.04 30 560 002 0.00% 13.68 30 560 002 0.00% 13.68
54 chile_12_c 52 520 003 0.00% 34.02 52 520 003 0.00% 34.02 52 520 003 0.00% 19.81 52 520 003 0.00% 19.81

Average: 0.00% 19 0.00% 19 0.05% 14 0.00% 15
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Figure 5.6: CPU time for computing the best solution of SAPI compared to other methods.
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Constraint Programming Approach
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Abstract of the Chapter

The MIP methods presented in Chapters 4 and 5 are efficient but limited to small and
mid-size instances. It is not possible to solve large instances using MIP methods be-
cause of the large number of variables and constraints. In this chapter you will dis-
cover an alternative way to model the railway rescheduling problem using Constraint
Programming (CP). This technique permits to have less variables and constraints com-
pared to the MIP. A cooperative approach mixing MIP and CP is developed to take into
account the advantages of both paradigms and solving large instances quickly. The re-
sults show that this cooperative procedure can obtain good solutions in a reasonable
amount of time for instances larger than those presented in the previous chapters and
showed to be much more efficient than a state-of-the-art CP solver.
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6.1 Introduction

It is important to remark the difference of the word programming in both Mathematical
Programming and Constraint Programming. The first one comes from George Dantzing,
inventor of the simplex and considered as one of the fathers of Operations Research.
In the beginning, Dantzing use the term program to refers to a plan of activities, mainly
explained by the applications in solving "programming problems" of the United States
Defense Department (Lustig and Puget, 2001). On the other hand, Constraint Program-
ming, also called constraint logic programming, originates in the artificial intelligence
literature. For this reason, the term programming refers directly to a computer pro-
gram. Consequently, Constraint Programming is a computer programming technique
like object-oriented, structured, and others. Thus, a constraint program is not a formula-
tion of a problem, but is rather a computer program (code) that indicates a method for
solving a particular problem. In order to utilize Constraint Programming, we introduce
some basic notation.

Definition Constraint Satisfaction Problem (CSP) is a triple P =< X, C, D >, where X
is a set of variables: x1, x2, ..., xn, C is a set of constraints: c1, c2, ..., cm, and D correspond
to the domain of variables: d1, d2, ..., dn, i.e., the set of possible values for each variable.

Definition Constraint Optimization Problem (COP) is a couple Q =< P, f (X) >,
where, P is a CSP and f (X) is an objective function defined in terms of some or all of
variables X.

The decision variables could be of any type like integer, boolean, real, or anything
else, nevertheless they could be grouped in two types: discrete or continuous. Dis-
crete variables only accept some "disconnected" values for the variables, for example
integer numbers. For discrete domains we have two different CSPs (COPs): finite-
domains (bounded) and infinite-domains (unbounded). On the other hand, the best-
known category of continuous-domain CSPs (COPs) corresponds to linear program-
ming problems, where constraints must be linear inequalities forming a convex region.
It is known that linear programming problems can be solved in time polynomial in the
number of variables (Hillier and Lieberman, 2001a). Moreover, special solution algo-
rithms exist for linear constraints on integer variables, i.e., Branch-and-Bound. Never-
theless, no algorithm exists for solving general nonlinear constraints on integer vari-
ables (Hillier and Lieberman, 2001b). In some cases, we can reduce integer constraint
problems to finite-domain problems simply by bounding the values of all the variables.

Each constraint ci involves some subset of the variables and specifies the allowable
combinations of values for that subset. One of the most interesting features in CP is
that constraints are logical expressions and not only mathematical expressions. A state
of the problem is defined by an assignment of values to some or all of the variables,
for example x1 = v1, x2 = v2, ..., xn = vn. An assignment that does not violate any
constraints is called a consistent or legal assignment and also commonly called a feasible
solution of the CSP.
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6.1. Introduction

We study a CP formulation for the railway rescheduling problem with the aim to
deal with larger instances than those treated with MIP formulations. However, this CP
formulation plus a standard CP solver are not enough to solve this problem efficiently.
This is the reason why an effective algorithm is also proposed in order to find good
solutions for real-size instances in a reasonable processing time.

The application of Constraint Programming in rail transportation is not new. The
first articles using CP in railway scheduling applications are (Fukumori, 1980; Fuku-
mori and Sano, 1987). They were focused in the construction of a train schedule subject
to a set of constraints using an algorithm DFS (depth-first search). Another related work
was presented by (Silva de Oliveira, 2001) and (Oliveira and Smith, 2001). The authors
solve the single-track scheduling problem as a job-shop scheduling problem proposing
a hybrid algorithm based on CP. For the same problem, (Tormos et al., 2006) and (Abril
et al., 2006) present a COP. Because of the large number of variables and constraints of
the proposed model the authors present diverse approaches to divide the problem into
a set of subproblems easier to solve.

More relevant to the topic of this paper, (Chiu et al., 2002) was the first work that
incorporated rescheduling. The objective function is similar to the one used in MIP
formulations: minimize the modifications of the original schedule and minimize the
largest delay of trains. Recently, (Rodriguez, 2007) uses CP for routing and scheduling
of trains running through a junction, minimizing conflicts and delays.

The rest of the chapter is organized as follows. Section 6.2 presents a CP formu-
lation for the railway rescheduling problem. Section 6.3 studies the similarities and
difference between the two modeling approaches. Section 6.4 is dedicated to explain
the proposed algorithm. Finally, computational experiments and conclusions are pre-
sented in Section 6.5. The method was implemented over Railway Rescheduling Tool,
a software developed in the context of MAGES project (Acuna-Agost and Gueye, 2006).
The experiments simulate different kind of incidents over a French railway line using
a recovery window of 10 hours. The results show that this methodology can deal ef-
ficiently with larger instances than previous chapters and improves significantly the
performance of a state-of-the-art CP solver.
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Chapter 6. Constraint Programming Approach

6.2 CP Formulation for the RRP

In this section we present a CP model for the railway rescheduling problem. This model
supports allocation of tracks and platforms, connection between trains, bidirectional
lines, multi-track lines and extra time for accelerating and braking.

In this formulation we identify three main resources: trains, nodes, and tracks. A
train, associated to index i, corresponds to one or more coupled items of rolling stock that
have to serve a predefined set of nodes in a given order. Nodes, associated to index k,
represent physical elements where the train pass and/or stop, i.e., sections, stations and
bifurcations (junctions). The last elements are tracks that are associated to index t. They
correspond to the rails on nodes. Particularly, if a node is a station, tracks are also called
platforms. In general one node is composed of several parallel tracks. A priori, a train
can use any track if the direction of the train and the sense of the track are compatible.
Thus, some tracks allow traffic in only one direction while others allow traffic in both.

The components of this model described in this section are: indices, data sets, de-
fined functions, optimization parameters, decision variables, the constraints, and the
objective function.

6.2.1 Indices, Data sets and Parameters

Table 6.1 presents the indices and data sets used in this model while Figure 6.2 shows
the parameters associated to trains.

Element Description
i Index for trains
n Index for nodes
t Index for tracks
T Set of trains
E Set of nodes (E = S ∪ L)
S Set of stations
L Set of sections and junctions
P Set of tracks
Nn Vector of the tracks of node n

Table 6.1: Indices and data sets used in the CP model.

6.2.2 Decision Variables

Delayin : Delay of train i at node n. Delayin ≥ 0; ∀i ∈ T, n ∈ Seqi
Startin : Arrival time of train i at node n. Startin ≥ 0; ∀i ∈ T, n ∈ Seqi
Trackin : Track used by train i at node n. Trackin ∈ Compin; ∀i ∈ T, n ∈ Seqi
UPin : 1, if train i performs an unplanned stop in the node n; 0 otherwise.

UPin ∈ {0, 1}; ∀i ∈ T, n ∈ Seqi
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6.2. CP Formulation for the RRP

Element Description
Seqi Vector of sequence of nodes visited by train i
Stopi Vector of sequence of nodes visited by train i where it has to stop
Compin Vector of all compatible tracks for train i in the node n
Senin Sense of the train i in the node n
Sepmin

iîn Minimal headway between i and î at node n
Dmin

in Minimal duration of train i at node n (planned stop or trip time)
Dmax

in Maximal duration of train i at node n (planned stop or trip time)
Dbrake

in Extra time of train i used to brake at node n (only for unplanned stops)
Dacc

in Extra time taken train i to accelerate after brake at node n (only for
unplanned stops)

Dminstop
in Minimal stop time of train i for an unplanned stop at node n

Dmaxstop
in Maximal stop time of train i for an unplanned stop at node n

Start0
in Arrival time of train i at node n in the original planning

Track0
in Track used by the train i at node n in the original planning

Incin Known delay of train i before to arrive to node n
Conmin

iîn Minimal connection time from train i to train î at node n 0 indicates
there is no connection between them

Conmax
iîn Maximal connection time from train i to train î at node n

CDin Cost of every time unit of delay for train i at node n
CTin Cost of change the planned track for train i at node n
CUin Cost of performing an unplanned stop for train i at node n
N(i, n) Function that returns the next node after n in the sequence of the train i
P(i, n) Function that returns the previous node before n in the sequence of the

train i
L(i) Function that returns the last node in the sequence of the train i

Table 6.2: Parameters used in the CP model associated to train i.
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6.2.3 Constraints

Traveling and Stopping Time

Constraints (6.1) and (6.2) assure the minimal and maximal traveling or stopping time
required for train i to pass node n. If the decision is to perform an unplanned stop in
that node, it is necessary to add an extra time taken to brake and accelerate given by
Dbrake

in and Dacc
in respectively. It should be noted that it is not necessary to add any extra

time for events before or after planned stops, because it is already considered in the
minimal running time, Dmin

in . For this reason Constraints (6.3) assure variable UPin to
be equal to zero when train i has a planned stop at node n, i.e., events in stations with
planned stops cannot be rescheduled as unplanned stops. Finally, Constraints (6.4)
are added to guarantee that trains cannot arrive before its original arrival time for all
planned stops.

Startin + Dmin
in + Dminstop

in UPin+

Dbrake
in yi,N(i,n) + Dacc

in yi,P(i,n) ≤ Starti,N(i,n) ∀i ∈ T; n ∈ Seqi (6.1)

Startin + Dmax
in + Dmaxstop

in UPin+

Dbrake
in yi,N(i,n) + Dacc

in UPi,P(i,n) ≥ Starti,N(i,n) ∀i ∈ T; n ∈ Seqi (6.2)

UPin = 0 ∀i ∈ T, n ∈ Stopi (6.3)

Startin ≥ Start0
in ∀i ∈ T; n ∈ Stopi (6.4)

Safety Spacing of Trains

To avoid that two train collide it is necessary a minimal headway at the beginning and
at the end of the section. Constraints (6.5) and (6.6) guarantee a minimal headway
of trains when they use the same track and run in the same direction. There are two
possibilities: train i passes before î or train i passes after î, both of them separated by
Sepmin

îin . These constraints are a clear example of one of the biggest difference between
MIP formulations and constraint programming. In this case we present a logic expres-
sion composed by three "classical" constraints and linked using logical connectors and
"IF THEN" special constraint.

Similarly, headway is also required when two trains use the same track and are
running in opposite directions. Constraints (6.7) guarantee that only one of them is
using the track. There is a minimal time interval, Sepmin

îin (Sepmin
iîn ), that has to be assured

between train î (i) exits and train i (î) enters node n.
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(Trackin = Track în)⇒
|Startin − Startîn| ≥ Sepmin

iîn ∀i, î ∈ T; n ∈ E; Senin = Senîn (6.5)

(Trackin = Track în) ∧ (Startin ≥ Startîn)⇒
(Starti,N(i,n) ≥ Startî,N(î,n) + Sepmin

iîn ) ∀i, î ∈ T; n ∈ E; Senin = Senîn (6.6)

(Trackin = Track în)∨
(Startin ≥ Startî,N(î,n) + Sepmin

iîn )

⇒ (Startîn ≥ Starti,N(i,n) + Sepmin
îin ) ∀i, î ∈ T; n ∈ E; Senin 6= Senîn (6.7)

Delay and Incidents

The lateness of each event is calculated as the difference between the arrival time of
the solution and the original arrival time. This condition is assured by set of constraints
(6.8). Additionally, constrains (6.9) inject the incidents into the model. These constraints
force new starting (ending) times to be greater or equal to the time of the first indication
of the incident.

Delayin = Startin − Start0
in ∀i ∈ T; n ∈ Seqi (6.8)

Startin ≥ Start0
in + Incin ∀i ∈ T; n ∈ Seqi; Incin 6= 0 (6.9)

Connections

When connections of trains are required, they are assured by constraints (6.10) and
(6.11). Thus, Conmin

iîn and Conmax
iîn are the minimal and maximal time for connections

between trains i and î at node n.

Startî,N(i,n) ≥ Startin + Conmin
iîn ∀i, î ∈ T; n ∈ Seqi ∩ Seqî; Conmin

iîn 6= 0 (6.10)

Startî,N(i,n) ≤ Startin + Conmax
iîn ∀i, î ∈ T; n ∈ Seqi ∩ Seqî; Conmax

iîn 6= 0 (6.11)

6.2.4 Objective Function

Objective function (6.12) corresponds to the total rescheduling cost. This cost is equal
to the sum of the cost of delays for all planned stops, plus the total cost of changing
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tracks/platforms, plus the total cost of unplanned stops. These costs are calculated by
constraints (6.14), (6.15) and (6.16) respectively.

Minimize : TotalCost (6.12)

where:

TotalCost = CostDelay + CostCTracks + CostUPStops (6.13)
CostDelay = ∑

i ∈ T
n ∈ Stopi

CDinDelayin (6.14)

CostCTracks = ∑
i ∈ T

n ∈ Seqi
Trackin 6= Track0

in

CTin (6.15)

CostUPStops = ∑
i ∈ T

n ∈ Seqi

CUinUPin (6.16)

6.3 Similarities and Differences: MIP vs. CP

Both formulations model the same problem and have the same objective function. Nev-
ertheless, the definition of variables and constraints differ significantly because of the
nature of both methodologies. Some aspects can be directly associated, thus Table 6.3
presents the equivalences between CP and MIP formulations. It should be noted that
the equivalence is valid only if event k, used in the MIP formulation, is the same event
of train i at node n, used in the CP formulation.

Element MIP CP
Original Track (qkt = q0

kt = 1) (Trackin = Track0
in)

Decision variable - start time (arrival) xbegin
k Startin

Decision variable - delay zk Delayin
Decision variable - unplanned stop yk UPin

Table 6.3: Similarities between CP and MIP models.

The main difference between both formulations is the way they model the order of
trains and the use of tracks. On the one hand, the MIP formulation includes binary vari-
ables that are created as the combinatory of all events that could share a track. These
variables are γkk̂ ∈ {0, 1} and λkk̂ ∈ {0, 1}. Note that the number of these variables in-
creases drastically with the number of trains and stations. The constraints to assure the
headway of trains are also a complication for the MIP formulation. These constraints
include a large constant, denoted by M, that may complicate the numerical aspect of
the algorithm. More details about the MIP can be found in Chapter 4.
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On the other hand, the CP formulation is clearly more natural to model this prob-
lem. First, the decision variables define directly the arrival time of trains and the as-
signed track. The headway and other aspects are modeled by the constraints. The
advantage is that the constraints are not required to be linear, e.g., constraint (6.5) is a
logic "IF THEN" constraint and includes an absolute value function.

Because of the modeling differences, CP formulation requires much fewer variables
and constraints than MIP formulation. Figures 6.1(a) and 6.1(b) illustrate this fact using
an instance of the test. All instances have the same behavior because they differ just in
the nature of the incidents and the coefficients of the objective value. These graphs plot
the number of variables and constraints when the recovery window is increased. The
longer the recovery window, the more number of trains and arrival/departure events.
As it was expected, the number of variables for the MIP increases drastically. This is
a real memory issue, in fact our test using the MIP on the instance showed in Figures
6.1(a) and 6.1(b) where limited to a recovery window of 7 hours because of lack of RAM
memory.
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Figure 6.1: Differences of the size of the models size: MIP vs. CP

6.4 A Cooperative CP/MIP Approach

The objective of this algorithm is to solve large instances of the railway rescheduling
problem. For this reason, we propose to use the CP model because it requires less
memory than the MIP. Additionally, we want to take advantage of some of the efficient
MIP-based methods in order to improve performance of a standard CP solver. This is
carried out through two main strategies: domain filtering and variable/values order-
ing.

Considering any CP formulation, the problem can be solved via backtracking. The
base method attempts to obtain solutions by choosing a non-fixed variable and a value
of the domain for that variable. The chosen variable is then fixed to the chosen value
triggering constraint propagation. Constraint propagation and filtering decrease the do-
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mains of variables during this process. The method continues with another non-fixed
variable, if one exists, and repeated until all decision variables have only one possible
value, i.e., they are all fixed. However, if a fixing fails because it cannot lead to a solution
or the solution is "worse" than the current incumbent solution, the method backtracks
and chooses another value for the variable. When all values for the current variable
have been tried, the method backtracks to a previously assigned variable and reassigns
it.

This process can be improved in three generic ways: adapted search strategy, do-
main filtering, and variable/values ordering (Grandoni and Italiano, 2006). First, there
are different strategies to backtrack in case of a fails such as backjumping, backchecking
and backmarking. The effectiveness of a particular search strategy depends on the na-
ture of the problem. Secondly, domain filtering has the objective to reduce the domain
of variables in order to speed up the search. It is possible to use the knowledge of the
problem to design an improved domain reduction and constraint propagation proce-
dures. Finally, the order of variables and their values considering in the search affects
the performance of the system considerably. An ordered list of the decision variables
is passed to the search algorithm and the first unassigned variable in the list will be
chosen next.

The CP/MIP approach uses the two last strategies, domain filtering and variable
and values ordering. The main aspect in this algorithm is the use of an auxiliary MIP
model to solve a subproblem by limiting the recovery window. The solution of this
subproblem is employed to reduce the domain of variables and to define an appropriate
variable/value ordering sets to lead the search algorithm.

Domain Filtering A MIP model is created for a subproblem defined as the railway
rescheduling problem for the events (arrival/departure of trains) before a time
parameter denoted by EndTimeMIP. Figure 6.2 illustrates the relation between
the complete CP model and the MIP subproblem. This subproblem is then solved
by any MIP-based method (see Chapter 4). It should be noted that the perfor-
mance and the quality of this method depends on the solution of this subproblem.

Variable and values ordering Using the result obtained by RS, it is possible to identify
the events in the subproblem which are not affected by the incidents. The deci-
sion variables modeling delays, i.e., Delayin, for non-affected events are added to
a dynamic array denoted as List. These variables are very important because once
these variables are fixed, it is easier to extend the partial solution to the remaining
variables because of constraint propagation of constraints 6.8. In addition, for the
selected events, it is probable that Delayin = 0. Thus, when instantiating vari-
ables, the first value chosen is the smallest possible value for the current variable.

All steps of this procedure are detailed in Algorithm 4. Several requirements (in-
puts) are needed. The first one, CP, corresponds to an instance of the CP model de-
scribed in Sec. 6.2. The next parameter is EndTimeMIP that limits the size of the MIP
subproblem. The subproblem contains all events comprised before EndTimeMIP.

It seems to be reasonable that non-affected trains in the solution of RS will not be

118



6.4. A Cooperative CP/MIP Approach

CP modelMIP subproblem

Time

Recovery Window for CP 
(Complete Problem)

EndTimeMIP

End Recovery 
Period

Recovery Window for MIP 
(SubProblem)

Begining 
Recovery Period

Figure 6.2: Relation between the complete CP model and the MIP subproblem.

delayed in the optimal solution of the complete problem. Therefore, the search can be
improved if we force an extra domain reduction of all these variables. Let Tolerance be a
vector composed by the elements tolerancein with the maximal allowed time to increase
the delay obtained in the solution of the subproblem (MIP model). In particular, if
we have tolerancein = 0 for Eventin, the event will be fixed using the solution of the
subproblem. It should be noted that this approach is heuristic because of parameter
Tolerance, i.e., some feasible solutions, including optimal solutions, could be discarded.

The two final parameters are used as stop criteria; TimeLimit is the maximal process-
ing time for the algorithm and SolLimit is the maximal number of feasible solutions that
has been reached.

The key aspect of this algorithm is to create and solve the subproblem. Line 1 cre-
ates a MIP for the railway rescheduling problem limited to events before EndTimeMIP
(see Figure 6.2). It should be noted that solving this subproblem can be as hard as the
original problem. For this reason we propose to use one of the method described in
the previous chapters, for example SAPI that shows to obtain a good balance between
quality of the solution and speed. In the solution of the subproblem some of trains will
be not affected because of the robustness of the original plan. This is especially useful
to identify affected (and non-affected trains) and use this information to improve the
performance of a CP solver. Line 2 solves the subproblem by any of the MIP-based
methods described in the previous chapters and returns its solution, values of decision
variables, to the vector XMIP. In order to respect the CPU time imposed with TimeLimit,
the solution of the subproblem is limited to TimeLimit/2. Line 3 initializes the list (List)
of variables that will be used to define the search strategy.

The "for loops" between Lines 4 to 23 read the solution of the subproblem returned
by the MIP method and evaluate which arrival events are not affected with the inci-
dents. The first condition is to check if the event is comprised also in the subproblem,
that is Start0

in ≤ EndTimeMIP. For all these events the variables Startin and Delayin
are bounded to the value of the subproblem solution xbRS

in plus a tolerance parameter
Tolerance (Lines 9-10).

Lines 12 to 14 are executed only when the tolerance for this event event (combina-
tion of i and n) is zero, i.e., tolerancein = 0 (Line 13). In that case, we keep the same
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Algorithm 4 CP-based algorithm
Require: CP, EndTimeMIP, Tolerance, TimeLimit, SolLimit

1: MIP← CreateMIPModel(EndTimeMIP)
2: XMIP ←MIPMethod(MIP, TimeLimit/2)
3: List← ∅
4: for all i ∈ T do
5: for all n ∈ Seqi do
6: if (Start0

in ≤ EndTimeMIP then
7: for all k ∈ Events (events in MIP) do
8: if ( Event k (MIP) is the same event of train i at node n (CP) ) then
9: CP.AddConstraint (Startin ≤ xbegin

k + tolerancein)
10: CP.AddConstraint (Delayin ≤ xbegin

k − Start0
in + tolerancein)

11: if (tolerancein = 0) then
12: CP.AddConstraint (Trackin = track of event k in XMIP)
13: CP.AddConstraint (UPin = yk)
14: Add variable Delayin to List
15: end if
16: if (xbegin

k = Start0
in) then

17: Add variable Delayin to List
18: end if
19: end if
20: end for
21: end if
22: end for
23: end for
24: SearchStrategy← Strategy(List, LargestIndex(List), SmallestValue)
25: ElapsedTime← EvaluateElapsedTime()
26: TimeLimit← TimeLimit− ElapsedTime
27: XCP ← SolveCP(CP,SearchStrategy,TimeLimit, SolLimit)
28: return XCP
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track and the decision of performing an unplanned stop given by the solution of the
subproblem.

Line 17 is executed only when the event (combination of i and n) is not affected in
the solution of the subproblem, i.e., xbegin

k = Start0
in (Line 16). In that case, variable

Delayin is added to List to be used in the conception of the search strategy.

Line 24 defines a search strategy ("SearchStrategy"). This search strategy is based on
constructive search, which builds a solution by fixing decision variables to values. The
construction of this strategy is assured by function "Strategy()" which requires three pa-
rameters. First, variables belonging to List compose a group of key decision variables,
Delayin who are not affected by incidents, such that once these variables are fixed, it is
easy to extend the partial solution to the remaining variables, e.g, Startin and CostDelay.
The objective is to force the search to fix the decision variables from List before instan-
tiating any other variable in the model. Secondly, the parameter "LargestIndex(List)"
indicates that variables in List are selected with a LIFO (last in first out) rule, i.e., later
events are fixed first. The last parameter is the strategy to choose values. Thus "Small-
estValue" assures that the first value tried is the smallest value in the domain of vari-
ables and, if fails it continues for the successor and so on. Note that in List we include
variables of delays for non-affected trains; they will probably have an optimal value of
zero.

The last part of the algorithm is to solve the CP model. Lines 25 and 26 calculate the
elapsed processing time (ElapsedTime) and the remaining time(TimeLimit). Let XCP be
the vector of the values for the decision variables obtained by solving the problem. The
function "SolveCP()" calls a CP solver taking four parameters: CP is the original CP
model, SearchStrategy is the custom defined search strategy, TimeLimit sets a time limit
on the time spent in search, and SolLimit is the limit of the number of feasible solutions
found. In particular we use IBM CP Optimizer detailed in the next section. Finally, Line
28 returns the best solution found.
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6.5 Experimental Results

We test this method over three different set of instances. The first two are the same
used in the last chapters (see Section 4.5). The last set of instances corresponds to a real
French line between the stations of Ruffec and Monts. In order to organize this section
we call this last set of instances "Network 3". They use the same French network pre-
sented in Chapter 4 but extended to a time horizon of 10 hours, i.e., in the previous chap-
ters the problem instances were limited to 7 hours (time horizon). The original schedule
is thus composed of 76 trains (freight, regional express, and high speed trains) passing
through 43 stations in a time horizon of 10 hours. This corresponds to 4451 events to
be rescheduled. All data were obtained from the research department of SNCF (French
National Railway Company) in the context of the MAGES project (Acuna-Agost and
Gueye, 2006).

For the incidents of Network 3, we disturbed trains on extreme nodes to affect a
large number of trains. Thus, one or two trains are directly implicated in the incident
by an initial delay of 10, 20, or 30 minutes. We also consider different combination of
unitary cost for the objective function: (a) emphasizing minimization of delay (instance
13-18), (b) emphasizing stability (instances 7-12), and (c) balancing stability and mini-
mizing delay (instances 1-6). Where the coefficients in the objective function strongly
penalize the delays, penalize the changes of tracks/platforms/stops, and a balance be-
tween them respectively.

It is very important to remark that we tried to solve the instances of Network 3 using
the methods presented in the previous chapters. All previous methods are based on the
same MIP formulation and this is the reason why we could not load the MIP in memory
(i.e., out of memory error) because of the large number of variable and constraints. For
this reason we compare the solution of the method proposed in this chapter to the other
methods using the first two set of instances. The result on the last set of instances are
compared to CP Optimizer 2.11, a state-of-the-art CP solver.

This algorithm was coded in Visual Studio 2005 (C]) using IBM ILOG CPLEX ver-
sion 11.21 as a black-box solver for the MIP model and IBM ILOG CP Optimizer 2.11
for the CP model. Our system runs on a single processor IBM compatible PC Intel
Core 2, 1.66 GHz, and 2 GB of main memory. This algorithm was implemented as a
component of Railway Rescheduling Tool (RRT) developed in the context of project
MAGES (Acuna-Agost and Gueye, 2006). More details about this software are pre-
sented in Chapter 10.

For all methods we report both: the quality of the solution using the value of ob-
jective function (column "Cost [$]") and the processing time needed to calculate this
solution (column "CPU [s]"), that is the global CPU time of the corresponding method
in seconds. In some methods we also include the CPU time required for computing the
best solution (column "CPU to best [s]") in seconds. Additionally, we include a GAP
that is utilized to compare the results of the solution methods. Note that for Network
1 and Network 2, this GAP is calculated in relation to the optimal solution, while for
Network 3 we use the best solution known that does not necessarily correspond to the
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optimal one.

We tested the following method:

• CP-based algorithm (CP-based algorithm 4): We use the parameters TimeLimit =
5 minutes, tolerancein = 0; ∀i ∈ T, n ∈ Seqi and SolLimit = 1000000. It uses
Method S3 (SAPI Heuristic) to solve the subproblem that is created by limiting
the time horizon to the half of the time horizon of the current instance (parameter
EndTimeMIP).

The CP-based algorithm is compared to the following methods for Network 3:

• CP Optimizer (First Solution), IBM ILOG CP Optimizer 2.11 with default param-
eters. It stops when it found the first feasible solution, i.e., it solves the CSP asso-
ciated to this problem.

• CP Optimizer (5 minutes), IBM ILOG CP Optimizer 2.11 with default parameters.
It stops after 5 minutes of search. It could stop before the CPU time limit only if
the optimal solution is reached.

• CP Optimizer (30 minutes), IBM ILOG CP Optimizer 2.11 with default parame-
ters. It stops after 30 minutes of search. It could stop before the CPU time limit
only if the optimal solution is reached.

It is compared to the following methods for Network 1 and Network 2:

• Method O1 (Right-shift Heuristic), Right-shift rescheduling. (Section 4.3.1)

• Method O4 (I-LS Heuristic. Stop criteria: 1 iteration), MIP-based local search method
using right-shift as initial solution. It limits the search space around the original
non-disrupted schedule with local-branching-type cuts added to the model. (Sec-
tion 4.3.3.

• Method S3 (SAPI Heuristic, stop criteria: 1 iteration (or) 5 minutes): SAPI algo-
rithm limited to 5 minutes of running time or one complete iteration. The limit of
the processing time responds to real requirements of railway companies. Addi-
tionally, the algorithm performs only one iteration, i.e., if the first iteration finishes
before 5 minutes, the algorithm stops. (Chapter 5)

• Method S4 (SAPI Exact, 1 iteration of SAPI + CPLEX) This method uses the out-
put of Method S3 as an initial solution for IBM ILOG CPLEX removing any ad-
ditional cut and letting all variable be free. As a consequence, the feasible region
corresponds to the original search space and the optimal solution of this method
coincides with the optimal solution of the original problem. This method is de-
scribed in Section 4.4 using SAPI as the heuristic method. This methods has been
showed to be the best exact method presented in this Thesis considering the both
dimensions: quality of the solution and the speed. (Chapter 5)

Figure 6.3 show the results obtained by IBM ILOG CP Optimizer 2.11 with default
parameters. We include these results as a reference to be compared with those obtained
by Algorithm 4 on the instances of Network 3. Three versions are evaluated changing
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Cost [$] GAP  [%] CPU [s] Cost [$] GAP  [%]
CPU 
[s]

Cost [$] GAP  [%]
CPU 
[s]

1 france_1_a_10 3 761 19 699 423.77% 70 19 699 423.77% 300 3 890 3.43% 1 800
2 france_2_a_10 7 593 34 109 349.22% 72 22 062 190.56% 300 8 565 12.80% 1 800
3 france_3_a_10 13 073 58 251 345.58% 72 58 248 345.56% 300 13 866 6.07% 1 800
4 france_4_a_10 6 277 24 427 289.15% 73 10 943 74.33% 300 6 661 6.12% 1 800
5 france_5_a_10 16 296 46 768 186.99% 71 35 447 117.52% 300 18 712 14.83% 1 800
6 france_6_a_10 29 018 83 107 186.40% 72 82 977 185.95% 300 33 174 14.32% 1 800
7 france_1_b_10 4 052 19 699 386.15% 71 8 172 101.68% 300 6 080 50.05% 1 800
8 france_2_b_10 7 593 34 109 349.22% 70 21 212 179.36% 300 9 550 25.77% 1 800
9 france_3_b_10 13 125 57 927 341.35% 114 57 927 341.35% 300 15 085 14.93% 1 800
10 france_4_b_10 6 568 23 144 252.38% 184 23 144 252.38% 300 8 562 30.36% 1 800
11 france_5_b_10 16 296 45 472 179.04% 116 35 447 117.52% 300 20 775 27.49% 1 800
12 france_6_b_10 29 018 85 064 193.14% 121 85 064 193.14% 300 32 296 11.30% 1 800
13 france_1_c_10 3 701 002 20 049 000 441.72% 74 9 824 240 165.45% 300 9 634 145 160.31% 1 800
14 france_2_c_10 7 593 000 33 785 000 344.95% 74 22 062 000 190.56% 300 9 840 028 29.59% 1 800
15 france_3_c_10 13 013 004 58 251 000 347.64% 72 53 494 895 311.09% 300 13 259 034 1.89% 1 800
16 france_4_c_10 6 217 002 25 418 000 308.85% 72 13 430 000 116.02% 300 6 419 012 3.25% 1 800
17 france_5_c_10 16 296 000 47 572 000 191.92% 75 35 771 000 119.51% 300 18 893 005 15.94% 1 800
18 france_6_c_10 26 508 000 84 740 000 219.68% 74 84 560 069 219.00% 300 26 799 730 1.10% 1 800

Average: 296.51% 86 202.49% 300 23.86% 1 800
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Figure 6.3: Results of CP Optimizer 2.11 with defaults parameters (Network 3).

the ending criteria. The first version stops when the first feasible solution is found.
The second (the third) stops either when the optimum is found limiting to 5 minutes
(30 minutes) of processing time. On the other hand, the results of Algorithm 4 are
presented in Figure 6.4. Note that all the best solution for this set of instances are found
with this method.

The results show that Algorithm 4 is better than using a standard CP solver in both
dimensions. First, this method is able to find better solutions than CP optimizer, in-
deed limiting the processing time to 5 minutes. The best solutions obtained with CP
Optimizer 2.11 have an average GAP of 23.86% after 30 minutes of CPU time in our
machine. In contrast, the proposed method obtains an averga GAP of 0%; that is, it
found the best solution for all instances in Network 3. The second conclusion is that
Algorithm 4 is faster obtaining good solutions. This fact is shown by the average CPU
time: 131 versus 1800 seconds if we compare Algorithm 4 vs CP Optimizer 2.11 (30
minutes).

After analyzing the results for all instances, we realized that once Algorithm 4 fin-
ishes the first phase using the MIP model the CP solver finds a very good solution
quickly. In fact, in most of the cases, it immediately ends after finding the first feasible
solution, because it is optimal in relation to the remained CP model. It is possible to
appreciate this fact comparing the quality of the first solutions calculated by Algorithm
4 and CO Optimizer 2.11. Figure 6.5 illustrates this behavior. The graph plots the evolu-
tion of the objective function for both solution methods (Algorithm 4 and CP Optimizer
2.11) on instance "france-1-a-10". It should be noted that Algorithm 4 can find quickly
a good solution (in this case an optimal solution) whereas CP Optimizer 2.11 spends a
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Cost [$] GAP  [%] CPU [s]
CPU to best 

[s]

1 france_1_a_10 3 761 3 761 0.0000% 75 74

2 france_2_a_10 7 593 7 593 0.0000% 72 70

3 france_3_a_10 13 073 13 073 0.0000% 109 107

4 france_4_a_10 6 277 6 277 0.0000% 81 80

5 france_5_a_10 16 296 16 296 0.0000% 223 221

6 france_6_a_10 29 018 29 018 0.0000% 225 223

7 france_1_b_10 4 052 4 052 0.0000% 76 75

8 france_2_b_10 7 593 7 593 0.0000% 70 70

9 france_3_b_10 13 125 13 125 0.0000% 99 98

10 france_4_b_10 6 568 6 568 0.0000% 78 78

11 france_5_b_10 16 296 16 296 0.0000% 189 188

12 france_6_b_10 29 018 29 018 0.0000% 232 231

13 france_1_c_10 3 701 002 3 701 002 0.0000% 84 83

14 france_2_c_10 7 593 000 7 593 000 0.0000% 75 74

15 france_3_c_10 13 013 004 13 013 004 0.0000% 119 118

16 france_4_c_10 6 217 002 6 217 002 0.0000% 82 81

17 france_5_c_10 16 296 000 16 296 000 0.0000% 236 235

18 france_6_c_10 26 508 000 26 508 000 0.0000% 237 237

Average: 0.0000% 131 130
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Figure 6.4: Results of Algorithm 4 (Network 3).

considerable amount of time trying to improve the current solution. As a consequence,
for this example given a limitation of the processing time, for example 10 minutes, the
solution obtained by Algorithm 4 is much better than those returned by CP Optimizer
2.11 (default parameters).

We also present the results in Network 1 and Network 2 that were used in Chapter
4 and Chapter 5 with the aim to compare this new approach to those described previ-
ously. Figure 6.5 shows the results of Algorithm 4 compared to Method O1, O4, S3, and
S4. It should be noted that this CP-based algorithm is faster in average than O4, S3, and
S4; however, the quality of the solution is worse. It is also possible to observe that the
variability of the solutions obtained by Algorithm 4 is higher than other methods. As a
consequence, the previous methods show to be more stable for these kind of instances.
Additionally, we compare the performance of the methods in terms of the speed to cal-
culate the best solution. Figure 6.6 presents the CPU time required for computing the
best solution (Network 1 and 2) comparing Algorithm 4 to some solution methods de-
scribed in the previous chapters. Concerning the heuristic methods, Method O3 is the
approach with the best solutions in average; while Method S3 (SAPI Heuristic) is the
faster to find solutions with reasonable quality of solution (GAP less than 1%). A good
characteristic of Algorithm 4 is that it is able to identify quickly that the current solution
is good; actually, the algorithm stops immediately when it finds the best solution.

125



Chapter 6. Constraint Programming Approach

25000

20000

15000

nc
ti
on

 [$
]

CP Optimizer 2.11 (default)

10000

bj
ec
ti
ve
 F
un

CP‐based Algorithm

5000

O
b

00

0 200 400 600 800 1000 1200

CPU Time [s]

Figure 6.5: Comparative analysis for instance france-1-a-10. CP Optimizer 2.11 versus Al-
gorithm 4

6.6 Concluding Remarks

Two alternatives formulation for rescheduling trains after incidents have been com-
pared: CP and MIP. We proposed a cooperative algorithm that take advantage of both,
that is, use CP to model large problems without memory problems and a MIP-based
method to improve the performance of the search. More specifically, it is improved in
two ways: domain filtering and an appropriate variable/values ordering. These two
strategies are considering solving a MIP subproblem with one of the MIP-based meth-
ods presented in the previous chapters.

The solution of the subproblem is then used to fix decision variables. Non-affected
events are imposed to be similar to the original schedule reducing the domain of vari-
ables that model delays. Additionally, depending on some parameters of the method
these events are allowed neither to change their planned track nor to perform un-
planned stops.

The identification of non-affected events is also utilized to forces the search to fix
the decision variables associated to non-affected trains before any other variable in the
model. Then, it is coded that the solver selects the smallest value in the domain of the
selected variable. These strategies guarantees that the first solutions found will be not
composed of trains extremely delayed.

We tested this method using three different set of instances: the two ones presented
in the previous chapters (Network 1 - France and Network 2 - Chile) and a new larger
one (Network 3 - France).

Concerning the first two networks, the results have shown that previous methods

126



6.6. Concluding Remarks

based on the MIP formulation seem to be more appropriate for little and mid-size in-
stances.

The experimental results over large instances (Network 3) showed that the proposed
cooperative CP/MIP algorithm is satisfactory to increase significantly the performance
of a state-of-the-art CP solver like CP Optimizer 2.11. It is very important to remark
also that all instances of Network 3 were solved without memory errors with a CPU
time of 130 seconds in average. In contrast, we tried to solve the same instances using
the MIP-based methods using the same machine and it was not possible to load any
instance in memory.
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N° Name Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$] GAP  [%] CPU [s]
CPU to 
best [s]

1 france_1_a_7 6 103 64.32% 3 3 714 0.00% 88 3 714 0.00% 77 3 714 0.00% 213 3 714 0.00% 44 44
2 france_2_a_7 22 405 196.91% 4 7 546 0.00% 64 7 546 0.00% 60 7 546 0.00% 263 7 546 0.00% 44 44
3 france_3_a_7 48 469 272.09% 3 13 026 0.00% 255 13 026 0.00% 139 13 026 0.00% 372 13 071 0.35% 190 190
4 france_4_a_7 6 819 9.45% 3 6 230 0.00% 89 6 230 0.00% 75 6 230 0.00% 194 6 230 0.00% 45 45
5 france_5_a_7 32 692 122.35% 3 14 703 0.00% 300 14 703 0.00% 78 14 703 0.00% 285 15 438 5.00% 211 211
6 france_6_a_7 68 329 175.21% 3 24 903 0.30% 300 26 460 6.57% 300 24 828 0.00% 1 739 24 828 0.00% 91 91
7 france_1_b_7 6 103 52.38% 3 4 005 0.00% 91 4 005 0.00% 83 4 005 0.00% 239 4 005 0.00% 45 45
8 france_2_b_7 22 405 196.91% 3 7 546 0.00% 67 7 546 0.00% 74 7 546 0.00% 229 7 546 0.00% 45 45
9 france_3_b_7 48 469 270.61% 3 13 078 0.00% 300 13 078 0.00% 122 13 078 0.00% 329 13 078 0.00% 57 57
10 france_4_b_7 8 619 32.17% 3 6 521 0.00% 101 6 521 0.00% 96 6 521 0.00% 241 6 521 0.00% 47 47
11 france_5_b_7 32 692 122.35% 3 14 703 0.00% 300 14 703 0.00% 88 14 703 0.00% 291 14 703 0.00% 54 54
12 france_6_b_7 68 329 164.18% 4 25 865 0.00% 291 26 461 2.30% 300 25 865 0.00% 1 870 28 971 12.01% 224 224
13 france_1_c_7 6 103 000 67.02% 3 3 654 002 0.00% 78 3 654 002 0.00% 82 3 654 002 0.00% 192 3 654 002 0.00% 45 45
14 france_2_c_7 22 405 000 196.91% 3 7 546 000 0.00% 68 7 546 000 0.00% 75 7 546 000 0.00% 258 7 546 000 0.00% 46 46
15 france_3_c_7 48 469 000 273.82% 3 12 966 004 0.00% 267 12 966 004 0.00% 199 12 966 004 0.00% 413 12 966 004 0.00% 70 70
16 france_4_c_7 8 619 000 39.69% 3 6 170 002 0.00% 84 6 170 002 0.00% 92 6 170 002 0.00% 202 6 170 002 0.00% 45 45
17 france_5_c_7 32 692 000 122.35% 3 14 703 000 0.00% 287 14 703 000 0.00% 90 14 703 000 0.00% 338 14 703 000 0.00% 46 46
18 france_6_c_7 68 328 900 176.07% 4 24 835 010 0.34% 300 24 751 006 0.00% 277 24 751 006 0.00% 1 292 26 433 005 6.80% 213 213

Average: 141.93% 3 0.04% 185 0.49% 128 0.00% 498 1.34% 87 87

N° Name Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$] GAP  [%]
CPU 
[sec]

CPU to 
best [s]

19 chile_1_a 8 340 2.77% 1 8 115 0.00% 41 8 115 0.00% 12 8 115 0.00% 21 8 130 0.18% 24 24
20 chile_2_a 18 300 15.75% 1 15 810 0.00% 14 15 810 0.00% 15 15 810 0.00% 24 15 825 0.09% 24 24
21 chile_3_a 31 380 24.67% 1 25 170 0.00% 36 25 170 0.00% 19 25 170 0.00% 34 25 200 0.12% 32 32
22 chile_4_a 8 580 4.00% 1 8 250 0.00% 13 8 250 0.00% 13 8 250 0.00% 21 8 265 0.18% 23 23
23 chile_5_a 22 680 20.19% 1 18 870 0.00% 14 18 870 0.00% 14 18 870 0.00% 27 18 885 0.08% 24 24
24 chile_6_a 47 580 52.35% 1 31 230 0.00% 41 31 230 0.00% 19 31 230 0.00% 49 31 275 0.14% 28 28
25 chile_7_a 10 800 3.15% 1 10 470 0.00% 12 10 470 0.00% 14 10 470 0.00% 23 10 485 0.14% 23 23
26 chile_8_a 30 800 14.12% 1 26 990 0.00% 14 26 990 0.00% 14 26 990 0.00% 27 27 005 0.06% 24 24
27 chile_9_a 63 500 34.68% 1 47 150 0.00% 41 47 150 0.00% 16 47 150 0.00% 48 47 195 0.10% 32 32
28 chile_10_a 12 600 2.69% 1 12 270 0.00% 12 12 270 0.00% 13 12 270 0.00% 23 12 285 0.12% 23 23
29 chile_11_a 34 400 12.46% 1 30 590 0.00% 15 30 590 0.00% 13 30 590 0.00% 28 30 605 0.05% 24 24
30 chile_12_a 68 900 31.11% 1 52 550 0.00% 40 52 550 0.00% 16 52 550 0.00% 50 52 595 0.09% 31 31
31 chile_1_b 8 340 2.21% 1 8 160 0.00% 11 8 160 0.00% 12 8 160 0.00% 20 8 400 2.94% 23 23
32 chile_2_b 18 300 9.32% 1 16 740 0.00% 13 16 740 0.00% 13 16 740 0.00% 27 16 980 1.43% 24 24
33 chile_3_b 31 380 19.13% 1 26 340 0.00% 21 26 520 0.68% 14 26 340 0.00% 47 26 760 1.59% 29 29
34 chile_4_b 8 580 2.14% 1 8 400 0.00% 12 8 400 0.00% 11 8 400 0.00% 22 8 640 2.86% 23 23
35 chile_5_b 22 680 14.55% 1 19 800 0.00% 13 19 800 0.00% 14 19 800 0.00% 28 20 040 1.21% 24 24
36 chile_6_b 47 580 46.85% 1 32 400 0.00% 18 32 580 0.56% 19 32 400 0.00% 53 32 820 1.30% 31 31
37 chile_7_b 10 800 1.69% 1 10 620 0.00% 13 10 620 0.00% 15 10 620 0.00% 23 10 860 2.26% 24 24
38 chile_8_b 30 800 10.32% 1 27 920 0.00% 13 27 920 0.00% 13 27 920 0.00% 31 28 160 0.86% 24 24
39 chile_9_b 63 500 31.42% 1 48 320 0.00% 20 48 500 0.37% 24 48 320 0.00% 66 48 740 0.87% 32 32
40 chile_10_b 12 600 1.45% 1 12 420 0.00% 13 12 420 0.00% 13 12 420 0.00% 28 12 660 1.93% 24 24
41 chile_11_b 34 400 9.14% 1 31 520 0.00% 14 31 520 0.00% 13 31 520 0.00% 33 31 760 0.76% 26 26
42 chile_12_b 68 900 28.26% 1 53 720 0.00% 20 53 900 0.34% 21 53 720 0.00% 68 54 140 0.78% 30 30
43 chile_1_c 8 340 000 2.96% 1 8 100 001 0.00% 11 8 100 001 0.00% 15 8 100 001 0.00% 20 8 100 002 0.00% 24 24
44 chile_2_c 18 300 000 15.97% 1 15 780 002 0.00% 14 15 780 002 0.00% 13 15 780 002 0.00% 25 15 780 003 0.00% 25 25
45 chile_3_c 31 380 000 24.82% 1 25 140 002 0.00% 39 25 140 002 0.00% 16 25 140 002 0.00% 36 25 140 004 0.00% 28 28
46 chile_4_c 8 580 000 4.38% 1 8 220 002 0.00% 12 8 220 002 0.00% 13 8 220 002 0.00% 23 8 220 003 0.00% 24 24
47 chile_5_c 22 680 000 20.38% 1 18 840 002 0.00% 15 18 840 002 0.00% 14 18 840 002 0.00% 27 18 840 003 0.00% 24 24
48 chile_6_c 47 580 000 52.50% 1 31 200 002 0.00% 45 31 200 002 0.00% 21 31 200 002 0.00% 47 31 200 005 0.00% 30 30
49 chile_7_c 10 800 000 3.45% 1 10 440 002 0.00% 13 10 440 002 0.00% 13 10 440 002 0.00% 23 10 440 003 0.00% 23 23
50 chile_8_c 30 800 000 14.24% 1 26 960 002 0.00% 17 26 960 002 0.00% 20 26 960 002 0.00% 32 26 960 003 0.00% 25 25
51 chile_9_c 63 500 000 34.76% 1 47 120 003 0.00% 43 47 120 003 0.00% 23 47 120 003 0.00% 50 47 120 005 0.00% 30 30
52 chile_10_c 12 600 000 2.94% 1 12 240 002 0.00% 13 12 240 002 0.00% 13 12 240 002 0.00% 22 12 240 003 0.00% 23 23
53 chile_11_c 34 400 000 12.57% 1 30 560 002 0.00% 16 30 560 002 0.00% 15 30 560 002 0.00% 33 30 560 003 0.00% 26 26
54 chile_12_c 68 900 000 31.19% 1 52 520 003 0.00% 42 52 520 003 0.00% 20 52 520 003 0.00% 45 52 520 005 0.00% 30 30

Average: 17.07% 1 0.00% 21 0.05% 15 0.00% 33 0.56% 26 26
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Figure 6.6: Results of Algorithm 4 (Network 1 and 2) compared to several methods presented in
previous chapters.
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6.6. Concluding Remarks

N° Name Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$] GAP  [%] CPU [s]
CPU to 
best [s]

1 france_1_a_7 6 103 64.32% 3 3 714 0.00% 78 3 714 0.00% 72 3 714 0.00% 72 3 714 0.00% 44 44
2 france_2_a_7 22 405 196.91% 4 7 546 0.00% 53 7 546 0.00% 74 7 546 0.00% 74 7 546 0.00% 44 44
3 france_3_a_7 48 469 272.09% 3 13 026 0.00% 245 13 026 0.00% 122 13 026 0.00% 122 13 071 0.35% 190 190
4 france_4_a_7 6 819 9.45% 3 6 230 0.00% 81 6 230 0.00% 71 6 230 0.00% 71 6 230 0.00% 45 45
5 france_5_a_7 32 692 122.35% 3 14 703 0.00% 70 14 703 0.00% 61 14 703 0.00% 61 15 438 5.00% 211 211
6 france_6_a_7 68 329 175.21% 3 24 903 0.30% 256 26 460 6.57% 78 24 828 0.00% 525 24 828 0.00% 91 91
7 france_1_b_7 6 103 52.38% 3 4 005 0.00% 55 4 005 0.00% 58 4 005 0.00% 58 4 005 0.00% 45 45
8 france_2_b_7 22 405 196.91% 3 7 546 0.00% 52 7 546 0.00% 66 7 546 0.00% 66 7 546 0.00% 45 45
9 france_3_b_7 48 469 270.61% 3 13 078 0.00% 81 13 078 0.00% 82 13 078 0.00% 82 13 078 0.00% 57 57
10 france_4_b_7 8 619 32.17% 3 6 521 0.00% 58 6 521 0.00% 63 6 521 0.00% 63 6 521 0.00% 47 47
11 france_5_b_7 32 692 122.35% 3 14 703 0.00% 57 14 703 0.00% 59 14 703 0.00% 59 14 703 0.00% 54 54
12 france_6_b_7 68 329 164.18% 4 25 865 0.00% 186 26 461 2.30% 210 25 865 0.00% 210 28 971 12.01% 224 224
13 france_1_c_7 6 103 000 67.02% 3 3 654 002 0.00% 55 3 654 002 0.00% 76 3 654 002 0.00% 76 3 654 002 0.00% 45 45
14 france_2_c_7 22 405 000 196.91% 3 7 546 000 0.00% 54 7 546 000 0.00% 95 7 546 000 0.00% 95 7 546 000 0.00% 46 46
15 france_3_c_7 48 469 000 273.82% 3 12 966 004 0.00% 107 12 966 004 0.00% 138 12 966 004 0.00% 138 12 966 004 0.00% 70 70
16 france_4_c_7 8 619 000 39.69% 3 6 170 002 0.00% 85 6 170 002 0.00% 73 6 170 002 0.00% 73 6 170 002 0.00% 45 45
17 france_5_c_7 32 692 000 122.35% 3 14 703 000 0.00% 67 14 703 000 0.00% 68 14 703 000 0.00% 68 14 703 000 0.00% 46 46
18 france_6_c_7 68 328 900 176.07% 4 24 835 010 0.34% 261 24 751 006 0.00% 89 24 751 006 0.00% 523 26 433 005 6.80% 213 213

Average: 141.93% 3 0.04% 105 0.49% 86 0.00% 135 1.34% 87 87

N° Name Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$] GAP  [%]
CPU 
[sec]

Cost [$]
GAP  
[%]

CPU 
[sec]

Cost [$] GAP  [%]
CPU 
[sec]

CPU to 
best [s]

19 chile_1_a 8 340 2.77% 1 8 115 0.00% 34 8 115 0.00% 12 8 115 0.00% 12 8 130 0.18% 24 24
20 chile_2_a 18 300 15.75% 1 15 810 0.00% 14 15 810 0.00% 12 15 810 0.00% 12 15 825 0.09% 24 24
21 chile_3_a 31 380 24.67% 1 25 170 0.00% 36 25 170 0.00% 18 25 170 0.00% 18 25 200 0.12% 32 32
22 chile_4_a 8 580 4.00% 1 8 250 0.00% 11 8 250 0.00% 13 8 250 0.00% 13 8 265 0.18% 23 23
23 chile_5_a 22 680 20.19% 1 18 870 0.00% 13 18 870 0.00% 14 18 870 0.00% 14 18 885 0.08% 24 24
24 chile_6_a 47 580 52.35% 1 31 230 0.00% 41 31 230 0.00% 16 31 230 0.00% 16 31 275 0.14% 28 28
25 chile_7_a 10 800 3.15% 1 10 470 0.00% 10 10 470 0.00% 12 10 470 0.00% 12 10 485 0.14% 23 23
26 chile_8_a 30 800 14.12% 1 26 990 0.00% 14 26 990 0.00% 14 26 990 0.00% 14 27 005 0.06% 24 24
27 chile_9_a 63 500 34.68% 1 47 150 0.00% 36 47 150 0.00% 16 47 150 0.00% 16 47 195 0.10% 32 32
28 chile_10_a 12 600 2.69% 1 12 270 0.00% 10 12 270 0.00% 13 12 270 0.00% 13 12 285 0.12% 23 23
29 chile_11_a 34 400 12.46% 1 30 590 0.00% 15 30 590 0.00% 13 30 590 0.00% 13 30 605 0.05% 24 24
30 chile_12_a 68 900 31.11% 1 52 550 0.00% 36 52 550 0.00% 14 52 550 0.00% 14 52 595 0.09% 31 31
31 chile_1_b 8 340 2.21% 1 8 160 0.00% 10 8 160 0.00% 10 8 160 0.00% 10 8 400 2.94% 23 23
32 chile_2_b 18 300 9.32% 1 16 740 0.00% 13 16 740 0.00% 11 16 740 0.00% 11 16 980 1.43% 24 24
33 chile_3_b 31 380 19.13% 1 26 340 0.00% 21 26 520 0.68% 13 26 340 0.00% 35 26 760 1.59% 29 29
34 chile_4_b 8 580 2.14% 1 8 400 0.00% 12 8 400 0.00% 11 8 400 0.00% 11 8 640 2.86% 23 23
35 chile_5_b 22 680 14.55% 1 19 800 0.00% 11 19 800 0.00% 12 19 800 0.00% 12 20 040 1.21% 24 24
36 chile_6_b 47 580 46.85% 1 32 400 0.00% 17 32 580 0.56% 14 32 400 0.00% 30 32 820 1.30% 31 31
37 chile_7_b 10 800 1.69% 1 10 620 0.00% 12 10 620 0.00% 12 10 620 0.00% 12 10 860 2.26% 24 24
38 chile_8_b 30 800 10.32% 1 27 920 0.00% 11 27 920 0.00% 12 27 920 0.00% 12 28 160 0.86% 24 24
39 chile_9_b 63 500 31.42% 1 48 320 0.00% 19 48 500 0.37% 16 48 320 0.00% 29 48 740 0.87% 32 32
40 chile_10_b 12 600 1.45% 1 12 420 0.00% 11 12 420 0.00% 12 12 420 0.00% 12 12 660 1.93% 24 24
41 chile_11_b 34 400 9.14% 1 31 520 0.00% 12 31 520 0.00% 13 31 520 0.00% 13 31 760 0.76% 26 26
42 chile_12_b 68 900 28.26% 1 53 720 0.00% 16 53 900 0.34% 16 53 720 0.00% 34 54 140 0.78% 30 30
43 chile_1_c 8 340 000 2.96% 1 8 100 001 0.00% 10 8 100 001 0.00% 11 8 100 001 0.00% 11 8 100 002 0.00% 24 24
44 chile_2_c 18 300 000 15.97% 1 15 780 002 0.00% 11 15 780 002 0.00% 12 15 780 002 0.00% 12 15 780 003 0.00% 25 25
45 chile_3_c 31 380 000 24.82% 1 25 140 002 0.00% 35 25 140 002 0.00% 16 25 140 002 0.00% 16 25 140 004 0.00% 28 28
46 chile_4_c 8 580 000 4.38% 1 8 220 002 0.00% 11 8 220 002 0.00% 12 8 220 002 0.00% 12 8 220 003 0.00% 24 24
47 chile_5_c 22 680 000 20.38% 1 18 840 002 0.00% 13 18 840 002 0.00% 12 18 840 002 0.00% 12 18 840 003 0.00% 24 24
48 chile_6_c 47 580 000 52.50% 1 31 200 002 0.00% 43 31 200 002 0.00% 19 31 200 002 0.00% 19 31 200 005 0.00% 30 30
49 chile_7_c 10 800 000 3.45% 1 10 440 002 0.00% 12 10 440 002 0.00% 12 10 440 002 0.00% 12 10 440 003 0.00% 23 23
50 chile_8_c 30 800 000 14.24% 1 26 960 002 0.00% 16 26 960 002 0.00% 12 26 960 002 0.00% 12 26 960 003 0.00% 25 25
51 chile_9_c 63 500 000 34.76% 1 47 120 003 0.00% 37 47 120 003 0.00% 21 47 120 003 0.00% 21 47 120 005 0.00% 30 30
52 chile_10_c 12 600 000 2.94% 1 12 240 002 0.00% 11 12 240 002 0.00% 11 12 240 002 0.00% 11 12 240 003 0.00% 23 23
53 chile_11_c 34 400 000 12.57% 1 30 560 002 0.00% 15 30 560 002 0.00% 14 30 560 002 0.00% 14 30 560 003 0.00% 26 26
54 chile_12_c 68 900 000 31.19% 1 52 520 003 0.00% 34 52 520 003 0.00% 20 52 520 003 0.00% 20 52 520 005 0.00% 30 30

Average: 17.07% 1 0.00% 19 0.05% 14 0.00% 15 0.56% 26 26

GAP_Y = (Y ‐Y*)/Y*

b)
 E
m
ph

as
iz
e 
st
ab
ili
ty

c)
 E
m
ph

as
iz
e 
m
in
im

iz
in
g 
de

la
y

Heuristic Heuristic Heuristic Exact (subproblem: SAPI [12 h]) ‐ Heuristic

a)
 B
al
an
ce
 s
ta
bi
lit
y 
an
d 
m
in
im

iz
in
g 
de

la
y

(subproblem: SAPI [3.5 h])

a)
 B
al
an
ce
 s
ta
bi
lit
y 

an
d 
m
in
im

iz
in
g 

de
la
y

b)
 E
m
ph

as
iz
e 
   
   
 

st
ab
ili
ty

c)
 E
m
ph

as
iz
e 
   
  

m
in
im

iz
in
g 
de

la
y

Instance
Method O1: Right‐shift Method O4: I‐LS Method S3: SAPI Method S4: SAPI CP‐based algorithm

Instance
Method O1: Right‐shift Method O4: I‐LS Method S3: SAPI Method S4: SAPI CP‐based algorithm

Heuristic Heuristic Heuristic Exact

Figure 6.7: Comparative Analysis for the CPU time required for computing the best solution (Net-
work 1 and 2). Algorithm 4 versus several methods presented in the previous chapters.
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Generalization of SAPI
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Abstract of the Chapter

All rescheduling problems share singular characteristics that can be exploited by a
generic version of SAPI. In this chapter you will find a generalization of SAPI, initially
developed for the railway rescheduling problem in Chapter 5. This methodology is
divided into two big phases composed in total of nine steps. A complementary appli-
cation of SAPI is then presented in the next chapter.

7.1 Introduction

Scheduling concerns the arrangement of a number of related operations in time. In this
manner, there are many different kinds of scheduling problems depending on the ap-
plication field. For example, manufacturing scheduling problems consist in allocating
different resources (machines) to task (operations) to create products by maximizing the
revenues (or minimizing costs). On the other hand, transportation scheduling problems
usually concerns the construction of a timetable: arrival and departure times of every
vehicle or container (e.g., buses, trains, or airplanes) for the corresponding element in
the network (e.g., bus stops, stations, airports, or airport gates). Both, manufacturing
and transportation, have to deal with several constraints: following a feasible sequence,
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Chapter 7. Generalization of SAPI

respecting minimal and maximal processing (translating) time, assuring combination of
parts (correspondences), and others depending on the characteristics of every problem.

As it was introduced in Chapter 3, disruption management and rescheduling can be
defined as a reactive process of repairing a disturbed schedule after unexpected inci-
dents. Some examples of possible incidents are: breakdown, scraps, due date’s changes,
order cancelations, and other kind of delays.

There are two important characteristics in general disruption management prob-
lems that are exploited by this method. First, because it is a repair problem, a reference
base solution is known. It is expected that this reference plan has been optimized with
a previous method, and it is necessary to return to this plan as soon as possible. This
solution corresponds to the planned schedule before disturbances, called the original
plan. And second, it is expected that disturbances are propagated depending on some
factors. Therefore, in simple words, the thesis of the methodology is that it is possible
to determine which part of the problem will be affected by given disturbances consid-
ering some easy to calculate factors. Thus, computational effort will be concentrated
in the most affected area of the system, while the rest could be equal or very similar to
the original plan and discarded in the solution search space. As a result, the CPU time
could decrease drastically without losing possibility to obtain good solutions.

In particular, to study the propagation of disturbances, we propose to use a statis-
tical analysis with logistic regression widely used in different science fields. Then, the
method uses the results of this regression for reducing the complexity, e.g., by fixing
integer variables in a MIP model. In this way, SAPI reduces the number of variables
and so on the size of the feasible region, i.e., the solution search space.

The remainder of the chapter is organized as follows. The proposed methodology is
developed in Section 7.2. The first phase (learning) is presented in Section 7.3 while the
seconde one (implementation) is presented in Section 7.4. Finally, some conclusions are
drawn in Section 7.5. A complementary application of SAPI is discussed in Chapter 8.

7.2 Description of the Methodology

The proposed methodology is divided in two phases: design & learning and imple-
mentation. Every phase has several steps (see Table 7.1). It should be noted that these
steps are general guidelines that must be adapted to the problem to solve.

The first phase is Design & Learning. The objective is to formulate the problem and
estimate the required parameters. This phase is divided in five steps. As other design
tasks, there is not a detailed manual and it requires creativity and knowledge in the
problem with the purpose of having good results. As a design and learning phase, this
phase will be performed only once (obviously it could be reviewed) and, in general, it
is invariable for every instance of the problem. The results of this phase give a guide
and parameters for making an algorithm implemented in the second phase.

On the other hand, the Implementation phase is the set of steps used to solve each
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7.3. Phase I. Design and Learning

instance. Thus, these steps have to be repeated every time one wants to solve a specific
instance, i.e., these steps define a solution algorithm.

Table 7.1: Phases and steps of the methodology

Phase Step

I. Design & Learning

1. Defining events.
2. Formulating the rescheduling problem (modeling).
3. Defining the aspect to be reduced.
4. Defining a regression model.
5. Estimating coefficients for the regression model.

II. Implementation

6. Calculating an initial solution X0.
7. Calculating values of the factors and the probabilities.
8. Reducing the complexity using the probabilities.
9. Solving the problem.

7.3 Phase I. Design and Learning

Step 1. Defining Events in the Scheduling Problem

The term "event" is understood as a point in time that represents the start or completion
of a set of activities, i.e., operations or movements of vehicles. Thus, it is necessary to as-
sociate the decision variables of the model to specific events of the problem. Obviously,
this task depends on the chosen formulation. For example, for the railway reschedul-
ing problem described in Chapter 4, events are the arrivals and departures of trains. In
general, these events are strongly interconnected. As a consequence, any disturbance
on a specific event may affect also other related events.

Step 2. Formulating the Rescheduling Problem (Modeling)

This step consists in creating an abstract model using a mathematical language for de-
scribing a specific rescheduling problem. The model has to describe the system using
a set of variables and constraints that determine relationships between variables. The
values of variables could be: real or integer number, boolean (binary) values or strings.
In general, models could by classified by different perspectives: linear or nonlinear,
static vs. dynamic, deterministic vs. probabilistic (or stochastic). As a result of this
step, it is possible to have for example: a constraint programming (CP) formulation or
a mixed integer programming (MIP) formulation.

In addition to the formulation, the "original plan" must be known. The original
plan is the schedule arrangement before any disturbances. Thus, the objective of the
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formulation is to obtain a new provisional plan as close as possible to the original one,
i.e., minimizing the impact of disturbances. Therefore, if there are no disturbances,
the new provisional plan should be exactly the original plan. As a result, minimizing
the impact of disturbances is to minimize the difference between both plans. Here,
the word "difference" could be, for example, the delay occurred by the disturbance, or
changes in assignment of resources.

Step 3. Defining the Aspect to be Reduced

To perform this step, it is necessary to answer this question: if there is an "oracle" telling
us what (and how) events are going to be affected by a given disturbance, how is it
possible to use this information to reduce the problem?

The answer of this question depends on the model. In general, it will be possible to
eliminate several variables corresponding to events not affected, or to define efficient
branching rules in Branch and Bound algorithms.

As the objective of this methodology is to simplify the problem, a good way to
reduce the problem it is to reduce the source of combinatory. For example, in MIP
formulations, we are more interested in reducing the number of integer variables than
the continuous one.

Therefore, in this step we could define what kinds of integer variables may be fixed.
For constraints models, for example, we could be interested in reducing the search
space (domain reduction) or customizing an appropriate search strategy

Step 4. Defining a Regression Model: Logistic Regression Analysis

Logistic regression has been used in diverse fields with very good results. Logistic
regression is part of a category of statistical models called generalized linear models.
General linear models analyze one or more continuous dependent variables and one
or more independent variables, whether they are categorical or quantitative. Note
that an independent variable is typically the variable being changed and the depen-
dent variable is the observed result of the independent variable being changed, i.e., the
dependent variable depends on the value of the independent variables. The relation-
ship between a dependent variable and some independent variables is expressed as an
equation that contains a term for the weighted sums of the values for the independent
variable, plus a term for all the unknowns, i.e., the error term.

In particular, logistic regression analysis allows analysts to estimate multiple regres-
sion models when the response is binary, i.e., 0 or 1. Therefore, our model has two pos-
sible outcomes: 1, if the variable associated to an event is affected by the disturbance,
and 0 in other case.

The relationship between the predictor (independent) and response (dependent)
variables is not a linear function in logistic regression; instead, the logistic regression
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function is:

θ =
e(α+∑n

i=1 βizi+ε)

1 + e(α+∑n
i=1 βizi+ε) (7.1)

Where:

α: Constant of the equation and,

β: Coefficient of the predictor variables.

ε: Error term.

The possible outcomes for each response variables are 1, with a probability θ, and 0
with the probability 1-θ, where 0 <= θ <= 1. Let us notice that this type of variables is
also called Bernoulli variables in probability theory terminology.

Finally, if we associate to each event a response variable then the value 1 indicates
that the event may be affected by a disturbance with the probability θ or not with a
probability 1-θ.

On the other hand, the independent variables can take any form, because logistic
regression makes no assumption about the distribution of the independent variables.
Therefore, they do not have to be normally distributed, linearly related or of equal
variance within each group.

To find the predictor variables, it is necessary to identify a set of factors that may
explain why an event is affected or not by a disturbance. Unfortunately, there are no
rules to define such factors. Depending on how an event is defined for a given problem,
different factors may be found. Nevertheless, some "generic" factors (reported below)
can be defined, but should be fitted on the model that has to be solved:

• A measure of distance between the first disturbance and the event: one expects to
have a negative correlation, i.e., the longer distance from the original disturbance,
the lower probability to be affected.

• A quantification of resources shared close to the event. The probability to be af-
fected may be partially explicated by the number of resources in the neighbor-
hood of the event.

• A quantification of density of other events close to the event. Dense system are
prone to be affected by disturbance.

Step 5. Estimating Coefficients for the Regression Model

The goal of this step is twofold: estimating the coefficients and validating the signif-
icance for the regression model. Both are result of the same process of analyzing a
statistical sample.
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The process can be explained as follows. After solving an easy instance using, for
example, state-of-the-art solvers; we have the values for the decision variables in the
solution and other information that permits calculating the values of the independent
variables. Both independent variables and observed values for the dependent variable
compose a "statistical sample". With this sample, it is possible to estimate the coeffi-
cients of the regression model using an appropriate method, for example the method of
least squares. This approach finds the best fit in the least-squares sense by minimizing
the sum of squared residuals. In this context, a residual is the difference between an
observed value of the dependent variable and the value given by the regression model.

The second objective of this step is to validate the regression model. Consequently,
it is necessary to study the significance of the whole model, in general; and of each
factor in particular.

A good method to study the fitness of the model and its variables is Chi-Square
Goodness-of-Fit Test that determines whether the logistic function adequately fits the ob-
served data. Also, it is necessary to estimate correlations between the coefficients in
the fitted model. These correlations can be used to detect the presence of serious mul-
ticollinearity, i.e., correlation amongst the predictor variables, and determining which
factors could be redundant with others.

Sometimes the whole model is significant, but it could contain too many indepen-
dent variables and the elimination of some of them should be studied. Stepwise re-
gression is used in the exploratory phase of research where the goal is to discover re-
lationships. Between the main approached in stepwise regression, backward elimination
appears to be the preferred method of exploratory analysis, where the analysis begins
with a full or saturated model and variables are eliminated from the model in an it-
erative process. The fit of the model is tested after the elimination of each variable to
ensure that the model still fits the data. When no more variables can be eliminated from
the model, the analysis has been completed.

7.4 Phase II. Implementation

The model provided by the previous steps has to be naturally implemented and solved.
We call this stage "Implementation Phase". It is necessary in this phase to choose an
adequate programming language and software, for instance IBM ILOG CPLEX for a
MIP model or IBM ILOG CP Optimizer for a CP model. But, it is also necessary to fix
as better as possible a series of aspects dealing with the initial solution, factor values,
and preprocessing aspects. These points are discussed below.

Step 6. Calculating an Initial Solution from the Original Plan

From the original schedule an initial solution may be quickly computed by keeping
unchanged the order of tasks, (e.g., trains, flights, and buses) and the assignment of re-
sources (e.g., tracks, gates, and aircrafts ). This procedure, called "Right-Shift Reschedul-
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ing" is general, in the sense that it can be applied to any rescheduling problem (Ovacik
and Uzsoy, 1992). The resulting solution is in many cases not good (far from the optimal
solution) since it is equivalent to directly propagate delays to other tasks. Nevertheless,
it is very easy to compute and many of the events (not concerned by the disturbance)
of such solution are exactly the same as in the optimal solution.

Step 7. Calculating Values of the Factors and Probabilities

In the design & learning phase it was defined a regression model and coefficients for
significant factors. The goal of this step is to evaluate the regression model for every
select decision variable. Note that, in practice, the regression model (see equation 7.1)
is going to give a real number 0 ≤ θ ≤ 1. This value is interpreted as the probability of
variables to be affected by the disturbance.

Step 8. Reducing the complexity using the probabilities

There are several ways to reduce the problem using the calculated probabilities. In
this section we expose four strategies: using random numbers for selecting variables
to fix; taking the x% of variables with higher probabilities in the reduced problem,
while the rest are fixed; splitting the set of variables in several subsets according to the
probability, and for every subset add appropriate cuts; and finally mixing the previous
three strategies.

Strategy 1. Using random numbers to select variables to fix This strategy consists in
generating Bernoulli random variables for every variable considered in the regression
model. The Bernoulli distribution is a discrete probability distribution that takes value 1
with probability p and 0 with probability 1− p . Thus, it will be used a random number
generator to generate Bernoulli variables where p = θ (the probability calculated in
the previous step using the regression model). If the random generation gives a value
equal to 0, the variable associated will be fixed to its value in the current incumbent
solution, e.g., initial solution. The rest of the decision variables will be calculated by a
solving procedure.

The number of eliminated variables could be calculated.

In a special case that all variables are bernoulli variables with the similar character-
istic, i.e., the same value for the probability p = θ0, the distribution of the number of
the fixed variables is called Binomial and its mean is:

y = E(x)
= n(1− θ0)

Where:
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y: Expected number of fixed variables.

n: Number of variables possible to fix.

x ∼ B(n, 1− θ0)

On the other hand, if the values of the probability p, for each Bernoulli variable,
differs then the mean is calculated by

y =
n

∑
j=1

(1− θj) (7.2)

Where:

y: Expected number of fixed variables.

n: Number of variables possible to fix.

Using this strategy, it is possible to adapt a method called Mimausa proposed by
(Mautor and Michelon, 1997) (Mautor and Michelon, 2001). Mimausa is an iterative
heuristic method and at each iteration, a limited set of k variables are selected while the
other variables are fixed to their current value. Then a reduced size subproblem with
only k variables is then solved optimally.

Adapted to this method, one performs several iterations updating the reference plan
with the last best known solution. Because of the random generator of Bernoulli vari-
ables, at each iteration the procedure probably takes different variables. Note that each
iteration gives, at least, the same current solution.

Strategy 2. Taking the x% of variables with the highest probabilities in the reduced
problem, while the rest are fixed It is exactly the same base idea of fixing variables
that Strategy 1. The difference is, instead of generate a random Bernoulli variables, this
strategy will fix all variables with the highest probabilities (θ) until select the x% of the
total number of variables. As a consequence, the number of the fixed variables is a
constant.

A significant difference with the first strategy is that this strategy will give exactly
the same result for two independent running of the same instance because there is no
random numbers involved in the process.

Strategy 3. Splitting the set of variables in several subsets according to the probabil-
ity, and for every subset add appropriate cuts This strategy is used only in the case
when the associated variables (or some of them) are binary.

Strategies 1 and 2 are based on (hard) variable fixing or diving idea. The main
problem is that it is very hard to detect if the selection of the variables was appropriated.
So, a good question is how to fix variables without losing the possibility of finding
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good solutions. A soft fixing idea was given by (Fischetti and Lodi, 2003) using Local
Branching cuts.

Let B, represents index set of binary variables. Additionally, X0 corresponds the
vector of values of a feasible solution of the problem, using the original or reference
plan. Let S = {j ∈ B : x0

j = 1} and R = {j ∈ B : x0
j = 0}. For a known integer

parameter k, it is possible to define a k−OPT neighborhood as a set of feasible solutions
of the problem, and satisfying the additional local branching constraint:

∑
j∈S

(1− xj) + ∑
j∈R

(xj) ≤ k (7.3)

The constraint 7.3 gives the maximal number of variables that will split their values
i.e. from one to zero or from zero to one. Adding this constraint to the model, the space
search solution will decrease.

The strategy 3 consists in adding several local branching constraints, each of them
grouping variables according to the probability calculated earlier. Variables with high
probability to be affected will use a high value of k. That means that a large number
of changes will be allowed for them. At the opposed, a group of variables with less
probability to be affected will use a modest value of k.

Strategy 4. Mixing strategy 2 and 3 To use a mix strategy, it is possible to split the set
of variables in three subsets as follows:

• The first subset will contain X% of free variables with higher probabilities to be
affected.

• The second subset will contain other Y% of the variables with higher probabilities
for which local branching cuts will be used. Let us notice that this set could be
also split in several subsets using different values of k: large values of k for high
probability variables and lower values of k for low probabilities variables.

• The third subset will contain the rest of the variables fixed to their values in the
theoretical plan.

Step 9. Solving the problem

Following problem reduction, the last step is to solve it. At this point it is necessary to
define two aspects: iterations and the ending criteria.

This procedure could be iterative or not. A non iterative method consists in just
solving the first reduced problem found and return the solution. In contrast, an itera-
tive procedure solves several reduced size subproblems with the intention to reach the
optimum.

141



Chapter 7. Generalization of SAPI

The question here it is how to form new reduced problems in each iteration. De-
pending on the way the problem was reduced (see the previous step to select a strat-
egy), it is possible to repeat the procedure changing the reference solution (incumbent)
and to solve again. Another possibility is to modify the values of the probabilities, for
example at each iteration multiplying the values of all probabilities by a factor g ≥ 1 in
order to increase the size of the search space.

There are many possible ending criteria. First, a maximal number of iterations with-
out improvements in the objective function. Second, a maximal running time. And
finally, the algorithm must stop when the reduced problem corresponds exactly to the
original one’s.

7.5 Conclusions

In this chapter a new methodology, called SAPI (Statistical Analysis of Propagation
of Incidents), has been proposed for disruption management problems. One of the
characteristics of these kinds of problems is that a base/reference schedule is known,
and the objective it is to create a new provisional schedule as close as possible to the
original plan in order to return as soon as possible to normal (optimized) operations.
This main aspect is exploited by SAPI. The method focuses the computational effort in
the part mostly affected by disturbances.

SAPI assumes that the effects of disruptions can be propagated to other upcom-
ing events. Nevertheless, this propagation is not uniform to all events and could be
forecasted by a statistical analysis. For example, events near to the incidents have a
high probability to be disrupted and it seems to be logic to try rescheduling them. In
contrast, events that are far away from the incidents will be probably unchanged (in
comparison to the original plan).

The main idea in SAPI is to suppose that the probability for an event to be affected
by a given disturbance can be determined by several factors. A statistical analysis,
using logistic regression, is used to compute these probabilities.

Afterwards, resulting probabilities allow reducing the problem by eliminating from
the problem all events for which corresponding probabilities are under a prefixed thresh-
old.

Two different applications of SAPI can be consulted in Chapter 5 and Chapter 8.
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Application of SAPI for
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Abstract of the Chapter

This chapter deals with an application of SAPI to another rescheduling problem in the
airline industry. The problem to solve is closed to the train rescheduling one’s and has
been proposed in the ROADEF challenge 2009 on Disruption Management for Commercial
Aviation, an international algorithmic challenge organized by the French Operational
Research Society (ROADEF) . The problem consists in rescheduling flights, aircraft and
passengers simultaneously after some disturbances. SAPI has been adapted success-
fully for this problem and tested using the instances of the challenge. The algorithm
was compared with several approaches developed by 27 different research teams. The
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procedure shows to be viable in practice and obtained the third place in that interna-
tional competition

8.1 Introduction

Airline industry is one of the most competitive and capital-intensive industry in the
world. Suitable use of resources and scheduling of operations have a direct impact on
company returns, this is the reason why optimization and OR techniques have an im-
portant role. Airlines operate following an optimized schedule of flights taking into
account many factors such as the availability of crew members, the demand of passen-
gers, and several other operational constraints. Nevertheless, following normal opera-
tions is not always possible. Day after day, many little disruptions perturb the original
schedule that becomes suboptimal and, in some cases, infeasible. For example in the
USA, only 76.04 percent of flights were on-time from January 2008 to December 2008
while the rest were canceled or delayed, i.e., they arrived 15 or more minutes later than
the original schedule1.

As a consequence airlines are more and more interested in systems to return as
quickly as possible to normal operations after disruptions. A very good example of this
interest can be observed with the software called "CrewSolver" developed by CALEB2

for Continental Airlines. This decision support system uses operations research to gen-
erate globally optimal, or near optimal, crew recovery solutions while satisfying mul-
tiple complex constraints. Thus it allows pilots and flight attendants to return to their
original schedules quickly after disruptions. The impact of this system was internation-
ally recognized and the creators of the systems won the Franz Edelman Award3 in 2002
(Yu et al., 2003).

Good surveys of disruption management for flight scheduling can be found in (Fi-
lar et al., 2001), (Yu and Qi, 2004), (Clausen et al., 2005). The first articles published in
the literature appeared in the mid-1980s with the works of Teodorovic et al. (Teodor-
ovic and Guberinic, 1984), (Teodorovic and Stojkovic, 1990), (Teodorovic and Stojkovic,
1995). In these works the problem is to find a new daily flight schedule in circum-
stances where some aircraft become unavailable. Later, Jarrah et al. (Jarrah et al., 1993)
presented the first relevant computational results indicating cost reductions between
20% and 90% compared with an unoptimized schedule recovery procedure. This ap-
proach was implemented by United Airlines reporting $540,000 savings in delay costs
from October 1993 to March 1994 (Rakshit et al., 1996).

A relevant work considering an integrated approach was presented by Lettovskt́ in
1993 (Lettovský, 1997). In this work the Airline Integrated Recovery (AIR) procedure
has been proposed. Many systems are currently based on AIR. The AIR model inte-
grates decision variables and constraints belonging to three aspects: crew assignment,

1Bureau of Transportation Statistics. http://www.transtats.bts.gov/
2CALEB Technologies Corp. http://www.calebtech.com/
3INFORMS Edelman Award is also known as the "super-bowl" of Operations Research
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aircraft routing, and passenger flow. This combination was computationally intractable
because of the complexity of the mixed integer linear programming formulation created
to model the problem. The AIR is then decomposed into subproblems where the mas-
ter problem is the Schedule Recovery Model (SRM). An iterative procedure solves SRM
first, then the Aircraft Recovery problem and the Crew Recovery problem. This procedure
is repeated until a satisfactory solution is found. The third and last subproblem, the
Passenger Flow model, finds new itineraries for disrupted passengers.

Nevertheless, trying to return to normal operations by decomposing the problem
into sequential decision levels does not guarantee a global optimum, and the last as-
pect (passengers) tends to be more affected. For this reason we consider an integrated
point of view, addressing the problem of rescheduling aircraft, flights, and passengers
simultaneously after disruptions.

The remainder of the chapter is organized as follows. The next section details the
airline rescheduling problem. In Section 8.3 a Mixed Integer Programming formula-
tion (MIP) is presented to model this problem. Our algorithm proposed for solving the
problem is described in Section 8.4. Section 8.5 details the main aspect of the algorithm:
SAPI (Statistical Analysis of Propagation of Incidents) that is based on the regression anal-
ysis developed in Section 8.6. In Section 8.7 we report the results of the computational
tests performed in the context of the competition ROADEF challenge 2009. Finally, our
conclusions and future directions of research are summed up in the last section.

8.2 Description of the Problem

We consider the problem of repairing a perturbed flight schedule after disruptions as
presented in the ROADEF challenge 2009 "Disruption Management for Commercial Avia-
tion" (ROADEF, 2008). Figure 8.1 outlines this problem with three main components:
data (inputs), optimization procedure and results (outputs).

Before detailing the problem, we present the basic terminology used in this doc-
ument. A flight refers to a scheduled airline trip, which is an origin airport which is
associated with a departure time and the destination airport which is associated with
an arrival time. An aircraft refers to a physical airplane identified by a unique code that
is used to fulfill a flight. A rotation is an aircraft route, i.e., is a sequence of connected
flights that are served by an aircraft. An itinerary is a set of one or several passenger(s)
sharing basic characteristics for their trip. The description of the itinerary is composed
of one or several flight legs with one cabin class specified for each leg.
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Initial Plan Perturbations Parameters

• Aircrafts, 
Airports, Flights, 
Passengers, 
Rotations

• Aircrafts
• Airports
• Flights

• Recovery Window
• Costs

Data

Rotations

Problem

• To generate a new flight schedule valid for the length of • To generate a new flight schedule valid for the length of Optimization g g g
the recovery window.

• To minimize the cost and the total impact to passengers

g g g
the recovery window.

• To minimize the cost and the total impact to passengers

Optimi ation

Solution

• New itineraries for passengers
• New rotations of aircrafts
• New itineraries for passengers
• New rotations of aircrafts

Results
New rotations of aircraftsNew rotations of aircrafts

Figure 8.1: The problem: ROADEF challenge 2009.

Data (Inputs)

Foremost, an original (unperturbed) schedule is known, that is departure/arrival times,
aircraft rotation plan, and the itineraries (origin - destination - flights) for a set of pas-
sengers. Other initial information is also given: aircraft and airport capacities, the
length of the recovery window, and unitary costs for calculating the objective func-
tion.

Whatever the disruptions are, they are modeled as followings:

• Flight delays: A given lateness in departure and arrival of some flights.

• Cancelation of flights: A flight that was canceled and cannot be served by any
aircraft.

• Unavailability of aircraft: An aircraft that cannot fly in a given period of time.

• Temporary reductions in airport capacities: The capacity of departures and ar-
rivals are limited for a given period of time.
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Optimization

The goal is to recover a perturbed flight schedule through different decisions such as
delaying/canceling flights, changing aircraft assignments, and rescheduling/canceling
passengers. In particular, we are interested in a new provisional schedule that mini-
mizes both: impact in operational costs and impact for passengers.

Additionally, several constraints have to be considered. They can be classified in
two types: hard and soft. On the one hand, hard constraints must be respected in any
feasible solution. In other words, if one of the constraints is violated the solution is au-
tomatically considered unfeasible and cannot be implemented. On the other hand, soft
constraints could be interpreted as "desirable" requests. Violations of such constraints
are penalized in the objective function. Hard and soft constraints are described below.

Hard Constraints

H1 : Aircrafts have a limited seating capacity distributed in different cabins.
H2 : All aircraft have to perform all planned maintenances.
H3 : Airports have a limited capacity.
H4 : There is a minimum connection time for every passenger.
H5 : There is a minimum turn-round and transit time for aircraft.
H6 : Surface public transportation cannot be modified.
H7 : A modified itinerary must have the same final destination as the original

itinerary
H8 : The maximum total delay for passengers at the destination (as compared

to the original itinerary) must not exceed 18 hours for domestic and
continental flights, and 36 hours for an intercontinental flight.

H9 : All flights have to respect the range of the aircraft.
H10 : The duration of original flights is fixed.

Soft Constraints

S1 : Each aircraft has to be at its final position by the end of the recovery time window.
S2 : Each passenger has to arrive to their original destination on-time.
S3 : Flights cannot be canceled.
S4 : Passengers cannot be canceled.
S5 : Passengers cannot be downgraded, e.g., passing from first to economic class.

Results (Outputs)

Finally, the output is composed of two elements: new itineraries and new rotations.
The first one is a file with new routes for passengers considered in the problem. These
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itineraries include a list of all the flights already taken by passengers before the begin-
ning of the recovery window, and the flights that passengers will have to take during
the recovery window. The second element of the solution is the new flight/aircraft
schedule, known as rotations. Every flight is associated to one aircraft (or canceled),
specifying the new arrival and departure times.

8.3 Mathematical Formulation

We propose a Mixed Integer Programming (MIP) formulation to model this problem.
This formulation involves all constraints presented in the previous section. Roughly
speaking, "hard constraints" are modeled as restrictions that the decision variables must
satisfy, and the objective function represents the weighted average cost or penalization
of violating "soft constraints". Note that these penalty coefficients were given for every
instance of the ROADEF challenge 2009.

The MIP model could be interpreted as two integrated multi-commodity flow prob-
lems: the first one related to aircraft flowing through airports and the second one to
passengers flowing through flights. As other multi-commodity flow problems, the
mathematical formulation includes capacity, flow conservation and demand satisfac-
tion constraints. This particular problem is NP-complete, because the original multi-
commodity flow problem is shown to be NP-complete for integer flows (Even et al.,
1976).

In this section we describe all elements of the model: indices, sets, data, costs, deci-
sion variables, objective function, and constraints.

Indices and Sets

The indices and the general sets used in this formulation are:

p: Index for airports.

i: Index for aircraft.

j: Index for flights.

k: Index for itineraries.

m: Index for cabin types.

t: Index for time.

P: Set of airports.

F: Set of flights in the recovery time window.

A: Set of aircraft.
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I: Set of itineraries.

C: Set of cabin types.

T: Set of slots of time in the recovery time window.

FlightAirportA
p : Set of flights arriving to airport p ∈ P.

FlightAirportD
p : Set of flights departing from airport p ∈ P.

Additional sets, defined to reduce the size of the problem, are:

DirIt: Set of passengers who require a direct flight.

ConIt: Set of passengers who are allowed to take two or more flights (with connec-
tions).

CompFA
i : Set of flights compatible with aircraft i ∈ A.

CompFI
k : Set of flights compatible with itinerary k ∈ I.

CompNFF
j : Set of (next) flights compatible with an aircraft after flight j ∈ F.

CompAF
j : Set of aircraft compatible with flight j ∈ F.

CompIF
j : Set of itineraries compatible with flight j ∈ F.

CompFFA
i : Set of the first flights compatible with aircraft i ∈ A, i.e., only one of these

flights can be the first flight of aircraft i.

CompFFI
k : Set of the first flights compatible with itinerary k ∈ I, i.e., only one of

these flights can be the first flight of itinerary k.

CompLFI
k : Set of the last flights compatible with itinerary k ∈ I. i.e., only one of

these flights can be the last flight of itinerary k.

CompAPA
i : Set of airports compatible with aircraft i ∈ A.

CompAPI
k : Set of airports compatible with itinerary k ∈ I.

ConnI
k: Set of pairs of flights where a connection for itinerary k ∈ I is possible.

Data

Other important data are:

nk: Number of passengers of itinerary k ∈ I.

Orik: Origin airport of itinerary k ∈ I.

Destk: Destination airport of itinerary k ∈ I.

StartF0
j : Original departure time of flight j ∈ F.
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EndF0
j : Original arrival time of flight j ∈ F.

EndI0
k : Original arrival time of itinerary k ∈ I.

AF0
ij: 1, if aircraft i ∈ A is assigned to flight j ∈ F in the original schedule; 0 other-

wise.

IF0
kj: Original number of passengers for itinerary k ∈ I in flight j ∈ CompFk.

Airport0
i : Initial airport for aircraft i ∈ A.

dj: Duration of flight j ∈ F.

TRi: Turn-round time: minimum time to prepare the aircraft i ∈ A for the subse-
quent flight.

CT: Connection time for passengers.

Ri: Range for aircraft i ∈ A (maximal duration of a flight).

CapPA
im: Capacity of passengers for aircraft i ∈ A in cabin type m ∈ C.

CapAP
pt: Capacity of arrival flights for airport p ∈ P in time t ∈ T.

CapDP
pt: Capacity of departure flights airport p ∈ P in time t ∈ T.

LimLB
t : Lower limit of time t ∈ T.

LimUB
t : Upper limit of time t ∈ T.

M1, M2, M3, M4: Large constants.

Unitary Costs

The unitary costs for penalization in the objective function are :

cBP
ij : Unitary cost for bad position, if the last flight of aircraft i is j.

cDW
kjm : Unitary cost for downgrading, if one passenger of itinerary k take flight j in

cabin m.

cCP
k : Unitary cost for canceling one passenger of itinerary k.

cCL
k : Unitary cost (legal) for canceling one passenger of itinerary k.

cDP
k : Unitary cost for delaying one minute one passenger of itinerary k.

cDL
k : Unitary cost (legal) for delaying one minute one passenger of itinerary k.

cCanF
j : Unitary operational cost associated with flight j.
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8.3. Mathematical Formulation

Decision Variables

Decision variables of this model are:

Startj: Departure time of flight j ∈ F.

Endj: Arrival time of flight j ∈ F.

DelayI
kj: Delay of itinerary k ∈ I if the last flight is j ∈ CompLFI

k

AFij: 1, if aircraft i ∈ A is assigned to flight j ∈ CompFA
i ; 0 otherwise.

FFij: 1, if flight j ∈ CompFA
i is the first flight of aircraft i ∈ A; 0 otherwise.

LFij: 1, if flight j ∈ CompFA
i is the last flight of aircraft i ∈ A; 0 otherwise.

IFCkjm: 1, if itinerary k takes flight j ∈ CompFI
k in cabin type m ∈ C; 0 otherwise.

CFj: 1, if flight j ∈ F is canceled; 0 otherwise.

CIk: 1, if itinerary k ∈ I is canceled; 0 otherwise.

ωijĵ: 1, if flight j is before flight ĵ for aircraft i; 0 otherwise.

ρkj: 1, if itinerary k uses flight j; 0 otherwise.

HourD
jt : 1, if flight j ∈ F departs in time t ∈ T; 0 otherwise.

HourA
jt : 1, if flight j ∈ F arrives in time t ∈ T; 0 otherwise.

CostBadPosition: Total cost for bad final position of aircraft.

CostDown: Total cost for downgrading passengers.

ConstCanceledPax: Total cost associated with cancelation of trips.

CostCanceledLegal : Total legal cost associated with cancelation of trips.

CostDelayPax: Total cost associated with delay of passengers.

CostDelayLegal : Total legal cost associated with delay of passengers (food and hotel).

CostCancelFlights: Total operational cost of the canceled flights.

Objective Function

The problem studied in this chapter can be formulated as follows:

Minimize :CostBadPosition + CostDown + CostCanceledPax + CostCanceledLegal+

CostDelayPax + CostDelayLegal − CostCancelFlights (8.1)
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Chapter 8. Application of SAPI for Rescheduling Flights and Passengers

The objective function (8.1) is to minimize the rescheduling cost, defined as the
weighted sum of the absolute deviations between the planned and the provisional
schedule. The weighs for each individual cost are defined by unitary cost parameters,
e.g., cDP

k is the unitary cost for delaying one minute one passenger of itinerary k.

Note also that each component in the objective (8.1) represents a penalization of
the deviations from the original plan. For example, if all aircraft finish at the planned
airport at the end of the recovery window, then CostBadPosition = 0. In the same way,
it should be noted that there are not canceled or delayed passengers in the original plan
(without disruptions).

Constraints

The constraints of this model are classified in several sets: (a) aircraft and flights, (b)
capacity of airports, (c) passengers and aircraft seating capacity, (d) cost, and (e) domain
of variables.

Aircraft and Flights

The constraints associated to aircraft and flights are:

CFj + ∑
i ∈ CompAF

j

AFij = 1 ∀j ∈ F (8.2)

Endj = Startj + dj ∀j ∈ F (8.3)

Start ĵ ≥ Endj + TRiωijĵ −M1(1−ωijĵ) ∀i ∈ A; j ∈ CompFA
i ; ĵ ∈ CompNFF

j (8.4)

∑
j ∈ CompFA

i
ĵ ∈ CompNFF

j ∪ CompFA
i

ωijĵ = AFi ĵ − FFi ĵ ∀i ∈ A; ĵ ∈ CompFA
i (8.5)

∑
j ∈ CompFA

i
ĵ ∈ CompNFF

j

ωijĵ = AFij − LFij ∀i ∈ A; j ∈ CompFA
i (8.6)

∑
j ∈ CompFA

i

FFij ≤ 1 ∀i ∈ A (8.7)

∑
j ∈ CompFA

i

LFij ≤ 1 ∀i ∈ A (8.8)

AFij ≥ FFij ∀i ∈ A; j ∈ CompFA
i (8.9)

AFij ≥ LFij ∀i ∈ A; j ∈ CompFA
i (8.10)

Constraints (8.2) state that only one aircraft is assigned to each flight j, otherwise
the flight is canceled. Flight duration is fixed to dj, ∀j ∈ F in constraints (8.3).

Constraints (8.4) assure the minimum time, TRi, to prepare aircraft i ∈ A between
flight j and flight ĵ (the subsequent flight) where ωijĵ = 1 if flight j is before flight ĵ
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8.3. Mathematical Formulation

for aircraft i and 0 otherwise. Let M1 be a "sufficiently" large constant, e.g., the ending
time of the recovery window. Constraints (8.5) and (8.6) represent flow conservation
constraints where an aircraft has always a subsequent flight with the exception of its
last flight valid in the recovery window.

The fact that only one is the first (last) flight for a given aircraft is assured by con-
straints (8.7) and (8.8). These constraints are used to identify the earliest flight and
the latest flight in the recovery window for every aircraft. These constraints are com-
plemented by constraints (8.9) and (8.10): one flight can be the first (last) flight of an
aircraft only if this flight is assigned to this aircraft.

Capacity of Airports

The capacity constraints for airports are formulated as follows:

Endj ≥ LimLB
t HourA

jt ∀j ∈ F; t ∈ T (8.11)

Endj ≤ LimUB
t HourA

jt + M2(1− HourA
jt ) ∀j ∈ F; t ∈ T (8.12)

∑
j ∈ FlightAirportA

p

HourA
jt ≤ CapAP

pt ∀p ∈ P; t ∈ T (8.13)

Startj ≥ LimLB
t HourD

jt ∀j ∈ F; t ∈ T (8.14)

Startj ≤ LimUB
t HourD

jt + M2(1− HourD
jt ) ∀j ∈ F; t ∈ T (8.15)

∑
j ∈ FlightAirportD

p

HourD
jt ≤ CapDP

pt ∀p ∈ P; t ∈ T (8.16)

∑
t ∈ T

HourA
jt + CFj = 1 ∀j ∈ F (8.17)

∑
t ∈ T

HourD
jt + CFj = 1 ∀j ∈ F (8.18)

Constraints (8.11) and (8.12) define the value of the decision variables HourA
jt , ∀j ∈

F; t ∈ T. This variable is equal to 1 if the arrival time is between LimLB
t and LimUB

t and
0 otherwise. These parameters split the recovery window in several time slots t which
delimit the intervals of limited capacity at airports. Let M2 be a large constant chosen
as small as possible. Constraints (8.13) state the maximal number of arrival allowed
during time slot t for airport p, for all p ∈ P and t ∈ T. Similarly, constraints (8.14),
(8.15), (8.16) restrict the number of departures for the time slot t at the airport p, for all
p ∈ P and t ∈ T. Finally, constraints (8.17) and (8.18) indicate that variables HourA

jt and
HourD

jt can take value 1 only if flight j ∈ F is not canceled.
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Passengers and Aircraft Seating Capacity

The constraints associated to passengers and aircraft seating capacity are formulated as
follows:

∑
k ∈ CompIF

j

nk IFCkjm ≤ CapPA
im AFij + M3(1− AFij) ∀i ∈ A; j ∈ CompFA

i ; m ∈ C (8.19)

∑
j ∈ CompFI

k
m ∈ C

IFCkjm + CIk = 1 ∀k ∈ DirIt (8.20)

∑
j ∈ CompFFI

k
m ∈ C

IFCkjm + CIk = 1 ∀k ∈ ConIt (8.21)

∑
j ∈ CompLFI

k
m ∈ C

IFCkjm + CIk = 1 ∀k ∈ ConIt (8.22)

∑
m ∈ C

IFCkjm − ∑
m ∈ C

IFCkĵm = 0 ∀k ∈ ConIt; (j, ĵ) ∈ ConnI
k (8.23)

Start ĵ ≥ Endj + CT(ρkj + ρkĵ − 1)−M4(2− ρkj − ρkĵ) ∀k ∈ ConIt; (j, ĵ) ∈ ConnI
k

(8.24)

DelayI
kj ≥ Endj − EndI0

k −M4(1− ρkj) ∀k ∈ I; j ∈ CompLFI
k (8.25)

IFCkjm ≤ (1− CFj) ∀k ∈ I; j ∈ CompLFI
k ; m ∈ C (8.26)

IFCkjm ≤ ρkj ∀k ∈ I; j ∈ CompLFI
k (8.27)

The first set of constraints (8.19) models aircraft seating capacity, CapPA
im, for aircraft

i ∈ A and cabin type m ∈ C. Note that these constraints are "activated" only when
flight j is served by aircraft i. Let M3 be a large constant. For this constraint a good
value is M3 = nk.

For passengers taking a direct flight (set DirIt), constraints (8.20) are added to en-
sure that only one flight will be taken, otherwise the trip of the passenger must be
canceled. On the other hand, constraints (8.21), (8.22) are needed for passengers that
can take several flights with connections (set ConIt). Additionally, constraints (8.23)
guarantee the flow conservation of passengers in airports when they have a connec-
tion.

For passengers taking several flights with connections, a minimal connection time
is assured by constraints (8.24) defined by parameter CT. In other words, these con-
straints state that passengers k are allowed to take connection (j, ĵ) only if the difference
between the departure time of flight ĵ and the arrival time of flight j is greater than or
equal to CT. Let M4 be a large constant.
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8.3. Mathematical Formulation

Constraints (8.25) added to the model for computing the delay of passengers. This
value is very important to calculate some terms in the objective function. It should be
noted that these constraints are defined only for the last flight of passengers k.

The last set of constraints in this subsection are (8.26) and (8.27). They define a valid
relationship between variables IFCkjm, CFj, and ρkj. That is, a passenger can be assigned
to a flight-cabin (IFCkjm) only if this flight is not canceled (CFj). Similarly, a passenger
can be assigned to a flight-cabin only if he (she) is also assigned to this flight.

Costs

Costs of the objective function are computed as follows:

CostBadPosition = ∑
i ∈ A

j ∈ CompFA
i

cBP
ij LFij (8.28)

CostDown = ∑
k ∈ I

j ∈ CompFI
k ; m ∈ C

cDW
ijm nk IFCkjm (8.29)

CostCanceledPax = ∑
k ∈ I

cCP
k nkCIk (8.30)

CostCanceledLegal = ∑
k ∈ I

cCL
k nkCIk (8.31)

CostDelayPax = ∑
k ∈ I

cDP
k nkDelayI

k (8.32)

CostDelayLegal = ∑
k ∈ I

cDL
k nkDelayI

k (8.33)

CostCancelFlights = ∑
j ∈ F

cCanF
j CFj (8.34)

Constraint (8.28) calculates the penalization cost in the case of non-compliant loca-
tion of aircraft at the end of the recovery window. To model this constraint we consider
the last flight of the aircraft and compare the destination of this flight to the expected
location of the aircraft, where cBP

ij is the unitary cost for bad position, if the last flight
of aircraft i is flight j considering the family, the model, and the configuration of the
aircraft.

Let cDW
kjm be the unitary cost for downgrading, if one passenger of itinerary k take

flight j in cabin m. Thus, constraint (8.29) is the penalization in the case of reaccom-
modation of a passenger. For example, if a passenger use his original cabin class then
cDW

kjm = 0.

For cancelation and delay of trips, it is necessary to differentiate CostCanceledPax vs.
CostCanceledLegal and CostDelayPax vs. CostDelayLegal . On the one hand, CostCanceledPax
and CostDelayPax are the costs associated with the passenger viewpoint for cancelation

155



Chapter 8. Application of SAPI for Rescheduling Flights and Passengers

and delays respectively. On the other hand CostCanceledLegal and CostCanceledPax are
the airline cost associated with the cancelation and delays of the trip. These values are
calculated using information such as the ticket price and legal financial compensations.

Domains of the Variables

The last part of this MIP formulation is the definition of the domains of the variables:

Startj, Endj ≥ 0 ∀j ∈ F (8.35)

DelayI
kj ≥ 0 ∀k ∈ I, j ∈ CompLFI

k (8.36)

AFij, FFij, LFij ∈ {0, 1} ∀i ∈ A; j ∈ CompFA
i (8.37)

CFj ∈ {0, 1} ∀j ∈ F (8.38)

IFCkjm ∈ {0, 1} ∀k ∈ I; j ∈ CompFI
k ; m ∈ C (8.39)

CIk ∈ {0, 1} ∀k ∈ I (8.40)

ωijĵ ∈ {0, 1} ∀i ∈ A; j ∈ CompFA
i ; ĵ ∈ CompNFF

j (8.41)

ρkj ∈ {0, 1} ∀k ∈ I; j ∈ CompFI
k (8.42)

HourD
jt , HourA

jt ∈ {0, 1} ∀j ∈ F; t ∈ T (8.43)

And the auxiliary cost variables:

CostBadPosition, CostDown ≥ 0 (8.44)
ConstCanceledPax, CostCanceledLegal ≥ 0 (8.45)

CostDelayPax, CostDelayLegal , CostCancelFlights ≥ 0 (8.46)

The complete MIP formulation is then composed of objective function (8.1) and con-
straints (8.2) - (8.34) and the domain of the variables (8.35) - (8.46). It should be noted
that only time variables (Startj, Endj, DelayI

kj) and cost variables are real non-negative
decision variables while the rest are defined to be binary variables. This is the main
reason why using a standard MIP solver is possible only for very small instances of
the problem. In the next section we present an algorithm enabling to deal with this
problem for real-size instances.
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8.4. Algorithm

8.4 Algorithm

Our algorithm builds a restricted MIP model limited to the feasible region of expected
high quality solutions. This is possible by adding constraints limiting the changes in
comparison with the original schedule. In addition, an original solution method called
SAPI (Statistical Analysis of Propagation of Incidents) is carried out to solve the remain-
ing model.

Figure 8.2 shows a flow diagram explaining the steps of the process. The principal
function is called Main. The inputs are the instance files and the optimization parame-
ters such as the maximum running time.

After initializing and reading files, the algorithm creates a collection of virtual flights
to model special events: maintenances and disruptions of aircraft (function "Create
Virtual Flights: Maintenances and Disruptions"). The goal is to forbid, during a limited
period of time, any assignment of aircraft to real flights, in other words, airplanes are
blocked to be unavailable during the event.

The next step is "Split Passengers". Data files contain group of passengers called
"itinerary". The function tries to split these passengers in order to obtain better solu-
tions. The advantage of splitting itineraries is that allowing passengers following differ-
ent routes helps to use better the aircraft capacity. Increasing the number of itineraries
implies to add integer variables to the model and so increases the complexity. For
this reason, this function studies the size of the instances before trying any splitting
of passengers. Consequently, there is a trade-off between quality of the solution and
performance of the method.

Another important function is "Create New Flights". We investigate the possibility
of creating new flights to minimize the impact of disruptions. We first tried to accept
any possible new flight considering all the combination of airports given in the data
sets. However, this was not efficient because many pairs of airports do not have enough
passengers to construct a profitable flight leg between them. After analyzing some
other possibilities, the last version of our system adds flight using only original routes
with few, perturbed, or canceled flights. In other words, this function duplicates flights
when it seems to be necessary. Additionally, when a flight is generated, another "twin"
flight is also added to the model in the opposite direction (round-trip).

Once all data have been preprocessed and parameters have been defined, it is nec-
essary to calculate several sets that will define the degrees of freedom to find a solution.
Note that the more degree of freedom, the more complexity. Thus, the purpose of func-
tion "Reduction of Sets" is to build and reduce the size of the following sets:

CompFA
i , CompFFA

i , CompAPA
i ; ∀i ∈ A

CompNFF
j , CompAF

j , CompIF
j ; ∀j ∈ F

CompFI
k , CompAPI

k , ConnI
k; ∀k ∈ I

CompFFI
k , CompLFI

k ; ∀k ∈ ConIt
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Instance 
Files

Start: Main

End: Main

Command line 
parameters

Initialization

Create Virtual 
Flights: 

Maintenances and 
Disruptions

FastFeasible

Continue?

Create Solution 
Files

Reduction
of Sets

Feasible 
Solution

Optimized 
Feasible 
Solution

Construction of 
the MIP model

No

Yes

Split Passengers

Create New 
Flights

Solve MIP 
( Iterations of 

SAPI )

Post
Optimization

Figure 8.2: Flow diagram of the solution method.

To build these sets, our algorithm considers real constraints and other extra condi-
tions. For example two real constraints are: an original planned aircraft can be replaced
by another one if they are of the same family and the range is respected, i.e., the range
of the new aircraft has to be greater than or equal to the distance from the origin to
the destination of the flight. The first sets to be constructed are CompFA

i and CompFI
k

because the other ones are derived from these two.

The function "Reduction of Sets" is composed of two main for loops. The first one
searches for compatible aircraft to flights by using distance matrices computed with the
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Floyd-Warshall Algorithm (Cormen et al., 1990). For example, if an aircraft i can arrive
without delay (or a maximum tolerated delay) from its original initial position to the
origin airport of the flight j, then i is added to the set of compatible aircraft CompAF

j .
Other conditions are also utilized, but they are auto-activated when the size of the in-
stance is considerably large, e.g., the algorithm considers not only limiting flights to the
aircraft of the same family, but also the same configuration and model.

It is reasonable to think that only a subset of flights is appropriated to be considered
for a given group of passengers. For this reason a similar procedure is performed to
define good candidates of flights for each passenger. This function evaluates different
conditions that flights have to respect for being compatible with a particular group of
passengers. For example, flights that exceed a distance limit from the original trip are
discarded. As other parameters, this distance limit is automatically adjusted depending
on the size of the instance.

At this point, we have all the elements to build the mathematical model. The step
called "Construction of the MIP model" translates all data and calculated special sets
into variables and constraints of a Mixed Integer Programming (MIP) formulation.
Once the model is built, a procedure called "FastFeasible" tries to find a feasible solution
quickly. This function solves a subproblem where all changes in aircraft and passenger
assignments are not allowed, fixing many integer variables by changing their bounds.
This procedure only decides if it is better to cancel flights and passengers or to keep the
original schedule. Because many integer variables are fixed, the remaining subproblem
is much easier to solve. Nevertheless, the quality of this solution is not good enough
and delays are propagated since changing the assignment of aircraft and passengers are
not allowed. For that reason, the aim of the next steps is to improve this first feasible
solution as much as possible within a reasonable predefined processing time.

Depending on the available remaining processing time, the algorithm iterates fur-
ther or is stopped. If it is possible to continue, the algorithm performs the step called
"Solve MIP ( Iterations of SAPI )" based on the function SAPI (see Figure 8.3). This
function is fully described in the next section. On the other hand, if there is not enough
processing time for SAPI, then "Post Optimization" is carried out.

The method concludes with a postprocessing procedure called "Post Optimization".
The purpose of this function is to improve the final result given by SAPI. To achieve this
goal, it analyzes all the current canceled passengers and tries to re-assign them in any
combination of flights that will take them to their destinations. This strategy is justified
by the fact that the cost of cancelation of passengers is much more expensive than the
cost of delays and filling the remaining empty seats has a marginal cost of zero.

The very last step, "Create Solution Files", generates the two final files: a new file
for itineraries and a new file for rotations. The objective is to transform the final value
of decision variables, most of them binary, to practical information like dates, aircraft,
and passengers.
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8.5 Statistical Analysis of Propagation of Incidents (SAPI)

This section describes the major step of the algorithm: Statistical Analysis of Propa-
gation of Incidents (SAPI). This methodology was originally developed to reschedule
trains under disrupted operations (see Chapter 5). Nevertheless its basic principle can
be also exploited for the solution of this problem:

The probability that an event is affected by a perturbation depends on some factors.

In this special case, the relevant event is a flight. Thus, if we are able to calculate
these probabilities, it will help solving the problem. In particular, we propose to use a
logistic regression to estimate these probabilities that will be used to fix some integer
variables. In this way, the preprocessing function implemented in many MIP solvers
will eliminate them of the model, as a consequence the remaining MIP will be much
easier to solve.

Start: SAPI

Read Current 
Solution (Xit)

it = 0

it = it +1
(iteration)

j=0

j = j+1
(for each 
flight j)

Continue?

j > limUit?

Let all variables 
associated to 

Flight j BE FREE

j = Last Flight?
No

No

Yes
Yes

End: SAPI

No

Solve
MIP

(CPLEX)

Read Current 
Solution (Xit)

Fix all Variables 
associated to 

Flight j using (Xit)

Add LB-based 
Cuts

Evaluate 
Regression Model 

(probability  j )

j : Probability that Fligth j is canceled in the optimat solution

Is Flight j 
canceled in 

(Xit)

Yes Yes

No

Is Flight j 
canceled in 

(Xit)Yes

No

j < limLit ?

Yes

No

Define New values 
for limUit  and limLit

Figure 8.3: Flow diagram of function SAPI (Statistical Analysis of Propagation of Incidents).
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Figure 8.3 presents the flowchart of this function. The first steps are to initialize the
iteration counter it = 0 and to read the current feasible solution calculated by func-
tion "FastFeasible". The next steps belong to a while loop that allows iterations to be
repeatedly performed until the ending criteria is evaluated as true, for example using
a maximum allowed running time. Each iteration can be divided in three components:
adding LB-based cuts, fixing variables, and solving the remaining MIP.

8.5.1 Adding LB-based cuts

The objective is to explore solution neighborhoods defined by local branching cuts af-
fecting decision variables CFj

4. Thereby, the number of changes at each iteration is
limited by the local branching cut defined as follows:

∑
j∈λit

CFj ≤ LB (8.47)

where:

λit : Set of flights that are not canceled in the current incumbent solution, says at
iteration (it).

LB : local branching parameter.

There is a clear tradeoff between the computational effort and the quality of the so-
lution depending on the value of LB. If the value of LB is very small, it is easier to
calculate the new solution because only few changes are allowed in the current itera-
tion, however good solutions could be discarded. For this reason, the parameter LB
is automatically defined depending on the characteristic of each instance. Thereby, for
small instances this parameter will have a relative large value because the remaining
MIP model will be easier to solve. On the other hand, for large (hard) instances the
algorithm will try small values of LB.

8.5.2 Fixing variables

The main aspect of SAPI is the use of a statistical analysis to fix integer variables. This
analysis is performed evaluating a regression model described in detail in Section 8.6.

The use of these probabilities is quite different than for our previous application of
SAPI in railways (see Chapter 5). Here, at each iteration, the value of the probability of
canceling flight j, given by θj, is compared with two constants limLit and limUit where

4Local branching cuts were originally proposed by Fischetti and Lodi as an exact solution technique
based on linear inequalities (Fischetti and Lodi, 2003)
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limLit < limUit. These values are automatically adjusted depending on the processing
time taken by the last iteration. There are two cases for fixing variables.

Case 1: if flight j is canceled in the current solution (Xit) and θj > limUit, all the
decision variables associated to this flight are automatically fixed using the value of the
current solution. Let Λit be the set of all flights to be automatically canceled at iteration
it:

Λit , {j; θj > limUit ∧ CFit−1
j = 1} (8.48)

where CFit−1
j is the value of variable CFj at the end of iteration it− 1, and , means

"is defined as".

Then, the variables to fix at iteration it are:

AFij = 0 ∀i ∈ A ∧ j ∈ CompFA
i ∪Λit (8.49)

FFij = 0 ∀i ∈ A ∧ j ∈ CompFA
i ∪Λit (8.50)

LFij = 0 ∀i ∈ A ∧ j ∈ CompFA
i ∪Λit (8.51)

CFj = 1 ∀j ∈ Λit (8.52)

IFCkjm = 0 ∀k ∈ I ∧ j ∈ CompFI
k ∪Λit ∧m ∈ C (8.53)

ωijĵ = 0 ∀i ∈ A ∧ j ∈ CompFA
i ∧ ĵ ∈ CompNFF

j ∧ (j ∈ Λit ∨ ĵ ∈ Λit) (8.54)

ρkj = 0 ∀k ∈ I ∧ j ∈ CompFI
k ∪Λit (8.55)

HourD
jt = 0 ∀j ∈ Λit ∧ t ∈ T (8.56)

HourA
jt = 0 ∀j ∈ Λit ∧ t ∈ T (8.57)

Case 2: if flight j is not canceled in the current solution (Xit) and θj ≤ limLit, all the
decision variables associated to this flight are automatically fixed using the value of the
current solution. Let Πit be the set of all flights that will not be canceled at iteration it:

Πit , {j; θj < limLit ∧ CFit−1
j = 0} (8.58)

Then, the variables to fix at iteration it are:

162



8.6. Logistic Regression

AFij = AF0
ij ∀i ∈ A ∧ j ∈ CompFA

i ∪Πit (8.59)

FFij = FF0
ij ∀i ∈ A ∧ j ∈ CompFA

i ∪Πit (8.60)

LFij = LF0
ij ∀i ∈ A ∧ j ∈ CompFA

i ∪Πit (8.61)

CFj = 0 ∀j ∈ Πit (8.62)

IFCkjm = IFC0
kjm ∀k ∈ I ∧ j ∈ CompFI

k ∪Πit ∧m ∈ C (8.63)

ωijĵ = ω0
ijĵ ∀i ∈ A ∧ j ∈ CompFA

i ∧ ĵ ∈ CompNFF
j ∧ (j ∈ Πit ∨ ĵ ∈ Πit) (8.64)

ρkj = ρ0
kj ∀k ∈ I ∧ j ∈ CompFI

k ∪Πit (8.65)

HourD
jt = HourD0

jt ∀j ∈ Πit ∧ t ∈ T (8.66)

HourA
jt = HourA0

jt ∀j ∈ Πit ∧ t ∈ T (8.67)

where:

x0 is the value of any decision variable x in the current incumbent solution, i.e., at
the end of iteration it− 1.

8.5.3 Solving the remaining MIP

The last step is to add the cut (8.47) and all constraints (8.49) to (8.67) to the original MIP
model. After that, a standard MIP solver is called to solve the remaining MIP. Because
of the new constraints, the solution of this reduced MIP is much easier than the original
one.

8.6 Logistic Regression

Logistic regression analysis allows estimating multiple regression models when the re-
sponse being modeled is dichotomous and can be scored 0 or 1. Particularly, our model
has two possible outcomes: 1, if the variable associated to an event is affected by the
incidents and 0 otherwise. Thus, the dependent variable is dichotomous, that is, it can
take the value 1 with a probability of success θ, or the value 0 with probability of fail-
ure 1− θ. On the other hand, independent (predictor) variables in logistic regression
can take any form and makes no assumption about the distribution of the independent
variables.

We reduce the combinatory for the variables that model cancelation of flights (vari-
ables CFj, ∀j ∈ F). These variables are strongly linked to many other integer variables
and reducing the number of them helps fixing other variables. For example, if a flight is
canceled, neither passengers nor aircraft can be assigned to that flight. As a result, the
constraints associated with airport capacity will also benefit from this reduction. For
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the rest of the integer variables, it was not possible to find predictor variables statisti-
cally significant.

The regression model is defined by the following equation:

θj =
exp(η)

1 + exp(η)
∀j ∈ F (8.68)

Where:

η = α + β1ρ1
j + β2ρ2

j + β3ρ3
j + ε j

θj : Probability that variable CFj = 1 in the optimal solution, where j ∈ F.
α : Constant of the regression equation.
βi : Regression coefficient of the predictor variable i.
ε j : Error term.

The predictor variables are:

ρ1
j This predictor variable has only two values ∈ {0, 1}. ρ1

j = 1 if the original air-
craft assigned to flight j has canceled flights before the beginning of the recovery time
window, and ρ1

j = 0 otherwise.

ρ2
j This predictor variable is also binary, that is ρ2

j ∈ {0, 1}. It has a value equals to 1 if
the original aircraft assigned to flight j has delayed flights before the beginning of the
recovery time window, and 0 otherwise.

ρ3
j This predictor variable is a real number ∈ [0, 1] that represents the relative time of

flight j. Flights closer to the beginning of the recovery time window are expected to be
more affected by disruptions. In contrast, latter flights have smaller probabilities to be
affected because of the robustness of the original schedule, i.e., robust schedules isolate
disruptions and reduces the downstream impact. It should be noted that a relative
value is preferred rather than absolute ones. The reason is quite simple: the goal is that
the values of the regression parameters remain valid for any kind of instance and not
only for the one used as statistical sample.

The coefficients of the regression model: α, β1, β2, and β3, need to be estimated. As
other regression models, they could be calculated by maximum likelihood5. A statisti-
cal sample is required to make inference of these coefficients. To achieve this objective
we use a small instance of the problem and solve the MIP optimally with different

5The interested readers can find in (Aldrich, 1997) a good introduction to this method
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kinds of incidents. Because it is a training process, the processing time has not the
same importance as solving instances with real incidents. It is important to remark that
these estimations (of parameters) can be improved gradually using continuously this
method, says daily. This is possible because we increase the size of the sample, gaining
more and more information each time we use SAPI.

Using this set of optimal solutions, we prepared a statistical sample with the value
of the decision variables (CFj, ∀j ∈ F) and the value of the predictor variables (ρ). This
sample is then processed by a statistical software, in particular, we use Statgraphics
46. In order to demonstrate that the quality of the coefficients does not depend on the
instance, we decide to use the same coefficients for all instances.

Figure 8.4 shows the Analysis of Deviance for the regression model. For the reason
that the P-value for the model in the analysis of deviance is less than 0.01, there is a
statistically significant relationship between the variables at the 99% confidence level.
In addition, the P-value for the residuals is greater than 0.10, indicating that the model
is not significantly worse than the best possible model for this data at the 90% or higher
confidence level.

Source Deviance Df P-Value
Model 244.50 3 0
Residual 1386.34 4995 1
Total (corr.) 1630.84 4998

Figure 8.4: Analysis of Deviance: Percentage of deviance explained by model = 14.99

The percentage of deviance explained by the model is equal to 14.99 (see Figure 8.4).
This statistic is similar to the usual R2 statistic. That is, 14.99% of the variability of the
value of variables CFj, ∀j ∈ F in the optimal solution can be explained by this regression
model without solving the problem. Although this is not a great value, using SAPI the
results are assured better than a random selection of variables CFj, ∀j ∈ F.

Figure 8.5 shows estimated values for the regression parameters. Notice that the
highest P-value for the likelihood ratio tests is 0.0070, belonging to β2. Because the P-
value is less than 0.01, that term is statistically significant at the 99% confidence level.
Consequently, we do not consider removing any variables from the model.

Parameter Estimate P-Value
α -100.60 -
β1 23.49 0.0000
β2 18.03 0.0070
β3 17.41 0.0000

Figure 8.5: Estimated Regression Model (Maximum Likelihood)

To assure that implementing SAPI has a positive impact in final results, we inves-

6http://www.statgraphics.com/
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tigated the performance of the algorithm for several instances. We observed that all of
them follow the same behavior. Figure 8.6 shows an example to illustrate the impact of
SAPI in the convergence to the optimal value. This chart exhibits two different versions
of the algorithm. The first version applies SAPI with a logistic regression for selecting
the variables to fix. The second version selects the variables randomly. It is possible
to appreciate that the value of the objective function using SAPI and logistic regression
improves faster than a random selection of variables. As a consequence, given a limited
processing time, it will return a better solution.
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Figure 8.6: Impact of SAPI. This graph shows two different version of the algorithm: a) SAPI with
a logistic regression b) random selection of flights

8.7 Results on the ROADEF challenge 2009 instances

In this section we present the results obtained in the ROADEF challenge 2009 in order
to compare this method with others under the same conditions, i.e., the same machine,
the same processing time, and the same cost/solution checkers. All programs provided
by the competition participants were evaluated on the target computer at AMADEUS7.
The organization ran the algorithms on a machine with AMD Turion 64 x2 processor
and 2 GB RAM with Windows XP (32 bit) or Linux (64 bit). Several commercial solvers
were allowed: IBM ILOG Cplex 11.x, IBM ILOG CP Optimizer 1.x, Dash Optimization
Xpress-MP release 2007B, and Artelys Kalis 2007B. In particular, this algorithm (SAPI)
was implemented using Microsoft Visual Studio 2005 (C]) and ILOG CPLEX 11.1 as a
standard MIP solver.

7http://www.amadeus.com
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• "A" Instances (Qualification): Theses instances were used in the qualification
phase of the competition. All of them are composed of 608 flights, 35 airports,
and 85 aircraft, however they differ in the number of passengers (from 36010 to
93424 people), the type of the disruption (aircraft, airport, flight, or a combination
of them) and the length of the recovery time window (from 12 to 52 hours). It is
important to remark that we compared our solutions on "A" Instances with the
solution provided for the qualification phase because the results of the last ver-
sion of other systems are not known for those instances. The solution and cost
checkers were provided by the organization and the machine was a PC Intel Core
Duo T5500 1.66 GHz 2 GB RAM over Windows Vista Operation System, very sim-
ilar to that used by AMADEUS.

• "B" Instances: They are composed of 1422 flights, 44 airports, and 255 aircraft.
The number of passengers varies from 207193 to 263574. Several types of disrup-
tion are also considered: aircraft, airports, flights, and a combination of them. The
length of the recovery time window fluctuates from 40 to 52 hours. The results
were evaluated on the target computer at AMADEUS.

• "X" Instances: These instances were published after the competition and were
partially employed for calculating the final normalized score. They combine vari-
ations of "A", "B", and other new much larger instances. They are composed from
608 to 2178 flights; the number of aircraft varies from 85 to 618; and the number of
passengers from 36010 to 700683. The same types of disruptions are considered,
that is: aircraft, airports, flights, and a combination of them. The length of the
recovery time window fluctuates from 14 to 78 hours. The results were evaluated
on the target computer at AMADEUS.

It is important to remark that the length of the recovery window defines the number
of aircraft rotations because the same flight code may be repeated in different days.
Hence, this is one of the main factors influencing the complexity of the instance.

The normalized score of Method M on Instance I is given by the equation:

Score(M, I) =
W(I)− z(M, I)

W(I)− B(I)
(8.69)

where:

z(M, I) : objective function value obtained by Method M on Instance I

W(I) : worst objective function value found on Instance I, considering all competi-
tors and this method.
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B(I) : best objective function value found on Instance I, considering all competitor
and this method.

The organization of the competition decided that if a method does not provide a
solution or if the returned solution is infeasible, its score is set to two times W(I).

Figures 8.7, 8.8, and 8.9 present the final results for our algorithm (SAPI) compared
to other systems. Finally, Figure 8.10 shows the final ranking of the competition. The
final average score is computed using instances B01,. . . ,B10 and instances XA1,. . . ,XB48.

Set A (Qualification Results) 

A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 Avg 
Score 

SAPI 1.00  0.96 1.00 1.00 1.00 1.00 1.00 1.00  1.00  1.00 0.996
(Q) Bisaillon- Cordeau- 
Laporte- Pasin 0.99  0.96 0.96 0.99 0.98 1.00 0.96 0.96  1.00  0.99 0.979

(Q) Hanafi- Wilbaut- Mansi 0.99  0.95 0.99 0.96 0.93 0.99 0.93 0.99  0.95  0.91 0.960
(Q) Acuna-Agost - Michelon- 
Feillet- Gueye 0.98  0.68 0.76 1.00 0.83 0.99 0.78 0.92  1.00  0.88 0.882
(Q) Darlay- Kronek- 
Schrenk- Zaourar 0.91  0.24 0.86 0.94 0.93 0.95 0.71 0.94  0.96  0.93 0.839
(Q) Jozefowiez- Mancel- 
Mora-Camino 0.96  0.67 0.84 0.80 0.86 0.99 0.66 0.92  0.71  0.86 0.828
(Q) Eggermont- Firat- 
Hurkens- Modelski 0.74  0.24 0.35 0.88 0.74 0.80 0.51 0.87  0.94  0.82 0.688

(Q) Demassey- Jussien- 
Lorca- Menana-Quillet- 
Richaud 

0.96  0.49 0.80 0.61 0.54 0.98 0.65 0.89  0.59  0.60 0.712

(Q) Dickson- Smith- Li 0.65  0.00 0.26 0.81 0.60 0.73 0.47 0.83  0.88  0.70 0.594

(Q) Estellon- Gardi- Nouioua 0.92  0.06 0.09 0.86 0.53 0.96 0.37 0.76  0.90  0.60 0.606

(Q) Eggenberg- Salani 0.00  0.29 0.00 0.50 0.51 0.00 0.00 0.51  0.50  0.52 0.284
(Q) Peekstok- Kuipers 0.99  1.00 0.99 0.00 0.00 0.26 0.54 0.00  0.00  0.00 0.378

 Figure 8.7: Results on "A" instances. This method (SAPI) is compared with the results obtained
during the qualification phase of the ROADEF challenge 2009. Note that "(Q) Acuna-Agost -
Michelon - Feillet - Gueye" is an earlier version of the method described in this work.

It should be noted that this method is particularly good for mid-size instances ("A"
and "B" instances) compared with the other participants. This is explained because
our method is based on an integrated model and can find better "hidden" solutions.
Other methods do not consider these solutions because they all solve the problem by
decomposing it into several parts. This advantage is less effective for larger instances
because of the automatic selection of reduction parameters, i.e., larger instances implies
a strong reduction and some of the "hidden" solutions will be discarded.

Figure 8.11 presents the number of solved instances for every method on set B and
X. It also includes a comparative score analysis between SAPI and all the other meth-
ods individually. In order to use comparable data, we limit this analysis on common
feasible instances, i.e., the both methods were able to find feasible solutions. The results
show that SAPI obtain very good results compared with all other systems individually.

8http://challenge.roadef.org/2009/resultats.en.htm
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Set B 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 Avg 
Score 

SAPI 0.99  0.95 0.99 0.99 0.95 0.97 0.94 0.97  0.98  0.94 0.966
Bisaillon- Cordeau- Laporte- 
Pasin 1.00  0.99 1.00 1.00 0.93 0.99 0.99 0.99  0.97  0.80 0.966

Hanafi- Wilbaut- Mansi- 
Clautiaux 0.89  0.71 0.90 0.90 0.96 0.91 0.73 0.89  0.90  1.00 0.878

Eggermont- Firat- Hurkens- 
Modelski 0.95  0.89 0.95 0.95 0.74 0.92 0.83 0.92  0.91  0.50 0.855

Darlay- Kronek- Schrenk- 
Zaourar 0.96  0.82 0.97 0.97 0.83 0.90 0.80 0.90  0.89  0.80 0.885

Peekstok- Kuipers 0.99  0.96 0.99 0.99 1.00 0.96 0.93 0.95  0.98  0.96 0.969
Jozefowiez- Mancel- Mora-
Camino 1.00  1.00 1.00 1.00 0.82 1.00 1.00 1.00  1.00  0.73 0.954

Dickson- Smith- Li 0.79  0.52 0.81 0.81 0.52 0.74 0.55 0.77  0.74  0.53 0.676
Eggenberg- Salani 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00 0.000
 

Figure 8.8: Results on "B" instances.

Set X 

XA01 XA02 XA03 XA04 XB01 XB02 XB03 XB04 X01 X02 X03 X04 Avg 
Score 

SAPI 0.99  0.99  0.98  0.75  0.00  0.00  0.00  0.00  0.00  0.00 0.00  0.00 0.309 
Bisaillon- Cordeau- Laporte- 
Pasin 0.95  0.98  0.93  0.86  1.00  0.97  1.00  0.91  1.00  1.00 1.00  1.00 0.967 
Hanafi- Wilbaut- Mansi- 
Clautiaux 1.00  1.00  1.00  1.00  0.96  0.99  0.96  1.00  0.00  0.00 0.00  0.00 0.659 
Eggermont- Firat- Hurkens- 
Modelski 0.93  0.90  0.90  0.71  0.98  0.00  0.00  0.00  0.00  0.00 0.00  0.00 0.368 
Darlay- Kronek- Schrenk- 
Zaourar 0.98  0.00  0.97  0.00  0.98  0.93  0.00  0.00  0.00  0.00 0.00  0.00 0.322 

Peekstok- Kuipers 1.00  0.97  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00 0.00  0.00 0.247 
Jozefowiez- Mancel- Mora-
Camino 1.00  0.00  0.99  0.00  0.00  0.00  0.00  0.00  0.00  0.00 0.00  0.00 0.165 

Dickson- Smith- Li 0.00  0.00  0.00  0.00  0.00  0.80  0.00  0.00  0.00  0.00 0.00  0.00 0.067 
Eggenberg- Salani 0.51  0.52  0.51  0.00  0.51  0.53  0.52  0.58  0.00  0.00 0.00  0.00 0.307 
 

Figure 8.9: Results on "X" instances.

In fact, only two of the other methods obtained better solutions with a difference in the
score less than 1%.

Analyzing the results, it is also possible to appreciate that extremely large instances
of set "X" are intractable for our method because of the large number of variables and
memory limitation. Although the method is efficient, it is also necessary to load the
complete MIP model and this may utilize too much memory.
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Team Category
Global rank 

(category rank)
Average 
score (%)

Bisaillon, Cordeau, Laporte, Pasin Senior 1(1) 95.90
Hanafi, Wilbaut, Mansi, Clautiaux Senior 2(2) 92.73
SAPI Senior 3(3) 74.26
Eggermont, Firat, Hurkens, Modelski Junior 4(1) 72.01
Darlay, Kronek, Schrenk, Zaourar Junior 5(2) 70.62
Peekstok, Kuipers Senior 6(4) 70.31
Jozefowiez, Mancel, Mora‐Camino Senior 7(5) 64.02
Dickson, Smith, Li Junior 8(3) 42.02
Eggenberg, Salani Junior 9(4) 20.48

Figure 8.10: Final ranking of the ROADEF challenge 2009

Set B Set X Total
# Common 
Instances

Score       
SAPI

Score 
Method

SAPI 10 4 14 ‐ ‐ ‐
Bisaillon‐ Cordeau‐ Laporte‐ Pasin 10 12 22 14 0.9548 0.9562
Hanafi‐ Wilbaut‐ Mansi‐ Clautiaux 10 8 18 14 0.9548 0.9128
Eggermont‐ Firat‐ Hurkens‐ Modelski 10 5 15 14 0.9548 0.8559
Darlay‐ Kronek‐ Schrenk‐ Zaourar 10 4 14 12 0.9694 0.8998
Peekstok‐ Kuipers 10 3 13 12 0.9694 0.9713
Jozefowiez‐ Mancel‐ Mora‐Camino 10 2 12 12 0.9694 0.9603
Dickson‐ Smith‐ Li 10 1 11 10 0.9661 0.6762
Eggenberg‐ Salani 8 7 15 11 0.9755 0.1402

#  Solved Instances  Comparative Score

Figure 8.11: Number of instances solved by the methods and a comparative analysis with the other
methods individually. SAPI is compared to other methods individually. An instance is considered
in this analysis only if the both methods find a feasible solution.

8.8 Conclusions and Perspectives

We have proposed and analyzed computationally a method for finding solutions to the
problem of rescheduling flights, aircraft and passenger simultaneously under disrupted
operations. The approach uses a Mixed Integer Programming (MIP) formulation that
includes all the aspects required in the ROADEF challenge 2009 (ROADEF, 2008). The
model can be interpreted as two multi-commodity flow problems, one related to aircraft
and the other one to passengers.

Nevertheless, state-of-the-art MIP solvers are not efficient enough to solve this prob-
lem because of the complexity of constraints, the number of integer variables, and the
size of the instances. For this reason, we applied Statistical Analysis of Propagation of
Incidents (SAPI), to emphasize the search in probable good part of the solution space.
This method has been proven to be effective for rescheduling railway operations and
this additional application shows that is also viable to solve other disruption manage-
ment problems.

170



8.8. Conclusions and Perspectives

The contribution of SAPI is quite simple but effective. The idea is to study the prob-
ability that disruptions affect future tasks (flights) and use these probabilities to focus
the search in affected areas while the rest is kept fixed to the original (unperturbed)
schedule. This approach is then extended to an iterative procedure where the original
(unperturbed) schedule is replaced by the solution of the last iteration.

We reported computational results on the instances proposed by the ROADEF chal-
lenge 2009. Our results were compared with the results given by the finalist teams of
the competence. As it is possible to appreciate, our algorithm seems to be effective to
solve this problem efficiently, obtaining results over the average of the finalist teams
and having obtained the third position of the competition. The results are much better
if only feasible instances are considered to compare the methods. In fact, the results
showed that extremely large instances of set "X" are intractable for our method because
of the large number of variables and memory limitation.

Future directions of research should actually address improvements for larger in-
stances complementing this method with decomposition techniques. The other direc-
tion of future research is to include explicitly crew in the reparation procedure. Two
different approaches are possible: (a) fully integrated or (b) separated formulation. It
is expected that a full integrated formulation will be hard to solve because of the ad-
ditional complexity. On the other hand, an iterative procedure that connects the two
separated models seems to be more adequate.
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Chapter 9

Conclusions and Perspectives

In this final chapter we draw the general conclusions recalling the main objectives of
this Thesis: a) to study the Railway Rescheduling Problem (RRP); b) to develop com-
plementary formulations for the problem; c) to find, describe, implement, and test new
solution methods to solve the RRP; and d) to develop a new general method that may
be reused for other rescheduling problems.

The first part of the Thesis responds to the first objective. We have deeply described
the Railway Rescheduling Problem as the problem to build a new provisional timetable
after disrupted operations including a temporary plan of tracks and platforms. After
integrating Chapter 2 and 3, it is possible to conclude that the version of the RRP stud-
ied in this Thesis is a "horizontal integration" of two generic decision problems: "time
tabling daily" and "detailed platform assignment daily". Using the proposed classifi-
cation, we have also observed that this problem is strongly related to the short-term
versions of "crew scheduling", "rolling stock", and "shunting". That is, the solution
of the RRP has a direct impact to these other problems and vice versa. This is a very
important aspect to be considered when developing real-life control systems, because
looking for solutions of an isolate problem without considering the interactions could
be inefficient and even inviable in practice.

The second main objective is the development of complementary formulations for
the RRP. The second part of this Thesis is dedicated to fulfill this goal. We have pre-
sented two formulations: MIP and CP. Both models include many practical rules and
constraints, which explains its relative complexity compared to other models presented
in the literature. Indeed, it supports allocation of tracks (and platforms) connection be-
tween trains, bidirectional/multi-track lines and extra time for accelerating and brak-
ing. Result analysis have shown that the proposed MIP has permitted to develop very
efficient solution methods, however it employs more memory than the CP because of
the large number of binary variables needed to model the order of trains.

The objective of developing new solution methods for the RRP was also treated in
the second part of the Thesis. We have developed four base solution methods: i) Right-
Shift Rescheduling, ii) MIP-based local search, iii) Statistical Analysis of Propagation
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of Incidents (SAPI), and iv) a CP-based approach. Most of the methods have several
versions by extending them to iterative approaches. Note that right-shift was not origi-
nally presented in this document. In the same way, the MIP-based local search method
was inspired on the well known local branching cuts. The originality in this Thesis con-
cerning these both methods is the way how they were adapted to this problem taking
into account precious information about the original (unperturbed) schedule. To the
best of our knowledge, all the other solution methods are proposed for the first time in
this Thesis1.

The proposed solution methods were presented in an incremental order. Conse-
quently, right-shift rescheduling was the first and constructs a feasible solution by keep-
ing the same order of trains and avoiding changes of tracks and unplanned stops. This
procedure is carried out by fixing integer decision variables. The resulting model be-
comes easier to solve by standard solvers but the solutions are generally far away from
the optimum. Afterward, we have developed the MIP-based local search method that
uses the solution of right-shift rescheduling for calculating an initial solution. The big
difference with traditional local search mechanisms is that neighborhoods are obtained
through the introduction, in the MIP model, of linear inequalities called local branch-
ing cuts. These cuts are constructed using important information obtained from the
original (unperturbed) schedule. As a result, this method obtains better solutions than
right-shift rescheduling.

SAPI is the third method proposed in this thesis and, to our point of view, one of the
major contributions of this Thesis. The central idea of SAPI is to try to catch, by a sta-
tistical analysis, the effects of disruption propagation on upcoming events. The effects
of disruptions propagation are quantitatively evaluated by computing the probability
that an event will be affected or not. With this information, some cuts may be added
or some integer variables fixed. SAPI finds higher quality solutions and faster than the
previous methods.

The last solution method proposed in this Thesis is a cooperative CP/MIP approach
taking advantages of both methods: good quality solution for MIP and lower mem-
ory requirements for CP. In this method CP is used to model large problems without
memory problems while a MIP-based method is performed in a subproblem. More
specifically, the strategy of this method is twofold: domain filtering and an appropriate
variable/values ordering.

From the literature it can be seen that several papers dealing with scheduling and
rescheduling in rail transportation are available but comparing efficiency of these algo-
rithms is very difficult because of the differences in the infrastructure representations
and the lack of benchmark instances. That is the reason why, the last objective of this
Thesis was to generalize one of our methods in such a way to be able to apply this
generalization to another (similar) problem for which public instances were available.

A generalization of SAPI has been studied. One of the characteristics of any reschedul-
ing problem is that a base/reference schedule is known, and the objective it is to create

1Some solution methods are also described in research papers derived from this Thesis.
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a new provisional schedule as close as possible to the original plan with the aim to re-
turn quickly to normal operations. This main aspect is exploited by SAPI. The method
focuses the computational effort evaluating changes in the "most" affected part of the
schedule. This methodology is then applied for rescheduling flights and passenger si-
multaneously under disrupted operations. We reported computational results on the
instances proposed by the ROADEF challenge 2009, an international competition car-
ried out every two years. The goal of this challenge are to allow industrial companies
witnessing recent developments in the field of OR and Decision Analysis; and to allow
researchers showing their knowledge and demonstrating their know-how on practical
problems. Our results were compared to the results given by the finalist teams of this
competition. SAPI have been classified on the third position (over 11 qualified teams)
of the competition, showing that the method is effective.

Another important result of this Thesis is the software called Railway Rescheduling
Tool (RRT) that gives a framework for RRP algorithmic development. It has a database
design for the data of this problem, an interface to call different solution methods, and
offers visualization tools and reports to analyze different solutions (see Chapter 10 (ap-
pendix)).

Concerning other results of this Thesis, we would like to remark that the MAGES
project was nominee finalist to PREDIT award in the category "Technologies pour les
transport de merchandises (Technologies for cargo transportation)" in Paris, France (2008)2.
Additionally, several parts of this Thesis were presented in OR conferences while some
research papers were also developed and submitted for publication.

In conclusion, this Thesis has answered the objectives by proposing original mod-
els and solution methods for rescheduling problems in general and to the railway
rescheduling problem in particular. Nevertheless, some aspects are still open for fu-
ture research. The next subsection presents some of the perspectives of this work:

Perspectives

In spite of the last progress in OR methods and hardware, it seems that real-world
optimization applications in the railway industry are not as extensive as in the airline
industry. Our work is only one step in this direction and can be complemented in
several directions.

It should be noted that the proposed approaches are based on the assumption that
all incidents are known, i.e., deterministic. It is true that the incidents that trigger the
reactive procedure are known, but only the first ones. It is also evident that upcom-
ing events, during the recovery horizon, can be also affected by independent future
incidents. A way of dealing with this inconvenient and mitigating the effects of these
possible unknown disruptions is developing a robust optimization procedure where
some coefficients in the models are known within certain bounds. Definitely, the study
of the robust railway rescheduling problem constitutes a line for future research.

2MAGES project was supervised by PREDIT
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Numerical tests show also that MIP formulations have the disadvantage of requir-
ing a large amount of memory because of the number of binary variables. Future di-
rections of research should actually address improvements for larger instances using
decomposition techniques.

The other direction of future research is to explicitly include other related resources
for example the crew. Two different approaches are then possible: (a) full integrated
or (b) separated formulation or decomposition. It is expected that a fully integrated
formulation will be hard to solve because of the additional complexity added to the
problem. On the other hand, an iterative procedure that connects the two separated
models seems to be more adequate.
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Chapter 10

Appendix: Software RRT (Railway
Rescheduling Tool)

Railway Rescheduling Tool (RRT) is an application developed for testing the methods
proposed in this document. The main objective of this tool is to give a framework to
code algorithms for the railway rescheduling problem. The goal is to have a database
design for the needed data of this problem, an interface to call different solution meth-
ods, and finally offers visualization tools and reports to analyze different solutions.

10.1 Principal Characteristics

- Train, network and incident’s data are stored in a relational database. It uses (OLE-
DB) that permits to use several database engines. The compatible systems are:
Oracle, MS-SQL Server, My SQL, MS-Access, plain text files, and others. It is also
possible to use it in a computer network, i.e., Internet.

- It was developed in .NET Framework using C Sharp, a modern, general-purpose,
object-oriented programming language.

- This software has a graphical interface, completely designed for final users.

- Visualization tools: network viewer and traffic diagrams.

- Algorithms developed in independent classes (even they could be programmed in
other languages).

- It uses the last optimization tools: IBM ILOG Cplex 11 and ILOG CP Optimizer 2.

- It has a graphical simulation tool for analyzing the original and the provisional sched-
ule.
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Figure 10.1: Database design.

10.2 Database Design

RRT uses a database design with several tables and relationship between them. This
design permits to save separately data and problem instances. For example, it is pos-
sible to solve different kinds of incidents in the same network and also you can save
different solutions to analyze and compare them before to take the last decision.

The database engine performs all the effort to give an answer for a given query.

10.3 Screenshots

Several screenshots of the RRT can be seen in Figures 10.2, 10.3, 10.4, 10.5, 10.6, 10.7,
10.8.
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10.3. Screenshots

Figure 10.2: Main Screen: The main screen permits to open a database file and to access directly to
different functions of the software.

Figure 10.3: Masters: This is one of the masters. Using the software, the user could change directly
the database, without understand the complex relation between tables
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Figure 10.4: Network Viewer: Using the coordinates of the stations, and the information about the
sections, this software draws the network. The system is able to auto-scale the draw for using the
whole screen and also, it uses the international coordinates system of latitude and longitude. For
this example, it was used the exact coordinates of these stations given by Google Earth (GoogleInc,
2008)

Figure 10.5: Traffic Diagram: This is one of the most used graphics in train transportation. It is a
two dimensional chart with the time in the x-axes and the distance in y-axes. The red lines represent
trains, and also there are horizontal lines representing the stations

182



10.3. Screenshots

Figure 10.6: Automatic generation of timetable: This window permits the user selects a sub-problem
and to choose a solution method. The system reads the information from the database and generates
an appropriate mathematical model depending on the solution method selected

Figure 10.7: Visualization Tool: This screen shows a typical solution of the problem. Green lines are
the original schedule of trains and red lines are the provisional timetable. The horizontal distance
between the red and green line for one train represents its delay.
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Figure 10.8: Simulation: One of the visualization tools is Simulation. In this screen, users can
simulate both: original and provisional timetables. The user is able to modify the speed, the scale,
and other parameters of the simulation. One train can have three colors: black, red and green. The
first one is used to represent a train in movement that is on time. Red trains are delayed trains
moving. Finally, green trains correspond to trains stopped in a station.
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(Maróti, 2006) G. Maróti, 2006. Operations research models for railway rolling stock plan-
ning. PhD Thesis, Eindhoven, Technische Universiteit Eindhoven.

(Maróti and Kroon, 2007) G. Maróti and L. Kroon, 2007. Maintenance routing for train
units: The scenario model. Computers & Operations Research (34), 1121–1140.

(Mautor and Michelon, 1997) T. Mautor and P. Michelon, 1997. MIMAUSA: A New
Local Search Method. Tenth Meeting of the European Chapter on Combinatorial Opti-
mization (ECCO X), Spain.

193



Bibliography

(Mautor and Michelon, 2001) T. Mautor and P. Michelon, 2001. MIMAUSA: an ap-
plication of referent domain optimization. Laboratoire Informatique (LIA) - Universite
d’Avignon et des Pays de Vaucluse, submitted to Annals of Operations Research.

(Mesa and Boffey, 1996) J. Mesa and T. Boffey, 1996. A review of extensive facility
location in networks. European Journal of Operational Research 95(3), 592–603.

(Missikoff, 1997) M. Missikoff, 1997. An object-oriented approach to an information
and decision support system for railway traffic control. First International Conference
on Knowledge-Based Intelligent Electronic Systems KES’97.
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