
HAL Id: tel-00454238
https://theses.hal.science/tel-00454238v1

Submitted on 8 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vehicle Perception: Localization, Mapping with
Detection, Classification and Tracking of Moving Objects

Trung-Dung Vu

To cite this version:
Trung-Dung Vu. Vehicle Perception: Localization, Mapping with Detection, Classification and Track-
ing of Moving Objects. Computer Science [cs]. Institut National Polytechnique de Grenoble - INPG,
2009. English. �NNT : �. �tel-00454238�

https://theses.hal.science/tel-00454238v1
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

No attribué par la bibliothèque
| | | | | | | | | | |

THÈSE

pour obtenir le grade de

DOCTEUR DE L’INPG

Spécialité : ”Imagerie, Vision, Robotique”

préparée au laboratoire LIG et l’INRIA Rhône-Alpes, dans le cadre de
l’École doctorale ”Mathématiques, Sciences et Technologies de l’Information,

Informatique”

présentée et soutenue publiquement par

Trung-Dung VU

le DATE DE SOUTENANCE: 18 Septembre 2009

Titre :

Vehicle Perception:
Localization, Mapping with Detection,

Classification and Tracking of Moving Objects

Co-directeurs de thèse :

Christian LAUGIER et Olivier AYCARD

Composition du jury :

M. Augustin LUX Président
M. Michel DEVY Rapporteur
M. Fawzi NASHASHIBI Rapporteur
M. Cédric PRADALIER Examinateur
M. Christian LAUGIER Directeur de thèse
M. Olivier AYCARD Co-directeur de thèse

ii

Abstract

Perceiving or understanding the environment surrounding of a vehicle is a very
important step in building driving assistant systems or autonomous vehicles. In
this thesis, we study problems of simultaneous localization and mapping (SLAM)
with detection, classification and tracking moving objects in context of dynamic
outdoor environments focusing on using laser scanner as a main perception sensor.
It is believed that if one is able to accomplish these tasks reliably in real time, this
will open a vast range of potential automotive applications.

The first contribution of this research is made by a grid-based approach to
solve both problems of SLAM with detection of moving objects. To correct
vehicle location from odometry we introduce a new fast incremental scan
matching method that works reliably in dynamic outdoor environments. After
good vehicle location is estimated, the surrounding map is updated incrementally
and moving objects are detected without a priori knowledge of the targets.
Experimental results on datasets collected from different scenarios demonstrate
the efficiency of the method.

The second contribution follows the first result after a good vehicle localiza-
tion and a reliable map are obtained. We now focus on moving objects and present
a method of simultaneous detection, classification and tracking moving objects. A
model-based approach is introduced to interpret the laser measurement sequence
over a sliding window of time by hypotheses of moving object trajectories. The
data-driven Markov chain Monte Carlo (DDMCMC) technique is used to solve
the data association in the spatio-temporal space to effectively find the most likely
solution. We test the proposed algorithm on real-life data of urban traffic and
present promising results.

The third contribution is an integration of our perception module on a real
vehicle for a particular safety automotive application, named Pre-Crash. This
work has been performed in the framework of the European Project PReVENT-
ProFusion1 in collaboration with Daimler. A comprehensive experimental evalua-
tion based on relevant crash and non-crash scenarios is presented which confirms
the robustness and reliability of our proposed method.

1http://www.prevent-ip.org/profusion

iii

iv

Table of Contents

1 Introduction 1
1.1 Context: Intelligent Systems for Vehicles 1
1.2 Vehicle Perception: Problem Statement 3
1.3 Contributions . 7
1.4 Thesis Outline . 8

2 Vehicle Perception - State of The Art 9
2.1 Introduction . 9
2.2 Simultaneous Localization and Mapping 14

2.2.1 Map Representation . 16
2.2.2 Kalman Filter SLAM . 19
2.2.3 Maximum Likelihood SLAM 21
2.2.4 FastSLAM . 23
2.2.5 Comparison of SLAM techniques 24

2.3 Detection and Tracking Moving Objects 25
2.3.1 Moving Object Detection 26
2.3.2 Tracking of Moving Objects 28

2.4 SLAM with DATMO . 34
2.5 Summary . 36

3 Grid-based SLAM with Detection of Moving Objects 39
3.1 Introduction . 39
3.2 Grid-based SLAM . 40

3.2.1 Grid Mapping with Known Trajectories 40
3.2.2 Grid-based Scan Matching 45
3.2.3 Local Mapping vs. Global Mapping 50

3.3 Moving Object Detection . 51

v

vi

3.4 Experimental Results . 54
3.5 Summary . 56

4 DATMO using Markov Chain Monte Carlo 59
4.1 Introduction . 59
4.2 DATMO Formulation . 61

4.2.1 Object models . 62
4.2.2 Solution Space . 64
4.2.3 Prior Probability . 65
4.2.4 Likelihood Probability 67
4.2.5 Posterior Probability . 71

4.3 Efficient MAP Computation using MCMC 71
4.3.1 MCMC algorithm . 72
4.3.2 Moving object hypothesis generation 74
4.3.3 Neighborhood graph of hypotheses 77
4.3.4 Markov chain dynamics 79
4.3.5 Incremental computation 80

4.4 Experimental Results . 81
4.4.1 Performance Evaluation 84

4.5 Summary . 85

5 Appplication: PreCrash 87
5.1 Introduction . 87
5.2 The Demonstrator Vehicle . 89
5.3 PreCrash System . 91

5.3.1 Data Fusion for Object Tracking 92
5.3.2 Situation Analysis and Decision 95

5.4 Experimental Results . 99
5.5 Summary . 104

6 Conclusions and Perspectives 107
6.1 Conclusions . 107
6.2 Perspectives . 109

Bibliography 111

Chapter 1

Introduction

1.1 Context: Intelligent Systems for Vehicles

In order to make driving experience safer and more convenient, over decades,
researchers from different fields of robotics, automotive engineering and allied
fields have tried to develop intelligent systems for modern vehicles. These systems
are designed to help driving automatically or to monitor a human driver and
assist him in navigation. They can warn the driver in case of a developing
dangerous situation and can provide capabilities of avoiding collisions or mitigate
the consequence if there is an inevitable collision. Moreover, these intelligent
vehicle systems should be able to operate in all traffic situations wherever on
highways or in crowed urban streets. Here is an example of the ultimate research
goal to realize such a comprehensive system:

Imagining that you are driving to an unknown city. During your trip, the
driving assistant system acts as an attentive co-driver. You will be warned of
bicyclists from the right that you have failed to recognize. At the intersection,
it will save you from a possible rear-end collision if you are distracted. On the
highway, the car is able to take over control with adaptive cruise control mode.
Steering is based on the reliable recognition of lanes, longitudinal control exploits
the vision system to take into account the speed limits. If you prefer driving
yourself, you still get this information as reminder.

Near the destination you get stuck in a slowly moving tailback. The car
offers you automated stop-and-go driving. This means that it is able to follow
the vehicle in front of you longitudinally as well as laterally. This behavior is

1

2 Chapter 1. Introduction

not purely reactive. Traffic lights and signs are additionally taken into account
by your intelligent stop-and-go system. Driving manually, the system is able to
warn you if you have overlooked a red traffic light or a stop sign. Crosswalks are
detected and pedestrians that intend to cross the road are recognized. Finally you
reach your destination. The small parking lot is no longer a problem, since you
can leave your car and let it park itself.

To some degree, nowadays these advanced intelligent systems for vehicles
have been made possible thanks to latest automotive technologies including
various sensors, actuators, processors, communication components and advanced
algorithms. And rapidly falling cost for the sensors and processors combined
with increasing sensor powers provide the basis for a continuous growth of the
vehicle’s intelligence. This trend have been seen in the automotive market over
the last ten years with the appearance of advanced driving assistant applications to
improve comfort and safety driving experiences. In 1998, Toyota became the first
to introduce an ACC system on a production vehicle when it unveiled a laser-based
system for its Progres compact luxury sedan, which it sold in Japan. Radar-based
advance cruise control was commercialized by DaimlerChrysler (DC) in 1999 in
their premium class vehicles. A vision-based lane departure warning system for
heavy trucks was introduced by DC in 2000.

These comfort and safety applications mentioned above have to rely on the
knowledge of the vehicle environment and therefore the environment perception
task plays a very important role. The perception task itself is also one of the
three fundamental components for any autonomous robotic system to work which
includes perception, decision and control (see Figure 1.1). This figure implies
that autonomous robots must be able to execute three basic tasks: i) perceiving,
modeling of the environment, ii) reasoning, deciding which actions to take and

Figure 1.1: Robotics paradigm.

1.2. Vehicle Perception: Problem Statement 3

iii) finally, realizing them. For an intelligent vehicle system, such three essential
tasks correspond to understanding the scene surrounding of the vehicle (position
on the road, presence of obstacles, of road signs), deciding which actions to realize
(trajectory and speed over time), and finally controlling the physical vehicle in
order to follow the defined actions.

In this dissertation, we focus on studying the first one, the vehicle perception
task. Nowadays, existing automotive systems usually consider their applications
in simplified scenarios (e.g: on highways) or in simple environments (e.g: in
parking places). Here we propose to tackle this perception problem in a more
general way which enables the vehicle to be able to operate in any populated
environments such as crowded urban streets. Emerging issues and state-of-the-
art approaches to the problem are investigated. And we will present our approach
with the ultimate objective of developing general algorithms to help building a
multi-purpose perception system which could be used for a variety of automotive
applications.

1.2 Vehicle Perception: Problem Statement

Since the environment around of the vehicle consists of stationary and/or
moving objects, establishing the spatial and temporal relationships among the
vehicle, stationary objects and moving objects in the scene serves as basic
requirements for vehicle perception. This is reflected through three underlying
tasks: localization, mapping and moving object tracking. Localization is the
process of establishing the spatial relationships between the vehicle and stationary
objects. Mapping is the process of establishing the spatial relationships among
stationary objects. And moving object tracking is the process of establishing
the spatial and temporal relationships between moving objects with the host
vehicle and stationary objects. Besides the spatial and temporal information about
surrounding objects, we also want to know what kind of moving objects they
might be. Distinguishing pedestrians, bicycles or vehicles among other objects,
this ability of classifying objects of the perception module will help understanding
more of the driving situation in order to respond in an appropriate way, especially
for safety applications.

In order to get these information from vehicle environment, the perception

4 Chapter 1. Introduction

module relies on different kinds of perception sensors, such as: camera, radar
and laser. Each kind of sensor has advantages and also disadvantages compared
with others. Camera has high information content, lower costs and operating
power but lower signal-to-noise ratio of acquired images under poor lighting
and bad weather making perception using vision alone extremely difficult in
outdoor environments. Radars are more robust to weather conditions but give a
poor geometric information about objects. Laser scanner provides the distance
information to the nearest obstacle with measurements of high reliability and
accuracy. With reasonably reduced prices, laser has been rapidly gaining its
popularity for mobile robotic applications.

In this dissertation, we address problems of simultaneous localization
and mapping (SLAM) with detection and tracking moving objects (DATMO)
focusing on using a laser scanner as the main perception sensor of the
vehicle. While SLAM provides the vehicle with a map of static parts of
the environment as well as vehicle location in the map, DATMO allows the
vehicle be aware of dynamic entities around, tracking them and predicting
their future behaviors. We believe that a satisfactory solution to both SLAM
and DATMO problems will open a vast range of potential for automotive
applications.

Localization

When the vehicle is moving on the road, we need to know its relative
position to the road as well as which lane it is occupied. A precise localization
system is therefore essential. It is known that GPS and DGPS often fail in
urban areas because of urban canyon effects, and good inertial measurement
systems (IMS) are very expensive. If we can have a stationary object map
in advance, the map-based localization techniques such as those proposed by
[Olson 2000, Fox et al. 1999b] and [Dellaert et al. 1999] can be used to increase
the accuracy of the pose estimate. Unfortunately, it is difficult to build an usable
stationary object map a priori because of temporary stationary objects such as
parked cars. Stationary object maps of the same scene built at different times
could still be different, which means that we have to do online map building to
update the current stationary object map.

1.2. Vehicle Perception: Problem Statement 5

Figure 1.2: The ultimate goal of vehicle perception including fundamental tasks:
Localization, mapping with detection, classification and tracking moving objects.

Mapping

In the literature, the mobile robot mapping problem is often referred to as the
simultaneous localization and mapping problem. Simultaneous localization and
mapping (SLAM) allows robots to operate in an unknown environment and then
incrementally build a map of this environment and concurrently use this map to
localize robots themselves. Over the last decade, the SLAM problem has attracted
immense attention in the mobile robotics literature [Christensen 2002], and
SLAM techniques are at the core of many successful robot systems [Thrun 2002].
However, [Wang & Thorpe 2002] have shown that SLAM can perform badly
in crowded urban environments because of the static environment assumption.
Moving objects have to be detected and filtered out.

Detection and Tracking of Moving Objects

The moving object tracking problem has been originated from radar tracking
systems and extensively studied for several decades [Bar-Shalom & Fortman 1988,
Blackman & Popoli 1999]. Many tracking works supposes that the measurements

6 Chapter 1. Introduction

correspond uniquely to moving objects and focus on the data association problem.
However most of the real applications include spurious elements in the measures
or presence of static objects. Obviously detecting correctly the moving objects is
a critical aspect of a moving object tracking system.

Moving object detection in crowded urban environments is not easy because
of a wide variety of targets. With cameras, feature-based or appearance-
based recognition approaches [Viola & Jones 2001] can be used to detect moving
objects. When laser are used, motion-based approaches are usually the preferred
solutions since both appearance-based and feature-based methods rely on prior
knowledge of the targets. In addition, the shape of moving objects seen by laser
scanner can change significantly from scan to scan. As a result, it is hard to define
features or appearances for detecting variety of objects with laser data.

After moving objects are identified, the multi-object tracking problem arises
in order to estimate dynamic states of each object. It has to deal with the data
association problem and maintenance of a list of objects currently present in the
environment as well as their dynamics models. In general clutters, occlusions or
mis-detections from the detector could cause more challenging situations to the
data association step. In addition, changing motion behaviors of moving objects
make defining a suitable motion model of the objects being tracked more difficult.

Object Classification

In urban areas, there are many kinds of moving objects such as pedestrians,
bicycles, motorcycles, cars, buses, etc... Velocities range from under 3mph
(such as a pedestrians movement) to 70mph. In the computer vision literature,
algorithms for object classification have been attained in a mature stage where
informative features like colors, shapes... could be used. However, so far very few
research work have addressed to solve this task with laser sensors. Since all data
returned by laser scanner are discrete points of impacts on moving objects, it is
hard to define distinguished features to identify different kind of objects. Another
clues could be useful with the use of estimated velocities of moving objects but it
is not easy to define the appropriated range for each object class.

1.3. Contributions 7

1.3 Contributions

To deal with SLAM and DATMO, we start by providing a theoretical
framework to solve these problems and explain why SLAM and DATMO are
mutually beneficial and should be solved together in context of the dynamic
environments. Focusing on using laser scanner as the main perception sensor, we
explore methods of representing vehicle environment as well as moving objects
and their motion models. State-of-the-art approaches to SLAM and DATMO
problems are then briefly reviewed in terms of these representation choices.

The first contribution of this research is made by a complete solution to solve
both problems of SLAM and detection of moving objects which is based on
occupancy grid to represent the vehicle map and free-form objects to represent
moving entities. To correct vehicle location from odometry we introduce a
new fast incremental scan matching method that works reliably in dynamic
outdoor environments. After good vehicle location is estimated, the surrounding
map is updated incrementally and moving objects are detected without a priori
knowledge of the targets. Experimental results on datasets collected from different
scenarios such as: urban streets, country roads and highways demonstrate the
efficiency of the method.

The second contribution follows the first results after a good vehicle local-
ization and a reliable map are obtained. We now focus on moving objects and
present a method of simultaneous detection, classification and tracking moving
objects. Moving objects are represented by pre-defined models of several object
classes and this information is used to interpret the laser data sequence over a
sliding window of time by hypotheses of moving object trajectories. Knowledge
of various aspects including object model, measurement model, motion model
are integrated in one theoretically sound Bayesian framework. The data-driven
Markov chain Monte Carlo (DDMCMC) technique is used to solve the data
association in the spatial-temporal space to effectively find the most likely
solution. We test the proposed algorithm on real-life data of urban traffic and
present promising results.

The third contribution is an integration of our perception module on a real
vehicle for a particular automotive application, named Pre-Crash. This integration
has been performed in the framework of the European Project PReVENT-
ProFusion in cooperation with Daimler. The application objective is to recognize

8 Chapter 1. Introduction

unavoidable collisions with obstacles before they take place in order to trigger
restraint systems. A comprehensive experimental evaluation based on relevant
crash and non-crash scenarios is presented which confirms the robustness and
reliability of our proposed method.

1.4 Thesis Outline

The organization of this dissertation is as follows: We review the state-of-the-
art approaches to SLAM and DATMO problems in Chapter 2. In Chapter 3, we
describe our grid-based solution to solve SLAM with moving object detection. In
Chapter 4, we introduce a method of simultaneous detection, classification and
tracking moving objects. An application of our perception module implemented
on a real vehicle is presented in Chapter 5. Finally, we conclude with a summary
of this work and suggest future extensions in Chapter 6.

Chapter 2

Vehicle Perception - State of The Art

2.1 Introduction

In this chapter, we study state-of-the-art approaches to the vehicle perception
focusing on problems of localization and mapping with detection and tracking
of moving objects. Within the context of perception in dynamic environments,
whereas simultaneous localization and mapping (SLAM) deal with modeling
static parts, detection and tracking moving objects (DATMO) are responsible
for modeling dynamic parts of the environment. These tasks are tightly related
to problems of how to represent the static environment and how to represent
moving objects together with their dynamics models. The choice of representation
methods is a very important step and will eventually decide the approaches to
solve SLAM and DATMO problems. These methods are considered both in theo-
retical aspects (setting assumptions) and practical aspects (defining computational
requirements and implementation complexity). In practice the representation
choice will affect the efficiency (meeting of real-time requirements, memory
usage) and efficacy (more or less valid assumption) of the methods and thus is
a strong differentiating element.

In the following sections, approaches to SLAM and DATMO are briefly
reviewed in terms of the environment representation choice. We will also provide
a theoretical framework to solve these problems and explain why in dynamic
environments, SLAM and DATMO are mutually beneficial and they should be
solved together. Before going into detail, we introduce some notations and
probabilistic backgrounds that will be frequently used later on in the dissertation

9

10 Chapter 2. Vehicle Perception - State of The Art

to solve the addressed problems.

Notations

The vehicle perception, as shown in Figure 2.1, can be treated as a
process of taking inputs from sensor measurements including measurements from
perception sensors such as laser scanners or cameras which is denoted by Z and
measurements from motion sensors such as odometry or inertial measurement
which is denoted by U . The process outputs include the estimated internal vehicle
state X , a static map of the surrounding environment M and a list of moving
objects in the vicinity of the vehicleO. The vehicle state is comprised of variables
regarding the vehicle itself such as speed and its relative pose to the map M .
The static map of vehicle environment M contains information about stationary
objects as well as their locations in the map. And the moving object listO contains
information about dynamic objects, their locations and dynamic states such as
velocity and moving direction.

Figure 2.1: The general perception process. Z denotes the perception
measurements, U denotes the motion measurements, X is the vehicle state, M
is the map of stationary objects and O denotes the states of moving objects.

For states which tend to change over time, we use specific variables to indicate
values of each state at certain time. For instance, xt indicates the true state of the
vehicle at time t. This allows to define the trajectory of the vehicle over time:

x0:t = {x0, x1, ..., xt} (2.1)

As the vehicle moves, its state xt evolves, the motion sensors allow to measure
the control ut of its displacement and the perception sensors allow to collect
measurements of the environment zt. In addition, we define the following set

2.1. Introduction 11

to refer data leading up to time t:

Zt = z0:t = {z0, z1, ..., zt} (2.2)

Ut = u1:t = {u1, u2, ..., ut} (2.3)

The static map M is denoted by a list of stationary objects in the environment:

M = {m1,m2, ...,mK} (2.4)

where K is the total number of objects in the environment, and each mk with
1 ≤ k ≤ K specifies properties and location of the corresponding object.

The moving object list Ot at time t is composed of a finite set of N objects,
where each ont with 1 ≤ n ≤ N contains information about locations and dynamic
states of each object at time t:

Ot = {o1
t , o

2
t , ..., o

N
t } (2.5)

Our objective here is to estimate states of the vehicle X , the static map M , the
moving objects O given sensor measurements Z and U over time.

In the following we introduce a probabilistic method, the Bayesian Filters, a
class of recursive algorithms for state estimation that forms the basis of virtually
every techniques presented in this document.

Bayesian Filters

The task of estimating system states from sensor data is at the core of any
robotic system. State estimation addresses the problem of estimating quantities
from sensor data that are not directly observable, but that can be inferred. In most
robotic applications, determining what to do is relatively easy if one only knew
certain quantities. For example, moving a mobile robot is relatively easy if the
exact location of the robot and all nearby obstacles are known. Unfortunately,
these variables are not directly measurable. Instead, a robot has to rely on its
sensors to gather this information. Sensors carry only partial information about
those quantities, and their measurements are corrupted by noises. Probabilistic
state estimation methods seek to recover state variables from the noisy data by
computing belief distributions over possible states taking the uncertainty into

12 Chapter 2. Vehicle Perception - State of The Art

account.
Bayesian Filtering (sometimes known as Bayesian Sequential Estimation)

[Anderson & Moore 1979] is a widely accepted probabilistic framework to the
problem of estimating dynamic states of a system evolving in time given
sequential observations or measurements about that system. The idea behind the
Bayesian Filtering is that allows to use past and present measures in sequence to
enhance the estimation of the actual system state.

Figure 2.2 presents a graphical model (or Bayesian network) that shows the
evolution of a discrete system whose state at time t is denoted by st and the
observations made from it denoted by yt. The graph describes the relation between
state variables following the first order Markov assumption that the current state
depends only on the previous one.

Figure 2.2: Graphical model representation of a simple Bayesian Filtering. Gray
circles denotes observed states, clear circles denotes hidden states to be estimated.

The underlying task of the filter is to estimate the posterior probability
P (st|y0:t). An important property of the Bayesian filter is that this probability
can be solved recursively using the Bayesian theorem:

P (st|y0:t)︸ ︷︷ ︸
posterior at t

= η P (yt|st)P (st|y0:t−1)

= η P (yt|st)︸ ︷︷ ︸
update

∫
st−1

P (st|st−1) P (st−1|y0:t−1)︸ ︷︷ ︸
posterior at t−1︸ ︷︷ ︸

prediction

(2.6)

where η is the normalization constant. The recursive computation is initialized by
the prior distribution p(s0|y0) = p(s0).

This algorithm can be interpreted as transformations over distributions of
probability. Using the state transition function P (st|st−1) and the previously

2.1. Introduction 13

estimated probability P (st−1|y0:t−1), we obtain a distribution P (st|y0:t−1) which
is commonly called the prediction step. Then introducing the new measure we
update the distribution with the likelihood P (yt|st) to obtain the desired result
P (st|y0:t). The process is illustrated in Figure 2.3.

Figure 2.3: Sequential Bayesian Filtering.

It is clear that in order to compute the sequential Bayesian filter, definitions of
the likelihood function (or measurement model) P (yt|st) and the state transition
function (dynamics model) P (st|st−1) are required. And for any implementation
also the description of the probability density functions have to bee chosen.
Common choices are unimodal Gaussian, mixture of Gaussians and set of
particles.

When the sensor model is Gaussian and the dynamics model is linear with
Gaussian noise then the sequential Bayesian filtering algorithm leads to the well-
known Kalman Filter [Kalman 1960]. The key idea behind the Kalman Filter is
the remark that we stay in the ”Gaussian world” as long as we start with Gaussians
and perform only linear transformations.

In order to handle the nonlinear and non-Gaussian situations, extensions have
been made to the standard Kalman Filter. The Extended Kalman Filter (EKF)
[Anderson & Moore 1979] is one of the extensions which uses a first order Taylor
series expansion of the nonlinear functions for the approximation of the dynamics
and likelihood model.

The Unscented Kalman Filter (UKF) [Julier & Uhlmann 1997] has even

14 Chapter 2. Vehicle Perception - State of The Art

higher accuracy. It approximates the posterior directly instead of approximating
the nonlinear dynamics and likelihood functions. In particular, it uses a deter-
ministically selected sample set and pass it through the true nonlinear function to
capture the true distribution. UKF gains its popularity because of its capability of
handling nonlinear models and its efficiency in computation.

To handle highly nonlinear and non-Gaussian models in Bayesian filtering,
Particle filters [Arulampalam et al. 2002] are more accurate than Kalman-based
methods because of its ability to handle highly nonlinear and non-Gaussian
models with a clear and neat numerical approximation. The key idea is to
approximate the posterior distribution with a set of randomly sampled particles
that have weights associated to them. The more particles are, the better
represented a probability function will be. Particle filtering is a very powerful
method that can manage any distribution (notably multimodals) and any nonlinear
function. Defining a reasonable number of particles and ensuring that sampling
correctly the high likelihood regions is in general not well defined.

We note that the system used for the Bayesian filtering example presented
above (Figure 2.3) is just a simple case with one state variable and one observation
variable. In general, the system can have more than one observation at a time or
some applications can have measures depending of two states (as the odometry
does) or access to inputs of the system. However, all those cases we can solve
with the same methodology to the simple case.

In the following sections, we will present formulations of the SLAM and
DATMO problems as Bayesian filter processes.

2.2 Simultaneous Localization and Mapping

Simultaneous localization and mapping is commonly abbreviated as SLAM
and is also known as the concurrent mapping and localization problem. SLAM is
actually a chicken-and-egg problem. Vehicle location and map are both unknown.
When the vehicle moves, it accumulates errors in odometry, making it gradually
less certain as to where it is. For building an accurate map of the environment,
we need to know correct poses of the vehicle. But to estimate the correct vehicle
poses, we need to localize the vehicle in the map which requires that an accurate
map of the environment is available. The term simultaneous localization and

2.2. Simultaneous Localization and Mapping 15

mapping describes the resulting problem: In SLAM, the vehicle acquires a map
of the environment while simultaneously localizing itself to this map given all
measurements from odometry and perception sensors.

In the probabilistic form, the SLAM problem involves estimating the proba-
bility distribution:

P (xt,M |z0:t, u1:t) (2.7)

This probability distribution describes the joint posterior density of the map and
vehicle state at time t given the measurements and control inputs up to time t. In
general, since data arrives over time, a recursive solution to SLAM is desirable.

Starting with an estimate for the distribution P (xt−1,M |z0:t−1, u1:t−1) at time
(t−1), the joint posterior, following a control ut and measurement zt, is estimated
using a Bayes filtering process:

P (xt,M |z0:t, u1:t)︸ ︷︷ ︸
postertior at t

∝ P (zt|xt,M)︸ ︷︷ ︸
update

∫
xt−1

P (xt|xt−1, ut)P (xt−1,M |z0:t−1, u1:t−1)︸ ︷︷ ︸
posterior at t−1︸ ︷︷ ︸

prediction

(2.8)

For this computation, we need to specify two probabilities: the sensor
measurement model P (zt |xt,M) and the vehicle motion model P (xt |xt−1, ut).
The sensor model describes the probability of making an observation zt when the
vehicle state and a map of environment is known. The motion model describes
the probability distribution on vehicle state transition assumed to be a Markov
process of first order in which the next state xt depends only on the immediately
proceeding state xt−1 and the applied control ut, and is independent of both
the observations and the map. The graphical model in Figure 2.4 explains the
dependency structure of variables in the SLAM problem.

In the literature, solutions to the probabilistic SLAM can be roughly classified
according to methods to represent the map M and the underlying technique to
estimate the posterior (2.8) which involves finding an appropriate representation
for the measurement model and motion model. Before describing state-of-the-art
SLAM algorithms, we will review some popular methods to represent the map of
environment.

16 Chapter 2. Vehicle Perception - State of The Art

Figure 2.4: Graphical model of the SLAM problem as filtering process. Gray
circles denotes observed states, clear circles denotes hidden states to be estimated.

2.2.1 Map Representation

The choice of map representation is an important step when dealing with the
perception problem. Popular methods for representing maps of the environment
include: feature-based approach [Leonard & Durrant-Whyte 1991], grid-based
approach [Elfes 1989], direct approach [Lu & Milios 1997a], and topological
approach [Choset & Nagatani 2001]. Because topological maps are usually
generated on top of grid-based or feature-based maps by partitioning grid-based
or feature-based maps into coherent regions, we will only focus on direct, feature-
based and grid-based approaches.

Direct Representation

Direct method is often introduced when range sensors like laser scanners are
used. This method is using raw data measurements to represent the physical
environment without extracting predefined features. In the laser case, each laser
scan measurement is a set of points which are impacts of laser beams with
obstacles. A map can be constructed by simply aggregating measured points
leading to a point cloud map representation (Figure 2.5(a)).

2.2. Simultaneous Localization and Mapping 17

(a) Point cloud map (b) Feature map

(c) Grid map

Figure 2.5: Example of different representation methods of the map built from the
same set of laser data measurements.

Feature-based Representation

Feature-based approaches compress measurement data into predefined fea-
tures which can be geometric primitives like points, lines, circles, etc,... Mapping
then amounts to estimating the parameters of the primitives as to best fit the
observations. To detect geometric features, among popular methods we can
name some notable ones: the split-and-merge method [Einsele & Farber 1997] for
detecting line segments, the Hough-transform [Pfister et al. 2003] or RANSAC
[Forsyth & Ponce 2002] methods for detecting lines or circles. An example of a
two-dimensional geometric feature map is presented in the image Figure 2.5(b).

In terms of spatial information content, feature maps are limited to parametric
landmarks or modeled objects. The geometric representation does suffer from

18 Chapter 2. Vehicle Perception - State of The Art

not being able to represent more complex environments, such as the space in
between the features, and natural structures. Furthermore they usually are only
approximation of natural structures.

Grid-based Representation

Evidence grids or occupancy grids were first introduced by Elfes [Elfes 1989].
In this representation, the environment is subdivided into a regular array or
a grid of rectangular cells. The resolution of the environment representation
directly depends on the size of the cells. In addition to this discretization
of space, a probabilistic measure of occupancy is estimated for each cell
of the grid which indicate that cell is occupied by an obstacle or not. To
update the state of occupancy for each cell of the grid when data coming, in
the literature many methods have been introduced including Bayesian filtering
[Elfes 1992, Thrun et al. 2005], Dempster-Shafer theory [Gambino et al. 1997,
Pagac et al. 1998] and Fuzzy Logic [Oriolo et al. 1997].

An example of an occupancy grid map representation is shown in Fig-
ure 2.5(c), where white regions correspond to free cells, and black regions to
occupied cells. The evidence grid is an efficient approach for representing
uncertainty and for fusing multiple sensor measurements. It is also ideal for
incorporating different models of sensor uncertainty.

Comparison between map representations

Direct approach, despite of being the simplest, can represent any kind of
environments. However, its disadvantage lies in the important memory usage and
the lack of a precise representation of the uncertainty in sensor measurements.
Feature-based maps are attractive because of their compactness. However, con-
cerning the environment representability, they are limited to indoor or structured
environments where features are easy to define and extract. Whereas grid-
based approaches typically require a huge amount of memory, but they are able
to represent arbitrary features and provide detailed representations. Regarding
sensor characteristics, grid-based approaches are the easiest to implement and the
most suitable for range sensors such as sonar and laser. One more advantage of the
grid-based approach over the other two is that it takes the sensor characteristics
into account so that it can explicitly model the free space which provides useful

2.2. Simultaneous Localization and Mapping 19

information for robot navigation applications. We summarize by a comparison of
different methods of map representation in Table 2.1.

Table 2.1: Comparison of map representation methods.

Representations Raw data Feature-based Grid-based

Data compression - + -

Environment representability + - +

Uncertainty management - + +

Sensor characteristics - - +

Because of advantages over others, nowadays, occupancy grid have be-
come the most common choice among map representation methods, particu-
lar for applications in outdoor environments [Wang et al. 2003, Vu et al. 2007,
Montemerlo et al. 2008]. To overcome its drawback on memory consuming when
mapping large environments (i.e. city-sized), we can take an approach similar to
that proposed by [Wang 2004]. The idea is that since the sensor range is limited,
we only need to construct the grid map locally to avoid mapping non-measured
regions. The local maps are then concatenated to represent the entire global map.

2.2.2 Kalman Filter SLAM

Knowing how to represent the map, it now remains to find appropriate
representations for the measurement model and the motion model to estimate the
posterior in the equation (2.8). By far the most common representation for these
models is a linear function with additive Gaussian noise, leading to the use of the
Kalman filter based approach to solve the SLAM problem.

Maps in the Kalman filter approach are commonly represented by a set of
features. Appropriate features may be landmarks, distinctive objects or geometric
shapes in the environment. Denoting the number of features in the map by K and
the joint state of vehicle pose and map by xt = (xt,M)T , the posterior in (2.8) is
represented by a Gaussian:

P (xt,M |z0:t, u1:t) = P (xt|z0:t, u1:t) ∼ N(µt,Σt) (2.9)

20 Chapter 2. Vehicle Perception - State of The Art

with a mean µt and a covariance matrix Σt. We can rewrite (2.8) as follows:

P (xt|z0:t, u1:t) = P (zt|xt)
∫

xt−1

P (xt|xt−1, ut)P (xt−1|z0:t−1, u1:t−1) (2.10)

Kalman filter mapping relies on three basic assumptions. First, the next state
function (motion model) must be linear with added Gaussian noise. Second, the
same characteristics must also apply to the measurement model. And third, the
initial uncertainty must be Gaussian.

A linear state function is one where the vehicle pose xt and the map M at
time t depend linearly on the previous pose xt−1 and map M at time (t− 1), and
also linearly on the motion ut. For the map, this is trivially the case since by
assumption, the map does not change. However, the pose xt is usually governed
by a nonlinear trigonometric function that depends nonlinearly on the previous
pose xt−1 and the control ut. To accommodate such nonlinearities, Kalman filters
approximate the vehicle motion model using a linear function obtained via Taylor
series expansion. The resulting Kalman filter is known as extended Kalman filter
(EKF). The result of the linearization is that the state transition function can be
written as a linear function with added Gaussian noise:

P (xt |xt−1, ut) = Axt−1 +But + εmotion (2.11)

whereA andB are matrices that implement linear mapping from state xt−1 and the
motion command ut to the next state variable xt, respectively. Noise in motion is
modeled via the variable εmotion, which is assumed to be normal distribution with
zero mean and the covariance Σmotion.

As with vehicle motion, sensor measurements are usually nonlinear, with
non-Gaussian noises. Thus they are also approximated through a first degree
Taylor series expansion. Put into equations, Kalman filter method requires that
the measurement model P (zt |xt) is of the following form:

P (zt |xt) = Cxt + εmeasure (2.12)

where C is a matrix (a linear mapping), and εmeasure is normal distributed
measurement noise with zero mean and covariance Σmeasure.

Under the linearity and Gaussian noise approximation, the Bayes filter in

2.2. Simultaneous Localization and Mapping 21

(2.10) can be calculated conveniently using the standard Kalman filter equations:

µ
′

t−1 = µt−1 +But

Σ
′

t−1 = Σt−1 + Σmotion

Kt = Σ
′

t−1C
T (CΣ

′

t−1C
T + Σmeasure)

−1 (2.13)

µt = µ
′

t−1 +Kt(zt − Cµ
′

t−1)

Σt = (I −KtC)Σ
′

t−1

KF-SLAM can be implemented in O(K2) time, where K is the number of
features in the map (the most costly operations in updating the Kalman filter
are matrix multiplications). In practice, the number of features is not known a
priori. State-of-the-art implementations often grow this list dynamically. To do
so, they maintain a list of candidate features, using a separate Kalman filter for
these candidates. If a feature is observed sufficiently often, it is permanently
added to the list of features in the map. Outliers, that is, measurements that
do not correspond to any known feature with sufficient likelihood, are usually
ignored. These techniques work particularly well when features are scarce in the
environment.

2.2.3 Maximum Likelihood SLAM

Another popular approach to SLAM problem is the incremental maximum
likelihood method. Unlike Kalman filter methods which try to perform a full
posterior estimation over the vehicle pose and map, its idea is to incrementally
build a single map as the sensor data arrives without keeping track of any residual
uncertainty. The advantage of this paradigm lies in its simplicity which accounts
for its popularity.

Mathematically, the basic idea is to maintain a series of maximum likelihood
maps, M̂1, M̂2, ... along with a series of maximum likelihood vehicle poses
x̂1, x̂2, ... The t-th map and pose are constructed from the (t − 1)-th map and
pose via maximization of the marginal likelihood:

〈x̂t, M̂t〉 = argmax
xt,Mt

{P (zt|xt,Mt)P (xt,Mt|ut, x̂t−1, M̂t−1)} (2.14)

22 Chapter 2. Vehicle Perception - State of The Art

This equation directly follows from (2.8) under the assumption that the (t − 1)-
th map and vehicle pose are known. Since the map Mt is usually uniquely
determined once the pose xt is known, in practice, it usually suffices to search
in the space of poses xt. Thus, the incremental Maximum Likelihood method
simply requires searching in the space of all poses xt when a new data item arrives,
to determine the pose x̂t that maximizes:

x̂t = argmax
xt

{P (zt|xt, M̂t−1)P (xt|ut, x̂t−1)} (2.15)

In this equation, the term P (zt|xt, M̂t−1) is the probability of observing the most
recent measurement zt given the pose xt and the map M̂t−1 constructed so far.
The term P (xt|ut, x̂t−1) represents the probability that the vehicle is at location xt
given that previously it was at position x̂t−1 and has carried out (or measured) the
motion ut. The resulting search of x̂t is then appended to the map along with the
corresponding scan zt:

M̂t = M̂t−1 ∪ {〈x̂t, zt〉} (2.16)

Maximizing (2.15) is equivalent to finding the vehicle pose xt satisfying the
vehicle motion model under which the measurement zt is best fit to the given
map Mt−1. In the literature, we often coin the term scan matching SLAM to this
maximum likelihood SLAM approach. Depending on the map representations
(Section 2.2.1), we have corresponding scan matching methods as seen in the
literature: direct [Lu & Milios 1997b], feature-based [Ramos et al. 2007] or grid-
based [Thrun et al. 2000].

The most popular direct scan matching method usually follows the Iterative
Closest Point (ICP) algorithm [Lu & Milios 1997b] which compute the transfor-
mation (translation, rotation) between two raw scans in an iterative manner until
the corresponding condition converges. They often assume an initial estimation
of the relative pose of the scans is provided by the vehicle odometry.

Like Kalman filter SLAM, this approach can build maps in real-time, but
without maintaining a notion of uncertainty. Moreover, the incremental likelihood
maximization is only one-step but not over an entire data set. In particular, once a
pose x̂t and a map M̂t have been determined, they are frozen once and forever and
cannot be revised based on future data, a key feature of the Kalman-based SLAM.
This weakness leads to the inability to map cyclic environments where the error in

2.2. Simultaneous Localization and Mapping 23

the poses x̂t may grow without bounds. Recently, Häehnel [Hähnel et al. 2003b]
proposed an approach which is able to track several map hypotheses using an
association tree. However the necessary expansions of this tree can prevent the
approach from being feasible for real time operation.

2.2.4 FastSLAM

An alternative SLAM approach is FastSLAM [Montemerlo et al. 2002] which
is set to overcome drawbacks of the KF-SLAM methods (linear and Gaussian
model assumptions) and the ML-SLAM methods (cyclic mapping inability). To
estimate the SLAM posterior (2.7), particle filter is used to represent non-linear
models and non-Gaussian distributions. Since the high dimensional state-space
of the SLAM problem makes direct application of particle filter computationally
infeasible. The key idea of FastSLAM is to reduce the sample space by applying
Rao-Blackwell theorem [Murphy 1999], whereby a joint state is partitioned
according to the product rule P (x1, x2) = P (x2|x1)P (x1) and, if P (x2|x1) can
be represented analytically, only P (x1) need to be sampled.

The FastSLAM approach estimates the posterior probability of a joint state
over the map M and the vehicle trajectory x0:t rather than the single pose xt. This
probability can be factored as:

P (x0:t,M | z0:t, u1:t) = P (x0:t | z0:t, u1:t)︸ ︷︷ ︸
estimate of trajectory

P (M |x0:t, z0:t)︸ ︷︷ ︸
map with known trajectory

(2.17)

Here, a particle filter is used to estimate the probability P (x0:t|z0:t, u1:t) about
potential trajectories x0:t of the vehicle given its observation z0:t and its odometry
measurements u1:t. When knowing the knowledge of vehicle trajectory x0:t

and observations z0:t, the probability P (M |x0:t, z0:t) over the map M becomes
a problem of mapping with known poses and can be computed analytically.
Briefly, in FastSLAM each particle represents a possible vehicle trajectory and
a corresponding map making the computation in (2.17) efficiently.

For implementation, scan matching techniques can be used to make the
sampling over possible trajectories more efficient [Hähnel et al. 2003d]. In this
way, FastSLAM can be considered as running multiple ML-SLAMs where each
particle is a separate ML-SLAM and basically can be implemented in O(NK)

24 Chapter 2. Vehicle Perception - State of The Art

times, where N is the number of particles and K is the map size. Figure 2.6
shows an example of FastSLAM with grid-based mapping. Samples of trajectories
and the best map at a time are displayed. A number of potential trajectories are
maintained which is reduced until the loop is detected.

Figure 2.6: Loop closing in grid-based FastSLAM [Hähnel et al. 2003d].

2.2.5 Comparison of SLAM techniques

To summarize, we show the comparison of SLAM algorithms in Table 2.2.

Table 2.2: SLAM algorithm comparison

KF-SLAM ML-SLAM FastSLAM

Map representations
- raw map -

feature map feature map feature map

- grid map grid map

Loop closing machenism yes no yes

Computational complexity† O(K2) O(K) O(NK)‡

Memory complexity† O(K2) O(K) O(NK)

†For comparison purpose, we estimate the complexity of different SLAM methods with the
same feature map representation.
‡With careful implementations, O(NlogK) can be obtained [Montemerlo et al. 2002].

2.3. Detection and Tracking Moving Objects 25

The beauty of the KF-SLAM approaches comes from the fact that they
estimate a fully correlated posterior over feature maps and robot poses. Their
weakness lies in the strong assumptions that have to be made on both the
robot motion model and the sensor noise. In addition, EKF SLAM only works
with feature maps. And it is not always easy to define and extract features in
unstructured and outdoor environments.

Maximum Likelihood SLAM (ML-SLAM) is attractive because of its com-
putational effectiveness and can be applied to any kind of map representations.
However, in contrast to KF-SLAM, ML-SLAM only computes the most likely
map at each time so that it is unable to close the loop in cyclic environments.

FastSLAM shares the fancy property with KF approach when it maintains the
full posterior but is much faster compared to the classical KF-SLAM. FastSLAM
can be considered as running multiple ML-SLAM which allows loop closure. It
can be applied for feature-based and grid-based mapping so that it is also suitable
for outdoor applications.

In practice, for applications where a consistent global map is required and a
real-time performance is not necessary (ex: applications focusing on constructing
accurate maps), FastSLAM is a better choice. However, for applications where
only an instantaneous map is required (ex: obstacle avoidance applications),
ML-SLAM is preferred because it can be computed very fast. To overcome its
drawback when mapping cyclic environments, Wang [Wang 2004] proposed an
interesting method which enables loop closing with ML-SLAM. The idea is that
at a time it only needs to construct map locally using ML-SLAM and consider
each local map as a feature. Then run a EKF-SLAM over all features to find
relative position between local maps to generate the global map. Here we follow
this idea to perform mapping and present our implementation latter in Chapter 3
of the thesis.

2.3 Detection and Tracking Moving Objects

While SLAM as described previously are responsible for modeling static part
of the environment, DATMO deals with dynamic part of the environment. Its
objective is to detect and track moving objects which enables the prediction of
their future behaviors. Many tracking works suppose that the measurements

26 Chapter 2. Vehicle Perception - State of The Art

correspond uniquely to moving objects and then focus on data association
problems. However most of the real applications include spurious elements in the
measurements or presence of static objects. Radar data has ground noise (climatic
perturbations, floor of the sea), video images have non stable backgrounds (trees
on the wind, changing light conditions, moving camera), laser data includes
non moving targets or spurious ground measures. Obviously detecting correctly
moving objects is a critical aspect of a moving object tracking system. It is also a
very important step for SLAM since separating moving objects from static objects
is a key point in order to build accurate maps in highly dynamic environments (e.g.
urban streets).

2.3.1 Moving Object Detection

Here we discuss different methods developed to detect moving objects with a
particular use of laser sensor. In computer vision domain, moving object detection
algorithms can be classified as appearance-based, feature-based, motion-based
and model-based methods. Compared with images, laser data has less information
so that the appearance-based approaches are not directly applicable.

Schulz in [Schulz et al. 2001] presented a method using simple features
to detect people in office environments. Indoor people can be recognized by
detecting local minimal in the laser range scans. This method can be useful on
restricted ambient, but it is clearly not well suited for outdoor conditions where a
tree can be similar to a pedestrian. Moreover, it is difficult to extend this method
to detect other object classes rather than people.

Wang [Wang et al. 2003] presented an algorithm using occupancy grid for
moving object detection from a moving ground vehicle. His method borrows
idea from background-subtraction methods in computer vision. He proposed to
construct an occupancy grid map incrementally from laser measurements that can
be considered as a background modeling process. And based on the constructed
grid map, we are able to identify moving objects when new measurements arrive:
If an object is seen in a location previously observed as free space, the object is
moving; if free space is observed in a location previously occupied by an object,
then that object was moving. This general algorithm can be applied in any kind of
environments and can be used to detect any kind of objects. One drawback of this
approach is when an object appears in a previously not observed location, then we

2.3. Detection and Tracking Moving Objects 27

can say if it is moving or not. A priori we can suppose that new objects are static
until evidence demonstrates the opposite.

Wolf [Wolf & Sukhatme 2005] proposed a grid-based alternative method.
Besides constructing a static object grid map as Wang’s method, he maintained
a dynamic object grid map which is used to store regions previously identified
dynamic objects. The core idea to detect moving objects from a new laser
measurement is to put in relation the static objects maps, the dynamic maps, the
non observed areas and the new measurement. Such relations are specified in
the work of Wolf and permits to see the underlying logic of Wang’s method as a
particular case. This approach overcomes the drawback of Wang’s method which
can detect objects in unobserved areas. However, it is unclear how to extract
objects from the dynamic grid map.

Häehnel [Hähnel et al. 2003c] introduced another approach using likelihood
maximization. He defined a likelihood function that includes discrete terms
that classify each measures as observing static or moving objects. Thus using
expectation maximization it resolves the optimization problem for a group of
scans. This method can accurately separate the static objects map and the moving
objects map. However the computational cost involved limit his application to
off-line post-processing. Also this method does not care about identifying specific
objects or estimating their trajectories.

All methods mentioned above are model-free approaches which have an
advantage that they can be used to detect moving objects of any kind with-
out knowing a prior knowledge about that objects. However, as indicated
by Petrovskaya [Petrovskaya & Thrun 2008] and Vu [Vu & Aycard 2009], these
mentioned methods pose several problems in particular use with laser sensors.
Firstly, due to partial occlusions or laser-absorbed object surfaces (ex: glassy or
black surfaces), an object can be divided into several segments (Figure 2.7(a)).
Secondly, only parts of the objects currently facing the sensor are visible, as
the object moves it comes in different sizes that degrades the tracking results
(Figure 2.7(b)). In these figures, we can see the importance of using a geometric
vehicle model which allows to naturally handle the disjoint point clusters and the
estimation of geometric shape of vehicles leads to more accurate tracking results.

Petrovskaya [Petrovskaya & Thrun 2008] proposed to use flexible models to
detect moving vehicles. She introduced a method constructing a virtual grid in

28 Chapter 2. Vehicle Perception - State of The Art

(a) scans from vehicle are often split up into sepa-
rate clusters due to occlusions or glassy surfaces.

(b) when moving, vehicle comes in different size
(visible parts) which degrades the tracking result

Figure 2.7: Vehicle model can help better interpreting laser data.

polar coordinate from laser data and use a scan differencing technique to detect
motion evidences. Then flexible rectangular models are fitted to these evidences
and vehicle sizes can be learned adaptively after several observations. This
method can detect vehicles successfully but does not model and detect pedestrians,
bicyclists or motorcyclists which is a prerequisite for driving in populated areas.

In this thesis, we introduce another model-based approach as described in
[Vu & Aycard 2009]. We define fixed models to represent several typical moving
object classes and introduce a method to perform both moving object detection
and tracking which is able to detect and classify buses, cars, motor/bi-cyclists and
pedestrians. This method will be detailed in Chapter 4 of the document.

2.3.2 Tracking of Moving Objects

Once moving objects are detected and located, it is desirable to track them in
order to estimate their dynamic states. Object tracking allows to aggregate object
observations over time in order to enhance the estimation of dynamic states. The
state vector can include position, speed, acceleration, geometric description, a
classification of object, etc... Usually these state variables can not be observed or

2.3. Detection and Tracking Moving Objects 29

measured directly, but they can be estimated through tracking process.
In general, the problem of tracking multiple objects consists of two parts:

Filtering and Data Association [Bar-Shalom & Fortman 1988]. Filtering methods
deal with the problem of tracking one specific object which consists in estimating
its state from given observations over time. In the case of tracking multiple
objects, data association consists in identifying which observation corresponds to
which object being tracked, then filtering techniques are applied to estimate object
states with known observations. In the following we will discuss the popular
methods of filtering and data association in tracking.

Filtering - Multiple Dynamics Model

When the dynamics of a mobile object can be represented by a single
model, we can apply directly Bayesian filtering methods previously mentioned
in Section 2.1, such as the Kalman filter, Extended KF, Unscented KF or Particle
filter, etc... to estimate object dynamic states.

In practice, however, object can change their dynamics behaviors over time
(e.g.: stopped, moving, accelerating, etc...). To adapt to these changing behaviors,
a multiple dynamics model is required. At a given time, besides estimating object
dynamic states we also have to estimate its corresponding motion modes. While
dynamic states are continuous variables, motion modes are discrete variables.
These hybrid models are sometimes called switching mode models.

The general formula for the tracking problem of one moving object can be
formalized in the probabilistic form as:

P (st, µt|y0:t) (2.18)

where st is the true state of the object, and µt is the true motion mode of
the moving object at time t (defined beforehand which could be of constant
velocity, constant acceleration, turning, etc...) Figure 2.8 shows a graphical model
representing a multiple model approach for solving object tracking problem.

Unfortunately the state estimate for the hybrid model can not be reduced to
an iterative equation as in the Bayesian filtering case. Estimating the current state
require evaluating exponential possibilities and marginalizing from all the past
measures, which means that the estimation becomes intractable in just a few steps.

30 Chapter 2. Vehicle Perception - State of The Art

Figure 2.8: Graphical model representation for multiple model object tracking.
Clear circles denote continuous states, squares denote discrete states.

If the model supposes linear models and Gaussian noise then the exact result for
P (st, µt|y0:t) is a mixture of Gaussians, where the number of Gaussians in the
mixture grows exponentially in the time.

A common approximation is the so-called Generalized Pseudo Bayesian
method [Tugnait 1982]. This method tries to approximate the result by collapsing
the mixture into only one Gaussian, depending on the degree this collapse is done
sooner or later in the history tail.

The Generalized Pseudo Bayesian method of first degree (GPB1) keeps only
one Gaussian to estimate the actual state. After making an update for the k motion
modes the new estimation is a mixture of k Gaussians which are collapsed into
only one and so on.

The GPB method of second degree (GPB2) keeps the current estimate a
mixture of k Gaussians. After each new estimate k2 Gaussians are available,
which are again collapsed into only k estimates.

The most commonly used method, named Interacting Multiple Model (IMM)
[Blom & Bar-Shalom 1988] which provides a trade-off between GPB1 and GPB2.
It only compute k Gaussians as in GPB1 but it still having as output an mixture
of k Gaussians as in GPB2. IMM approach performs significantly better than the
GPB1 algorithm and almost as well as the GPB2 algorithm in practice.

One important point in designing multiple dynamics model filters that there
exists a trade-off between the model complexity and the accuracy of the estima-
tion. The more precise our model is, the better it will describe the behavior of

2.3. Detection and Tracking Moving Objects 31

the moving object and then it will be possible to estimate his future trajectory
more accurately. If the model is more complex, it will include more parameters to
estimate and take more time to calculate online.

Data Association

Data association arises from the task of multi-target tracking given observa-
tions about objects over time (returned by the detector for example). The objective
is to work out which observation was generated by which target. Because of the
ambiguity of sensor measurements, the data association problem in multi-target
tracking becomes more complicated. Actually the number of observations do not
necessarily correspond to the number of objects. And the number of objects is
difficult to estimate since one object might be temporarily occluded or unobserved
simply because objects can enter or go out of ranges of vehicle sensors. Moreover,
the perception sensors or the object detection process might generate false alarm
measurements.

The data association for multi-target tracking consists in deducing the number
of true objects and identifying if each observation corresponds to an already
known object being tracked, to a spurious measure or to a new object in the
scene that will be started to be tracked. The complexity to solve data association
grow exponentially with the number of targets in the scene. Figure 2.9 shows an
example of data association given object observations over five time steps. The
solution found is comprised of two tracks τ1, τ2 and a false alarm observation τ0.

Figure 2.9: Example of data association. a) A set of observations Y (each circle
represents an object observation together with numbers representing time steps.
b) A solution of data association which is comprised of two tracks and a false
alarm.

32 Chapter 2. Vehicle Perception - State of The Art

In the literature, data association algorithms are often categorized according
to the objective function that they purport to optimize:

• Heuristic approaches typically involve optimizing associations between
observations and targets under an explicit objective function.

• Maximum a posteriori (MAP) approaches find the most probable associa-
tion, given all observations returned so far, then estimate tracks with this
found association.

• The Bayesian approaches generates optimal filtering predictions by sum-
ming over all possible associations, weighted by their probabilities.

Data association algorithms can also be categorized by the way in which they
process the measurements:

• Single-scan algorithms estimate the current states of targets based on their
previously computed tracks and the current scan of measurements.

• Multi-scan algorithms may revisit past scans when processing each new
scan, and can thereby revise previous association decisions in the light of
new evidences.

The simplest data association method using a heuristic approach is the Greedy
Nearest Neighbor (GNN) [Blackman & Popoli 1999]. It processes the new
observations in some order and associates each with the target whose predicted
position is closest, thereby selecting a single association after each scan. The
method requires very little computation and is extremely fast. One drawback is its
inability of correcting error associations at later steps.

MAP approaches includes the well-known multiple hypothesis tracking (MHT)
algorithm [Reid 1979]. MHT is a multi-scan association algorithm that maintains
multiple hypotheses associating past observations with targets. When a new set
of observations arrives, a new set of hypotheses is formed from each previous
hypothesis. The algorithm returns a hypothesis with the highest posterior as a
solution. MHT is categorized as a ”deferred logic” method in which the decision
about forming a new track or removing an existing track is delayed until enough
measurements are collected. The main disadvantage of MHT in its pure form is
its computational complexity since the number of hypotheses grows exponentially
over time. Various heuristic methods have been developped to control this growth

2.3. Detection and Tracking Moving Objects 33

[Blackman 2004] but these methods are applied at the expense of sacrificing the
MAP property. However, since the underlying MAP data association problem is
NP-hard, so we do not expect to find efficient, exact algorithm.

Exact Bayesian data association is even less tractable than the MAP compu-
tation. Several ”pseudo-Bayesian” methods have been proposed, of which the
best-known is the joint probabilistic data association (JPDA) filter. JPDA is well
described in [Bar-Shalom & Fortman 1988] which is a suboptimal single-scan
approximation to the optimal Bayesian filter. In its original form, JPDA assume
the number of targets is fixed. However, it can be modified to track with varied
number of objects [Schulz et al. 2001]. At each time step, instead of finding a
single best association between observations and tracks, JPDA enumerates all
possible associations (NP-hard) and computes association probabilities {βjk},
where βjk is the probability that j-th observation associates with the k-th track.
Given an association, the state of a target is estimated by a filtering algorithm and
this conditional state estimate is weighted by the association probability. Then the
state of a target is estimated by summing over the weighted conditional estimates.
JPDA has proved more efficient in cluttered environments compared with GNN
[Bar-Shalom & Fortman 1988] but prone to make erroneous decision since only
single scan is considered and the association made in the past is not reversible.

Recently, sampling data association methods using Markov chain Monte Carlo
(MCMC) have achieved notable success in vision tracking [Song & Nevatia 2005,
Yu et al. 2006, Zhao et al. 2008]. The idea behind these methods is to use MCMC
sampling instead of enumerating over all possible associations. Unlike MHT and
JPDA, MCMC data association (MCMCDA) is a true approximation scheme for
the optimal Bayesian filter; i.e., when run with unlimited resources, it converges to
the Bayesian solution. In [Oh et al. 2004], Oh showed that a single-scan version
MCMCDA can be designed to approximate JPDA in polynomial time and a
multi-scan version MCMCDA can be designed to converge to the full Bayesian
solution. This promising framework plus increased computational power of
machines nowadays makes it possible for real-time tracking applications which
also sees its contribution in Chapter 4 of this document.

34 Chapter 2. Vehicle Perception - State of The Art

2.4 SLAM with DATMO

In previous sections, we have briefly reviewed state-of-the-art approaches to
solve problems of SLAM and DATMO. As mentioned, both SLAM and DATMO
are essential tasks of a perception system for vehicles in dynamic environments.
Up to now we have been considered them separately.

We notice that, SLAM methods mentioned in Section 2.2, have implicitly
omitted dynamic objects and supposed that all received measurements come from
static parts of the environment (see Figure 2.4). Map building is then made
without special considerations. However, in dynamic environments, the presence
of moving objects will introduce noises during the localization process and adding
spurious elements on the constructed maps. In this sense, DATMO with the
ability of separating moving objects from static objects during SLAM process
allows enhance the mapping results. On the other hand, being able to do SLAM
while tracking moving objects allow to better estimate their global speeds and
positions and thus to better estimate their trajectories. These relations means that
SLAM and DATMO are mutually beneficial and their relationship is depicted in
Figure 2.10.

Figure 2.10: SLAM and DATMO are mutually beneficial.

Wang [Wang et al. 2003] was one of the first researchers pointing out the
mutual relationship of SLAM and DATMO and showed that SLAM and DATMO
should be solved together. In his pioneer work [Wang et al. 2003], he introduced a
mathematical framework to solve SLAMMOT in dynamic environments in which
SLAM is integrated with tracking generalized objects (both static and dynamic).
The SLAMMOT problem can be represented by a joint posterior over states of

2.4. SLAM with DATMO 35

all objects need to estimate (ego-vehicle pose, stationary objects, dynamic objects
and their dynamics modes) given all sensor measurements:

P (xt,M, st, µt|Zt, Ut) (2.19)

He showed that estimating (2.19) is computationally demanding and generally
infeasible because of high dimension of the joint state variable. Overcoming
this daunting task, he proposed to solve SLAM with DATMO instead which
decomposes the SLAMMOT estimation problem into two separate estimators:

P (xt,M, st, µt|Zt, Ut)︸ ︷︷ ︸
SLAMMOT

= P (xt,M |Z(s)
t , Ut)︸ ︷︷ ︸

SLAM

P (st, µt|Z(d)
t)︸ ︷︷ ︸

Moving Object Tracking

(2.20)

if in some way we are able to decompose the measurements Zt into static and
dynamic measurements:

Zt = Z
(s)
t + Z

(d)
t︸ ︷︷ ︸

Moving Object Detection

(2.21)

where Z(s)
t and Z

(d)
t denote measurements corresponding to static objects and

dynamic objects respectively. The decomposition in (2.21) corresponds to the
moving object detection step in DATMO.

By such maintenance of separate posteriors for stationary objects and moving
objects, the resulting estimation problem of SLAM with DATMO (2.20) are much
lower dimensional than problem of direct estimating SLAMMOT in (2.19).

In the robotics literature, SLAM and DATMO have been attracted considerable
research works. As SLAM techniques in static environments are maturating,
the research efforts are shifting to solve problems of SLAM in dynamic
environments (or SLAM with moving object detection), and growing to
deal with a more general SLAMMOT problem. However, solutions to
SLAMMOT are still at their early stage when most of works on SLAMMOT
currently focus on indoor environments [Prassler et al. 1999, Hähnel et al. 2003a,
Montesano et al. 2005] with simplified assumptions.

Wang [Wang et al. 2003] developed the first real-time outdoor perception
system performing simultaneously SLAM with DATMO for urban environments
from a ground moving vehicle. In his PhD thesis work [Wang 2004] he
demonstrated that it is able to perform successfully a city-sized SLAM in urban

36 Chapter 2. Vehicle Perception - State of The Art

environments. However, for DATMO part, he applied a free-form approach for
detecting and tracking of moving objects which see its disadvantages as mentioned
in Section 2.3.

Recently, in the DARPA Urban Challenge competition [DARPA 2007], we
have been witnessed significant advances in efforts of building autonomous
vehicles. It is shown that driverless cars, for instance: Boss [Urmson et al. 2008]
and Junior [Montemerlo et al. 2008], are capable of operating autonomously
and safely through urban-alike environments. However, testing scenarios for
the competition contains only vehicles as moving objects which limits their
approaches to be only able to detect and track vehicles. In addition, to obtain
a good performance, participant vehicles are equipped with so many precise and
expensive sensors, such as 3D laser scanners, 2D laser scanners, radars, vision,
precise inertial sensors... In this research, we emphasize the objective of building
a reliable vehicle perception system using an affordable 2D laser scanner as the
main perception sensor.

2.5 Summary

In this chapter, we have got an overview over state-of-the-art approaches to
problems of SLAM and DATMO which are known to be at the core of any vehicle
perception system in context of dynamic environments. We have showed that
SLAM and DATMO are mutually beneficial and they should be solved together in
order to get more robust and accurate results. It is pointed out that the process of
moving object detection provides a bridge between SLAM and MOT which helps
to reduce the complexity of the general SLAMMOT problem. We also review
some notably related works to SLAMMOT problem in the literature.

Inspired by the pioneer work of Wang [Wang 2004], our objective in this
dissertation is trying to put forward the state-of-the-art solutions to SLAM with
DATMO in order to build a reliable vehicle perception system with affordable
sensors (e.g. 2D laser scanner).

We summarize our approach as follows. To deal with SLAM in dynamic
environments, we describe in Chapter 3 a grid-based algorithm to perform SLAM
with detection of moving objects which is similar to the method proposed by
Wang in [Wang 2004]. A maximum likelihood SLAM algorithm is applied for

2.5. Summary 37

mapping the vehicle environment. To correct vehicle location from odometry we
introduce a new fast incremental scan matching method that works reliably in
dynamic outdoor environments. Moving objects are detected as free-form objects
using motion-based approach without a priori knowledge of the targets which
are then filtered out to help building a more accurate map. After a good vehicle
localization and a reliable map are obtained, we focus on moving objects and
present a model-based method to perform simultaneous detection and tracking
moving objects in Chapter 4. The Markov chain Monte Carlo (MCMC) data
association technique is applied to explore in the spatio-temporal space to find
the most probable trajectories of moving objects. We test these algorithms on
real-life traffic data and demonstrate on a real vehicle to show its robustness and
reliability.

The proposed approach will be presented in detail in following chapters.

38 Chapter 2. Vehicle Perception - State of The Art

Chapter 3

Grid-based SLAM with Detection of
Moving Objects

3.1 Introduction

In this chapter we will present an algorithm to solve SLAM with moving
object detection in dynamic environments from a ground moving vehicle equipped
with a 2D laser scanner as the main perception sensor. Our approach here follows
the work of Wang in [Wang 2004].

For the SLAM part, similar to Wang’s work, we use a grid-based method to
represent the vehicle environment. We employ a maximum likelihood SLAM
approach (subsection 2.2.3) for mapping process thanks to its computational
effectiveness. Due to large scales of the environment (e.g. city-sized), at a given
time, only an online grid is maintained representing the local map surrounding
of the vehicle. Instead of using an ICP-based method like in [Wang 2004]
for vehicle localization, we introduce a new and fast grid-based scan matching
method which does not need to find corresponding features and can work reliably
in dynamic environments. When good vehicle locations are estimated, we are able
to build a consistent local map of the vehicle environment incrementally when new
measurements arrive. And then based on the constructed local grid map, moving
objects can be detected when they enter object-free regions. This idea originated
from the work of Wang which is simple but is shown to work quite well in practice.
One important advantage of this approach is the fact that no model assumption is
required to separate moving and stationary objects.

39

40 Chapter 3. Grid-based SLAM with Detection of Moving Objects

The chapter is organized as follows. In the next section 3.2, we describe the
grid-based mapping process. Algorithm for detecting moving objects is presented
in Section 3.3. Experimental results are reported in Section 3.4 and summary
remarks are given in Section 3.5.

3.2 Grid-based SLAM

First introduced by Elfes [Elfes 1989], nowadays occupancy grids are the most
popular method to represent maps of the environment. Compared with feature-
based approaches, grid maps can represent any environment and are specially
suitable for noisy sensors in outdoor environments where features are hard to
define and extract. Grid-based approaches also provide an interesting mechanism
to integrate different kinds of sensors in the same framework taking the inherent
uncertainty of each sensor reading into account.

The process of grid-based mapping is to estimate the state of occupancy
for each grid cell when new sensor data arrives. As we mentioned in sub-
section 2.2.1, many methods have been employed such as Bayesian filtering
[Elfes 1992, Thrun et al. 2005], Dempster-Shafer theory [Gambino et al. 1997,
Pagac et al. 1998], and Fuzzy Logic [Oriolo et al. 1997]. Here we utilize an
algorithm to update the occupancy grid map using Bayesian method. In the
next subsection, we will describe the mapping process with an assumption that
the vehicle trajectories is known and will discuss how to perform simultaneous
localization and mapping in the subsection followed.

3.2.1 Grid Mapping with Known Trajectories

We recall that in the grid-based representation (Section 2.2.1), vehicle en-
vironment is divided into a two-dimensional lattice M of rectangular cells and
each cell is associated with a measure taking a real value in [0, 1] indicating
the probability that the cell is occupied by an obstacle or not. A high value of
occupancy probability indicates the cell is occupied and a low value means the
cell is free. Over time when data is received, we need to estimate the accumulated
occupancy probabilities of the grid cells. Assuming that occupancy states of
individual grid cells are independent, the objective of a mapping algorithm is to

3.2. Grid-based SLAM 41

estimate the posterior probability of occupancy P (m |x1:t, z1:t) for each cell m of
the grid, given data measurements z1:t = {z1, ..., zt} which are acquired over time
at known corresponding vehicle locations x1:t = {x1, ..., xt}.

Using Bayes theorem, this probability is determined by:

P (m |x1:t, z1:t) =
P (zt |x1:t, z1:t−1,m) . P (m |x1:t, z1:t−1)

P (zt |x1:t, z1:t−1)
(3.1)

If we assume that current measurement zt is independent from x1:t−1 and z1:t−1

given we that know m, P (zt |x1:t, z1:t−1,m) = P (zt |xt,m). Then after applying
Bayes theorem to P (zt |xt,m), equation (3.1) becomes:

P (m |x1:t, z1:t) =
P (m |xt, zt) . P (zt |xt) . P (m |x1:t, z1:t−1)

P (m) . P (zt |x1:t, z1:t−1)
(3.2)

Equation (3.2) gives the probability for an occupied cell. By analogy, equation
(3.3) gives the probability for a free cell:

P (m |x1:t, z1:t) =
P (m |xt, zt) . P (zt |xt) . P (m |x1:t, z1:t−1)

P (m) . P (zt |x1:t, z1:t−1)
(3.3)

By dividing equation (3.2) by (3.3), we obtain:

P (m |x1:t, z1:t)

P (m |x1:t, z1:t)
=
P (m |xt, zt)
P (m |xt, zt)

.
P (m)

P (m)
.
P (m |x1:t−1, z1:t−1)

P (m |x1:t−1, z1:t−1)
(3.4)

If we define:

Odds(x) =
P (x)

P (x)
=

P (x)

1− P (x)
(3.5)

equation (3.4) turns into:

Odds(m |x1:t, z1:t)

= Odds(m |xt, zt) . Odds(m)−1 . Odds(m |x1:t−1, z1:t−1) (3.6)

The corresponding log Odds representation of equation (3.6) is:

log Odds(m |x1:t, z1:t)

= log Odds(m | zt, xt)− log Odds(m) + log Odds(m |x1:t−1, z1:t−1) (3.7)

42 Chapter 3. Grid-based SLAM with Detection of Moving Objects

To incorporate a new scan into a given map we multiply its Odds-ratio with
the Odds-ratio of a local map constructed from the most recent scan and divide it
by the Odds-ratio of the prior. Often it is assumed that the prior probability of m
is 0.5. In this case the prior can be canceled so that Equation (3.7) simplifies to:

log Odds(m |x1:t, z1:t)

= log Odds(m | zt, xt) + log Odds(m |x1:t−1, z1:t−1) (3.8)

To recover the occupancy probability from the Odds representation given
in Equation (3.6) we use the following law which can easily be derived from
Equation (3.5):

P (x) =
Odds(x)

1 +Odds(x)
(3.9)

This leads to:

P (m |x1:t, z1:t)

=

[
1 +

1− P (m |xt, zt)
P (m |xt, zt)

.
P (m)

1− P (m)
.
1− P (m |x1:t−1, z1:t−1)

P (m |x1:t−1, z1:t−1)

]−1

(3.10)

This equation tells us how to update our belief about the occupancy probability
of a grid map given sensor inputs. All we have to do to incorporate a new
measurement zt taken at location xt is to multiply the Odds-ratio of the current
belief about m with the Odds-ratio of the map constructed from the most recent
measurement and divide the result by the prior probability of m.

Computation of the Occupancy Probability

In (3.10), P (m |x1:t−1, z1:t−1) is the occupancy probability value estimated
previously from measurements in the past. What we need to know are two
probability densities, P (m |xt, zt) and P (m). P (m) is the prior occupancy
probability of the grid map cell which is set to 0.5 representing an unknown state,
that makes this component disappear. The remaining probability P (m |xt, zt),
is called the inverse sensor model. This probability is called ”inverse” since
it reasons from effects to causes: it provides information about the world
conditioned on a measurement caused by this world. It specifies the probability

3.2. Grid-based SLAM 43

that a grid cell m is occupied based on a single sensor measurement zt at location
xt.

Now we describe how we compute the inverse sensor model P (m|xt, zt).
According to Equation (3.10) a measurement zt has no influence on a cell m if
P (m|xt, zt) = P (m). Therefore, cells in areas in which a measurement does
not change the belief about the state of the world carry the value P (m). Often
P (m) = 0.5 is assumed to be the prior, but it can be regarded as a special instance
of this situation. Our approach assumes that the occupancy probability of a cell m
of the grid can be computed independently for all sensor measurements. Although
this is a strong assumption, the resulting maps still are of satisfactory quality.

In our case, laser scanner is used as the main perception sensor. This sensor
is very common in robotics and currently the state-of-the-art sensor for distance
measurements. The signal of a laser-range finder is emitted in a beam and the
sensor uses a rotating mirror to combine several distance measurements to a two
dimensional scan. At each time t we receive a complete scan zt, which is a
combination ofN distance measurements zt = {znt , 1 ≤ n ≤ N}. We assume that
these distance measurements are independent and therefore consider the beams
individually.

Figure 3.1: Laser beam measured at location xt covering znt cells of a map. The
occupancy of the cell where the beam ends should be increased. On the other side
the occupancy of the cells between the robot and the end-point, which are here
marked with the color red, should be decreased.

Figure 3.2(a) shows the function we use to compute the occupancy probability
of cells related to a laser beam measuring a specific distance (4m in this case). Let
f be a function that returns for each pose xt of the vehicle, each beam number n,

44 Chapter 3. Grid-based SLAM with Detection of Moving Objects

(a) Inverse laser sensor model (b) Updating occupancy probability of grid cell

Figure 3.2: a) shows the occupancy probability of cells along a beam measuring
a distance of 4m. Between the sensor and the measured distance it is more likely
to be free, at the measured distance we expect the grid cell to be occupied. Please
note that because of the small error of the sensor this function has only a narrow
peak. b) shows the occupancy probability of a grid cell seen several times as
occupied (green) or unoccupied (red). We use the Odds model described in
equation (3.10) to compute the probabilities. The prior of the map is 0.5.

and each k ≤ znt the index f(xt, n, k) of k-th field covered by that beam in the
map (see Figure 3.1). We can describe the function as follow:

P (m |xt, zt) =

Pfree : |f(xt, n, k)| < znt

Pocc : |f(xt, n, k)| = znt

Pprior : otherwise

(3.11)

where Pprior the prior of the grid map cells, Pfree is the occupancy probability for
free cells and Pocc is the occupancy probability for the occupied cells. In practice,
we set Pprior = 0.5, Pfree = 0.2, Pocc = 0.8.

We use the inverse sensor model in equation (3.11) to update occupancy
probabilities of grid cells in equation (3.10). Figure 3.2(b) shows an example of
the probability function that we see the grid cell several times as free or occupied.

In practice, the occupancy probability function can be implemented in an
alternative way for a more convenient computation as follows. We count the
number of times the cells is updated by Pfree or Pocc and describe this number with
cfree or respectively cocc. Applying equation (3.10) we compute the probability

3.2. Grid-based SLAM 45

directly with:

f(cocc, cfree) =
exp(coccPocc + cfreePfree)

1 + exp(coccPocc + cfreePfree)
(3.12)

It is easy to see that the steepness of the function is related to the values of Pocc
and Pfree. Figure 3.2(b) shows, as a practical example, how fast the occupancy
probability of a cell approximates to 0 or 1.

3.2.2 Grid-based Scan Matching

In the previous subsection, we described an incremental algorithm to update
the occupancy grid map over time given laser scan measurements at known
corresponding vehicle locations. In order to build a consistent map of the en-
vironment, a good vehicle localization is required. However, using only odometry
provided by vehicle internal sensors often results in unsatisfied maps due to its
inherent errors (see Figure 3.3 left). With the objective of correcting odometry
errors whereby obtaining a good map, we would like to perform simultaneous
localization and mapping using one of SLAM algorithms as introduced in Section
2.2. Here we opt for the incremental maximum likelihood SLAM method due to
the advantage of its computational and memory complexity over other methods
(subsection 2.2.3).

As presented in subsection 2.2.3, the incremental maximum likelihood SLAM
approach consists in estimating a sequence of vehicle poses x̂1, x̂2, ... and
sequentially updated maps M̂1, M̂2, ... by maximizing the marginal likelihood of
the t-th pose and map relative to the (t− 1)-th pose and map:

x̂t = argmax
xt

{P (zt|xt, M̂t−1) . P (xt|x̂t−1, ut)} (3.13)

The resulting search of x̂t is then used to generate a new map M̂t along with
the corresponding scan zt via the incremental map updating process which is
described in the last subsection (Equation (3.10)):

M̂t = M̂t−1 ∪ {〈x̂t, zt〉} (3.14)

In the Equation (3.13), the term P (xt | x̂t−1, ut) represents the vehicle motion

46 Chapter 3. Grid-based SLAM with Detection of Moving Objects

Figure 3.3: Maps built directly from raw laser data collected from a vehicle
moving along a straight street: with vehicle localization using odometry (left);
and using results of scan matching (right). Note that the scan matching results are
not affected by moving objects in the street. See Figure 3.10 for the resulting
occupancy grid map.

model which is the probability that the vehicle is at location xt given that the
vehicle was previously at position x̂t−1 and executed an action ut. The term
P (zt |xt, M̂t−1) is the measurement model which is the probability of receiving
the most recent measurement zt given the pose xt and the map M̂t−1 constructed
so far from measurements {z1, ..., zt−1} at corresponding poses {x̂1, ..., x̂t−1} that
were already estimated in the past.

Maximizing (3.13) is equivalent to finding the vehicle pose xt satisfying the
vehicle motion model under which the measurement zt is best fit to the given
map Mt−1. In this meaning, we often coin the term scan matching SLAM to this
maximum likelihood SLAM approach. Depending on the map representations
(subsection 2.2.1), we have corresponding scan matching methods: direct,
feature-based or grid-based.

In general cases where features in environments are difficult to be defined
and extracted, direct scan matching techniques like Iterative Closest Point al-
gorithm (ICP) [Lu & Milios 1997b] can be used. However, in these ICP-
style scan matching methods, the measurement uncertainty is not taken into
account. Especially, sparse data and dynamic entities in the environment cause
problems of correspondence finding which affects the accuracy of matching
results. Wang in [Wang 2004] proposed a sampling version of ICP which tried

3.2. Grid-based SLAM 47

to model the uncertainty of the matching results by running multiple ICP from
different initial search poses but the expensive computation prevents it from a
real-time operation. Other grid-based scan matching methods introduced by
[Thrun et al. 2000, Hähnel et al. 2003a] again suffered from getting stuck in local
minimum in a gradient search manner.

Here we introduce an alternative grid-based scan matching method to solve
(3.13). In our approach, given an underlying vehicle dynamics constraint,
the vehicle pose is estimated by correcting the correlation of the current laser
scan with the local grid map constructed from all observations in the past
instead of only with one previous scan. The advantage of our method is two
folds. First, using grid-based correlation, measurement uncertainties are taken
into account. Second, a trade-off between the vehicle dynamics model and a
matching with the grid map make the localization results more robust. This is
because in outdoor environments when measurements are quite sparse making
scan matching difficult, we can temporarily rely on the vehicle dynamics until
enough measurements are collected to correct the vehicle pose. The proposed
method is presented in the following.

At first we describe how we represent the motion model and the measurement
model in (3.13).

For the motion model, we adopt a probabilistic velocity motion model similar
to that described in [Thrun et al. 2005]. The vehicle motion ut is comprised of two
components, the translational velocity vt and the yaw rate ωt. Figure 3.4 depicts
the probability of being at location xt given previous location xt−1 and control ut.
This distribution is obtained from the kinematic equations, assuming that vehicle
motion is noisy along its rotational and translational components.

For the measurement model P (zt |xt,Mt−1), mixture beam-based model is
widely used in the literature [Fox et al. 1999a, Hähnel et al. 2003a]. However,
the model comes at the expense of high computation since it requires ray casting
operation for each beam. This can be a limitation for real time application if we
want to estimate a large amount of measurements at the same time. To avoid ray
casting, we propose an alternative model that only considers end-points of the
beams. Because it is likely that a beam hits an obstacle at its end-point, we focus
only on occupied cells in the grid map.

A voting scheme is used to compute the probability of a scan measurement zt

48 Chapter 3. Grid-based SLAM with Detection of Moving Objects

Figure 3.4: The probabilistic velocity motion model P (xt |xt−1, ut) of the vehicle
(left) and its sampling version (right).

Figure 3.5: The measurement model P (zt |xt,Mt−1).

given the vehicle pose xt and the map Mt−1 constructed so far. First, from the
vehicle location xt, individual measurement znt is projected into the coordinate
space of the map. Call hitnt the grid cells corresponding to the projected end-
points. If this cell is occupied, a sum proportional to the occupancy value of the
cell will be voted. Then the final voted score represents the likelihood of the
measurement. Let P (M i

t) denote the posterior probability of occupancy of the
grid cell M i estimated at time t (following (3.10)), we can write the measurement
model under the sum following:

P (zt |xt,Mt−1) ∝
N∑
n=1

{P (M
hitnt
t−1) such that Mhitnt

t−1 is occupied } (3.15)

The proposed method is just an approximation to the measurement model because
it does not take into account visibility constraints (e.g. a beam can not pass

3.2. Grid-based SLAM 49

through an occupied cell), but experimental evidences show that it works well
in practice. Furthermore, with a complexity of O(N) where N is the number of
beams per scan, the computation can be done rapidly.

It remains to describe how we maximize (3.13) to find the correct pose x̂t. Hill
climbing strategy in [Thrun et al. 2000, Hähnel et al. 2003a] can be used but may
suffer from a local maximum. Exploiting the fact that the measurement model
can be computed very quickly, we perform an extensive search over the vehicle
pose space. A sampling version of the motion model (Figure 3.4 right) is used to
generate all possible poses xt given the previous pose xt−1 and the control ut. The
resulting pose will be the pose at which the measurement probability achieves a
maximum value. Because of the inherent discretization of the grid, the sampling
approach turns out to work very well. In practice, with a grid map resolution of
20cm, it is enough to generate about three or four hundreds of pose samples to
obtain a good estimate of the vehicle pose with the measurement likelihood that is
nearly unimproved even with more samples. The total computational time needed
for such a single scan matching is about 10ms on a conventional PC. An example
of scan matching result is shown in Figure 3.6. The most likely vehicle pose is
obtained when the laser scan is aligned with the occupied parts of the map and at
the same time the vehicle dynamics constraint is satisfied.

Figure 3.6: Example of scan matching result. From left to right: reference image;
local map created so far Mt−1 and previous vehicle pose xt−1; laser scan at time t;
and matching result is obtained by trading off the consistency of the measurement
with the map and the previous vehicle pose.

Besides the computational effectiveness, one attraction of our algorithm is that
it is not affected by dynamic entities in the environment (see Figure 3.3 right).
Since we only consider occupied cells, spurious regions in the occupancy grid

50 Chapter 3. Grid-based SLAM with Detection of Moving Objects

Figure 3.7: Illustration of voting scheme in the scan matching process.

map that might belong to dynamic objects do not contribute to the sum (3.15).
The voting scheme ensures that measurement likelihood reach a maximum only
when the measurement is aligned with the static parts of the environment. To some
meaning, measurements from dynamic entities can be considered as outliers. This
property is very useful for moving object detection process that will be described
latter in this chapter.

3.2.3 Local Mapping vs. Global Mapping

Up to now, we have not yet considered the loop-closing problem in our
mapping process. It is well known that the grid-based maximum likelihood
SLAM approach we utilized does not provide a mechanism for loop closing
and also is suffered from too much storage and computation load for large
scale environments (e.g. mapping city-sized environments). To overcome these
limitations, when mapping cyclic environments we can follow the idea proposed
by Wang [Wang 2004] to build a consistent global map.

We locally solve SLAM by a maximum likelihood method with occupancy
grid maps, and globally solve it by Extended Kalman Filter (EKF) with feature-
based maps where each feature is a local grid map with 3-Degree of Freedom (3-
DOF) state. (this state can be estimated using visual image registration algorithms
from the computer vision literature applied between grid maps). Feature-based
EKF algorithm can smoothly solve the loop closing problem, which is a well-
known point in the SLAM literature. Also, to maintain local maps is more efficient

3.3. Moving Object Detection 51

than to update a whole global grid map.

Figure 3.8: A local map is maintained at a time. When the vehicle arrives at the
boundary of the grid map, a new grid is created.

Our strategy is that only one local map is maintained at a point in time
representing the local environment surrounding of the vehicle. The size of the
local map is chosen so that it should not contain loops and the resolution is
maintained at a reasonable level. Every time the vehicle arrives near the map
boundary, a new grid map is initialized. The pose of the new map is computed
according to the vehicle global pose and cells inside the intersection area are
copied from the old map (see Figure 3.8).

3.3 Moving Object Detection

We note that, when performing SLAM in dynamic environments, measure-
ments can come from both static and dynamic objects. In the presence of many
dynamic entities, the localization technique mentioned in the previous section
might be affected. In addition, integrating all measurements from dynamic objects
into mapping process leads to an overall decreased quality of the resulting map.

52 Chapter 3. Grid-based SLAM with Detection of Moving Objects

For these reasons, it is necessary to detect moving objects or differentiate between
the dynamic and static measurements of the environment. Doing this certainly will
considerably contribute to better results of the localization and mapping process.

In the following we describe a motion-based approach based on the grid map
to detect moving objects. During the SLAM algorithm described above constructs
incrementally a consistent local map of the environment, moving objects can be
detected whenever new measurements arrive. The principal idea is based on the
inconsistencies between observed free space and occupied space in the local grid
map. If an object is detected on a location previously seen as free space, then it is
a moving object. If an object is observed on a location previously occupied then
it probably is static. However, if an object appears in a previously not observed
location, then we can say nothing about that object.

Here we add another important clue which can help to decide an object is
dynamic or not using evidences about moving objects detected in the past. For
example, if there are many moving objects passing through an area then any object
that appears in that area should be recognized as a potential moving object. For
this reason, apart from the local static map M as constructed by SLAM described
in the previous section, a local dynamic grid mapD is created to store information
about previously detected moving objects. The pose, size and resolution of the
dynamic map is the same as those of the static map. Each dynamic grid cell
store a value indicating the number of observations that a moving object has been
observed at that cell location.

Figure 3.9: Moving object detection example. See text for more details.

From these remarks, our moving object detection process is carried out in two
steps as follows. The first step is to detect measurements that might belong to

3.3. Moving Object Detection 53

dynamic objects. Here for simplicity, we will temporarily omit the time index.
Given a new laser scan z, the corrected vehicle location and the local static map
M computed by SLAM and the dynamic map D containing information about
previously detected moving objects, state of a single measurement zk is classified
into one of three types following:

state(zn) =

static : Mhitn = occupied

dynamic : Mhitn = free or Dhitn > α

undecided : Mhitn = unknown

where hitn is the coordinate of the grid cell corresponding to the end-point of the
beam zn and α is a predefined threshold.

The second step is after dynamic measurements are determined, moving
objects are then identified by clustering end-points of these beams into separate
groups, each group represents a single object. Two points are considered as
belonging to the same object if the distance between them is less than 0.3m.

Figure 3.9 illustrates the described steps in moving object detection process.
The leftmost image depicts the situation where the vehicle is moving along a street
seeing a car moving ahead and a motorbike moving in the opposite direction. The
middle image shows the local static map and the vehicle location computed by
SLAM and the current laser scan is drawn in red. Measurements which fall into
free region in the static map are detected as dynamic and are displayed in the
rightmost image. After the clustering step, two moving objects in green boxes are
identified and correctly corresponds to the car and the motorbike.

Note that our map updating procedure makes use of results from moving object
detection step. Measurements detected as dynamic are not used to update the map
in SLAM. For unknown measurements, a priori we will suppose that they are
static until latter evidences come. This will help to eliminate spurious objects and
result in a better map. Figure 3.10 shows two occupancy grid maps constructed
from the same laser data in Figure 3.3 with and without filtering out dynamic
measurements. We can see that the left one built without the filtering step results
in many fuzzy regions.

54 Chapter 3. Grid-based SLAM with Detection of Moving Objects

Figure 3.10: Occupancy grid maps built with and without filtering out detected
moving objects.

3.4 Experimental Results

We test our approach to SLAM with moving object detection described above
using the Navlab dataset [Wang et al. 2004]. The dataset was collected using a
SICK laser scanner mounted on a moving vehicle (Figure 3.11). The vehicle was
driven in real-life traffics. The maximum laser range of the scanner is 80m with
the horizontal resolution of 0.5◦. The data was collected at 37.5Hz. We only
use laser data and odometry vehicle motion information such as translational and
rotational velocity (speed and yaw rate) are computed and provided by internal
sensors. Images from camera are only for visualization purpose.

In our implementation, the width and height of local grid map are set to 160m
and 200m respectively, and the grid resolution is set to 20cm. Every time the
vehicle arrives at 40m from the grid border, a new grid map is created. The map
is updated and moving objects are detected for every new laser scan.

The results of local SLAM and moving object detection are shown in
Figure 3.12. The images in the first row represent online maps and objects moving
in the vicinity of the vehicle are all detected and tracked. The current vehicle
location is represented by blue box along with its trajectories after corrected from
the odometry. The red points are current laser measurements that are identified as

3.4. Experimental Results 55

Figure 3.11: Navlab testbed.

belonging to dynamic objects. The green boxes indicate detected moving objects
with corresponding tracks shown in dark-yellow. The second row are images for
visual references to corresponding situations.

In Figure 3.12, the leftmost column depicts a highway scenario where the
testbed car is moving at a very high speed of about 120km/h while other two cars
moving in the same direction in front of it are identified. In the middle is the
situation where the testbed car is moving at 80km/h on a country road. A car
moving ahead and two other cars in the opposite direction are all recognized.
Note that the two cars on the left lane are only observed during a very short
period of time but both are detected successfully. In the third situation, the testbed
moving quite slowly at 25km/h in a crowded city street. Our system detects both
the pedestrian moving in front of it and the car moving far ahead. Temporary
stationary objects like another standing pedestrian and several other cars parked
nearby are considered as static objects.

In all three cases, accurate trajectories of the testbed car are achieved and local
maps around the vehicle are constructed consistently. In our implementation, the
computational time required to perform both SLAM and moving object detection
for each scan is about 20−30ms on a Pentium IV 3.0GHz, 1Gb RAM PC running
Linux. This confirms that our algorithm is able to run synchronously with the
data time cycle. The readers can refer to: http://emotion.inrialpes.fr/

˜tdvu/videos/ for resulting videos.

To demonstrate our localization algorithm can work in cyclic and large

http://emotion.inrialpes.fr/~tdvu/videos/
http://emotion.inrialpes.fr/~tdvu/videos/

56 Chapter 3. Grid-based SLAM with Detection of Moving Objects

Figure 3.12: Experimental results show that our algorithm can successfully
perform both SLAM and moving object detection in real time for different
environments.

environments, we show the vehicle trajectory corrected from odometry with data
collected through a loop of streets (Figure 3.13). The figure shows that the
vehicle trajectory obtained from our localization algorithm is comparable with
the ground-truth map.

3.5 Summary

In this chapter, we have presented a method to perform SLAM with detection
of moving objects. This is done based on a fast grid-based scan matching
algorithm which allows estimating precise vehicle locations and building a
consistent map surrounding of the vehicle. After a consistent local vehicle map is

3.5. Summary 57

Figure 3.13: The result of localization compared with the ground-truth map.

58 Chapter 3. Grid-based SLAM with Detection of Moving Objects

built, moving objects are detected reliably without knowing a prior knowledge of
that objects. The results obtained from moving object detection step help to filter
out spurious objects resulting in a better map of the environment. Experiments on
real-traffic data have shown that our system can successfully perform a real time
mapping with moving object detection from a vehicle moving at high speeds in
different dynamic outdoor scenarios.

Chapter 4

DATMO using Markov Chain
Monte Carlo

4.1 Introduction

In Chapter 3, we discussed how to model static parts of a dynamic en-
vironment, focusing on the SLAM problem with filtering out the presence of
dynamic entities. In this chapter, we discuss how to model dynamic parts of the
environment, focusing particularly on the problem of detection and tracking of
moving objects (DATMO). Inheriting the SLAM results presented in the previous
chapter, we will assume that a reasonably precise localization of the ego-vehicle
and a map surrounding of the vehicle are always available.

Conventionally, as introduced in Section 2.3, we can separate detection and
tracking as two independent procedures: the detector and the tracker. At each
time step, the tracker takes a list of observations about moving objects returned
by the detector together with observations in the past to solve the data association
over the observation space to find correct object trajectories (or tracks) then apply
filtering techniques to estimate dynamic states of moving objects. In this way, we
can take moving object detection results from the previous chapter and develop an
independent tracker. This is similar to the approach described in the PhD theses
of Wang [Wang 2004] and Burlet [Burlet 2007] who handle the tracking using the
Multiple Hypothesis Tracker (MHT) coupled with a IMM-based filter.

In this conventional approach, since moving object detection at one time
instant usually results in ambiguities that makes the data association become

59

60 Chapter 4. DATMO using Markov Chain Monte Carlo

more difficult with missing detections or false alarms. Here we introduce
another approach which combines detection and tracking together. We present
a probabilistic method for simultaneous detection and tracking of moving objects
taking history of measurements that allows the object detection process to make
use of temporal information and facilitates a robust tracking of the moving objects.

Moreover, noting that moving objects are detected as free-form in the
detection process presented previously. An advantage of this method is that it can
be used to detect any kind of objects without knowing a prior knowledge about
that objects. However, this suffers from well-known problems with laser-based
tracking as explained in the subsection 2.3.1. For example, objects can be divided
into several segments or come in different shapes over time leading to an incorrect
tracking result. Here we take a model-based approach and introduce predefined
models to represent typical moving object classes.

Our algorithm to solve DATMO is summarized as follows. We formulate the
detection and tracking problem as finding the most likely trajectories of moving
objects given data measurements over a sliding window of time (Figure 4.1a)).
A trajectory (track) is regarded as a sequence of object shapes (models) produced
over time by an object which must be satisfied the constraint of both an underlying
object motion and the consistency with measurements observed from frame to
frame. In this way, our approach can be seen as a batch method searching
for the global optimum solution in the spatio-temporal space. Due to the high
computational complexity of such a scheme, we employ a Markov chain Monte
Carlo (MCMC) technique that enables traversing efficiently in the solution space.
We employ the detection results from the previous chapter as a coarse detector
to generate potential moving object hypotheses with predefined models that helps
to drive the search more efficiently. This technique earns its name data-driven
MCMC (DDMCMC) in the literature [Zhu et al. 2000].

The key contribution in this chapter is to design a general framework to
perform object detection and tracking at the same time with an explicit integration
of various aspects including prior information, object model, measurement model,
motion model in a theoretically sound formulation. We test the proposed
algorithm on real-life urban traffic datasets and present preliminary results.

The remaining of the chapter is organized as follows. In the following section,
we introduce a general formulation of the moving object detection and tracking

4.2. DATMO Formulation 61

Figure 4.1: Example of an interpretation of moving object trajectories from a laser
data sequence. (a) Data comprised of four scans consecutive: in blue is current
scan and in green are scans in the past; (b) A solution found including seven tracks
of four cars and one bus represented by red boxes and one pedestrian represented
by red dots which are imposed on the range data; (c) situation reference.

problem. In Section 4.3 we present our algorithm to find the optimal trajectories
of moving objects using a spatio-temporal MCMC sampling method. We discuss
experiments and provide some initial results on real-life traffic datasets in Section
4.4, followed by some summary remarks in Section 4.5.

4.2 DATMO Formulation

We consider detection and tracking in a sliding window of time which is
comprised of T ∈ N+ last frames. Let Z be the set of all data measurements
within the time interval [1, T] and Z = {z1, ..., zT} where zt denotes the laser
scan measurement at time t. The current time corresponds to t = T . Assuming
that within [1, T] there are K unknown number of objects moving in the vicinity
of the vehicle.

62 Chapter 4. DATMO using Markov Chain Monte Carlo

The moving object detection and tracking problem is formulated as maxi-
mizing a posterior probability (MAP) of an interpretation of tracks ω of moving
objects, given a set of laser measurements Z over T frames:

ω∗ = argmax
ω ∈Ω

P (ω|Z) (4.1)

According to the Bayes rule, the posterior probability is decomposed into a prior
term and a likelihood term:

P (ω|Z) ∝ P (ω)P (Z|ω) (4.2)

In the following, we describe object shape models, the prior model and the
likelihood model .

4.2.1 Object models

In general, there are so many classes of objects in traffic scenes but the number
classes of moving objects of interest is quite limited. Here we distinguish four
classes of moving objects: bus, car, bike, pedestrian (motorcycles and bicycles
belong to the bike class). We use a box model of fixed size to represent bus, car,
bike and a point model to represent pedestrian. Our approach is different with
the approach proposed by Petrovskaya [Petrovskaya & Thrun 2008] who used a
flexible box model to represent cars and introduced a method to learn object sizes
during tracking. A problem with this approach is that during most of the time
objects being tracked, they are not totally visible to the laser sensor so that the
adaptive sizes do not necessarily correspond to the actual size of the objects being
tracked. In addition, her work only deals with detection and tracking of vehicles.

To define a typical size for each object class, a priori knowledge about
typical road users is utilized. Figure 4.2 shows, for example, the distribution
of the physical dimensions of 250 different passenger cars sold in Europe
[Dietmayer et al. 2001]. Therefore a fixed rectangular model of 1.7m width by
4.5m length can reasonably represent the car class.

Similar data are provided for buses with typical width of 2.5m and length
of 12.0m, trucks without trailer with typical length of 9.0m and width of 2.3m,
typical motorcycles length 2.1m and width 0.5m and persons with a typical

4.2. DATMO Formulation 63

Figure 4.2: Distribution of length, width and the length/width ratio of passenger
cars in Europe.

diameter: 0.5m.

To generalize, we represent models of objects as follows. For the box model,
object is parameterized by M = {c, x, y, wc, lc, θ} which are object class, object
center position, width, length and orientation respectively. Herein wc and lc are
constants with respect to the width and length of each object class c. For the point
model, object is parameterized byM = {c, x, y}which are object class and object
center (see Figure 4.3).

Figure 4.3: Box model and point model to represent moving objects.

64 Chapter 4. DATMO using Markov Chain Monte Carlo

4.2.2 Solution Space

A solution ω for the Equation (4.1) includes a set of K trajectories (tracks) of
moving objects appeared during the tracking over the last T frames:

ω = {τ1, τ2, ..., τK} (4.3)

Each track τk in ω is defined as a sequence of the same object appears in time:

τk = {τk(t1), ..., τk(t|τk|)} (4.4)

where ti ∈ [1, T], |τk| is the length of track, τk(t) represents moving ob-
ject detected at time t with its associated properties which is either of form
{c, x, y, wc, lc, θ} or {c, x, y}.

Figure 4.1 shows an example of one possible interpretation of moving objects
from a sequence of four laser scans. The solution found is comprised of seven
tracks of five cars, one bus and one pedestrian ω = {τ1, ..., τ7}.

We introduce the notation ωt =
⋃K
k=1 τk(t) representing the set of moving

objects visible at time t (see Figure 4.4). Since object occlusion or missing object
detection might happen, we set 1 ≤ (ti+1 − ti) ≤ tmax. Looking at this figure,
vertically at each time slice ωt can be seen as the result of the moving object
detection at time t and horizontally ω can be seen as a data association process
over object observation space given by the detector. In this meaning, searching
the solution ω means that we simultaneously deal with both detection and tracking
problems.

Figure 4.4: Illustration for the notation in use.

4.2. DATMO Formulation 65

The complexity of the entire solution space Ω (ω ∈ Ω) can be roughly
estimated as follows:

Ω = ∪∞k=0Ωk

Ωk = {∪Tl=1Tl}k,
Tl = (3×R3 +R2)l

where Ωk is the subspace of solutions comprised of exactly k tracks, Tl is the
space for tracks with length of l, R3 is the space for position and orientation
parameters of non-people object classes (we have three classes) and R2 is the
space for position parameters of the people class.

With this complexity of the solution space Ω, it is impossible to solve (4.1) in
a conventional method. In addition, since we do not know in advance how many
objects (number of tracks), how long they exist (track lengths) in the scene, the
solution space contains subspaces of varying dimensions which creates difficulties
in pursuing the solutions.

To tackle these difficulties, we take a sampling approach to explore in the
solution space to search for the maximum a posterior (MAP) in (4.2). Before
going into detail, we describe how we model the prior and the likelihood in order
to compute the posterior of a solution ω given measurements Z.

4.2.3 Prior Probability

The prior P (ω) in the Equation (4.2) simply reflects the probability we have
seen an arrangement of K object trajectories on road without taking into account
the sensor observations. Assuming that the occurrence of an object is independent
of the others, we define the prior of a solution ω is a product of probabilities of
individual tracks:

P (ω) =
K∏
k=1

P (τk) (4.5)

The probability P (τk) encodes probabilities of the appearance of objects inde-
pendent over time which is denoted by PO(.) and the temporal consistency of
object positions within the track which is denoted by PT (.). The probability PT (.)

controls the inner-smoothness of each track independently (Figure 4.5). However,

66 Chapter 4. DATMO using Markov Chain Monte Carlo

without an a priori knowledge of the number of targets, the inner-smoothness
constraint will favor shorter paths, and therefore will split a trajectory into a large
number of sub-tracks. To overcome this overfitting problem, we add a prior term
PL(.) which encodes the preference of longer track. Now we can write:

P (τk) = PL(τk)PO(τk)PT (τk) (4.6)

1. We adopt an exponential model over the length of each track:

PL(τk) ∝ exp(λL|τk|) (4.7)

where λL is a preset constant to weight down short tracks and favor longer
tracks.

2. The probability of appearance of objects in track independent of time PO(.)

means how often we see an object of a given class at a specific position and
direction:

PO(τk) =

|τk|∏
i=1

P (τk(ti)) = P (ck)

|τk|∏
i=1

P (xi, yi)P (θi) (4.8)

where P (ck), P (xi, yi) and P (θi) are the prior probabilities over the object
class, object position and object orientation respectively. In our current
implementation, we set these prior probabilities as uniform distributions.
However, knowledge of road type and road border, if available can be added
for better performance. For example, vehicle movement direction is usually
parallel with the road border. Or we unlikely see a pedestrian when moving
on a highway.

3. There remains how to model the temporal consistency within each track
PT (τk). This term is measured by the smoothness of object motion
according to its underlying dynamics model. Since in urban scenarios
objects are high maneuvers, we opt for a multiple model approach to model
object dynamics (subsection 2.3.2). For classes of bus, car, bike, four modes
of dynamics are used: constant velocity, constant acceleration, turning and
stationary mode. For pedestrians, we force the acceleration to zero and
only one constant velocity model is used. Box-model dynamic states are

4.2. DATMO Formulation 67

Figure 4.5: Temporal consistency of a track. Obviously the arrangement of cars
on the right is more relevant to a correct motion than that on the left.

(x, y, θ, θ̇, v, a) with the velocity v and acceleration a are always in the
direction θ of the longer edge l. Dynamic states for point-model objects
are (x, y, vx, vy).

We apply an IMM filter similar to [Zhao & Thorpe 1998] to estimate
states of objects in the track sequentially: τ̂k(t1), ..., τ̂k(t|τk|) and their
corresponding covariances: cov(τ̂k(t1)), ..., cov(τ̂k(t|τk|)). Set cov(τk) =

cov(τ̂k(t|τk|)). A smaller value of cov(τk) implies that the track is more
consistent to the underlying dynamics model. The temporal consistency of
a track is then calculated by:

PT (τk) ∝ exp(−λT cov(τk)) (4.9)

where λT is a preset constant to weigh the importance of this probability
component.

4.2.4 Likelihood Probability

The likelihood P (Z|ω) (4.2) reflects the probability we observe the measure-
ments Z given ω which contains the states of all moving objects appeared during
the time interval [1, T]. Note that the measurements Z comes from both static and
dynamic objects.

To model this likelihood, first we identify laser measurements which are

68 Chapter 4. DATMO using Markov Chain Monte Carlo

caused by moving objects in ω. Figure 4.6 shows a box-model object (solid
rectangle) and its dilated bounding box (dotted rectangles) representing the
uncertainty of measurements when laser hits the object. Taking a laser beam
Az, it is considered as being caused by the object if it has an impact lying on the
segmentBD that corresponds to a measurement on visible sides. We notice that if
the impact lies on the segmentAB, the object is occluded. If the impact lies on the
ray Dz and it is not a maximum range reading, the visibility constraint is violated
(rays seeing through glasses or black surfaces are not the case). For the point-
model object, it is dilated by a circle of a fixed diameter and all measurements fall
inside the circle are considered as measurements from that object.

Figure 4.6: Object measurement likelihood computation.

Let Z(d) denote all laser measurements which is identified from the step
described above as being caused by moving objects from the solution ω. We have
Z(s) = Z −Z(d) the remained measurements which are supposed to be caused by
static objects. Note that Z include T laser scans Z = {z1, ..., zT}. We denote z(d)

t

and z(s)
t as measurements from dynamic and static objects at time t respectively.

By this definition, besides information about dynamic objects, the solution
ω can be considered as a partition of Z into dynamic and static measurements.
From frame to frame, these measurements should be consistent with each others.

4.2. DATMO Formulation 69

We can therefore decompose the likelihood into a product of two terms:

p(Z|ω) =
T∏

i,j=1

P (zi|ωj)
T∏

i,j=1

P (zi|z(s)
j) (4.10)

where the first term encodes the likelihood of a laser scan at a time given
observations of moving objects and the second term encodes the consistency of
the scan with static parts of the environment. (Remember that ωi denotes list of
moving objects at time i).

The first term is then further decomposed:

T∏
i,j=1

P (zi|ωj) =
∏
i

P (zi|ωi)
∏
i 6=j

P (zi|ωj)

=
∏
i

PM1(z
(d)
i |ωi)PM2(z

(s)
i |ωi)

∏
i 6=j

PM3(z
(s)
i |ωj) (4.11)

The second term in (4.10) is rewritten as:

T∏
i,j=1

P (zi|z(s)
j) =

∏
i 6=j

PM4(zi|z
(s)
j) (4.12)

The meaning of each probability component is as follows. PM1 scores the
fitness of dynamic measurements to the moving objects. PM2 , PM3 and PM4

penalizes the violation of laser visibility constraint. In particularly, PM2 penalizes
situations that laser can see through dynamic objects. PM3 penalizes the situations
where moving objects are detected at position that has seen static objects. PM4

penalizes the situations where laser can see through static objects. Figure 4.7, in
order from left to right, illustrates the meanings of probabilities PM1 , PM2 , PM3

and PM4 respectively. Note that here we do not consider maximum range laser
readings so that rays caused by glasses or black surfaces will not be penalized.

In the following, we discuss in detail how we model these probabilities:

1. Assuming that z(d)
i is comprised of N dynamic measurements z

(d)
i =

{z1
i , ..., z

N
i }. We consider measurements obtained along each laser ray

independent of each other. The measurement likelihood PM1 factors as:

70 Chapter 4. DATMO using Markov Chain Monte Carlo

Figure 4.7: Four types of constraint used to compute the likelihood. The red dots
are measurements that violate the laser visibility constraint.

PM1(z
(d)
i |ωi) =

N∏
n=1

P (zni |ωi) (4.13)

Each measurement zni corresponds to a laser beam that hits an object in ωi
where the laser impact lies on the segment BD (Figure 4.6). We model
each ray’s likelihood as a zero-mean Gaussian with respect to the distance
dn from the impact to the ideal measurement point C:

P (zni |ωi) ∝ exp(−λ1dn) (4.14)

2. For each object in ωi, we count the number of non-maximal measurements
z

(s)
i that fall behind the object model, call c2 is the total number.

PM2(z
(s)
i |ωi) ∝ exp(−λ2c2) (4.15)

PM2 supports the remark following: If there exists such a violation of
visibility constraint, there is unlikely a moving object appeared at that
position.

3. Similarly, we count c3 the number of measurements z(s)
i that fall inside

occupied areas of the objects in ωj .

PM3(z
(s)
i |ωj) ∝ exp(−λ3c3) (4.16)

4.3. Efficient MAP Computation using MCMC 71

PM3 is in favor of the fact that if there is a moving object appeared at one
time step then all measurements backward or afterward falling inside the
object area should be dynamic measurements.

4. In the same way, let c4 be the total number of violated measurements:

PM4(zi|z
(s)
j) ∝ exp(−λ4c4) (4.17)

PM4 holds the observation that if there are measurements in one frame
observed passing through other measurements in another frame then the
later measurements are likely dynamic measurements.

4.2.5 Posterior Probability

By combining the above likelihood and the prior probability, we get the
posterior probability function as:

P (ω|Z) ∝ exp{ λLSlen − λTSmot − λ1Sms1 − λ2Sms2 −
λ3Sms3 − λ4Sms4} (4.18)

where λL, λT , λ1, λ2, λ3, λ4 are positive real constants being chosen empirically
beforehand and:

Slen =
K∑
k=1

|τk| Smot =
K∑
k=1

cov(τk)

Sms1 =
T∑
i=1

N∑
n=1

din Sms2 =
T∑
i=1

ci2 (4.19)

Sms3 =
∑
i 6=j

cij3 Sms4 =
∑
i 6=j

cij4

4.3 Efficient MAP Computation using MCMC

We want to find the solution ω that maximizes the posterior probability
defined in (4.18). However, as stated in Section 4.2.2, the solution space contains
subspaces of varying dimensions (number of tracks). It also includes both discrete

72 Chapter 4. DATMO using Markov Chain Monte Carlo

variable (object-track associations) and continuous variables (object positions and
directions). These makes the optimization challenging.

Dealing with this difficulty, we employ a Markov chain Monte Carlo (MCMC)
method with jump/diffusion dynamics to sample the posterior probability in such
a complex solution space to search for the maximum. Jumps cause the Markov
chain to move between subspaces with different dimensions and traverse the
discrete variables; diffusions make the Markov chain sample continuous variables.
In the process of sampling, the best solution is recorded and the uncertainty
associated with the solution is also obtained. We introduce the basic idea of
MCMC in the following.

4.3.1 MCMC algorithm

The basic idea of MCMC is as follows. A Markov chain can be designed
to sample a probability distribution π(ω) (in our case π(ω) = P (ω|Z)). At each
iteration, we sample a new state ω′ from the current state ωn following a proposal
distribution q(ω′|ωn−1) (in simple words, what new state should the Markov chain
go from the previous state). The new candidate state ω′ is accepted with the
following probability A(ωn−1, ω

′) where

A(ωn−1, ω
′) = min(1,

π(ω′)

π(ωn−1)

q(ωn−1|ω′)
q(ω′|ωn−1)

) (4.20)

otherwise the sampler stay at ωn−1.
The term π(ω′)

π(ωn−1)
is the relative probability of the states ωn−1 and ω′; the term

q(ωn−1|ω′)
q(ω′|ωn−1)

expresses the relative difficulty of going from ω′ to ωn−1 and from ωn−1

to ω′. If the probability of the proposed state, combined with the probability of
going back to ωn−1, is greater than the reverse, the move is accepted; otherwise,
it is still accepted probabilistically, which is different from the gradient search. If
the candidate state ω′ is accepted, we set ωn = ω′; otherwise, ωn = ωn−1

The overview of MCMC algorithm is shown in Algorithm 4.1. This is
the well-known Metropolis-Hasting algorithm [Tierney 1996]. The proposal
probability q(.) is called the dynamics of the Markov chain. There are usually
two kinds of dynamics: jump and diffusion. Jump refers to the motion of Markov
chain between subspaces of different dimensions and diffusion refers to its motion
within a subspace.

4.3. Efficient MAP Computation using MCMC 73

Algorithm 4.1 MCMC Sampler
1: Input: Z, nmc, ω∗ = ω0 Output: ω∗
2: for n = 1 to nmc do
3: Propose ω′ according to q(ω′|ωn−1)
4: Sample U from Uniform[0, 1]
5: if U < A(ω, ω′) then
6: ωn = ω′

7: if P (ωn|Z) > P (ω∗|Z) then ω∗ = ωn
8: else
9: ωn = ωn−1

10: end for

It is proved that the Markov chain constructed this way has its stationary
distribution equal to π(ω), independent of the choice of the proposal probability
q(.) and the initial state ω0. However, the choice of the proposal probability
q(.) can affect the efficiency of the MCMC significantly. A random proposal
probability will lead to a very slow convergence rate while a proposal probability
designed with domain knowledge will make the Markov chain traverse the
solution space more efficiently. If the proposal probability is informative enough
so that each sample can be thought of as a hypothesis, then the MCMC approach
can be though of as a stochastic version of the hypothesize and test approach
[Zhu et al. 2000] that earns the approach its name Data-Driven MCMC method
(DDMCMC).

To make the proposals more informative, we take advantage of the detection
module in the previous chapter. Avoiding the confusion, we make it clear that
the detector presented in previous chapter is only able to detect parts of moving
objects not the actual objects (with models). We can consider this step as a coarse
detector and can consider moving object parts detected as evidences about moving
objects. The idea is that the coarse detector and these moving evidences can help
us to focus on the search of solution for moving trajectories on regions where
moving objects are potentially present to accelerate the convergence rate of the
MCMC sampler.

We present a two-stage DATMO process: The first stage, moving object
hypothesis generation, where coarse hypotheses for the presence of moving
objects (with associated models) are generated from moving evidences (data-
driven). This stage is designed to have high detection rates but also may have

74 Chapter 4. DATMO using Markov Chain Monte Carlo

Figure 4.8: A simple illustration of Metropolis algorithm to sample from a
Gaussian distribution whose one standard-deviation contour is shown by the
ellipse. Steps that are accepted are shown in green and rejected steps are shown
in red.

many false alarms. These hypotheses then provide proposals for a second stage
MCMC sampler, with jump/diffusion dymamics, that performs a finer search
over the spatio-temporal space of potential moving objects to find the most likely
trajectories of moving objects with a maximum of posterior probability.

We detail the two-stage process in the following.

4.3.2 Moving object hypothesis generation

We recall the process of detecting moving evidences described in Chapter 3
which will be used to help generating model-based moving object hypotheses.
As presented previously, we incrementally constructs an online occupancy grid
representing a local map of the vehicle environment based on good vehicle
localization obtained by a fast scan matching technique. Moving parts of dynamic
objects are then detected when objects enter object-free regions. Here the
detection condition is loosened to include the situations when objects are observed
in unexplored regions that could be static or new moving objects. Taking all
these as moving evidences increases the detection rate and false alarms as well.
Result of this step is a set of dynamic segments corresponding to potential moving
objects. Note that objects can be seen as several parts so that several segments
might be related to the same object.

4.3. Efficient MAP Computation using MCMC 75

Figure 4.9: Object detection based on occupancy grid.

Figure 4.9 illustrates our detection process. In the figure, the bottom image
describes a situation when the host vehicle moving along the street seeing two cars
moving ahead, another car coming out of the left turn and two pedestrians walking
on the left pavement. The image on top left shows the local grid map constructed
around the host vehicle (blue box). In red color is the current laser scan.
Laser impacts that fall into free or unexplored regions are detected as dynamic
measurements and are displayed in the top right image. Dynamic measurements
are then grouped into segments represented in green boxes corresponding to
moving objects. Note that the car coming from the left turn is divided into two
segments.Two false alarms are also displayed.

Starting from identified dynamic segments, we generate object hypotheses by
fitting predefined object models to each segment. The objective is to generate
all possible hypotheses corresponding to potential moving objects. The model
fitting is carried out as follows. For each segment, a minimum bounding box is
computed and corresponding sides of the segment are extracted. We remark that at
one time instant, maximum two sides of a segment can be seen by the laser sensor.
Providing that the size of a bounding box of a segment is larger than a threshold,
the segment is classified as a L-shape if it has two visible sides, as an I-shape
if only one side is visible. Otherwise it is classified as a ”mass point”-shape.
Depending on the shape and size of segments, object hypotheses are generated

76 Chapter 4. DATMO using Markov Chain Monte Carlo

using suitable models. L-shape segments will generate bus, car hypotheses, I-
shape segments create bus, car, bike hypotheses and ”mass-point” segments will
generate pedestrian hypotheses.

Figure 4.10: Illustration of fitting object box model (green) to L-shape and I-shape
segments (red). The last two shapes show that using box model helps connecting
discontinued segments.

Figure 4.10 shows possible hypotheses of an object as a box model given L-
shape and I-shape segments of different sizes. Note that by fitting object models
to segments in this way, models can cover segments nearby so that naturally
overcome object splitting problem caused by laser measurement discontinuities
(Figure 2.7).

To illustrate the object hypotheses space that is used to guide the proposals in
the MCMC process for searching object trajectories, in Figure 4.11, an example
image of all possible object hypotheses over T = 10 frames are displayed. For
visibility purpose, only car model hypotheses are shown.

Now it remains how we use MCMC sampling to search for the solution of
object trajectories from the space of moving object hypotheses constructed in the
time span [1, T] as described. We notice that in Figure 4.11 many false alarms are
generated corresponding to noises or stationary cars on the right border. However,
if taking the temporal information and vehicle motion models into account, they
are not relevant and will be easily discarded. Four long shape sequences marked
with numbers meet the motion consistency and correctly correspond to moving
cars.

Basing on this remark, we introduce a neighborhood graph structure over the
space of moving object hypotheses to make the sampling more efficient which is
described next.

4.3. Efficient MAP Computation using MCMC 77

Figure 4.11: An example of moving object hypotheses generated over ten frames.
For visibility purpose, only car model candidates are shown.

4.3.3 Neighborhood graph of hypotheses

We use a graph 〈V,E〉 to represent the relationship of all coarse moving object
hypotheses generated as described above within the time interval [1, T]. Let hit
denote the i-th hypothesis generated at time t. Each hypothesis hit is represented
by a node in V . We define the neighborhood between two nodes in the graph by
edges in E of two types: sibling edges and parent-child edges:

1. Sibling edges are defined by: Esb = {(hit, h
j
t)} where hit and hjt are object

hypotheses generated at the same time step with the condition that hit and
hjt share spatial overlap.

2. Parent-child edges are defined by: Epc = {(hit1 , h
j
t2)} where t1 6= t2, hit and

hjt are object hypotheses generated at different time step with the condition
that hit1 and hjt2 are of the same object class and ‖hit1(x, y) − hjt2(x, y)‖ <
|t1− t2|vmax, where ‖.‖ is the Euclidean distance, 1 ≤ |t1− t2| ≤ tmax and

78 Chapter 4. DATMO using Markov Chain Monte Carlo

vmax is the maximum speed of the object class.

Sibling edges represent exclusion relationship between object hypotheses that are
generated from the same moving evidence so that if one is selected to form a
track then the other are excluded. Parent-child edges reflect possible temporal
association between hypotheses (possible data association).

Figure 4.12 shows an example of neighborhood graph of moving object
hypotheses generated over three frames. Object hypotheses at each frame are
numbered and object classes are represented by nodes of different shapes. Sibling
nodes are displayed inside gray circles. Parent-child nodes are connected by
segments.

Figure 4.12: Example of a neighborhood graph of moving object hypotheses
generated over three frames.

We use the notation N(.) to denote the neighbor set of a hypothesis in
the graph structure: N(hit1) = {hjt2|(hit1 , h

j
t2) ∈ E}. Hypothesis hjt2 ∈

N(hit1) belongs to the parent set Nparent(hit1), child set N child(hit1), sibling set
N sibling(hit1), when t2 < t1, t2 > t1 and t2 = t1 respectively.

Taking the node h4
2 in Figure 4.12 for example, we have Nparent(h4

2) =

{h3
1, h

4
1}, N child(h4

2) = {h3
3} and N sibling(h4

2) = {h5
2}.

Now instead of search over the entire solution space for the maximum a
posterior solution in the Equation 4.1, we only need to search for trajectories
over the neighborhood graph of moving object hypotheses. In the following, we
describe MCMC dynamics to traverse this reduced solution space using the graph
notations mentioned above.

4.3. Efficient MAP Computation using MCMC 79

4.3.4 Markov chain dynamics

The Markov chain dynamics correspond to sampling the proposal distribution
q(ω′|ωn−1) described in Algorithm 4.1 (line 3). We assume that at the (n − 1)-th
iteration we have a sample ωn−1 = {τ1, ..., τK} comprised of K tracks which is
formed from nodes of moving objects in V and now propose a candidate ω′ for
the n-th iteration. Let V ∗ denote the set of all unselected nodes in V and do not
share any sibling edge with nodes contained in ωn−1.

In order for the Markov chain to traverse the solution space, we design the
following reversible dynamics:

Track Extension/Reduction: The purpose of the extension/reduction move
is to extend or shorten the estimated trajectories. For a forward extension, we
select uniformly at random (u.a.r) a track τk ∈ ωn−1. Let τk(end) denote the last
node in the track τk. Then select u.a.r node h ∈ {N child(τk(end)) ∩ V ∗} and
append the new hypothesis h to τk. Similarly, for a backward extension, we take
a node h ∈ {Nparent(τk(start)) ∩ V ∗}. We keep on extending the track τk with a
probability γ ∈ [0, 1].

The reduction move consists of randomly shortening a track τk by selecting a
cutting index r u.a.r from {2, ..., |τk| − 1}. In the case of a forward reduction the
track τk is shortened to {τk(t1), ..., τk(tr)}, while in a backward reduction we take
the sub-track {τk(tr), ..., τk(t|τk|)}.

Track Birth/Death: This move controls the creation of new track or
termination of an existing trajectory. In a birth move, we select u.a.r a node
h ∈ V ∗, associate it to a new track and increase the number of tracks K ′ = K+1.
The birth move is always followed by an extension move. From the node h we
select the extension direction forward or backward u.a.r to extend the track τK′ .
If |τK′| < 2 the move is rejected.

For a death move, we simply choose u.a.r a track τk and delete it.
Track Split/Merge: For a split move, we u.a.r select a track τk with |τk| ≥ 4

and a split point s ∈ {2, ..., |τk| − 2}. And we split τk into two new tracks τs1 =

{τk(t1), ..., τk(ts)} and τs2 = {τk(ts+1), ..., τk(t|τk|)} and increase the number of
tracks K ′ = K + 1.

Often, due to missing detection or erroneous detection, trajectories of objects
are fragmented. The merge move provides the ability to link these fragmented
sub-tracks. If a tracks’s (τk1) end node is in the parent set of another track’s

80 Chapter 4. DATMO using Markov Chain Monte Carlo

(τk2) start node, this pair of two tracks is candidate for a merge move. We select
u.a.r a pair of tracks from candidates and merge the two tracks into a new track
τk = {τk1} ∪ {τk2} and reduce the number of tracks K ′ = K − 1.

Track Switch: If there exist two break points p, q in two tracks τk1 , τk2 such
that τk1(tp) ∈ Nparent(τk2(tq+1)) and τk2(tq) ∈ Nparent(τk1(tp+1)) as well, this
pair of nodes is one candidate for a switch move. We u.a.r select a candidate and
define two new tracks as:

τ ′k1 = {τk1(t1), ..., τk1(tp), τk2(tq+1), ..., τk2(t|tk2
|)} and

τ ′k2 = {τk2(t1), ..., τk2(tq), τk1(tp+1), ..., τk1(t|tk1
|)}

Track Diffusion: Randomly select a track τk and an index d from {1, ..., |τk|}
and update the position and orientation of the object τk(td) under some random
noise.

Figure 4.13 illustrates the described dynamics moves of the Markov chain
which we use to traverse the solution space. Four first types of moves are temporal
dynamics and the last one is a spatial dynamics. The temporal moves help to
form tracks (data association of object hypotheses over T frames) and the spatial
move helps to improve the detection results (to compensate errors from the model-
fitting step described in the subsection 4.3.3). At each iteration, one of the
above dynamics is chosen randomly. Since the dynamics moves are stochastic and
reversible, it is guaranteed that the Markov chain designed this way is ergodic (i.e.,
any state is reachable from any other state within finite number of iterations) and
aperiodic (i.e., the Markov chain does not repeat in a fixed pattern). This ensures
that the entire solution space can be explored if the MCMC sampler constructed
this way is run with unlimited resources.

4.3.5 Incremental computation

For each MCMC move, we need to compute the ratio π(ω′)
π(ω)

= P (ω′|Z)
P (ω|Z)

in
(4.20). In one iteration, our algorithm only changes maximum two tracks. Thus
the new posterior probability can be computed more efficiently by incrementally
computing it only within the related terms in (4.19). This is in contrast to
the particle filters where the evaluation of each particle (joint state) needs the
computation of the full joint likelihood. One more interesting property of the

4.4. Experimental Results 81

Figure 4.13: Dynamics moves of the Markov chain.

MCMC approach is that, we only needs to keep one hypothesis of object trajectory
solution in the memory at one time instant compared with all solution hypotheses
have to be maintained in case of tracking with MHT. Moreover, the execution time
can be controlled by the number of sampling iterations nmc.

4.4 Experimental Results

We test our approach to DATMO described above using the same Navlab
dataset [Wang et al. 2004] as used in Chapter 3. Actually, our tracking process
is performed for every four ”original” scans which was collected at 37.5Hz so that
the data cycle time from frame to frame in our program is about 100ms.

We have implemented the described algorithm as an online process within a
sliding window which contains T = 10 frames and only moving object hypotheses
generated within this sliding window are stored in the graph structure which is
implemented as a rounded-list. For each time step when a new scan arrives, the
trajectory solution obtained in the previous step is used to initialize a new MCMC

82 Chapter 4. DATMO using Markov Chain Monte Carlo

search (ω0). Tracks are confirmed if their lengths are greater than or equal three
(objects must be observed at least three times to confirm), otherwise they are
considered false alarms. The MCMC sampler is run for a total of 300 iterations.
The average computational time for a total detection and tracking process is about
60−80ms on Pentium IV 3.0GHz PC with unoptimized codes so that it can fulfill
the real time requirement.

Figure 4.14: Result of searching the hypotheses space in Figure 4.11 for the
solution.

Figure 4.14 shows the result after searching the moving object trajectories
from the space of hypotheses in Figure 4.11. Four consistent tracks are
found correctly corresponding to the four moving cars. False-alarm generated
hypotheses are quickly discarded when not finding temporal neighbors satisfying
the motion consistency condition.

Figure 4.15(a) shows an example of our detection and tracking algorithm in
action. In the ego-vehicle’s view, only current laser scan is displayed in blue color,
moving objects detected and their trajectories are shown in pink color. Moving
objects in the situation include a bus moving in the opposite direction on the left,
three cars moving ahead, two pedestrians walking on the left pavement and the

4.4. Experimental Results 83

(a) Different object classes are successfully detected and tracked.

(b) Example of tracking with occlusion.

Figure 4.15: Moving object detection and tracking in action.

84 Chapter 4. DATMO using Markov Chain Monte Carlo

other two pedestrians waiting at the intersection. The bus is divided into several
segments and pedestrians are easy to be confused with noises and other small
objects that make the detection and tracking challenging. However, thanks to our
approach, the bus model helps connecting the discontinued segments and temporal
information helps to distinguish pedestrians with noises and reduce ambiguities.
All moving objects are identified and tracked successfully.

Figure 4.15(b) is another example of tracking with partial occlusions. The
figure shows our method is able to detect two cars passing in front of the ego-
vehicle where one is partially occluded by another from only one visible side of
these two cars. Other two pedestrians are also detected and tracked.

Note that in our model-based approach moving objects are naturally classified.
The readers can refer to: http://emotion.inrialpes.fr/˜tdvu/videos/
for resulting videos.

4.4.1 Performance Evaluation

Since there are no ground-truth data for the testing dataset, we have tried
to evaluate the DATMO performance manually. We choose some typical
subsequences from the dataset and perform a frame-based evaluation. In each
frame of data we labeled all moving objects identifiable by human eyes in the
video sequence. For each moving object, we count how many frames it is
detected and wrong detections (false positives) are also counted. The results of
the evaluation are summarized in Table 4.1. Note that the maximum theoretically
possible true positive rate is lower than 100% because at least three frames are
required to detect a new moving object.

Table 4.1: Quantitative results

Sequence Total Total Correct False MP TP FP

Frames Objects Detected Alarms % (%) (%)

1 850 3850 3726 120 98% 96.7% 0.4%

2 405 1625 1580 67 98.2% 97.2% 0.4%

3 520 2510 2465 80 99.0% 98.2% 0.3%

We can see that in all sequences, high detection rates are achieved with

http://emotion.inrialpes.fr/~tdvu/videos/

4.5. Summary 85

relatively low false positives (less than 0.4%). The result obtained thanks to
the temporal information which helps to reduce the ambiguities and make the
detection more robust.

4.5 Summary

In summary, we have presented a method for simultaneous detection and
tracking moving objects (DATMO) in real time with a laser scanner using a
Bayesian-MCMC approach. The success of the method described in this chapter
lies in a general framework which integrates both top-down and bottom-up
processing.

First, a top-down strategy is introduced to treat DATMO problem as inter-
preting moving object trajectories from a sequence of laser measurements. This
allows explicitly incorporating various aspects including prior information, object
model, object motion model and measurement model into a theoretically sound
formulation. In theory, the optimum solution can be computed from the posterior
probability. In practice, the computation is infeasible due to the large and complex
solution space.

To make the search more efficiently, then we consider the detection result
in Chapter 3 as a coarse moving object detection. This is used as bottom-
up evidences to generate hypotheses about potential moving objects. And
using results from bottom-up processing to guide proposal probabilities for the
Markov chain in an MCMC computational engine both takes advantages of the
computational efficiency of the bottom-up process and retains the optimality and
robustness of the Bayesian formation from the global view (top-down).

Our approach in this chapter emphasizes on the use of object models to
overcome existing problems of tracking using laser sensors. With the use of
object models, segmented objects caused by laser discontinuities are no longer
a problem and tracking results are more accurate. In our model-based approach
moving objects are naturally classified.

The proposed algorithm is tested on a real life urban traffic dataset. With
initial evaluations, the MCMC detection and tracking performs well in terms of
high detection rates and low false alarms. In addition, different classes of moving
objects are recognized successfully.

86 Chapter 4. DATMO using Markov Chain Monte Carlo

Chapter 5

Appplication: PreCrash

5.1 Introduction

In this chapter, we will present an integration of our perception module
described in Chapter 3 on a real vehicle for a particular safety application,
namely PreCrash. This work is conducted in collaboration with Daimler research
department within the framework of the PReVENT-ProFusion project1. This
project was aimed at promoting research activities in Europe to contribute to road
safety by developing preventive safety applications and technologies.

The goal of the PreCrash system is to detect unavoidable collisions before
they take place in order to trigger restraint systems to protect car passengers from
accidents or mitigate the consequences. In this project, we focus on detecting
frontal collisions with obstacles from a vehicle which is equipped a laser scanner
and two short range radars. Since at the time carrying out the project, the DATMO
module presented in Chapter 4 was not available, here we report results obtained
using the algorithm presented in Chapter 3 to detect moving objects from laser
data.

In PreCrash applications, we have to take stationary objects into account so
that the algorithm is modified to detect both dynamic and static objects. For a
more robust performance, we performed data fusion of detection results obtained
by laser with data provided by radar. The perception output is a list of objects
with their locations and estimated dynamic states. These information is then sent

1http://www.prevent-ip.org/profusion

87

88 Chapter 5. Appplication: PreCrash

to a risk assessment module developed by Daimler to compute the probability of
a collision of the vehicle with the observed obstacles.

In the case a crash is predicted to happen, depending on the time to collision
(TTC), the system will respond to the corresponding situations by activating
appropriate actuators (see Figure 5.1). For instance, triggering of autonomous
braking several hundred milliseconds before the collision would help to diminish
its effects. Within the next 200−300 milliseconds, reversible belt pretensioners are
triggered to remove the belt slack in advance and bring the vehicle passengers into
an upright position which keep them safer during the crash. In the last moment,
irreversible preconditioned airbags are activated to maximize the capacity of
protecting the driver and passengers from severe accidents.

Figure 5.1: Pre-crash phases and functionalities of the PreCrash application.

In order to deploy appropriate actuators at the right time, a quick re-
sponding time requirement for the perception and risk assessment modules is
very important. Surrounding objects and imminent collisions must be detected
as fast as possible. The earlier a potential collision is detected, the more
possibilities are available to protect vehicle passengers and other road users.
The second requirement is the accuracy and reliability of the system which is
critical especially for safety applications like the PreCrash system since incorrect
functionalities are not acceptable for users in practice. Incorrect functionalities
due to false alarms must be avoided since otherwise potentially dangerous

5.2. The Demonstrator Vehicle 89

situations can be provoked, not to mention the loss of confidence and acceptance
of such systems. On the other hand, missing collision detections make the system
become useless. The final objective will surely be to reach a trade-off between
false alarms and missed relevant dangerous situations.

In the following sections we will describe the design of PreCrash system on the
real vehicle including both hardware and software architecture. Then we present
in detail how the perception and collision detection modules actually work. We
test the system extensively through various scenarios and demonstrate our system
can fulfill the aforementioned requirements. The performance is compared to the
results obtained with the perception module developed at Daimler using the same
risk assessment module.

5.2 The Demonstrator Vehicle

The experimental vehicle, a Mercedes-Benz E-Class, is equipped with an
Ibeo’s ALASCA laser scanner mounted below the number plate and two M/A-
COM SRS100 24 GHz short range radar prototypes mounted in the front bumper
besides the number plate (Figure 5.2). The laser scanner is hermetically covered
by a box having a black plastic faceplate which is transparent for the emission
wavelength while the radars are mounted behind the serial plastic bumper. The
technical specifications of the sensors are listed in Table 5.1.

Table 5.1: Technical Data of the Sensors

Property Laser scanner Short range radar

Angle 160◦ 80◦

Angle accuracy +/-0.5◦ +/-5..10◦

Range 0.3-80 m 0.2-30 m

Range accuracy +/-5 cm +/-7.5 cm

Scan frequency 25 Hz 25 Hz

The radar sensors and the laser scanner controller are connected to a controller
unit in the trunk by private CAN and Ethernet, respectively. This real time
unit hosts a 366 MHz Motorola Power-PC-processor which runs the software for
sensor data processing and activation decision. In case of unavoidable collisions

90 Chapter 5. Appplication: PreCrash

the reversible seatbelt pretensioners of the front seats are deployed via a private
CAN. An additional PC in the trunk acts as a display server connected to a
monitor in front of the co-drivers seat to visualize the environment perception
and the activation decision. The hardware architecture in the vehicle is shown in
Figure 5.3.

Figure 5.2: The Daimler demonstrator car and an example of sensor data.

Figure 5.3: Hardware architecture of the experimental vehicle showing sensors,
actuators, computers and interconnections.

Figure 5.4 shows a cutout of the screen exactly at the moment of deployment
when the car approaches a foam cube with a constant speed of 50km/h. On the
screen, the targets seen by the laser scanner and the radars are shown as small dots
and circles, respectively. The colors symbolize the mounting side of the radars and
accordingly the four vertical beam layers of the laser scanner. Object segments,
generated from the scanner targets, are depicted as rectangles. The actual time
to collision (TTC) of 174ms corresponds to a distance of 2.4m. The inset of
the figure shows the picture of corresponding situation captured by the in-vehicle
camera behind the windshield.

5.3. PreCrash System 91

Figure 5.4: Visualization of the environment perception on the in-vehicle screen.
The inset shows the scene recorded by the camera behind the windshield.

5.3 PreCrash System

As shown in Figure 5.5, the PreCrash system is comprised of three in-
terconnected modules: perception, decision and action. In the first step, the
perception module performs data processing from separate sensor sources and
their results are fused to give a model of the vehicle environment. Output of
this part is an estimated state of the host vehicle as well as a description of
the surrounding environment comprised of static and moving objects and their
estimated corresponding dynamic states of each object (e.g: position, velocity,
moving direction). Based on these information, in the second step, the decision
module will estimate whether a collision is likely going to take place within the
next several hundred milliseconds. In the case there is an inevitable collision,
the decision module drives the action module that physically activates appropriate
actuators like: brakes, belt pretensioners, airbags... in order to reduce the injures
of the crash.

We can see in the architecture, the collision detection module plays a very
important role deciding the performance of the PreCrash system. And without a
reliable perception module, a good performance of collision detection cannot be
achieved. In the following we will describe in detail these two modules.

92 Chapter 5. Appplication: PreCrash

Figure 5.5: The PreCrash system architecture.

5.3.1 Data Fusion for Object Tracking

The perception sensors include one laser scanner and two short range radars.
While the scanner provides raw data as a list of laser impacts, the radars provide
high-level data as a pre-filtered list of moving objects. Here we adopt the
perception module presented in Chapter 3 to extract objects from laser data.
Results obtained are fused with radar data at object-level in order to provide a
more reliable performance.

Object Extraction from Laser Data

Using the algorithm described in Chapter 3, moving objects are detected
whenever a new scan measurement is received based on the local grid map
constructed from previous measurements. We implement a simple tracking using
GNN and Kalman filter to track detected objects.

Concerning static objects, we can take the grid map as a snapshot of stationary
obstacles and then can use any image segmentation algorithm to extract these
objects. However, image segmentation is not a trivial problem and might be costly
in terms of computation time.

Here we opt for an alternative method which extracts static objects only

5.3. PreCrash System 93

from the latest scan. After detecting moving objects, we filter out dynamic
measurements and perform a segmentation over the remaining measurements.
The returned results is a list of segments and we consider each segment as a static
object. At an instant time, these object-segments do not necessarily reflect actual
forms of the real objects. However, for our PreCrash application, we only care
about frontal collisions and normally the sensor range is wide enough to cover
collidable parts of obstacles which is reflected in the current scan.

Fusion with Radar

After objects are extracted from laser data, we confirm the moving object
detection results by fusing with radar data. Since data returned from radar sensors
are pre-filtered as lists of potential targets, each target in the lists is provided with
information about the location and the estimated Doppler velocity, the data fusion
is performed at object-level.

For each moving object detected by laser as described previously, a rectangular
bounding box is calculated and the radar measurements which lie within the
box region are then assigned to corresponding object. The velocity of the
detected moving object is estimated as the average of these corresponding radar
measurements.

Figure 5.6: Moving object detected from laser data are confirmed by radar data.

Figure 5.6 shows an example of how the fusion process takes place. Moving
objects detected by laser data are displayed as dots within bounding boxes.
The targets detected by two radar sensors are represented as circles along with
corresponding velocities. We can see in the radar field of view, two objects
detected by laser data are also seen by two radars so that they are confirmed.

94 Chapter 5. Appplication: PreCrash

Radar measurements that do not correspond to any dynamic object or fall into
other region of the grid are not considered.

An example of fusion results obtained with the perception module is shown in
the Figure 5.7. All objects are detected and related information are displayed.

Figure 5.7: Interface of the perception module in action. The laser data is
displayed as small colored points. Radar data is represented by small circles:
left in green and right in yellow. Obstacles surrounding of the ego-vehicle are
detected and represented by bounding-boxes of segments whose centers of gravity
are highlighted by yellow squares. Note that all static and dynamic objects are
all detected and their velocities plus movement directions relative to the car are
computed and displayed next to each object along with objects ID.

5.3. PreCrash System 95

5.3.2 Situation Analysis and Decision

The algorithm for situation analysis and decision is developed at Daimler and
is independent from the perception module. Its objective is to detect unavoidable
crash situations given a description of the vehicle environment provided by
the perception module. The perception module delivers a description of the
environment by means of a list of objects with estimated information about their
position, speed, movement direction and from which sensor(s) they are observed.
Subsequent steps calculate for all these objects whether they potentially hit the
vehicle according to the estimation of their movement and the time to collision
(TTC), if applicable.

For each object to be analyzed, we calculate the overlap O of a potential crash
with regard to the ego vehicle by:

O =
min(OL, OR) + ∆b

2

bvehicle + ∆b
(5.1)

The measured object width as well as the width of the ego vehicle is enlarged by
a safety factor ∆b respectively ∆b

2
(Figure 5.8).

(a) Overlap calculation (b) TTC calculation

Figure 5.8: Collision Detection

Since all objects are described by contour points. The point of first contact
(PFC) is the contour point of the object with the shortest distance to the outline of

96 Chapter 5. Appplication: PreCrash

the ego vehicle. From the PFC calculation, the hit point distance from the object
to our vehicle is known. The time to collision (TTC) is now simply given by:

TTC =
dPFC
vrel

(5.2)

Then the crash probability is calculated from the TTC together with the
overlap by:

CP =
O

TTC − δt
(5.3)

δt is a user defined parameter for a delay time, which can be adjusted by the OEM
to meet the requirement for a specific safety system (e.g. safety belt pretensioner).

Besides the collision detection at an instant time, the situation analysis stage
is also based on a data history collected for each object during its life time. In
this step, a pre-selection is made between objects, that will potentially hit the ego
vehicle and those that are most likely not hazardous or exceedingly unconfident.
Only potentially dangerous objects are considered in the decision step. The most
important criterion is the time to collision. Objects that reach the decision step
have a calculated time to collision within the time frame of 200ms, that is relevant
for the application. For a robust system behavior, further attributes of an object are
inspected to ensure their reliability. Objects with following attributes are rejected:

• calculated point of impact is located outside the forefront of the car

• object’s state is not ”confirmed”

• velocity (relative to sensor vehicle) too small

• object is near the border of the field of view

• too high variation of velocity and/or acceleration over time

Nevertheless, uncertainties remain due to noise in measuring and preprocess-
ing and simplifying model assumptions. Another aspect is that any kind of sensor
may deliver so-called ghost targets that do not correspond to any real-existing
object. Therefore, in the decision step we have to deal with two questions:

• Will we really collide with the object?

• Does the object really exist?

5.3. PreCrash System 97

For answering the first question, a Bayesian classifier is applied. Let K be
the event ”object collides” with the probabilities P (K) + P (¬K) = 1. Then, the
probability of a collision given a certain measurement z is:

P (K|z) =
P (K, z)

P (z)
(5.4)

Applying Bayes rule, this is the same as:

P (K|z) =
P (z|K)P (K)

P (z)

=
P (z|K)P (K)

P (z|K)P (K) + P (z|¬K)P (¬K)

(5.5)

where z is composed of different attributes zi : the variance of the x-component
of the velocity, the lifetime of the object and the number of cycles the object
was categorized as critical. To judge the criticality of an object, it is inspected
within a determined time period that is longer than the time to collision.
Assuming independent attributes zi and, furthermore, K and ¬K equiprobable,
the probability of a collision can be calculated using 5.6.

P (K|z) =

∏
P (zj|K)∏

P (zj|K) +
∏
P (zj|¬K)

(5.6)

The conditional probabilities P (zj|K) and P (zj|¬K) are determined before-
hand in an off-line procedure by inspecting numerous examples with different
situations. Finally, an object is considered as crashing object if P (K|z) exceeds a
predefined threshold.

Beside the probability of a collision, the probability of existence has to be con-
sidered in order to prevent false alerts that may arise from ghost targets delivered
by the sensors or failures in associating measurements to objects. We use a method
based on evidence theory introduced by Dempster and Shafer [Dempster 1968,
Shafer 1976].

For a classification of existing and non-existing objects we define the hypoth-
esis space as Θ = {E,¬E} where E stands for ”object exists” and ¬E stands for
”object does not exist”. In evidence theory the power set 2Θ = {∅, E,¬E,E ∪
¬E} is considered. Sensor-specific mass functions assign probability masses

98 Chapter 5. Appplication: PreCrash

to the elements in the power set. For the laser scanner, the mass functions are
implemented as:

ml(E ∪ ¬E) = cl

ml(E) =

∑N
i=0 2N−i · hl[i]∑N

i=0 2N−i
· (1−ml(E ∪ ¬E))

ml(¬E) = 1− (ml(E) +ml(E ∪ ¬E))

(5.7)

By definition, ml(∅) = 0. The constant term cl denotes a mass probability for
uncertainty. The mass function for the hypothesis ”object exists” considers the
weighted ratio of the number of detections to the lifetime of an object within a
given time frame N . In this connection, hl[i] contains the information about the
object being detected by the laser scanner at time i. Younger data is exponential
higher weighted than older data. The remaining mass for the hypothesis ”object
does not exist” is derived from the condition∑

X⊆Θ
m(X) = 1 (5.8)

Mass functions for radar sensors are implemented in an analogous way. The
fusion of masses from the different sensors is performed in two steps. First, the
masses from the two radar sensors are combined. Second, the resulting radar
masses are combined with the masses calculated for the laser scanner. For fusion,
Dempster’s combination rule is used [Dempster 1968].

The final step of the decision module combines the probability of collision that
is provided by the Bayes classifier with the probability of existence. For the Bayes
classifier we define the hypothesis space Θ = {C,¬C} with the hypothesis C for
a colliding object and ¬C for a non-colliding object. The probability masses
mb(C) and mb(¬C) are directly taken from the conditional probabilities for K
(see 5.6).

mb(C) = P (K|z)

mb(¬C) = P (¬K|z) = 1−mb(C)

mb(C ∪ ¬C) = 0

(5.9)

In this case, the uncertainty C ∪ ¬C is equal to zero, because Bayesian

5.4. Experimental Results 99

probabilities do not provide a measure for uncertainty. For the interesting case
”object exists and collides” the combined probability mass results in

mf (E ∩ C) = mb(C) · (mc(E) +mc(E ∪ ¬E)) (5.10)

If mf exceeds a predefined threshold, actuators are triggered.

In general, laser measurements are able to describe the position and shape of
real existing objects very accurately. Radar sensors help to suppress ghost targets
or targets based on objects that are irrelevant for PreCrash applications like plants
or steam coming out of street drains. All in all, the presented PreCrash system
based on a laser scanner fused with short range radars reliably detects different
kinds of collisions with obstacles in front of the car, as our evaluation in the next
section shows.

5.4 Experimental Results

The application has been validated in complex crash and non-crash scenarios.
To conduct the experiments, we built up a comprehensive database that consists of
short sequences of measurements recorded during predefined driving maneuvers.
These are comprised of actual and nearly-missed collisions with objects at
different velocities, in curves, sudden lane changes and lane changes of a leading
target vehicle blocking the sight to the obstacle. For the maneuvers, foam cubes
and cylinders served as crash objects.

Figure 5.9 shows some scenarios in the test track. In Figure 5.9(a) is the
situation the car is passing an artificial gate without collision. Figure 5.9(b) sees a
wheel rolling out into the test track when the car is moving. In Figure 5.9(c), the
test vehicle follows another car preventing it from seeing another obstacle until the
leading car suddenly changes the lane. In all situations, the obstacles are detected
and tracked successfully and we display their velocities plus moving directions
estimated relatively to the ego-vehicle (yellow lines).

For the performance evaluation, we count the false alarms (false negative)
that occurred in non-crash scenarios and the missing detections (false positive) in
case a collision was not detected by the system. We compare the results obtained
using our perception module with results obtained using the perception module

100 Chapter 5. Appplication: PreCrash

Figure 5.9: Some test scenarios. (a) the car passing an artificial gate without
collision; (b) a wheel is rolling out in front of the car; (c) the leading car
changes its moving direction to show an obstacle appeared suddenly. Note that
the velocities of obstacles is computed relatively to the ego-vehicle.

5.4. Experimental Results 101

Ta
bl

e
5.

2:
R

es
ul

ts
fo

rC
om

pl
ex

N
on

-C
ra

sh
Sc

en
ar

io
s

Sc
en

ar
io

E
go

ve
lo

ci
ty

[k
m

/h
]

N
o.

of
te

st
s

Fa
ls

e
al

ar
m

s/
Fa

ls
e

al
ar

m
ra

te

D
C

m
od

ul
e

O
ur

m
od

ul
e

N
ea

r-
m

is
se

d
pa

ss
in

g
of

cy
lin

de
r

40
,6

0
9

0
/

0%
0

/
0%

N
ea

r-
m

is
se

d
pa

ss
in

g
of

cu
be

40
,6

0
6

0
/

0%
0

/
0%

N
ea

r-
m

is
se

d
pa

ss
in

g
of

cy
lin

de
ra

ft
er

cu
rv

e
(4

5◦
)

40
,6

0
29

0
/

0%
3

/
10

.3
%

E
m

er
ge

nc
y

br
ak

e,
di

st
an

ce
to

cy
lin

de
ra

ft
er

br
ak

e
no

tg
re

at
er

th
an

1.
5

m
40

,6
0

(a
ts

ta
rt

)
19

1
/

5.
3%

1
/

5.
3

%

L
an

e
ch

an
ge

m
an

eu
ve

rt
o

av
oi

d
a

co
lli

si
on

w
ith

a
cu

be
30

,4
0,

50
,6

0,
70

22
0

/
0%

0
/

0%

G
at

e
pa

ss
in

g
30

,5
0

6
0

/
0%

0
/

0%

G
at

e
pa

ss
in

g
af

te
rc

ur
ve

(4
5◦

)
30

,5
0

4
0

/
0%

0
/

0%

To
ta

l
95

1
/

1.
1%

4
/

4.
2%

102 Chapter 5. Appplication: PreCrash
Table

5.3:R
esults

forC
om

plex
C

rash
Scenarios

Scenario
E

go
velocity

[km
/h]

N
o.tests

M
issings/M

issing
rate

D
C

m
odule

O
urm

odule

C
ollision

w
ith

cylinder,varying
points

ofim
pact

20,40
24

0
/

0%
0

/
0%

C
ollision

w
ith

(paper)cylinderathigh
speed,varying

points
ofim

pact
60,120

8
2

/
25.0%

0
/

0%

C
ollision

w
ith

cube,pointofim
pacthas

high
offset

40
7

0
/

0%
1

/
14.3%

C
ollision

w
ith

cylinderaftercurve
(30
◦,45

◦)
30,40,60

20
2

/
10.0%

0
/

0%

C
ollision

w
ith

cylinderorcube
afterem

ergency
brake

20,40
(atcrash

tim
e)

7
0

/
0%

0
/

0%

C
ollision

w
ith

(paper)cylinderafterem
ergency

brake
athigh

speed
60,80

(atcrash
tim

e)
9

2
/

22.2%
0

/
0%

C
ollision

w
ith

cylinderafterlane
change

m
aneuver

40,50
23

1
/

4.3%
1

/
4.3%

C
ollision

w
ith

cylinderafterleading
carlane

change
40,50

4
0

/
0%

0
/

0%

Total
102

7
/

6.9%
2

/
1.9%

5.4. Experimental Results 103

developed at Daimler (called DC module). Table 5.2 shows the results for the
non-crash scenarios for the two different modules and Table 5.3 lists the results
for the crash scenarios.

As a general result it can be stated that a reliable collision detection is achieved
with both perception modules. Whereas DC module enables a lower false alarm
rate, the crash detection rate of our module is very high (98.1%). The three false
alarms in the scenario where we pass the cylinder in a curve occurred in cases of
getting extremely close to the obstacle. In contrast, no false alarms occurred at all
when the subject vehicle suddenly changes the lane to avoid a collision with an
obstacle standing on the road. Emergency brake maneuvers challenge the tracking
system because of the divergent motion scheme. In our evaluation, only 1 out of
19 test drives resulted in a false alarm for each module.

In motion estimation, there is always a trade-off between stabilization of the
current state and the adaptation to dynamic situations. It becomes apparent when
looking at the scenarios where the system fails. In case of cornering, for example,
the direction of the obstacle’s relative movement continuously changes. From
the results in curve scenarios, it can be seen, that the two modules handle such
situation in a different way. Our module produces more false alarms, whereas DC
module risks more missing detections. Looking at Table 5.3, missing detections
provoked by DC module are overrepresented in high speed scenarios. An object
with a high relative velocity is registered infrequently during the time period
available for creating a data history for this object as described in subsection 5.3.2.
In this case, the decision is supported by less data. Depending on the influence
of new measurements on the current state, the grid map approach may be
advantageous over a single frame processing realized in DC module, in this special
case. In general, it should be highlighted that a lot of the test maneuvers have been
performed at the vehicle dynamics limit.

In addition, we tested the application in normal traffic on highways, rural
roads and in urban areas. To achieve representative results we performed the test
drives during day time to cover different traffic situations like rush hour, traffic
jam and stop-and-go. Furthermore, the test drives were partly conducted under
adverse weather conditions like rain, fog, wet roads and traffic spray. All in all,
we covered a distance of 1600km, running the application in real time. This test
was performed where there were no wrongly detected collisions in any of these

104 Chapter 5. Appplication: PreCrash

environments.
To demonstrate that our perception algorithm can fulfill the real-time require-

ment, we evaluate the computational cost for each test scenario and show the
accumulated results in Figure 5.10. We can see that the performance of our
module is comparable with the module developed by Daimler. In every cases,
the computational time required is less than 20ms which is totally fit in the 40ms
data time cycle of the whole system.

Figure 5.10: Comparison of computational time required for both perception
modules.

5.5 Summary

In this chapter, we present an integration of our perception module with a
specific PreCrash application on a real vehicle which is equipped with a laser
scanner and two short range radars. The perception module performs data
processing and object extraction using data fusion from laser and radars. A model
of the environment obtained in terms of static and moving objects serves as a basis
for the safety system that trigger restraint systems in case an unavoidable collision
takes place.

We compared the performance using our perception module with results
obtained with the perception module developed at Daimler. Comprehensive tests

5.5. Summary 105

show, that a good detection performance for frontal collisions is achieved for both
modules. Comparing the results of both approaches, the sums of false and missed
alarms balance each other. The application was running stable in a hard real-
time environment and has been extensively tested in real traffic scenarios and with
artificial crash and near crash maneuvers carried out on test tracks. The function
has been successfully demonstrated in a public event during the PReVENT IP
Exhibition in Versailles 2007 and at the IEEE Intelligent Vehicles Symposium, in
Eindhoven 2008.

The PreCrash system described in this chapter is developed within context of
the PReVENT-ProFusion project, which was set up as a research project, are not
expected to be available on the market on the short run. However, the gained
experience and knowledge will be further exploited by the involved partners
in different domains: our perception results can be used as a general base for
numerous driver assistant or driver information systems where the perception of
the vehicle environment by means of sensor systems plays a crucial role. On the
other hand, the prototype system developed in ProFusion are still some time away
from market introduction. Hence, an important future task of OEMs and suppliers
will be to reduce costs and to increase performance and robustness of such systems
in order to commercialize them and bring their benefit in terms of increased safety
directly to the customers and road users.

106 Chapter 5. Appplication: PreCrash

Chapter 6

Conclusions and Perspectives

6.1 Conclusions

In this thesis, we have studied core tasks of the vehicle perception problem
including localization, mapping (SLAM) with detection and tracking of mov-
ing objects (DATMO) in context of dynamic environments. Particularly, we
have focused on using a laser scanner as the main perception sensor. Being
prerequisites for driving assistant systems and autonomous navigation systems,
the vehicle perception plays a very important role since any wrong information
perceived from the environments will affect the performance of the whole system.
Keeping this criterion in mind with an objective to obtain a fast, robust and reliable
solution to these essential perception tasks, our approaches have been presented,
tested though various off-line datasets and demonstrated on real platforms to show
that the requirements for real applications can be achievable. We summarize
contributions of the thesis in the following.

In Chapter 3 we described a grid-based algorithm to solve SLAM with
detection of moving objects. In the literature, SLAM algorithms have got to
a mature state but traditional approaches to SLAM usually assume that the
environments are static. To deal with dynamic environments, we propose to solve
both SLAM and detection of moving objects simultaneously and show that results
from the moving object detection step help to filter out spurious objects resulting
in a better map. The key point of our approach lies in a new grid-based scan
matching technique that works fast and quite robust in the presence of dynamic
entities. This allowed obtaining a precise vehicle localization in order to build a

107

108 Chapter 6. Conclusions and Perspectives

consistent map of the environment. After a consistent map is constructed, moving
objects can be detected reliably without a prior knowledge of detected objects.
Experiments on real-life traffic data have shown that our proposed algorithms can
successfully perform a real-time mapping with moving object detection from a
vehicle moving at high speeds in different environments.

Chapter 4 follows the results in Chapter 3 where we focused on problems of
detection and tracking moving objects with the assumption that a good vehicle
localization is obtained. With the detection algorithm presented in Chapter 3,
moving objects are identified irrespective of its type and objects are represented as
free-form by a cluster of points. We showed that tracking objects using free-forms
leads to a degraded result and proposed to use model-based approach to represent
objects. Fortunately, number of moving object classes appearing on roads are
quite limited and we classified them into several categories such as: buses, cars,
bikes and pedestrians.

Different from most previous works, we tackle the detection and tracking
as a whole process. We take a top-down approach and try to interpret the
laser measurement sequence with object models (shape) and their trajectories
(motion). The approach follows a Bayesian formulation and solution is sought by
computing the maximum of the posterior probability in a joint multiple object-
trajectory space. The computation is generally intractable in such a complex
solution space and we employ a Markov chain Monte Carlo (MCMC)-based
method. We design a reversible Markov chain to explore the solution space in
which detection results from Chapter 3 provide evidences (so-called data-driven or
bottom-up techniques) to make the top-down search more efficient than traditional
MCMC. This Bayesian-DDMCMC approach is more general and can successfully
handle the ambiguities in the presence of persistent occlusions. The proposed
algorithm is tested on challenging urban traffic datasets and initial evaluations
showed promising results.

In Chapter 5, we showed how our perception module actually works on a
real platform. We present the integration of our module for a specific PreCrash
application on the real car. This is carried out in collaboration with Daimler within
the context of European project PReVENT-ProFusion. Extensive tests on variety
of scenarios demonstrated that a good detection performance for frontal collisions
is achieved thanks to a reliable perception module. Although the scenarios for

6.2. Perspectives 109

testing were still simple but it is shown that our perception module can fulfill the
real-time requirements.

To summary, the thesis is aimed at developing an efficient perception system
for vehicles and we have demonstrated that we are able to perform simultaneous
localization, mapping with detection, classification and tracking of moving objects
in real-time from a ground vehicle moving at high speeds in urban environments.
We hope that the obtained results will open a wide range of potential safety and
convenient automobile applications as well as serve as basis for pursuing the
dream of building autonomous vehicles.

6.2 Perspectives

The thesis raises several interesting topics and opens a number of possible
extensions for the future works in order to improve the performance of the
algorithms to the vehicle perception problem.

Firstly, a possible extension is related to the DATMO algorithm presented
in Chapter 4. Although showing significant speedup compared to uninformed
MCMC, the current computation is still heavy for complex scenes. An optimiza-
tion of code is ongoing and our objective is to reduce the required computational
time to below 40ms. Additional optimization can be made by integrating a
road border detection from laser data and use the obtained result as a prior
knowledge about the road regions. The idea is that this information gives more
constraints about the appearances and trajectories of moving objects in the scene,
for example: moving objects should be appeared in the road regions and vehicles
should be moving along the road direction. These constraints helps to reduce
significantly the solution space and thus accelerate the search. Moreover, a fusion
of mapping, road detection, object tracking and object classification certainly will
enable a better understanding of driving situations. (Figure 6.1).

Secondly, we would like to extend our perception module currently imple-
mented in the PreCrash application with the DATMO algorithm in Chapter 4
in the hope that the collaboration with Daimler will be continued. We believe
that the more meaningful representation of detected moving objects with specific
shapes and the better estimation of their behaviors certainly improve the detection
of collisions with moving objects. In addition, the better estimated dynamics

110 Chapter 6. Conclusions and Perspectives

Figure 6.1: In all, a combination of vehicle map, road detection, moving object
tracking and classification certainly will enable a better understanding of driving
situations.

of moving objects allows more accurate predictions of their future behaviors
enabling a wider range of activation decision (e.g. 200ms to several seconds).

Finally, the laser-based DATMO algorithm presented in this thesis can be
combined with vision sensors to improve the performance. Since images contain
rich information and compensate for some of the disadvantages of laser sensors.
There are a number of ways to improve DATMO performance using state-of-
the-art algorithms from the computer vision literature. For example, a reliable
pedestrian detection using laser scanners is difficult to be obtained because the
number of measurement points associated with a pedestrian is often small. Vision-
based recognition algorithms can be used to confirm the results of laser-based
detection. Because only portions of the image with high likelihood have to be
processed and range measurements from laser scanners can be used to solve the
scale issue, the recognition process can be speeded up and run in real-time.

Bibliography

[Anderson & Moore 1979] B.D. Anderson and J.B. Moore. Optimal filtering.
Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

[Arulampalam et al. 2002] S. Arulampalam, S Maskell, N Gordon and T Clapp.
A Tutorial on Particle Filter for Online Nonlinear/Non-Gaussian
Bayesian Tracking. IEEE Transactions on Signal Processing, vol. 50,
no. 2, 2002.

[Bar-Shalom & Fortman 1988] Y. Bar-Shalom and T.E. Fortman. Tracking and
data association. Academic Press, 1988.

[Blackman & Popoli 1999] Samuel Blackman and Robert Popoli. Design and
analysis of modern tracking systems. Artech House, Norwood, MA, 1999.

[Blackman 2004] S. S. Blackman. Multiple hypothesis tracking for multiple
target tracking. IEEE Aerospace and Electronic Systems Magazine,
vol. 19, no. 1, pages 5–18, Jan 2004.

[Blom & Bar-Shalom 1988] H. A. P. Blom and Y. Bar-Shalom. The interacting
multiple model algorithm for systems. IEEE Trans. On Automatic Control,
vol. 33(8), 1988.

[Burlet 2007] Julien Burlet. Suivi Multi-Objets Adaptif: Application a la
Classification de Comportements de Mobiles. Phd thesis, Institut National
Polytechnique de Grenoble, Grenoble, France, December 2007.

[Choset & Nagatani 2001] H. Choset and K. Nagatani. Topological simultaneous
localization and mapping (SLAM): toward exact localization without
explicit localization. Robotics and Automation, IEEE Transactions on,
vol. 17, no. 2, pages 125–137, 2001.

[Christensen 2002] Henrik I. Christensen. Lecture notes: Slam summer school.
2002.

111

112 BIBLIOGRAPHY

[DARPA 2007] DARPA. Urban Challenge, 2007. http://www.darpa.mil/

grandchallenge/index.asp.

[Dellaert et al. 1999] Frank Dellaert, Wolfram Burgard, Dieter Fox and Sebastian
Thrun. Using the Condensation Algorithm for Robust, Vision-based
Mobile Robot Localization. CVPR, June 1999.

[Dempster 1968] A. Dempster. A Generalization of Bayesian Inference. Journal
of the Royal Statistical Society, vol. 30, pages 205–247, 1968.

[Dietmayer et al. 2001] K. C. J. Dietmayer, J. Sparbert and D. Streller. Model-
Based Object Classification and Object Tracking in Traffic Scenes
from Range-Images. In Proceedings of the IEEE Intelligent Vehicle
Symposium, Tokyo, 2001.

[Einsele & Farber 1997] Tobias Einsele and Georg Farber. Real-Time Self-
Localization in Unknown Indoor Environments using a Panorama Laser
Range Finder. In In IEEE/RSJ International Workshop on Robots ans
Systems, IROS 97, pages 697–703. IEEE Press, 1997.

[Elfes 1989] A. Elfes. Occupancy grids: a probabilistic framework for robot
percpetion and navigation. PhD thesis, Carnegie Mellon University, 1989.

[Elfes 1992] A. Elfes. Multi-source spatial data fusion using bayesian reasoning.
Data Fusion in Robotics and Machine Intelligence, page 137163, 1992.

[Forsyth & Ponce 2002] David A. Forsyth and Jean Ponce. Computer vision: A
modern approach. Prentice Hall, August 2002.

[Fox et al. 1999a] D. Fox, W. Burgard and S. Thrun. Markov Localization
for Mobile Robots in Dynamic Environments. Journal of Artificial
Intelligence Research, vol. 11, 1999.

[Fox et al. 1999b] Dieter Fox, Wolfram Burgard, Frank Dellaert and Sebastian
Thrun. Monte Carlo Localization: Efficient Position Estimation for
Mobile Robots. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence (AAAI’99)., July 1999.

[Gambino et al. 1997] F. Gambino, F. Ulivi and M. Vendittelli. The transferable
belief model in ultrasonic map building. In Sixth IEEE International
Conference on Fuzzy Systems, page 601608, 1997.

[Hähnel et al. 2003a] D. Hähnel, D. Schulz and W. Burgard. Mobile Robot
Mapping in Populated Environments. Advanced Robotics, vol. 17, no. 7,
pages 579–598, 2003.

http://www.darpa.mil/grandchallenge/index.asp
http://www.darpa.mil/grandchallenge/index.asp

BIBLIOGRAPHY 113

[Hähnel et al. 2003b] D. Hähnel, S. Thrun, B. Wegbreit and W. Burgard. Towards
Lazy Data Association in SLAM. In Proc. of the International Symposium
on Robotics Research (ISRR), 2003.

[Hähnel et al. 2003c] D. Hähnel, R. Triebel, W. Burgard and S. Thrun. Map
Building with Mobile Robots in Dynamic Environments. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
2003.

[Hähnel et al. 2003d] Dirk Hähnel, Wolfram Burgard, Dieter Fox and Sebastian
Thrun. An Efficient FastSLAM Algorithm for Generating Maps of Large-
scale cyclic environments from raw laser range measurements. In In Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS,
pages 206–211, 2003.

[Julier & Uhlmann 1997] S. Julier and J. Uhlmann. A new extension of the
Kalman filter to nonlinear systems. In Int. Symp. Aerospace/Defense
Sensing, Simul. and Controls, Orlando, FL, 1997.

[Kalman 1960] R.E. Kalman. A New Approach to Linear Filtering and Prediction
Problems. Journal of basic Engineering, vol. 35, Mars 1960.

[Leonard & Durrant-Whyte 1991] John Leonard and Hugh Durrant-Whyte. Si-
multaneous map building and localization for an autonomous mobile
robot. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 1991.

[Lu & Milios 1997a] F. Lu and E. Milios. Globally Consistent Range Scan
Alignment for Environment Mapping. Autonomous Robots, 1997.

[Lu & Milios 1997b] Feng Lu and Evangelos Milios. Robot pose estimation in
unknown environments by matching 2d range scans. Journal of Intelligent
and Robotic Systems, vol. 18, pages 249–275, 1997.

[Montemerlo et al. 2002] Michael Montemerlo, Sebastian Thrun, Daphne Koller
and Ben Wegbreit. FastSLAM: A Factored Solution to the Simultaneous
Localization and Mapping Problem. In In Proceedings of the AAAI
National Conference on Artificial Intelligence, pages 593–598. AAAI,
2002.

[Montemerlo et al. 2008] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp,
D. Dolgov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke,
D. Johnston, S. Klumpp, D. Langer, A. Levandowski, J. Levinson,
J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger,

114 BIBLIOGRAPHY

G. Stanek, D. Stavens, A. Vogt and S. Thrun. Junior: The Stanford Entry
in the Urban Challenge. Journal of Field Robotics, 2008.

[Montesano et al. 2005] L. Montesano, J. Minguez and L. Montano. Modeling
the Static and the Dynamic Parts of the Environment to Improve Sensor-
based Navigation. In Proc. IEEE International Conference on Robotics
and Automation (ICRA), pages 4556–4562, 18–22 April 2005.

[Murphy 1999] Kevin P. Murphy. Bayesian Map Learning in Dynamic Environ-
ments. Neural Information Processing Systems (NIPS), pages 1015–1021,
1999.

[Oh et al. 2004] Songhwai Oh, Stuart Russell and Shankar Sastry. Markov Chain
Monte Carlo Data Association for General Multiple-Target Tracking
Problems. In IEEE Conference on Decision and Control, 2004.

[Olson 2000] Clark F. Olson. Probabilistic self-localization for mobile robots.
IEEE Transactions on Robotics and Automation, vol. 16, pages 55–66,
2000.

[Oriolo et al. 1997] G. Oriolo, G. Ulivi and M. Vendittelli. Fuzzy maps: a new
tool for mobile robot perception and planning. J. of Robotic Systems,
vol. 14, no. 3, pages 179–197, 1997.

[Pagac et al. 1998] D. Pagac, E.M. Nebot and H. Durrant-Whyte. An evidential
approach to map-building for autonomous vehicles. IEEE Transactions
on Robotics and Automation, vol. 14, 1998.

[Petrovskaya & Thrun 2008] Anya Petrovskaya and Sebastian Thrun. Model
Based Vehicle Tracking for Autonomous Driving in Urban Environments.
In Proceedings of Robotics: Science and Systems IV (RSS), Zurich,
Switzerland, June 2008.

[Pfister et al. 2003] Samuel T. Pfister, Stergios I. Roumeliotis and Joel W.
Burdick. Weighted Line Fitting Algorithms for Mobile Robot Map
Building and Efficient Data Representation. In In ICRA, pages 14–19,
2003.

[Prassler et al. 1999] E. Prassler, J. Scholz and P. Fiorini. Navigating a Robotic
Wheelchair in a Railway Station during Rush Hour. International Journal
on Robotics Research, vol. 18, no. 7, pages 760–772, 1999.

[Ramos et al. 2007] F. Ramos, D. Fox and H. Durrant-Whyte. CRF-Matching:
Conditional Random Fields for Feature-Based Scan Matching. In Proc.
of Robotics: Science & Systems (RSS), 2007.

BIBLIOGRAPHY 115

[Reid 1979] Reid. An Algorithm for Tracking Multiple Targets. IEEE
Transactions on Automatic Control, vol. 24, 1979.

[Schulz et al. 2001] D. Schulz, W. Burgard, D. Fox and A.B. Cremers. Tracking
Multiple Moving Targets with a Mobile Robot using Particle Filters and
Statistical Data Association. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2001.

[Shafer 1976] G. Shafer. A meathematical theory of evidence. Princeton
University Press, 1976.

[Song & Nevatia 2005] X. F. Song and R. Nevatia. A Model-Based Vehicle
Segmentation Method for Tracking. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2005.

[Thrun et al. 2000] S. Thrun, W. Burgard and D. Fox. A Real-Time Algorithm
for Mobile Robot Mapping With Applications to Multi-Robot and 3D
Mapping. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2000.

[Thrun et al. 2005] S. Thrun, W. Burgard and D. Fox. Probabilistic robotics
(intelligent robotics and autonomous agents). The MIT Press, September
2005.

[Thrun 2002] Sebastian Thrun. Robotic Mapping: A Survey. Exploring Artificial
Intelligence in the New Millenium, 2002.

[Tierney 1996] Luke Tierney. Markov chain concepts related to sampling
algorithms. Markov Chain Monte Carlo in Practice, pages 59–74, 1996.

[Tugnait 1982] J. K. Tugnait. Detection and estimation for abruptly changing
systems. Automatica, vol. 18, pages 607–615, 1982.

[Urmson et al. 2008] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner,
M. N. Clark, J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman,
S. Harbaugh, M. Hebert, T. Howard, S. Kolski, A. Kelly, M. Likhachev,
M. McNaughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar,
P. Rybski, B. Salesky, Y.W Seo, S. Singh, J. Snider, A. Stentz,
W. Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish,
B. Litkouhi, J.V. Nickolaou Sadekar, w. Zhang, J. Struble, M. Taylor,
M. Darms and D. Ferguson. Autonomous driving in urban environments:
Boss and the Urban Challenge. Journal of Field Robotics, vol. 25(8),
pages 425–466, 2008.

116 BIBLIOGRAPHY

[Viola & Jones 2001] Paul Viola and Michael Jones. Robust Real-time Object
Detection. International Journal of Computer Vision, 2001.

[Vu & Aycard 2009] Trung-Dung Vu and Olivier Aycard. Lased-based Detection
and Tracking Moving Object using Data-Driven Markov Chain Monte
Carlo. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Kobe, Japan, May 2009.

[Vu et al. 2007] Trung-Dung Vu, Olivier Aycard and Nils Appenrodt. Online
Localization and Mapping with Moving Object Tracking in Dynamic
Outdoor Environment. In Proceedings of the IEEE Intelligent Vehicle
Symposium, Istanbul, Turkey, June 2007.

[Wang & Thorpe 2002] C.-C. Wang and C. Thorpe. Simultaneous Localization
and Mapping with Detection and Tracking of Moving Objects. In
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Washington, DC, May 2002.

[Wang et al. 2003] C.-C. Wang, C. Thorpe and S. Thrun. Online Simultaneous
Localization and Mapping with Detection and Tracking of Moving
Objects: Theory and Results from a Ground Vehicle in Crowded Urban
Areas. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), volume 1, 2003.

[Wang et al. 2004] C.-C. Wang, D. Duggins, J. Gowdy, J. Kozar, R. MacLachlan,
C. Mertz, A.Suppe and C. Thorpe. Navlab SLAMMOT Datasets.
http://www.cs.cmu.edu/˜bobwang/datasets.html, May 2004. CMU.

[Wang 2004] Chieh-Chih Wang. Simultaneous Localization, Mapping and
Moving Object Tracking. PhD thesis, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, April 2004.

[Wolf & Sukhatme 2005] Denis F. Wolf and Gaurav S. Sukhatme. Mobile
Robot Simultaneous Localization and Mapping in Dynamic Environments.
Autonomous Robots, vol. 19, 2005.

[Yu et al. 2006] Q. Yu, I. Cohen, G. Medioni and B. Wu. Boosted Markov
Chain Monte Carlo Data Association for Multiple Target Detection and
Tracking. In ICPR, pages II: 675–678, 2006.

[Zhao & Thorpe 1998] Liang Zhao and Chuck Thorpe. Qualitative and Quanti-
tative Car Tracking from a Range Image Sequence. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 496–501. IEEE, June 1998.

BIBLIOGRAPHY 117

[Zhao et al. 2008] Tao Zhao, Ramakant Nevatia and Bo Wu. Segmentation and
Tracking of Multiple Humans in Crowded Environments. PAMI, vol. 30,
no. 7, pages 1198–1211, 2008.

[Zhu et al. 2000] S.C. Zhu, R. Zhang and Z. Tu. Integrating Top-down/Bottom-
up for Object Recognition by Data Driven Markov Chain Monte Carlo.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2000.

118 BIBLIOGRAPHY

List of Publications

Journal Articles

1. Sylvia Pietzsch, Trung-Dung Vu, Julien Burlet, Olivier Aycard, Thomas
Hackbarth, Nils Appenrodt, Jurgen Dickmann, and Bernd Radig. Results of
a PreCrash Application based on Laserscanner and Short Range Radars.
Accepted for publication in the IEEE Transaction on Intelligent Transport
System.

2. Trung-Dung Vu, Julien Burlet and Olivier Aycard. Grid-based Localization
and Local Mapping with Moving Object Detection and Tracking. Accepted
for publication in the special issue on Intelligent Transportation Systems of
the Elsevier Journal Information Fusion.

Conference Articles

1. Trung-Dung Vu and Olivier Aycard. Laser-based Detection and Tracking
Moving Objects using Data-Driven Markov Chain Monte Carlo. In
Proceedings of the IEEE International Conference on Robotics and Au-
tomation, 2009.

2. Trung-Dung Vu, Julien Burlet and Olivier Aycard. Grid-based Localization
and Online Mapping with Moving Object Detection and Tracking: New
Results. In Proceedings of the IEEE Intelligent Vehicle Symposium, 2008.

3. Sylvia Pietzsch, Olivier Aycard, Julien Burlet, Trung-Dung Vu, Thomas
Hackbarth, Nils Appenrodt, J. Dickmann, and B. Radig. Results of a
PreCrash Application based on Laserscanner and Short Range Radars. In
Proceedings of the IEEE Intelligent Vehicle Symposium, 2008.

4. Trung-Dung Vu, Olivier Aycard and Nils Appenrodt. Localization and
Mapping with Moving Object Tracking in Dynamic Outdoor Environments.
In Proceedings of the IEEE Intelligent Vehicle Symposium, 2007.

119

120 BIBLIOGRAPHY

5. Olivier Aycard, Anne Spalanzani, Julien Burlet, Chiara Fulgenzi, Trung-
Dung Vu, David Raulo and Manuel Yguel. Pedestrian Tracking using off-
board Camera. In Proceedings of the IEEE-RSJ International Conference
on Intelligent Robots and Systems, 2006.

6. Olivier Aycard, Anne Spalanzani, Julien Burlet, Chiara Fulgenzi, Trung-
Dung Vu, David Raulo and Manuel Yguel. Grid-based Fusion and Track-
ing. In Proceedings of the IEEE Int. Conf. on Intelligent Transportation
Systems, 2006.

	Introduction
	Context: Intelligent Systems for Vehicles
	Vehicle Perception: Problem Statement
	Contributions
	Thesis Outline

	Vehicle Perception - State of The Art
	Introduction
	Simultaneous Localization and Mapping
	Map Representation
	Kalman Filter SLAM
	Maximum Likelihood SLAM
	FastSLAM
	Comparison of SLAM techniques

	Detection and Tracking Moving Objects
	Moving Object Detection
	Tracking of Moving Objects

	SLAM with DATMO
	Summary

	Grid-based SLAM with Detection of Moving Objects
	Introduction
	Grid-based SLAM
	Grid Mapping with Known Trajectories
	Grid-based Scan Matching
	Local Mapping vs. Global Mapping

	Moving Object Detection
	Experimental Results
	Summary

	DATMO using Markov Chain Monte Carlo
	Introduction
	DATMO Formulation
	Object models
	Solution Space
	Prior Probability
	Likelihood Probability
	Posterior Probability

	Efficient MAP Computation using MCMC
	MCMC algorithm
	Moving object hypothesis generation
	Neighborhood graph of hypotheses
	Markov chain dynamics
	Incremental computation

	Experimental Results
	Performance Evaluation

	Summary

	Appplication: PreCrash
	Introduction
	The Demonstrator Vehicle
	PreCrash System
	Data Fusion for Object Tracking
	Situation Analysis and Decision

	Experimental Results
	Summary

	Conclusions and Perspectives
	Conclusions
	Perspectives

	Bibliography

