N

N
N

HAL

open science

Automatic testing of Lustre/SCADE programs

Virginia Papailiopoulou

» To cite this version:

Virginia Papailiopoulou. Automatic testing of Lustre/SCADE programs. Computer Science [cs].
Université Joseph-Fourier - Grenoble I, 2010. English. NNT: . tel-00454409

HAL Id: tel-00454409
https://theses.hal.science/tel-00454409
Submitted on 8 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00454409
https://hal.archives-ouvertes.fr

UNIVERSITE DE GRENOBLE
EcoLE DOCTORALE MSTII
MATHEMATIQUES, SCIENCES ET TECHNOLOGIES DE
L'INFORMATION, INFORMATIQUE

Test automatique de programmes
Lustre/SCADE

THESE
présentée par

Virginia PAPAILIOPOULOU

en vue de 'obtention du grade de

DOCTEUR DE L’UNIVERSITE DE GRENOBLE
DISCIPLINE INFORMATIQUE

Directeurs: Farid OUABDESSELAM et loannis PARISSIS

soutenue le 04 Février 2010 devant le jury composé de :

M. Philippe Lalanda Professeur Université Joseph Fourier — Président
Mme. Odile Laurent Airbus France Examinateur
M. Yves Le Traon Professeur Université de Luxembourg Rapporteur
Mme. Virginie Wiels Chercheur ONERA /Cert Rapporteur

M. Farid Ouabdesselam Professeur Université Joseph Fourier = Examinateur

M. Ioannis Parissis Professeur Grenoble INP-Esisar Examinateur

Automatic testing of LUSTRE/SCADE programs

Abstract

The design of embedded systems in safety-critical domains is a demanding
task. During the last decades, formal methods and model-based approaches
are widely used for the design, the analysis, the implementation and testing of
major industrial applications.

The work in this thesis addresses the improvement of the testing process with
a view to automating test data generation as well as its quality evaluation, in
the framework of reactive synchronous systems specified in the LUSTRE/SCADE
language. The proposed testing methods use two different requirement-based
models of the program under test.

On the one hand, we present a testing methodology using the LUTESS tool
that automatically generates test input data based exclusively on the environ-
ment description of the system under test. In particular, this environment de-
scription is derived from the system informal requirements and represents a test
model of the program describing its functional behavior. Several test models
can be built for the same program simulating certain system failures or differ-
ent situations that must be tested. Test models are then used to guide the test
data generation process towards meaningful and valid test input sequences with
regard to the specifications.

On the other hand, among the large set of coverage criteria that have been
proposed in the last years, we study the extension of a coverage assessment tech-
nique especially dedicated to LUSTRE/SCADE applications, using LUSTRUCTU,
a prototype tool for coverage measurement. In this case, we are based on the
SCADE model of the program under test built from the system requirements.
The coverage criteria are defined directly on the LUSTRE/SCADE specifications
and coverage is measured on the SCADE model rather than on the generated
C code. The extended criteria take into account two new aspects: the use of
multiple clocks in a LUSTRE program as well as integration testing as opposed
to unit testing, allowing the coverage measurement of large-sized systems.

These two strategies targeting, respectively, the test data generation process
and the coverage evaluation are tailored to industrial needs and could have a
positive impact in effectively testing real-world applications. Case studies ex-
tracted from the avionics domain are used to demonstrate the application of
these methods as well as to empirically evaluate their performance and com-

plexity.

Test automatique de programmes LUSTRE/SCADE

Résumé

La conception et le développement des systémes embarqués est une tache
difficile et exigeante. Pendant les derniéres années, les méthodes formelles
et les approches basées sur des modéles ont été largement utilisées pour la
conception et le test des applications industrielles importantes. Ce travail
porte sur I'amélioration du processus de test. Son objectif est d’offrir des
moyens d’automatiser la génération des données de test ainsi que I’évaluation
de leur qualité, dans le cadre des systémes réactifs synchrones spécifiés en Lus-
TRE/SCADE. Les méthodes de test proposées s’appuient sur deux modéles dif-
férents du systéme sous test qui sont construits a partir des exigences fonction-
nelles.

D’une part, nous présentons une méthodologie de test basée sur I'outil LuT-
ESS qui génére automatiquement des données de test exclusivement a partir
de la description de l’environnement du systéme sous test. En particulier,
cette description de l’environnement vient des besoins informels du systéme,
en représentant un modéle de test qui décrit le comportement fonctionnel du
systéme. Plusieurs modéles de test peuvent étre construits pour le méme pro-
gramme simulant certaines défaillances du systéme ou différentes situations qui
doivent étre examinées. Les modéles de test sont alors utilisés pour guider la
procédure de génération des tests vers des séquences de test significatives par
rapport aux spécifications.

D’autre part, parmi la grande gamme des critéres de couverture qui ont
été proposés ces derniéres années, nous étudions l’extension d’une technique
d’évaluation de la couverture spécialement dédiée aux applications LUSTRE/SCADE,
en utilisant LUSTRUCTU, un outil de mesure de la couverture a I’état de proto-
type. Dans ce cas, on se base sur le modéle SCADE du programme sous test
qui est construit & partir des exigences fonctionnelles. Les critéres de couverture
sont directement définis sur les spécifications LUSTRE/SCADE et la couverture
est mesurée sur le modéle SCADE plutot que sur le code C généré. Les critéres
étendus prennent en compte deux nouveaux aspects: 'utilisation de plusieurs
horloges dans un programme LUSTRE aussi bien que le test d’intégration par
opposition au test unitaire, permettant la mesure de couverture de systémes de
grande taille.

Ces deux stratégies visant, respectivement, & la procédure de génération au-

tomatique de tests et ’évaluation de leur couverture ont été congues en fonction

v

des besoins industriels et pourraient avoir un impact positif sur le test efficace
des applications réelles. Des études de cas extraites du domaine de ’avionique
sont employées pour démontrer ’applicabilité de ces méthodes et pour évaluer

leur complexité.

Acknowledgments

I would like to thank all the people who, in different ways, have helped and
inspired me during the course of my PhD and without whom this dissertation
would be simply impossible.

I am deeply indebted to my supervisors, Ioannis Parissis and Farid Ouab-
desselam, for their kindness and willingness to help me out throughout the last
three years and especially the first few months after I came to France. Their
guidance and helpful advices as well as their patience and faith in me have
constantly helped me feel positive and confident.

I would like to acknowledge all members of the ANR project SIESTA for the
precious interactive work and the productive collaboration during our project
meetings. I particularly express my appreciation to Lydie Du Bousquet for her
assistance, her insightful comments, suggestions and contribution to this work.

Ms. Virginie Wiels and Mr.Yves Le Traon deserve a special thanks for having
accepted to review this thesis. I am also thankful to M. Philippe Lalanda
and Ms. Odile Laurent for having accepted to participate in the dissertation
committee.

I would also like to thank my colleagues and friends for their support and
friendship. I especially thank Laya, Besnik and Ajitha for the fruitful discussions
that we shared and their inspiring advices.

My deepest gratitude goes to my mother and my sister, my family and my
closest friends Fotini and Niki for always being there for me despite of the
long distance separating us. Their love and continuous support have always
motivated me and helped me overcome all difficulties that came along the way.
I am finally grateful to Michali for his understanding and patience, specially
through the hard time of writing this thesis.

“If we knew what it was we were doing, it would not be called
research, would it ?”

Albert Einstein

Contents

Abstract
Résumé
Acknowledgments

1 Introduction
1.1 Research background 0L
1.2 Motivations and objectives L.
1.3 Contributions
1.4 Thesisoutline

I Software testing

2 Testing: basic concepts and techniques
2.1 Testing process e
2.2 Testing techniques 0oL
2.2.1 Black-box testing oL
2.2.2 White-box testing
2.3 Quality evaluation L o
2.3.1 Control-flow-based coverage

2.3.2 Data-flow-based coverage

3 Testing Lustre programs
3.1 Reactive software
3.2 The synchronous approach
3.3 LUSTRE overview

3.3.1 Compilation

vii

ii

iii

o O W o= =

17

18
19
20
21
22
22
24
27

CONTENTS

3.3.2 Operator network Lo
333 Clocksin LUSTRE
3.4 Synchronous software development
3.5 Test data generation,
3.5.1 LUTESS
3.5.2 GATeL
3.6 Structural coverage of LUSTRE programs
3.6.1 Paths and activation conditions
3.6.2 Coverage criteria
3.6.3 LUSTRUCTU
3.6.4 SCADEMTC.
3.7 Requirements-based testing
3.8 Objectives of this thesis

II Extended structural test coverage criteria

4 Multiple clocks

4.1 The use of multiple clocks
4.2 Activation conditions for when and current
4.3 Example: acounter. oo
4.4 SCADE MTC e

Integration testing

5.1 Node integration oL

5.2 Path length w.r.t. temporal loops

5.3 Path activation conditions in integration testing

5.4 Extended structural coverage criteria
5.4.1 Integrationdepth
54.2 Pathlength
5.4.3 Criteria definition 0L

5.5 Subsumption relations L L

Experimental evaluation

6.1 Case study: an alarm management software
6.1.1 Objectives

6.2 System description Lo

6.3 Number of paths

viii

34
34
36
39
40
42
44
44
47
48
48
49
50

52

53
54
o4
o7
60

61
61
63
63
65
65
66
67
68

CONTENTS

6.4 Testing effort w.r.t. criteria satisfaction
6.5 Fault detection capability
6.6 Concluding remarks L oL

III Test generation

7 Automatic test data generation with Lutess

7.1 Testing methodology
7.2 The steam-boiler controller
7.2.1 System specification
7.2.2 Modeling and testing the boiler
7.2.2.1 Domain definitions

7.2.2.2 Environment dynamics

7.2.2.3 Test scenarios

7.2.2.4 Property-based testing

7.2.3 Remarks on the problem size

7.3 The land gear controller
7.3.1 System specification
7.3.2 The control software
7.3.3 Modeling the land gear controller
7.3.3.1 Domain definitions

7.3.3.2 Environment dynamics

7.3.3.3 Test scenarios

7.3.3.4 Property-based testing

7.3.4 Evaluation aspects
7.3.5 Remarks on the problem size

7.4 Concluding remarks oo

8 Conclusions and future work
81 Conclusion

8.2 Perspectives L

ix

83
85
88

89

90
91
93
93
96
96
97
99
101
101
102
102
104
106
106
107
107
111
112
114
115

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

4.1
4.2

4.3

5.1
5.2

9.3
5.4

General testing procedure.o
Program calculating the greatest common divisor (gcd(a,b)).
Control-flow graph. oL oL

An example for decision coverage.

Synchronous software operation
Example of a LUSTREnode.
The operator network for the node Never.
An example using two clocks (the basic clock and the flow ¢) and

the corresponding operator network.
Development process in avionics.
Current testing process in avionics.
The Lutess testing environment.
General form of a testnode syntax.

Activation condition for the path {(a,e).

Modeling the when and current operators using the if-the-else.

The node TIME_STABLE: a simple example with the when and current
operators. L. Lo e e e
The operator network for the node TIME_STABLE.

Example of a complex LUSTRE program.
A LUSTRE node using a compound operator (global level: NODEO

abstracted).
Expansion of NODEO in Figure 5.2.
Structure of a large application..

95

o8

64

LIST OF FIGURES xi

5.5 Operator network for the node wb2 (level 0) and the called nodes

wot and EDGE (level 1). 71
6.1 Call graph for the alarm management software component. . . . 76
6.2 Operator network of the alarm management system. 77
6.3 Call graph for node #2. 79

6.4 Operator network of node #2 (the called nodes are expanded). . 80
6.5 Operator network of node #2 (the called nodes are abstracted). . 80
6.6 Coverage ratio for test sequence length 1 to 1000. 85
6.7 Coverage ratio VS Mutation score (test sequence length 1-1000). 87

7.1 General form of a testnode syntax. 92
7.2 The steam boiler control system. 93
7.3 Operational modes of the steam-boiler system. 94
7.4 The landing gear system. 103

8.1 New feature in SCADE V6. 120

List of Tables

3.1
3.2

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8

The use of the operators when and current. 35
Activation conditions for all LUSTRE operators. 46
Test cases samples for the input m. 57
Size and complexity of the alarm management system. 78
Number of paths in node #2 w.r.t. the number of cycles. 82
Number of activation conditions (M) w.r.t. the criteria power. . 82
Number of activation conditions for node #2. 82
Coverage ratio for test sequences of length 1 to 10. 83
Coverage ratio for test sequences of length 10 to 100. 84
Coverage ratio for test sequences of length 100 to 1000. 84
Set of mutant operators. 86
Coverage ratio VS Mutation score (test sequence length 1-10).. . 86

Coverage ratio VS Mutation score (test sequence length 10-100). 86
Coverage ratio VS Mutation score (test sequence length 100-1000). 87

Excerpt of a test case using all the possible invariant properties. 99

Excerpt of a test case with broken level device scenario. 101
Excerpt of a test case guided by a safety property. 101
Excerpt of a test case using only invariant properties. 108

Excerpt of a test case using the scenarios specified in Section 7.3.3.3.109
Excerpt of a test case using scenario concerning the gear up failure
specified in Section7.3.3.3. 110
Excerpt of a test case guided by a safety property. 111
Excerpt of a test case guided by a safety property and certain
hypotheses on the system. 112

xii

LIST OF TABLES

7.9 Excerpt of a test case with oracle violation.
7.10 Excerpt of a test case with oracle violation simulating a failure

intheupgear.

Chapter 1

Introduction

In any software development project, from the phase of design through the final
phase of production, software is tested and inspected in order to ensure that it
satisfies the requirements and that the implementation corresponds correctly to
the specification. Especially in safety-critical applications, in which a possible
failure could cost human lives or severe damage to equipment or environment,
dependability [34, 52] is one of the most important factors that allows a service
to be reliable. This property can be reassured by means of verification and
validation [66], two significant activities during software development which
mainly aim at eliminating errors. Elimination of errors can be achieved, among
other methods, through software testing, which mainly consists in executing
the program under test over a test data set and verifying if the results match
the expected ones. The topic of this thesis lies mainly in this context. More
precisely, we focus on synchronous programs written in the LUSTRE language,
a particular class of reactive systems, and we study the improvement of testing

in this area with a special interest in the avionics field.

1.1 Research background

In high-risk applications in such domains as avionics, automotive and energy,
systems are normally of type command and control. Such systems must be well
synchronized with their external environment in order to prevent any malfunc-
tion or even failure with undesirable consequences. In fact, software response to

the information supplied by the environment should be fast enough (theoreti-

CHAPTER 1. INTRODUCTION 2

cally instantaneous) so that any change in the latter can be taken into account.
This property is termed as synchronism and characterizes synchronous reactive
systems that are usually part of safety-critical applications. With a view to
properly modeling and specifying this kind of systems, several synchronous lan-
guages have been proposed as such Esterel [9], Signal [36] and LUSTRE [22, 7].
In the context of this thesis, we are mainly concerned with LUSTRE.

LUSTRE is a declarative, data-flow language that contains a temporal logic
of the past, allowing to refer to the past values of an expression. Variables
and expressions are represented by data flows, that is, infinite sequences of
values whose evaluation is determined by a discrete global clock. A LUSTRE
program describes the way that input data flows are transformed into output
flows at each instant of the global clock. In addition to this cyclic behavior, the
deterministic nature of the language and its formal semantics make it ideal for
programming reactive synchronous systems with similar features. The structure
of a LUSTRE program is graphically represented by an operator network. An
operator network is an oriented graph; the nodes denote the operators used in
the program and the edges connecting the operators denote the transfer of data
among them.

LUSTRE is the backbone of SCADE (Safety Critical Application Develop-
ment Environment) [2|, a graphical tool dedicated to the development of crit-
ical embedded systems and often used by industries and professionals. This
design environment allows the hierarchical definition of the system components,
their graphical simulation and verification as well as the automatic code genera-
tion. From SCADE functional specifications, C code is automatically generated,
though this transformation (SCADE to C) is not standardized. This graphical
modeling tool-suite is used mainly in the field of avionics (Airbus, DO-178B
standard) and is becoming a de-facto standard in this field.

The design of embedded systems in safety-critical domains is a demanding
task. During the last decades, formal methods and model-based approaches have
been widely used for the design, the analysis and the implementation of major
industrial applications. All along the development cycle of such systems, the
verification and validation process is a crucial, let alone time and cost-consuming
part. Specifically, testing is a mean of dynamic verification and validation that
could reveal faults in a system and ensure that the model is in conformance
with the implementation and sometimes it could provide a sense of confidence
in the final product.

The aim of this thesis is to study the improvement of the testing process with

CHAPTER 1. INTRODUCTION 3

a view to automating test data generation as well as their quality evaluation, in
the framework of reactive synchronous systems specified in the LUSTRE/SCADE
language. This research work is conducted within the framework of the STESTA
project! (Automatisation du Test de Systémes Embarqués réalisés en SCADE
et Simulink), funded by ANR, the French National Research Foundation. The
project brings together academic and industrial partners around a common
issue: to optimize the development costs of SCADE applications, facing the
reality of the industry and taking into account the concepts inadequately treated

so far.

1.2 Motivations and objectives

In general, the testing process involves primarily the test data selection, then
the execution of the program under test on the selected test data and finally the
evaluation of the results in order to identify the differences between the obtained
and the expected results and also make sure that the system is sufficiently tested.
In this context, there are two core issues of particular interest. The first one lies
in the phase of test data selection. Indeed, one of the most important parts in
testing a program is the design and the creation of effective test cases. Testing
a program exhaustively would be ideal because the program would be tested
over all the possible states and all the errors would be theoretically detected.
However, this is not feasible due to the important number of input values that
the program should be subjected to. Even for small and simple programs, this
number might be very big even infinite. Therefore, since complete testing is
impossible, the question is to suitably select the most complete test data set with
the highest probability of detecting most of the errors. Given the constraints on
time and cost, this is not as easy a task as it may seem. On the other hand, the
second core issue concerns the evaluation of selected test data. The absence of
errors does not always mean that the program is well implemented and error-
free. Actually, the principal goal of testing should be the exact opposite [41].
Hence, when a test data reveals no errors in a program, this usually suggests
either that the specific test data set is not the appropriate one or that the
program is not adequately tested. This is why this step is equally important
since not only it provides a measure of the program coverage but also it often

determines whether the testing process can stop.

Lwww.siesta-project.com

CHAPTER 1. INTRODUCTION 4

There has been extensive study and research on these two topics and nu-
merous methods and strategies have been proposed with the main purpose of
improving the program testing procedure. These solutions are usually based on
certain rules, properties or hypotheses that a test case must satisfy. When such
properties are formally defined they are called criteria. Selection criteria are
used during the test data selection phase while adequacy or stopping criteria
are used during the quality evaluation phase to decide whether the program is
adequately tested. These criteria are commonly referred to as coverage metrics
with regard to the program code (code coverage), the program requirements
(requirements coverage) or the percentage of detected faults (fault coverage)
[10, 15].

As far as testing of LUSTRE programs is concerned, several testing tools
[16, 37, 57] have been developed to make test data generation more profitable
and valuable. They are based either on the functional specification or the struc-
tural details of the program under test. GATeL [37] is a structural testing tool
based on constraint logic programming that generates test cases by solving a
problem of constraints on program variables. LUTESS [17, 49], conversely, is a
functional testing tool that generates test cases on the fly according to a set
of constraints imposed on the program environment. Various testing strategies
are supported, as random testing [45, 51, 57|, scenarios-guided testing [46, 69|
or safety-property-guided testing [63]. Recently, the tool has been entirely re-
designed [61] using constraint logic programming in order to handle numerical
variables and make hypotheses on the program under test that could improve
test data generation. Despite the progress achieved in test data generation
techniques and tools, this process is not fully automated and rather frequently
engineers have to manually produce test cases with respect to program require-
ments. Admittedly, this is a quite difficult, let alone expensive task that usually
takes weeks or even months to be completed. Specifying a complete and precise
testing methodology based on LUTESS that would be tailored to industrial needs
could have a positive impact in effectively testing real-world applications. One
of the objectives of this research work is to examine and assess the applicability
and the effectiveness of such an approach on a case study from the avionics
domain.

As for the quality evaluation part, various structural coverage criteria have
been proposed for imperative languages. They are mostly based on the source
code and they are defined on the control flow graph that represents the transfer

of control throughout the program execution. Some typical examples are path

CHAPTER 1. INTRODUCTION 5

coverage, statement coverage and branch coverage [41]. The first one consists
in executing at least once every path in the program control flow graph. This
is almost always impossible because of the number of paths which may be infi-
nite in case that the program contains many loops. On the contrary, statement
or branch coverage require that each statement or branch, respectively, is ex-
ecuted at least once during testing. Such criteria may achieve lower coverage
ratios but they are more practical, thus more preferable in real software test-
ing [4]. There are also several structural criteria based on the decomposition
of branch boolean expressions in decisions and conditions? [41, 64]. The modi-
fied condition-decision coverage criterion (MC/DC) [13] is the one used mostly,
especially in safety-critical software. Moreover, there is a family of structural
criteria based on the way that data flows all along the program execution [55].
These criteria consider the definitions and the uses of the variables contained
in a program. A few works [39, 49] have addressed in the past the coverage
of LUSTRE programs but these coverage metrics are not useful nor sufficiently
powerful.

Nevertheless, none of the above coverage metrics can be directly applied
to LUSTRE code. In particular, in major industrial applications in the field of
avionics, testing of safety-critical parts of software is performed according to the
DO-178B standard [1], which demands full MC/DC coverage by generating test
cases based on requirements. This implies that coverage metrics are applied to
the C code generated from LUSTRE/SCADE functional specification. For an
application specified and designed in the LUSTRE/SCADE environment, C code
coverage measurement does not totally correspond to the actual coverage of the
system requirements due to the lack of any formal relation between those two.
The compilation method from LUSTRE to C code is not yet standardized and
LusTRE/SCADE engineers find it hard to link C code coverage with LUSTRE
functional specification coverage and thus with requirements.

To deal with this problem, especially designed structural coverage criteria for
LusTRE/SCADE programs have been proposed that are explicitly conformed
with the synchronous paradigm [33]. Although these criteria are comparable
to the existing data-flow based criteria, they are not the same. They aim at

defining intermediate coverage objectives and estimating the required test effort

2A branch in a control flow graph represents one of the two possible paths that can be
traversed according to the outcome of the decision in the node. For example, an if-then-else
branch statement leads to one of the possible paths, then-path or else-path, according to the
true or false value of the if-condition.

CHAPTER 1. INTRODUCTION 6

towards the final one. These criteria are based on the operator network of a
LUSTRE program, the path length and the notion of the activation condition of
a path, which informally represents the propagation of the effect of the input
edge through the output edge. In fact, an activation condition is associated with
each path and is expressed by a boolean expression that shows the dependencies
of the path output on the path input. These criteria have been implemented
in LUSTRUCTU, a prototype tool which automatically measures the structural
coverage of LUSTRE programs.

However, the existing LUSTRE coverage criteria face two significant deficien-
cies. On the one hand, they cannot be performed on the complete operator set
of LUSTRE language; they can be applied only to specifications that are defined
under a unique global clock. On the other hand, they can be applied only to
single nodes that do not contain additional internal nodes. Real-world embed-
ded systems are more complex with several components and usually operate on
multiple clocks. Therefore, the solution to these to problems consists in suit-
ably adapting the criteria definition to the needs of modern critical embedded
software. This constitutes the second goal of this thesis.

In SCADE, coverage is measured through the Model Test Coverage (MTC)
module, in which the user can define his own criteria by defining the conditions
to be activated during testing. Thus, LUSTRE coverage criteria should be in-
tegrated in SCADE in order to achieve a powerful and efficient technique of
coverage measurement for LUSTRE/SCADE applications.

In sum, the purpose of this thesis is to enhance the theoretical and empirical
results of the existing research work on the testing of LUSTRE/SCADE programs
and adjust it to the real and current industrial aspects, with a view to providing
tools and methods directly applicable to avionics applications. The proposed
approach attempts to provide the means to fully automate the testing process
of critical systems, combining both the activities of test data generation and

quality evaluation.

1.3 Contributions

The contribution of this thesis is twofold.

1. The first part concerns the structural coverage assessment of LUSTRE pro-
grams. The existing criteria defined for the LUSTRE language are extended
to fully support the SCADE language. This extension is divided in two

CHAPTER 1. INTRODUCTION 7

main aspects.

First, it consists in taking into account the use of multiple clocks in a LuUs-
TRE program. A LUSTRE program execution is determined by the global
clock, a boolean flow that always values true and defines the frequency
of the program execution cycles. Other, slower, clocks can be defined
through boolean-valued flows. They are mainly used to prevent useless
operations of the program and to save computational resources by forcing
some program expressions to be evaluated strictly on specific execution cy-
cles. Thus, nested clocks may be used to restrict the operation of certain
flows when this is necessary, without affecting at the same time the rest of
the program variables. This fact introduces modifications to the criteria
definition and more precisely, to the path activation condition definition
for the two temporal operators when and current.

These extended criteria are also implemented in LUSTRUCTU and inte-
grated in SCADE MTC.

Second, integration testing as opposed to unit testing is further studied
and new criteria are defined allowing the coverage measurement of large-
sized systems. This extension requires the enhancement of the activation
condition definition and, consequently, that of the criteria definition. To
this end, we introduce an abstract model for the composed nodes to ap-
proximately estimate their coverage. We also define an abstracted form
for the activation conditions, taking into account additional parameters
apart from the path length. These parameters are the path length consid-
ered within the called node and the node integration depth with regard to
the different levels of the tree-like structure that the nodes of a program
form. In other words, the analysis considers the length of the paths to
be covered inside the called node as well as whether the called node also
contains calls to other nodes. In this way, we achieve a sound abstracted
coverage model for the called nodes that is well related to the coverage of

the other nodes.

The use and the applicability of the proposed criteria are illustrated in a
case study from the avionics, with a view to demonstrating the required
testing effort in order to meet the criteria as well as assessing their fault

detection capability.

2. The second part addresses the automated test data generation using LUT-

ESS aiming at the facilitation of the testing process. Recently, a testing

CHAPTER 1. INTRODUCTION 8

methodology has been proposed that allows the automatic construction of
input test generators based on formal specifications. These specifications
are defined in a LUSTRE-like language that contains a set of special oper-
ators making it possible to guide the test data generation process through
several testing techniques. It mainly consists in modeling the system ex-
ternal environment by formally expressing the properties of the latter so
that the generated test data fit best a given test objective and be the
most suitable with regard to the system. In this context, we study and
assess the applicability and the effectiveness of this approach on a case
study from the aerospace domain. We demonstrate how the methodology
can be employed and evaluate the results with respect to performance and

complexity issues.

1.4 Thesis outline

The document comprises three main parts.

The first part, that consists of Chapters 2 and 3, provides the state of the
art in software testing. Chapter 2 introduces the primary notions and tech-
niques concerning software testing in general, while Chapter 3 focuses on the
synchronous approach and the LUSTRE language. In addition, we describe in
details the current practices and methods in software testing in the domain of
avionics.

In the second part, that is composed of Chapters 4, 5 and 6, we present our
work on the structural coverage of LUSTRE programs. In Chapter 4, we formally
define the activation conditions for the LUSTRE temporal operators when and
current and in Chapter 5 we introduce the extended structural coverage criteria
considering node integration. Chapter 6 presents an experiment that evaluates
the effectiveness and the applicability of the proposed coverage metrics on a
case study of the alarm management system of an aircraft.

Chapter 7 of the third part illustrates the LUTESS test generation method
that is based on modeling the system external environment. We demonstrate
the applicability and the scalability of this approach using a case study of a
military aircraft.

Finally, Chapter 8 summarizes the work in this dissertation and points to

directions for future work.

Introduction

Dans tous les projets de développement de logiciel, de la phase de la concep-
tion jusqu’a la phase finale de la production, le logiciel est testé et inspecté afin
de s’assurer qu’il se conforme aux exigences fonctionnelles et que son implé-
mentation correspond correctement aux spécifications. Particuliérement dans
le cas des applications critiques ot un échec possible pourrait cotiter des vies
humaines ou des dégats graves a I’équipement ou & ’environnement, la streté
de fonctionnement [34, 52] est I'un des facteurs les plus importants qui permet
d’avoir confiance dans le service délivré par le logiciel. Cette propriété peut étre
assurée au moyen de vérification et validation [66], deux activités significatives
pendant le développement de logiciel qui visent principalement & éliminer des
fautes. L’élimination des fautes est souvent obtenue, entre d’autres méthodes,
par le test de logiciel, qui consiste surtout & exécuter le programme avec des
jeux de tests données et a vérifier que les résultats obtenus s’accordent & ceux
attendus.

Cette thése porte sur le test des programmes réactifs synchrones écrits en

LUSTRE avec un intérét particulier aux systémes du domaine de ’avionique.

Contexte de recherche

Les parties critiques des applications dans des domaines de l'aéronautique,
des transports et de I’énergie concernent souvent des systémes du type con-
trole/commande. Ce type de logiciels doit étre bien synchronisé avec leur en-
vironnement externe afin d’éviter tout défaut de fonctionnement avec des con-
séquences indésirables. En effet, la réaction du logiciel aux informations fournies
par son environnement devrait étre assez rapide (théoriquement instantanée) de
sorte que n’importe quel changement de ce dernier puisse étre pris en compte.

Cette propriété, dite de synchronisme, est une caractéristique fondamentale des

CHAPTER 1. INTRODUCTION 10

logiciels réactifs synchrones qui assez fréquemment font partie des applications
critiques. Afin de modéliser et spécifier correctement ce type des systémes,
plusieurs langages synchrones ont été proposés comme Esterel [9], Signal [36] et
LUSTRE [22, 7]. Dans le cadre de cette thése, nous nous sommes intéressés au
langage LLUSTRE.

LUSTRE est un langage déclaratif a flots de données avec des opérateurs
temporels qui permettent de se référer aux valeurs précédentes des expressions.
Toutes les variables et les expressions sont représentées par des flots de données,
a savoir des séquences infinies des valeurs qui sont évaluées par rapport a une
horloge discréte globale. Un programme LUSTRE décrit comment les flots de
données d’entrée sont transformés en flots des données de sortie a chaque top de
I’horloge globale. En plus de ce comportement cyclique, la nature déterministe
du langage et sa sémantique formelle le rendent idéal pour programmer des
systémes synchrones réactifs. La structure d’un programme est décrite de fagon
graphique par un réseau d’opérateurs. Un réseau d’opérateurs est un graphe
orienté: les noeuds symbolisent les opérateurs du programme et les arcs qui
relient les opérateurs symbolisent les données transférées entre eux.

LUSTRE est le noyau de SCADE (Safety Critical Application Development
Environment) [2], un outil graphique dédié au développement des systémes cri-
tiques embarqués qui est souvent utilisé par les industriels et les professionnels.
Cet outil permet la définition hiérarchique des systémes et de ses composants,
leur simulation graphique, leur vérification ainsi que la génération automatique
de code. A partir des spécifications formelles en SCADE, un programme C est
automatiquement généré, bien que cette transformation ne soit pas standardisée.
Cet environnement graphique est essentiellement utilisé pour la spécification et
la modélisation des systémes du domaine de I’avionique.

La conception des systémes embarqués critiques est une tache difficile. Pen-
dant les derniéres années, les méthodes formelles et les approches basées sur des
modéles ont été largement utilisés pour la conception, l'analyse et ’exécution
des applications industrielles majeures. Tout au long du cycle de développe-
ment des systémes, la vérification et la validation sont des activités essentielles
et cofiteuses. En particulier, le test logiciel est un moyen dynamique de véri-
fication et de validation qui peut révéler des erreurs dans un systéme ou bien
assurer que le modéle est conforme & 'implémentation améliorant ainsi la stireté
de fonctionnement du produit final.

Le but de cette thése est d’étudier 'amélioration des procédures de test

afin d’ automatiser la génération des données de test ainsi que l’évaluation de

CHAPTER 1. INTRODUCTION 11

leur qualité dans le cadre des systémes réactifs synchrones spécifiés en LUs-
TRE/SCADE. Ce travail s’est en partie déroulé dans le cadre du projet ANR
SIESTA? (Automatisation du Test de Systémes Embarqués réalisés en SCADE
et Simulink), qui regroupe des partenaires universitaires et industriels autour
d’une problématique commune: l’optimisation du cotit de développement des

applications SCADE, en prenant compte de la réalité industrielle.

Problémes et motivations

En général, la procédure du test logiciel, dans un premier temps, consiste a
sélectionner les données de test, ensuite exécuter le programme sous test avec
les données de test sélectionnées et finalement identifier les différences entre les
résultats effectifs et ceux attendus ainsi que s’assurer que le systéme est suff-
isamment testé. Dans ce contexte, il y a deux problématiques importantes. La
premiére d’entre elles réside sur la phase de la sélection des données de test.
Effectivement, une des parties les plus importantes au test logiciel c’est la con-
ception et la création des jeux de tests pertinents. Tester exhaustivement un
programme est 1’objectif idéal car, dans ce cas, le programme pourrait s’observer
dans tous ses états possibles et cela permettrait de détecter, théoriquement,
toutes les erreurs. Cependant, ceci n’est pas vraiment réalisable & cause du
nombre infini des valeurs d’entrée pour lesquelles le programme doit étre testé.
Donc, vu que le test complet d’un programme est impossible, la difficulté se
trouve a choisir un ensemble des jeux de tests pertinent qui est le plus com-
plet possible et qui pourrait révéler la majorité des erreurs. Etant données
les contraintes de temps et du coft, il s’agit d’une tache lourde. La deuxiéme
problématique concerne ’évaluation des jeux de tests sélectionnés. L’objectif
principal du test étant la découverte de fautes [41], quand un jeu de test ne
met en évidence aucune erreur, cela souvent suggére que le programme n’est
pas suffisamment testé. C’est pourquoi évaluer la qualité des tests est une étape
toute aussi importante puisque elle apporte une mesure de la couverture du
programme qui pourrait aider a décider de ’arrét du test.

La recherche sur ces deux problématiques a été bien approfondie pendant des
années et de nombreuses méthodes et stratégies ont été proposées. Les solutions
proposées se sont souvent basées sur certaines régles, propriétés ou hypothéses

que les jeux de tests doivent satisfaire. De telles propriétés s’appellent également

3www.siesta-project.com

CHAPTER 1. INTRODUCTION 12

des critéres. Les critéres de sélection sont utilisés pendant la phase de la sélec-
tion des données de tests tandis que les critéres d’arrét sont utilisés pendant la
phase d’évaluation afin de déterminer si le programme est suffisamment testé.
De tels critéres sont la mesure de la couverture du code du programme (couver-
ture du code) ou de ces exigences fonctionnelles (couverture des exigences) ou
le pourcentage des erreurs détectées (couverture des erreurs) [10, 15].

En ce qui concerne le test des programmes écrits en LUSTRE, plusieurs outils
de test [16, 37, 57] ont été développés afin d’automatiser la génération de don-
nées de test, réduisant ainsi 'importance du facteur humain. Ces outils sont
basés sur les spécifications fonctionnelles ou la structure du programme sous
test. GATeL [37] est un outil de test structurel basé sur la programmation par
contraintes; les jeux de test sont générés en résolvant un systéme de contraintes
imposées sur les variables du programme. En revanche, LUTESS [17, 49] est
un outil de test fonctionnel qui géneére des séquences de test dynamiquement
selon un ensemble des contraintes imposées sur ’environnement du programme
sous test. Cet outil permet a l'utilisateur diverses stratégies de test, comme
le test aléatoire [45, 51, 57], le test guidé par des scénarios [46, 69] ou le test
guidé par des propriétés de streté [63]. Récemment, l'outil a été entiérement
revu [61] en utilisant la programmation logique par contraintes afin de traiter
convenablement des variables numériques ainsi que pour permettre de prendre
en compte des hypothéses sur le programme sous test. Malgré les progrés réal-
isés par les techniques et les outils de génération de tests, ce processus n’est
pas totalement automatique et, souvent, les ingénieurs doivent générer des jeux
de tests manuellement & partir des besoins fonctionnels du systéme, ce qui est
difficile et cotiteux. Ce travail consiste, pour une part, en la définition d’une
méthodologie de test compléte et précise basée sur LUTESS prenant en compte
les besoins des applications industrielles et s’attache a évaluer ’applicabilité et
lefficacité d’une telle approche sur une étude de cas extraite du domaine de
I’avionique.

En ce qui concerne 1’évaluation de la qualité des données de test, plusieurs
critéres de couverture structurelle ont été proposés pour les langages impératifs.
Ils sont plutot basés sur le code source du programme et ils sont définis sur le
graphe de flot de contréle associé qui représente le transfert du contréle tout au
long de 'exécution du programme. Quelques exemples typiques sont la couver-
ture des chemins, la couverture des instructions et la couverture des branches
[41]. Le premier consiste a exécuter chaque chemin dans le graphe de flot de

controle du programme au moins une fois. Ce critére est impossible & satisfaire

CHAPTER 1. INTRODUCTION 13

dans presque tous les cas a cause du nombre des chemins qui pourrait étre infini
dans le cas ou le programme contient des boucles. Par contre, la couverture des
instructions ou celle des branches exigent que chaque instruction ou branche, re-
spectivement, soit exécutée au moins une fois pendant le test. Ces critéres sont
plus réalistes et done plus utilisés [4]. 1l y a également plusieurs critéres struc-
turels qui reposent sur la décomposition des expressions booléennes en décisions
et conditions?[41, 64]. Le critére de couverture de condition/décision modifiée
(MC/DC) [13] est souvent utilisé dans le test des logiciels critiques embarqués.
Enfin, une famille de critéres structurels basés sur le flot de données [55] prend
en compte les définitions et les utilisations des variables dans le programme.

Néanmoins, aucun des critéres présentés ci-dessus ne peut étre directement
appliqué sur le code LUSTRE. Particuliérement, dans le cas des applications in-
dustrielles majeures du domaine de I'avionique, le test des composants critiques
du logiciel est réalisé selon la norme DO-178B [1], qui exige que les séquences
de test soient générées par rapport aux exigences fonctionnelles et obtiennent
une couverture compléte du programme par rapport au critére MC/DC. Cela
implique que les mesures de couverture s’appliquent sur le code C généré au-
tomatiquement & partir des spécifications formelles en LUSTRE/SCADE. Pour
une application développée et spécifiee en LUSTRE/SCADE, la mesure de la
couverture sur le code C ne correspond pas exactement & la couverture réelle
des exigences fonctionnelles car il n’y a pas de relation formelle entre les deux.
La méthode de compilation LUSTRE-en-C n’étant pas encore standardisée, il est
difficile pour les ingénieurs de faire le lien entre la couverture du code C et celle
des spécifications formelles associées écrites en LUSTRE.

Peu des travaux [39, 49| ont abordé la couverture des programmes écrits
en LUSTRE. Récemment, des critéres de couverture structurelle spécialement
congus pour les programmes écrits en LUSTRE/SCADE ont été définis directe-
ment sur le paradigme synchrone [33]. Ces critéres sont comparables aux critéres
existants basés sur le flot de données et ont pour but de définir des objectifs
intermédiaires de couverture et d’estimer 'effort de test jusqu’a I'objectif final.
Ces critéres sont définis sur le réseau d’opérateurs du programme LUSTRE, en
fonction de la longueur des chemins. Une condition d’activation est associée a
chaque chemin et elle correspond & la dépendance entre la valeur de la sortie et

celle de I'entrée du chemin. Ces critéres ont été implantés dans LUSTRUCTU, un

4Une branche dans un graphe de flot de controéle correspond & un choix dans un noeud. Par
exemple, selon la valeur assignée a la condition d’une instruction conditionnelle if-then-else
le controle sera transféré a la branche then ou bien a la branche else. .

CHAPTER 1. INTRODUCTION 14

outil & ’état de prototype qui effectue la mesure automatique de la couverture
structurelle des programmes LUSTRE.

Cependant, les critéres structurels de modéles LUSTRE sont principalement
destinés au test unitaire en boite blanche, sur les noeuds de tailles raisonnables.
Donc, dans un cadre général, il y a deux questions qui restent ouvertes. D’une
part, les critéres ne supportent pas tous les opérateurs de LUSTRE (opérateurs
d’horloge); ils ne peuvent traiter que des spécifications définies sous une horloge
globale. D’autre part, ils sont capables de traiter seulement des noeuds qui
ne contiennent pas d’appels vers d’autres noeuds. Par contre, la plupart des
systémes embarqués du monde réel se composent des nombreux composants
et s’opérent sous plusieurs horloges. En conséquence, la définition des critéres
doit étre adaptée de maniére pertinente aux besoins industriels des logiciels
embarqués critiques. Ceci est le deuxiéme objectif de cette thése.

En conclusion, l'objectif principal de cette thése est I'extension des tech-
niques et des pratiques actuelles utilisées pour le test des logiciels spécifiés en
LusTRE/SCADE et les adapter aux aspects courants du monde industriel, afin
de fournir des outils et des méthodes adaptés aux applications du domaine de
l’avionique. L’approche proposée vise a introduire les moyens d’automatiser
complétement le processus du test des logiciels critiques en prenant en compte

la génération de données de test ainsi que ’évaluation de leur qualité.

Contributions de la thése

A travers ce travail, notre contribution est double.

1. La premiére partie concerne 1’évaluation de la couverture structurelle des
programmes LUSTRE. Les critéres définis dans le contexte du langage sont
étendus afin de supporter 'ensemble du langage Lustre/SCADE. Cette ex-
tension est envisagée dans deux directions.

D’une part, elle consiste & prendre en compte 'utilisation des plusieurs
horloges dans un programme LUSTRE. L’exécution d’ un programme LUS-
TRE est déterminée par une horloge globale (horloge de base); en pratique,
cette horloge est représentée par un flot booléen qui vaut toujours vrai et
définit la fréquence des cycles d’exécution du programme. En définissant
plusieurs flots booléens on peut avoir plusieurs horloges avec des fréquences
différentes. La raison principale de I'utilisation des horloges multiples est

d’éviter des opérations du programme inutiles ainsi que d’économiser des

CHAPTER 1. INTRODUCTION 15

ressources en imposant & certaines expressions du programme de n’étre
évaluées qu’a certains cycles d’exécution précis. Les horloges multiples
peuvent étre imbriquées. La prise en compte de plusieurs horloges in-
troduit des modifications & la définition des critéres de couverture et en
particulier a la définition de la condition d’activation des chemins com-
posés par les deux opérateurs temporels when et current.

Les critéres étendus sont également implantés dans LUSTRUCTU ainsi que
dans le module MTC de SCADE.

D’autre part, le test d’intégration est aussi étudié par opposition au test
unitaire et des nouveaux critéres sont définis qui permettent la mesure de
la couverture des systémes de grande échelle. Cette extension nécessite de
fournir de nouvelles régles pour la définition de la condition d’activation et
par conséquent pour la définition des critéres. Pour cela, nous proposons
la construction d’une approximation de la couverture des noeuds com-
posés, en introduisant un modéle abstrait de ces derniers. Nous définis-
sons également une forme abstraite de la condition d’activation, en tenant
compte des parameétres complémentaires a la longueur de chemins. Ces
parameétres sont la longueur de chemins considérée dans les noeuds appelés
et le niveau d’intégration des noeuds. En d’autres termes, I’analyse de cou-
verture prend en compte le fait que le noeud appelé fait appels & d’autres
noeuds ainsi que la longueur de chemins a couvrir dans le noeud appelé.

De cette maniére, on obtient une abstraction du modéle de couverture.

L’utilisation et 'applicabilité des critéres proposés sont démontrées sur
une étude de cas extraite du domaine de ’avionique visant a illustrer
Ieffort de test nécessaire pour que les critéres soient satisfaits et & évaluer

leur aptitude a détecter des fautes dans le programme.

2. La deuxiéme partie aborde ’automatisation de la génération de don-
nées de test avec l'outil LUTESS afin de faciliter le processus du test.
Une méthodologie de test est proposée, permettant & construire automa-
tiquement des générateurs des valeurs d’entrée a partir des spécifications
formelles du systéme sous test. Ces spécifications sont définies en un lan-
gage proche de LUSTRE qui contient un ensemble d’opérateurs spéciale-
ment destinés a guider la procédure de génération de test. Cette approche
consiste & modéliser I'environnement externe du systéme en exprimant
de maniére formelle ses propriétés afin que les données de test générées

soient le plus pertinentes possible par rapport aux besoins fonctionnels

CHAPTER 1. INTRODUCTION 16

et éventuellement & un objectif de test donné. Dans ce contexte, nous
menons une étude d’évaluation de I'applicabilité et ’efficacité de cette ap-
proche de test sur une étude de cas extraite du domaine de ’avionique.
Nous montrons comment la méthodologie peut étre utilisée et nous faisons

une évaluation des résultats obtenus par rapport a sa complexité.

Plan du document

Ce manuscrit s’articule autour de trois parties principales.

La premiére partie, constituée des chapitres 2 et 3, est dédiée a la présen-
tation de ’état de ’art dans le domaine du test des logiciels. Le chapitre 2
introduit les notions fondamentales concernant le test de logiciels en général,
tandis que le chapitre 3 se concentre sur ’approche synchrone et le langage
LUSTRE. En plus, nous détaillons les pratiques industrielles et les méthodes
utilisées actuellement pour le test des logiciels aéronautiques.

Dans la deuxiéme partie, qui se compose des chapitres 4, 5 et 6, nous présen-
tons nos travaux sur la couverture structurelle des programmes écrits en LUs-
TRE. Dans le chapitre 4, nous exposons la définition formelle des conditions
d’activation pour les opérateurs temporels when et current. Le chapitre 5 intro-
duit la définition des critéres étendus vers le test d’intégration. Le chapitre 6
décrit les expérimentations menées afin d’évaluer efficacité et 'applicabilité des
mesures de couverture proposées sur une étude de cas d’un controéleur d’alarme
dans un systéme de controéle de vol.

Le chapitre 7 de la troisiéme partie illustre la méthode de génération de tests
sous LUTESS qui est basée sur la modélisation de I’environnement externe du
systéme. Nous présentons I'applicabilité et la mise en échelle de cette approche
A travers une expérimentation de 'outil sur une étude de cas d’une appareil
militaire.

Enfin, le chapitre 8 conclut ce document par un bilan ainsi que des perspec-

tives et questions ouvertes de ce travail.

Part 1

Software testing

17

Chapter 2

Testing: basic concepts and

techniques

According to the definition given in [41], testing is a verification and validation
technique which consists in executing a program with the intent of finding er-
rors. Hence, it involves an activity of system evaluation by checking if the system
satisfies the requirements described in its documentation and finding differences
between expected and actual results. The difficulty of this procedure depends
on various factors, such as the system complexity, the test objective, the tester’s
experience or even the clarity of the given specification. Nevertheless, regard-
less of all these limitations, testing is a determinative and necessary activity
throughout the software development cycle and consumes more than the half of
the total development cost and effort.

In general, regardless of the development cycle, testing is performed in two
basic steps. Firstly, a test data set is selected and the program under test is
executed over this set and then the obtained program outputs are observed and
compared to the expected ones. The observation of the results can be either a
manual or an automated procedure.

In the following, the testing process and several testing techniques are thor-

oughly discussed.

Selon la définition donnée dans [41], le test logiciel est une technique de véri-
fication et de validation qui consiste & exécuter un programme avec 'intention

de trouver des erreurs. Cela implique une évaluation dynamique du systéme

18

CHAPTER 2. TESTING: BASIC CONCEPTS AND TECHNIQUES 19

afin de vérifier s’il satisfait les exigences décrites dans sa spécification et afin
de mettre en évidence toutes les différences entre les résultats effectifs et ceux
attendus. La difficulté d’une telle procédure dépend de plusieurs paramétres
comme la complexité du systéme, I'objectif de test, le niveau d’expérience du
testeur ou bien la clarté des spécifications. Cependant, malgré toutes ces con-
traintes, le test logiciel est une activité trés importante et nécessaire tout au
long du cycle de développement du systéme et il absorbe plus de la moitié du
colt total de développement.

En général, indépendamment du cycle de développement, le test logiciel est
réalisé en deux étapes. Dans un premier temps, un ensemble de données de
test est sélectionné avec lequel le programme sous test est exécuté. Ensuite, les
résultats obtenus sont observés et comparés & ceux attendus. L’observation des
résultats peut étre un processus manuel ou automatique.

Dans ce qui suit, nous présentons en détails le processus général du test

logiciel ainsi que certaines techniques de test.

2.1 Testing process

An efficient procedure of detecting errors in a program should combine several
testing techniques and be adjusted to the kind of errors to be found as well as
to the tester’s vision on testing. Especially in critical industrial applications,
testing must be carefully and thoroughly deployed in order to prevent disastrous
situations; testing process can be generally considered as a four-step procedure,
as it is shown in Figure 2.1.

The first step consists in analyzing the informal requirements that the sys-
tem under test should satisfy. This information is usually part of the system
documentation or specification sheet. Based on this information, test objectives
are determined and a test data set is selected from all the possible input values.
The program under test is executed over this test data set and the obtained
results are compared against the expected ones. This step of observing the
system execution allows to identify the errors and usually premises an oracle,
either a human observer or an automated program, that distinguishes a false
result from a correct one. Finally, once the program is executed over a test
case, the quality of the latter should be evaluated and assessed according to
the number and the importance of faults found. In this step, it is also decided

whether the program has been sufficiently tested (so testing can stop) or further

CHAPTER 2. TESTING: BASIC CONCEPTS AND TECHNIQUES 20

Informal Test data
requirements selection

T '

‘ Quiality

evaluation) ‘ Execution ’

Figure 2.1: General testing procedure.

investigation is needed.

2.2 Testing techniques

Testing a program to find all of its errors is impractical and often impossible,
even for trivial programs. It is extremely hard to simulate all the valid and
possible conditions in which a program could be exposed to in order to execute
it and observe the results. Instead, the objective of any testing technique should
be to maximize the number of errors found in the minimum period of time and
at a minimal cost. In other words, since complete testing is impossible, the
key issue is to select a subset of all possible test cases that has the highest
probability of detecting the most errors.

With regard to the stage of the development process where testing is de-
ployed, testing techniques are identified among the three following ones. Unit
or module testing focuses on the individual components of a system and serves to
detect the errors introduced during the programming phase. Integration testing
refers to the communication and interaction of these components and detects
errors regarding the components interface or the program architecture. Lastly,
system testing is conducted on the complete system and evaluates its compliance
with its specified requirements.

Most common testing techniques are classified with respect to the way test
data is selected. Test data selection based on the specification concerns black-
box testing whereas code-based data selection results in white-box testing. Each
method has distinct strengths and weaknesses and, in general, exhaustive black-
box and white-box testing alone is impossible. However, in many cases, viewing

the program as a black box and then taking a look inside its structure would

CHAPTER 2. TESTING: BASIC CONCEPTS AND TECHNIQUES 21

help maximize the yield on testing performance by maximizing the number of
errors found in a finite number of test cases. That is, a combined use of both
techniques that takes advantage of several of their elements can lead to a rigorous
test of a program. These two techniques and their strategies are presented in

details in the remainder of this chapter.

2.2.1 Black-box testing

In black-box or functional testing the program under test is considered to be a
black box, that is to say only the program inputs and outputs and its function
are known. The program code and structure are either unknown or ignored.
Test cases are derived exclusively from program specification without regard
to the program internal behavior. Therefore, this method is more capable of
detecting errors because of missing or imprecise specification.

Ideally, exhaustively testing a program using every possible input would
reveal all errors. However, this could not guarantee that the program is error-
free, since one has to test it using not only all valid inputs, but all possible
inputs, which results in an infinite number of required test cases. Thus, since
exhaustive input testing is not feasible, several techniques are used to obtain a
test data set as complete as possible.

Some of the most prevalent black-box testing methodologies include random
testing, equivalence partitioning and boundary-value analysis. Random testing
is often characterized as the simplest and the least effective testing methodology.
It consists in randomly selecting some subset of all possible input values to test
a program [26]. According to [18], random input testing is efficient as far as code
coverage and fault detection aspects are concerned. FEquivalence partitioning is
based on the idea of finding the most appropriate test data set with the highest
error detection probability. This method implies the division of a program
input domain into a finite number of equivalence classes. If a test case in an
equivalence class detects an error, all other test cases in the same class would
be expected to find the same error and inversely. Hence, each test case reduces
the number of other test cases that must be developed to reach a predefined test
objective. However, it is difficult to equitably select the representative value of
each class. This is the main reason why, in many cases, this method does not
yield better results than random testing [25]. Boundary-value analysis [41] is a
variation of equivalence partitioning and not only it explores the input values

inside an equivalence class but those on, above and beneath the edges of each

CHAPTER 2. TESTING: BASIC CONCEPTS AND TECHNIQUES 22

class (input equivalence classes). In addition, test cases are derived directly
from the specifications by considering the results as well (output equivalence
classes). Boundary-value analysis, if practiced correctly, can be very effective
and in several case detect errors that would go undetected if a random or ad

hoc test case generation method were used.

2.2.2 White-box testing

Contrary to black-box testing, white-box or structural testing has total access
to the program code and test data selection is driven only by the latter, often
ignoring the program specification. White-box testing techniques are mainly
based on the structural coverage of the control flow graph of the program under
test; they examine to what extend test cases exercise or cover the program
control flow.

In a control-flow graph each node represents a set of program statements
that execute sequentially (i.e. a piece of code without any branch statement).
Edges or arcs are used to represent branches in the control flow. In this case,
exhaustively testing a program (similarly to black-box testing) would be equiva-
lent to execute, via test cases, all possible paths of control flow (path coverage).
Yet, this is not always possible nor useful. Actually, the number of paths in a
program could be very large, especially in real programs that contain several
loops, rendering complete path testing impractical. More importantly, even if
every path is examined, there might still be errors in the program since the
compliance with the specification is neglected.

There are several white-box testing methods that are principally concerned
with a program structural coverage and closely connected with the yielded qual-
ity of the selected test data. The following section addresses the more widely

known of these methods.

2.3 Quality evaluation

Although test data is compulsory so that a program is tested, test data genera-
tion is not sufficient for the testing process completion. Test data evaluation is
also needed, in fact it is complementary to test data generation for the overall
success of the testing process, in order to be able to evaluate its results and
eventually determine its termination, as it is discussed in Section 2.1. To reas-

sure the test cases quality, coverage analysis techniques are used, which can be

CHAPTER 2. TESTING: BASIC CONCEPTS AND TECHNIQUES 23

START
read(a);
read(b);
while b<>0 do
r:=a mod b;
a:=b;
b:=r;
endwhile
print(a);
END

Figure 2.2: Program calculating the greatest common divisor (gcd(a,b)).

either functional, aiming at property coverage qualifying test cases according to
their fault detection ability, or structural, focusing on code coverage.

Traditionally, coverage analysis requires a representative model of the pro-
gram under test as well as a set of coverage criteria to be applied to this model.
The coverage model consists in the set of elements (operators, instructions,
branches, etc.) that are involved in the program execution. Usually, a program
can be represented either by a control-flow graph or by a data-flow diagram.

A control flow graph, as it is stated in 2.2.2, denotes the order in which pro-
gram instructions are executed and the paths that might be traversed through
a program during its execution. Therefore, this model is better adapted to
imperative programs. Each node is associated with a boolean expression corre-
sponding to a condition that determines the transfer of control. On the contrary,
in a data-flow diagram each node represents an atomic action while the edges
represent the data transferred between these actions. This model is a proper
graphical representation for programs written in declarative languages since it
demonstrates well the flow of information through a program and explicitly
describes data dependencies.

The control-flow graph of a simple program (given in Figure 2.2) that cal-
culates the greatest common divisor of two integers a and b, is illustrated in
Figure 2.3. Edges are labeled with instructions blocks and nodes correspond to
decision points of the program. Instead, in the respective data-flow diagram,
nodes would represent data processing in function of the input data values while
edges would have been labeled with the necessary condition for each transition
to be performed.

Coverage criteria are quantitative metrics that measure how well a test case
has exercised a program. They are frequently referred to as adequacy criteria

because they are used during the quality evaluation phase (see Figure 2.1) to

CHAPTER 2. TESTING: BASIC CONCEPTS AND TECHNIQUES 24

4 7

- J

Figure 2.3: Control-flow graph.

evaluate test data quality after the latter has been selected, as opposed to
selection criteria that are used to guide the test data selection phase (i.e. before
test data is selected). The selection of a criterion depends on various parameters,
as program complexity, time, cost and failure constraints. Consequently, there
is a trade-off implied between the strength of a criterion and the number of
required test cases for its satisfaction. The stronger the selected criterion, the
more thoroughly the program is tested and the greater the number of faults
potentially found. Conversely, a weaker criterion might detect fewer faults but
with a lower number of test cases. The rest of this chapter is devoted to a brief

state of the art in coverage criteria.

2.3.1 Control-flow-based coverage

Control-flow graphs can be used for static analysis [29, 40] as well as for defining
test adequacy criteria [67].

Given that the execution of every path in a program is the stronger, albeit
infeasible coverage criterion, weaker but more practical criteria are used in prac-
tice. For instance, statement coverage requires the execution of every statement
in the program at least once (statement coverage). However, this criterion is
too weak since the detection of each possible error cannot be reassured. Hence,
more useful criteria offering a realistic compromise between path and statement
coverage are widely used in the industrial domain.

A control flow statement execution implies a choice between two or more

paths to be followed. Such a statement can be either an individual statement

CHAPTER 2. TESTING: BASIC CONCEPTS AND TECHNIQUES 25

if (condl && (cond2 || cond3))
statementl;

else
statement?2;

Figure 2.4: An example for decision coverage.

(i.e. that cannot be broken down into simpler ones) and it is referred to as
a condition [64] (or a clause [44]), or a composite statement, often involving
logical operators, in which case it is referred to as a decision. Several proposed
coverage criteria are based on the evaluation and execution of such conditions
and decisions [41, 64, 65, 13], addressing mostly the coverage of boolean expres-

sions.

Decision coverage This criterion requires that each program statement is
executed at least once and each decision takes on both possible outcomes (true
and false) at least once. Considering only two-way decisions, this means that
both paths of a branch statement (e.g. if-then-else, while) should be tra-
versed. This criterion is stronger than statement coverage but it is still rather
weak because some conditions may be precluded and some mistakes may not be
detected. Consider, for example the case in Figure 2.4. It is possible that the
criterion is met without never exploring cond3. If both cond1 and cond2 are true
then the decision is true. Otherwise, if condl is false then the decision is also
false. Thus, even though both branches have been examined, not every possible

error can be found.

Condition coverage This criterion is stronger than the previous one since it
ensures that each program statement is executed at least once and each condi-
tion in a decision takes on both possible outcomes (true and false) at least once.
Hence, it requires two test cases for each condition. Even though it may seem
that the condition coverage criterion subsumes the decision coverage criterion,
this is not the case. It is possible that each condition is tested independently
of each other and is evaluated to both true and false values without satisfying
both the branches of the decision. For instance, in case of the decision if (a
Il b), the test cases set {a, b}={tf, ft} satisfies condition coverage but do not

cause the decision to become false.

CHAPTER 2. TESTING: BASIC CONCEPTS AND TECHNIQUES 26

Decision-condition coverage This criterion is a combination of decision and
condition coverage. That is, it requires that each program statement is executed
at least once, each decision takes on both possible outcomes at least once and
each condition in a decision takes on both possible outcomes at least once. The
drawback of this criterion is that some conditions might mask or block other
conditions in the decision outcome. The test cases set {a, b}={tt, ff} would
cover the decision if (a || b) according to this criterion but it does not distin-

guish the correct expression between a, b, (a || b) or (a & b).

Multiple-condition coverage This criterion requires that each program state-
ment is executed at least once and that all possible combinations of the condi-
tions in each decision are tested at least once. Obviously, this is theoretically
the strongest criterion of all and examines all possible condition outcomes in
relation to the rest of the evaluated conditions. Nevertheless, it often involves a
great number of required test cases, provided that for a decision composed of n
conditions, the criterion is satisfied with 2" tests. In case of a complicated pro-
gram with many decisions and many compound conditions, this number could

be prohibitive.

Modified condition-decision coverage (MC/DC) This criterion intro-
duces an intermediate solution between the multiple-condition coverage crite-
rion and the other criteria by minimizing the number of condition combinations
[13, 28]. This modified criterion requires that each program statement is exe-
cuted at least once, each condition in a decision takes on both possible outcomes
at least once and each condition is shown to independently affect the decision
outcome. Each test case exercises the evaluation of a decision with regard to the
value variation of one condition at a time while all the other possible conditions
remain fixed. That means that the dependencies between conditions and deci-
sions are analyzed and only those conditions whose change is reflected on the
decision are taken into account. That is, for the decision if (a || b), test cases
set {a, b}={tf, ft, [f} provide MC/DC coverage. Although a smaller number of
condition combinations is needed in this case, still the number of required test
cases increases linearly since for a decision with n conditions, n+1 test cases
must be checked.

This coverage criterion is used in the DO-178B standard [1]|, developed in

CHAPTER 2. TESTING: BASIC CONCEPTS AND TECHNIQUES 27

RTCA as a means of certifying software in avionics, for the most critical soft-
ware. In order to ensure the absence of failures of the standard highest level
(Level A - Catastrophic), MC/DC must be fully satisfied (100% coverage).

LCSAJ This coverage metric [68] is defined directly on the program source
code and stands as a variation of path coverage. A LCSAJ (Linear Code Se-
quence And Jump) is a segment of statements that execute sequentially and is
terminated by a jump in the control flow. Longer sub-paths, hence stronger cov-
erage metrics, are gradually constructed by concatenating several LCSAJs. The
obtained coverage is a rather useful measurement that is more thorough than
decision coverage and yet approaches path coverage. The metric unit used is the
Test Effectiveness Ratio (T'ER;) [68] corresponding to the number of covered
LCSAJs. In this way, a criteria hierarchy is formed; statement coverage (T’ ERy)
is the weaker criterion, branch (decision) coverage follows (T'ER;), then there
is the coverage of one LCSAJ (TER;), two LCSAJs (TER3) and so on. In

general, TE'R,, ;1 measures the coverage of n LCSAJs.

2.3.2 Data-flow-based coverage

Several path selection criteria have been proposed based on data-flow analysis
[55, 20, 14]. These criteria examine the association between the definition of
a variable and its uses. They demonstrate how values are related to variables
and how these relations can affect the program execution, focusing on the oc-
currences of variables within the program. Each variable occurrence is either
a definition (the variable is associated with a value) or a use (reference to the
variable). A use can be identified to be either a computation-use (c-use) or a
predicate-use (p-use). The first type of use affects directly the computation of
a variable or indicates the result of some earlier definition, that is a variable or
an output calculation. The second type of use directly affects the control flow
through the program and corresponds to the evaluation of a predicate which de-
termines the executed path (a predicate from a conditional branch statement).

The analysis is concerned not only with the definitions and uses of vari-
ables but also with the sub-paths from definitions to statements that use those
definitions. A definition of a variable z in a node n of the program data-flow
graph reaches a use of z associated with a node m if and only if there is a path

p = n-py -m such that the sub-path p; does not contain any definition of z and

CHAPTER 2. TESTING: BASIC CONCEPTS AND TECHNIQUES 28

there is no definition of z in m (p1 is a definition-clear sub-path with regard to
The following path selection criteria [58, 14] represent predicates defined
with regard to a set of paths P in program A. If the predicate is evaluated to a

true value for every path in P, then P satisfies the criterion.

All-Defs (Definition coverage) This criterion requires that a path set con-
tains at least one definition-clear sub-path from each definition to some use
reached by that definition. That is, this criterion is satisfied if test data cover

all the definitions of a variable.

All-Uses (Use coverage) This criterion requires that a path set contains at
least one definition-clear sub-path from each definition to some use reached by
that definition and each successor of the use. That is, this criterion is satisfied

if test data cover all uses reached by a definition.

All-DU-Paths (Definition-Use coverage) This is the strongest criterion of
this family; it is an extended variation of All-Uses and subsumes it. It requires
that every definition-clear sub-path from each definition to some use reached
by that definition is a simple cycle or is cycle-free, in order to assure a finite

number of paths.

Different variations of the above criteria as well as criteria that make the
distinction between computation and predicate uses can be found in [55]. Other
criteria based on dependencies between variable definitions and uses are defined
in [42, 35].

Chapter 3

Testing Lustre programs

This chapter is dedicated to the state of the art in software testing with regard
to the synchronous approach. After introducing the essential characteristics
of synchronous reactive software and the basic notions concerning the LUSTRE
language, we present some methods and tools designed for test data generation

and coverage assessment.

Ce chapitre est consacré & un état de l'art du test logiciel par rapport a
I’approche synchrone. Aprés avoir introduit les caractéristiques fondamentalles
des logiciels réactifs synchrones ainsi que les notions principales sur le langage
LUSTRE, nous présentons des méthodes et des outils congus pour la génération

des données de test et ’évaluation de la couverture structurelle.

3.1 Reactive software

A reactive system [27] maintains a permanent interaction with its physical en-
vironment and continuously responds to external stimuli. A reactive program
is operated on a continuous action-reaction basis and it instantly reacts to its
inputs at a speed determined by its environment. Contrary to classical transfor-
mational systems, that compute or perform a function transforming their inputs
into the outputs, and interactive systems, in which the environment handles the
timing and synchronization issues (e.g. operating systems or data base systems),
reactive systems are often deterministic since the outputs depend only on the

current and past input values. Their behavior is described by the sequences of

29

CHAPTER 3. TESTING LUSTRE PROGRAMS 30

their actions as well as the relations between the program inputs and outputs
and their combination in time.

The main application domains of reactive systems include embedded sys-
tems, industrial process control systems, signal processing systems and commu-
nication protocols. Real-time systems are also a subclass of reactive systems
with additional constraints on the response time imposed by the external en-
vironment. In general, such systems are highly critical systems and they are
characterized by the parallel interaction between the system and its environ-
ment as well as the time constraints imposed by the latter regarding input

frequencies and input/output response times.

3.2 The synchronous approach

The complexity of reactive systems stems mainly from the fact that the program
is executed in parallel with its environment evolution. Consequently, modeling
this kind of systems is not an easy task. Dependability [34, 52| and safety are
important issues that must be considered all along the design and development
stages. In order to ensure the soundness of reactive systems, the synchronous
approach [6] was introduced. This approach considers that the software reaction
is sufficiently fast so that every change in the external environment is taken into
account. This hypothesis of synchrony leads to an abstracted deterministic
program, from both temporal and functional points of view and thus it makes
it possible to efficiently design and model synchronous systems. In fact, it is
sufficient that software response time is lower than the minimum delay needed
for a change in the environment. As soon as the order of all the events occurring
both inside and outside the program is specified, time constraints describing the
behavior of a synchronous program can be expressed [23].

In a synchronous program, the outputs are computed in a time determined by
the duration of a cycle according to a global clock. This cycle defines an infinite
sequence of instants that corresponds to the basic clock. In this sense, every
synchronous program is characterized by a cyclic behavior where at each cycle,
the program receives its inputs, calculates the outputs and feeds the environment
with the latter. This behavioral model, in which time is divided into discrete
instants, allows to precisely relate every internal action of the program with
regard to its environment. At each instant ¢;, the input 4; is read and processed

and the output o; is emitted simultaneously, as it is shown in Figure 3.1.

CHAPTER 3. TESTING LUSTRE PROGRAMS 31

i0 iL i2 _
External Environment | System Under Test
" o0 o o2
- Time
onecycle

Figure 3.1: Synchronous software operation

Several programming languages have been proposed to specify and imple-
ment synchronous applications. Esterel [9] is an imperative language based on
an explicit expression of the control flow while Signal [36] and LUSTRE [22, 7]

are declarative languages based on data flows.

3.3 LUSTRE overview

LUSTRE [11] is a declarative data-flow language developed for the specification of
reactive synchronous applications. The merging of both synchronous and data-
flow paradigms, its simple graphical syntax as well as the notion of discrete
time are some of the main characteristics that make the language ideal for
the modeling and the design of control systems in several industrial domains,
such as avionics, automotive and energy. It provides formal specification and
verification facilities and ensures efficient C code generation.

Contrary to imperative languages which describe the control flow of a pro-
gram, LUSTRE describes the way that the inputs are turned into the outputs.
Any variable or expression is represented by an infinite sequence of values and
is considered to be a function of time. Time is logical and discrete, that is there
is no notion of instant duration or elapsed time between two instants. Indeed,
time is represented by a global clock which is an infinite sequence of time in-
stants (i.e. execution cycles) and determines the occurrence and the frequency
of data flows. Hence, variables are associated with a global clock and take the
n-th value at the n-th cycle of this clock and the hypothesis of synchrony is
satisfied. This property provides a simplified way of handling time issues which

are of great importance in real-time systems.

CHAPTER 3. TESTING LUSTRE PROGRAMS 32

node Never(A: bool) returns (never_A: bool);
let
never_A = not(A) -> not(A) and pre(never_A);

tel;

C1 C2 C3 C4
A | false false true false
never_A | true true false false

Figure 3.2: Example of a LUSTRE node.

A LUSTRE program is structured into nodes. A node is a set of equations
which define the node outputs as a function of its inputs. Each variable can
be defined only once within a node and the order of equations is of no matter.
Specifically, when an expression F is assigned to a variable X, X=F), it indicates
that the respective sequences of values are identical throughout the program
execution; at any cycle, X and E have the same value. This property is very
useful in program transformation. Once a node is defined, it can be used inside
other nodes like any other operator.

The operators supported by LUSTRE are the common arithmetic and logical
operators (+, -, *, /, and, or, not) as well as two specific temporal operators:
the precedence (pre) and the initialization (->). The pre operator introduces
to the flow a delay of one time unit, while the -> operator -also called fol-
lowed by (fby)- allows the flow initialization. Let X = (zo,z1,22,23,...) and
(eg,e1,€2,€3,...) be two LUSTRE expressions. Then pre (X) denotes the sequence
(nil, xg, x1, T2, T3, . . .), where nil is an undefined value, while X ->E denotes the
sequence (Zg, €1, €9, €3,...).

LUSTRE does not support loops (operators such as for and while) nor re-
cursive calls. Consequently, the execution time of a LUSTRE program can be
statically computed and the satisfaction of the hypothesis of synchrony can be
checked.

A simple LUSTRE program is given in Figure 3.2, followed by an instance
of its execution. This program has a single input boolean variable and a single
boolean output. The output is true if and only if the input has never been true
since the beginning of the program execution.

In addition, assertions can be used to specify certain assumptions regarding
the system environment in case that there is some knowledge on the system
specification. These assumptions are introduced through the operator assert

followed by a boolean expression; an assertion denotes that the property enclosed

CHAPTER 3. TESTING LUSTRE PROGRAMS 33

in assert will always be satisfied during the program execution. For instance,
the following assertion states that the boolean input variables z and y can never

occur simultaneously:
assertnot (x andy)

Not only assertions provide the compiler with directives in order to optimize

the code but they are used also in program verification.

3.3.1 Compilation

LUSTRE compiler [56] associates a sequential program with the source LUSTRE
code. It generates executable code corresponding to a finite state automaton
that represents an abstract execution model of the parallel LUSTRE description.

The main tasks of the compiler amount to:

e definition checking: there must be one single equation that defines any

local or output variable
e clock consistency

e absence of cyclic definitions: any cycle should contain at least one pre

operator.

The translation of a LUSTRE node into an imperative program can be done by
constructing an infinite loop that implements all the equations of the source
code performed at any cycle of the basic clock. The compiler defines auxiliary
variables and uses memory variables to translate LUSTRE temporal operators.
The order of actions is specified according to the LUSTRE node structure and
the dependencies between variables. Even though the speed of the produced
code with this compilation method is not at all optimal, it is simpler and its
size is linear to the number of LUSTRE expressions.

Alternatively, another compilation technique uses a more complex control
structure and associates a finite state automaton to a LUSTRE node. FEach
state of this automaton represents the past actions before reaching this state.
Transitions are labeled with input and output values and a state is characterized
by a set of state variables. A state variable is created for each pre expression
of the source code in order to keep its previous value. The drawback of this
technique is the size of the obtained code that might be very large. However,

this model is suitable for validation and verification purposes.

CHAPTER 3. TESTING LUSTRE PROGRAMS 34
A {>’L1
b L3 never_A
‘ ——
L

Figure 3.3: The operator network for the node Never.

3.3.2 Operator network

The transformation of the inputs into the outputs in a LUSTRE program is done
via a set of operators. Therefore, a LUSTRE program can be represented by
a directed graph, the so called operator network. An operator network is a
graph with a set of N operators which are connected to each other by a set of
E C N x N directed edges. Each operator represents a logical or a numerical
computation. With regard to the corresponding LUSTRE program, an operator
network has as many input edges (respectively, output edges) as the program
input variables (respectively, output variables).

Figure 3.3 shows the corresponding operator network for the node of Figure
3.2. Such a graph designates the dependencies of the program outputs on the
inputs.

An operator represents a data transfer from an input edge towards an output

edge. There are two kinds of operators:
e the basic operators which correspond to a basic computation and

e the compound operators which correspond to the case that a node calls

another node.

A basic operator is denoted as (e;, s), where e;, i = 1,2,3,..., stands for its

inputs edges and s stands for the output edge.

3.3.3 Clocks in LUSTRE

As noted earlier in this section, each variable and expression in LUSTRE denotes
a flow, i.e. each infinite sequence of values is defined on a clock, which represents
a sequence of time. Thus, a flow is a pair of a sequence of values and a clock.
The clock serves to indicate when a value is assigned to the flow. That means
that a flow takes the n-th value of its sequence of values at the n-th time of its

clock. Any program has a cyclic behavior and that cycle defines a sequence of

CHAPTER 3. TESTING LUSTRE PROGRAMS 35

times, i.e. a clock, which is the basic clock of a program. A flow on the basic
clock takes its n-th value at the n-th execution cycle of the program. Slower
clocks can be defined through flows of boolean values. The clock defined by a
boolean flow is the sequence of times at which the flow takes the value true.

Two operators affect the clock of a flow: when and current.

e when is used to sample an expression on a slower clock.
Let E be an expression and B a boolean expression with the same clock.
Then, X=E when B is an expression whose clock is defined by B and its
values are the same as those of E’s only when B is true. That means that
the resulting flow X has not the same clock as E or, alternatively, when
B is false, X is not defined at all.

e current operates on expressions with different clocks and is used to project
an expression on the immediately faster clock.
Let E be an expression with the clock defined by the boolean flow B which
is not the basic clock. Then, Y=current(E) has the same clock as B and
its value is the value of F at the last time that B was true. Note that

until B is true for the first time, the value of Y will be nil.

The sampling and the projection are two complementary operations: a projec-
tion changes the clock of a flow to the clock that the flow had before its last
sampling operation. Trying to project a flow that was not sampled produces
an error. The input parameters of a node may be defined on distinct clocks
(different from the basic one). In this case, the faster one is the basic clock of
the node and all the other clocks must be in the declaration input list. Outputs
also can be defined on different clocks, certainly slower that the basic one, and
careful implementation is needed so that these are visible from outside of the
node. Table 3.1 explains the function of the two temporal LUSTRE operators in

more details.

E eo e es es eq es eg er es
B false false true false true false false true true
X=E when B To = eg 1 = eq xro =ey|x3z =eg|...
Y=current(X) |yo = nil|y1 = nil |y2 = ez |ys =e2|ys = €4 |ys =ea|ys =ea|yr =er|ys =esg|...

Table 3.1: The use of the operators when and current.

The LUSTRE node ex2cks [21] in Figure 3.4 shows the usage of clocks. The

node receives as input the signal m. Starting from this input value when the

CHAPTER 3. TESTING LUSTRE PROGRAMS 36

node ex2cks(m:int) returns (c:bool; y:int);
var (x:int) when c;

let
y = if c then current(x) else pre(y)-1;
c = true -> (pre(y)=0);
X = m when c;

tel;

when current— m1

3M2 |—>W B

Figure 3.4: An example using two clocks (the basic clock and the flow ¢) and
the corresponding operator network.

clock c is true, the program counts backwards until zero; from this moment, it

restarts from the current input value and so on.

3.4 Synchronous software development

This section is largely inspired from the SIESTA project report produced in the
context of this research [19].

For several years the design of real time embedded software for the con-
trol parts of safety-critical systems depends mainly on Simulink or SCADE!
specifications.

Especially in the development of critical avionics systems, SCADE and
Simulink environments are the two most commonly used. Following the gen-
eral development procedure (Figure 3.5), SCADE models are built by manually
translating the Simulink models that describe the system physical environment
(mainly in UML [59]); the latter are derived from the system functional require-
ments. Then, SCADE automatically generates the embedded code through the

Lwww.esterel-technologies.com

CHAPTER 3. TESTING LUSTRE PROGRAMS 37

manually automatically
—_— —_— —
LLR

HLR UML C code

Figure 3.5: Development process in avionics.

qualified code generator (KCG). Test scenarios are built manually from the sys-
tem functional requirements. Figure 3.6 illustrates the testing procedure used
currently in the domain of avionics in relation to the respective development
procedure in Figure 3.5; this is a more detailed version of the general testing
process shown previously in Section 2.1 (Figure 2.1). Functional test coverage is
verified based on the coverage of the SCADE model inputs with respect to the
functional requirements. For some systems, the analysis of the system inputs
coverage is combined with the analysis of the structural code coverage, in order
to determine when testing can stop as well as to identify missing tests. Although
these practices are well controlled and the combined use of SCADE models with
a qualified code generator has eliminated the unit tests, it is still essential to
further reduce the cost of test campaigns. Therefore, the conformity of models
to the system functional requirements must be ensured as early as possible in
the development cycle.

Within this context, several studies have been carried out and various tools
have been developed with the aim of optimizing the test coverage of systems
developed in SCADE. They are mostly based on the automated test generation
guided by coverage criteria specially adapted to data flow languages. Nonethe-
less, these tools and practices need to be combined towards a systematic and
generally approved testing approach that adequately bridges the existing gaps.
One of the primary targets of such a testing approach is to provide the means of
automatic generation of test vectors and stop criteria, by analyzing the struc-
tural coverage of system specifications. More precisely, industry and academia

are interested in responding to two prevalent research questions:

1. according to the functional system requirements, how could we generate

test campaigns able to ensure that requirements are satisfied?

2. at the specification level, which would be a suitable structural coverage
criterion with regard to its ability to indicate that the system is adequately

tested and if not, to track the uncovered parts and reason about them?

As far as programs written in LUSTRE and the relevant testing tools are con-

CHAPTER 3. TESTING LUSTRE PROGRAMS 38

Functional
requirements

Test data
selection

\

Test ADE C
Execution file code

Quality
evaluation

Figure 3.6: Current testing process in avionics.

cerned, the open issues lie in two directions. As for the test suites design, the
problem remains open in terms of the definition of the test objectives as well as
the way that test input vectors are generated. In practice, test engineers man-
ually design and build test cases with regard to a given test objective; the test
data generation process is far from being fully automated. Furthermore, assess-
ing the completeness of a test campaign is traditionally achieved by measuring
the percentage of code exercised during testing, while the precise definition of
the structural coverage conditions depends on the level of software criticality.
The traditional coverage criteria are defined on the control flow graph of the
generated code. As a result, this concept of coverage is rather unsuitable for
Simulink or SCADE specifications that handle data flows in operator networks.
The main challenge is to identify within this network the set of conditions that
activate different paths of program execution. Thus, regarding testing of critical
LusTRE/SCADE applications, a concrete testing methodology that would effec-
tively combine automatic test data generation based on the system specifications
with well formed coverage metrics to assess test data quality is a necessity.

A selection of testing tools, based on the LUSTRE language, that are currently
used for testing real-scale industrial applications is presented in the following

sections.

CHAPTER 3. TESTING LUSTRE PROGRAMS 39

3.5 Test data generation

As discussed in Section 2.2, test data generation methods are mainly divided
into two classes according to the information available about the system. This
section focuses specifically on LUSTRE programs and again, the methods of the
first class are based on black-box testing and simply require a program binary
description to generate test data, whereas the second class includes the methods
based on white-box testing which requires the LUSTRE code of the program
under test. In general, black box testing techniques aim at detecting faults
in the program under test and data generation is performed by random testing
under certain constraints on the system environment or functional requirements.
On the one hand, testing a system with constraints on its environment consists in
reducing the set of states to be explored by taking into account only meaningful
system behaviors. For example, incompatible input values correspond to a non
realistic behavior and would be excluded in this case. On the other hand,
functional requirements are LUSTRE boolean expressions that must always hold
(also referred to as safety properties), thus testing a system against its functional
requirements amounts to leading the system towards a state so that a safety
property could be violated. On the opposite, test cases generated with white-box
testing techniques ensure that the internal operations are performed according
to the specification and all internal components have been adequately exercised.

Several test data generation tools have been proposed for programs specified
in LUSTRE. LUTESS [17, 61] is a black-box testing environment which auto-
matically transforms formal specifications into test data generators. Its main
application domain is the validation of the control part of a software. GATeL
[37, 38] is based on constraint logic programming but, in contrast to LUTESS,
it is rather a white-box testing tool. It translates a LUSTRE program and its
environment specification in an equivalent Prolog representation and then com-
putes a test input according to precise test objectives. Contrary to LUTESS that
generates test data with dynamic interaction with the system under test, GA-
TeL interprets the LUSTRE code. Lurette [57] is another black-box testing tool
similar to LUTESS and it makes possible to test LUSTRE programs with numeric
inputs and outputs. A boolean abstraction of the environment constraints is
first built: any constraint consisting of a relation between numeric expressions
is assimilated to a single boolean variable in this abstraction. The concrete
numeric expressions are handled by an ad hoc environment dedicated to lin-

ear arithmetic expressions. The generation process first assigns a value to the

CHAPTER 3. TESTING LUSTRE PROGRAMS 40

Environment A
description dynamically produced input data system under
input data st 5
generator program output
'. r oracl .e. N verdict trace
 Test hamness. . ol collector
—= Communication link 1] Object provided by the user

Figure 3.7: The Lutess testing environment.

variables of the boolean abstraction and, then, tries to solve the corresponding
equations to determine the values of the numeric variables. However, LUTESS
uses constraint logic programming instead of an ad hoc resolution environment
restricted to linear expressions, as Lurette does. Moreover, the LUTESS specifi-
cation language is an extension of the LUSTRE language while Lurette uses ad
hoc scenario description notations. A thorough discussion on these tools as well
as a wider selection of model-based test data generation tools can be found in
[5].

In the following, we analyze LUTESS and GATeL, as two tools using the
two different LUSTRE-based testing techniques, black-box and white-box re-

spectively.

3.5.1 LUTESS

To perform the test operation, LUTESS requires three components: the software
environment specification (A), the executable code of the system under test (X)
and a test oracle () describing the system requirements, as shown in Figure
3.7. The system under test and the oracle are both synchronous executable
programs.

LuTESS builds a test input generator from the test specification as well as
a test harness which links the generator, the system under test and the oracle.
LUTESS coordinates their execution and records the input and output sequences
as well as the associated oracle verdicts thanks to the trace collector.

The test is operated on a single action-reaction cycle. The generator pro-

duces an input vector and sends it to the system under test; the later reacts

CHAPTER 3. TESTING LUSTRE PROGRAMS 41

testnode Env(<SUT outputs>) returns (<SUT inputs>);
var <local variables>;
let
environment(Fcy); ... environment(FEcy);
prob(C1,E1,P1); ... prob(Cm, Em, Pm);
safeprop(Sp1, Sp2,, SPK) ;
hypothesis(H1, Ha,...., H}) ;
<definition of local variables>;
tel;

Figure 3.8: General form of a testnode syntax.

with an output vector sent back to the generator. The generator produces a
new input vector and the cycle is repeated. The oracle observes the exchanged
inputs and outputs to detect failures. The testing process is stopped when the
user-defined test sequence length is reached.

The LUTESS generator selection algorithm performs a fair selection and
chooses a valid input vector according to the environment description. In fact,
any valid input vector has the same probability to be selected similarly to ran-
dom testing. In addition to this generation mode (also referred to as random
environment simulation), more testing strategies are supported by LUTESS: op-
erational profiles [46], behavioral patterns [16] and safety-property guided test-
ing [50].

The new version of LUTESS [62] uses Constraint Logic Programming (CLP)
for test generation and it is able to handle numeric input and outputs. The
environment description is made in an extended version of LUSTRE as a new
file, the main node of which is called testnode and the general form of its syntax
can be seen in Figure 3.8. The inputs (outputs) of a testnode are the outputs
(inputs) of the program under test. The testnode is automatically transformed
into a test data generator.

As a rule, a testnode contains four operators specifically introduced for test-

ing purposes.

e The environment operator is used to specify a list of invariant properties,
stated as LUSTRE expressions, that should hold at each execution step.
The definition of the input domains for variables can be stated as an
instant invariant as well as a temporal property. At any cycle, the test
generator chooses a sequence of valid random input values to supply the

software with. Therefore, the environment constraints can only depend

CHAPTER 3. TESTING LUSTRE PROGRAMS 42

on the previous values of the output signals?.

e The prob operator is used to define conditional probabilities, useful to

guide test data selection. The expression prob(C,E,P) means that if the
condition C holds then the probability of the expression E to be true is
equal to P.
There is no support for statically checking the defined probabilities. For
example, a variable could be defined to hold true with a probability
p1€(0,1) and false with a different probability po€(0,1). Therefore, it may
happen that the defined operational profiles cannot be satisfied, resulting
in a constraint system impossible to satisfy. The specified operational
profiles can be considered inconsistent and the environment specification
cannot satisfy any concrete input values. In this case, there are two pos-
sible situations to be considered. If the test data must strictly agree with
the probability specification, then the testing operation terminates and the
tester is requested to modify the assigned probabilities. Alternatively, the
generator could try to satisfy as much constraints as possible in order to
generate input values, so it ignores the specification causing the inconsis-
tency and continue the generation process. Both options are implemented
in LUTESS [61].

e The safeprop operator is used to guide the test generation process towards
situations where the safety properties could be violated. The resulting test
data generator would generate data that have a high probability to reveal

failures related to the safety properties.

e The hypothesis operator is used as a complement to safeprop in order to
insert assumptions on the program under test which could improve the
fault detection ability of the generated data. Such assumptions could be
either the result of the system analysis or system properties already tested

that are considered to be satisfied.

3.5.2 GATeL

Contrary to LUTESS that starts the test sequence generation from the initial

state and then sequences are dynamically generated, GATeL [37] starts with

2Supposing that at the current instant ¢, the input signal i(¢) must be issued before the
software computes the output o(t), then, if the environment definitions were referring to
the current output o(t), the generation of valid input sequences at the instant ¢ would be
impossible, since the actual value o(t) would be yet unknown.

CHAPTER 3. TESTING LUSTRE PROGRAMS 43

the final state to be reached by the test sequence. Thus test data generation is
performed before the system under test is executed (and not during its execu-
tion).

GATeL requires the LUSTRE code of the program under test, its environment
description as well as a test objective. A test objective can be a safety property
or a path predicate. Invariant properties that must hold in each step of the
generated test sequence are stated with the assert directive. Properties that
must be satisfied at least once are stated using the reach directive. Based on
the system under test and the environment description, GATeL tries to find a
test sequence which satisfies both properties expressed in the assert and reach
statements. If such a test case is found, it is executed over the system under
test and the generated output is compared with the corresponding one expected
from the precomputed test case. If these two match then the test case passes,
otherwise it fails.

The test sequence search is carried out backwards through a resolution pro-
cedure for constraints built from an interpretation of LUSTRE constructions
over boolean variables, variables with integer intervals and a synchronization
constraint on the status of each cycle. Resolution proceeds by successive elim-
inations of all constraints building a compatible past and backtracking some
output variables.

The basic testing with GATeL supplies a single test case. In order to gen-
erate more test cases, the tool offers the possibility of domain splitting, that is
decomposing the input variable domain in sub-domains. This is done by unfold-
ing LUSTRE operators. For instance, in case of the boolean variable condition

and the following constraint :
if condition then exprl else expr?2

GATeL unfolds the if-then-else operator in two sub-domains, the one con-
taining the test cases with condition=true and the second with condition=false.
This results in the definition of two separate constraint systems according to the
value of the condition variable. These sub-domains can be further split with
regard to the rest of operators; at each step, the tool indicates which operators
can be unfolded and the user interacts choosing which domains should be split.
In this way, it is possible to ensure some structural coverage with respect to a

test objective.

CHAPTER 3. TESTING LUSTRE PROGRAMS 44

3.6 Structural coverage of LUSTRE programs

Since a LUSTRE program can be compiled in an imperative C program, struc-
tural coverage is usually computed on the latter, based on the corresponding
control-flow graph. In this model, there can be applied every structural testing
technique described in Section 2.3.1. Particularly for critical industrial applica-
tions, SCADE uses the MTC module (Model Test Coverage) in order to measure
structural coverage of the SCADE model according to the DO-178B standard
[1]. However, as there is no universal and standard method for the LUSTRE-to-
C compilation, coverage measured on the C code does not exactly stands for
the actual coverage of the original LUSTRE program. What is more, LUSTRE
programs are properly represented by an operator network and common cov-
erage techniques designed for imperative languages are not consistent with the
data-flow nature of the language. Hence, coverage metrics should be applied
to the operator network, so that LUSTRE programs are effectively tested and
implementation faults can be detected.

In [45, 51], a preliminary study on the coverage of the operator network
of LUSTRE programs has been presented which resulted in the definition of a
family of structural coverage criteria especially designed for LUSTRE programs
[31]. Although these criteria are comparable to the existing data-flow based
criteria [55, 14], presented in Section 2.3.2, they are not the same. They aim at
defining intermediate coverage objectives and estimating the required test effort
towards the final one. These criteria are based on the notion of the activation
condition of a path, which informally represents the propagation of the effect of

the input edge through the output edge.

3.6.1 Paths and activation conditions

Paths in an operator network represent the possible directions of flows from
the input through the output. Formally, a path is a finite sequence of edges
(€0, €1,.-.,€n), such that for Vie [0,n — 1], ;41 is a successor of e; in N. A unit
path is a path with two successive edges. For instance, in the operator network

of Figure 3.3, there can be found the following paths of maximum length 7.

(A, L1, never _A)

(A, Ly, Lz, never _A)

(A, Ly,never A, Ly, L3, never _A)

ps = (A, Ly, L3, never A, Lo, L3, never _A)

p1=
P2 =
p3 =

CHAPTER 3. TESTING LUSTRE PROGRAMS 45

c
e
b d
a= false c=true
or AND or
b=true d=false

Figure 3.9: Activation condition for the path (a,e).

Obviously, one could discover infinitely many paths in an operator network
depending on the number of cycles repeated in the path (i.e. the number of
pre operators in the path). However, we only consider paths of finite length
by limiting the number of cycles. That is, a path of length n is obtained by
concatenating a path of length n-7 with a unit path (of length 2). Thus, begin-
ning from unit paths, longer paths can be built; a path is finite if it contains no
cycles or if the number of cycles is limited.

A boolean LUSTRE expression is associated with each pair (e, s), denoting
the condition on which the data flows from the input edge e through the output
s. This condition is called activation condition. The evaluation of the activation
condition depends on what kind of operators the paths is composed of. Infor-
mally, a path is activated if any change in its input causes a consequent change
in its output. Hence, a path activation condition shows the dependencies be-
tween the path inputs and outputs. Consider, for example, the path p = (a,e)
in the operator network shown in Figure 3.9. The path is decomposed in unit
sub-paths, p1 = (a,¢) and ps = (¢, e). The first sub-path is activated if a=false,
because then the output ¢ will be necessarily false, or if b=true, because in this
case ¢ depends exclusively on the value of a. Similarly, for the OR operator, the
path input value is propagated through the output if c=true, because then e
will be unconditionally true, or if d=false, because then e is only affected by
c. Finally, the activation condition for path p is the conjunction of the partial

conditions resulting in the boolean expression 3.1.

AC (p) = (not (a) ord) and (cornot (d)) (3.1

Therefore, the selection of a test set satisfying the paths activation condi-
tions in an operator network leads to a notion for the program coverage. Since

covering all the paths in an operator network could be impossible, because of

CHAPTER 3. TESTING LUSTRE PROGRAMS 46

Operator Activation condition
s=NOT (e) AC (e, s) = true
s=AND (a,b) AC (a,s) = not (a) orb
AC (b, s) = not (b) ora
s =OR/(a,b) AC (a, s) = aornot (b)
AC (b, s) = bornot (a)
s=ITE (c,a,b) AC (¢, s) = true
AC (a,8) =¢
AC (b, s) = not (c)
relational operator AC (e, s) = true
s = FBY (a,b) AC (a, s) = true -> false
AC (b,s) = false -> true
s = PRE (e) AC (e, s) = false -> pre (true)

Table 3.2: Activation conditions for all LUSTRE operators.

their potentially infinite number and length, in this approach, coverage is defined
with regard to a given path length.

Table 3.2 summarizes the formal expressions of the activation conditions for
most of the LUSTRE operators, as these were defined in [33]. In this table?, each
operator op, with the input e and the output s, is paired with the respective
activation condition AC (e, s) for the unit path (e, s). Noted that some operators
may define several paths through their output, so the activation conditions are
listed according to the path inputs.

Let us consider the path ps = (A, L1, Ls,never _A) in the corresponding
operator network for the node Never (Figure 3.3). The condition under which
that path is activated is represented by a boolean expression showing the prop-
agation of the input A through the output never_ A. To calculate its activation
condition, we progressively apply the rules for the activation conditions of the
corresponding operators according to Table 3.2. Starting from the end of the
path, we reach the beginning, moving one step at a time along the unit paths.

Therefore, the necessary steps would be the following:

AC (p2) = false -> AC (p'), where p’ = (A, L1, L3)
AC (p') = not(Ly) or Loand AC (p") = Aorpre(never _A) and AC (p"),

31n the general case (path of length n), the path p containing the pre operator is activated
if its prefix p’ is activated at the previous cycle of execution, that is AC (p) = false ->
pre (AC (p')). Similarly in the case of the initialization operator fby, the given activation
conditions are respectively generalized in the forms: AC (p) = AC (p’) -> false (i.e. the path
p is activated if its prefix p’ is activated at the initial cycle of execution) and AC (p) = false
-> AC (p') (i.e. the path p is activated if its prefix p’ is always activated except for the initial
cycle of execution).

CHAPTER 3. TESTING LUSTRE PROGRAMS 47

where p” = (A, L)
AC (p") = true

After backward substitutions, the boolean expression for the activation con-

dition of the selected path is:

AC (p2) = false -> Aorpre(never A).

In practice, in order for the path output to be dependent on the input,
either the input has to be true at the current execution cycle or the output at
the previous cycle has to be true; at the first cycle of the execution, the path is

not activated.

3.6.2 Coverage criteria

The proposed coverage criteria [31] are specifically defined for LUSTRE programs
and they are specified on the operator network according to the length of the
paths and the input variable values.

Let T be the set of test sets (input vectors) and P,, = {p|length(p) < n} the
set of all paths in the operator network whose length is smaller or equal to n.
Hence, the following families of criteria are defined for a given and finite order
n > 2. The input of a path p is denoted as in (p) whereas a path edge is denoted

as €.

1. Basic Coverage Criterion (BC). This criterion is satisfied if there is
a set of test input sequences, 7, that activates at least once the set P,.
Formally, Vp € P,, 3t € T: AC (p) = true. The aim of this criterion is
basically to ensure that all dependencies between inputs and outputs have
been exercised at least once. In case a path is not activated, certain errors

such as a missing or misplaced operator could not be detected.

2. Elementary Conditions Criterion (ECC). In order that an input
sequence satisfies this criterion, it is required that the path p is activated
for both input values, true and false (taking into account that only boolean
variables are considered). Formally, Vp € P,, 3t € T: in(p) A AC (p) =
true and not (in (p)) A AC (p) = true. This criterion is stronger than the
previous one in the sense that it also takes into account the impact that

the input value variations have on the path output.

CHAPTER 3. TESTING LUSTRE PROGRAMS 48

3. Multiple Conditions Criterion (MCC). In this criterion, the path
output depends on all combinations of the path edges, also including the
internal ones. A test input sequence is satisfied if and only if the path acti-
vation condition is satisfied for each edge value along the path. Formally,
Vpe P,,VYecp,IteT: e N AC (p) = true and not (e) A AC (p) = true.

The above criteria form a hierarchical relation: MCC satisfies all the conditions
that ECC does, which also subsumes BC. Note also that the MCC criterion is
close to the constraints imposed by MC/DC; in fact, it is less powerful than
MC/DC but more powerful than DC (Decision Coverage).

3.6.3 LusTRUCTU

LUSTRUCTU [30] is an academic tool that integrates the above criteria and au-
tomatically measures the structural coverage of LUSTRE/SCADE programs. It
requires three inputs: the LUSTRE program under test, the required path length
and the maximum number of loops in a path and finally the criterion to satisfy.
The tool analyzes the program and constructs its operator network. It then
finds the paths that satisfy the input parameters and extracts the conditions
that a test input sequence must satisfy in order to meet the given criterion.
This information is recorded in a separate LUSTRE file, the so called coverage
node. This node receives as inputs those of the program under test and com-
putes the coverage ratio at the output. The program outputs become the node
local variables. For each path of length lower or equal to the value indicated
in the input, its activation condition and the accumulated coverage ratio are
calculated. These coverage nodes are compiled and executed (like any other
regular LUSTRE program) over a given test data set and the total coverage ratio

is computed.

3.6.4 SCADE MTC

In SCADE, coverage is measured through the Model Test Coverage (MTC)
module, in which the user can define his own criteria by defining the conditions
to be activated during testing. Indeed, MTC measures the coverage of low-
level requirements (LLR coverage), with regard to the demands and objectives
of DO-178B standard, by assessing how thoroughly the SCADE model (i.e.
system specification) has been exercised. In particular, each elementary SCADE

operator is associated with a set of features concerning the possible behaviors of

CHAPTER 3. TESTING LUSTRE PROGRAMS 49

the operator. Therefore, structural coverage of the SCADE model is determined
by the activation ratio of the features of each operator.

In order to compute coverage for a given test cases set, model coverage is
performed in four steps. During the instrumentation phase, the initial SCADE
model is instrumented and the criteria that test cases must satisfy are defined.
Default instrumented libraries applying the MC/DC or the DC coverage criteria
are provided for SCADE predefined operators. In addition, user-instrumented
libraries can be created to support several user-defined coverage criteria. Once
the instrumented model is created, the acquisition phase follows; this phase
produces and records which ones of the SCADE elements have been covered.
The analysis phase provides a complete view of the coverage results by analyzing
the covered and the uncovered parts and taking corrective actions. Finally, the
reporting phase produces customizable reports containing information about the

coverage criteria, results and records.

3.7 Requirements-based testing

In [53], an interesting validation approach is proposed that defines objective
coverage metrics for measuring requirements coverage, that is providing a means
of precisely knowing whether or not system requirements are sufficiently tested.
The author uses LTL semantics (Linear Temporal Logic) to formally express
high-level requirements. Three coverage criteria are then defined directly on the
formalized requirements in order to determine how well a test suite has exercised
the requirements set. In addition, these criteria can be used to automatically
generate test cases sets for requirements testing [54].

These requirements-based criteria are not limited to the use of LTL notation
for the requirement formalization; any formal notation may be used to trans-
late informal requirements into formal properties. Therefore, they provide a
new direction to the structural coverage of LUSTRE/SCADE programs. Since
LUSTRE is a rather powerful formal language with well-defined temporal logic
of the past, it could be used in place of LTL to formalize requirements; in this
way, the structural coverage criteria defined in Section 3.6 could also be used
to measure requirements coverage. This aspect may be helpful in the area of
critical avionics software testing to fulfill the rigorous requirements of DO-178B
standard that targets at full requirements coverage in addition to structural

code coverage.

CHAPTER 3. TESTING LUSTRE PROGRAMS 50

3.8 Objectives of this thesis

Motivated by the current practices and needs of testing in the avionics, that are
thoroughly discussed in Section 3.4, the outer goal of this thesis is concerned
not only with the improvement of the validation and the testing of critical real-
time embedded systems but also with the simplification of its cost. Therefore,
we attempt to provide contributions that answer to both research questions
addressed in Section 3.4.

The existing structural coverage criteria cannot effectively deal with real-
world complex systems that demand thorough and preferably automated test-
ing. One of the basic difficulties in the testing process is the lack of a formal
relation between the test objective and the system formal specification. Indeed,
the tester must ensure that the generated test cases cover the system functional
requirements and the test objective that the latter define. Coverage metrics
applied to the C code, generated by SCADE without a standard compilation
method, do not exactly correspond to the actual LUSTRE specification. Al-
though the coverage criteria, specially adjusted to the synchronous paradigm
(BC, ECC, MCC), provide an adaptable framework for evaluating the test data
thoroughness of LUSTRE programs, they cannot be performed on the complete
operator set of the language; they can be applied only to specifications that are
defined under a unique global clock. However, nested clocks may be defined
through the temporal operators when and current presented in Section 3.3.3 to
restrict the operation of certain flows when this is necessary, without affect-
ing at the same time the rest of the program variables. Real-time systems are
rather sophisticated and usually operate on multiple clocks. For this reason, we
propose the extension of the criteria definition to support also the multi-clock
operators, when and current.

Aside from that, integration testing must be considered in addition to unit
testing. That means that in order to compute the system coverage, the internal
nodes that represent compound operators should not be unfolded in order to
avoid a possible explosion in the number of calculated paths and activation
conditions. If already measured, the coverage of such nodes should be reused or
otherwise approximately estimated. With the purpose of solving this problem,
we recommend the definition of a set of new criteria, including a notion of
abstraction to make it possible to measure the program coverage also in the
case of large-sized programs without expanding the internal nodes and, thus,

reducing the cost of the coverage analysis.

CHAPTER 3. TESTING LUSTRE PROGRAMS 51

In regard to test data generation, a new testing methodology based on LuT-
ESS was recently proposed [60] for synchronous reactive applications. Taking
advantage of the new features introduced to the tool [61, 62], a progressively
increasing approach of test data generation according to the environment de-
scription arises, which could contribute to the full automation and the effective-
ness of the testing process. In the following, we evaluate this approach with
respect to the difficulty of its applicability, its effectiveness and usefulness as
well as its scalability. To do so, we use a case study of a land gear controller of a
military aircraft and we propose the guidelines towards testing. Eventually, the
combination of this approach with the structural coverage criteria, according to
the above extensions, could result in a concrete testing methodology adapted in
modern industrial needs, that would not only automatically produce test cases

but also provide the means to adequately test a system.

Part 11

Extended structural test

coverage criteria

52

Chapter 4

Multiple clocks

Despite the research conducted through both theoretical and empirical investi-
gation in testing of LUSTRE/SCADE applications, there are still some insuffi-
ciently treated key issues. The proposed approaches and tools must be extended
in order to meet the needs of real-world critical industrial systems.

In fact, a basic feature of current major applications is complexity; the whole
system is composed of many distinct components that constantly interact with
each other and some functions may use more than one clock. Such sophisticated
systems cannot be effectively and adequately tested using the existing LUSTRE
structural coverage criteria [33]. These criteria do not provide the means of
assessing the coverage of LUSTRE nodes that make use of more than one clocks.
This chapter deals with the extension of the criteria towards this aspect [47].
This extension not only allows to take into account the complete operator set
of the language but also to efficiently apply the coverage metrics to real-world

programs.

Malgré les recherches, tant théoriques que pratiques, qui ont été menées sur
le test de logiciels critiques écrits en LUSTRE/SCADE, il reste des questions im-
portantes insuffisamment traitées. Les approches et les outils proposés doivent
étre étendus afin de satisfaire les besoins des systémes industriels critiques.

En effet, une caractéristique des plusieurs applications est la complexité; le
systéme en sa totalité est composé de plusieurs composants distincts qui inter-
agissent sans cesse entre eux. Certaines fonctions peuvent opérer sous plusieurs
horloges. De tels systémes ne peuvent pas étre testés en utilisant les critéres

de couverture structurelle qui ont été spécialement définis pour les programmes

53

CHAPTER 4. MULTIPLE CLOCKS 54

LUSTRE [33]. Ces critéres ne fournissent pas les moyens d’évaluer la couver-
ture des noeuds LUSTRE qui utilisent des horloges multiples. Ce chapitre traite
Pextension des critéres vers cet aspect [47]. Une telle extension permet non
seulement de tenir compte de ’ensemble complet des opérateurs du langage
mais d’appliquer également efficacement les métriques de la couverture sur des

programmes de grande taille.

4.1 The use of multiple clocks

The cyclic behavior of a LUSTRE program execution implies the notion of a basic
clock that represents the frequency that output flows are evaluated in function
of the values of input flows. Since a flow is defined not only by its sequence
of values but also by a boolean flow indicating when the flow is evaluated, a
LUSTRE node may use more than one clocks in reference to the basic one. The
appropriate LUSTRE operators that handle multiple clocks are when and current,
as they are presented in Section 3.3.3.

Multiple clocks are mainly used in order to avoid the execution of some
program functions when this is not necessary. In other words, the use of multiple
clocks implies the filtering of some program expressions. It consists in changing
their execution cycle, activating it only at certain cycles of the basic clock.
Consequently, the associated paths are activated only if the respective clock
is true. As a result, the tester must adjust this rarefied path activation rate
according to the global timing.

The extension of LUSTRE criteria to the use of multiple clocks does not affect
the criteria definition itself; instead, it requires the definition of the activation

conditions for the two temporal multi-clock operators, when and current.

4.2 Activation conditions for when and current

Informally, the activation conditions associated with the when and current oper-
ators are based on their intrinsic definition. Since the output values are defined
according to a condition (i.e. the true value of the clock), these operators can
be represented by means of the conditional operator if-then-else. For the

expression £ and the boolean expression B with the same clock,

e X=E when B could be seen as X=if B then E else NON_DEFINED and simi-
larly,

CHAPTER 4. MULTIPLE CLOCKS 95

X Y
—={ aurrent =
E X
when @
B
@ X Y
ITE
E B
*tfe <

NON_DEF

@ (b)

Figure 4.1: Modeling the when and current operators using the if-the-else.

e Y=current (X) could be seen as Y=if B then X else pre(Y).
Hence, the formal definitions of the activation conditions result as follows:

Definition 4.1. Let e and s be the input and output edges respectively of a when
operator and let b be its clock. The activation conditions for the paths p1 = (e, s)
and pa = (b, s) are:

AC(p1) =0

AC(p2) = true

Definition 4.2. Let e and s be the input and output edges respectively of a
current operator and let b be the clock on which it operates. The activation
condition for the path p = (e, s) 1is:

AC(p) =0

As a result, to compute the paths and the associated activation conditions of
a LUSTRE node involving several clocks, one has just to replace when and current
operators by the corresponding conditional operator (see Figure 4.1). At this
point, two basic issues need to be further clarified. The first one concerns the
case of when. In fact, there is no way of defining the value of the expression
X when the clock B is not true (branch NON_DEF in Figure 4.1(a)). By
default, at these instants, X does not occur and such paths (beginning with a

non defined value) are infeasible!. In case of current, the operator implicitly

LAn infeasible path is a path which is never executed by no test cases, hence it can never
be covered.

CHAPTER 4. MULTIPLE CLOCKS 56

refers to the clock parameter B, without using a separate input variable (see
Figure 4.1(b)). This hints at the fact that current always operates on an already
sampled expression, so the clock that determines its output activation should

be the one on which the input is sampled.

Example 4.3. Let us assume the path p = (m,x, My, My, M3, My, c) in the
example of Section 3.3.3, displayed in bold in Figure 3.4. Following the same
procedure for the activation condition computation and starting from the last

path edge, the activation conditions for the intermediate unit paths are:

After backward substitutions, the activation condition of the selected path

is:
AC (p) = false -> pre(c).

This condition corresponds to the expected result and is compliant with the
above definitions, according to which the clock must be true to activate the
paths with when and current operators.

In order to evaluate the impact of these temporal operators on the coverage
assessment, we consider the operator network of Figure 3.4 and the paths:

p1 = (m,z, My,y)

pa = (m,x, My, Mo, M3, My, c)

p3 = (m,x, M1, M, M3, Ms,y)

Intuitively, if the clock ¢ holds true, any change of the path input is propa-
gated through the output, hence the above paths are activated. Formally, the

associated activation conditions to be satisfied by a test set are:
AC(m) =c
AC (p2) = false -> pre(c)

AC (p3) = not (c) and false -> pre(c).

CHAPTER 4. MULTIPLE CLOCKS o7

Eventually, the input test sequences satisfy the basic criterion. Indeed, as
soon as the input m causes the clock c to take the suitable values, the activation
conditions are satisfied, since the latter depend only on the clock. In particular,
in case the value of m at the first cycle is an integer different from zero (for
sake of simplicity, let us consider m = 2), the basic criterion (BC) is satisfied
in two steps since the corresponding values for ¢ are c=true, c=false. On the
contrary, if at the first execution cycle m equals to zero, the BC is satisfied after
three steps with the corresponding values for c: c=true, c=true, c=false. These
two samples of input test sequences and the corresponding outputs are shown
in Table 4.1.

C1 C2 C3 Cy C1 C2 C3 Cy4
m | i1 (#£0) ig i3 i4 m | 41 (=0) i9 i3
c true false | false | true | ... c true true | false
y i1 i1 —1 0 i4 y 0 i9 ig — 1

Table 4.1: Test cases samples for the input m.

Table 4.1 implies that the application of the coverage criteria depends on the
way test data are generated. Sometimes, the first test data sequence determines
the way that testing is carried out and, consequently, the coverage results. How-
ever, the complexity of the test generation process with regard to the criteria is
hard to be estimated. In fact, in case of manual test data construction where
test cases are based on system requirements, coverage metrics help the tester
determine additional test cases covering paths not yet exercised. On the other
hand, in case of automatic test data generation, coverage metrics are used to

produce test cases satisfying a criterion.

4.3 Example: a counter

In order to demonstrate the usage and the application of the extended criteria,
as these were presented above, let us consider a simple example. This example
concerns a LUSTRE node [24] that receives at the input a boolean signal set and
returns at the output a boolean signal level. The latter must be true during
delay cycles after each reception of set. Now, suppose that we want the level
to be high during delay seconds, instead of delay cycles. Taking advantage of

CHAPTER 4. MULTIPLE CLOCKS 58

node TIME_STABLE(set, second: bool; delay: int) returns (level: bool);
var ck: bool;
let
level = current(STABLE((set, delay) when ck));
ck = true -> set or second;
tel;
node STABLE(set: bool; delay: int) returns (level: bool);
var count: int;

let
level = (count>0);
count = if set then delay
else if false->pre(level) then pre(count)-1
else 0;
tel;

Figure 4.2: The node TIME_STABLE: a simple example with the when and current
operators.

the use of the when and current operators, we could call the above node on a
suitable clock by filtering its inputs. The second must be provided as a boolean
input second, which would be true whenever a second elapses. The node must be
activated only when either a set signal or a second signal occurs and in addition
at the initial cycle, for initialization purposes. The LUSTRE code is quite simple

and it is shown in Figure 4.2, followed by the associated operator network?.

Similarly to the previous example, the paths (complete and cycle-free) to be
covered are:
p1 = (set, Tn, T5, Ty, level)
p2 = {(delay, T, T3, Ty, level)
p3 = (set, Ty, ck, Ty, T5, Ty, level)
(second, Ty, ck, Ty, T5, Ty, level)
(set, Th,ck, Ts, T3, Ty, level)
pe = (second, Ty, ck,Ts, T3, Ty, level)

Pa =
Ps =

To cover all these paths, one has to select a test set satisfying the following

activation conditions, calculated as it is described above:

AC (p1) = ck, where ck = true -> set or second

2The nested node STABLE is used unfolded, since for the moment, the dependencies between
a called node inputs and outputs cannot be determined.

CHAPTER 4. MULTIPLE CLOCKS 99

true

set T1 ck
second

level

current

Since the code ensures the correct initialization of the clock, hence its ac-
tivation at the first cycle, the above paths are always activated at the first
execution cycle. For the rest of the execution, the basic criterion is satisfied
with the following test sequence for the inputs (set, second): (1,0),(0,1), (1,1).
This test set, which contains almost every possible combination of the inputs,
satisfies also the elementary conditions criterion (ECC), since the activation of
the paths depends on both boolean inputs.

Admittedly, the difficulty to meet the criteria is strongly related to the com-
plexity of the system under test as well as to the test case generation effort.
Moreover, activation conditions covered with short input sequences are easy to
be satisfied, as opposed to long test sets that correspond to complex instance
executions of the system under test. However, the enhanced definitions of the
structural criteria complete the coverage assessment issue for LUSTRE programs,
as all the operators of the language are supported. In addition, the complexity
of the criteria is not further affected, because, in substance, we use nothing but

if-then-else operators.

CHAPTER 4. MULTIPLE CLOCKS 60

4.4 SCADE MTC

We have implemented the above criteria in the prototype tool LusTrRUCTU. In
fact, we have integrated LUSTRUCTU within SCADE MTC in the form of a
new plug-in for user-instrumented libraries. In particular, in the instrumen-
tation phase the user is prompted to fill in the necessary parameters for the
LUSTRUCTU execution. The activation conditions corresponding to the defined
criteria (BC, ECC, MCC) are automatically transformed into suitable MTC
expressions, the respective user-instrumented libraries are created and the cov-
erage node automatically generated by LUSTRUCTU corresponds to the final
instrumented model. This model is ready to be launched into the acquisition

phase.

Chapter 5

Integration testing

In this chapter, we present an integration testing technique for the coverage mea-
surement of large-scale LUSTRE programs that involve several internal nodes.
Actually, we propose an approximation for the coverage of the called nodes by
extending the definition of the activation conditions for these nodes. Coverage
criteria are redefined according not only to the length of paths but also the level
of integration. This extension reduces the total number of paths at the system

level and hence, the overall complexity of the coverage computation.

Dans ce chapitre, nous présentons une technique de test d’intégration pour
la mesure de la couverture de programmes LUSTRE de grande taille qui se com-
posent des plusieurs noeuds appelés. En effet, nous proposons une abstraction
de la couverture des noeuds appélés en étendant la définition des conditions
d’activation pour ces noeuds. Nous définissons de nouveau les critéres de cou-
verture par rapport a la longueur de chemins et au niveau d’intégration. Cette
approche de couverture réduit le nombre de chemins au niveau du noeud prin-

cipal et ainsi, diminue la complexité de I’analyse de couverture.

5.1 Node integration

The existing coverage criteria are defined on a unit-testing basis and cannot
be applied to LUSTRE nodes that locally use user-defined operators (compound
operators). The cost of computing the program coverage is affordable as long
as the system size remains small. However, big or complex nodes must be

locally expanded and code coverage must be globally computed; as a result, the

61

CHAPTER 5. INTEGRATION TESTING 62

nodel

noded

———— node3 r\

node2

Tr

node5

i

Figure 5.1: Example of a complex LUSTRE program.

number and the length of the paths to be covered are highly increased, hence
these coverage metrics become impracticable.

Indeed, as far as relatively simple LUSTRE programs are concerned, the re-
quired time for coverage computation is rather short, especially in the cases of
the basic and elementary condition coverage [32]. Paths are relatively short and
the corresponding activation conditions are respectively simple. As long as the
path length remains low, the number of the activation conditions to be satisfied
is affordable. However, coverage analysis of complex LUSTRE nodes, like the
one shown in Figure 5.1, may require a huge number of paths to be analyzed
and the coverage cost might become prohibitive and, consequently, the criteria
inapplicable.

This is particularly true for the MCC criterion, where the number of the
activation conditions to be satisfied increases dramatically when the length and
the number of paths are high. In fact, in order to measure the coverage of a
node that contains several other nodes (i.e. internal calls to other nodes), the
called nodes are unfolded, the paths and the corresponding activation condi-
tions are locally computed and then they are combined with the global node
coverage. This may result in a huge number of paths and activation conditions.
In fact, covering a path of length k requires 2 (k — 1) activation conditions to
be satisfied. Consequently, satisfying a criterion for the set of paths P,,, r; be-
ing the number of paths of length equal to i, necessitates the satisfaction of

2(ro+2rs+---+ (n— 1) r,) activation conditions.

CHAPTER 5. INTEGRATION TESTING 63

5.2 Path length w.r.t. temporal loops

The length of a path p = {(eq,ea,...,e,_1,€,) in an operator network is defined
as the number of edges of which p is comprised; hence, length(p)=n, assuming
that p is composed of the consecutive edges e; to e,. This parameter is an
essential feature of each path, yet it does not refer to its nature, that is, if it
is cycle-free or not. In reality, the number of cycles that a path contains is
determined by the number of temporal loops in the path (i.e. the number of
pre operators) and it characterizes its complexity.

So far, coverage analysis is performed in relation to a given value of path
length n> 2; the number of cycles in the obtained paths is an implicit parameter
according to n. As a result, only the complete paths' of length n are analyzed,
regardless of the number of cycles. On the contrary, complete cyclic paths
are of greater interest in practice, since their coverage strongly depends on the
number of execution cycles and, consequently, on the test input sequence length.
Usually, professionals are interested in measuring the coverage for a set of paths
of a given number of cycles (¢ > 0) rather than a given path length. Noted that

¢ = 0 denotes the set of complete cycle-free paths.

5.3 Path activation conditions in integration test-
ing

The proposed approach consists in defining an approximated estimation of the
coverage of the called nodes that will be used for the coverage analysis of the
main node. In this way, the code coverage is effectively measured and the
complexity is reduced.

The coverage approximation is made thanks to an abstraction of the called
node, based on a new type of operator: the NODE operator. This new operator
denotes the operator network corresponding to the called nodes and it is used
to replace them while analyzing the coverage. The inputs (outputs) of the
NODE operator are the inputs (outputs) of the replaced node. The set of paths
beginning from an input e; and ending to an output s; in the operator network
of the replaced node is represented by a single unit path p = (e;,s;) in the

NODE operator as it is shown in Figure 5.2. The activation condition of p is a

LA path p = (e1,...,en) is complete if and only if e; is an input edge and e, is an output
edge. In other words, a complete path connects a program input with a program output.

CHAPTER 5. INTEGRATION TESTING 64

out

Figure 5.2: A LUSTRE node using a compound operator (global level: NODEO
abstracted).

: c

Figure 5.3: Expansion of NODEO in Figure 5.2.

combination of the activation conditions of the set of paths from the edge e;
to the edge s;. As it is the case for every basic operator (boolean, arithmetic,
temporal), an activation condition is associated with every unit path of a NODE
operator.

In addition, it is possible that a called node contains a call to another node,
as it is the case in Figure 5.3, forming a tree structure of called nodes. Each
level of this structure corresponds to the depth of node integration. The paths
to consider for testing and the associated activation conditions depend on this
level. For example, in Figure 5.2, let ACY (p) be the activation condition of
p = (e1,81) at level zero. Since NODEO calls NODE1, the following expression
describes the correlation of activation conditions between the different levels of

integration:

AC? ({e1, 1)) = AC* ({a,) (5.1)

Consequently, at level m, a path activation condition depends on the acti-

vation condition of level m + 1, as shown in the following definition.

Definition 5.1. Let E and S be the sets of inputs and outputs respectively of a
NODE operator at level m so that there is an input e; € E and an output s; € S.
Let n>0 be any positive integer and p1,ps,...,pr be the paths from the input
e; to the output s; the length of which is lower or equal to n. The abstract
activation condition of the unit path p = (e;, s;) for the depth m and the path
length n is defined as follows:

ACT (p) = ACT ! (p1) v ACTH (p2) V - v ACT (pr) (52)

CHAPTER 5. INTEGRATION TESTING 65

Similarly to the activation condition definition for the basic operators of
the language, the abstract activation condition indicates the propagation of
the input value towards the output. Due to the disjunction of the activation
conditions of the involved paths, at least one of the dependencies of s; on e;
is taken into account (i.e. if at least one path of length lower or equal to n
in the NODE operator is activated, then the unit path p is activated as well,
AC!™ (p) = true, meaning that the value of the output s; is affected by the
value of the input e; of the NODE operator).

5.4 Extended structural coverage criteria

Similarly to the criteria definition for unit testing, we define three classes of path-
based criteria to support operator networks containing compound operators (in
addition to basic ones). The definition of each class takes into account three

parameters:

1. The depth of the integration. As it has been noticed before, the depth
determines the level where NODE operators will stop being unfolded (i.e.

after this level, the abstract activation condition will be used).

2. The length of the paths from an input to an output. This parameter,
already considered in the criteria definition presented in section 3.6, has a
different meaning in presence of NODE operators in the program under test.
Indeed, the length of the paths to cover varies whether the NODE operators

are unfolded or not.

3. The constraints imposed on the paths that determine the way that a path
should be covered and the name of the criterion (BC, ECC, or MCC).

5.4.1 Integration depth

The depth of node integration is a significant parameter specific to integration
testing. Figure 5.4 shows the call graph of an application with several embedded
nodes presented in [32]. Coverage analysis of a node with depth = i indicates
that every called node up to this level i is expanded, while called nodes of the
following levels are integrated and replaced by a NODE operator?. For instance,

in Figure 5.4, covering node #1 with:

2The main node, which actually contains all the other nodes corresponds to level 0.

CHAPTER 5. INTEGRATION TESTING 66

Figure 5.4: Structure of a large application..

e depth = 0 means that nodes #2, #3 and #4 (i.e. the set of nodes that
are called by node #1) will be replaced by a NODE operator (i.e. they will
not be expanded).

e depth = 1 means that only nodes #2, #3 and #4 will be expanded and
all the other nodes will be replaced by a NODE operator (similarly for levels
higher than 1).

The choice of the value for the integration depth may depends on the complexity
of the application.

5.4.2 Path length

The length of the considered paths is the second parameter taken into account in
the criteria definition. It is an important factor of the criteria complexity since
it determines, in particular, the number of pre operators that will be tested

(temporal loops). The introduction of NODE operators raises several issues:

1. The notion of the path length may be different for the same program
according to the integration depth. For instance, in the node of Figure
5.2, we can identify one path p = (ing, so, out) the length of which is 3, if
we consider that NODEO is not unfolded (the integration depth is 0). But if
the integration depth is 1, NODEO will be unfolded and, then, the previously
considered path corresponds (Figure 5.3) either to the unit path p; = (b, d)
(the length of which is 2) or to ps = (b,d,t1,d) (the length of which is 4

or more, according to the number of loops that should be considered).

CHAPTER 5. INTEGRATION TESTING 67

2. The computation of the abstract activation conditions associated with
a NODE operator N (used when the latter is not expanded) depends on
the length of the paths in N that have been taken into account (for in-
stance, the abstract activation condition of NODEO in Figure 5.2 may be
computed as the disjunction of the activation condition of p; = (b,d),
p2 = (b,d, t1,d), ps = (b,d, t1,d, t1,d) and so on). There is no obvious way
to determine the path length n to consider when a NODE operator abstract
condition is computed. Indeed, this length depends on the integration
depth as well as on the NODE operator structure and complexity (since, for
instance, the activation of certain paths requires the execution of several
temporal loops). This is why, ideally, the path length for the NODE op-
erators abstract activation condition computation should be user-defined

with regard to each node.

5.4.3 Criteria definition

From the above discussed issues, it appears that integration oriented coverage
criteria must specify the integration depth, the path length to consider as well
as the path length that will be used to compute the abstract conditions of the
not unfolded NODE operators. Similarly to the criteria defined for unit testing
in 3.6, we define three families of criteria, :BC, iECC and i{MCC (i stands for
“integration oriented”). Let m be the integration depth, P, be the set of all
the paths of length lower or equal to n for this depth, [be the maximum path
length to be considered for the abstract activation condition computation, and
T be a set of input sequences. in (p) denotes the input of path p while e denotes
one of its internal edges.

The basic coverage criterion (iBC) requires activating at least once all the

paths of a given length and for a given depth of integration.

Definition 5.2. The operator network is covered according to the basic coverage
criterion 1BCT", if and only if:
Vpe P,, 3t € T: AC]" (p) = true.

The elementary conditions criterion (¢ECC) requires activating a path, ex-

ercising both the possible values for its boolean input, true and false.

Definition 5.3. The operator network is covered according to the elementary
conditions criterion tECCY, if and only if:
Vp € P,, 3t € T: in(p) N ACT™ (p) = true and not (in (p)) AN AC]™ (p) = true.

CHAPTER 5. INTEGRATION TESTING 68

The multiple conditions coverage criterion (iMCC') requires the paths to be

activated for every possible value of the internal boolean edges.

Definition 5.4. The operator network is covered according to the multiple con-
ditions criterion iMCCY, if and only if:
Vpe P,,Veep, 3tecT: eNAC™ (p) = true and not (e) N AC]™ (p) = true.

5.5 Subsumption relations

Keeping the integration depth m fixed, the longer the paths that a criterion
examines, the stronger the criterion is. In other words, for each one of the three

criteria, it is:

icmy, Cic (5.3)

Since the set of all paths of length lower or equal to n (P,) can be obtained
by the union of all the paths of length lower or equal to n-1 (P,,_1) with those of
length lower or equal to n (P,), the set of the activation conditions of the class
P,,_1 is a subset of the set of the activation conditions of the class P,,. Therefore,
if an input sequence satisfies the activation conditions of a criterion for a set of
paths P, it necessarily satisfies the activation conditions of a criterion for the
previous class (i.e. the set of paths P,_1).

In addition, when the path length n remains unchanged at the level m,
it could be expected that exploring longer paths inside the integrated nodes
(for abstract conditions computation) would enhance the criterion. However,
this is not true and decreasing the length of the considered paths inside a NODE
operators may actually not affect accordingly the abstract activation conditions.
Increasing the parameter [for the locally considered paths definitely results in
a more thorough coverage analysis of the integrated nodes, though the abstract
activation condition is issued from the disjunction of set of activation conditions
and only one of them affects the final value. Thus, it is difficult to reach a
definitive conclusion about the power of the criteria with regard to the length
of local paths. On some occasions, analyzing longer local paths may improve
coverage (as compared to shorter local paths), but it is not guaranteed that

the opposite may not happen. Such a conclusion depends on the activation

CHAPTER 5. INTEGRATION TESTING 69

condition that is “transmitted” by the disjunction and, to a certain extent, on
the test input data (and consequently, on the way the latter are generated).
Furthermore, we can define the above criteria considering that different val-
ues for the path length are considered for each internal node. Thus, iB CT’L’f(lo1,12)
would denote the integration oriented basic coverage criterion, for the integra-
tion depth m, the path length n and the path lengths [y, I; and Iy for the
three NODE operators. In such a case, the subsumption relation is a partial order

expressed as follows:

. m
ZBC"a(lo+1,ll+1,l2+1)

v 4 N
iBO or1m00) BO a1 BO g0y 1041
N 4 v

. m
’LBCn,(lovllyb)

With regard to the integration depth, there is no obvious subsumption re-
lation between the integration oriented criteria. This is due to the additional
parameters used in their definition: the integration depth and the path length
used for computing the abstract conditions. Consider, for instance, iBC}", and
iBC:L',LZ_l. The satisfaction of the former requires to unfold some NODE operators
that are abstracted in the latter. But ¢BC}", does not ensure the coverage of
the sub-paths of these operators covered by z'BCfo ! Indeed, a path of length
! in an unfolded NODE operator will be covered by iBC;, only if it is part of a
sub-path of length lower or equal to n.

Consider the example of Figure 5.2. iBC’il requires the coverage of the
following paths inside NODEO: p; = (b, d, t1,d), p2 = {(a,c), ps = (b,c) (i.e. all the
paths of length lower or equal to 4). The satisfaction of iBC’fL)’l is not assured
by the satisfaction of iBCj;, because if at level 0 we consider I = 3, then the
satisfaction of iBCéyl is required. Because of the changed n, the comparison

between iBC;yl and iBC’gJ is not possible.

Example 5.5. Let us consider the LUSTRE node [22] shown in Figure 5.5, a
device that monitors response times. The output alarm is raised when no reset
signal has occurred for a given time since the last set, this time being given
as a number delay of basic clock cycles. This node uses the node wp1?® (Figure
5.5(b)), a simpler version of the former, by providing it with an appropriate

deadline parameter: on reception of set, a register is initialized which is then

3The node WD1 receives the input signals set, reset and deadline and returns alarm at the
output. alarm is raised whenever a deadline occurs and the last received signal was set.

CHAPTER 5. INTEGRATION TESTING 70

decremented. deadline occurs when the register value reaches zero; it is the
output of node EDGE (Figure 5.5(c)) which returns true at each rising edge of its

input.

wp1 and EDGE are compound operators, hence the corresponding operator
networks are replaced by two NODE operators with respective inputs and outputs.
In this case, there is only one level of integration; the main node contains two
direct calls to different nodes. In the analysis that follows we consider that
depth = 0 (i.e. m=0 in the criteria definition) (for depth = 1, nodes wp1 and
EDGE would be fully expanded, hence there would be no integration). Let us
assume the paths of length lower or equal to 6 (i.e. n=6) beginning from every
input of WD2 to the output:

p1 = (set,alarm)

pa = (set, D3, D1, D2, deadline, alarm)

p3 = (reset,alarm)

ps = {delay, D3, D1, D2, deadline, alarm)

First of all, calculating the condition that activates p; requires the node WD1
to be locally expanded (Figure 5.5(b)). In order to best demonstrate the way
that the criteria can be deployed, we use different values of path length for each
internal node, considering that at most one temporal loop (i.e. one cycle) is
taken into account in the computation of the length of a complete path. Hence,
inside WD1, we consider the complete paths of length 9 (i.e. [=9) from set to
alarm:

p11 = (set, L1, alarm)

p12 = (set, L1, L4, L3, L2, L1, alarm)

p13 = (set, L2,L1,L4,L3, L2, L1,alarm) .

The corresponding activation conditions are:
ACY (p11) = (true-> false) and (not (L1) or deadline)

AC§ (p12) = (false->pre (true-> false)) and (not (reset))
and (not (set)) and (false->true) and (not (L1) or deadline)
= AC$ (p12) = false->pre (true) andnot (reset)

andnot (set) and (not (L1) or deadline)

ACY (p13) = (false->pre (false->true)) and (not (reset))
and (not (set)) and (false->true) and (not (L1) or deadline)

CHAPTER 5. INTEGRATION TESTING 71

- .
delay D3reset false; |
| ITE _ WD1 gjarm
0 deadline
D
D4 EDGE - D2

D5
re
— > e

(a) Operator network for the nodéAD2 (global level).

set | P deadline
true 7 7E

L3 L1
resst — . alarm
false] ITE
L4
<‘.@
(b) D1 expanded (local level).
false
D1
_{ | —) El I D2
P
E2 Lpre E3

(c) EDGE expanded (local level).

Figure 5.5: Operator network for the node wb2 (level 0) and the called nodes
wp1 and EDGE (level 1).

CHAPTER 5. INTEGRATION TESTING 72

The disjunction of the above conditions results in the activation condition
for the path p;, ACY (py):
ACY (p1) = AC§ (p11) or ACY (p12) or ACY (p13).

Similarly for the path ps and [=9, the obtained paths and the combined
activation condition are:

p31 = (reset, L3, L2, L1, alarm)

p32 = (reset, L3, L2, L1, L4, L3, L2, L1, alarm)

ACY (p31) = false->not (set) and (not (L1) or deadline)

ACY (p32) = (false->pre (not (set) and (false -> true))) and
not (reset) andnot (set) and (false->true) and (not (L1) or deadline)

=AC? (p3) = ACy (p31) or AC§ (ps2)-

For the paths po and p,4, determining the activation conditions requires the
analysis of unit sub-paths pa1 = pg1 = (D1, D2) and paa = pa2 = (deadline, alarm,),
which also involves the local expansion of node EDGE (Figure 5.5(c)). Inside the
node EDGE and for [=5, it is:

p211 = pa11 = (D1, E1, D2)

p212 = pa12 = (D1, E2, E3, E1, D2)

=ACY (p21) = ACY (pa1) = ACE (pa11) or ACE (pai2).

The activation conditions that follow are:
ACE (pa11) = ACE (pa11) = false->not (D1) or E3
ACE (pa12) = ACE (pa12) = false->pre (true) and (not (E3) or D1)

AC? (p22) = AC? (pa2) = not (deadline) or L1

Number of paths
In this example and considering for the sake of simplicity the rather simplified
case in which only cycle-free paths at the external level are taken into account,

the above integration theory results in 4 such paths in the main node wp2 (the

CHAPTER 5. INTEGRATION TESTING 73

paths p1, pa, ps and p4). If nodes wD1 and EDGE were used in their expanded ver-
sion, we would have to deal with at least 7 paths*, whose length would increase
according to the number of temporal loops. For instance, in case we consider
paths of maximum length 10, coverage analysis (without node integration) in
node WD2 results in 9 paths while for length 20 (including 3 temporal loops) the
number of paths is increased to 19. Hence, in this small example, we save three
paths in the simplest case; this fact could be a good outcome for the proposed
abstraction and could imply that for more realistic and complicated systems
a more significant reduction might be possible. In Chapter 6, we examine a
case study of a flight alarm management system and the gain in the number
of paths is rather important. Obviously, the dependence of path length on the
number of paths according to each node level is inevitable and should be further

investigated to obtain more conclusive results.

4Two paths from set to alarm passing through WD1 and two passing through EDGE, one path
from reset to alarm and two paths from delay to alarm passing through EDGE.

Chapter 6

Experimental evaluation

In this chapter, we describe the application of the proposed coverage metrics to
a case study derived from an avionics application. The application size and com-
plexity are suitable so that the obtained results provide a preliminary validation

of the defined criteria.

Dans ce chapitre, nous décrivons une étude de cas extraite d’une applica-
tion du domaine de I'avionique sur laquelle nous avons effectué les mesures de
couverture proposées. La taille et la complexité de "application sont telles que
les résultats obtenus fournissent une premiére validation de la pertinence des

critéres définis.

6.1 Case study: an alarm management software

This section treats the evaluation of our approach about node integration. To
this end, we have used several relatively small, academic examples, like the one
used in Section 5.1. Here, we present the results of an industrial case study

concerning an alarm management system developed in SCADE.

6.1.1 Objectives

The principal objective of this experiment is to illustrate the usage and the
applicability of the integration-oriented coverage criteria to big and complex
systems that are really used in practice. To this end, we firstly looked into

the prospective gain in the number of paths with reference to the coverage

74

CHAPTER 6. EXPERIMENTAL EVALUATION 75

criteria that do not require full node expansion. More specifically, we examined
the number of paths that the node integration yields, using as a reference the
respective number when no node integration is used. Assuming that all called
nodes are expanded, we used LUSTRUCTU to automatically compute the paths
and the associated activation conditions. Then, we compared the number of the
calculated paths with the respective number of paths when node integration is
used. In general, the number of the calculated paths should decrease as longer
paths are considered. In addition, for the extended coverage metrics that take
into account the integration of locally called nodes, we observed the number of
the calculated paths and activation conditions in relation to the required system
resources. An important feature of the proposed criteria is their capability in
precisely evaluating the progress of the obtained coverage. In general, this
means that a slight increase in the criteria satisfaction ratio should correspond
to a proportionately small increase in the testing effort.

This speculation points to the second objective of this case study which
is to study the required testing effort to meet the criteria with regard to the
criteria power, that is the selected criterion (iBC, iECC or iMCC) and the path
complexity. The testing effort is measured in terms of the required length of
the test input sequences towards the criteria satisfaction. In order to obtain fair
and unbiased results, test input data were randomly generated.

Furthermore, we aim at assessing the capability of the proposed criteria in
detecting faults in the program under test. Mutation testing was used to simu-
late various faults in the program. In particular, a set of mutation operators was
defined and several mutants were automatically generated. Then, the mutants
and the coverage nodes were executed over the same test input data and the

mutation score (ratio of killed mutants) was compared with the coverage ratio.

6.2 System description

This case study is concerned with a software component specified in LuUs-
TRE/SCADE that models the operation of an alarm in a flight control system
used in [33]. The main function of this component is to send a warning signal ac-
cording to the flight parameters calculated by the system, the parameters from
some sensors that provide the aircraft status as well as the parameters provided
by the pilot. Informally, the alarm is set off when the difference between a value

provided by the pilot, the theoretic value calculated by the center of gravity and

CHAPTER 6. EXPERIMENTAL EVALUATION 76

#14 #15

Cor) (o) ()
)

Figure 6.1: Call graph for the alarm management software component.

the value of the real position exceeds 1.5°.

The system implementation forms a hierarchical structure. In fact, the com-
ponent is composed of 21 LUSTRE nodes generated by SCADE. The main node
comprises the calls to the auxiliary nodes, as Figure 6.1 depicts.

Table 6.1 provides information concerning the system size and complexity.
For each module of the application, the first three columns concern the number
of lines of LUSTRE code and the number of the node inputs and outputs respec-
tively. For instance, the main node (#1) totally contains 830 lines of LUSTRE
code with 29 input variables (23 of which are boolean and 6 are integer) and
13 output variables (10 of which are boolean and 3 are integer). This module
implements a property specified in the two alarms that are simulated by the
modules #2 and #3. The last two columns refer to the associated operator
network of each LUSTRE node and give the number of edges and operators in
each one of them; this data corresponds to a version of the application in which
all nodes are expanded and only basic LUSTRE operators are used. That is, the
operator network of the main node comprises 190 basic operators linked to each
other by 275 edges. A complete view of the system is shown Figure 6.2, in which
the internal modules are represented by black boxes for the sake of simplicity.

Nodes #3 to #21 are of lower complexity; they are composed of boolean

variables and computations without temporal loops. Therefore, the total num-

CHAPTER 6. EXPERIMENTAL EVALUATION 7
L3
L4 L12
L5 L21 |
L6 L29 s7
L7 L11 #o |
L8 [120 8
L9 L28 |
L1
L3 s
L4
L5 L34
L6 L35
L7 L36
L8 L37
L9 ER L10 9
L2 L30 B
s L31
6 L32
s L53
o L55
L7
L13
L14
L15 L34
16 136 S10
17 # L50
L8 L35
L19 L10 w oS
3 L37
L51
L2 L52 s12
[,
L23 153
L24 L55
L25 #8
L27
L26

Figure 6.2: Operator network of the alarm management system.

CHAPTER 6. EXPERIMENTAL EVALUATION

Code Operator Network
node || LOC | inputs outputs | edges operators
#1 830 29 13 275 190
#2 148 10 3 52 32
#3 157 10 1 59 37
#4 148 10 3 52 32
#5 98 7 2 33 22
#6 98 9 2 33 22
#7 67 8 6 60 32
#8 40 6 2 12 6
#9 40 6 2 12 6
#10 132 6 5 36 24
#11 50 3 1 16 9
#12 31 2 1 11 5
#13 30 2 1 11 5
#14 16 2 1 3 1
#15 16 2 1 3 1
#416 || 16 2 1 3 1
H#17 21 1 1 8 5
#18 19 1 1 5 3
#19 8 1 1 23 12
#20 8 1 1 17 6
#21 4 3 1 5 2

Table 6.1: Size and complexity of the alarm management system.

CHAPTER 6. EXPERIMENTAL EVALUATION 79

level 0
node #2 level 1
PULSEj level 2

BASCR level 3

Figure 6.3: Call graph for node #2.

ber of paths in these nodes is fixed for a specific (maximum) path length. It
is hence rather simple to estimate their coverage. On the contrary, node #2
contains several nested temporal loops which in fact renders the whole system
so complex. Indeed, this node locally calls 3 nodes, one of which calls one more,
hence forming two more levels of integration. Thus, examining thoroughly node
#2 is more interesting from the point of view of node integration. For this
reason, during this experiment, we concentrated on node #2. We present in the
following the results of the integration analysis conducted over this node that
models the function of a system alarm. Tests were performed on a Linux Fedora
9, Intel Pentium 2GHz and 1GB of memory.

In the coverage analysis that follows, we go through node #2 and the nodes

that the latter locally calls, as these are depicted in the call graph of Figure 6.3.

6.3 Number of paths

Let N be the number of paths of length lower or equal to n > 2 in an operator
network. Recall that we only consider complete paths connecting the program
inputs with the program outputs. Then, we can safely assume that the number

of paths N depends on two factors:

e The program size and subsequently the operator network size (number of
operators and edges). Indeed, the number of paths increases proportion-

ally to the operator network size.

e The program complexity in point of the presence of cyclic paths. In fact,

cyclic paths presume longer paths, which consequently presumes more

CHAPTER 6. EXPERIMENTAL EVALUATION 80

i

Figure 6.4: Operator network of node #2 (the called nodes are expanded).

Figure 6.5: Operator network of node #2 (the called nodes are abstracted).

CHAPTER 6. EXPERIMENTAL EVALUATION 81

paths.

It is difficult to imply a precise estimation of the number of paths considering
only the program size or only the program complexity. However, the latter
provides a more objective and concrete idea of the number of paths, since the
coverage of cyclic paths strongly depends on the number of execution cycles
and, consequently, on the test input sequences length. Moreover, in practice,
professionals are usually interested in measuring the coverage for a set of paths
of a given number of cycles (¢ > 0)! rather than a given path length. Therefore,
in the analysis that follows, we will consider various sets of complete paths in
an operator network according to the number of cycles ¢ contained in them.

When the integration-oriented approach is used (i.e. the called nodes are
simulated by black boxes), complete paths inside the called nodes are repre-
sented by unit paths in the calling node. Therefore, the number of paths at the
global level is reduced, as compared to the number of paths found in case no
node integration is used. Table 6.2 illustrates how the number of paths found in
node #2 increases in relation to the number of cycles taken into account. The
second column refers to the version of node #2 where PULSE1, BASCS, Alarm are
expanded (cf. Figure 6.4). On the contrary, in case of node integration, these
nodes are replaced by NODE operators, hence they are abstracted. Since node #2
does not contain any temporal loop, the number of cycles is constant regardless
of the complexity of paths considered inside the called nodes. In comparison
to the full expansion of the locally called nodes, the decrease in the number of
paths is significant, especially in case of long cyclic paths.

On the other hand, the number of activation conditions that must be satisfied
depends on the selected criterion (iBC, iECC, iMCC). The stronger the criterion,
the more constraints are imposed on the paths. If N is the number of paths of
length lower or equal to m in an operator network, my is the number of paths
of length lower or equal to k& < n, then Table 6.3 summarizes the number of
activation conditions M according to the criteria power.

Table 6.4 juxtaposes the number of activation conditions for node #2 in
case the integration-oriented approach is used and the corresponding number in
case no node integration is used. For the sake of simplicity, data correspond to
complete paths with at most 1 and 3 cycles. Between the two approaches, there
is remarkable decrease in the number of activation conditions, particularly for

the multiple conditions criterion. Noted that at this level of integration (level

INoted that ¢ = 0 denotes the set of complete cycle-free paths.

CHAPTER 6. EXPERIMENTAL EVALUATION 82

paths
cycles || no node integration | with node integration
0 25 25
1 50 25
2 88 25
3 131 25
4 179 25
5 232 25
6 290 25
7 353 25
8 421 25
9 494 25
10 572 25

Table 6.2: Number of paths in node #2 w.r.t. the number of cycles.

’ Criterion ‘ #ACs ‘
iBC M;pc =N
iECC Migcc =2 N

iMCC Miyco =2 % Zii;‘ ((k —1) xmg)

Table 6.3: Number of activation conditions (M) w.r.t. the criteria power.

1 in Figure 6.3), there are only cycle-free paths (i.e. no temporal loops), hence
the number of activation conditions shows no change.

As far as the required time to calculate the activation conditions is con-
cerned, this is relatively negligible; a few seconds (maximum 2 minutes) were
needed to calculate complete paths with maximum of 10 cycles and the asso-
ciated activation conditions. Even for the multiple conditions criterion, this
calculation remains minor, considering that the number of paths to be analyzed
is affordable.

The above observations suggest that the extended criteria are useful for
measuring the coverage of large-scale programs. The reduction in the number
of paths and subsequently to the number of activation conditions indicates that

covering this type of programs is feasible. To gain a better understanding of

ACs
cycles || iBC | iECC | iMCC || BC | ECC | MCC
1 29 58 342 50 100 | 1330
3 29 58 342 131 | 262 | 4974

Table 6.4: Number of activation conditions for node #2.

CHAPTER 6. EXPERIMENTAL EVALUATION 83

[Length | 1 | 2 [3 [a4 [5 [6 | 7 [8 [9 [10|

iBC 10,68 | 42,41 | 55,17 | 61,37 | 66,20 | 71,03 | 73,79 | 78,27 | 81,37 | 92,41
iECC 293 | 6,89 | 15,00 | 20,86 | 27,58 | 37,06 | 45,34 | 51,72 | 56,03 | 61,20
iMCC || 1,75 | 4,91 | 622 | 11,66 | 16,31 | 20,38 | 2523 | 32,01 | 34,32 | 39,97

Table 6.5: Coverage ratio for test sequences of length 1 to 10.

the proposed approach, in the following section, we take a closer look at the

relation between the required testing effort and the criteria satisfaction ratio.

6.4 Testing effort w.r.t. criteria satisfaction

The required effort to generate test input sequences satisfying a specific crite-
rion not only depends on the test selection technique but also on human testers.
Test data are commonly generated in practice (for instance in DO-178B) based
on system functional requirements, regardless of the system structural charac-
teristics. Thus, it is hard to evaluate a tester’s attempt to build a test data set
that meets a coverage criterion, since test input selection is strictly determined
by subjective factors.

With the intention of assessing the required testing effort in an independent
and unbiased way, we used random test generation irrespective of any functional
or structural requirements. Even though random testing is a rather ineffective
and expensive testing technique, it is quite convenient with respect to the cov-
erage criteria.

In order to ensure the equity of the generated test data, we used different seed
values, linearly varied, to initialize the generator. A test campaign comprises
several test sets of variable sequence length. Based on the theoretic assumption
that the more complicated a criterion, the longer the required test sequences
are in order to satisfy it, we considered test sequences of length equal to 1 up
to 1000.

The general procedure of measuring the coverage was organized as follows:
1. Random generation of test campaigns.

2. Coverage node execution over each one of the input sequences of every

test campaign and computation of the corresponding coverage ratio.

3. Computation of the average of the obtained results.

CHAPTER 6. EXPERIMENTAL EVALUATION 84

[Length || 10 [20 [30 [40 [50 | 60 | 70 [80 [90 [100 |

iBC 92,41 | 97,93 | 99,31 | 100
iECC 61,20 | 72,41 | 78,44 | 81,55 | 83,27 | 83,96 | 84,65 | 84,82 | 84,82 | 85,34
iMCC || 39,97 | 64,64 | 74,12 | 82,22 | 82,80 | 84,50 | 86,40 | 86,49 | 86,75 | 87,39

Table 6.6: Coverage ratio for test sequences of length 10 to 100.

| Length [[100 [200 | 300 [400 [s00 | 600 | 700 [soo [900 | 1000 |

iECC 85,34 | 87,41 87,58 | 87,75 87,75 87,75 87,93 87,93 87,93 87,93
iMCC 87,39 | 88,01 88,15 | 88,45 88,74 88,74 88,74 88,74 88,88 88,88

Table 6.7: Coverage ratio for test sequences of length 100 to 1000.

Data in Tables 6.5, 6.6 and 6.7 and the corresponding graphic representation
in Figure 6.6 show the relation between the criteria coverage ratio and the
required test sequence length for the node #2. Noted that these results consider
3-cycle complete paths in this node. Obviously, coverage is in proportion to the
test input sequence length for all the three criteria. This means that longer
sequences achieve higher coverage ratios and conversely.

Moreover, the basic criterion, which is the simpler among all, is satisfied
generally fast; test input sequences of length 40 are sufficient to reach 100%
coverage. On the contrary, the elementary and multiple conditions criteria never
attain total coverage. The coverage ratio for these two criteria converges at
a certain threshold around of which it progresses very slowly. Additionally,
for short test sequences, the coverage ratio increases rapidly, independently of
the criterion complexity. As the sequences become longer, the progress in the
coverage ratio gradually falls off until it reaches the above threshold, which
differs according to the criterion complexity.

Another important observation is that the required testing effort to a cri-
terion satisfaction is rather precise. For example, in order to achieve 80% of
the criteria satisfaction, sequences of length 9 must be generated for the iBC
criterion, while for the iECC and iMCC criteria sequences of length 40 or more
are required.

The fact that the two stronger criteria (iIECC and iMCC) are never com-
pletely met is partially due to the randomly generated test data; especially built
test cases by experient testers could possibly complete the remaining coverage.
Another reason is related to the program structure with regard to the con-
straints involved in the criteria. In other words, the incomplete coverage occurs

because of some infeasible paths. Recall that an infeasible path is a path which

CHAPTER 6. EXPERIMENTAL EVALUATION 85

120

100

A
|
i
{
l
'.
!
1

Vo iBC

e —_— =ECC

/ s~ - = =iMCC
v i
[.-

7.

Coverage ratio (%)
I [n3)
= =

[N}
=

/
=

L4
T T T T T T T
NV BR8N ©20He RESPERENNRNSHRRS

Test sequence length

[}
3

Figure 6.6: Coverage ratio for test sequence length 1 to 1000.

is never executed by any test cases, hence it can never be covered. The total
satisfaction of the basic criterion implies the absence of infeasible paths in terms
of basic coverage. By contrast, the fact that the elementary and the multiple
conditions coverage are not fully satisfied, even for test sequences of 1000 steps,
might be attributed to infeasible activation conditions (i.e. conditions that can
never be fulfilled) or to rare combinations of the input values (i.e. if some input
variables are not assigned to a specific value at the first execution step, then the

corresponding paths are never activated during test execution).

6.5 Fault detection capability

Mutation testing is a widely used technique as a means of estimating the capa-
bility of a test set in finding out faults in the program under test. Taking into
account the nature of LUSTRE/SCADE applications, we used operators changes
to model program faults. More precisely, we defined a set of mutant operators
(presented in Table 6.8) and every LUSTRE operator in the original program was
replaced by one mutant operator so that the obtained program (the mutant) is
syntactically correct. With reference to Table 6.8, a simple mutant generator
was built that produced automatically the set of program mutants; since we are
considering node integration and called nodes are simulated by black boxes, the

replacements of operators were performed exclusively at the level of node #2 (cf.

CHAPTER 6. EXPERIMENTAL EVALUATION 86

’ operator \ mutant ‘
not pre, |delete]
and or, fby
or and, fby
pre not, [delete]

relational relational
arithmetic | arithmetic

Table 6.8: Set of mutant operators.

Length || 1 [2 [3 [4 [5 [6 | 7 [8 [o [10 |
iBC 10,68 | 42,41 | 5517 | 61,37 | 66,20 | 71,03 | 73,79 | 78,27 | 81,37 | 92,41
iECC 293 | 689 | 15,00 | 20,86 | 27,58 | 37,06 | 45,34 | 51,72 | 56,03 | 61,20
iMCC 1,75 | 491 | 622 | 11,66 | 16,31 | 20,38 | 25,23 | 32,01 | 34,32 | 39,97

| mutation score || 16,15 | 32,30 | 38.46 | 45,38 | 52,30 | 62,30 [66,92 | 70,76 | 72,30 |

Table 6.9: Coverage ratio VS Mutation score (test sequence length 1-10).

Figure 6.5), that is no modification was introduced inside nodes PULSE1, BASCS
and Alarm. In this way, we obtained 25 mutants of the original program, for

which mutation score?

was calculated and compared with the criteria coverage
ratio.

The results are summarized in Tables 6.9, 6.10 and 6.11; the curves of the
achieved coverage ratio in comparison to the mutation score are depicted in
Figure 6.7. It is evident that there is a correlation between the criteria satisfac-
tion ratio and the number of killed mutants, which holds for all three criteria.
The fact that the basic coverage criterion is completely satisfied does not indi-
cate that the criterion is prone to detecting faults in the program; instead, it
is rather weak. On the contrary, the correlation is stronger for the elementary
and the multiple conditions criteria, which proves their capability in discovering

common errors in a LUSTRE program.

number of killed mutants

2Mutation score is defined by the formula: mutation score = mumber of mutants

Length [10 [20 | 30 [40 [50 [60 | 70 [s [90 | 100 |
iBC 92,41 | 97,93 | 99,31 | 100

iECC 61,20 | 72,41 | 78,44 | 81,55 | 83,27 | 83,96 | 84,65 | 84,82 | 84,82 | 85,34

iMCC 30,07 | 64,64 | 74,12 | 82,22 | 82,80 | 84,50 | 86,40 | 86,49 | 86,75 | 87,39

mutation score || 73,84 | 89,23 | 92,30 | 0384 [93,84 [93,84 | 9384 | 9384 | 96,92 [97,69 |

Table 6.10: Coverage ratio VS Mutation score (test sequence length 10-100).

CHAPTER 6. EXPERIMENTAL EVALUATION 87

| Length || 100 [200 [300 [400 | s00 | 600 | 700 [soo [900 [1000 |
iECC 85,34 | 87,41 | 87,58 | 87,75 | 87,75 | 87,75 | 87,93 | 87,93 | 87,93 | 87,93
iMCC 87,39 | 88,01 | 88,15 | 88,45 | 88,74 | 88,74 | 88,74 | 88,74 | 88,88 | 88,88

| mutation score || 97,69 | 9846 [100 | \ \ \ \ \ ‘ ‘

Table 6.11: Coverage ratio VS Mutation score (test sequence length 100-1000).

120

100 e

) /,/ T
/)

iMCC
mutation score (%)
D / T

R S S

Test sequence length

o0
=

Coverage ratio (%)
I [x3]
= =

i)
(=)

Figure 6.7: Coverage ratio VS Mutation score (test sequence length 1-1000).

CHAPTER 6. EXPERIMENTAL EVALUATION 88

6.6 Concluding remarks

The extension of the coverage criteria mainly aims at providing a family of
coverage criteria that are in practice applicable to large-scale LUSTRE/SCADE
applications. This case study showed that iBC, iECC and iMCC are appropriate
to this purpose as far as the computation of the activation conditions for various
values of the test sequence length is concerned. Besides, the correlation between
the achieved coverage ratio and the mutation score demonstrates the capability

of the proposed criteria in revealing errors in a program.

Part 111

Test generation

89

Chapter 7

Automatic test data

generation with Lutess

As described in Section 3.5, LUTESS is a black-box testing tool designed for
testing reactive software by automatically generating test data sequences. The
basic idea behind the testing approach using LUTESS lies in properly modeling
the system environment in order to guide the test data generator to produce
meaningful and valid test input sequences. This chapter proposes the use of
LUTESS in the framework of a testing methodology that we have defined [48],
describing the required steps and the guidelines in the construction of a test
model. First, we show how this approach can be applied to a rather realistic
case study, the steam boiler control system. Then, we study the applicability
and the scalability of this task of modeling on a real-world industrial application

from the field of avionics, the land gear control system of a military aircraft.

Comme nous avons discuté dans la Section 3.5, LUTESS est un outil de
test “boite noire” qui a été développé pour le test des logiciels réactifs per-
mettant la génération automatique de séquences de test. L’idée fondamen-
tale derriére 'approche de test avec LUTESS consiste & modéliser correctement
I’environnement du systéme afin de guider le générateur vers la génération des
jeux de test significatifs et valides. Ce chapitre propose I'utilisation de cet outil
dans le cadre d’une méthodologie que nous avons définie [48] en décrivant les
étapes nécessaires a la construction d’un modéle de test. Tout d’abord, nous

présentons comment cette approche peut étre employée sur une étude de cas

90

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS91

de taille et de complexité moyenne, le controleur de niveau d’eau dans une
chaudiére. Ensuite, nous étudions 'applicabilité et ’extensibilité de cette tache
de modélisation aux systémes de plus grande échelle, en utilisant une application

industrielle du domaine de I’avionique.

7.1 Testing methodology

Testing a reactive system using LUTESS requires modeling the external envi-
ronment, that is, expressing the conditions that the system inputs should in-
varianltly satisfy i.e the hypotheses under which the software is designed. The
model of the external environment, the so called test model, is built based on
the system specification document. The informal requirements describing the
system environment are extracted and transformed into LUSTRE formal expres-
sions. In other words, the test model consists of all the constraints that describe
the correct operation of the system under test. The goal is to obtain valid and
suitable test suites in line with the system specification and the test objective.
The environment description is made in a new LUSTRE file, the testnode, as de-
scribed in Section 3.5.1. Different testing techniques (conditional probabilities,
safety-property guided testing) can be used, through some specially introduced
operators, to guide the test data generation process, to avoid unrealistic or
unreasonable test cases, or to reach suspicious situations.

Although the test models are specific to the program under test, we claim
that the modeling and testing process can follow a progressively incremental
approach. Such a testing approach of test data generation according to the
environment description not only provides the means to adequately test a system
but also guides the system towards different modes of operation as well as the
detection of faults. Moreover, the more advanced a test model is, the more
thoroughly the system is tested; as a result, the testing process is automated as
much as possible without requiring further intervention by the tester.

In Figure 7.1, we recall the general form of a testnode for the sake of clarity,
previously presented in Section 3.5.1. In reference to Figure 7.1, the basic steps

of the LUTESS testing methodology are the following:

1. Domain definition: Definition of the domain for integer inputs, so that
the generator avoids producing any possible integer value with no interest
for testing (e.g. an integer input corresponding to a temperature value in

Celsius degrees could not be lower than 270).

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS92

testnode Env(<SUT outputs>) returns (<SUT inputs>);
var <local variables>;

let
environment(Fc1); ... environment(Fcy);
prob(C1,E1,P1); ... prob(Chny, Em, Pr) s
safeprop(Sp1, Spa,..., Spk);

hypothesis(H1, Ha,..., H});
<definition of local variables>;
tel;

Figure 7.1: General form of a testnode syntax.

2. Environment dynamics: Specification of different temporal relations
between the current inputs and past inputs/outputs. These relations often
include, but are not limited to, the physical constrains of the environment
(e.g. the temperature variation cannot be higher than 2°C between two

successive instants; the temperature would raise if a heater is on).

The above specifications are introduced in the testnode by means of the
environment operator. Simple random test sequences can be generated,
without a particular test objective, but considering all inputs allowed by

the environment.

3. Scenarios: In order to test specific properties of the system, the tester can
define more precise scenarios, by specifying additional invariant properties
or conditional probabilities. The LUTESS prob operator provides a mean
for specifying conditional probabilities which can be used either to force
the test data generator to conform to realistic scenarios, either to simulate
failures (e.g. when the heater is on, there is a probability of 90% for the
temperature to raise).

Recall that the values of the defined conditional probabilities cannot be
statically checked (cf. Section 3.5.1, [61]).

4. Property-based testing: This step uses formally specified safety prop-
erties through the safeprop operator in order to guide the generation to-
ward the violation of such a property [62]. The resulting generation will
remove inputs that, given the property expression, obviously cannot lead
to its violation. In order to be effective, this guidance requires the safety
properties to be expressed as a relation between inputs that imply some
outputs (e.g. when the temperature is high, then the heater must be on).

Test hypotheses on the software behavior can also be introduced using the

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS93

~ ") | stop, boiler_waiting,
[Pump controllers j physical_units_ready,
1 1 1 l Apumfswhi_ch level, steam, valve_status,
PrOV\'Ag‘eh P‘}Vea?g ler [} pump_state,
ump_control_state,
Mokttt] vl units fepaired,
N2 physical_units_fail_ack
)

critical limits
safe limits

N1

program_ready, mode,
Mo or o or o o Feamat

q, v, n_pumps,

the output open_pump, close_pump
vavefor physical_units fail_detect,
water evacuation physical_units _repaired_ack
| J

Figure 7.2: The steam boiler control system.

hypothesis operator and possibly make this guidance more effective (e.g.
the program will turn the heater on only if the on/off button has been
pushed).

7.2 The steam-boiler controller

The steam boiler controller system has been used more than ten years ago as
a common case study for several formal specification methods [3]. An imple-
mentation of the system in LUSTRE has been proposed in [12]. We added the
missing nodes in this implementation and we used a completed version of the
LUSTRE code in this case study [48]. The steam boiler controller can be properly
modeled by a real synchronous system as it represents a good example of a con-
trol/command system. Therefore, in point of both problem size and complexity,
it is a rather suitable example to use with LUTESS in order to demonstrate the
basic steps of its testing methodology, which is the main objective of this case

study.

7.2.1 System specification

According to the informal specifications provided in [3], the physical system of
the boiler is composed of four pumps which supply the boiler with water while it
turns it into steam at its output. In order to avoid any malfunction or erroneous
situation, the controller must maintain the level of water in the steam boiler,
within some safe limits. More precisely, as it is shown in Figure 7.2, the physical

units of the system are:

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS94

~
steam_boiler_waiting
- - STARTUP
~ ~critical_failure
lest

physical_units_ready

~ ~failure

INITIALIZE

~~gitica
= -stop_réqu
= 3 -
2 2|8 S
o |2 2 g2
2 @ | hel
3| = 5 s e
5 |z 5|2 -
d Z Ble
& °

level_failure

critical_failure

DEGRADED EMERGENCY

| stop_request

failure
~ ~level_failure
L J

Figure 7.3: Operational modes of the steam-boiler system.

e The boiler itself comprises a valve, which at the initialization phase,
evacuates the remaining water. It has a total capacity of C liters and
produces a maximum steam quantity of W liters/sec. The minimum and
maximum water limits are M7 and My respectively; outside these limits,
the system will be endangered after five seconds, due to either lack of

water supply or water overflow.

e Four pumps provide the boiler with water. Each pump is characterized
by its capacity (p liters/sec) and its state, “on” or “off”. Although a pump
can be stopped instantly, when it is being started, it needs a whole cycle

before it is being opened.

e Four controllers (one for each pump) inform if there is flow of water

from the pumps to the boiler or not.

e A water unit measures the quantity of the water (¢) in the boiler, mea-

sured in liters.

e A steam unit measures the quantity of the steam (v) at the output of

the boiler, measured in liters/sec.

The physical system communicates with the program that controls its function,
i.e. the controller, via messages. At each execution cycle, the controller receives
and analyzes the messages from the physical system, then it sends back new
commands.

According to the messages sent by the environment and the detected failures,

the controller can operate in different modes. Figure 7.3 illustrates these modes.

1. startup mode: This is the very beginning of the program, where there is no

critical failure neither a stop request detected and the program is waiting

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS95

for the appropriate message from the physical system that it is ready to
begin functioning. If a critical failure is detected or there is a stop request,

the program goes into the emergency mode.

2. initialize mode: As soon as the physical system is ready to start func-
tioning, the program enters the initialization mode. In this mode, the
program sends continuously to the environment a message denoting that
it is ready to function; that happens until it receives back from the envi-
ronment the corresponding positive response. Then, if there is no failure
detected, the program enters the normal mode; otherwise, i.e. if there is a

failure detected in a physical unit, the program enters the degraded mode.

3. normal mode: This is the mode where the program tries to maintain
the quantity of water within the normal limits, N; and No, with all the
physical units operating correctly, of course. Once a failure in the water
unit is detected, the program enters the rescue mode, whereas in case of

any other kind of failure, the program enters the degraded mode.

4. degraded mode: In this mode, the program tries to maintain the quantity
of water in a satisfactory level, despite of a possible failure in a physical
unit other than the water unit. When this failure is repaired, the program
returns to the normal mode. When a failure in the water unit is detected,

the program goes to the rescue mode.

5. rescue mode: In this mode, the program tries to maintain the quantity of
water at a satisfactory level, despite of the failure in the water unit. In
this case, the quantity of the water in the boiler is estimated, taking into
account the quantity of steam at the output and the intake of water that
the pumps supply. When the failure is repaired, the program goes back to
normal mode, or to the degraded mode when a failure in another physical

unit is detected.

6. emergency mode: This is the mode where the program must enter any
time there is a critical failure or a stop request. Once the program reaches
the emergency mode, it stops its execution and the physical environment

is responsible of taking appropriate functions.

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS96

7.2.2 Modeling and testing the boiler

The primary function of the boiler controller is to keep the water level between
the given limits, based on inputs received from different boiler devices. Thus,
in order to test the controller in its normal functioning, we first consider that
all devices behave correctly and provide the correct inputs to the controller. In
a later stage, we consider different faults that are tolerated by the controller in

order to test its reaction in these cases.

7.2.2.1 Domain definitions

The domain of an input variable is the set of meaningful values that an input is
designed to receive. Integer inputs used in controllers are often used to represent
a state, consisting of a limited subset of integers, like in the case of valve_ status
or pump_ state variables. In other cases, such as level, they represent an interval
of integers.

We use the following expressions to define the domain of each integer input

in the controller! (inside parentheses are given the values of constants used):

e The water level value should be between 0 and the maximum capacity, C
(1000), of the boiler in water:

0 <= level and level <= C

e The steam value should be between 0 and the maximum quantity of steam,
W (25):

0 <= steam and steam <= W

e The valve can be closed (0) or open (1):

closed <= valve_status and valve_status <= open
e The pump state can be closed or open:
AND(N_pump, closed <= pump_state and pump_state <= open)

where N_pump is the number of pumps (4); AND is a boolean operator applying
the above boolean expression to the whole array pump state and resulting in

the conjunction of the corresponding values.

INote that these invariants are meaningful only under the assumption that all the devices
are functioning.

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS97

So far, the above model can be directly used to generate random test se-
quences. Nevertheless, these sequences are not very conclusive. The controller
cannot deal with the random behavior of all the devices, and as soon as it is
started it goes to the emergency mode: either a stop request has been sent
(stop being true for 3 consecutive steps), either a failure has occurred while ini-
tializing. Note that, according to the specification, any message received when
not expected is considered as a failure. Thus, in order to observe meaningful

executions, we should specify, more thoroughly, the environment dynamics.

7.2.2.2 Environment dynamics

Environment dynamics can be expressed as temporal relations between the cur-
rent and past values of the software inputs and outputs. We can derive directly
from the specification, the properties that identify the correct behavior of the

devices, some of which are presented below:

o The steam_ boiler waiting message is sent only in startup mode:

steam_boiler_waiting = (false -> (pre mode = startup))

e The physical_units _ready message is sent as a notification of the received

message program_ ready:

physical_units_ready= (false -> (pre program_ready))

e The water level is equal to its previous value, to which is added the quan-
tity of water entering through the open pumps and removed the quantity
exiting through the steam or the valve. Thus, the expected water level is:

expected_level = level -> (pre(expected_level) + Dt*sum_flow(N_pump,

pump_control_state) - Dt*steam - Dt*valve_status*V)

where the sum_flow node calculates the sum of the flow passing through all the
pumps, based on the controller state.

If the expected level is negative, this means that no more water remains in the
steam boiler (level=0). If the expected level is greater then the total capacity,
it means that not all the expected water has been flowing through the pumps
and in this case the boiler is full (level=C'). When the expected level is between

0 and C, it represents the actual quantity of water (level=expected_level):

true -> if expected_level < O then level=0

else if expected_level > C then level=C

else level=expected_level

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS98

e When the boiler starts, the steam flow is supposed to be zero:

implies(true -> pre(mode=startup), steam=0)

e The state of the valve (valve status) changes only when the valve message

is sent by the controller:

(valve_status=closed) -> (pre valve=(valve_status <> pre valve_status))

e The pump is opened (resp. closed) when it receives the open pump
message (resp. close_pump). This behavior is implemented in the cor-
rect_pump_state node (that we do not detail here for the sake of simplic-

ity) and applied to all the pumps:

AND (N_pump, correct_pump_state(open_pump, close_pump, pump_state))

e The pump controller indicates that a pump is opened after a delay of one
cycle (due to the time needed to balance the pressure as specified in [3])

and immediately when stopped:

AND (N_pump, pump_control_state = (pump_state = open~N_pump
and pre(pump_state = open~N_pump)))

e When a fault message is received from the controller, the device acknowl-
edges the controller that it has received the message. This behavior is
applied to all the pumps and their controllers, the level and the steam.

We give here the example of the level unit:

level_failure_acknowledgment = (false -> pre level_failure_detection)

e When a fault detection message is received, the devices send the repaired
message until they receive a message of acknowledgment from the con-
troller. This behavior is applied to all the pumps and their controllers,
the level and the steam. We show below how to apply this to all the

pumps:

AND(N_pump, pump_repaired = (false~N_pump -> pre(pump_repaired)
and not(pre pump_repaired_acknowledgment)

or pre pump_failure_acknowledgment))

Table 7.1 shows a generated test case resulting from the above test model. In

order to avoid premature stop of the system, we added the not (stop) invariant.

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS99

to t1 t2 t3 te t7 tg tg t10 t11 tggs | t9gg | t1000

stop 0 0 0 0 0 0 0 0 0 0 0 0 0

steam _boiler_ waiting 0 1 0 0 0 0 0 0 0 0 0 0 0

physical _units_ ready 0 0 0 0 0 0 1 0 0 0 0 0 0

level 964 964 859 804 519 434 389 374 329 459 534 544 509

steam 0 0 11 1 13 17 9 3 24 4 22 13 22
valve_status closed | closed open open open closed | closed | closed | closed | closed closed | closed | closed
pump _ state[0..3] [0,0,0,0]([0,0,0,0]|[0,0,0,0] [0,0,0,0] | |[0,0,0,0]|[0,0,0,0]|[0,0,0,0] ([1,0,0,0]{[1,1,0,0] ([1,1,1,0]| |[0,0,0,0]|[0,0,0,0]|[0,0,0,0]
pump _ control _state[0..3]([0,0,0,0]|{[0,0,0,0]|[0,0,0,0]|[0,0,0,0]| | [0,0,0,0]|[0,0,0,0]|[0,0.0,0] | [0,0,0,0] ([1,0,0,0] |[1,1,0,0] | | [0,0,0,0] ([0,0,0,0] {[0.0,0,0]

program _ ready 0 1 0 0 0 0 0 0 0 0 0 0 0
mode start init init init init init normal | normal | normal | normal || normal | normal | normal

valve 0 1 0 0 1 0 0 0 0 0 0 0 0

q 964 964 859 804 519 434 389 374 329 459 534 544 509

v 0 0 11 1 13 17 9 3 24 4 22 13 22

open_ pump|0..3] [0,0,0,0]([0,0,0,0]|{[0,0,0,0] |[0,0,0,0] | ([0,0,0,0]|[0,0,0,0]|[1,0,0,0] |[0,1,0,0]|[0,0,1,0] [1,0,0,0] | | [0,0,0,0] | [0,0,0,0]

[0,0,0,0]

close_pump[0..3] [[0,0,0,0]{[0,0,0,0]|[0,0,0,0] |[0,0,0,0]| |[0,0,0,0]|[0.0,0,0] |[0,0,0,0] |[1,0,0,0]|[1,0,0,0] |[1,0,0,0] | |[0,0,0,0]|[0,0,0,0]

[0.0,0,0]

Table 7.1: Excerpt of a test case using all the possible invariant properties.

The generated test sequences simulate the normal function of the steam boiler.
At the first execution cycle, the controller requests the opening of the valve,
because of the high water level, until the latter is reduced to the safe limits (¢7).
Afterward, the controller continues on normal mode, since no failure is signaled

by the physical units.

7.2.2.3 Test scenarios

Previously generated test cases are obtained by adding systematically all the
invariants that define correct functioning of the boiler devices. This can be seen
as a normal execution of the software. But, often when testing, one can try to
put the software into abnormal execution scenarios. In LUTESS, specific execu-
tion scenarios can be obtained either with invariant properties or by specifying
different conditional probabilities.

In Section 7.2.2.2, using an invariant property, we have set stop to be always
false, which can be seen as a simple scenario: “the boiler is never stopped”. If we
want to test whether the software behaves correctly in case of a shutdown, we
may want to allow “sometimes” the stop message to be true, by specifying a small
probability: prob(true, stop, 0.05). Recall that the expression prob(C,E,P)
means that if the condition ¢ holds then the probability of the expression E to
be true is equal to P. Hence, with the above probability, the obtained sequences
have rare occurrences of the stop message and the system can be observed for
some time, before being stopped late in the testing process.

Failures of the system can also be simulated this way. To do so, invariant

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS100

properties expressed in Sections 7.2.2.1 and 7.2.2.2 can be replaced by prob

expressions. For instance:

e A possible failure of the system can occur in the initialize mode, if we as-
sume that there is a small probability to get the message physical units _ready,

when expected:

prob(true, physical_units_ready = (false -> (pre program_ready)), 0.2)

e Another failure may consist of a change of the valve state, even if no

command has been sent to the valve:

prob(true, (valve_status=closed) ->

(pre valve = (valve_status <> pre valve_status)), 0.8)

Of course, this list is not exhaustive. Every property in an environment oper-
ator could be replaced by such a prob expression. The value of the assigned
probability must be empirically determined by the tester.

We show here, a more advanced simulation, of a non signaled failure of the
level measurement unit. To do so, we first remove any domain constraints for
the level input. Then, we consider the previously shown invariant specifying the
current level value:

level_inv = true -> if expected_level < O then level=0

else if expected_level > C then level=C

else level = expected_level

We keep the same invariant conditions when not in normal mode:

implies(true -> pre(mode)<>normal, (0<=level and level<=C) -> level_inv)

And, while in normal mode, we introduce:

prob(false -> pre(mode)=normal, level_inv, 0.9)

Table 7.2 shows a generated test case for this level device fault simulation and
the corresponding controller reaction. At instant ¢13, an arbitrary negative level
value has been generated and the controller has detected a fault in the water
level measuring device (level_failure_detection—=1). We can notice that the
mode has changed to rescue and the level value has been estimated. At the next
two steps, the device has been repaired and the controller goes back to normal

mode.

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS101

t7 | tg tg t10 | t11 | t12 t13 t14 | t15 | t16 | t17

physical _units_ ready 0 1 0 0 0 0 0 0 0 0 0

level 579| 519 509 464 429 334 |-1069082252| 389 | 514 574 614

level _repaired 0 0 0 0 0 0 0 0 1 0 0

level _failure__acknowledgment | 0 0 0 0 0 0 0 1 0 0 0
mode init [normal|normal|normal|normal|normal rescue rescue|normal |normal [normal

q 579| 519 509 464 429 334 279 389 | 514 574 614

level _failure__detection 0 0 0 0 0 0 1 0 0 0 0

level _repaired _acknowledgment| 0 0 0 0 0 0 0 0 1 0 0

Table 7.2: Excerpt of a test case with broken level device scenario.

l [fo [t1[f2[t3[t4 ts| te [t7 [tg [tg [t10 [t11 l
stop 1 oO(1f(0|1]|1 0 1 1 1 0 0

physical _units_ready| 0 (0|0 (0|0 |0 1 0 0 0 0 0

l mode [start[init[init[init[init[init[normal[normal[novmal[emergency[emevgency[emergencyl

Table 7.3: Excerpt of a test case guided by a safety property.

7.2.2.4 Property-based testing

Safety properties are specified in a testnode using the safeprop operator. When
this operator is used, testing is performed to check if these properties are satisfied
by the program under test. Property-based testing guides the test generation by
avoiding, when possible, input values that cannot lead to a property violation.
Consider, for instance, the property: “issuing the stop message for 3 consequent
steps leads the controller into the emergency mode”. To formally express this
property we use two local boolean variables pre_stop and pre_pre_stop, referring

to the value of stop for the past 2 steps:

pre_stop = false -> pre stop
pre_pre_stop = false -> pre pre_stop
safeprop(implies(false -> pre(mode)=normal and stop and pre_stop

and pre_pre_stop, mode=emergency))

Violating this property requires setting the left part of the implication to true.
Table 7.3 shows the effect of the above specification on the generated sequence.
Immediately after the controller has passed into normal mode, the value of stop

is set to true for the following 3 steps.

7.2.3 Remarks on the problem size

The steam boiler problem requires exchanging an important number of messages

between the system controller and the physical system. The main program

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS102

handles 38 inputs and 34 outputs, boolean or integer, and it is composed of
30 internal functions. The main node is made, when unfolded, of 686 lines of
LUSTRE code. Each testnode consists of about 20 invariant properties modeling
the boiler environment to which are added various conditional probabilities or
safety properties. The average size of a testnode, together with the auxiliary
nodes, approximates 200 lines of LUSTRE code. It takes approximately less than
30 seconds to generate a sequence of hundred steps, for any of the test models
we used (tests performed on a Linux Fedora 9, Intel Pentium 2GHz and 1GB of

memory; LUTESS uses the ECLiPSe? environment for constraint solving.

7.3 The land gear controller

In this section, we apply the LUTESS testing approach to a specification of a real
critical embedded software: a landing gear control system of a military aircraft.
This system had been used in [8] to assess some formal verification tools. We
describe in detail the testing modeling procedure with the intention of assessing
the difficulties in the activities of test modeling and test generation in case of
a real world application. Moreover, the objective of this case study is to check
the applicability and the scalability of our approach, as far as the latter can
be assimilated to the length and the complexity of the specification, and the
resources needed to the test generation. The particularity in this case study is
that the system handles only boolean variables, so controlling the input variables
and the environment dynamics is rather limited. Therefore, we examine more
closely the use of conditional probabilities and the possible violation of the safety
properties. In addition, we show that having in mind a specific test objective
and guiding the test generation process by a specific technique, it is possible to

detect faults in the program.

7.3.1 System specification

The landing gear control system of a military aircraft [§] is in charge of ma-
neuvering landing gears and associated doors. The system is controlled by the
command software in normal mode or analogically in emergency mode. It is
composed of 3 landing gears: front, left and right. Each gear has an up lock
box and a door with two latching boxes. Gears and doors are controlled by an

hydraulic system. Figure 7.4 shows a general description of this system which

2http:/ /www.eclipse-clp.org

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS103

zg &g a8 &g
. £=) e8| |2 & |2
| pace BE 2 e |Bs
solenoid valve
electrovalve > opening jack
retraction front door

electrm/alve—‘ closing jack
retraction front door

electroval ve—‘ outgoing jack
retraction front gear
// retraction front gear

P
control
system

commands T l state of the
. | system
PFilot

Jeab ybu
>oe| uonoespl
1636 WBU
>yoel BuioBino
100p B
syoelBusop

Figure 7.4: The landing gear system.

consists of :

e a set of actuators:

— a valve to isolate the emergency system;

— electrovalves to open or close the doors and let down or retract gears;

e a set of sensors giving the state of each component of the system.

To order the retraction and outgoing of gears, the pilot has a set of 2-position
buttons and a set of lights giving the current positions of doors and gears. When
the command line is working, the controller obeys the orders of the pilot, within
the control software, executing a sequence of actions, directly animating the

mechanics. The outgoing of gears is decomposed as follows:
1. stimulation of the solenoid isolating the command unit;
2. stimulation of the door opening solenoid;
3. once the doors are opened, stimulation of the gear outgoing solenoid;

4. once the gears are locked down, stop the stimulation of the gear outgoing

solenoid and start the stimulation of the door closure solenoid;
5. once the doors are closed, stop the stimulation of the door closure solenoid;

6. finally, stop the isolating electrovalve.

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS104

The retraction sequence is symmetric. These two sequences lead from the “cruise
state” (i.e. gears up and doors closed) to the “landing state” (i.e. gears down
and doors closed) and conversely.

Because of hydraulic constraints, a given timing must exist between stimu-
lation and stop of the valves. Moreover, the sequences should be interruptible
if a counter order is given by the pilot, for example a retraction order during

the let down sequence.

7.3.2 The control software

The control software handles the landing gear physical system in normal mode
(no failure), receiving data from the sensors or pilot orders, and producing

commands for the physical system. It is decomposed in 3 main functions:
e a monitoring function for gears and doors signaling inconsistencies;

e a monitoring function checking that the system reacts correctly and con-

trolling the functional and temporal coherence of the commands;

e a command function implementing the sequence of outgoing and retraction
of gears. This function gives direct orders to the physical system and is

decomposed in two main parts:

— a function computing stimulation command for each component;

— functions managing the emission of the command (timing constraints).

All input and output variables of the control system are boolean. Through this
experiment we will consider a single gear, as the three gears are identical.

The input variables are:

e Lever_Up: true if the lever is in up position for retracting the gears, false

if it is in down position for outgoing the gears.
e Gears_0ff: true if the shock absorbers are relaxed (the aircraft is flying).

e 7 variables indicating the initial state of the gears and the doors, for

instance:

— Init_Closed_Door_Up_Gear: true if the door is closed and the associ-

ated gear is up;

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS105

— Init_Maneuvering_Door_Up_Gear: true if the door is moving and the

associated gear is up;
— Init_Open_Door_Up_Gear: true if the door is opened and the associated

gear is up.

e 12 variables providing the state of the gear, the door, the oil pressure and

the solenoid valve in case of blocking (failure), for instance:

— Gear_Up_Fail: true if the gear is blocked in the up position;

— Gear_Down_Fail: true if the gear is blocked in the down position.

The output variables are:

e 5 variables giving commands to start and stop stimulation of the elec-

trovalves and solenoid valve:

— Solenoid_Valve_Stimulation: true if the solenoid valve is stimulated

for allowing the fluid to pass;

— Gear_Outgoing_Stimulation: true if the electrovalve of outgoing the

gears is stimulated for allowing the fluid to pass;

— Gear_Retraction_Stimulation: true if the electrovalve of retracting

the gears is stimulated for allowing the fluid to pass;

— Door_Opening_Stimulation: true if the electrovalve of opening the

doors is stimulated for allowing the fluid to pass;

— Door_Closing_Stimulation: true if the electrovalve of closing the doors

is stimulated for allowing the fluid to pass.

e 6 variables indicating to the pilot the state of the gear, the door and the
oil pressure after the solenoid valve. The controller calculates these states
by considering the pilot actions (the lever movement), the necessary time
for the outgoing and the retraction of gears, the opening and the closing

of the doors as well as the solenoid valve state in case there is no failure:

Gear_Up: true if the gear is in up position;

— Gear_Down: true if the gear is in down position;

Door_Closed: true if the door is closed;

— Door_Open: true if the door is opened;

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS106

— Under_Pressure_Manometer: true if the pressure is present in the hy-

draulic system after the solenoid valve;

— Analogic_Link_On: true when the command coming from the lever is

allowed to be transmitted.

e other variables aiming at warning the pilot in case of malfunction or non

response of mechanical components.

7.3.3 Modeling the land gear controller
7.3.3.1 Domain definitions

Firstly, we assume that we test the controller in its normal functioning and
that all components operate correctly feeding the controller with the expected

values. In this way, we can define the following properties:

e There is no failure in the components. For instance, the corresponding

formal expression of this property in case of a failure in the gears® is:

not Gear_Up_Fail and not Gear_Down_Fail
Of course, this specification may be modified or removed if failures

must be taken into consideration.

e At the first step (tp), there is only one active initial state variable for the

doors and the gears and it is active only at this step:

(one_active(Init_Closed_Door_Up_Gear, ...) -> true)
and
true -> neg_conj(Init_Closed_Door_Up_Gear, ...)

where one_active and neg_conj are two user-defined boolean
operators, especially built so that the code is easily maintainable
and readable. The first one handles the 7 variables that indicate
the initial state of the gears and the doors (presented in Section
7.3.2) and allows exactly one of them to be true at the initial step.
Similarly, neg_conj operates on the same variables prevent them

from being true.

The above, very simple, test model, can be directly used to generate test in-

put sequences. Test inputs will be randomly generated at every instant and

3The expressions for the other components failures are similar and they are not presented
here for the sake of simplicity.

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS107

their values will be chosen in the above defined domains. Nevertheless, these
sequences may not be very conclusive, as it is usually the case with random
testing. At the next step of the test methodology, to cope with this issue, we
specify more thoroughly the environment dynamics, in order to observe more

meaningful executions.

7.3.3.2 Environment dynamics

As it is mentioned above, in this case study, there are very few properties that
determine the temporal relations between the current and past values of the
system inputs and outputs, because of the nature of the variables. Indeed, most
of them are directly expressing human actions and only few variables (mainly
related to failures) are subject to physical constraints. However, in this test
model this feature can be used to express the absence of failures, for instance

by means of the following property:

o When the aircraft reaches the ground, the gears are locked down and the

doors are closed:

implies(not Gears_0ff, Init_Closed_Door_Down_Gear)->
implies(falling_edge(Gears_0ff), pre Gear_Down and pre Door_Closed)
The user-defined node falling_edge returns a true value when its
input was previously true (at instant ¢,.1) but currently (at instant
ty) it is false.

Table 7.4 shows a generated test case resulting from the above test model us-
ing invariant properties that define the variable domains and the environment
dynamics. The domain constraints are indeed verified, but the test sequences
are not absolutely convincing. The command lever moves quite often and pre-
vents many states from being generated (mainly the complete deployment and
retraction of the gears). These states need for the lever to be stable for some
time. We can also notice that the aircraft lands (Gears_0ff=false) whenever
the gears and the doors are in the correct position (pre Gear_Down=true and pre

Door_Closed=true).

7.3.3.3 Test scenarios

The previous test cases are generated by specifying invariant properties of the
program environment. However, this trace of test cases does not represent a

realistic system behavior. For instance, the lever must be kept in the same

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS108

to t1 to t3 tq ts te tr tg tg t10 t11
Lever_Up 1] 1 [o o (] 1 [1 1 1
Gears_ Off o o o o 1 o 1 1 1 1 1 o
Init_ Closed_Door_Down_ Gear 1 [o [4 o o o o o [o [
Gear_Up_ Fail o o o o o o o o o o o o
Gear_Down_ Fail [4 [o [4 o o o o o [o o
Gear_Up o o [[4 o o o o o o [o
Gear_ Down 1 1 1 1 1 1 1 1 1 1 1 1
Door_ Closed 1 1 1 1 1 1 1 1 1 1 1 1

Table 7.4: Excerpt of a test case using only invariant properties.

position for a given time period in order to change the state to “cruise state”
or “landing state” (c.f. Section 7.3.1). So, we need to guide more thoroughly
the Lever_Up variable. To do so, we could use the following invariant property

scenario (using the environment operator):

e When the pilot puts the lever in down position for deploying the gears,
he maintains it in this position until reaching the “landing state” (gears

down and doors closed), and conversely:

implies(pre not Lever_Up and (pre not Gear_Down or pre not Door_Closed),
not Lever_Up)
and

implies(pre Lever_Up and (pre not Gear_Up or pre not Door_Closed),

Lever_Up)

The same scenario may be expressed differently by specifying a certain con-
ditional probability and taking into consideration the time required for a full
gear deployment or retraction. In fact, all functions included in the control sys-
tem are implemented by periodic and sequential processes executed every 40ms.
More specifically, according to the system implementation provided in [8], the
time needed to fully deploy the gear from the “cruise state” or to fully retract
it from the “landing state” corresponds to 36 execution cycles at most*. As a

result, the property could be expressed by means of the prob operator as follows:

e When the lever is in down/up position, it is highly probable that it will

remain in this position. Let us assume that the probability is fixed at

4 Actually, the initial experiment was intended to verify this property for a 14-seconds
time period. However, since explosion of the number of states occurs partly due to timings
issued in the system and in the property, timing was divided by 10 (both in the system and
the property). Thus, the required time was considered to be equal to 1.4 seconds, which
corresponds to approximately 36 execution cycles.

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS109

t50[t51[t52|t53|t54||t60|t61|t62|t63|t64|t65||t72|t73|t74|t75 |76 |t77 |t78
Lever Up |1 |1 [1] 1|1 111|111 1({1(1|1|o0o|o0]|o0

Gears_Off | 1

o
o
o
"
"
"
"
"
"
"
"
"
"
"
"
"
"

Gear_Up olo|o|o]|o ofo|ofo0]|oO0]|1 1|1 |1|1|1]|1]1
Gear_Down | 1 1 1 1 1 1 0 0 0 0 [} [} [} [} [} [} [} [}
Door_Closed| 1 | 1 | 1 | 1| 1 o|o|o|o|o0o|oO 0|0 |1 |1 |1|1]|1
Door_Open | 0 o o o o 1 1 1 1 1 1 0 0 o o o o o

Table 7.5: Excerpt of a test case using the scenarios specified in Section 7.3.3.3.

97%. So, since 36 steps are needed to fully deploy/retract the gear, the
probability to get a sequence of 36 successive steps with the same lever

position is approximately 1/3(0.9736 ~ 0.33).

prob(true -> pre Lever_Up, (Gears_0ff and Lever_Up) -> Lever_Up, 0.97)
prob(false -> not(pre Lever_Up),
((not Lever_Up) and (not Gears_0ff)) -> not Lever_Up, 0.97)

Clearly, every property in an environment operator could be replaced by a similar
prob expression. The value of the assigned probability must be empirically
determined by the tester. Such scenarios describe non-deterministic behaviors.

In another scenario, we could consider the plane in its landing position:

e When the gears have been locked down, the pilot should most probably

land the plane:

prob(false -> pre Gear_Down and pre Door_Closed and pre Gears_0ff,
true -> not Gears_0ff, 0.9)

e When the aircraft is on the ground, it may stay there for some time:

prob(false -> pre not Gears_O0ff, true -> not Gears_0ff, 0.6)

Table 7.5 shows a generated test case for the scenarios specified previously.
We notice that the lever rarely changes its position, allowing to observe a full
retraction of the gear. In addition, the aircraft remains on the ground for a few
cycles (t51 to t53). Most importantly, the changes in the gears position and the
door state become more clear. For example, at instant ¢gg, the gear is down and
until the moment it goes up (tg5), it is neither down nor up. Similarly, the door
moves (it is neither open nor closed) before it is closed (t72 to t74). Eventually,
after a few cycles, the aircraft goes into the “cruise state” (gear up and door

closed) due to the long duration that the lever was held in the up position.

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS110

t103|t104|t105|t106|[t195(t196|t197|t198|t199|t200||t380|t381 |t382|t383|t384|t385
Gear_Up_ Fail o o o 0 0 0 0 0 0 o o 1 0 1 0 0
Gear_Up 1 1 1 0 1 1 1 o o [1 1 1 1 1 o
Gear_ Outgoing_ Stimulation| 0 1 1 1 o 1 1 1 1 1 1 1 1 1 1 1

Table 7.6: Excerpt of a test case using scenario concerning the gear up failure
specified in Section7.3.3.3.

Test scenarios can also be used to simulate system failures. In the present
case study, failures are mainly caused by blocked physical components. Such
erroneous situations can only take place when a stimulation of a component is
issued. For example, let us consider a system failure described by the following
scenario: “when the gear is up and a stimulation for its outgoing starts, the
sensor can detect the failure in this position of the gear”. In order to simulate
this scenario using LUTESS, we should replace the environment constraint that
prevents the failure of the gear in its up position (not Gear_Up_Fail) seen in

Section 7.3.3.1 by the following property:

e If there is a failure in the gear when this is in the up position, then the

gear was up and there was an outgoing stimulation at the previous cycle :

not Gear_Up_Fail->implies(Gear_Up_Fail, pre Gear_Up and pre Gear_Outgoing_Simulation)
The absence of failure at the first execution cycle is important in

order to reassure that the system starts up normally.

We can also specify the probability for the occurrence of this failure when the
right part of the previous implication is verified. To do so, a possible scenario

could be the following:

e If the gear is up and there is a stimulation for its outgoing, then there is

a small probability that the gear will be blocked in the up position:

prob(false -> pre Gear_Up and pre Gear_Outgoing_Stimulation, Gear_Up_Fail, 0.2)

Table 7.6 shows a generated test case for this scenario simulating a failure of
the gear and the corresponding controller reaction. We observe that the failure
occurs only when the gear was up and the gear outgoing stimulation was on at
the previous instant. Since the value of the specified probability is rather low,

the failure rarely occurs, even if the precondition is verified (e.g. at instants

t104, 105 Or t1g6, t197).

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS111

to t1 to t3 tq ts te t7 tg tg t10
Gears_oﬂ' 0 0 0 0 0 0 0 0 0 0 1
Analogic_ Link_On 1 1 1 1 1 1 1 1 1 1 1
Gear_Retraction_ Simulation o o [4 o o [o o [o [4

Table 7.7: Excerpt of a test case guided by a safety property.

7.3.3.4 Property-based testing

At this step, we first show a simple case of property violation, considering the
following property: "there is no retraction of the gears when the aircraft is on
the ground, even if the pilot acts on the lever to achieve that". This property

is formally expressed as follows:

safeprop(implies(not Gears_Off,

not Gear_Retraction_Stimulation or not Analogic_Link_On))5

Violating this property requires setting the left part of the implication to true.
Table 7.7 shows the effect of the above specification on the generated test cases.
Gears_Off is set to false, which as specified, is a necessary condition to violate
the property; therefore, this trace helps to observe if the property is verified by
the program.

Let us consider a more sophisticated situation, in which the property to be
tested is: "if the door is closed or maneuvering, then the gears do not move
(remain in the up or in down position)". The formal expression of this property
is:

safeprop (implies(Door_Closed or (not Door_Closed and not Door_Open),

Gear_Up or Gear_Down))

For this property, setting the left part of the implication to true is more compli-
cated, since it contains exclusively some of the program outputs, which cannot
be directly handled. The tester can only lead the system in such a state, so
that the system gives the desirable outcome at the output. To this end, we
use the keyword hypothesis, which makes it possible to introduce into the test
generation process some knowledge concerning the behavior of the program un-
der test. Such hypotheses can provide information, even incomplete, on the
way that outputs are computed and hence facilitate the computation of inputs
during safety property guided testing.

5The physical action of moving the gear is allowed by the combination of the stimulation
and the open state of analogic link.

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS112

model with hypotheses |t103|t104|t105|t106|t107|t108||t411|t412|t413|ta14|ta15|ta16]ta17
Door_ Closed 1|1 1/ 0]|o0]o oo | o | 1|1 1 1

Door_Open 0 0 0 0 0 0 0 0 0 0 0 0 0

model without hypotheses

Door_ Closed 0 0 0 0 0 0 0 0 0 0 0 0 0
Door_ Open 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 7.8: Excerpt of a test case guided by a safety property and certain hy-
potheses on the system.

Some of the hypotheses we could use in order to close the door or maintaining

it in its position are:

e The software ensures that if the lever is maintained in the same position for
the required period (36 cycles) so that the outgoing/retraction operation
is finished, the door will be closed:

hypothesis(implies(maintained(36, not Lever_Up) or maintained(36, Lever_Up),
Door_Closed))

e If the lever is maintained in the down position for the same duration, for

the same reason, the gear will be down and vice-versa:

hypothesis(implies(maintained(36, not Lever_Up), Gear_Down))

hypothesis(implies(maintained(36, Lever_Up), Gear_Up))

Doubtlessly, program analysis, usually thorough enough, results in this kind of
hypotheses. Alternatively, hypotheses might concern some program properties
that are considered as satisfied, because they have been successfully tested be-
fore. In any case, this step requires the tester to be well trained and experient
as well as to be familiar with the system under test.

Table 7.8 illustrates the generated test cases from the above specification,
where the test generation is guided by a safety property combined with hypothe-
ses on the system. In a sample of 1000 test sequences, the generator managed
to rise the number of cases in which the left part of the implication in the safety
property is true. Indeed, the door remains closed (Door_Closed=false) or the

door is maneuvering (Door_Closed=false and Door_Open=false).

7.3.4 Evaluation aspects

So far, the test oracle (€2, in Figure 3.7 of Section 3.5.1) that describes the

system requirements has not been taken into account during testing analysis.

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS113

t7 8 tg t10 t11 t12
Gears_ Off 0 0 0 1 1 1
Analogic_Link_On 1 1 1 1 1 1
Gear_Retraction_Simulation | 1 1 1 o o o
Gear_Up o o o 0 0 0
Gear_ Down 1 1 1 0 0 0
Door_ Closed 1 1 [0 0 0
Door_ Open [} [} o 0 0 0

| p— oo o] o] o]

Table 7.9: Excerpt of a test case with oracle violation.

Towards our attempt to evaluate the LUTESS testing methodology in terms of
its fault detection ability, we introduced certain errors in the program code and,
by observing the oracle verdict, we were able to verify if the intentional errors
were detected. More precisely, we considered some operator changes in the
original program, that is, replacements of some operators by others so that the
obtained program is syntactically correct. First, we modified the module that
processes the commands concerning the gears and the doors; in the equation
that determines the gears retraction command (Gear_Retraction_Stimulation)
in function of the gears position, the doors state and the shock absorbers state,
the and operators were replaced by or operators. Indeed, in the original program,
in order to stimulate gears retraction, the gears must not be up, the doors must
be open and the shock absorbers must be relaxed (Gears_0£f); this last condition
indicates that the plane is flying. On the contrary, due to the introduced error, at
least one of the above conditions is sufficient for the gear retraction stimulation.
As for the environment description, we used a test model which combines the
scenarios described in Section 7.3.3.3, except the one of failure, and the first
safety property presented in Section 7.3.3.4. Lastly, in the oracle, we included
both the safety properties explained in Section 7.3.3.4.

It is worth mentioning that at 94 out of 100 steps, the oracle was violated,
hence guiding the test data generation by safety properties results in test sets
adequate to validate these properties. An excerpt of the results obtained by the
above simulation and the oracle verdict is demonstrated in Table 7.9. At steps
t7 to tg, the first property is violated, whereas at steps t19 to t12 the second
property is violated.

In addition, we attempted to detect a system failure, taking into account

the failure simulation concerning the gear position, that was described in Sec-

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS114

Gear_ Up_ Fail ol1|0|0o|o0ofo|lo0o|o0o|oOo|1|]1|o0]|0O

Gear_Up 1 1 1 1 1 1 1 1 1 1 0 o o

Gear_Outgoing_Stimulation| 1 | 1 | 1 | 1 |1 |11 |1 |21 |1|1]|1]1

| Oracle [ilel:lalelafels]a]elo]]"]

Table 7.10: Excerpt of a test case with oracle violation simulating a failure in
the up gear.

tion 7.3.3.3. In this case, we used the environment description with the failure

simulation and in the oracle, we added the following property:

e If a gear is blocked in the up position (Gear_Up_Fail), then the gear must

be up (Gear_Up), since this variable value is sent back to the pilot:

implies(Gear_Up_Fail, Gear_Up)

In the program under test, we introduced a fault in the module that handles the
system components. In particular, in the equation that counts the required time
(execution cycles) for moving the up gear, we removed the not operators, since
the beginning and the interruption of this counter depends on the gear position,
i.e. if it is blocked or not in the up position. The oracle violation resulting from
this configuration is shown in Table 7.10. At step t21, the property concerning
the failure is not verified.

Furthermore, an important remark is that in case we do not use property-
based testing (i.e. guide the test generation only by invariant properties and
test scenarios), the violation of the property is not systematic and depends, in
particular, on the seed used to initialize the random generator of LUTESS. On
the contrary, when test generation has been guided by the safety property, the

latter has been always violated, regardless of the seed.

7.3.5 Remarks on the problem size

The main program of the land gear control system is composed of 32 internal
functions and handles 21 input and 29 output boolean variables. Each testnode
consists of about 20 properties modeling the system environment to which are
added several conditional probabilities, safety properties and hypotheses on the
system. Test were performed on a P4 2.8 GHz single core with 1 GB of memory
under Linux Fedora 9. It takes approximately less than 30 seconds to generate a
sequence of hundred steps, for any of the test models we used. The time seems to

linearly increase with regard to the number of properties used in the test model

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS115

(as they are relatively close in complexity). Also, for the same environment

model, time increases linearly to the number of steps.

7.4 Concluding remarks

In this section, we have illustrated the guidelines for the test model construction
using LUTESS by modeling in different ways the external environment of two
systems of different size and complexity; on the one hand, the steam boiler
control system and on the other, the land gear control system of a military
aircraft. With regard to a test objective or a specific system behavior that
needs to be tested, the tester can model the system environment with reference
to its specification in order to guide accordingly the test data generation.

The objective of the steam boiler case study was to provide the guidelines
and recommendations for the test model construction as well as to assess the
test modeling difficulty and the test generation complexity of LUTESS. The
overall study showed that relevant test models for the steam boiler controller
were not difficult to build; modeling the steam boiler environment required a
few days of work. This first experiment suggests that the methodology and the
tool could be suitable for real-world industrial applications.

Furthermore, the objective of the land gear controller case study was to
evaluate the applicability and the scalability of the LUTESS testing approach in
a real system from the avionics. We concentrated mostly on the last steps of the
testing procedure, aiming at demonstrating how the tester can achieve valid and
more thorough test sequences with regard to the system functional requirements.
In addition, we deliberately introduced specific errors in the program under
test in order to evaluate the fault-detection capability of the tool. The results
indicate that guiding the test data generation by safety properties is the most
powerful testing technique in detecting errors. Of course, this is also the most
demanding technique in terms of tester’s experience and familiarity with both
the tool and the system under test.

In general, it should be noted that although the test modeling activity might
be performed in a short period of time, the effort required to build the test mod-
els for a complete test operation is rather difficult to assess accurately. Actually,
this depends on the desired thoroughness of the test sequences which may lead
the tester to write several scenarios corresponding to different situations and

resulting in different test models. However, building a new testnode in order to

CHAPTER 7. AUTOMATIC TEST DATA GENERATION WITH LUTESS116

generate a new set of test cases usually requires a slight modification of a pre-
vious testnode (adding/deleting some properties). This makes easy to generate
a big number of test sequences with a small effort. Thus, when compared to
manual test data construction, that the test professionals often use in practice,
such an automatic generation of test cases could certainly facilitate the testing

process.

Chapter 8

Conclusions and future work

8.1 Conclusion

This dissertation deals with the current aspects and open issues concerning the

development of formal methods and tools for the validation and verification of

synchronous LUSTRE/SCADE applications. According to the actual industrial

as well as academic needs in critical avionics software testing, which is the most

demanding and rigorous phase of the development cycle, we attempt to improve

the existing testing practices.

The research in this work lies in two main axes.

e With regard to the structural coverage evaluation, we proposed the ex-

tension and the enhancement of the structural coverage metrics defined in

the past [33]. The proposed coverage approach provides criteria defined

directly on the LuSTRE/SCADE model as a means to evaluate test data

quality and determine when testing can stop.

On the one hand, these criteria were extended towards the use of multiple

clocks in order to enlarge the scope of their applicability by completing

the LUSTRE operator set. More precisely, in the coverage model of the

operator network, we have defined the notion of coverage for the temporal

operators when and current, which handle multiple clocks in a LUSTRE

program [47]. These criteria have been integrated in SCADE environment

by properly assimilating the instrumentation phase in MTC module.

On the other hand, we studied the extension of the criteria to complex

LUSTRE specifications that use numerous nested nodes. We proposed the

117

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 118

integration of the nested nodes in order to avoid their complete expansion
and eventually reduce the complexity of coverage measurement. An ab-
stract notion of coverage has been introduced which results in a simplified
version of the obtained coverage node. Therefore, computing the coverage
of a large-scale program that contains several internal modules (LUSTRE
nodes) consists in considering these internal nodes as black boxes and ap-
plying the abstracted criteria directly to them. As a result, the size and
complexity of the obtained coverage nodes is reduced, particularly for the
multiple conditions criterion, in which case the number of the obtained
paths and activation conditions was prohibitive to coverage measurement

even for medium-sized applications.

e With regard to test data generation, we studied the modeling of the sys-
tem environment as a means to generate test cases complied with the
system informal requirements. We have contributed to the definition of
testing methodology [48] based on LUTESS, a testing tool for automatic
test data generation for synchronous reactive software. We provided the
guidelines and helpful recommendations for the environment model con-
struction according to the system functional specifications. Taking advan-
tage of the different testing strategies provided by the tool, we went over
the complexity of the corresponding test models by assessing the difficulty
to build them in relation to the thoroughness and the size of the system

specifications.

In order to support the above contributions with empirical results, we conducted
experiments on two case studies derived from the avionics domain. For the cov-
erage evaluation part, we used a module of an alarm management system in the
flight control software of an aircraft to apply our proposed coverage approach.
The objectives of this case study were to demonstrate the criteria applicability
to realistic examples, to measure the required testing effort in order to meet
the criteria as well as to assess their fault detection ability. We used mutation
testing to simulate fault models of the program. Furthermore, for the test gen-
eration part, we tested over LUTESS the land gear controller system of a military
aircraft. The purpose of this case study was to illustrate the usefulness of LuT-
ESS testing approach for real-world applications and to evaluate the scalability
and the efficiency of the test models according to the pertinence and validity of
the obtained test cases. We were especially concerned with the property-based

testing technique as a means to guide the test data generation process towards

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 119

the violation of specific properties of the system. In order to provide evidence
of the power of this technique, we intentionally introduced certain errors in the
program under test and we verified its fault detection capability.

Even if more case studies are required to assess the applicability and scal-
ability of the proposed approaches, the conducted experiments suggest that
they could be effective and applicable to the validation and verification of real

industrial applications.

8.2 Perspectives

The proposed approaches in this dissertation contribute to the improvement of
testing techniques for synchronous embedded systems but there are still several
topics that require further investigation.

First of all, the defined coverage criteria are limited to LUSTRE specifications
that handle exclusively boolean variables. Their definition implies that the path
activation is examined in relation to the possible values that path inputs can
take on, that is true and false. This means that, in case of integer inputs, the
criteria would be inapplicable. Therefore, the criteria extension to more variable
types appears to be a significant task, since real-world applications deal with
variables of different types. A possible extension might consider examining more
thoroughly the system specifications in order to narrow down the input variables
domain to a subset containing only those values that are used in reality.

Moreover, the results obtained by the experimental evaluation showed that
in many cases, one test suite satisfies several activation conditions. It would be
interesting to investigate more thoroughly the coverage ratio that the criteria
yield with regard to the number of the required test cases and hence explore
ways of finding a minimal test cases set that satisfies all the activation conditions
for a given criterion. A suitable technique for reducing the size of test case sets
is proposed in [43]; this technique relies on the application of heuristics and
uses mutation testing to try to find the minimal test set that meets a testing
criterion.

Another extension of the defined coverage criteria concerns the new version
of SCADE V6. This version supports parallel use of data-flow diagrams and
control-flow graphs. As Figure 8.1 illustrates, a system can be represented by a
control-flow graph; inside the control states, data-flow diagrams can be defined.

In order that the coverage criteria can be applicable to this new model, it is

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Regulaton

Fagltn

sat

QuickDzeel

—

Spend

nise speet

o
CriseSpeediy

Suarddy

=

foed Thottermd

k’//

Cruisespesd

o |1)

betieen

Figure 8.1: New feature in SCADE V6.

120

necessary to redefine the notion of the path activation condition in the context

of the control-flow graph. Besides, the coverage of states and transitions should

be one of the objectives of the coverage analysis.

Conclusion et perspectives

Bilan de la thése

Le travail que nous venons de présenter s’inscrit dans le cadre de développe-
ment de techniques et d’outils formels pour la validation et la vérification des
programmes synchrones écrits en LUSTRE/SCADE. En respectant la réalité in-
dustrielle et nous appuyant sur ’état de ’art concernant le test de logiciels
embarqués critiques, qui est la phase la plus exigeante et rigoureuse du cycle de
développement, nous avons tenté d’améliorer les techniques de test.

Ce travail de recherche s’appuie sur deux parties principales.

e En ce qui concerne I’évaluation de la couverture structurelle, nous avons
proposé 'extension et ’amélioration des critéres de couverture déja définis
dans [33]. L’approche de couverture proposée fournit des critéres définis
directement sur le modéle LUSTRE/SCADE qui peuvent évaluer la qualité

de données de test ainsi que déterminer 'arrét du test.

D’une part, ces critéres ont été étendus vers l'utilisation des plusieurs
horloges afin d’élargir leur applicabilité en incluant tous les opérateurs
temporels du langage LUSTRE. Plus précisément, nous avons défini la
notion de la couverture pour les opérateurs when et current, qui gérent
l'utilisation d’horloges multiples en LUSTRE [47]. Ces critéres ont été im-

plantés dans ’environnement SCADE et plus précisément dans le module
SCADE MTC.

D’autre part, nous avons étudié ’extension des critéres a des spécifica-
tions LUSTRE plus complexes qui utilisent des nombreux noeuds imbriqués.
Nous avons proposé une approche de mesure de la couverture compatible
avec une stratégie d’intégration des noeuds appelés par d’autres noeuds,

évitant leur dépliage complet, et réduisant la complexité. Une notion de

121

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 122

couverture abstraite a été introduite qui a pour résultat une version plus
simple du noeud de couverture obtenu. En conséquence, le calcul de la
couverture d’'un programme de grande taille qui contient plusieurs com-
posants (d’autres noeuds LUSTRE) consiste & considérer ces composants
comme des boites noires et a y appliquer directement ces critéres abstraits.
Ainsi, la taille et la complexité des noeuds de couverture obtenus sont
réduits, particuliérement dans le cas du critére de conditions multiples
(MCC) ot le nombre de chemins et de conditions d’activation obtenus

pourrait étre prohibitif, méme pour les applications de taille moyenne.

e En ce qui concerne la génération de données de test, nous avons étudié la
modélisation de I’environnement du systéme comme un moyen de générer
de séquences de test conformes aux besoins informels du systéme. Nous
avons contribué a la définition d’une méthodologie [48] basée sur LUTESS,
un outil de test destiné aux logiciels réactifs synchrones. Nous avons fait
des recommandations concernant la construction du modéle d’environnement
par rapport aux spécifications fonctionnelles du systéme, profitant des
nombreuses stratégies de test offertes par ’outil. Nous avons, enfin, étudié
la complexité des modéles de test; pour cela, on a évalué la difficulté as-
sociée & leur construction en fonction de la clarté et la taille des spécifica-

tions.

Afin d’enrichir et compléter les contributions décrites ci-dessus avec des obser-
vations empiriques, nous avons mené des expériences sur deux études de cas du
domaine de l'avionique. Pour la partie évaluation de couverture, nous avons
utilisé un composant de controle d’alarme dans un systéme de commande de vol
d’un avion, sur lequel nous avons appliqué 'approche de couverture proposée.
Les objectifs de cette étude ont consisté, entre autres, a montrer I’applicabilité
des critéres aux exemples extraits du monde industriel réel, & mesurer 'effort
de test nécessaire a la satisfaction de chacun des critéres et enfin a évaluer leur
aptitude a révéler les fautes dans un programme LUSTRE au moyen du test
par mutation.. Pour la partie génération de tests, nous avons utilisé LUTESS
pour tester un systéme de controleur de train d’atterrissage d’un appareil mil-
itaire. Les objectifs de cette étude étaient de démontrer 1'utilité de tester un
systéme avec LUTESS dans un contexte plus réaliste et d’évaluer ’extensibilité
et lefficacité des modéles de test par rapport & la pertinence et la conformité des
séquences de test générées. Dans cette étude, on a été spécialement intéressé au

test guidé par les propriétés de stireté afin de guider le processus de génération a

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 123

la violation de certaines propriétés du systéme. Nous avons intentionnellement
introduit des fautes dans le programme sous test et nous avons vérifié 'aptitude
de la technique & les détecter.

Méme si d’autres études de cas sont nécessaires pour évaluer I'applicabilité
et le passage a ’échelle des approches que nous avons proposées, les expérimen-
tations que nous avons menées suggérent qu’elles pourraient étre utilisées pour

la validation et la vérification d’applications industrielles réelles.

Evolutions et perspectives

Les approches proposées dans cette thése contribuent a ’amélioration des tech-
niques de test de systémes embarqués synchrones mais de nombreuses questions
nécessitent d’études plus approfondies.

Tout d’abord, les critéres de couverture définis sont limités aux spécifications
LUSTRE qui contiennent exclusivement des variables booléennes. Leur définition
implique que D’activation de chemins est considérée par rapport & toutes les
valeurs possibles que les entrées de chemins peuvent porter, & savoir vrai et
fauz. Cela signifie que, dans le cas d’entrées numériques, les critéres ne sont pas
pertinents. L’extension des critéres a d’autres types de variables apparait donc
comme une tache importante. Une possibilité consisterait & examiner plus en
détail les spécifications du systéme afin de réduire autant que possible le domaine
de variables d’entrée a un sous-ensemble de valeurs réellement utilisées.

De plus, les résultats obtenus par les expérimentations ont démontré que,
dans plusieurs cas, une seule séquence de test satisfait plusieurs conditions
d’activation. Il serait intéressant d’envisager une maniére de trouver un ensem-
ble minimal de jeux de test qui satisferait toutes les conditions d’activation liées
a un critére donné. Une technique appropriée pour réduire la taille d’ensembles
de séquences de test a été proposée dans [43]; cette technique consiste & appli-
quer de méthodes heuristiques et elle utilise le test de mutation afin de trouver
un ensemble minimal de tests satisfaisant un critére de test.

Une autre extension potentielle des critéres définis concerne la nouvelle ver-
sion de I'environnement SCADE V6. Cette version permet 'utilisation simul-
tanée de diagrammes de flux de données et de machines d’états finis. D’aprés
la figure 8.1, un systéme peut étre représentée par un graphe de flot de con-
trole; de diagrammes de flux de données sont définis dans les états de ce graphe.

La prise en compte de ce modéle par les critéres de couverture nécessite de

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 124

redéfinir la notion d’activation de chemins dans le contexte du graphe de flot de

controle. Par ailleurs, la couverture des états et des transitions devrait étre un

des objectifs de couverture.

Bibliography

[1]

2]

3]

14]
5]

16]

7]

18]

9]

Do-178b, software considerations in airborne systems and equipment certi-

fication. Technical report, RT'CA, Inc., www.rtca.org, 1992.

Scade language reference manual. technical report SC-LRM - SC/70257u3-
5.0.1, Esterel Technologies SA, Parc Avenue, 9 rue Michel Labrousse, 31100

Toulouse, France, 2005.

Jean-Raymond Abrial. Steam-boiler control specification problem. In For-
mal Methods for Industrial Applications, pages 500-509, 1995.

B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1990.

A. F. E. Belinfante, L. Frantzen, and C. Schallhart. Tools for test case
generation. In M. Broy, B. Jonsson, J. P. Katoen, M. Leucker, and
A. Pretschner, editors, Model-Based Testing of Reactive Systems: Advanced
Lectures, volume 3472 of Lecture Notes in Computer Science, pages 391—
438. Springer Verlag, 2005.

A. Benveniste and G. Berry. The Synchronous Approach to Reactive and
Real-Time Systems. Proceedings of the IEEE, 79(9):1270-1282, 1991.

Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert de Simone. The synchronous languages 12
years later. Proceedings of the IEEE, 91(1):64-83, 2003.

F. Boniol, V. Wiels, and E. Ledinot. Experiences in using model checking to
verify real time properties of a landing gear control system. In ERTS 2006:
3rd European Congress Embedded Real Time Software, Toulouse, France,
January 25-27 2006.

F. Boussinot and R. De Simone. The Esterel language. Proceedings of the
IEEE, 79(9):1293-1304, 1991.

125

BIBLIOGRAPHY 126

[10] Timothy Alan Budd, Richard A. DeMillo, Richard J. Lipton, and Freder-
ick Gerald Sayward. Theoretical and empirical studies on using program
mutation to test the functional correctness of programs. In Proceedings of
the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’80), pages 220-233, Las Vegas, Nevada, 28-30 Jan-
uary 1980.

[11] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lustre:
A declarative language for programming synchronous systems. In POPL,
pages 178-188, 1987.

[12] T. Cattel and G. Duval. The steam boiler problem in lustre. Formal
Methods for Industrial Applications, pages 149-164, 1996.

[13] J.J. Chilenski and S. P. Miller. Applicability of modified condition/decision
coverage to software testing. 9(5):193-200, 1994.

[14] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil. A
formal evaluation of data flow path selection criteria. IEEE Trans. Software
Eng., 15(11):1318-1332, 1989.

[15] Richard A. DeMillo. Test adequacy and program mutation. In ICSE, pages
355-356, 1989.

[16] Lydie du Bousquet, Farid Ouabdesselam, Jean-Luc Richier, and Nico-
las Zuanon. Lutess: A specification-driven testing environment for syn-
chronous software. In ICSE, pages 267-276, 1999.

[17] Lydie du Bousquet and Nicolas Zuanon. An overview of lutess: A
specification-based tool for testing synchronous software. In ASE, pages
208-215, 1999.

[18] Joe W. Duran and Simeon Ntafos. A report on random testing. In ICSE ’81:
Proceedings of the 5th international conference on Software engineering,
pages 179-183, Piscataway, NJ, USA, 1981. IEEE Press.

[19] Guy Durrieu and Virginie Wiels. Premiere proposition de methodologie de
test. ANR Technical report 07TLOGO019, June 2009.

[20] Phyllis G. Frankl and Elaine J. Weyuker. An applicable family of data flow
testing criteria. IEEE Trans. Software Eng., 14(10):1483-1498, 1988.

BIBLIOGRAPHY 127

[21] Alain Girault and Xavier Nicollin. Clock-driven automatic distribution of
lustre programs. In 3rd International Conference on Embedded Software,
EMSOFT’03, volume 2855 of LNCS, pages 206-222, Philadelphia, USA,
October 2003. Springer-Verlag.

[22] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
flow programming language lustre. Proceedings of the IEEE, 79(9):1305—
1320, 1991.

[23] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-
time systems by means of the synchronous data-flow language lustre. IEEFE
Trans. Software Eng., 18(9):785-793, 1992.

[24] Nicolas Halbwachs. A tutorial of lustre, 1993.

[25] Dick Hamlet and Ross Taylor. Partition testing does not inspire confidence
(program testing). IEEE Trans. Softw. Eng., 16(12):1402-1411, 1990.

[26] Richard G. Hamlet. Theoretical comparison of testing methods. In Sym-
posium on Testing, Analysis, and Verification, pages 28-37, 1989.

[27] D. Harel and A. Pnueli. On the development of reactive systems. pages
477-498, 1985.

[28] Hayhurst Kelly J., Veerhusen Dan S., Chilenski John J., and Rierson
Leanna K. A practical tutorial on modified condition/decision coverage.
Technical report, 2001.

[29] S. Rao Kosaraju. Analysis of structured programs. Journal of Computer
and System Sciences, 9(3):232-255, 1974.

[30] A. Lakehal and I. Parissis. Lustructu: A tool for the automatic coverage
assessment of lustre programs. In proceedings of the 16th IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE 2005), pages
301-310, Chicago, USA, November 2005.

[31] A. Lakehal and I. Parissis. Structural test coverage criteria for lustre pro-
grams. In the 10th International Workshop on Formal Methods for In-
dustrial Critical Systems (FMICS), a joint event of ESEC/FSE’05, pages
35—43, Lisbon, Portugal, September 2005.

BIBLIOGRAPHY 128

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

A. Lakehal and I. Parissis. Automated measure of structural coverage for
lustre programs: A case study. In proceedings of the 2nd IEEE International
Workshop on Automated Software Testing (AST’2007), a joint event of the
29th ICSE, Minneapolis, USA, May 2007.

Abdesselam Lakehal. Criteres de couverture structurelle pour les pro-
grammes lustre. Phd thesis, Université Joseph Fourier, Grenoble, France,
September 2006.

Jean-Claude Laprie. Guide de la Streté de Fonctionnement. Cépadues,
1995.

Janusz W. Laski and Bogdan Korel. A data flow oriented program testing
strategy. IEEE Transactions on Software Engineering, 9(3):347-354, 1983.

P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Program-
ming Real-Time Applications with SIGNAL. Proceedings of the IEEE,
79(9):1321-1336, 1991.

Bruno Marre and Agnés Arnould. Test sequences generation from lustre
descriptions: Gatel. In IEEE International Conference on Automated Soft-
ware Engineering, pages 229-237, Grenoble, France, October 2000.

Bruno Marre and Benjamin Blanc. Test selection strategies for lustre de-
scriptions in gatel. FElectr. Notes Theor. Comput. Sci., 111:93-111, 2005.

Christine Mazuet. Stratégies de test pour des programmes synchrones -
application au langage lustre. Phd thesis, Institut National Polytechnique

de Toulouse, Toulouse, France, December 1994.

Thomas J. McCabe. A complexity measure. IEEE Transactions on Soft-
ware Engineering, 2(4):308-320, December 1976.

Glenford J. Myers and Corey Sandler. The Art of Software Testing. John
Wiley & Sons, 2004.

Simeon C. Ntafos. An evaluation of required element testing strategies.

In International Conference on Software Engineering, pages 250-256, Or-
lando, Florida, USA, March 1984.

A. Jefferson Offutt, Jie Pan, and Jeffrey M. Voas. Procedures for reduc-
ing the size of coverage-based test sets. In In Proceedings of the Twelfth

BIBLIOGRAPHY 129

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

International Conference on Testing Computer Software, pages 111-123,
1995.

A Jefferson Offutt, Yiwei Xiong, and Shaoying Liu. Criteria for generat-
ing specification-based tests. Engineering of Complex Computer Systems,
IEEE International Conference on, 0:119, 1999.

F. Ouabdesselam and I. Parissis. Testing synchronous critical software.
In 5th International Symposium on Software Reliability Engineering, Mon-
terey, USA, november 1994.

F. Ouabdesselam and I. Parissis. Constructing operational profiles for syn-
chronous critical software. Software Reliability Engineering, 1995. Proceed-

ings., Sixzth International Symposium on, pages 286—293, Oct 1995.

V. Papailiopoulou, L. Madani, L. du Bousquet, and I. Parissis. Extending
structural test coverage criteria for lustre programs with multi-clock opera-
tors. In the 13th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS), L’ Aquila, Italy, September 2008.

Virginia Papailiopoulou, Besnik Seljimi, and loannis Parissis. Revisiting
the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test
Generation. In Proceedings of the 12th European Workshop on Dependable
Computing, EWDC 2009 12th European Workshop on Dependable Com-
puting, EWDC 2009, Toulouse France, 05 2009. Helene WAESELYNCK.

I. Parissis. A tool for testing synchronous critical software. In 3rd In-
ternational Conference on Achieving Quality in Software, Florence, Italie,

january 1996.

I. Parissis and J. Vassy. Strategies for automated specification-based testing
of synchronous software. In 16th International Conference on Automated
Software Engineering, San Diego, USA, November 2001. IEEE.

Toannis Parissis. Test de logiciels synchrones spécifiés en lustre. Phd thesis,

Université Joseph Fourier, Grenoble, France, September 1996.

David Parnas, John van Schouwen, and Shu Po Kwan. Evaluation of Safety-
Critical Software. Commaunications of the ACM, 33(6):636—648, june 1990.

Ajitha Rajan. Coverage metrics for requirements-based testing. Phd thesis,

University of Minnesota, Minneapolis, July 2008.

BIBLIOGRAPHY 130

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Ajitha Rajan, Michael W. Whalen, and Mats P.E. Heimdahl. Model
validation using automatically generated requirements-based tests. High-
Assurance Systems Engineering, IEEE International Symposium on, 0:95—
104, 2007.

Sandra Rapps and Elaine J. Weyuker. Selecting software test data using
data flow information. IEEE Trans. Software Eng., 11(4):367-375, 1985.

Pascal Raymond. Compilation efficace d’un langage declaratif synchrone:
le generateur de code lustre-v3. Phd thesis, Institut National Polytechnique
de Grenoble, Grenoble, France, November 1991.

Pascal Raymond, Xavier Nicollin, Nicolas Halbwachs, and Daniel Weber.
Automatic testing of reactive systems. In IEEE Real-Time Systems Sym-
posium, pages 200-209, 1998.

D. Richardson and L. Clarke. Partition analysis : A method combin-
ing testing and verification. IEEE Transactions on Software Engineering,
11(12):1477-1490, December 1985.

Jacobson Ivar Booch Grady Rumbaugh, James. The Unified Modeling Lan-
guage Reference Manuel. Addison-Wesley Longman, Inc., Reading, Mas-
sachussetts, 1998.

Besnik Seljimi. Test de logiciels synchrones avec la PLC. PhD thesis,
Université Joseph-Fourier - Grenoble I, July 2009.

Besnik Seljimi and Ioannis Parissis. Using clp to automatically generate
test sequences for synchronous programs with numeric inputs and outputs.
In ISSRE, pages 105-116, 2006.

Besnik Seljimi and loannis Parissis. Automatic generation of test data
generators for synchronous programs: Lutess v2. In DOSTA '07: Workshop
on Domain specific approaches to software test automation, pages 8-12,
Dubrovnik, Croatia, 2007. ACM.

Jérome Vassy. Génération automatique de cas de test guidée par des pro-
priétés de sureté. Phd thesis, Université Joseph Fourier, Grenoble, France,
October 2004.

Sergiy A. Vilkomir and Jonathan P. Bowen. Formalization of software test-
ing criteria using the z notation. In Proceedings of COMPSAC 2001: 25th

BIBLIOGRAPHY 131

IEEE Annual International Computer Software and Applications Confer-
ence, pages 351-356. Society Press, 2001.

[65] Sergiy A. Vilkomir and Jonathan P. Bowen. Reinforced condition/decision
coverage (rc/dc): A new criterion for software testing. In ZB, pages 291—
308, 2002.

[66] Dolores R. Wallace and Roger U. Fujii. Verification and validation: Tech-
niques to assure reliability. IEEE Software, 6(3):8-9, 1989.

[67] L. White and E. Cohen. A domain strategy for computer program testing.
IEEE Transactions on Software Engineering, 6(3):247-257, May 1980.

[68] M. R. Woodward, D. Hedley, and M. A. Hennell. Experience with path
analysis and testing of programs. IEEE Trans. Softw. Eng., 6(3):278-286,
1980.

[69] Nicolas Zuanon. Test de spécifications de services de télécommunication.

PhD thesis, Université Joseph Fourier, Grenoble, France, June 2000.

