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Réel
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Abstract

by Muhammad Farooq

The performance of scheduling algorithm influences the performance of the whole system.

Real time scheduling algorithms have theoretical optimal schedulable bounds, but these

optimal bounds are achieved at the cost of increased scheduling events (preemptions and

migrations of tasks) and high run time complexity of algorithms. We believe that by

exploiting parameters of tasks, these algorithms can be made more efficient and cost

conscious to increase Quality of Service (QoS) of application.

In first part of thesis, we propose mono-processor scheduling algorithms which increase

quality of service of hybrid application by maximizing execution of soft real time tasks, and

by providing guarantees to hard real time tasks even in overload situations. Scheduling

cost of algorithms is also reduced (in terms of reduced number of preemptions) by taking

into account all explicit and implicit parameters of tasks. Reducing scheduling overheads

not only increases performance of the scheduler but also minimizes energy consumption of

the system. That’s why, we propose to devise a technique embedded with existing DVFS

(dynamic voltage and frequency scaling) techniques to minimize the switching points, as

switching from one frequency to another steals processor cycles and consumes energy of

system.

Multiprocessor scheduling algorithms based on fluid scheduling model (notion of fair-

ness), achieve optimal schedulable bounds; but fairness is guaranteed at the cost of un-

realistic assumptions, and by increasing preemptions and migrations of tasks to a great

extent. An algorithm (ASEDZL) is proposed in this dissertation, which is not based on

fluid scheduling model. It not only minimizes preemptions and migrations of tasks but re-

laxes the assumptions also due to not being bases on fairness notion. Moreover, ASEDZL

is also propose to schedule tasks in hierarchical approach, and it gives better results than

other approaches.

. . .



Résumé

par Muhammad Farooq

Les performances des algorithms d’ordonnancement ont un impact direct sur les perfor-

mances du système complet. Les algorithmes d’ordonnancement temps réel possèdent des

bornes théoriques d’ordonnanabilité optimales mais cette optimalité est souvent atteinte

au prix d’un nombre élevé d’événements d’ordonnancement à considérer (préemptions et

migrations de tâches) et d’une complexité algorithmique importante. Notre opinion est

qu’en exploitant plus efficacement les paramètres des tâches il est possible de rendre ces

algorithmes plus efficaces et à coût maitrisé, et ce dans le but d’améliorer la Qualité de

Service (QoS) des applications. Nous proposons dans un premier temps des algorithmes

d’ordonnancement monoprocesseur qui augmentent la qualité de service d’applications

hybrides c’est-à-dire qu’en situation de surcharge, les tâches à contraintes souples ont

leur exécution maximisée et les échéances des tâches à contraintes strictes sont garanties.

Le coût d’ordonnancement de ces algorithmes est aussi réduit (nombre de préemptions)

par une meilleure exploitation des paramètres implicites et explicites des tâches. Cette

réduction est bénéfique non seulement pour les performances du système mais elle agit

aussi positivement sur la consommation d’énergie. Aussi nous proposons une technique as-

sociée à celle de DVFS (dynamic voltage and frequency scaling) afin de minimiser le nom-

bre de changements de points de fonctionnement du fait qu’un changement de fréquence

implique un temps d’inactivité du processeur et une consommation d’énergie.

Les algorithmes d’ordonnancement multiprocesseur basés sur le modèle d’ordonnancement

fluide (notion d’équité) atteignent des bornes d’ordonnanabilité optimales. Cependant

cette équité n’est garantie qu’au prix d’hypothèses irréalistes en pratique du fait des nom-

bres très élevés de préemptions et de migrations de tâches qu’ils induisent. Dans cette

thèse un algorithme est proposé (ASEDZL) qui n’est pas basé sur le modèle d’ordonnancement

fluide. Il permet non seulement de réduire les préemptions et les migrations de tâches

mais aussi de relâcher les hypothèses imposées par ce modèle d’ordonnancement. Enfin

nous proposons d’utiliser ASEDZL dans une approche d’ordonnancement hiérarchique ce

qui permet d’obtenir de meilleurs résultats que les techniques classiques.

. . .
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Chapter 1

Introduction

1.1 Background

The distinguishing characteristic of a real-time system in comparison to a non-real-time

system is the inclusion of timing requirements in its specification. That is, the correctness

of a real-time system depends not only on logically correct segments of code that produce

logically correct results, but also on executing the code segments and producing correct

results within specific time frames. Thus, a real-time system is often said to possess dual

notions of correctness, logical and temporal. Process control systems, which multiplex

several control-law computations, radar signal-processing and tracking systems, and air

traffic control systems are some examples of real-time systems.

Timing requirements and constraints in real-time systems are commonly specified as

deadlines within which activities should complete execution. Consider a radar tracking

system as an example. To track targets of interest, the radar system performs the following

high-level activities or tasks: sends radio pulses towards the targets, receives and processes

the echo signals returned to determine the position and velocity of the objects or sources

that reflected the pulses, and finally, associates the sources with targets and updates their

trajectories. For effective tracking, each of the above tasks should be invoked repeatedly

at a frequency that depends on the distance, velocity, and the importance of the targets,

and each invocation should complete execution within a specified time or deadline.

Another characteristic of a real-time system is that it should be predictable. Pre-

dictability means that it should be possible to show, demonstrate, or prove that require-

ments are always met subject to any assumptions made, such as on workloads.

Based on the cost of failure associated with not meeting them, timing constraints

in real-time systems can be classified broadly as either hard or soft. A hard real-time

constraint is one whose violation can lead to disastrous consequences such as loss of life or

a significant loss to property. Industrial process-control systems and robots, controllers

for automotive systems, and air-traffic controllers are some examples of systems with hard

1
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real-time constraints. In contrast, a soft real-time constraint is less critical; hence, soft

real-time constraints can be violated. However, such violations are not desirable, either,

as they may lead to degraded quality of service, and it is often the case that the extent of

violation be bounded. Multimedia systems and virtual-reality systems are some examples

of systems with soft real-time constraints.

There are several emerging real-time applications that are very complex and have high

computational requirements. Examples of such systems include automatic tracking sys-

tems and tele-presence systems. These applications have timing constraints that are used

to ensure high system fidelity and responsiveness, and may also be crucial for correct-

ness in certain applications such as tele-surgery. Also, their processing requirements may

easily exceed the capacity of a single processor, and a multiprocessor may be necessary

to achieve an effective implementation. In addition, multiprocessors are, generally, more

cost-effective than a single processor of the same capacity because the cost (monetary) of

a k-processor system is significantly less than that of a processor that is k times as fast

(if a processor of that speed is indeed available).

The above observations clearly underscore the growing importance of scheduling algo-

rithms in real-time systems. In this dissertation, we focus on several fundamental issues

pertaining to the scheduling of real-time tasks on mono-processor as well as on multipro-

cessor architecture. Before discussing the contributions of this dissertation in more detail,

we briefly describe some basic concepts pertaining to real-time systems.

1.2 Background on Real Time Systems

A real-time system is typically composed of several (sequential) processes with timing

constraints. We refer to these processes as tasks and set of these tasks is represented

by τ = {T1, T2, ..., Tn}. In most real-time systems, tasks are recurrent, i.e., each task

is invoked repeatedly. The periodic task model of Liu and Layland [48] provides the

simplest notion of a recurrent task. Each periodic task Ti is characterized by a phase

φi, a period Pi, a relative deadline di, and an execution requirement Ci (Ci < di). The

best case execution time is represented by Bi. Such a task is invoked every Pi time units,

with its first invocation occurring at time φi. We refer to each invocation of a task as a

job/instance, and the corresponding time of invocation as the job’s release time. Thus,

the relative deadline parameter is used to specify the timing constraints of the jobs of

a periodic task. Unless stated otherwise, we assume that relative deadline of a periodic

task equals its period. In other words, each job must complete before the release of

the next job of the same task. We define few run time parameters of a task such as

Cremi (t) which represents the remaining execution time of task Ti at time t defined as

Cremi (t) = Ci−Ccompletedi (t) where Ccompletedi (t) represents the completed fraction of task

Ti until time t. The remaining best case execution time at time t is given by Brem
i (t)
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The remaining time to deadline of a task Ti is defined as dremi (t) = di − t. A dynamic

parameter of tasks Ti is AETi which represents the actual execution time of task Ti.

Each task Ti has its own laxity Li defined as:

Li = Pi − Ci

and laxity at time t is defined as:

Li(t) = dremi (t)− Cremi (t)

A periodic task system in which all tasks have a phase of zero is called a synchronous

periodic task system, and we have considered synchronous task system in this dissertation

unless stated otherwise. Let HP represents the hyper period of all tasks which is the least

common multiple of periods of all n tasks. The weight or utilization of a task Ti, denoted

µi, is the ratio of its execution requirement to its period. We use the terms weight and

utilization interchangeably in this dissertation. µi = Ci/Pi. The weight (or utilization)

of a task system is the sum of the weights of all tasks in the system. Offloading factor

of a task Ti, denoted by Oi, represents the percentage of a processor that can be used to

execute tasks other than Ti, and Oi is the ratio of task’s laxity to its period (i.e., Li/Pi).

In this dissertation, we assume that all tasks are synchronous and preemptive, i.e.,

a task can be interrupted during its execution and resumed later from the same point.

Unless stated otherwise, we assume that the overhead of a preemption is zero. We further

assume that all tasks are independent, i.e., the execution of a task is not affected by the

execution of other tasks. In particular, we assume that tasks do not share any resources

other than the processor, and that they do not self-suspend during execution.

1.3 Real-Time Scheduling Strategies and Classification

In general, real time scheduling algorithm assigns a priority to each job, and on an M -

processor system, schedules for execution the M jobs with the highest priorities at any

instant.

1.3.1 Feasibility and optimality

A periodic task system τ is feasible on processing platform if and only if for every possible

real-time instance there exists a way to meet all deadlines. A feasibility test for a class of

task systems is specified by giving a condition that is necessary and sufficient to ensure

that any task system in that class is feasible.

The algorithm that is used to schedule tasks (i.e., allocate processor time to tasks)

is referred to as a scheduling algorithm. A task system τ is said to be schedulable by
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algorithm A if A can guarantee the deadlines of all jobs of every task in τ . A condition

under which all task systems within a class of task systems are schedulable by A is referred

to as a schedulability test for A for that class of task systems. A scheduling algorithm is

defined as optimal for a class of task systems if its schedulability condition is identical to

the feasibility condition for that class.

1.3.2 On-line versus offline scheduling

In offline scheduling, the entire schedule for a task system (up to a certain time such as the

the least common multiple (LCM) of all task periods) is pre-computed before the system

actually runs; the actual run-time scheduling is done using a table based on this pre-

computed schedule. On the other hand, an on-line scheduler selects a job for scheduling

without any knowledge of future job releases. (Note that an on-line scheduling algorithm

can also be used to produce an offline schedule.) Clearly, offline scheduling is more efficient

at run-time; however, this efficiency comes at the cost of flexibility. In order to produce

an off-line schedule, it is necessary to know the exact release times for all jobs in the

system. However, such knowledge may not be available in many systems, in particular,

those consisting of sporadic tasks, or periodic tasks with unknown phases. Even if such

knowledge is available, then it may be impractical to store the entire precomputed schedule

(e.g., if the LCM of the task periods is very large). On the other hand, on-line schedulers

need to be very efficient, and hence, may need to make sub-optimal scheduling decisions,

resulting in schedulability loss.

1.3.3 Static versus dynamic priorities

Most scheduling algorithms are priority-based: they assign priorities to the tasks or jobs in

the system and these priorities are used to select a job for execution whenever scheduling

decisions are made. A priority-based scheduling algorithm can determine task or job

priorities in different ways.

A scheduling algorithm is called a static-priority algorithm if there is a unique priority

associated with each task, and all jobs generated by a task have the priority associated

with that task. Thus, if task Ti has higher priority than task Tj , then whenever both

have active jobs, Ti’s job has higher priority than Tj ’s job. An example of a scheduling

algorithm that uses static priorities is the rate-monotonic (RM) algorithm [48]. The RM

algorithm assigns higher priority to tasks with shorter periods.

Dynamic-priority algorithms allow more flexibility in priority assignments; a task’s

priority may vary across jobs or even within a job. An example of a scheduling algorithm

that uses dynamic priorities is the earliest-deadline-first (EDF) algorithm [48]. EDF

assigns higher priority to jobs with earlier deadlines, and has been shown to be optimal

for scheduling periodic and sporadic tasks on uniprocessors [48, 54]. The least laxity- first
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(LLF) algorithm [54] is also an example of a dynamic-priority algorithm that is optimal

on uniprocessors. As its name suggests, under LLF, jobs with lower laxity are assigned

higher priority.

1.4 Real-time Scheduling on Multiprocessors

In this subsection, we consider multiprocessor scheduling in some details.

1.4.1 Multiprocessor Scheduling Approaches

Scheduling of tasks on multiprocessor systems is typically solved using two different meth-

ods based on how tasks are assigned to the processors at run-time, namely partitioning

and non-partitioning. In the partitioning-based method, all instances of a task are ex-

ecuted on the same processor, which is determined before run-time by a partitioning

algorithm. In a non partitioning method, any instance of a task can be executed on a

different processor, or even be preempted and moved to a different processor, before it is

completed.

1.4.1.1 Partitioning

Under partitioning, the set of tasks is statically partitioned among processors, that is, each

task is assigned to a unique processor upon which all its jobs execute. Each processor is

associated with a separate instance of a uniprocessor scheduler for scheduling the tasks

assigned to it and a separate local ready queue for storing its ready jobs. In other words,

the priority space associated with each processor is local to it. The different per-processor

schedulers may all be based on the same scheduling algorithm or use different ones. The

algorithm that partitions the tasks among processors should ensure that for each processor,

the sum of the utilizations of tasks assigned to it is at the most utilization bound of its

scheduler.

Partitioning method have several advantages over non partitioning methods [4, 46,

58, 59, 71]. Firstly, the scheduling overhead associated with a partitioning method is

lower than the overhead associated with a non-partitioning method. Secondly, partition-

ing methods allow us to apply well-known uniprocessor scheduling algorithms on each

processor. Thirdly and most importantly, each processor could use resources dedicated to

it i.e., distributed memory etc. The last mentioned aspect improves the performance of

the system a lot, and in most cases it proves the partitioning method to be better than its

counterpart. Optimal assignment of tasks to processors is known to be NP-hard, which

is major drawback of partitioning method.
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1.4.1.2 Global scheduling

In contrast to partitioning, under global scheduling, a single, system-wide, priority space

is considered, and a global ready queue is used for storing ready jobs. At any instant, at

most M ready jobs with the highest priority (in the global priority space) execute on the

M processors. No restrictions are imposed on where a task may execute; not only can

different jobs of a task execute on different processors, but a given job can execute on

different processors at different times.

In contrast, the non-partitioning method has received much less attention [44, 49, 51,

52], mainly because it is believed to suffer from scheduling and implementation-related

shortcomings, also because it lacks support for more advanced system models, such as the

management of shared resources. The other important factor that makes this approach

of less interest is the use of a shared memory which introduces the bottleneck for system

scalability. On the better side, schedulability bounds are much better than its counterpart.

1.4.1.3 Two-level hybrid scheduling

Some algorithms do not strictly fall under either of the above two categories, but have

elements of both. For example, algorithms for scheduling systems in which some tasks

cannot migrate and have to be bound to a particular processor, while others can migrate,

follow a mixed strategy. In general, scheduling under a mixed strategy is at two levels: at

the first level, a single, global scheduler determines the processor that each job should be

assigned to using global rules, while at the second level, the jobs assigned to individual

processors are scheduled by per-processor schedulers using local priorities. Several variants

of this general model and other types of hybrid scheduling are also possible. Typically,

the global scheduler is associated with a global queue of ready, but unassigned jobs, and

the per-processor schedulers with queues that are local to them.

1.5 Low-Power Embedded Operating Systems

The tremendous increase in demand for many battery-operated computing devices evi-

dences the need for power-aware computing. As a new dimension of CPU computing,

the goal of power-aware CPU scheduling is to dynamically adjust hardware to adapt to

the expected performance of the current workload so that a system can efficiently save

power, lengthening its battery life for useful work in the future. In addition to traditional

low− power designs for the highest performance delivery, the new concept focuses on en-

abling hardware-software collaboration to scale down power and performance in hardware

whenever the system performance can be relaxed.

Power-saving State Control (PSC) and Dynamic Voltage and Frequency Scaling (DVFS)

are promising examples of power-aware techniques developed in hardware. Power-saving
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states are like operating knobs of a device, as they consume much less power and sup-

port only partial functionalities compared to the regular active operating mode. With

the prevailing power-saving trend, power states have been ubiquitously supported in pro-

cessors, disks, RDRAM memory chips, wireless network cards, LCD displays, etc. Com-

mon power-saving states include standby (clock-gating), retention (clock-gating with just

enough reduced supply voltage to save the logic contents of circuits), and power-down

(power-gating) modes. Some devices provide specific power-states that offer more energy-

efficient operating options such as the control of the back light in LCD displays and the

control of the modulation scheme and transmission rate in wireless network cards.

DVFS techniques are deployed in many commercial processors such as Transmeta’s

Crusoe, Intel’s XScale processors and Texas Instruments OMAP3430. Due to the fact

that dynamic power in CMOS circuits has a quadratic dependency on the supply volt-

age, lowering the supply voltage is an effective way to reduce power. However, this

voltage reduction also adversely affects the system performance through increasing delay.

Therefore, efficient DVFS algorithms must maintain the performance delivery required by

applications.

No matter how advanced power-aware strategies in circuit designs and hardware drivers

may become, they must be integrated with applications and the operating systems, and

knowledge of the applications intents is essential. Advanced Configuration and Power

Interface (ACPI) [23] is an open industry specification that establishes interfaces for the

operating system (OS) to directly configure power states and supply voltages on each

individual device. ACPI was developed by Hewlett-Packard, Intel, Microsoft, Phoenix

and Toshiba. The operating system thus can customize energy policies to maintain the

quality of service required by applications and assign proper operating modes to each

device at runtime.

1.5.1 DVFS

The field of dynamic voltage and frequency scaling (DVFS) is currently the focus of a great

deal of power-aware research. This is due to the fact that the dynamic power consumption

of CMOS circuits [28, 72] is given by:

PW = βCLV
2
DDf (1.1)

where β is the average activity factor, CL is the average load capacitance, VDD is

the supply voltage and f is the operating frequency. Since the power has a quadratic

dependency on the supply voltage, scaling the voltage down is the most effective way

to minimize energy. However, lowering the supply voltage can also adversely affect the

system performance due to increasing delay. The maximum operating speed is a direct
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consequence of the supply voltage given by:

f =
K(VDD − Vth)β

VDD
(1.2)

where K is a constant specific to a given technology, Vth is the threshold voltage and

β is the velocity saturation index, 1 ≤ β ≤ 2

DVFS algorithms that target real-time systems instead assume the knowledge of timing

constraints of real-time tasks which are specified by users or application developers in

< C,P, d > tuple. Pillai and Shin [35] proposed a wide-ranging class of voltage scaling

algorithms for real-time systems. In their static voltage scaling algorithm, instead of

running tasks with different speeds, only one system frequency is determined and used.

Their operating frequency is determined by equally scaling all tasks to complete the lowest-

priority task as late as possible. This turns out to be pessimistic. Since the amount of

preemption by high-priority tasks is not uniformly distributed when there are multiple

task periods, a task can encounter less preemption relative to its own computation and

save more energy if it completes earlier than its deadline.

Aydin et al. [10] proposed the optimal static voltage scaling algorithm using the

solution in reward-based scheduling. Their approach assigns a single operating frequency

for each task and focuses on the EDF scheduling policy. DVFS effectively minimizes the

energy consumption but cost of voltage/frequency switch is high in some architectures.

One example for these systems is the Compaq IPAQ, which needs at least 20 milliseconds

to synchronize SDRAM timing after switching voltage (frequency). Voltage switch cost

on ARM11 implemented in the IMX31 architecture of Freescale is about 4 milliseconds).

For such systems, switching voltage at every point when task finishes its execution before

its worst case execution time is unacceptable. In this dissertation, we focus on minimizing

the voltage/frequency switching points but not at the cost of wasting unused processor

cycles.

Until now, We have considered a task model where tasks can execute only on one

processor at a time, but with the invent of new programming paradigms like MPI, open-

MP and Snet we are able to execute more than one threads of a task in parallel on a

multiprocessor or on multi-core (chip multiprocessing) systems even on FPGAs as well.

The degree of parallelism at different levels of a task is different which must be taken

care of while reserving resources for tasks. This can be tackled by allocating resources

dynamically, but if architecture can improve its processing capabilities at run time to well

suit the varying demands of application, then there is a need to schedule tasks by a self

adaptive approach. Moreover, if demands of applications changes at run time, then we

are left with no solution of scheduling such task but self adaptive scheduling technique.
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1.6 Self Adaptive scheduling

Scheduling of adaptively parallel jobs for which the number of processors which can be

used without waste changes during runtime can be achieved by scheduler where number

of processors allocated to tasks are static. Parallelism at each level of task is not same

and task can self-optimize itself during runtime as well, thus offering different degree

of parallelism at different than calculated before. So, there is a need to schedule tasks

dynamically and adaptively. Most prior work on task scheduling for multi-tasked jobs

deals with nonadaptive scheduling, where the scheduler allots a fixed number of processors

to the job for its entire lifetime. For jobs whose parallelism is unknown in advance and

which may change during execution, this strategy may waste processor cycles, because a

job with low parallelism may be allotted more processors than it can productively use.

Moreover, in a multiprogrammed environment, nonadaptive scheduling may not allow a

new job to start, because existing jobs may already be using most of the processors. With

adaptive scheduling, the job scheduler can change the number of processors allotted to

a job while the job is executing. Thus, new jobs can enter the system, because the job

scheduler can simply recruit processors from the already executing jobs and allot them to

the newly arrived tasks.

1.7 Contributions

The main thesis supported by this dissertation is the following.

Real time scheduling algorithms have schedulable bounds equal to the capacity of architec-

ture (based on some assumptions) but can be made more efficient by minimize scheduling

overheads to increase QoS (Quality of Service) of application, and this efficiency is at-

tained by taking into account task’s implicit run time parameters. Moreover, the schedula-

ble bounds equal to capacity of architecture can be achieved by relaxing these assumptions.

In the following subsections, we describe the contributions of this dissertation in more

detail. In addition to optimal schedulable bounds (which is clearly important), efficiency

is essential in several of the emerging real-time applications to improve QoS of application

and to minimize power consumption of the system. The objective is to propose scheduling

algorithms, which have very low run time complexity in terms of algorithmic complexity

and number of the invocations during execution of tasks i.e., reduced scheduling events.

Moreover, algorithms, which increase the number of tasks executed for given time by

exploiting runtime parameters of tasks, are also considered more efficient, as QoS of

application is directly related with number of tasks executed over a given period. In this

dissertation, we address the efficiency issues by introducing significant modifications to

existing scheduling algorithms to minimize scheduling events, cost of one scheduling event

and to improve QoS of application (briefly described in Section 1.7.1). We also address the



Chapter 1. Introduction and Background 10

issues related to power efficiency of architecture and provide schemes to minimize power

consumption of the system without compromising on the schedulability bound (Section

1.7.2). In case of multiprocessor system, schedulable bounds are achieved by making

unrealistic assumptions about application, for which runtime complexity, preemptions

and migration of tasks are quiet high. We handle this issue of runtime complexity and

preemptions (and migrations) on multiprocessor architecture, and devise technique which

relaxes these assumptions and reduces preemptions to a great extent(Section 1.7.3). We

also study hybrid scheduling algorithms, and present three approaches which have optimal

schedulable bounds and reduced cost(section1.7.4).

1.7.1 RUF scheduling algorithm

If task set is composed of critical and non critical tasks, and overall load of all tasks is

greater than 100%, then there is a need to devise a technique where all critical tasks are

guaranteed to meet their deadlines, and execution of non critical tasks is maximized as

well. Existing algorithms (EDF,MUF,CASH) either do not provides guarantees to critical

tasks in transient overload situation, or minimize the execution of non critical tasks. We

propose to exploit the run time parameters of tasks i.e., time slot of processor available

at runtime, Ci − AETi which is the difference beteween actual and worst case execution

of task, not only to provide guarantees to critical tasks but to maximize the execution

of non critical tasks also. To handle this issue, a new scheduling algorithm called RUF

(Real Urgency First) is proposed with objective to increase the QoS of application. We

define an admission control mechanism for non critical tasks to maximize their execution

but without compromising on deadline guarantees of critical tasks. This admission of

non critical task at time t depends upon the run time parameters of all those critcal tasks

which have finsihed their execution until t. We illustrate the prinicple through an example

and demonstrate experimentally that proposed algorithm incurs less preemptions than all

existing algorithms in terms of maximizing executions of critical tasks.

1.7.2 Power Efficiency

In case of mono processor system, real time scheduling algorithms have optimal schedula-

ble bounds but they have either high run time complexity or incurs a lot of preemptions of

tasks (increased scheduling events). These increased preemptions and high runtime com-

plexity of scheduling algorithms not only decrease the schedulable bounds (practically),

but also increase energy consumption of the system. These algorithms do not exploit all

implicit and runtime parameters of a task to minimize these overheads and energy of the

system . Laxity is an implicit parameter of task, which provides certain level of flexibility

to scheduler. Scheduler can exploit this flexibility to relax certain rules of scheduling

algorithm that can help to minimize scheduling overheads and preemptions of tasks. We
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propose to exploit this implicit parameter to define an algorithm which significantly re-

duces preemptions of tasks. Two variants of the approach are proposed to exploit run

time parameters of tasks to minimize preemptions, one is static and the other is dynamic.

Moreover, we also propose to exploit these parameter both in case of dynamic and static

priority scheduling algorithms i.e., for EDF and RM.

We also observed that preemptions of tasks are directly related with load of processor

and minimizing number of preemptions is beneficial to reduce the energy consumption of

the system. However, DVFS algorithms minimize the frequency of processor to decrease

power consumption which has its adverse effect on increasing the number of preemptions.

We propose an algorithm, where frequency of the processor is decreased only at those

instants when it does not have its impact on the number of preemptions. Moreover, it is

also ensured that switching points of frequency (where frequency of processor is changed)

are also minimized, as changing from one level of frequency to another level consumes

energy and processor time.

1.7.3 ASEDZL scheduling Algorithm

In case of multiprocessor systems, scheduling algorithms have been proposed which are

optimal but they are based on fluid schedule model or fairness notion. Algorithms based on

notion of fairness, increase scheduling overheads (preemptions and scheduler invocations)

to such a great extent that sometimes they are impractical. To minimize these scheduling

overheads, we propose a scheduling algorithm which is not based on fluid schedule (or

fairness notion).

We propose an algorithm called Anticipating Slack Earliest Deadline First until zero

laxity(ASEDZL). According to this algorithm, tasks are not allocated processor time

in proportion to their weights. Tasks are selected to execute between two consecutive

task’s release instants and tasks with the earliest deadlines are ensured to execute on all

processors until next release instant. This proposed algorithm provides better results in

terms of minimum number of preemptions and migrations of tasks for not being based

on fluid scheduling model. We illustrate the principle through couple of examples, and

we also demonstrate through simulation results that it performs better than all those

algorithms which have schedulable bound equal to capacity of the architecture.

1.7.4 Hierarchical Scheduling Algorithms

Hierarchical scheduling or hybrid scheduling algorithms guarantees better results than

partitioning or global scheduling algorithms in case of distributed shared memory archi-

tecture but very few hybrid scheduling algorithms are proposed which have schedulable

bound equal to number of processors (with some assumptions, detailed in chapter 5). Moir

et al. [53] proposed a technique of supertasking approach for hybrid scheduling algorithm,
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where Pfair scheduling algorithm is used as global scheduler, but it was required to de-

fine weight bound condition between local tasks (partitioned tasks) and its corresponding

supertask to achieve optimal schedulable bound, we establish that condition. We also

propose to use ASEDZL scheduling algorithm as global scheduler, as it does not impose

any condition on weights of supertask and local tasks. We compare, analytically, this

proposed algorithm with existing approaches to illustrate that it promises better results.

A novel hybrid scheduling algorithm is also proposed, where time slots are reserved for

execution of local and global tasks.

1.7.5 ÆTHER: Self-adaptive Middleware

Self-adaptive scheduling algorithms deal with tasks for which degree of parallelism is

calculated statically, and resources are allocated dynamically to cope different degree of

parallelism at different levels of sequential execution of a task to minimize wastage. These

algorithms also deal with dynamic creation and deletion of tasks, but they don’t deal where

tasks can self-optimize at run time and due to this self-optimization, degree of parallelism

at different levels of sequential execution of a task may differ from that of calculated

statically. Moreover, architecture can also self-optimize to execute parallel threads on one

resource more efficiently than executing each thread on separate resource. These run time

optimizations of architecture and application requires an intelligent self-adaptive resource

management mechanism that can tackle all these run time variations. We propose a self-

adaptive scheduling model, which takes care of all these run time optimization of tasks

and architecture to schedule tasks on resources, and provide deadline guarantees to real

time tasks.

1.8 Organization

In Chapter 2, we exploit the runtime parameter of a task which is Ci−AETi to improve the

QoS of an application, while in Chapter 3, we propose to work on both implicit and run-

time parameters of a task which are its laxity and release times respectively to minimize

the preemptions of tasks in schedule. In Chapter 4, we aim to take care of both explicit

and implicit parameters of a task i.e., Ci, Pi and Li, to propose an optimal global mul-

tiprocessor scheduling algorithm. Chapter 5 covers the proposed hierarchical scheduling

algorithms, where we have presented results using Pfair and ASEDZL scheduling algo-

rithm as a global scheduler. In each chapter, related state of art is also presented before

describing our work and results. In the last chapter, we summarize our contributions and

discuss directions for future research.



Introduction

1.1 Généralités

La différence principale entre un système temps réel par rapport à un système transaction-

nel ou même hautes performances est l’introduction de conditions temporelles dans ses

spécifications. En d’autres termes, un système temps réel est correct non seulement si le

code applicatif est logiquement correct et produit des résultats logiquement corrects, mais

également si ces résultats sont produits dans des intervalles de temps précis. Ainsi, un

système temps réel possède des notions duales d’exactitude relatives aux aspects logique

et temporel. Les systèmes de contrôle de processus qui multiplexent plusieurs calculs de

lois de commande tels du traitement de signal radar et de suivi de cibles dans un système

de contrôle de trafic aérien est un exemple de systèmes temps réel.

Les conditions et les contraintes temporelles dans les systèmes temps réel sont générale-

ment spécifiées sous forme d’échéances avant lesquelles les activités du système doivent

terminer leurs exécutions. Considérons comme exemple un système de suivi radar. Pour

suivre des cibles d’intérêt, le système radar effectue les activités ou tâches suivantes :

envoi des impulsions par radio vers les cibles, réception et traitement des signaux d’écho

reçus pour déterminer la position et la vitesse des objets ou des sources qui ont renvoyé les

impulsions, et enfin association des sources aux cibles et mise à jour de leurs trajectoires.

Pour un suivi efficace, chacune des tâches ci-dessus doit être exécutée périodiquement à

une fréquence qui dépend de la distance, de la vitesse, et de l’importance des cibles et, à

chaque invocation, doit exécuter la tâche dans un délai ou suivant une échéance spécifique.

Une autre caractéristique d’un système temps réel est qu’il devrait être prévisible. La

prévisibilité signifie qu’il devrait être possible de montrer ou de prouver que les exigences

des tâches sont toujours satisfaites quelles que soient les hypothèses faites, comme la

charge de calcul sur le ou les processeurs.

En fonction des conséquences induites par un non respect des exigences des tâches,

les contraintes de temps sont généralement classées comme dures ou souples. Une con-

trainte de temps dure correspond par exemple à échéance dont la violation peut entrainer

des conséquences désastreuses tels que des risques pour des vies humaines ou des dégâts

matériels importants. Des systèmes de contrôle de procédés industriels, des contrôleurs

13
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embarqués dans l’automobile ou des systèmes de contrôle aérien en aéronautique sont au-

tant d’exemples de systèmes soumis à des contraintes de temps réel dur. Par comparaison,

un système temps réel souple possède des contraintes moins critiques, le dépassement de

contraintes souples est ainsi possible. Cependant, ces dépassements ne sont en général

pas souhaitables du fait que la qualité de service du système se dégrade avec le nom-

bre de dépassements observés et par conséquent, ce nombre est généralement borné. Les

systèmes multimédia ou de réalité virtuelle sont des exemples de systèmes à contraintes

de temps souples.

Il existe des applications émergentes à la fois temps réel et de grande complexité algo-

rithmique. Des exemples sont les systèmes de suivi automatique de cibles et les systèmes

de télé-surveillance. Ces applications ont des contraintes temporelles qui visent à produire

une grande réactivité du système et peuvent être aussi nécessaires pour assurer un com-

portement correct voire crucial dans certaines applications telle que la télé-chirurgie. En

outre, leurs besoins de traitement peuvent facilement dépasser la capacité de calcul d’un

simple processeur et dans ce cas, un système multiprocesseur peut être nécessaire pour

réaliser une exécution efficace de l’application. Par ailleurs, les architectures multipro-

cesseurs peuvent être plus rentables qu’un processeur unique de même capacité de calcul

du fait que le coût d’un système à k-processeurs peut être moins élevé que celui d’un

processeur k fois plus rapide (dans l’hypothèse où un processeur de cette performance est

en effet disponible).

Ces observations soulignent l’importance croissante des architectures multiprocesseurs

dans les systèmes temps réel et celle des algorithmes d’ordonnancement de tâches adaptés

à ces architectures. Dans cette thèse, nous nous concentrons sur plusieurs points centraux

relatifs à cette problématique. Avant d’introduire les contributions développées dans la

thèse, nous décrivons brièvement quelques concepts de base concernant les systèmes temps

réel.

1.2 Les systèmes temps réel : concepts de base

Un système temps réel se compose typiquement de plusieurs processus (séquentiels) munis

de contraintes temporelles. Nous appelons ces processus des tâches. Dans la plupart des

systèmes temps réel, les tâches sont récurrentes, c’est à dire que chaque tâche est appelée

répétitivement tant que le système fonctionne. Le modèle de tâches périodiques introduit

par Liu et Layland [48] fournit la notion la plus simple d’une tâche récurrente. Chaque

tâche périodique Ti est caractérisée par une phase φi, une période Pi, une échéance relative

di, et un temps d’exécution pire cas Ci (Ci ≤ di). La quantité Bi représente le temps

d’exécution minimum d’une tâche. Une telle tâche est activée toutes les Pi unités de

temps, et sa première activation se produit à l’instant φi.
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Nous désignons par le terme ”travail” chaque invocation d’une tâche, et l’instant cor-

respondant à une invocation d’une tâche comme instant d’activation du travail. Ainsi, le

paramètre relatif à l’échéance est employé pour spécifier les contraintes temporelles des

travaux d’une tâche périodique. Sauf indication contraire, nous supposons que l’échéance

relative d’une tâche périodique est égale à sa période. En d’autres termes, chaque tra-

vail doit terminer son exécution avant l’activation du prochain travail de la même tâche.

Nous définissons les différents paramètres d’exécution d’une tâche suivants. Le paramètre

Cremi (t) représente la durée d’exécution restante de la tâche Ti à l’instant t définie par

Cremi (t) = Ci − Ccompletedi (t) où Ccompletedi (t) représente la fraction du temps d’exécution

réalisée de la tâche Ti jusqu’à l’instant t. Le paramètre Brem
i (t) représente le temps

d’exécution minimum restant à l’instant t. La quantité dremi (t) = di − t, définit la durée

restante à l’échéance de Ti. Le paramètre AETi associé à une tâche Ti représente le

temps d’exécution effectif d’un travail relatif à une invocation de cette tâche, il s’agit d’un

paramètre dynamique.

A chaque tâche Ti on associe une latence Li définie par:

Li = Pi − Ci

La latence d’une tâche Ti à l’instant t est définie par :

Li(t) = dremi (t)− Cremi (t)

Un système de tâches périodiques dans lequel toutes les tâches ont une phase nulle est un

système de tâches périodiques synchrones. Sauf indications contraires, nous considérons

dans la suite de la thèse des tâches de cette nature. Le terme HP désigne l’hyperpériode

de toutes les tâches c’est à dire le plus petit commun multiple des périodes des n tâches.

Le poids ou l’utilisation d’une tâche Ti, noté µi, est le rapport entre son temps d’exécution

pire cas et sa période (Ci/Pi). Le poids d’une tâche détermine la fraction de temps d’un

processeur que la tâche requiert pour son exécution pendant sa période. Le poids d’un

système de tâches est la somme des poids de toutes les tâches dans le système.

Nous supposons que toutes les tâches sont préemptives, c’est à dire qu’une tâche peut

être interrompue pendant son exécution et reprise plus tard à partir du même point d’arrêt.

Nous supposons que les coûts en temps liés à la préemption d’une tâche sont négligeables.

Nous supposons également que toutes les tâches sont indépendantes, en d’autres termes,

l’exécution d’une tâche n’est pas conditionnée par un ou des résultats fournis par d’autres

tâches. En particulier, nous supposons que les tâches ne partagent aucune ressource autre

que le processeur, et qu’elles ne s’auto-suspendent pas pendant leur exécution.
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1.3 Les stratégies d’ordonnancement temps réel et leur clas-

sification

Généralement, un algorithme d’ordonnancement temps réel affecte une priorité à chaque

travail, et dans le cas d’un système à M processeurs, planifie l’exécution des M travaux

ayant les priorités les plus élevées à chaque instant.

1.3.1 1.3.1 Faisabilité et optimalité

Un système de tâches périodiques est faisable sur une architecture mono ou multipro-

cesseur si et seulement si pour chaque invocation de chaque tâche, il est possible de re-

specter toutes les échéances. Un test de faisabilité pour une classe de systèmes de tâches

est défini comme une condition nécessaire et suffisante à vérifier pour s’assurer que tout

système de tâches dans cette classe soit faisable.

Un algorithme employé pour planifier des tâches (c’est à dire, allouer un temps du pro-

cesseur aux tâches) est désigné sous le nom d’algorithme d’ordonnancement. Un système

de tâches τ est ordonnançable par l’algorithme A si A peut garantir les échéances de tous

les travaux de chaque tâche dans τ . Une condition suivant laquelle tous les systèmes de

tâches dans une classe sont ordonnançables par A est un test d’ordonnançabilité pour A

pour cette classe de systèmes de tâches. Un algorithme d’ordonnancement est considéré

comme optimal pour une classe de systèmes de tâches si sa condition d’ordonnançabilité

est identique à la condition de faisabilité pour cette classe.

1.3.2 Ordonnancement en ligne et hors ligne

Dans un ordonnancement hors ligne, l’ordonnancement complet d’un système de tâches

(jusqu’à un temps défini par l’hyperpériode des tâches) est pré-calculé avant que le système

ne soit exécuté réellement; l’ordonnancement des exécutions des tâches est effectué en

utilisant une table basée sur cet ordonnancement pré-calculé. Afin de produire un ordon-

nancement hors ligne, il est nécessaire de connâıtre les temps exacts d’activation de tous

les travaux du système. Cependant, une telle connaissance n’est pas toujours disponible,

en particulier pour ceux qui contiennent des tâches sporadiques, ou périodiques avec des

phases inconnues. Même si une telle connaissance était disponible, alors il peut être

irréaliste de mémoriser l’ordonnancement complet dans le cas où le PPCM des périodes

des tâches est très grand. Par ailleurs, un ordonnanceur en ligne choisit un travail à ordon-

nancer sans aucune connaissance des activations des travaux futurs. On peut noter qu’un

algorithme d’ordonnancement en ligne peut être également employé pour produire un or-

donnancement hors ligne. De manière évidente, un ordonnancement hors ligne est plus

efficace à l’exécution qu’un ordonnancement en ligne, cependant la flexibilité est réduite
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dans le cas hors ligne. Les ordonnanceurs en ligne doivent être efficaces, mais peuvent

avoir à prendre des décisions d’ordonnancement sous-optimales.

1.3.3 Priorités Statiques et Dynamiques

La plupart des algorithmes d’ordonnancement est basée sur le principe de priorité: ils

attribuent des priorités aux tâches ou aux travaux dans le système et ces priorités sont

utilisées pour sélectionner un travail à exécuter en fonction des décisions d’ordonnancement

prises. Un algorithme d’ordonnancement basé sur les priorités peut déterminer les priorités

des tâches ou de travaux de différentes manières. Un algorithme d’ordonnancement est à

priorités statiques si une priorité unique est associée à chaque tâche, et tous les travaux

issus d’une même tâche possèdent la priorité liée à cette tâche. Ainsi, si la tâche Ti a

une priorité plus élevée que la tâche Tj , alors lorsque toutes les deux deviennent actives,

le travail de Ti aura une priorité plus élevée que celui de Tj . Un exemple d’algorithme

d’ordonnancement basé sur des priorités statiques est l’algorithme Rate-Monotonic (RM)

[48]. L’algorithme RM affecte les priorités les plus élevées aux tâches ayant des périodes les

plus courtes. Les algorithmes à priorité dynamique permettent une plus grande flexibilité

dans l’attribution des priorités aux tâches. La priorité d’une tâche peut varier entre les

travaux ou même au sein du même travail. Un exemple d’algorithme d’ordonnancement

à priorités dynamiques est l’algorithme Earliest Deadline First (EDF) [48]. Cet algo-

rithme associe une priorité plus élevées aux travaux ayant des échéances plus proches.

Il est prouvé que cet algorithme est optimal pour ordonnancer des tâches périodiques et

sporadiques sur une architecture monoprocesseur [48, 54]. L’algorithme Least Laxity-

First (LLF) [54] est également un exemple d’algorithme à priorités dynamiques - il est

également optimal pour des architectures monoprocesseurs. Comme son nom le suggère,

sous LLF, les travaux ayant des laxités les plus faibles ont les priorités les plus élevées.

1.4 Ordonnancement temps-réel multiprocesseur

Dans cette ce paragraphe, nous détaillons des approches d’ordonnancement développées

dans le cas multiprocesseur.

1.4.1 Approches d’ordonnancements multiprocesseurs

Deux approches traditionnelles considérées pour l’ordonnancement sur architectures mul-

tiprocesseurs sont l’ordonnancement avec partitionnement et l’ordonnancement global.

1.4.1.1 Approche par partitionnement

Sous le terme ordonnancement par partitionnement, il faut considérer un ensemble de

tâches (statiquement) partitionnées sur les processeurs. Chaque tâche est allouée à un



Chapter 1. Introduction 18

processeur unique sur lequel elle s’exécute. Chaque processeur possède son propre or-

donnanceur qui lui permet de sélectionner localement les tâches à exécuter parmi celles

qui lui ont été attribuées. Il possède également une file locale des tâches dans laquelle

sont rangés les travaux prêts à être exécutés. En d’autres termes, l’espace des priorités

affecté à chaque tâche est local à chaque processeur. De plus, les ordonnanceurs de chaque

processeur peuvent être tous basés sur le même algorithme d’ordonnancement ou chacun

peut utiliser son propre algorithme. Enfin, le partitionnement des tâches sur l’ensemble

des processeurs doit s’assurer que pour chaque processeur, la somme des utilisations des

tâches allouées au processeur est au plus égale à la limite d’utilisation possible de son

ordonnanceur.

1.4.1.2 L’approche par ordonnancement global

Par opposition à l’ordonnancement par partitionnement, l’ordonnancement global utilise

un espace unique pour les priorités. Il n’existe qu’une seule file globale des tâches prêtes.

A chaque instant, les M tâches prêtes qui possèdent les plus grandes priorités dans l’espace

global des priorités s’exécutent sur les M processeurs. Aucune restriction n’est imposée

ici sur le choix du processeur qui exécute une tâche prête et sélectionnée. En particulier,

l’exécution d’une tâche peut être amenée à migrer d’un processeur à un autre en fonction

des décisions d’ordonnancement.

1.4.1.3 L’ordonnancement hybride à deux niveaux

Certains algorithmes d’ordonnancement ne répondent pas strictement aux deux approches

présentées ci-dessus mais utilisent les deux approches à la fois. Par exemple, des algo-

rithmes dans lesquelles certaines tâches ne peuvent pas migrer et doivent donc être af-

fectées à un processeur spécifique alors que d’autres tâches ont la possibilité de migrer.

Ces algorithmes suivent une stratégie mixte. En général, un ordonnancement basé sur

une stratégie mixte est réalisé sur deux niveaux. Au premier niveau, un ordonnanceur

global et unique détermine le processeur sur lequel les tâches devraient être allouées et ce

en fonction de règles globales. Au second niveau, les tâches allouées à un processeur sont

ordonnancées localement en fonction de priorités locales. Plusieurs variantes de ce modèle

général ainsi que d’autres types d’ordonnancements hybrides sont également possibles.

1.5 Systèmes d’exploitation embarqués pour la gestion de

l’énergie

L’accroissement important de la demande pour l’exécution d’applications sur les systèmes

autonomes (sur batterie) met en évidence un besoin d’exécuter des applications en ten-

ant compte de la consommation d’énergie engendrée. Avec les nouvelles générations de
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processeurs basse consommation, l’objectif est d’ajuster dynamiquement et de manière

matérielle les performances souhaitées du ou des processeurs de sorte à satisfaire la charge

induite par l’exécution des tâches tout en minimisant la consommation d’énergie et ce afin

d’allonger la durée de fonctionnement entre deux recharges de la batterie. Par rapport

aux conceptions traditionnelles basse consommation qui visent à obtenir les hautes per-

formances, il est ici nécessaire de considérer une collaboration Entre matériel et logiciel

pour réduire la consommation à chaque fois que les performances du système peuvent être

relâchées.

Les techniques DVFS (Dynamic Vlotage and Frequency Scaling) sont intégrées dans

de nombreux processeurs commerciaux tels que les processeurs Transmetas, Crusoe, Intels

XScale et Texas Instruments OMAP3430. Du fait que la puissance dynamique (celle liée

à l’exécution des traitements) dans les circuits CMOS dépende de manière quadratique de

la tension d’alimentation du circuit, l’abaissement de la tension est un moyen efficace pour

réduire la consommation de puissance. Cependant, cette réduction affecte également et ce

de manière négative les performances du système en augmentant les temps de réponse. Par

conséquent, des algorithmes efficaces de gestion du DVFS doivent permettre de maintenir

dynamiquement les performances requises par les applications.

Quelque soit la stratégie basse consommation utilisée pendant la conception de cir-

cuits, cette stratégie doit être associée avec les applications et le système d’exploitation

et de plus, la connaissance du comportement des applications est aussi essentielle. La

spécification industrielle Advanced Configuration and Power Interface (ACPI)[23] établit

des interfaces dans les systèmes d’exploitation afin de permettre de configurer directement

les états de sauvegarde d’énergie et les tensions d’alimentation de chaque composant du

système et ce de manière individuelle. Cette spécification ACPI a été développée par

Hewlett-Packard, Intel, Microsoft, Phoenix et Toshiba. Le système d’exploitation peut

ainsi personnaliser des politiques de consommation d’énergie pour maintenir la qualité de

service demandée par les applications et définir ainsi pour chaque composant son propre

mode d’exécution en fonction des besoins.

1.5.1 DVFS

La problématique liée au changement dynamique en fréquence et en tension (DVFS)

est actuellement un domaine ou de nombreuses recherches sont menées pour obtenir des

réductions efficaces de la consommation d’énergie. La puissance dynamique consommée

par un circuit CMOS est donnée par [28, 72] :

PW = βCLV
2
DDf (1.3)

Où β est un facteur d’activité moyen du circuit, CL est la capacité globale du circuit

chargée et déchargée à chaque transition, VDD est la tension d’alimentation et f est la
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fréquence utilisée. Puisque la puissance dépend de manière quadratique de la tension

d’alimentation, la réduction de la tension est la méthode la plus efficace pour minimiser

l’énergie. Cependant, l’abaissement de la tension réduit également les performances du

système du fait que la fréquence maximale du circuit est directement liée à la tension

f =
K(VDD − Vth)β

VDD
(1.4)

La constante K est spécifique pour la technologie donnée, Vth est la tension de seuil de

basculement et β est l’index de saturation de la vélocité,1 ≤ β ≤ 2

Les algorithmes DVFS développés pour les systèmes temps réel supposent en général

la connaissance a priori des caractéristiques des tâches. Ces caractéristiques sont spécifiées

par l’utilisateur ou le concepteur. Pillai et Shin [35] proposent une large gamme d’algorithmes

pour les systèmes temps réel. Dans leurs algorithmes ” statiques ”, une seule fréquence

est calculée puis utilisée pour exécuter toutes les tâches. Cette fréquence est déterminée

en allongeant de manière identique les temps d’exécution de toutes les tâches de telle

sorte que la tâche la moins prioritaire se termine le plus tard possible tout en vérifiant son

échéance. Cette approche s’avère pessimiste du fait que le nombre total de préemptions

par les tâches de plus hautes priorités n’est pas uniformément distribué quand des tâches

ont des périodes différentes. De même, une tâche peut rencontrer moins de préemptions

relativement à sa propre exécution si elle se termine plus tôt que son échéance, ce qui a

pour effet de réduire la consommation en énergie.

Aydin et al. [10] proposent un algorithme optimal avec des points de tensions sta-

tiques utilisant la solution d’un ordonnancement basé sur la notion de récompense. Leur

approche fixe une fréquence unique pour chaque tâche et se focalise sur une politique

d’ordonnancement de type EDF. La technique DVFS minimise efficacement la consom-

mation d’énergie. Cependant le coût de changement de couple tension/fréquence est

élevé dans certaines architectures. Un exemple d’un tel système est le Compaq IPAQ, qui

nécessite au moins 20 ms pour synchroniser l’horloge de la SDRAM après un changement

en tension/fréquence. De même, le changement de tension/fréquence sur un ARM1136

(architecture Freescale IMX31) est de l’ordre de 4 ms. Pour ces systèmes, le change-

ment en tension/fréquence aux instants définis par les terminaisons des tâches qui peu-

vent précéder celle relative à leur temps exécution maximum est inapplicable. Dans ce

mémoire, on s’attache à minimiser les instants de changement de tension/fréquence mais

pas au prix d’un nombre élevé de cycles gaspillés lorsque le processeur est inactif.

1.6 Ordonnancement Auto-adaptatif

L’ordonnancement de travaux où chaque travail possède un degré de parallélisme variable

durant son exécution peut permettre d’adapter le nombre de processeurs utilisés et ce en
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définissant de manière statique un nombre de processeurs alloués à chaque changement

de degré de parallélisme. Cette adaptation peut être aussi réalisée de façon dynamique

par l’ordonnanceur afin de réduire l’inactivité de processeurs induite par une allocation

statique de processeurs à chaque tâche. Le parallélisme disponible au cours de l’exécution

d’une tâche peut être appréhendé avec une granularité variable, aussi on peut imaginer

d’ordonnancer des tâches dynamiquement et de manière adaptative. Pour les travaux

dont le degré de parallélisme est inconnu à l’avance (création dynamique de tâches) et/ou

ce degré de parallélisme est non constant pendant l’exécution, la stratégie d’associer un

nombre fixe de processeurs par travail peut engendrer un important gaspillage en nombre

de cycles processeur du fait qu’un travail ayant un faible parallélisme effectif a pu se voir

attribué plus de processeurs qu’il n’a pu en utiliser. Par ailleurs, dans un environnement

multiprogrammation, un ordonnancement non adaptatif peut ne pas permettre l’exécution

d’un nouveau travail du fait que l’allocation statique des processeurs aux travaux en

cours d’exécution peut conduire à une réservation de tous les processeurs même si ceux-

ci ne sont pas réellement utilisés. Avec un ordonnancement adaptatif, l’ordonnanceur

de travaux peut changer dynamiquement le nombre de processeurs associés à un travail,

pendant l’exécution de celui-ci. Ainsi, un nouveau travail peut éventuellement entrer dans

le système tant que l’ordonnanceur peut allouer des processeurs non utilisés.

1.7 Contributions

Les études menées dans cette thèse ont pour dénominateur commun le constat suivant:

les algorithmes d’ordonnancement temps-réel ont des bornes d’ordonnançabilité au plus

égales à la capacité de traitement de l’architecture (et ce suivant certaines hypothèses).

Cependant, ces algorithmes peuvent gagner en efficacité dès lors que leur impact sur les

temps de gestion est réduit et ainsi augmenter la Qualité de Service (QoS) des applica-

tions. Cet accroissement en efficacité peut être obtenu par une meilleure prise en compte

de paramètres implicites des tâches. De plus, les bornes d’ordonnançabilité égales à la

capacité de traitement de l’architecture peuvent être atteintes en relâchant certaines des

hypothèses classiquement considérées.

Dans la suite nous décrivons les contributions de cette thèse de manière plus détaillée.

Les bornes d’ordonnançabilité sont de toute évidence importantes à identifier mais l’efficacité

est aussi essentielle dans un grand nombre d’applications émergentes et temps réel et ce

afin d’améliorer la QoS de l’application et de minimiser la consommation d’énergie du

système. L’objectif est de proposer des algorithmes d’ordonnancement qui possèdent un

temps d’exécution faible du fait d’une complexité algorithmique réduite liée en particulier

à une diminution du nombre d’invocations de l’ordonnanceur, c’est-à-dire la réduction du

nombre d’événements d’ordonnancement. Par ailleurs, des algorithmes d’ordonnancement

qui augmentent le nombre de tâches exécutées dans un temps imparti en exploitant des
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paramètres dynamiques des tâches en cours d’exécution, sont a priori efficaces puisque

la QoS de l’application est directement liée au nombre de tâches exécutées pendant ce

temps. Dans ce mémoire, nous abordons les problèmes d’efficacité d’ordonnancement en

apportant des modifications significatives aux algorithmes d’ordonnancement existants et

ce en cherchant à minimiser le nombre d’événements d’ordonnancement et en diminuant

le coût de gestion d’un événement d’ordonnancement ce qui a pour résultat d’améliorer la

QoS de l’application (partie décrite brièvement dans le paragraphe 1.7.1). Nous abordons

également les problèmes liés à la consommation d’énergie de l’architecture cible et pro-

posons une démarche pour la minimiser sans compromettre les bornes d’ordonnançabilité

(paragraphe 1.7.2). Dans le cas de systèmes multiprocesseurs, la borne d’ordonnançabilité

égale au nombre de processeur peut être atteinte mais au prix d’hypothèses souvent

irréalisables vis-à-vis de l’application du fait des coûts élevés induits par la complexité de

gestion en ligne et les nombres de préemptions et migrations de tâches. Nous apportons

une réponse à ces problèmes dans le cas d’architectures multiprocesseurs en proposant

des techniques qui relâchent les hypothèses et permettent ainsi de réduire le nombre de

préemptions de manière importante (paragraphe 1.7.3). Nous avons également étudié des

algorithmes d’ordonnancement hybrides et présentons trois approches ayant des bornes

optimales d’ordonnançabilité avec un coût mâıtrisé (paragraphe 1.7.4).

1.7.1 Algorithmes d’ordonnancement RUF

Considérons un ensemble de tâches composé de tâches critiques et non critiques tel que

la charge totale de cet ensemble est supérieure à 100%. Il se pose alors le problème de

définir une technique d’ordonnancement qui garantit une terminaison de toutes les tâches

critiques avant leurs échéances tout en maximisant les exécutions des tâches non critiques.

Des algorithmes existants (tels EDF, MUF, CASH) n’apportent pas de garanties vis-à-vis

des tâches critiques lors de situations transitoires de surcharge ou bien ne maximisent

pas l’exécution des tâches non critiques. Dans ce contexte, nous proposons d’exploiter

les paramètres dynamiques (en ligne) des tâches, c’est à dire les intervalles de temps

Ci−AETi où le processeur est disponible à chaque exécution d’une tâche lorsque le temps

d’exécution effectif de la tâche est inférieur à son temps d’exécution pire cas. L’objectif

n’est pas seulement de fournir des garanties aux tâches critiques mais aussi de maximiser

l’exécution des tâches non critiques. Pour répondre à ce problème, un nouvel algorithme

d’ordonnancement appelé RUF (Real Urgency First) est proposé. Nous définissons un

mécanisme de contrôle des tâches non critiques afin de maximiser leurs exécutions et

ceci sans compromettre les échéances des tâches critiques. Ce contrôle des tâches non

critiques à un instant t dépend des paramètres dynamiques des tâches qui ont terminé

leurs exécutions avant l’instant t. Nous illustrons le principe à travers un exemple et nous
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montrons expérimentalement que l’algorithme proposé génère moins de préemptions que

les algorithmes existants tout en maximisant les exécutions des tâches non critiques.

1.7.2 Optimisation de la consommation

Dans le cas de systèmes monoprocesseurs, des algorithmes d’ordonnancement temps réel

ont des bornes d’ordonnançabilité optimales mais au prix d’une complexité en ligne

qui peut être élevée, avec pour conséquence un nombre important de préemptions de

tâches (ou d’événements d’ordonnancement). Ce nombre élevé de préemptions diminue

en pratique l’ordonnançabilité des tâches, mais également augmente la consommation

d’énergie du système. Ces algorithmes n’exploitent pas en général tous les paramètres

implicites et dynamiques (en ligne) des tâches aussi des optimisations sont possibles

afin de minimiser les coûts de gestion par l’ordonnanceur et l’énergie du système. La

laxité est par exemple un paramètre implicite d’une tâche qui fournit une certaine flex-

ibilité à l’ordonnanceur. L’ordonnanceur peut exploiter cette flexibilité pour relâcher

certaines règles de l’algorithme d’ordonnancement et ainsi aider à réduire le coût lié aux

préemptions des tâches. Nous proposons d’utiliser ce paramètre implicite dans un algo-

rithme d’ordonna-ncement afin de réduire très significativement le nombre de préemptions

des tâches. Deux variantes de cette approche sont proposées, l’une est statique, l’autre est

dynamique, toutes deux sont appliquées aux politiques d’ordonnancement EDF et RM.

On peut remarquer également que les préemptions des tâches sont en général liées au taux

de charge du processeur par les tâches. L’utilisation de la technique de DVFS sur le pro-

cesseur dont l’objectif est de minimiser sa fréquence en vue de diminuer la consommation

d’énergie a également pour effet inverse d’augmenter la charge relative du processeur et

pas conséquence le nombre de préemptions. Ainsi, il est nécessaire de réduire dans le même

temps le nombre de changements de fréquence de fonctionnement du processeur, puisque

chaque changement implique une consommation d’énergie et un temps d’inoccupation du

processeur.

1.7.3 Algorithme d’ordonnancement ASEDZL

Dans le cas de systèmes multiprocesseurs, des algorithmes d’ordonnancement optimaux

ont été proposés, basés sur un modèle d’ordonnancement fluide avec une idée d’équité

sous-jacente. Les algorithmes basés sur cette approche d’équité impliquent un coût de

gestion élevé dû aux préemptions et aux invocations de l’ordonnanceur ce qui les rend

parfois inutilisables. Pour minimiser ce coût de gestion, nous proposons un algorithme

d’ordonnancement qui n’est justement pas basé sur un ordonnancement équitable. Dans

cet algorithme appelé ASEDZL (Anticipating Slack Earliest Deadline first until Zero Lax-

ity), les tâches ne sont pas allouées à un processeur pour un temps fonction de leurs poids,

elles sont sélectionnées pour s’exécuter entre deux requêtes consécutives de tâches de telle
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sorte que les tâches ayant les échéances les plus proches sont assurées de s’exécuter jusqu’à

la prochaine requête. Cet algorithme fournit de meilleurs résultats en termes de nombre

de préemptions et de migrations de tâches par rapport aux algorithmes à ordonnancement

fluide. Nous illustrons les principes par l’intermédiaire de deux exemples et nous montrons

également par simulation que les résultats obtenus sont meilleurs (en préemptions et mi-

grations) que les algorithmes classiques qui ont également une borne d’ordonnançabilité

égale à la capacité de traitement de l’architecture.

1.7.4 Algorithme d’Ordonnancement Hiérarchique

Les algorithmes d’ordonnancement hybrides ou hiérarchiques garantissent en général de

meilleurs résultats que les algorithmes d’ordonnancement globaux ou partitionnés dans le

cas d’architectures à mémoire partagée et distribuée. Cependant, un très petit nombre

d’algorithmes d’ordonnancement hybrides sont proposés ayant une borne d’ordonnançabilité

égale au nombre de processeurs (en considérant les hypothèses précisées dans le Chapitre

5). Une technique de supertâche est proposée par Moir et al. [53] dans un algorithme

d’ordonnancement hybride où l’algorithme Pfair est utilisé comme un ordonnanceur global.

Cependant, il est nécessaire de définir une condition limite pondérée entre les tâches lo-

cales (celles partitionnées) et les supertâches correspondantes pour atteindre la borne

maximum d’ordonnançabilité. Nous établissons cette condition dans le chapitre cinq.

Nous proposons également d’utiliser l’algorithme ASEDZL comme ordonnancement global

avec l’intérêt qu’il n’impose aucune condition sur les poids respectifs des supertâches et

des tâches locales. Nous comparons l’algorithme proposé avec des approches existantes

pour illustrer que de meilleurs résultats peuvent être obtenus. Un nouvel algorithme

d’ordonnancement hybride est également proposé où des intervalles de temps sont réservés

pour l’exécution des tâches locales ou globales.

1.7.5 ÆTHER: Self-adaptive Middleware

Les algorithmes d’ordonnancement auto-adaptatifs considèrent généralement des tâches

avec un degré de parallélisme déterminé statiquement et une allocation de ressources

dynamique afin d’une part, de tenir compte de la variation du parallélisme apparaissant

lors de l’exécution de la tâche suivant son flot de contrôle et d’autre part, de réduire

le gaspillage en ressources. Ces algorithmes peuvent prendre en compte la création ou

la suppression dynamique de tâches mais ils ne sont pas capables de traiter le cas de

tâches ayant des capacités à s’auto-optimiser à l’exécution ce qui conduit à un degré

de parallélisme effectif pendant l’exécution différent de celui calculé statiquement. Par

ailleurs, l’architecture peut aussi s’auto-adapter pour exécuter séquentiellement des tâches

a priori parallèles sur une ressource spécifique plutôt que de les exécuter en parallèle sur

différentes ressources standardisées. Ces optimisations à l’exécution de l’architecture et
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de l’application nécessitent un mécanisme auto-adaptatif de gestion de ressources capable

d’appréhender ces variations à l’exécution. Nous proposons un modèle d’ordonnancement

auto-adaptatif qui prend en compte ces optimisations à l’exécution et fournit les garanties

de respect d’échéances pour les tâches temps réel critique. L’ensemble de toutes les

contributions introduites ci-dessus est détaillé dans les chapitres suivants. Dans chaque

chapitre, un état de l’art associé au thème abordé est présenté dans un premier temps avant

de décrire les approches proposées et les résultats obtenus. Dans le dernier chapitre, nous

résumons nos différentes contributions et proposons des pistes pour de futures recherches.





Chapter 2

Real Urgency First Scheduling

Algorithm

2.1 Introduction

In real time systems all tasks have some certain deadline constraints which they have

to meet in order to provide required level of Quality of Service (QoS). In case of hard

real time systems, tasks must meet their deadlines to avoid catastrophic happenings.

Many scheduling algorithms have been proposed that tackle these problems with different

ways. Real-time scheduling algorithms may assign priorities statically, dynamically, or

in a hybrid manner, which are called fixed, dynamic and hybrid scheduling algorithms,

respectively.

These scheduling algorithms are optimal on mono-processor architecture i.e., if uti-

lization of task set is less than or equal to 100% then all tasks are guaranteed to meet

their deadline constraints, but when these algortihms are applied in transient overload

situations, they perform poorly. For example, EDF and LLF does not guarantee that

which task will fail in overload situations. As a result, it is possible that a very critical

task may fail at the expense of a lesser important task.

The maximum urgency first algorithm MUF [74] solves the problem of unpredictability

during a transient overload for EDF, LLF and MLLF [57] algorithms. The MUF algorithm

is a combination of fixed and dynamic priority scheduling, also called mixed priority

scheduling. With this algorithm, each task is given an urgency which is defined as a

combination of two fixed priorities (criticality and user priority) and a dynamic priority

that is inversely proportional to the laxity. The criticality has higher precedence over

the dynamic priority while user priority has lower precedence than the dynamic priority.

MUF algorithm provides guarantees, that no critical task misses its deadline in a transient

overload. But this algorithm has one serious shortcoming, that it is not a fair scheduler.

It provides guarantees to critical tasks, but may unnecessarily cause many non critical

27
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tasks to miss their deadlines. It is due to assigning higher static priorities to critical tasks

over non critical tasks.

In imprecise computation techniques [11, 43], each task is divided into two subtasks;

mandatory subtask and optional subtask, instead of grouping tasks into two subsets. If

these tasks are terminated before their completion but after executing mandatory units,

the results are acceptable, and executing a part of optional subtask does not decrease the

performance. This model is quiet different from the basic model and requires a lot of

support from programmers. Moreover, these algorithms schedule optional subtasks in the

same way as non critical tasks are scheduled by MUF algorithm.

Quality of service based resource allocation model QRAM [69] tries to allocate re-

sources to different applications, which may need to satisfy more than one QoS require-

ments. Utility function is defined for each task to allocate resources to applications to

increase its performance, but it does not explain that how QoS of a real time applica-

tion can be increased by assigning more resources of processor to non critical tasks while

providing guarantees to critical tasks.

Capacity sharing algorithm (CASH)[20] is based on the idea of resource reservation.

Resource reservation mechanism bounds effects of task interference. CASH algorithm

also performs the efficient reclaiming of unused computation time to relax the utilization

constraints imposed by isolation. It provides guarantees to both critical tasks and non

critical tasks if and only if
k∑
i=1

Ci
Pi

+
m∑
j=1

Cj
Pj
≤ 1 (2.1)

where∑k
i=1

Ci
Pi

denotes sum of utilization of critical tasks and∑m
j=1

Cj
Pj

represent sum of utilization of non critical tasks

If sum of utilization of critical tasks approaches 100%, then no non critical task can

be added in the system. If sum of utilization of critical tasks and sum of utilization of

non critical tasks increases more than 100%, then CASH can not provide guarantee to

critical tasks.

We propose a scheduling algorithm called RUF (Real Urgency First), where the critical

tasks are always guaranteed to meet their deadlines. It also improves the execution of

non critical tasks. The proposed scheduling algorithm is an extended model of MUF

algorithm. MUF is biased towards critical tasks, as MUF assigns higher static priorities

to critical tasks over non critical tasks. It may, unnecessarily, cause many non critical

tasks to miss their deadlines, which could be executed without causing critical tasks to

miss their deadlines. We divide a task set into two groups. The first group is the set of

critical tasks, and second group is set of non critical tasks. In our algorithm, critical tasks

are not assigned higher static priorities over not critical tasks, rather they are placed in



Chapter 2. Real Urgency First Scheduling Algorithm 29

two different queues i.e., ready queue and temporary ready queue. Scheduler selects tasks

from ready queue to execute, and non critical tasks are moved from temporary ready

queue to ready queue at runtime (Fig:2.1). Non critical tasks are selected to execute in

presence of ready critical tasks.

2.2 Approach Description

We assume that there are k critical tasks and m non critical tasks such that k +m = n.

In the task set τ , tasks are sorted based on their period lengths in an ascending (non-

decreasing) order, i.e., the period of Ti is smaller than that of Ti+1.

2.2.1 Dynamic Slack

Processor utilization of each task is calculated by considering its worst case execution

time, which happens rarely in actual execution of a task. Moreover if all critical tasks

take processor time equal to Ci during each interval [(g−1).Pi, g.Pi) where g is a positive

integer, then no non critical task can be executed (if sum of utilization of critical task is

100%). Non critical tasks are executed if there is positive slack (difference between Ci

and AETi) offered by critical tasks. We call this dynamic slack as available time slot,

and time sloti is defined as:

time sloti = Ci −AETi

Whenever a task completes its execution, and it has used processor for time units less

than its Ci, it increases available time slot. This increment in time sloti may vary from

zero to the difference between its Ci and Bi. The total available time slot is updated

whenever a task Ti finishes its execution:

time slot = time slot+ (Ci −AETi)

We define a task called virtual task which is not a real task and is only used to drive

admission control mechanism for non critical tasks, as shown in Fig:2.1. Whenever AETi
of a critical task is less than its Ci, there is a time sloti and scheduler generates/updates

parameters of virtual task Tvt. The generation of virtual tasks implies that non critical

tasks may be admitted into ready queue.

2.2.2 Virtual task

A virtual task has dynamic parameters which depend upon the runtime parameters of

critical tasks. Worst case execution time of virtual task, Cvt, is defined as time slot while

absolute deadline, dvt, of this virtual task is the latest deadline of all those critical tasks
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Figure 2.1: Approach Description

which have contributed to time slot of the system:

Cvt = time slot

dvt = max(di)

Whenever a non critical task Tnc is moved from temporary ready queue to ready queue,

time slot is recalculated in the following way: (Cnc : WCET of non critical task)

time slot = time slot− Cnc

2.2.3 Dummy Task

If sum of processor utilization of all critical tasks is not 100%, then a dummy task ,Td, is

added to the set of critical tasks. Time period, Pd, of this dummy task is equal to time

period of the most frequent non critical task, and its worst case execution time, Cd, is

such that sum of processor utilizations of all critical tasks plus processor utilization of

dummy task equals to 100%. The dummy task is defined by:

Pd = min(P1, P2, P3, ..., Pm)

where (P1, P2, ..Pm) are periods of non critical tasks and

Cd = Pd ×

(
1−

k∑
i=1

Ci
Pi

)

where
∑k

i=1
Ci
Pi

is sum of processor utilizations of critical tasks. Whenever this dummy

task executes it takes zero time to execute, and time allocated to it, Cd, is used to execute

most appropriate non critical task. When dummy task executes, the value time slot is

updated in following way:

time slot = time slot+ Cd
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2.2.4 Management of non critical tasks

Tasks from ready queue are selected by scheduler to execute on the processor. Tasks from

temporary ready queue are moved to ready queue depending upon value of time slot and

Ci of highest priority non critical task.

2.2.4.1 Selection of Non Critical task

A non critical task, Tnc, is inserted into the ready queue to benefit from the available

time slot. As it may cause critical task to miss its deadline, there is a need to define

an appropriate mechanism, which provides guarantees to the set of critical tasks even in

the presence of non critical task in ready queue. There are two approaches to add a non

critical task into ready queue, and these approaches are based on parameters of virtual

tasks.

Best Effort Approach: The highest priority non critical task Ti is added to ready

queue if time slot is greater than Ci of highest priority non critical task. Whenever non

critical task is added to ready queue, it is assigned a virtual deadline which may be greater

than or equal to its real absolute deadline (Fig:2.2.a). In this case, addition of non critical

task to ready queue does not cause critical tasks to miss their deadlines, but successful

completion of non critical task is not guaranteed in this case.

Guaranteed Approach: In this approach, a non critical task which has its deadline

either equal or greater than absolute deadline of virtual task is selected to add into ready

queue (Fig:2.2.b). The worst case execution time of this non critical task is smaller than

or equal to available time slot. In this case, addition of non critical task neither causes

critical tasks to miss their deadlines nor misses its own deadline.

Admission
control

If

Cnc ≥ Cvt

vt

nc

d

C

If

Cnc ≥ Cvt

dnc ≥ dvt

nc

nc

d

C

(a) Best Effort approach (b)  Guaranteed approach

Task admitted Task admitted

Figure 2.2: Two types of Admission Control
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2.2.4.2 Inserting Points of Non Critical Task

Non critical tasks are inserted into the ready queue to benefit from the available time slot

at time when it could be executed without making critical task to miss their deadline. A

non critical task is inserted into ready queue in two cases.

Sufficient time slot: A non critical task is inserted into ready task queue whenever

available time slot is sufficiently high to execute a non critical task. Once a non critical

task is added into ready queue, it is selected to execute depending upon its dynamic

priority.

Urgency of the time slot: A non critical task is inserted into ready queue at the

point when urgency of available time slot has reached. Urgency of available time slot is

defines as a scheduling instant when there is no critical task in ready queue, and available

time slot is not sufficient enough to execute a non critical task. At this time, a non critical

task is inserted into ready queue. This non critical task executes and keeps on executing

until either it has finished its execution, or a critical task has been released for its next

instant. If a critical task has been released and non critical task has not yet finished its

execution, non critical task is not only preempted but it is also removed from the ready

queue.

A non critical task added to ready queue at instant of urgency can not cause critical

tasks to miss their deadlines, as it is removed from ready queue whenever a critical task

is released. But a non critical task admitted to ready queue at the instant when available

time slot was sufficient to execute this non critical task, stays in ready queue until either

it has finished its execution or its laxity has reached a value less than zero.

Approach described in this subsection allows non critical task to execute only at those

points when parameters of virtual task are sufficient to execute a non critical task. This

approach is pessimistic in the sense, as it requires worst case execution time of virtual

task to be greater than that of non critical task. Non critical task may take processor

time less than its worst case execution time to execute. Moreover, the deadline of virtual

task is defined as the maximum of deadlines of all those tasks that have contributed to

worst case execution time of virtual task. In the following subsection, we present another

approach, where time slot is not accumulated and scheduler generates multiple virtual

tasks based on times slot of each task.

2.2.5 Multiple Virtual tasks

Whenever actual execution time of a critical task is less than its Ci, there is a time slot

for the scheduler which in turn generates a virtual task. In other words, whenever there

is a time slot, there is a corresponding virtual task. The worst case execution time of

this virtual task is equal to difference of Ci and AETi of critical task that has finished

its execution. The value time slot is not accumulated in this approach. In this approach,
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Figure 2.3: Comparison of variants of approach

non critical tasks are not shifted from temporary ready queue to ready queue, but are

selected to execute when one of virtual task in ready queue gets highest priority. Non

critical tasks are never shifted from temporary ready queue to ready queue of critical task.

Whenever a virtual task gets the highest priority, scheduler selects the highest priority

non critical task to execute. In this case, this task is preempted when time slot of the

virtual task is exhausted.

In Fig:2.3.b, a non critical task is shifted to ready queue by replacing two virtual tasks.

Non critical task is inserted into ready queue if sum of worst case execution times of 1st

and 2nd virtual task is greater than that of non critical task. Moreover it is placed at

the position of 2nd virtual task which has lower dynamic priority than that of 1st virtual

task to ensure deadline guarantees to critical task. This approach is pessimistic in two

aspects, firstly, it is assumed that non critical task takes processor for a time equal to

its Ci, secondly the non critical task replaces a virtual task that has the lowest dynamic

priority.

2.3 Feasibility Analysis For Critical Tasks

Insertion of non critical task into ready task queue does not make critical tasks to miss

their deadlines. Non critical task, Tnc, is assigned parameters of virtual task when it is

inserted into the ready task queue:

Cnc ≤ time slot
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dnc ≥ dvt

Now, we prove that load of processor does not exceed 100% after insertion of non

critical task Tnc , hence it does not cause critical tasks to miss their deadlines. At any

given time t, total utilization of critical task set is:

k∑
i=1

Ci
Pi
≤ 1

j∑
i=1

Ci
Pi

+
k∑

i=j+1

Ci
Pi
≤ 1

Let g be equal to
∑j

i=1
Ci
Pi

, in this case we have:

k∑
i=j+1

Ci
Pi
≤ (1− g)

Let us assume that at given instant t = tz, when a non critical task, Tnc, is moved

in the ready queue, tasks T1, T2, ..., Tj are those critical tasks which have finished their

executions and Tj+1, Tj+2, ...Tk are critical tasks which are ready to execute.

We know that:

Ci = AETi + time sloti

Thus:
j∑
i=1

AETi + time sloti
Pi

= g

j∑
i=1

AETi
Pi

+
j∑
i=1

time sloti
Pi

= g (2.2)

Now, we show that insertion of a non critical task does not increase processor utiliza-

tion. If the worst case execution time Cnc of non critical task is such that:

time slot ≥ Cnc

and
Cnc
Pnc

+
j∑
i=1

AETi
Pi

≤ g

then all critical tasks respect their deadlines. The above statement is true if:

Cnc
Pnc
≤

j∑
i=1

time sloti
Pi

dvt ≥= max(d1, d2, d3, ..., dj)
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Critical task Non critical

AET WCET

WCET of Critical 

task

Figure 2.4: execution scenario of non critical task.

and

dnc ≥ dvt

We know that:

time slot =
j∑
i=1

time sloti

j∑
i=1

time sloti
Pi

=

∑j
i=1

Pnc
Pi
× time sloti
Pnc

Since Pnc
Pi
≥ 1 we get:

j∑
i=1

time sloti
Pi

≥ time slot

Pnc
⇒

Cnc
Pnc
≤

j∑
i=1

time sloti
Pi

⇒

Cnc
Pnc

+
j∑
i=1

AETi
Pi

≤ g

Hence, RUF algorithm provides deadline guarantees to critical tasks, because a non

critical task is executed in the same way as critical task has used processor time equal to

its Ci instead of AETi. (Fig:2.4).

2.4 Algorithm

As we have explained earlier, that non critical tasks are inserted into ready task queue

only at appropriate scheduling instants. These instants are scheduling points when a

critical task finishes its execution, and at these instants time slot is recalculated and a

non critical task is added into the ready queue either when time slot is found sufficient

to execute a non critical tasks or there is no critical task in ready queue. We call this non

critical task as Tnwf . This non critical task is removed from the critical task queue and is

placed back in non critical task queue, whenever one of the critical task becomes ready.



Chapter 2. Real Urgency First Scheduling Algorithm 36

Algorithm 1 Insertion of critical task in ready queue
Whenever a critical task Ti is released
if ready-queue =! empty then

if first-task-in-queue == Tnwf then
remove task Tnwf from ready-queue;
Tnwf = ’nothing’;

end if
time slot = time slot-(current-time-tnwf );

end if
insert Ti into ready-queue;

tnwf represents the time when Tnwf was added in ready queue.

Whenever a non critical task is released, it is added only in temporary ready queue.

The highest priority task in temporary ready queue is represented by T fnc. If available

time slot is greater than Cfnc of T fnc, then it is added into ready queue. Whenever a

Algorithm 2 Insertion of non critical task in temporary ready queue on its release
Whenever Tnc is ready

insert T fnc into temp-ready-queue;

if time slot ≥ Cfnc then
insert T fnc into ready-queue;

time slot = time slot-Cfnc;
end if

task completes its execution, time slot is updated and scheduler calculates if available

time slot is sufficient enough to execute the highest priority non critical task. If it is

sufficient, then the highest non critical task is added in ready queue. Otherwise scheduler

waits for another task to finish.

Algorithm 3 Insertion of non critical task in ready queue when a task finishes its exe-
cution

Whenever a Task Ti completes its execution
time slot = time slot + time sloti
if temp-ready-queu =! empty then

if time slot ≥ Cfnc then
if dvt < di then
dvt = di;

end if
insert Tnc into ready-queue;

time slot = times slot-Cfnc;
else if ready-queue == empty then

insert T fnc into ready-queue;
Tnwf = Tnc;

end if
time slot = time slot-Cfnc;

end if

2.5 Experimental Results

In this section, we compare the performance of our proposed algorithm RUF with MUF

algorithm. The simulation runs on Cofluent Studio simulator[1] with a task set composed

of critical and non critical tasks. The worst case execution times and time periods of

all these tasks are generated randomly. The time unit of execution time and period is
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Figure 2.5: Execution of non critical tasks over hyper-period of critical tasks

in micro-second. We assume that each task’s deadline is equal to its period. In the

experiment, the system runs for time units equal to hyper-period of critical tasks. We

observe the number of non critical tasks executed in one hyper-period by varying the

actual execution time of critical tasks. A 10% variation of AET means that execution

times of all tasks may be decreased by 10% at maximum (execution time of all tasks

is decreased randomly during execution, but it is never decreased more than the value

specified). In these experiments, we have a task set composed of 5 critical tasks with

100% utilization, and 3 non critical task with overall weight of 50%. We plot the results

in Fig:2.5 and Fig:2.6. We could observe that RUF executes more number of non critical

tasks over a hyper period than number of non critical tasks executed by MUF scheduling

algorithm.

Moreover, if the number of tasks in the system increases, then chances of executing

more non critical tasks increase as compared with MUF algorithm. This is due to the fact

that the chances of presence of at least one critical task in ready queue increases , and

MUF scheduling keeps non critical tasks out of execution while in case of RUF algorithm,

the recalculation points, when parameters of virtual task are modified, increases and hence

the chances of executing non critical tasks are augmented as well (Fig:2.7).

Example 2.1. We compare our algorithm RUF with MUF to illustrate the different steps

of proposed algorithm. This example explains the points when decisions are made about

admission of non critical task into ready queue and what are parameters assigned to this

non critical task at time of admission. this algorithm does provide guarantees to critical

task, and improves execution of non critical tasks as well. The task set considered for this

example is given in Table 2.1.
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Task Criticality Period WCET AET Utilization
T1 High 6 2 1 33%
T2 High 10 4 3 40%
T3 High 12 3 3 25%
T4 Low 15 4 4 27%

Table 2.1: Task Parameters
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Figure 2.8: Example comparing MUF and RUF.

Here in this example (Fig:2.8), RUF algorithm finds at instant t = 13, that available

time slot is sufficient enough to add T4 into ready queue. The insertion of this non critical

task T4 does not make critical tasks to miss their deadlines, as we assign a virtual deadline

equal to deadline of T4. This virtual deadline is equal to latest deadline of all tasks that

has contributed to time slot. In this case, it is 18 (deadline of task T1). So at t = 13, T4

has higher priority over T3 and T2, as (virtual) deadline of T4 is before than that of T2

and T3.

2.6 Conclusions

In this chapter, we have presented a novel scheduling algorithm called RUF, which im-

proves QoS by executing more non critical tasks as compared to other approaches of same

domain. The performance of the RUF was compared to the well known MUF algorithm,

and showed to be superior. We have not compared our algorithm with CASH as CASH

does not provide guarantees to critical tasks, if processor utilization of critical and non

critical task comes out to be more than 100%.

Scheduling on multiprocessor system using a global scheduling approach is similar to

scheduling of tasks in a mono-processor system. The RUF scheduling algorithm could

be a good candidate for a global scheduler, since a single system-wide priority space

is considered in RUF as well. Future work could be to investigate the capability of

RUF algorithm to schedule critical and non critical tasks efficiently on a multiprocessor

architecture.





Chapter 3

Power Efficient Middleware

3.1 Introduction

Scheduling theory has been widely studied in the last twenty years. Since a milestone in

the field of hard real-time scheduling pioneered by Liu et al.[48], two classes of algorithms

(i.e., dynamic priority and fixed priority) have been studied separately and a lot of re-

sults such as optimality, feasibility condition, response time, admission control have been

established.

The Earliest Deadline First (EDF) [48] scheduling algorithm is a dynamic priority

algorithm which always executes a task whose deadline is the most imminent. This

algorithm has been proved to be optimal in case of mono processor system [48]. At the

instant of release of a higher priority task, EDF scheduling algorithm preempts the active

task and starts executing the newly released higher priority task. It does not whether

it is possible to delay the execution of higher priority task and let the low priority task

completes its execution. Thus, EDF may, unnecessarily, increase task preemptions.

Reducing the number of preemptions can also be beneficial from energy point of view

in systems with low power consumption demands. When a task is preempted, there is a

strong probability that its contents in the cache are partially or totally lost. When the

execution of the task is again resumed, it causes a lot of energy consuming accesses to

off-chip memory. An access to off-chip memory is typically 10-100 times more expensive

than that of an on-chip cache access in terms of energy consumption. Reducing number

of preemptions reduces these additional expensive memory accesses by reducing the cache

pollution.

Radu Dorbin [25] has proposed an algorithm, which minimizes preemptions for fixed

priority scheduling but it does not address the dynamic scheduling algorithms. Sung-Heun

[57] proposed an algorithm, which solves the problem of laxity tie appearing between two

tasks at run time. This laxity tie introduces serious problem which made LLF impractical.

But this algorithm does not benefit from the slackness present in each task. Woonseok Kim

41
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[41] increases frequency of processor to minimize the number of preemptions. It reduces

the energy consumption by minimizing the number of preemptions but on the other hand

it increase energy consumption by operating processor at higher frequencies. Sanjoy K.

Baruah [15] proposed an algorithm where basic idea of minimizing preemptions is similar

but technique to calculate the No Preemption Zone(NPZ) parameter of a task is different.

It does not work if tasks leave or join the system dynamically. Moreover, this work does

not deal with dynamic calculation of NPZ. NPZ for a task calculated dynamically can

have a value greater than or equal to NPZ calculated statically thereby further reducing

the preemptions. We also observed that preemptions of tasks also depends upon the load

of processors. If processor load is low then number of preemptions are fewer too. DVFS

(Dynamic voltage and frequency scaling) techniques decrease the frequency of processor if

processor load is not 100%, to minimize energy consumption but decreasing the frequency

of processor has an effect of increasing processor load thereby increasing preemptions of

tasks.

We propose modification in the existing DVFS algorithms to minimize the number

of preemptions and frequency switching points. We intend to decrease the frequency of

the processor only at those instants when it has no impact on number of preemptions.

Numbers of preemptions are fewer if static/dynamic charge of the processor is low. Since

dynamic power is a quadratic function of the voltage, reducing the supply voltage effec-

tively minimize the dynamic power consumption [19, 26, 29–31, 42, 50, 62–64, 66, 67, 76].

In terms of reducing overall energy consumption, many newly developed scheduling

techniques, e.g. [36–39, 55, 68], are constructed based on the DVFS schedule. For exam-

ple, Yan et al. [77] proposed to first reduce the processor speed such that no real-time task

misses its deadline and then adjust the voltage supply and body biasing voltage based on

the processor speed in order to reduce the overall power consumption. Irani et al. [36]

showed that the overall optimal voltage schedule can be constructed from the traditional

DVFS voltage schedule that optimizes the dynamic energy consumption.

Pillai et al [65] has proposed two approaches. First, cycles conserving DVFS minimizes

energy cost but it increases unnecessarily switching points. Second, look-ahead approach

reduces the switching points but complexity is high to analyze the deferred work and to

calculate slow down factor.

From these remarks, we propose that frequency of the processor should not be changed

at all those instants when dynamic load is less than static load of the system. We suggest

to decrease the frequency of the processor only at those instants when it does not increase

the number of preemptions. This approach not only decreases the number of preemptions

but also decreases the switching points and hence the energy consumption. In this chapter,

we propose two techniques to minimize the energy consumption of the systems:

1. Minimizing number of preemptions of tasks
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2. Minimizing number of switching points where frequency of the processor is changed

We define another parameter of a task called No Preemption Zone (NPZ) that helps

minimizing preemptions. NPZi of Task Ti is the time duration for which the current

running task Ti can keep on executing even if there exists a task (or tasks) whose dynamic

priority is higher than that of current running task Ti. In the task set τ , tasks are sorted

based on their period lengths in an ascending (non-decreasing) order, i.e., the period of

Ti is smaller than that of Ti+1.

3.2 Minimizing number of preemptions

Most scheduling algorithms are priority-based: they assign priorities to the tasks or jobs in

the system and these priorities are used to select a job for execution whenever scheduling

decisions are made.

Dynamic-priority algorithms allow more flexibility in priority assignments; a task’s

priority may vary across jobs or even within a job. An example of a scheduling algorithm

that uses dynamic priorities is the earliest-deadline-first (EDF) algorithm. Static priority

algorithm RM is considered as an optimal fixed priority scheduling algorithm, and it has

very low run time complexity of algorithm, while EDF has optimal schedulable bound

on mono-processor systems. That’s why, we have considered these two algorithms to be

modified such that number of preemptions are minimized. We start with investigating

those points when a task Ti is preempted by a high priority task. We also identify those

tasks that can potentially preempt a task Ti, and propose to use laxity of Ti to help

delaying this preemption if possible, as laxity of a task gives the flexibility to delay it.

Theorem 3.1. Laxity Li of task Ti can be shifted anywhere in its time period length

without causing Task Ti to miss its deadline.

Proof. Task Ti will never miss its deadline if it is assigned Ci unit of processor time during

time duration of length Pi. This implies that laxity of a task can be shifted anywhere

during time period of Task Ti.

Theorem 3.2. Task Ti can be preempted only by the task which has time period less than

that of Ti (Both for RM and EDF scheduling).

Proof. Only higher priority tasks can preempt low priority tasks. In case of RM scheduling

algorithm, tasks having lower periods have higher priorities than tasks having higher time

periods. But in case of EDF scheduling algorithm, priorities are defined on the basis of

closeness of absolute deadlines of the tasks. If Task Ti is preempted during its nth instant

by task Tj ready for kth instant it implies that nth instant of task Ti was released before

kth instant of task Tj( i.e., rni < rkj ). As Task Ti is preempted during its nth instant by

task Tj ready for kth instant, it implies that deadline of task Tj is earlier than task Ti’s
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Figure 3.1: task having higher frequency can preempt low frequent tasks

deadline.

if

rni < rkj

and

dkj < rni

then

Pj < Pi

Hence it is proved that task Ti can be preempted by that task only which has time

period less than time period of task Ti(Fig:3.1).

We provide techniques to calculate NPZ of a task for both scheduling algorithms i.e.,

RM and EDF

3.2.1 Algorithm EEDF

We propose an algorithm aiming to reduce the number of preemptions. Preemptions are

directly related with the Context switch. This algorithm works exactly like classical EDF

scheduling algorithm except at those scheduling instants where preemption of active task

is proposed by scheduler. If active (running) task is going to be preempted by newly

arrived higher priority task, then this new algorithm EEDF (Enhanced EDF) comes into

action and tries to figure out if it is really necessary to preempt this running task or

preemption can be delayed for sometime i.e., NPZ.

This approach is similar to one proposed to by Baruah [15] where he has considered

sporadic task set. According to this approach, each task is assigned another parameter

called NPZ and preemption of the running task is delayed for time equal to NPZ.

This approach presented by Baruah is based on static parameters of tasks and it does not

support dynamic creation and deletion of tasks. In this approach, he has used the demand

bound function to calculate the value of NPZ for each task and to prove the feasibility of
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task set. The demand bound function which provides sufficient and necessary condition

for periodic tasks to be EDF-feasible, is defined as follows:

n∑
i=1

DBF (Ti, t) =
n∑
i=1

⌊
t

Pi

⌋
× Ci (3.1)

sufficient and necessary condition for feasibility of periodic tasks is given below:

If

∀ t > 0 ::
n∑
i=1

DBF (Ti, t) ≤ t

The calculations of NPZ according to approach of Baruah are carried out by the following

equation.

NPZi = min

(
NPZi−1, di −

n∑
i=1

DBF (Ti, t)

)
(3.2)

Tasks are sorted in an increasing order of their period lengths and NPZ1 is defined to

be equal to L0. This approach is iterative and NPZi is calculated before NPZi+1. This

approach is based on static parameters of tasks, that’s why it does not support dynamic

creation and deletion of tasks.

We propose to calculate the NPZ in such a way that it supports dynamic creation

and deletion of tasks. We have two forms of our approach to calculate NPZ of each task,

one is static and the other is dynamic. In static approach, we consider the worst case

scenario when all high priority tasks (tasks which have smaller time periods than that

of running task) arrives at same instant (which is quiet rare in real systems), while in

dynamic approach we take into account only those tasks which have absolute deadlines

earlier than that of running tasks.

Example 3.1. The laxity of any task gives us a measure of the maximum time for which

it can be delayed. The task having the smallest time period will never be preempted as no

other task can have higher priority during its execution. The approach is demonstrated

by considering a simple model comprising of three tasks T1, T2 and T3 given in Table 3.1.

Worst case execution time for T1, T2 and T3 are 6, 4 and 9 respectively while 21, 10 and

31 are their time periods of task respectively. Deadlines of the tasks are assumed to be

equal to their periods.

The task having the smallest time period is never preempted. In this example, T2 has

the smallest time period. Task T1 can only be preempted by T2 as only task T2 has time

period less than that of T1. In this case T1 can cause T2 to go in priority inversion for

time equal to at most laxity of task T2 i.e., NPZ1 = P2 − C2. Task T3 can be preempted

by both tasks T1 and T2 as both have time period less than that of task T3. In this case,
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Task C P Offset NPZ

T1 6 21 0 6
T2 4 10 3 is never preempted
T3 9 31 0 6

Table 3.1: Task Parameters

6 10 193 332723

6 10 193 332723

preemption

preemption

NPZ started

(b)  Scheduling According to EDF

(a) Scheduling According to EEDF

13

NPZ started

T1

T2

T3

T1

T2

T3

Φ2

Φ2

31

31

Figure 3.2: complete Example

NPZ for T3 is calculated as follows:

Labs = P1 −
2∑
i=1

P1

Pi
× Ci

Labs = 21− 6− 21
10
× 4

Labs = 21− 6− 8.4

Labs = 6.6

NPZ3 = min(NPZ1, Labs)

NPZ3 = 6

We observe that there are two preemptions (Fig:3.2(b)) if scheduled according to EDF

scheduler but preemptions are reduced to zero (Fig:3.2(a)) if preemption is delayed for

their NPZ time values.

NPZ of task Ti can be calculated either statically or dynamically in order to minimize

preemptions.
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3.2.1.1 Static Computation

As explained earlier, laxity Li of Task Ti can be shifted anywhere in its period such that

lower priority tasks can continue with their executions. This laxity of task Ti defines the

time duration (NPZi+1) for which its lower priority task Ti+1 can continue its execution

without making Ti to miss its deadline.

For Task T2,

NPZ2 = L1 (3.3)

Tasks T1 and T2 are projected in an abstract task Tabs, which has time period equal

to task T2 to calculate NPZ for task T3. (The WCET of this abstract task is the sum of

WCET of T2 and proportional WCET of T1 for period length equal to the time period of

this abstract task). Then:

NPZ3 = min(NPZ2, Labs)

This abstract task is projected into another abstract task having time period equal to the

time period of task T3 to calculate NPZ for task T4, NPZ4 = min(NPZ3, Labs) This is

done because only task T3 have the latest deadline among all tasks (T1, T2, T3) that can

preempt task T4. This is repeated until NPZ of each task is calculated. NPZi of a task

Ti depends upon either on laxity of abstract tasks or on NPZj of task Tj whose time

period is shorter than that of Ti. Abstract task is explained as follows:

Abstract Task Tabs: Task Ti can be preempted by a number of tasks i.e., {T1, T2, ..., Ti−1}.
Task Ti can be preempted by all those tasks having time period less than Ti’s time period.

In this case task Ti−1 has the highest period among all those tasks that can preempt Ti.

We will project all those tasks that can preempt task Ti into a single task Tabs (abstract

task).

Worst Case Scenario: To calculate the worst case execution time of this abstract

task Tabs, the worst case scenario is identified. Worst case for task Ti is that all higher

priority tasks are released at the same time during the execution of task Ti. This abstract

task Tabs has time period Pabs equal to the time period of task Ti−1 while worst case

execution time Cabs is:

Cabs =
i−1∑
k=1

Pi−1

Pk
× Ck (3.4)

Labs = Pabs − Cabs (3.5)

Task Tabs represents all those tasks, which have time periods equal to or less than that

of task Ti. NPZi for task Ti is calculated considering only laxity of task Tabs, may cause

any task to miss its deadline if laxity of this task is smaller than Labs calculated for task

Ti(lets say task that Tk having time period smaller than that of Ti). Therefore NPZi is
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calculated recursively and is defined as:

NPZi = min(NPZi−1, Labs) (3.6)

The pseudo code for calculation of NPZ statically is presented in Algorithm given below:

Algorithm 4 Static calculations of NPZ in EEDF approach
tasks sorted in increasing order of their period
for i = 1 to n do
Pabs = di−1;

Cabs =
∑i−1
k=1

Pi−1
Pk
× Ck;

Labs = Pabs − Cabs;
NPZi = min(NPZi−1, Labs);

end for

Dynamic Creation and Deletion of tasks: Our proposed approach allows dynamic

creation and deletion of tasks. If, at time instant t, a task Tj is executing in presence of

high priority task Ti but Ti is deleted at this instant and is replaced by another task Tk
(with µk ≤ µi and Pk ≥ Pi), then Tj can still keep on executing without causing other

tasks to miss their deadlines.

3.2.1.2 Dynamic Computations

NPZ calculated statically minimizes number of preemptions but it can even be further

enhanced with little modifications during run time. We consider the worst case scenario

to calculate the NPZ of each task where we assume that all low periodic tasks pre-

empt high periodic task Ti, which rarely happens at run time in case of EDF scheduling.
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Parameters of Preempting task: A task Ti can preempt a task Tj if and only if the

Algorithm 5 Dynamic calculations of NPZ in EEDF approach
tasks sorted in increasing order of their period
for i = 1 to n do
Pabs = di−1;

Cabs =
∑
Tk∈τr(t)

⌊
di−1−φk

Pk

⌋
Ck;

Labs = Pabs − Cabs;
NPZi = min(NPZi−1, Labs);

end for

di < dj . A task Ti may not preempt a task Tj even if Pi < Pj , this case occurs when

absolute deadline of Ti is later than that of Tj .

Best Case Scenario: The value NPZi of a task Ti is calculated by the following

equation:

NPZi = min(NPZi−1, Labs)

If min(NPZi−1, Labs) = Labs, It implies that calculation of NPZi of task Ti depends upon

the execution times of all those tasks which have time period less than time period of task

Ti. If NPZi of a task Ti is dictated by laxity of one task, then the release of this task

enforces dynamic calculations of NPZi to be equal to static calculations of NPZi. But,

if NPZi depends on more than one task, then their release times have significant effect

on calculation of NPZi. Moreover, we have considered in case of static computations

that all low periodic tasks are ready at the same time which is very rare in any type of

scheduling. Preemption may further be minimized by taking into account all these run

time parameters.

Dynamic calculations of NPZi are carried out in a same way as in case of static

calculations but taking into account runtime parameters instead of off line parameters.

NPZi of running task is calculated by considering only those tasks which have absolute

deadline earlier than that of Ti. When a task having absolute deadline before the absolute

deadline of running task is released, NPZi is set equal to the laxity of the released task.

If another task is released and its absolute deadline is also before the absolute deadline of

Ti, then NPZi is recalculated. The recalculated value of NPZi can be less than or equal

to the value of NPZi calculated earlier.

The task having the most imminent absolute deadline is considered as the first task

(instead of the most frequent task) and task having latest absolute deadline but earlier

than that of the Ti is considered last such task that can preempt running task. This is

different from the static calculation, where most frequent task is considered as the first

task and the task having the largest period but smaller than that of Ti is considered last

task to calculate NPZi.

Dynamic Creation and Deletion of tasks: If NPZi of task Ti is calculated at

run time, then tasks can leave or join the system without any condition imposed but the

feasibility test.
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3.2.1.3 Feasibility Analysis

A task set remains feasible even if a lower priority task keeps on executing for time equal

to NPZ.

Theorem 3.3. The Enhanced Earliest Deadline First (EEDF) algorithm determines a

feasible schedule if U(τ) ≤ 1.

Proof. Our Enhanced Earliest Deadline First (EEDF) algorithm does not invalidate the

classic EDF theorem on feasibility. A low priority task is allowed to continue its execution

in presence of higher priority tasks if and only if all higher priority tasks have laxity greater

than zero.

We consider a set of task T = {T1, T2, ..., Tn} where period of T2 is greater than period

of T1. This task set if scheduled by EDF always respects its deadline (if U(τ) ≤ 1). We

prove that with modification introduced in form new preemptions zone concept , all tasks

still respect their deadlines. We use the demand bound function [16] analysis to prove

the feasibility of scheduling algorithm. Demand bound function DBF (Ti, t) defined by

Baruah is an approach to establish the necessary and sufficient condition for feasibility

analysis of tasks over interval [0, t).

n∑
i=1

DBF (Ti, t) =
n∑
i=1

⌊
t

Pi

⌋
× Ci (3.7)

If
n∑
i=1

DBF (Ti, t) ≤ t

then task set is schedulable.

if t = Pk then: ⌊
Pk
P0

⌋
× C0 +

⌊
Pk
P1

⌋
× C1+, ...

⌊
Pk−1

P0

⌋
× Ck−1 + Ck ≤ Pk

If the same task set is scheduled by the enhanced algorithm it respects its deadline as

well. To support this statement we start with considering that introduction of NPZj of

task Tj causes task Tk to miss its deadline. (Pj > Pk) ⇒

NPZj +
⌊
Pk
P0

⌋
× C0 +

⌊
Pk
P1

⌋
× C1+, ...

⌊
Pk−1

P0

⌋
× Ck−1 + Ck > Pk (3.8)

NPZk+1 of task Tk+1 is given below (k < (k + 1) ≤ j)

NPZk+1 = min

(
NPZk, Pk −

k∑
i=0

Pk
Pi
× Ci

)
(3.9)
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k∑
i=0

Pk
Pi
× Ci ≥

⌊
Pk
P0

⌋
× C0 +

⌊
Pk
P1

⌋
× C1+, ...

⌊
Pk−1

P0

⌋
× Ck−1 + Ck

Replacing right hand side with left hand side in inequality 3.8

NPZj +
k∑
i=0

Pk
Pi
× Ci > Pk

As j ≥ k + 1 it implies that

NPZj ≤ NPZk+1

and replacing NPZj with NPZk+1 gives:

NPZk+1 +
k∑
i=0

Pk
Pi
× Ci > Pk (3.10)

Let us assume that

Pk −
k∑
i=0

Pk
Pi
× Ci ≤ NPZk

then by definition of Equation(3.6)

NPZk+1 = Pk −
k∑
i=0

Pk
Pi
× Ci

replacing NPZk+1 in inequality 3.10 ⇒

Pk −
k∑
i=0

Pk
Pi
× Ci +

k∑
i=0

Pk
Pi
× Ci > Pk

As Pk > Pk is not possible, we get:

NPZj +
⌊
Pk
P0

⌋
× C0 +

⌊
Pk
P1

⌋
× C1+, ...

⌊
Pk−1

P0

⌋
× Ck−1 + Ck ≤ Pk

It proves that task set τ having U(τ) ≤ 1 is schedulable according to EEDF.

3.2.1.4 Experimental Results of EEDF

We have compared our algorithm EEDF with classical EDF and we performed simula-

tions on CoFluent tool, and we have measured the number of preemptions both in case of

static calculations of NPZ and in case of dynamic calculations as well. We have consid-

ered different number of tasks to compare our results, and parameters of these tasks are

generated randomly. Sum of utilization of all tasks in every set of tasks is 98%. We can

observe in (Fig:3.4) that EEDF algorithm has significantly reduced the number of pre-

emptions. We have illustrated that these preemptions are further reduced if we make our
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calculations dynamically and in a more realistic manner Fig:3.5. We also observed that

both algorithms i.e., EDF and EEDF have fewer preemptions of tasks if load of processor

is decreased Fig:??.

3.2.2 Algorithm ERM

Rate Monotonic (RM) scheduling algorithm is a simple rule that assigns priorities to

tasks according to their rates. Specifically, tasks with higher requests rates (that is, with

shorter periods) have higher priorities. Since periods are constant, RM is a fixed priority
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assignment: priorities are assigned to tasks before execution and do not change over time.

Moreover, RM is intrinsically preemptive: the currently executing task is preempted by

a newly arrived task with shorter period.

We define a parameter NPZi of task Ti, as it is defined in earlier section.

3.2.2.1 Feasibility Analysis of RM

Liu and Layland [48] proved that the worst case phasing occurs when all tasks release at

same time i.e., at zero. This is called a critical instant in which all tasks are simultaneously

instantiated. Using this concept, Liu and Layland also proved that task set is schedulable

using the rate monotonic algorithm if the first job of each task can meet its deadline when

it is initiated at critical instant.

For rate monotonic scheduling, the sufficient schedulable bound for n tasks has been

shown to be the following:

U(τ) = n(21/n − 1)

U(τ) asymptotically converges to ln(2) or 69%, which is less efficient than some run-

time schedulers such as earliest deadline. The utilization bound test allows schedulability

analysis by comparing the calculated utilization for a set of tasks and comparing that

total to the theoretical utilization for that number of tasks. If this equality is satisfied,

all of the tasks will always meet their deadlines. If the total utilization is between the

utilization bound and 100%, the utilization bound test is inconclusive and a more precise

test must be used. Richard and Goossens [60] established a near optimal schedulable

bound for static priority scheduling algorithm where release jitter of a task is considered

as well, but it is not optimal. The more inclusive test to provide deadline guarantees

is response time analysis. The response time (RT) test allows analysis of schedulability

based upon the following lemma:

Lemma 3.4. For a set of independent periodic tasks, if each task meets its deadline with

worst case task phasing, the deadline will always be met [56].

The RT test requires computation of the response time of each task in the system.

Based on the above lemma if each response time is less than its corresponding period, the

system is schedulable.

To determine if a task Ti can meet its deadline under the worst case phasing, the

processor demand made by the task set is considered as a function of time. If we focus

on tasks T1, T2,...,Ti, then the expression:

Wi(t) =
i∑

j=1

Cj ×
⌈
t

Pj

⌉
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gives the cumulative demands on the processor made by tasks over[0,t], when zero is a

critical instant. Lui sha et all [45] has developed a condition if verified provides guarantees

to all tasks. They introduced few following notations:

Zi(t) = Wi(t)/t,

Zi = min{0<t≤Pi}Zi(t),

Z = max{1≤i≤n}Zi

Lui sha et al.[45] has proved the following corollary:

Corollary 3.5. [45] Given periodic tasks T1, T2, ..., Tn

1. Ti can be scheduled for all task phasings using the rate monotonic algorithm if and

only if Zi ≤ 1

2. The entire task set can be scheduled for all task phasings using the rate monotonic

algorithm if and only if Z ≤ 1

We consider these schedulability conditions to compute statically and dynamically

values of NPZi.

Static Calculations of NPZi: NPZi of task Ti defines the largest value such that

τ remains feasible even if Ti is not preempted for this time at the release of high priority

tasks. To calculate NPZi of task Ti, let us define another parameter PIVi, which defines

the largest value such that Ti remains schedulable even if task Tk, having lower priority

than Ti, executes for time equal to PIVi.

PIVi = max{0<t≤Pi} [max(0, t−Wi(t))]

NPZi+1 of task Ti+1 such as Pi ≤ Pi+1, is calculated by the equation given below:

NPZi+1 = min(NPZi, P IVi)

Algorithm 6 Static calculations of NPZ in ERM approach
tasks sorted in increasing order of their period
NPZ1 = PIV1 = P1 − C1;
NPZ2 = min(NPZ1, P IV1);
for i = 2 to n− 1 do

Wi(t) =
∑i
j=1 Cj ×

⌈
t
Pj

⌉
;

PIVi = max{0<t≤Pi} [max(0, t−Wi(t))];
NPZi+1 = min(NPZi, P IVi);

end for

Dynamic Calculations of NPZi: In the above section, NPZi of task Ti is calculated

considering the worst case scenario which is worst case phasing. If task Ti−1 is not released
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Figure 3.6: Comparison of Number of Preemptions

at the same time when task Ti is released and Ti−1 has finished its execution before release

of task Ti, then number of instants of Ti−1 executing during the current instant of Ti can

be one less than calculated during the worst case phasing. Dynamic calculations of NPZi
of task Ti are carried out only if high priority task is released and run time parameters

of tasks are taken into account to calculate it. Let us define that τr represents the set of

ready tasks and Pi ≥ Pi−1 then cumulative demand is calculated as follows:

Wi−1(t) =
i−1∑
j=1
Tj∈τr

Cj ×
⌈
di−1 − rj

Pj

⌉

NPZi of a task is updated if another high priority task is released during the execution

of task Ti.

3.2.2.2 Experimental Results of ERM

We have compared our algorithm ERM with classical RM and we have performed simu-

lations on STORM1 tool, and we have measured the number of preemptions both in case

of RM and ERM. We have considered different number of tasks to compare our results,

and parameters of these tasks are generated randomly. Sum of utilization of all tasks in

every set of tasks also varies between 70% to 100%. Calculations of NPZ for ERM based

schedule task is extracted from feasibility test of task, and if task set is not schedulable

then simulations are not performed. We can observe in (Fig:3.6) that number of preemp-
1STORM is a Simulation TOol for Real time Multprocessor scheduling developed by IRCCyN in

context of PHERMA project web: http://pherma.irccyn.ec-nantes.fr/
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tions of task in case of RM schedule tasks are almost 2.5 times higher than those if tasks

are scheduled according to ERM algorithm.

3.2.3 Chained Preemptions

Chained preemptions is a phenomenon, which increases the number of preemptions to

a great extent in case of RM and EDF scheduling algorithms. This is a phenomenon,

where one task is preempted by newly released higher priority task, then this new active

task is also preempted by another release of a higher priority task (Fig:3.7). In the worst

case, these chained preemptions can be equal to the number of tasks in a task set. NPZi
introduced for each task can significantly minimize this phenomenon (Fig:3.8).



Chapter 3. Power Efficient Middleware 57

EEDF and ERM algorithms efficiently minimize the number of preemptions and hence

energy of the system. EEDF and EDF both introduce less preemptions if processor load

is low. But, DVFS algorithms reduce the operating frequency of the system leading to an

increase in the processor load and hence increases preemptions.

3.3 Minimizing switching Points and Preemptions

DVFS mechanism may reduce the operating frequency and voltage when tasks use pro-

cessor time less than their worst-case time allotment. When the task completes, actual

processor time is compared with the worst-case execution time. Any unused computation

time that was allotted to the task would normally (or eventually) be wasted, idling the

processor. Instead of idling for extra processor time, DVFS algorithms are used that avoid

wasting cycles by reducing the operating frequency for subsequent ready tasks. These al-

gorithms are tightly-coupled with the operating system’s task management services, since

they may need to reduce frequency on task completion, and increase frequency on task

release. These approaches are pessimistic as they reduce frequency of the processor right

after the completion of the task (if Ci > AETi), and increase the frequency of the proces-

sor back to normal when a recently finished task is released again for next instant. These

algorithms assume that these extra cycles are wasted if frequency is not decreased right

after the completion of a task. Switching from one frequency level to another level takes

processor time and uses system energy, and hence the net effect could as increase in power

consumption of the system.

We propose an algorithm EDVFS where we try to minimize the frequency switching

points. We propose to accumulate the cycles (Ci − AETi) and don’t decrease frequency

until a point after which these cycles are wasted -idling the processor- if frequency of the

processor is not decreased.

In(Fig:3.9),we illustrate our approach how the number of switching points is decreased.

In Fig:3.9(a), frequency of processor for task T2 is decreased because T1 has used fewer

processor time than C1. When task T2 finishes its execution, frequency for task T3 is

decreased again (as task T2 has also used fewer processor cycles than C2). Frequencies

are restored again at instants when tasks T1 and T2 are released for their next jobs. In

Fig:3.9(c), we illustrate that frequency for task T2 is not decreased even if AET1 of task

T1 is smaller than C1. Frequency for task T3 is decreased because there is an idle time on

processor (Fig:3.9(b)), before d1 if frequency is not decreased for task T3.

3.3.1 Identification of switching points

Whenever a task finishes its execution, the number of ready tasks is tested in the ready

queue of the scheduler, and if it is more than one then the frequency of the processor is
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not decreased. If there is single task in the ready queue, then subsequent calculations for

identification of switching points are performed (Fig:3.10).

The principle is to change the frequency of the processor only at those instants after

which processor goes idle if frequency is not decreased. According to our approach,

frequency of the system is decreased at time ts when there is only one ready task Ti and:

ts + Cremi (ts) < rej

Value rej denotes the earliest release time of task Tj , 1 ≤ j ≤ n, after time instant ts. At

this time instant ts, the frequency of the processor is decreased to extend the execution

of task Ti until the rej .
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3.3.2 Calculation of the frequency slow down (α) factor

Once appropriate switching point is identified, frequency of the processor is decreased by

a factor of α (α < 1) which is calculated in the following way:

α =
Cremi

rej − ts

fnew = α× f

3.3.3 Processor Idling

Actual execution time of task Ti may vary from Bi processor cycles to Ci processor cycles.

If frequency of the processor is decreased, considering that task Ti will take Ci time

units, then a lot of processor time will be unused if its AETi appears to be much smaller

than its Ci (Fig:3.11 b). In worst case, processor may go idle for processor time equal to

(Ci −Bi)/α.

3.3.3.1 Minimizing Processor Idle Time

There is a need to define an approach such that wasted time ((Ci −Bi)/α) on processor

is minimized. We propose to calculate the slow down factor by considering Bi instead of

Ci.

In this case slow down factor α is calculated as:

Brem
i = Bi − Ccompletedi
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Brem
i represents the remaining execution time of task Ti while considering that Ti will

take Bi time units to execute.

α =
Brem
i

rej − ts

fnew = α× f

This may cause task Ti to miss its deadline if its AETi happens to be more than Bi.

To ensure deadline guarantees for task Ti, there is a need to increase the frequency back

to normal value at time tl before the earliest release time of task Tj , 1 ≤ j ≤ n. This time

is calculated by folding back a part of task Ti that was crossing the time rej (Fig:3.12b).

tl = rej − ts −
Ci −Bi
1− α

Value tl represents a time after which frequency of processors is restored to normal value

i.e., α = 1. This approach has one possible drawback which is the cost of switching

frequency of processor from very low value to normal value (i.e., α = 1).

3.3.3.2 Gradual Increase in Frequency

The main reason to change the frequency (increasing) in gradual steps is the DVFS

switching cost, which includes both time and energy cost. Switching cost is proportional

to the magnitude of the switch.
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We propose to change the frequency in such a way that switching cost is reduced.

Switching cost is low when frequency of the processor is changed from a higher value to

low value but cost is higher in case of transition from low to high frequency. Moreover

switching cost also depends upon the size of step (difference between the current value of

frequency and next value of frequency). That’s why we propose to increase the frequency

in gradual steps until frequency is restored to normal value (i.e., until slow down factor

equals to 1). This approach is similar to the approach explained in the above section with

only difference that frequency of the processor is decreased when there are two or more

(auto adaptive) tasks in the ready queue of the scheduler. Slow down factor for first task

(higher priority first task Tf ) is selected to be higher than that for second task Ts. To

achieve this, more accumulated cycles are allocated to first task than to second task.

CYf =
Cremf

Cremf + Crems

× (rej − ts − Cremf − Crems )

+ 0.5× Crems

Cremf + Crems

× (rej − ts − Cremf − Crems )

CYs = 0.5× Crems

Cremf + Crems

× (rej − ts − Cremf − Crems )
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CYf represents the cycles allotted to higher priority task (Tf ) and CYs represents cycles

allocated to task Ts.

αf =
Cremf

CYf

αs =
Crems

CYs

Higher priority task T3 (Fig:3.13) is allocated more cycles to keep process frequency

lower during execution of task T3 than that for task T4. Frequency for task T4 will be

higher than that of T3 and it will be restored to normal value (α = 1) at rej .

3.3.3.3 Self adaptive approach

If frequency of a processor can not be decreased more than its threshold value then a self

adaptive approach can be used to decrease the frequency of the processor. In this case,

the number of tasks which execute at low processor frequency is not fixed. Let us assume

that fth represents the threshold frequency and αth is defined as follows:

fth = αth ∗ f

When a task finishes its execution at time t, and if:∑n
i=1C

rem
i

rej − t
≤ αth

then the frequency of the processor for remaining tasks is decreased to fth until rej .

3.3.3.4 Experimental Results of EDVFS

We have illustrated (Fig:3.14) that numbers of switching points are dramatically reduced

as compared to existing DVFS algorithms. We have demonstrated that if number of

tasks in the system increases then the number of switching points increases as well. In

this case, the factor by which number of switching points is reduced by our algorithm

increases exponentially (almost). We have compared EDVFS algorithm with already

proposed scheduling algorithms DVFS i.e., ccEDF (cycle conserving EDF) to evaluate

the performance of this algorithm.

3.4 Conclusion

In this chapter, we have presented an approach for minimizing preemptions of tasks, as

high number of preemptions in a schedule reduces the practically achievable schedulable
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bounds. We have proposed modifications both in EDF and RM scheduling algorithms

which take care of implicit parameters of a task to efficiently cut down the number of

preemptions. Moreover, we have also proposed to consider not only static implicit param-

eters of tasks but also runtime parameters of task (release times of task etc.) which helps

reducing the preemptions of tasks to a greater extent. We have compared the performance

of our algorithm in terms of reducing number of preemptions with EDF algorithm for hard

real-time periodic tasks. Our comparative study (using software simulation) shows that

numbers of preemptions are reduced exceptionally. We have also extended the approach

of dynamic voltage and frequency scaling scheme, as this approach has it adverse effect on

number of preemptions. Reduced number of preemptions not only increase the practical

achievable schedulable bound but also decrease the energy consumption of the system. We

have proposed to embed our approach with DVFS technique in such a way that number

of preemptions are not increase, moreover, the frequency switching points are decreased

to a great extent. This extension not only reduces the preemptions of the tasks but it

also decreases the switching points.





Chapter 4

Efficient and Optimal

Multiprocessor Scheduling for

Real Time Tasks

4.1 Introduction

Multiprocessor scheduling techniques in real-time systems fall into two general categories:

partitioning and global scheduling. Under partitioning, each processor schedules tasks

independently from a local ready queue. Each task is assigned to a particular processor

and is only scheduled on that processor for each instance of the task. In contrast, all

ready tasks are stored in a single queue under global scheduling. A single system-wide

priority space is assumed; the highest-priority task is selected to execute whenever the

scheduler is invoked, regardless of which processor is being scheduled.

Presently, partitioning is the favored approach in embedded system theory. This is

largely because partitioning has proved to be both efficient and reasonably effective when

using popular uniprocessor scheduling algorithms, such as the earliest-deadline-first (EDF)

and rate-monotonic (RM) algorithms. Producing a competitive global scheduler, based

on such well-understood uniprocessor algorithms, has proved to be a daunting task. In

fact, Dhall and Liu [24] have shown that global scheduling using either EDF (g-EDF) or

RM can result in arbitrarily-low processor utilization in multiprocessor systems. Goossens

et al [13] have detailed feasibility bounds for RM on multiprocessor architecture which

are not optimal schedulable bounds. Partitioning, regardless of the scheduling algorithm

used, has two primary flaws. First, it is inherently suboptimal when scheduling periodic

tasks. Second, the assignment of tasks to processors is a bin-packing problem, which is

NP-hard in the strong sense.

In contrast, the non-partitioning method has received much less attention [44, 49, 51,

52], mainly because it is believed to suffer from scheduling and implementation related

65
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shortcomings, also because it lacks support for more advanced system models, such as the

management of shared resources. An other important factor that makes this approach of

less interest is the use of a shared memory, which introduces the bottleneck for system

scalability. Cost of preemption and migration is high if distributed shared memory is

used. On the better side, schedulability bounds are much better than its counterpart.

The Pfair [2, 14, 34] class of algorithms that allows full migration and fully dynamic

priorities has been shown to be theoretically optimal i.e., they achieve a schedulable uti-

lization bound (below which all tasks meet their deadlines) that equals the total capacity

of all processors. However, Pfair algorithms incur significant run-time overhead due to

their quantum-based scheduling approach.

LLREF [22] is also based on the fluid scheduling model and the fairness notion. It is

not based on time quanta but number of preemptions and migrations in this schedule are

also high.

We propose an algorithm called Anticipating Slack Earliest Deadline First until zero

laxity(ASEDZL), which is an extension to already proposed algorithm called EDZL [75].

Tasks are selected to execute between two consecutive task’s release instants. At each

task’s release instant, laxity of M high priority tasks until next release of any task (high

priority tasks according to EDF) is calculated and is anticipated before they appear by

giving higher priority to sufficient number of subsequent tasks. Sufficient number of tasks

-which are not first M (M represent the number of identical processors) high priority

tasks according to EDF- are given higher priority.

In this chapter, we discuss multiprocessor scheduling where π = {π1, π2, ..., πM} rep-

resents the set of M identical processors. We introduce a parameter of a task Ti named

as current weight denoted as uci and is defines as follows:

uci =
Cremi (t)
dremi (t)

When a task Ti is selected to execute at time t, its current weight uci decreases, and current

weight of a task increases if it is waiting (blocked) for processor.

We consider the following assumptions to design a multiprocessor scheduling algorithm:

• Job preemption is permitted:

A job executing on a processor may be preempted prior its completion, and its

execution may be resumed later. Initially, we assume that there is no penalty

associated with such preemption to prove optimality theoretically but this penalty

will be taken into account later to compare practical results.

• Job migration is permitted:
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A job that has been preempted on a particular processor may resume its execution

on a different processor. Once again, we assume that there is no penalty associated

with such migration.(will considered for practical implementation)

• Job parallelism is forbidden:

The jobs of each task are required to be executed sequentially. That is, a job cannot

start its execution before the completion time of the preceding job of the same task.

If a job has been released but is not able to start executing because the preceding

job of the same task has not yet completed, we say that the job is precedence-blocked.

If a job has been released and its predecessor in the same task has completed, the

job is ready. Moreover, each job may execute on at most one processor at any given

instant in time. If a job is ready, but M jobs of other tasks are scheduled to execute,

we say that the job is priority-blocked.

4.2 EDF based Scheduling Algorithms and their Utilization

Bounds

Some researchers are addressing the problem of schedulability analysis of classical unipro-

cessor scheduling algorithms, like RM and EDF, on SMP systems (Symmetric Multipro-

cessing). Regarding schedulability analysis of periodic real-time tasks with EDF, Goossens

Funk and Baruah [27] have recently proposed a schedulability test based on an utilization

bound, assuming that tasks have relative deadlines equal to their periods. Baker [12]

proposed a different test extending the model to tasks with deadline less than or equal to

their periods. Anderson et al. [5] provided bounds to the utilization of feasible tasks sets

scheduled with fixed priority.

The advantage of these schemes is the relatively simple implementation and the minor

overhead in terms of number of context switches. However, many negative results are

known for such schedulers. For example, EDF loses its optimality on multiprocessor

platforms. We analyzed the uniprocessor EDF scheduling algorithm differently. EDF

based scheduler selects the highest priority task to execute, and time equal to laxity of

this task is used to execute next higher priority tasks. Let us assume that at time t = 0,

EDF selects Ti to execute, then Li/Pi =
∑n

j=1
j 6=i

Cj/Pj (if U(τ) = 1), but EDF scheduler

does not allocate processor time to all tasks in proportion to their weights until di. It

allocates maximum time to next higher priority tasks, and so on. We propose to use the

same idea of exploiting the laxity of the highest priority task, and to allocate maximum

time to the next higher priority tasks instead of fluid scheduling model, as in Pfair base

scheduling algorithms. It is observed that in case of mono-processor system, next higher

priority tasks ensure their execution until next release instant, but this is not possible in

case of multiprocessor system. Moreover, (in case of mono-processor system) when a task
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Figure 4.1: Dhall’s Effect

claims zero laxity, it is the only ready task until its deadline. The same can be true in

case of multiprocessor system as well, if we could ensure execution of next higher priority

tasks until next release of a task. Then there will be only M tasks ready until the next

release, if all M tasks have zero laxity. We further elaborate the reason for which g-EDF

is not optimal scheduling algorithm.

1. If worst case execution requirement of high priority tasks is greater than laxity of

other remaining task Ti, then Ti misses its deadline (Dhall’s Effect).

2. Offloading factor of M high priority running tasks have accumulative effect on re-

maining tasks.

4.2.1 Dhall’s Effect

Dhall and Liu [24] showed that global scheduling with optimal uniprocessor scheduling

algorithms, such as EDF and RM, may result in arbitrarily low processor utilization.

Example 4.1. To see why, consider the following synchronous periodic task system to be

scheduled on M processors: M tasks with period p and execution requirement 2, and one

task with period p + 1 and execution requirement p. At time 0, EDF favors the M tasks

with period p. The task with period p+ 1 does not get scheduled until time 2, by when its

deadline cannot be guaranteed. (Fig:4.1 illustrates this problem for M = 2 and p = 5.)

Note that the total utilization of this task system is 2M
p + p

p+1 ; as p tends to ∞, this value

tends to 1 from above. This effect can only be removed by taking another parameter into

account (other than absolute deadline) to define the priority of tasks.

• EDZL scheduling Algorithm

EDZL is a hybrid preemptive priority scheduling scheme in which jobs with zero laxity

are given highest priority, and other jobs are ranked by deadline. The EDZL algorithm

integrates EDF and LLF (Least Laxity First). EDZL uses EDF as long as there is no
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urgent job (having zero laxity) in the system. When the laxity of a job becomes zero, a

current job with a positive laxity that has the latest deadline among all current jobs is

preempted by this job. The main idea of EDZL is shown in Fig:4.2. We take the same task

set used to explain the dhall’s effect, and we illustrate that how EDZL ensures scheduling

of tasks. EDZL scheduling algorithm removes the dhall’s effect by preempting a task if

laxity of remaining task reaches a value of zero. As we illustrate in (Fig:4.1) that task

set is not schedulable on two processors using g-EDF, but it is schedulable using EDZL

as shown in Fig:4.2. At t = 1, T3 becomes a zero-laxity job and preempts T2. T2 resumes

execution at t = 2. All three jobs meet their deadlines, since at t = 1, the priority of T3 is

promoted to a higher level than T1 and T2. EDZL scheduling algorithm removes dhall’s

effect but it does not ensure the schedulability of all tasks. It happens when M high

priority running tasks (priority tasks according to EDZL) have small periods as compared

to remaining tasks. EDZL scheduling algorithm is an optimal scheduling algorithm if all

tasks have same deadlines.

4.2.2 Accumulative Effect

EDZL scheduling algorithm is not optimal if all tasks do not have same time periods. In

this case, weight of a ready task (a task waiting for its selection to execute) comes out to

be greater than accumulating offloading of M high priority running tasks.

4.2.2.1 Single Processor Case

In case of single processor, offloading factor of a task Ti represents percentage of proces-

sor that is used to execute tasks other than Ti, and there exists no such task that has

utilization greater than offloading factor of task Ti (if U(τ) ≤ 1).

Li
Pi
≥

n∑
j=1
j 6=i

Cj
Pj



Chapter 4. Efficient and Optimal Multiprocessor Scheduling for Real Time Tasks 70

4.2.2.2 Multiprocessor Case

In case of multiprocessor system, there may exists such task Tj (waiting/blocked for

execution) that has utilization equal to accumulative offloading of M high priority running

tasks, and Pj is greater than periods of these running tasks.

M∑
i=1
i6=j

Li
Pi

=
Cj
Pj

Pj > Pi

In this case, task Tj is selected to execute (or during execution of Tj) with more than one

processors idle. It leaves at least one processor idle for some time, thus causing tasks to

miss their deadlines for their next jobs (if U(τ) = M).

Here is an example (Fig:4.7(a)) to illustrate, that how accumulation of utilization of

M = 2 high priority running tasks cause a processor to go idle. Given the set of periodic

tasks (Task T =C/P) T1= (2/3), T2 = (2/3), T3 = (4/6). The task set is not schedulable

on two processors either using EDF or EDZL.

L1

P1
+
L2

P2
=
C3

P3

1
3

+
1
3

=
4
6

P3 > P1 and P2

Global EDF (g-EDF) scheduling algorithm is not an optimal scheduling algorithm. We

explain in this section all those reasons/problems for which g-EDF is not an optimal

scheduling algorithm. One problem (dhall’s effect) is solved by EDZL scheduling algo-

rithm. We work to explore those reasons and factors that make an optimal mono processor

scheduling algorithm lost its optimality when applied to schedule tasks on multiproces-

sor architecture. We propose some other modifications which encompass all problems of

g-EDF.

4.3 Multiprocessor ASEDZL Scheduling

In ASEDZL scheduling algorithm, it is ensured that there is no idle time on any processor

until next release of a tasks, and M tasks ,which are considered M high priority tasks

according to EDF (called TEDF tasks), are selected to execute until next release of a

task. At any release instant, if execution requirements of M high priority tasks are not

sufficient to occupy all M processors until next release of a task, then few subsequent

tasks (next higher priority tasks) are promoted in priority to keep all processors busy

until next release of a task.
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To ensure that slacks of these M high priority tasks are filled, ASEZDL scheduler

selects tasks from TaskQueue (explained in next section) and not from ready queue.

4.3.1 TaskQueue

The tasks are sorted and placed in a queue called TaskQueue (different from ready queue)

according to closeness of their deadlines. The number of tasks in TaskQueue remains

unchanged, but positions of tasks in it may change depending upon absolute deadlines of

tasks.

The number of tasks in TaskQueue does not change and it is equal to n. This

TaskQueue is updated only when a task is released for its next instant, and is not up-

dated when a task completes its execution. Scheduler selects tasks from TaskQueue to

execute and not from ready queue. A task Ti keeps its position in TaskQueue even if it

has finished its execution. It is different from the ready queue where task leaves queue

when it has finished its execution. This TaskQueue is divided into two groups.

• TEDF Task Set

• TS Task Set

1. TEDF Task Set: A set of first M (Fig:4.3) tasks of this TaskQueue are denoted

as TEDF tasks as these tasks are considered as M high priority tasks according to

EDF algorithm. A task Ti is considered TEDF tasks if its absolute deadline is earlier

than absolute deadline of M th TEDF task, even if it has finished its execution.

2. TS Task Set A subsequent task Tj (Tj ∈ TS) is a task, which has deadline later

than or equal to deadline of M th TEDF task.

There is another subgroup of these two task sets called TZ (urgent) task set.

• TZ Task Set:
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If a task Ti is selected to execute when value of its laxity becomes zero, then it is called

urgent task and is included into TZ (Ti ∈ TZ). Any task from both groups can become

urgent task if its laxity reaches a value of zero.

4.3.2 Release instant Ri and interval length

Laxities of M TEDF tasks are filled between two consecutive release instants, which are

release times of tasks (Fig:4.4). Time difference between two release instants is called

interval length. If M TEDF tasks do not have total execution requirement equal to or

more than M ∗ interval length, then one or more than one subsequent task(s) TS are

selected to fill this laxity because scheduler needs to execute tasks between two release

instants for time units equal to

TU = M × (interval length) (4.1)

ASEDZL algorithm tries to maximize the execution of TEDF tasks to execute during

this interval, but if M TEDF tasks do not have sufficient remaining executing time, then

sufficient subsequent tasks TS are also executed to occupy processor until next release

instant. Thus, scheduling of tasks on M processors becomes similar to filling a 2D bin

at any time, where length of this 2D bin is equal to interval length, and height is equal

to M . To maximize the execution of TEDF tasks and to ensure filling of this 2D bin, M

TEDF tasks and few number of subsequent tasks are assigned virtual deadlines and local

execution time. Local execution time of tasks is equal to capacity of the 2D bin, and

assignment of virtual deadline ensures filling of this 2D bin.

4.3.3 Virtual Deadline and Local Execution Time

At release instant Rk, M TEDF tasks are assigned a virtual deadline equal to next release

time of a task which is Rk+1(next release instant). By default virtual deadline of a task

is equal to its absolute deadline. Local execution time of a task represents execution
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time of task that can be executed between two release instants. It can not be more than

interval length, and it is represented by Cvi . By default value of local execution time is

zero, and it is calculated as follows (for TEDF tasks):

If
∑

Ti∈TEDF
Cvi < TU , then few subsequent tasks are also assigned virtual deadline,

and local execution time such that total local execution time of TEDF tasks and those

of subsequent tasks become equal to TU . Local execution time of subsequent tasks is

calculated in an iterative way:

Algorithm 7 Calculations of Local execution times of tasks
tasks sorted in increasing order of their deadlines
(even with zero remaining execution time)
Cv = 0;
for i = 1 to n do
Cvi = 0;
dvi = di;

end for
for i = 1 to n do
Cvi = min(Cremi (Rk), interval length, TU − Cv);
dvi = Rk+1;
Cv = Cv + Cvi ;
if (TU − Cv == 0) then

Break;
end if

end for

4.3.4 Priority Order of Tasks

Tasks are selected to execute based on their virtual deadlines rather than their actual

deadlines. If virtual deadline of two tasks is same then task with earlier real deadlines

is given higher priority. Virtual laxities of tasks are calculated as well, which are the

differences between their virtual deadlines and local execution times.

Priority order is defined as follows:

1. Tasks with virtual zero laxity (urgent tasks TZ) are given higher priority over tasks

with earlier deadlines.

2. Tasks with actual zero laxity (difference between real absolute deadline and real

execution time) are given higher priority over task with virtual zero laxity.

3. Tasks with earlier deadlines are given higher priority over tasks with later deadlines.

Let Lri (t) represents the real laxity of task Ti at time t and Lvi (t) represents the virtual

laxity of task Ti at time instant t.

Example 4.2. Here is an example (Fig:4.5) to illustrate the principle of ASEDZL. Given

a set of periodic tasks T1 = (2/3), T2 = (2/3), T3 = (4/6). The task set is not schedulable

on two processors using EDF because slacks of tasks T1 and that of task T2 could not be

filled by task T3 (a single task), as filling of these slacks is delayed until completion of

tasks T2 and T1. Two consecutive release instants are at t = 0 and t = 3. Tasks T1 and
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Algorithm 8 Selection of tasks according to priority
tasks sorted in increasing order of their absolute deadlines(even with zero remaining execution time)
int NumberOfTasksSelected = 0;
for i = 1 to n do

if (Lri (t) == 0) then
Select Ti to execute;
NumberOfTasksSelected = NumberOfTasksSelected+ 1

end if
end for
for i = 1 to n do

if (NumberOfTasksSelected < M) then
if (Lvi (t) == 0 ∧ Lri (t) > 0) then

Select Ti to execute;
NumberOfTasksSelected = NumberOfTasksSelected+ 1

end if
end if

end for
for i = 1 to n do

if (NumberOfTasksSelected < M) then
if (Lvi (t) > 0 ∧ Lri (t) > 0) then

if (Cremi (t) > 0) then
Select Ti to execute;
NumberOfTasksSelected = NumberOfTasksSelected+ 1

end if
end if

end if
end for

task T2 are TEDF tasks. So we define virtual deadlines of these two tasks equal to next

release instant, which is 3. We define the local execution times of TEDF tasks as follows:

Cv1 = min(C1, interval length)

Cv1 = min(2, 3) = 2

Cv2 = min(C2, interval length)

Cv2 = min(2, 3) = 2

Total time units TU to be filled until next release instant are 2*3=6. Time units which

are filled by TEDF tasks are Cv1 +Cv2 = 4. Remaining time units (6− 4 = 2) are filled by

subsequent tasks. The virtual deadline of first subsequent task is set to 3 as well and its

local execution time is calculated as follows:

Cv3 = min(C3, interval length, (TU − Cv1 − Cv2 ))

Cv3 = min(4, 3, 2) = 2

Laxities of M TEDF tasks are filled during each interval length. It ensures that there

will be no idle time on any processor as depicted in Fig:4.5.
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Figure 4.5: ASEDZL scheduling Algorithm Description
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Figure 4.6: Comparison of EDF with EDZL

4.4 Comparison of EDZL With ASEDZL

To illustrate the difference between EDF, EDZL and ASEDZL, we take the same example

where T1 = (2/3), T2 = (2/3), T3 = (2/3). EDF is not able to schedule these tasks as

shown in Fig:4.6(a) but EDZL schedules these tasks and all tasks respect their deadlines.

However, EDZL algorithm is not an optimal scheduling algorithm due to possibility of

leaving processor idle in the schedule. Now, we take the same example again, but we

change the parameters of task T3. Parameters of task T3 are now 4/6 instead of 2/3.

We can observe that when tasks are scheduled according to EDZL algorithm there is

an idle time on processor π2 as there was only one task ready at instant t = 2 (Fig:4.7(a)).

It happens because slack of TEDF tasks (i.e., T1 and T2) is not anticipated in advance.

Hence, task T3 cannot fill this slack between time 2 and 3. According to ASEDZL, slack
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Figure 4.7: Comparison of EDZL with ASEDZL

is anticipated in advance, and subsequent tasks T3 is also assigned virtual deadline equal

to 3 and is also assigned local execution time which is equal to 2 (Fig:4.7. Tasks T2 and T1

are selected to execute. At t = 1, laxity of T3 becomes zero, hence its priority is promoted

and it preempts lower priority task which is T1. At t = 2, laxity of T1 becomes zero as

well, hence it replaces the T2 which has finished its execution.

We can observe that laxities of TEDF tasks (i.e., T1 and T2) are filled by T3 until t = 3,

and there is no idle time on processors.

4.5 Properties of ASEDZL Algorithm

A fundamental property of our propose ASEDZL algorithm is its controlled run time com-

plexity and minimum preemptions of tasks. It ensures that all tasks meet their deadlines.

The optimality of scheduling algorithm is provided, while minimizing task preemptions

and scheduling overheads. In this sub section, we detail these properties.

4.5.1 Not Based on Basic Time Quanta

ASEDZL scheduling algorithm is not based on time quanta. Worst case execution and

time period of a task can have any arbitrary value. Moreover, there is implication on

execution requirements of task, as it is in case of LLFEF where execution requirements

are assumed to be much higher than basic time quanta.
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4.5.2 Notion of Fairness

For designing an optimal scheduling algorithm, the fluid scheduling model and the fairness

notion are considered. In the fluid scheduling model, each task executes at a constant

rate at all times. For a task set to be schedulable, fairness must be ensured for each task

up to its deadline boundary and not necessarily through its execution. In the following

subsection, we present fairness boundaries for three optimal global scheduling algorithms.

4.5.2.1 Pfair Fairness

The quantum-based Pfair scheduling algorithm is based on the fluid scheduling model, as

the algorithm constantly tracks the allocated task execution rate through task utilization.

The Pfair algorithms success in constructing optimal multiprocessor schedules can be

attributed to fairness informally, all tasks receive a share of the processor time, and thus

are able to simultaneously make progress (Fig:4.8). P-fairness is a strong notion of fairness,

which ensures that at any instant, no application is one or more quanta away from its due

share (or fluid schedule). Fairness is provided at each instant (integer multiple of basic

time quanta) but the counter part is that Pfair introduces a lot of scheduling overheads

in terms of increase in preemptions and migrations.

4.5.2.2 LLREF Fairness

LLREF is also based on the fluid scheduling model and the fairness notion. To avoid Pfairs

quantum-based approach, LLREF introduces an abstraction called the Time and Local

Execution Time Domain Plane (or abbreviated as the T-L plane), where tokens represent-

ing tasks move over time. LLREF scheduler splits tasks to construct optimal schedules,

not at time quantum expiration, but at other scheduling events which are release times of

tasks (release instants), and consequently avoid Pfairs frequent scheduling and migration
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Figure 4.10: Fairness ensured at deadline boundaries

overheads. LLREF ensures fairness at all release instant boundaries (Fig:4.9)(task release

times).

4.5.2.3 ASEDZL Fairness

ASEDZL algorithm is not based on the notion of fairness. It ensures fairness for a task

only at its deadline boundary (Fig:4.10), which is mandatory for a task to be schedulable.

Unlike LLREF, allocation of processor time to different tasks between any two release

instants is not proportional to their weights.
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4.5.3 Minimum Active Tasks Between two Release Instants

The minimum number of tasks that must be executing cannot be less than M if processor

utilization induced by the task set is M . LLREF scheduling algorithm executes all n tasks

to execute between any two release instants, even if the difference between two consecutive

release instants is very small. In this case, each task is executed for a very small fraction

of time leading to increased scheduling overheads, and sometimes make it impractical.

Tasks selected to execute between any two release instants by ASEDZL algorithm can be

as minimum as M if U(τ) = M . If U(τ) < M , the minimum number of tasks between

any two release instants can be 1 if scheduled by ASEDZL while LLREF schedules all n

tasks between any two release instants.

4.5.4 Anticipation of Laxities of M TEDF Tasks

ASEDZL algorithm is mainly based on the idea of anticipating laxities of M TEDF tasks

before those laxities appear. The objective of ASEDZL is that these laxities can be filled

by execution requirement of subsequent tasks. Subsequent tasks have sufficient execution

requirements to fill the laxities of the M TEDF tasks.

Let utilization of the task set equals M then we find that:

∑
Ti∈TEDF

Ci
Pi

+
∑
Tj∈TS

Cj
Pj

= M

∑
Ti∈TEDF

Ci
Pi

+
∑

Ti∈TEDF

Li
Pi

= M

∑
Tj∈TS

Cj
Pj

=
∑

Ti∈TEDF

Li
Pi

(4.2)

if U(τ) < M then: ∑
Tj∈TS

Cj
Pj

<
∑

Ti∈TEDF

Li
Pi

(4.3)

The objective is now to demonstrate that there are at least M ready tasks at each

release instant (if U(τ) = M) and each task meets its deadline.

4.6 Optimality of ASEDZL

Due to dhall’s effect g-EDF scheduling algorithm can cause a task to miss its deadlines

even at very low utilization of task set.

Lemma 4.1. A task Ti can miss its deadline if scheduled by g-EDF scheduler even if it

is the only task executing on one processor and all other (M − 1) processors are free.
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Proof. According to g-EDF scheduler, tasks are sorted in queue according to closeness

of their deadlines. Scheduler selects first M tasks to execute on M processors. When

a task finishes its execution, scheduler selects next task to execute. If we consider the

example.4.1 explained earlier where task set is composed of M + 1 tasks. We can find

that (M + 1)th task with execution requirement of p and period p+ 1 misses its deadline

at p+ 1 while all other processors are free during the time interval [2,p).

Lemma 4.2. A task Ti can miss its deadline if scheduled by EDZL scheduler, when all

M processors are executing urgent tasks when laxity of Ti becomes zero.

Proof. EDZL scheduler preempts a task with latest deadline, if task Ti becomes an urgent

task. If task Ti has missed its deadline, then it implies that EDZL scheduler has not

preempted a task to execute Ti. It is against EDZL scheduling policy. There is only one

reason for not preempting a task which is that all tasks executing on M processors are

urgent tasks. Hence, task Ti misses its deadlines only when all processors are executing

M urgent tasks.

We now establish optimality of ASEDZL scheduling algorithm by proving that all

tasks meet their deadlines if utilization of task set does not exceed processing capacity of

the system.

4.6.1 U(τ) at Release Instants Ri

Let us consider mono-processor case and a task set composed of two tasks Ti and Tj such

that ui + uj = 1 and Pi < Pj . Both tasks are released at t = t1. let use assume that

task Ti is selected to execute by scheduler (single processor). At time t = t1 + IL, current

weight uci decreases. The decrease in its weight of task Ti at time t, denoted by DWi(t),

is calculated as follows:(task Ti has not finished its execution yet)

DWi(t) =
Ci
Pi
− Ci − IL
Pi − IL

=
IL(Pi − Ci)
Pi(Pi − IL)

DWi(t) =
IL(Li)

Pi(Pi − IL)
(4.4)

At the same time current weight of task Tj increases, and increase in its weight, represented

by IWj(t) is calculated as follows:

IWj(t) =
Cj

Pj − IL
− Cj
Pj

IWj(t) =
IL(Cj)

Pj(Pj − IL)
(4.5)
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As
Ci
Pi

+
Cj
Pj

= 1

⇒ Li
Pi

=
Cj
Pj

And

Pj > Pi

Then Equation(4.4) and Equation(4.5) implies that decrease in weight of task Ti is greater

than increase in weight of task Tj until time t=t1 + IL.

IL(Cj)
Pj(Pi − IL)

− IL(Cj)
Pj(Pj − IL)

=
IL.Cj(Pj − Pi)

(Pi − IL)(Pj − IL)

As Pj −Pi > 0, it implies that decrease in weight of running task is greater than increase

in weight of waiting task.

if IL = Pi, then task Ti has finished its execution and task Tj has executed for time

units equal to Li until t1 +Pi. It implies that total decrease/increase in weight of task Tj
is zero if µi + µj = 1.

Cj
Pj
− Cj − Li
Pj − Pi

=
Pj .Li − Pi.Cj
Pj . (Pj − Pi)

=
Pj .Pi

(
Li
Pi
− Cj

Pj

)
Pj . (Pj − Pi)

Cj
Pj
− Cj − Li
Pj − Pi

=
Pi

(
Li
Pi
− Cj

Pj

)
(Pj − Pi)

(4.6)

But if there are more than two tasks in the system (where Pi 6= Pj), then total decrease

in weights of all tasks is greater than zero. Moreover current weight of task Ti is also zero

before t = t1 +Pi. It implies that sum of current utilization of all tasks ready at t = t1 +Pi
is less than or equal to 1. But if task Tj does not execute for Li time units until t = t1+Pi,

then sum of current weights is higher than 1 at release of task Ti.

It connotes that if tasks with closer absolute deadlines are given higher priority than

tasks with later absolute deadlines, then sum of current weights of all tasks does not

exceed than capacity of architecture until release of a task (if processor has been busy

until release of taskU(τ) = 1). If in Equation(4.6), Li
Pi
<

Cj
Pj

then increase in weight of

block task is higher than decrease in weight of running task.

In the same way on multiprocessor, if tasks with closer absolute deadlines are given

higher priority over tasks with later deadlines, then sum of decrease in current weights of

higher priority tasks until next release of a task is higher than sum of increase in current



Chapter 4. Efficient and Optimal Multiprocessor Scheduling for Real Time Tasks 82

weights of tasks waiting for execution, provided all processor are busy until next release

instant. As explained in section 4.2.2, LiPi <
Cj
Pj

can be true where Ti is running task while

Tj represent the blocked task. In this case, increase in weight of Tj is higher than decrease

in weight of Ti, but we know from Equation(4.3) that:

∑
Tj∈TS

Cj
Pj

<
∑

Ti∈TEDF

Li
Pi

It implies that sum of decrease in weights of running tasks is greater than or equal to

sum of increase in weights of blocked tasks, even if increase in weights of k blocked

tasks (k < M) is higher than decrease in weights of k running tasks. In this case, rate of

decrease in weights of remaining M−k blocked tasks is much higher to encounter increase

in weights of k blocked tasks.

⇒ that at any release instant Rk.

n∑
i=1

µci ≤M (4.7)

Let τRkr defines the set of tasks which has non zero remaining execution time at t = Rk

then we have: ∑
Ti∈τ

Rk
r

Cremi (Rk)
dremi (Rk)

≤M −
n∑
j=1

Tj /∈τ
Rk
r

Cj
Pj

(4.8)

As ASEDZL assigns higher priority to tasks with earlier deadlines, it demonstrate

∑
Ti∈τ

Rk
r

Cremi (Rk)
dremi (Rk)

≥
∑

Ti∈τ
Rk
r

Cremi (Rk+1)
dremi (Rk+1)

(4.9)

Equation(4.8) and Equation(4.9) imply

∑
Ti∈τ

Rk+1
r

Cremi (Rk+1)
dremi (Rk+1)

≤M (4.10)

4.6.2 No Idle Time on Processor

In this section, we demonstrate that there is no idle time on any processor, if scheduled

using ASEDZL (provided U(τ) = M).

4.6.2.1 2D Bin Packing

At release instant Rk, ASEDZL assigns virtual deadlines to tasks until next release instant

Rk+1, and tries to schedule tasks on M processors. Thus scheduling of tasks can be

described as filling of a 2D bin, where height of this bin is fixed to M and length of this
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Figure 4.11: 2D Bin Packing

bin is defined as difference between two consecutive release instants. As this difference

between two release instants is different, so we have bins of different lengths and fixed

height at different release instants as shown in Fig:4.11.

There is no idle time on any processor if scheduled using ASEDZL algorithm (utiliza-

tion of task set = M). Global scheduler works as packing of these 2D bins of different

lengths. At any time t, there is only one 2D bin to be filled. Length of a bin at time t1
can be different from length of other 2D bin at time t2, where t1 and t2 don’t lie between

same release instants. All 2D bins have same height which is equal to M .

EDZL [75] is an optimal scheduling algorithm if all tasks have the same deadlines. It

implies that if EDZL is used to fill this 2D bin, such that local execution requirements of

tasks is equal to capacity of this 2D bin and all tasks have same virtual deadline, then

there will be no idle slot (space) in this 2D bin.

4.6.2.2 Minimum Number of Ready Tasks:

Let us assume that there is an idle time on a processor between two release instants Rk
and Rk−1, it implies that(U(τ) = M):

1. Total remaining execution requirements of all tasks is less thanM×(Rk−Rk−1)and/or

2. Number of ready tasks at Release Instant (Rk−1) is less than M

As U(τ) = M , it implies that:

n∑
i=1

HP

Pi
× Ci = M ×HP

which implies that at any release instants t=Rk−1:

n∑
i=1

Cremi (t) ≥M × (Rk −Rk−1)
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For any schedule (feasible or infeasible), at any release instant t = Rk−1:

n∑
i=1

min [Cremi (t), (Rk −Rk−1)] ≥M × (Rk −Rk−1)

If
n∑
i=1

min [Cremi (t), (Rk −Rk−1)] < M × (Rk −Rk−1)

It implies that at least one task has not executed sequentially before t = Rk−1 i.e., it

has executed on more than one processors simultaneously, which is against the basic

assumption. It demonstrates that:

n∑
i=1

min [Cremi (t), (Rk −Rk−1)] ≥M × (Rk −Rk−1) (4.11)

Equation(4.11) implies that there are, at least, M ready tasks during this interval.

4.6.3 No More than M Urgent tasks

If tasks are scheduled according to ASEDZL, then no more than M tasks can claim zero

laxity at the same time. If tasks are scheduled according to ASEDZL, then no more than

M tasks can have zero laxity at time t.

Theorem 4.3. No more than M tasks can have zero laxity at time t when scheduled using

ASEDZL where n ≤M .

Proof. Laxity of task reaches a value of zero if it is not selected to execute. As we have

M processors, ASEDZL always selects ≤M tasks (if there are M ready tasks) to execute.

Hence, at any time t, there is no task waiting (blocked task) for processor. It implies that

there will be no task with zero laxity at time t.

Theorem 4.4. No more than M tasks can have zero laxity at time t when scheduled using

ASEDZL where n > M .

Proof. Let us say that a task Tj claims a zero laxity at instant t1 (t1 < t ≤ dj). It implies

all processors were executing M TEDF high priority tasks until t1. It implies that:

∑
Ti∈TEDF

Cremi (t1)
dremi (t1)

+
Cremj (t1)
dremj (t1)

≥ 1

At least one processor which executes task Tj and a TEDF task is fully busy until t. Let

us assume again that task Tk also claims zero laxity at instant t2 (t1 ≤ t2 < t). It implies

all processors were executing (M − 1) high priority tasks and one urgent task until t2 It
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Figure 4.12: Optimality proof

implies that until t:

∑
Ti∈TEDF

Cremi (t2)
dremi (t2)

+
Cremj (t2)
dremj (t2)

+
Cremk (t2)
dremk (t2)

≥ 2

In the same way if tm < t is such an instant where there were (M − 1) urgent tasks

executing on processors and task Tv also claims zero laxity then it implies that:

∑
Ti∈TEDF

Cremi (tm)
dremi (tm)

+
∑
Tj∈TZ
Tj 6=Ti

Cremj (tm)
P remj (tm)

≥M

If at instant t, a (M + 1)th task also claims zero laxity then it implies that:

∑
Ti∈TEDF

Cremi (t)
dremi (t)

+
∑
Tj∈TZ
Tj 6=Ti

Cremj (t)
dremj (t)

≥M + 1 (4.12)

But this contradicts Equation(4.7).

It means that if there is no idle time on any processor before instant t, then no more

than M tasks can claim zero laxity simultaneously, if scheduled according to ASEDZL.

From this, we can deduce that if there is no idle time on any processor, all tasks re-

spect their deadlines. This property is illustrated in Fig:4.12 where tasks T1 and T4 are

preempted by urgent tasks T6 and T7 respectively. It imply that
∑n

i=1C
rem
i /dremi ≥ 2.

4.7 Complete Example

We illustrate this principle by an example. Task set is given in Table 4.1. Utilization of

this task set is 3. This task set is scheduled on 3 processors. At t = 0,Tasks T4, T5, T2 are
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Task C P
T1 2 5
T2 2 5
T3 7 10
T4 3 4
T5 3 4

Table 4.1: Task Parameters

three TEDF tasks according to closeness of their deadlines. Virtual deadline is assigned

to all these three TEDF tasks which is 4. Local execution time of these three tasks is

calculated as follows:

Cv4 = min(3, 4) = 3

Cv5 = min(3, 4) = 3

Cv2 = min(2, 4) = 2

Total local execution time of three TEDF tasks is 8, and TU required is (3*4) 12. So we

need to add few subsequent tasks that have execution requirement of 4 time units. First

subsequent task is T1 (Fig:4.14)and its local execution time is:

Cv1 = min(2, 4, 12− 8) = 2

So we need to select second subsequent task which is T3 and its local execution time is

calculated as follows

Cv3 = min(7, 4, 12− 10) = 2

Virtual deadlines of the two subsequent tasks are same as virtual deadlines of TEDF tasks.

T4, T5 and T2 are selected for execution due to their higher priorities. At t = 2, local

laxity of tasks T1, T3 reaches a value of zero, so tasks T5 (TEDF ) is replaced with urgent

task T3, and T1 is selected to execute as T2 has finished its execution. At t = 2, T3 is

given higher priority over T5, as local laxity of T3 has reached as value of zero (Fig:4.13).

At t = 4, T2, T1 and T4 are three TEDF tasks and they are assigned virtual deadline

equal to 5. Their calculated local execution times are 0,0,1 respectively. TU required is

equal 3, so there is a need to add subsequent tasks. First subsequent task is T5 and its

local execution is calculated to be 1, second subsequent task is T3 and its local execution

time is 1. At t = 6, actual laxity of task T3 becomes zero so it has been given the

highest priority and it has preempted the lowest priority task T1 (one which has the latest

deadline) and so on.



Chapter 4. Efficient and Optimal Multiprocessor Scheduling for Real Time Tasks 87

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

T
1

T
4

T
4

T
5

T
5

T
5

T
2

T
3

T
3

T
1

T
2 T

3

T
4

T
4

T
4

T
5

T
5

T
1

T
1

T
4

T
5

T
5

T
3

T
3

T
2

T
2

T
3

T
3

T
4

T
5

1
π

2
π

3
π

Figure 4.13: : Illustration of Algorithm by Complete Example

Figure 4.14: TaskQueue at different Release Instants

4.8 Performance Evaluation

In this section, we shall provide a comparison of our proposed approach with already

existing optimal global scheduling algorithms i.e., Pfair and LLREF. ASEDZL algorithm

is not based on time quanta unlike Pfair. Execution requirement and time periods of tasks

can have any arbitrary value. Pfair scheduler selects tasks to execute at each instant,

thus introducing a lot of overheads in terms of increased released instants Ri. Unlike

Pfair, LLREF is not based on time quanta but it increases preemptions of tasks to a

great extent. LLREF schedules all n tasks between any two release instants while our

proposed algorithm schedules minimum number of tasks between any two release instants.

Minimum number of tasks selected to execute can be as minimum as M , if tasks are

scheduled according to ASEDZL. We can observe it in Fig:4.13, between release instant at

4 and 5, ASEDZL has selected only 3 (M) tasks to execute while LLREF will schedule all 5

(n) tasks between these two release instants. We have performed simulations on Cofluent

Studio with 2 processors and different number of tasks such that overall utilization of task

set is 1.9. Parameters of tasks i.e., period and worst case execution time, are generated

randomly. We have illustrated that ASEDZL outperforms LLREF scheduling algorithm.

Number of scheduling events in ASEDZL schedule are much lower than appearing in

LLREF based schedule of task, and the difference between number of preemptions of two

tasks is exceptional, as shown in Fig:4.15. We have also compared the performance of

ASEDZL with EDZL. We can observe than number of preemptions are higher in case
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Figure 4.15: Comparison of ASEDZL algorithm with LLREF

of ASEDZL that those of EDZL (Fig:4.16) but there are deadline misses if tasks are

scheduled according to EDZL scheduling algorithm.

4.9 Algorithm Overhead

One of the main concerns against global scheduling algorithms (e.g., Pfair, LLREF, g-

EDF) is their overhead caused by frequent scheduler invocations. Srinivasan et al. identify

three specific overheads:

1. Scheduling overhead: this accounts for the time spent by scheduling algorithm

including that for constructing schedules and ready-queue operations.

2. Context-switching overhead: which accounts for the time spent in storing the

preempted task’s context and loading the selected task’s context.

3. Cache-related preemption delay: which accounts for time incurred in recovering

from cache misses that a task may suffer when it resumes after a preemption. Note

that when a scheduler is invoked, the context switching overhead and cache-related

preemption delay may not happen.

In contrast to Pfair, LLREF is free from time quanta but it yields more frequent scheduler

invocations than g-EDF. EDZL algorithm adds one more scheduling event to g-EDF which
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is zero laxity of a task. However, ASEDZL does not add any more scheduling event than

appearing in EDZL.

4.10 Conclusions

We have presented an optimal real-time scheduling algorithm for multiprocessors, which

is not based on time quanta. This algorithm called ASEDZL, is designed based on idea

of anticipating the filling of laxities of M TEDF tasks. This proposed algorithm is a

modified version of g-EDF scheduling algorithm. g-EDF scheduling algorithm has the

least runtime complexity for scheduling tasks on multiprocessor architecture, but it is not

optimal. We have compared the characteristics of g-EDF with basic intrinsic properties

of optimal mono-processor EDF scheduling algorithm, and ensured these properties to

appear in g-EDF scheduling algorithm by introducing few modifications which brought

optimality in g-EDF as well. We proved that EDZL scheduling algorithm is optimal if

there is no idle time on any of processor during execution. This condition is accomplished

by our algorithm ASEDZL by anticipating the laxities in advance to assure that there is

no idle time on processors.

We demonstrated that our algorithm does not increase the scheduling events. It is

much better than LLREF scheduling algorithm where fraction of all n tasks are executed

between any two release instants, while in our proposed approach the number of tasks
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which are selected to execute between any two release instants can be as minimum as

one. We have performed simulations on Cofluent tool and have demonstrated different

results in terms of number of scheduling instants and number of preemptions. We are also

developing with our partners a simulation tool in context of PHERMA1 project which will

help us to simulate these algorithms. This simulator is designed to take care of all real

parameters of an architecture like, effect of shared or distributed memory, cache penalties,

scheduling overheads, cost of preemption and migration of a task etc.

1PHERMA is a National project funded by ANR ((Agence Nationale de la Recherche), France)under
the project call 2006 of Architecture of Future. There are four partener of this project 1)CEA List - LCEI
2)LEAT - Université de Nice Sophia Antipolis, CNRS UMR 6071 3)Ecole Centrale de Nantes IRCCyN :
équipe Systèmes Temps Réel 4)THALES Communications
web: http://pherma.irccyn.ec-nantes.fr/



Chapter 5

Hierarchical Scheduling Algorithm

5.1 Introduction

Some tasks have high affinity with specific processors and they can be executed only

on those processor. That’s why, these kinds of tasks are partitioned on processors and

tasks on one processor are grouped to form supertask. Scheduling of global tasks and

supertasks is called group-based or hierarchical scheduling technique [32–34, 53] (super-

tasking approach). Under this approach, sets of tasks are scheduled instead of individual

tasks. This approach of grouping tasks (forming a supertask) was pioneered by Moir et

al. [53]. Their work was motivated by the fact that many applications have tasks that

cannot migrate because they interact with sensors and actuators at fixed locations. In

this approach of supertasking, supertasks (one supertask from each group) are scheduled

by a global scheduler among other global tasks. When a supertask is selected to execute,

an internal scheduler is invoked to distribute the processor time among the individual

tasks (local tasks). Use of optimal global scheduling algorithm like Pfair, ensures dead-

line guarantees for supertasks and global tasks but it does not guarantees if local tasks

will respect their deadlines, as scheduling of local tasks (partitioned tasks) is dependent

on decisions of global scheduler and its policy. Works of Moir et al.[53] and Holman et

al.[32] demonstrated that local tasks miss their deadlines when supertasking is used in

conjunction with all known Pfair scheduling algrithms.

In this chapter, we present two contributions in the field of hierarchical scheduling

algorithms where we develop/establish sufficient conditions to ensure deadline guarantees

to all local tasks. Moreover, we also propose to used ASEDZL as global scheduler to

schedule supertasks and global tasks which does not impose any further conditions for a

feasible schedule. The proposed approaches are as follows:

1. Establishing weight bound relation between supertask and component tasks for guar-

anteed real time constraints, where a Pfair Scheduler is used to schedule tasks at

global level.

91
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2. Hierarchical scheduler based on scheduling global tasks using ASEDZL at global

level.

We define few more symbols before diving into details of the algorithms. In these algo-

rithms a set of task is partitioned on M processors and is represented by τpar. The nj

number of tasks partitioned on processor πj are represented by τ j . Tasks that are not

grouped to form a supertask are called migrating (global) tasks, and the total number of

global tasks are represented by ng.

(n1 + n2 + n3 + ...+ nM) + ng = n

5.2 Weight Bound Relation between supertask and compo-

nent tasks for guaranteed real time constraints

A given periodic task set is subdivided into two groups -partitioned and global tasks.

In partitioned subset of tasks, each task is assigned to a particular processor statically

(offline), and it always executes on the same processor during runtime.

A set of tasks partitioned on processor (π)j is grouped to form a supertask T jx , and

tasks comprising this supertask are called component tasks. These supertasks among

other migrating tasks are scheduled globally by a Pfair scheduling algorithm. Whenever

a supertask is scheduled, its processor time is allocated to one of its component task ac-

cording to an internal scheduling algorithm. Supertasking effectively relaxes the strictness

of Pfair scheduling: the group is required to make progress at a steady rate rather than

individual tasks. Unfortunately, Moir and Ramamurthy [53] demonstrated that using an

ideal weight assignment with a supertask cannot, in general, guarantee the deadliness of

its component tasks. Holman [32] has developed criteria where supertasks are assigned

weights more than their actual weight (ujx) to provide deadline guarantees to component

tasks. Reweighting of supertasks proposed by Holman in [32] provides feasible schedule.

Let us consider that ûjx represents the weight of a supertask that ensure deadline guar-

antees for local tasks (ûjx ≥ ujx). The difference ûjx − ujx is called the inflation factor.

Holman et al. proposed to increase the weight of a supertask to ensure a feasible schedule

except when weight of a supertask is equal to one. In this section, we establish a sufficient

condition if respected, guarantees feasible schedule of local tasks. In this case, increase

in weight of supertask is not required. If this condition is not respected then there is

a need to increase the weight of supertask such that this condition is respected. Thus

this condition also provides the more accurate value of weight of supertask which ensure

deadline guarantees to local tasks. Inflation factor introduced in this case is smaller than

proposed by Holman et al.
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Figure 5.1: Hierarchical scheduler

In this section, we address issue of establishing a relationship between weight of a

supertask and those of component tasks to provide deadline guarantees. We establish a

condition, which must be taken into account while constructing a supertask from com-

ponent tasks. We prove that all component tasks respect their deadline constraints, if

supertask and its component tasks have the established relation/condition in them. More-

over the schedulable bound of algorithm remains intact i.e., M .

5.2.1 Background

We extend the work of Moir et al. [53] and Holman [32, 33] on the approach of hierarchal

scheduling (Fig:5.1) of tasks. According to this approach, tasks are grouped to form M

sets of tasks and each set of tasks represents a supertask. These supertasks among other

tasks, which were not grouped to form a supertask, are scheduled using Pfair scheduling

algorithm.

We describe briefly the Pfair global scheduling approach as it is related to results

presented in this section.

5.2.1.1 Pfair Scheduling Algorithm

We now formally describe the Pfair scheduling concepts on which our work is based. In

Pfair scheduling, processor time is allocated in discrete time units, or quanta. We refer to

the time interval [t; t+ 1), where t is a nonnegative integer, as slot t (hence, time t refers

to the beginning of slot t). Following Baruah[14], we assume that all task parameters are

expressed as integer multiples of the quantum size.

A task’s weight defines the rate at which it is to be scheduled. In a perfectly fair

(ideal) schedule, every task Ti should receive a share of ui.t time units over the interval

[0; t) (which implies that each job meets its deadline). In practice, this degree of fairness

is impractical, as it requires the ability to preempt and switch tasks at arbitrarily small

time scales. Notice that such idealized sharing is clearly not possible in a quantum-based
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schedule. Instead, Pfair scheduling algorithms strive to ”closely track” the allocation of

processor time in the ideal schedule. This tracking is formalized in the notion of per-

task lag, which is the difference between a task’s allocation in the Pfair schedule and the

allocation it would receive in an ideal schedule. Formally, the lag of task Ti at time t,

denoted lag(Ti, t), is defined as follows:

Lag(Ti, t) = (ui).t− allocated(Ti, t) (5.1)

Task Ti is said to be over-allocated or ahead at time t, if lag(Ti, t) < 0, i.e., the actual

processor time received by Ti over [0; t) is more than its ideal share over [0, t). Anal-

ogously, task Ti is said to be under-allocated or behind at time t if lag(Ti, t) > 0. If

lag(Ti, t) = 0, then Ti is punctual, i.e., it is neither ahead nor behind. A schedule is

defined to be proportionate fair (Pfair) if and only if:

∀ Ti, t :: −1 < Lag(Ti, t) < 1 (5.2)

Informally, allocation error associated with each task must always be less than one quan-

tum. The lag bounds given in Equation(5.2) have the effect of breaking a task into smaller

executable units that are subject to intermediate deadlines.

Window tasks:The lag bounds given in Equation(5.2) have the effect of breaking each

task into a finite sequence of unit-time subtasks (we call them window tasks) Fig:5.2. We

denote the vth subtask of task Ti as T vi , where v ≥ 1. Pfair associates with each window

task a pseudo release (Equation(5.3)) and pseudo deadline (Equation(5.4)).

r(T vi ) =
⌊

(v − 1)× Pi
Ci

⌋
(5.3)

d(T vi ) =
⌈
v × Pi
Ci

⌉
(5.4)

The interval [r(T vi ); d(T vi )) is called the window-length of subtask T vi and is denoted

by w(T vi ). The release time r(T vi ) is the first slot into which Ti could potentially be

scheduled and d(T vi ) is the last such slot. We refer to a window (or sum of k window

tasks) of length n slots as an k −window and length of such k windows is defined as Lk.

Lki =
⌈
k × Pi
Ci

⌉
(5.5)

At present, three Pfair scheduling algorithms are known to be optimal on an arbitrary

number of processors: PF [14], PD [17], and PD2 [3]. These algorithms prioritize subtasks

on an EPDF (Earliest Pseudo Deadline First) basis, but differ in the choice of tie-breaking

rules.

The PF Pfair Algorithm: PF was the first Pfair scheduling algorithm that was shown



Chapter 5. Hierarchical Scheduling Algorithm 95

0 1 2 73 64 5 98 1110

Figure 5.2: The Pfair windows of the first job (or 8 window tasks) of a task Ti with
weight 8/11 in a Pfair-scheduled system.

to be optimal on multiprocessors. PF prioritizes subtasks on an earliest-pseudo-deadline-

first (EPDF) basis and uses several tie-breaking rules when multiple subtasks have the

same deadline. If subtasks T ai and T bj are both eligible at time t, then PF prioritizes T ai
over T bj at t if:

1. d (T ai ) < d
(
T bj

)
2. a vector of pseudo deadlines is considered to break the tie between two subtasks

with same pseudo deadlines.

The PD Pfair Algorithm: PD classify tasks into two categories depending on their

weight: a task Ti is light if ui < 1/2, and heavy otherwise. PD scheduling algorithm uses

the group deadline to break the tie between subtasks. Consider a sequence T ji , ..., T
v
i of

subtasks of such a task Ti such that b(T ci ) = 1 and length of window tasks is equal to 2 for

all j ≤ c < v. Scheduling T ji in its last slot forces the other subtasks (window tasks) in this

sequence to be scheduled in their last slots. The group deadline of a subtask T ji , denoted

D(T ji ), is the earliest time by which such a ”cascade” must end. Formally, it is the earliest

time t, where t ≥ d(T ji ), such that either (t = d(T ci )∧b(T ji ) = 0) or (t+1 = d(T ci )∧ length

of window =3) for some subtask T ci . PD favors subtasks with later group deadlines because

scheduling them later can lead to longer cascades, which places more constraints on the

future schedule. PD prioritizes subtasks on an earliest-pseudo-deadline-first (EPDF) basis

and uses several tie-breaking rules when multiple subtasks have the same deadline. The

first tie-breaking rule involves a parameter called the successor bit ,which is defined as

follows.

b(T vi ) =
⌈
v

ui

⌉
−
⌊
v

ui

⌋
We can now describe the PD priority definition. If subtasks T ai and T bj are both eligible

at time t, then PD prioritizes T ai over T bj at t if:
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Task C P
T1 1 2
T2 1 3
T3 1 3
T4 2 9
T5 2 9

Table 5.1: Task Parameters

1. d (T ai ) < d
(
T bj

)
or

2. d (T ai ) = d
(
T bj

)
∧ b (T ai ) = 1 ∧ b

(
T bj

)
= 0 or

3. d (T ai ) = d
(
T bj

)
∧ b (T ai ) = b

(
T bj

)
= 1 ∧D (T ai ) > D

(
T bj

)
If the priority is not resolved then two more parameters of tasks are considered to

break the tie. The first of these is a task’s weight. The second is a bit associated with

each group deadline which is defined as follows:

1. Bit corresponds to D(T ji ) = 1, if it corresponds to 3-window.

2. Bit correspons to D(T ji ) = 0, if it corresponds to 2-window.

The PD2 Pfair Algorithm: PD2 scheduling algorithm has been proved better than PF

and PD scheduling algorithms. In PD2 scheduled system last two tie breaking rules of PD

are not considered and tie can be broken arbitrarily. So priorities are defined as follows:

If subtasks T ai and T bj are both eligible at time t, then PD2 prioritizes T ai over T bj at t if:

1. d (T ai ) < d
(
T bj

)
or

2. d (T ai ) = d
(
T bj

)
∧ b (T ai ) = 1 ∧ b

(
T bj

)
= 0 or

3. d (T ai ) = d
(
T bj

)
∧ b (T ai ) = b

(
T bj

)
= 1 ∧D (T ai ) > D

(
T bj

)
We illustrate the major principle of Pfair scheduling algorithm by an example where we

have 5 tasks given in Table 5.1. These tasks are scheduled on two processors as U(τ) < 2.

Complete schedule of tasks according to Pfair is presented in Fig:5.3.

5.2.1.2 Local Scheduler and parameters of supertask

A local scheduler schedules the component tasks of a supertask within the slots assigned

to T jx . We use a Pfair scheduler to schedule the migrating tasks and supertasks, and local

scheduling algorithm (EDF) to schedule the component tasks of supertask T jx , each time

T jx is assigned a slot.
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On Processor 1 On Processor 2

Figure 5.3: Scheduling of tasks on two processors by a Pfair scheduler

Note that if there are nj component tasks in supertask T jx , the period P jx and execution

time Cjx of supertask are defined as follows:

P jx = lcmnj
i=1(Pi) (5.6)

Cjx =
nj∑
i=1

P jx
Pi
× Ci (5.7)

Let us define two other parameters of supertask T jx which are the prime period Ṕ jx and

prime execution time Ćjx such that:

Cjx

P jx
=
Ćjx

Ṕ jx

Ṕ jx and Ćjx are relative prime numbers.

5.2.2 Schedulability Conditions

Baruah et al. [14], showed that a periodic task set τ is schedulable on M processors iff:

n∑
i=1

Ci
Pi
≤M (5.8)

In our model, we have M supertasks and a set of ng migrating tasks. Total tasks at global

level are ng +M . Then above condition can be described as:

M∑
j=1

Cjx

P jx
+

ng∑
i=1

Ci
Pi
≤M (5.9)
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Figure 5.4: Scheduling of supertask and component tasks.

All global tasks are guaranteed to meet their deadlines if they are scheduled using the

Pfair scheduling algorithm. It means that all ng migrating tasks and M supertasks are

guaranteed to meet their deadlines.

5.2.3 Schedulability Conditions for Component tasks

No guarantees are provided for intermediate deadlines of component tasks by Pfair sched-

uler [53]. Then there is a need to find a way such that component tasks on each processor

are guaranteed to meet their deadlines. Holman [33] has demonstrated with an example

(Fig:5.4) that component tasks do not respect their deadlines, in general, if component

tasks are scheduled in time slots selected by Pfair scheduler.

In this example, the task set is composed of six tasks T6 = 1/2, T4 = 1/3, T5 =

1/3, T2 = 2/9, T1 = 1/5 and T3 = 1/45. Tasks T1 and T3 are grouped to form a supertask

T 1
x = 1/5 + 1/45 = 2/9, other tasks are considered as migrating/global tasks. This task

set is scheduled on two processors as sum of utilization of all tasks is less than 2. Pfair

scheduler schedules four migrating tasks (T2, T4, T5, T6) and one supertask T 1
x = (T1, T3).

As depicted in Fig:5.4, task T1 misses its deadline for second job. It implies that

component tasks miss their deadlines when they are scheduled in only those time slots

where supertask is selected by global Pfair scheduler. The sufficient condition to provide

deadline guarantees for task Ti is that it must be allocated Ci units of processor time

in each interval [k.Pi; (k + 1).Pi). Component task Ti (partitioned on processor πj) is

selected to execute (by local scheduler) if its corresponding supertask T jx is selected by

the global scheduler.

As component tasks are scheduled only in windows of supertask, then necessary/suf-

ficient conditions for feasibility of component tasks Ti are defined as follows.
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1. (Necessary Condition) The pseudo release of
(∑nj

i=1

⌊
t
Pi

⌋
× Ci

)th
window tasks

must be earlier than t to provide deadline guarantees to component tasks.

2. (Number/Length of window task) Task T jx must have at least Ci window tasks

in each interval [k.Pi; (k + 1).Pi) to provide deadline guarantees to task Ti. The

release times and deadlines of these window tasks must also lie in the same interval.

3. (Embedded task Periods) Task T jx must have 1 +
(∑nj

v=1

⌊
Pi
Pv

⌋
× Cv

)
effective

window tasks in any interval to ensure presence of Ci window tasks lying in interval

[k.Pi; (k + 1).Pi) such that release times and deadlines of these window tasks also

lie in same interval (k is an integer).

5.2.3.1 Necessary Condition

At any instant t integer multiple of basic time quanta, the demand bound function

DBF (Ti, t) defined by Baruah[16] is an approach to establish the necessary condition

for feasibility analysis of component tasks on processor πj within interval [0, t).

∑
Ti∈τ j

DBF (Ti, t) =
nj∑
i=1

⌊
t

Pi

⌋
× Ci (5.10)

The amount of time (i.e.,
∑

Ti∈τ j DBF (Ti, t)) is distributed over the window tasks

scheduled in the interval [0; t), at a rate of one time unit per window task. Thus∑
Ti∈τ j DBF (Ti, t) = z denotes the number of window tasks that must be scheduled

in interval [0; t) to provide deadline guarantees for component tasks. In this case, demand

bound function
∑

Ti∈τ j DBF (Ti, t) = z represents the zth window task of supertask.

In the best case scenario, the zth window task can finish its execution in its earliest

slot (i.e., Equation(5.3)) or in worst case scenario it will finish its execution in the last

slot of window, which is defined as Equation(5.4). It implies that necessary condition to

provide deadline guarantees to component task is that release time of zth window task

occurs earlier than time t.

The local scheduling of component tasks is feasible iff:

∀t ≥ 0 :
∑
Ti∈τ j

DBF (Ti, t) = z : r(T j,zx ) < t (5.11)

where r(T j,zx ) represents the release time of zth window task of supertask T jx . To develop

necessary condition, we start by verifying if pseudo deadline of zth window task (i.e.,

d(T j,zx )) arrives a time earlier than t, i.e.:.

d(T j,zx ) =

⌈
z × P jx
Cjx

⌉
≤ t
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Replacing z and Cjx by their definitions (Equation 5.11 and Equation5.7):

d(T j,zx ) =


P jx ×

∑nj
i=1

⌊
t
Pi

⌋
× Ci∑nj

i=1
P jx
Pi
× Ci


d(T j,zx ) =


∑nj

i=1

⌊
t
Pi

⌋
× Ci∑nj

i=1
Ci
Pi



As ⌊
t

Pi

⌋
≤ t

Pi

we get:

d(T j,zx ) ≤

⌈
t×

∑nj
i=1

Ci
Pi∑nj

i=1
Ci
Pi

⌉

d(T j,zx ) ≤ dte ⇒ d(T j,zx ) ≤ t

It implies that the above necessary condition is always met (for any task set where uti-

lization of task set is less than M) for any set of component tasks and supertask.

5.2.3.2 Number/Length of window task

A component task Ti ∈ τ j respects its deadline, if there are Ci window tasks of T jx with

their release times and deadline lying in interval [Pi.k; (k+1)Pi). Global scheduler selects

supertask T jx for at least Ci times during this interval to execute on a processor, and hence

task Ti is guaranteed to meet its deadline constraints.

Theorem 5.1. Each supertask T jx has at least Ci effective window tasks in any interval

of length Pi units of time for every component task Ti (Ti ∈ τ j).

Proof. The release time of 0th window task of supertask T jx is zero and pseudo deadline

of Cthi window task is defined as:

d(T j,Cix ) =

⌈
Ci × P jx
Cjx

⌉

The difference between the pseudo deadline of Cthi window task and release time of 0th

window task is given by:

LCi =

⌈
Ci × P jx
Cjx

⌉
− 0

LCi =

⌈
Ci × P jx
Cjx

⌉
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As
Pi
Ci
≥ P jx

Cjx
⇒

LCi ≤
⌈
Ci × Pi
Ci

⌉
(5.12)

LCi ≤ dPie

as Pi is an integer ⇒
LCi ≤ Pi

It demonstrates that there are at least Ci effective window tasks in any interval of length

Pi.

If there is one effective window task in an interval [t1; t2), it implies that either the

window task has its release time and deadline within given interval [t1, t2), or there are

two window tasks; one has its release time before t1 and deadline of second window task

is after t2, but number of slots of first window task before instant t1 are less than or equal

to number of slots of second window task after t2
The presence of Ci effective window tasks in any interval of length Pi units of time

does not guarantee that component tasks respect their deadlines, as it does not ensure

presence of Ci window tasks in all interval [Pi.k; (k + 1).Pi) such that release times and

deadlines of Ci window tasks also lie in the given interval.

Theorem 5.2. Allocation of Ci effective window tasks in an interval of length Pi units

of time does not ensure presence of Ci window tasks (window tasks that have their release

times and deadlines in the given interval) in interval [Pi.k; (k + 1).Pi).

Proof. Let for some value of n+ 1 such that

r(T j,n+1
x ) < k.Pi ∧ d(T j,n+1

x ) > k.Pi

⇒ r(T j,n+2
x ) ≥ k.Pi

let

LCi+1 > Pi ∧ LCi ≤ Pi

⇒ d(T j,n+Ci+1
x ) > (k + 1).Pi

The expression d(T j,n+Ci
x ) < (k + 1).Pi illustrates that there are Ci window tasks

before the instant (k + 1).Pi, but as r(T j,n+1
x ) < k.Pi and d(T j,n+Ci+1

x ) > (k + 1).Pi), it

implies that there are (Ci−1) window tasks with their release times and pseudo deadlines

within the interval [Pi.k; (k + 1).Pi)).
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Figure 5.5: Number of windows in an interval.
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Figure 5.6: Window tasks defined for supertask.

In Fig:5.6 related to Fig:5.4, we find that there is at least one effective window task

for each interval of length 5 (P1) time units, but there is no window task with its release

time and deadline lying in the second interval [5, 10). It implies that supertask T 1
x does

not guarantee that 2nd job of component task T1 can be executed in interval [5, 10). For

example, it happens when T 1
x is selected to execute at instant 4 for its second window,

and T 1
x is not selected in its earliest slot for execution of third window task, then task T1

misses its deadline at 10.

Theorem 5.3. Allocation of at least (Ci + 1) effective window tasks in any interval of

length Pi units of time guarantees that there will be Ci window tasks with their release

times and deadlines within the interval [Pi.k, (k + 1).Pi).

Proof. Suppose that the n+ 1th window task of supertask T jx has its release time before

k.Pi as follows:

r(T j,n+1
x ) < k.Pi ∧ d(T j,n+1

x ) > k.Pi

⇒ r(T j,n+2
x ) ≥ k.Pi

As

LCi+1 ≤ Pi
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Figure 5.7: Schedulability condition for component task.

⇒ d(T j,n+Ci+1
x ) ≤ (k + 1).Pi

It implies that there are at least Ci window tasks with their pseudo release times and

pseudo deadlines within the interval [Pi.k, (k + 1).Pi).

As illustrated in, Fig:5.7, we have at least two effective window tasks between any two

points of interval length 5. It insures the presence of at least one window task (with its

release time and deadline) in any interval [k.5; (k + 1).5).

• Properties of Supertask

It is demonstrated that if supertask is allocated Ci+1 window tasks for Pi units of time,

then component task Ti always respects its deadline. The key point now is to establish a

relation between supertask and that of its component tasks such that supertask T jx has

Ci + 1 window tasks for Pi time units.

LCi+1 is written as follows (as in Equation(5.12)):

LCi+1 ≤

⌈
(Ci + 1)× P jx

Cjx

⌉

if
Pi

Ci + 1
≥ P jx

Cjx

then

LCi+1 ≤
⌈

(Ci + 1)× Pi
Ci + 1

⌉
LCi+1 ≤ dPie

LCi+1 ≤ Pi
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This result shows that there exists a weight bound relation between weight of supertask

T jx and those of its component tasks Ti ∈ τ j which, if provided, guarantees the presence

of Ci window tasks within interval [k.Pi; (k + 1).Pi). Therefore, if component tasks Ti ∈
τ j and supertask T jx respect these two following conditions, then supertask as well as

component tasks are guaranteed to meet their deadlines.

1. Condition 1: Cjx/P
j
x ≤ 1

2. Condition 2: Pi/(Ci + 1) ≥ P jx/Cjx where Ti ∈ τ j

5.2.3.3 Embedded task Periods

In real cases, period of one task is embedded into period of another task, (i.e., period of

task Tv is smaller than period of task Ti) then presence of Ci + 1 window tasks in interval

of length Pi is not sufficient to provide time line guarantees to both components tasks Tv
and Ti. In this scenario, the second condition is modified as given below:

Condition 2A :
Pi

1 +
∑nj

v=1

⌊
Pi
Pv

⌋
× Cv

≥ P jx

Cjx

5.2.3.4 Exemptions

If the weight of component task and that of its corresponding supertask satisfy the con-

dition 2A, then all component tasks are guaranteed to meet their deadline constraints.

Component tasks are exempted from the second condition for which the following condi-

tion holds true:

Pi = k.Ṕ jx

where k is a positive integer.

Theorem 5.4. If a component task has the above mentioned relation with its supertask

then this component task respects its deadline constraints.

Proof. For some value of f , if

d(T j,fx ) = z.Pi

⇒ r(T j,f+1
x ) = z.Pi

z is a positive integer.

Two consecutive window tasks do not overlap at the period boundaries of the super-

task. It implies that the number of effective window tasks in interval [k.Pi; (k + 1).Pi) is

equal to the number of such window tasks which have their release times and deadlines

in the interval as well.



Chapter 5. Hierarchical Scheduling Algorithm 105

Example 5.1. We illustrates these principles through an example. We consider the same

example used by Holman [33], and show that deadline guarantees of component tasks are

provided, if component tasks and corresponding supertask satisfy both conditions (1 and

2A). We have constructed two supertasks equal to the number of processors in the system,

and each supertask T jx and its component tasks satisfy both conditions defined in previous

section. Tasks T4 = 1/3, and T5 = 1/3 are grouped to form a supertask T 1
x , and we can

verify that:

(Weight of T 1
x = 2/3) < 1

We have P4 = P5 = P 1
x , thus it implies that second condition is exempted. Task T1 =

1/5, task T2 = 2/9 and task T3 = 1/45 are grouped to create a supertask T 2
x and we can

verify that:

(Weight of T 2
x = 1/5 + 2/9 + 1/45) < 1

P1

1 +
⌊
P1
P1

⌋
× C1 +

⌊
P1
P2

⌋
× C2 +

⌊
P1
P3

⌋
× C3

≥ P 2
x

C2
x

5/2 > 9/4

P2

1 +
⌊
P2
P2

⌋
× C2 +

⌊
P2
P1

⌋
× C1 +

⌊
P2
P3

⌋
× C3

≥ P 2
x

C2
x

9/4 = 9/4

As P3 = 5× P 2
x , it implies second condition is exempted for task T3

In Fig:5.8, it is illustrated that component tasks respect their deadlines when these

component tasks and corresponding supertask satisfy both conditions.

Hierarchical scheduling requires a partitioning of tasks into M sets to form the su-

pertask. Partitioning approach plays an important role for providing established relation

between supertask and its component tasks. First, we provide few details about different

EDF based partitioning strategies.

5.2.4 Reweighting Rules

In the previous subsections, we have established a sufficient condition which is a relation

between weight of a supertask and that of local task, if this condition is respected then

there is no need to increase in weight of supertask for feasible schedule of local tasks. If

this condition is verified for weight of any local and that of supertask, then reweighting of

supertask is required to ensure deadline guarantees to local tasks. Rules for reweighting

of supertask are described below.

Rule 1: if ujx = 1, then reweighting is unnecessary.

As demonstrated in above sections that if supertask and local task have established

relation of weight in them then there is no need to reweighting. So:
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Figure 5.8: Demonstration of scheduling of supertasks and component tasks.

Rule 2: if

∀ Ti ∈ τ j
Pi

c+
∑nj

v=1

⌊
Pi
Pv

⌋
× Cv

≥ P jx

Cjx

, then reweighting is unnecessary

where c = 0, if Pi = k.Ṕ jx and c = 1 otherwise.

If Rule 1 and Rule 2 are not satisfied, then we need to increase the weight of supertask

to ensure deadline guarantees for local tasks.

Rule 3:

ûjx =
1

min
∀Ti∈τj

[
Pi

c+
∑nj
v=1

⌊
Pi
Pv

⌋
×Cv

]
If we consider the above example, we found that Rule 2 is respected, hence there is no

need to increase the weight of supertask. According to approach presented by Holman,

there is a need to calculate the new increased weight of supertask, and for above example

the new increase weight calculated by Holman is 5
9 . Hence, 5

9 −
4
9 = 1

9 is wasted for

nothing.

5.2.5 Results

We have compared the performance of our proposed reweighting rules with on prosed

by Anand et al (Table 5.2). We observed that in most of the cases reweighting was
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Number of Tasks Inflation
Anad et al. Farooq et al.

4 37% 4%
5 22% 3%
6 27% 6%
7 14% 09%
8 23% 2%

Table 5.2: Comparison of Our proposed Reweighting rules with those proposed by
Anand et al.

unnecessary according to our approach but weight of supertask is still increased by Anand

et al. We have also observed that even when there is a need to increase the weight of

supertask, inflation introduced by our approach is much lower than that of proposed by

Anand et al.

5.2.6 Partitioning of tasks

Several polynomial-time heuristics have been proposed for task partitioning based on bin-

packing approaches. We describe three of them below. While describing these heuristics,

we assume that there are M processors numbered from 1 to M , and n tasks numbered

from 1 to n that need to be scheduled. The tasks are not assumed to be arranged in any

specific order. We can obtain different variants of partitioning approaches by sorting the

tasks in a specific order before applying the heuristics. The schedulability test associated

with the chosen uniprocessor scheduling algorithm can be used as an acceptance test to

determine whether a task can ”fit” on a processor. For instance, under EDF scheduling,

a task will fit on a processor as long as the total utilization of all tasks assigned to that

processor does not exceed unity.

5.2.6.1 Next Fit (NF)

In this approach, all the processors are considered in order, and we assign to each processor

as many tasks as can fit on that processor.

5.2.6.2 First Fit (FF)

FF improves upon NF by also considering earlier processors during task assignment. Thus,

each task is assigned to the first processor that can accept it.

5.2.6.3 Best Fit (BF)

In this approach, each task is assigned to a processor that (i) can accept the task, and

(ii) will have minimal remaining spare capacity after its addition.
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A complementary approach to BF is worst fit (WF), in which each task is assigned

to a processor that (i) can accept the task, and (ii) will have maximal remaining spare

capacity after its addition. Though this approach does not try to maximize utilization,

it results in a partitioning in which the workload is equally balanced among the different

processors.

Our objective is not to devise a new heuristic of partitioning of tasks but to find such

technique which ensures that there is always a weight bound relation between supertask

and those of component tasks. We know that

Pi/(Ci) ≥ P jx/Cjx

but

Pi/(Ci + 1) may or may not be greater than P jx/C
j
x. If

Pi →∞

then

Pi/(Ci) = Pi/(Ci + 1)

and consequently

Pi/(Ci + 1) ≥ P jx/Cjx

It implies that if tasks are sorted in decreasing order of their periods, then chances

of having established relation between weight of supertask and that of component task

is higher. Larger is the period of a task, better are the chances of having established

relation between supertask and those of component tasks. Therefore, we propose to sort

tasks in decreasing order of their period lengths before partitioning. If two task have

same periods then task with shorter execution time is given higher priority. According

to this approach, when tasks with shorter periods are partitioned, sum of utilization of

tasks, already partitioned on processor, is high which increases the chances of verifying

the second condition even for tasks with shorter periods.

In this section, we have extended the work of Moir et al. which is based on supertasking

approach using Pfair scheduling algorithm as a global scheduler. It not only increases the

preemptions and migrations of tasks, but it imposes also certain conditions to be verified

between supertask and component tasks to provide deadline guarantees to task. In the

next section, we propose to use ASEDZL scheduling algorithm as a global schedule, and

illustrate that it does not impose any condition on weights of supertask and that of

component tasks.
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5.3 Hierarchical Scheduling Based on Slack Anticipation

Approach

This approach is similar to approach described in earlier section, as it groups partitioned

task one a processor πj to form a supertask T jx , and M supertasks among other global

tasks are scheduled globally. Local tasks are selected to execute, when their corresponding

supertask is selected by global scheduler. A local scheduler on each processor and a global

scheduler is used to provide deadline guarantees to all tasks. The main advantage of using

ASEDZL as a global scheduler is its low runtime complexity as compared to Pfair, and

it does not impose any condition on characteristics of supertask and migrating tasks to

provide deadline guarantees.

5.3.1 Approach Description

There is a scheduler on every processor (referred as local scheduler here after) and a global

scheduler on top of all local schedulers. Global tasks and the M supertasks are placed and

sorted in TaskQueue, as explained in previous chapter, and are scheduled by ASEDZL

scheduler. Every local scheduler on a processor is invoked whenever corresponding super-

task is selected by ASEDZL scheduler. We explain both of these algorithms (global and

local) in detail in following subsections.

5.3.1.1 Local Scheduler

We use an EDF based scheduler on each processor to schedule local tasks (component

tasks) to execute. Conventionally, EDF selects the first task to execute from the ready

queue which is a sorted list of tasks. Tasks with non zero remaining execution time are

placed in this queue and sorted in the increasing order of their deadlines. However, we

propose to use TaskQueue instead of a ready queue to place and sort tasks at local

scheduler level as well.

• Local TaskQueue

As detailed in previous chapter, tasks are sorted and placed in TaskQueue (different

from ready queue) according to the closeness of their deadlines. The tasks with zero

remaining execution times are also placed in TaskQueue, and sorted according to their

deadlines. The absolute deadline of a task is not updated until it is released for its next

instant. This TaskQueue (Fig:5.9) is updated only when a task is released for its next

instant, and is not updated when a task completes its execution. Hence, the number of

tasks in TaskQueue remains constant.
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Figure 5.9: Local TaskQueues

5.3.1.2 Local Release instants

The release time of task Ti partitioned on a processor (π)j is called a local scheduling

event and the kth local scheduling event is represented as Rjk. Local release instants are

calculated to define parameters of supertask T jx .

5.3.1.3 Supertask

As explained in previous section, local tasks (component tasks) partitioned on a processor

(π)j are grouped together to form a supertask T jx , which is then scheduled as an ordinary

global task. Whenever global scheduler selects supertask T jx , the local scheduler selects

the highest priority tasks from local TaskQueue to execute. Supertask constructed from

component tasks has static as well as dynamic parameters.

• Static parameter

Static parameter of supertasks T jx is its weight ujx (utilization) is equal to the sum of

weights of all component tasks partitioned on a processor (π)j .

ujx =
nj∑
i=1

ui (5.13)

• Dynamic parameters

Dynamic parameters of supertask T jx are its deadline djx and worst case execution time

Cjx. These dynamic parameters of supertask T jx are calculated when a component task is

released for its next instant. The deadline djx of supertask T jx is defined as the deadline

of the most imminent deadline of a local task on processor (π)j with zero or non zero

remaining execution time. Worst case execution time and deadlines are calculated on all

local release instants. At local release instant Rjk−1, deadline djx is calculated as follows:

djx = djf (5.14)

where dif = Rjk represents the absolute deadline of first task in local TaskQueue.
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The worst case execution time Cjx of supertask T jx is calculated as follows:

Cjx = (Rjk −R
j
k−1).ujx (5.15)

5.3.1.4 Global Scheduler

According to this algorithm, the objective is that the slacks of the M tasks, which are

considered M high priority tasks according to EDF, are filled by subsequent tasks before

these slacks appear in a schedule. To ensure that slacks of these M high priority tasks

are filled, tasks are selected from TaskQueue and not from ready queue.

• Global TaskQueue

Like local schedulers, global scheduler also has a TaskQueue, which contains the M

supertasks from each processor along with global tasks. Global queue is again sorted

according to the closeness of deadlines of all tasks it contains. Global scheduler uses

ASEDZL scheduling approach. Using the same notations described in previous chapter,

we elaborate the mechanism of ASEDZL for accessing this global TaskQueue. Tasks in

global TaskQueue are divided into two groups:

- TEDF Task set

- TS Task set

5.3.1.5 Release instants for ASEDZL

Release time of a global or supertask represents the release instant for ASEDZL sched-

uler, and is represented by Rk. Laxities of M TEDF tasks are filled between two consec-

utive scheduling events which are release times of all tasks. Time difference between two

scheduling events is called interval length. If between two successive release instants, any

M TEDF (may include both global tasks and supertasks) task has execution requirement

less than interval length, then one or more than one subsequent task(s) are selected to

fill this laxity because scheduler needs to execute tasks between two release instants for

time units equal to :

TU = M × interval length (U(τ) = M) (5.16)

ASEDZL algorithm assigns these tasks virtual deadlines and local execution require-

ments to schedule on M processors.
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Figure 5.10: Interaction between Global and Local scheduler.

5.3.2 Schedulability Analysis

Our proposed algorithm is an optimal algorithm in the sense that, for a given task set

with a cumulative utilization less than or equal to M , no task misses its deadline.i.e.,

ng∑
v=1

Cv
Pv

+
M∑
j=1

nj∑
k=1

Ck
Pk
≤M (5.17)

5.3.2.1 Schedulability analysis for global and supertasks

Schedulability analysis can be divided into two parts, one is schedulability at global level

and other is at local level. As we have already proved the optimality of ASEDZL for

scheduling of tasks at global level, it ensures that all global tasks and supertasks are

guaranteed to meet their deadlines constraints.

5.3.2.2 Schedulability of Partitioned tasks

For partitioned tasks, EDF based local scheduler is used on each processor. EDF is an

optimal scheduling algorithm i.e., if utilization of task set is less than 100%, then EDF

provides guarantees to all component tasks. But in supertasking approach, scheduling of

local tasks is dependent on decisions of global scheduler (Fig:5.10). Local scheduler selects

local tasks to execute, if its corresponding supertask is selected by the global scheduler.

ASEDZL provides fairness only at deadline boundaries. It implies that supertask T jx

is guaranteed to be allocated Cjx time units before its deadline djx. Allocation of processor

time to supertask T jx until release instant Rjk is calculated as follows:

Allocation = (Rjk −R
j
0).ujx (5.18)

(Rjk −R
j
0) represents the time until local release instant Rjk.

Replacing (Rjk −R
j
0) with time t, and ujx by its definition
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Allocation = t.

nj∑
i=1

Ci
Pi

(5.19)

• Minimum Demand

To provide deadline guarantees, we need to ensure that time allocated to supertask by

global scheduler is more than or equal to minimum demand of component tasks until time

t (t represents the local release instants on processor πj). We use demand bound function

DBF (Ti, t) analysis (Equation(5.20)) to calculate the minimum processor demand for

deadline guarantees for component tasks Ti ∈ τ j .
A real time task set is schedulable under EDF if and only if

∑
Ti∈τ j DBF (Ti, t) is less

than or equal to allocation of processor time (represented by allocation) to T jx by global

scheduler: ∑
Ti∈τ j

DBF (Ti, t) =
nj∑
i=1

⌊
t

Pi

⌋
.Ci (5.20)

Allocation to supertask tasks until t is given by:

Allocation = t.×
nj∑
i=1

Ci
Pi

Allocation =
nj∑
i=1

⌊
t

Pi

⌋
× Ci +

nj∑
i=1

[
t−

(⌊
t

Pi

⌋
× Pi

)]
× Ci
Pi

(5.21)

As
[(
t−
⌊
t
Pi

⌋
× Pi

)
≥ 0
]
, it demonstrates that the processor demand of partitioned tasks

on a processor πj over any time interval [0, t) is less than or equal to the allocation of

processor time to corresponding supertask T jx by global scheduler.

• Maximum Demand

We also need to ensure that whenever a supertask is selected by global scheduler, then

there must be at least one local/component task to be executed.

Now we analyze the maximum possible processor demand Dmax of task set (component

tasks) partitioned on a processor πj until t:

Dmax =
nj∑
i=1

⌊
t

Pi

⌋
× Ci +

nj∑
i=1

min
[
Ci,

(
t−

(⌊
t

Pi

⌋
× Pi

))]
(5.22)

If the maximum possible processor demand of local tasks partitioned on a processor is

greater than or equal to the allocation of processor time to supertask T jx , then it ensures

that whenever supertask is selected by global scheduler there is at least one local task

with non zero remaining execution time (Fig:5.11). Equation(5.21) and Equation(5.22)

demonstrate that allocation to supertask T jx by global scheduler is less than maximum

demand of component tasks on processor πj over time interval[0,t).
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Figure 5.11: Maximum demand of tasks on processor

Example 5.2. We illustrate with a simplified example to ease the understanding of our

approach. Sum of utilization of all tasks given in Table 5.3 is 300%. So we need at least

Task C P π

T1 3 4 π1

T2 2 4 π2

T3 2 5 π2

T4 1 4 π3

T5 4 10 π3

T6 2 5 g
T7 3 10 g

Table 5.3: Task Parameters

3 processors to schedule these tasks. Firstly, tasks are partitioned; task T1 is partioned

on first processor, T2 and T3 are partitioned on processor 2 while task T4 and T5 are

partitioned on processor 3. Tasks T6 and T7 are global tasks.

Three supertasks are constructed from the three sets of local tasks. As there is only

one task on first processor then supertask T 1
x is same as T1 while weights of T 2

x and T 3
x

are calculated as follows:

u2
x = u2 + u3 = 50 + 40 = 90%

u3
x = u4 + u5 = 25 + 40 = 65%

We detail below the steps of proposed algorithm:
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Figure 5.12: Demonstrating Example

1. At t=0, the earliest deadline of tasks in the global TaskQueue is 4. So t = 4 is

defined as next release instant. The earliest deadline in all local queues is also at 4.

The dynamic execution requirements of supertasks T 1
x , T 2

x and T 3
x are calculated as

follows:

C1
x = 4× 3

4
= 3

C2
x = 4× 9

10
= 3.6

C3
x = 4× 65

100
= 2.6

Then tasks are scheduled according to ASEDZL. T 1
x , T 2

x , T 3
x are highest priority

tasks so they are selected to execute.

2. At t=2, the virtual laxity of T6 becomes zero, hence T6 replaces task T 3
x .

3. At t=3, T 1
x completes its execution and is replaced by T7.

4. At t=3.4, laxity of task T 3
x becomes zero so it preempts task T6 and start executing

on π3, as T6 also had zero virtual laxity so it preempts task T7.

5. At t=3.6 T 2
x completes its execution and is replaced by T7.
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Figure 5.13: Execution of Local Tasks

6. At t=4, global TaskQueue and local TaskQueue are updated and next release instant

R1 is defined which is 5. As local TaskQueue are updated as well, new deadlines and

execution requirements of supertasks are calculated. The difference between current

local release instant and next local release instants for T 1
x , T 2

x and T 3
x are 4,1 and 4

respectively.

C1
x = 4× 3

4
= 3

C2
x = 1× 9

10
= 0.9

C3
x = 4× 65

100
= 2.6

Supertasks and global tasks are scheduled in the same way as explained in previous steps.

Local scheduler selects the local tasks to execute when corresponding supertask is selected by

global scheduler. Local scheduling of component tasks on processors is shown in Fig:5.13.

5.4 Conclusions

We have demonstrated that in hierarchical scheduling policy where Pfair is used as a

global scheduling algorithm, component tasks respect their deadlines, if relation between

weight of supertask and those of component tasks is as per condition 2A.

We have formally established the sufficient condition to provide deadline guarantees to its

component tasks i.e., minimum number of window tasks that a supertask Tx must have

(in specified interval). We have derived the relation to be held to provide these minimum

number of window tasks in supertask. We have not introduced an inflation factor as

proposed by Holman that minimizes the utilization of the system.
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We have presented another optimal real-time hierarchical scheduling algorithm for mul-

tiprocessors where ASEDZL is used as global scheduler. Unlike Pfair, execution require-

ments and time periods of tasks can have any arbitrary value. We have also demonstrated

that no additional condition is imposed on weights of supertask and that of component

tasks for deadline guarantees. It is also illustrated that number of preemptions are less

than any other scheduling algorithm of the domain, as it is not mandatory to execute all

global tasks between any two release instants. It is the case in EKG (EDF with task split-

ting and K processors in a Group.) algorithm [7], where all global tasks and supertasks

are executed between two release instants. We have also illustrated by an example that

our algorithm does not increase the scheduling events. In very near future, we are aiming

to simulate our proposed algorithm on a tool developed in context of PHERMA project.

This tool helps to simulate global scheduling algorithms as well as hierarchical schedul-

ing algorithms. Moreover, it also provides options which are some real parameters of an

architecture to play with , hence this tool gives results much better than just simulation

results.





Chapter 6

Conclusions

The real time scheduling algorithms like EDF, LLF and MUF are optimal in case of

mono processor system, and Pfair and LLREF have optimal schedulable bounds in case

of multiprocessor systems. But, Pfair and LLREF algorithms offer optimal schedulable

bound at the cost of increased scheduling complexity and increased scheduling events.

The thesis that this dissertation strived to support is that real time scheduling al-

gorithms have schedulable bounds equal to the capacity of architecture (based on some

assumptions) but can be made more efficient by minimize scheduling overheads to in-

crease QoS (Quality of Service) of application, and this efficiency is attained by taking

into account task’s implicit run time parameters. Moreover, the schedulable bounds equal

to capacity of architecture can be achieved by relaxing these assumptions.

6.1 Summary

In Chapter 2, we presented the RUF scheduling algorithm, which takes into account the

difference of worst case allocated time to a task and its actual execution time to maximize

execution of non critical tasks. We demonstrated that static assignment of priorities

to critical and non critical tasks decrease the performance of overall system. We have

proposed that priorities assigned to tasks based on static parameters of tasks implicit or

explicit can lead to decrease in QoS of the application. In Chapter 2, we have proposed to

take into account runtime parameters of a task which is the difference in its Ci and AETi
before assigning priorities to tasks and selecting them to execute. We have proposed to

assign priorities dynamically, this assignement is not based on absolute deadline or laxity

of a task but on run time parameters which can not be predicted offline, to augment the

efficiency of scheduler. We have compared it with MUF algorithm, as only MUF provides

guarantees to critical tasks in overload transient situations, and we have illustrated that

RUF outperforms MUF algorithm in terms of number of non critical tasks executed over

a hyper period.

119
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In Chapter 3, we presented a technique to minimize the scheduling overhead in a

mono-processor context. There are two types of costs related to scheduler. Firstly the

cost related to the complexity of the scheduling algorithm (time it takes to decide to

select a task(s)). Second is related to decision of the scheduler which can force a task to

be preempted (or migrated in case of multiprocessor system). EDF and RM scheduling

algorithms has very low runtime complexity of algorithm but their decisions still have

significant impact on overall performance of the system. In Chapter 3, we have proposed a

technique to reduce the significant scheduling overhead, which is preemption of a task. We

extended the work of Baruah to minimize the preemptions of a task, we have considered

the two implicit parameters of a task which are its laxity and release time. Laxity of a

task gives a flexibility to postpone the normal decision of scheduling algorithm without

compromising on feasibility which helps minimizing preemptions of tasks, while the release

time of task enable us to consider a scenario different from the worst case scenario helping

to reduce the number of preemptions of a task to greater extent. We have proposed

two variants of this technique, which are static and dynamic, to minimize preemptions.

Both of these techniques also allow dynamic creation and deletion of tasks. Reducing

number of preemptions not only increase practically achievable processor utilization, but

it decreases the energy consumption of the system also. The aim of DVFS techniques is

to decrease energy consumption by lowering operating frequency of the processor but the

side effect is an augmentation of number of preemptions due to larger execution times of

tasks. We proposed a novel DVFS management technique which decreases the frequency

of processor only at those instants, when switching frequency from one level to another

level limits its impact on number of preemptions and decreases the number of switching

points.

In Chapter 4, we have provided a novel global scheduling algorithm ASEDZL, which

is not based on the notion of fairness or fluid scheduling model. It is based on the EDF

approach, similar to mono-processor EDF. We have exploited the reasons/factors for which

an optimal mono-processor scheduling algorithm performs poorly if it is used to schedule

tasks on multiprocessor system. We worked on these factors to bring optimality in case

of multiprocessor scheduling as well. We noticed that the weight of a task is always less

than or equal to the offloading factor of another task in case of mono-processor systems.

Conversely, if the weight of a task is greater than the offloading factor of another task in

case of multiprocessor system, it causes a task to miss its deadline even at low processor

utilization. This antagonism can be eliminated by considering a modified version of EDF

i.e., EDZL. We also observed that in case of mono-processor EDF scheduler, subsequent

tasks have always sufficient execution time until next release instant and this property

is true in case of multiprocessor EDF scheduler too. But unlike mono-processor case,

multiprocessor g-EDF scheduler is not capable to execute subsequent tasks until next

release instant. To provide the same behavior in multiprocessor scheduling algorithm, we
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have introduced few modification which are defining virtual deadlines and local execution

requirements for subsequent tasks, to ensure execution of tasks until next release instant.

Another intrinsic characteristic that we observed in EDF scheduler (for mono-processor)

is that when a task is selected to execute with its zero laxity, it is the only ready task and it

finishes its execution at end of hyper period (U(τ) = 1, tasks are synchronous and release

time of a task is at its deadline). The same appears in case of multiprocessor scheduling

as well when global scheduler does not let any task to go in negative laxity and ensures

execution of subsequent tasks until next release instant. Our proposed algorithm ASEDZL

ensures both of these conditions to be fulfilled which makes it optimal for scheduling

of tasks on multiprocessor architecture. g-EDF has already been shown the most cost

effective (in terms of minimum number of preemptions and migrations of tasks) but with

low processor utilization. As our proposed algorithms is just a simple extension to g-EDF

which illustrate that ASEDZL is the most cost effective global scheduling algorithm with

schedulable bound equal to capacity of architecture. To support our argument, we have

compared our algorithm with LLREF and demonstrated that algorithm ASEDZL is much

more efficient than Pfair and LLREF.

In Chapter 5, we presented two approaches for hybrid scheduling of tasks. Hybrid

scheduling gives better results on distributed shared memory architecture. We have used

the supertasking approach to schedule tasks on multiprocessor architecture. We started

with the work of Moir et al. which does not ensure deadline guarantees for local tasks.

We established a relation between weight of a supertask and those of a local tasks if

provided ensures deadline guarantees for all tasks. The work of Moir et al. was based

on using Pfair scheduling algorithm which is an optimal scheduling algorithm with very

high runtime complexity, due to numerous scheduling events, higher preemptions and

migrations of tasks. Therefore, we replaced Pfair with our proposed algorithm ASEDZL,

and we presented a technique for scheduling of supertask and global task in such a way that

it ensures deadline guarantees for all tasks. For this, we have assigned dynamic parameters

to supertask instead of static parameter as it was in earlier version. This introduction of

dynamic parameters ensures that supertask is always guaranteed allocation of sufficient

amount of time by global scheduler which is greater than or equal to minimum demand

of local tasks to meet their deadlines. We have proved the optimality of our algorithms,

and we have compared it with other algorithms of the domain by examples to illustrate

its improvement over other algorithms.

Last but not the least, we have also devised a technique for scheduling self-adaptive

applications on future architectures in context of ÆTHER project 1. Future architectures
1ÆTHER is IST-FET (Information Society Technology-Future and Emerging Technologies) European

project with main objective to study novel self-adaptive computing technologies for future embedded and
pervasive applications.
web: http://www.aether-ist.org/
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are assumed to be intelligent enough to adapt/self-configure themselves according to vary-

ing demands of applications. To provide deadline guarantees to self adaptive application

on such future architecture, we have proposed to calculate minimum demand of resources

for each task statically, but tasks are allocated resources more than its minimum demand

at runtime depending upon degree of parallelism at that specific level of task and on

number of available resources. At run time, allocation of resources higher than minimum

demand of a task for fraction of task reduces its minimum demand for remaining part of

task which could allow other tasks to be admitted in the system. Architecture consider

in this system is futuristic. Moreover, it deals with soft real time tasks, where approach

is based on best effort techniques which makes it a bit different from rest of the thesis

work, that’s why we have placed this work in Annex A instead of another chapter. In

Annex B, we have presented an ongoing work. In this work, we have proposed to break

a multiprocessor scheduling problem into multiple mono-processor scheduling problems

and proposed a solution which offers optimal schedulable bound.

6.2 Future Work

We have presented RUF scheduling algorithm to improve QoS on mono-processor architec-

ture. We are aiming to extend this approach on multiprocessor architecture where critical

tasks guaranteed to meet their deadlines while execution of non critical is maximized in

overload situations. We have proved the optimality of ASEDZL on multiprocessor archi-

tecture but we aiming to take into account runtime parameters of tasks i.e., Ci > AETi, to

minimize power consumption of the system without compromising on deadline guarantees.

In a very near future, we shall have a simulator developed in context of PHERMA(ANR)

project which will help us to implement ASEDZL on it and to work on power optimiza-

tion aspects. Until now, we have simulated our mono-processor scheduling algorithms

and global scheduling algorithms on CoFluent tool. This tool does not support imple-

mentation of hierarchical scheduling, that’s why we did not have simulation results on

hierarchical scheduling algorithm. We shall implement our proposed hierarchical schedul-

ing algorithm on this newly developed to tool to compare simulation results with existing

approaches.



Conclusions

Les algorithmes d’ordonnancement temps réel de type EDF, LLF ou MUF sont optimaux

dans le cas monoprocesseur et les algorithmes Pfair ou LLREF le sont dans le cas mul-

tiprocesseur. Cependant les algorithmes Pfair et LLREF atteignent cette optimalité au

prix d’une importante complexité liée en particulier au nombre important d’événements

d’ordonnancement à traiter. Dans cette thèse nous nous sommes attachés à montrer qu’il

est possible de proposer des algorithmes d’ordonnancement optimaux (sous certaines hy-

pothèses), c’est-à-dire ayant une borne d’ordonnançabilité égale à la capacité de traitement

de l’architecture cible, et ce avec une efficacité accrue du fait d’une réduction du coût de

gestion induit par l’ordonnanceur. Ce gain en efficacité est obtenu en utilisant au mieux

des paramètres implicites des tâches, évalués à l’exécution. Il en découle en particulier

une augmentation de la Qualité de Service (QoS) globale de l’application. Par ailleurs, en

relâchant les hypothèses faites sur les algorithmes, la borne maximum d’ordonnançabilité

égale à la capacité de traitement totale de l’architecture peut être atteinte dans certains

cas.

6.1 Résumé des travaux

Dans le chapitre 2, nous avons présenté l’algorithme d’ordonnancement RUF qui prend

en compte les différences entre le temps d’exécution pire cas des tâches et leurs temps

d’exécution effectifs avec pour objectif de maximiser l’exécution des tâches non critiques

tout en garantissant les échéances des tâches critiques. Nous avons montré qu’une affec-

tation de priorités statiques aux tâches critiques et non-critiques réduit les performances

du système global. Aussi nous avons proposé que les priorités des tâches soient calculées

à partir de la connaissance de leurs paramètres explicites et implicites. En particulier,

le calcul de la priorité d’une tâche, puis sa sélection en vue d’exécution, tient compte de

la différence Ci - AETi des tâches qui ont terminé leur exécution. Cette affectation de

priorité est réalisée de manière dynamique suivant un calcul qui ne tient pas compte des

échéances absolues des tâches ou de leur laxité mais des paramètres implicites évalués à

l’exécution. Nous avons comparé cet algorithme avec l’algorithme MUF qui fournit des

garanties sur les échéances des tâches critiques dans les phases de surcharge. Nous avons
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illustré que l’algorithme RUF est plus performant que MUF vis-à-vis du nombre de tâches

non-critiques exécutées suivant leurs échéances pendant une hyper-période.

Dans le chapitre 3, nous avons proposé une technique pour réduire le coût induit par

la gestion de l’ordonnancement dans un contexte mono-processeur. Il existe en particulier

deux types de coûts, l’un est relatif à la complexité algorithmique de l’ordonnanceur (celle

relative à la procédure de sélection de la tâche à exécuter), l’autre est la conséquence

des décisions de l’ordonnanceur de préempter une tâche. Les algorithmes RM et EDF

possèdent des complexités algorithmiques réduites mais les décisions de préemptions ont

un impact significatif sur les performances globales. Dans le chapitre trois nous avons

proposé une technique pour réduire significativement ces coûts liés aux préemptions.

Nous avons ainsi étendu des travaux de S.K. Baruah en considérant deux paramètres

implicites des tâches : leur laxité et leur dates de requête. La laxité d’une tâche ap-

porte une flexibilité pour retarder la décision normale de préemption de l’algorithme

d’ordonnancement et ce sans compromettre la faisabilité de l’ordonnancement. Ceci

permet ainsi de réduire le nombre de préemptions. Par ailleurs, contrairement à une

analyse statique hors-ligne, considérer les instants de requêtes des tâches permet pen-

dant l’exécution de ne prendre en compte que les tâches réellement prêtes et non pas

le scénario pire cas qui consiste à considérer que toutes les tâches peuvent être prêtes

à chaque événement d’ordonnancement. On peut ainsi réduire encore les préemptions

suivant cette approche dynamique par rapport au calcul effectué hors-ligne. On peut

également remarquer que cette technique dynamique autorise la création dynamique de

tâche. La réduction du nombre de préemptions permet d’augmenter l’utilisation effective

du processeur pour des traitements utiles et contribue également à réduire la consom-

mation d’énergie. L’objectif des techniques DVFS est de minimiser la consommation

d’énergie en diminuant la fréquence et la tension d’alimentation du processeur mais l’effet

de bord est une augmentation du nombre de préemptions liée à l’allongement des temps

d’exécution des tâches par rapport à leurs périodes. Nous avons proposé une nouvelle

technique de gestion de DVFS qui réduit la fréquence du processeur uniquement aux in-

stants où l’impact sur le nombre de préemptions est limité, tout en réduisant le nombre

de changements de fréquence.

Dans le chapitre 4 nous avons développé un nouvel algorithme d’ordonnancement

global ASEDZL qui n’est pas basé sur la notion d’équité ou sur un modèle d’ordonnancement

fluide. Il est basé sur l’approche EDF et similaire au cas monoprocesseur. Pour ce faire,

nous avons exploité les raisons et les facteurs qui font qu’un algorithme optimal en mono-

processeur peut donner de faibles performances pour ordonnancer des tâches dans un con-

texte multiprocesseur. Nous avons travaillé sur ces facteurs pour obtenir un ordonnance-

ment optimal. En particulier, dans le cas monoprocesseur, nous avons mis en évidence que

le facteur d’utilisation du processeur par une tâche est toujours inférieur ou égal au facteur
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de non-utilisation du processeur par une autre tâche. Inversement, si dans le cas multipro-

cesseur le facteur d’utilisation d’une tâche est plus grand que le facteur de non-utilisation

d’une autre tâche alors cela entrâıne qu’une tâche ne vérifiera pas son échéance, même

si le taux d’utilisation des processeurs est faible. Cet antagonisme peut être éliminé en

considérant l’approche EDZL qui est une version modifiée d’EDF. Nous avons également

remarqué que dans un ordonnancement EDF monoprocesseur, les tâches à venir dis-

poseront toujours d’un temps d’exécution suffisant et ce jusqu’au prochain instant de

requête d’une tâche. Cette propriété reste vraie dans le cas EDF multiprocesseur. Cepen-

dant à l’inverse du cas monoprocesseur l’ordonnancement EDF multiprocesseur n’est pas

capable d’exécuter pour un temps suffisant les tâches à venir jusqu’à la prochaine requête

d’une tâche. Pour obtenir un comportement équivalent de l’ordonnanceur mono et mul-

tiprocesseur nous avons introduit plusieurs modifications dont des échéances virtuelles et

des besoins locaux d’exécution pour les tâches à venir de manière à assurer un temps

d’exécution suffisant pour ces tâches. Une autre particularité spécifique observée dans

l’ordonnanceur EDF monoprocesseur est que lorsqu’une tâche avec une laxité nulle est

sélectionnée pour exécution, cette tâche est la seule à être prête et elle finira son exécution

à la fin de l’hyperpériode (suivant les hypothèses : U(τ) = 1, les tâches sont synchrones

et ont leur requêtes sur échéances). La même situation apparâıt en multiprocesseur si

l’ordonnanceur global vérifie d’une part que toutes les laxités des tâches ne sont jamais

négatives et d’autre part que toutes les tâches à venir bénéficient d’un temps d’exécution

jusqu’à la prochaine requête d’une tâche. Avec l’algorithme ASEDZL ces conditions sont

vérifiées ce qui le rend optimal pour ordonnancer des tâches sur une architecture multipro-

cesseur. L’algorithme EDF global (g-EDF) est montré comme le plus efficace en termes

de nombre de préemptions et de migrations de tâches mais au prix d’une faible utilisation

possible des processeurs. Comme l’algorithme ASEDZL est une extension de g-EDF, on

peut affirmer qu’il constitue l’algorithme d’ordonnancement global le plus efficace avec

une borne d’ordonnançabilité égale à la capacité de traitement de l’architecture. Pour

illustrer cet argument nous avons comparé notre algorithme à LLREF et ainsi montré

qu’ASEDZL est plus efficace que Pfair et LLREF. Nous avons présenté dans le chapitre

5 deux approches d’ordonnancement hybride de tâches. L’ordonnancement hybride de

tâches donne a priori de meilleurs résultats sur des architectures à mémoire partagée

distribuée par rapport à des algorithmes globaux ou partitionnés. Nous avons utilisé

l’approche par ”supertâches” proposée par Moir et al. qui toutefois ne garantit pas les

échéances des tâches locales à une supertâche. Nous avons établi une relation entre les

taux d’utilisation des tâches locales et celui de la supertâche associée de manière à garan-

tir les échéances des tâches locales. Les travaux de Moir et al. sont basés sur l’utilisation

de l’ordonnancement optimal Pfair qui possède une importante complexité de calcul à

l’exécution. Aussi, nous avons substitué Pfair par ASEDZL et nous avons présenté une

technique d’ordonnancement des supertâches et des tâches globales de telle sorte que
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toutes les échéances des tâches soient garanties. Pour arriver à ce résultat nous avons as-

socié des paramètres dynamiques aux supertâches au lieu de paramètres statiques comme

effectué dans les travaux précédents. Ceci assure que les supertâches bénéficient de la

part de l’ordonnanceur global d’un temps d’exécution suffisant supérieur ou égal à la de-

mande minimum des tâches locales et ce afin qu’elles vérifient leurs échéances. Nous avons

montré l’optimalité de notre algorithme et l’avons comparé avec d’autres algorithmes du

domaine pour illustrer les améliorations obtenues.

Enfin, nous avons proposé dans le cadre du projet européen THER1 une technique

d’ordonnancement auto-adaptatif d’applications pour de futures architectures. On peut

penser que les architectures du futures seront ” intelligentes ” pour pouvoir s’adapter/s’auto-

configurer en fonction de la demande variable en traitement des applications. Pour obtenir

des garanties sur les échéances de ces applications auto-adaptatives nous avons proposé

de calculer de manière statique la demande minimum en ressources pour chaque tâche

puis, à l’exécution d’allouer à chaque tâche plus de ressources que cette demande mini-

mum en fonction du degré de parallélisme intrinsèque à la tâche observé et du nombre de

ressources disponibles. L’allocation à l’exécution d’un plus grand nombre de ressources

que la demande minimum permet de réduire la demande minimum pour la partie restante

à exécuter de la tâche avec pour retombée de pouvoir ensuite admettre dans le système

de nouvelles tâches. L’architecture considérée dans cette étude est quelque peu futur-

iste et par ailleurs l’approche proposée ne concerne que des tâches temps réel souple ce

qui est un peu différent des autres travaux réalisés dans cette thèse. Ceci explique que

ce travail est décrit en Annexe A et non pas dans un chapitre à part entière. Dans

l’Annexe B nous avons également présenté un travail en cours qui vise à transformer un

problème d’ordonnancement multiprocesseur en plusieurs problèmes d’ordonnancement

monoprocesseur et sur cette base, nous avons proposé une solution pour obtenir une

borne d’ordonnançabilité optimale.

6.2 Travaux futurs

L’algorithme d’ordonnancement RUF améliore la Qualité de Service pour des architectures

monoprocesseurs. Nous proposons d’étendre cette approche au cas multiprocesseur avec

la garantie que les tâches critiques vérifient leurs échéances et les exécutions des tâches

non-critiques sont maximisées pendant les phases de surcharge. L’optimalité d’ASEDZL

permet de considérer des paramètres dynamiques des tâches (par exemple Ci > AETi)

dans le but de minimiser la consommation d’énergie du système sans remettre en cause la

garantie offerte sur le respect des échéances des tâches. Dans un futur proche nous utilis-

erons le simulateur développé dans le cadre du projet PHERMA (ANR) afin d’implémenter

l’algorithme ASEDZL et travailler sur ces aspects basse consommation. Jusqu’à présent
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nous avons utilisé l’outil CoFluent pour simuler les algorithmes d’ordonnancement mono-

processeur ou globaux. Cet outil supporte difficilement l’implémentation d’algorithmes

hiérarchiques aussi nous envisageons d’utiliser ce nouveau simulateur développé dans

PHERMA pour les réaliser et ainsi comparer les résultats aux approches existantes.





Appendix A

ÆTHER: Self adaptive Resource

Management Middleware for

Selfoptimizing Resources

A.1 Introduction

The development of reconfigurable devices that could make themselves domain-specialized

at run time is becoming more and more common. Future reconfigurable architecture will

have these computing devices as basic blocks, and reconfigurable architecture could make

assemblies of these devices, on the fly, to execute concurrent applications. The migration

from completely generic lookup tables and highly connected routing fabrics to self adap-

tive specialized coarse-grain reconfigurable devices and very structured communication

resources presents designers with the problem of how to best customize the system based

upon anticipated usage. Then there is a need of not only exploiting parallelism from ap-

plications at micro-thread level, dynamically, but system also starves for a dynamic and

self adaptive middleware to schedule these micro-threads on thousands of such computing

devices. In this chapter we focuses at the problem of dynamic allocation and scheduling

of resources of numbers of applications on such architecture.

ÆTHER is IST-FET (Information Society Technology-Future and Emerging Tech-

nologies) European project with main objective to study novel self-adaptive computing

technologies for future embedded and pervasive applications. In order to provide high

performance computation power to serve the increasing need of large applications, people

strive to improve a single machine’s capacity or construct a distributed system composed

of a scalable set of machines. Compared to the former, where the improvement is mainly

up to the hardware technology development, the construction of distributed systems for

resource collaboration is more complex. Some of well-known existing distributed sys-

tems composed of heterogeneous resources are Condor[47], NetSolve [21], Nimrod [73],
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Globus and the Grid [40] computation environment. Sabin et al. [70] propose a central-

ized metasheduler which uses backfill to schedule parallel jobs in multiple heterogeneous

sites. Similarly, Arora et al. [8] present a completely decentralized, dynamic and sender-

initiated scheduling and load balancing algorithm for the Grid environment. All these

approaches don’t deal with application model where concurrent threads are created and

managed at run. These methods do not target future architecture where each resource

of a processor has capability of self optimizing and interconnects with other resources to

form assemblies to execute concurrent application.

ÆTHER system is hierarchical both at function and architecture level. At function

level, application is written which self adapts itself to well suit with the application ob-

jective and to cope with dynamic changes happening in environment. Applications are

quite dynamic in nature where concurrent threads are instantiated dynamically according

to number of resources of system. Architecture of the system is not traditional as it is

not single unit of computation. It is a network of given number of SANEs. A SANE is

self adaptive networked entity which can self optimize itself.

In this chapter, we propose an algorithm for scheduling of hard and soft real-time

tasks in an architecture which is composed of multiple processing units. These computing

units are self adaptive and have the capability to optimize according to application needs.

Application helps create/instantiate concurrent threads at run time. The primary goal of

the proposed algorithm is to maximize the schedulability of soft tasks without jeopardizing

the schedulability of tasks. The algorithm has the inherent feature of degrading/upgrading

QoS, by dynamic managing concurrency of tasks by allocating more resources to most

appropriate task i.e., (hard real time tasks are not always preferred over soft real time

tasks). This algorithm helps to maximize execution of concurrent execution of tasks and

distribute resources to thousands of concurrent threads of a task where objective is to

ensure timeline guarantees of tasks.

A.1.1 Definition Of The Problem

We have n tasks τ = T1, T2, ..., Tn and Rx parallel resources (SANEs). These parallel

resources self adapt themselves according to task executing on it. These resources form

assemblies and configure/self-adapt [61] connecting fabric between SANE elements to ex-

ecute tasks while tasks have the capability of dynamically managing (creating threads at

runtime) concurrency in it depending upon the availability of resources. System resources

are limited so that demands of all tasks can not be satisfied simultaneously. Execution

time of task monotonically decreases with each resource allocated to it until the maximum

level of parallelism in task. For some tasks where concurrent parts of tasks are dependent,

execution time of a task is monotonically decreasing until a point (called threshold) and

it starts increasing monotonically after this point for each allocated resource. Task T is
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Figure A.1: Self Adaptive Networked Entity (SANE)

represented as sequence of concurrent execution of µthreads (µT ). Concurrency level at

each sequence of task may be different. We are interested in scheduling these tasks on Rx

parallel resources such that maximum tasks could respect their deadline constraints and

utilization of resources could be maximized. In this chapter,we define ÆTHER architec-

ture. we detailed our proposed approach and explain that how tasks are provided real

time guarantees by calculating minimum resource demand of each task and how resources

are allocated dynamically to increase Quality of Service (QoS).

A.2 ÆTHER Architectural Model

In the ÆTHER project, SANE [61](Self Adaptive Networked Entity) is introduced as

basic computing entity aims to be networked with other entities of the same type to

form complete systems. Each of these entities is meant to be self-adaptive, which implies

that they can change their own behavior to react to changes in their environment or to

respect some given constraints. As shown in Fig:A.1, the controller changes the state

of the SANE hardware implementation by changing some parameters of the currently

loaded task as well as changing the task to another implementation of the same task or a

completely different task. The computing tasks are loaded in the computing engine. They

can be described as bit-streams if the computing engine is viewed as an FPGA fabric or as

binary files for a soft-processor. The existence of the monitoring process associated with

an adaptation controller provides the SANE with the self-adaptation ability. The latest

part of the SANE is the communication interface. It is dedicated to collaboration among

the SANE hardware elements that compose the architecture. The collaboration process

is done through a publish/discover mechanism that allows a SANE hardware element

to publish its own abilities and parameters and to discover the computing environment

formed by the other SANE hardware elements in its immediate local neighborhood. This

mechanism enables the SANE hardware elements to exchange their tasks or just to clone

their states to other SANE hardware elements. The SANE processor (Fig:A.2) is a runtime
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Figure A.2: SANE processor composed of SANE Elements

Figure A.3: SANE Assemblies

reconfigurable architecture composed of thousands of SANE elements. These elements are

interconnected dynamically and self-adaptively to execute concurrent applications. SANE

processor is a multi-core processor with SANE elements as its processing cores. SANE

processor has more flexibility than simple multi-core processor due to its capability of not

only reconfiguring its cores (SANEs) but also restructuring the interconnection between

them. SANE elements (equal to resources allocated to task Ti dynamically) are combined

to form a SANE assembly to execute task Ti. As number of concurrent tasks at run

time varies dynamically so assemblies formed at run time are different as well. Moreover,

resources assigned to each task vary. Number of SANE assemblies in one SANE processor

changes at run time (Fig:A.3(a),(b)).

A.3 Application Model

There are two types of parallelism to be exploited: task parallelism and data parallelism.

In ÆTHER project, parallelism is exploited through a coordination language. S-Net

[9], used in ÆTHER project, is a coordination language that orchestrates asynchronous

components that communicate with each other and their execution environment solely

via typed streams. The application program units are presented in an appropriate fully-

fledged programming language, such as C, Java, etc., while the aspects of communication,
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Figure A.4: Representation of a task

concurrency and synchronization (referred to by the term coordination) are captured by

a separate, coordination, language. S-Net program is compiled down to µthreadedC

(µTC ) [18], which is used as user programming language. µTC is a rather profound

but simple extension to the C language, allowing it to capture massive thread-based

concurrency. µTC is capable of expressing static heterogeneous concurrency and dynamic,

homogeneous concurrency. Only a small number of constructs are added to C, along with

the semantics of the synchronizing memory. The constructs map onto low-level operations

that provide the concurrency controls in a µthreaded ISA, and allow concurrent programs

to be dynamically instanced and preempted, either gracefully or with a prejudice.

A.3.1 Task Structure

A task Ti is represented as a sequence of concurrent execution of µthreads. Each task Ti
consists of a finite series of sequences Ti,1, Ti,2, Ti,3, ..., Ti,k. Each sequence Ti,j consists of

(max) Ni,j concurrent µT s of execution and each µT must run for at most Ci,j time units;

such value is called the worst-case computation time of µT , Si,j is the slow down factor

if there is dependency between two µT s. The number of µT s in any sequence is limited

by a number and is known a prior. The µT s are instanced dynamically depending upon

the resources availability. In Fig:A.4, we can observe that in a task structure, we have

different number of µT s at different levels. These µT s represents the maximum limit but

threads created at runtime may have different values bounded by these maximum limits.

The resources are allocated to different tasks depending upon its criticalness, its execution

time and efficiency of a resource to execute a thread. It is assumed that one resource is

capable of executing a µT , but resources can optimize self adaptively to execute more than
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Figure A.5: Execution time of task

one µT at a time. In this case middleware will change the task structure dynamically and

self adaptively that helps to make better decisions about resource allocation. Initially,

execution time of a task is calculated considering that one SANE is capable of executing

only one µT at a time.

A.3.1.1 Worst Case Execution Time

The worst case execution time of task is function of allocated resources at run time. Worst

case execution time can be calculated by considering only one µT in execution at one time

i.e., with no parallelism.

Ci =
k∑
j=1

Ni,j ∗ Ci,j ∗ Si,j

A.3.1.2 Best Case Execution Time

Best case execution time is calculated by assigning resources equal to are less than maxi-

mum µT s at that level.

Ci,b =
k∑
j=1

Si,j ∗
⌈
Ni,j

Rb

⌉
∗ Ci,j

The worst case execution time and best case execution of a task depends on number

of minimum (Rim,s) and maximum resources that can be allocated to it. If there is no

dependency between µT s of one family then there time of execution will be decreased

linearly. But there will be a point after which increase in allocation of resources will not

further decrease time of execution. It will remain constant (Fig:A.5 (a)). This point is

called saturation point. In some cases when there is strong dependency between µT s of a

family then time of execution will not be decreased linearly and there will be a threshold

point after which time of execution of family of µT s start increasing instead of decreasing

if more resources are assigned than its threshold point (Fig:A.5 (b)). During execution of

a task, hardware resource (SANE element) self adaptively optimize its power to execute
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Figure A.6: Varied task structure

more than one µT of a family. In this scenario, task structure will be changed due to

positive feedback from hardware.

A.3.2 Self Adaptive Task Structuring

SANE elements, having capabilities of self optimization, require a dynamic and self adap-

tive middleware to cope with these optimizations of hardware that could distribute re-

sources in an efficient manner. Optimization achieved by hardware for any task can be of

different types. SANE element

• could optimize itself to provide dedicated functionality implemented in hardware for

a task.

• could self optimize to execute complete or partial family of µT s concurrently.

A.3.2.1 Dedicated SANE for a Task

If a SANE element has dedicated hardware for a task or it has self-optimized itself at

runtime to execute all sequences of task, then there will be no more modifications in

structure of this specific task.

A.3.2.2 Optimized SANE for Family of µT s of a Task

SANE element may make itself specialized only for parts of task instead of complete task.

It may provide better results for a family of µT s. In this scenario, task structure will be

changed (Fig:A.7) and there will be a need to recalculate the execution time of tasks with

new parameter i.e., number of sequences, number of threads at each level (Fig:A.7) and

worst case execution time of modified thread. Resources are allocated to different tasks

depending upon their structure and its deadline constraints.
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Figure A.7: Restructuring of Task self adaptively

A.4 Resource Allocation and Scheduling

Ideal scheduling algorithm is one where each task is assigned resources proportion to its

weight during the whole length of its execution. Ideal scheduling algorithm is impractical

• in case of general purpose processors where computational capacity of one processor

can’t be assigned to different tasks in proportion to their weights.

• in real cases where application does not have µT s equal in number (or more) that

corresponding to its weight. The number of µT s that an application can execute in

parallel varies during its execution.

In case of SANE processors, resources (SANE Elements) may be assigned proportionally

and dynamic concurrent application model help to execute a task in parallel. If minimum

number of µT s in any sequence of a task are integer multiple of number of resources

corresponding to its weight then this task can be scheduled ideally. But if a task Ti has

number of µT s less than Rim,s (resources proportion to its weight) at some level and

greater than Rim,s at other levels (which is the case most of time), then this task can’t be

scheduled ideally. To provide guarantees for this task, reservation of resources more than

its weight is needed. It will cause certain resources left unused and there will be wastage

of resource utilization.

A.4.1 Wasted Resource Utilization

If schedulability analysis is carried out based on minimum resources Rim,s then there are

chances that these resources may not be fully used during execution of a task. As few

sequences of a task may need less resources than Rim,s (Figure 8) hence certain percentage

of resources will not be used during execution of a task.

A.4.1.1 Homogenous Concurrent µthreads

µTC has the capability of controlling the concurrency of µT s dynamically if µT s at that

level are homogenous. In this case, if we have more than one homogenous families of µT s



Chapter 6. ÆTHER: Self adaptive Resource Management Middleware 137

Figure A.8: Wasted Resource Utilization

at same level, then these families can be considered as a single family. If two or more

than two families are concurrent then number of total µT s at that level Ni,p is sum of all

those µT s.

Ni,p = Ni,n +Ni,m

Each µT of these two families will have same worst case execution time. Wasted Resource

Utilization by task Ti when it is assigned Rim,s.

WRi =
k∑
p=1

max(0, (Rim,s −Ni,p) ∗ Ci,p)

where k represents number of sequential families of task Ti.

A.4.1.2 Heterogeneous Concurrent µthreads

If families of µT s at any level are heterogeneous i.e., worst-case execution time of µT in one

family is different from that of other, then calculation of wasted resource utilization may

have different value than calculated in above equation and is calculated in the following

way.

WRi =
k∑
p=1

max(0, (Rim,s −Ni,p) ∗max(C1
i,p, C

2
i,p, ..., C

l
i,p, ))

Where (C1
i,p, C

2
i,p, ..., C

l
i,p, ) are worst case execution times of µT s of concurrent heteroge-

neous families at level p and l represents total number of families at that level. If Wasted

Resource Utilization (WRi) by task Ti is zero when it is assigned then:

Rim,s =
⌈
Ci
Pi

⌉
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otherwise

Rim,s >

⌈
Ci
Pi

⌉
With the new static value of Rim,s task will respect its real time constraints but wastage

of resources will be increased.

A.5 Minimum Resources for Each Task

A task is represented as a sequence of concurrent executions of µthreads. At each level

a task has different number of µT s and worst case execution time of a µT at one level

may be different from that of a µT at other level. Minimum number of resources (Rim,s
) are calculated that should be allocated to a task to provide timeline guarantees. If

worst case execution time calculated for a task Ti is higher than its deadline Pi, then

Rim,s (calculation before release of task instant) that a task should be allocated can be

calculated by an iterative process. We have a function associated with each level of a task.

With the help of this function we can calculate the worst case and best case execution

time of this family of µT s. Calculation of minimum resources that does not correspond

exactly to its weight (higher than its weight) is calculated as follows: (WR represents

wastage of resources (section 5)) A task Ti can be allocated more than Rim,s at run time.

If a task Ti use more than Rim,s for certain duration, then minimum resource for rest of

task may have a smaller value and is calculated dynamically (dynamic minimum demand

Rim,d).

Algorithm 9 Calculation of Minimum Resources
1: Rim,s =

⌈
Ci
Pi

⌉
;

2: WRi =
∑n
k=1max

[
0,
(
Rim,s −Ni,k

)
× Ci,k

]
;

3: if

[
Ci
Ri

m,s
+WRi

]
> Pi then

4: Rim,s =
⌈

Ci
Pi−WRi

⌉
;

5: go to step 3;
6: else
7: return Rim,s;
8: end if

A.5.1 Task Preemption

If a task Ti has used more than Rim,s, then this task Ti can be preempted as well. Time

PTi for which a task can be preempted by low priority task depends upon the time

duration for which this task has used resources more than Rim,s.

PTi = Pi −
[
tc +

Cremi

Rim,s
+WRi

]
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where tc represents the current time. A task can be preempted for a longer time than

calculated in above equation, if it could be allocated more than Rim,s. It is possible in two

situations:

1.
∑n

i=1R
i
m,s < Rx

2. When a set of tasks have different values of Rim,s and Rim,d .

In both of these cases task Ti can be preempted for a longer duration. Time for which

this task can be pre-empted is calculated as follows:

PTi = Pi −

[
tc +min

(
Cremi

Rim,s
,

Cremi

Rim,s +
∑n

j=1R
i
m,s −Rim,d

)
+WR

]

A.6 Algorithm

Real-time applications are classified into two major categories of hard and soft real-time

tasks (HRT and SRT tasks respectively). Hard real-time tasks have critical deadlines that

are to be met in all working scenarios to avoid catastrophic consequences. In contrast,

soft real-time tasks (e.g., multimedia tasks) are those whose deadlines are less critical

such that missing the deadlines occasionally has minimal effect on the performance of the

system. Tasks are allocated resources depending upon its value of Rim,s. The calculation

of minimum resources for a task changes at run time, if it was allocated more than Rim,s

during its execution. If there is no such HRT task, where Rim,s and Rim,d have different

Algorithm 10 Dynamic Allocation of Resources
Whenever a new family starts
if (RF ≥ Ni,j) then

allocate Ni,j {RF = free resources}
return;

else if RF ≥ Rim,s then
allocate RF
return;

else if RF < Rim,s then
for j = 1 to n do

if Rjallocated(HRT ) > Rim,s then

liberate (Rjallocated(HRT )−Rim,s) {Rjallocated = allocated resources to Tj}
else if RF ≥ Rim,s then

break;
end if

end for
else if RF ≥ Rim,s then

allocate RF
return;

else if lower priority task SRT is running then
preempt it

else
allocate RF
return;

end if
if a family finishes its execution (or is preempted) then

recalculate Rim,s
end if
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Figure A.9: Recalculation of Rm

values then SRT task can’t preempt HRT task. In this case low priority SRT task can be

preempted only by higher priority SRT task.

A.7 Schedulability

To get the system’s behavior deterministic for HRT tasks, we must be sure that at any

time minimum demand of resources for all HRT task does not exceed number of resources

in architecture. Schedulability analysis for HRT tasks

k∑
i=1

Rim,s ≤ Rx (A.1)

If the sum of minimum resources is less than Rx then extra resources can be used to

schedule SRT tasks. The allocation/reservation of Rim,s to task Ti introduce wasted slots

of resources, these wasted slots can be exploited to schedule SRT tasks. A necessary

condition for scheduling of SRT tasks: Where k represents number of HRT tasks and

there are m SRT tasks in the system.

m∑
j=1

Cj
Pj
≤

k∑
i=1

WRi
Pi

+

[
Rx −

∑k
i=1R

i
m,s

Rx

]
(A.2)

A.8 Conclusions

In this chapter we have presented an approach for scheduling of HRT and SRT tasks where

each task requires more than one resource to finish its execution. We have provided a

model that allocates resources to tasks dynamically, that redefines its demand of minimum

resources self-adaptively. This model restructures the task as well if SANE hardware

optimizes itself. It provides a means of efficiently exploiting unprecedented computational

power of SANE processor.
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Appendix B

Dynamic Scheduling of Global and

Local Tasks in Their Reserved

Slots

In this section, we present a hierarchical scheduling algorithm, which is not based on the

idea of supertasking or group based scheduling. The basic idea is to break the problem

of multiprocessor scheduling into multiple mono-processor scheduling at different levels

of hierarchy. Andersson, Baruah, and Jonsson [6] provided a bound on the utilization

of platform capacity, which states that, for a periodic task set with implicit deadlines,

the utilization guarantee for EDF or any other static-priority multiprocessor scheduling

algorithm - partitioned or global - can not be higher than (M + 1)/2 for an M -processor

platform.

This utilization bound can be treated as a sufficient condition for schedulability of a

given task set. However, when a task set is partitioned under this bound, the platform

is under-utilized with a significant margin. We propose to exploit this under-utilization

of each processor by grouping processors in such a way that sum of under-utilization of

processors of group is greater than or equal to 1 and less than 2. Under-utilization on one

processor is defined as:

1−
ni∑
j=1

Cj
Pj

the ith processor group is represented by Πi
g. If sum of under-utilization of tasks is greater

than 1, then at least one (maximum two) processors of the group as shared with other

groups. For each processor, we have a mono-processor EDF based scheduler. Global tasks

are also grouped in the same fashion. Total utilization of global tasks must be greater

than or equal to 1 and less than or equal to 2. If total utilization is greater than 1, then

one or two tasks are shared with other groups.

143
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Figure B.1: Under-utilization distribution at runtime

B.1 Algorithm Description

In a post-partitioned scenario with independent periodic task set, every processor is

treated as an isolated mono-processor which is executing tasks under a mono-processor

scheduling policy. The sum of utilization of tasks partitioned on a processor is less than

or equal to 1. If this sum is less than one, then there will be idle processor time win-

dows in schedule. Fig.(B.1) illustrate that the idle processor time windows, caused by the

under-utilization, appear randomly during runtime. Since random appearing of idle time

windows can not be utilized by a periodic task set, therefore, we need to force these idle

time windows to be periodic. To achieve this objective, we add a dummy task on every

processor. Let’s call this dummy task as T id on processor Πi. We propose to schedule

local and global tasks between two release instants. Therefore, we enforce appearing of

dummy tasks between any two release instants on all those processors, which has positive

under-utilization. Dummy tasks on processors of same group appear on different time

windows between two release instants. If sum of under-utilization of processor of a group

is greater than 1, then a part of dummy task on one processor of the group is overlapped

with other dummy task on other processor of the same group. This overlapped time of

dummy task on one processor is assigned to second group.

B.1.1 Local Scheduler

A slot is always reserved (at fix location)for dummy task. Scheduler selects the highest

priority local task to execute, when slot reserved for dummy task has either finished or it

has not appeared yet. Length of the this slot reserved for dummy task is different between

different release instants (Fig:B.2), and depends upon the value of interval length. Length
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Figure B.2: Distribution of under-utilization between release instants

of this slot Cid, is calculated as follows:

Cid = interval length×

(
1−

ni∑
k=1

Ck/Pk

)

B.1.2 Global Scheduler

As, we have explained earlier that global tasks are grouped together into k groups, such

that sum of utilization of each group is greater than or equal to one, and less than two.

Shared task is broken into two tasks of same period as that of original task, and execution

of this task is such that sum of utilization of tasks of one group comes out to be 100%.

Now, we have k mono-processor EDF based schedulers at global level, and tasks selected

by this scheduler executes at time reserved for dummy tasks on different processor of the

group. There is always a slot reserved for dummy task on one processor of the group.

Execution of shared task ,broken into two tasks, is mutually exclusive, and is ensured by

the middleware (Fig:B.3). This middleware provides the synchronization between local

and global tasks.

B.2 Schedulability Analysis

Task set is said to be schedulable, if all tasks respect their deadlines. We have two types

of subsets of tasks, partitioned and global tasks. Global tasks are scheduled by k mono-

processor EDF schedulers, and there is always slots reserved for it. Hence, global tasks

respect their deadlines. Local tasks are scheduled only at those slots, when these slots

are not reserved for dummy tasks. So, there is a need to prove the schedulability for

local tasks. At each release instant Rk, local tasks are given processor time in proportion
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to their overall weights of partitioned tasks until next release instant Rk+1. To provide

timeline guarantees, we need to ensure that time allocated to local task is more than or

equal to minimum demand of local tasks of one processor until time t (t represent the

local release instants on processor Πj). We perform demand bound function DBF (Tj , t)

analysis to calculate the minimum processor demand until any time t. Let time given to

local tasks on processor is represented by Allocation, then we know that:

Allocation = t×
ni∑
j=1

Cj
Pj

and minimum demand for timeline guarantees of local task is:

ni∑
j=1

DBF (Tj , t) =

 ni∑
j=1

⌊
t

Pj

⌋
× Cj


These two equation (above) demonstrates that

∑ni
j=1DBF (Tj , t) ≤ Allocation. It implies

that local tasks are guaranteed to meet their deadline constraints.

B.3 Runtime Optimizations

Global tasks of one group are scheduled on a specific group of processors. It implies that a

task selected by one global EDF scheduler may migrate from one processor of the group to

another processor of the group. Moreover it can cause preemption of local tasks processors

of the group. We can minimize these migrations of global task and preemptions of local

task by taking into account run time parameters of both local and global tasks. If global

task takes processor time less than its worst case allotment, then slot reserved on next

processor of the group can be eliminated (until next release instant). If local tasks takes

processor time less than their worst case allotments, then reserved slot on one processor

can be enlarged to remove reserved slot on other processors of the group.
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B.4 Comparison

We compare this algorithm with EKG [7] approach analytically. Our proposed algorithm

introduce less number of preemptions than appearing EKG based schedule, as number

of global tasks executing between two release instants is ng in case of EKG, while our

algorithm executes global tasks less than or equal to ng between two release instants.
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