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Résumé

De nos jours la conception des IP (IP: Intellectual Property) peut béné�cier de nouvelles techniques
de véri�cation symbolique: abstraction de donnée et analyse statique formelle. Nous pensons qu'il est
nécessaire de séparer clairement le Contrôle des Données avant toute véri�cation automatique.

Nous avons proposé une dé�nition du �contrôle� qui repose sur l'idée intuitive qu'il a un impact sur

le séquencement de données. Autour de cette idée, le travail a consisté à s'appuyer sur la sémantique

des opérateurs booléens et proposer une extension qui exprime cette notion de séquencement. Ceci nous

a mené à la conclusion que la séparation parfaite du contrôle et des données est illusoire car les calculs

dépendent trop de la représentation syntaxique. Pour atteindre notre objectif, nous nous sommes alors

basés sur la connaissance fournie par le concepteur: séparation a priori des entrées contrôle et des

entrées données. De cela, nous avons proposé un algorithme de �slicing� pour partitionner le modèle.

Une abstraction fut alors obtenue dans le cas où le contrôle est bien indépendant des données. Pour

accélérer les simulations, nous avons remplacé le traitement de données, dé�ni au niveau bit par un

modèle d'exécution fonctionnel, tout en gardant inchangé la partie contrôle. Ce modèle intègre des

aspects temporels qui permet de se gre�er sur des outils de model checking. Nous introduisons la

notion de signi�cativité support des données intentionnelles dans les modèles IP. La signi�cativité est

utilisée pour représenter des dépendances de données booléennes en vue de véri�er formellement et

statiquement les �ots de données. Nous proposons plusieurs approximations qui mettent en ÷uvre

cette nouvelle notion.

Abstract

Hardware veri�cation has become challenging due to ever-growing complexity of today's designs. We
aim at assisting veri�cation of hardware intellectual property (IP) modules at register transfer level
(RTL) by means of data abstraction and static formal analysis techniques. We believe that before
applying data abstraction, it is necessary to clearly de�ne and separate the Control and Data processing

of modules.
The consideration of control and data in hardware has previously been a subjective judgment

of the designer, based on the syntax. We intuitively de�ne the �Control� as an entity responsible
for the timings of the data operations in IP modules. The proposed de�nition was envisaged for
separating Control and Data, independent of the subjective choice or the speci�c syntax. We have
worked around a few semantic issues of the de�nition and demonstrated by reasoning, that an ideal
separation of control and data is not achievable according to the proposed de�nition due to the syntax
dependent boolean computations. We therefore, separate the Control and Data based on designer's
knowledge. A control-data slicing algorithm is proposed to split the module into a control slice and a
data slice.

An abstraction is achieved in case of slicing with data-independent control. The bit accurate RTL

data slice is replaced by a functional data computation model for fast simulations. The control slice

being critical entity with timing information, remains intact during this process. This provides us a

way of abstracting the data processing and considering only the timing information for formal veri�-

cation. We have proposed the notion of signi�cance to represent the intentional data in IP modules.

Signi�cance is used to represent boolean data dependencies in modules for formal veri�cation of the

data �ows. Approximations to data dependencies in IP modules have been realized with demonstra-

tion of their correctness. The veri�cation technique based on signi�cance is realized which enables to

formally verify properties related to the datapaths.
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Chapter 1

Introduction

De nos jours, les systèmes numériques sont de plus en plus tellement complexes, qu'une concep-
tion directe est devenue di�cile. Leur mise en ÷uvre fait aujourd'hui appel à l'interconnexion
de plusieurs composants (IP: Intellectual Property) disponibles sur le marché, validés et de-
veloppés par ailleurs. Vu le nombre important de fournisseurs d'IPs de base, et le manque
de standards, les services rendus deviennent de plus en plus hétérogènes, ce qui augmente la
complexité d'une véri�cation globale.

Dans un cycle de conception normal, environ 70 % du temps de conception est dédié à
la phase de test et de validation. La conception revêt di�érents aspects: tels que le délai
de mise sur le marché (time-to-market) et les marges �nancières qui dépendent largement de
la phase de véri�cation. En conséquence, les erreurs de conception non identi�ées durant le
cycle, peuvent engendrer des impacts �nanciers signi�catifs en augmentant le time-to-market
et en réduisant la marge de gain.

Pour optimiser les pro�ts, les techniques de véri�cation doivent être aussi e�caces que pos-
sibles. De plus un bogue de conception peut induire des conséquences graves pour le matériel
voire funestes pour des utilisateurs. Habituellement les techniques de véri�cation et de vali-
dation formelle sou�rent pour les gros systèmes, d'un temps de calcul long, d'une couverture
de test limitée et d'une explosion combinatoire. Travailler à un niveau d'abstraction élevé
est recommandé par la communauté scienti�que pour faciliter les techniques de véri�cation.
En fait, un haut niveau d'abstraction des IPs permet de gérer la complexité des systèmes qui
comportent aujourd'hui plusieurs millions de portes logiques.

Dans cette thèse, nous proposons des techniques basées sur l'abstraction de données et
l'analyse statique formelle pour aider le processus de véri�cation par simulation et model-
checking. Le principal objectif de ce travail est d'une part d'identi�er le �ot de données dans
une IP déjà dé�nie et d'autre part d'appliquer les techniques d'abstraction de données en vue
d'obtenir un modèle simpli�é.

Ces objectifs et mes motivations sont décrits dans le paragraphe 1.2. Mais en premier
lieu, il me semble important de présenter un rapide état de l'art relatif aux techniques de
véri�cation a�n de mieux esquisser les idées présentées dans la suite de ce manuscrit.

1.1 État de l'art

Les techniques de véri�cation pour les systèmes numériques industriels sont principalement
divisées en deux catégories : simulation et véri�cation formelle comme décrits ci-dessous.
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1.1.1 Véri�cation par simulation

La simulation est une exécution dynamique d'un modèle pour tester sa �ablilité. Pendant
la simulation, un modèle bas niveau est injecté avec les séquences de données appelées les
�vecteurs de test�. Les sorties associées sont observées, pour s'assurer que les comportements
du modèle sont conformes aux spéci�cations. Les vecteurs de test sont produits, soit au-
tomatiquement par génération de vecteurs aléatoires[33], soit par un outil de résolution de
contraintes [60], soit manuellement par les utilisateurs. Il est important que les vecteurs de
test caracterisent des séquences particulières introduisant des bogues. Comme il est impos-
sible de parcourir tous les vecteurs de test possibles imaginable, un grand nombre de bogues
potentiels restent indetectés. Pour palier ce phénomène, les techniques de génération automa-
tique de test (ATPG: Automatic Test Pattern Generation) [64], [67], [44] et les méthodes de
conception pour le test [48], [105] sont fréquemment utilisées pour assister la véri�cation basée
sur la simulation en augmentant la couverture de test.

1.1.2 Véri�cation par model checking

Les simulations ne garantissant pas la correction fonctionnelle globale, une véri�cation formelle
prend toute son importance: depuis quelques années, les avancées théoriques dans les méthodes
formelles [45] se sont accompagnées d'outils logiciels, qui dépassent l'approche traditionnelle
par simulation dans sa capacité d'identi�er les erreurs dans les systèmes numériques critiques.
La véri�cation formelle est une approche algorithmique et logique. L'objectif est de diagnos-
tiquer statiquement et mathématiquement les erreurs. Dans l'industrie, véri�cation formelle
rime souvent avec �equivalence-checking� [93] ou �model-checking� [31].

Les techniques d'equivalence-checking comparent formellement deux spéci�cations au niveau
RTL (ou portes). Le model-checking est une approche pour véri�er la correction de la descrip-
tion fonctionnelle selon la spéci�cation. Le model-checking comprend trois parties:

1. Un �cadre de travail� pour modéliser les systèmes, typiquement c'est un langage de
description orienté,

2. Un langage de spéci�cation pour décrire les propriétés à véri�er,

3. Un algorithme de model-checking pour déterminer si la description du système satisfait
les spéci�cations.

Le model-checking permet à l'utilisateur de détecter les propriétés de sûreté et de vivacité
d'un système tel que la situation d'impasse (puit) où une exclusion mutuelle induisant une
situation de blocage du système (étreinte fatale). Le model-checking s'applique aux systèmes
de transition d'états tels que les circuits séquentiels ou les protocoles de communication.

Les spéci�cations de propriétés décrivent ce que le système doit faire et ce qu'il ne doit
pas faire, alors que le modèle décrit comment le système se comporte. Les propriétés à véri�er
sont exprimées dans les langages de logique temporelles comme la logique temporelle linéaire
(LTL: Linear Temporal Logic), la logique arborescente (CTL: Computation Tree Logic) [25],
le langage de spéci�cation de propriétés [26] (PSL: Property Speci�cation Language) [59] ou
les autres formalismes comme les automates de Büchi [40]. L'algorithme de model-checking
traverse les états accessibles du modèle pour véri�er si les spéci�cations données sont satisfaites
ou sont violées. En cas de violation de propriété, l'algorithme produit un contre-exemple sous
forme de trace de simulation pour le débogage.
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Dans l'état de l'art, les outils de véri�cation basés sur le model-checking, ne peuvent
pas encore remplacer la méthode de véri�cation par simulation pour les raisons suivantes:
premièrement, les algorithmes de model-checking ne passent pas à l'échelle à cause du problème
de complexité (explosion combinatoire du nombre d'états [79]). En conséquence, les outils
de véri�cation sont toujours limités aux modèles simples. Deuxièmement, ces outils exigent
toujours une connaissance experte pour décrire les spéci�cations. Par ailleurs, les utilisateurs
doivent investir un temps assez long pour modéliser l'environnement qui permetttra de valider
toutes les propriétés de spéci�cations et ne pas en oublier!

Les améliorations du processus de véri�cation ont toujours été indispensables pour fournir
une productivité élevée dans les systèmes numériques. Les techniques d'abstraction récentes,
fournissant des améliorations dans la simulation et la véri�cation formelle, sont mentionnées
dans le paragraphe suivant.

1.1.3 Les techniques d'abstraction

L'abstraction est un mécanisme de projection: parmi tous les comportements du système,
seuls les comportements spéci�quement liés à la propriété en question, sont analysés. De
nombreuses techniques d'abstraction existent aujourd'hui, nous mentionons dans cette thèse
quelques contributions pertinentes. Pour les méthodes de conception de matériel, les tech-
niques d'abstraction sont utilisées pour contrecarrer la complexité inhérente des systèmes
actuels. Citons pour exemple la modélisation au niveau système en SystemC [1], OCAPI [95],
metaRTL [109].

De plus, les industries s'e�orcent, grâce à la modélisation au niveau transactionnel (TLM:
Transaction Level Models), de simpli�er leurs �ots de conception ainsi que la véri�cation
associée. S. Swan [98] décrit comment les industries adoptent les modèles TLM pour la
conception et la véri�cation de SoC. De même quelques techniques ont été présentées pour
jeter une passerelle entre la véri�cation basée sur RTL et les techniques de modélisation de
haut niveau. F. Fummi et al. [14] ont présenté une abstraction de RTL vers les modèles TLM
pour améliorer la simulation au niveau système.

En véri�cation formelle, les chercheurs ont proposé des techniques d'abstraction [66], [73],
[61] en vue de modéliser les systèmes numériques. Ils ont ainsi réussi à améliorer la couverture
des systèmes complexes. En général, les ingénieurs de validation utilisent des techniques
d'abstraction de données pour réduire l'espace d'état. Ils regroupent au sein d'un même état
abstrait (et invariant sur la propriété voulue), plusieurs états réels du système. Ainsi le système
abstrait obtenu, conserve le comportement d'origine. Des progrès signi�catifs ont été faits par
E.M. Clarke et al. sur les techniques d'abstraction concernant le model-checking [30], [12],
[29].

L'interprétation abstraite [36], [37] est une technique d'analyse statique pour obtenir une
approximation correcte de la sémantique d'un programme, basée sur les fonctions monotones
des treillis: C. Hymans a traité l'interprétation abstraite d'un sous-ensemble de VHDL com-
portemental [54], [55]. De ses travaux découlent une analyse statique d'un sous-ensemble de
VHDL indispensable pour calculer une approximation des états accessibles pendant une sim-
ulation VHDL classique. Il est montré que le parallélisme de VHDL est très faible et qu'il
est inutile d'explorer tous les entrelacements possibles des processus pendant la simulation.
Il est su�sant de �xer un ordre d'exécution statique des processus une fois pour toute. De
cette manière, un simulateur abstrait est ensuite généré à partir d'une sémantique formelle de
simulation VHDL. L'auteur a d'ailleurs donné une preuve de correction de son algorithme.
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Y. Hsieh et al. [53], [52] proposent une représentation abstraite d'un modèle VHDL com-
portemental sous forme de machines d'états �nis non-déterministes (NFSM: Nondeterministic
Finite State Machine). Ils réduisent ainsi le nombre d'états et facilitent le model-checking. Le
thème principal de ce travail est l'abstraction des compteurs [77]. Cette approche est bien-sûr
adaptée dès que le comportement de l'application est fortement dépendante de compteurs
internes. Des classes de NFSM prédé�nis existent: elles réduisent considérablement l'espace
d'état.

Cependant ces méthodes sont fortement dépendantes des constructeurs syntaxiques utilisés
par le concepteur et donc de son savoir-faire alors que nous cherchons une approche qui
évite justement l'intervention humaine le plus possible. Le chapitre 2 souligne justement ces
problèmes d'indépendance de syntaxe.

Abstraction de données

Les systèmes �ot de données sont paradoxalement sensibles à l'explosion d'états à cause du
grand nombre de registres internes. Des techniques d'abstraction de chemin de données ont
été proposées dans la littérature pour s'attaquer à ce problème.

E. Macci et al. [76] ont proposés une sémantique pour réduire les gros chemins de données
en une machine d'état �nis non-déterministes à 4 états. Ceci permet d'enlever la redondance
des actions sur ce chemin de données et de simpli�er d'autant le contrôleur. Cependant la tech-
nique est basée sur certaines hypothèses: une distinction préalable entre contrôle et données
doit être supposée. Le nombre de cycles d'horloge nécessaires aux opérations arithmétiques
doit aussi être connu.

Parallèlement à ces travaux, une méthode spatiale d'abstraction a été présentée par V.
paruthi et al. [90] pour abstraire des parties du chemin de données d'un microprocesseur.
L'abstraction spatiale réduit la complexité en taille des opérateurs aritmétiques, laissant le
contrôleur intact. Cette méthode utilise des techniques classiques de calcul d'intervalle [47]
pour déterminer l'espace de dé�nition. L'idée fondamentale sousjacente, est d'identi�er en
premier les éléments de stockage dans le chemin de données qui ne contribuent pas au �ot
du contrôle, puis de réduire leur taille à un �bit�. Pour chaque élément de stockage sont
ensuite identi�ées les valeurs min et max par propagation du calcul d'intervalle, à travers la
description syntaxique du modèle.

De même, R. Hojati et al. ont contribués de leur côté à abstraire les données en utilisant
la notion de fonctions non interpretées [21], [9] toujours pour démontrer des propriétés liées
aux chemins de données.

La plupart des techniques mentionnées dans les paragraphes ci-dessus sont adaptées à des
domaines spéci�ques d'applications. Certains sont fondés sur des hypothèses et exigent des
interventions manuelles. La complexité croissante des systèmes numériques promet toujours
de nouveaux dé�s en véri�cation, rendant les techniques existantes rapidement ine�caces
et obsolètes! Notre contribution est une tentative d'enrichir les méthodes et les techniques
d'abstraction existantes.

1.2 Principaux objectifs de cette thèse

Classiquement les systèmes numériques sont composés d'une partie traitement de données et
d'une partie contrôle. Intuitivement, le traitement de données comporte des calculs assez com-
plexes sur un grand nombre des registres. Le contrôle supporte tout le séquençage nécessaire
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aux opérations diverses de traitement de donnée indispensable aux IP. Nous pensons qu'une
bonne abstraction de données sans perte d'informations temporelles critiques nécessite une
identi�cation et une séparation du traitement des données.

Notre premier objectif dans cette thèse est justement de partitionner le plus automatique-
ment possible les composants en deux entités indépendantes (données/contrôle) mais commu-
nicantes. La structure d'un composant sous cette forme est aussi appelé �machine d'états
�nie avec chemin de donnée� : FSMD (Finite State machine with Datapath). Le FSMD [41]
est un modèle qui facilite non seulement le test et la veri�cation systematique des composants
mais encore il est utile dans la synthèse de haut niveau.

1.2.1 Motivation

Dans le cadre de la séparation contrôle/données, la véri�cation et l'abstraction ont été motivé
par les objectifs suivants:

• Pour identi�er les séquences de contrôle des IP, réduire le contrôle en un modèle plus
simple facilitant l'analyse statique et les véri�cations formelles des propriétés temporelles
critiques.

• Transformer le modèle bas niveau: RTL (Register Transfer Level) ou portes logiques du
traitement des données, en un modèle plus abstrait.

• Analyser statiquement le �ot de donnée en vue de véri�er formellement le traitement
associé.

• Accroitre la connaissance à posteriori d'un composant IP externe (reverse engineering).

Notre deuxième objectif dans cette thèse est de fournir aux ingénieurs de validation un
�framework� intégrant les techniques de véri�cation formelle dans le cycle de validation. Grâce
á ce framework, les ingénieurs seront capable de véri�er les propriétés intéressantes du �ot de
donnée. La technique de véri�cation utilisée est basée sur létude mathématiques des dépen-
dence de données booléennes dans les systèmes numériques et s'intéresse aussi à la séparation
du contrôle et des données.

1.2.2 Cadre de travail

Nous allons traiter des modèles qui rendent un service spéci�que et qui peuvent être utilisés
en tant que sous-système dans les circuits numériques complexes. Nous considèrerons ainsi:
les c÷urs IP dans un système sur puce (SoC: System-on-Chip), les blocs fonctionnels dédiés
dans un ASIC1 et en�n les microprocesseurs. Le cadre des travaux présentés est limité aux
modèles évoluant sur une horloge unique (évolutions synchrones) qui sont largement utilisés
dans ces systèmes. Dans les circuits synchrones, tous les registres (partie séquentielle) sont
synchronisés par cette horloge.

De manière classique les modèles synchrones contiennent de la logique combinatoire et des
registres. En langages de descriptions matérielles (HDL: Hardware Description Languages)
dont VHDL et Verilog, les utilisateurs peuvent décrire leurs applications suivant deux niveaux
d'abstraction di�érents. Dans le niveau le général, ils utilisent les constructeurs de haut

1ASIC: application speci�c integrated circuits
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niveau du langage tels que: les conditions, les boucles et les types de données ainsi que leurs
opérateurs associés. Dans un niveau plus bas mais aussi plus près de la machine, ils décrivent
directement la partie combinatoire et la partie séquentielle (niveau RTL: Register Transfert
Level).

Nous avons choisi VHDL comme langage de modélisation dans cette thèse vu son impor-
tance dans l'industrie. VHDL a été préféré aux autres, par sa puissance de description, pour
les types enumérés et la possiblité de surcharger les opérateurs. Nous aurions pu également
choisir Verilog ou SystemC et suivre la même démarche méthodologique.

1.2.3 Structure et organisation de la thèse

Cette thèse se propose d'accompagner les techniques de véri�cation actuelles en facilitant
leur travail d'analyse et en réduisant la complexité des systèmes étudiés. Cette contribution
s'exprimera sous forme de deux parties : la séparation de contrôle et des données dans les
modèles et la véri�cation statique formelle de �ot de données.

Nous nous intéresserons en premier lieu dans les chapitres 2 et 3 au problème de séparation
contrôle / données dans les systèmes numériques avec une approche di�érente des solutions
classiques. La dé�nition intuitive du contrôle avec les problèmes et les limitations sémantiques
apparentées sera d'ailleurs présentée en détail.

Nous verrons aussi comment implementer la séparation contrôle/données basée sur les
techniques de �slicing�. La séparation obtenue par slicing pourra être exploitée pour abstraire
le traitement de données en vue d'aider les outils de véri�cation et de simulations. Quelques
problèmes syntaxiques seront d'ailleurs abordés à propos du processus de séparation et nous
proposerons des solutions. Les prémisses de ces travaux ont été présentés dans [85], [84].

Pour la seconde partie de la thèse, (chapitre 4 et 5) portant sur validation statique formelle
de �ot de données, nous introduirons une nouvelle notion de signi�cativité représentant l'idée
que le concepteur a de la validité d'une donnée à un instant t dans les modèles IP. Selon cette
notion et pendant une opération particulière sur le chemin de données, les entrées signi�catives
seront utilisées pour calculer les sorties signi�catives et ainsi propager la signi�cativité au sein
du système. Les règles de propagation s'appuiront sur des modèles booléens classiques et per-
mettront ainsi de s'intégrer aux outils de synthèse et de simulation classique. Ils o�riront aux
concepteurs des services de véri�cation formels de leurs systèmes. Dans ce chapitre sera aussi
décrite une méthode de véri�cation: cette méthode nous permettra d'identi�er de nouvelles
directions intéressantes de recherche.



Chapter 2

Separating Control and Data in

hardware modules

2.1 Introduction

In this chapter, we will describe the concept of separating control state machines and data
processing in register transfer level (RTL) hardware modules. We believe that the �rst step
towards assisting veri�cation and abstraction is to separate the `Control' and `Data', so that
two distinct behaviors of modules could be investigated in di�erent ways. Our initial goal was
to automatically extract control state machine in a hardware module without prior knowledge
about its functionality, description style or any design hint.

For this purpose, we �rst proposed an intuitive de�nition of Control and tried to develop
some semantic analysis. According to the de�nition �the control inputs and the related hard-
ware determine the timing of the outputs of the module�. Based on this notion, we tried to
automatically identify the control inputs of an unknown module, �rst without designer's inter-
ventions, and then with the help of designer's intervention in an analytical way. After working
around various semantic aspects of the proposed de�nition, we reached a valuable conclusion
that a unique separation of the control and data, independent of syntax, is not achievable
according to the proposed de�nition.

We will �rst describe the fundamental concepts and the problems related to control and
data separation. In the next section, we will present the control and data processing in soft-
ware/hardware and highlight our envisaged notion of separating control and data compared
to the state of the art techniques. In section 2.3, the intuitive de�nition of control is presented
in a semi-formal way with illustration. In section 2.4, we try to identify control inputs auto-
matically without designer's interventions and independent of description style. We describe
an analysis based on intuitive semantics, and portray the limitations of the de�nition by rea-
soning on basic hardware blocks. Section 2.5 introduces the designer's interventions to �nd
the desired solution. A critical discussion on the proposed de�nition is given in section 2.6,
and �nally we conclude the chapter by mentioning the impact of this research contribution on
the state of the art and rest of the thesis.
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2.1.1 Basic idea

Traditionally, hardware modules are designed with a notion of datapath and control unit. For
a speci�c design, sometimes the designers seem to have a clear idea of the data and control.
Some designers maintain a distinction of controller and datapath in their designs. Usually
they design the controllers as �nite state machines, and the datapaths as pipelines of registers
with combinational operations. The datapath and controllers interact with each others. Such
designs are also called �nite state machines with datapath (FSMD) [41], [15].

FSMD design approach is used most of the times by the designers. However, many de-
signers do not keep the control/data distinction during a design process, particularly while
designing small functional blocks. The control and data processing are mixed in the �nal
design delivered to the veri�cation and synthesis team. As an example, consider the VHDL
description of an accumulator circuit shown in Figure 2.1. It accumulates 5 samples at its
input `A' in 5 clock cycles and produces the output result at `S' after 6 clock cycles in the
absence of `Reset' signal. Intuitively, we see that the circuit consists in two parts. One part
consisting in data processing and involves data input `A' and output `S' in operations. The
other part consisting in a `Reset' input, and an internal logic driving the output signal `DSO' to
indicate the presence of valid data at `S'. The timing logic is collectively called the �Control �.

Accumulator

RTL Module DSO

CLK

A S

Reset

Data

(a) Interface description

1 . entity accum i s 20 . i f (CNT < 5) then
2 . port (CLK, Reset : in b i t ; 21 . R <= R + A;
3 . A: in i n t e g e r ; 22 . CNT <= CNT+1;
4 . S : out i n t e g e r ; 23 . end i f ;
5 . DSO: out b i t ) ; 24 . i f (CNT = 5) then
6 . end entity ; 25 . DSO <= '1 ' ;

26 . S <= R;
7 . architecture RTL of accum i s 27 . end i f ;
8 . signal R: i n t e g e r ; 28 . end i f ;
9 . signal CNT: i n t e g e r range 0 to 5 ; 29 . end i f ;
10 . begin 30 . end process ;
11 . MAIN: process ( c l k ) 31 .end architecture ;
12 . begin
13 . i f ( r i s ing_edge (CLK)) then
14 . i f ( Reset = '0 ' ) then
15 . R <= 0 ;
16 . CNT <= 0 ;
17 . S <= 0 ;
18 . DSO <= '0 ' ;
19 . else

(b) VHDL description

Figure 2.1: Example: Accumulator module

We believe that the control or data oriented behavior of the hardware modules is de-
termined by the input and output interfaces. In hardware modules such as accumulator of
Figure 2.1, we observe that some inputs are control oriented and some inputs are data ori-
ented. However, there exist modules in which some inputs are used for Control as well as
Data. For instance in case of a UART receiver, a serial data input also contains the start and
the stop bits before and after the 8-bit data stream, which contain the timing information of
the data.

We are interested in separating the inputs and corresponding logic contributing to the
timings of a hardware module as the �Control�, based on the behavior of the inputs and
output waveforms without considering the internal implementation styles and syntax of the
descriptions.
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2.1.2 Problematics

The choice of Control and Data inputs in hardware modules is usually a subjective and con-
textual judgment by the designer. Most of the times, this choice depends on the functionality
of the module and the environment where module is used. For instance, in case of multi-
plexers, the selector inputs are usually considered as control inputs because their combination
controls the �ow of various incoming data inputs towards outputs. In case of a digital �lter,
the inputs carrying samples might be considered as data inputs whereas rest of the inputs
might be control or timing signals. Similarly, in almost all hardware designs, a reset input is
used to clear the internal registers of the design which is also considered intuitively as control
input by the designers. Thus the way in which inputs are called as Control or Data, depends
on the context of the application.

In various tasks during a computer aided design (CAD) �ow such as veri�cation, synthe-
sis and physical design, it is sometimes required to separate the controller and datapath to
study various aspects of the design and apply di�erent techniques. To study data abstraction
techniques and veri�cation of the related properties, we also emphasized on separating the
`Control' from `Data processing' at �rst place. However, the existing techniques for such sepa-
ration are based on syntactic analysis. We have raised the question of de�ning and separating
Control and Data in hardware modules, independent of the syntax.

Envisaged goal

We aim at addressing following issues in this chapter:

• Propose a de�nition of `control' and/or `data' to obtain an objective characterization of
the two distinct but related concepts instead of their subjective judgment,

• Based on above de�nition, propose a control and data separation solution independent
of syntactic representations of hardware modules.

To our knowledge, there is no research on precise formal de�nition of control and data on
the basis of which, we can make a distinction between them. Therefore, we have tried to give
an intuitive description of the Control and Data and their automatic separation on semantic
basis rather than considering a speci�c syntax.

2.2 State of the art

We will brie�y describe the classical concept of control and data �ow in software and hardware
designs and discuss some existing techniques in the literature about separation of control and
data.

2.2.1 Control and data �ows in software

The literature about the control �ow and data �ow is vast e.g. [83], [100], [51], [38], [61].
The terms are basically evolved from compiler design theory [8]. Control �ow in programming
languages represents the sequence of execution of a program. The execution of sequential
instructions in a program one after an other, splitting the execution �ows in two branches on
conditional statements, and the repetition of execution of a subprogram by loop statements,
collectively constitute the basic control �ow in a program. Data �ows in a program represent,
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how the values are operated and exchanged among variables in a given execution (control
�ow) of a program. The concept of control and data �ows is illustrated for an extract of a C
program shown in Figure 2.2(a).

. . .
1 . x = in ∗ 3 ;
2 . i f (b > x) then
3 . c = x − 1 ;
4 . else
5 . c = x + 5 ;
6 . end i f ;
7 . r e s = c + b ;
. . .

(a) Syntax of a C pro-
gram

Branch A Branch B

IF (b > x)

3

2

1

5

7

x = in * 3;

c = x−1; c = x + 5;

res = c+b;

(b) Control �ow

*

x

3

5

c

res

+

+

in

b

−

1

c

x

(c) Data �ow

Figure 2.2: A program extract

Depending upon the condition b > x at line 2, the two possible sequences of execution of
the programs are either 1 → 2 → 3 → 7 or 1 → 2 → 5 → 7. An execution graph of this
program is depicted in Figure 2.2(b), which is called the control �ow graph (CFG). The two
branches of execution are named as branch A and branch B. The �ow of data among program
variables during execution is also shown in Figure 2.2(c), which is called the data �ow graph
(DFG).

Programs are usually a mixture of control and data �ows. To study some speci�c behavior
related to either control or data �ow, the internal representation of the program is transformed
in terms of combinations of CFG and DFG [100].

2.2.2 Control and data �ows in hardware

While talking about control and data �ows in hardware, we usually imagine the control state
machines and datapaths. Although in software programs or high level hardware programs
(behavioral descriptions), conditional statements are supposed to represent the control, but in
low level hardware (RTL or gate level descriptions), a conditional statement does not always
represent control. For example consider a half adder circuit shown in Figure 2.3(a). With
usual concept of control and data, most of designers will consider inputs a and b of the adder
as data and would model it as shown by Syntax (I) in Figure 2.3(b). This represent a data
�ow from inputs `a' and `b' towards outputs `s' and `c'.

However, half adder can also be modeled by the if-else structure as shown in Figure 2.3(c)
which is semantically equivalent to that of Figure 2.3(b). If we consider the pattern matching
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b

a
s

c

(a) Half adder circuit

1 . process ( a , b) begin
2 . s <= a xor b ;
3 . c <= a and b ;
4 . end process ;

(b) Syntax (I)

1 . process ( a , b) begin
2 . i f ( a /= b) then
3 . s <= ' 1 ' ;
4 . else
5 . s <= ' 0 ' ;
6 . end i f ;
7 . i f ( a = '0 ' ) then
8 . c <= ' 0 ' ;
9 . else
10 . c <= b ;
11 . end i f ;
12 . end process ;

(c) Syntax (II)

Figure 2.3: Half adder implementations

rule mentioned above, we see that inputs a and b being used in conditional statements at line
2 and 7 are control inputs in this description.

Thus we can not always say on the basis of syntax, that the module's behavior is control
oriented or data oriented. For various applications, separation between control state machines
and datapaths has been explored in past based on the syntactic analysis.

R. Namballa et al. [86] present a control and data �ow graph (CDFG) extraction technique
from VHDL behavioral descriptions aimed at facilitating high level synthesis. The presented
notion of control and data in behavioral descriptions is based purely on VHDL syntax which
is similar to the classical control and data �ow in software as described in the preceding
subsection.

The controllers in hardware, are typically implemented as �nite state machines (FSM).
Procedures to detect and extract such FSM are implemented in logic synthesizers for opti-
mization purpose [7]. An algorithm is proposed by C. Liu et al. [72] to extract controller in
a Verilog descriptions by detecting topological patterns representing general FSM structures.
Such topologies are the combinational paths from inputs towards outputs with feedback paths
through state registers. However, not all feedback paths belong to control FSM because a
datapath can also be considered as a large �nite state machine, which might contain topo-
logical paths similar to FSM. Therefore, C. Liu's algorithm does not guarantee whether the
extracted FSM contains purely the control circuit. Pattern recognition techniques are used in
which a control statement corresponds to a branch point in the data �ow graph of the model
which makes the analysis of [72] syntax dependent.

F. Fummi et al. [34] have proposed a source code modi�cation of a VHDL descriptions to
partition a design into the reference model composed of a controller driving a datapath. A
VHDL description with a mix of datapath and controller is considered as input with known
data inputs and known data registers. The algorithm transforms the model into an equiva-
lent VHDL description which appears to be a �nite state machine with datapath (FSMD).
The methodology involves structural operations such as variable to signal conversion, regis-
ter inference and isolation of registers from combinational logic based on syntax matching
routines used in general purpose synthesis tools. Many operations such as separation of as-
signments and conditions are constrainted by user-speci�c thresholds which requires manual
interventions.

The spatial abstraction presented by V. Paruthi et al. [90] consists of converting the design
into a �ow graph. During this step, internal variables are classi�ed into control variables
and data variables. It is assumed, that all variables that are appearing in loop and branch
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statements are considered as control variables. In other words, no data operation can involve
a branching or loop statements. This makes the abstraction paradigm syntax-dependent and
reduces the application of the approach to a limited class of models with speci�c syntax.

J.A. Abraham et al. [50] have presented a control and data separation to improve quality
of simulation tests. A prior knowledge of control and data registers is assumed before analysis.
The data registers involved in control �ow are assumed as primary inputs of the extracted
control �ow machine (ECFM) whereas the rest of data registers are dropped. The algorithm is
based on VHDL syntax due to the fact that control �ow statements are considered as program
points constituting the control �ow machines.

Remarks

Existing approaches of control and data separation as described above, translate source code
into FSM by control data �ow analysis techniques of general purpose compilers [8] which trans-
late prede�ned language constructs into other forms. Therefore, compiler-based approaches
must also limit user's coding styles to obtain a precise distinction between control and data.
Although many techniques proposed in the literature claim automatic separation of control
FSM in hardware description language (HDL) code. However, most of these tools depend on
a speci�c coding style and require user interventions.

We aimed at proposing a Control and Data separation independent of syntactic repre-
sentations. Our envisaged approach starts �rst by de�ning the conceptual behavior of the
�Control� in hardware modules and based on this de�nition, we aimed at apply program anal-
ysis techniques to automatically separate the two di�erent behaviors in hardware modules.

2.3 Conceptual behavior of the �Control�

We attempt to �nd a semantic notion of `control ' in hardware modules instead of syntactic
analysis and subjective choice of the designer. Consider the interface description of a syn-
chronous module similar to one shown in Figure 2.1(a). Such module reads inputs and writes
outputs at rising (or falling) edge of clock signal CLK. The control or data oriented behavior
of this module depends on the nature of the inputs of the module. In order to be able to
identify control inputs, we �rst de�ne the behavior of the inputs contributing to the `Control'.

2.3.1 Basic intuition

An input, output or internal wire (signal) in a synchronous module has two characteristics: the
value and its timing reference with respect to clock signal. Intuitively, an input is said to be
a control if its value change has an impact on the timing reference of the outputs, regardless
of the correctness of the values of the outputs. An input is said to be a data, if it has an
impact on the correctness of the outputs. Our notion of control and data separation deals
with the inputs if the modules. The modules do not have combinational feedback paths from
outputs towards inputs. Hence our �rst objective was to identify and separate control inputs
in a standalone synchronous module.

One way to identify control inputs is to observe via simulation, whether a change in the
value of an input, causes a change in the timings of the outputs. If an input signal has an
impact on timings of the output waveforms, it can be identi�ed as a control input. This
observation could be achieved by extending the boolean character of hardware signals with an
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additional attribute, which represents that a current signal value is either signi�cant or non-
signi�cant. Intuitively, the signi�cance attribute of a signal is the measure of its temporal
behavior (timing).

Illustration of the Signi�cance attribute

As described earlier, among the inputs of a model some are control oriented, some are data
oriented and some are both. For the sake of simplicity we only consider that data input do
not carry any control information. They only carry the data samples. A simple model that
shows a control only and a data only input, is the enabled D �ip-�op module (DFFE.RTL)
shown in Figure 2.4.

0

1

MUX D Q

m
S

D

E

CLK

(a) RTL diagram

entity DFFE i s

port (CLK, E, D: in b i t ;
S : out b i t ) ;

end entity DFFE;

architecture RTL of DFFE i s

signal Q: b i t ;
begin

process (CLK)
begin

i f (CLK' event and CLK = '1 ' ) then

i f (E = '1 ' ) then

Q <= D;
end i f ;

end i f ;
end process ;
S <= Q;

end architecture RTL;

(b) VHDL description (DFFE.RTL)

Figure 2.4: D �ip-�op with Enable

By intuition, CLK and E are control inputs while D is a data input. A way to verify
this fact according to our notion of Control, is to imagine that the input signals are extended
with a boolean attribute expressing their signi�cance. During a simulation sequence, when
an input signal is signi�cant it means that the sender of this signal assigned a value to it on
purpose. When an input signal is non-signi�cant, it means that the sender had no usage of
this signal at that particular time and the value of the signal is not relevant.

Values taken by a data input have no impact on the signi�cance of the outputs. If the
values were signi�cant then the result they were contributing to, is probably also signi�cant.
Conversely, if they are non-signi�cant then the result is also non-signi�cant. But it's the only
in�uence, the data inputs can have on the outputs signi�cance. Control inputs, on the other
hand, indicate whether a data input is relevant or not, that is, taken into account in the
processing (as with the E input of the enabled D �ip-�op example).

The value a control input taken at one particular time will decide whether a signi�cant
or non-signi�cant data value will enter the computation. And this has an impact on the
signi�cance of the �nal output result. Assuming our enabled D �ip-�op has signi�cance
extended inputs, one can see that a single value change of E can change the signi�cance of S,
while a single value change of D can not.
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We will now relate the concept of signi�cance with the behavior of hardware modules and
propose a de�nition for the control inputs.

2.3.2 De�nition of Control

We �rst build basic de�nitions of hardware modules and their behavior from interface view-
point in a semi formal way to propose the de�nition of control inputs. We assume that modules
considered in the analysis are synchronized on rising edge of a global clock signal and they
have deterministic initial states.

We suppose that boolean values on inputs, outputs and internal signals in the hardware
modules are extended with additional boolean attribute representing signi�cance. Symboli-
cally, we suppose that all signals are 4-valued, taking their values from the set {F, T, f, t},
such that, F and T represent signi�cant booleans, whereas f and t represent non-signi�cant
booleans.

We de�ne the state of the 4-valued signal at rising edge of clock as a sample. Let I be the
set of 4-valued signals called interface. A trace is de�nd as a sequence of samples, intuitively
corresponding to the sequence of values present on an interface at successive rising edges of
the clock, starting from a deterministic initial state of the synchronous module. We de�ne
~T (I) as the set of traces on an interface I.

We give a mathematical characterization of the synchronous module and its behavior in
following de�nition.

De�nition 2.1.
Let I and O be two sets of signals. A module is a 3-tuple M = (I,O, f), where

• I is input interface and O is output interface

• f : ~T (I) → ~T (O) is a function called the semantics of the module: ∀t ∈ ~T (I), the
length of f(t) is equal to that of t

• A simulation experiment, labeled e on a module M = (I,O, f), is a pair e = (t, t′),
where t ∈ ~T (I), and t′ ∈ ~T (O), such that t′ = f(t)

It is important to note that de�nition 2.1 describes only the external behavior of the
module during a simulation with respect to input and output interfaces. This de�nition does
not describe any formal interpretation of the internal behavior (semantics) of the module.

Based on the de�nition of module and its input and output behavior, we de�ne control
inputs as follows:

De�nition 2.2 (Control input).
Given a module M = (I,O, f) with input signal i ∈ I of M , i is the control input of M , if
and only if there exist two simulation experiments e1 = (t1, t′1) and e2 = (t2, t′2) such that:

• t1 and t2 are di�erent and are di�erent only in boolean values F and T associated to i

and

• t′1 and t′2 are di�erent in signi�cance

De�nition 2.2 intuitively says that
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under a given context, the change in value of a control input causes a

change in signi�cance at the outputs.

Symbolically according to de�nition 2.2, the change in value is considered as a change
between F and T. Whereas, a change in signi�cance is either the change between F and f or
the change between T and t. A change between F and t, or T and f comprises value, as well
as signi�cance change at the same time.

2.3.3 Illustration of the de�nition

We tested the impact of value change of control inputs on the output signi�cance for some
modules described in VHDL. For this purpose, we built a simulation environment in which we
have extended the semantics of basic logical operators of VHDL in the form of truth tables
with following assumptions:

• For a register, the time instant when output is signi�cant at rising edge of clock, its
input is signi�cant at precedent rising edge of clock.

• All the constants inside the given module are assumed to be signi�cant.

• All the internal registers are initialized with logic false signi�cant value i.e. F.

From implementation viewpoint, one could also imagine that, the std_ulogic type in
VHDL o�ers a don't care ('-') value that could be used every time the value of a signal is
not signi�cant (irrelevant). However, there are some drawbacks making this impractical. One
drawback is the di�erences between pre- and post-synthesis simulation results. Another is the
std_ulogic truth table de�nitions stating, for instance, that '-' and '-' = 'X' (unknown)
which is not exactly what we usually have in mind with signi�cant/non-signi�cant. So, most
of the time, there is no way to decide whether the value carried by a signal is signi�cant
(relevant) or not. Thus an extension of VHDL signals and variables is considered.

The extended semantic rules are used to propagate the values and their signi�cances from
inputs towards outputs. The simulation environment is capable of supplying random sequences
of inputs with value and signi�cance. We iteratively provide inputs patterns as de�ned in
de�nition 2.2 iteratively and observes the change in signi�cance at the outputs.

As an illustrative example, we describe a simulation test on DFFE.RTL of Figure 2.4.

Experimental testing

Considering the CLK as a global clock signal, the module DFFE.RTL of Figure 2.4 has 2
inputs D and E, and one output S. To determine the control input, we have iteratively tested
inputs D and E one by one, by changing value of one input while keeping the other input
constant in value as well as signi�cance during simulation experiments.

Table 2.1 shows, traces of the two experiments e1 and e2 with E as the test input. In
both experiments, internal register Q is initialized with F. Therefore, at t0, the output S is
also F. At clock instant t1, we have di�erent value of E in both experiments as shown by blue
symbolic values. In experiment e1, we have the value F, whereas in experiment e2 we have T

at instant t1. The variation of the context D (value as well as signi�cance) must be same in
both experiments e1 and e2. We can see that value change of test input E at clock instant



32 CHAPTER 2. SEPARATING CONTROL AND DATA IN HARDWARE MODULES

Experiments CLK t0 t1 t2 t3
e1 E F F F F

D f f t t

S F F F F
e2 E F T F F

D f f t t

S F F f f

Table 2.1: Two simulation experiments for DFFE with E as test input

t1 causes a signi�cance change at clock instant t2 and later at t3 as shown by red symbolic
values. Thus E is a potential control input of the module.

Table 2.2 shows traces for two simulation experiments e3 and e4 with D as test input. In
this case, we keep the input E as constant (the context for test input D), and only change
the value of D at clock instant t1 as shown by blue symbolic values. From these traces, we
observe that there is no signi�cance change on the output S at time instants t2 and t3 due to
value change of D at instant t1. The only change is the value of the output according to the
value of D. This shows that, the value change of D does not impact the signi�cance of the
output S. The signi�cance of S is changed only when the signi�cance of D is also changed in
this experiment.

Experiments CLK t0 t1 t2 t3
e3 E T T T T

D F F F F

S F F F F

e4 E T T T T

D F T F F

S F F T T

Table 2.2: Two simulation experiments for DFFE with D as test input

We have applied the de�nition 2.2 to gate level modules such as an 8-bit serial/parallel
multiplier with load and reset, a register with reset, and a DCT input register stage with
hand shaking control signals. The testing was only treated with small modules because the
complexity of the number of tests exponentially depends on number of inputs. After a few
number of tests on these module, we succeeded in identifying control inputs according to the
proposed de�nition which are coherent with the intuitive and subjective selection of control
inputs for these modules. For instance the value change of reset and load signals in 8-bit
serial/parallel multiplier had an impact on the signi�cance change of multiplication results.
Therefore, they were detected as control inputs which is true according to intuition of the
designer.

However in these experiments, we also observed over-approximations, where intuitive data
inputs are detected as control and under-approximations where intuitive control inputs are
detected as data. These spurious behaviors originate from the `semantics' of the module which
propagate value and signi�cance from inputs towards outputs.

For control input identi�cation, these semantics play a vital role. Therefore, it was neces-
sary to search a suitable semantics which describes how the signi�cance information propagates
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through various combinational and sequential blocks in hardware module. A static analysis
approach to �nd suitable semantics for automatic identi�cation of right control inputs without
any designer's intervention is described in following section.

2.4 Analysis without designer's intervention

We aimed at searching a suitable semantics of the module to propagate the signi�cance and de-
tect control inputs according to de�nition 2.2. For this purpose we overload the VHDL types
and boolean operator semantics with signi�cance and perform a static analysis on boolean
equations and corresponding VHDL description. We use following notations for the demon-
stration.

• Conditions are expressions evaluating to T or F

• A in an expression means A has value T. In VHDL syntax, if A is of type bit then it
represents the test A = '1' .

• ¬A in an expression means A has value F. In VHDL syntax, if A is of type bit then it
represents the test A = '0' .

• As denotes the test �A is signi�cant�, i.e. either A = 'T' or A = 'F'.

• An denotes the test �A is non signi�cant�, i.e. either A = 't' or A = 'f'.

• An→s where A is a signal: a condition for A to go from non-signi�cant to signi�cant
state, assuming A is in non-signi�cant state.

• As→n where A is a signal: a condition for A to go from signi�cant to non-signi�cant
state, assuming A is in signi�cant state.

We will describe our static analysis on simple hardware entities. While solving the problem,
we discovered that the multiplexer is a critical atomic hardware entity in our control and data
separation analysis because it contains select lines as `control' for selecting among di�erent
`data' inputs. Therefore, we have worked each semantics with the multiplexer. A more
interesting sequential module is theDFFE.RTL circuit shown in Figure 2.4 which is composed
of a 2-to-1 multiplexer and a D �ip-�op with output connected back to the input.

For this analysis our main concern was the following main rule of syntax independence,
which states that:

The notion of Control and Data separation must be preserved across

di�erent but equivalent coding styles for the same functionality .

Hence the VHDL module DFFE.RTL of Figure 2.4 is equivalent to the DFFE.RTL2
description shown in Figure 2.5.

We propose some intuitive semantics to statically reason for control input identi�cations
in modules DFFE.RTL and DFFE.RTL2 as follows.
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architecture RTL2 of DFFE i s

signal Q: b i t ;
begin

process (CLK)
begin

i f (CLK' event and CLK = '1 ' ) then

Q <= (D and E) or (Q and (not E) ) ;
end i f ;

end process ;
S <= Q;

end architecture RTL2;

Figure 2.5: VHDL description (DFFE.RTL2)

2.4.1 Semantics S0

One of the simplest semantics for signi�cance in VHDL is named as S0, composed of follows
rules.

1. Constant literals are signi�cant

2. Internal signals are initialized in non-signi�cant state at elaboration time (before the
simulation starts)

3. Boolean expressions are always signi�cant. Equivalently the control structures like
if then elsif else and case do not propagate signi�cance to the nested statements

4. Expressions that evaluate as a bit, evaluate to non-signi�cant, if at least one operand
is non-signi�cant, else to signi�cant

In module DFFE.RTL of Figure 2.4, since E is appeared as boolean expression, therefore
according to rule 3, E is considered as always signi�cant, however its value matters. With
semantics S0, we can derive following equations for signi�cance of the output Q.

Qs = ((E ∧Ds) ∨ (¬E ∧Qs)) ∧ CLK ↑
Qn = ((E ∧Dn) ∨ (¬E ∧Qn)) ∧ CLK ↑

where CLK ↑ is a notation representing rising edge of signal CLK. If we try to build
the conditions for change in signi�cance of output signal Q for DFFE.RTL, we will obtain
following:

Qn→s = Qn ∧ ((E ∧Ds) ∨ (¬E ∧Qs)) ∧ CLK ↑
Qs→n = Qs ∧ ((E ∧Dn) ∨ (¬E ∧Qn)) ∧ CLK ↑

By considering the fact that a signal is not signi�cant as well as non-signi�cant at the same
time, i.e Qn ∧Qs = F, we end up with the following conditions:

Qn→s = E ∧Ds ∧Qn ∧ CLK ↑ (2.1)

Qs→n = E ∧Dn ∧Qs ∧ CLK ↑ (2.2)

where Qn→s indicates non-signi�cant to signi�cant change of the output Q and Qs→n indicates
signi�cant to non-signi�cant change of signal Q. Condition 2.1 shows that Q changes from
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non-signi�cant to signi�cant when E is high (T) and D is signi�cant. Condition 2.2 shows
that Q changes from signi�cant to non-signi�cant when E is high (T) and D is non-signi�cant.

With syntax DFFE.RTL2, we obtain the following equations for signi�cance of Q.

Qs = (E ∧D)s ∧ (Q ∧ ¬E)s ∧ CLK ↑
Qn = (E ∧D)n ∨ (Q ∧ ¬E)n ∧ CLK ↑

which are reduced by simpli�cation, according to rules 4 as

Qs = Ds ∧Qs ∧ Es ∧ CLK ↑
Qn = En ∨Dn ∨Qn ∧ CLK ↑

The conditions for change in signi�cance after boolean simpli�cation are given as

Qn→s = (Es ∧Ds ∧Qs ∧Qn) ∧ CLK ↑
= F(false)

Qs→n = ((En ∨Dn ∨Qn) ∧Qs) ∧ CLK ↑
= (En ∨Dn ∧Qs) ∧ CLK ↑

These conditions show that a change in non-signi�cant to signi�cant value of Q does not
exist, however Q may change from signi�cant to non-signi�cant value if either E or D is
non-signi�cant.

After these results are propagated to the Q, according to the proposed de�nition of a
control signal, the model DFFE.RTL leads to the conclusion that E is the control input and
D is the data input, because signi�cance change of Q depends on value of E and signi�cance
of D. The analysis of the model DFFE.RTL2 concludes that D and E both are data inputs
because signi�cance change of Q depends neither on value of E nor on that of D.

The analysis with syntaxDFFE.RTL2 shows that semantics result an under-approximation
with respect to control input recognition criteria. The intuitive control input E is detected as
data rather than control. We have seen that the semantics S0 give di�erent results for di�erent
syntactic representations of the same module. Therefore, semantics S0 are weak and do not
ful�ll the main rule of syntax independence.

2.4.2 Semantics S1

We see that static analysis on DFFE with semantics S0 gives ambiguous results. Semantics
S0 needs re�nements. The properties of basic boolean operators ∧, ∨ are used to de�ne a
new semantics called S1. Thus rule 4 of the semantics S0 is re�ned for operators ∧ and ∨ by
following additional rules:

1. For operator ∧, if one operand has the signi�cant low value (that is F) then result is
also signi�cant low whatever is the signi�cance of other operand. If all operands have
the signi�cant high value (that is T) then the result is signi�cant and high otherwise the
result is non-signi�cant.
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2. For operator ∨, if one operand has the signi�cant high value (that is T) then result is
also signi�cant high whatever is the signi�cance of other operand. If all operands have
the signi�cant low value (that is F) then the result is signi�cant and low otherwise the
result is non-signi�cant.

With this new semantics the analysis of DFFE.RTL is unchanged but the equations of
the signi�cance changes of Q in DFFE.RTL2 become, after simpli�cation:

Qn→s = (Qn ∧Ds ∧ E ∧ Es) ∧ CLK ↑ (2.3)

Qs→n = (Qs ∧ (Dn ∧ E ∨ En ∧ (Q ∨D))) ∧ CLK ↑ (2.4)

From condition 2.3, we can conclude that E is a control input because condition for change
in signi�cance Qn→s involves value of E. But from signi�cance change Qs→n in condition 2.3,
we can also conclude that D is a control input due to presence of value of D in the condition.
Thus semantics S1 doesn't identify the right control inputs. In order to understand where it
comes from, we list in table 2.3 all the valuations of Q, E and D satisfying Ss where:

S = ((D ∧ E) ∨ (Q ∧ (¬E)))

From the last two lines in the truth table (shown in bold), we see that when Q = F and E

Q E D Ss

F F F F

F F f F

F F T F

F F t F

F T F F

F T T T

T F F T

T F f T

T F T T

T F t T

T T F F

T T T T

F f F F
F t F F

Table 2.3: Truth table of ((D ∧ E) ∨ (Q ∧ (¬E)))s = Ss

is non-signi�cant (either t or f), the formula is signi�cant if and only if D = F. In the other
valuations, value of D has no impact on the resulting signi�cance.

The results with semantics S1 are an over-approximation with respect to control input
recognition criteria. According to the results of the model DFFE.RTL2, the control input
E is detected correctly, however the data input D is also detected as control. Thus S1 is also
unable to detect the right control inputs independent of syntactic representations.

2.4.3 Semantics S2

We consider more re�nements in the semantics of the DFFE example. The multiplexer struc-
ture in the DFFE.RTL of Figure 2.4(a) is the central entity in this problem. It has a boolean
representation in the form of VHDL assignment:
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m <= (Q and (not E) ) or (D and E) ;

which can also be represented with an if-else control structure:

i f (E = '0 ' ) then

m <= Q;
else

m <= D;
end i f ;

This simple structure should allow for control inputs identi�cation for the multiplexer and
also for theDFFE example by composition with a D �ip-�op. We derive a partial speci�cation
for the a new semantics S2 for the multiplexer as follows:

• A single value change of one of the two data inputs D,Q cannot change the signi�cance
of the output,

• There must exist a pair (D,Q) such that a value change of E changes the output signif-
icance.

The symmetry is also needed to ensure the proper control inputs recognition. So all signi�cant,
none signi�cant cases, and the monotonic property of signi�cance for multiplexer function
m(Q,D,E) are given as:

• Symmetry: m(Q,D,E)s = m(Q,D,¬E)s

• All signi�cant: Qs ∧Ds ∧ Es ⇒ m(Q,D,E)s

• None signi�cant: Qn ∧Dn ∧ En ⇒ m(Q,D,E)n

• Monotony-1: Changing the signi�cance of any input cannot change the output signif-
icance the opposite way

• Monotony-2: For a given signi�cance of the selector, if a data input is signi�cant
and the other is not then it cannot be that selecting the signi�cant input produces a
non-signi�cant output while selecting the other produces a signi�cant output.

We implemented an exhaustive search algorithm which �nds a suitable semantics taking into
account the above constraints. The exhaustive search with these constraints leaves us a
semantics named S2 for the signi�cance of the multiplexer which states that:

�the output of multiplexer is signi�cant if and only if the selector and the selected
input are signi�cant�.

We then performed an other exhaustive search on the semantics of ∧ and used the property
(Q∨D) = ¬(¬Q∧¬D). The search explores all the semantics of ∧ and computes the distance
between m(Q,D,E) and (Q ∧ ¬E ∨ D ∧ E), that is the number of valuations of Q, D and
E (64 cases) for which m(Q,D,E) 6= (Q ∧ ¬E ∨D ∧ E). We conclude from this exhaustive
test that there is no semantics which satis�es that m(Q,D,E)s = (Q ∧ ¬E ∨D ∧ E)s. The
detailed implementation of these constraint systems is provided as C functions in Appendix
A.

Thus the problem of boolean syntax dependency persisted even with S2. The intuitive
semantics of multiplexer S2 also does not ful�ll the main rule of syntax independence.
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2.4.4 Concluding remarks

We concluded from the analysis of basic boolean structures that it is impossible to overload
the boolean operators for the extended boolean logic in a way that allows for control input
recognition and ful�ll the main objective of syntax independence. We have used exhaustive
simulations to prove this fact, however it can also readily be proved mathematically that
signi�cance extended logic does not allow control input recognition in a satis�able manner. A
few suggestions are proposed to overcome this problem.

• Use pattern recognition techniques to identify multiplexer like structures in their boolean
form.

• Replace each of them by an if-else equivalent structure.

• Apply semantics S2 to the if-else structures and semantics S1 to the boolean operators
and (∧), or (∨), not (¬).

• When the condition of a if-else evaluates as non signi�cant propagate this to all the
signal assignments nested in one or the other branch.

Implementing such pattern recognition techniques to identify right control inputs would
lead to similar syntactic analysis used in existing techniques mentioned in previous section
whereas we wanted to avoid such analysis. Therefore, the de�nition of control and mentioned
semantics are not su�cient to extract control in the way we intended. We either need to
rede�ne the control and data inputs in an other way or additional information from the
designer could serve us to obtain more re�nements.

In the next section, we describe an analysis in which we take into account the knowledge
provided by the designer about the control and data inputs of the module and observe the
coherence between the designer's information and the obtained results.

2.5 Analysis with designer's intervention

We discovered in the preceding section that no suitable semantics exists for the basic building
block (multiplexer) responsible for control operations of digital circuits by overloading the
classical boolean signals with signi�cance. We therefore, introduced the designer's interven-
tions in the analysis. We suppose that a separation of control and data inputs is already
provided. We use this hypothesis with our notion of signi�cance and develop an analysis for
control input recognition, and conclude that the results obtained by the analysis are coherent
with the hypothesis.

We suppose that a given set of inputs is tagged as `data' and `control'. This is called input
hypothesis. By this knowledge of control and data inputs, we make an analysis to verify that
the given separation of control and data inputs conforms to our intuitive de�nition.

According to the intuitive de�nition of Control, the data inputs do not carry timing in-
formation and their values do not impact the timing of the outputs. Only their signi�cance
can have an impact on the output signi�cance. We therefore take into account only the sig-
ni�cance of labeled data inputs. However, values of control inputs have always impact on the
timing of outputs. In other words they are always active (signi�cant), and have an impact on
signi�cance of output results. Therefore, control inputs are always signi�cant.



2.5. ANALYSIS WITH DESIGNER'S INTERVENTION 39

Based on the input hypothesis, we analyze the basic logic functions to obtain signi�cance
extended boolean equations representing signi�cance of output. The criteria for control input
recognition is following

The presence of value of the supposed control signal in normalized (min-

imized) equation of output signi�cance will be an indication that signi�-

cance of the output depends on the value of the supposed control signals.

We will derive the conditions for the change in output signi�cance, and reason about the
impact of value of control signals on the output signi�cance change with di�erent hypothesis
of control and data inputs. With `signi�cance' attribute associated with the given data inputs,
and `value' attribute associated with the given control inputs, we try to build semantics to
analyze the basic boolean functions.

Control/Data propagation

We de�ne how the control and data information provided at the inputs is traversed through
boolean functions of the module. For two inputs A and B we give semantics of control and
data signals as shown in table 2.4, where ♦ represents control/data propagation semantics for
AND (∧) and OR (∨) functions, `c' stands for Control and `d' stands for Data. For NOT(¬)

A ♦ B c d

c c d
d d d

Table 2.4: Control/Data propagation

function, if input is control then output is also control, if input is data then output is also
data. In case of if-else structure if a data signal appeared in condition then all the nested
assignments are also considered as data.

Note that by this semantics all the internal registers and outputs would become `data'
except those who are totally independent of tagged data inputs. Thus control registers and
outputs are calculated only and only from the tagged control inputs.

Analysis for DFFE module

With control/data propagation semantics and the input hypothesis, we analyze DFFE.RTL
and DFFE.RTL2 modules. For DFFE.RTL of Figure 2.4, we have 2 inputs, and thus 4
possible hypothesis. Current state of Q coincides to input D due to direct assignment from D
to Q. Therefore, D and Q will both either be `data' or `control'. Output signi�cance change
conditions are given in table 2.5 for 4 cases.

In table 2.5, we have considered that CLK ↑, is implicitly present in each of the condition.
For control and data separation, only hypothesis 1 and 2 are of interest. In hypothesis 1, pres-
ence of E in both conditions implies that E is control which is coherent with the hypothesis.
Thus we can say that the separation, E is control and D is data is correct. However in case
of hypothesis 2, we see that supposed control signal D does not appear in signi�cance change
conditions due to the semantics of if-else. Thus results do not correspond to supposition.
We can say that the separation, E is data and D is control might not be valid.
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Hypothesis D Q E Qn→s Qs→n

1 d d c Ds ∧ E ∧Qn Dn ∧ E ∧Qs

2 c c d Es ∧Qn En ∧Qs

3 d d d F (En ∧Qs) ∨ (Dn ∧Qs)
4 c c c � �

Table 2.5: Control and data separation for DFFE.RTL with designer's intervention

For DFFE.RTL2 shown in Figure 2.5, we have output composed of AND, OR and NOT
functions. For AND and OR functions with 2 inputs A and B, there are four possible hypoth-
esis given as follows.

1. Both A and B are control

2. Both A and B are data

3. A is control and B is data

4. B is control and A is data

Similarly for NOT function we have two possible hypothesis: either A is control or A is data.
Using control data semantics of table 2.4 and above hypothesis, we obtain output signif-

icance conditions of AND, OR and NOT functions for each case. These conditions describe
which input combinations produce signi�cance or non-signi�cant output. Based on output
signi�cance conditions for basic logical functions, we analyze DFFE.RTL2 with di�erent
combinations of input signals E, D and internal signal Q. For eight possible cases of control
and data with 3 signals, we obtain conditions for change in signi�cance of output Q after
simpli�cations. The conditions are simpli�ed automatically using boolean functions simpli�-
cation (logic minimization) program based on Quine-McCluskey [87] and BDD [20] methods
and are listed in table 2.6.

In hypothesis 1, where E is `control' and D and Q are supposed as `data', we see that
change in signi�cance n→ s as well as s→ n for the output Q are possible only in the presence
of value of E. We can say that value of E has always impact on the change in signi�cance of
the output in both ways. These conditions don't contain any value dependency term of D,
we can conclude that E is a control signal and D is the data. Thus given hypothesis that D
is data and E is control, is valid.

According to hypothesis 2, although D and Q are `control', we observe that a change n→ s
of output Q might happen even in the absence of value of D and Q when the term Es ∧ Qn

becomes true. So the values of D and Q do not always have an impact on signi�cance of Q.
Similarly we see that the change s→ n occurs either in the presence of D or Q, but not in the
presence of both. These terms do not ful�ll the hypothesis that D is control and E is data.
So the given hypothesis of control and data does not correspond to the resulting analysis.

In hypothesis 3, we see that due to contradiction Qn ∧ Qs = F, the non-signi�cant to
signi�cant change of output Q does not exist. Therefore, it is ambiguous to reason about the
change in signi�cance in this case. In hypothesis 4, we have output as always signi�cant and
hence no condition of signi�cance change.

In case of hypothesis 5, we see that signi�cance change n→ s does not depend on value of
supposed control input D therefore hypothesis is not coherent with the result. In hypothesis
6, we see that both changes in signi�cance are independent of value of Q while Q was supposed
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to be a control signal. Hence the hypothesis is not coherent with the derived results. In case
7 and 8, change in signi�cance n→ s does not exist.

Hypothesis D Q E Qn→s Qs→n

1 d d c Ds ∧ E ∧Qn Dn ∧ E ∧Qs

2 c c d (¬D ∧ ¬Q ∧Qn) ∨ (Es ∧Qn) (D ∧ En ∧Qs) ∨ (Q ∧ En ∧Qs)
3 d d d F (En ∧Qs) ∨ (Dn ∧Qs)
4 c c c � �
5 c d c E ∧Qn F

6 d c c (¬E ∧Qn) ∨ (Ds ∧Qn) E ∧Dn ∧Qs

7 c d d F D ∧ En ∧Qs

8 d c d F Q ∧ En ∧Qs

Table 2.6: Control and data separation for DFFE.RTL2 with designer's intervention

We have observed in this analysis that all the hypothesis from 2 to 8 have ambiguous
resulting equations of change in signi�cance. Either we have the change in signi�cance only
in one way, or the hypothesis of control inputs does not correspond with the results of the
analysis. The only hypothesis in which results are coherent is the hypothesis 1, in which the
change in signi�cance in both ways is possible only in the presence of value of the supposed
control signal E. Hence the hypothesis that E is control andD is data is the correct separation
and rest of the hypothesis might not be the correct separations for DFFE.RTL2.

Drawback

The main drawback of the analysis with designer's interventions is also the syntax dependency.
With di�erent syntactic representations of same boolean function, we obtain di�erent output
signi�cance change conditions. For instance, consider two syntactic forms of a 3-variable
boolean function f(x, y, z) as follows

f(x, y, z) = (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) (2.5)

If we supppose that x is control, and y and z are data then by evaluating both forms with x = T,
y = f , and z = F, we obtain f(x, y, z) = F with syntactic form on left side, and f(x, y, z) = f

with syntactic form on right side. This limitation might result a wrong separation of control
and data to be a right one. In this way, the analysis using designer's interventions also does
not ful�ll our main objective of syntax independence.

2.6 Practical considerations of the de�nition of control

We describe some practical issues of signi�cance extension in relation with VHDL simulation
semantics. According to our proposed de�nition, value of control inputs should have an impact
on the timing of the outputs. By contrast the value of the data inputs should not have an
impact on the timing of the outputs. This de�nition is somehow di�cult to use as the careful
study of the D input of DFFE will show. In order to change the signi�cance of the output
S, following two condition must hold:

• The process assigning S must resume,

• The current and the assigned value must have di�erent signi�cances.
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The equivalent process of the concurrent signal assignment S <= Q; is:

process (Q)
begin

S <= Q;
end process ;

So, the �rst condition is an event (a value change) on the internal signal Q, that is, during
the previous simulation step:

E ∧ (D 6= Q)

And this involves the value of D, not only its signi�cance! The simulation traces in Figure
2.6 illustrate this point and prove that a single value-only change of D between two identical
simulation sequences has an impact on the signi�cance of S. The delta cycles are shown
as small time shifts to improve readability. Q and D are supposed initialized by f at the
beginning of the simulation. A solution to this problem could be to adapt the VHDL simulation
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No signi�cance change
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No value change Value change

Simulation #2

Signi�cance and value change

Figure 2.6: Two traces showing D as a control input

algorithm, and decide that a process resumes on events and / or signi�cance changes of any
signal in its sensitivity list. With adaptive simulation, traces would become those of Figure 2.7.
With this new simulation paradigm the single value change of D doesn't cause a signi�cance
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Figure 2.7: Two traces not showing D as a control input

change of S. There must also be a signi�cance change of D.
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2.7 Consequences of the research

We have discussed the problem of separating control and data processing in hardware modules.
Existing techniques to distinguish control and data processing are based on the subjective
choice between the control and data. Classical control and data �ow techniques of software
have previously been applied on HDL syntax to partition control and data targetting di�erent
applications. We envisaged to obtain a precise and formal separation between control and data
processing as a preliminary step towards assisting data abstraction and functional veri�cation.

We tried to semantically de�ne an abstract notion of control in low level hardware modules
based on the fact that control inputs impact the timing of the outputs of the module. An
attribute called signi�cance is introduced to represent the timing impact of the control inputs
on the outputs. Some experiments and static reasoning have been developed to check the
suitability of the de�nition of control using intuitive semantics.

We worked with elementary hardware blocks without and with designer's intervention to
�nd a suitable semantics for Control recognition. We concluded by reasoning that according to
the proposed de�nition of control, it is impossible to identify the control and data inputs of an
unknown hardware module in a satis�able manner because of syntax dependent signi�cance
computations for a boolean function. The analysis does not result a unique and natural
separation between control and data for di�erent syntactic forms. The proposed de�nition of
control needs additional re�nements.

The question of precise control and data separation independent of designer's hints and
syntax has been raised, but remains open for the research community. We believe that the
proposed de�nition and analysis could possibly serve to open new track of research. The
problem of control-data separation irrespective of syntax could either be tackled by enriching
the de�nition of control or by rede�ning the control and/or data in a way other than what we
have proposed with the notion of control containing timing oriented behavior of the hardware
modules.

To ful�ll the objective of functional veri�cation and abstraction, we considered that de-
signer indicates the data inputs of his design. Based on this knowledge we bene�t from existing
syntax analysis techniques such as slicing to separate control and data in hardware modules
as explained in the subsequent chapter.

The �Signi�cance� introduced in this chapter, did not ful�ll our envisaged goal of Control/-
Data separation. However, the notion of signi�cance serves us to study important properties
of hardware modules concerning boolean data dependencies to assist static formal veri�cation
of data �ows as explored in chapter 4 and 5.
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Chapter 3

Control and Data separation using

slicing

3.1 Introduction

We have shown in the precedent chapter that a unique separation of control and data is not
achievable based on the intuitive de�nition of control due to syntax dependent behavior of
the extended semantics for boolean operators. We therefore suppose, that control and data
inputs are known from the designer. Based on this knowledge, we present a control and
data separation solution using program slicing techniques. A control-data slicing algorithm is
presented to split a given VHDL description into a control state machine and a data processing
machine.

The proposed solution makes use of existing HDL slicing techniques proposed in the lit-
erature to obtain the objective of control and data separation for assisting abstraction and
veri�cation. The technique is based on the conventional syntactic analysis with customiza-
tions, which enables us to obtain the desired goal of control/data separation.

A background of the existing slicing techniques is �rst presented in section 3.2. We de-
scribe control-data slicing algorithm for synthesizable subset of VHDL in section 3.3. We
talk about the synchronization problem while slicing VHDL modules with local variables in
section 3.5 and propose a solution in terms of structural transformation and enhancements.
Implementation of slicing and its applications are provided in section 3.6 and 3.7 respectively.

3.2 Program slicing basics

Program slicing originally proposed by M. Weiser [106] is a classical static analysis technique to
isolate a smaller piece of program from a larger program such that the semantics are preserved.
It is a program decomposition technique to extract a set of statements from a given program
relevant to a particular computation called the �slice�.

During slicing process, a slice from a given program is extracted with respect to a slicing
criteria, which speci�es a location and a variable. The slicing criteria speci�es the impact of
a program variable at a speci�c point on rest of the program, or the impact on a program
variable at a speci�c point by a piece of the program.

Let v be a variable, and s be a label of some program statement, the slicing criteria is
denoted by the pair < v, s >. There are two kind of slices: a backward slice of a program

45
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with respect to a slicing criteria < v, s >, is the set of all program elements that might a�ect
(directly or transitively) the value of variable v at statement s. A forward slice with respect
to slicing criteria < v, s > is the set of all program statements that might be a�ected by the
computations performed on v at s.

Figure 3.1 illustrates the slicing by an example. Original program is shown on left side
(Figure 3.1(a)), and on the right side (Figure 3.1(b)), we have shown two slicing criteria with a
forward and backward resulting slices. If we refer each program statement by its line number,
then slicing criteria for slice # 1 is < SUM, 6 > i.e. value of variable SUM at statement on line
6. We see variable SUM being de�ned at line 6 is only used at line 11. No other statement
impacts the value of SUM between lines 6 and 11. Thus only statement WRITE(TOTAL,SUM); at
line 11 is a�ected by SUM at line 6. Therefore, forward slice according to criteria < SUM, 6 >
is single statement at line 11.

For slice # 2, slicing criteria is < TOTAL, 11 > . The statement WRITE(TOTAL,SUM); at
line 11 has direct dependency on statement at line 9, and line 3 due to variable TOTAL . Since
variable TOTAL at line 9 is also dependent on variable X and Y , therefore we have further
dependency on line 2 where X and Y are being read. The resulting backward slice is given on
bottom of Figure 3.1(b).

1 . BEGIN
2 . READ (X,Y) ;
3 . TOTAL := 0 ;
4 . SUM := 0 ;
5 . IF (X < 1) THEN
6 . SUM := Y;
7 . ELSE BEGIN
8 . READ(Z ) ;
9 . TOTAL := X∗Y;
10 . END
11 . WRITE(TOTAL,SUM) ;
12 . END

(a) Original program

// Forward s l i c e ::− ( s l i c i n g c r i t e r i a= <SUM,6>)

1 . BEGIN
2 . WRITE(TOTAL,SUM) ;
3 . END

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

// Backward s l i c e ::− ( s l i c i n g c r i t e r i a= <TOTAL,11>)

1 . BEGIN
2 . READ(X,Y) ;
3 . TOTAL := 0 ;
4 . IF (X < 1) THEN
5 . NOP // No operat ion
6 . ELSE
7 . TOTAL := X∗Y;
8 . END

(b) Slices

Figure 3.1: Example of slicing

3.2.1 Dependence graph based slicing

Program slicing is done by performing control and data �ow analysis on some suitable inter-
mediate representation of programs such as abstract syntax trees (AST) or control �ow graph
(CFG) [8]. The CFG of a program is a directed graph in which nodes represent statements,
and directed edges represent �ow of control of the program execution. We mention an overview
of the basic sequential program slicing. A substantial amount of research has been done in
this domain such as [71], [70], [75], [104].

Ottenstein et al. [89] de�ned slicing as the reachability problem in program dependence
graph (PDG). A PDG is a directed graph in which statements of the program constitute nodes,
and edges among nodes represent control and data dependencies among statements. In all
dependence graph based approaches, slicing criteria is identi�ed by a node in PDG. For single
procedure programs, the slice with respect to v consists of all nodes from which v is reachable.
To incorporate procedures, Horowitz et al.[49] introduced notion of system dependence graph
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(SDG) in program slicing. An SDG contains a set of PDGs for each procedure with control
and data dependencies marked among PDGs.

3.2.2 Slicing in hardware description languages

E.M. Clarke in [27], [28] has presented �rst VHDL slicer and its applications. The VHDL
slicing consists of converting source code into an appropriate intermediate representation (IR)
in the form of control �ow graphs (CFG) and dependency graphs (PDG and SDG) using
syntactic and semantic analysis. VHDL description is a collection of concurrently executing
processes. Each process is basically an in�nitely executing sequential program. Therefore, a
process can be represented by the control �ow graph (CFG).

An example VHDL process with corresponding CFG is shown in Figure 3.2. Each node
corresponds to VHDL sequential statement within process which contains two sets of variables
named DEF and USE [8]. DEF is singleton which contains variable written at the corre-
sponding statement, whereas USE contains variables that are read in that statement. The
corresponding line numbers of statements in source code are marked with each node in the
CFG. Local control-data �ow dependency analysis is performed on the CFG to obtain process
dependence graph (PDG) whereas global control-data �ow dependency analysis results the
system dependence graph (SDG) of the module.

1 . process begin

2 . i f ( y = '1 ' ) then

3 . z <= x ;
4 . else

5 . z <= ' 0 ' ;
6 . end i f ;
7 . wait on x , y ;
8 . end process ;

2 USE = {y}

DEF = {z}

USE = {x}
3

USE = {x,y}

5

USE = {}

DEF = {z}

7

Figure 3.2: An example of Control Flow Graph (CFG)

The slicing criteria, as proposed in [28], is a signal or variable assignment statement in the
description according to which program is to be sliced.

Vedula et al. [103] presented Verilog slicing to improve hierarchical test pattern generation
for simulations. S. Ramesh et al. [92] have also made a similar contribution for synchronous
language Esterel and VHDL. Confora et al. [23] introduced the notion of conditioned slicing.
Conditioned slicing augments static slicing by introducing a condition that speci�es the initial
set of states in the slicing criteria [102].

For our concerned IP modules with a mix of control and data processing, we were inter-
ested in slicing techniques proposed for HDL. Therefore, we have adopted the basic technique
proposed in [27] and [28].

We have proposed a control-data slicing algorithm which uses control �ow graphs (CFG)
as intermediate form to represent VHDL processes, and implements a similar dependency
analysis to separate control and data in VHDL modules as described below.
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3.3 Control-data separation using slicing

We will present a Control and Data separation technique in synchronous VHDL modules
based on slicing techniques. The objective is to obtain separate models for the two di�erent
behaviors of the module communicating with each other in terms of controller and datapath.
Proposed slicing operation has been depicted in Figure 3.3. We assume that some inputs are
declared as data. This information is used as slicing criteria. Note that the declared data
inputs are not supposed to carry any control information in this case. In other words, we
are not treating those modules in which data inputs are used to carry sometimes the control
information. The control information is supposed to be provided by declared control inputs
only. Starting from the declared data inputs, we traverse the VHDL description recursively by
data �ow analysis to identify the outputs and intermediate registers, directly or transitively
a�ected by data inputs.

We then partition the design into a data slice and a control slice. The data slice contains
registers and outputs a�ected by data inputs with corresponding combinational logic. The
control slice contains registers independent of data inputs with corresponding combinational
logic. We regenerate VHDL code of control and data slices, and interconnect them with each
other. This representation collectively preserves the functionality of the original module. The
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Figure 3.3: Control/Data separation in IP modules by slicing

sliced representation of the module resembles a class of FSMD representations [15] in which
signals originated from control slice are called commands for various data operations in the
data slice.

We have shown a generic form of control and data separation in Figure 3.4 which is closer to
the designer's intuition of the hardware in the form of communicating control state machines
(control slice) and datapath (data slice). The model shown in Figure 3.4 is a representation of
a system with data dependencies, since the controller behavior depends on the data register
values, as indicated by arrows from data slice towards control slice. Such controllers are called
data dependent controllers. Signals originated from data slice are status of the data register.

In relation to the discussion on de�nition of �control� in precedent chapter, we have pre-
served our basic intuition of control with restrictions that control is never a�ected by data.
Therefore, in proposed slicing, every register or combinational element within the module
depending on data inputs directly or transitively would become part of the data slice. If
the designer anticipates that there is a control state machines dependent on data inputs or
data registers, then it would be present in the data slice. This criteria is adopted, so that
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Figure 3.4: Data dependent separation of control and data

we are able to apply data abstraction techniques on the data slice without losing the control
information.

However, it is possible to incorporate the control/data separation according to the de-
signer's anticipation in terms of control state machines and datapaths as shown in Figure 3.4.
In that case, we would need to revise the de�nition of Control given in chapter 2, which would
also describe the data dependent behavior of the control.

3.3.1 VHDL description of modules

For our analysis we are considering modules described in synthesizable subset of VHDL. We
will give basic de�nition of module described in VHDL as follows.

De�nition 3.1 (Entity, Architecture and Process).

• An Entity E of a module is a 3-tuple (I,O,A) where I is the set of input interface
signals (input ports), O is the set of output interface signals (output ports), and A is the
architecture associated with entity.

• An architecture A is a 2-tuple (Ŝ,P) where Ŝ is the set of signals, and P is the set of
processes in the architecture.

• Each process P ∈ P is a 3-tuple (L,V ,S ) where L is the set of signals called `sensitivity
list' of process, V is the set of `local variables' of process, and S is the `sequence of
sequential statements' within process body. An execution path of the process is a subset
of S starting from the �rst statement to the last statement of the sequence

We represent a process description with three basic sequential statements as given below:

1. assignment statements: s <= exp;, v := exp;

2. predicate statements: if, if-else, if-elsif-else

3. suspension statements: wait on sig;

We also consider high level sequential statements such as case statements, deterministic
for loops, procedure calls, and concurrent generate statements. However, they are implicitly
represented by statements of above three kinds. The case statement is represented by the
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predicate statement with equivalent if-elsif-else structure. Deterministic for statement
is unrolled with a sequence of sequential statements within the loop. Similarly, concurrent
generate statements are also �attened to obtain a plain VHDL model with single architecture,
and a set of processes with statements of above three kinds.

Synchronous VHDL description

Synchronous behavior can be implemented in VHDL in numerous ways. In most of the designs
at RTL we describe it by synchronous and combinational processes. We denote the set
of synchronous and combinational processes as Ps, and Pc respectively, such that Ps∩Pc = ∅.

A synchronous process is sensitive only to the rising edge (or falling edge) of a global signal
known as clock. In our VHDL subset, A synchronous process Ps ∈ Ps is de�ned as follows

De�nition 3.2 (Synchronous process).
A synchronous process is a 3-tuple Ps = (L,V ,S ) where

1. L = {clk} is a singleton, where clk ∈ I is an input signal known as the �clock�

2. V is a set of local variables

3. S = {spr} is singleton where spr stands for predicate statement of following form

• spr ::= if (bexp) then Ssynch where

� bexp is the syntax for rising edge on signal clk1

� Ssynch is a list of synchronous statements1

We detect synchronous processes by using pattern matching methods used in general pur-
pose logic synthesizers. Memory elements (registers) are only associated with synchronous pro-
cesses. There exist other syntax patterns to describe synchronous processes as well. However,
we consider only those patterns which are de�ned by IEEE standard [58], and are commonly
used by VHDL designers.

A combinational process Pc ∈ Pc is de�ned as follows

De�nition 3.3 (Combinational process).
A combinational process is a 3-tuple Pc = (L,V ,S ) in which following conditions are ful�lled:

• L contains all signals being read inside the process body such that clk /∈ L where clk is
the clock input

• For all s ∈ Ŝ ∪ O, s is assigned in all possible execution paths of the process

• A local variable v ∈ V is never read before it is written

Any violation to the conditions mentioned in de�nition 3.3 may result latch inference
which could cause di�erent behavior of the circuit before and after synthesis. Other forms
of combinational processes such as process statements with sensitivity list, concurrent signal
assignment, concurrent conditional signal assignment or concurrent procedure calls are se-
mantically equivalent, and are implicitly converted to standard form according to de�nition
3.3.

Since we are dealing only with synthesizable synchronous modules, therefore we do not
treat models containing any process other than synchronous or combinational process in the
descriptions.

1According to IEEE synthesis standard [58]
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3.3.2 Basic slicing rules

We have implemented dependency analysis based slicing algorithm based on simple propaga-
tion rules to identify, and separate the control from data. The basic idea is to propagate the
data information provided by designer at the inputs of the module to the internal description,
and separate it from the circuits not depending on data information in all respects.

We suppose that the clock input is implicitly considered as global control input, and some
of the inputs are labeled as data. Rest of the inputs are labeled as control.

Dependency analysis rules

1. Initially all the internal signals and registers are considered as control.

2. For any arithmetic and logical operation on the right hand side expression in an assign-
ment statement, if any operand is data then the assigned signal also becomes data.

3. Individual constants assigned to internal signals are considered as control assignments.

4. For multiple assignments to a signal in a process, if any assignment results that signal
as data according to rule 2, then all assignments to that signal are also considered as
data.

5. Constants concatenated with data signals are considered as data constants.

6. If a data signal is appeared in the predicate statement, then all the statement inside the
branches are also considered as data.

Partitioning rules

7. All assignments marked as data with corresponding predicate statements (control �ow)
are copied to a new module called data slice.

8. All assignments marked as control with corresponding predicate statements (control
�ow) are copied to a new module called control slice.

9. For each intermediate control signal being used in data slice, a new input port is created
in data slice, and corresponding output port is created in control slice entity. Update
the output port with corresponding signals

Above rules result a separation of control and data in such a way that all the assignments
to control registers are moved to control slice, and all the assignments to data registers are
moved to data slice. Pure data operations (operations among data signals only) reside in
data slice. Pure control operations (operations among control signals only) reside in control
slice. Operations between control and data are moved to data slice. Rules 1 to 6 implement
a dependency analysis, and rules 7 to 9 implement a partitioning into control and data slice.
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Slicing rules to obtain Data-dependent control

As discussed earlier, by applying above slicing rules, we would not be able to obtain a data
dependent separation as shown in Figure 3.4. Thus one might think that all data dependent
control would be moved to data slice using these slicing rules. But as remarked in chapter 2
this would be implied from the anticipation of the designer who would require that control
should depend on data. One way to obtain the data dependent separation is to introduce some
syntactic rules proposed in the literature [86], [50] which could be described in our context as
below.

• If a predicate statement contains a data signal then it is considered as data predicate
statement. A nested assignment statement inside that predicate statement assigning
only control signals is considered as control assignment statement. It is moved to the
control slice along with corresponding data predicate statement.

• For each data signal being used in control slice, a new input port is created in control
slice and corresponding output port is created in data slice entity. The output ports are
updated with corresponding signals.

These additional rules are used in place of rule 6. With these rule, operations between control
and data are normally moved to data slice except the case in which a control assignment
statement is nested (controlled) by a conditional statement with data signal in the condition.
In that case, the control assignment statement with corresponding data predicate statement
is moved to control slice after restructuring. We have implemented these additional rules
separately to obtain the slicing with data dependent Control. However, such modules are not
treated further for proposed data abstraction techniques because timing information depending
on data would possibly be lost.

All of the above rules are implemented in the form of control-data slicing algorithm on
intermediate representation of processes as described below.

3.3.3 Intermediate representation for VHDL modules

The control-data slicing is implemented on intermediate representation of VHDL source code.
We have considered Control Flow Graphs (CFG) as a convenient data structure for our static
dependency analysis. Each VHDL process P ∈ P is uniquely represented by a control �ow
graph in which nodes represent sequential statements, and edges represent the control �ow
among statements.

De�nition 3.4 (Control Flow Graph).
A control �ow graph CFG = (N,E) of a VHDL process in a module is a labeled directed graph
in which

• N is a set of nodes that represent statements in a process. NA ⊂ N is set of assignment

nodes. NP ⊂ N is set of predicate nodes. ns ∈ N is suspension node. Therefore,
N = NA ∪NP ∪ {ns}

• E ⊆ N ×N is a set of labeled edges that represent the control �ow between nodes where
each np ∈ NP has two outgoing edges labeled T (True) and F (False) respectively, and
each na ∈ NA has one outgoing edge labeled Q (sequential). ns has one outgoing edge
labeled R (Resume)
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There are some associated terms in CFG which are used to establish the control-data
slicing rules.

• We denote a node n0 ∈ N as entry node which corresponds to �rst statement of the
process.

• A path in CFG is a sequence of nodes such that from each of the nodes there is an edge
to the next node in the sequence. Paths in a CFG are cyclic where nodes n0 and ns are
repeated.

• Node m dominates node n, if every path from entry node n0 to n goes through m.

• Node m postdominates node n, if every path from n to the suspension node ns has to
pass through node m. The ns postdominates all nodes in the CFG.

• Node m is nested by node n, if n dominates m, and all the nodes in the path between
n and m including m, do not postdominate n.

DEF and USE sets:

Two sets named DEF and USE are associated with each node of CFG whose elements
are signals de�ned or used in the corresponding statements. DEF is singleton associated to
an na ∈ NA containing the signal written in the corresponding assignment statement. The
DEF = ∅ (empty set) is associated with other nodes. When associated to an na ∈ NA, USE
represents set of all the signals present in the right hand side expression of corresponding
signal assignment statement. For each predicate node np ∈ NP , USE is the set of signals
present in the boolean expression of corresponding predicate statement. For suspension node
ns, USE is the set of signals appeared in the sensitivity list of the statement. We denote
DEFn and USEn as sets associated with the node n ∈ N .

Since some of the inputs are labeled as data by the designer, therefore for entity E of the
module, I is divided into two subsets Din ⊆ I, and Cin ⊆ I called data inputs and control
inputs respectively such that Din ∩ Cin = ∅.

With the knowledge of data inputs Din and a set of CFGs of a given module, we perform
a dependency analysis in which we investigate the �ow dependencies among various signals
within module's entity. This is done by constructing a dependency graph in which nodes
represent the nodes of CFGs and the input signals, whereas edges represent �ow dependencies
among nodes calculated using DEF and USE sets of the nodes.

Let each input di ∈ Din is represented by a dummy node called data input node . We have
therefore, a new set of data input nodes denoted as Nd. Let us denote CFGx = (Nx, Ex) as a
CFG associated to a process x ∈ P. The Global Flow Dependency Graph (GFD) associated
to E is de�ned as below:

De�nition 3.5 (Global Flow Dependence Graph).
Global Flow Dependence Graph is tuple GFD = (P,D) where

• P = (
⋃

x∈P Nx) ∪Nd is set of nodes

• D ⊆ P×P with (n1, n2) ∈ D such that

� either there is a signal s ∈ DEFn1, and also s ∈ USEn2 that is, DEFn1∩USEn2 6=
∅
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� or there is a signal s ∈ Din, and also s ∈ USEn2.

Each edge d ∈ D is labeled as D (Data). We de�ne the `dependence path' to represent
static data dependence from input nodes to various nodes within GFD as follow.

De�nition 3.6 (Dependence path).
A dependence path πd from node ni ∈ P to nk ∈ P is a sequence of nodes ni, ni+1, ni+2, ..., nk ∈
P such that for every consecutive pair of nodes (nj , nj+1),we have (nj, nj+1) ∈ D.

3.3.4 Slicing algorithm

We describe the slicing algorithm which implements control-data slicing rules mentioned in
3.3.2 based on formal de�nitions of CFG and GFD as shown in Algorithm 1.

Algorithm 1 Slicing algorithm
Require: A set of CFG, set of data inputs
Ensure: Control slice and Data slice
� Initially mark all nodes as �control�. (rule 1)
� For ni, nj ∈ P if ∃πd from nj ∈ Din to ni, then mark ni as �data�. (rules 2, 3, 4, 5)
� For all assignment nodes n1, ..., nk such that DEFn1 ∩DEFn2 ∩ ... ∩DEFnk

6= ∅, if ∃i, 1 ≤ i ≤ k
and ni is marked as �data�, then mark n1, ..., nk as �data�. (rules 2, 3, 4, 5)
� For each ni ∈ P such that ni is a predicate node, if ∃x ∈ USEni

, and x is data then for any
nj ∈ P if nj is nested by ni then mark nj as �data�. (rule 6)
� Copy all assignment nodes marked as �data� with corresponding predicate nodes to build a new
set of CFGs called data slice. (rule 7)
� Copy all assignment nodes marked as �control� with corresponding predicate nodes to build a new
set of CFGs called control slice. (rule 8)
� Create a new entity Ed for data slice with input port Din ∪ cin where cin ⊆ Cin are control inputs
being used in data slice. (rule 8)
� For each signal s in data slice, such that s is marked as �control� and s /∈ cin, create a new input
port for si in data slice and corresponding output port so in control slice. (rule 7)
� Create a new entity Ec for control slice. (rule 9)

Algorithm 1 recursively sets internal signals as data until outputs are reached. Once a
subset of outputs of the module is marked as data, and there are no more iterations in which
further signals or outputs are being marked, we reach a �xed point where dependency analysis
is �nished. The slicing algorithm is implemented as recursive functions with the help of depth
�rst search (DFS) algorithm, and algorithms due to Lengauer and Tarjan [69] to compute
paths and dominators, in CFGs and GFD.

The slicing algorithm is followed by some restructuring. The new entities for control
and data slice are created with additional intermediate I/O ports. To drive the new ports,
additional processes are created in relevant slices which read corresponding signals and update
these ports. In case of process splitting during slicing, statements are moved between newly
created processes in control and data slice. This causes new signals being read inside the
processes. Therefore, sensitivity list of new processes in the two slices is also revised according
to the signals being read in the new processes.
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3.4 Illustration of control-data slicing

In this section we will apply the proposed slicing algorithm to a VHDL module. We have
considered an integer accumulator circuit as case study.

RTL Module

Accumulator

Reset

CLK

A

(Data)

DSO

S

(a) Block diagram

1 . entity accum i s 20 . i f (CNT < 5) then
2 . port (CLK, Reset : in b i t ; 21 . R <= R + A;
3 . A: in i n t e g e r ; 22 . CNT <= CNT+1;
4 . S : out i n t e g e r ; 23 . end i f ;
5 . DSO: out b i t ) ; 24 . i f (CNT = 5) then
6 . end entity ; 25 . DSO <= '1 ' ;

26 . S <= R;
7 . architecture RTL of accum i s 27 . end i f ;
8 . signal R: i n t e g e r ; 28 . end i f ;
9 . signal CNT: i n t e g e r range 0 to 5 ; 29 . end i f ;
10 . begin 30 . wait on CLK;
11 . MAIN: process 31 . end process ;
12 . begin 32 . end architecture ;
13 . i f ( r i s ing_edge (CLK)) then
14 . i f ( Reset = '0 ' ) then
15 . R <= 0 ;
16 . CNT <= 0 ;
17 . S <= 0 ;
18 . DSO <= '0 ' ;
19 . else

(b) VHDL description

Figure 3.5: Accumulator example

The block diagram of accumulator is shown in Figure 3.5(a). It accumulates 5 samples at
its input `A' in an internal register `R', and writes the output to an output register `S' asserting
the output signal `DSO'. An input `Reset' clears the internal registers. The RTL description
of accumulator in VHDL is given in Figure 3.5(b). We will suppose that `A' is labeled as data
by the designer.

The VHDL description of accumulator is �rst parsed to an abstract syntax tree, and
processes are transformed to the CFGs. In Figure 3.6(a), we have shown CFG of MAIN process
obtained according to de�nition 3.4. Each rectangular block is a CFG node with corresponding
VHDL statement. Labels n0 and ns represent entry node and suspension node respectively.

Figure 3.6(b) shows �ow dependence graph obtained from CFG of Figure 3.6(a) by applying
dependency analysis rules (rules 2 to 6) of the slicing algorithm. Flow dependency marked as
dotted edges and labeled as D, represents the data dependency from input node A towards
node R <= R+A;, and is called direct dependence. There is a �ow dependence from node
R <= R+A; to node S<=R; because R being written at node R <= R+A; is used at node S<=R;.
This dependence is marked in subsequent iteration of the algorithm, and is called indirect
dependence. The direct and indirect dependencies are highlighted in dark color. Nodes R<=0;
and S<=0; highlighted in light color represent the assignments which apparently constitute
the assigned signal by a constant as control signal but are considered as data assignments
due to the fact that same target signal is assigned at some other node which makes it a data
signal due to direct or indirect �ow dependency on some data input as mentioned in rule 4 in
subsection 3.3.2.

Once all the dependencies are marked by dependency analysis, we perform the partitioning
step which generates two CFG of control and data slice. Figure 3.7 shows the result of the
slicing. Assignment nodes marked as control are collected to form the CFG for control slice
as shown in Figure 3.7(a). Nodes marked as data with accompanying control predicate nodes
in GFD are collected together to form new CFG for the data slice as shown in Figure 3.7(b).
The VHDL descriptions of control slice and data slice are shown in Figure 3.9(a) and 3.9(b)
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Figure 3.6: Control and data �ows in accumulator
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Figure 3.7: CFG of control and data slices for accumulator

The creation of new control and data slice as VHDL entities undergoes some automatic
restructuring after dependency analysis. For example while slicing accumulator, the value of
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signal CNT signal must be communicated from control slice entity towards the data slice entity.
Therefore, we need to create an additional output port named CNT_o at line 4 in control
slice of Figure 3.9(a), and corresponding input port CNT_i, at line 5 in data slice entity of
Figure 3.9(b). An additional combinational process (concurrent signal assignment statement)
is needed in the control slice architecture to update the new port CNT_o at line 25 in Figure
3.9(a). This new process is created automatically in the form of a new CFG according to
de�nition 3.4. Block diagram of the resulting control and data slices is shown in Figure 3.8(a)

DSO

A

CNT

clk

clk

S

Reset

Control Slice

Data Slice

CNT_i

CNT_o

(a) Control and data slice blocks

1 . entity accum i s
2 . port (CLK, Reset : in b i t ;
3 . A: in i n t e g e r ;
4 . S : out i n t e g e r ;
5 . DSO: out b i t ) ;
6 . end entity ;

7 . architecture RTL of accum i s
8 . signal CNT: i n t e g e r range 0 to 5 ;
9 . begin
−−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
10 . inst_data : entity work . accum_Data(RTL)
11 . port map(CLK, Reset , A, S , CNT) ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 . i n s t_cnt r l : entity work . accum_Control (RTL)
13 . port map(CLK, Reset , DSO, CNT) ;
−−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
14 .end architecture ;

(b) Top level VHDL module for slices

Figure 3.8: Slicing results of accumulator

1 . entity accum_Control i s
2 . port (CLK, Reset : in b i t ;
3 . DSO: out b i t ;
4 . CNT_o: out i n t e g e r range 0 to 5 ) ;
5 . end entity ;
−−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
6 . architecture RTL of accum_Control i s
7 . signal CNT: i n t e g e r range 0 to 5 ;
8 . begin
9 . proc_C_0 : process (CLK)
10 . begin
11 . i f (CLK' event and CLK= '1 ') then
12 . i f ( Reset = '0 ' ) then
13 . CNT <= 0 ;
14 . DSO <= '0 ' ;
15 . else
16 . i f (CNT < 5) then
17 . CNT <= CNT+1;
18 . end i f ;
19 . i f (CNT = 5) then
20 . DSO <= '1 ' ;
21 . end i f ;
22 . end i f ;
23 . end i f ;
24 . end process ;
−−−−−−−−−−−−−−−−−−−−−−−−−
25 . CNT_o <= CNT;
26 . end architecture ;

(a) Regenerated VHDL for control slice

1 . entity accum_Data i s
2 . port (CLK, Reset : in b i t ;
3 . A: in i n t e g e r ;
4 . S : out i n t e g e r ;
5 . CNT_i : in i n t e g e r range 0 to 5 ) ;
6 . end entity ;
−−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
7 . architecture RTL of accum_Data i s
8 . signal R: i n t e g e r ;
9 . begin
10 . proc_D_0 : process (CLK)
11 . begin
12 . i f (CLK' event and CLK= '1 ') then
13 . i f ( Reset = '0 ' ) then
14 . R <= 0 ;
15 . S <= 0 ;
16 . else
17 . i f (CNT_i < 5) then
18 . R <= R + A;
19 . end i f ;
20 . i f (CNT_i = 5) then
21 . S <= R;
22 . end i f ;
23 . end i f ;
24 . end i f ;
25 . end process ;
26 . end architecture ;

(b) Regenerated VHDL for data slice

Figure 3.9: Accumulator slices in VHDL

A top level module is also generated automatically which instantiates, and connects both
control and data slice entities with same external interface as that of original module. In
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this way the simulation environment delivered for original module is reused to test the sliced
model. The VHDL description of top level module for accumulator is shown in Figure 3.8(b).
An intermediate signal CNT is declared at line 8 in the top level architecture to connect the
control slice output signals with the data slice input signals.

3.5 Slicing modules with local variables

In slicing algorithm, we have only considered VHDL modules with signals. However, local
variables are also frequently used in designs. VHDL variables are assigned and used only
within the process in which they are declared. Unlike signals, during the execution of the
process, a variable being assigned an expression immediately gets the current evaluated value
of the expression.

The way in which variables are used varies from designer to designer. Mostly they are
used for intermediate calculations within processes. However, in many designs variables are
used in such way that sythesizers may infer memory elements (Flip-�ops or Latches) from
such variables. According to IEEE standard for RTL synthesis [58], a variable is inferred as
an edge triggered memory element (a D �ip-�op) when

• it is not being assigned in all the execution paths of the process,

• it is being assigned at one clock edge, and read at the subsequent clock edge.

Variables are inferred as combinational functions when they are being assigned in all execution
paths of the process. If a variable is assigned at an execution point in the process, and this
variable is used in the subsequent statements before reaching suspension statement, we say
that variable is written before read. For this kind of variables, synthesizer infers combinational
logic.

Since slicing partitions the design into two VHDL entities communicating via intermediate
signals, we need to take care while splitting processes with local variables because there may
exist situations, where some data assignment statement is dependent on a local variable labeled
as control during slicing. In that case, we need to globalize the local variables via signals to
communicate variables values between the slices.

In order to transmit the values of local variables to global entities of slices, we need to con-
vert variables into signals. However, this conversion is not straightforward because variables
and signals have di�erent semantics in VHDL. The expressions assigned to variables immedi-
ately update the memory location reserved for variables however signals are not immediately
updated but are scheduled to be assigned new expressions (waveforms) until the next suspen-
sion statement is reached: that is the next delta cycle [57] in case of synchronous modules.
We will elaborate the problem of slicing with local variables by an example as propose the
solution.

Accumulator with local variable

A new version of accumulator example of Figure 3.5 is implemented with CNT as local variable
instead of a signal as shown by VHDL description of Figure 3.10. Compared to implementation
of Figure 3.5(b), there is a slight modi�cation of range of CNT in the original implementation
due to di�erent semantics of variables and signals in VHDL.
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We can not directly apply the slicing rules in this implementation because after slicing,
the value of local variable CNT marked as control variable in control slice has an impact on the
data activities in the data slice. When statement R <= R + A; at line 21 is moved to data
slice while CNT being control variable is updated in control slice, the execution of statement
R <= R + A; in data slice depends on value of CNT as shown by statement if (CNT < 5) then

at line 20. Variable CNT can not be converted directly into signals to convey local values to
global signals.

1 . entity accum_v i s
2 . port (CLK, Reset : in b i t ;
3 . A: in i n t e g e r ; −−DATA INPUT
4 . S : out i n t e g e r ;
5 . DSO: out b i t ) ;
6 . end entity ;

7 . architecture RTL of accum_v i s
8 . signal R: i n t e g e r ;

9 . begin
10 . MAIN: process (CLK)
11 . variable CNT: i n t e g e r range 0 to 6 ;
12 . begin
13 . i f (CLK' event and CLK= '1 ') then
14 . i f ( Reset = '0 ' ) then
15 . R <= 0 ;
16 . CNT := 0 ;
17 . S <= 0 ;
18 . DSO <= '0 ' ;
19 . else

20 . i f (CNT < 5) then
21 . R <= R + A;
22 . CNT := CNT+1;
23 . else
24 . CNT := CNT+1;
25 . end i f ;
26 . i f (CNT = 6) then
27 . DSO <= '1 ' ;
28 . S <= R;
29 . end i f ;
30 . end i f ;
31 . end i f ;
32 . end process ;
33 . end architecture ;

Figure 3.10: VHDL RTL description of accumulator with variable

To overcome the problem of conveying values of local variables between slices via signals,
we have proposed a VHDL transformation before slicing algorithm, and some enhance-
ment afterwards. Thus Control-data slicing with local variables involves two additional steps.
During �rst step, we transform the VHDL module internal structure. During second step, a
syntax analysis called enhancement is applied to �nd the sequence of statements, where we
need to convey value of a local variable between control slice and data slice entities.

3.5.1 VHDL transformation

For slicing modules with local variables, we perform a transformation before applying slicing
algorithm. In this transformation, we split synchronous process with variables into a syn-
chronous and a combinational part. Synchronous part represents only registers updates. It is
a new synchronous process which only contains a set of register signal assignment statements.
The combinational part represents the combinational logic of the process. All the transfer
functions of registers are carried to a new combinational process sensitive to all the signals
being read. Each variable inferred as register in the original process is represented by two
additional signals after this transformation. In this way, we are capable of transmitting local
variable value changes to the global entities via signals.

Basic idea The basic idea behind the transformation is as follows:

�In any sequential process with local variables, registers, either inferred from signals
or variables, are only updated in a synchronous process. All the combinational logic
functions assigned to such signals and variables at the rising edge of the clock are
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calculated out of this synchronous process, and are represented combinationally in
separate combinational processes�.

During transformation, the architecture A of the given module is converted into A′. Each
sequential process with local variables in A is splitted into a new synchronous process, a new
combinational process, and a set of output processes for each output being assigned in original
process. For a synchronous process P ∈ P with local variables with V 6= ∅. Let

• WP denotes set of signals written in process P

• RP denotes set of signals being read in P

• REGP denotes set of registers belonging to P

In synchronous process with local variables, we categorize three kind of registers as follows:

1. REGs ⊂ REGP represents set of registers inferred from signals. Each Rs ∈ REGs is
called signal register

2. REGv ⊂ REGP represents set of registers inferred from local variables. Each Rv ∈
REGv is called variable register

3. REGsi ⊂ REGs represents set of registers inferred from interface signals. Each Rsi ∈
REGsi is called signal interface register

We describe the transformation algorithm as Step I, and the enhancement algorithm as
Step II as follows.

3.5.2 Step I : Transformation algorithm

The pseudocode of the transformation procedure has been given in algorithm 2. It takes archi-
tecture A of the module's entity and returns a new architecture A′. Operations are performed
on CFGs of the synchronous processes with local variables. The new architecture contains
new CFGs representing sequential, combinational and output processes generated according
to the algorithm. The new architecture is then subjected to control-data slicing algorithm.
Before slicing, the VHDL description of the transformed model can also be generated from
the transformed CFGs for testing purpose.

The transformation algorithm does not impact the input/output ports of the module. It
only restructures the internal processes in the architecture. In this way the transformed model
can be tested by the same simulation environment provided with the original model.

Illustration of transformation

We will apply the proposed transformation algorithm to the accumulator of Figure 3.10. In
this module, signals R, DSO, S, and variable CNT are registers. For each of these registers,
new signals are declared in the architecture declarative part as shown in Figure 3.11 with
corresponding VHDL comments for illustration.

Internal signal R is represented by new signal R1. Variable CNT is represented by two
signals CNT1 and CNT2 as declared at line 3 in Figure 3.11. Output interfaces DSO and S are
also replaced by signal pairs DSO1, DSO2; and S1, S2 respectively.

The transformed body of the architecture is shown in Figure 3.12. The newly created
processes in the new architecture are described below.
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Algorithm 2 Pre-slicing Transformation Algorithm
Require: VHDL architecture A
Ensure: Transformed VHDL architecture A′

for (each synchronous process P with V 6= ∅) do
� Identify signal, variable, and signal interface registers in P .
� Replace P by following:
for each signal register Rs ∈ REGs do

* create a new signal s1
end for
for each variable register Rv ∈ REGv do

* create two new signals v1 and v2
end for
for each signal interface register Rsi ∈ REGsi do

* create two new signals si1 and si2
end for
� Create a new synchronous process Ps containing exactly, sequentially in any order:
{Rs<=s1; | Rs ∈ REGs} ∪ {v1<=v2; | Rv ∈ REGv} ∪ {si1<=si2; | Rsi ∈ REGsi}
� Create a new combinational process Pc exactly sensitive to RP ∪REGs ∪ {v1 | Rv ∈ REGv} ∪
{Ssi1 | Rsi ∈ REGsi} and with declared variables belonging to REGv. Its body exactly contains
following three parts sequentially in the given order:

• Sequentially in any order: {Rv := v1; | Rv ∈ REGv} ∪ {s1 <= Rs; | Rs ∈ REGs} ∪
{si2<=si1; | Rsi ∈ REGsi}.

• The body of P where all assignment to Rs is replaced by assignment to s1 and assignment
to Rsi is replaced by assignment to si2.

• Sequentially in any order: {v2<=Rv; | Rv ∈ REGv}.

� Create an output process for each Rsi sensitive to si1 containing assignment Rsi<=si1;.
end for

New synchronous process: For MAIN process, we obtain a synchronous process labeled
Synch_p at line 2 in Figure 3.12. It contains only register updates, and no combinational
expression is assigned in the body. Register due to internal variable CNT, and signal interface
registers S and DSO are represented by new signal registers CNT1, DSO1 and S1 respectively.

New combinational process: The new combinational process is labeled as Comb_p at
line 12 in Figure 3.12. It has three parts indicated by line numbers as follows:

1. PART I starts from line 15 to 18, and contains assignments which read the associated
registers

2. PART II starts from line 19 to line 35, and contains combinational part of original
process with updated targets of signal assignments according to algorithm 2

3. PART III is at line 36 updates variable register input CNT2

New output processes: For ports S and DSO, the transformation algorithm creates two
output processes labeled Output_p_0 and Output_p_1, as shown at lines 39 and 43 respectively
to update these output ports.
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1 . architecture RTL_transformed of accum_v i s
2 . signal R1 : i n t e g e r ; −−f o r s i g n a l R
3 . signal CNT1,CNT2: i n t e g e r range 0 to 6 ; −−f o r v a r i ab l e CNT
4 . signal DSO1,DSO2: b i t ; −−f o r s i g n a l i n t e r f a c e DSO
5 . signal S1 , S2 : i n t e g e r ; −−f o r s i g n a l i n t e r f a c e S
. . . . . .

Figure 3.11: Accumulator architecture declarative part after transformation

1 . begin
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−∗∗∗∗∗∗ Synchronous proce s s ∗∗∗∗∗∗∗∗∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 . Synch_p : process
3 . begin
4 . i f ( ( c l k = '1 ' ) and clk 'EVENT) then
5 . R <= R1 ; −−s i g n a l
6 . S1 <= S2 ; −− i n t e r f a c e s i g n a l
7 . DSO1 <= DSO2;−− i n t e r f a c e s i g n a l
8 . CNT1 <= CNT2;−−va r i ab l e
9 . end i f ;
10 . wait on c l k ;
11 . end process ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−∗∗∗∗∗∗ Combinational p roce s s ∗∗∗∗∗∗∗∗∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 . Comb_p: process
13 . variable CNT: natura l range 0 to 10 ;
14 . begin

−− ∗∗∗ PART − I ∗∗∗
15 . R1 <= R;
16 . S2 <= S1 ;
17 . DSO2 <= DSO1;
18 . CNT := CNT1; −− Node n_1

−− ∗∗∗ PART − I I ∗∗∗
19 . i f ( Reset = '0 ' ) then
20 . R1 <= 0 ;
21 . CNT := 0 ;
22 . S2 <= 0 ;
23 . DSO2 <= '0 ' ;
24 else

25 . i f (CNT < 5) then −− Node n_2
26 . R1 <= R + A; −− Node n_3
27 . CNT := CNT + 1 ;
28 . else
29 . CNT := CNT + 1 ;
30 . end i f ;
31 . i f (CNT = 6) then
32 . DSO2 <= '1 ' ;
33 . S2 <= R;
34 . end i f ;
35 . end i f ;

−− ∗∗∗ PART − I I I ∗∗∗
36 . CNT2 <= CNT;
37 . wait on CNT1,R,DSO1, S1 ,A, Reset ;
38 . end process ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−∗∗∗∗∗∗∗ Output p ro c e s s e s ∗∗∗∗∗∗∗∗∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 . Output_p_0 : process (DSO1)
40 . begin
41 . DSO <= DSO1;
42 . end process ;

−−−−−−−−−−
43 . Output_p_1 : process ( S1 )
44 . begin
45 . S <= S1 ;
46 . end process ;
47 . end architecture ;

Figure 3.12: Accumulator architecture body after transformation

Four new processes obtained after this transformation are functionally equivalent to the
MAIN process of the original module at clock cycle level. The entity declaration remains
unchanged, however architecture declaration contains additional signals, and the body of
architecture contains new processes after transformation.

3.5.3 Step II: Enhancement algorithm

Due to VHDL transformation proposed in Step I, we split the synchronous processes with
local variables into interacting combinational and sequential parts. Applying slicing rules on
splitted representation also requires some structural analysis between dependency analysis,
and partitioning steps of the slicing algorithm.

According to slicing algorithm, data nodes (data assignment statements) are moved to
data slice along with corresponding predicate nodes (control statements). During dependency
analysis, we observe that if a node assigning local variable marked as �control� in new combi-
national process postdominates a node marked as �data�, we would need to convey the value
of variable marked as �control� towards the node marked as �data� in the data slice. This is
possible by assigning the updated value of the control variable in the combinational process
of control slice to a global signal which communicates with the corresponding combinational
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process in the data slice.

For this purpose, we need to determine those sequences of statements, in which a variable
being written at a point in the process body is read such that a data statement is under
the control of the read variable. For each sequence of statements of this form, the updated
(written) value of variable is assigned to a new signal which carries the updated variable value
towards the data slice. The slicing algorithm needs to be enhanced with this mechanism while
dealing with variables. An enhancement algorithm is thus proposed for the restructuring which
is applied after we have marked all the nodes as control and data according to dependency
analysis rules, and before splitting the module by partitioning rules.

After applying dependency analysis rules of the algorithm 1, we mark the CFG which
contains �control� as well as �data� nodes, as a mixed CFG. During enhancement procedure,
we traverse all the mixed CFGs to search for an assignment node marked as �data�, which is
nested by a predicate node marked as �control�, such that corresponding USE set contains
a variable marked as �control�. If such sequence is detected in the combinational process,
then we add a signal assignment node as successors to the variable assignment node which is
dominating the predicate node. The new assignment node copies the value of the variable to a
new signal. This signal transmits the updated variable value to the other CFG of the process
in the data slice by applying partitioning rules of the algorithm 1.

The pseudocode of the enhancement function is given as algorithm 3. This function is only
applied to mixed CFGs. In case of insertion of a signal assignment statement in the process,

Algorithm 3 Slicing enhancement function
void enhancement() {
for each CFG = (N,E) with corresponding process P = (L,V ,S ) such that V 6= ∅ do
if (∃v ∈ V , n1 ∈ N such that DEFn1 = {v}) ∧ (∃n2 ∈ N such that v ∈ USEn2 and n2

postdominates n1) then
if (n2 is control) ∧ (∃n3 ∈ N such that n3 is data) then

- Create a new output interface signal so for control slice entity Ec
- Insert a new signal assignment node with statement of the form, so <= v; as a successor
of n1.
if (n1 is nested by any n ∈ N) then

* Insert a new signal assignment node of the form so <= v; as n0 at the start of CFG
end if
- Create a new input interface signal si for data slice entity ED
- Replace v in n2 by si in new CFG of ED
- Add si in the sensitivity list of the corresponding data slice process

end if
end if

end for
}

an additional assignment to the same signal is also inserted at the start of the process to avoid
unnecessary latch inference after synthesis. The algorithm 3 involves the CFG traversals. We
have used the depth �rst search (DFS) algorithm to detect the USE and DEF sequences of
local variables mentioned in algorithm.
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Illustration of enhancement

We will consider our running example of accumulator with local variable to illustrate the
enhancement procedure. The input module to the slicing algorithm consists of four VHDL
processes obtained after pre-slicing transformation as given in Figure 3.12.

Since algorithm is only needed to be applied for mixed combinational process, therefore in
this case the process labeled Comb_p at line 12 ful�lls this condition. By applying enhancement
algorithm to this process, we �nd that variable CNT is being written at line 18, and read at
line 25. We mark variable assignment at line 18 as node n1, and that at line 25 as node n2.
Since there exists a data assignment node n3 at line 26 is nested by n2 due to R being a data
register, therefore value written to CNT at statement n1 must be communicated to the data
slice via signal.

Thus we create a new output interface signal CNT_1, and schedule an insertion of assignment
of variable CNT to signal CNT_1 just after the assignment to variable CNT. This assignment is
shown at line 7 in the corresponding process coded in Figure 3.13.

Correspondingly in data slice, a new input interface signal CNT_1 is scheduled to be created
in the port list of the data entity. After slicing, the statement at line 25 of Figure 3.12, which
is scheduled to be moved to the data slice, the algorithm replaces variable CNT by the new
input signal interface CNT_1.

Hence the statement in data slice appears, as shown at line 9 in the corresponding data slice
process in Figure 3.14. This new input interface signal CNT_1 is also added in the sensitivity
list of the process in the data slice containing above statement at line 16 in Figure 3.14.

1 . Control_Process_2 : process
2 . variable CNT : i n t e g e r range 0 to 6 ;
3 . begin
4 . CNT_i_2 <= CNT; −− s i g n a l i n t e r f a c e assignment to avoid l a t ch
5 . DSO2 <= DSO1
6 . CNT := CNT1;
7 . CNT_i_1 <= CNT; −− newly i n s e r t e d s i g n a l i n t e r f a c e assignment
8 . i f ( Reset = '0 ' ) then
9 . DSO2 <= '0 ' ;
10 . CNT := 0 ;
11 else
12 . i f (CNT < 5) then
13 . CNT := CNT + 1 ;
14 . else
15 . CNT := CNT + 1 ;
16 . end i f ;
17 . CNT_i_2 <= CNT; −− newly i n s e r t e d s i g n a l i n t e r f a c e assignment
18 . i f (CNT = 6) then
19 . DSO2 <= '1 ' ;
20 . end i f ;
21 . end i f ;
22 . CNT2 <= CNT;
23 . wait on CNT1,DSO1, Reset ;
24 . end process ;

Figure 3.13: Combinational process in control slice after enhancement

Similarly, referring to the same process Comb_p in Figure 3.12, variable CNT is also being
written at line 27 and read at line 31, and there exists an underlying data operation at line
33. Therefore, a new interface signal assignment statement is inserted as shown in Figure
3.13 at line 17 after CNT := CNT + 1;. Correspondingly in the data slice process in Figure
3.14, a new input interface signal CNT_2 (new port) is inserted, and variable CNT is replaced
by signal CNT_2 as shown at line 12. Signal CNT_2 is also added in the sensitivity list of the
corresponding process in data slice, as shown at line 16 of Figure 3.14.
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1 . Data_Process_2 : process
2 . BEGIN
3 . R1 <= R;
4 . S2 <= S1 ;

−−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
5 . i f ( Reset = '0 ' ) then
6 . R1 <= 0 ;
7 . S2 <= 0 ;
8 . else
9 . i f (CNT_1 < 5) then −− CNT i s sub s t i t u t ed with CNT_1
10 . R1 <= R + A;
11 . end i f ;
12 . i f (CNT_2 = 6) then −− CNT i s sub s t i t u t ed with CNT_2
13 . S2 <= R;
14 . end i f ;
15 . end i f ;
16 . wait on R, S1 , Reset ,A,CNT_1,CNT_2; −− 2 add i t i ona l s i g n a l s in s e n s i t i v i t y l i s t

−− due to enhancement procedure
17 . end process ;

Figure 3.14: Combinational process in data slice after enhancement

To avoid any latch inference and preserve the synthesis semantics, the algorithm puts
additional assignment to the signal CNT_2 at the start of the combinational process as shown
at line 4 of Figure 3.13.

1 . entity accum_v_Control i s
2 . PORT (CLK: IN b i t ;
3 . Reset : IN b i t ;
4 . DSO: OUT b i t ;
5 . CNT_1: OUT natura l range 0 to 6 ;
6 . CNT_2: OUT natura l range 0 to 6 ) ;
7 . end entity ;

(a) Control Slice after enhancement

1 . entity accum_v_Data i s
2 . PORT (A: IN i n t e g e r ;
3 . S :OUT i n t e g e r ;
4 . CLK: IN b i t ;
5 . Reset : IN b i t ;
6 . CNT_1: IN natura l range 0 to 6 ;
7 . CNT_2: IN natura l range 0 to 6 ) ;
8 . end entity ;

(b) Data slice after enhancement

Figure 3.15: Accumulator: entities of slices after enhancement

Note that variable CNT being written at node corresponding to statement CNT := 0; at
line 21 of Figure 3.12, need not be communicated via signal because it is not being read by
the subsequent statement in the same delta cycle during process execution.

After enhanced slicing, we obtain control and data entities in VHDL as shown Figure 3.15
with two additional ports CNT_1 and CNT_2 for communication between slices. The block
diagram of enhanced slicing result are depicted in Figure 3.16

DSO

A

clk

clk

Control Slice

Data Slice S

CNT_2
Reset

CNT_1

Figure 3.16: Slicing result of accumulator with variable
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3.5.4 Impact of VHDL transformation

The pre-slicing transformation allows to manipulate combinational activities separated from
the clock at delta cycle levels. In this way, we are able to globalize the local variables e�ect
within the delta executions of combinational process. With transformation and enhancement,
our control-data slicing paradigm is modi�ed, and looks as shown in Figure 3.17. The processes
with local variables are �rst transformed and then sliced with enhancement algorithm used
where applicable.

inputs

Data

Data
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Figure 3.17: Control-data slicing with local variables

It has been tested by exhaustive simulations that proposed transformation preserves the
functionality of the original module before and after synthesis. The entity declaration re-
mains unchanged. The architecture declaration contains additional signals, and the body of
architecture contains new processes after transformation.

A drawback of this transformation may be a negligible degradation in simulation speed
due to additional processes and signals introduced in transformed module as compared to
original one.

3.6 Implementation of control-data slicing

For implementation, we have chosen the VHDL front-end analysis tool SAVANT [94], [107]
which implements internal intermediate representation (IIR) of VHDL language according
to standard Advanced Intermediate Representation with Extensibility (AIRE) [5]. SAVANT
contains a VHDL front end analyzer that parses, type-checks, and converts VHDL �les into
an object-oriented intermediate representation based on the AIRE standard. SAVANT is con-
structed using PCCTS (Purdue Compiler Construction Tool Set) parser generator [2] written
in C++.

The IIR is a well connected abstract syntax tree (AST). The complete VHDL �le after
parsing is stored as IIR nodes which can be accessed through pointers. There are various
application programming interface (API) functions provided for di�erent manipulations on
the IIR. These functions are readily used to determine DEF/USE sets, hierarchy traversals,
VHDL code regeneration, and other operations required in the control-data slicing algorithm.
In our implementation, we perform manipulations on IIR of given VHDL �le, and build our
data structures (CFG and GFD) for slicing algorithm and regenerate IIR using API functions.
Use of SAVANT in implementing slicing algorithm not only avoided implementing VHDL
frontend parser, but also simpli�ed the implementation by reuse of existing API functions.
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3.7 Applications of control-data slicing

In this section, we describe practical implications of control and data separation using slicing
algorithm. We describe how sliced model can be used for model checking a class of properties
with possibility of data abstraction. We exploit the sliced representation to raise the abstrac-
tion level of RTL model for faster simulations. We also mention some applications of slicing
in various steps during computer-aided design (CAD) process.

3.7.1 Assisting model checking by slicing

One of our objectives to separate control and data was to model-check those parts of the IP
module containing its temporal behavior which comes out to be in the form of control slice
by the slicing algorithm. The data independent control slice is aimed at deploying for model
checking. For many applications such as multimedia and digital signal processing, the control
slice is much simpler than original module because it does not contain actual data processing
but the timing information of data �ows. Many interesting safety and liveness properties are
concerned only with the control slice. Therefore, in modules with data independent control,
we can only subject the control slice for model checking. In this way we achieve an abstraction
of the behavior of the model.

Model checking experiments

We have conducted a few experiments to observe the impact of our control-data slicing algo-
rithm on model checking time in IP modules. Some RTL models and their control slices have
been tested for the same property. We observed improvements in overall property veri�cation
time comprising of the model elaboration time, initialization elapse, and the state space ex-
ploration time. Experiments have been conducted for four di�erent modules: serial parallel
multiplier (SPM), a serial transmitter (UART Tx), DCT input registers stage (DCT IR), and
data encryption standard (DES) module. Results are shown in Table 3.1. Properties veri�ed
for these modules are described in natural language and corresponding CTL speci�cations as
below.

P1 = �The DSO eventually becomes active�

EF (DSO = 1) where DSO is an output control signal indicating presence of valid
data on output.

P2 = �In all execution paths, if reset is high in the current clock

cycle then internal buffer and register are cleared in the next

clock cycle�

AG(reset ⇒ AX(bufe ∧ rege)) where reset is a control input. bufe and rege are
boolean output control signals of a UART module which become high when internal bu�er
and register are empty.

P3 = �An input is always acknowledged at the same time when an

output is being requested�

AG(iack ∧ oreq) where iack and oreq are the `input acknowledge' and `output re-
quest ' signals respectively.
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P4 = �Under a condition that reset signal is always kept low, if DSI
is high then, DSO will always become active after 30 clock cycles

provided DSI is not reactivated throughout the 30 cycles.�

Depending upon the size of the control slice, there is considerable improvement in elabora-
tion and model checking time while verifying above properties for control slice as compared to
original module given for veri�cation. The benchmark examples are data oriented applications
in which all the data processing is abstracted away resulting a compact control slice model.
These experiments have been conducted with VIS model checker [3], [19].

Module: Property Comb.
blocks

No. of reg-
isters

Veri�cation
time (sec)

Improvement

SPM: P1
Original module 157 53 0.429

78.7 %
Control slice 14 5 0.091

UART Tx: P2
Original module 41 23 0.226

49.5 %
Control slice 22 6 0.114

DCT IR: P3
Original module 369 170 1.82

91.4 %
Control slice 37 12 0.155

DES: P1
Original module 1363 128 15.48

97.9 %
Control slice 28 8 0.314

SQRT: P4
Original module 2561 387 24.05

99.2 %
Control slice 39 15 0.188

Table 3.1: Model checking results with and without slicing

Properties involving primary inputs are not directly possible to be model checked because
variables involved in the property speci�cations must be registers (states). Therefore, for veri-
fying such properties additional states are needed for inputs which are automatically generated
in the veri�cation process by instantiating the module under test in a top level module, and
injecting inputs via registers.

Use of monitors

Properties similar to P4 are sometimes tedious to express in temporal logic by engineers less
familiar with the formal methods. Since temporal logic formalas are equivalent to state ma-
chines [42]. Therefore, P4 is implemented as a state machine representing property violation
monitor. Monitors are similar to the `observers' proposed by N. Halbwachs [46] and G. Berry
[11]. A monitor for property P4 is implemented which drives an error signal. It becomes high
whenever the property is violated. The state of the error signal is model-checked by CTL
invariant AG(!error=1).

Monitors could easily be implemented by engineers verifying hardwares by simulation test
benches because they have better understandability of hardware behaviors in terms of �nite
state machines rather than LTL or CTL. Temporal logic speci�cation can also be automatically
converted to equivalent state machines by using algorithms proposed in [42], [40], [108]. For
automating the process of writing state machine for such speci�cations, techniques proposed
by IBM Research Inc. [6], [10] and D. Borrione et al. [16] are also useful.

We aimed at making the basic model checking easy to be used in the veri�cation process.
A model checking mechanism is thus envisaged as shown in Figure 3.18 utilizing the control
data slicing for data abstraction at �rst place, and the existing formalisms to specify properties
as FSM monitors to facilitate model checking based veri�cation for engineers.
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Control slice extraction and creation of additional states for inputs are automatic in the
current implementation. Automating the implementation of monitors and integration of spec-
i�cation formalisms could be a future work.
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Figure 3.18: Assisting model checking by slicing and monitors

3.7.2 Assisting simulation by slicing

One of our main objectives of slicing was to increase simulation speed by abstracting the
complex computations in RTL data slice while keeping the timings of the computations (iso-
lated as control slice) intact. We will describe an improvement in simulation based validation
by replacing data processing within data slice, by a high level computation function which
calculates the results faster as compared to concrete data processing in original model.

The function is assumed to be provided by the designer which may be a high level func-
tional VHDL model or may come from the functional speci�cations in C/C++ language. The
concrete data processing is replaced by such function to reduce the simulation time. The ap-
proach is tested with a few examples and results have been shown according to classi�cation
of di�erent hardware modules.

Basic idea

We intend to replace the RTL description of the data slice by a high level faster simulation
model with same behavior at external interfaces. Such models are also called bus cycle accurate
(BCA) models [91], [39]. Our envisaged data abstraction from RTL to high level is aimed at a
class of modules which take input samples from the environment, process them by consuming
some clock cycles and write the output results to the environment. Such data processing may
be represented by a data �ow shown in Figure 3.19 in which data slice is partitioned into
following three phases.

1. Data acquisition

2. Data processing

3. Output phases
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During �acquisition phase�, data values are read from the environment via data inputs,
and are stored in internal registers. In original model, this phase may take several clock
cycles depending upon the speci�c design of the module. The acquisition phase is followed
by the `data processing phase' which implements the core functionality of the module. It is
time consuming phase which may take several clock cycles for a processing. Once all data is
processed, results are written to the data output where environment can read them. This is
called `output phase' which may take place in a single cycle, or may take more than one clock
cycles depending upon the speci�cations of the design. All these phases could be controlled by
the primary control inputs from the environment and/or by the control signals coming from
the control slice as shown in Figure 3.19.

Phase

Data Processing 

Control Slice

Acquisition

Phase

Output

Phase

Data Slice

 control outputs

data outputs

data inputs

control inputs

Figure 3.19: Data processing phases in data slice

By representing the data slice in this manner, we can replace the data processing phase by
an equivalent but faster computation function which calculates the results in a functional way
instead of cycle by cycle computation with RTL operators. This function takes the inputs via
parameters, performs the data computations in zero time, and returns the result. This would
lead us to abstractions analogous to BCA models [91] which simulate faster as compared to
RTL models.

The replacement of data processing by an abstract data computation function also leads
us to a model in which some internal control signals coming from control slice driving the
data path are no more needed. Hence the control states producing control signals could be
abstracted away. In this way control state machine could also be potentially minimized, and
for certain applications where control state space is not explorable would become explorable.
Thus we can model-check control state machine with less risk of state explosion.

Practical examples for which functional data slice model can be applied, are the data
intensive IP components in communications and multimedia processing applications such as
fast Fourier transform (FFT), discrete cosine transform (DCT), data encryption standard
(DES), digital modulators/demodulator, and other arithmetic cores. The abstraction of data
slice by high level function does not deal with modules with data dependent control such
as variable length decoder (VLD), greatest common divisor, and UART receiver because the
timing of the data operations in these modules depends on the data values.
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Implementation aspects

For realization of functional data slice abstraction, one way is to propose a sophisticated
syntactic and semantic analysis algorithm to extract the high level computation function
automatically from the VHDL representation of data slice. Without design hints, this job
would be non-trivial because the algorithm would heavily depend on VHDL syntax and require
rich static semantic analysis.

Another alternative is to simulate the given model with test patterns and observe the
output to guess di�erent computation functions implemented in the data slice, and replace
them with equivalent faster implementations at higher level. Such replacement requires the
timing information of the data inputs and outputs at the interface, and the latency of the
processing to be independent of the replacement so that behavior at the input and output
buses would conform to the original model. This also requires pattern recognition routines in
the RTL descriptions to detect the boundaries of data processing phase to be replaced with
abstract function without loss of timing information.

An easy implementation could be possible by allowing some designer interventions. If the
designer provides the un-timed functional model of the IP component, we can identify the
e�ective data processing in data slice with relevant inputs/outputs interfaces, and replace it
with the provided high level functional model. For such an implementation, we de�ne some
rules to identify the three phases in the data slice. This requires additional information from
the designer about the primary control inputs. For instance, an input is needed to easily
discover the data acquisition phase. Similarly, if the output strobing signal is given, we can
discover the output phase of the data slice. The boundaries of remaining data processing
phase could be identi�ed by de�ning some syntactic pattern matching rules.

In our implementation, we suppose that following information is taken from the designer

• The system reset input

• A �data strobe input� signal to indicate when the valid data inputs are sampled. Sim-
ilarly, a signal named �data strobe output� to indicate when the valid data output is
available

• For each module, a single data computation function is provided with compatible input
and output interfaces

Since we consider all data computations being carried out in data processing phase, the
acquisition phase contains only a set of assignments from data input ports to internal registers.
The results are written to data outputs after a zero time calculation and become available
immediately at outputs, but they are considered valid when indicated by the data strobe output
signal.

The structure of data slice shown in Figure 3.19, can be represented by a VHDL process
and named as functional data slice template. A functional data slice template for single data
input and single data output is shown in Figure 3.20. The three phases are indicated by the
VHDL comments. The interface signal DSI at line 3 is the data strobe input signal. D_IN and
D_OUT are the set of primary data inputs and primary data outputs respectively. Reset is the
system reset signal. Architecture of abstract data slice contains single process sensitive to the
clock signal.

Variables are declared to hold the data input samples and the output results. A variable
REG at line 12 holds the input samples to be used in the computation. The acquisition phase is
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1 . entity Funct_Data_Slice i s
2 . port ( c l k : in b i t ;
3 . DSI : in b i t ;
4 . Reset : in b i t ;
5 . D_IN : in bit_vector ;
6 . D_OUT: out bit_vector ) ;
7 . end entity ;

8 . architecture abstract_arc of Funct_Data_Slice i s
9 signal RESULT;
10 . begin
11 . process ( c l k )
12 . variable REG ;
13 . begin
14 . i f ( r i s ing_edge ( c l k ) ) then
15 . i f ( Reset i s a c t i v e ) then
16 . REG := 0 ; −− ∗∗∗∗∗ Reset s t a t e ∗∗∗∗∗
17 . e l s i f (DSI i s a c t i v e ) then
18 . REG := D_IN; −− ∗∗∗∗∗ Acqu i s i t i on phase ∗∗∗∗∗
19 . else
20 . RESULT <= f (REG) ; −− ∗∗∗∗∗ Data proc e s s i ng phase ∗∗∗∗∗
21 . end i f ;
22 . end i f ;
23 . end process ;
24 D_OUT <= RESULT; −− ∗∗∗∗∗ Output phase ∗∗∗∗∗
25 . end architecture ;

Figure 3.20: Functional data slice template

shown at lines 17 and 18. The Reset signal clears the internal registers as given at lines 15 and
16. The data processing phase is simply a call to function f as shown at line 20. This function
may be a VHDL function or it may be a foreign function in an other language like C/C++. It
takes REG as inputs and calculates the result in zero time, and returns output to RESULT. In case
of a function in foreign language, a VHDL procedure with foreign attribute speci�cation is to
be provided as mentioned in VHDL foreign language interface (FLI) speci�cations [80]. This
function or procedure is used to communicate between VHDL and the foreign subprogram.
In output phase, the calculated result is assigned to output ports as shown at line 21.

The template of Figure 3.20 can be automatically generated from the information provided
by the user without performing syntactic analysis on the data slice of the module, and it is
purely dependent on the information provided by the designer. The number of data inputs
and outputs of the template could vary according to the modules speci�cations. For example
in a multiplication circuit, the template can be generated with two data inputs labeled as the
multiplier and the multiplicand.

Illustration of abstraction by example

We illustrate the idea of functional data slice modeling by an example. Consider an imple-
mentation of an 8-bit serial parallel multiplier (SPM) as shown on left side of Figure 3.21.
Equivalent VHDL description is also given in Figure B.1 in Appendix B. The circuit samples
two 8-bit data words at inputs A and B when Load input is high, performs multiplication in
8 clock cycles and gives the result at output S at 9th clock cycle. Output DSO indicates that
valid result of multiplication is ready at 16-bit output S. Input vectors A and B are labeled as
data inputs by the designer. Load and Reset are control inputs. Automatic slicing of SPM
model results the control and data slice entities connected via intermediate signals as shown
in block diagram of Figure 3.21. Here cnt1 and cnt2 are the intermediate signals carrying
timing information for data operations inside the data slice.

We suppose that the designer gives us the supplementary information, that Load is a data
strobe input signal, and Reset is the reset signal. Similarly, if the designer identi�es DSO as
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Figure 3.21: SPM after slicing

data strobe output, we can identify the �output phase�. The �data processing phase� starts
from line 18 to 23 in Figure B.2 which is a cycle by cycle operations (shift and add) to calculate
the multiplication.

We have a zero time multiplication function provided in C language from functional spec-
i�cations of the model. We replace the RTL shift, and add operations (data processing) from
line 18 to 23 in SPM description of Figure B.2 by a single call to this multiplication function.
VHDL simulators such asModelSim R© provides Foreign Language Interface (FLI) [80] to call
foreign language routines in VHDL. For instance, to call a foreign C subprogram in ModelSim,
we write a VHDL subprogram declaration and use FOREIGN attribute of VHDL.

The idea of integrating foreign C function calls in VHDL is interesting for faster simula-
tions. As in most of the design speci�cations, we have un-timed functional models written in
high level languages such as C or C++ earlier in the design cycle. Therefore, those models
could be reused for such simulation, which are faster than the concrete RTL descriptions.

For SPM example, the C routine to calculate faster multiplication is given in appendix B
on Figure B.5. The subprogram required to call C routines from the VHDL is given in Figure
B.3. Each C function to be called in VHDL, is declared in a global package with FOREIGN

attribute speci�ed as on line 3 of Figure B.3. This declaration of subprogram is called in
VHDL description, where we replace the data processing with a call to C routine, and return
the result without consuming clock cycles. In Figure B.4 we have shown the replacement of
original data computation by a call to zero time multiplication function fast_spm at line 16.
Type casting is required between VHDL and C data types according to rules mentioned in
FLI reference manual [80]. Note that internal registers RA, RB, and RR are no more needed in
computation.

It is also notable that internal control signal cnt1 coming from the control slice in the
original model is no more used in the abstract model. Therefore, we can remove this signal
and its corresponding states in the control slice. In this way, we can achieve a minimization of
states in control slice. For large control and data slices where state space might be very large
and unexplorable, would become explorable by this abstraction. The abstracted IP model in
the form of block diagram looks as shown in Figure 3.22 after abstraction.

We have described the informal steps in transforming RTL description of a model into an
abstract model based on the information provided by the designer about the timing signals
at inputs and outputs. Some syntax analysis rules could be de�ned in the future research to
make this transformation automatic.
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Figure 3.22: SPM after data abstraction

Model Simulation time (sec) Improvement
SPM Concrete 37.180

38.1 %
Abstracted 23.004

DIST Concrete 23.638
75.6 %

Abstracted 5.752
DES Concrete 119.077

13 %
Abstracted 103.510

SQRT Concrete 11.85
34.6 %

Abstracted 7.74
FDIV Concrete 55.69

29.1 %
Abstracted 39.53

Table 3.2: Simulation Results

Experimental results

We have tested the SPM example by simulation, and compared the time consumed by the
simulation run in concrete and abstracted models. Various tests were observed on di�er-
ent examples such as serial parallel multiplication (SPM), distance calculation between two
complex numbers (DIST), data encryption standard (DES), integer square root (SQRT), and
�oating point division (FDIV) modules The results of tests are provided in Table 3.2. With
same number of random test vectors provided for concrete and abstract models under same
conditions, we observe that the abstract model saves around one third of the simulation time
for data computation intensive applications.

Classi�cation of IP modules

The simpli�ed functional abstraction of the data slice discussed uptil now, is applicable to a
class of designs which take input samples from the primary inputs once, and internally process
them by consuming some cycles. During processing, no new inputs are taken into account
from the environment. Once all the data processing is completed, results are written to the
primary outputs in single cycle. Such designs are called as single phase designs as indicated
by Fummi et al. in [14].

There exist more general class of modules named multi phase designs. In multiphase
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designs, data processing is performed in several steps. After each step partial inputs might be
read from the environment. Similarly, after each data processing step, partial results might
also be available at the outputs. This classi�cation of hardware designs is intuitive, and has
also been considered by Fummi et al. [14] while raising the abstraction level of RTL designs
to TLM [1]. We have tested only single phase designs for demonstration of e�ectiveness of the
approach. However, the technique can of course be enriched in the future to deal with multi
phase designs as well.

3.7.3 Miscellaneous applications of Control Data separation

Besides assisting model checking and simulation based veri�cation, our control-data slicing
could also be helpful in computer-aided design (CAD) applications. As control and data
have signi�cantly di�erent properties, many CAD tools tend to deal with them di�erently, as
revealed in power estimation research by D.I. Cheng et al. [24]. If a separation of control and
datapath is available, power estimation can be automated.

The proposed control-data slicing is also helpful for faster and more accurate area estima-
tion earlier in the design cycle as indicated by V.J. Lam et al. [68]. Since control and data
have distinct characteristics, therefore use of di�erent tools is considered during various design
processes. Logic synthesis, and automatic place and route tools are used to attain high quality
implementation of the control slice while regular nature of data slice makes them better suited
to be implemented manually or by datapath compilers.

FSM optimization techniques [62] are widely used in logic synthesis tools. If the control
state machines in HDL codes are separated, optimization can be performed automatically,
giving greater convenience and better synthesis results.

A control-data separation has also recently been found in design-reuse applications. The
computation element (CE) abstraction proposed by L. Shannon et al. [97], decouples the
datapath and system-level communication from the application-speci�c control to promote
design reuse by localizing controller redesign of an IP module for new applications.

The control and data �ow extraction techniques have been used in design for testability
in order to reduce the complexity of test generation in large hardware designs [43], [88]. In
modeling formalism such as in Petri nets, the control-data slicing could be used to allow
di�erent tools to operate on distinct parts of the model [38].

Furthermore, to enhanced the understandability in hardware debugging tools, our control-
data slicing techniques could be helpful to convert HDL descriptions into graphical state
machines for control parts and data �ow networks for datapaths so that users can understand
design functionality more quickly as proposed by J. Kim et al. [63].

3.8 Conclusions

We have proposed an algorithm based on VHDL slicing to separate control and data in syn-
chronous descriptions of IP modules described in VHDL. The proposed slicing is intended
for IP modules with mixed control and data activities according to the intuition of �Control�
highlighted in chapter 2. The VHDL description is provided with labeled data inputs to the
slicing algorithm. It performs a control and data �ow analysis based on the knowledge of data
inputs, and results two separate entities as control slice and data slice communicating with
each other. For slicing modules with local variables we have proposed a solution in terms of
VHDL transformation and restructuring to enhance the slicing.
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Control-data slicing results strongly depend on the labeling of the data inputs of the
IP module. Right choice of the data inputs is necessary for a reasonable separation between
control and data. With proposed slicing algorithm, we aim to obtain data independent Control.
Additional slicing rules are integrated to obtain a separation with Control depending on data
according to a di�erent notion of the control depending on the designer's anticipation.

In case of modules with data independent control, we can isolate the control slice to study
only the timing related properties of the IP module without considering data processing.
This would allow to reduce the state space of the whole module, and save the overall model
checking time. Similarly, data slice having no impact on the control slice in such modules can
be replaced by a high level fast implementation which consumes less number of cycles during
simulation as compared to original module. The data slice isolated from control slice is also
intended for abstract consideration of data to manipulate formal static analysis of data �ows.

Possible future work in control-data slicing might be the soundness proof of the slicing and
transformation algorithms. It would be interesting to prove that data registers in the data slice
are �ow dependent on data inputs where as control registers do not have any �ow dependence
on data inputs after slicing. VHDL syntax can also be extended to consider non-synthesizable
and behavioral VHDL models.

Next chapter presents another idea of control and data consideration based on boolean
data dependencies which might lead us to improve the slicing in low level modules. On the
other hand, the proposed slicing algorithm is reused in the next chapters, where we talk about
the formal veri�cation of data �ows in modules. The slicing assists us to investigate the data
dependencies only within the data slice. An application of slicing reduces the complexity of
processing in the formal veri�cation approach as discussed in chapter 5.



Chapter 4

Data dependency analysis using

Signi�cance

4.1 Introduction

Formal veri�cation of datapath properties of IP modules is a tedious task due to the presence
of large number of registers and complex functions. Many useful properties of datapath avoid
actual data values in speci�cations and take into account only the intentional presence or
absence of data at speci�ed clock instants. With such consideration, we can verify properties
concerning the intentionality of data at speci�c time without considering actual concrete
values.

We introduced the notion of �Signi�cance� in chapter 2 to identify automatically the `Con-
trol' in IP modules. In this chapter, we will characterize signi�cance as a mean to represent
intentionality of data in IP modules taking into account the impact of boolean data dependen-
cies among variables. The concept of signi�cance in this chapter, is aimed at assisting static
formal veri�cation of a class of data related properties of modules.

We will �rst give an informal illustration of signi�cance and its relationship with the
boolean data dependencies among variables in this section. The state of the art related
to the idea of veri�cation using Signi�cance is described in the next section. We present
a theoretical description of boolean data dependence and signi�cance functions for low level
modules in section 4.3, and provide a straightforward realization in section 4.4. Re�nements in
signi�cance semantics have been proposed in section 4.5. We will portray the use of signi�cance
for static formal analysis of the datapath properties in section 4.6.

4.1.1 Signi�cance and intentionality of data

A synchronous module receives data from environment via inputs and transmits results cal-
culated from these inputs to the environment via outputs at each clock cycle while making
transitions of its internal states. By environment, we mean the surrounding IP modules con-
nected and synchronously interacting with the module.

The environment provides intentional data to module to obtain an intentional result. How-
ever, there exist some clock instants when a speci�c input is not being used in the computation
of a certain output and hence can acquire an unintentional value which is irrelevant to the
computation.

77
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The signi�cance is used as a medium to represent the intentionality of data for the
hardware module being used in an environment. The presence of an intentional (signi�cant)
value on input has an impact on the outputs. On the other hand, when this value may not
have any impact on the results then it is considered as non-signi�cant.

In chapter 2, the signi�cance was considered as a boolean attribute associated with data
values which indicates that during a speci�c operation of the datapath, a signi�cant data value
at speci�c time instant is sampled and used to compute a signi�cant output result whereas a
non-signi�cant value propagating into the module results an irrelevant output.

As discussed in precedent chapters, hardware modules consist of the datapaths with inter-
acting control state machines. Signi�cance only matters about signals carrying data values in
the datapath whereas control signals containing critical timing references of data activities are
considered as signi�cant. Therefore to avoid the unnecessary complexity, we use the slicing
algorithm mentioned in chapter 3 to split a module as data slice and control slice. We then
apply the signi�cance issues only to the data slice.

Illustration of signi�cance and intentionality We will give an illustration of the notion
of signi�cance with respect to the intentionality of designer. A D �ip-�op has been shown
in Figure 4.1 as RTL circuit diagram with equivalent VHDL description. Notice that in
comparison with the illustration of Figure 2.4 in chapter 2, we have already been provided
here, a separation of control and data inputs by the designer. The CLK is also considered as
an implicit input here.

architecture RTL of DFFE i s

begin

process (CLK)
begin

i f (CLK = '1 ' and CLK'EVENT) then

i f (E = '1 ' ) then

Q <= D;
end i f ;

end i f ;
end process ;

end RTL;

MUX Q

(implicit)

E
(Control)

1

0

D
(Data)

CLK

Figure 4.1: D �ip-�op with Enable

We suppose that D is the data input and E is the control input. Suppose that data
input D is extended with a signi�cance attribute expressing whether its value is intentional
(signi�cant) or accidental (non-signi�cant). E being a control input is always signi�cant. Q
is initialized as non-signi�cant. If E is high, then D is written to the �ip-�op at rising edge
of CLK and Q becomes D. Thus when E is high, Q becomes signi�cant at next clock cycle
if and only if D is signi�cant at present clock cycle. When E is low, then value of Q remains
stable and its signi�cance too. At that time, value as well as signi�cance of D is not used.
Thus additional attribute associated with signals possesses information that how intentional
value of Q depends on intentional value of D and E.

The signi�cance information provided at inputs at a given clock cycle travels through the
module and appears at outputs at some later clock cycle. We can establish relationships among
the input and output signi�cance to statically analyze the �ow of signi�cant and formally prove
the concerned properties.
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4.1.2 Boolean data dependencies

The signi�cance information propagates through internal registers and combinational logic.
The rules which propagate the signi�cance through the module are called signi�cance semantic
rules which play important role in establishing the relationship between input and output
signi�cance. These rules are based on the notion of boolean data dependence among di�erent
variables. We say that a boolean output is data dependent on a boolean input, if changing the
value of this input causes a change in value on the output. We will describe the concept of data
dependence for boolean formulas and hardware modules. Consider a two input AND function
with inputs labeled as A, B and output as Q. We can intuitively see following observations

1. Value of Q depends on A and B because both can cause an impact on value of Q.

2. If we consider that A is �xed to logic false then output Q does not depend on value of
B. Symmetrically, if B is �xed to logic false then Q does not depend on A.

These observations reveal two di�erent notions of dependence in hardware modules. In �rst
case, Q statically depends on A and B. We call this kind of behavior as static data depen-

dence because no input is assigned any value to execute and determine the output. In second
case, we say that dynamically, Q does not depend on A if B is logic false. We assign values to
certain inputs to check the impact of other inputs. This requires semantic execution (simula-
tion) of the model. Therefore, we call this kind of behavior as dynamic data dependence .
The concept of static and dynamic dependence is illustrated with details in section 4.3.

In the next section we will describe state of the art techniques for static veri�cation similar
to our approach.

4.2 State of the art

Our notion of signi�cance permits us to formally investigate and validate the �ow of data in
IP modules. The proposed idea of functional veri�cation of data �ow using signi�cance is
similar to dynamic taint analysis [32], [74], [78] which consists of marking and tracking the
information �ow within a software program. In dynamic taint analysis, program variables are
associated with taint marks and �ow of tainted values is investigated by control and data �ow
analysis in the program. The taint analysis is aimed at detecting and preventing attacks on
software programs for testing and debugging purpose.

Dynamic taint analysis targets only software programs, whereas we are using a similar
notion for testing and debugging hardware designs. The analysis of J. Clause et al. [32] is
done on low level binary representation of programs. In comparison, we are working on low
level representation of hardware modules in terms of boolean equations and registers (gate
level). Taint propagation policies implemented in taint analysis are conceptually similar to
static and dynamic signi�cance semantics in our methodology. Taint analysis is based on
compiler techniques to determine control and data �ow dependencies, and there are no formal
basis in the proposed approaches. We have instead a formal description of data dependencies
and signi�cance in hardware modules.

T. Tolstrup et al. [99] have presented information �ow analysis of a subset of VHDL. The
result of the analysis is a non-transitive directed graph. The graph has a node for each variable
and signal used in the program and a directed edge between nodes if information might �ow
from one node to another. The information �ow obtained by such analysis is helpful for a
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class of security applications. The complete information �ow graph obtained by this approach
can be very huge in large designs. The analysis is based on high level VHDL source code
which needs tedious compiler techniques whereas for accuracy and ease of implementation
purposes, our analysis targets low level representation which can readily obtained from RTL
VHDL source codes by synthesis.

Analysis of behavioral VHDL code based on data �ows has been discussed in [96] and [13],
aimed at identifying properties of digital circuits from synthesis and testability point of view.
The analysis presents an informal way of discovering potential deadlocks in VHDL behavioral
descriptions raised from information �ow among processes via signals. Flow analysis at be-
havioral level are useful to debug highlevel speci�cations of the module. Our analysis is formal
with bit level accuracy to investigate many low level issues in hardware modules which are
not captured by high level analysis techniques.

4.3 Theoretical description of Signi�cances

In this section we will describe the theoretical grounds for the notion of signi�cance and the
boolean data dependencies in low level hardware modules. We will �rst describe the dynamics
of module and portray the concept of static and dynamic dependencies as follows.

4.3.1 Dynamics of the module

In chapter 2, we have provided a de�nition of hardware module as 3-tuple M = (I,O, f) with
respect to its inputs I, outputs O, and the internal semantics f . The semantics f can be
described in terms of a set of boolean formulas denoted as Φ, and the set of registers denoted
as R. For each output or internal signal we have a boolean formula denoted as ϕ ∈ Φ.

We consider synchronous IP modules at abstraction level of clock cycles as shown in Figure
4.2, where clock is considered as an implicit input. This is equivalent to the classical mealy
state machine model of the hardware [87]. A value on a wire is measured to be valid at regular
time intervals corresponding to the rising edges of the clock. Such module consists of registers
(memory elements), combinational logic function, inputs and outputs. In Figure 4.2, symbols
i, o and r represent input signal, output signal and register respectively. rj ′ represent input
signal to the register rj .

The index j symbolizes the multiplicity of these boolean signals. c collectively represents
the combinational computation of the module. We consider synthesizable modules without
combinational loops in c. A combinational computation cx can be viewed as equivalent
boolean formulas ϕx in which the variables are registers rj and inputs ij of the module.

Module execution

The cyclic execution of the module is based on the fact that values on inputs and registers,
determine the values of outputs and the registers in subsequent clock cycles. We denote the
current timing instant (rising edge) as t and next instant as t + 1 where t, t + 1 are natural
numbers. We will designate the value of a signal x at instant t by xt.

The succession of events caused by a rising clock edge at time instant t, provokes an update
of registers until edge t+ 1 when rj receive r′j . The outputs oj , and inputs of registers r′j are
updated between events t and t+ 1, which are combinationally dependent on registers rj and
inputs ij . Considering the overall system with environment, the outputs oj of a module M



4.3. THEORETICAL DESCRIPTION OF SIGNIFICANCES 81

COMBINATORIAL

MODULE

COMBINATORIAL

c

c

R

R
E
G
IS
T
E
R
Sij

I

O
oj

rj

r′j

Figure 4.2: Module M

are the input ij of an other module M ′, therefore a change in the value of the outputs of M ,
leads to an update of values of M ′ which combinationally depend on the output of M . These
values are the registers rj and the outputs oj of the module M ′.

Hence this causes a certain number of iterations of value updates. This iterative process
terminates because we suppose that there are no combinational loops in the module as well
as in overall system. We have therefore ot+1

j = ϕoj (It+1, Rt) and rt+1
j = r′tj = ϕrj (It, Rt). In

this way, we characterize the evolution of states of a module as a function of sequence of its
inputs with passing time.

State of a module at a particular time instant corresponds to the value of its registers at
that instant. The next states are determined as a function of inputs and current states. The
outputs are also determined by the current states and the new inputs. A state can depend on
all the inputs since the initial state. For instance, a module can emit the sum of all the inputs
received since initial state (modulo 2n where n is the number bits of the output). Also to
capture the dependence between inputs and outputs and expressing their concerned properties,
we represent the sequences since initial states.

4.3.2 Boolean data dependencies in modules

By dependence of an output `o' on an input `i', we mean that value on `i' has an impact on
the value of `o'. If we consider the �static data dependence� for example, this can lead us
to a trivial de�nition. It tells that there exists a dependence if we exhibit a context in which
changing the value of `i' causes a change in value of `o'. So in this way, the output of an AND
function logically depends on all its inputs, the output of a register depends on its input at
precedent clock cycle, the output of a multiplier circuit depends on both multiplier as well as
multiplicand. Hence the static dependence signi�es that there is a data dependence, if there is
a possibility of the impact of an input on the output. Static notion of dependence represents
an absolute dependence of an output on all the inputs which might involve while executing
the module.

When we talk about the �dynamic data dependence�, the concept is much less evident.
We do not talk about the �possibility� of an impact of inputs because the context which
represents the dynamic aspect of dependence is �xed. With dynamic dependence, we address
the questions such as �in a given context, a particular input has impact on the output�. For
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multiplication circuit, if multiplier is zero then result does not depend in multiplicand. As an
example, for AND gate with three inputs following analysis seems to be promising:

• The only context we can consider for an input is the value of other two inputs

• If all the inputs are 1, all the inputs have impact on the output because changing the
value of any input changes the output result

• If single input is 0 then only that input has an impact on the output because changing
the value of it will change the output

However, following observation does not satisfy the notion of data dependence:

• If all three inputs are 0 then no input has impact on the output because changing the
value of a single input keeping rest of the inputs unchanged does not change the output!

We see from the analysis with dynamic notion, that an individual input can not represent
the combined intervention of the inputs on an output. Based on this fact, we can not really
say about the context for a speci�c input in a satis�able way. This is why while treating the
case of dynamic dependence we drift from the concept of dependence towards an other concept
of natural language which is similar to what we actually want to represent and is described by
the fact that a part of the inputs determines an e�ective computation while rest of the inputs
do not propagate the impact. The idea is that, all the valuations associating same boolean
values to that part of the inputs, while associating any values to the rest of the inputs, brings
same result on the output.

4.3.3 Approximations of static and dynamic dependencies

We describe the approximate realizations of the data dependencies in terms of static and
dynamic signi�cances. S. Coudert [35] has provided a formal demonstration of signi�cance
and sound semantic rules in boolean formulas and hardware modules. These semantics lead
to the formal proof of an important property of the modules which informally states that with
respect to sound semantic rules,

�If an output of a module is significant at a specific clock instant

then all the inputs on which that output depends, must also be

significant�.

This property is concerned about the dependency relationship between the signi�cance of
inputs and outputs of the hardware module which can be represented in terms of basic boolean
functions. Boolean functions have been considered in the form of generic propositional logic
to mathematically characterize the behavior of the hardware modules. For understanding
mathematical basis of the proposed semantics, we encourage the reader to read the reference
article [35]. Here we will only give the recursive de�nitions of the approximate semantics
for static and dynamic signi�cances and relate them with our implementation through the
correctness proofs.

S. Coudert has proposed the notion of signi�cance function for boolean formulas and
proved the canonical extension to the hardware modules consisting of boolean formulas and
registers. A signi�cance function for a module determines, which outputs are signi�cant
with respect to signi�cant inputs. In general, the signi�cance function takes into account the
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signi�cance as well as values of the inputs to determine signi�cance of the output. This permits
an approach aimed at representing the static and dynamic data dependence as described in
preceding subsection. The signi�cance function requires tagging each input with a boolean
value representing signi�cance character. It calculates output signi�cance based on the history
of the input values of the module such that a signi�cant output at clock instant `t' is a function
of past values as well as past signi�cances before `t'.

The static and dynamic signi�cance functions are represented as Sstat(ϕ, v, s) and Sdyn(ϕ, v, s)
respectively. In this representation, `ϕ' denotes a boolean formula, v denotes the valuation
function of the boolean formula which results the e�ective boolean value of the formula as 0
or 1, and `s' denotes a valuation function similar to `v' but results the obtained signi�cance
in terms of 0 or 1. The de�nitions are provided in the form of properties for single variable,
as well as for basic boolean operations ∧, ∨ and ¬.

Static signi�cance

The static signi�cance function Sstat(ϕ, v, s) is de�ned by induction as follows:

Sstat(a, v, s) = s(a), for a boolean variable a (4.1a)

Sstat(ϕ ∧ ψ, v, s) = Sstat(ϕ, v, s) ∧ Sstat(ψ, v, s) (4.1b)

Sstat(ϕ ∨ ψ, v, s) = Sstat(ϕ, v, s) ∧ Sstat(ψ, v, s) (4.1c)

Sstat(¬ϕ, v, s) = Sstat(ϕ, v, s) (4.1d)

These properties show that signi�cance of boolean operations ∧ and ∨ depends only on
the signi�cance of its operands.

Dynamic signi�cance

The approximation of the dynamic data dependence called dynamic signi�cance Sdyn(ϕ, v, s)
is characterized as follows.

Sdyn(a, v, s) = s(a), for a boolean variable a. (4.2a)

Sdyn(ϕ ∧ ψ, v, s) = (Sdyn(ϕ, v, s) ∧ Sdyn(ψ, v, s))
∨(Sdyn(ϕ, v, s) ∧ ¬v(ϕ))
∨(Sdyn(ψ, v, s) ∧ ¬v(ψ))

(4.2b)

Sdyn(ϕ ∨ ψ, v, s) = (Sdyn(ϕ, v, s) ∧ Sdyn(ψ, v, s))
∨(Sdyn(ϕ, v, s) ∧ v(ϕ))
∨(Sdyn(ψ, v, s) ∧ v(ψ))

(4.2c)

Sdyn(¬ϕ, v, s) = Sdyn(ϕ, v, s) (4.2d)

These properties show that signi�cance of boolean operations ∧ and ∨ depends on the
signi�cance as well as value of its operands. We can note that the `signi�cant logic zero' value
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on any input of an ∧ operation forces the output to be signi�cant. Similarly, the `signi�cant
logic one' value on any input of ∨ operation forces the output to be signi�cant.

It is notable that static signi�cance Sstat as proposed by [35], is similar to the semantics S0

informally discussed in chapter 2 for separation of Control and Data. Similarly, the dynamic
signi�cance Sdyn is also same as the additional rules mentioned as semantics S1 in chapter 2
in an informal way.

It has been formally proved that approximate signi�cance semantics Sstat and Sdyn are
sound but not complete. Therefore, we will not always be able to obtain the same results for
two semantically equivalent modules with same external behavior observed with respect to
values on the input and outputs. In particular, if we want to de�ne sound signi�cances, we
can not be optimistic for complete signi�cances. Despite of these limitations, these type of
signi�cances o�er an advantage of being easily implementable with quite reasonable complex-
ity.

4.4 Realization of signi�cances

The notion of signi�cance and corresponding semantics, could be realized in real hardware
modules at gate level or RTL in various fashions. At gate level, we can easily extend the data
values and de�ne the propagation rules for basic logic gates. At RTL, we need to extend each
data value with signi�cance and de�ne the propagation rules for each RTL operator in HDL.
We discuss the realization issues of signi�cance extension at both levels as follows.

4.4.1 Signi�cance realization at low level

We have implemented the approximate static and dynamic semantics at gate level. As de-
scribed earlier, the concept of signi�cance applies only to data therefore we consider a sepa-
ration of control and data by slicing algorithm proposed in chapter 3, and we synthesize the
RTL data slice of the module to perform signi�cance computation while keeping control slice
intact at RTL.

For gate-level models, we will describe the control and data signals as follows:

1. D = {d1, d2, ..., dn} is set of data signals such that each di ∈ D is a 4-valued signal taking
its value from a set of symbolic values {F,T,f,t}, where F and T represent signi�cant,
and f and t represent non-signi�cant boolean values

2. C = {c1, c2, ..., cm} is set of control signals such that each ci ∈ C is a 2-valued signal
taking its value from a set of symbolic values {F,T}

The control and data signals are distinct in the module: that is C ∩ D = ∅
For boolean constants, we decide that their values are signi�cant. There is intuitive rea-

soning for considering constants as signi�cant. Indeed, a boolean constant is very likely to
be directly or indirectly decided by the designer of the hardware module. One could imagine
that designer speci�es: a given boolean value is constant but unknown. However, this case
is pointless because any logic synthesizer would ultimately have to assign a default value to
this constant. Consequently, in the signi�cance computation we would analyze the boolean
formulas and modules by considering known constants.

For single signal, we de�ne the signi�cance function as applicable to all kind of signi�cances
as follows:
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De�nition 4.1. The image of signi�cance function for a single signal is equal to the signi�-
cance of that signal.

Above de�nition corresponds mathematically to Eq. 4.1a and 4.2a.
For n-signals, where n > 1, the approximations to static and dynamic notions of data

dependencies are realized in the form of truth tables.

Realization of static signi�cance

We give an implementation of approximate static data dependency rules for basic logic oper-
ators among two arbitrary data signals di, dj ∈ D in Table 4.1. These truth tables show that
a non-signi�cant value dominates over a signi�cant value. We observe that signi�cance of any
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Table 4.1: Truth tables for data signals (Static notion)

input is propagated towards the output no matter it is being used under the corresponding
context or not, indicating that the input may have an impact on the output.

Propagation of control signals As described in precedent chapters, we consider a
distinction of Control and Data in hardware modules. Therefore, the interaction between
control and data signals is realized by restriction on static signi�cance semantics where control
signals are always considered signi�cant.

Control signals operated with data signals are given in Table 4.2 where ci ∈ C and dj ∈ D.
These truth tables show that the value of control input to a binary operator being always
signi�cant is considered dominant over value and signi�cance of data.
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ci ∨ djci ∧ dj

Table 4.2: Truth tables for control and data signals

A control signal ci at the input of ¬ operation, gives the control signal at the output.
Similarly, a data signal at the input, gives a data output. The control signals ci, cj ∈ C

operated among each other such as ci ∧ cj and ci ∨ cj , are evaluated by classical semantics of
∧ and ∨.
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Realization of dynamic signi�cance

Dynamic signi�cance is realized in Table 4.3 which re�ects the context relative dependence.
Notice that when a signi�cant input determines the result, then the signi�cance of other inputs
does not matter. Compared to static semantics, signi�cance calculation function constructed
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Table 4.3: Truth tables for data signals (Dynamic notion)

from dynamic semantics rules will be more complex than that from static semantics. The
dynamic dependence of an output on an input is more sensitive as compared to static de-
pendence, and considers run-time valuations of accompanying inputs to evaluate the impact.
Therefore degree of optimization in case of dynamic semantics is less. They are suitable for
observing the data dependencies in hardware modules with speci�ed constraints.

We will show the correctness of these realizations with respect to the formal de�nitions
given in [35].

4.4.2 Correctness of the Realizations

In realization of static and dynamic signi�cances as truth tables, we have used four symbolic
values to associate the additional signi�cance attribute with existing boolean character of the
signals. These symbolic values can be represented by a pair of boolean attributes (sig, val)
where val stands for the objective value of the signal and sig represents the signi�cance. The
symbolic values can be mapped with 2 bits in classical boolean values. Di�erent mapping are
available, however we have chosen the one shown in table 4.4, because it is more intuitive.

sig val Intuition

F 1 0 Signi�cant false
T 1 1 Signi�cant true
f 0 0 Non-signi�cant false
t 0 1 Non-signi�cant true

Table 4.4: Mapping table for value and signi�cance

In general, the signi�cance function S for ∧ and ∨ between two data signals di and dj

is a function of values and signi�cances of di and dj . Mathematically, if we denote fsig as a
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function with its range as the set of signi�cance (from sig), then we have

S(di ∧ dj) = fsig(sig(di), val(di), sig(dj), val(dj)) (4.3a)

S(di ∨ dj) = fsig(sig(di), val(di), sig(dj), val(dj)) (4.3b)

where sig(di) and val(di) are boolean variables representing signi�cance and value of di re-
spectively, and sig(dj) and val(dj) represent signi�cance and value of dj respectively. The
signi�cance of ¬ operation is the function of value and signi�cance of the input given as

S(¬di) = fsig(sig(di), val(di)) (4.3c)

Similarly, for ∧, ∨ and ¬, we have general value functions given as follows:

V(di ∧ dj) = fval(val(di), val(dj)) (4.4a)

V(di ∨ dj) = fval(val(di), val(dj)) (4.4b)

V(¬di) = fval(val(di)) (4.4c)

where fval is a notation used to represent a function with its range as the set of values (from
val). The value functions are intuitively independent of signi�cances sig(di) and sig(dj) which
would also be evident by the following correctness proofs.

Correctness of static signi�cance

AND function With the help of mapping table 4.4, the static signi�cance of ∧ operation
given in table 4.1 can be represented by Karnaugh maps for signi�cance and values as shown
in table 4.5.
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Table 4.5: Mapped truth tables for ∧ operation (static notion)

From the signi�cance map fsig of table 4.5, we obtain following signi�cance function for ∧
by K-map simpli�cation.

S(di ∧ dj) = sig(di) ∧ sig(dj) (4.5)

Since, di and dj are signals, therefore according to de�nition 4.1, we can write Eq. 4.5 as

S(di ∧ dj) = S(di) ∧ S(dj) (4.6)
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which corresponds to Eq. 4.1b by substituting ϕ = di and ψ = dj and symbolizing S as Sstat.
Therefore, we can say that semantics of ∧ for data signals in table 4.1 are same as given by
Eq. 4.1b.

By simpli�cations of the value map fval in table 4.5, we obtain following value function.

V(di ∧ dj) = val(di) ∧ val(dj)

This shows that the value of ∧ function is independent of the signi�cance of its inputs, and is
coherent with the intuitive de�nition of Eq. 4.4a.

OR function The static signi�cance of ∨ operation given in table 4.1 can be represented
by Karnaugh maps as shown in table 4.6.
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Table 4.6: Mapped truth tables for ∨ operation

From the signi�cance map fsig, we obtain following signi�cance function by K-map sim-
pli�cation.

S(di ∧ dj) = sig(di) ∧ sig(dj) (4.7)

According to de�nition 4.1, we can write it as

S(di ∧ dj) = S(di) ∧ S(dj) (4.8)

which corresponds to Eq. 4.1c by substituting ϕ = di and ψ = dj , and symbolizing S as Sstat.
Therefore, we can say that semantics of ∨ for data signals in table 4.1 are same as given by
Eq. 4.1b.

By simpli�cations of the value map fval in table 4.6, we obtain following:

V(di ∧ dj) = val(di) ∨ val(dj)

, which shows that the value of ∨ function is independent of the signi�cance of its inputs.
This is coherent with the intuitive de�nition of Eq. 4.4b.

NOT function The ¬ operation given in table 4.1 can be represented by Karnaugh maps as
shown in table 4.7. From the signi�cance map fsig, we obtain following signi�cance function
after simpli�cation.

S(¬di) = sig(di) (4.9)
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Table 4.7: Mapped truth tables for ¬ operation

Correctness of dynamic signi�cance

AND function With the help of mapping table 4.4, the dynamic signi�cance of ∧ operation
given in table 4.3 can be represented by Karnaugh maps for signi�cance and values as shown
in table 4.8.
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Table 4.8: Mapped truth tables for ∧ operation (dynamic notion)

From the signi�cance map fsig of table 4.8, we obtain the 3 terms in signi�cance function
for ∧ by K-map simpli�cation given as follows.

S(di ∧ dj) = (sig(di) ∧ sig(dj)) ∨ (sig(di) ∧ ¬val(di)) ∨ (sig(dj) ∧ ¬val(dj)) (4.10)

Since, di and dj are signals, therefore according to de�nition 4.1, we can write Eq. 4.10 as

S(di ∧ dj) = (S(di) ∧ S(dj)) ∨ (S(di) ∧ ¬val(di)) ∨ (S(dj) ∧ ¬val(dj)) (4.11)

which corresponds to Eq. 4.2b by substituting ϕ = di and ψ = dj and, symbolizing S as Sdyn,
and val as valuation function v. Therefore, we can say that semantics of ∧ for data signals in
table 4.3 are same as given by Eq. 4.2b.

By simpli�cations of the value map fval in table 4.8, we obtain

V(di ∧ dj) = val(di) ∧ val(dj)

, which shows that the value of ∧ function is independent of the signi�cance of its inputs, and
is coherent with the intuitive de�nition of Eq. 4.4a.
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OR function The dynamic signi�cance of ∨ given in table 4.3 is splitted into Karnaugh
maps as shown in table 4.8. From the signi�cance map fsig of table 4.9, we obtain the 3 terms
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Table 4.9: Mapped truth tables for ∨ operation (dynamic notion)

in signi�cance function for ∨ by K-map simpli�cation given as follows.

S(di ∧ dj) = (sig(di) ∧ sig(dj)) ∨ (sig(di) ∧ val(di)) ∨ (sig(dj) ∧ val(dj)) (4.12)

Since, di and dj are signals, therefore according to de�nition 4.1, we can write Eq. 4.12 as

S(di ∧ dj) = (S(di) ∧ S(dj)) ∨ (S(di) ∧ val(di)) ∨ (S(dj) ∧ val(dj)) (4.13)

which corresponds to Eq. 4.2c by substituting ϕ = di and ψ = dj , and symbolizing S as Sdyn,
and val as valuation function v. Therefore, we can say that semantics of ∨ for data signals in
table 4.3 are same as given by Eq. 4.2c.

By simpli�cations of the value map fval in table 4.9, we obtain following

V(di ∧ dj) = val(di) ∨ val(dj)

which shows that the value of ∨ function is independent of the signi�cance of its inputs, and
is coherent with the intuitive de�nition of Eq. 4.4b.

NOT function Since truth tables for ¬ function is same in case of static and dynamics
semantics of tables 4.1 and 4.3, therefore we have the same mappings for signi�cance and
value for ¬ function as shown in table 4.7.

We also show the mapping of semantics with Control and Data considerations as follows.

Mapping Control/Data restriction

AND function The signi�cance of ∧ operation between control signal ci, and data signal
dj of table 4.2 is given as Karnaugh maps of signi�cance and values in table 4.10.

Here, we obtain 2 terms in signi�cance function for ∧ by K-map simpli�cation given as
follows.

S(ci ∧ dj) = sig(dj) ∨ ¬val(ci)

which describes that output function will be signi�cant when value of control signal ci is 0.
Otherwise the signi�cance of function is equal to the signi�cance of dj .
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Table 4.10: Mapped truth tables for ∧ operation (Control/Data)

OR function In the same way, signi�cance of ∨ operation between control signal ci, and
data signal dj of table 4.2 is given in table 4.11.
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sig(di) sig(di)val(di) val(di)

val(cj)val(cj)

fvalfsig

Table 4.11: Mapped truth tables for ∨ operation (Control/Data)

Here, we obtain 2 terms in signi�cance function for ∨ by K-map simpli�cation given as
follows.

S(ci ∨ dj) = sig(dj) ∨ val(ci)

which describes that output function will be signi�cant when value of control signal ci is 1.
Otherwise the signi�cance of function is equal to the signi�cance of dj .

Again the ¬ function in this case has same semantics as given in truth tables 4.1 and 4.3,
and the K-map as table 4.7.

4.4.3 Limitation of approximate signi�cances

Application of static and dynamic semantics to di�erent syntactic forms of the same boolean
function may produce di�erent evaluations of signi�cance at output. For illustration purpose
let us consider following two boolean formulas of same boolean function:

ϕ1 = (a1 ∧ ¬a3) ∨ (¬a1 ∧ a2) ∨ (¬a2 ∧ a3)
ϕ2 = (¬a1 ∧ a3) ∨ (a1 ∧ ¬a2) ∨ (a2 ∧ ¬a3)

It can easily be proved by truth tables that ϕ1 ≡ ϕ2. If we consider a case of signi�cance
evaluations in which a1 and a2 are signi�cant but a3 is non-signi�cant then according to table
4.3, both formulas do not produce same results. For instance if a1 = F, a2 = T, and a3 = f

then by substitution we obtain ϕ1 = T but ϕ2 = t. Similarly, if we consider a1 and a2 as
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1 . i f (B = '0 ' ) then

2 . R <= R + A;
3 . else

4 . R <= ' 1 ' ;
5 . end i f ;

Figure 4.3: if − else structure in VHDL RTL

control signals and a3 as data signal, and apply semantics of table 4.2, we observe di�erent
signi�cance evaluations for ϕ1 and ϕ2.

The limitation comes from the syntax dependent calculus of the static and dynamic signif-
icances. These approximations are sound but not complete. This spurious behavior can cause
a loss of useful information during the veri�cation process. Such kind of indications are called
as false alarms in veri�cation. The approximate signi�cances can cause an indication of a
signi�cant value on an output as non-signi�cant in a module. False alarms in the property
veri�cation process can be avoided by using signi�cance semantic rules independent of syntax
of boolean functions. However, such semantics costs more from complexity of computation
viewpoint.

4.4.4 Signi�cance realization at high level

Introducing signi�cance at RTL is tedious as compared to that at gate level which requires
rede�nition of various high level HDL semantic constructs. We have high level operations such
as addition, subtraction, and multiplication of integers and bit vectors at RTL. By directly
implementing signi�cance at RTL for such operators in a straight forward way, the degree of
accuracy of the analysis might be reduced as remarked by following discussion.

High level data type conversion The RTL description contains complex data type con-
versions. For example, while taking into account a type conversion from an n-bit vector to an
integer value, a signi�cant bit vector can be converted into an integer however a bit vector
containing non-signi�cant bits is ambiguous to convert into concrete integer value. We need
to enhance language constructs which take into account the signi�cant and non-signi�cant
integers.

Structural issues Some of the problems while using signi�cance semantics directly for RTL
code are the structural issues. RTL code consists of high level language constructs like if-else
clauses, case statements for which signi�cance oriented semantics is needed to be de�ned.

Consider a piece of VHDL RTL description shown in Figure 4.3. In the original RTL code
with 2-valued logic, the description has its de�ned meanings. However, if we have A, B, and
R as 4-valued data signals being able to carry value and signi�cance then signi�cance of B is
not being taken into account because in the original model the comparison of B at line 1 is
based on 2-valued logic. While B being non-signi�cant (i.e. either 't' or 'f') R will always
be signi�cance if same descriptions used for signi�cance extended signals.

Therefore, either we need to de�ne signi�cance semantics of if-else and case, or we need
to perform syntax transformation which takes into account the signi�cance of the signals. For



4.4. REALIZATION OF SIGNIFICANCES 93

1 . i f (B = 'F ' ) then

2 . R <= R + A;
3 . e l s i f (B = 'T' ) then

4 . R <= 'T ' ;
5 . else

6 . R <= ' f ' ; −− or ' t ' ( some non−s i g n i f i c a n t va lue )
7 . end i f ;

Figure 4.4: Syntax transformation required at RTL

the given example of Figure 4.3, we have to rewrite the code as shown in Figure 4.4 after
syntax analysis which could be tedious in complex cases.

Vector assignments While applying signi�cance to hardware modules,it would be inter-
esting to consider an abstraction level which takes into account the whole bit vector carrying
either a signi�cant or non-signi�cant value. Implementing such mechanism is di�cult to
achieve at RTL. Consider a bit vector being assigned in following fashion:

s_p1 : V(15 downto 8) <= A xor B; −− a statement in proce s s p1
s_p2 : V((7 downto 0) <= ( other => ' 0 ' ) ; −− a statement in proce s s p2

where p1 and p2 are VHDL processes. If we would consider signi�cance of individual bits then
above structure of code would also be suitable for signi�cance computation. However, to avoid
complexity if we consider a bundled signi�cance computations by merging the signi�cance
bits of the vector V to obtain a single signi�cance bit, we have to make additional signi�cance
computation for bit vector V as follows:

p3 : V_sig <= A_sig and B_sig ; −− add i t i o na l p roce s s p3

where A_sig and B_sig are new signals indicating the signi�cance of the vectors A and
B respectively. Detection of assignments to bit vectors in HDL code and correspondingly
deducing signi�cance in the form of a bundled assignment requires a rich syntax and semantics
analysis.

These are the main issues which we investigated during experimentation at RTL. There
are more issues such as for loops, process activations on signi�cance changes which could
make the signi�cance realization hard at RTL.

4.4.5 Simpli�cation of module

The extension of the module with signi�cance apparently increases the size of the module.
However, depending upon the nature of the speci�c semantics, there are potential minimiza-
tions possible in the module. Particularly, in case of straightforward static signi�cance Sstat,
the signi�cance computation function obtained from modules could be quite compact due to
the presence of redundant boolean variables irrelevant to the output signi�cance.

The deletion of unused and redundant variables can practically be achieved by logic op-
timization algorithms. Logic optimization can remove the combinational and sequential logic
corresponding to unused output values in the module resulting a simpli�ed signi�cance com-
putation model for static veri�cation. The degree of simpli�cation depends on the property
being veri�ed, input constraints, and the nature of signi�cance propagation semantics.
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4.5 Re�nements in signi�cance computation

In this section, we will present some ideas of improving the approximate semantics of static
and dynamic data dependencies. We wish to approach a natural computation of signi�cance
which is closer to the ideal data dependencies, and which is based on the semantic analysis
of the boolean formulas rather than their syntax. We have worked around a few semantics to
derive a signi�cance computation function from a given boolean formula considering the basic
properties of boolean algebra.

4.5.1 Re�ned signi�cance : Sref

A drawback of static and dynamic semantics proposed by [35] is that they do not take into
account the properties of tautology and contradiction in the de�nition. In classical logic with
boolean variable x, we write these properties with follows boolean formulas

• φ1(x) = x ∧ ¬x = 0 (Contradiction)

• φ2(x) = x ∨ ¬x = 1 (Tautology)

Intuitively, the signi�cance of above formulas must be a constant, and should not depend on
the signi�cance or value of x because the resultant value is constant in both cases. However,
if we evaluate the signi�cance of φ1 and φ2 either with static or dynamic semantics, we obtain
following signi�cance functions.

Sstat(φ1) = Sdyn(φ1) = sig(x)
Sstat(φ2) = Sdyn(φ2) = sig(x)

These equations show that, the signi�cance of the contradiction formula φ1, and the tautology
formula φ2 depends on the signi�cance of the input variable x which is not true according to
the intuition.

We have, therefore introduced some re�nements in the dynamic semantics. The re�ned
signi�cance semantics is denoted as Sref which takes into account the signi�cance evaluation
for tautologies and contradictions in boolean formulas.

Semantics

For two data signals, di and dj , we de�ne the equality test between their values as follows

Equal (val(di), val(dj)) = ¬(val(di)⊕ val(dj)) (4.14)

where ⊕ is the exclusive OR (XOR) function such that

val(di)⊕ val(dj) = (val(di) ∧ ¬val(dj)) ∨ (¬val(di) ∧ val(dj))

The semantics of equality function Equal are given in table 4.12. The result of the equality
test is also a boolean value representing 1 for equality, and 0 for inequality.

With the help of equality test function of Eq. 4.14, we de�ne new signi�cance semantics
for ∧ and ∨ with data signals di and dj as follows.
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val(di) val(dj) Equal (val(di), val(dj))
0 0 1

0 1 0

1 0 0

1 1 1

Table 4.12: Semantics of equality test

De�nition 4.2 (Re�ned signi�cance).

Sref (di ∧ dj) = Sdyn(Sdyn(di ∧ dj) ∧ ¬Equal (val(di),¬val(dj) )) (4.15)

Sref (di ∨ dj) = Sdyn(Sdyn(di ∨ dj) ∨ Equal (val(di),¬val(dj))) (4.16)

The semantics for single variable and the ¬ operation is unchanged. i.e.

Sref (di) = sig(di)
Sref (¬di) = sig(di)

With de�nition 4.2, we can see that, in case of tautology or contradiction where dj = ¬di,
we can obtain following, by substitution

Sref (di ∧ ¬di) = Sdyn(Sdyn(di ∧ ¬di) ∧ ¬(Equal (val(di),¬val(¬di) )))
Sref (di ∨ ¬di) = Sdyn(Sdyn(di ∨ ¬di) ∨ (Equal (val(di),¬val(¬di) )))

Since Equal (val(di),¬val(¬di)) = 1 according to Eq. 4.14, and Sdyn(di ∧ ¬di) results sig(di)
according to Eq. 4.10 and 4.12, therefore we obtain following

Sref (di ∧ ¬di) = Sdyn(sig(di) ∧ ¬(1) )
Sref (di ∨ ¬di) = Sdyn(sig(di) ∨ 1)

by simplifying above equations, we have

Sref (di ∧ ¬di) = Sdyn(sig(di) ∧ 0 )
Sref (di ∨ ¬di) = Sdyn(sig(di) ∨ 1 )

, which results according to Eq. 4.10, 4.12, and table 4.4, the following signi�cances.

Sref (di ∧ ¬di) = F ≡ (1, 0)
Sref (di ∨ ¬di) = T ≡ (1, 1)

We see that with re�ned signi�cance Sref , we obtain a constant signi�cant values for tautology
and contradiction formulas. Thus de�nitions 4.15 and 4.16 are more natural as compared to
de�nition 4.2b and 4.2c.

So for as the realization of Sref is concerned, the de�nition could easily be integrated with
static and dynamic realizations by de�ning functions which �rst checks the equality of the two
operands and then addresses the table 4.3 of Sdyn for signi�cance evaluation.
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4.5.2 Semantic computation of Signi�cance

The re�ned signi�cance Sref could further be enhanced by considering a semantic calculus of
signi�cance. A new approach of signi�cance computation is under consideration of the LabSoC
team for optimizations. With this approach, the signi�cance computation is not based on the
rules respecting the original structure of the boolean formula. It rather computes a new
formula from a given boolean formula by applying induction principle on its variables.

The semantic calculus proposed in the inductive approach associates to each n-variable
boolean formulas ϕ(x1, . . . , xi, . . . , xn), a new 2× n-variable formula

Sϕ((x1, . . . , xi, . . . , xn)(s1, . . . , si, . . . , sn))

computing the signi�cance of ϕ(x1, . . . , xi, . . . , xn). Here (s1, . . . , si, . . . , sn) are signi�cances
corresponding to the variables (x1, . . . , xi, . . . , xn). The semantic calculus captures the signif-
icance in the sense that

Sϕ((x1, . . . , xi, . . . , xn)(s1, . . . , si, . . . , sn)) = 1 (true)

if and only if, ϕ(x1, . . . , xi, . . . , xn) only depends on signi�cant values of each xi.
The formula Sϕ is quite di�erent from ϕ and could potentially be complicated depending

upon the nature of the given boolean function.

4.6 Applications of Signi�cance

Signi�cance can serve for verifying properties concerning the valid presence or absence of
data. With this concept it would be intresting to extract the signi�cance computation model
from the given hardware description of the module according to a given set of rules for the
propagation of signi�cance among boolean operators, and statically investigate the boolean
data dependencies between inputs and outputs.

Signi�cance can be used to statically detect errors in modules where some invalid data
values might be provided at the inputs which propagate to the outputs producing invalid
results. Similarly, some invalid (non-signi�cant) initialization of the internal registers of the
module would cause an erroneous output which might be detected by this approach.

Since concrete data value computations are ignored in case of static semantics, we are
able to achieve optimizations in data processing. Moreover for properties concerning only
signi�cance, output values are ignored. Therefore, combinational and sequential logic elements
taking part in output value calculation could be removed to obtain a simpli�ed signi�cance
calculation model.

Common bugs addressed by Signi�cance

The concept of signi�cance can be used to perform static formal analysis for bug detection in
pipeline of datapaths. We can characterize di�erent bugs in relation to signi�cance showing
how the concept can serve to specify and validate bugs in complex systems.

• Data that is not expected to be lost (signi�cant) in the pipeline is lost (becomes non-
signi�cant) in the datapath. By analyzing such bugs at gate level, we can observe that
they can arise for instance in case, where a reset signal is mistakenly asserted and hence
destroying the useful signi�cant values of data registers. Selection signal of a multiplexer
might be generated incorrectly such that a non-signi�cant data is chosen at the output.
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• Data that was not expected to be destroyed (made non-signi�cant) mistakenly survived
in the datapath registers (remained signi�cant)

• Some wrong (non-signi�cant) source of data has been used for some computation

• A bug in the control logic of an array implementing a FIFO (�rst in �rst out) queue
can cause a problem. For instance, it would be required to verify that if we send a
signi�cant data sample followed by a non-signi�cant sample as input to FIFO then it is
never possible that we see a non-signi�cant data sample followed by a signi�cant sample
at the output.

• The control slice containing critical timing information of the module should not be
a�ected by non-signi�cant data values. For example in serial output of the UART
module, we can statically verify that the start, stop and parity control bits (timing
information) in the output packet are never non-signi�cant in any possible state of the
module.

• Erroneous cases where some invalid (non-signi�cant) initialization of the internal reg-
isters of the module would cause an invalid output might be formally detected by sig-
ni�cance. Such errors could also be detected by 'U' (uninitialized value) propagation
during reset phase in VHDL simulations with IEEE multivalued logic system [4]. How-
ever, these simulations are neither formal nor exhaustive. The Signi�cance might serve
here for static formal veri�cation.

The subsequent chapter describes the utilization of the Signi�cance in formal veri�cation.

4.7 Conclusions

In this chapter, we have proposed the notion of Signi�cance to represent intentional data
movements in IP modules. We have presented a theoretical description of the signi�cance,
and related it with more basic concept of static and dynamic data dependence among boolean
variables in low level IP modules. Approximations to the ideal static and dynamic data
dependencies have been proposed for homogeneous signi�cance calculations.

The approximate static and dynamic semantics being sound but not complete, have an
advantage of easy implementation. Although due to syntax dependent computations, there
are possibilities of false alarms during veri�cation process, yet they come up with reasonable
complexity of implementation. Static semantics provide a way of model simpli�cation for
static veri�cation of a class of datapath properties. Dynamic semantics being more powerful
but complex than static semantics can be used to formally study the critical data dependencies
in low level hardware modules.

A realization of signi�cance at RTL and gate level is discussed, and possibility of simpli-
�cation of modules is described. Application of signi�cance at gate level description avoids
subtle syntax and semantic analysis for RTL operators. Signi�cance can also be de�ned di-
rectly for the RTL operations to avoid the �rst synthesis step, and to allow working at RTL
instead of gate level. This would need to de�ne signi�cance propagation rules for high level
operators such as addition and multiplication and complex syntactic analysis to deal with high
level control statements.
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We have proposed re�nements in approximate signi�cance computations taking into ac-
count the interpretation of tautologies and contradictions. A semantic computation of signif-
icance could be provided in the future which would lead to an analysis independent of the
syntax of the boolean formulas.

It would also be interesting to prove the correctness of re�ned semantics. That is, for
any n-variables boolean formula, the Sref function leads to a unique 2× n-variables boolean
formula for its signi�cance. A compact realization, and integration of re�nements with existing
signi�cance implementation could also be a future contribution.



Chapter 5

Veri�cation based on Signi�cance

5.1 Introduction

The Signi�cance attribute presented in precedent chapter was aimed at statically investigating
the data �ow, and verifying functional correctness of datapath operations in hardware module.
This chapter is aimed at utilizing the concept, in a prototype veri�cation framework to assist a
validation engineer in verifying important datapath properties. In particular, we are interested
in formally verifying properties of the module which state that desired outputs arrive well at
the time when they are expected to be arrived. Such properties talk about the intentional
presence or absence of data on the inputs and outputs of the module.

The presented veri�cation technique is based on model checking [29], [31] in which we �rst
automatically transform the module to enable it for sound signi�cance calculations, and then
provide a way to specify properties concerning signi�cance with an ease of implementation for
an engineer. The veri�cation approach, being static and formal, provides an easy and powerful
way of debugging data �ows in hardware modules as compared to simulations.

We will �rst describe an overview of the veri�cation process by relating the behavior of the
module capable of performing sound signi�cance calculations with the designer's anticipation
about the expected behavior. In the next section, we will give the details how a given hardware
module undergoes di�erent steps in the proposed veri�cation process to �nally verify the
speci�ed property. An example is used to illustrate this idea in section 5.3. A prototype
implementation of the framework is presented in section 5.4, and experimental results are
provided to show the e�ectiveness of the approach in section 5.5.

5.1.1 Signi�cance and timing

Conceptually, a synchronous hardware module being used in an environment samples signif-
icant data inputs at a speci�c time instant (rising/falling edge) to produce signi�cant result
at an other time instant. �When a data input or output should be signi�cant�, is the tim-

ing information of that input or output. As described in precedent chapters this timing
information is intuitively present in the control slice of the module. Timing information of
data inputs and outputs is needed to specify properties concerning signi�cance of inputs and
outputs of hardware module in the veri�cation process.

The timing information might be available in di�erent ways. One way is to obtain it from
the control slice of the module. For example in data computation intensive hardware designs, a
primary control input is used in such a way that it enables the data input loading at a speci�c
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clock instant. Hence this input could be used as an indication that some data input should
be signi�cant at that clock instant for an intentional execution of the module. Similarly, on
the output interface, a control output is sometimes generated to provide an information to the
outside world that valid result is available at the output.

It is also possible that timing information is implicitly known. For example, the designer
knows that a particular output of a module will be available (signi�cant) after 8 clock cycles
of the injection of the inputs.

For the sake of illustration here, let us suppose a generic hardware module with given
input and output interfaces as shown in Figure 5.1. Here Datain is the data input of the
module which is supposed to be injected the signi�cant or non-signi�cant data values from
the environment at each clock cycle of clock input clk. An input named �data strobe input�
(shorted as DSI) as shown in Figure 5.1, is used to decide about the signi�cance of the data
input Datain. That is, when DSI is asserted, a valid data value at Datain is loaded to module
for an intentional computation.

On the output interface, signal Dataout carries the result, and a special control output
�data strobe output� (shorted as DSO) as shown in Figure 5.1 indicates that the signi�cant
result is available at Dataout.

 Module

Control

Data

DSI

Others

Datain Dataout

DSO

clk

Figure 5.1: A generic module under veri�cation

Hence the DSI and DSO re�ect the timing information of a class of hardware module
of Figure 5.1 which is used as reference during veri�cation process. The generic module of
Figure 5.1 represents a major class of hardware modules which are used as IP modules in a
large scale design. Therefore, we have chosen it for illustration. If the timing information
is implicit within the module, and not present in the form of DSI and DSO signals then it
can explicitly be derived from the speci�cations of the relevant design, and used as timing
reference while specifying property.

5.1.2 Module's behavior and designer's anticipation

Figure 5.2 depicts a conceptual view of the veri�cation approach. There are two distinct
notions: the module's behavior, which is subjected to perform signi�cance calculations, and
the designer's anticipation about the desired output at their right timing instants.

In generic module of Figure 5.1, DSI and DSO serve to establish the designer's anticipa-
tion about the signi�cance. Based on this information, the designer provides signi�cant inputs
to the module when DSI is active, and he/she believes that the output has been computed by
the module uniquely from those inputs which were tagged as signi�cant, therefore there will
be signi�cant output expected to be arrived at the moment when DSO is active. Utilizing the
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Figure 5.2: A conceptual description of veri�cation approach

signi�cance semantic rules, the input signi�cance in the module is propagated to computed the
signi�cance at the output. The signi�cance computed by the module is checked for inclusion
with the expected signi�cance according to the anticipation of the designer to obtain the result
of the veri�cation. Based on sound but incomplete signi�cance semantics, we can justify the
result in follows ways.

a) Perfect correspondence If the computed signi�cance result by the module conforms to
the expected signi�cance result by the module then there is a perfect correspondence between
the module's behavior and the designer's anticipation. The module is functioning correctly
according to the speci�ed property.

b) Error indication If the designer provides a non-signi�cant input to the module it is
possible that an output is signi�cant due to the fact that given non-signi�cant input was not
propagated and not used in the computation of the output, whereas the designer may antici-
pate that the result produced by the non-signi�cant inputs should be non-signi�cant. This is
possible due to some design error in the data �ow of module which does not properly transmit
a non-signi�cant input value towards output. This category of malfunctioning is named as
design errors and are detectable in the proposed framework by using sound semantic rules
of signi�cance propagation.

If the module does not contain any design bug, and the designer knows which inputs are
being used in the computation of the data output, and he intentionally sets those inputs as
signi�cant at the time of their loading; then by sound semantic rules of signi�cance propaga-
tion, the module should produce signi�cant result at output. However, it is very di�cult for
the designer to know that a particular input has been used in the computation of an output
in a certain execution. Because in di�erent executions of the module, there is a di�erent
context of that input which implies whether that input has been propagated and used in the
computation of the output or not. This limitation originates from the static/dynamic data
dependent behavior of the hardware descriptions as explored in precedent chapter.
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c) False alarm indication Sound signi�cance semantic rules have limitations and cause
the propagation of a non-signi�cant input to the output even if it is not really used in the
computation of the output. This is possible due the fact that semantics used for the signi�-
cance computations are syntax dependent and incomplete. They are sound but not complete,
therefore they can indicate an error in the module even if there does not exist any real error.
Such type of malfunctioning is categorized as false alarms. They can cause a loss of useful
information, because they do not indicate the availability of signi�cant data at the output
when it was expected to be signi�cant.

The degree of false alarms during the veri�cation depends on the strength of the signi�-
cance semantics. Stronger is the signi�cance semantics, less is the possibility of false alarms.
However, a strong signi�cance semantics costs more from complexity of computation point of
view. We illustrate the false alarms by example as follows:

Illustration of false alarms Let us suppose a moduleM , which multiplies two numbers
provided simultaneously at the data inputs A and B, and gives the result on its output Q 8
cycles later. The timing reference model (control slice) for the designer's anticipation speci�es
that �when inputs A and B are loaded at time instant t, output Q will be available at t+ 8�.

Under normal condition, if module M does not contain any design bug, and both A and
B are supplied signi�cant inputs at t then Q must be signi�cant at t + 8. However, if we
suppose a special case of multiplication in which A is permanently set to signi�cant 0, and the
designer anticipates that output Q should also be signi�cant 0. Then by using static semantics
described in precedent chapter, if B was set non-signi�cant then output Q will be evaluated
to be non-signi�cant, which is an indication of false alarm. In this way the calculated result
being non-signi�cant does not match with the designer's expected result which was signi�cant
0. The reason is that static semantics is weak, and propagates the non-signi�cant value of B
to the output even if it is not really used to evaluate Q when A is set to signi�cant 0.

If we use dynamic semantics the result will be di�erent. The dynamic semantics being
stronger than static semantics makes the output Q signi�cant 0 even if B was non-signi�cant.
Dynamic semantics do not propagate the non-signi�cant value of B to the output hence the
calculated result is correct as expected by the designer, and there is no false alarm in this
particular case.

It would be interesting to detect the malfunctioning in a module concerning signi�cance of
the inputs and outputs by static veri�cation techniques such as model checking. We propose
the technique based on basic model checking to study these behaviors statically in a veri�ca-
tion framework. We give a prototype implementation of the framework. During veri�cation
process, given module undergoes some transformations which �nally result a model suitable
for verifying properties concerning signi�cance by model checking. Our prototype veri�ca-
tion framework enables a validation engineer to specify semi-automatically an environment
according to intended property. This environment implements the property monitor in the
form of state machine as exploited in [16], [82]. If the generated results do not match with
the expected results then violations of properties may be indicated.

The major operations in the veri�cation process have been developed in the next section
with detail.
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5.2 Description of veri�cation technique

Figure 5.3 depicts the veri�cation process in the proposed technique. We will describe each
operation during veri�cation process is a sequential order.
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Figure 5.3: Processing steps during veri�cation

We are considering synchronous RTL design described in VHDL for veri�cation in the
proposed framework, as marked by block A© in Figure 5.3. An isolated generic module has
been shown in Figure 5.1. From the I/O interface view point, distinction is considered between
control and data inputs. The control inputs are considered as always signi�cant during a data
computation, whereas data inputs may be signi�cant or non-signi�cant at di�erent clock cycles.

The distinction between control and data inputs should also be maintained to internal
signals and outputs of the module, so that the signi�cance can only be propagated with data.
For this purpose, the module is subjected to some necessary transformations as described
below.
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5.2.1 Automatic transformations

The transformations enable the original module to carry out the signi�cance computations.
The transformation process involves following three steps in a sequence:

1. Control-data slicing

2. Logic synthesis of data slice

3. Signi�cance extension by typesetting

The original module marked as block A© in Figure 5.3 is to be subjected for signi�cance
calculations. However, to avoid the complexity of extending VHDL semantics at RTL and
keep the accuracy of the analysis, we synthesize the given RTL model to boolean equations
and registers.

a) Slicing and logic synthesis:

For signi�cance extension at gate level, we need to keep the separation between `control' and
`data' signals. This is achieved by declaring all the signals with customized types named as
control for control signals and data for data signals. The signal with control type can attain
one of 2 boolean values {F,T} and a signal with data type can attain one of 4 possible values
{F,T,f,t}. A customized VHDL package de�nes the two data types as VHDL enumerated
types.

The gate level model obtained after logic synthesis is a generic �at description with some
default data type (For instance bit or std_logic in VHDL) for all signals. We need to
perform recursive traversals through gate level description to assign distinct control type
and data type for all boolean signals. These traversals are based on similar algorithms used
in control-data slicing but for gate level models the complexity of the traversals could be high
due to huge size of the gate level models.

In order to minimize the traversals through the gate level model, we reuse our control-data
slicing algorithm. Before logic synthesis and signi�cance extension, we can split it into control
and data slice, and apply synthesis and signi�cance extension to individual slices. In gate
level data slice, consisting of large number of data signals and few control signals, we �rst set
all the signals as data, and then perform dependency traversals to set control type for those
signals which do not depend on data inputs directly or transitively.

Similarly in control slice, types for all signals are intially set as control, and later by
dependency traversals; we set the type as data, for signals depending on the data signals
coming from data slice. In case of data independent control slice, we do not need to perform
the logic synthesis of control slice because it would not contain any data signal to be extended
with signi�cance. Therefore, RTL control slice is kept intact, and logic synthesis and traversals
are needed only in data slice.

In this way, slicing avoids large number of signals to typeset in the gate level description.
Withing individual gate level slices only a few number of signals are needed to be set for
control and data types. Thus during the transformation, original RTL model marked as
block A© in Figure 5.3 is �rst sliced to obtain a sliced model marked as block B©. The data
slice within the sliced model is then subjected to the logic synthesis to obtain the gate level
model as marked by block C© in Figure 5.3.
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The transformation process is automatic in the veri�cation framework thanks to control-
data slicing algorithm, logic synthesis algorithm, static dependency analysis [8], and pattern
matching routines for setting control and data types in the model. The use of slicing during
transformation is illustrated by following example.

Illustration of transformation We consider a trivial module foo as shown in Figure 5.4
to illustrate the transformation steps. As shown in circuit diagram on left side of the �gure,
an input DSI selects either to load a new value D or to feed back the previous value in internal
register Q. Input RST initializes the register. Q is the data output of the module. An output
DSO becomes high whenever a new data is loaded to the data register Q in the previous clock
cycle. RST and DSI are labeled as control inputs whereas D is data input.

A distinction between control and data is also depicted in the RTL circuit diagram by
a dotted line in Figure 5.4. This distinction must be preserved while applying signi�cance
computation. However, when we directly synthesize and regenerate the gate level description,
this distinction is lost.

Control Slice

Data slice

architecture RTL of foo is

begin

process(clk)

begin

if (rising_edge(clk)) then

if (RST = ’0’) then

DSO <= ’0’;

Q <= ’0’;

else

if (DSI = ’1’) then

Q <= D;

end if;

DSO <= DSI;

end if;

end if;

end process;

end architecture;

Sliced VHDL RTL descriptionOriginal VHDL RTL description

begin

end architecture;

architecture RTL of data_slice is

process(clk)

begin

end process;

if (RST = ’0’) then

DSO <= ’0’;

DSO <= DSI;

if (rising_edge(clk)) then

end if;

end if;

else

end architecture;

begin

architecture RTL of control_slice is

end process;

begin

process(clk)

if (rising_edge(clk)) then

if (RST = ’0’) then

if (DSI = ’1’) then

Q <= ’0’;

Q <= D;

end if;

end if;

end if;

else
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Figure 5.4: Module foo: Circuit diagram, original and sliced RTL descriptions

Synthesis of RTL description of Figure 5.4 results a gate level description given in Figure
5.5 as VHDL architecture. This description is a �at network of interconnected gates and �ip-
�ops with intermediate signals of a default type bit, as shown at line 2 in Figure 5.5. We keep
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the distinction between the control and data signals by setting di�erent types as control and
data. Therefore, a traversal from the inputs towards output through the network of gates is
required. In this example, RST and DSI being control signal constitute signal r2 at line 9 to
be typed as control. Similarly, n_0 at line 6 should also be of type control, which is being
evaluated from pure control signal. Rest of the signals should be typed as data. We see that
for module foo, we need to traverse the description for 2 control signals. The detection of
such control signals, and setting their types becomes complex in large gate level models with
large number of signals.

1 . architecture gate_leve l of f oo i s

2 . signal m1,m2, n_0 , k , r1 , r2 : b i t ;
3 . begin

4 . m1 <= D and DSI ;
5 . m2 <= Q and n_0 ;
6 . n_0 <= not (DSI ) ;
7 . k <= m1 or m2;
8 . r1 <= k and r e s e t ;
9 . r2 <= DSI and r e s e t ;
10 . i n s t : entity DFF(RTL) port map( r1 ,Q) ;
11 . i n s t : entity DFF(RTL) port map( r2 ,DSO) ;
12 .end architecture ;

Figure 5.5: Gate-level description for module foo

The complexity of this traversal can be reduced if we synthesize only the RTL data slice.
The sliced version of the original foo description is shown in Figure 5.4. We keep the control
slice intact and subject the data slice of foo for synthesis. The synthesized data slice descrip-
tion is shown in Figure 5.6 in which we can see that control signal r2 is no more present in
the data slice because it has been retained in control slice by the slicing algorithm. There-
fore, traversal for typesetting signal r2 is avoided in this case. We only need to typeset one
signal i.e. n_0 as control in the synthesized data slice of Figure 5.6 instead of two signal as
compared to that in original synthesized module foo.

1 . architecture gate_leve l of Data_sl ice i s

2 . signal m1,m2, n_0 , k , r1 : b i t ;
3 . begin

4 . m1 <= D and DSI ;
5 . m2 <= Q and n_0 ;
6 . n_0 <= not (DSI ) ;
7 . k <= m1 or m2;
8 . r1 <= k and r e s e t ;
9 . i n s t : entity DFF(RTL) port map( r1 ,Q) ;
10 .end architecture ;

Figure 5.6: Gate-level description for Data slice of module foo

In this way the complexity of traversing the gate level source code of the module for
setting distinct types for control and data signals has been reduced by the assistance of slicing
algorithm.
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b) Signi�cance extension by typesetting

By setting di�erent type for control and data signals, we implicitly extend the model with
signi�cance. The gate level model with distinct data and control signals is capable of carrying
signi�cance information according to the propagation rules de�ned in signi�cance semantics.
The signi�cance extended model as marked by block D© of Figure 5.3 preserves the existing be-
havior of the original module. However, it also contains additional logic to perform signi�cance
calculations. Signi�cance semantic rules de�ned for basic boolean functions (AND, OR and
NOT) in the form of truth tables are used to determine the propagation of signi�cance from
inputs towards outputs. Static and dynamic semantic rules mentioned in precedent chapter
are currently integrated in the veri�cation framework.

A generic signi�cance extended model A generic signi�cance extended model obtained
from original module of Figure 5.1 is shown in Figure 5.7. Here Data′in and Data′out are the
signi�cance extended inputs and outputs that carry concrete value and signi�cance. The size
of these interfaces is twice than those of given model of Figure 5.1. For instance a 4-bit data
input of original module will be represented by 8-bit input in signi�cance extended model
where each additional bit represents signi�cance.

Size of the data registers is also implicitly twice, and each data register in signi�cance
extended model is represented by 2 bits. One bit keeps the original value of the register,
and other bit keeps the signi�cance information of that value. Size of the corresponding
combinational logic also increases which carry the 4-state signals in signi�cance extended
model instead of 2 state signals in the original module. Since control inputs are always
considered signi�cant, therefore they do not need signi�cance extension, and are used as they
are in original module. Thus DSI and DSO preserve the same role as they have in original
module.

The signi�cance extension increases the size of the design if we investigate the e�ect of
individual extended bits. However, logic optimizations [81] are later possible due to unused
outputs in the model which do not involve in the property being veri�ed. Similarly, constraints
on input values also add simpli�cations in the resulting model for veri�cation.

5.2.2 Speci�cation of signi�cance property

Once the module is transformed to carry out signi�cance computations, it can be used for
veri�cation. For static formal veri�cation, the signi�cance extended model can be directly
subjected to model checker and properties concerning signi�cance could be speci�ed in var-
ious formalisms such as temporal logic (CTL or LTL) or �nite state machines. However,
depending upon the signi�cance propagation rules and the property being veri�ed, there are
potential logic optimizations possible, which would be useful to reduce the model checking
time. Moreover specifying properties concerning signi�cance are tedious to express in tempo-
ral logic for engineers who have less knowledge about formal methods as already discussed in
chapter 3.

Thus in our prototype implementation, we allow the speci�cations of signi�cance properties
by state machines monitors (observers). State machines are sometimes an easy-to-use way for
validation engineers, to specify formal properties instead of CTL or LTL formalisms.

An environment is built semi-automatically which implements property monitor [46], [16]
to feed data and control inputs to the signi�cance extended model according to the property.
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Figure 5.7: Generic signi�cance extended model

The structure of a generic monitor has been shown in Figure 5.8. The block shown in the
middle of Figure 5.8 is an instance of the signi�cance extended model. An input interface
supplies data and control inputs to the module according to the desired property being veri-
�ed. An output interface is designed to observe the output signi�cance, and is implemented
according to the speci�cations given in the property.
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Figure 5.8: Generic property monitor

Structure of a property monitor The monitor feeds value as well as signi�cance to the
signi�cance extended model as shown in Figure 5.8 according to the property being veri�ed.
The design of input injection mechanism varies according to the properties. The main func-
tion of input injection is to convert each input value to a combination of signi�cance and
value. Constraints on the inputs are also speci�ed in the input injection mechanism. These
constraints can be applied to observe the special cases of the module's behavior. For instance,
we can de�ne within the environment that a particular input is always less than a speci�ed
threshold value or an input `x' is always less than an input `y' or an input is always set to con-
stant. Based on the speci�ed constraints in the environment, the functionality of the module
under veri�cation can be made limited which re�ects the possibility of simpli�cation of the
�nal module to be veri�ed.
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The complexity can be reduced by an abstract consideration of data values. In most of
the data computation intensive designs, bit vectors are used to represent samples. Instead of
considering the signi�cance character of each individual bits in the sample, we consider the
entire bit vector is either carries signi�cant value or non-signi�cant value. Therefore, input
interface of the monitor is designed in such a way that data input vectors are constrainted to
carry either all signi�cant bits or all non-signi�cant bits. This merging mechanism simpli�es
the signi�cance calculation logic by excluding all those cases in which individual bits have
di�erent signi�cance attribute in a bit vector. With this constraint, there are possibilities
of redundant paths in the signi�cance calculation logic which can be optimized to obtain a
compact model.

The monitor calculates the output signi�cance as a merged representation for each output
data bit vector. Timing information for each data output is also necessary to specify the
properties of interest. Depending upon a speci�c property to be veri�ed there may be di�erent
possible ways of implementation of the output interface. For safety properties, the output
calculation block can be implemented in such a way that it produces alert �ags when safety
conditions are violated.

Speci�cations of input and output interface designs in the monitors is facilitated by some
library functions written in VHDL in our framework. These functions implement signi�-
cance manipulations on bits and bit vectors at RTL which can readily be called while specifying
state machines for monitors. For instance extending a bit (or bit vector) with signi�cance at-
tribute, conversion of a bit (or a bit vector) into signi�cance or non-signi�cant value, merging
the signi�cance of a bit vector to a single bit, and getting signi�cance information of a bit
vector are the examples of various operations implemented as VHDL library functions in the
framework to facilitate the monitor implementation.

We will give the illustration of a veri�cation environment setup using monitor by an ex-
ample property.

A property monitor

Figure 5.9(a) shows a module given for veri�cation. We suppose that A and B are n-bit, and
m-bit data inputs of the module respectively. Let DSI be the control input such that when
DSI is high then inputs A and B are sampled by the module for computation. A control
input reset is provided to clear the internal registers. Let S be a k-bit data output of the
given module, and DSO indicates the moment when valid result is available at S.
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Figure 5.9: ModuleM under veri�cation
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After slicing and pre-synthesis of moduleM of Figure 5.9(a), we typeset the signals, and
apply signi�cance propagation rules to obtain the signi�cance extended model M′ as shown
in Figure 5.9(b). Here A′ and B′ are signi�cance extended data inputs, and S′ is signi�cance
extended data output. Since A is n-bit, and B ism-bit vector in the original module, therefore
in signi�cance extended module the size of input vector grows to 2×n and 2×m respectively.

We want to verify following property of this module:

Property 5.1.
�If `A' and `B' are significant when `DSI' is active then output `S' is significant
when `DSO' is active.�

This property practically addresses the notion of dependence of a signi�cant output on the
signi�cant inputs as theoretically discussed in previous chapter. The property is also important
to check the functional correctness of a module because it speci�es that a signi�cant output
should not be calculated from the non-signi�cant inputs when they are being used in the
computation.

A monitor for model M′ is shown in Figure 5.10 for veri�cation of the property 5.1. It
contains an instance of the signi�cance extended moduleM′ which is being fed with data val-
ues along with signi�cances. Outputs are being calculated according to the speci�ed property.
The input and output interfaces designed according to property 5.1, are explained as below.

Input interface design for M′: The monitor takes normal data values from the pri-
mary inputs A and B. Size of these inputs is same as that of corresponding inputs A and B in
original moduleM. The monitor uses two library functions: to_sig() and to_nonsig(). Both
functions perform a conversion in which n-bit value representation is encoded into 2 × n-bit
representation which carries signi�cance information along with the data value.

Library function to_sig() converts a given bit vector into signi�cant value whereas to_nonsig()
converts the given vector into non-signi�cant value. Both functions implicitly implement the
constraint on the inputs in which all the bits in bit vectors A and B are either set as signi�cant
or non-signi�cant.

DSI is the control signal which indicates when should the inputs be loaded to the module.
In this implementation it has been ensured that only signi�cant inputs are loaded to the
module (via to_sig() library function) when DSI is active. When DSI is not active then
only non-signi�cant inputs are loaded (via to_nonsig() function) with the help of 2-to-1
multiplexer. In this way the monitor of Figure 5.10 implements an aggressive behavior of the
environment to verify property 5.1.

We have only shown the input injection mechanism for data input A′ in �gure. Exactly
similar mechanism is implemented for input B′ as well.

Output interface design for M′: Since property 5.1 is only concerned about the
signi�cance of the output S′, therefore value of S′ is not used. The 2 × k-bit data output
vector S′ is merged to a single bit representing either signi�cant or non-signi�cant result
according to following rule.

�If any bit in the bit vector is non-signi�cant then whole bit vector is considered as
non-signi�cant�.
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This mechanism is achieved by a library function is_nonsig() in Figure 5.10. This function
takes a signi�cance extended bit vector as input, and results a boolean signal telling whether
the given vector is signi�cant or non-signi�cant. The boolean output of this function becomes
high whenever any bit in the data output vector S′ is found non-signi�cant.

The monitor generates a boolean output signal `Error' as shown in Figure 5.10 which is
calculated from DSO and output of is_nonsig() library function in following way: �If the
DSO signal becomes active, and at the same time, data output S is non-signi�cant then Error
becomes active�. This is represented by an AND gate. Thus Error signal is an indication of
the violation of the property 5.1. To check whether there is any occurrence of this violation
in any possible execution of the given model, we can use model checking to verify that Error
signal never becomes active in this environment.

The speci�cation of property monitors is currently semi-automatic in the veri�cation frame-
work. We have provided some useful library functions in VHDL which facilitate engineers to
specify signi�cance properties.

5.2.3 Logic optimization

The signi�cance extended model contains output value calculation logic which is not concerned
with the signi�cance oriented property being veri�ed. Moreover, there are possible redundant
paths due to constraints on the inputs in the veri�cation environment. Thus before subjecting
the �nal model checking step we remove the unused logic in the module so that the module
can be simpli�ed.

In our framework, the automatic simpli�cation of the whole model with the speci�ed moni-
tor, is achieved via logic optimization algorithms. The unused logic is minimized, and undriven
registers are deleted thanks to logic optimization algorithms implemented in logic synthesizers.
Once the veri�cation environment has been set up for the module according to the claimed
property, it is subjected to optimizations which detects sequential and combinational logic
elements in the model not being used in the calculation of output signi�cance. This results in
an optimized model as shown by block F© in Figure 5.3.
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5.2.4 Property-checking for optimized model

The optimized model would be compact because it would only contain the signi�cance infor-
mation of the data outputs. For model checking, the optimized model is fed to the model
checker as shown by the last step in Figure 5.3. To verify whether property 5.1 holds in all
states of the system along all possible executions. We can model-check the error signal Error
via CTL invariant AG(Error = 0) which speci�es that Error never becomes active.

The assertion of Error signal will be a true error indication in case of static semantics. If A
and B were signi�cant at the time ofDSI and property is violated, then the module is possibly
faulty and induces junk (non-signi�cant) values to the result. However, if the non-signi�cant
value is not expected to be appeared at the output due to some special operation (such as
multiplication by zero) the static semantics could assert the Error signal which would be a
false alarm. In case of dynamic semantics however, such false alarm will not occur because
dynamic semantics are more powerful than static semantics.

5.3 Illustration by example: Equivalence function

In this section we will illustrate the property veri�cation process in the proposed framework by
a small example. We have considered a trivial example of 2-bit equivalence function (XNOR
function) to provide an illustration of the property monitor implementation , and elimination
of unused module elements according to the speci�ed property being model-checked.

5.3.1 Module description

The circuit diagram of equivalence function module named Me is shown in Figure 5.11. It
consists of 2 single bit data inputs A and B, and a single bit data output S. The data
processing takes two clock cycles. A control input DSI indicates that A and B are loaded
into the module. Control output DSO is asserted 2 cycles after DSI is asserted to indicate
that outputs S is ready. Control slice and data slice are separately shown in the circuit
diagram of Figure 5.11 by a dotted line. There are 5 registers in this module.

5.3.2 Signi�cance extension and veri�cation

We want to verify property 5.1 for moduleMe of Figure 5.11. For this purpose, we transform
it via synthesis and typesetting, to obtain the signi�cance extended model as shown in Figure
5.12. Inputs A′ and B′ are 2-bit inputs with one bit carrying value, and other bit carrying
signi�cance. The data registers RA, RB and RS of original module are implicitly replaced by
2-bit registers to carry 4-valued signals by setting the type as data. Registers RA0, RB0 and
RS0 keep the existing value whereas registers RA1, RB1 and RS1 shown in dark color keep
the signi�cance information of the values in RA0, RB0, and RS0 respectively.

Let static semantics is applied for the signi�cance computation. According to static se-
mantics the signi�cance for 2-bit XOR function can be represented by an AND function as it
states that �output will be signi�cant if both inputs are signi�cant�. Therefore, RA1 and RB1
are operated by an AND gate as shown in Figure 5.12 to produce the signi�cance of output S.
The signi�cance of S goes to the additional registers RS1. The output S′ of the signi�cance
extended module is the 2-bit packet carrying contents of registers RS0 and RS1, the value as
well as signi�cance.
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The control slice remains intact inM′e. Total number of registers in signi�cance extended
model becomes 8.
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The extension of registers and corresponding combinational logic in the signi�cance ex-
tended module as shown in Figure 5.12 is automatic. The user does not need to add additional
signi�cance logic. Instead, this is implicitly done by the synthesizer which derives the signi�-
cance computation logic from the semantics as given in the form of truth tables in precedent
chapter.

The monitor implementing the property 5.1 for module Me is depicted in Figure 5.13.
Signi�cance extended model M′e of Figure 5.12 is instantiated in the environment which
implements the monitor. The input mechanism is designed using library functions to_sig()
and to_nonsig(). Both data inputs A and B are converted to A′ and B′ by these functions.
The 2-bit signi�cance extended inputs A′ and B′ are fed to moduleM′e in such a way that only
signi�cant values are ensured on both inputs when DSI is high, otherwise only non-signi�cant
values are fed to both inputs. This is implemented by 2-to-1 multiplexers.

On the output side, we are only interested in signi�cance, therefore we consider output
from register RS1 only, which carries the signi�cance information of the output S. A primary
output error signal e becomes high if the output RS1 is low (i.e. S is non-signi�cant) and
DSI is high as speci�ed in property 5.1. Additional state for output signal e is created by an
output register. This is done to make the error signal e a state variable for model checking
purpose.
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Figure 5.13: Monitor for equivalence function with property 5.1

The veri�cation environment of Figure 5.13 is subjected to logic optimization to remove
registers, RA0, RB0 and RS0; and their corresponding combinational logic because they are
not being used in the calculation of the output signi�cance and do not drive any primary
output of the module. The resulting compact module obtained after logic optimization has
been shown in Figure 5.14. In optimized model, the symbolic values 'f' and 't' to represent
non-signi�cant boolean character are transformed into some equivalent binary representation.
Therefore, logic optimizer simpli�es the module in such a way that primary inputs A and B of
the environment are not used. Instead the DSI serves to indicate signi�cant or non-signi�cant
character of the data signals as shown in circuit of Figure 5.14. DSI is used as signi�cance
input to the registers RA1 and RB1 of the data path in such a way that DSI = '1' represents
a signi�cant value injection to those registers, and DSO = '0' represents a non-signi�cant
value injection to the registers.

In this way only a signi�cant value (i.e. when DSI = '1') may propagate to the output
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Figure 5.14: Optimized model of equivalence function for property 5.1

signi�cance register RS1 after 2 clock cycles when DSO also becomes high at the same time.
When DSI is '0' then output of register RS1 becomes '0' after 2 clock cycles indicating
that a non-signi�cant value is propagated but at that time, the DSO remains '0'. Thus the
primary output error signal e never becomes high, and the speci�ed property passes. The
simpli�cation process depends on the logic optimization algorithm. The optimization shown
in Figure 5.14 was obtained speci�cally with logic synthesizer we were using. It could be
possible that some other logic optimizer would optimize the circuit in a di�erent way.

The optimized model contains 5 registers and less number of logic gates as compared to
those in original module. The XOR function would be consisting of AND and OR gates in the
original module Me which is replaced by a single AND function for signi�cance calculation
after minimization. The NOT gate in the original moduleMe is also removed. A few gates are
added to specify the property in the environment. However, for larger industrial modules, this
does not count as additional surcharge because of a lot of minimization possible in such designs.
The optimized model of Figure 5.14 is subjected to model checker with CTL speci�cation:
AG(e = 0).

The example of equivalence function considered for illustration of the framework, is trivial
and used here to illustrate only di�erent processing steps during the veri�cation process. A
considerable simpli�cation and performance can be observed in larger examples as illustrated
in experimental results in section 5.5.

5.4 Prototype implementation

We will brie�y describe the implementation aspects in the prototype veri�cation framework.
Currently we treat synchronous RTL models described in VHDL. VHDL allows rapid prototyp-
ing by typesetting distinct control/data signals with ease of de�ning signi�cance propagation
rules for boolean operators.

The VHDL slicing tool is used for control and data separation at RTL in the framework
which is already presented in chapter 3. We de�ne two distinct data types named control, and
data in a global VHDL package. The control signals typed with a VHDL enumerated type:
control carry classical symbolic values from the set {'F','T'}. The data signals typed with
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enumerated type: data are able to carry symbolic values from the set {'F','T','f','t'}

such that 'F' and 'T' represent signi�cant values, and 'f' and 't' represent non-signi�cant
values. A customized VHDL package de�nes the two data types as VHDL enumerated types.
The signi�cance semantics for basic logic operators such as and, or, not and xor are also
de�ned for signals of type control and data in the form of truth tables within custom package.

Signi�cance extension and vector merging is provided in our framework by library functions
named to_sig() and to_nonsig(). They are de�ned in globally in a VHDL package. Both
functions are designed to take a vector of synthesizer generated default data type bit as
input, and result a vector of type data. The property monitor is built in a top level VHDL
module which instantiates the signi�cance extended model with input injection mechanism
implemented according to speci�ed property.

The commercial synthesis tool Encounter R© RTL compiler by Cadence Inc.[56] was avail-
able to us. It was used to achieve prior synthesis as well as logic optimizations after property
speci�cation. The logic optimization algorithms implemented with this synthesis tool perform
resource sharing, speculation, mux optimization, carrysave arithmetic (CSA) optimizations,
and redundancy removals [22].

There are many commercial (FormalCheck, RuleBase, FomalPro), and academic (NuSMV,
PRISM, SPIN, VIS) model checking tools. For experimentation, we relied on academical
tools which are freely available. SPIN and PRISM both have their own modeling language
to represent the system. NuSMV is aimed for software as well as hardware model checking
but it also requires the model to be written in its own language. For rapid prototyping, we
needed a model checker which requires no e�ort of transforming and rewriting the model to
be checked.

VIS comes with a frontend to support a subset of Verilog. We have VHDL as an input
language, and for our case VIS is considered to be a better option because VHDL to Verilog
conversion is supported by the logic synthesis via Encounter R© RTL compiler. This avoided
the time consuming implementation of a tool to transform VHDL into a model checker speci�c
language.

A Verilog HDL front end `vl2mv ' is provided to compile a subset of Verilog into an inter-
mediate format BLIF-MV [101] [65]. BLIF-MV is a low level hardware description language
designed for describing hierarchical hardware circuits. The �nal optimized gate level Verilog
model generated from logic synthesizer is directly fed to VIS for model checking. Speci�cation
to check violation of the property is given in CTL or LTL language in a separate �le.

5.5 Experimental results

We have tested few examples by verifying property 5.1 mentioned in section 5.2. Results are
provided in Table 5.1 for serial parallel multiplier (SPM), greatest common divisor (GCD),
input register stage for discrete cosine transform (DCT IR), data encryption standard (DES),
and FIR �lter with static signi�cance semantics. For each module, the generic property 5.1
is speci�ed according to module's inputs and outputs. For instance in case of GCD with two
operands op1, op2, a control input load; and outputs res and done the property 5.1 takes
the form:

If `op1' and `op2' are significant when `load' is active then output `res'
is significant when `done' is active.
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Similarly, for other modules the property is represented accordingly. The simpli�cation is
obtained in terms of number of logic gates and number of registers. The degree of simpli�cation
depends on the nature of the module. For instance in case of SPM, original module contained
146 combinational blocks (Comb. blocks), and 53 registers which are reduced to 62 blocks,
and 38 registers after simpli�cation. However, in case of GCD, number of registers are not
reduced due to dependencies of output signi�cance on input data values.

IP Modules Type Comb. blocks No. of registers Model
checking
time (sec)

SPM
Original 146 53

0.383
Resulting 62 38

GCD
Original 484 32

0.423
Resulting 222 64

DCT IR
Original 286 172

0.332
Resulting 42 11

DES
Original 1363 128

1.258
Resulting 237 128

FIR
Original 307 208

2.288
Resulting 219 173

Table 5.1: Model checking results with static semantics

Results of the modules with same properties using dynamic semantics are shown in Table
5.2. We see that degree of simpli�cations is less in this case as compared to that in static case.
Stars `*' marked with some of the results indicate constraint considerations on inputs while
verifying property. For instance, in case of DES, key schedule is �xed to signi�cant. Similarly
for FIR �lter, coe�cients are taken as signi�cant constants. These constraints assist to reduce
module's state space by constant propagation during logic optimization. These results are
obtained on Intel(R) Pentium(R) 4 CPU at 2.66GHz with 1GB of memory.

IP Modules Type Comb. blocks No. of registers Model
checking
time (sec)

SPM
Original 146 53

2.15
Resulting 165 63

GCD
Original 484 32

0.92
Resulting 439 64

DCT IR
Original 286 172

5.974
Resulting 417 178

DES*
Original 1363 128

23.52
Resulting 3527 249

FIR*
Original 307 208

0.176
Resulting 63 53

Table 5.2: Model checking results with dynamic semantics
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5.6 Conclusions

We have proposed a formal veri�cation framework for the validation engineers to verify prop-
erties which talk about the right data movements at their right timing instants in a hardware
module using the concept of signi�cance. The framework considers a straightforward imple-
mentation with sound signi�cance semantics for rapid prototyping. The incompleteness of
signi�cance semantics may cause loss of useful information due to false alarms in the veri�-
cation process which could be avoided using syntax independent signi�cance computations as
discussed in precedent chapter.

Current implementation is a prototype with many improvement to be made yet. Al-
though some library functions are provided to facilitate property speci�cation via monitors,
the mechanism is not yet fully automated. Automatic conversion of high level formal speci-
�cations such as property speci�cations language (PSL) [59] or temporal logic speci�cations
into state machines [17], [42], [82] would be integrated in the future.

We are investigating the e�cient implementation of re�ned signi�cance and semantic sig-
ni�cance calculus in the form of reduced ordered binary decision diagrams (ROBDD) [18]
which would be integrated within the veri�cation framework in the future.



Chapter 6

Conclusion et perspectives

Nous avons présenté plusieurs techniques pour faciliter la véri�cation et l'abstraction de mod-
èles d'IP et plus particulièrement des méthodes basées sur le model-checking et la simulation.
L'utilisation de techniques d'abstraction de données et d'analyse statique formelle de �ots de
données a été considérée pour une classe de modules matériels de types chemins de données
(datapaths) et contrôle (machines d'etat �nis). Nous avons concentré d'abord nos e�orts pour
dé�nir des techniques de séparation des données du contrôle au c÷ur des modules matériels
de telle sorte que ces techniques soient applicables aux calculs complexes sur les données, tout
en laissant le contrôle constant. L'idée fut de garder les comportements temporels critiques
dans le modèle abstrait.

Contrairement aux techniques existantes pour séparer le contrôle des données, fondées sur
des jugements intuitifs, nous avons essayé de proposer une de�nition séemantique des notions
de contrôle et de données dans les descriptions matérielles. En considérant de manière intuitive
que le contrôle contient l'information sur les instants où les données sont traitées, nous avons
tenté de dé�nir la notion d'entrées de données et de contrôle. Puis nous nous sommes intéressés
à l'analyse statique sur les blocs élémentaires dans le but d'identi�er automatiquement les
entrées de contrôle, sans connaissance a priori du système et sans information complémentaire
fournie par l'utilisateur. Cette analyse est indépendante de la représentation syntaxique des
modèles.

Cependant, la dé�nition d'entrées de contrôle n'est pas su�sante pour satisfaire la con-
dition d'indépendance syntaxique. Aussi, nous avons conclu qu'une séparation unique du
contrôle et des données était illusoire dans le cas général. Une telle séparation dépend trop de
l'idée subjective que le concepteur s'est fait du système et également de l'environnement dans
lequel le module sera plongé. De ce fait, nous considérons des techniques d'analyse basées sur
la syntaxe pour e�ectuer la séparation contrôle-données, avec pour conséquence de restreindre
les applications sur lesquelles ces techniques peuvent être e�ectivement appliquées.

Nous avons utilisé des techniques de �slicing� pour réaliser cette séparation contrôle-
données basées sur l'hypothèse que l'utilisateur identi�e les entrées de données du module.
Cette information est utilisée comme un critère pour e�ectuer le slicing. Avec l'algorithme de
slicing proposé, nous pouvons séparer la partie contrôle sous la forme d'un �control slice� et la
partie traitement sous la forme d'un �data slice� et des signaux d'interconnexion. Le slicing
de modèles comportant des variables locales, implique des transformations supplémentaires
pour garder le comportement du module après slicing. La représentation structurelle obtenue
avec slicing nous permet d'appliquer des techniques d'abstraction de données sur le �control
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slice� avec pour résultat des améliorations considérables dans les temps de véri�cation.
Pour une classe de modèles d'IP avec un contrôle indépendant des données, nous avons

proposé une abstraction fonctionnelle des données du �data slice� décrit au niveau RTL en le
remplaçant par un modèle de calcul fonctionnel. L'abstraction est semi-automatique, basée
sur des techniques de reconnaissance de modèle pour détecter le �timing� des entrées/sorties
des données. De cette façon, nous obtenons un modèle plus abstrait qui permet une simulation
plus rapide que le modèle RTL original. Avec l'assistance à l'abstraction et à la véri�cation, la
séparation contrôles/données peut être aussi utile dans la conception physique, par exemple
pour l'estimation de la taille et de la puissance dissipée d'un circuit intégré.

Une notion de �ots de données intentionnels dans les modèles, nommée signi�cativité a
été introduite. La signi�cativité, vu comme un attribut supplémentaire associée aux données,
re�ète les dépendances de données booléennes entre les variables des modèles matériels de
bas niveaux. Une analyse statique formelle de �ots de données est possible en dé�nissant une
sémantique pour la propagation de la signi�cativité dans les équations booléennes des modèles
au niveau porte. En considérant seulement la présence ou l'absence de données aux instants
spéci�é, on peut véri�er formellement grâce à la signi�cativité des propriétés intéressantes
des chemins de données concernant l'intention du concepteur. Des règles de propagation de
signi�cativité homogènes mais incomplètes ont été proposés avec les descriptions formelles
associées. Une implementation directe de ces rêgles a été réalisée. Une description théorique
de la propagation de signi�cativité indépendante de la syntaxe est aussi présente dans ce
manuscrit. Elle est basée sur le calcul booléen inductif.

Avec la sémantique de la signi�cativité, nous avons réalisé une technique de véri�cation
basée sur le model-checking pour détecter statiquement des erreurs dans les chemins de don-
nées. Pour faciliter le travail de validation des ingénieurs, nous utilisons la technique des
observateurs pour spéci�er des propriétés relatives à la signi�cativité sous forme de machines
d'états. L'implémentation des observateurs est facilitée par l'utilisation de fonctions intégrées
pour spéci�er les propriétés de signi�cativité.

Ce domaine de recherche reste ouvert: Il apparait régulièrement de nouveaux aspects qu'il
faut explorer pour identi�er de nouvelles catégories de propriétés. De la même manière, notre
travail contient plusieurs aspects qu'il faudra étudier dans le futur. Une dé�nition sémantique
du contrôle est toujours une question ouverte: nous avons essayé de relier le comportement
temporel du modèle avec le contrôle; cette notion pourrait-elle être abordée di�éremment ?
L'implémentation d'algorithmes de slicing doit être amélioré avec des règles plus générales
pour considérer un ensemble plus large de VHDL et incorporer des modèles RTL de Verilog.

La véri�cation basée actuellement sur une signi�cativité statique ou dynamique peut en-
traîner des fausses alertes du fait d'une sémantique de comportement dépendant de la syntaxe.
Nous avons proposé une amélioration de la signi�cativité dynamique en introduisant un test
de dépendance de données. Mais un environnement de véri�cation reste à concevoir en util-
isant cette sémantique, indépendante de la syntaxe. De même, une représentation e�cace
et compacte d'équations booléennes de type ROBDD pourrait être utilisée avantageusement
pour implémenter cette sémantique.

Nous nous sommes appuyés sur la notion de signi�cance pour représenter les deux pos-
sibilités de presence et d'absence d'une donnée valide sur les signaux. Ce concept peut être
étendu pour dé�nir des attributs de signaux suivant de multiples classes. Par exemple dans
un module UART, le bus de données pourrait être enrichi en transportant des informations
de contrôle en plus des données, en particulier le contenu des registres internes. Une représen-
tation abstraite de ce scénario pourrait être de dé�nir trois attributs associés aux données
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d'entrées de types donnée, statut et commande. Ceci pourrait être utile pour représenter les
états des signaux en vue de la véri�cation statique des �ots de données; par exemple dans le
cas d'études de propriétés relatives à la sécurité du matériel.

Les techniques de véri�cation et d'abstraction basées sur le slicing, avec la notion de
signi�cativité ont été réalisées dans des prototypes semi-automatiques de véri�cation. Nous
pensons qu'ils pourraient être facilement automatisés de façon plus importante pour apporter
une aide plus e�cace aux ingénieurs dans leur travail de validation. Actuellement nous avons
seulement intégrer les modèles VHDL. Le passage aux modèle Verilog ou systemC ne devrait
pas poser de problème. Les techniques sous-jacentes pourraient être étendues à tous modèles
de description de matériels existants ou avenirs.
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Appendix A

A.1 Extended boolean operators

Functions not, and, or andmux are the operators on extended boolean of type `extendedBool'.
Extended boolean are 2 bits integers in which LSB holds the standard boolean value (true =
1, false = 0) and the MSB holds the signi�cance (signi�cant = 1, non signi�cant = 0). The
implementation of these functions is given below.

extendedBool not ( extendedBool a ) {
BOOL v , s ;

v = ! va l ( a ) ;
s = s i g ( a ) ;
return toExtendedBool (v , s ) ;

}

extendedBool or ( extendedBool a , extendedBool b) {
BOOL v , s ;

v = ( va l ( a ) | | va l (b ) ) ;
s = t t t y . or [ a ] [ b ] ;
return toExtendedBool (v , s ) ;

}

extendedBool and ( extendedBool a , extendedBool b) {
BOOL v , s ;

v = ( va l ( a ) && val (b ) ) ;
s = t t t y . and [ a ] [ b ] ;
return toExtendedBool (v , s ) ;

}

extendedBool mux( extendedBool i0 , extendedBool i1 , extendedBool c ) {
BOOL v , s ;

v = ( va l ( c ) && val ( i 1 ) ) | | ( ( ! va l ( c ) ) && val ( i 0 ) ) ;
s = t t t y .mux [ i 0 ] [ i 1 ] [ c ] ;
return toExtendedBool (v , s ) ;

}
/∗ r e tu rn s the value part o f an extendedBool ∗/
BOOL val ( extendedBool a ) {

return a & 0x1 ;
}
/∗ r e tu rn s the s i g n i f i c a n c e part o f an extendedBool ∗/
BOOL s i g ( extendedBool a ) {

return ( a >> 1) & 0x1 ;
}

extendedBool f ( extendedBool i0 , extendedBool i1 , extendedBool c ) {
return or ( and ( i0 , not ( c ) ) , and ( i1 , c ) ) ;

}

123
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The function setSemantics(int operator, int semantics) initializes the truth table of an
operator. Operators are passed as macros (AND, OR or MUX). Semantics are integers whose
meanings are di�erent for di�erent operators. For AND (and correspondingly for OR), the
semantics is a 10 bits integer de�ning the signi�cance of the formula AND(a, b) for the 10
di�erent valuations of a, b where a and b are `extendedBool' (in 0, 1, 2, 3) and b >= a (the
AND operator commutes, so AND(a, b) = AND(b, a). For MUX the semantics is an 8 bits
integer, de�ning (from LSB to MSB) the signi�cance of MUX(i0, i1, c) for the valuations is
shown in Table A.1 where `0n' represents non-signi�cant 0 value corresponding to f, and `0s'
represents signi�cant 0 value corresponding to F.

MUX(0n, 0n, 0n)
MUX(0n, 0n, 0s)
MUX(0n, 0s, 0n)
MUX(0n, 0s, 0s)
MUX(0s, 0n, 0s)
MUX(0s, 0n, 0n)
MUX(0s, 0s, 0s)
MUX(0s, 0s, 0n)

Table A.1: MUX valuations

The other valuations are computed from this table and from elementary properties of
MUX:

• output signi�cance does not depend on i0 and i1 value

• MUX(i0, i1, c) = MUX(i1, i0, NOT (c))

The implementation of function is given as follows:

t ruthTables t t t y ;

void se tSemant ic s ( int op , int semant ics ) {
int n , i , j ;

switch ( op ) {
case AND: /∗ Construct turth tab l e f o r AND ∗/

n = semant ics ;
for ( i = 0 ; i < 4 ; i++) {
for ( j = i ; j < 4 ; j++) {

t t t y . and [ i ] [ j ] = n & 0x1 ;
t t t y . and [ j ] [ i ] = n & 0x1 ;
n >>= 1 ;

}
}
break ;

case OR: /∗ Construct turth tab l e f o r OR ∗/
n = semant ics ;
for ( i = 0 ; i < 4 ; i++) {
for ( j = i ; j < 4 ; j++) {

t t t y . or [ i ] [ j ] = n & 0x1 ;
t t t y . or [ j ] [ i ] = n & 0x1 ;
n >>= 1 ;

}
}
break ;
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case MUX: /∗ Construct turth tab l e f o r MUX ∗/
n = semant ics ;
for ( i = 0 ; i < 2 ; i++)
for ( j = 0 ; j < 2 ; j++) {

t t t y .mux [ i ] [ j ] [ 0 ] = n & 0x1 ;
t t t y .mux [ j ] [ i ] [ 1 ] = n & 0x1 ;

}
n >>= 1 ;
for ( i = 0 ; i < 2 ; i++)
for ( j = 0 ; j < 2 ; j++) {

t t t y .mux [ i ] [ j ] [ 2 ] = n & 0x1 ;
t t t y .mux [ j ] [ i ] [ 3 ] = n & 0x1 ;

}
n >>= 1 ;
for ( i = 0 ; i < 2 ; i++)
for ( j = 0 ; j < 2 ; j++) {

t t t y .mux [ i ] [ j +2 ] [ 0 ] = n & 0x1 ;
t t t y .mux [ j +2] [ i ] [ 1 ] = n & 0x1 ;

}
n >>= 1 ;
for ( i = 0 ; i < 2 ; i++)
for ( j = 0 ; j < 2 ; j++) {

t t t y .mux [ i ] [ j +2 ] [ 2 ] = n & 0x1 ;
t t t y .mux [ j +2] [ i ] [ 3 ] = n & 0x1 ;

}
n >>= 1 ;
for ( i = 0 ; i < 2 ; i++)
for ( j = 0 ; j < 2 ; j++) {

t t t y .mux [ i +2] [ j ] [ 0 ] = n & 0x1 ;
t t t y .mux [ j ] [ i +2 ] [ 1 ] = n & 0x1 ;

}
n >>= 1 ;
for ( i = 0 ; i < 2 ; i++)
for ( j = 0 ; j < 2 ; j++) {

t t t y .mux [ i +2] [ j ] [ 2 ] = n & 0x1 ;
t t t y .mux [ j ] [ i +2 ] [ 3 ] = n & 0x1 ;

}
n >>= 1 ;
for ( i = 0 ; i < 2 ; i++)
for ( j = 0 ; j < 2 ; j++) {

t t t y .mux [ i +2] [ j +2 ] [ 0 ] = n & 0x1 ;
t t t y .mux [ j +2] [ i +2 ] [ 0 ] = n & 0x1 ;

}
n >>= 1 ;
for ( i = 0 ; i < 2 ; i++)
for ( j = 0 ; j < 2 ; j++) {

t t t y .mux [ i +2] [ j +2 ] [ 2 ] = n & 0x1 ;
t t t y .mux [ j +2] [ i +2 ] [ 3 ] = n & 0x1 ;

}
break ;

default : p r i n t f ( " setSemant ic s  e r r o r :  undef ined  operator \n" ) ;
e x i t (−1);
break ;

}
}

A.2 Constraint system for MUX

The seach_mux_semantics() is the utility function which exhaustively searches semantics of
MUX(i0, i1, c) such that the following constraints are met:

• There must be a pair (i0, i1) such that the value of c changes the signi�cance of
MUX(i0, i1, c).
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• An i0 or i1 value change shall not change the output signi�cance.

• MUX(i0, i1, c) = MUX(i1, i0, NOT (c)).

• If all inputs are signi�cant, output must be signi�cant.

• If all inputs are non signi�cant, output must be non signi�cant.

• Changing the signi�cance of any input cannot changes the output signi�cance in the
opposite way.

For each of the found semantics, the function seach_mux_semantics() prints the truth table
of MUX.

int seach_mux_semantics ( ) {
int m, cnt , ok ;
extendedBool i0 , i1 , c ;

for (m = 0 ; m < 256 ; m++) {
setSemant ic s (MUX, m) ;
ok = 0 ;
for ( cnt = 0 ; cnt < 64 ; cnt++) {

i 0 = ( cnt >> 4) & 0x3 ; /∗ input value f o r i 0 ∗/
i 1 = ( cnt >> 2) & 0x3 ; /∗ input value f o r i 1 ∗/
c = cnt & 0x3 ; /∗ input value f o r c ∗/

/∗ There must be a pa i r ( i0 , i 1 ) such that the value o f c changes the
∗ s i g n i f i c a n c e o f mux( i0 , i1 , c ) ∗/
i f ( s i g (mux( i0 , i1 , c ) ) != s i g (mux( i0 , i1 , not ( c ) ) ) )

ok = 1 ;
/∗ An i0 or i 1 va lue change s h a l l not change the output s i g n i f i c a n c e ∗/
i f ( ( s i g (mux( i0 , i1 , c ) ) != s i g (mux( not ( i 0 ) , i1 , c ) ) ) | |

( s i g (mux( i0 , i1 , c ) ) != s i g (mux( i0 , not ( i 1 ) , c ) ) ) )
break ;

/∗ mux( i0 , i1 , c ) = mux( i1 , i0 , not ( c ) ) ∗/
i f (mux( i0 , i1 , c ) != mux( i1 , i0 , not ( c ) ) )
break ;

/∗ I f a l l inputs are s i g n i f i c a n t , output must be s i g n i f i c a n t ∗/
i f ( s i g ( i 0 ) && s i g ( i 1 ) && s i g ( c ) && ( ! s i g (mux( i0 , i1 , c ) ) ) )
break ;

/∗ I f a l l inputs are non s i g n i f i c a n t , output must be non s i g n i f i c a n t ∗/
i f ( ( ! s i g ( i 0 ) ) && ( ! s i g ( i 1 ) ) && ( ! s i g ( c ) ) && s i g (mux( i0 , i1 , c ) ) )
break ;

/∗ Changing the s i g n i f i c a n c e o f any input cannot change the output
∗ s i g n i f i c a n c e in the oppos i t e way ∗/
i f ( s i g (mux( i0 , i1 , c ) ) && ( ( ! s i g (mux( s i g 1 ( i 0 ) , i1 , c ) ) ) | |

( ! s i g (mux( i0 , s i g 1 ( i 1 ) , c ) ) ) | | ( ! s i g (mux( i0 , i1 , s i g 1 ( c ) ) ) ) ) )
break ;

i f ( ( ! s i g (mux( i0 , i1 , c ) ) ) && ( s i g (mux( s i g 0 ( i 0 ) , i1 , c ) ) | |
s i g (mux( i0 , s i g 0 ( i 1 ) , c ) ) | | s i g (mux( i0 , i1 , s i g 0 ( c ) ) ) ) )

break ;
}
i f ( ( cnt != 64) | | ! ok )
continue ;

p r i n t f ( "MUX #%d\n" , m) ; /∗ Truth tab l e p r i n t i n g ∗/
printMUXTruthTable ( ) ;
}

return 0 ;
}
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A.3 Constraint system for AND

Utility function search_AND() exhaustively searches semantics of AND such that the following
constraints are met:

• MUX has the semantics # 160 (setSemantics(MUX, 160)) stating that output is signif-
icant if and only if the selector and the selected input are signi�cant.

• OR(a, b) = NOT (AND(NOT (a), NOT (b))).

• MUX(i0, i1, c) = f(i0, i1, c) where f is the function de�ned in section A.1.

The search explores all the semantics of AND and computes the distance between MUX
and f , that is the number of valuations of i0, i1, c (64 cases) for whichMUX(i0, i1, c) ! = f(i0, i1, c).
It prints the minimum distance and all the semantics with minimum distance. printTruthTable
can then be used to print the truth table of the found semantics for AND.

struct r e co rde r ;

struct r e co rde r {
int semant ics ;
struct r e co rde r ∗ next ;
struct r e co rde r ∗ prev ious ;

} ;

int search_AND() {
int a , o , d , min , cnt ;
extendedBool i0 , i1 , c ;
struct r e co rde r rec , ∗ p ;

setSemant ic s (MUX, 160 ) ;
min = 64 ;
p = &rec ;
p−>next = ( struct r e co rde r ∗ ) (NULL) ;
p−>prev ious = ( struct r e co rde r ∗ ) (NULL) ;
for ( a = 0 ; a < 1024 ; a++) {

setSemant ic s (AND, a ) ;
/∗ Value load ing f o r OR func t i on ∗/

o = ( ( a >> 4) & 0x1 ) | ( ( ( a >> 1) & 0x1 ) << 1) | ( ( ( a >> 6) & 0x1 ) << 2) |
( ( ( a >> 5) & 0x1 ) << 3) | ( ( a & 0x1 ) << 4) | ( ( ( a >> 3) & 0x1 ) << 5) |
( ( ( a >> 2) & 0x1 ) << 6) | ( ( ( a >> 9) & 0x1 ) << 7) | ( ( ( a >> 8) & 0x1 ) << 8)
| ( ( ( a >> 7) & 0x1 ) << 9 ) ;

se tSemant ic s (OR, o ) ;
d = 0 ;
for ( cnt = 0 ; cnt < 64 ; cnt++) {

i 0 = ( cnt >> 4) & 0x3 ; /∗ input value load ing f o r i 0 ∗/
i 1 = ( cnt >> 2) & 0x3 ; /∗ input value load ing f o r i 1 ∗/
c = cnt & 0x3 ; /∗ input value load ing f o r c ∗/

i f ( f ( i0 , i1 , c ) != mux( i0 , i1 , c ) ) {
d += 1 ;
i f (d > min )
break ;

}
}
i f (d < min ) {

min = d ;
while (p−>prev ious != NULL) {

p = p−>prev ious ;
f r e e (p−>next ) ;

}
p−>semant ics = a ;
p−>next = NULL;
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}
else i f (d == min) {

p−>next = ( struct r e co rde r ∗ ) ( c a l l o c (1 , s izeof ( struct r e co rde r ) ) ) ;
i f (p−>next == NULL) {

p r i n t f ( " c a l l o c  e r r o r \n" ) ;
e x i t (−1);

}
p−>next−>prev ious = p ;
p = p−>next ;
p−>semant ics = a ;
p−>next = NULL;

}
}
for ( ; p != NULL; ) {

p r i n t f ( "AND #%d :  %d\n" , p−>semantics , min ) ;
p = p−>prev ious ;
i f (p != NULL)

f r e e (p−>next ) ;
}
return 0 ;

}

The search functions for MUX and AND can easily be customized to explore other con-
staints.
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B.1 VHDL descriptions for Serial parallel multiplier (SPM)

1 . l ibrary IEEE ;
2 . use IEEE .NUMERIC_BIT. a l l ;

3 . entity SPM i s 30 . i f (CNT > 0 and CNT < 9) then

4 . port (CLK, Reset : in Bit ; 31 . RR := '0 ' & RR(15 downto 1 ) ;
5 . A, B: in Unsigned (7 downto 0 ) ; 32 . i f (RB(0) = '1 ' ) then

6 . S : out Unsigned (15 downto 0 ) ; 33 . RR(15 downto 7) :=
RR(15 downto 7) + ( ' 0 ' & RA) ;

7 . Load : in Bit ; 34 . end i f ;
8 . DSO: out Bit ) ; 35 . RB := '0 ' & RB(7 downto 1 ) ;
9 . end entity SPM; 36 . CNT := CNT + 1 ;

37 . end i f ;
10 . architecture RTL of SPM i s 38 . i f (CNT = 9) then

11 . begin 39 . DSO <= '1 ' ;
40 . S <= RR;

12 . MAIN: process 41 . end i f ;
13 . variable RA, RB: Unsigned (7 downto 0 ) ; 42 . end i f ;
14 . variable RR: Unsigned (15 downto 0 ) ; 43 . end i f ;
15 . variable CNT: Natural range 0 to 9 ; 44 . end i f ;
16 . begin 45 . wait on CLK;
17 . i f (CLK = '1 ' and CLK' event ) then 46 . end process MAIN;
18 . i f ( Reset = '0 ' ) then 47 . end architecture RTL;
19 . s <= ( others => ' 0 ' ) ;
20 . DSO <= ' 0 ' ;
21 . CNT := 0 ;
22 . else

23 . i f (Load = '1 ' ) then

24 . RA := A;
25 . RB := B;
26 . RR := ( others => ' 0 ' ) ;
27 . CNT := 1 ;
28 . DSO <= ' 0 ' ;
29 . else

Figure B.1: Original SPM implementation (before slicing)
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1 . Data_Process_2 : process

2 . variable RA : unsigned (7 downto 0 ) ;
3 . variable RB : unsigned (7 downto 0 ) ;
4 . variable RR : unsigned (15 downto 0 ) ;
5 . begin

6 . S_2 <= s_1 ;
7 . RA := RA_1;
8 . RB := RB_1;
9 . RR := RR_1;
10 . i f ( Reset = '0 ' ) then

11 . S_2 <= ( others => '0 ' ) ;
12 . else

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 . i f (Load = '1 ' ) then −−<−−−−−−−−−− Data a c qu i s i t i o n phase
14 . RA := A;
15 . RB := B;
16 . RR := ( others => '0 ' ) ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 . else

18 . i f ( ( cnt1 > 0) and ( cnt1 < 9) ) then −−<−−−−Data p ro c e s s i ng s t a r t s
19 . RR := '0 ' & RR ( 15 downto 1 ) ;
20 . i f (RB(0) = '1 ' ) then

21 . RR ( 15 downto 7 ) := "+" (RR ( 15 downto 7 ) , ' 0 ' & RA) ;
22 . end i f ;
23 . RB := '0 ' & RB ( 7 downto 1 ) ; −−<−−−−− Data proce s ing ends
24 . end i f ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 . i f ( cnt2 = 9) then

26 . S_2 <= RR; −−<−−−−−− Output phase
27 . end i f ;
28 . end i f ;
29 . end i f ;
30 . RA_2 <= RA;
31 . RB_2 <= RB;
32 . RR_2 <= RR;
33 . wait on S_1 ,RA_1,RB_1,RR_1, Reset , Load ,A,B, cnt1 , cnt2 ;
34 . end process ;

Figure B.2: VHDL process containing data processing of SPM (regenerated after slicing)

1 . package spm_pkg i s

2 . function fast_spm ( A : IN i n t e g e r ; B:IN i n t e g e r ) return i n t e g e r ;
3 . attribute f o r e i g n of fast_spm : function i s " fast_spm . / spm . s l " ;
4 . end ;

5 . package body spm_pkg i s

6 . function fast_spm ( A : IN i n t e g e r ; B:IN i n t e g e r ) return i n t e g e r i s

7 . begin

8 . assert f a l s e report "ERROR:  f o r e i g n  subprogram not c a l l e d " severity note ;
9 . return 0 ;
10 . end ;
11 .end ;

Figure B.3: VHDL Subprogram declaration to interface with foreign function
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1 . Abstract_data_Process : process ( c l k )
2 . variable ra , rb : unsigned (7 downto 0 ) ;
3 . begin

4 . i f ( r i s ing_edge ( c l k ) then

5 . i f ( r e s e t = '0 ' ) then −−<−−−−−−−− "Reset s t a t e "
6 . s <= ( others => '0 ');
7 . ra := ( others => '0 ');
8 . rb := ( others => '0 ');
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 . e l s i f ( load = '1 ' ) then −−<−−−−−−−−−−−− "Data a c q u i s i t i o n " phase
10 . ra := a ;
11 . rb := b ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 . else

13 . i f ( cnt = 9) then −−<−−− "untimed f un c t i o na l computation" and "Output" phases
14 . s <= To_Unsigned ( fast_spm ( to_integer ( ra ) , to_integer ( rb ) ) , 1 6 ) ;
15 . end i f ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 . end i f ;
17 . end i f ;
18 .end process ;

Figure B.4: Functional data computation in data slice

1 . #inc lude <s td i o . h>
2 . #inc lude "mti . h"
3 . i n t fast_spm ( in t a , i n t b)
4 . {
5 . return a ∗ b ;
6 . }

Figure B.5: Fast implementation of SPM
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Résumé

De nos jours la conception des IP (IP: Intellectual Property) peut béné�cier de nouvelles techniques
de véri�cation symbolique: abstraction de donnée et analyse statique formelle. Nous pensons qu'il
est nécessaire de séparer clairement le Contrôle des Données avant toute véri�cation automatique.

Nous avons proposé une dé�nition du �contrôle� qui repose sur l'idée intuitive qu'il a un
impact sur le séquencement de données. Autour de cette idée, le travail a consisté à s'appuyer
sur la sémantique des opérateurs booléens et proposer une extension qui exprime cette notion de
séquencement. Ceci nous a mené à la conclusion que la séparation parfaite du contrôle et des
données est illusoire car les calculs dépendent trop de la représentation syntaxique. Pour attein-
dre notre objectif, nous nous sommes alors basés sur la connaissance fournie par le concepteur:
séparation a priori des entrées contrôle et des entrées données. De cela, nous avons proposé un
algorithme de �slicing� pour partitionner le modèle. Une abstraction fut alors obtenue dans le
cas où le contrôle est bien indépendant des données. Pour accélérer les simulations, nous avons
remplacé le traitement de données, dé�ni au niveau bit par un modèle d'exécution fonctionnel,
tout en gardant inchangé la partie contrôle. Ce modèle intègre des aspects temporels qui permet
de se gre�er sur des outils de model checking. Nous introduisons la notion de signi�cativité support
des données intentionnelles dans les modèles IP. La signi�cativité est utilisée pour représenter des
dépendances de données booléennes en vue de véri�er formellement et statiquement les �ots de
données. Nous proposons plusieurs approximations qui mettent en ÷uvre cette nouvelle notion.

Abstract

Hardware veri�cation has become challenging due to ever-growing complexity of today's designs.
We aim at assisting veri�cation of hardware intellectual property (IP) modules at register transfer
level (RTL) by means of data abstraction and static formal analysis techniques. We believe that
before applying data abstraction, it is necessary to clearly de�ne and separate the Control and
Data processing of modules.

The consideration of control and data in hardware has previously been a subjective judgment
of the designer, based on the syntax. We intuitively de�ne the �Control� as an entity responsible
for the timings of the data operations in IP modules. The proposed de�nition was envisaged for
separating Control and Data, independent of the subjective choice or the speci�c syntax. We have
worked around a few semantic issues of the de�nition and demonstrated by reasoning, that an
ideal separation of control and data is not achievable according to the proposed de�nition due to
the syntax dependent boolean computations. We therefore, separate the Control and Data based
on designer's knowledge. A control-data slicing algorithm is proposed to split the module into a
control slice and a data slice.

An abstraction is achieved in case of slicing with data-independent Control. The bit accurate
RTL data slice is replaced by a functional data computation model for fast simulations. The
control slice being critical entity with timing information, remains intact during this process. This
provides us a way of abstracting the data processing and considering only the timing information
for formal veri�cation. We have proposed the notion of signi�cance to represent the intentional
data in IP modules. Signi�cance is used to represent boolean data dependencies in modules
for formal veri�cation of the data �ows. Approximations to data dependencies in IP modules
have been realized with demonstration of their correctness. The veri�cation technique based on
signi�cance is realized which enables to formally verify properties related to the datapaths.
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