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Interactions ARN-protéines dans le mécanisme de biosynthèse des 

sélénoprotéines 
 

 

 Le sélénium est un oligo-élément essentiel. Sa forme biologique majeure est l’acide 

aminé sélénocystéine (Sec) que l’on retrouve essentiellement dans le site actif des 

sélénoprotéines. La sélénocystéine est incorporée dans les sélénoprotéines de façon co-

traductionnelle en réponse à un codon UGA habituellement reconnu comme l’un des trois 

codons de terminaison. Chez les eucaryotes, la biosynthèse et l’incorporation de 

sélénocystéine requièrent la participation d’une machinerie moléculaire complexe qui 

implique, entre autres, une structure en tige-boucle située dans la région 3’UTR de l’ARNm 

des sélénoprotéines (élément SECIS), l’ARNtSec  spécifique, le facteur d’élongation spécialisé 

EFSec ainsi que la protéine SBP2 (SECIS-binding protein). SBP2 joue un rôle majeur dans le 

mécanisme de synthèse des sélénoprotéines.  

 

Chez les mammifères, le domaine de liaison à l’ARN de SBP2 est situé dans la région C-

terminale de la protéine. Celui-ci comprend un module conservé, présent chez d’autres 

protéines de liaison à l’ARN mais possédant d’autres fonctions, appelé motif L7Ae dans les 

banques de données. La région N-terminale est dépourvue de toute similitude avec des 

protéines connues et n’est pas nécessaire à la synthèse des sélénoprotéines in vitro. De façon 

intéressante, une recherche bioinformatique dans les génomes de drosophile nous a permis 

d’identifier des séquences potentielles portant toutes les signatures d’une vraie protéine SBP2 

mais plus courte et ne possédant pas de domaine N-terminal homologue à celui des 

mammifères. Avant que je n’entreprenne ce travail, SBP2 n’avait été caractérisée 

fonctionnellement que chez le rat et l’homme. Au cours de cette thèse, j’ai cloné l’ADNc et 

caractérisé fonctionnellement la protéine SBP2 de Drosophila melanogaster (dSBP2) à l’aide 

de tests de liaison à l’ARN et d’expression de sélénoprotéines dans des lysats de réticulocytes 

de lapin. Malgré sa taille plus courte, dSBP2 a montré la même capacité à promouvoir la 

synthèse de sélénoprotéines que son homologue mammifère. Il n’en va pas de même en ce qui 

concerne la liaison à l’ARN SECIS : en effet, alors que la protéine SBP2 humaine (hSBP2) 

est capable de lier deux formes distinctes d’ARN SECIS (appelées type 1 et 2) avec des 

-9-



 

affinités similaires, dSBP2 ne présente d’affinité forte que pour le type 2, qui est d’ailleurs le 

seul présent chez la drosophile. Par ailleurs, nous avons identifié un domaine additionnel 

riche en lysines (K-rich domain), différent du module de liaison à l’ARN L7Ae, mais 

essentiel à la liaison à l’ARN SECIS. L’échange de seulement cinq acides aminés entre 

dSBP2 et hSBP2 au sein du domaine K-rich a permis d’inverser les propriétés de liaison à 

l’ARN SECIS des deux protéines, révélant ainsi l’existence d’un penta-peptide important 

pour la liaison aux SECIS de type 1.  

Dans cette étude, nous avons également montré que la protéine SBP2 était capable d’interagir 

avec la sous-unité 60S du ribosome et que le domaine K-rich était essentiel pour cette 

interaction. Le fait que les mêmes acides aminés sont requis à la fois pour la liaison à l’ARN 

SECIS et au ribosome suggère que SBP2 est incapable de se lier simultanément à ces deux 

cibles et que des mécanismes d’échange dynamiques ont lieu au cours de la synthèse des 

sélénoprotéines.   

 
Publication 1 : 

A short motif in Drosophila SECIS Binding Protein 2 provides differential binding affinity to SECIS 

RNA hairpins. Akiko Takeuchi, David Schmitt, Charles Chapple, Elena Babaylova, Galina, Karpova, 

Roderic Guigo, Alain Krol and Christine Allmang (2009). Nucleic Acids Research, 37(7):2126-41.  

 

Afin d’obtenir plus d’informations sur la nature des interactions SBP2-ARN SECIS au niveau 

atomique, nous avons entrepris l’analyse structurale de SBP2, en collaboration avec l’équipe 

de Philippe Dumas dans notre unité (UPR 9002 du CNRS). Des essais de cristallisation de 

SBP2 avaient été réalisés au laboratoire. Malheureusement, malgré de nombreux essais, aucun 

cristal n’a pu être obtenu, ni avec la protéine seule, ni en complexe avec l’ARN SECIS. Nous 

avons proposé que ceci soit vraisemblablement dû à la présence de l’extrémité N-terminale de 

la protéine qui ne semblait pas structurée. Nous avons donc utilisé des versions plus courtes 

de SBP2, dépourvues du domaine N-terminal. Dans ce but, j’ai construit des clones codant 

pour des protéines SBP2 de différents organismes, fusionnés à des étiquettes différentes et les 

ai exprimés dans des cellules d’insecte infectées par baculovirus afin d’améliorer le niveau 

d’expression des protéines. J’ai bénéficié pour cela de l’aide de la Plateforme de Génomique 

et Biologie Structurales au CEBGS et du service baculovirus de l’IGBMC à Illkirch. 

Ceci ne nous a cependant pas permis d’obtenir de cristaux. En fait, l’analyse biophysique par 

différentes techniques (RMN 1D, centrifugation analytique, dichroïsme circulaire, diffusion 

dynamique de la lumière) a permis d’établir que SBP2 était globalement non-structurée, à 
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l’exception de son domaine L7Ae. Cette observation est cohérente avec nos résultats de 

prédictions informatiques de régions désordonnées qui indiquaient que 70% de la séquence de 

SBP2 était non-structurée, ainsi qu’avec les mêmes analyses biophysiques réalisées avec la 

protéine SBP2 produite dans E. coli. Ces résultats renforcent notre hypothèse selon laquelle 

SBP2 fait partie de la famille des protéines intrinsèquement désordonnées (Intrinsically 

Disordered Proteins ou IDP). Il est vraisemblable que SBP2 ne se structure qu’en présence de 

ses partenaires. Cette hypothèse est en accord avec des résultats récents de notre laboratoire 

montrant que le repliement et l’assemblage de la protéine SBP2 sur l’ARN SECIS étaient 

dépendants d’un complexe d’assemblage conservé lié au chaperon protéique Hsp90. La 

résolution de la structure du complexe SBP2-ARN SECIS ne semble donc envisageable que 

sous réserve  de l’identification de partenaires de la protéine SBP2 capables d’induire son 

repliement stable.  

 

Publication 2 : 

Vincent Oliéric, Philippe Wolff, Akiko Takeuchi, Guillaume Bec, Catherine Birck, Marc Vitorino, 

Bruno Kieffer, Artemy Beniaminov, Giorgio Cavigiolio, Elizabeth Theil, Christine Allmang, Alain 

Krol and Philippe Dumas. SECIS-binding protein 2, a key player in selenoprotein synthesis, is an 

intrinsically disordered protein, Biochimie (2009) 91 (8): 1003-1009. 

 

Le domaine de liaison à l’ARN de SBP2 contient le module L7Ae présent chez d’autres 

protéines de la même famille mais assurant des fonctions variées, telles que les protéines 

ribosomiques L7A et L30, la protéine 15.5kD/Snu13p de la snRNP U4 (épissage) et Nhp2p 

des snoRNP (biogenèse des ribosomes). Les protéines L7Ae se lient à des ARN de structure 

commune et leur fixation est requise pour l’assemblage des autres protéines core du complexe 

RNP auquel elles appartiennent. Notre laboratoire avait établi que l’assemblage correct des 

mRNP de sélénoprotéines, pré-requis à leur traduction, obéit aux mêmes règles que celui des 

sno/snRNP. Cet assemblage fait appel à un complexe supramoléculaire lié au chaperon 

protéique Hsp90, conservé de la levure à l’homme et d’importance fondamentale pour la 

cellule. Cette machinerie moléculaire est associée la protéine Nufip qui joue le rôle 

d’adaptateur. Nufip interagit avec toutes les protéines L7Ae, y compris SBP2, et est capable 

de promouvoir l’interaction avec les protéines core des sn/snoRNP en cours de synthèse. 

Nufip joue probablement le même rôle lors de l’assemblage des mRNP de sélénoprotéines. 

Les protéines core des mRNP de sélénoprotéines restent cependant largement inconnues. Un 

autre aspect de mon projet a consisté à déterminer si certaines protéines core majeures des 
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complexes sn/snoRNP pouvaient être des partenaires potentiels de SBP2. Cette hypothèse se 

confirme puisque mon travail a permis de montrer que SBP2 interagissait in vitro avec au 

moins l’une des protéines core des sn(o)RNP à boîte C/D, la protéine Nop58, et que cette 

interaction est directe. A notre grande surprise, ces résultats révèlent que l’assemblage de la 

catégorie particulière des ARNm de sélénoprotéines présente de nouvelles similitudes avec 

celui des sn- et snoRNP. 

 

 

L’ensemble de ces résultats a permis de mieux comprendre comment se forme le complexe 

SBP2-ARN SECIS lors de la synthèse des sélénoprotéines, un processus au cœur du 

mécanisme de recodage du codon UGA. 
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Introduction 

 

1. Selenium and its biological function 
 

1.1. Selenium 
 

The non-metal element selenium was discovered by the Swedish chemist Jacob Berzelius in 

1817. It was named after Sêlenê, the Greek goddess of the moon, in reference to the 

previously discovered and chemically related chalcogen element tellurium (tellus, earth in 

Latin). Selenium was considered a poison for a long time, especially to livestock eating 

selenium accumulator plants of the genus Astragalus during periods of drought in western 

USA and China. Later, selenium was defined as an essential micronutrient that exerts 

significant health benefits. In the 1970’s, its biological activity could be attributed to the 

newly identified amino acid selenocysteine (Sec). In humans, selenium deficiency has been 

implicated as a factor for the emergence of the Keshan disease, an endemic cardiomyopathy 

in certain regions of eastern China, where dietary selenium is very low because the soil is 

deprived of this element. Selenium has also been implicated in the prevention of viral 

infections, cancer, infertility; it has been shown as an important factor for thyroid hormone 

maturation, the immune system as well as muscle development and function. However, 

molecular evidence is missing for most of these pathologies with the exception of infertility, 

thyroid maturation and muscle development. (See 1.3. Selenoproteins)  

 

Selenium may also have a protective effect against inflammatory diseases (reviewed in 

Hatfield & Gladyshev, 2002; Hatfield et al, 2009; Lescure et al, 2009; Rederstorff et al, 2006). 

Selenium is mostly found at the catalytic site of most of the selenium-containing proteins 

which are called selenoproteins. 

 

 

1.2. Selenocysteine 
 

Selenocysteine is the major biological form of selenium in eukaryotes and is mostly found in 

the active site of selenoproteins. Selenocysteine is called the 21st amino acid. Its chemical 

structure differs from cysteine only by the presence of selenium in place of the sulfur atom 

(see Figure 1). Even though selenium and sulfur belong to the same family, selenocysteine 

exhibits distinct chemical properties versus cysteine. Selenocysteine has a lower pKa (5.2 

-15-



Introduction 

 

versus 8.5 for cysteine) and is deprotonated under the physiological pH range. It thus exhibits 

a stronger nucleophilicity and reactivity than cysteine. Cysteine homologues of 

selenoenzymes are generally weaker catalysts, and Sec-to-Cys mutations result in a 100- to 

1000-fold decrease in the catalytic activity (reviewed in Muttenthaler & Alewood, 2008). 

Selenocysteine is encoded by a UGA codon which is usually recognized as a translational 

stop signal, and is co-translationally incorporated into nascent peptide chains by a mechanism 

that will be described below (described in 2.2. Sec incorporation).  

 

Figure 1. Chemical structures of cysteine and selenocysteine.  

Selenocysteine differs form cysteine by a single atom: the selenium (Se, in red) instead of the sulfur 

(S) atom.  

 

 

1.3. Selenoproteins 
 

Selenoproteins have been found in the three domains of life but not in all species of bacteria, 

archaea and eukaryotes. For example, neither fungi nor higher plants possess selenoproteins. 

Vertebrates encode up to 25-26 selenoproteins, but larger selenoproteomes can be found in 

aquatic organisms (Lobanov et al, 2007). Selenoproteins are generally involved in catabolic 

pathways in bacteria and archaea, whereas eukaryotic selenoproteins participate rather in 

anabolic and antioxidant processes (Herbette et al, 2007). Based on the location of the Sec 

residue, mammalian selenoproteins can be classified into two groups (Kryukov et al, 2003). 

One group of selenoproteins contains Sec in the C-terminal region. This group includes 

thioredoxin reductases, selenoproteins S, R, O, I and K. The second group, that includes the 

remaining selenoproteins, contains the Sec residue in the N-terminal region. Some 

selenoproteins of the second group possess a CXXU motif (C and U stand for cysteine and 

selenocysteine, respectively, X for any amino acid) which is similar to the thioredoxin active-

site CXXC motif (Dikiy et al, 2007; Ferguson et al, 2006; Lu & Holmgren, 2009; Novoselov 
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et al, 2007b). Such sequence signatures suggest that selenoproteins have redox-related 

functions. Indeed, some of the selenoproteins are involved in oxidation-reduction reactions to 

protect cells from oxidative damage; there is good reason to believe that the majority of the 

still functionally uncharacterized selenoproteins participate in such mechanisms as well. 

Selenoproteins with identified redox activity include five glutathione peroxidases (GPx), three 

thioredoxin reductases (TR), three iodothyronine deiodinases (DIO) and selenophosphate 

synthetase 2 (SPS2). Selenoproteins participate in thyroid hormone metabolism, muscle 

formation, selenocysteine synthesis and in sperm maturation (Rederstorff et al, 2006). 

Eukaryotic selenoproteins and their functions are summarized in Table 1. 

 

Thioredoxin reductases regulate the thioredoxin system that participates in many cellular 

signaling pathways by controlling the activity of transcription factors. Therefore, thioredoxin 

reductases are involved in various cellular functions such as cell proliferation, antioxidant 

defense and redox-regulated signaling cascades (reviewed in Arner, 2009; Lu & Holmgren, 

2009).  

 

Glutathione peroxidase (GPx, Enzyme Commission number 1.11.1.9; now GPx1) was the 

first mammalian selenoprotein identified in 1973 (Flohe, 2009). There are seven isoenzymes 

identified in humans, and five of them are selenoproteins (GPx1, 2, 3, 4 and 6). GPxs reduce 

hydrogen peroxide and organic hydroperoxides, thus protecting cells from oxidative damage.  

GPx1 is a cytosolic enzyme that is abundant in liver and erythrocytes. Its major function is the 

detoxification of hydroxyperoxides to protect cells from oxidative stress that could result in 

DNA damage. The GPx1 polymorphisms are also associated with cancer risk (reviewed in 

Flohe, 2009; Gromer et al, 2005; Zhuo & Diamond, 2009). 

Glutathione peroxidase 4 (GPx4; Enzyme Commission number 1.11.1.12) is also known as 

phospholipid hydroperoxide GPx (PHGPx) because of its role in detoxification of lipid 

peroxides. GPx4 transforms into a structural component of the midpiece of mature 

spermatozoa by using hydroperoxides (Ursini et al, 1999). GPx4 is therefore involved in 

sperm maturation and male fertility (reviewed in Flohe, 2009; Lu & Holmgren, 2009).  

 

Iodothyronine deiodinases (DIOs) cleave specific iodine carbon bonds in the thyroid 

hormones thyroxin (T4), bioactive 3,5,3’-tri-iodothyronine (T3) and 3’3’5’ reverse tri-

iodothyronine (rT4) which is less active than T3. Thereby DIOs regulate the hormonal 

activity of the thyroid. DIO 1 and 2 convert T4 to T3, and DOI 3 converts T4 to rT3. DIO 1 
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can also convert T4 to rT3 (Reviewed in Gromer et al, 2005; Lu & Holmgren, 2009; Pappas 

et al, 2008). 

 

SPS2 is the selenophosphate synthetase which is involved in selenocysteine biosynthesis. 

This selenoprotein will be further described in 2.1.3.1. 

 

Selenoprotein N (SelN) was the first selenoprotein shown to be involved in a genetic disorder 

(Moghadaszadeh et al, 2001). SelN was discovered in the laboratory using a computational 

screen based on the search of a conserved RNA structural motif that acts as a signature for 

selenoprotein mRNAs, the selenocysteine insertion sequence (SECIS) (Lescure et al, 1999). 

The pathology was known before SelN was identified. A large number of mutations in the 

coding region of the SelN gene (SEPN1) are associated with a wide range of early-onset 

muscular disorders now referred to as SEPN1-related myopathies. However, its catalytic 

function still remains unknown. SelN was characterized as a glycosylated transmembrane 

protein of the endoplasmic reticulum (ER). In addition to the transmembrane domain, SelN 

contains a predicted domain consisting in a calcium binding EF-hand motif which may 

contribute to the overall structure of the protein, and a SCUG catalytic site, reminiscent of a 

thioredoxin reductase motif, suggesting a reductase activity (reviewed in Lescure et al, 2009).  
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Table 1. Selenoproteins identified in eukaryotes and their functions.  

Data taken from (Pappas et al, 2008; Rederstorff et al, 2006; Reeves & Hoffmann, 2009; Shchedrina et 

al. 2007). 

The relative position of the selenocysteine residue is indicated by a black box. DIO: iodothyronine 

deiodinase, GPx: glutathione peroxidase, TR: thioredoxin reductase, SPS2: selenophosphate 

synthetase, Sel: selenoprotein, Msr: methionine sulfoxide reductase 
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2. Selenoprotein synthesis  
 

Because selenocysteine is encoded by a UGA codon, one of the translational termination 

signals in the universal genetic code, discriminating UGA Sec from the stop codon requires a 

specialized translational machinery. This reprogramming mechanism is called UGA recoding. 

The bacterial selenoprotein synthesis mechanism has been extensively studied and well 

established by the Böck’s group (reviewed in Böck, 2006). Recent important progresses have 

been made toward the elucidation of this mechanism in eukaryotes. This will be described 

here in more details (reviewed in Allmang et al, 2009; Papp et al, 2007; Squires & Berry, 

2008). Selenoprotein synthesis comprises two steps, selenocysteine biosynthesis and its co-

translational incorporation.  

 2.1. Selenocysteine biosynthesis 
 

Selenocysteine does not occur as a free amino acid. Its biosynthesis occurs in two steps by 

conversion of serine to selenocysteine directly on the selenocysteine tRNA.  

 

2.1.1. tRNASec  
 

tRNASec is the selenocysteine specialized tRNA harboring anticodon complementary to UGA. 

Although tRNASec species in bacteria differ in sequence from eukaryal and archaeal homologs, 

structure probing and computer modeling proposed similarities at the three-dimentional 

structures (Baron 1993; Sturchler 1993). They also show functional conservation since both 

eukaryotic and archaeal tRNASec can function in bacterial systems (Baron et al, 1994; Lee et 

al, 1989; Rother et al, 2000). 

Eukaryotic tRNASec was initially discovered as a serine acceptor suppressing the UGA opal 

codon (Hatfield & Portugal, 1970). Later it was shown that this tRNA exists in the form of 

selenocysteyl-tRNASec (Lee et al, 1989; Mizutani, 1989). Heterozygous knockout mice retain 

selenoprotein synthesis ability despite the reduced level of tRNASec, implicating that it is not 

limiting for selenoprotein synthesis. Homozygous knockout mice are embryonic lethal 

demonstrating that selenoprotein synthesis is essential to mammalian development (Bosl et al, 

1997).  

tRNASec has characteristic features in its secondary structure and a post-transcriptional 

modification pattern that distinguish it from canonical tRNAs (reviewed in Allmang & Krol, 
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2006b). tRNASec is the longest tRNA, with 95 nucleotides in E.coli and 90 nucleotides in 

eukaryotes (Amberg et al, 1993; Böck, 2006; Diamond et al, 1981; Diamond et al, 1993; 

Hatfield et al, 1982).  

Secondary structure models for the eukaryotic tRNASec were proposed based on enzymatic 

and chemical probing and structure-based sequence alignments (Hubert et al, 1998; Sturchler 

et al, 1993). Compared to canonical tRNAs, tRNASec has a longer D-stem and an extended 

amino acid acceptor arm (consisting of the A and T-stems). The length of the D-stem is 6 bp, 

whereas it only has 3-4 bp in other tRNAs. While the amino acid acceptor arm of canonical 

tRNAs is 12 bp long, comprising a 7 bp A-stem and a 5 bp T-stem, that of tRNASec is 13 bp. 

Archaea and eukaryotes have a 9 bp A-stem and 4 bp T-stem, called ‘the 9/4 model’, and 

bacteria have an 8 bp A-stem and a 5 bp T-stem, called ‘the 8/5 model’ (Figure 2). In bacteria, 

the extra length of the acceptor arm is the determinant for binding to the specific elongation 

factor SelB. It is required for the serine to selenocysteine conversion in eukaryotes (Baron & 

Bock, 1991; Sturchler-Pierrat et al, 1995), which does not exclude the possibility that it also 

participates in recognition of the homologous factor in eukaryotes. The long variable arm and 

the discriminatory base G73 are the major identity elements for the serylation of tRNASec and 

tRNASer (Wu & Gross, 1993, Figure 2). 

 

Post-transcriptional modification of the Xenopus tRNASec has been investigated (Diamond et 

al, 1993; Sturchler et al, 1994). Compared to canonical tRNAs which contain 15-17 modified 

bases, eukaryotic tRNASec contains only 4 post-transcriptionally modified nucleotides: 

pseudo-U55 (pseudouridine) and m1A58 (1-methyladenosine) in the T-loop, i6A37 (6-

isopentenyladenosine) and mcm5Um34 (5-methylcarboxymethyluridine-2’-O-methylribose) 

in the anticodon loop. There are two major isoforms of tRNASec differing by the methylation 

state of the ribose at U34, mcm5U34 and mcm5Um34. The relative amounts and distribution 

of these two isoforms vary in different cells and tissues. Efficient methylation of the U34 

ribose to yield mcm5Um34 requires the prior modification of other bases and an intact tertiary 

structure (Kim et al, 2000). Furthermore, methylation of the U34 ribose appears to be 

enhanced in the presence of selenium (Diamond et al, 1993). Transgenic mice, overexpressing 

a mutant tRNASec gene lacking i6A (consequently also lacking Um34), display reduced 

expression of several stress-related selenoproteins such as GPx1, GPx3 SelR and SelT 

(Carlson et al, 2005). These results suggest that the isoforms may have different functions. In 

addition, the Um34 modification appears to have a greater influence than that of i6A37 in 

regulating the expression of various mammalian selenoproteins.  
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Figure 2. Secondary structure models of canonical tRNAs and tRNAsSec . 

The acceptor arms are shown in orange: 7/5, 8/5 and 9/4 indicate the number of base pairs constituting 

the amino acid- and T-stems, respectively. i6A37, T54, ψ55, m1A58 and mcm5Um are the base or 

ribose modifications in the bacterial and eukaryotic tRNAsSec . The secondary structure elements are 

indicated by abbreviations (A: the amino acid-stem, D: D-stem, AC: anticodon-stem V: variable arm, 

T: T-stem). The length of the variable arm in the canonical tRNA varies according to tRNAsSec. The 

figure is taken from (Allmang & Krol, 2006b). 

 

 

2.1.2. From serine to phosphoserine (O-phosphoseryl-tRNASec kinase / PSTK) 
 

Since selenocysteine does not occur as a free amino acid, the biosynthesis of selenocysteine 

begins with the charge of serine on the tRNASec by the conventional seryl-tRNA synthetase. 

The seryl to selenocysteine conversion occurs on the tRNA. 

In bacteria, selenocysteine synthase (SelA), a pyridoxal phosphate enzyme, converts directly 

the seryl moiety to selenocysteine on the tRNASec using monoselenophosphate as the 

substrate (reviewed in Böck, 2006). The monoselenophosphate selenium donor is produced 

from selenide by a reaction catalyzed by selenophosphate synthetase (SelD).  

Unlike the bacterial selenocysteine biosynthesis where the Ser-tRNASec is converted directly 

to Sec-tRNASec, selenocysteine biosynthesis in eukaryotes and archaea occurs in two steps 

postcharging: phosphorylation of the Ser-tRNASec by the O-phosphoseryl-tRNASec kinase 
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(PSTK) and conversion of the phosphoseryl-tRNASec (Sep-tRNASec) to Sec-tRNASec by 

Selenocysteine synthase.  

 

The presence of a kinase activity to convert the Ser-tRNASec to Sep-tRNASec was reported in 

1970 (Maenpaa & Bernfield, 1970), but the O-phosphoseryl-tRNASec kinase (PSTK) enzyme 

was identified only recently by using a comparative genomics approach (Carlson et al, 2004). 

This enzyme phosphorylates the serine moiety of Ser-tRNASec to yield Sep-tRNASec by using 

ATP. In contrast to SerRS that recognizes both the tRNASer and tRNASec, PSTK discriminates 

Ser-tRNASec from Ser-tRNASer. In eukaryotes, the length and secondary structure of the D-

stem of tRNASec are the major determinants for phosphorylation (Wu & Gross, 1994), 

whereas the archaeal enzyme recognizes the acceptor stem of the tRNASec (Sherrer et al, 

2008). Interestingly, the archaeal PSTK can efficiently phosphorylate a chimeric Thr-tRNASec, 

providing evidence that this enzyme does not recognize the amino acid (Figure 3). 

 

Figure 3. The selenocysteine biosynthesis pathway. 

A. The selenium donor, monoselenophosphate (H2PO3SeH), is generated from selenite or more likely 

selenide by a reaction catalyzed by Selenophosphate synthetase 2 (SPS2). B. The tRNASec is charged 

with serine by the conventional Seryl-tRNA synthetase (SerRS). In archaea and eukaryotes, the seryl 

residue is phosphorylated by the phosphoseryl-tRNA kinase (PSTK), and then converted to 

selenocysteine by Selenocysteine synthase (SecS) using monoselenophosphate.  
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2.1.3. From phosphoserine to selenocysteine  
 

2.1.3.1. Generation of the selenium donor (SPS1/2)  
 

Selenophosphate synthetase (SelD) in bacteria generates monoselenophosphate which is the 

selenium donor for selenocysteine biosynthesis. Selenophosphate synthetase 1 (SPS1) and 

later selenophosphate synthetase 2 (SPS2) were identified as the eukaryotic homologues 

(Guimaraes et al, 1996; Low et al, 1995). SPS2 is itself a selenoprotein in most organisms 

(Guimaraes et al, 1996). Recent studies demonstrated that SPS2 but not SPS1 can synthesize 

monoselenophosphate in vitro, and only SPS2 is essential for selenoprotein synthesis in vivo 

(Xu et al, 2007a; Xu et al, 2007b). In addition, SPS1 is present in insects that have lost 

selenoproteins, indicating that one of its major role is unrelated to selenoprotein synthesis 

(Chapple & Guigo, 2008). 

 

2.1.3.2. From Sep-tRNASec to Sec-tRNASec (SecS) 
 

Soluble Liver Antigen/Liver Pancreas (SLA/LP) was initially identified as a 48kDa protein 

co-immunoprecipitated with tRNASec by autoantibodies from a subgroup of patients with a 

severe form of autoimmune chronic active hepatitis, and implicated in the selenocysteine 

pathway (Costa et al, 2000; Gelpi et al, 1992; Kernebeck et al, 2001). Later, two research 

teams identified independently SLA/LP as the eukaryotic and archaeal selenocysteine 

synthetase (Xu et al, 2007a; Yuan et al, 2006). The human and archaeal (Methanococcus. 

maripaludis) enzymes were named SepSecS (Yuan et al, 2006), whereas the mouse homolog 

was called mSecS (Xu et al, 2007a) according to the authors (‘SecS’ will be used in this thesis 

for reason of convenience.). Human and archaeal SecS were shown to complement in vivo an 

E.coli SelA null-strain and to convert the Sep-tRNASec to Sec-tRNASec in the presence of 

sodium selenite and recombinant Escherichia.coli SelD in vitro (Yuan et al, 2006). In 

addition, SecS exhibits higher affinity for the Sep-tRNASec than for the tRNASec and Ser-

tRNASec (Xu et al, 2007b). These studies provided evidence that, in contrast to bacterial SelA, 

eukaryotic and archaeal selenocysteine biosynthesis has an intermediate step where Sec-

tRNASec is generated, using Sep-tRNASec and monoselenophosphate as substrates. 
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The crystal structures of the M.maripaludis and mouse SecS were solved and showed that 

both enzymes are members of the fold Type 1 pyridoxal phosphate (PLP)-dependent enzyme 

family, as is bacterial SelA (Araiso et al, 2008; Ganichkin et al, 2008). 

 

2.1.4. SECp43 
 

SECp43 was reported to interact with the tRNASec and to be involved in selenocysteine 

incorporation mechanism (Ding & Grabowski, 1999). SECp43 is predominantly present in the 

nucleus (Xu et al, 2005) and can interact with Sec-tRNASec-EFSec complex in vitro (Small-

Howard et al, 2006). SECp43 interacts with SecS and SPS1 in vivo, and redistributes these 

proteins to the nucleus (Small-Howard et al, 2006). Knockdown of SECp43 by siRNA 

demonstrated that SECp43 is required for ribose methylation at Um34 of tRNASec, and 

increases selenoprotein expression at both mRNA and protein levels. A role for SECp43 has 

also been proposed in the orchestration of the interactions and localization of other 

selenoprotein synthesis factors (Small-Howard et al, 2006; Xu et al, 2005).  

 

 

2.2. Sec incorporation 
 
The general Sec incorporation mechanism is different in bacteria and eukaryotes. In bacteria, 

bSECIS (bacterial SElenoCysteine Insertion Sequence, a stem-loop structure immediately 

downstream of the in-frame UGA codon in selenoprotein mRNAs) and SelB, a translation 

elongation factor specialized for selenocysteine incorporation, play central roles for Sec 

incorporation. The N-terminal region of SelB is highly-sequence similar and functionally 

homologous to EF-Tu, the general translation elongation factor. Its C-teminal domain binds to 

bSECIS. SelB binds specifically and uniquely Sec-tRNASec. The Sec-tRNASec harbored by 

SelB, is brought directly to the UGA Sec codon through the bSECIS-SelB interaction, 

allowing the incorporation of selenocysteine into the nascent polypeptide chain. 

 

In eukaryotes, the SECIS element is located in the 3’UTR of selenoprotein mRNAs. 

Eukaryotic SECIS elements have conserved helix-loop structures and differ from the bSECIS 

structure. Sec incorporation requires the SECIS Binding Protein 2 (SBP2) and the specialized 

translation elongation factor EFSec (reviewed in Allmang & Krol, 2006b; Allmang et al, 
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2009). Ribosomal protein L30 has also been implicated in this mechanism (Chavatte et al, 

2005).  

 

2.2.1. Cis-acting factors 
 

2.2.1.1. SElenoCysteine Incorporation Sequence (SECIS)  
 

The SECIS is an RNA stem-loop structure that is mandatory for selenocysteine incorporation. 

Depending on the kingdom, it varies in sequence, structure and localization in the mRNA.  

 

2.2.1.1.a. Location in mRNA 
In bacteria, the SECIS RNA is located in the coding region immediately downstream of the 

in-frame UGA codon of selenoprotein mRNAs (reviewed in Böck, 2006). Unlike in bacteria, 

the SECIS is found in the 3’UTR of selenoprotein mRNAs in eukaryotes and archaea, 

suggesting similarities in the selenocysteine incorporation mechanism between archaea and 

eukaryotes. The advantage of having the SECIS element in the 3’UTR rather than in the 

coding region is that the RNA sequence is not constrained to maintain both the coding 

capacity and the base-pairing ability of the SECIS element. The localization of the SECIS 

element in the 3’UTR introduces flexibility by looping-out the intervening sequence between 

the UGA codon. It can thus interact with distant UGA Sec codons. In addition, its residence in 

the 3’UTR also enables selenoprotein mRNAs to harbor more than one UGA Sec codon. 

Indeed, the SECIS element in the 3’UTR relieves the necessity for stem-loop structures in the 

coding region, therefore providing complete flexibility in UGA codon position (Berry et al, 

1993). Also, the SECIS element in the 3’UTR provides eukaryotes with a different Sec 

incorporation mechanism than in bacteria, for example, it enables rapid and efficient 

exchange of empty Sec-specific elongation factors (EFSec, see 2.2.2.1. EFSec) for Sec-

tRNASec/EFSec complexes, which seems to be essential in the case of multiple UGA codons 

(Tujebajeva et al, 2000). This is examplified for selenoprotein P (SelP). While most 

selenoprotein mRNAs contain a single UGA codon and a single SECIS element, SelP 

contains 10 to 18 UGA Sec codons, depending on animals, and 2 SECIS elements. In addition 

to the full-length protein, rat SelP has three isoforms resulting from termination at the second, 

third and seventh UGAs (Ma et al, 2002). However, it is possible that the isoforms of various 
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length could arise from experimental conditions and not from abortive synthesis. It was 

shown that the first UGA Sec is decoded by the second SECIS, and the first SECIS is 

required for decoding the downstream UGA Sec codons (Stoytcheva et al, 2006). Another 

surprising exception was found in the Fowlpox virus. The Fowlpox virus GPx4 mRNA 

contains a SECIS element at the 3’end of the coding region and not in the 3’UTR. 

Surprisingly also, this in-frame SECIS is able to support selenoprotein synthesis when the 

virus GPx4 is expressed in mammalian cells (Mix et al, 2007).  

  

2.2.1.1.b Secondary structure 
Although there is little sequence similarity between SECIS RNAs, the SECIS 2D structure is 

well conserved within each kingdom.  

Bacterial SECIS is an approximately 40 nucleotide-long stem-loop structure. Although SECIS 

sequence vary depending on species, the structure is grossly conserved in different organisms 

and the apical loop is important for binding to the specialized translational factor SelB (Böck, 

2006).  

In eukaryotes, the secondary structure models of the SECIS were proposed based on structure 

probing experiments (Walczak et al, 1998; Walczak et al, 1996). There are two types of 

functional SECIS RNAs in eukaryotes, called form 1 and form 2. Both forms have conserved 

structures, composed of internal loops, helices and four consecutive non-Watson-Crick base 

pairs, called the quartet (Figure 4). They also present conserved As in the apex, and A/G 5’ to 

the quartet. Form 2 SECIS possesses an additional helix 3 but a shorter apical loop 

(Fagegaltier et al, 2000b; Grundner-Culemann et al, 1999). Structure-based sequence 

alignments of SECIS elements from the currently available eukaryotic selenoproteome 

resulted in a collection of 62 form 1 and 224 form 2 SECIS sequences, showing that form 2 

SECIS are more widespread than form 1 (Chapple et al, 2009). However, mRNAs encoding 

the same selenoprotein can harbor different forms of SECIS depending on the species. For 

example, SelM mRNA contains a form 2 SECIS element in mammals, whereas form 1 is 

present in zebrafish (Korotkov et al, 2002). Furthermore, introduction of mutations in the 

apex of forms 1 and 2 led to the conclusion that both types of SECIS can function equally 

well under the experimental conditions used (Grundner-Culemann et al, 1999). Why there are 

two forms of SECIS elements is still unclear. 
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Figure 4. Secondary structure models of form 1 and 2 SECIS. 

The conserved sequence and structural features are indicated. Novel conserved residues found by 

SECISaln are shown in red (Chapple et al, 2009). The positions of the conserved nucleotides are 

indicated in blue. abcd/a’b’c’d’ indicates base-pairs forming the non-Watson-Crick quartet. 

Numberings (-4, 1, 2, 9, 10, 1’ and 2’) show the distance from the quartet. Position “z” is the first 

nucleotide after the conserved A/Cs, positions 2H3/2’H3 are the second base pair of the Helix III abd 

1ap is the first nucleotide of the apical loop. The structures are from (Fagegaltier et al, 2000b; 

Grundner-Culemann et al, 1999; Walczak et al, 1998; Walczak et al, 1996).  
 

The non-Watson-Crick quartet is essential to selenocysteine incorporation in vivo, and 

constitutes the binding site for SECIS Binding Protein 2 (the function of this key protein will 

be detailed in paragraph 2.2.2.2.). This motif contains a central tandem of sheared G.A/A.G 

base pairs (Fagegaltier et al, 2000b; Walczak et al, 1998; Walczak et al, 1996). Such a tandem 

of G.A/A.G base pairs is also found in other RNAs such as ribosomal RNAs, snRNAs and 

snoRNAs, and it constitutes a conserved structure, called the K (kink)-turn motif (Klein et al, 

2001). The K-turn is an RNA structural motif that binds proteins in most of the cases and 

mediates RNA tertiary structure interactions. The K-turn is a two-stranded, helix-internal 

loop-helix motif comprising about 15 nucleotides, characterized by base stacking, the 

presence of a tandem of G-A sheared base pairs, and a protruding residue accommodated by a 

protein pocket. As a result, the structure has a kink of 120° in the phosphodiester backbone 

that causes a sharp turn in the RNA helix (Klein et al, 2001). A K-turn was also found in the 

-28-



Introduction 

 

crystal structure of U4 snRNA-15.5kD, L30e RNA-L30e and sRNA-L7Ae complexes (Chao 

& Williamson, 2004; Moore et al, 2004; Vidovic et al, 2000)(Figure 5).  

 

 

Figure 5. The secondary structure of SECIS RNA and various K-turn RNAs. 

The secondary structures of the U4 snRNA, L30e pre-mRNA, L7Ae rRNA, L7Ae box C/D sRNA 

were taken from the crystal structures of the corresponding RNA-protein complexes (Chao & 

Williamson, 2004; Moore et al, 2004; Vidovic et al, 2000). Those of SECIS RNA and U3 Box B/C 

snoRNA were determined by structure probing analyses (Fagegaltier et al, 2000b; Marmier-Gourrier 

et al, 2003; Walczak et al, 1998; Walczak et al, 1996). The sheared G.A/A.G base pairs are indicated 

in bold. The figure is taken from (Allmang & Krol, 2006a). 

 

Because of these secondary structure similarities, we have proposed that the SECIS RNA is a 

K-turn like motif (Allmang & Krol, 2006a). Furthermore, this is supported by previous 

findings where structure probing and mutagenesis data allowed a 3D model for the SECIS 

RNA to be proposed by computer modeling. In this model the phosphodiester backbone is 
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indeed bent at the internal loop (Walczak et al, 1996). Compared to canonical K-turn RNAs, 

SECIS elements have larger internal loops. This larger internal loop and a long helix 2 

provide specificity for SBP2 binding to the SECIS (Cléry et al, 2007 ). The nucleotide 5’ to 

the quartet is A in most of the cases, but G can be found, and the replacement by G does not 

affect SECIS activity in vivo (Buettner et al, 1999; Fagegaltier et al, 2000b; Taskov et al, 

2005). Interestingly, in a patient suffering from a SEPN1-related myopathy, a mutation in the 

non-Watson-Crick quartet of the SEPN1 SECIS element that prevents the interaction with 

SBP2, was found to be responsible for the pathology (Allamand et al, 2006)(Figure 6 A).  

 

 
 

Figure 6. The SECIS and SRE elements of SEPN1 mRNAs 

A. Secondary structure of the SEPN1 SECIS RNA. The conserved U in the non-Watson-Crick quartet 

is essential for the recognition by SBP2 and the U to C mutation abolishes SBP2 binding (arrow). This 

mutation was initially found in Selenoprotein N (SEPN) SECIS element from a patient with a SEPN1-

related myopathy (Maiti et al, 2008). B. Secondary structure model of the SRE RNA. The SRE hairpin 

structure is located within the open reading frame (ORF) of certain selenoprotein mRNAs, here the 

selenoprotein N (SEPN1) (Howard et al, 2005). The G to A mutation was found in a patient with 

SEPN1-related myopathy (Allamand et al, 2006). 

 

RNA structure probing experiments indicated that the conserved As in the apical loop (form 

1) or the internal loop 2 (form 2) are single stranded and well accessible (Fagegaltier et al, 

2000b). However, some exceptions to the invariant presence of As were reported. For 

example, mammalian SelM SECIS and some of Chlamydomonas form 2 SECIS contain Cs 

without altering Sec incorporation activity (Korotkov et al, 2002; Novoselov et al, 2002). 

Other examples of Cs or a combination of As and Cs or even Gs were later found in 
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eukaryotes (Chapple et al, 2009; Lobanov et al, 2006a; Lobanov et al, 2007; Lobanov et al, 

2006b ). Although this apical A/C rich loop is not necessary for SBP2 binding, site-directed 

mutagenesis showed that the unpaired As/Cs are important for selenoprotein synthesis in vivo 

(Berry et al, 1993).  

 

Such detailed knowledge of the secondary structure of SECIS element was used in 

computational analysis to identify novel selenoprotein mRNAs (Kryukov et al, 1999; Lescure 

et al, 1999) and to establish the whole mammalian selenoproteome with the help of 

SECISearch, a computer program for analyzing structural and thermodynamic features of 

SECIS elements (Kryukov et al, 2003). Recently, the well-defined secondary structure of the 

SECIS RNA and the increased size of the eukaryotic selenoproteome allowed the 

establishment of a web-based tool, SECISaln, providing extensive structure-based sequence 

alignments of SECIS elements (Chapple et al, 2009). Analyzing the structural alignments 

produced by SECISaln highlighted a few previously undetected conserved residues (see 

Figure 4). There is an overrepresentation of G at position 1 (3’ to the quartet) and a 

corresponding overrepresentation of C or U at position 1’ (see Figure 4). SECISaln also found 

differences between form1 and form2 SECISes. The most striking one is a well-conserved U 

4 nucleotides upstream of the quartet (at position -4 in Figure 4) in form1 SECIS, whereas C 

can also be found in the form 2 SECIS (Chapple et al, 2009). 

 

2.2.1.2. SRE 
 
Another cis-acting element reported recently is the Selenocysteine codon Redefinition 

Element (SRE). SRE is a phylogenetically conserved stem-loop structure located within the 

coding region of selenoprotein mRNAs, adjacent to the UGA Sec codon. This element is 

sufficient to stimulate readthrough of the UGA Sec codon in the absence of a SECIS element 

in the 3’UTR in a synthetic mRNA, although higher readthough efficiency is observed in its 

presence. SelN SRE inserted in a dual-luciferase system had a stimulatory effect on the UGA 

Sec decoding in vitro (Howard et al, 2005; Howard et al, 2007). SRE was experimentally 

analyzed in SelN mRNA, but bioinformatic approaches predicted found SREs in a few other 

selenoprotein mRNAs such as SPS2, SelH, SelO and SelT (Howard et al, 2005; Pedersen et 

al, 2006). Their 2D structure, however, is not conserved. The presence of an SRE in some but 

not all selenoprotein mRNAs implies a differential role in regulating selenoprotein expression 

at the translation level. Four point mutations leading to the SEPN1-related myopathy were 
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found in the SelN SRE element. One of them weakens the secondary structure of SRE by 

abolishing a G-C base pair, leading to a decrease in Sec incorporation and SelN levels (Maiti 

et al, 2008). This data supports the importance of the SRE structure for selenoprotein 

synthesis (Figure 6B). 

 

 

2.2.2. Trans-acting factors 
 

2.2.2.1. EFSec  
 

In bacteria, SelB is the translation elongation factor specialized for selenocysteine 

incorporation. The N-terminal domain of SelB is highly-sequence similar and functionally 

homologous to EF-Tu (see Figure 7), the general translation elongation factor, and the C-

teminal domain binds to SECIS. SelB binds specifically and uniquely the Sec-tRNASec (Böck, 

2006).  

 

Figure 7. Schematic representations of the selenocysteine specialized translation elongation 
factors compared to general elongation factors. 

The specialized translation elongation factors in E. coli, archaea and eukaryotes (SelB or EFSec) are 

shown, in comparison with the general elongation factors EF-Tu or EF1-A. The GTP-binding domains 

are indicated by G1-G5. Δ1-Δ5 are the deletion regions relative to EF-Tu or EF1-A. The C-terminal 

extensions in E. coli and eukaryotes contain the SECIS binding domain and the SBP2 interaction 

domain, respectively. The figure is taken from (Allmang & Krol, 2006b). 
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EFSec is the mammalian homolog of SelB. It was independently characterized in mouse by 

our laboratory and by Berry’s group (Fagegaltier et al, 2000a; Tujebajeva et al, 2000). EFSec 

binds specifically to the Sec-tRNASec but not to Ser-tRNASec. Like for bacterial SelB, the N-

terminal domain of EFSec has sequence similarities with the general elongation factor EF1A 

and contains homologies to the G1-G4 GTP-domain (Fagegaltier et al, 2000a). The length of 

the C-terminal extension varies in different organisms. In contrast to SelB, EFSec cannot bind 

specifically the SECIS RNA, indicating another role than in bacteria. EFSec co-

immunoprecipitates SBP2 from mammalian cell extracts, and the SBP2 interaction domain 

resides in the C-terminal extension (Tujebajeva et al, 2000). Thus, it is likely that EFSec is 

recruited to the selenocysteine incorporation machinery by SBP2. 

EFSec contains putative nuclear export and nuclear localization signals, in the N-terminal 

domain and the C-terminal SBP2 interaction domain, respectively. The EFSec subcellular 

localization varies depending on the cell line and may be influenced by SBP2 levels and 

localization (de Jesus et al, 2006). 

Archaeal EFSec (called SelB) was identified in Methanococcus jannaschii (Rother et al, 

2000), and it possesses sequence features characteristic of bacterial SelB and EFSec 

(Fagegaltier et al, 2000a; Rother et al, 2000). Furthermore, crystal structure of the 

Methanococcus maripaludis EFSec revealed that its overall shape resembles a ‘chalice’ 

observed so far in translational initiation factor IF2/eIF5B (Leibundgut et al, 2005). This 

raises the interesting question of whether mechanistic similarities could exist between Sec 

incorporation and translational initiation. 

 

2.2.2.2. SBP2 
 
SBP2 (SECIS Binding Protein 2) is a trans-acting factor that plays a central role in eukaryotic 

Sec incorporation. SBP2 was isolated and functionally characterized in rat and humans 

(Copeland & Driscoll, 1999; Lescure et al, 2002). Its known functions are SECIS binding, 

ribosomal binding and Sec incorporation. The importance of SBP2 for selenoprotein synthesis 

was shown by SBP2 depletion which results in decreased Sec incorporation in cells and in 

vitro (Copeland et al, 2000; Papp et al, 2006). Additionally, patients carrying mutations in 

SBP2 display abnormal thyroid hormone metabolism leading to reduction of DIO2 activity 

(Dumitrescu et al, 2005).  
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2.2.2.2.a Domain structure of SBP2  
Mammalian SBP2 is about 850 amino acid long. The domain structure of SBP2 can be 

roughly divided into two parts, the N-terminal and C-terminal domains. The N-terminal 

domain is not essential for selenoprotein synthesis in vitro (Copeland et al, 2000). This 

domain has no sequence similarity with any other known protein, thus its function still 

remains unknown except for the presence of an NLS (Nuclear Localization Signal) (Papp et 

al, 2006). 

The C-terminal domain is essential and sufficient for Sec incorporation in vitro. It contains 

the RNA-binding domain in a region lying between positions 516 and 777 in rat SBP2 

(Copeland & Driscoll, 2001, see also Figure 8). This RNA-binding domain includes a 

conserved motif, called the L7Ae motif. The L7Ae motif was originally identified as a 

putative RNA binding motif by a computational study (Koonin et al, 1994). It is shared by 

other functionally unrelated proteins such as 15.5kD/Snu13, Nhp2 and ribosomal proteins 

L7Ae and L30, all of which bind to a K-turn motif and trigger RNP complex formation. Later, 

point mutation analysis showed that the L7Ae motif in SBP2 is essential for SECIS RNA 

binding (Allmang et al, 2002). In addition to the L7Ae motif, SBP2 specific sequences 

upstream from the L7Ae motif also play an important role for the interaction with the SECIS 

RNA. The RNA binding domain of SBP2 is thus bipartite (Bubenik & Driscoll, 2007; 

Donovan et al, 2008; Takeuchi et al, 2009). The characterization of the additional RNA 

binding module represents an important contribution to my thesis and will be detailed in 

Chapter1 of Part 2. The C-terminal domain contains two functional NES (Nuclear Export 

Signal) (Papp et al, 2006). 
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Figure 8. Schematic representation of protein factors involved in selenoprotein synthesis. 

NLS: nuclear localization signal, NES: nuclear export signal, CRD: cysteine rich domain, RNP: RNP 

consensus RNA binding sequence. This was described in (Papp et al, 2007; Small-Howard & Berry, 

2005) 

2.2.2.2.b. SECIS binding 
SBP2 specifically binds to the SECIS RNA via the non-Watson-Crick quartet. Multiple 

sequence alignments revealed that the RNA binding domains of SBP2 and 15.5kD/Snu13p 

have higher sequence similarity between each other than with other members of the L7Ae 

family. 79 amino acids in the human SBP2 RNA binding domain (position 672-750) possess 

47% similarity (26% identity) with the RBD of 15.5kD/Snu13p, 43% similarity (20% 

identity) with Nhp2p and 30% similarity (16% identity) with the yeast L30 and human L7A 

proteins. A structure-guided strategy based on the SBP2 and 15.5kD similarities, and the 

crystal structure of the 15.5kD-U4 snRNA complex (Vidovic et al, 2000), predicted amino 

acids in the L7Ae motif of SBP2 that should be critical for SECIS RNA binding (Allmang et 
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al, 2002). Alanine scanning mutagenesis identified 8 important amino acids in SBP2. Four 

crucial amino acids are postulated to recognize characteristic bases in the non-Watson-Crick 

quartet of the SECIS RNA, the opposite G residues in the sheared G.A/A.G base pairs and the 

U residue. These findings led to the proposal that the SBP2-SECIS RNA interaction 

principles are indeed similar to those of the 15.5kD-U4 snRNA complex (Allmang et al, 

2002) (Figure 9 A and B).  

 

Figure 9. RNA-protein interfaces at various L7Ae protein-K turn RNA complexes. 

A. Overall crystal structures of human 15.5kD protein-U4 snRNA, L30e protein-L30e mRNA and 

L7Ae protein-sRNA complexes (Chao & Williamson, 2004; Moore et al, 2004; Vidovic et al, 2000). 

The figure is taken from (Allmang & Krol, 2006a). B. Scheme of the RNA-protein interactions in the 

h15.5kD-U4 snRNA derived from the crystal structure (Vidovic et al, 2000) and SBP2-SECIS RNA 

(inferred from a structure-guided strategy (Allmang et al, 2002) complexes. Similar interaction 

principles govern both complexes, as described in (Allmang et al, 2002).  
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This raised the question of whether SBP2 can bind the RNA targets of other L7Ae proteins. 

To answer this question, SELEX and site-directed mutagenesis were performed and showed 

that SBP2 is capable to bind K-turn motifs with a protruding U residue (Figure 5). However, 

SBP2 exhibits higher affinity for the RNA motif when the bulged loop is converted to a large 

internal loop. Helix 1 and internal loop 1 are also important for SBP2 binding. The SBP2-

SECIS interaction is therefore similar to that of L7Ae proteins/K-turn RNAs but requires 

additional RNA-protein contacts (Cléry et al, 2007 ) (Figure 10). 

 

Figure 10. SECIS RNA determinants for SBP2 binding. 

The sequence and structural determinants for SBP2 binding were identified by SELEX and 

mutagenesis. Stronger recognition constraints were identified for SBP2 than for 15.5kD(Cléry et al, 

2007 ). A. K-turn consensus is shown on the left, the secondary structure of the RNA selected by 

SBP2 with the highest affinity on the right. The selected RNA can adopt a K-turn structure. 

Nucleotides in bold were initially degenerated in the SELEX experiment, the selected RNA with the 

highest affinity for SBP2 is represented. B. Specific binding constraints for SBP2 and 15.5kD. While 

15.5kD binds the K-turn motif with a small internal loop and a short helix I (at least one base pair, 

right), SBP2 requires long and stable helices I and II (left, upper and bottom panels) and a rather large 

internal loop (bottom panel) for SECIS RNA recognition. SBP2 also requires strict sequence 

conservations compared to 15.5kD (shown in red). The higher specificity of SBP2 for RNA 

recognition suggests the existence of additional protein-RNA contacts in SBP2-SECIS RNA complex, 

compared to other L7Ae proteins.  
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Furthermore, the SECIS-binding affinity of SBP2 differs between different selenoprotein 

mRNAs and is suggested to play a major role in determining the differential selenoprotein 

mRNA translation and sensitivity to nonsense-mediated decay (Squires et al, 2007). 

In addition to mutations in the coding frame of the SelN protein causing SEPN1-related 

myopathies, a single homozygous point mutation in the SelN mRNA SECIS element was also 

shown to be responsible for the pathology. This mutation was found in the non-Watson-Crick 

quartet, preventing the interaction with SBP2 (Allamand et al, 2006)(Figure 6A). 

 

2.2.2.2.c. EFSec-SBP2 interaction 
An interaction between SBP2 and EFSec was observed in co-immunoprecipitation assays 

using mammalian cell extracts (Tujebajeva et al, 2000), requiring the tRNASec (Zavacki et al, 

2003). This interaction occurred via the C-terminal 64 amino acid sequence of EFSec and the 

C-terminal domain of SBP2 (Donovan et al, 2008; Zavacki et al, 2003). However, no 

interaction could be detected in rabbit reticulocyte lysate. The interaction could not be 

reconstituted in vitro unless a masking region of EFSec was removed (Zavacki et al, 2003). 

Surprisingly, however, a recent study reported the EFSec-SBP2 interaction in vitro in the sole 

presence of the SECIS RNA in the reaction mixture (Donovan et al, 2008). The discrepancies 

observed by the various investigators may be caused by differences in the experimental 

conditions, a co-immunoprecipitation assay using cell extracts on the one hand, EMSA using 

recombinant proteins on the other. A 6xHis tagged EFSec may also be detrimental to the 

interaction (Donovan et al, 2008). Furthermore, co-expression of SECp43 was shown to 

promote the interaction between EFSec and SBP2 (Small-Howard et al, 2006), explaining 

why it might be difficult to observe it in vitro. 

 

2.2.2.2.d. Ribosomal binding 
Since eukaryotic selenoprotein mRNAs contain the SECIS element in the 3’UTR, 

selenocysteine incorporation requires factor(s) that connect the ribosome with the SECIS 

element to tell not to stop at the UGA Sec codon. Indeed, SBP2 plays an important role in this 

process. Glycerol gradient centrifugation established that SBP2 quantitatively associates with 

ribosomes through its RNA binding domain (Kinzy et al, 2005). SECIS RNA can compete 

with the ribosome for SBP2 binding, indicating that SBP2 is not able to simultaneously 

interact with the ribosome and the SECIS RNA (Kinzy et al, 2005). Like SECIS binding, the 
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ribosome binding activity of SBP2 is essential for Sec incorporation (Caban et al, 2007; 

Donovan et al, 2008; Kinzy et al, 2005). We have analyzed ribosomal binding in more detail 

using purified ribosomal subunits. The results will be described in Chapter 1 of Part 2. 

 

2.2.2.2.e. Expression and localization  
SBP2 mRNA is expressed in most tissues as revealed by Northern blotting analyses, with 

higher levels in testis (Copeland et al, 2000; Lescure et al, 2002). SBP2 was detected 

predominantly in the cytoplasm, in stable association with ribosomes (Copeland et al, 2001; 

Kinzy et al, 2005; Papp et al, 2006). SECp43, which promotes the interaction between EFSec 

and SBP2, interacts in vivo with the Sec-tRNASec/EFSec in a high molecular weight complex 

(Small-Howard et al, 2006), implying that SBP2 is also present in the high molecular weight 

complex comprising EFSec and SECp43. However, recent studies showed that SBP2 can 

undergo nucleocytoplasmic shuttling via intrinsic nuclear localization (NLS) and nuclear 

export signals (NES) that are located in the N-terminal part and the C-terminal cysteine-rich 

domain (CRD), respectively (Papp et al, 2006). The nuclear export of SBP2 is dependent on 

the CRM1 pathway. Indeed, the best characterized pathway for nuclear export of proteins 

from nucleus to cytoplasm involves the nuclear export receptor CRM1, which binds to NES. 

Inhibition of CRM1 induces nuclear sequestration of SBP2 and decreases selenoprotein 

synthesis. Interestingly, oxidative stress induces nuclear accumulation of SBP2 through the 

formation of disulfide (S-S) and/or glutathione-mixed disulfide (S-SG) bonds in the redox 

sensitive cysteines of the CRD, which masks the NES. These modifications are efficiently 

reversed in vitro by thioredoxins and glutaredoxins. These antioxidant systems might regulate 

the redox state of SBP2. The nuclear retention of SBP2 after oxidative stress reduces Sec 

incorporation, suggesting a mechanism to regulate selenoprotein expression (Papp et al, 

2006)(Figure 11). 
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Figure 11. Proposed model for the regulation of SBP2 subcellular localization and function 
after oxidative stress. 

The model is from (Papp et al, 2006). Oxidative stress oxidizes redox-sensitive SBP2 cysteine 

residues to disulfide (S-S) or glutathione-mixed disulfide (S-SG) bonds, triggering its nuclear 

translocation. An oxidized state masks the NES, inhibiting its nuclear export and leading to nuclear 

retention. During cell recovery, the thioredoxin (Trx) and the glutaredoxin (Grx) reduce the cysteine 

residues, leading to exposure of the NES and CRM1-dependent nuclear export. (Figure adapted from 

(Allmang et al, 2009)) 

 

In silico and in vivo studies established a complex alternative splicing pattern in the 5’ region 

of the human SBP2. There are at least eight splice variants encoding five isoforms with N-

terminal sequence variation. One of them, the most abundant variant after the full-length 

SBP2, contains a mitochondrial targeting sequence (MTS), perhaps functioning in the 

translation of selenoproteins targeted to mitochondria on mitochondria-bound polysomes 

(Papp et al, 2008). In the same report, it was shown that full-length and some alternatively 

spliced variants are subject to a coordinated transcriptional and translational regulation in 

response to UVA irradiation-induced stress. 

It was recently reported that 3’UTR sequences in the SBP2 mRNA are highly conserved and 

two RNA binding proteins, CUG-BP1 and HuR, interact with this region. Both CUG-BP1 and 

HuR are involved in mRNA stability and translational regulation of their mRNA targets, 
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suggesting that the SBP2 mRNA is regulated at the post-transcriptional level (Bubenik et al, 

2009). 

 

2.2.2.3. L30 
 

L30 is specific to eukaryotes and archaea, although not all archaeal ribosomes possess it. It 

belongs to the L7Ae protein family. L30 is part of the large ribosomal subunit but exists also 

as a free protein. L30 binds its own pre-mRNA and regulates its splicing and expression 

(MacÌas et al, 2008). However, its function during translation is still elusive. The rat L30 

protein was reported to be a component of selenocysteine incorporation machinery. It binds 

the SECIS RNA in vitro and in vivo and competes with SBP2 for SECIS RNA binding, 

especially under high Mg2+ concentration, because these metal ions induce kink-turn 

conformation in the SECIS RNA and increase the L30-SECIS interaction (Chavatte et al, 

2005). The ribosomal-bound L30 has a higher affinity for the SECIS RNA than the 

recombinant protein. This allowed to suggest a model in which L30 displaces transiently 

SBP2 during selenocysteine incorporation (Chavatte et al, 2005).  

 

2.2.2.4. Other proteins 
 

Nucleolin is a multifunctional protein described to function in many pathways including 

transcriptional regulation and maturation of ribosomal RNA (reviewed in Mongelard & 

Bouvet, 2007). cDNA library screening identified this protein as a SECIS RNA binder (Wu et 

al, 2000). In contrast to SBP2, nucleolin is less discriminatory for SECIS RNA binding 

(Squires et al, 2007). 

Nuclease Sensitive Element Binding Protein 1 (NSEP1) is also called DNA-binding protein 

1B (dbpB) or Y-box binding protein 1 (YB-1) in accordance with its DNA binding properties 

and its role as a transcription factor. This protein was also shown to bind the SECIS RNA and 

to be functionally involved in selenoprotein synthesis in mammalian cells. (Shen et al, 1998, 

Shen et al, 2006) 

. 
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2.3. Sec incorporation model 
 

How the selenocysteine incorporation machinery tells the ribosome not to stop at the UGA 

codon still remains controversial. However, two distinct models have been proposed 

describing the selenocysteine incorporation mechanism. (Figures 12) 

 

Figure 12. Selenocysteine incorporation models 

A. In bacteria, SelB binds both the Sec-tRNASec and bSECIS element immediately downstream of the 

UGA Sec codon. The Sec-tRNASec, harbored by SelB, is brought directly to the UGA codon through 

the bSECIS-SelB interaction, allowing the incorporation of selenocysteine into the nascent 

polypeptide chain. B. In eukaryotes, two models were proposed. (1, upper panel) SBP2 travels with 

the ribosome, interacts with the SECIS RNA and the EFSec/Sec-tRNASec to deliver this complex to 

the A site of the ribosome. Then, L30 displaces SBP2 from the SECIS RNA; (2, bottom panel) SBP2 

is bound to the SECIS RNA and recruits the EFSec/Sec-tRNASec complex to the SECIS RNA. Then, 
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ribosome-bound L30 displaces SBP2 so that the SBP2/ EFSec/Sec-tRNASec complex can be delivered 

to the ribosome. Figures are taken from (Allmang & Krol, 2006b). 

 

In the first model, SBP2 travels with the ribosome. The ribosome stalling at a UGA Sec 

codon allows the SECIS element to interact with SBP2, bringing the Sec-tRNASec bound 

EFSec to the ribosomal A-site (Donovan et al, 2008; Kinzy et al, 2005). This model was 

proposed based on the findings that SBP2 quantitatively interacts with the ribosome, but 

cannot bind simultaneously to the SECIS RNA. In the second model, SBP2 is bound to the 

SECIS element prior to translation, and recruits the EFSec/Sec-tRNASec complex prior to 

UGA decoding. Then, an approaching ribosome leads L30 to displace SBP2 by competing for 

the SECIS element. As a consequence, the SBP2/EFSec/Sec-tRNASec complex is delivered to 

the ribosomal A-site (Chavatte et al, 2005). 

 

 

3. Selenoprotein mRNP assembly 
 

3.1. Nuclear assembly 
 

Nonsense-mediated decay (NMD) is a consequence of premature termination codon (PTC) 

recognition during a pioneer round of translation. This pathway is important for cells because 

it functions as a quality control mechanism to eliminate aberrant transcripts. In mammalian 

cells, NMD occurs when an mRNA contains a non-sense codon located more than 25 

nucleotides upstream of the post-splicing exon junction complex (EJC) (Lejeune & Maquat, 

2005). Because selenoprotein mRNAs contain in-frame UGA codons, they can be targets for 

NMD. Analyses of the genome structure suggest that 14 of the 25 human selenoprotein 

mRNAs are potentially NMD sensitive (Squires et al, 2007). Indeed, selenoprotein mRNAs 

are subjected to NMD under low selenium condition (Moriarty et al, 1998; Sun et al, 2001; 

Weiss & Sunde, 1998). One mechanism that could allow selenoprotein mRNAs to circumvent 

NMD is the early assembly on selenoprotein mRNAs, in the nucleus, of the selenocysteine 

incorporation machinery (therefore before initiation of the first round of translation). This is 

suggested by the nucleocytoplasmic shuttling ability of SBP2 (de Jesus et al, 2006) and 

supported by the supramolecular complex formation model of the selenoprotein synthesis 

machinery (Small-Howard et al, 2006). (Figure 13) 

-43-



Introduction 

 

 

 

Figure 13. Nuclear assembly of the selenoprotein synthesis machinery 

This model incorporates experimental evidence regarding selenocysteine and selenoprotein synthesis 

according to (de Jesus et al, 2006; Small-Howard et al, 2006). Shuttling of the Sec-

tRNASec/EFSec/SPS1/SECp43 complex into the nucleus and association with SBP2 and the SECIS 

element are depicted. Cytoplasmic export of the selenocysteine incorporation machinery is shown on 

the left.  The figure is adapted from (Allmang et al, 2009). 

 

 

3.2. Assembly of selenoprotein mRNAs - similarities with sn/snoRNP assembly 
 

The RNA binding domain of SBP2 belongs to the L7Ae family (see 2.2.2.2). The L7Ae 

family proteins have been found in many essential ribonucleoproteins (RNPs). For example, 

the 15.5kD/ Snu13p, with which the SBP2 L7Ae motif has high sequence similarity, plays a 

central role in the formation of the U4 snRNP, box C/D snoRNPs and the B/C structure of the 

U3 snoRNP (Watkins et al, 2000). The L7Ae proteins all bind to a common RNA structure, 

the K-turn (See also 2.2.1.1.b). Binding of the L7Ae proteins to the target RNA exposes 

further contact surfaces on both RNA and protein; this is required for recruiting additional 

factors (core proteins) to the RNPs. The K-turn like motif of the SECIS RNA and the 
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nucleocytoplasmic shuttling ability of SBP2 are consistent with a possible nuclear assembly 

of SECIS mRNPs obeying to the same rules as the sn/snoRNP assembly. Indeed, a recent 

study in the laboratory identified a complex assembly machinery linked to the protein 

chaperone Hsp90 and that assembles RNPs of the L7Ae family, such as box C/D and H/ACA 

snoRNPs, telomerase, U4 snRNP and selenoprotein mRNPs (Boulon et al, 2008; Zhao et al, 

2008). This machinery is composed of a co-chaperone complex comprising Rvb1-Rvb2, 

Spagh and Pih1 (R2TP complex) associated to the Hsp90 chaperone, and the adaptor protein 

Nufip. Nufip binds the L7Ae family proteins including SBP2 and can tether them to other 

core proteins of immature RNPs. It also links them to the Hsp90 chaperone complex. These 

associations are necessary for the stability of SBP2 and its assembly on the SECIS RNA 

(Boulon et al, 2008). Altogether, these results implied that SBP2 has functional similarities 

with other L7Ae proteins during RNP assembly, and that the interaction with Nufip leads to 

recruit additional core protein(s) yet to be identified (Figure 14). 

 

Figure 14. Selenoprotein mRNP assembly model. 

The Hsp90 co-chaperone complex is composed of the AAA+ ATPases Rvb1 and Rvb2 (Rvb1/2), 

Spagh and Pih1. Hsp90 is required for the stability of SBP2. It may control the folding of SBP2 during 

SECIS RNP formation. Nufip acts as an adaptor between the chaperone complex and SBP2. The 

interaction between Pih1 and SBP2 has been experimentally demonstrated. The curved arrow points to 

interactions with putative core proteins yet to be discovered. The figure is taken from (Allmang et al, 

2009). 
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4. Objectives and outline of this thesis 
 

SBP2 plays a central role in the eukaryotic Sec incorporation mechanism. However, SBP2 

was characterized only in rat and humans when I started my PhD work. We were therefore 

interested in SBP2 from other species for evolutionary and crystallographic purposes. During 

my PhD studies, I cloned the Drosophila melanogaster SBP2 and analyzed its function. We 

identified a new domain which is important for SECIS RNA binding and exhibits selective 

affinities toward SECIS RNAs. This new domain, found in all SBP2s, is also responsible for 

the binding of SBP2 to the ribosome. This work will be described in Chapter 1 of Part 2. 

The laboratory recently identified a common molecular machinery for the assembly of 

selenoprotein mRNPs with sn/snoRNPs. Since most of the core proteins of selenoprotein 

mRNPs are still unknown, I investigated whether major core proteins of the sn/snoRNP 

complex could also be potential partners of SBP2. This wok will be described in Chapter 2 of 

Part 3 

Finally, I also participated in the structural analysis of SBP2, in collaboration with the group 

of Philippe Dumas in the same UPR. This will be described in Chapter 2 of Part 2. 

 

Altogether, these studies provided important insight into how the SBP2-SECIS RNA complex 

is formed during selenoprotein synthesis, a process which is at the heart of the UGA 

reprogramming mechanism. 
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1. Functional characterization of Drosophila melanogaster SBP2 
 

1.1. Selenoproteome in Drosophila  
 

Selenoproteins are found in the three domains of life, but not in all species of each taxa. 

Selenoproteins were even found to be encoded by two viruses (Mix et al, 2007; Shisler et al, 

1998). About 25 Sec-containing proteins have been identified in mammals (Castellano et al, 

2004; Kryukov et al, 2003), but the distribution among taxa varies greatly. For instance, no 

selenoprotein has been found in yeast and land plants, only one in nematodes and three in 

flies. A few selenoproteins have homologues in which Sec is replaced by cysteine (Cys). This 

is for example the case in genomes completely devoid of Sec-containing genes. The 

phylogenetic distribution of selenoproteins shows that Sec utilization in eukaryotes is 

sporadic and that the mammalian selenoproteome is not the recapitulation of that of 

eukaryotes (reviewed in Castellano, 2009, Figure 15). While vertebrates have a large number 

of selenoprotein genes, non-vertebrate species can possess even larger selenoproteomes. 

Interestingly, aquatic organisms have larger selenoproteomes compared to terrestrial 

organisms, likely due to the higher availability of dissolved organic selenium in oceans, 

leading to the occurrence of large selenoproteomes in aquatic organisms. This is the case for 

example of the algae Ostreococcus which contains about 30 selenoprotein genes (Table 2). On 

the contrary, the higher content of oxygen in the air, which may make selenoproteins more 

susceptible to oxidative damage due to the side reaction of the selenol group of Sec with O2, 

led to the reduction of selenoproteins in terrestrial organisms (Lobanov et al, 2007; Lobanov 

et al, 2008b). In invertebrates, three selenoproteins were found in Drosophila melanogaster 

and a single one in Caenorhabditis elegans (Castellano et al, 2001; Taskov et al, 2005). The 

only selenoprotein in C. elegans is thioredoxin reductase. Protozoa also possess 

selenoproteins and often have specific selenoproteins. Trypanosoma and Leishmania have 

three selenoproteins, that are distant homologs of mammalian SelK and SelT, and a 

kinetoplastida-specific selenoprotein (SelTryp) (Lobanov et al, 2006b). Plasmodia have four 

selenoproteins that are not homologues of previously known selenoproteins (Lobanov et al, 

2006a). Although showing some specificities that set it slightly apart from canonical 

SECISes, the Plasmodium SECIS element is also able to support selenoprotein synthesis in 

mammalian cells (Lobanov et al, 2006a). These findings support the conservation of the Sec 

incorporation mechanisms from selenoprotein-containing lower eukaryotes to mammals. We 
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were therefore interested in the selenoprotein synthesis machinery in other species than 

mammals where it had not been investigated at all, especially SBP2 in D. melanogaster 

because of its shorter length that will be described in the following chapter (1.2. Objective). 

 

Figure 15. Eukaryotic selenoproteomes 

The eukaryotic selenoproteins, as identified in (Castellano et al, 2008; Castellano et al, 2005; 

Castellano et al, 2001; Castellano et al, 2004; Chapple & Guigo, 2008; Dayer et al, 2008; Kryukov et 

al, 2003; Lobanov et al, 2006a; Lobanov et al, 2007; Lobanov et al, 2006b; Lobanov et al, 2008a; 

Lobanov et al, 2008b; Taskov et al, 2005). Red, green and black boxes indicate selenoproteins, 

cysteine homologs and proteins lost during evolution, respectively. 

GPx: Glutathione peroxidases, TR: Thioredoxin reductases, DIO: Iodothyronine deiodinases, SPS2: 

Selenophosphate synthetase, PDI: Protein disulfide isomerase, MSP: Predicted membrane 

selenoprotein. Msr: methionine sulfoxide reductase. 
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Table 2. Selenoproteins identified in representative eukaryotic organisms.  

Data taken from (Lobanov et al, 2007; Lobanov et al, 2008b). GPx: Glutathione peroxidase, TR: 

Thioredoxin reductase, DIO: Iodothyronine deiodinase, SPS2: Selenophosphate synthetase, Msr: 

methionine sulfoxide reductase, PDI: Protein disulfide isomerase, MSP: Predicted membrane 

selenoprotein. 

 

 

1.2. Objective 
 
The three selenoproteins in D. melanogaster are dSPS2, dSelK and dSelH (Castellano et al, 

2001; Hirosawa-Takamori et al, 2000) (dSelK and dSelH were initially identified as dSelG 

and dSelM, respectively, but renamed later (Kryukov et al, 2003)). dSelK has one cysteine 

homolog and dSelM has two (Castellano et al, 2001; Martin-Romero et al, 2001). While 

dSPS2, the selenophosphate synthetase, belongs to a known family of selenoproteins, both 

dSelK and dSelH are poorly characterized functionally but are likely involved in antioxidative 

reactions (Dikiy et al, 2007; Lu et al, 2006; Morozova et al, 2003). dSelK has a cysteine 

homolog in C. elegans of unknown function (Taskov et al, 2005), while dSelH appears to 

belong to a class of selenoproteins widely distributed across the phylogenetic spectrum, as 

dSelH was found in zebrafish, human and mouse EST databases (Dikiy et al, 2007; 

Novoselov et al, 2007a). dSPS2, dSelK and dSelH all contain mammalian-type SECIS 

elements, composed of the characteristic helix and loop structures as well as the non-Watson-

Crick quartet. Strikingly, only form 2 SECIS were found in the 3’UTR of their mRNAs 

(Figure 16). 
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Figure 16. Selenoproteins in D. melanogaster SBP2. 

Schematic representations of SelH, SelK and SPS2 mRNAs (left) and secondary structure of the 

corresponding SECIS elements (right) described in (Castellano et al, 2001; Fagegaltier et al, 2000b; 

Hirosawa-Takamori et al, 2000). The coding regions are shown by blue boxes with the UGA Sec 

codon in red. The non-Watson-Crick quartet and the conserved As in the internal loop II are shown in 

pink and orange, respectively (right). 
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Although a number of SBP2 sequences from mammals, non-mammalian vertebrates, 

invertebrates or unicellular organisms were annotated in databases, SBP2 had been so far 

isolated and functionally characterized only in rat and humans.  

Interestingly, a database search for Drosophila SBP2 sequences yielded a candidate bearing 

all the signatures to be a bona fide SBP2 (our work, and Chapple & Guigo, 2008). Compared 

to mammalian SBP2 that is about 850 amino acid long, Drosophila SBP2 lacks homology to 

the mammalian N-terminal domain and is only 313 amino acid long (Figure 17).  

 

 
 

Figure 17. Shematic representation of the human and D. melanogaster SBP2 proteins. 

The K-rich region and the L7Ae module are shown in pink and blue, respectively. The D. 

melanogaster SBP2 lacks the sequence corresponding to the N-terminal domain of human SBP2. The 

C-terminal domain of D. melanogaster SBP2 contains the conserved RNA binding domain.  

 

As mentioned in part 1 (Introduction), the N-terminal domain of mammalian SBP2 is 

dispensable for selenoprotein synthesis in vitro. Furthermore, the existence of selenoproteins 

in Drosophila implied that Drosophila SBP2 can function in selenoprotein synthesis. Thus, we 

postulated that this shorter SBP2 would be a good model to study SBP2 function. In the 

course of my work, I cloned the cDNA of the Drosophila melanogaster SBP2 protein 

(dSBP2) and tested whether this shorter SBP2 is functional in selenoprotein synthesis. I 

compared it to mammalian SBP2. This allowed the identification and characterization of a 

novel K (lysine)-rich domain in the Drosophila and also all SBP2s, essential for SECIS and 

60S ribosomal subunit binding. This additional, novel domain differs from the well-

characterized L7Ae RNA-binding domain. We have analyzed its specificities. Altogether, this 

work is described in the following Article 1.  
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1.3. Summary of Article 1 
 
In this work, I have isolated and functionally characterized a bona fide D. melanogaster SBP2 

that specifically lacks the region homologous to the N-terminus of vertebrate SBP2. While 

human SBP2 (hSBP2) binds both form 1 and 2 SECIS RNAs with similar affinities, dSBP2 

exhibits high affinity toward form 2 only. In addition, with a homology search, we identified 

a lysine-rich (K-rich) domain in human SBP2 that is essential for SECIS binding. Both 

domains differ by their lysine content. They read SVRVY in Drosophila and IILKE in 

humans. We showed, by introducing point mutations into hSBP2, that the differential binding 

affinities to SECIS RNAs are attributed to a short amino acid sequence in the K-rich domain. 

Exchanging the sequence of dSBP2 (SVRVY) with that of hSBP2 (IILKE) enabled dSBP2 to 

bind form 1 SECIS RNAs but impaired binding of hSBP2. We therefore concluded that this 

five amino acid sequence (IILKE) in the hSBP2 K-rich domain confers the ability to bind 

form 1 SECIS RNAs.  

It was previously shown that SBP2 binds the 80S ribosome (Copeland & Driscoll, 2001). In 

this study, we showed that SBP2 binds in fact to the 60S subunit and that the K-rich domain is 

essential for binding. This is consistent with the proposal that this association with the 

ribosome may occur through binding to one of the K-turn motifs in the 28S ribosomal RNA 

(Caban et al, 2007; Copeland & Driscoll, 2001; Kinzy et al, 2005). Furthermore, our finding 

that the same amino acids in the K-rich region that are crucial to SECIS recognition are also 

involved in ribosomal binding supports the notion that SBP2 cannot bind the SECIS element 

and the ribosome simultaneously (Copeland & Driscoll, 2001).  

Although SBP2 belongs to the L7Ae family, it differs from other L7Ae family proteins. 

While the L7Ae family requires the single L7Ae domain to bind specifically the cognate 

RNA (Chao & Williamson, 2004; Marmier-Gourrier et al, 2003; Moore et al, 2004; Nottrott 

et al, 2002; Vidovic et al, 2000), SBP2 needs both the L7Ae and the K-rich domain for SECIS 

specific binding. These findings were in fact already suspected from the following 

experiments. While the 15.5kD and L7Ae ribosomal proteins have a rather broad specificity 

and can recognize the SECIS RNA, SBP2 displayed a higher selectivity since it could not 

bind either the U3 snoRNA or the archaea sRNA (Cléry et al, 2007 ). This specificity is also 

reflected by the presence of nucleotide determinants in the SECIS RNA that are unique to 

SBP2 recognition (See Figure 10). Indeed, helix I and internal loop 1 which are required for 

SBP2 recognition, are found only in the SECIS RNAs and not in other K-turn RNAs (Cléry et 

al, 2007 ).  
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These observations led us to propose the following model rationalizing the necessity of two 

domains in SBP2 for complex formation with the SECIS RNA. The L7Ae motif recognizes 

the guanine bases of the G.A/A.G base pairs in a similar manner to other L7Ae proteins, and 

the conserved U in the SECIS non-Watson-Crick quartet. The positively charged lysines in 

the K-rich domain likely increase the affinity of SBP2 for SECIS RNAs through electrostatic 

interactions with the phosphates of the SECIS-specific structural features. Indeed, earlier 

experiments showed that SBP2 required the phosphates of helix 1 for binding (Fletcher et al, 

2001). In the K-rich domain, IILKE sequence could mediate form 1 SECIS recognition by 

either a direct effect on SECIS binding or indirectly by inducing a conformational change of 

the L7Ae motif. Validation of these models has to await resolution of the crystal structure of 

the SBP2-SECIS RNA complex.  
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1.4. Article 1 
  

A short motif in Drosophila SECIS Binding Protein 2 provides differential binding 

affinity to SECIS RNA hairpins,  

Akiko Takeuchi, David Schmitt, Charles Chapple, Elena Babaylova, Galina, Karpova, 

Roderic Guigo, Alain Krol and Christine Allmang (2009) Nucleic Acids Research, 

37(7):2126-41. 
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ABSTRACT

Selenoproteins contain the amino acid selenocys-
teine which is encoded by a UGA Sec codon.
Recoding UGA Sec requires a complex mechanism,
comprising the cis-acting SECIS RNA hairpin in the
3’UTR of selenoprotein mRNAs, and trans-acting
factors. Among these, the SECIS Binding Protein 2
(SBP2) is central to the mechanism. SBP2 has been
so far functionally characterized only in rats and
humans. In this work, we report the characterization
of the Drosophila melanogaster SBP2 (dSBP2).
Despite its shorter length, it retained the same
selenoprotein synthesis-promoting capabilities
as the mammalian counterpart. However, a major
difference resides in the SECIS recognition
pattern: while human SBP2 (hSBP2) binds the dis-
tinct form 1 and 2 SECIS RNAs with similar affinities,
dSBP2 exhibits high affinity toward form 2 only. In
addition, we report the identification of a K (lysine)-
rich domain in all SBP2s, essential for SECIS and
60S ribosomal subunit binding, differing from the
well-characterized L7Ae RNA-binding domain.
Swapping only five amino acids between dSBP2
and hSBP2 in the K-rich domain conferred
reversed SECIS-binding properties to the proteins,
thus unveiling an important sequence for form 1
binding.

INTRODUCTION

Selenoproteins are a diverse family of proteins character-
ized by the presence of the 21st amino acid selenocysteine
(Sec). This amino acid is co-translationally incorporated
into the growing peptide chain in response to a UGA Sec
codon, otherwise read as a signal for termination of trans-
lation. In eukaryotes, the correct recoding event of UGA
stop to UGA Sec relies on specific, conserved RNA struc-
tures and proteins. The tRNASec and the SECIS element,
an RNA hairpin in the 30UTR of selenoprotein mRNAs,
and two trans-acting proteins, the specialized translation
elongation factor eEFSec and the SECIS Binding Protein
2 (SBP2), are the key players of the recoding machinery
(1). Specialized protein complexes that involve SECp43,
the Phosphoserine tRNASec Kinase (PSTK) and the Sec
synthase are recruited to the tRNASec to ensure proper
selenocysteine synthesis (2–4). Ribosomal protein L30
has also been implicated in this mechanism and shown
to compete with SBP2 for SECIS binding (5).
There are two types of functional SECIS RNAs, forms

1 and 2, classified according to their different apex: form 2
has an additional helix, and its apical loop is shorter than
in form 1 (6,7). Structure-based alignments in the cur-
rently available eukaryotic selenoproteome identified
form 2 SECIS as the most widespread element (8).
Except for the apex, SECIS RNA hairpins share
common structural features, in particular four consecutive
non-Watson–Crick base pairs (the quartet) composed of a
central tandem of sheared G.A/A.G base pairs (7–10).
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Such non-canonical base pairs are characteristic of K
(kink)-turn motifs which are recurrent in a variety of
RNAs (11–13). The SECIS RNA has been proposed to
contain a K-turn like motif (14) that is essential for SBP2
interaction and selenoprotein incorporation in vivo (10).
A number of proteins fulfilling different functions such
as snRNPs, snoRNPs or ribosomal proteins bind K-turn
RNA motifs (15,16). They all carry the L7Ae RNA-bind-
ing domain (or module) (17) that contains a restricted set
of amino acids that establish base-specific contacts with
the sheared G.A/A.G base pairs (11,18,19).
SBP2 also has the L7Ae module in its RNA-binding

domain (20–22). In an earlier work, we predicted the
human SBP2 (hSBP2) amino acids that contact the
SECIS RNA at the K-turn like motif (20). However,
while sharing some RNA-binding properties with other
proteins of the L7Ae family, SBP2 possesses its own spe-
cificities (23). The known functions of SBP2, comprising
SECIS and ribosome binding, and Sec incorporation,
reside in the C-terminal two-thirds of the protein
(21,22,24). However, no function has been attributed to
the remaining N-terminal section which has been shown to
be dispensable for Sec incorporation in rabbit reticulocyte
lysate (25).
Selenoproteins exist in the three domains of life.

Vertebrate genomes encode up to 25–26 selenoproteins
but surprisingly larger selenoproteomes can be found in
aquatic unicellular organisms (26). Only three selenopro-
tein genes have been discovered in Drosophila melanoga-
ster, SPS2, SelH and SelK (27,28). SPS2 is the
selenophosphate synthetase involved in selenocysteine bio-
synthesis. SelH and SelK are poorly characterized func-
tionally but they seem nevertheless to play an antioxidant
role (29,30). In each case however, only form 2 SECIS
RNAs were found in the 30UTR of the selenoprotein
mRNAs.
Some of us have recently published the annotation

and multiple sequence alignments of insect selenoprotein
synthesis factors, especially in 12 Drosophila genomes (31).
Among these factors, our attention was attracted by
the putative Drosophila SBP2 because they lack the
sequence homologous to the N-terminus of hSBP2.
Although a number of SBP2 sequences from mammals,
non-mammalian vertebrates or even unicellular organisms
are annotated in databases, only the rat and hSBP2 have
been so far isolated and functionally characterized
(20–25,32,33). This prompted us to study Drosophila
SBP2s and in particular Drosophila melanogaster. In this
work, we report that despite its shorter length, D. melano-
gaster SBP2 (dSBP2) retains functional properties similar
to its mammalian counterpart. However, dSBP2 exhibits
selective affinities toward SECIS RNAs, being almost
unable to bind form 1 SECIS. We determined that the
discriminating amino acids reside in a K (lysine)-rich
region that we also identified in hSBP2 as essential for
SECIS RNA binding. In addition we showed that, in
hSBP2, mutating the K-rich region affected form 1 and
form 2 SECIS interaction differently, and that this
region also plays a crucial role in 60S ribosomal subunit
binding.

MATERIALS AND METHODS

Strains and growth conditions

The Escherichia coli TG2 strain was used as the host strain
for plasmid construction. Growth was performed at 378C
in LB medium, complemented with 100 mg/ml ampicillin.
The E. coli strain BL21(DE3)-star was used for produc-
tion of Drosophila SBP2 proteins at 258C in ZYM-5052
auto-induction medium as described by Studier et al. (34).
The E. coli strain BL21(DE3)RIL (Novagen) was used for
production of hSBP2 proteins at 188C in LB medium.

Bioinformatic analyses

Alignment of human/pig/rat/insect SBP2s. Annotated
SBP2 sequences from human (gb|AAK57518.1|AF38
0995), rat (sp|Q9QX72.1|SEBP2_RAT), pig (ef|XP_0019
28402.1) and chicken (ref|XP_424425.2|) were aligned
against the putative SBP2 sequences found in three
Drosophila species, D. melanogaster, D. pseudoobscura
and D. sechelia (31) by Kalign (35).

Alignment of the K-rich domain. All annotated members
of the SBP2 family in Ensembl (ENSF00000007674) were
extracted and all those with no ‘X’ in the relevant region
were kept. The search was extended by blasting the
D. melanogaster SBP2 against the nr database of NCBI.
Of the resulting hits, only those containing the IHSRRF
motif (positions 624–629 in hSBP2) characteristic of SBP2
proteins (C.A and A.K., unpublished data) were kept. We
subsequently used the L7Ae RNA-binding module of
SBP2 (33) to query the nr database using Hmmer (36).
Finally, we also added the insect SBP2 sequences (31).
The resulting 40 sequences were aligned using mafft (37).
The alignment images shown in Figures 1 and 7 were
produced by Jalview (38).

cDNA cloning and recombinant DNA

Drosophila melanogaster SBP2 ORF (Genebank accession
# AI062219) was amplified from pOT2 cDNA clone
GH01354 (Research Genetics) in a two-step PCR reaction
and introduced into the pHMGWA vector (39) using the
Gateway Technology (Invitrogen). The resulting
pHMdSBP2 vector contains a 6� His-tag and Maltose-
Binding Protein coding-frame upstream of the dSBP2
ORF and allows E. coli expression of the protein.
Human SBP2 ORF was amplified by PCR from plasmid
pA11 (33) and subsequently cloned into pET32b
(Novagen), generating phSBP2-FL (full-length), as well
as plasmids encoding the N-terminal truncated proteins
phSBP2 344–854, phSBP2 399–854, phSBP2 515–854,
phSBP2 525–854, phSBP2 545–854, phSBP2 625–854
and phSBP2 674–854, and C-terminal truncated proteins
phSBP2 344–674, phSBP2 344–790 and phSBP2 344–820.
Alanine scanning mutants in hSBP2 were generated
in phSBP2 344–854 using the Kunkel mutagenesis
method (40). Amino acids swapping mutants exchanging
hSBP2 aa535–539 for dSBP2 aa95–99 (phSBP2-SVRVY)
and dSBP2 aa95–99 for hSBP2 aa535–539 (pdSBP2-
IILKE), were generated by site-directed mutagenesis
of phSBP2 344–854 and pHMdSBP2, respectively,
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using the QuickChange XL Site-Directed Mutagenesis
kit (Stratagene) according to the manufacturer’s
instructions.

Plasmids pT7SelN, pT7GPx1 and pT7PHGPx were
used for T7 transcription of human SelN, rat GPx1 and
PHGPx SECIS RNAs, respectively (7,9). To allow in vitro
transcription of Drosophila SECIS RNAs, D. melanoga-
ster SelK and SelH SECIS elements were PCR amplified
from pOT2 cDNA clones GH03581 and SD09114, respec-
tively (generously provided by M. Corominas, University
of Barcelona) and introduced into the BclI-EcoRI sites of
pT7-Bck vector (9) to create pT7dSelK and pT7dSelH.
A point mutant in dSelH SECIS (dSelHmut), and the
SECIS RNA apex-swapped mutants PHGPx-ApSelN
and SelN-ApPHGPx SECIS RNAs, were generated by
site-directed mutagenesis of pT7dSelH, pT7PHGPx and
pT7SelN, respectively, using the QuickChange XL Site-
Directed Mutagenesis kit.

To generate selenoprotein mRNA reporter constructs
for in vitro translation assays, D. melanogaster SelH
ORF and 30UTR (Genebank accession #AI542675) were
amplified from pOT2 cDNA clone SD09114 and cloned
into the HindIII-KpnI sites of the pXJ(HA)3 eukaryotic
expression vector (41) to create pHAdSelH. Rat seleno-
protein reporter constructs pGPx1-GPx1SECIS and
pGPx1-�SECIS were as described in (10). To create
pGPx1-PHGPxSECIS and pGPx1-SelNSECIS, the GPx1
SECIS element of the pGPx1-GPx1SECIS reporter con-
struct was exchanged for PHGPx and SelN SECIS ele-
ments from pT7PHGPx and pT7SelN, respectively,
using BclI-EcoRI sites.

Oligonucleotides used for PCR and mutagenesis are
listed in Supplementary Data.

Recombinant protein preparation

Drosophila SBP2 recombinant proteins expressed in E. coli
were purified using Amylose Resin column (NEB). 6� His
and MBP tags were cleaved from the dSBP2 protein by
thrombin (Sigma) when used for electrophoretic mobility
shift assays. hSBP2 recombinant proteins expressed in
E. coli were purified using Ni-NTA agarose (Qiagen).
Elution buffer was exchanged to dialysis buffer containing
20mM Tris–HCl pH 7.5, 100mM NaCl, 10mM MgCl2,
20% glycerol, 1mM DTT and Cocktail inhibitor (Sigma).

Electrophoretic mobility shift assay

Plasmids yielding PHGPx, SelN, GPx1, dSelK, dSelH,
dSelHmut, PHGPx-ApSelN and SelN-ApPHGPx SECIS
RNAs were linearized by EcoRI. Internally labeled SECIS
RNAs were obtained by T7 transcription using 80 mCi of
[a-32P]-ATP (3000Ci/mmol). SECIS RNA-SBP2 com-
plexes were formed as described in (20). Routinely,
30 000 cpm of 32P-labeled SECIS RNA were incubated
for 30min at 308C with various concentrations of purified
SBP2 protein (from 0 to 2000 nM), in 7.5ml of phosphate
buffer saline pH 7.4, 2mMDTT. RNA–protein complexes
were separated on 6% non-denaturing polyacrylamide gel
electrophoresis in 0.5� TBE, 5% glycerol buffer. The
intensities of free and bound RNAs were quantitated

with the Fujifilm FLA-5100 Imaging system. Kds were
determined from three independent experiments.

In vitro selenoprotein synthesis assays

In vitro translation of Drosophila (dSelH) or rat GPx1
from selenoprotein encoding plasmids carrying (or lack-
ing) wild-type SECIS elements were performed using TNT
Coupled Reticulocyte Lysate Systems (Promega). One
microgram of each of the selenoprotein plasmid DNA
was used as the template in 50 ml in vitro transcription/
translation reactions in the presence of 25 ml rabbit reticu-
locyte lysate, 20 mCi of 35S-methionine and 120–240 nM
of purified SBP2 protein. In vitro translated HA-tagged
dSelH and hGPx1 proteins were purified using
microMACS Epitope Tag Protein Isolation Kits
(Miltenyi Biotec), resolved by 10% SDS–PAGE and
detected with the Fujifilm FLA-5100 Imaging system.
Quantification of selenoprotein synthesis was performed
from two to three independent experiments.

Ribosome-binding assays

60S and 40S ribosomal subunits were isolated from full
term human placenta according to ref. (42). Human
recombinant ribosomal protein p40 was a kind gift of
Dr Alexey Malygin (ICBFM, Novosibirsk, Russia).
Monoclonal antibodies against human p40 were provided
by Dr Valery Loktev. Binding mixtures (50ml) containing
30 pmol of 60S or 40S subunits were reactivated at 378C
for 10min in PBSD buffer (150mM NaCl, 27mM KCl,
8mM Na2HPO4, 1.7mM KH2PO4 and 2mM DTT) con-
taining 0.5mM MgCl2. Then 3.5mg SBP2 (or SBP2
mutants) or 2 mg ribosomal protein p40 were added and
incubated at 228C for 20min. The mixtures were loaded
onto a 15–30% linear sucrose gradient in PBSD with
0.5mM Mg2+ and centrifuged in a SW41 rotor at
23 000 rpm for 15 h. Fractions corresponding to 60S and
40S subunits were precipitated by 10% trichloroacetic
acid, and the pellet content loaded onto 10% SDS–
PAGE which was blotted onto nitrocellulose membranes.
SBP2 was detected with an anti-SBP2 polyclonal antibody
(1/5000–1/10 000 dilution) in PBST (1� PBS containing
0.1% Tween 20, 3% dry milk), p40 with a monoclonal
anti-p40 (1/3000 dilution). Membranes were treated with
anti-rabbit HRP-conjugated secondary antibody (1/10 000
dilution), revealed with the ECL plus kit (GE HealthCare)
and exposed to either X-ray film or ChemDoc XRS.

RESULTS

Identification and functional characterization of dSBP2

Recent comparative analysis of insect genomes have
identified putative SBP2 proteins (31). In this work we
set out to clone and characterize dSBP2 and compare it
to hSBP2. tBlastn searches were performed at NCBI using
the hSBP2 amino acid sequence (33) and one significant
hit (AI062219) was obtained with a D. melanogaster
sequence predicted to encode a 313 amino-acid protein.
Figure 1 shows a multiple sequence alignment of this pro-
tein as well as other putative SBP2 from D. pseudoobscura
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Figure 1. Alignment of SBP2 proteins. Drosophila (pseudoobscura, melanogaster and sechelia) SBP2 sequences were from (31). Accession numbers for
vertebrate SBP2 are XP_424425.2| (chicken), Q9QX72.1 (rat), XP_001928402.1 (Sus scrofa), AF380995 (human). The color scheme above the
sequences is explicited at the bottom of the figure.
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and D. sechelia (31) with the characterized rat and human
SBP2 (25,33) and the annotated chicken and Sus scrofa
SBP2s. Strikingly, the three putative Drosophila SBP2s
lack homology to the vertebrate SBP2 N-terminal
region. Homologies to vertebrate SBP2s were found
throughout the rest of the sequence, starting from
hSBP2 residue 427. Two blocks of high sequence identity
were detected, one extending from K517 to K544, the
other from I624 to K774 (hSBP2 numbering), with 50%
and 36% identity, respectively. The latter block contains
the previously identified L7Ae RNA-binding module
spanning residues R672 to I749 (21,22).

To verify that the D. melanogaster cDNA encodes a
bona fide SBP2, it was cloned and expressed in E. coli
and assayed for SECIS RNA binding. Gel shift assays
were performed with the form 2 SECIS RNAs of the
dSelK and SelH mRNAs (dSelK and dSelH SECIS
RNAs), showing formation of dSBP2–dSECIS RNA

complexes (Figure 2A, lanes 2–8 and 10–16). Kd values
were 260 nM and 170 nM for dSelK SECIS and dSelH
SECIS RNAs, respectively, indicating a slightly higher
affinity for dSelH SECIS RNA. To determine whether
the binding was specific, we used a mutant SECIS RNA
(dSelHmut SECIS, Figure 2A) in which the conserved U
in the non-Watson–Crick quartet was replaced by a C, a
mutation that impedes hSBP2 binding (43). Figure 2A
(lanes 18–25) showed that no retarded complex was
obtained, the band marked by an asterisk containing an
RNA conformer also present in the control lane 17 (see
also lane 9) but not an RNA–protein complex. We there-
fore concluded that dSBP2 bound specifically to the cog-
nate SECIS RNAs.
We next investigated whether dSBP2 could support sele-

noprotein synthesis. To this end, rabbit reticulocyte lysate
was used to synthesize D. melanogaster selenoprotein SelH
(dSelH) from a reporter construct. The advantage of such
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Figure 2. Functional characterization of dSBP2. (A) Electrophoretic mobility shift assays were performed between the purified dSBP2 and the in vitro
transcribed 32P-labeled form 2 SECIS RNAs (dSelK SECIS and dSelH SECIS) from Drosophila SelK and SelH selenoprotein mRNAs. Increasing
concentrations (75–2000 nM) of dSBP2 were added. A dSeH mutant SECIS RNA (dSelHmut), carrying a U to C mutation in the non-Watson-Crick
quartet, abolished the binding of dSBP2. dSBP2 was omitted in the control lanes 1, 9 and 17 (�). The asterisk denotes the position of a band that is
also present in the control lanes 9 and 17. It often occurs and presumably contains an RNA conformer arising from T7 transcription. (B) dSBP2 can
support selenoprotein H (dSelH) synthesis in rabbit reticulocyte lysate. Synthesis of full-length (35S)-Met-labeled selenoprotein dSeH was obtained by
adding purified dSBP2 (lane 1) or hSBP2 (lane 2) to the lysate. Lane 3: absence of SBP2 led to premature termination of translation (Truncated).
Translation products were immunopurified and resolved by SDS–PAGE.
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an extract is that it contains all the components required
for selenoprotein mRNA translation but lacks SBP2
which must be added to obtain a full-length selenoprotein
(25). Figure 2B (lane 3) showed that omission of SBP2
resulted in the synthesis of a truncated dSelH selenopro-
tein arising from premature termination of translation at
the UGA Sec codon. Full-length dSelH could be obtained
only upon addition of dSBP2 (Figure 2B, lane 1), in much
the same way as hSBP2 (hSBP2; Figure 2B, lane 2). The
truncated form of dSelH ending at the UGA Sec codon
(lanes 1 and 2) very likely originated from saturation of
the selenoprotein synthesis machinery in the reticulocyte
lysate.
Overall, our data established that we have identified and

functionally characterized the dSBP2 protein which pos-
sesses the same selenoprotein synthesis capacities as the
human counterpart.

dSBP2manifests distinctive SECIS RNA-binding activities

The abilities of dSBP2 to bind various SECIS RNAs were
further investigated and compared to hSBP2. Form 2
SECIS, the only type of SECIS found in Drosophila
(31), were tested first. Figure 3 and Table 1 show that
complexes were obtained between the SECIS of the rat
PHGPx (phosphohydroxylipid glutathione peroxidase)
mRNA and dSBP2 (Figure 3A, lanes 2–7; Kd=220 nM)
or hSBP2 (Figure 3A, lanes 23–29; Kd=320 nM).
Additionally, hSBP2 also bound dSelH and dSelK
SECIS RNAs (data not shown). Major differences
appeared when form 1 SECIS was tested (a schematic
drawing of SECIS forms 1 and 2 is shown in the inset of
Figure 4). While hSBP2, as expected, bound readily the
SECISes of the rat GPx1 (glutathione peroxidase 1) and
human SelN (selenoprotein N) mRNAs (Figure 3A, lanes
31–37 and 39–45), dSBP2 only weakly recognized the SelN
SECIS and was unable to bind the GPx1 SECIS at all
(Figure 3A, lanes 16–21 and 9–14). These findings were
corroborated by selenoprotein synthesis experiments in
reticulocyte lysate in which dSBP2 enabled synthesis of
a selenoprotein reporter (rat GPx1) from an mRNA car-
rying a form 2 PHGPx but not a form 1 GPx1 SECIS in
the 30UTR (Figure 3B, compare lanes 2, 3 with lanes 7, 8).
Synthesis from the form 1 SelN SECIS-containing repor-
ter was weak (Figure 3B, lanes 12, 13), in keeping with the
low affinity to SelN SECIS. In contrast, hSBP2 led to
synthesis of GPx1 regardless of the type of SECIS har-
bored by the reporter mRNA (Figure 3B, lanes 4, 5, 9, 10,
14, 15). Control experiments with a GPx1-SECIS lacking
construct (Figure 3B, lanes 17–20) indicated that seleno-
protein synthesis was indeed SECIS-dependent.
This unexpected result raised the possibility that the

distinctive binding affinities of dSBP2 for SECIS RNAs
could originate from the different apical secondary struc-
tures classifying form 1 and form 2 SECIS RNAs
[Figure 4; (6,7)]. To answer the question, we decided to
swap the apexes between both forms of SECIS RNAs to
yield chimeric SECIS RNAs: a PHGPx-ApSelN SECIS
with the apex of SelN SECIS, and a SelN-ApPHGPx
SECIS with that of PHGPx SECIS (Figure 4).
The binding of dSBP2 and hSBP2 was tested by gel-shift

assays (data expressed as Kd values in Table 1).
Surprisingly, the apex of the form 1 SECIS did not lead
to abolition of dSBP2 binding to the chimeric PHGPx-
ApSelN SECIS while the SelN-ApPHGPx SECIS, carry-
ing the stem of SelN and the apex of the form 2 PHGPx,
did not confer to dSBP2 the ability to bind. Indeed, the
apex is not responsible for the distinctive binding of
dSBP2 since replacing the genuine apexes by an ultrastable
UUCG tetraloop in PHGPx and SelN SECIS did not
modify the effects induced by apex swapping (data not
shown). These results suggest that the difference between
forms 1 and 2 SECIS may not rely solely on distinct apical
structures (6) but that other determinants/discriminants
could also exist elsewhere in the SECIS RNA 2D and/or
3D structures.

Point mutations in a newly mapped lysine-rich
domain in hSBP2 affect binding to form 1 but
not to form 2 SECIS RNAs

We hypothesized that a domain(s) in SBP2 might be
responsible for the differential SECIS binding. First, we
re-examined in-depth the boundaries of the hSBP2 RNA-
binding domain. A series of N- and C-terminal deletions
was performed in the construct encoding hSBP2 344–854
(Figure 5A). The resulting 6� His-tagged hSBP2 pro-
teins were expressed in E. coli, purified and their binding
abilities assessed by gel-shift assays with SelN (form 1)
and PHGPx (form 2) SECIS RNAs (Figure 5A). Lack
of binding of the 344–674 hSBP2 protein resulted from
amputation of the major part of the previously mapped
L7Ae RNA-binding module (20–22,25). However, the loss
of binding manifested by hSBP2 proteins 545–854, 625–
854 and 674–854 revealed that a region outside of the
L7Ae module is also crucial. More precisely, this other
domain should lie between positions 525 and 545 since
hSBP2 525–854 retained SECIS binding activity.
Interestingly, this region contains the conserved block of
amino acids of highest sequence identity revealed by our
alignments (Figure 1, residues 517–544). To characterize
this domain with more accuracy, we carried out alanine
scanning mutations in construct hSBP2 344–854 from
positions K516 to R546, in groups of three amino acids
except K516 which was singly mutated (Figure 5B). The
mutant proteins were expressed in E. coli, purified and
screened by gel-shift for their ability to bind the GPx1
and SelN form 1 and the PHGPx form 2 SECIS RNAs.
Mutations that yielded the most significant impacts on Kd

values are given in Figure 5C. While the mutations did not
have a major effect on binding to the form 2 PHGPx
SECIS (Kd values ranging from 480 to 580 nM, not deviat-
ing too much from the 350 nM wt value), the affinity
dropped dramatically for form 1 SECIS and more partic-
ularly for GPx1 SECIS: a gradual augmentation of
the Kd values was observed which peaked to a maximum
for the Ala535–537 mutation, and dropped to near
wt values for Ala541–543. For Ala535–537, the Kd
increase for GPx1 SECIS was 4.5-fold the wt value.
In conclusion, the most severely affected sequence was
526-AKKPTSLKKIILKER-540 and major effects were
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provoked by mutations of 532-LKK-534 and 535-IIL-537,
the latter providing a culminating effect.
Taken together, sequence comparisons, deletion and

alanine scanning mutagenesis enabled us to identify a
domain in hSBP2, residing between K516 and K544,
that differs from the already known L7Ae module. We
named it the K-rich domain because of its relatively
high content in lysine residues (34%; 10 lysines out of 29
residues). This domain contains amino acids 526–540
essential for binding to form 1 SECIS RNAs but its muta-
tion did not affect form 2 SECIS recognition.
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Figure 3. dSBP2 has distinct affinities for form 1 and 2 SECIS RNAs. (A) Gel shift assays were performed between in vitro transcribed 32P-labeled
PHGPx (form 2), GPx1 and SelN (form 1) SECIS RNAs and either purified dSBP2 or hSBP2, with the range of protein concentration (nM)
indicated above each gel. Proteins were omitted in lanes 1, 8, 15, 22, 30 and 38. The asterisk in lanes 8–14 is as in Figure 2A. (B) In vitro translation
assay (reticulocyte lysate) of (35S)-Met-labeled rat glutathione peroxidase 1 (GPx1) from reporter constructs carrying the GPx1 ORF without SECIS
RNA (�SECIS) or with either the PHGPx, GPx1 or SelN SECIS RNAs in the 30UTR. Purified dSBP2 or hSBP2 were omitted (lanes 1, 6, 11 and 16)
or added at the indicated concentrations (nM). Translation products were treated as in Figure 2B.

Table 1. Kd values of hSBP2 and dSBP2 for form 1, form 2 and

chimeric SECIS RNAs

SECIS RNA SBP2 protein

dSBP2 hSBP2

PHGPx (form2) 220� 50 320� 5
GPx1 (form1) No binding 400� 50
SeIN (form1) nd 340� 15
PHGPx-APSeIN 230� 30 530� 120
SeIN-ApPHGPx No binding 470� 40

Kd� SD (nM)
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The same mutations in the K-rich domain affecting
SBP2 binding to form 1 SECIS also impede interaction
with the 60S ribosomal subunit

Rat SBP2 has been shown to bind purified rat 80S ribo-
somes (21,24,44). The down-effects that we observed upon
mutating the K-rich domain prompted us to investigate
whether the same mutations would affect ribosome

binding. More specifically, we first determined which of
the ribosomal subunits, 60S or 40S, was the target for the
full-length hSBP2 (hSBP2 FL). In these and further experi-
ments, after incubation with hSBP2, the purified ribosomal
subunits were loaded onto sucrose gradients in a buffer
containing 0.5mM Mg2+, and the fractions were
analyzed by western blotting with an anti-SBP2 antibody.
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Figure 6A shows a high intensity signal with the 60S but a
very faint one with the 40S subunit (compare lane 2 with
lane 1). Similar results were obtained with 80S ribosomes
incubated with hSBP2 FL under these conditions (data
not shown). Human recombinant ribosomal protein p40
was used as a control since it was recently shown to

be capable of binding 40S subunits (45): it effectively
bound 40S but not 60S subunits (Figure 6A, compare
lane 4 with lane 3). Therefore, we can conclude that
under the conditions used, hSBP2 FL bound to 60S sub-
units in a specific manner. To identify the hSBP2 domain
required for 60S binding, we tested the effects of the
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Figure 5. Identification of the K-rich additional RNA binding domain in hSBP2. (A) N- and C-ter deletion mutants were engineered in the full-
length hSBP2 cDNA to yield the displayed constructs. hSBP2 proteins were purified and assayed by EMSA for their binding to in vitro transcribed
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hSBP2 deletion mutants ending at 854 and starting at 344,
399, 515, 525 and 545. Truncations until position 515 were
innocuous (Figure 6B, lanes 2–4, compare with lane 1)
whereas removing sequences downstream from 515
(hSBP2 525–854 and hSBP2 545–854; Figure 6B, lanes
5 and 6, respectively) led to complete inhibition of 60S
binding. Next, the alanine scanning mutants were used to
identify the important amino acids. None of the alanine
replacements, from 516 to 525 or 541 to 546, significantly
altered the binding of hSBP2 (Figure 6C, compare lanes
3–6 and 12, 13 with lane 2). In contrast, alanine scanning
mutants Ala526–528 to Ala538–540 (Figure 6C, lanes
7–11) provoked a marked drop in binding, mutants
Ala529–531 and Ala532–540 inducing an almost complete
abolition of binding (lanes 8 and 9).
The two sets of mutagenesis experiments identify hSBP2

amino acids located between A526 and R543 that are cru-
cial for both 60S ribosomal subunit interaction and to
provide affinity to form 1 SECIS RNAs.

Swapping five amino acids in the lysine-rich domain
betweenD. melanogaster and hSBP2 reversed the
affinity toward form 1 or form 2 SECIS RNAs

Multiple sequence alignments of 26 vertebrate, one echi-
noderm (sea urchin) and 13 insect SBP2 (12 Drosophila
and the Anopheles gambiae mosquito) amino acid
sequences were performed to obtain information about
the evolutionary conservation of the K-rich domain, align-
ing sequences corresponding to hSBP2 positions 515–547
(Figure 7). This highlighted the sequence conservation
517-KGKXXRXXPKXKKXTXLKXXI/VXXXR-540
(numbering of hSBP2). However, inspection of non-
conserved residues revealed a dichotomy. In particular,
the sequence 535-I/VILKE-539 is replaced by SVRVY in
dSBP2, and shows less conservation across the 12
Drosophila species and the Anopheles mosquito than
between other SBP2s. The only similar amino acid
is I536 in hSBP2 which is replaced by a valine residue
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in Drosophila. We asked whether this five amino acid
change (residues 535–539) between hSBP2 and dSBP2
could be responsible for the inability of dSBP2 to bind
form 1 SECIS RNAs. To test this possibility, we swapped
the hSBP2 IILKE for the corresponding dSBP2 SVRVY
sequence, and vice versa, to yield dSBP2-IILKE and
hSBP2-SVRVY. The binding activities to form 1 and 2
SECIS RNAs of the purified chimeric SBP2 proteins
were measured by gel-shift assays. Verifying our predic-
tion, dSBP2-IILKE gained the ability to bind the GPx1

and SelN form1 SECIS RNAs (Figure 8A, lanes 10–16
and 18–24, respectively), the affinity for SelN SECIS
being higher than for GPx1 (Kd=200 nM versus Kd>
1500 nM for GPx1; Table 2). The binding affinity to
form 2 PHGPx (Figure 8A, lanes 2–8) even increased by
a factor of five with a Kd=40 nM (Table 2) versus 220 nM
for the wt dSBP2 (Table 1). Conversely, the five amino acid
swapping led hSBP2-SVRVY to completely loose its ability
to bind GPx1 and SelN SECIS (Figure 8B, lanes 10–16 and
18–24, respectively), and modified moderately (by a factor

516 546 human SBP2

vertebrates 

535 539

Echinoderm

insects

Figure 7. Alignment of the K-rich domain in 26 vertebrate, one echinoderm (sea urchin) and 13 insect (12 Drosophila and the mosquito Anopheles
gambiae) SBP2 sequences. The numbering is that of hSBP2. The red bar above and below sequences refers to the IILKE and SVRVY pentapeptides
mentioned in the text.
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lower than 2) its binding to form 2 PHGPx SECIS
(Figure 8B, lanes 2–8) with a Kd of 600 nM (Table 2)
versus 320 nM for the wt hSBP2 (Table 1).
Next, the abilities of the chimeric SBP2 proteins to sup-

port synthesis of the GPx1 selenoprotein, carrying distinct
SECIS in the 30UTR of its mRNA, were verified in rabbit
reticulocyte lysate. With the form 2 PHGPx SECIS,
Figure 8C shows that the amount of the synthesized repor-
ter was not significantly altered whether wt dSBP2 or

dSBP2-IILKE was employed (value=1.3; Figure 8C,
compare lanes 8–10 with lanes 2–4). However, dSBP2
acquired the ability of supporting GPx1 selenoprotein
synthesis by the simple replacement of SVRVY by the
homologous human IILKE sequence in the swapping
mutant dSBP2-IILKE: this was the case for GPx1
(Figure 8C, lanes 19, 20; compare with the complete
inability of wt dSBP2, lanes 15, 16) and SelN SECIS
(Figure 8C, compare lanes 30–32 with lanes 24–26) which
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showed a 2.5-fold gain. In contrast, introduction of the
Drosophila SVRVY sequence instead of IILKE in hSBP2
(hSBP2-SVRVY) provided an almost total (14% residual)
or partial (45% residual) inhibition of selenoprotein
synthesis when assayed with the form 1 SelN and GPx1
SECIS, respectively (Figure 8C; compare lanes 33–35 to
lanes 27–29; lanes 21–22 with lanes 17, 18). Tested with
the form 2 PHGPx SECIS, hSBP2-SVRVY led to a
0.25-fold drop of the value obtained with wt hSBP2
(Figure 8C, compare lanes 11–13 with lanes 5–7). This
was unexpected but this finding nevertheless correlated
with the data shown in Figure 8A and B and Table 2 estab-
lishing a loss of affinity between this chimeric SBP2 and the
PHGPx SECIS (the Kd increased by a factor 2). At present,
we are unable to explain why hSBP2-SVRVY did not
retain close to wild-type properties in gel-shift and seleno-
protein synthesis assays with form 2 SECIS RNA.
Notwithstanding, this set of experiment was globally in
line with the in vitro EMSA data shown in Figure 3B and
Figure 8A and B and the Kd values in Tables 1 and 2.

We conclude from these experiments that the IILKE
sequence confers the ability to bind form 1 SECIS RNAs.

DISCUSSION

SBP2 plays a central role in selenoprotein synthesis
by binding to SECIS hairpins in the 30UTR of selenopro-
tein mRNAs. Earlier domain dissection of the human and
rat SBP2 established that the C-terminal 2/3 are involved
in SECIS and ribosome binding as well as selenocysteine
incorporation while no function has been attributed so
far to its N-terminal part, which is dispensable for seleno-
protein synthesis in reticulocyte lysate (20–22,24).
In this work, we have isolated and functionally character-
ized a bona fide dSBP2 that specifically lacks the region
homologous to the N-terminus of vertebrate SBP2. In
addition, we report the identification in human SBP2 of
a lysine-rich (K-rich) domain that is essential for SECIS
binding, point mutations therein affecting form 1 but not
form 2 SECIS binding. Sequence comparisons established
that the K-rich domain is encountered in all the
SBP2s analyzed (this work and data not shown). In the
D. melanogaster K-rich domain, a five amino acid
sequence difference renders Drosophila SBP2 incapable
of binding form 1 SECIS RNAs with high affinity.
Exchanging this sequence with that of hSBP2 enabled
binding of the insect SBP2 to form 1 SECIS but impaired
that of hSBP2. Moreover, we found that the K-rich

sequence is also crucial for the binding of hSBP2 to the
60S ribosomal subunit.
The insect SBP2 is 313 amino acids long, a little less

than a third of the mammalian counterpart. Drosophila
SBP2 is shorter at the C-terminus and a small internal
deletion removed positions corresponding to hSBP2
565–689 (Figure 1). However, the lack of the N-terminal
region corresponding to hSBP2 1–427 accounts for most
of its reduction in size. That selenoprotein synthesis can be
achieved in an organism lacking this domain corroborates
the finding that it is dispensable in mammalian SBP2
under the experimental conditions used (25). Although
one cannot exclude the possibility that this segment of
SBP2 is encoded by a separate gene in insects, this appears
unlikely because a search in the Drosophila genomes failed
to find significant sequence similarity to the vertebrate
N-terminal region (data not shown). What might then
be the function of the N-terminal extension in higher
eukaryotes? Several possibilities exist that would pertain
to a more complex selenoprotein synthesis mechanism in
higher eukaryotes: (i) the N-terminal extension could par-
ticipate in fine-tuning selenoprotein expression with a
direct or indirect role in the SBP2 nuclear/cytoplasmic
shuttling, as it contains a nuclear localization signal (46);
(ii) we established by structure prediction and experimen-
tal data that SBP2 is an Intrinsically Disordered Protein
and that the N-terminal extension is widely unstructured
(Olieric et al., manuscript in preparation). It is very pos-
sible that this region acquires its proper folding in the
presence of yet to be discovered protein partners, consis-
tent with the role of the Hsp90 chaperone and co-chaper-
ones in the folding and assembly of proteins bearing an
L7Ae RNA-binding module (47) and (iii) finally, the N-
terminal domain could be involved in an SBP2 function
different from selenocysteine incorporation, as inferred
very recently from the finding that several SBP2 isoforms
arise from splice variants in the N-terminal region (48).
We found a region in hSBP2, the K-rich (lysine-rich)

domain 516-KKGKQREIPKAKKPTSLKKIILKERQ
ER-543, that is essential for SECIS binding. This sequence
is highly conserved across vertebrates and is distinct from
the L7Ae RNA-binding module which is therefore insuf-
ficient on its own to provide SECIS recognition.
Surprisingly, however, alanine scanning mutagenesis of
sequence 516–543 manifested adverse effects on SECIS
binding. While it did not significantly prohibit binding
to form 2, dramatic effects were observed on form 1, espe-
cially when altering the sequence 526-AKKPTSLKKII
LKER-540 and most prominently 532-LKKIIL-537
which profoundly disabled SBP2.
A multiple sequence alignment identified KGKTRLD

PKKKITRLKKSVRVYR (D. melanogaster sequence) as
the homolog of the human K-rich domain. This sequence
analysis highlighted a characteristic feature distinguishing
the insect and other K-rich domains, i.e. the five amino-
acid substitution I/VILKE in vertebrates to SVRVY in
D. melanogaster. dSBP2 can bind Drosophila and mam-
malian form 2 SECIS RNAs but was unable—or with very
low affinity—to bind form 1 SECIS RNAs, consistent
with Drosophila having selenoprotein mRNAs with
form 2 SECIS exclusively (8,31). The IILKE/SVRVY

Table 2. Kd values of chimeric Drosophila and human SBP2 for form 1

and 2 SECIS RNAs

SECIS RNA SBP2 protein

dSBP2-IILKE hSBP2-SVRVY

PHGPx (form2) 40� 6 600� 45
GPx1 (form1) >1500 No binding
SeIN (form1) 200� 10 nd

Kd� SD (nM)
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swapping experiment enabled dSBP2 to bind form 1
SECIS but led hSBP2 to loose this ability. It is very unli-
kely that the SVRVY sequence per se is inhibitory to form
1 binding since replacement of IIL and KER by alanines
in hSBP2 yielded the same down effect as introduction of
SVRVY in hSBP2. It seems more plausible that the ability
to bind form 1 SECIS requires the occurrence of IILKE
because of its different amino-acid composition versus
SVRVY, giving rise to a different charge and hydropho-
bicity. The SBP2 functional RNA-binding domain
(526–777 in humans) consists therefore of two subdo-
mains, the K-rich (this work) and the previously charac-
terized conserved L7Ae module extending from Arginine
672 to Isoleucine 749 (20,49). The intervening sequence
exhibits less conservation with the exception of the
624-IHSRRFR-630 block (positions relative to human
SBP2). Bubenik and Driscoll (22) reported in rat SBP2
the existence of a bipartite RNA binding domain in
which R531 (R540 in hSBP2) appeared important for dis-
criminating forms 1 and 2 SECIS hairpins. Indeed, this
arginine is universal in SBP2 (Figure 7) and a mutation
to glutamine, described in SBP2 patients with thyroid dys-
functions, impaired binding to the form 1 SECIS of the
iodothyronine deiodinase mRNA (50). However, we did
not observe such a dramatic effect of the R540 mutation in
human SBP2 since the Ala 538–540 mutation only mildly
affected form 1 binding.
Additionally, and very interestingly, we showed the

importance of that same 526-AKKPTSLKKIILKER-
540 sequence for binding to the 60S ribosomal subunit.
These findings establish the ability of SBP2 to stably bind
the 60S subunit and the identification of the PTSLKK
motif that contributes in a very important manner to the
binding. While this work was in progress, Donovan et al.
(51) reported in rat SBP2 the identification of the addi-
tional domain SID, required for SECIS and 80S ribosome
binding. The boundaries of the SID are similar to those we
delineated for the K-rich domain but the authors did not
report a distinctive effect of the SID on form 1 or form 2.
Moreover, the mutation of the IILKE sequence by these
authors significantly affected binding to form 2 SECIS, in
contrast to our alanine scanning and swapping experi-
ments. Also, we determined by sucrose gradient centrifu-
gation that SBP2 interacts with the 60S but not the 40S
ribosomal subunit. This is consistent with a proposal that
SBP2 could bind the 28S ribosomal RNA (24). Lastly, our
finding that the same amino acids in the K-rich domain
are involved in SECIS RNA and 60S ribosomal subunit
recognition strengthens the model establishing that SBP2
cannot bind both simultaneously (44).
Worthy of note is that SBP2, with two domains crucial

for SECIS binding, is set apart from the other proteins of
the L7Ae family which are shorter and for which the L7Ae
domain is itself sufficient to ensure specific interactions
with the cognate RNA (11,18,19,52,53). In a previous
work, we provided a very precise definition of the RNA-
binding specificity of hSBP2 (23). In particular, we identi-
fied nucleotide determinants in the SECIS RNA that are
unique to SBP2 among the L7Ae family members: while
the 15.5 kD and L7Ae ribosomal proteins have a rather
broad specificity and can recognize the SECIS RNA,

the converse does not hold true since SBP2 is unable to
bind the U3 snoRNA or the archaeal sRNA (23,54). As a
matter of fact, footprinting experiments and interference
of binding established the requirement of helix I and inter-
nal loop 1 in SECIS RNAs for SBP2 recognition (23,55).
These structural features are idiosyncratic to SECIS
RNAs and therefore not found in other Kink-turn con-
taining RNAs, leading to our proposal that SECIS hair-
pins contain a Kink-turn like rather than a canonical
Kink-turn motif (14). We therefore propose a model ratio-
nalizing the necessity of two domains in SBP2 for complex
formation with the SECIS RNA: (i) a restricted number of
amino acids in the L7Ae module establish contacts with
the guanine bases of the G.A/A.G base pairs as in other
L7Ae proteins, and the conserved U in the SECIS non-
Watson-Crick quartet (11,20); (ii) the lysines in the K-rich
domain contribute positive charges for electrostatic inter-
actions with the phosphates of the SECIS-specific struc-
tural features and thus increase the affinity of SBP2 for
SECIS RNAs. In this domain, the amino acid composi-
tion of the IILKE sequence could have a direct impact on
SECIS binding or indirectly lead to an L7Ae conforma-
tional change allowing form 1 SECIS recognition.

Validation of these models definitely requires that the
crystal structure of the SECIS RNA-SBP2 complex be
solved.
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Results-Chapter 1 

 

1.5. Additional results and discussion 

 SBP2 and the selenoprotein synthesis machinery in Drosophila willistoni  
 
Although dietary selenium has been thought to be involved in normalizing the life span and 

fertility in Drosophila (Martin-Romero et al, 2001), selenoproteins do not seem to be essential 

for viability in this fly. Mutant flies that lack EFSec failed to decode the UGA Sec codon, but 

were viable and fertile (Hirosawa-Takamori et al, 2004). Furthermore, in silico comparative 

genomic approaches including 12 Drosophila genomes revealed that several insect species 

such as Drosophila willistoni, honey bee (Apis mellifera), wasp (Nasonia vitripennis), beetle 

(Tribolium castaneum) and silkworm (Bombyx mori), do not possess selenoproteins and have 

lost some of the factors involved in selenoprotein synthesis (Chapple & Guigo, 2008). In D. 

willistoni, SelK and SelH are cysteine orthologs. Moreover and very interestingly, the SelK 

mRNA contains a SECIS relic. EFSec is also absent in D. willistoni, and the sequence of the 

tRNASec is degenerated. An SBP2 homolog can be found, but it contains an amino acid 

variation in the conserved RNA binding region (Chapple & Guigo, 2008). SPS1 and Secp43 

are present and highly conserved in D. willistoni but also in other Drosophila and insect 

species irrespective of their ability to encode selenoproteins. This could either mean an 

ongoing genetic drift or imply that these proteins play additional function(s) unrelated to 

selenoprotein synthesis (Chapple & Guigo, 2008). These data suggest the dispensability of 

selenoproteins in insects, and selenoprotein may therefore harbor important but non vital 

functions in insects, at least under the experimental conditions tested. We have mentioned the 

existence of an SBP2 homolog in D. willistoni. Its C-terminal region, containing the SECIS 

RNA-binding domain, is conserved as in the other Drosophila species (Chapple & Guigo, 

2008) (Figure 18A). However, D. willistoni SBP2 contains one amino acid insertion in a 

critical region of the L7Ae SECIS RNA binding domain (Figure 18B). Indeed, a conserved 19 

amino acid spacing is always observed in this domain of SBP2 between two acidic amino acid 

residues (Glu 679 and Glu 699 Figure 18 B and C). Position 679 is always occupied by a 

glutamic acid while position 699 is sometimes replaced by an aspartic acid. Surprisingly, the 

conserved spacing is not maintained in D. willistoni where insertion of an asparagine was 

observed (Figure 18B). The two glutamic acids are essential for SECIS recognition: it has 

been proposed that the first glutamic acid (Glu 679 in Figure 18C) contacts the conserved 

guanines of the sheared base-pairs and the second one (Glu 699 in Figure 18C) recognizes the 

conserved U in the non-Watson-Crick quartet (Allmang et al, 2002).  
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Figure 18. One amino acid insertion in D. willistoni SBP2. 

A. Multiple sequence alignment of Drosophila SBP2 proteins. The conserved region containing one 

amino acid insertion in D. willistoni is boxed and shown in a blow up. B. Alignment of the conserved 

region in Drosophila SBP2. A 19 amino acid spacing is conserved between the two glutamic acids 

(purple arrows) except for D. willistoni. C. The two glutamic acids (Glu 679 and Glu 699, purple 

arrows) shown in A and B were predicted to recognize the conserved bases (shown in red) in the non-

Watson-Crick quartet (Allmang et al, 2002). The alignments were taken from (Chapple & Guigo, 

2008). 
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We therefore speculated that the single amino acid insertion between the two glutamic acids 

may affect SECIS RNA recognition. To test this hypothesis, we introduced an asparagine at 

the corresponding position of SBP2 and assayed the effect of the mutation on SECIS binding 

by gel-shift. Since this study was initiated before the isolation and functional characterization 

of D. melanogaster SBP2, the insertion was performed in human SBP2 (see Figure 19A). I 

generated two mutant constructs in human SBP2, inserting either an asparagine (as in D. 

willistoni SBP2) or an alanine (Figure 19B).  

 

Figure 19. Aspargine insertion into the Glu 679-Glu 699 conserved spacing in human SBP2. 

A. Sequence alignment of the Glu 679-Glu699 region between human and D. willistoni SBP2s. The 

conserved glutamic acids and the inserted asparagine in D. willistoni are shown in purple and red, 

respectively. B. Engineering of a Willistoni-like mutation in human SBP2. Either an asparagine or an 

alanine (shown in red) were inserted at the corresponding position of human SBP2. 
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The recombinant proteins were expressed in E.coli and purified using Ni-NTA agarose 

(Qiagen). The SECIS RNA binding abilities were tested by the electrophoretic mobility shift 

assay (EMSA) using three SECIS RNAs: two form 1 SECIS RNAs (GPx1 and SelN) and the 

PHGPx form 2 SECIS RNA (Figure 20). 

 

Figure 20. Disrupting the conserved Glu 679-Glu 699 spacing in hSBP2 by one amino acid 
insertion had no significant effect on SECIS-binding. 

Electromobility shift assays were performed with purified hSBP2 mutant proteins and various in vitro 

transcribed 32P-labeled SECIS RNAs (PHGPx, GPx and SelN). Increasing concentrations (75-

1500nM) of SBP2 were added. SBP2 was omitted in the control lanes 1, 9, 17, 25, 33, 41, 49, 57 and 

65 (-). 
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Surprisingly, both mutant proteins were able to bind all the SECIS RNAs tested, and no 

significant difference was observed with the wild-type SBP2. This result indicates that in 

contrast to our expectations, alteration of the spacing between the two glutamic acids has no 

major effect on hSBP2 SECIS RNA binding, under our experimental conditions. As shown in 

Article 1, however, the sequence of the K-rich domain differs substantially between 

Drosophila and all the other eukaryotes. It is thus possible that the K-rich domain of hSBP2 

could compensate for the decreased affinity for SECIS RNAs caused by the one amino acid 

insertion. Other experiments will be required to determine whether the one amino acid 

insertion has a real impact on SECIS binding. The most straightforward would be to perform 

the insertion in the D.melanogaster SBP2 protein which displays a K-rich domain similar to 

that of D. willistoni, instead of the human SBP2. However, one cannot exclude the possibility 

that the insertion only reflects the genetic variety of the SBP2 gene in Drosophila without 

affecting its RNA binding ability in vivo. Also, the asparagine insertion could arise from an 

ongoing genetic drift concomitant to the selenoprotein gene disappearance in this Drosophila 

species. Interestingly, D.willistoni lives in a specific ecological niche in Brazil where the 

selenium content of the soil might be low. This could be an example of an adaptative 

evolution. 

Except for this amino acid insertion, the C-terminal region of SBP2 is highly conserved 

across Drosophila species, independently of the selenoprotein coding capacity (Chapple & 

Guigo, 2008). Furthermore, the SBP2 gene was also found in the genomes of other 

selenoprotein-lacking insects, such as A. mellifera and N. vitripennis (Chapple & Guigo, 

2008). SBP2 might also have other roles than selenoprotein synthesis so that SBP2 was 

retained in the genome of selenoprotein-lacking species (Chapple & Guigo, 2008). However, 

the conservation might also just reflect an ongoing genetic drift.
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2. Toward crystallization of the SBP2/SECIS complex 
 

2.1. Objective 
 

The SBP2-SECIS interaction is at the heart of the selenocysteine incorporation mechanism. 

To get more insight into this mechanism, it is important to understand the specific features of 

this interaction at the atomic level. To this end, we started a crystallographic study of the 

SBP2-SECIS RNA complex in collaboration with the group of Philippe Dumas in the same 

research unit, UPR9002 of CNRS. 

As discussed in Chapter 1 (in 1.4.), SBP2 is set apart from other L7Ae proteins: besides the 

L7Ae motif, SBP2 requires the additional domain (K-rich region) for SECIS recognition 

(Takeuchi et al, 2009). The SECIS element also presents unique functional and structural 

features that are different from canonical K-turn RNAs such as the long and stable helices 1 

and 2 and the large internal loop (Cléry et al, 2007 ). Therefore, the SBP2-SECIS interaction 

principle has been proposed to be different from that of other L7Ae proteins/K-turn RNA 

complexes (Cléry et al, 2007  and unpublished results from the laboratory). Resolution of the 

crystal structure of the SBP2-SECIS complex is required for the validation of our model 

proposing that additional protein-RNA contacts must exist in the SBP2-SECIS complex, with 

respect to other complexes involving similar proteins and RNAs. Resolution of the structure 

would also be invaluable to understand the role of the K-rich region of SBP2 in SECIS RNA 

recognition as well as to establish whether the SECIS RNA adopts a K-turn like structure 

(Allmang et al, 2002). 

Crystallization attempts were previously carried out in the laboratory and were the subject of 

the thesis of Vincent Olieric (team of Philippe Dumas). However, despite many trials, no 

crystal could be obtained, either of the protein alone or of the complex with the SECIS RNA. 

All the purification and crystallization attempts were performed using SBP2 proteins 

expressed in E coli. However, several problems were observed during protein expression and 

purification, such as a low level of protein production and sensitivity to proteolysis. We 

speculated that the unavailability of sufficient amounts of SBP2 may rely on the absence of 

post-translational modification. We therefore decided to clone the cDNA of other SBP2 

proteins, fused with different tags and to express them in baculovirus-infected insect cells. 

This would hopefully improve protein expression and enable the obtention of proteins 

produced in a eukaryotic system for further crystallization assays. My participation in this 
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study was to generate various SBP2 constructs compatible with expression in insect cells 

using the baculovirus expression system. I also determined the best conditions for protein 

expression with the help of the Plateforme de Génomique et Biologie Structurales at the 

Centre Européen de Biologie et Génomique Structurales (CEBGS) and the baculovirus 

service at IGBMC in Illkirch. In collaboration with the group of Philippe Dumas, various 

biophysical techniques as well as sequence analysis were used in addition to the 

crystallographic attempts to better understand the structure of SBP2.  

 

 

2.2. Results 

 

2.2.1. cDNA cloning of SBP2 from various organisms  

 

Because only human SBP2 had been used so far for crystallographic attempts, we set out to 

clone and express SBP2 from rat and Drosophila (see Figure 21). In addition to rat SBP2, that 

has been used by others for experimental studies (Bubenik & Driscoll, 2007; Caban et al, 

2007; Chavatte et al, 2005; Copeland et al, 2000; Copeland et al, 2001; de Jesus et al, 2006; 

Donovan et al, 2008; Gupta & Copeland, 2007; Kinzy et al, 2005; Small-Howard et al, 2006) 

and that is highly similar to human SBP2 in both length and sequence (Lescure et al, 2002), 

we also selected the newly identified Drosophila SBP2 (Takeuchi et al, 2009). Because of its 

shorter length, we postulated that it would be produced more efficiently, and that it would be 

especially more soluble than the longer mammalian SBP2s, both criteria being important for 

the crystallographic study.  

A previous work in the laboratory, using different constructs of human SBP2 bearing a 

thrombin cleavage site between the tag and the actual SBP2 sequence, revealed the 

occurrence of a sensitive cleavage site after Lys525 during the purification steps. Although 

this purification procedure included the treatment with thrombin to separate SBP2 from the 

tag, the cleavage after Lys525 did not seem to be provoked by thrombin because of the 

following observations. The sequence EIPK525AKK does not match the consensus thrombin 

cleavage site, and increasing concentrations of thrombin did not modify the 

cleaved/uncleaved ratio. In addition, the constructs used in the previous work led to low 

solubility. To avoid proteolysis, we resorted to a new construct starting at Ala526 (hereafter 
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called hSBP2Δ525), thus removing the cleavage site. In addition, this construct retains all the 

previously identified functional RNA binding motifs (see Figure 21).  

I therefore generated eight constructs encoding SBP2 proteins from various organisms: 

human SBP2 full-length (hSBP2), human SBP2 526-854 (hSBP2Δ525), rat SBP2 and 

Drosophila. melanogaster SBP2 (dSBP2). These constructs were fused with either 6xHis or 

GST-tags and incorporated a thombin cleavage site (Figure 21). The constructs were 

engineered using the GATEWAY technology (Invitrogen) with the help of the Plateforme de 

Génomique et Biologie Structurales at the CEBGS. The principle of the GATEWAY 

technology and the methods for SBP2 cDNA cloning are described in Annex/Methods 

1.cDNA cloning using the GATEWAY Technology. 

 

Figure 21. Schematic drawings of SBP2 proteins designed and generated for crystallization 
purposes. 

The human, rat and D. melanogaster SBP2 sequences were fused with either a 6xHis or a GST-tag and 

incorporated a thrombin cleavage site (gray box). 

 

2.2.2. Expression of various SBP2 cDNAs using the Baculovirus expression system 
 

For expression of these SBP2 proteins, we used the Baculovirus expression vector system 

(Invitrogen). Baculoviruses are double-stranded, circular, supercoiled DNA molecules in a 
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rod-shaped capsid, and affect the insect population. Expressing proteins in baculovirus-

infected insect cells has important advantages for protein production. First, the baculovirus 

expression system often achieves high levels of protein expression. Second, the insect cell 

lines used for this system can be used for large-scale culture. Finally, this system enables to 

express proteins that are post-translationally modified in a manner similar to that of 

mammalian cells (folding, disulfide bond formation, oligomerization, acylation and 

proteolytic cleavage), that are biologically active and functional. Protein expression in insect 

cells using the Baculovirus expression system consists of several steps: preparation of a 

Baculovirus shuttle vector (Bacmid), generation of virus particles, culture of baculovirus-

infected insect cells and mini-expression tests. The methods used for these steps are described 

in Annex/Method 2. Baculovirus expression system. Ten recombinant bacmid clones (named 

GST-hSBP2a and b, GST-hSBP2Δ525, GST-ratSBP2a and b, GST-dSBP2, His-hSBP2, His-

hSBP2Δ525, His-ratSBP2 and His-dSBP2) were obtained and they were transfected into 

insect cells to generate recombinant baculovirus particles.  

 

Mini expression test 
 

Recombinant baculoviruses were first tested using small-scale expression tests in order to 

assess their ability to trigger protein expression. None of the His-tagged SBP2 constructs 

tested yielded efficient expression. Only the His-ratSBP2 and His-hSBP2 proteins were 

detected in insoluble fractions by western blot analysis using anti-hSBP2 antibody (Figure 22 

lanes 18 and 20). GST-tagged constructs allowed the synthesis of low levels of soluble 

protein. This was the case for GST-ratSBP2a and b, GST-hSBP2Δ525 and GST-hSBP2a and 

b (Figure 22 lanes 24, 26, 28, 30 and 32). Protein bands corresponding to GST-hSBP2Δ525, 

GST-ratSBP2a and b were further analyzed by mass spectrometry and confirmed to be SBP2 

proteins (MS performed by P. Wolff, data not shown). We therefore selected the GST-

hSBP2b, GST-hSBP2Δ525 and GST-ratSBP2b recombinant baculoviruses for large scale 

expression of the corresponding proteins. 
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Figure 22. Mini expression assays in baculovirus infected insect cells. 

Proteins (indicated above the lanes) were expressed in Sf9 insect cells. Cell extracts were incubated 

with either nickel or glutathione sepharose beads. Bound proteins were analyzed by Western blotting 

with anti-His or anti-SBP2 antibodies. S: Soluble fraction after incubation with beads. IS: Insoluble 

fraction. His-tagged GFP expressed in Sf9 cells (GFP), recombinant His-tagged human SBP2 (His-

SBP2) or GST-tagged Drosophila SBP2 were used as positive controls. 

 

Expression tests in medium volume culture 
 

After amplification and titration of the viral particles, they were used for the final round of 

selection according to the protein expression levels achieved in a medium scale culture (25ml). 

Figure 23 (upper panels) shows the western blotting of soluble fractions using anti-hSBP2 

antibody. While GST-hSBP2Δ525 was expressed and purified almost equally well under any 

condition tested (Figure 23 A and B lanes 7-12, 27-32 and 45-50), expression of GST-

hSBP2b and GST-ratSBP2b was higher after 48 hours incubation than 72 hours (Figure 23 A, 

compare lanes 1-3 and 14-16 with lanes 4-6 and 17-19, respectively). However, neither GST-

hSBP2b nor GST-ratSBP2b could be recovered in sufficient amount after GST-purification 

(Figure 23B middle and bottom panels, lanes 21-26, 33-38, 39-44 and 52-57). Therefore, the 

GST-hSBP2Δ525 bacmid-containing baculovirus was selected for large scale (5L) expression 

of SBP2 protein for crystallization purposes.  
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Figure 23. Expression tests from large-scale culture of baculovirus infected insect cells. 

GST-hSBP2b, GST-hSBP2Δ525 and GST-ratSBP2b were expressed in Sf9 cells under different 

conditions. A. Cell extracts were analyzed by Western blotting with anti-SBP2 antibody. B. Cell 

extracts were incubated with glutathione sepharose beads. Bound proteins were analyzed by 

Coomassie staining (upper panels) and Western blotting with anti-SBP2 antibody (lower panels).  
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2.2.3. Biophysical analysis of SBP2  
 

Our initial aim, when producing SBP2 in baculovirus-infected insect cells, was to improve 

protein expression and stability and therefore the ability of the protein to crystallize. 

However, no crystal could be obtained even with the protein produced under the conditions 

described in this chapter.  

Interestingly, the use of structure prediction algorithms suggested the existence of disordered 

areas in SBP2. It appears now that a growing number of eukaryotic genes encode proteins that 

lack three-dimensional folding but become folded upon binding to their targets. Such proteins 

are called Intrinsically Disordered Proteins (IDPs).  

Unstructured protein domains differ from structured proteins in many properties, such as 

amino acid compositional bias, high apparent molecular mass, heat resistance, acid resistance 

and extreme proteolytic sensitivity. For amino acid composition, unstructured domains are 

enriched in disorder-promoting amino acids (A, R, G, Q, S, P, E and K) and comprise less 

order-promoting amino acids (W, C, F, I, Y, V, L and N) (reviewed in Dyson & Wright, 

2005; Rajkowitsch et al, 2007; Tompa, 2002; Wright & Dyson, 1999). The analysis of folded 

and unfolded proteins based on the normalized net charge and mean hydrophobicity revealed 

that IDPs are usually localized within a unique region of the charge-hydrophobicity phase 

space. Indeed, a combination of high mean net charge and low overall hydrophobicity 

represents a unique structural feature of IDPs (Uversky et al, 2000). A number of computer 

programs such as PONDR, DISOPRED2, DisEMBL GlobProt2 and IUPred allow the 

prediction of disordered regions based on the amino acid sequence (reviewed in Dyson & 

Wright, 2005; Rajkowitsch et al, 2007).  

We therefore decided to test whether SBP2 is an IDP. Indeed, SBP2 does exhibit several 

features often observed with unfolded proteins. For example, the SBP2 sequence is rich in 

proline residues, one of the disorder promoting residues, and the percentages of proline 

contents are 7.3% for rat SBP2 and 8.6% for human SBP2, figures that are higher than for the 

average of the Swiss-Prot proteins (4.9%) (Linding et al, 2003; Tompa, 2002). This is 

consistent with the early experimental results in the laboratory that SBP2 exhibited unusually 

higher molecular mass in gel filtration experiments and SDS-PAGE than those measured by 

mass spectrometry. Computer predictions were performed using the various forms of SBP2 

proteins that I described in this chapter. Interestingly, the disorder-prediction methods showed 

that ca. 70 % of the SBP2 sequence is disordered, whereas the L7Ae RNA binding domain 

-87-



Results-Chapter 2 

 

appears to be folded. We therefore decided to perform biophysical analyses to test this 

hypothesis. The results are described in the following article (2.3. Article 2) 

 

Since no high-resolution X-ray structures of intrinsically disordered proteins are available due 

to the lack of stable three-dimensional folds, a number of other experimental methods are 

used to elucidate disordered domains. Nuclear magnetic resonance (NMR), circular dichroism 

(CD), differential scanning calorimetry and fluorescence anisotropy that are based on 

structure determination in solution, distinguish between structured and unstructured domains 

(reviewed in Rajkowitsch et al, 2007). Several hydrodynamic techniques can also detect 

unfolded conformations. Gel filtration (size-exclusion chromatography), Small-Angle-X-ray 

Scattering (SAXS), sedimentation analysis and dynamic light scattering provide information 

in hydrodynamic parameters that can detect characteristic behaviors to intrinsically disordered 

proteins (reviewed in Tompa, 2002).  

We have used several of these biophysical techniques such as 1H 1D-NMR, analytical 

centrifugation and dynamic light scattering (DLS). Results are described In Article 2. 

They reveal that SBP2 shows an unusually high molecular weight in dynamic light scattering 

(DLS) experiments, supporting the non-globular character of the rat SBP2 and human 

SBP2Δ525. Ultracentrifugation analysis showed that a monomeric SBP2 protein is in part 

unstructured. 1H 1D-NMR, a technique that can differentiate a folded from a non-folded 

protein in the resonance range characteristic of peptide bonds, showed the lack of peptide 

bonds and methyl resonances of the rat SBP2 and human SBP2Δ525 expressed in the 

bacterial and the eukaryotic systems. All these results show that SBP2 is largely unfolded, 

and is indeed a member of the family of Intrinsically Disordered Proteins. We postulated that 

the reasons for the previous unsuccessful crystallization may rely on the presence of disorder 

in the protein. 
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2.3. Article 2 (in press) 
 

SECIS-binding protein 2, a key player in selenoprotein synthesis, is an intrinsically 

disordered protein 

Vincent Oliéric, Philippe Wolff, Akiko Takeuchi, Guillaume Bec, Catherine Birck, Marc 

Vitorino, Bruno Kieffer, Artemy Beniaminov, Giorgio Cavigiolio, Elizabeth Theil, 

Christine Allmang, Alain Krol and Philippe Dumas (2009) Biochimie 91(8): 1003-1009. 
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a b s t r a c t

Selenocysteine (Sec) is co-translationally incorporated into selenoproteins at a reprogrammed UGA
codon. In mammals, this requires a dedicated machinery comprising a stem-loop structure in the 30 UTR
RNA (the SECIS element) and the specific SECIS Binding Protein 2. In this report, disorder-prediction
methods and several biophysical techniques showed that ca. 70% of the SBP2 sequence is disordered,
whereas the RNA binding domain appears to be folded and functional. These results are consistent with
a recent report on the role of the Hsp90 chaperone for the folding of SBP2 and other functionally
unrelated proteins bearing an RNA binding domain homologous to SBP2.

� 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

Selenocysteine is found in the active site of selenoproteins that are
involved in oxidation–reduction reactions (reviewed in Ref. [1]).
Although selenocysteine is co-translationally incorporated into
proteins, the insertion step is by no means standard since it requires
the recoding of an in-frame UGA codon to mean selenocysteine
instead of stop. In eukaryotes, this process is achieved by a complex
machinery for which not all the partners have been identified yet
(reviewed in Ref. [2]). The well-established facts are that (i) a stem-
loop structure located in the 30-UTR of selenoprotein mRNAs, the
SElenoCysteine Insertion Sequence (SECIS), is mandatory for recog-
nizing UGA as a selenocysteine codon and (ii), that protein SBP2 (for
SECIS Binding Protein 2) specifically binds the SECIS element [3]. In
addition, it is very likely that SBP2 recruits the tRNASec-bound
specialized translation elongation factor EFSec [4–6]. Ribosomal
protein L30 has also been implicated in selenoprotein synthesis by

recognizing the SECIS RNA as well [7], but the actual mechanistic
issues of how the SECIS-bound complex reaches back to the UGA Sec
codon at an approaching ribosome are far from being elucidated
(reviewed in Ref. [8]). Interestingly, the RNA binding domain of SBP2
comprises a subdomain that belongs to the L7Ae/L30 family. The
latter includes ribosomal proteins [9], but also protein components of
spliceosomal small nuclear RNPs (snRNPs) and small nucleolar RNPs
(snoRNPs) such as 15.5 kD/Snu13p and Nhp2p [10,11]. Most if not all
of these proteins recognize K-turn RNAs, as first disclosed in the
crystal structure of the complex formed by the U4snRNA and the
spliceosomal 15.5 kD protein [12]. It has been proposed [13,14] that
the SECIS RNA also adopts a K-turn like structure and interacts with
SBP2. Additional contacts exist between SBP2 and the SECIS RNA
compared to other members of the L7Ae family. Indeed, it was
recently demonstrated that specific recognition is also provided by
a second domain lying N-terminal to the L7Ae module. Called
bipartite, SID or K-rich [15–17], it is crucial and part of the SBP2 RNA
binding domain but is absent in other L7Ae proteins.

The ‘structure–function relationship’ has been a central dogma
for decades in the protein field. As a result, an absence of folding has
long been considered as an experimental artefact during the puri-
fication step and a cause of aggregation or proteolysis, rather than
of biological significance. However, it is now clear that lack of
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folding is not synonymous of lack of biological activity. This
emerged from studies like that on a cyclin-dependent kinase (Cdk)
inhibitor (p21) that is unstructured in absence of its target, but
becomes structured upon binding to it [18]. Since then, a large body
of other examples has been identified [19–22] and the role of
structural disorder in the function of RNA and protein chaperones
has been reviewed [23]. A search for sequence determinants pre-
venting spontaneous folding led to a criterion as simple as
considering the mean hydrophobicity of a sequence vs. its mean net
charge thus reducing any protein to a particular point in a 2D
diagram. This was shown to delineate a frontier between folded
and natively unfolded proteins [21]. Independently, a ‘sequence
complexity’ index was proposed, which showed that depletion in
hydrophobic residues and enrichment in hydrophilic and charged
residues are factors of disorder [24]. Other bioinformatics methods,
as well as several experimental methods, are available to assess
whether or not a protein is natively unfolded (for review, see
Ref. [25]).

At the onset, we attempted to crystallize the SBP2–SECIS RNA
complex to understand how different proteins possessing homol-
ogous RNA binding domains can discriminate the cognate K-turn
containing RNA. Despite many efforts, we failed at obtaining crys-
tals, be it of the complex or of SBP2 alone. In this paper, we show by
using sequence analysis and biophysical techniques that SBP2,
being largely unfolded, is a member of the family of Intrinsically
Disordered Proteins (IDP, or Intrinsically Unfolded Protein accord-
ing to another nomenclature).

2. Materials and methods

2.1. DNA constructs

The coding region of full length rat SBP2 (kindly provided by
P. Copeland) was subcloned into STBlue-1 vector (Novagen), after
adding NdeI and SalI restriction sites by PCR, followed by subcloning
into pET-28a(þ) to create plasmid FLSBP2. When the N-ter 6�His-
tagged SBP2 protein was expressed from FLSBP2 in Escherichia coli
Rosetta 2 (DE3) (Novagen), it was found in the soluble fraction,
contrasting with earlier studies using other vector/host combina-
tions [3,26,27].

The human SBP26525 (lacking the N-terminal 525 amino acids)
was cloned into pET32b vector (Novagen). The resulting plasmid
encodes an N-terminal thioredoxin-fusion protein with a thrombin
cleavage site. The same construct was later subcloned using the
Gateway Technology and Baculovirus Expression Vector System
(Invitrogen) for expression in baculovirus-infected cells. The final
vector pDEST20-SBP26525 encodes a GST-SBP2 fusion protein.
A baculovirus shuttle vector (bacmid) was generated by transforming
pDEST20-SBP26525 into E. coli DH10Bac.

2.2. SBP2 expression and purification

Bacteria grown in LB medium and expressing the full length
6xHis-tagged rat SBP2 were sonicated, and the supernatant fraction
clarified by sedimentation before application to an anion-exchange
column (PorosHQ, Applied Biosystems). The protein was then
sequentially purified on hydroxyapatite (CHT-2, Biorad), heparin
(GE Healthcare) and a final anion-exchange column (UnoQ, Biorad).
The protein was kept in 50 mM sodium phosphate buffer pH 7.8,
200 mM NaCl, 1 mM DTT, 1 mM EDTA.

The human SBP26525 protein was purified by cobalt affinity
(Talon, Clontech) and anion-exchange (PorosHQ) chromatography,
followed by a 15 h thrombin digestion (Sigma) at 4 �C. It was next
concentrated on a Centricon 30 K (Millipore) and size exclusion
chromatography (Superdex 200, GE Healthcare). The final buffer

was 20 mM HEPES-NaOH pH 7.8, 150 mM NaCl, 20% glycerol, 10 mM
b-mercaptoethanol.

The human SBP26525 was also expressed using Sf9 (Spodoptera
frugiperda) cells that were infected with recombinant baculovi-
ruses. Infected cells were cultured in TNM-FH supplemented with
10% fetal calf serum and 50 mg/ml gentamycin at 27 �C for 72h. The
GST-SBP26525 protein was purified on glutathione sepharose 4B
(GE Healthcare) and heparin columns. After thrombin cleavage, the
mixture of GST–lacking SBP26525 and uncleaved proteins was
ultimately purified again on glutathione sepharose 4B followed by
another heparin column. The final buffer was 25 mM sodium
phosphate pH 8, 200 mM NaCl, 1 mM DTT.

2.3. Gel retardation assay

The 32P-labeled SECIS RNA–SBP2 complex was formed and elec-
trophoresed on a 5% non-denaturing polyacrylamide gel according to
standard procedures [10].

2.4. DLS experiments

Dynamic Light Scattering (DLS) experiments were performed
with a DynaPro-801 (Protein solutions Ltd, High Wycombe, UK)
with the protein sample at ca. 1 mg ml�1 in the buffer of the last
purification step (see Section 2.2) containing 1 mM DTT as the
reducing agent.

2.5. Ultracentrifugaton analysis

Centrifugation experiments were performed at 4 �C by
recording the absorbance profiles at 280 nm in an Optima XL-A
analytical ultracentrifuge (Beckman-Coulter, Palo Alto, CA). The
full-length protein concentration was 0.1 mg ml�1 in HEPES–NaOH
20 mM, pH 7.8, NaCl 200 mM, EDTA 2 mM, TCEP–HCl 2 mM (TCEP:
Tris(2-CarboxyEthyl) Phosphine) as the reducing agent, and not
DTT which absorbs at 280 nm. The calculations were made with the
programs SEDPHAT and SEDNTERP for sedimentation equilibrium
experiments and with SEDFIT for sedimentation experiments [28];
the viscosity of the solution and the protein specific volume were
calculated with the program SEDNTERP [29].

2.6. NMR experiments

600 MHz 1H spectra were collected at 10 �C on a Bruker DRX600
spectrometer equipped with a cryoprobe. The protein sample was
at 100 mM in the conditions of the last purification step (see Section
2.2) supplemented with 8% D2O.

2.7. Disorder prediction algorithms and sequence alignment

Several disorder predictions methods were used: IUPred [30],
VL3H [31] and VSL2 [32]. Sequence alignment was performed with
clustalw [33] and the figure with the program espript [34].

3. Results

Analysis of the human and rat SBP2 amino acid sequences led to
a consistent pattern with ca. 70% of the sequence predicted as
unfolded (Fig.1A). It may be underlined that SBP2 contains 73 proline
residues among 846 in total, which represents an unusually large
fraction (8.6%) in comparison to the mean fraction in the Swiss-Prot
database (4.9%). This is significant since proline is ranked first in one
classification among the amino acids responsible for unfolding
[35,36]. Nevertheless, the residue range 605–775, comprising the
L7Ae/L30 module (part of the RNA-binding domain), is clearly
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predicted as being structured; accordingly, the fraction of proline
residues drops to 4.1% in this range. We set up to experimentally
demonstrate these predictions. The experimental work was initiated
by testing different constructs of human SBP2 bearing a thioredoxin
N-terminal extension separated from the SBP2 sequence by
a thrombin cleavage site. It was repeatedly observed that during the
purification procedure, including the treatment with thrombin,
a rather intense cleavage occurred after Lys525. However, thrombin
was not responsible for this additional cleavage since (i) the sequence
EIPK525AKK does not match the consensus thrombin cleavage site
and (ii) an important increase in thrombin concentration did not
modify the cleaved/uncleaved ratio. In addition, the full-length
human SBP2 led to low solubility. We thus turned our attention to
a new construct starting at Ala526, immediately past the cleavage site
(hereafter called hSBP26525). A full-length soluble SBP2 could
however be obtained with the rat construct that showed a cleavage
too, but less pronounced (at least under our experimental condi-
tions). This is somewhat surprising since the cleavage occurs in
a highly conserved region (Fig. 1B). The functional analysis presented
in this work was therefore performed with both the rat full-length
SBP2 and the human SBP26525 fragment.

In a first step, we demonstrated the ability of both the rat full-
length SBP2 and the human SBP26525 fragment (containing the
L7Ae/L30 domain [10]) to bind the wild-type SECIS in a gel-shift
assay (Fig. 2A). The rat SBP2, cleaved at residue 525, is responsible

for the intermediate band marked with an asterisk. The binding
was specific as it was severely impaired (Fig. 2B) by mutations in
the non-Watson–Crick base pairs of the SECIS previously reported
to inhibit SBP2 interaction [37]. This positive interaction data is
consistent with the fact that both proteins contain the L7Ae module
predicted to be properly folded. However, according to the
predictions (Fig. 1A), the hSBP26525 fragment still contains nearly
50% of disordered residues. It also contains the additional small
patch of residues (from 525 to 545), named bipartite-SID or K-rich
motif (Fig. 1B), located 120 amino acids upstream from the L7Ae/
L30 domain and recognized as necessary for SECIS binding [15–17].
The intervening 120 amino acids are predicted as disordered. It may
be hypothesized that (at least) the small patch of residues becomes
ordered upon SECIS binding.

These computer predictions leading to conclude that SBP2 is an
IDP were consistent with our early experimental results with the
rat full-length protein (MW ¼ 95.3 kD) and the human SBP26525
fragment (MW ¼ 37.3 kD). In both cases, protein solutions dialysed
against ammonium acetate (10 mM, pH 6.8) yielded the expected
MW by ESI-MS, but anomalous ones were obtained from gel
filtration experiments on Superdex 200 (300 kD and 100 kD,
respectively). We also observed an abnormal migration on SDS-
PAGE corresponding to 125 kD and 50 kD, respectively, which had
already been noticed for SBP2 and several of its fragments [26]. This
is a feature often observed with IDP owing to their abnormal amino

Fig. 1. Structured part of SBP2 and SECIS binding. (A) Result of folding prediction for the rat full-length SBP2 with IUPred [30] highlighting an essentially disordered protein with
two ordered regions, one at the N-terminus, the second one between residues 605 and 775 containing the L7Ae/L30 RNA-binding domain. Note that the full RNA-binding domain is
bipartite (grey rectangles) with a short N-term K-rich domain (see text) and that the prediction for human SBP26525 is not shown since it is strictly comparable. Analogous
disorder predictions were also obtained with other methods like VL3H [31] and VSL2 [32]. The vertical bars highlight proline positions that are in two-fold excess compared to the
average content in proteins. (B) Sequence alignment of the human and rat SBP2 proteins. The K-rich domain is marked as well as the predicted secondary structure of the L7Ae
RNA-binding domain derived from the crystal structure of the U4snRNA–15.5 kD complex (pdb code 1E7K) [12].
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acid composition [36]. Analogous results were obtained by
Dynamic Light Scattering (DLS) since the raw diffusion coefficients
led to 345 kD and 130 kD, respectively, with a rather low dispersity
index in each case (12% and 9%). Therefore, these too high MW
values from DLS are essentially those of single species in solution
and not of polydisperse aggregates.

Ultracentrifugation analysis was performed in order to go
beyond these simple pieces of evidence in favour of the non-
globular character of the rat SPB2 and the human fragment
hSBP26525. We first performed sedimentation equilibrium
experiments for which hydrodynamical properties are without
importance. SBP2 was centrifuged for 22 h at 4 �C at three different
velocities (9000, 12 000 and 15 000 rpm). Using a value of
0.74 ml g�1 for the protein specific volume, the three absorbance
profiles were well fit with a common MW value taken equal to the
calculated value of 95 326 Da (Fig. 3A). The same quality of
agreement was observed with hSBP26525 centrifuged at
20 000 rpm, but in that case it was necessary to assume that up to
17% of the protein molecules were engaged in multimers contain-
ing six monomers in average (not shown). Sedimentation velocity
analysis was then used to evaluate hydrodynamic parameters.
A distribution of sedimentation coefficients was obtained for the
full-length protein (Fig. 3B) with a major peak (90%) around 1.8 S
(1 Svedberg ¼ 10�13 s), which would agree with a globular protein
of roughly 30 kD, but certainly not 95 kD. Interestingly, a minor
component (10%) was also present at 4.2 S, and this would agree
with a molecular species of roughly 100 kD. This is not sufficient,
however, to conclude firmly that this corresponds to folded
monomers. The frictional ratio f/f0, where f is the actual frictional
coefficient of the protein and f0 the frictional coefficient of a sphere

of equal volume, was determined to be roughly equal to 2.28. For an
elongated ellipsoidal rigid body this would correspond to an axial
ratio of 25 (Ref. [38]). These results are in complete agreement with
a monomeric protein being in part unstructured.

We also made use of 1H 1D-NMR, which can differentiate easily
a folded from a non-folded protein in the resonance range char-
acteristic of peptide bonds. This appears as a spectral shrinkage
from 6–11 ppm to 7.5–9 ppm and a suppression of the methyl signal
around 0 ppm when going from a folded to a disordered protein
with no secondary structures (see for example Ref. [39]). The
results, again, were clearly in favour of a disordered state for SBP2
(compare Fig. 4a and b). The same was true for hSBP26525
(Fig. 4c). However, a small amount of methyl and peptide peaks was
indicative of a slight increase of folding, may be as a consequence of
the lack of the first 525 residues that are mostly predicted as
disordered. Notably, in both cases, addition of the SECIS RNA did not
induce any additional ordering (not shown), which is consistent
with the RNA binding domain being predicted as folded.

To eliminate the possibility that the unfolding of SPB2 and of the
SBP2 fragment was dependent on the bacterial expression system,
we made use of the eukaryotic insect cell/baculovirus expression
system. However, only hSBP26525 could be obtained in sufficient
amount. The NMR experiment was then reproduced, which showed
a pattern (Fig. 4d) comparable to that of the full-length E. coli
expressed protein (Fig. 4b), in agreement with an important lack of
folding. Therefore, the insect cell/baculovirus expression system
yielded a short SPB2 even slightly less folded than its counterpart
expressed in E. coli (Fig. 4c). At this stage, one cannot conclude on
either a limited effect of the expression system or on some varia-
tions resulting from different purification steps.

Fig. 2. Gel retardation assays. (A) Gel retardation of the complexes formed between the wild-type SelN SECIS RNA with either the full-length rat SBP2 (lanes 1–7) or the human
SBP26525 (lanes 8–14). The secondary structure of the wild-type SelN SECIS RNA is shown in full with the mutation site boxed. The asterisk represents a complex formed with
a fragment resulting from a spontaneous cleavage of the rat SBP2, in good agreement with the shifted band obtained with the human SBP26525 at the same level on the right. (B) A
mutation of the SelN SECIS (shown on the left) severely impaired binding of the two proteins (lanes 15–19 and 20–24). Note the increase in protein concentrations necessary to
induce a very faint binding of the mutated RNA.
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4. Discussion

Altogether, computer predictions and experimental results are
in agreement with the rat SBP2 and human hSBP26525 proteins
being significantly disordered. Based upon glycerol gradient sedi-
mentation and the presence of high molecular weight bands in gel-
shift assays, it was originally thought that SBP2 formed a dimer, or
even multimers [10,26], but later studies indicated the SBP2 state to
be monomeric [40], which is fully accounted for by our present
results. Altogether, these results rationalize our failure to crystallize
SBP2, be it alone or in complex with several forms of the SECIS RNA.

It has been observed that EFSec co-immunoprecipitated [6] and
colocalized with SBP2 [41]. In vitro, a direct interaction between
both proteins could not be demonstrated in the absence of tRNASec
(unless truncation of part of the N-terminal domain of EFSec was
performed) [6], whereas a stable complex could be detected in the
presence of SECIS [42]. The latter study implies that the SECIS
element is important for SBP2–EFSec interaction. This is consistent
with the region of interaction being mapped to the residue range
400–535 in SBP2 [42], which is right N-ter to the extended RNA
binding domain (Fig. 1A). However, this does not imply that, in vivo,
SECIS alone is sufficient and SBP2 might require additional folding
before it can interact with EFSec. In this respect, it is of interest that
SBP2 has been shown to interact with Nufip and the Hsp90 chap-
erone and co-chaperones, the components of an assembly
machinery shared by other L7Ae/L30-containing ribonucleoprotein
particles [43]. Sequence analysis with the same method as that
used in Fig. 1A also indicated a significant degree of unfolding for
Nufip (data not shown). It must be noticed that Hsp90 is not viewed
as a regular Heat Shock Protein rescuing misfolded proteins

Fig. 3. Behaviour of SBP2 in solution assessed by ultracentrifugation analysis. (A) Sedimentation equilibrium experiment of rat SBP2 at 9000, 12 000 and 15 000 rpm. The theoretical
curves shown here were obtained with the sequence-derived SBP2 molecular weight (95 326 Da), and with rsolvent ¼ 1:009 g ml�1, Vprotein ¼ 0:74 ml g�1. The zero level for the
distribution of errors was offset by 0.45. (B) Distribution of sedimentation coefficients explaining the sedimentation profiles (not shown) obtained with rat SBP2 at 40 000 rpm. The
continuous curve is merely an interpolation curve as a guide for the eye.

Fig. 4. Lack of SBP2 folding assessed by 1D-1H NMR. (a) 600 MHz 1H spectrum of
a folded protein (24 kDa N-terminal fragment of E. coli gyrase B) compared to the
spectra (b) of the full-length rat SBP2, (c) of hSBP26525 proteins expressed in E. coli,
and (d) of hSBP26525 proteins expressed in baculovirus-infected cells. The folded
protein (a) shows both the characteristic full-range peptide bond resonances between
7 and 10 ppm, and the characteristic methyl resonances around 0 ppm (arrows). In
contrast, all three SBP2 samples (b,c,d) show either a complete lack of these reso-
nances, or only small methyl peaks.
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regardless of their function, but rather as a chaperone interacting
with a set of various ‘client proteins’ [44]. A working hypothesis is
thus that Nufip could present SBP2 to Hsp90 for controlling its
folding, which would ensure efficient RNP formation. Interestingly,
the tumor suppressor transcription factor p53 is one of the
numerous substrates of Hsp90 and, like SBP2, it has been shown to
be an IDP [45]. It should be stated clearly, however, that additional
folding of SBP2, if any [46], could be limited to only a fraction of the
whole protein.

Finally, one may raise the hypothesis that the spontaneous
cleavage seen within a highly conserved region of both the rat and
human SBP2 could be of biological significance. Such a hypothesis
gains some support from the fact that, in other organisms like
drosophila, SBP2 is fully active although it lacks most of the
N-terminal domain liberated by the cleavage observed in the rat
and human counterparts [17]. Interestingly, it was shown in [17]
by systematic N-terminal deletions that fragments shorter than
hSBP26525 had lost the ability to bind the SECIS RNA, whereas
only fragments longer than hSBP26525 were able to bind
specifically the ribosomal 60S subunit. Therefore, in agreement
with the previous considerations, it may be suggested that this
rat and human N-terminal domain could be involved in the
recognition of other partner(s), possibly the ribosome. However,
in the frame of the hypothesis, this might be a transient role
due to subsequent cleavage of the N-terminal domain gener-
ating a short ‘drosophila-like’ form involved in the next step of
selenocysteine insertion. In the present state of our knowledge
going beyond these considerations would be too speculative.
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2.4. SBP2 is an Intrinsically Disordered Protein  
 

Our results established that ca. 70 % of the SBP2 sequence is disordered with the exception of 

the L7Ae RNA binding domain that appears to be folded, and supports our hypothesis that 

SBP2 is an Intrinsically Disordered Protein and will be folded only in the presence of its 

partners. This is consistent with a recent report, in which participated my laboratory, on the 

role of the Hsp90 chaperone for the folding of SBP2 and other L7Ae family proteins (Boulon 

et al, 2008). The flexibility of IDPs derived from the folding transition upon binding their 

targets could provide the ability to bind several different partners (reviewed in Tompa, 2002; 

Wright & Dyson, 2009). Thus, there may exist other partners of SBP2 yet to be identified. 

Furthermore, an IDP can play an important role in ensuring the correct assembly order of 

individual components of multimeric nucleoprotein complexes: indeed, the binding affinity of 

the IDP for its target can be regulated by its different structures induced by binding different 

partners (Wright & Dyson, 1999). The intrinsically disordered nature of SBP2 could also 

direct the recruitment of its several different partners in the correct order. Finally, since the 

reason of unsuccessful availability of the crystal may rely on the disordered nature of SBP2, 

we therefore conclude that the crystallization of SBP2 will be very difficult unless its partners 

are found.  

 

A number of proteins have been reported whose native and functional states are intrinsically 

unstructured but adopt folding upon binding their targets, providing evidence that the 

unstructured state is essential for basic cellular functions (Reviewed in Dyson & Wright, 

2005; Tompa, 2002; Wright & Dyson, 1999). For example, the N-terminal fragment of the 

cyclin-dependent kinase inhibitor p21Waf1/Cip1/Sdi1 lacks stable structure in the free solution 

state, but adopts an ordered stable conformation when bound to its target, Cdk2 (Kriwacki et 

al, 1996). Indeed, many intrinsically disordered proteins are involved in cellular control 

mechanisms and signaling, by playing important roles in protein interaction networks 

(reviewed in Wright & Dyson, 2009). Intrinsically disordered domains have several 

advantages over rigid three-dimensionally structured proteins. Their higher flexibility enables 

them to bind numerous different targets and increases association and dissociation rates. One 

single protein can even perform different or opposing functions due to different active 

conformations induced upon binding their different targets. Moreover, intrinsically disordered 

regions can transit between different levels of three-dimensional organization (reviewed in 

-99-



Results-Chapter 2 

 

Rajkowitsch et al, 2007). Although unstructured domains are missing in three-dimensional 

structures determined by X-ray crystallography, the structure of an IDP bound to its target(s) 

was resolved by X-ray crystallography in a few cases (Figure 24) (reviewed in Tompa, 2002). 

 

Figure 24. Examples of X-ray structures of IDPs bound to their targets. 

A. The cyclin-dependent-kinase inhibitor p27Kip1 (yellow) complexed with its targets, cyclin-

dependent kinase 2 (Cdk2, blue) and cyclin A (CycA, green) (Russo et al, 1996). B. The transactivator 

domain β-catenin binding domain (CBD) of transcription factor Tcf3 (yellow) bound to β-catenin 

(blue) (Graham et al, 2000). Figures are taken from (Tompa, 2002). 

 

Obviously, resolution of the crystal structure of the SBP2-SECIS complex requires the 

identification of other partners of SBP2 so that the intrinsically disordered domains of SBP2 

become structured. 
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3. Toward identification of SBP2 partners 

 

3.1. Objective 
 

The expression mechanism of selenoprotein mRNAs involves a number of factors (see Part 1. 

Introduction). Among these, SBP2 plays an important role in the assembly of selenoprotein 

mRNPs. It notably recruits the Sec-tRNASec/EFSec complex to the SECIS element during 

selenoprotein synthesis (Tujebajeva et al, 2000) but it also associates with a complex 

machinery linked to the Hsp90 chaperone that triggers proper SBP2 folding and subsequent 

SECIS RNP assembly (Boulon et al, 2008). This assembly machinery is conserved and 

involved in the assembly of several L7Ae RNPs and implies that SBP2 has functional 

similarities with other L7Ae proteins during RNP assembly (Boulon et al, 2008). 

Interestingly, the L7Ae proteins are primary binding proteins that participate in several RNP 

complexes by binding directly to the K-turn RNA motifs. This binding is a prerequisite to the 

assembly of the other core proteins of the RNP complexes to which they belong.  

In archaea, formation of the L7Ae initiation complex enables the recruitment of Nop5 to the 

assembling archeal RNP, which in turn facilitates the association of fibrillarin to the 

catalytically active sRNP in vitro (Omer et al, 2002). In eukaryotes, 15.5kD (the L7Ae protein 

that exhibits the highest similarity with SBP2 (Allmang et al, 2002)) is at the heart of different 

sn/snoRNPs (Watkins et al, 2000) such as box C/D snoRNPs, U3 snoRNP and U4 snRNP. In 

box C/D snoRNPs, Snu13p/15.5kD (the eukaryotic homolog of archaeal L7Ae) is part of an 

RNP complex similar to the archaeal one containing Nop56, Nop58 (the eukaryotic orthologs 

of archaeal Nop5) and fibrillarin (Figure 25 A and B, Kuhn et al, 2002; Nottrott et al, 1999, 

for a review on sn(o)RNP structure, see Reichow et al, 2007). In the U3 box C/D snoRNPs, 

that plays essential roles in ribose 2’-O-methylation and pre-rRNA processing, 15.5kD is also 

present together with the methyltransferase fibrillarin, Nop56 and Nop58 (Watkins et al, 

2002). In the case of the U4 snRNPs, one of the major components of the spliceosome, the 

interaction between 15.5kD and the U4 snRNA is required for the association of a different 

set of core proteins, PRP31 and the cyclophilin H-hPRP4-hPRP3 complex (Nottrott et al, 

2002) (Figure 25 C).  
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Figure 25. Composition and organization of C/D sno(s)RNPs and U4 snRNP 

A. Core proteins of the archaeal C/D sRNP are L7Ae, fibrillarin and Nop5. Nop5 interacts with 

fibrillarin, and Nop5-fibrillarin complex dimerizes. B. The eukaryotic C/D snoRNP contains 

15.5kD/Snu13 (L7Ae homolog), fibrillarin, Nop56 and Nop58 (Nop5 paralogs). In contrast to the 

archaeal L7Ae, 15.5kD appears to bind only at the C/D sites of the snoRNA. C. The U4 snRNP 

contains 15.5kD/Snu13, hPRP31, and the cyclophilin H-hPRP4-hPRP3 complex as well as seven 

common Sm proteins. hPRP31 contains the Nop domain that mediates binding to the 15.5kD-U4 

snRNA complex (Liu et al, 2007). 

 

We therefore speculated that, by analogy with 15.5kD, SBP2 may be able to recruit to 

selenoprotein mRNP core proteins that are common to those of sn/snoRNPs. As a starting 

hypothesis, we tested whether Nop56 and Nop58, the most common interactants of 15.5 kD, 

could also interact with SBP2. This work was initiated together with Laurence Wurth, another 

PhD student in the laboratory whose main project is to understand the assembly pathway of 

the selenoprotein mRNPs and identify new protein partners for SBP2. In this work, based on 

the encouraging preliminary results of her in vivo studies, I further analyzed the interaction 

between SBP2 and Nop56 and Nop58 in vitro, in order to determine whether these proteins 

could be potential partners of SBP2. 
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3.2. Results 

 

Previous experiments in the laboratory detected interactions between SBP2 and Nop56/58 by 

co-transfection and co-immunoprecipitation assay (Laurence Wurth, unpublished data). To 

confirm these interactions and test whether SBP2 interacts directly with Nop58, we set out to 

test this interaction in vitro.  

I performed GST pull-down assays using the recombinant E. coli-expressed GST-Nop58 

protein and the in vitro translated 35S-labelled hSBP2 protein. hSBP2 was first translated in 

the rabbit reticulocyte lysate that allows efficient production of eukaryotic proteins in vitro. A 

strong interaction between the two proteins was detected (Figure 26 lane 3). However, the 

rabbit reticulocyte lysate may contain eukaryotic cellular components that could mediate the 

interaction between Nop58 and SBP2. This possibility has to be envisaged as a protein called 

Nufip, that is part of the Hsp90 chaperone assembly machinery, was shown to bridge 

sn(o)RNP core proteins to 15.5kD (Boulon et al, 2008), even though these proteins were 

unable to interact directly with 15.5 kD. However, yeast two hybrid experiments did not 

detect any interaction between Nop58 and SBP2, even in the presence of Nufip (Laurence 

Wurth, unpublished data). To exclude completely the possibility that another protein may 

mediate the interaction between Nop58 and SBP2, hSBP2 was translated in E.coli S30 extract 

that does not contain Nop58 or SBP2 orthologues. Furthermore, E.coli also lacks components 

of snoRNPs and of the eukaryotic selenoprotein synthesis machinery that could bridge the 

interaction. When hSBP2 was produced in bacterial S30 extracts, the translation pattern was 

different from that of rabbit reticulocyte lysate, and more proteolytic fragments or internal 

termination products were detected (see Fig 26 lane 6). Nevertheless, a weak but positive 

signal of interaction between hSBP2 and Nop58 was detected in a GST-pull down assay using 

hSBP2 produced in the bacterial system (Figure 26 lane 5). This weak interaction appears to 

be due to the low expression efficiency of the full-length SBP2 (compare Figure 26 lanes 4 

and 12).  

Altogether, these results suggest that SBP2 is able to interact directly with Nop58. Nop58 is 

therefore a good candidate to be a real core component of the SECIS RNP. More experiments 

have to be done to confirm this preliminary observation and the proposal. This will be 

developed in the discussion.  
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Figure 26. GST pull-down experiments.  

E. coli cell extracts expressing GST-Nop58 or GST alone were incubated with glutathione agarose 

beads. A. hSBP2 translated in vitro in rabbit reticulocyte lysate in the presence of 35S-Met were added 

to the beads and assayed for binding to the recombinant GST-Nop58. B. hSBP2 translated in vitro in 

E.coli S30 lysate in the presence of 35S-Met were assayed for binding to the recombinant proteins 

(upper panel). The recombinant GST-Nop58 and GST proteins bound to the glutathione agarose beads 

are shown (lower panel). 
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3.3. Discussion 
 

snoRNPs that localize to the nucleolus play essential roles in modification and processing of 

rRNAs, and contain a small nucleolar RNA (snoRNA) and a set of common snoRNP proteins. 

snoRNAs are categorized into two major classes according to the distinctive and conserved 

sequence elements that they have, the box C/D snoRNAs and box H/ACA snoRNAs. The box 

C/D snoRNA forms a complex with fibrillarin, Nop56, Nop58 and 15.5kDa/Snu13, which 

catalyzes the ribose 2’-O-methylation (see also 3.1.). The box H/ACA snoRNA is associated 

with dyskerin/Cbf5, Gar1, Nhp2 and Nop10, forming the box H/ACA snoRNP that functions 

in pseudouridine formation (reviewed in Charpentier et al, 2007; Kiss, 2002; Matera et al, 

2007; Reichow et al, 2007). snRNPs that catalyze RNA splicing in the eukaryotic nucleus, 

comprise snRNAs, Sm core proteins and some other protein factors specific to a given species 

of snRNP. 15.5kD is also a component of the mature spliceosomal U4 snRNP (Nottrott et al, 

2002; Patel & Bellini, 2008). During the maturation of sn/snoRNPs, sn/snoRNAs undergo 

dynamic processes such as association and dissociation of numerous factors, assembly of the 

core proteins and intracellular trafficking.  

In the cases described above, the L7Ae proteins (15.5kD for box C/D snoRNPs and U4 

snRNPs, and Nhp2 for the box H/ACA snoRNPs) that bind the K-turn motif recruit their 

protein partners to the sn/snRNAs and therefore play a central role in the formation of the 

mature RNPs (reviewed in Kiss, 2002; Matera et al, 2007; Reichow et al, 2007). Because of 

the sequence and functional similarity with other L7Ae proteins, SBP2 has been suggested to 

play the same role during the selenoprotein mRNP formation as that of other L7Ae proteins 

during sno/snRNP formation (Allmang et al, 2009). 

In this study, we showed that SBP2 interacts in vitro with at least one of the core proteins of 

the box C/D snoRNPs, Nop58, and that this interaction is direct (Figure 26 lane 5). Together 

with the previous studies detecting this interaction in vivo (Laurence Wurth unpublished 

data), our results support the hypothesis that SBP2 may recruit to selenoprotein mRNPs core 

proteins that are common to snoRNPs. Further experiments will be required for validating this 

hypothesis. Indeed, it will be essential to test in gel-shift assays whether Nop58 is able to 

interact with the SECIS RNAs in the presence and absence of SBP2. In vivo 

immunoprecipitation assays of Nop58, followed by detection of selenoprotein mRNAs, will 

also allow us to define whether Nop58 belongs to the SECIS RNP. Cellular localization 

studies of these factors would also provide information whether Nop58 colocalizes with the 

SECIS RNPs.  
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In addition, to test whether more core proteins are common to sn(o)RNPs and selenoprotein 

mRNPs, the interaction between SBP2 and other core proteins of sn/snoRNPs such as Nop56, 

fibrillarin and PRP31 could also be tested.  

Although the function of the interaction between SBP2 and Nop58 was not analyzed in this 

study, this interaction may contribute to the stabilization of SBP2 that we showed to be 

intrinsically disordered (see 2.4.); alternatively it may also contribute to the stability of the 

SBP2-selenoprotein mRNA complexes or the mechanism of assembly of the selenoprotein 

mRNA. Another possibility is that the interaction with Nop58 could direct localization of 

selenoprotein mRNAs to a particular cellular compartment so that they could circumvent the 

NMD pathway or be delivered to a specialized pool of ribosomes. Localization experiments 

will be required to test this hypothesis as well as functional analysis to determine the role of 

this interaction on selenoprotein synthesis. 

 

Altogether, our results revealed that the molecular assembly of selenoprotein mRNPs has 

many similarities with that of sn- and snoRNPs. 
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Part 3. General conclusion  
 

Since selenocysteine is co-translationally incorporated into a growing peptide chain in 

response to a UGA Sec codon, otherwise read as a translational termination signal, the correct 

recoding of UGA stop to UGA Sec requires a specialized translational machinery. Recent 

important progresses have been made toward the identification of the involved factors and the 

elucidation of the UGA recoding mechanism in eukaryotes. Among the cis- and trans-acting 

factors, SBP2 plays a central role in the eukaryotic selenocysteine incorporation machinery. 

During my PhD studies, our results provided important insight into how the SBP2-SECIS 

RNA complex is formed during selenoprotein synthesis, a process that is at the heart of this 

recoding mechanism. 

 

The first part of my PhD studies concerned the identification and functional characterization 

of the Drosophila melanogaster SBP2 protein (dSBP2) that lacks the region homologous to 

the N-terminus of vertebrate SBP2 (Chapple & Guigo, 2008; Takeuchi et al, 2009). Despite 

its shorter length, dSBP2 retained functional properties similar to the mammalian counterpart. 

However and interestingly, it exhibited differential SECIS recognition that was not observed 

in human SBP2 (hSBP2) and furthermore not expected at all. While hSBP2 binds both form 1 

and 2 SECIS RNAs with similar affinities, dSBP2 exhibits high affinity toward form 2 only, 

the only form present in Drosophila selenoprotein mRNAs. In addition, we identified in SBP2 

a K (lysine) rich-domain that is essential for SECIS and 60S ribosomal subunit binding (Fig 

27). This domain thus constitutes an additional but different RNA binding domain from the 

L7Ae RNA binding module. Swapping five amino acids between dSBP2 (SVRVY) and 

hSBP2 (IILKE) in the K-rich domain conferred reversed SECIS binding properties to the 

proteins, thus unveiling a pentapeptide sequence important for form 1 binding. 

  

Another part of my project consisted in the structural analysis of SBP2, in collaboration with 

the group of Philippe Dumas. Our results established that SBP2 is globally unstructured, with 

the exception of the L7Ae RNA binding domain (Oliéric et al, in press). This is consistent 

with recent results in the laboratory that showed that the stability (and most likely the folding) 

of SBP2 is dependent on the protein chaperone Hsp90. In that work, SBP2 has been shown to 

interact with the adaptor protein Nufip but also directly with some co-factors of Hsp90 

(Figure 27, Boulon et al, 2008). Unlike other Heat Shock Proteins that function in folding 
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non-native proteins, Hsp90 acts as a chaperone interacting with target proteins (reviewed in 

Zhao et al, 2005). Therefore, Nufip could mediate the interaction between SBP2 and Hsp90 to 

ensure efficient RNP formation. This assembly machinery was shown to be conserved and 

involved in other L7Ae RNP complexes such as sn(o)RNPs. In these cases, the adaptor Nufip 

also played in important role in stimulating the interaction between the L7Ae proteins and 

other core proteins of the RNP during the assembly process. A similar mechanism may occur 

in the case of selenoprotein RNP assembly. The intrinsically disordered nature of SBP2 also 

implies the presence of several different partners. However, protein partners of SBP2 are 

poorly characterized and largely unknown apart from EFSec. An interaction between SBP2 

and EFSec was detected by in vivo co-immunoprecipitation assays (Tujebajeva et al, 2000, 

see also 2.2.2.2.c in Part 1.). This interaction was later reported to be tRNA dependent unless 

a masking region of EFSec was removed (Zavacki et al, 2003), but more recently, it was 

shown that SBP2 and EFSec can form a stable complex in vitro that is SECIS dependent 

(Donovan et al, 2008). However, RNA binding may not be sufficient for the SBP2-EFSec 

interaction, and other protein factors may be required to reinforce this interaction. This is 

consistent with SECp43 being shown to promote the SBP2-EFSec interaction in vivo (Small-

Howard et al, 2006). It appears therefore that many factors are involved in linking SBP2 and 

the Sec incorporation machinery. 

 

The last part of my PhD studies was precisely to look for potential partners of SBP2. Previous 

studies in the laboratory established the functional similarities between SBP2 and other L7Ae 

proteins during RNP assembly (Allmang et al, 2002; Boulon et al, 2008). We therefore 

speculated that, by analogy with 15.5kD (the L7Ae protein that exhibits the highest similarity 

with SBP2 (Allmang et al, 2002)), SBP2 may be able to recruit to selenoprotein mRNPs core 

proteins that are common to those of sn/snoRNPs. Interestingly, I could show that SBP2 

interacts directly with at least one of the core proteins of box C/D snoRNPs, Nop58. This 

corroborated in vivo results by Laurence Wurth. This result points to another similarity 

between the selenoprotein mRNP and sn/snoRNP assembly process. Future work will aim at 

clarifying and understanding the role of this interaction. 
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Figure 27. Proposed model for SBP2 functions during the selenoprotein mRNP formation. 

A. Schematic representation of hSBP2. The K-rich region and the L7Ae module are shown in pink and 

blue, respectively. B. SBP2 is represented as a partially unfolded protein according to our disorder-

prediction results described in (Oliéric et al, in press). The stability and likely proper folding of 

SBP2 is dependent on the association with the Hsp90 chaperone and its co-factors. The adaptor 
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protein Nufip stimulates the interaction between SBP2 and the chaperone complex but probably also 

core proteins. It also triggers SECIS RNP formation. Nop58 is likely to be one of the SECIS RNP core 

proteins. The cellular localization of the SECIS RNA-SBP2-Nop58/56 complex is unknown. Other 

core proteins may be recruited to the SECIS RNP. SBP2 also interacts with the 60S ribosomal subunit, 

very likely through binding to a stem-loop structure in the 28S rRNA. When associating with the 

ribosome, SBP2 cannot bind simultaneously SECIS RNA. The question mark represents potential 

interactions and interactants yet to be discovered. The stem-loop structure in the 60S ribosomal 

subunit is a possible SBP2 binding site in the 28S rRNA, yet to be identified. 
 

Altogether, our observations allowed us to propose the following model for the role of SBP2 

during selenoprotein mRNP formation (Figure 27). SBP2, that is globally unfolded except for 

the L7Ae domain, associates with the Hsp90 chaperone complex. This association contributes 

to the folding and therefore the stabilization of SBP2 (Boulon et al, 2008). This probably 

triggers SBP2 binding to SECIS RNA through the L7Ae module that establishes direct 

contacts with the non-Watson-Crick quartet. The K-rich domain in SBP2 may directly contact 

helix 1 of the SECIS RNA to increase the affinity of SBP2 for the SECIS RNA (Allmang et 

al, 2002; Takeuchi et al, 2009). The chaperone complex and the adaptor protein Nufip are also 

likely to mediate the recruitment of Nop58 to SBP2. Formation of the SECIS RNA-SBP2-

Nop58 complex possibly induces further folding of SBP2, which could stabilize the complex 

and/or expose different interacting surfaces for other targets. Whether other core proteins 

common to sn/snoRNPs such as Nop56, fibrillarin and PRP31 are recruited to selenoprotein 

mRNPs remains to be tested.  

The assembly of Nop58 to the selenoprotein mRNP may also help direct selenoprotein 

mRNAs to the nucleus to escape the NMD pathway or to deliver selenoprotein mRNPs to a 

specialized pool of ribosomes. 

We showed that SBP2 interacts with the ribosome through binding the 60S subunit (Takeuchi 

et al, 2009). Very recently, SBP2 was shown to crosslink to the 28S rRNA (Olga Kossinova, 

PhD student in co-tutelle with our group and Galina Karpova, Novosibirsk). The exact SBP2-

binding site in the 28S rRNA is still unknown but this result shows that there must be a helix 

in the 28S rRNA sharing a structure similar to the SECIS element. Our results revealed that 

the same region of SBP2 (K-rich domain) is essential for both SECIS and ribosomal binding. 

Therefore SBP2 cannot bind both targets simultaneously (see Chapter 1). This is consistent 

with previous models suggesting that SBP2 exchanges between the SECIS element and the 

ribosome during the recoding event and Sec incorporation (Allmang & Krol, 2006a; Caban & 
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Copeland, 2006; Chavatte et al, 2005; Kinzy et al, 2005). However, our results do not allow to 

discriminate whether SBP2 is pre-bound to the ribosome or the SECIS RNA prior to 

translation (see also 2.3. in Part 1.). They also do not explain if the complex formed at the 

SECIS in the 3’UTR could help to tether translation factors to the UGA Sec located in the 

coding region. More detailed information about the interaction between SBP2 and the 

ribosome will provide important insight into how the ribosome is told by the Sec 

incorporation machinery not to stop at the UGA Sec codon. 

 

Altogether, our results revealed that the molecular assembly of selenoprotein synthesis 

machinery, that bears many similarities with that of sn- and snoRNPs, undergoes more 

dynamic processes than anticipated. Surprisingly, SBP2 plays important roles in regulating 

these events. 
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Part 4. Annex/ Methods 
 

1. cDNA cloning using the GATEWAY Technology 
 

The principle of the GATEWAY Technology is based on the conservative site-specific 

recombination of the λ phage between a DNA fragment harbouring specific recombination 

sites and GATEWAY-adapted vectors. Two recombination reactions are performed to create: 

(i) an entry clone; (ii) a destination vector. The first reaction is a recombination between an 

attB (the Bacterial attachment site) DNA segment and an attP (the Phage attachment site) 

donor vector to create an entry clone (also called the BP reaction because of the utilization of 

the attB and the attP sites, hence the names B and P), and the second recombination reaction 

occurs between an attL (the Left prophage attachment site) entry clone and an attR (the Right 

prophage attachment site) destination vector, hence the LR reaction (Figure 28). 

The reading frame and orientation of the DNA fragment is maintained during recombination; 

attB1, attB2, attL1 and attL2 interact only with attP1, attP2, attR1 and attR2, respectively. To 

clone SBP2 cDNAs using this technology, I first added the recombination sequences at both 

ends of each SBP2 sequence. A two-step PCR was performed to generate SBP2 fragments 

harboring attB1 and attB2 recombination sites (Figure 29). The first PCR added the thrombin 

cleavage site at the 5’ and the attB2 sequence at the 3’ ends, the second one incorporating the 

attB1 sequence at the 5’ end (Figure 29). Primers used for the PCR amplifications are listed in 

Table 3. The PCR products were then incubated with the pDONR207 (Invitrogen) vector in 

the presence of BP clonase mix (Invitrogen) containing the bacteriophage λ recombination 

protein Integrase (Int) and the E.coli-encoded protein Integration Host Factor (IHF), to 

generate entry clones (the BP reaction). The entry clones were next incubated with either the 

pDEST10 or pDEST20 (Invitrogen) destination vectors in the presence of LR clonase mix 

(Invitrogen) containing Int, IHF and Excisionase (Xis) (the LR reaction). pDEST10 and 

pDEST20 contain 6xHis tag and GST sequences, respectively, upstream of the attR1 

recombination site. 
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Figure 28. Principle of the GATEWAY cloning 

A. Overview of the BP and LR reactions with the resulting plasmid. The final clone, pDEST-SBP2 is 

used for generating a recombinant bacmid. B. Summary of reactions and nomenclature. The 

recombination occurring between the attB and the attP sites, and between the attL and the attR sites, 

are called the BP and the LR reactions, respectively. attB, attP, attL and attR are the Bacterial 

attachment site, the Phage attachment site, the Left prophage attachment site and the Right prophage 

attachment site, respectively. 
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Figure 29. PCR amplification strategy to generate the SBP2 cDNA fragment harboring the AttB 
recombination sites. 

 

 

 

Table 3. List of primers used for PCR amplification. 

 

 

 

2. Baculovirus expression system 

 

Protein expression in insect cells using the Baculovirus expression system requires multiple 

steps: preparation of the baculovirus shuttle vector (Bacmid), generation of virus particles, 
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determination of the viral titer, amplification of viral stocks, infection of insect cells and 

culture of baculovirus-infected insect cells. It also requires determination of optimized 

conditions for protein expression by mini and medium-scale expression tests before scaling-

up the culture volume. The steps required for the generation of recombinant baculoviruses and 

gene expression are shown in Figure 30. 

 

Figure 30. Generation of recombinant baculoviruses and gene expression. 

A. Steps to generate recombinant baculoviruses. 1 week, 1 month and 2 months in the blue arrow 

indicate approximate time required. B. A recombinant bacmid is generated by site-specific 

transposition of an expression cassette into a host bacmid. The isolated recombinant bacmid is 
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transfected into insect cells to produce recombinant baculovirus particles. The viral particles are used 

for plaque assay or infection of the insect cells.  

2.1. Bacmid preparation 

 
The pDEST destination vectors cannot be used for protein expression in insect cells. The 

preparation of recombinant baculovirus shuttle vectors (Bacmid) is required. To generate 

recombinant bacmid DNAs, the pDEST destination constructs were transformed into the 

E.coli DH10Bac strain that contains a host bacmid and a helper plasmid encoding a 

transposase (Figure 30 B). This reaction is based on site-specific transposition of an 

expression cassette into a bacmid. After bacmid purification and PCR analysis to confirm 

insertion of the expression cassettes, ten bacmid clones were obtained (pGST-hSBP2a and b, 

pGST-hSBP2Δ525, pGST-ratSBP2a and b, pGST-dSBP2, pHis-hSBP2, pHis-hSBP2Δ525, 

pHis-ratSBP2 and pHis-dSBP2). They were used for generation of recombinant baculovirus 

particles by transfecting the recombinant bacmid DNA into insect cells (virus particles were 

generated at the baculovirus service at IGBMC). The recombinant viruses were used for 

expression tests. 

 

2.2. Mini expression test 

 

For initial screening of the recombinant baculovirus (before viral amplification and titration), 

the expression of each construct was tested. The insect cells (Spodotera frugiperda: Sf9 cells) 

from 2ml culture were collected and lysed in the T20N250 buffer containing 20mM of Tris-HCl 

pH8.0, 250mM NaCl. After sonication and centrifugation, soluble fractions were incubated 

with either Glutathione Sepharose (Amersham) or Ni-NTA (Qiagen) beads according to the 

tags. The purified proteins retained on the beads and the insoluble fractions were then loaded 

onto SDS-PAGE gels, followed by Western blotting. For the His-tagged constructs, Western 

blotting was performed using anti-His (SantaCruz) and anti-hSBP2 antibodies (NeoMPS). 

 

2.3. Titration of viral particles and insect cell culture 

 

The recombinant baculoviruses corresponding to the GST-tagged constructs (pGST-hSBP2b, 

pGST-hSBP2Δ525 and pGST-ratSBP2b) selected by the mini expression tests were amplified 
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and titrated. These titrated viral particles were used for infection of the insect cells. Sf9 cells 

in 25ml cell culture (20 x 106 cells), infected with different viral titers (from 1 to 10 PFU/cell: 

Plaque-forming unit per cell) were used for protein production The baculovirus infected-cells 

were incubated at 27 °C for either 48 or 72 hours and then collected. The cell extract was 

prepared as described in 2.2.2. in the paragraph of mini expression test, and the soluble 

fraction was incubated with Glutathione Sepharose (Amersham). The purified proteins were 

loaded onto SDS-PAGE gels, analyzed by Coomasie staining or Western blotting. 
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