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Abstract
Object: Deep brain stimulation (DBS) has become an effective therapy in a variety of brain
disorders. Recently, Hypothalamic DBS in cases of chronic intractable cluster headache has
revived the interest in this region, which is also well-known to be involved in food intake and
energy balance regulation. In the other hand, risks and problems related with implantation in this
area has raised several questions regarding the safety of this approach. In this study, the
authors proposed an Intraventricular “floating” electrode inserted in the third ventricle adjacent
to the ventromedial hypothalamus (VMH) in freely moving Macaca fascicularis to modulate food
intake and weight and as a potential treatment of morbid obesity.
Methods : Five adults Macaca fascicularis (4 subjects and 1 sham) monkeys were implanted
stereotactically in the third ventricle contiguous to the VMH with chronic indwelling 3389 and
3388 Medtronic electrodes used for Deep Brain Stimulation (DBS). The study was divided in two
phases: acute tests and chronic 8-weeks trials. In the acute tests, the meal size, eating time and
locomotor activity were recorded after short periods of electrical stimulation (ES) in 24 hrs
fasting animals at different frequencies and intensities of stimulation, in order to obtain the most
effective sets of ES parameters able to reduced food intake (FI) and consequently weight and
fat during chronic stimulation. In the chronic trials, three cycles of continuous ES of 8 weeks
each were performed at the most effective frequency reducing Fl in the acute test (or 80Hz), at
130Hz (considered High Frequency ES and used in Parkinson Disease DBS) , and 30Hz
(considered Low frequency ES and used in Pain DBS). Body Mass Index, weight, fat content,
subcutaneous skinfolds and hormones were measured during baseline and at the end of each 8
week stimulation trials.
Results : Results: During Acute 24 hrs-fasting trials , there was a decrease in Fl in all subjects
at 80 Hz, (mean 15 +4.4%). During Chronic 8 weeks stimulation trials , a decrease in weight
and BMI was observed in three out four monkeys at 80 HZ (mean 8% + 4.4%), and slight
increase at 130HZ (mean 2% + 2.5) and at 30HZ (mean 5%+2,93). Fat mass decreased at the
end of 80 Hz trials to ratio 0.82+0.08. (18% reduction).Subcutaneous skinfolds were reduced in
all four subjects at 80 Hz and slightly increased at 130 Hz. Sham monkey remained stable. FI
increased during off stimulation period (washout) following effective weight loss. Glucose also
increased during hyperphagic period. Hormones and Leptin did not show significative variations
in relation to different frequencies stimulation. No major adverse effects were recorded.
Conclusion : We conclude that stimulating the VMH region throughout an Intraventricular
approach might modulate acutely food ingestion and induce a sustained decrease in weight and
in fat content in normal non obese human primates.

Key words : deep brain stimulation, obesity, ventromedian hypothalamus, Macaca
fascicularis, Intraventricular approach



Thesis: DBS for obesity in the normal non human primate: N Torres
MD

Résume

Objet: La stimulation cérébrale profonde (SCP) est devenue une thérapie efficace dans une
série de maladies cérébrales. Récemment, dans les cas des algies vasculaires de la face
résistantes au traitement (intraitables), chroniques, la SCP hypothalamique a suscité un nouvel
intérét pour cette région, également bien connue pour son implication dans la régulation de la
prise alimentaire et de la balance énergétique. Cependant, les risques et les problemes
connexes liés a limplantation dans cette aire cérébrale ont soulevé plusieurs questions
concernant la sdreté de cette technigue chirurgicale. Dans cette étude, les auteurs ont proposé
I'implantation d'une électrode intraventriculaire insérée dans le troisieme ventricule au niveau de
I'nypothalamus ventromedial (VMH) chez des singes macaca fascicularis non obéses dans le
but de moduler la prise alimentaire et le masse corporelle des sujets. Cette méthode de SCP
pourrait s’avérer étre un traitement potentiel de I'obésité morbide.

Méthodes : Cing singes de macaca fascicularis adultes (4 sujets et 1 contrdle ou sham) ont été
implantés de facon stéréotaxique dans le troisieme ventricule. Une électrode chronique
Medtronic®, habituellement utilisée dans le cadre de la SCP chez les patients atteints de la
maladie de Parkinson, a été positionnées dans I'espace intraventriculaire adossée a la paroi de
ce dernier au niveau du VMH. Dans la premiére phase de I'étude, le comportement alimentaire
de chaque animal (durée du repas, quantité de nourriture avalée) et son activité motrice ont été
enregistrés et analysés en fonction différents paramétres de stimulation (fréquence et intensité)
aprés une période de jeun de 24 heures. Dans la seconde phase du protocole, trois cycles de
stimulation intraventriculaire de 8 semaines chacun ont été réalisés & 130Hz, a 80Hz et & 30Hz,
suivi des périodes de « washout » de 4 semaines entre les périodes« on - stimulation ». L'index
de masse corporelle, le poids (masse corporelle), la « teneur « en graisse, I'épaisseur cutanée
et les concentrations hormonales ont été mesurés au début de I'étude pour établir une ligne de
base et aprés chague session de stimulation.
Résultats : Lors de la premiére phase du protocole réalisée sur des animaux a jeun depuis 24
heures, nous avons remarqué une diminution de la prise alimentaire comprise entre 11 et 19%
chez tous les sujets stimulés a une fréquence 80 hertz. A partie de ces résultats, , une
diminution de la masse corporelle et du BMI (body mass index indice de masse corporelle) ont
été observés chez trois de quatre singes lors des phases de stimulation chronique a une
fréquence de 80 hertz : la moyenne de perte pondérale était de 8+ 4.4%. Une augmentation de
2-6 + 2.5% et de 5 £2,93 %de la masse corporelle a été observée respectivement chez les
animaux stimulés a une fréquence de 130Hzet de 30Hz. Une diminution importante des
épaisseurs sous-cutanées ( )a été observée pour chacun des quatre sujets a une fréquence de
80 hertz et dans une moindre mesure, une augmentation de cette variable () a été remarquée
une fréquence de 130 Hz. Tout au long de I'étude, les variables relevées sur le singe Sham
sont restées stables. Sur la durée de I'étude, aucun effet potentielle ment délétére n'a été
remarqués sur les animaux.
Conclusion : La stimulation de la région de VMH par voie intraventriculaire pourrait s'avérer
efficace pour moduler le comportement alimentaire et induire une diminution soutenue de la
masse corporelle caractérisée par réduction de la masse graisseuse chez les primates non
humains non obéses.

Mots clés : stimulation cérébrale profond, obésité, noyau ventromédian, Macaca

fascicularis, Implantation Intraventriculaire
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6-OHDA
ac

AC
AF
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ANOVA
AP
ARC
ATP
BDNF
BFS
BG
BIA
BMI
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CCK
Cl

cm
CM
cm/s
CNS
CRH
CSF
DA
DAT
DBS
DM
DMH
DNA
DXA
ECW
ES
FFA
Fi

FL
FSH
FT
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micrometers
3 Tesla
Third ventricle
6-hyrdroxydopamine

anterior commisure
Abdominal circumference
Abdominal fat
Aglouti related peptide
analysis of variance
anteroposterior
arcuate nucleus
adenosine triphosphate
brain derived neurothophic factor
Best and more effective frequency stimulation
basal ganglia
bioimpedance analysis

Body Mass Index
Cocaine- and amphetamine-regulated transcript
cholecystokinin
Chloride
centimeter
centromedian nucleus of the thalamus
centimeter/second
central nervous system
corticotrophin release hormone
Cerebrospinal fluid
dopamine
dopamine transporter
deep brain stimulation

diabetes mellitus
nucleus dorsomedial nucleus
deoxyribonucleic acid
Dual energy X-ray absorptiometry
Extracellular water
electrical stimulation
free fatty acid
Food Intake
fasciculus lenticularis
Follicle stimulating hormones
fasciculus thalamicus
fornix
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g grams

G/ grams/liter

GABA y-aminobutyric acid

GAD glutamic acid decarboxylase

GDH glutamate dehydrogenase

GH growth hormone

GHS-R growth hormone secretagoge receptor

Glu glutamate

GP globus pallidus

GPe globus pallidus externus

GPi globus pallidus internus

GPil lateral segment of the GPi

GPim medial segment of the GPi

H1l field H1 of Forel

H2 field H2 of Forel

HDL High density lipoproteins

HFS high frequency stimulation

hGH I'normone de croissance de recombinaison humaine

hr hour

Hz hertz

i.m. intramuscular

AYA intravenous

ic internal capsule

IC internal capsule

ICV Intracerebroventricular

ICW Intracellular water

If nucleus arcuate or infundibular nucleus

iGIuR ionotropic glutamate receptor

INSERM Institut National de la Santé et de la Recherche Médicale

IPG implantable pulse generator

IS lliac skinfolds

K potassium

KA kainic acid or kainate

Kg kilogram

LB Lewy body

L-dopa levodopamine

LFS Low frequency stimulation

LH Luteinizing hormones

LHA Lateral Hypothalamus area

It lamina terminalis

Lv lateral ventricle

m meters

mA milliamperes

MB midbrain

MC-1 Melanocortin receptors 1

MC-3 Melanocortins receptors 3

MC-4 Melanocortins receptors 4
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MCH
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MFB
mg
mGIuR
mL
MM
mm
MP
MPEP
MPP*
MPPP
MPTP
MRI
MRNA
msec
MSH

n

NA
NA

Na
NADH
NMDA
NO
NOS
NPY
NPY/Y1
NST
NTS
OoMS
opt
PARS
PBS
PD

PD
PET
Pf
PFA
PN

Po
POMC
Pop
PPN
pps
PTP
PVG/PAG
Pvn

Melanin Concentrating Hormone
magnocellular division of the mediodorsal nucleus
median forebrain bundle

milligram

metabotropic glutamate receptor

milliliter

medial mammillary nucleus

millimeter

la maladie de Parkinson
2-methyl-6-(phenylethynyl)-pyridine
1-methyl-4-phenylpyridinium
1-methyl-4-phenyl-4-propionoxypiperidine
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
Magnetic resonance imaging

messenger ribonucleic acid

milliseconds

Melanocyte-stimulating hormone

number or sample size

number of averages

Noradrénaline

sodium

(reduced form of) nicotinamide adenine dinucleotide
N-methyl-D-aspartate

nitric oxide

nitric oxide synthase

neuropeptide Y

neuropeptide Y1 receptor

le noyau subthalamique

Nucleus of solitary tract

Organisation mondiale de la santé

optic tract

poly-ADP-ribose synthetase

phosphate buffered saline

Parkinson's disease

proton density magnetic resonance image
positron emission topography

parafascicular nucleus

perifornical area

pons

posterior hypothalamic nucleus

pro opiomelanocortin

the preoptic nucleus

pedunculopontine nucleus ou le noyau pédonculopontin
pulse par seconds

permeability transition pore

periventricular grey matter/peri aqueductal gray matter
paraventricular
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PVN Paraventricular nucleus

R:L right to left ratio

RARE Rapid Acquisition with Relaxation Enhancement

RF radio frequency

RMP resting membrane potential

RNA Ribonucleic Acid

ROS reactive oxygen species

rpm revolution per minute

sb The subthalamus

SCP stimulation cérébrale profonde

SHF la stimulation & haute fréquence

SN substantia nigra

SN substantia nigra ou la substance noire

SNc substantia nigra pars compacta

SNC systeme nerveux central

SNr substantia nigra pars reticulata

SOC-3 suppressor of cytokine signalling - 3'

SOD1 superoxide dismutase-1

SPE stimulation plus efficace

SPECT single positron emission computerized tomography

Sr supraoptic recess

SS subscapular skinfolds

ST the corpus striatum

STN subthalamic nucleus

T2 transversal relaxation time

T3L Triiodothyronine Libre

T4L thyroxine libre

TBW Total body water

TCA tricarboxylic acid

TE echo time

Th thalamus

TH tyrosine hydroxylase

TH* tyrosine hydroxylase positive

TND transneuronal degeneration

TRH Thyrotropin-releasing hormone

TSH thyroid-stimulating hormone

UPDRS unified Parkinson's Disease rating scale

Vv Volts

V3 Third ventricle

VA ventral anterior (nucleus of the thalamus)

VAmc magnocellular division of the ventral anterior nucleus

Vim ventralis intermedius (nucleus of the thalamus)

VL ventrolateral (nucleus of the thalamus)

VLDL very low density protein

VLo ventrolateral oralis

VMH ventromedial

VTA ventral tegmental area
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w weeks

WHO World Health Organization

e washout

zi zona incerta

ZI zona incerta

ZTV la zone tegumentaire ventrale
a-MSH a-melanocyte stimulating hormone
MO microgram

us microsecond
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INTRODUCTION

L'obésité est une pathologie complexe caractérisée par l'accumulation excessive du
tissu adipeuse excessive. Elle est définie en termes de index (indice) de masse
corporelle (BMI), calculé en kilogramme/ (m) 2. Bien que le BMI soit une variable
continue, les études épidémiologiques basées sur le risque de comorbidities ont permis
des classifier des groupes de populations. Un BMI entre 18 et25 est considéré comme
normal ; entre 25-29.9 on parle de surpoids et a plus de ou égal a 30, de I'obésité
(Korner et caractérisee, 2003).1l n’existe pas de consensus concernant la définition de
I'obésité morbide mais, en général,dans la littérature de la chirurgie bariatrique (Brolin,
1992)on considere que plus de 45 kilogrammes au-dessus de poids idéal représente
une obeésité morbide. L'obésité atteint actuellement, au niveau mondial, des proportions
épidémiques, avec plus de 1 milliard d'adultes en surpoids dont 300 millions d’obéses
.L'obésité (représente) 2 a6% (voir méme 7 %) des (dépenses) (codts totaux) des soins
de santé dans plusieurs pays développés .Les colts réels sont beaucoup en fait plus
importants car toutes les comorbidities associées a I'obésité ne sont pas prises en
compte dans les calculs (OMS 2003).

Avoir un poids excessif augmente sensiblement le risque de comorbidités associée
comme :le diabete type — Il (DM), I'hypertension artérielle, la dyslipidemia, la
cardiopathie ischémique, l'insuffisance cardiaque,l’accident vasculaire cérébrale, la
lithiase biliaire, la stéatose hépatique, I'arthrose, le syndrome d’apnée de sommelil, ainsi
que le cancer endométrial, du sein, de la prostate, ou du colon. L'obésité est associée

également a une diminution de la qualité de vie (Roe et Eickwort, 1976), a un haut
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risque des comorbidities (Must et al., 1999), et a une espérance de vie réduite de cing a
20 ans (Fontaine et al, 2003).

Le traitement de l'obésité inclut des mesures non pharmacologiques, des agents
pharmacologiques et la thérapie chirurgicale. Les traitements non pharmacologiques
sont la thérapie comportementale, I'exercice physique et les régimes hypocaloriques. Le
probléme principal du traitement non pharmacologique demeure dans la difficulté a
suivre des régimes restreints en calories et d’'augmenter 'activité physique.

Les médicaments utilisés a long terme comme le sibutramine et l'orlistat entrainent une
perte de poids discrete de 4 - 6 % sur une période de 6 mois dans des études contrélés
et en relation directe avec la observance au régime, a l'exercice physique, et a la
thérapie comportementale. D’autres médicaments comme les agents de libération de la
NA (Noradrenaline) entrainent une perte de poids significative par rapport au placebo
dans des études a court terme, mais ce type de médicaments est approuve seulement
pour des courtes périodes d’administration.

La chirurgie bariatrigue reste une alternative efficace dans [I'obésité morbide.
Néanmoins, certains patients présentant obésité morbide restent toujours de mauvaises
candidates pour ce genre d'intervention. Un exemple de intervention chirurgicale est la
chirurgie de «bypass » gastrigue deRoux en Y, ou une petite poche gastrique
empéche les patients de manger de grandes quantités a chaque repas. Dans I'étude
complémentaire ayant le plus long suivi aprés chirurgie par« bypass gastrique », Pories
et autres ont rapporté un maintien de la perte d’exces du poids de 58%, de 55% et de
49% (le poids excessive a été définie comme le poids en exces par rapport au poids
idéale prévu pour les patients) a 5, 10, et 14 ans post-opératoirement respectivement.

Cependant, les complications apparaissent entre 15-55 %de patients apres la chirurgie
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bariatrique, et le taux de mortalité peri-chirurgical est environ 1.5 % méme dans les
centres qui ont une expeérience. (Pories et MacDonald, 1993). Les procédures les plus
slres et les plus simples (comme les gastroplasties en bande réglable) ne sont en
général pas si efficaces.

En conclusion, il existe une nécessite réelle pour des procédés plus efficaces et plus
shrs pour traiter I'obésité morbide résistante (au traitement usuel). (Korner et Aron,
2003)

Tandis que I'obésité a longtemps été considérée comme un trouble comportemental, la
découverte de I' hormone leptine en 1994 a catalysé (stimule) le champ de la
recherche d'obésité en démontrant I'existence d'un signal humoral afférent du tissu
adipeux au systeme nerveux central. L'évidence suggére qu'une fois que le tissu
adipeux s’accumule, un systéme hormonal neuroendocrine d’autoréglage empéche sa
diminution , rendant la perte de poids volontaire difficile(Zhang et autres, 1994). En
conséquence, la modulation des circuits de cerveau apparait comme une stratégie de
recherche clinique valable dans l'obésité. Les avances dans notre connaissance (La
connaissance de plus en plus approfondie) de l'anatomie et de I'électrophysiologie
fonctionnelle des circuits neuronaux appropriés a cette condition) peuvent (peut)
dévoiler des nouvelles cibles et donc des applications potentielles de la
neuromodulation dans l'obésité. Dans notre étude, ces cibles potentielles, impliquées
dans la physiopathologie de cette maladie, sont explorées et des nouvelles directions du
traitement sont discutees.

Récemment, suite au développement du nouveau matériel et des techniques
d’électrophysiologie, la stimulation électrique cérébrale profonde(SCP) a été employée
dans le traitement des troubles obsessionnels compulsifs, de la douleur, des troubles
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de mouvement(Benabid et autres, 1998), (Benabid et autres, 2001 ; Cosyns et autres,
2003 ; Gabriels et autres, 2003) et de I'épilepsie réfractaire au traitement médical
(Benabid et autres, 2002) (Benabid, Koudsie et coll 2001). Cet outil permet maintenant
d’explorer des nouvelles cibles et d’élargir les options thérapeutiques disponibles.

Certaines caractéristiqgues de cette méthode expliquent sa popularité. Les paramétres
de SCP peuvent étre ajustés a un seuil approprié évitant ainsi les effets indésirables sur
les structures de voisinage(Blomstedt et Hariz, 2006). Contrairement a la lésion
stereotaxique , la SCP fournit I'avantage de la réversibilité et la possibilité de doser
l'intensité électrique (Deuschl et autres, 2006) diminuant le risque de déficit
neurologique permanent important. La SCP est adaptable : malgré le fait que les
mécanismes fondamentaux de la SCP restent largement inconnus (Benabid et autres,
2005a ; Fraix et autres, 2004), si les parametres électriques appropriés sont bien
choisis, la SCP peut exciter ou inhiber les structures neuronales , ouvrant ainsi un
éventail d'applications cliniques potentielles. L'identification de la fréquence comme un
facteur clé pour la modulation des structures de SNC a permis I'apparition d'un grand

nombre d'applications qui va encore augmenter a I'avenir (Benabid et autres, 2005b).

Le désequilibre entre la prise alimentaire et la dépense énergétique produit une
augmentation du poids chez les individus pour lesquels lidentification des signaux
périphériques hypothalamique est faible ( Leptine, ghrelin, glucose ou insuline)(Heini et
autres, 1998). L’activation des centres hypothalamiques sensibles a ces signaux
périphériques en utilisant la SCP a basse fréquence ou l'inhibition des centres nerveux

en hyperactivité utilisant la stimulation a haute fréquence,peut changer le « set point »
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du poids corporelle dans les patients avec une obésité morbide (Benabid et autres,

2005a ; Benabid et autres, 2005b)

OBJECTIFS

Le but de cette étude est d'évaluer les effets de la stimulation hypothalamique
ventromediane chronique sur le comportement alimentaire, le métabolisme, et le poids
corporel global chez le primate. L'étude essaie de:

* Reproduire d’autres travaux qui ont observe l'effet aigu de la stimulation de VMH
sur la prise alimentaire(Takaki et autres, 1992) ;

» Déterminer si le positionnement intraventriculaire d'électrode peut stimuler le
VMH a partir du troisieme ventricule ;

* Observer les effets de la stimulation de VMH a des différentes fréequences sur le
comportement du primate non humain employant la technologie des électrodes
de stimulation profonde du cerveau déja disponible pour I'application humaine.

Jusqu'ici la recherche des effets de la stimulation profonde chronique de cerveau au
niveau de I'hypothalamus médial chez des animaux supérieurs n'a été jamais effectuée.
Dans notre étude, nous avons passé en revue l'efficacité et la slreté de la stimulation
chronique dans ce modele de régulation alimentaire et du poids. Les résultats de ces
experiences vont nous permettre d’évaluer la possibilité de réaliser des études cliniques

qui permettront valider notre approche dans le traitement de I'obésité morbide.

DESIGN DE L’ETUDE

Cing singes Macaca fascicularis de poids normaux (H4, H5, H7, H8 et H10) ont été
acclimatés a deux repas quotidiens. Quatre d’entre eux on été implantés avec une

électrode (3388 et 3389 DBS électrodes Medtronic®, Richmond MN USA)au niveau du
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troisieme ventricule et du noyau de VMH/DMH et reliées a un dispositif implantable type
pacemaker (Soletra® Medtronic, Richmond MN USA). Un cinquiéme singea ete
implanté au niveau hypothalamique,avec le méme type d'électrode, mais sans
connexion au stimulateur implantable type « pacemaker »

Phase 1 : Consiste dans I'étude des contacts d'électrode pour identifier les plus
efficaces en la réduction de la prise alimentaire ainsi que ceux qui produisent le moins
des effets secondaires aprés l'usage de différents parameétres de stimulation. Apres une
période de jeun de 24 heures, I'animal a recu la stimulation d’onde bi phasique pendant
8 heures, a des fréquences et des intensités différentes. Un repas standard
comprenant la prise alimentaire journaliere habituelle a été donne al7h00 heures. La
latence du déclenchement de I'alimentation, le temps dépense pendant I'alimentation et
la quantité totale de nourriture consommé ont été enregistrés. L'activité motrice globale
pendant la stimulation a été également enregistrée et analyse a posteriori a I'aide d’'un
logiciel de reconnaissance des images et du comportement. Chaque animal a subi entre
4 et 5 sessions de stimulations dans lesquelles des repas ont été présentés dans les
mémes conditions (température, type de nourriture etc.),en changeant uniquement les
valeurs de la stimulation. La combinaison des parametres qui réduisaient effectivement
la taille de repas sans effets secondaires inacceptables ontété choisis pour la
stimulation chronique. Le but principal de la phase 1 a été d’obtenir une fréquence qui
puisse réduire effectivement la prise alimentaire. Cette frequence (SPE : stimulation

plus efficace) a été utilise dans le étude chronique (phase 2) Le schéma 1.
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e
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24\Hrs

Start{fasting Stimyilation Test

Le schéma 1: Diagramme montrant le protocole d'essai de la stimulation aigué:
I'animal a jeun pour 24 heures, aprés on réalise la stimulation électrique pendant
6-8 heures et la présentation du repas standard Ila taille du repas, le temps
employée pour s’alimenter et la locomotion étant mesurés.

Phase 2 : Evaluation des effets de la stimulation continue chronique intraventriculaire
sur le comportement de I'alimentation et sur le poids corporel global. Paradigme 1 : Les
singes H5 et H7 ont recu une stimulation électrique, pendant 8 semaines, a une
fréquence (SPE) qui a produit la diminution de la prise alimentaire. Les singes HS8 et
H10 ont recu une stimulation a haute fréquence simultanément (HFS), utilisant des
parametres proches a ceux de la stimulation subthalamique pour la maladie de
Parkinson (130 hertz). Le singe H4 a servi de control. Paradigme 2 : Les singes H8
etH10ont recus a leur tour la stimulation électrigue, pendant une période de 8
semaines, a la fréquence SPE .Les singes H5 et H7 ont été stimule également a HFS
pour la méme période et le singe H4 n'a recu aucune stimulation. Les animaux ont été
périodiquement surveillés : poids, nourriture et niveaux hormonaux et électrolytes.
Paradigme 3 : Les singes H5, H7, H8, 10 ont tous recu la stimulation considérée a
basse fréquence (LFS) (30 hertz) employé dans diverses pathologies (douleur, freezing
etc.). Entre les paradigmes, des périodes de 4 semaines en « off-stimulation »
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(« washout periods ») ont été programmes pour éviter le chevauchement des effets
biologiques entre les divers paramétres donnant des résultats antagoniques (« carry-on

effet »).

ANALYSE STATISTIQUE

L'analyse statistique des données présentées a éte faite en utilisant les tests suivants :
-Le test de Kruskal-wallis a été employé pour réaliser des multiples comparaisons non
apparies non paramétriques entre les différentes fréquences de stimulations pendant
les tests de stimulation aigue de la phase 1

-Pour des comparaisons multiples entre les groupes, on a utlise le test non
parameétrique pairé ANOVA a une voie, le test de Friedman suivi du test post hoc de
Dunn. Les variables ont été transformées dans des rapports, représentant les
pourcentages de variation en relation a la valeur du premier jour de la période de

stimulation. Phase 2

\Study Design Diagram \
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Le schéma2: Protocole pour SCP chronique a différentes fréquences. Entre chaque
paradigme, une période de « washout »de 4 semaines a été réalisée afin d’'éviter
le effet « carry on »
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Chirurgie Pour Les Electrodes Intraventriculaires Hypothalamiques

Anesthesie Et Soin Peroperatoire

Chaque animal a été anesthésié en utilisant la ketamine (Imalgene®, MERIAL Lyon France)
(dose de charge de 20 mg/kg, aprés dose de maintenance a 5 mg/kg) suivie de
'administration du diazépam (0.25 mg/kg IV, IM). L’anesthésie consistait dans une
combinaison de ketamine et de diazépam en plus de la lidocaine a 1% pour I'anesthésie
locale du cuir chevelu et des muscles. Le NaCl 0.9% a été infusé en intraveineux sans
interruption pendant l'opération, en maintenant une voie de accés vasculaire pour
'administration de médicaments et pour la prise de sang. L'intubation et la ventilation assiste

n'‘ont pas été nécessaires.

©
°
H; I
I: 17.10cm :I
7,91mm
Le schéma3 : Le porte électrode de Kopf employé pour exécuter Ia

ventriculographie et pour diriger un tube guide a travers le Foramen du Monro
permettant a I’électrode SCP de glisser dans le troisiéme ventricule

Procédure Stereotaxique

La chirurgie stereotaxique a été realisée en utilisant un cadre stereotaxique de Kopf® pour
les grands animaux avec un kit adaptateur pour le primate (David Kopf Instruments, USA).
Le cadre a été modifié en enlevant un morceau du bloc central pour visualiser mieux le

troisieme ventricule sur la ventriculographie (AP) antero postérieure. La procédure usuelle
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utilise un cadre attaché a une base fixe placée dans une salle spécialement congue pour
employer le tele-radiographie trans-opératoire. Les cliches de face et la fluoroscopie de
profil peuvent étre obtenus avec cette installation spéciale qui place la téte du singe loin
des sources de rayons de X, en diminuant la déformation. Nos méthodes chirurgicales sont
basées sur la ventriculographie et la visualisation chirurgicale directe des reperes internes
(commisure antérieure, commisure postérieure, hauteur du thalamus, troisieme ventricule,
infundibulum). Ces procédures sont congues principalement pour viser les structures
centrales dans le cerveau (comme les ganglions de la base). L'approche, employée
couramment chez I'homme ((Talairach et Szikla, 1980))et adapté pour les singes
(Percheron et autres, 1986) est utile pour viser les structures peri ventriculaires (comme
dans la matiere grise peri agueductale de I'numain). Apres la fixation de la téte des singes
dans le cadre des clichés de face et du profil ont été obtenus pour éviter la rotation dans le
plan sagittal ou coronal. La ventriculographie a été exécutée utilisant la solution de
contraste lopamiron (lopamiron® 200, iode 200mg/mL, Bracco, Italy ) et en introduisant un
trocar rigide ventriculaire (diamétre de 0.8 millimetre) a 2mm de la suture sagittale et a 70°

du plan horizontale, attache a un porte électrode de Kopf .

Tous les films ont été traités dans une salle noire a cote de la salle d'opération animale.
Apres avoir traverse 16 -20 millimetres de cortex nous trouvons les ventricules latéraux.
Chez les animaux en position assise, la pression du LCR est neutre. Comme il n'y a aucune
résistance a la introduction du cathéter, la meilleure maniere de trouver les ventricules est de
retirer le guide des que la profondeur appropriée est atteinte. Le niveau de solution saline a
I'intérieur de trocar baisse lorsque les ventricules latéraux sont traversés. Environ 2 ml de

lopamiron sont injectés rapidement apres 0.5 ml d'air introduit afin de enfin de repérer la
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position du trocar. La radiographie est obtenue immédiatement, car le produit est rapidement
évacué. Le foramen de Monro est alors visualisé dans les deux projections et un deuxieme
cathéter est dirigé sous la fluoroscopie directement dans le foramen. Une électrode de SCP
est alors avancée a lintérieur du deuxiéme cathéter et le guide est retiré a I'entrée du
troisieme ventricule. Sans guide, I'électrode de SCP glisse facilement a la partie antérieure
du troisiéme ventricule pres des corps de mamillaires. Les vues sagittales et coronales sont

obtenues et compares a la ventriculographie initiale.

MM2Z4

MM2A4

Le schémad4 : Projections de face et de profil de la ventriculographie du singe
montrant la position réelle d'électrode. Les parois ventriculaires sont proches des
contacts actifs des électrodes. La coordonnée postéro antérieure(y) était postérieur de 2.3
millimétres de CA. La coordonnée dorsoventral (z) a été déterminée par le plancher du
troisieme ventricule. La coordonnée latérale (x) était mesure par rapport a la ligne médiane du
troisieme ventricule [modifié de (Percheron, 1997)].

RESULTATS

Réponses Aigués A La Stimulation De VMH Par I'Intermediaire Des Electrodes

Intraventriculaires

Aprés la stimulation aigué de chaque animal, nous avons trouvé que la stimulation
monopolaire a 80 hertz, 2 volts, reduit la quantité du repas a 0.85 £ 0.04 de la valeur de
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base (soit 15% * 4% de réduction). Le temps de repas reste inchangé et la vitesse de
déplacement a une tendance a 'augmentation pendant la stimulation. Ces paramétres

ont été utilises ensuite pour le protocole chronique de stimulation.

Le schéma5 : Changement de la

.y 7 - P FOOD I TAEE AT DIFFERENT FREQUEN CIES I ACT TE VIMH
quantite de repas exprimée par des I¥ TRAVEN TRICULAR STOMULATION IN TASTIN GN ON HUNLAN
rapports (n/ligne de base) pour les FRIVATES (ALL MONEEF)
singes stimulé au niveau VMH par M I
voie intraventriculaire a des v 105 4 lel T
différentes fréquences, aprés 24 5 - I ofe oy 5
heures de jeline. (TEST de Friedman de g .
mesures répétées non paramétriques & g5 ] oF
ANOVA avec des comparaisons de post- 2 a4
test de Dunn). La valeur *p< 0.05 a été " | . . .
considéré significative). Ces  résultats ' 0 - 0 a0 30
obtenus pendant la stimulation aigue, ont o

été utilises pour la stimulation chronique.

Protocole De Stimulation Chronique
Poids, Composition Graisse Corporelle Et Mesures Indirectes De Graisse

Les animaux ont été pesés a des intervalles réguliers. A chaque fois, des anesthésiques
intraveineux ont été utilises pour la sédation (Imalgene®, laboratoire Merial Lyon France) a
la dose de charge de 10-30 mg/kg suivis par des doses de maintenance ajustes a la
réponse clinigue. Une bonne sédation est exigée pour un usage adéquat du la
Bioimpedance (BIA).

L'analyse d'impédance Bioélectrique (BIA) est une méthode utilisée généralement pour
estimer la composition du corps. La BIA détermine réellement I'impédance électrique, ou
I'opposition au passage d'un courant électrique a travers les tissus de corps. Les valeurs
obtenues peuvent alors étre utilisés pour calculer la teneur en eau du corps entier (TBWr).
Cette quantité total d’eau peut étre utilisée pour estimer la masse graisseuse de corps par
différence avec le poids corporel.
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Pour mesurer la BIA I'individu doit rester immobile au moins 15 minute pendant I'essai pour
assurer la reproductibilité de chaque test. Les poignets et les chevilles ainsi que les aires
occipitale et sacrée ont été rasées et ont servi aux placement d'électrodes de Xitron®. En
utilisant le logiciel Hydra pour le post traitement, I'analyse de la composition corporelle de
I'animal a été effectuée par multiples mesures de I'impédance. Les résultats ont été stockes
pour une l'analyse a posteriori. En méme temps, les épaisseurs cutanées iliaque et sous-
scapulaire, ainsi que la circonférence abdominale ont été mesurées. Les valeurs de base

des individus au début de I'étude sont décrites dans le tableau 1 :

Tableaul : CARACTERISTIQUES DES ANIMAUX

Singe Sexe taille (cm) Poids (kg) BMI Circonférence pli sous- pli sous- Fi
abdominale cutanée cutanée
souscapulaire iliaque
H4 M 37.00 7.20 52.59 45.00 6.92 16.55 340.82
H5 M 41.00 7.60 45.21 31.50 4.00 9.47 407.23
H7 M 39.00 7.00 46.02 36.50 5.36 9.87 410.95
H8 M 40.50 7.28 44.38 35.00 5.52 6.44 466.22
H10 M 41.00 6.10 36.29 32.00 4.60 3.55 376.36

Tableau 1 : Valeurs de base caractéristiques pour chacun des cinqg singes. La taille
des animaux a été mesurée entre la couronne (téte) et la base de la queue et utilisée pour
calculer l'index du poids corporel. La prise alimentaire a été obtenue comme la moyenne de
I” ingestion des sujets pendant la période « off-stimulation » avant le début des tests.
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Graphique 1: Poids, circonférence abdominale et épaisseur cutanée iliaque et subscapulaire
pendant le protocole chronique de stimulation aux différentes fréquences pendant la stimulation
chronique a des différentes fréquences chétaeaca fascicularis
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Graphique 1: Poids, circonférence abdominale et épaisseur cutanée iliaque et
subscapulaire pendant le protocole chronique de stimulation aux différentes
fréquences (* p< 0.05 ** essai pairé non paramétrique de p<0.01 Friedman avec
des comparaisons de post-test de Dunn). La /igne de base signifie les valeurs « off
stimulation » avant le début de I'étude, et WO signifie « washout » la période off-
stimulation aprés le paradigme II. Chaque période de stimulation a duré 8 semaines.
(stimulation monopolaire continue a 2 volts et a 0.6 ms durée d'impulsion) ; la premiére
courbe represente I'évolution du poids du singe sham au cours des mémes périodes de 8
semaines.
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La réduction moyenne globale du poids était de 8% a une fréquence de 80Hz (*
p<0.05). Le poids a légérement augmenté a une fréquence de 130 hertz (2% en
moyenne, écart-type 2.5) et a celle de 30 hertz (5% £3). Les plis sous-cutanés autour de
la taille sont le reflet de la réduction de poids; les épaisseurs cutanées iliagues ont
diminué de 0.69 +0.08 par rapport a la ligne de base et la circonférence abdominale a
montré une tendance a la diminution. Le contenu de graisse corporelle, mesuré avec
l'aide de le bioimpedancemeter, a montré une diminution significative de la teneur en

graisse a 0.817 + 0.1 pendant stimulation a (80Hz) (graphique 1)
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Changements De La Prise Alimentaire Et Du Glucose Pendant I.a Stimulation

Chronique

Graphique 1 Changements de la prise alimentaire et du glucose pendant la stimulation chronique du
Macaca fasdacularis

G/L
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On
a observé une augmentation significative de la prise alimentaire des sujets pendant la
période off apres la stimulation efficace a une fréquence de 80 Hz (+ 1.29 0.12, p<0.05).
Cet hyperphagie a duré pendant la période off, diminuant... brusquement au début de la
stimulation a HFS 130 hertz (0.90 + 0.10 a semaine 14) et restant autour de la ligne de
base pendant le reste des épreuves. Le singe « Sham» a eu une tendance
d'augmentation de la prise alimentaire vers la fin de la durée de I'étude.
Le glucose est représenté en g/l.Pendant la période de « washout », on a observe une
augmentation significative de la glucose plasmatique a 0.68 g/l (essai pairé... non
parameétrique de p<0.05 Friedman avec des comparaisons de post-test de Dunn). Cette

élévation en glucose plasmatique correspond a une période de hyperphagie aprés des
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stimulations efficaces a 80 hertz (graphique 9). Le glucose s’est maintenu dans des

valeurs normales vers basses pendant le reste de I'étude (valeurs de référence pour

macaca 0.66+ 0.15 G/L)

Changements hormonaux et des valeurs biologiques (laboratoire) pendant la

stimulation

Les changements des taux des hormones hypothalamiques ont été étudiés pendant les
tests. Des normes précises concernant des facteurs de libération hypothalamiques
spécifiques pour le genre de Macaca ne sont pas disponibles. Nous utilisons le dosage
des hormones pour évaluer si les changements, vu la teneur en graisse et les variations
du poids, pourraient refléter un déséquilibre hormonal. Les résultats ont pu étre
regroupés en : axe corticotrope (GH , cortisol) , axe thyréotrope (TSH, T3L et T3L) et
axe gonadotrope (prolactine, FSH, LH et testostérone). Les résultats sont présents

dans le tableau ci-dessous :

Hormones pendant la stimulation chronique a différentes fréquences dans V3

HORMONES|LIGNE DE BASE 80 HERTZ 130 HERTZ 30HZ
CORTISOL 600.75 +148,9 700.13 +146 510.00 +104,3 840.2 +326, 275 689 nmol/l
GH 6.52 +1,79 6.59 +3,74 6.72 +6,97 740 +79 3 60 uul/ml
T3L 488 +0,74 571 +0,72 554 +0,61 6,29* +0,43 3 6 pmol/l
T4L 10.23 +1,27 9.66 +0,97 10.40 +1,03 12.84 +3,10 12 22 pmol/l
FSH 243 +1,13 225 +1,14 254 +1,24 259 +1,96 13 115 muUl/ml
PROLACTINE 97.75 +708 223.88 +112 12313 +62,71 263.0 +341, 30.3 2121 uul/mi

Tableau 2 : Valeurs hormonales pendant la stimulation V3 intra ventriculaire chez le
singe Macaca fascicularis

En jaune sont marques sont les hormones qui ont des valeurs au dessus des valeurs de

référence publiées dans la littérature. p=0.056 (I'essai pairé non paramétrique de Friedman
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avec des comparaisons de post-test de Dunn) toutes les valeurs ont été obtenues en

employant les valeurs normales pour les humains.

Axe Corticotrope : Le cortisol a présenté une grande variation entre les essais sans
pour autant avoir une différence significative entre les valeurs de base et les valeurs a
la fin de chaque période de stimulation. Les niveaux moyens du cortisol étaient plus
élevés ...que les valeurs de référence a une fréquence de 30 Hz et de 80 Hz.
L'hormone de croissance (GH) a été dose a I'aide de I'hormone de recombinaison
humaine (hGH-RIACT de CISBIO) (tableau 2). Les différences trouvées n'étaient pas
statistiguement significatives.

Axe Thyreotrope : Thriiodothyroxine (T3 libre ) a eu une tendance d’augmentation a une
frequence de 30 Hz de stimulation (6.29 p= 0.056), valeur légerement supérieure aux
valeurs de référence. La T4 libre n'a présenté presque aucune variation entre les
différentes fréquences de stimulation. L'hormone stimulant de la thyroide (TSH) n’'a pas
pu étre analysée car la réaction croisée entre le TSH du test humain et celui de genre
Macaca est faible, ce qui n'est pas le cas avec les primates non humains de ordre
« supérieur » comme les chimpanzés ou les gorilles (genu Pan, Pongo et Gorilla de la

famille Hominidae).

Axe Gonadotrope : Les variations de I'hormone FSH (hormone follicule stimulant)

n'étaient pas statistiguement significatives. La prolactine a eu des valeurs trés variables,
avec des valeurs moyennes légérement supérieures a la référence a une stimulation a
80 et 30 Hz , mais sans valeurs statistiguement significatives. Les niveaux de la LH

(hormone lutéinisante) étaient non discernables chez deux singes. Il y avait une
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tendance a I'augmentation des niveaux de la testostérone pendant la stimulation. Les
deux hormones (LH et testostérone) semblent étre corrélées a l'augmentation de la
frequence (avec des valeurs en croissance a mesure que la fréquence de stimulation
augmente). Cependant, les difféerences observées ne sont pas statistiguement

significatives.
Changement des valeurs de la Leptine pendant la stimulation

On a observé une grande variabilité dans les niveaux de la leptine pendant I'expérience,
méme chez le sujet « sham » non stimulé. Les difféerences observées ne sont pas
statistiguement significatives (ANOVA pairé non paramétrique : test de Friedman). En
général le singe « sham » a des niveaux plus élevés de leptine, etant donné son BMI
supérieur, par rapport aux autres sujets et ces niveaux semblent augmenter pendant
I'expérience. A la fin de I'expérience et avec le stimulateur en « off » toute la population

étudie a présenté une augmentation des niveaux absolus de la leptine.

Résumé des analyses de laboratoire

Plusieurs conclusions intéressantes peuvent étre tirees de la stimulation V3 chronique
hypothalamique dans les primates non humains. En premier lieu, les électrolytes Na et
K, une indication indirecte d'adipsie.... et de la déshydratation, sont restées dans les
valeurs normales de référence tandis que les valeurs pour le chlorure ont été
augmentés pendant la stimulation a une fréequence de 80 hertz (p<0.05) mais les
valeurs absolues sont demeurées dans les normales pour les espéces de Macaca.

L'autre conclusion positive concernait la glycémie. Pendant la période de « off-

stimulation », apres la stimulation efficace qui produit la réduction de poids (80Hz), le
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glucose sérique a augmenté de facon significative (p<0.05) coincidant avec une
augmentation de la prise alimentaire (hyperphagie de rebond).

Le GH, le cortisol, la prolactine, et le FSH ont présenté une variabilité élevée sans
démontrer une différence statistiquement significative entre les fréequences. Les valeurs
de cortisol et de prolactine a 80Hz et a 30Hz ont été légerement augmentées.

Il y a une tendance d'augmentation des valeurs de T3 libre & LFS (low frequency
stimulation - stimulation a une basse fréquence) (30Hz) (p=0.056). Aucune différence
significative n'a été vue dans T4L.

La LH était indétectable chez deux singes .La testostérone était dans des valeurs
normales mais avec une tendance a l'augmentation avec la fréquence. La Leptine a
présenté une variabilité élevée sans pour autant suivre une tendance qui la rapproche
au comportement de la graisse ou du poids corporelle pendant I'étude. Cependant,
aprés la fin de I'expérience (en « off stimulation ») la leptine a eu une tendance a

augmenter ses niveaux dans tous les sujets

DISCUSSION

A notre connaissance, le présent étude est le seul a démontrer la diminution efficace du
poids total et de la masse de graisse dans les primates non humains et non obéses
aprés la SCP au niveau hypothalamique. C'est également la premiére fois que une
approche intraventriculaire a été utilisée pour moduler les structures hypothalamiques
chez les singes. Dans notre étude l'utilisation de cette nouvelle et moins traumatique
(invasive ?) approche au niveau des structures médianes centrales de cerveau est
essentielle. Elle est facile a exécuter et raisonnablement sure pour les sujets. (Suite au
caractere préclinique de ce travail), Les valeurs des différent hormones et électrolytes
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ont été mesurées dans le sérum sans montrer des modifications qui pourraient
entrainer des troubles meétaboliques ou endocrinologique. L’application dans des
protocoles cliniques humains bien cibles parait étre donc possible.

Des détails des différents résultats sont discutés ensuite.

Modulation du poids et de la teneur en graisse

La conclusion la plus importante de cette étude est que le poids et la masse graisseuse
peuvent étre modulés chez le primate non humain en utilisant des parametres
électriques proportionnés... de stimulation de la région médiale hypothalamique. Les
animaux ont présente une réduction de 8 a 10 % du poids corporel et de 18 % de la
teneur en graisse a la fin de la semaine 8, apres la stimulation a une fréquence de 80
Hz. Les autres fréquences utilisées n'ont produit aucun changement de poids significatif.
La réduction du poids a été accompagnée par une réduction de la masse graisseuse et
d’'une réduction des épaisseurs cutanées iliaques et une tendance dans la réduction de
la circonférence abdominale. La réduction du poids a été faite principalement sue la
teneur en graisse produite localement, c'est-a-dire a I'endroit ou la graisse
s'accumule,par ex I'abdomen ou la région iliaque. La graisse localisée dans la région
souscapulaire n'a pas changé pendant I'expérience.

La réduction de la graisse abdominale a été rapportée chez I'hnomme associée a une
réduction du risque des maladies associées a I'obésité comme [|'hypertension ou le
diabete (Larsson et autres, 1989 ; Pender et Pories, 2005). Plusieurs auteurs ont montré
la modulation dans le poids chez les rats aprés la lésion des structures latérales dans
I'nypothalamus ou la stimulation électrique dans I'hnypothalamus ventromedian (Anand et

Brobeck, 1951 ; Bielajew et autres, 1994 ; Sani et autres, 2007 ; Stenger et autres,
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1991) mais les résultats chez les singes sont limités et loin de étre définitifs (Lacan et
autres, 2008). Ainsi , plusieurs rapports contradictoires ont été publiés (Robinson et
Mishkin, 1968)

La contradiction des résultats dans différentes publications a une possible raison
méthodologique. Pour la plupart, ils emploient des parametres de stimulation
(frequence, tension etc.) venant de la stimulation de ganglions de la base chez les
patients présentant une maladie de Parkinson (Takaki et autres, 1992). Dans cet
contexte et compte tenu de la complexité de la région, il est peut-étre important d’étudier
les parameétres de la stimulation électrique de fagon plus exhaustive. Dans cette étude,
le protocole aigu de stimulation a choisi les parametres (fréquence, voltage etc.) selon la
réduction aigué de la prise alimentaire. Cette longue période de essai peut se révéler a
étre essentielle et comme une période clé pour obtenir la réduction de poids souhaitée.
Un autre élément different dans les études publiées par rapport au travail actuel est la
période d'observation. Les protocoles trés courts (Lacan et autres, 2008) ont produit
probablement la modulation dans la prise alimentaire , mais ils ont échouées a montrer
une perte effective du poids. L'évaluation a long terme est peut-étre nécessaire. Le
travail actuel a présenté une longue période de stimulation aigué et un protocole
« cross-over » avec des peériodes « on-stimulation » de 8 semaines et période « off-
stimulation » de 4 semaines. De plus longues périodes de stimulation sont nécessaires
dans plusieurs pathologies pour réaliser d’avantage de bénéfice comme par exemple
en la dystonie et les troubles obsessionnels (Krauss et autres, 2003 ; Vercueil et autres,
2001)

Un élément final qui distingue cette étude des autres et pourrait expliquer les

divergences, est 'optimisation de la position finale du contact active. L'optimisation du
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ciblage du VMH dans la littérature est faite en mettant le contact directement dans le
centre du noyau. Il est possible que l'intensité des champs électriques appliques prés
des aires hypothalamiques, antagonistes a I'action du VMH, puisse rendre difficile
I'évaluation des effets de cette stimulation électrigue du VMH sur le poids. Le probléme
de l'approche intra parenchymateuse consiste dans le fait que les aires de fonction
opposée au VMH, notamment le hypothalamus latéral, peuvent étre a leur tour
modulées par la stimulation électrique a [lintérieur du noyau. La stimulation
intraventriculaire, qui au premier regard est moins précise spatialement, présente
I'avantage de couvrir des aires hypothalamiques médiales de facon compléte (aires qui
sont plus susceptibles d’entrainer une de perte poids), évitant ainsi ['hypothalamus
latéral ,un secteur de fibres et de population neuronale éparse/clairseme (Beltt et

Keesey, 1975).

Modification de la prise alimentaire

La prise alimentaire était stable pendant les périodes de stimulation. Mais pendant le
période « off stimulation », il y a eu une augmentation de 25% de la prise alimentaire
(p<0.05), juste aprés la réduction efficace du poids et de la masse graisseuse.
L’hyperphagie a été accompagnée d'une augmentation du glucose et du poids. Dans la
littérature sur I'obésité on trouve habituellement le méme phénoméne : des périodes de
gain de poids et une hyperphagie aprées la perte efficace de poids (Hensrud et autres,
1994 ; Masuo et autres, 2005). Dans la premiéere partie du travail actuel, les tests aigus
ont démontré la diminution de la prise alimentaire, aux fréquences particulieres, chez les
singes soumis au jeun. Ces parametres qui ont induit la réduction en prise alimentaire

pendant des épreuves aigués, ont aussi produit la réduction du poids et de la graisse
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corporelle pendant le protocole chronique de stimulation de 8 semaines. Ces résultats
suggeérent qu'un effet comportemental sur la prise alimentaire a été obtenu pendent la
stimulation aigue. Mais, cet effet aigu diminue dans le temps et un effet métabolique de
nature catabolique s’installe en produisant finalement la dépense d'énergie nécessaire
pour provoquer la perte de poids et la réduction de la masse graisseuse

En conclusion, I'augmentation de la prise alimentaire et la reprise du poids pendant le
période « off stimulation » aprés la perte efficace de poids pose la question de la
période du temps pendant lagquelle la stimulation devrait continuer pour produire un BMI
stable et probablement établir un nouveau «set point» pour la masse graisseuse chez

les sujets.

Changements Hormonaux Et Du Ionogramme Sanguin

La stimulation électrique hypothalamique pourrait en théorie induire plusieurs troubles
endocrinologique secondaires a la sécrétion des facteurs de libération dans le systeme
porte hypothalamo-hypophysaire (Fink, 1976 ; Martin et Reichlin, 1970 ; Martin et
Reichlin, 1972). Certains de ces troubles pourraient expliquer la perte de poids et la
réduction de la masse de graisse pendant la stimulation efficace de I'hypothalamus
médial (par ex I'hyperthyroidisme) (Martin et Reichlin, 1970).

Plus important encore, certaines de ces conditions endocrinologiques pourraient
empécher ou retarder I'application clinique de notre étude. En plus des hormones, les
électrolytes et le glucose pourraient produire des effets secondaires indésirables,
comme la déshydratation (Szczepanska-Sadowska et autres, 1979) ou le diabéte et
pourraient mettre en risque I'état de santé de I'animal et potentiellement des patients

humains. Ainsi, pour évaluer la sireté de la procédure, il est nécessaire de tenir compte.
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non seulement de la tolérance chirurgicale ou des symptébmes comportementaux aigus,
mais également des résultats biologiques et hormonaux.

Par contre, la stimulation électrique efficace de V3 semble produire un état catabolique
associé a I’ hyper métabolisme, qui, a son tour, produit une augmentation des
dépenses énergétiques corporelles (Bielajew et autres, 1994).Les tests de laboratoire
aident donc & mettre en évidence certaines causes de la perte du poids.

Les électrolytes sont restés dans les valeurs normales de référence, et seulement la
valeur du chlore a augmentée de maniere significative toutefois restant dans les normes
pendant la stimulation a une fréquence de 80Hz. Dans la littérature, la Iésion
hypothalamique latérale et la stimulation électrique du VMH (Anand et Brobeck, 1951 ;
Bernardis et Bellinger, 1996) (Stenger et autres, 1991 ; Teitelbaum et Epstein, 1962)
chez les rongeurs ont été souvent accompagnés de l'adipsie et I' hypernatrémie pendant
la perte de poids. Dans notre cas, il était difficile de mesurer la prise d'eau pour
plusieurs raisons techniques donc les électrolytes nous ont fourni au moins une idée du
degré de la déshydratation produite. Le syndrome adipsie - hypernatremie n'était pas
présent dans notre étude, signifiant probablement que le centre de la soif n'a pas été
inclus dans la stimulation ou au moins les mécanismes compensatoires se sont
maintenus.

Le glucose est resté dans les valeurs normales de référence pendant toute
I'expérience. Néanmoins, une augmentation de la glycémie a été remarque juste apres
la réduction du poids corporel et de la teneur en graisse apres la stimulation efficace de
V3. Pendant la période de « off stimulation » , une augmentation de la prise alimentaire
et du poids ont été également notés. Mais cette augmentation des niveaux de glycemia,

s 'est maintenue dans la gamme de référence normale publiée pour le macaca. Ce
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résultat indique que des mécanismes d’ homéostasie pancréatique compensent en juste
proportion cette période anabolique.

Le GH, le cortisol, la prolactine, le FSH , ont présenté une grande variabilité. Les
valeurs de la LH et la testostérone semblent avoir une tendance a l'augmentation
pendant la stimulation (a toutes les fréquences) mais aucune différence significative n'a
été trouvée. Egalement, aucun changement n'a été trouvé dans l'axe Thyrotropine,
excepté le T3 libre, qui a une tendance d'augmentation quand la stimulation était a une
fréquence de 30 Hz (p=0.056). La stimulation électrique du VMH et probablement de
DMH ne produit pas la sécrétion directe des facteurs de libération hypothalamiques.
Cependant, il est bien connu que la stimulation du VMH est associée a un tonus
sympathique éléve, avec une augmentation du taux de change de la noradrénaline dans
la graisse brune du rongeur (Minokoshi et autres, 1986).Le tonus sympathique associé
a la dépense énergétique basique métabolique augmente peut conduire aux
changements des hormones de stress (Vissing et autres, 1989). Il se peut qu’ un
mécanisme compensateur ait été actif dans notre étude et cela aide a expliquer
pourquoi les hormones sont restées dans des niveaux de référence. Par ailleurs des
mesures additionnelles du taux métabolique devraient étre faites dans la chambre
métabolique pour mesurer la consommation d'O2, la chaleur, la fréquence cardiaque,le
taux respiratoire et d'autres variables reflétant I'état catabolique, ce qui nous permettra
de comprendre le mécanisme de la modulation du poids pendant la stimulation
hypothalamique.

L'approche V3 intraventriculaire par rapport a celle intra parenchymateuse, pourrait

s’avérer importante pour éviter des aires voisines antagonistes. Quelques secteurs

43



Thesis: DBS for obesity in the normal non human primate: N Torres
MD

proche de I'hypothalamus ventromedial peuvent effectivement sécréter des facteurs de
libération hypothalamiques mettant en risque I'état de santé général du sujet implanté.

Enfin les niveaux sériques de leptine étaient treés variables et n‘ont pas suivi un modéle
discernable, aucune différence statistique n'étant pas retrouvée. La leptine est un signal
d'adiposité proportionnel a la quantité de la teneur en graisse. Ainsi, les niveaux de
leptine devraient diminuer apres un traitement de perte de poids efficace. Cependant,
les auteurs ont constaté que pendant la perte de poids, la leptine ne suivait pas
exactement la teneur en graisse chez les sujets stimules. Les échantillons de leptine ont
été traités apres une longue période de stockage et ont été envoyés congelés en carbo-
glace. En conséquence, le stockage et le transport sont peut-étre en partie
responsables de la variabilité élevée de la leptine. Autre explication serait que la durée
de l'étude n'a pas été suffisamment longue pour entrainer des modifications
significatives dans les valeurs de la leptine. Aussi la diminution de la teneur de la
graisse n'était peut étre pas si importante pour produire une variation des niveaux de

leptine.

Evaluation des risques

La démonstration récente de l'efficacité de la SCP au niveau de I'hypothalamus
postérieur a ouvert plusieurs voies de recherches liées aux divers cibles
hypothalamiques (leone et autres, 2005). Malheureusement, quelques soucis de sdreté

sont a envisager (Pinsker et autres, 2008). Ces soucis nous ont incités a explorer des
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nouvelles approches pour atteindre d'une maniere moins invasive ces secteurs médiaux
du cerveau. Les électrodes intraventriculaires de la SCP ont, en théorie, un risque
comparable a l'insertion d'un cathéter ventriculaire dans le cas de I'hydrocéphalie.

Le premiere probléme de s(reté est le procédé chirurgical. Dans notre étude la chirurgie
a ete bien tolérée chez tous les animaux. L'un d'entre eux a une infection au niveau du
stimulateur implanté, ce qui nous a forcé a retirer la pile. Aprés le rétablissement
complet, cet animal a été utilise comme « sham ». Pendant les épreuves aigués, quand
les singes ont été enregistrés et analysés, aucun changement comportemental n'a pas
été remarque. Dans le protocole chronique, aucun effet secondaire évident n'a été vu.
De facon générale, les singes étaient sains, sans signes de douleur ou réduction du
mouvement. Quelgues mouvements stéréotypés ont été observés chez deux singes,
mais ils ont été liés aux longues périodes de captivité dans de petites cages. Quand les
animaux ont été mis dans de plus grandes cages et en paires, les mouvements
stéréotypés se sont arréteés.

Le facteur de limitation le plus important pour l'usage de cette stimulation dans un
environnement clinique pourrait étre, en théorie, la rupture de I'équilibre hormonal
provoquée directement par la stimulation et la sécrétion des hormones de libération
hypothalamiques produisant des états potentiellement dangereux (comme I'acromégalie
ou I'hyperthyroidisme). L'analyse soigneuse du sérum préléve nous a permis de
conclure que la stimulation n'induisaient pas le changement des éléments essentiels de
plasma qui pourraient devenir une menace pour les animaux. On a observeé les sujets
au cours dune longue période, presque trois ans du moment de la chirurgie a
I'euthanasie. Pendant toutes ces années, les singes ont bien toléré le matériel (IPG et

électrodes). La position de I'électrode n'a pas change pendant I'étude, maintenant
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I'nypothalamus stimulé, sans produire des Iésions aux parois du V3 ou a d'autres
secteurs.
En conclusion, ce procédé pourrait étre adapté aux sujets humains dans des essais

cliniques contrdlés sans risques majeurs évidents aux patients.

CONCLUSION

Les nouvelles indications pour la SCP commencent a se développer au fur et a mesure
que nos connaissances de l'anatomophysiologie de diverses régions du systéme
nerveux central augmentent . Ainsi, ses caracteristiques de réversibilité et de minime
agressivité tissulaire permettent aux chercheurs d'explorer de nouveaux secteurs dans
le SNC. Les résultats encourageants de la modulation de I'hypothalamus postérieur
dans les algies vasculaires de la face et les expériences récentes menées au niveau de
I'hnypothalamus ventromedian dans les modeles d'obésité chez les rongeurs ont incité a
une recherche plus approfondie dans ce secteur. Notre étude est le premier, a notre
connaissance, a mettre en évidence une réduction claire du poids et de la teneur en
graisse corporelle chez les primates non humains aprés la SCP. La réduction du poids
et de la graisse n'ont pas été suivies d'un déséquilibre hormonal, des électrolytes, ou
d’'autres effets indésirables qui pourraient empécher I'application chez le sujet atteint
d’'obésité morbide. Finalement, un élément central dans notre étude, cette nouvelle
approche, ou plutdét Ila renaissance et l'adaptation de I' ancienne stimulation intra
ventriculaire pour atteindre les structures médiales, s’est avéré a étre une technique
sans complications importantes, stable dans le temps et probablement plus efficace

dans la modulation des structures médiales hypothalamiques
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INTRODUCTION

CHAPTER1 OBESITY

Definition and Classification

Obesity is a complex disorder characterized by the accumulation of excess adipose
tissue. It is defined in terms of Body mass Index (BMI), calculated as weight (kg)/ height
(m) 2. Although BMI is a continuous variable, epidemiological studies based on risk of
comorbidities have permitted to classify groups of populations. A BMI less than 25 is
considered to be normal; 25-29.9 is overweight and greater or equal to 30. obese
(Korner and Aronne, 2003)The definition of morbid obese is less consensual, but in
general a 45 Kgs over ideal weight is used in the bariatric surgery literature(Brolin,
1992). The risk of diabetes, hypertension, and dyslipidaemia increases from a BMI of
about 27 Kg (Ezzati et al., 2005)

Obesity has reached epidemic proportions globally, with more than 1 billion adults
overweight - at least 300 million of them clinically obese. Obesity accounts for 2-6% of
total health care costs in several developed countries; some estimates put the figure as
high as 7%. The true costs are undoubtedly much greater as not all obesity-related
conditions are included in the calculations (Who, 2004)

Being overweight substantially increases the risk of morbidity from a number of
conditions, including type 2 diabetes mellitus (DM), hypertension, dyslipidemia, coronary
heart disease, congestive heart failure, stroke, gallbladder disease, hepatic steatosis,
osteoarthritis, sleep apnea, and endometrial, breast, prostate, and colon cancers.
Obesity is associated with diminished quality of life(Roe and Eickwort, 1976) high risk of

comorbidities (Must et al., 1999)and reduced life expectancy by five to 20 years
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(Fontaine et al., 2003). Obesity has been shown to decrease life expectancy by 7 years
at the age of 40 years(Peeters et al., 2003). The increase in risk of death with each unit
increase in BMI declines progressively with age but remains substantial until the age
group of 75 years and older(Stevens et al., 1998). What is not yet fully confirmed is
whether intentional weight loss in obese individuals prolongs life as well as reducing
risk. Preliminary evidence suggests a 30-40% reduction in diabetes related mortality
with moderate (less than 10 % of bodyweight loss)(Williamson et al., 1995). People with
newly diagnosed diabetes who lost 10 Kg in their first year of management were found
to have gained a further 4 years of life(Lean et al., 1990).

Abdominal fat (AF)distribution is also associated to comorbidities, reflected in the so
called metabolic syndrome (large waist circumference, abnormal concentrations of
triglycerides, HDL cholesterol, and fasting glucose and hypertension)(Alberti and Zimmet,
1998) Obese men and women with a large visceral adipose tissue depot are at a
particular high risk; even a preponderance of visceral AF might be related to even a
higher risk in lean subjects. The mechanism behind this association has been elucidated
to some extent. An increase visceral fat accumulation results in an increase in portal
free fatty acid(FFA) concentration (Larsson et al.,, 1992)and causes elevated hepatic
gluconeogenesis(Peiris et al.,, 1988) and very low density (VLDL) protein
secretion(Bostrom et al., 1988) as well as a decrease hepatic insulin clearance; the
resulting hyperinsulinemia and insulin resistance together with increased
gluconeogenesis as well as FFA-induced reduction of peripheral reuptake of glucose will
lead to a reduced glucose tolerance and in term to a non insulin dependent
diabetes(Randle et al., 1963). A reduced fibrinolitic activity caused by the

hyperinsulinemia(Vague et al., 1986) associated with high levels VLDL increases the
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chances of having myocardial infarction(Hamsten et al., 1985). Hyperinsulinemia have a
permissive role in the development of hypertension. It seems at least hypothetically
possible to link diabetes, hypertrigliceridemia, hypercholesterolemia, low HDL levels
reduced fribrinolisis and hypertension to elevated portal FFA concentration due to an
increased visceral adipose tissue depot.(Sjostrom, 1992)

For that motive is of the utmost importance to define not only BMI (equal to weight
divided by height) and indirect measures like subcutaneous fat skinfolds but to
determine body composition by compartment, in the study of the obesity patients and for

evaluating risks.

Obesity Physiology and Treatment

Treatment of obesity includes non pharmacological measures, pharmacological agents
and surgical therapy. Non pharmacological treatments include behavior therapy,
exercise, and calorie-restricted diets. The main issue remains to overcome barriers to
compliance with diet and physical activity. Lately, very strict diets such as the low
carbohydrate Atkins diet have become popular. They have been shown to have good
effects on blood pressure and glucose control. These effects are, however short lived
and not superior to standard approaches over the longer term. Dietary trials for weight
loss and maintenance have yet to show benefit in life expectancy.

The criteria of the US National Institute of Health or the European Union for the use of
pharmacotherapy include a BMI of at least 27 kg/m?2 with a persistent comorbidities or a
BMI of at least 30 kg/m2.Long term use drugs like sibutramine and orlistat have
demonstrated a discreet 4 - 6 % weight loss over a 6 month period in controlled trials,

depending upon the intensity of the diet, exercise, and behavioral program administered.
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Other agents (Noradrenergic-releasing agents) induce more weight loss than placebo in
short term studies, but this kind of agents are only approved for short period using.
Objections to pharmacotherapy linger, however. These concerns were fuelled by the
withdrawal of flenfluramine and mixture of ephedrine and caffeine, which has led to a
rigorous demand for evidence when obesity drugs are evaluated.

For the surgery, some patients with morbid obesity still remain poor candidates for
standard Roux en -Y-gastric bypass, in which a small gastric pouch prevents those
patients from eating large quantities at a single meal. In the longest follow up study of
patients after bypass, Pories et al reported 58%,55% and 49% loss of excess weight
(defined as the patient's weight minus the patients estimated "ideal" body weight) at 5,
10, and 14 years postoperatively. However, complications occur in 15-55 percent of
bariatric patients, and the peri-surgical mortality rate is about 1.5 percents even in
experience centers.(Pories and MacDonald, 1993) Safer procedures, as laparoscopic
adjustable banded gastroplasty are simpler but are not as effective. Large room for more
effective and safer procedure still exists (Korner and Aronne, 2003)

While obesity has long been consider a behavioral disorder, discovery of the hormone
leptin 1994 catalyzed the field of obesity research by demonstrating the existence of an
afferent humoral signal from adipose tissue to the central nervous system. Current
evidence suggests that once adipose tissue accumulates a system of overlapping
neuroendocrine hormones prevent it from diminishing, making volitional weight loss
difficult (Zhang et al., 1994).In consequence, modulation of brain circuits emerges as a
valuable clinical and research strategy in obesity. Advances in our knowledge of the
functional anatomy and electrophysiology of the relevant neural circuitry underlying this

condition may unveil novel targets and applications of neuromodulation in obesity.
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HYPOTHALAMUS PHYSIOLOGY

Figure 6 Plates from the seventh book of the first edition (1543) of the Fabrica by
Andreas Vesalius, showing what is believed to be the oldest anatomical images in
Western literature of the hypothalamic-pituitary unit. (Courtesy of the Library of the
Department of Human Anatomy of the University of Bologna, Italy, with permission (From
Toni R., Ancient views on the hypothalamic-pituitary-thyroid axis: an historical and
epistemological perspective, Pituitary 3: 83-95, 2000).
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Figure 7 Description of the functional role
exerted by the cerebral third ventricle, as
reported by Mondino de' Liuzzi in Anothomia.
(A) Original front page of Anothomia in a XIV century
edition; (B) Original text (in brackets) in medieval
Latin (from the 1316 A.D. manuscript kept at the
Societa Medica Chirurgica in Bologna, Italy); (C) a
portion of the Latin fragment shown in (B) containing
the most important concepts; (D) English translation
shown in (B). (From Toni R., Ancient views on the
hypothalamic-pituitary-thyroid axis: an historical and
epistemological perspective, Pituitary 3: 83-95,
2000).
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Central Nervous System Control of Food Intake and Weight

For most of us the content and amount of food that we eat varies considerably from one
meal to the next and from one day to the next. Our common experience, therefore,
seems at odds with the hypothesis that food intake is highly regulated. Emotions, social
factors, time of day, convenience and cost are but a few of the variables that are not
biologically regulated, but nonetheless affect meal-to-meal energy intake. As a
consequence, daily energy intake is variable both within and among individuals, and is
not well correlated with daily energy expenditure. However, despite short-term
mismatches in energy balance, most of us match cumulative energy intake to energy
expenditure with great precision when measured over a period that spans many meals.

This phenomenon reflects an active regulatory process, termed energy homeostasis that

promotes stability in the amount of body energy stored in the form of fat (Schwartz et al.,
2000) .For more than a century, increasingly sophisticated methods have been applied
to the problem of how the brain contributes to the physiology of energy homeostasis and
the pathogenesis of obesity. Although it is overly simplistic to reduce a behavior as
complex as feeding to a series of molecular interactions, discoveries over the past few
years have identified signalling molecules that affect food intake and that are critical for
normal energy homeostasis. The application of molecular genetics to mice has been
especially important in this effort. For example, several monogenic forms of human
obesity were identified by searching for mutations homologous to those causing obesity
in mice(Clement et al., 1998; Montague et al., 1997; Vaisse et al., 1998). Although such
monogenic obesity syndromes are rare (Barsh et al., 2000)the successful use of murine

models to study human obesity indicates that substantial homology exists across
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mammalian species in the functional organization of the weight- regulatory system. More
importantly, the identification of molecules that control food intake has generated new
targets to develop in the treatment of obesity and related disorders. Optimism that we
may soon enter an era of improved obesity treatment, therefore, seems justified. In the
last decade, the combination of genetic and physiological techniques has made possible
great progress in the identification of metabolic hormones and their relationship to key
neuronal system in the hypothalamus. The adipose hormone, leptin, is a crucial signal
that conveys metabolic information from the periphery to the hypothalamus, where
melanocortin system seems to have a fundamental role in the brain response to
peripheral metabolic status.

Because of the enormous toll on human health taken by obesity and related disorders,
an improved understanding of the control of food intake is an important priority.
However, the growing number of molecules implicated in energy homeostasis raises
nearly limitless possibilities for how body-weight regulation might occur(Schwartz et al.,

2000).

Energy Homeostasis Model

The increase of food intake following a fasting period is a good and simple example of
food intake regulation. The consequent recovery of lost body weight and the gradual
return to normal levels of energy intake is a evidence that a regulatory process that is
precise and robust are in action. To explain this phenomenon, Kennedy proposed in
1957 a model in which inhibitory signals coming from body fat stores act in the brain to
reduce food intake. When reductions in these fat stores are detected and the level of

the inhibitory signals decrease, food intake increase until energy deficit is corrected.
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This model, however, does not explain how energy intake is controlled during individual
meals(Kennedy, 1950). Twenty years later, Gibbs and Smith proposed that signals
generated during a meal (termed satiety factors), including peptides secreted from the
gastrointestinal tract, provide information to the brain that inhibits feeding and leads to

meal termination (Gibbs and Smith, 1986)

Adiposity and Peripheral Signals

Insulin was the first hormonal signal to be implicated in the control of body weight by the
central nervous system (CNS)(Woods et al., 1979). The subsequent demonstration that
profound hyperphagia and obesity of ob/ob mice results from autosomal recessive
mutation of the gene encoding leptin, a hormone secreted by adipocytes, provided
compelling evidence of a second adiposity signal(Zhang et al., 1994). Studies
demonstrated that both insulin and leptin fulfill criteria that should be met by any
candidate adiposity signal. Both hormones circulate at levels proportionate to body fat
content(Bagdade et al., 1967; Considine et al., 1996) and enter the CNS in proportion to
their plasma level(Baura et al., 1993; Schwartz et al., 1996a). Leptin receptor and Insulin
receptors are expressed by brain neurons involved in energy intake(Baskin et al.,
1999a; Baskin et al., 1988; Cheung et al., 1997) and the administration directly in the
brain of either peptide reduces food intake(Campfield et al., 1995; Weigle et al., 1995;
Woods et al., 1979), whereas deficit the one hormone does the opposite(Sipols et al.,
1995; Zhang et al., 1994). To date this are the two molecules that fulfill these criteria.

Different mechanism underlies the association of insulin and leptin with body fat content.
The effect of weight gain to reduce insulin sensitivity seems to explain how insulin but

not leptin, varies according to fat stores(Schwartz et al.,, 1997). As weight increase,
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insulin secretion must increase in both the basal state and in response to meals to
compensate for the increase in insulin resistance if normal glucose homeostasis is to be
maintained(Kahn et al., 1993; Polonsky et al., 1988). Failure to achieve this by
pancreatic B cells can cause hyperglycemia and probably contributes to types 2
diabetes with obesity. Increase insulin secretion as obesity progresses is thus
hypothesized to increase insulin delivery to the brain, where it helps to limit further
weight gain.

Mechanisms involved in leptin secretion are quite different. The rate of insulin-stimulated
glucose utilization in adipocytes is a key factor linking body fat mass to leptin
secretion(Mueller et al., 1998). It may involve glucose flux through the hexosamine
pathway(Wang et al., 1998). Because acute change in energy balance acute change
adipocytes glucose metabolism, leptin secretion can transiently become dissociated
from levels of total body fat.  For example, food deprivation acutely lowers plasma
leptin concentration much more rapidly and to a greater extent than would be expected
from the decrease of body fat content. This exaggerated early decline in leptin levels
helps to explain why compensatory responses are activated before energy stores are
substantially depleted

Several observations help to realize the role of leptin in central energy homeostasis.
Important evidence of this role is the relation between leptin resistance and obesity.
The hypothesis that leptin resistance can occur in association with obesity was first
suggested by the finding of elevated plasma level of leptin in obese humans(Considine
et al., 1996). This hypothesis suggests that obesity occur as a reduced action of leptin
in the brain and that affected individuals are unlikely to respond to pharmacological

agents. Leptin resistance is well documented in mice(Campfield et al., 1995) and
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rats(Chua et al., 1996) bearing leptin mutant receptors, but also mice that develops
obesity for other causes like genetic ablation of thermogenic brown adipose
tissue(Mantzoros et al., 1998) or with lack of melanocortin 4 receptors(Marsh et al.,
1999) or even mice feed with highly palatable high fat diet(Campfield et al., 1995).
Mechanisms implicated in leptin resistance are varied. The decrease ability of circulating
leptin to enter brain interstitial fluid, where it can bind to neuronal leptin receptor is one
of mechanism studied. Impaired transport through the blood-brain barrier might be
involved. Like insulin, leptin uptake into the brain is facilitated by leptin receptors
expressed by endothelial cells(Bjorbaek et al.,, 1998b) in the blood brain barrier.
Whether dysfunction in this barrier can cause obesity remains to be demonstrated, but
the finding that leptin in the cerebrospinal fluid in obese patients is low in comparison
with plasma levels is consistent with this theory(Caro et al.,, 1996). Reduced leptin-
receptor signal transduction is another potential cause of leptin resistance. Leptin
receptor activation can induce expression of a protein that inhibits further leptin signal
transduction, called 'suppressor of cytokine signalling - 3' (SOC-3)(Bjorbaek et al.,
1998a). This is an area of active study and SOC-3 role remain to be determined. Finally,
a failure of one or more neuronal system in the circuits activated by the leptin signal will
manifest as a leptin resistance. The neuronal effectors pathways key role in energy
balance is crucial to understand central mechanism of food intake and weight control

(Figure 8)
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Model of Central Nervous System Regulation of Food Intake

Leptin and insulin act on central effectors
pathways in the hypothalamus repressing brain
anabolic neural circuits that stimulate eating and
inhibit energy expenditure, while simult 1
activating catabolic circuits that inhibits food

Leptin and insulin circulate in the
blood in concentration proportional
to body fat content and energy
balance

Low leptin and insulin levels in the brain during
weight loss increase activity in anabolic
pathways, stimulating eating and supr ing
energy expenditure and decrease activity in
catabolic pathways

intake and increase energy expenditure m

Ingestion of food generates neural and hormonal satiety !
signals to the hindbrain. Insulin/leptin sensitive central
effectors pathways interact with hindbrain satiety circuits
to regulate the meal size, thereby modulating food intake
and energy balance.

Figure 8: Model of Central Nervous System regulation of Food intake:

Neuropeptide Effectors of Adiposity Signals:

Several neuropeptides hypothalamic pathways has been signaled as candidate
mediators between adiposity signals leptin and insulin in the CNS.

Prominent among anabolic effectors pathway is neuropeptide Y. NPY research was
initiated in late 1984 by Clark et al in which the first evidence of NPY induced feeding
was presented (Clark et al., 1985; Levine et al, 2004). When applied
intracerebroventricularly, NPY induce a robust feeding response(Clark et al., 1985),
which are not been paralleled by the administration of any other substance, like melanin-

concentrated hormone(Qu et al., 1996), orexin/hypocretin(Sakurai et al., 1998Db), lateral
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hypothalamic orexigenic peptides. Consequently, continuous or repeated central
administration of NPY leads readily to obesity. NPY meets the criteria of an anabolic
signalling molecule: gene expression and secretion of NPY are increased when body fat
store are depleted (Schwartz et al., 2000)Leptin and NPY stories seem to be linked.
NPY producing neurons in the arcuate nucleus respond to the levels of leptin(Mercer et
al., 1996). In conjunction with this, it was also found that obesity in leptin deficient mice
is reduced by elimination of NPY(Billington et al., 1991; Zarjevski et al., 1993). Research
in NPY continues and is now focus in a particular subset of neurons in the arcuate
nucleus. These neurons also produce Aglouti related peptide (AGRP)(Hahn et al.,
1998), which has been shown to be essential in the function of the melanocortin system,

the key player in the hypothalamic feeding regulation (Horvath and Diano, 2004)

Melanocortins Suppress Food Intake

Candidate catabolic effectors signalling molecules have an opposite set of
characteristics. Neuronal synthesis of these molecules augmented in response to
increased adiposity signal in the brain. Among the peptides involved, melanocortin
system(Cone, 1999) stands out as being remarkable both for its complexity and for its
importance to energy homeostasis.

Melanocortins are peptides that are cleaved from the pro opiomelanocortin (POMC)
molecules and that exert its effects by binding to the members of a family of the
Melanocortins receptors(Cone, 1999). A role for melanocortin signalling in the control of
energy homeostasis first emerged after the cloning of the MC3- and MC4-receptor
genes and the demonstration that they are expressed primarily in the brain(Mountjoy et

al., 1994). This discovery was followed by evidence that a synthetic agonist of these
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receptors suppresses food intake, whereas a synthetic antagonist has the opposite
effect(Fan et al., 1997)55. The report that mice lacking the MC4 receptor (owing to gene
targeting) are hyperphagic and very obese(Huszar et al., 1997)56 indicates that tonic
signalling by MC4 receptors limits food intake and body fat mass. Mice heterozygous for
the deleted MC4 allele also become obese, although less so than homozygous
knockouts(Huszar et al., 1997)56. Lack of a full complement of central MC4 receptors,
therefore, predisposes to hyperphagia and pathological weight gain. This finding has
since been extended to humans with MC4-receptor mutations.

Further evidence for the importance of melanocortin signalling came from studies of
agouti mice and the cloning agouti gene identified protein (agouti) that acts as an
antagonist of Melanocortin 1(MC-1) receptor normally expressed in hair follicles. By
reducing MC 1 signalling, increased cutaneous agouti lightens the color of the coat of
the animal(Miller et al., 1993). Agouti mice express agouti protein in tissues throughout
the body and consequently develop obesity and a yellow coat color. The obesity is due
to ectopic agouti production within the brain, where it antagonizes MC 4 receptors(Cone,
1999). Further studies have indicated the important place of antagonist of CNS
melanocortin receptors (MC 3, MC 4) as a body weight regulation. The cloning of AGRP
gene(Shutter et al., 1997) identified a peptide AGRP, with homology to agouti that is an
antagonist of MC 3 and MC 4. Consistent with the role of anabolic signal, AGRP
intraventricular injection causes hyperphagia and the increase in food intake is
sustained after a week from a single injection(Hagan et al., 2001). Their action as an
antagonist of the melanocortin system and the duration of action are a fascinating new

area for further investigation.
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The Hypothalamus Affects Feeding

The role of hypothalamic regions were first revealed in lesion studies in which
destruction of the hypothalamic ventromedial, paraventricular and dorsomedial nuclei
induced hyperphagia( an abnormal increase in appetite and food intake). By contrast,
Lateral hypothalamic lesion induced hypophagia (reduced food intake) which could lead
to animals dead. These lesion studies were strikingly precise in signalling which
hypothalamic areas were implicated in promotion or suppression of feeding. In several
studies, physiological observation of obese animal strains also supported the idea that
humoral signals, arising from the periphery might inform the brain sites about overall
energy needs. These ideas echoed some Sherrington's suggestions about feeding
made some years before that feeding might be regulated the same way respiration,
peripheral signal affect the blood changing their composition and thereby influencing
the brain.

The observation that some mouse or rat mutants, including db/db (lepr/lepr) and ob/ob
(lep/lep) mice and fa/fa (lepr/lepr) rats, become strikingly obese led to the crucial
discovery of the adipose hormone, leptin, as a humoral signal that can centrally regulate
metabolism(EImquist et al., 1999; Zhang et al., 1994).The primary genetic defect of this
animal is abolished leptin production or impaired leptin receptors. In humans, obesity
cases are reported when either lack of circulating leptin or mutations in leptin receptors
are found .Leptin is liberated by adipose tissue and acts as humoral sign that carries
information about fat stores. Leptin receptors could be found in the arcuate nucleus and
also in the ventromedial hypothalamus, which are implicated as a primary target as a

feedback signalling leptin. These original findings and the intriguing nature of leptin
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signalling raised expectation of a practical medical approach, but time as proved
otherwise.

There are others peripheral and metabolic signals that seem to be important for central
metabolic weight and feeding regulation like glucose, insulin, and cholecystokinin,
glucagons like peptide, ghrelin, and pancreatic polypeptide. Ghrelin is produce by the
stomach and his discovery (Kojima et al., 1999)revived the century old theory that
stomach-drive mechanism can regulated food intake. It is a peptide hormone which was
discovered in 1999 and is an endogenous ligand for the growth hormone (GH)
secretagoge receptor (GHS-R) (Kamegai et al., 1999) Ghrelin stimulates GH secretion in
healthy humans in a dose dependent manner and is a strong orexigenic and adipogenic
molecule in mammals. Inhibiting ghrelin-receptor expression in the hypothalamus of
transgenic rats decrease GH secretion, food intake, and body fat mass (Ueno et al.,
2005)suggesting that in the hypothalamus, the ghrelin receptor is important in regulating
GH secretion and energy homeostasis. Ghrelin induces weight gain and adiposity.
Intracerebroventricular (ICV) Injection of ghrelin to free feeding rats during both light and
dark phase increases food intake in a dose dependent manner. Its orexigenic activity is
independent of the GH signalling pathway. IV Administration in human increase energy
intake from a buffet lunch by 28 3.9% and also increase the visual analogue score for
appetite. These data indicate that ghrelin is a peripheral orexigenic and adipogenic
peptide. Ghrelin-producing neurons are present in the arcuate nucleus of the
hypothalamus, which is also a target for leptin. Several studies indicate that ghrelin is an
upstream regulator of the orexigenic peptides NPY and AgRP and that it antagonizes

leptin's effects in NPY/AgRP expressing neurons, resulting in an increase in feeding and
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body weight. By activating the NPY/Y1 receptor-signalling pathway, ghrelin acts as a
natural antagonist to leptin

Nevertheless, none of them has a role as important as the leptin in central metabolism.
In addition, none of them including leptin has formed the basis of the possible
therapeutics for weight control (Horvath and Diano, 2004)

Arguably, the most successful prescription medication for weight loss, so far, has been a
combination therapy that targets serotonin and noradrenalin re-uptake. Most recently,
the cannabinoid-1 receptor has a viable target for the development of a weight-loss
drug. Although there is evidence that both of these therapies affect components of the
melanocortin system, it is also logical that some of the appetite-reducing effects of these
approaches lie outside the hypothalamic feeding circuits, for example in the cortex or
reward circuitry. However, the leptin experience has provided an invaluable new
approach to the understanding of central weight regulation by identifying the CNS, and
neuronal communication in particular, as the site where the ‘Holy Grail’ of metabolism
should be sought .Most recently, the cannabinoid-1 receptor has emerged as a viable
target for the development of a weight-loss drug (Cota et al., 2003; Di Marzo et al.,
2001; Fernandez and Allison, 2004).Although there is evidence that both of these
therapies affect components of the melanocortin system(Heisler et al., 2002), it is also
logical that some of the appetite-reducing effects of these approaches lie outside the
hypothalamic feeding circuits, for example in the cortex or reward circuitry. However, the
leptin experience has provided an invaluable new approach to the understanding of
central weight regulation by identifying the CNS and neuronal communication in
particular, as the site where the control of metabolism should be sought(Horvath and

Diano, 2004)
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Hypothalamic Signalling Pathways

The idea that the CNS and the hypothalamus in particular, are key in metabolism
regulation was reinforced by the discovery of leptin. Before that time, research focused
on various neuropeptides and classical neurotransmitters, including GABA (g-
aminobutyric acid) glutamate, neuropeptide Y (NPY), galanin, serotonin and
noradrenalin (Sommer et al., 1967), in relation to the regulation of feeding and energy
expenditure. Interest in these neuromodulators stemmed, at least in part, from their
presence in the hypothalamus. GABA, glutamate, NPY and galanin were found to be
predominantly orexigenic (pro-feeding) when injected into the third ventricle or various
hypothalamic regions, whereas serotonin and noradrenalin seemed to be anorexigenic
(anti-feeding). However, some of these substances could trigger the opposite
response, depending on the site of injection and dose.

A more recent breakthrough was the revelation that the melanocortin central system is a
key mediator of energy balance(Fan et al., 1997; Huszar et al., 1997) and leptin-induce
satiety(Seeley et al., 1997). In the arcuate nucleus, are of particular interest the counter
balance relation between two sets of neurons- those that contain NPY/AGRP and those
that contain Proopiomelanocortin (POMC), as the main regulator of appetite, satiety and
energy expenditure regulation (Zigman and Elmquist, 2003). The POMC cells, which
produce a-melanocyte stimulating hormone (a-MSH) maintain an anorexigenic tone,
whereas NYP/ARGP neurons maintain an orexigenic tone in which AGRP antagonize a-
MSH on the melanocortin 4 receptor(Ollmann et al., 1997). Melanocortin system
represents the main center that gathers information for the integration of the peripheral

signals in the hypothalamus for the final energy expenditure regulation. Increase
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attention has been paid, therefore, to numerous hypothalamic peptides and the

integration of their signalling in the melanocortin system(Horvath and Diano, 2004)

Transduction of Adiposity Signals into Neuronal Response

Situated adjacent to the floor of the third ventricle, the arcuate nucleus is an elongate
(‘arc-like”) collection of neuronal cell bodies occupying approximately one-half of the
length of the hypothalamus. NPY and AGRP are co-localized in arcuate nucleus
neurons(Ollmann et al., 1997; van den Pol, 2003) demonstrating that a single neuronal
cell type can contain multiple anabolic effectors molecules. The subsequent finding that
POMC and CART are co-localized in a distinct, but adjacent, subset of arcuate nucleus
neurons(Matsumoto and Arai, 1981)indicates that circuits originating in this brain area
have highly specialized roles in energy homeostasis (Fig. 4).

The hypothesis that the arcuate nucleus transduces information related to signalling by
leptin into a neuronal response is supported by the anorexic response to local
microinjection of leptin into this area(Matsumoto and Arai, 1979), and the inability of ICV
leptin to reduce food intake after the arcuate nucleus has been destroyed (Garcia-
Segura et al.,, 1987; Naftolin et al., 1996) A majority of both NPY/AGRP and
POMC/CART neurons have been found to co-express leptin receptors(Halaas et al.,
1995; Zhang et al., 1994) and both types of neurons are regulated by leptin (as judged
by changes in Neuropeptide gene expression), but in an opposing manner. Thus,
NPY/AGRP neurons are inhibited by leptin, and consequently are activated in conditions
where leptin levels are low (Ollmann et al., 1997) (van den Pol, 2003). Although less
well studied, a deficiency of insulin also seems to activate these neurons (Leibel et al.,

1997; Stanley and Leibowitz, 1984) and insulin receptors are highly concentrated in the
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arcuate nucleus. Conversely, conditions characterized by reduced insulin or leptin inhibit
POMC(Horvath et al., 1997; Horvath et al., 1992) and CART expression in the arcuate
nucleus, and administration of these hormones can prevent or attenuate these
neuropeptides responses. Moreover, involuntary overfeeding in rats, which potently
inhibits spontaneous food intake once body weight has increased by more than 5%,
elicits a threefold increase of POMC messenger RNA levels in the arcuate
nucleus(Diano et al., 1998). The demonstration that anorexia induced either by
leptin(Cowley et al., 2001)73 or by involuntary overfeeding(Diano et al., 1998)72 is
reversed by central administration of a melanocortin-receptor antagonist (at a low dose
that has no effect on food intake in control animals) indicates that melanocortin
signalling is a mediator of the anorexic response induced by increased adiposity
signalling to the brain. Taken together, these findings indicate that the arcuate nucleus

is a major site for transducing afferent input from circulating leptin and insulin into a
neuronal response.

Implicit in this hypothesis is the suggestion that brain areas innervated by arcuate
nucleus neurons are sites where second order neurons involved in energy homeostasis
are located. But the identification of such downstream neurons is just beginning, and
energy homeostasis probably involves integrated and redundant pathways, rather than a

discrete set of neurons in series to one another.
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Integrative Model of Hypothalamic Peptidergic System Involved In Regulating

Energy Balance and Food Intake

Models for understanding how arcuate nucleus neurons ultimately affects food intake
provides a useful framework for study, but the identification of such downstream
neurons is just beginning.

Hypothalamic areas including the Paraventricular nucleus (PVN), zona incerta,
perifornical area (PFA) and LHA are richly supplied by axons from arcuate nucleus
NPY/AGRP and POMC/CART neurons(Elmquist et al., 1999; Elmquist et al., 1998).
Early stimulation and lesioning studies have demonstrated some of the features of these
areas. PVN stimulation inhibits food intake, whereas the reverse is true for stimulation of
LHA and adjacent PFA(Bray et al., 1989). Conversely, bilateral PVN Lesioning causes
obesity and hyperphagia, whereas bilateral LHA lesioning (Stellar, 1954)produces
anorexia and weight loss (Bray et al., 1989; Stanley et al., 1993; Stellar, 1954)). These
observations indicate that anorexigenic and orexigenic molecules might be synthesized
in the PVN and LHA respectively.

Several neuropeptides synthesized in PVN neurons reduce food intake and body weight
when administered centrally. These include corticotrophin release hormone (CRH),
which causes anorexia and also activates the sympathetic nervous system in addition to
his role as a major regulator of the hypothalamic-pituitary-adrenal axis(Dallman et al.,
1993); Thyrotropin-releasing hormone (TRH), which reduce food intake and stimulates
the thyroid axis(Kow and Pfaff, 1991) and oxitocin which also reduce food intake in
addition to regulating uterine function(Verbalis et al., 1995). All of this is consistent with

the predictions that PVN neurons act reducing food intake and body weight.
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The hypothesis that second order neurons involved in anabolic signalling reside within
the LHA/PFA is sustained by the presence of several orexigenic neuropeptides in the
area. Melanin Concentrating Hormone (MCH) is an orexigenic peptide synthesize in the
area which is elevated by energy restriction and leptin deficiency(Qu et al., 1996). Other
evidence of the orexigenic effect comes from the MCH knockout mice which have
reduce food intake and are excessively lean(Shimada et al., 1998). Two additional
peptides are expressed exclusively in the LHA, zona incerta and PFA. Termed
hypocretins 1 and 2(de Lecea and Sutcliffe, 1999) or orexins A and B (Hagan et al.,
1999; Sakurai et al., 1998a) these peptides increase food intake and cause generalized
behavioral arousal when administer centrally. Reduced hypocretin/orexins signalling
may contribute to sleep additionally to the control of food intake, as seen in the
narcolepsy produced by deletion of the orexins/hypocretin gene(Chemelli et al., 1999).
Integration of MCH and hypocretin/orexins neurons into a model of hypothalamic
pathways controlling energy homeostasis predicts that they should be inhibited by
melanocortin or CART input, and stimulated by NPY signalling, from neurons of the

arcuate nucleus (Lopez et al., 2007; Schwartz et al., 2000)

Satiety Signals Control Meals Size

It is evident that either the amount of food consumed during individuals meals, the
frequency of the meals or both must be regulated if energy balance has to be achieved.
The major determinant of meal size is the onset of the satiety signals, a biological state
induced by neurohumoral stimuli generated during food ingestion that leads to meal
termination. In contrast to the timing of meal initiation which can be influence by a

variety of factors (for example, emotional factors, time of the day, availability and
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palatability of foods, threats from the environment), meal termination tend to be a more
biological controlled process(Strubbe and Woods, 2004). Several findings indicate that
control of meal size is a component of the feeding response induced by changes of body
fuel store or adiposity signals. The hyperphagic response to central administration of
NPY, for example arises predominantly from the consumption of larger meals(Leibowitz
and Alexander, 1991). Conversely, leptin treated animals consume the same number

of meals but smaller size (Flynn et al., 1998) . One way that this could be achieved is
modulating satiety signals in brain areas that process information.

Satiety information, in contrast with adiposity signals processed in the hypothalamus, is
largely conveyed to the hindbrain by means of afferent fibers of the vagus nerve(Ritter et
al., 1994) and by afferents passing into the spinal cord from the upper intestinal tract as
well as taste information from the oral cavity(Travers et al., 1987). Satiety induced signal
that reach the Nucleus of solitary tract(NTS) are initiated by mechanical or chemical
stimulation of the stomach and small intestine during food ingestion, neural input related
to energy metabolism in the liver(Friedman et al., 1999), and neurohumoral signals
coming from secretory cells lining in the intestinal lumen cholecystokinin(CCK) (Moran
and Schwartz, 1994)

In resume, Leptin and insulin are proposed to stimulate a catabolic pathway
(POMC/CART neurons ) and inhibit an anabolic pathway (NPY/AGRP neurons) that
originates in the arcuate nucleus (ARC). These pathways project to the PVN and
LHA/PFA, where they make connection with central autonomic pathways that project to
hindbrain autonomic centers that process satiety signals. Afferent input related to satiety
from the liver, gastrointestinal tract, stomach and from peptides such CCK are

transmitted through the vagus nerve and sympathetic fibers to the nucleus of the solitary
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tract (NTS), where they are integrated with descending hypothalamic input. Net neuronal
output from the NTS and other hindbrain regions leads to the termination of individual
meals and is potentiated by catabolic projection from the PVN and inhibited by input
from the LHA/PFA. Reduced input from adiposity signals (for example, during diet
induced weight loss), therefore, increase meal size by reducing brainstem responses to
satiety signals Ascending projection from the hindbrain to forebrain that may also

contribute to adaptive changes in food intake (Schwartz et al., 2000)(
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Figure 9: Model for hypothalamic control of energy balance and food intake
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SUMMARY:

Three effects of eating limit the size of an ongoing meal:

Gastric distention

Postgastric  detection of calories (via satiety signals such as
Cholecystokinin(CCK)

Increased plasma osmolality.

These signals reach the brain through visceral afferents fibers (especially those from the
vagus nerve) and the circulatory system. Meal size increases when these inhibitory
signals are experimentally blocked. When the satiety signals disappear, hunger
emerges and stimulates initiation of another meal.

Food intake is also normally linked closely with body weight. In experimental animals
periods of starvation or forced feeding, are followed by compensatory changes in eating
patterns until body mass is reestablished. Body weight and food intake can be mediated
indirectly by altered gastrointestinal motility and absorption as well as by the centrally
active hormones, leptin and insulin.

Although the details of the central control of food intake are incompletely understood,
many neuropeptides have been implicated, either anabolic or catabolic. The amount in
body fat is signaled to the brain by the leptin and insulin. Receptors for both peptides are
located (among other sites) in the hypothalamic arcuate nucleus on two distinct groups
of neurons. The first group synthesizes the neuropeptides a- melanocyte stimulating
hormone (a-MSH) and cocaine amphetamine related transcript (CART) which produces

a very powerful catabolic signal that increase energy expenditure and lose weight. The
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other type of arcuate neurons influenced by adiposity signals synthesizes NPY and
aglouti related protein (AgRP), both potent anabolic compounds which administration
into the third ventricle results in hyperphagia, reduced energy expenditure and weight
gain. The arcuate nucleus can be considered to be the brain’s sense organ that detects
body adiposity by monitoring the levels of leptin and insulin. In turn, axons from these
two groups of arcuate neurons innervate many other hypothalamic nuclei as they
modulate aspects of caloric homeostasis.

The central nervous system exerts control over eating at many levels. The spinal cord
and brain stem influence all aspects of caloric homeostasis via the autonomic nervous
system. The hypothalamus and limbic forebrain receive signals about ingested food and
body adiposity and integrate them with information about memory of the food, taste,
competition with other desires, environmental factors, and previous meals. Thus the
central control involves many areas of the CNS in the collective maintenance of caloric

homeostasis, the details of which remain to be fully understood.
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CHAPTERIII ANATOMY OF THE HYPOTHALAMICS NUCLEI

The brain regulates many aspects of energy homeostasis, along with the brain stem and
the spinal cord, as we have seen previously. This process is highly complex and
involves several brain regions, but most interest has focused on the hypothalamus. The
human hypothalamus comprises only 4 cm3 of neural tissue, or about 0.3% of the
normal adult brain volume. Nevertheless it is critically involved in the coordination and
integration of autonomic, endocrine, and behavioral responses necessary to
maintenance of the homeostasis (Nieuwenhuys et al., 2008).

Our knowledge in the past years has increased dramatically and it has become evident
that various neural circuits operate to different degrees and probably serve specific

functions under particular conditions of altered energy balance.

Gross Anatomy

The hypothalamus lies directly above the pituitary gland (Figure 10) and occupies
approximately 2 per cent of the brain volume. It is composed of a number of cell groups
as well as fibre tracts that are symmetric about the third ventricle. In sagittal sections,
the hypothalamus extends from the optic chiasm, lamina terminalis and anterior
commisure rostrally to the cerebral peduncle and interpeduncular fossa caudally. The
cavity of the third ventricle lies in the midline. In coronal section, each of the two walls of
the hypothalamus can be divided into four surfaces: a lateral surface contiguous with the
thalamus, subthalamus and internal capsule, the latter dividing the hypothalamus from
the corpus striatum; a medial surface extending to the wall of the third ventricle, covered
by ependymal cells; a superior surface corresponding to the hypothalamic sulcus that

separates the hypothalamus from the central mass of the thalamus; and an inferior
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surface that is in continuity with the floor of the third ventricle. The external surface of
the hypothalamic floor gives rise to a median protuberance called the tuber cinereum (or
gray swelling due to the pale bluish color of the blood vessels seen in the post-mortem
human brain), whose central part extends anteriorly and downward into a funnel-like
process, the infundibulum or median eminence. The infundibulum is in direct continuity
with the infudibular stem of the posterior pituitary gland, and together with the pars
tuberalis of the anterior pituitary, forms the pituitary stalk. Two additional symmetric
eminences, the lateral eminences, corresponding to the most lateral portion of the
hypothalamic wall and the post infundibular eminence, as well as the symmetric

mammillary bodies, complete the macroscopic morphology of the hypothalamic floor

(Lechan and Toni, 2000)Figure 10

Figure 10: Midsaggital section
of the human brain (from the
XIX century wax collection of
human brains at the Museum of
the Department of Human
Anatomy of the University of
Bologna, Italy). The hypothalamus (asterisk) lies above the pituitary gland (cross) (Lechan
R.M. and Toni R, 2000)
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Figure 11 Magnified view of an immersed fixed human brain in Midsaggital
orientation. The third ventricle makes up the core of the hypothalamus and extends into
the pituitary (or infundibular) stalk, creating the infundibular recess. Many of the major cell
groups are located near the midline. These include (from rostral to caudal) the preoptic
nucleus (Pop), paraventricular nucleus (Pvn), dorsomedial nucleus (Dm), ventromedial
nucleus (Vm), arcuate (or infundibular) nucleus (If), posterior hypothalamic nucleus (Po),
and medial mammillary nucleus (mm). Ac = anterior commissure, fx = fornix, Ilt= lamina
terminalis, ot = optic tract and chiasm, Lv = lateral ventricle, MB = midbrain, PN = pons, Sr =
supraoptic recess, T = thalamus. (Lechan R.M. and Toni R, 2000)

g

Figure 12. Coronal section of an immersed fixed human brain at the level of the
posterior hypothalamus The third ventricle (III) lies in the midline directly above the
mammillary bodies (m). The subthalamus (sb), zona incerta (zi) and thalamus (T) are
located at the superior border of the hypothalamus, whereas the corpus striatum (ST) is
located laterally. FL = fasciculus lenticularis, FT = fasciculus thalamicus, ic = internal
capsule, SN = substantia nigra, H1 = field H1 of Forel; H2 = field H2 of Forel. (Toni et al.,
2004)
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Microscopic Anatomy

Boundaries and Organization of Neuronal Cell Groups

Using phylogenetic and cytoarchitectonic(Swanson, 1987)criteria, a number of nuclear
groups and fiber tracts are recognized in the vertebrate hypothalamus. These are
organized into three major regions including the lateral, medial and periventricular

hypothalamus , each having distinct morphological and functional features. In the
human hypothalamus, the anterior column of the fornix that extends rostro-caudally
through the substance of the hypothalamus to end in the mammillary bodies, and the
mammillo-thalamic tract that projects from the mammillary bodies upward to the
thalamus, create an anatomical boundary that divides the hypothalamus into medial and
lateral subdivisions. Contained within the medial subdivision is the periventricular
subdivision, a 5-6 cell layer thick nuclear group surrounding the third ventricle that is
easily recognized in rodents using standard vital stains, but has less clear anatomical

boundaries in the human brain(Toni et al., 2004). Figure 13
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Both the medial and periventricular subdivisions of the hypothalamus contain a high density of
neuronal cell bodies organized into nuclear groups (Figure 13) and are crucial for the regulation
of the anterior and posterior pituitary gland. The medial hypothalamus also contains nuclear
groups that serve as relay centers for highly differentiated neural information coming from the
limbic system and autonomic sensory centers in the brainstem involved in initiation phases of
specific homeostatic behaviors such as thirst, hunger, thermoregulation, the sleep-wake cycle,

and reproductive behavior(Swanson LW 1987) (Table 2)
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The lateral hypothalamus occupies the largest portion of the hypothalamus by volume.
However, it has relatively fewer neurons compared to the medial hypothalamus, and
only a limited number of nuclear groups intercalated within a massive fiber system, the
medial forebrain bundle (MFB)
medial forebrain (amygdala, hippocampus, septum, olfactory system) and the brainstem
is carried to the medial and periventricular hypothalamic subdivisions, delegating an
important role to the lateral hypothalamus to influence homeostatic control systems
elaborated by the medial hypothalamus. Figure 14 schematically depicts the major

interrelations between the periventricular, medial and lateral hypothalamic subdivisions

DBS for obesity in the normal non human primate:

N Torres

Table 2 :Major Hypothalamic Cell Groups

PERIVENTRICULAR ZONE

ARCUATE NUCLEUS

PERIVENTRICULAR NUCLEUS

PARAVENTRICULAR NUCLEUS

SUPRACHIASMATIC NUCLEUS

MEDIAL ZONE

ANTERIOR HYPOTHALAMIC NUCLEUS

DORSOMEDIAL NUCLEUS

MAMMILLARY NUCLEUS

MEDIAL PREOPTIC NUCLEUS

POSTERIOR HYPOTHALAMIC NUCLEUS

PREMAMMILLARY NUCLEUS

VENTROMEDIAL NUCLEUS

LATERAL ZONE

LATERAL HYPOTHALAMIC NUCLEUS

LATERAL PREOPTIC NUCLEUS

SUPRAOPTIC NUCLEUS

(Nauta and W., 1969)

and the rest of the brain.
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Each of the three hypothalamic subdivisions cafubiber divided along the rostral-caudal axis
into the: a)anterior or chiasmatic region extending between the lamina terminalis and the
anterior limit of the infudibular recess; Ib)edian or tuberal region extending between the
infudibular recess and the surface of the anterm@umn of the fornix; and cposterior or
mammillary region,extending between the anterior column of the foamd the caudal limit of

the mammillary bodies (Lechan R.M. and Toni R, 2000

Anterior ——___
commissure \

Pituitary -

Dorsal
hypothalamus

Paraventricular nucleus
of hypothalamus

- Dorsomedial
hypothalamus

Lateral hypothalamus
(behind plane of view)
Posterior hypothalamus
Anterior hypothalamus

Preoptic area

Suprachiasmatic Mamillary body

nucleus
/ Ventromedial
Optic chiasm - hypothalamus

Anterior pituitary Posterior
pituitary

Figure 14: Anatomic distribution of nuclei in human hypothalamus: relative
position to the third ventricle

Radiologic Anatomy

Magnetic resonance imaging (MRI) gives remarkable detail of the hypothalamus and
thereby, has become the major radiologic tool to assess pathology in this region of the
brain. While individual hypothalamic nuclear groups cannot be identified with this
technique, some of the major fiber tracts that traverse the hypothalamus can be seen as
high intensity signals, particularly in T-2 weighted images (Saeki et al., 2001)These
tracts include the fornix and the mammillothalamic tract, shown in Figure 15B,D. Thus,
using these fiber pathways as anatomical landmarks, it is possible to radiologically

divide the hypothalamus into the two major subdivisions, the medial and lateral
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hypothalamic areas. In addition, in the most rostral portions of the hypothalamus, the
anterior commisure is readily seen by MRI Figure 15C and increased signal in the lateral
hypothalamus is most likely due to the presence of the medial forebrain bundle (Figure

15)

Figure 15 MRI of coronal sections through the hypothalamus. (A) Anterior
hypothalamus corresponding to Fig. 10A showing location of the anterior commisure
(arrows). (B) Mid hypothalamus corresponding to Fig. 10B showing location of the fornix
(arrow). (C) Mid hypothalamus corresponding to Fig. 10C showing the optic tract. The fornix
can sometimes also be visualized at this level. (D) Caudal hypothalamus corresponding to
Fig. 10D at the level of the medial mammillary bodies (arrow). Sometimes the
mammillothalamic tract can be visualized at this level.
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Structures Involved In Energy Homeostasis

Several structures have been, from the early days of lesion studies in animals,
implicated in energy homeostasis and food intake. Currently research abandoned the
idea of “dual centers” limited to the ventromedian portion of the hypothalamus and
lateral hypothalamic area Figure 16 . Instead several discreet neuronal populations that
mediate different effects in food intake/energy homeostasis have been recognized and

studied as a part of energy balance circuits:

The arcuate nucleus (ARC) is situated around the floor of the third ventricle,
immediately above the median eminence. The ARC is an elongated collection of cells
body covering nearly one half the lengths of the hypothalamus and is apparently divided
into several functional domains. For instance, NPY(Ciofi et al., 1988; Leger et al., 1987)
and Aglouti related peptide (AGRP), both potent stimulators of food intake, are
colocalised in different neuronal population(Chen et al., 1999; Elias et al., 1998) and
Melanocyte-stimulating hormone(MSH) and CART, which induce anorexic response are
also an adjacent subset of ARC neurons(Baskin et al., 1999b; Vrang et al., 1999). The
ARC also has extensive reciprocal connections with other hypothalamic regions,
including Paraventricular nucleus (PVN)(Bell et al., 2000), dorsomedial (DMH) and
ventromedian (VMH)(Segal et al., 2005; Sternson et al., 2005) hypothalamic nucleus,
perifornical and lateral hypothalamic areas(Bai et al., 1985; Baker and Herkenham,
1995; Broberger et al., 1998; Elias et al., 1998; Sawchenko, 1998). Capillaries in the
underlying median eminence lack tight junctions, allowing free access to circulating
systemic messengers like leptin and insulin to this area(Dallman et al., 1993; Fei et al.,

1997; Hakansson et al., 1998; Sipols et al., 1995). These and other signals (e.g glucose)
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may also gain access to ARC via diffusion through the ependima layers from

Cerebrospinal fluid (CSF) in the third ventricle(Peruzzo et al., 2000).

The periventricular nucleus (PVN) lies beside the top of the third ventricle in the
periventricular zone. The PVN is an integrated centre in which various neural pathways
that influence energy homeostasis converge and is supplied by axons projecting from
the ARC NPY/ARGP and POMC/CART neurons(Elmquist et al., 1999; EImquist et al.,
1998) and from the orexins neurons from the lateral hypothalamus(Dube et al., 1999).
Important neurotransmitters for energy homeostasis, including NPY, MSH, serotonin,
galanin, and noradrenalin can be found and modulate the effects in terms of energy
expenditure(Williams et al., 2001). The integration of signals within PVN initiates
changes in other neuroendocrine systems. NPY/AGRP and melanocortin projections
from ARC innervate thyrotropin releasing hormone (TRH) neurons in PVN(Legradi and
Lechan, 1998), producing inhibition or stimulatory effects respectively over pro-TRH
gene expression(Legradi et al., 1998). Also corticotrophin releasing factor (CRH) is
expressed in neurons in the PVN that project to the median eminence and may act to

inhibit the NPY neurons of the ARC PVN projection(Huang et al., 1998).

The ventromedian hypothalamic nucleus (VMH), one the largest nuclei of the
hypothalamus, was long considered to be a satiety “center “(A. W. Hetherington, 1944).
Stimulation of the VMH inhibits feeding(Beltt and Keesey, 1975; Ruffin and Nicolaidis,
1999), whereas a lesion in this region causes overweight and increases food intake
(Hetherington and Ranson, 1940; Stellar, 1954). Recent studies have showed high
abundance of leptin receptors (Ob-Rb) and the evidence indicates that this region may

be important target for circulating leptin(Meister et al., 1989). The VMH receives
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projections from arcuate NPY- , AgRP- and POMC-immunoreactive neurons and in turn
VMH neurons project to other hypothalamic nuclei(Sternson et al., 2005) .The VMH has
direct connection with PVN, DMV and lateral hypothalamus and to brain stem regions
such as the NTS(Saper et al., 1976). Recent work has demonstrated that brain derived
neurothophic factor (BDNF) is highly expressed in the VMH. These neurons may form
another pathway through which melanocortin  system regulates appetite and body

weight (Unger et al., 2007; Wang et al., 2007; Xu et al., 2003).

The dorsomedian hypothalamic nucleus (DMH), located immediately dorsal to VMH,
has intensive connections with other hypothalamic nucleus such as PVN, lateral
hypothalamus and the brainstem. The VMH and the lateral hypothalamus have no direct
connection but connect indirectly throughout the DMH and the PVN(Dai et al., 1998).
The PVN and the DMH may function as a functional unit, involved in initiating and
maintaining food intake(Christophe, 1998). The DMH has plentiful insulin
receptors(Wilcox et al., 1989) as well as leptin receptors(Schwartz et al., 1996b). Some
ARC NPY AGRP (orexigenic action) also connects with DMH(Kalra et al., 1999). Recent
published data that have reviewed the function of DMH have signaled an important role
of the nucleus in many processes that control both food intake and body weight

regulation(Bellinger and Bernardis, 2002).

The lateral hypothalamic area (LHA) is a vaguely defined region and comprises a
large, diffuse population of neurons including subpopulation that express orexins and
melanin concentrating hormone (MCH) which produce an effect of stimulation food

intake. NPY terminals are abundant in the LHA in contact with orexins and MCH
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cells(Horvath et al., 1999). The LHA contains neurons expressing melanin concentrating
hormone (MCH), which increase food intake and produce mild obesity in rats, while
MCH 1 receptor antagonist produce reduction in food intake and sustained reduction in
body weight(Elias et al., 1998). The Orexins A and B (or hypocretin 1 and 2) are also
produced in LHA and the zone incerta by neurons distinct from those which produce
MCH(Broberger et al., 1998). Orexins exert their effect via wide projections throughout
the brain, for example PVN, ARC, NTS and dorsal motor nucleus of the vagus(Beck,
2000; Mondal et al., 2000). Orexins neurons project to the areas associated with arousal
and attention as well as feeding (orexins knock out mice are thought to be a model of
narcolepsy)(Baumann and Bassetti, 2005; Krahn et al., 2001). In circumstance of
starvation, the orexins neuropeptides can mediate both arousal response and feeding
response in order to initiate food seeking behavior(Tritos et al., 2001). Orexins also may
play a role as a peripheral signal involved in energy homeostasis, because they have
been identified in the gastrointestinal tract and appear to be activated during
starvation(Karteris et al., 2005). The LHA was view classically as a feeding center:
stimulation of this nucleus increases food intake, while its destruction attenuates feeding
and causes weight loss. This nucleus contains also a large number of glucose sensitive

neurons that respond to circulating glucose levels(Williams et al., 2001).

The mechanisms by which the MCH and orexins neurons exert their effect in energy
homeostasis have not been fully elucidated. However is clear that major targets are the
endocrine and autonomic nervous system, the cranial nerve motor nuclei and cortical

structures.
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The brainstem pathways involved in energy homeostasis and food intake modulation
have extensive reciprocal connection with the hypothalamus, in particular the nucleus
of the solitary tract (NTS). Like the ARC, the NTS is in close anatomical proximity to a
circumventricular organ with an incomplete blood-brain barrier-the area postrema - and
is therefore in an ideal position to receiving vagal afferents from the gastrointestinal
tract. The NTS has a high density of NPY binding sites and NPY neurons from this
region project forward to PVN(Li et al., 1994; Vinuela and Larsen, 2001). There is also
evidence that melanocortin system is present in the NTS separate from that of the ARC.
POMC derived peptides are synthesized in the NTS and these neurons are activated by

feeding(Grill et al., 1998; Hellstrom et al., 2004; Murphy and Bloom, 2005). Figure 17
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Figure 16: Dual center hypothesis: Hypothalamic ventromedian hypothalamus work as a
satiety center whereas Lateral hypothalamus is implicated in hungry and drive to eat, and
both nuclei are interconnected and function together. The hypothalamus in coronal
orientation shows the location of medial and periventricular zones which contain most of the
hypothalamic cell groups, and the lateral zone which contains relatively fewer neurons. This
is because the lateral zone is largely composed of a massive bidirectional fiber pathway - the
medial forebrain bundle - that extends through the hypothalamus and interconnects it with
the limbic system and brainstem autonomic centers.
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Figure 17: Schematic representation of the central control of the appetite and
energy homeostasis. AP Area postrema, ME median eminence, NAc nucleus accumbens
PFA prefornical area. There are extensive connections between the hypothalamus and
brainstem. The reward circuitry is also connected and involves several signallingg systems.
The nucleus accumbens is an important component of the reward circuitry; reciprocal
connections between LHA and Nac may mediate hedonistic feeding by dishinibition of the
LHA neurons. Peripheral signals contact the ARC and the NTS throughout incomplete brain-
blood barrier in ME and AP, acting as a sensor of internal signals (insulin, glucose, leptin

etc), which indicate energy state.
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The Organization of the Ventromedial Hypothalamic Nucleus

The role of the Ventromedian hypothalamus has changed from the early lesion and
stimulation studies, when it was the center of the mechanism in feeding behavior and
body weight, to almost disappear from many feeding's researchers vocabulary. The
VMH is barely mentioned in some reviews of central control of feeding behavior and in
some anatomists' schema of the hypothalamus nuclei involved in feeding. But recently,
the VMH area has regained an important place in the models for feeding and weight

control in the hypothalamus circuitry(King, 2006)

Early description of the hypothalamus did not always differentiate among cells groups in
the medial tuberal area. Malone and Morgan for example labeled the tuberal zone
medial to the fornix as the substantia grisea ventriculi tertii. Continued examination of
this region as limited some areas, being one of the best defined the VMH. Nissl stained
sections show a very lightly staining zone entirely surrounding this nucleus, setting it off
from the rest of the hypothalamus. This pale halo, called cell poor area was recognized
by Ramon y Cajal to consist of an interweaving array of axons. He called it "the capsule
of the nucleus".

VMH Dendrites are long and generally unramified and bear a number of spinous
processes. They extend beyond the nucleus into adjacent hypothalamic regions.
Completely encircling the nucleus is a capsule formed partly by VMH afferents. Buried in
this capsule are neurons whose dendrites curve along the periphery of the nucleus to

form a dendritic grid.
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Three general axonal patterns can be recognized. One type is characterized by having
numerous collaterals that ramify extensively in VMH. Another variety has few collateral
that ramify extensively in VMH. Another variety has little collateral. The third variety has
no collaterals.

The numerous intranuclear collaterals with their bouttons en passant synaptic
interconnect individual VMH units.

Most of the axons are beaded. None of the axonal systems has been found to be
confined to VMH. They project to (1) lateral hypothalamus, especially ventral to the
plane of the fornix, (2) anterior hypothalamus, (3) towards the zona incerta, perhaps into
dorsolateral hypothalamus, (4) caudally, with the medial forebrain bundle, and (5) into

the periventricular fiber system (Millhouse, 1978)

PHYSIOLOGY VENTROMEDIAL HYPOTHALAMUS FROHLICH'S

SYNDROME AND EARLY EXPERIMENTAL STUDIES

An obesity syndrome in humans that was associated with abnormalities of the
basomedial hypothalamus was reported as early as 1840(Mohr, 1840)This was initially
believed to be a dysfunction of the pituitary gland and eventually came to be known as
Frohlich's syndrome(Babinski, 1900; Frohlich, 1902)The belief that obesity was due to
pituitary dysfunction remained the prevailing view through the mid -1930The first
challenge to the ideal that Frohlich's syndrome was due to pituitary abnormalities came
from Erdheim who observed that obesity was often in people with tumors at the base of
the brain near, but not extending into the pituitary(Erdheim, 1904)Later studies showed
that hypophysectomy did not result in obesity unless there was additional damage to the

basomedial hypothalamus;(Aschner, 1912; Camus and Roussy, 1913) (Camus and
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Roussy, 1920; Camus and Roussy, 1922).Finally, Bailey and Bremer (Bailey and
Bremer, 1921)in dogs and Hetherington (Hetherington and Ranson, 1942)using rats,
similarly reported that basomedial hypothalamic lesions produced obesity, whereas
hypophysectomy without additional hypothalamic damage did not. One of the first
researchers to use the adaptation of the Horsley-Clarke Stereotaxic instrument for the
use with rats was Albert Hetherington, who in a series of studies examined the effects
on body weight of lesions placed throughout the hypothalamus(A. W. Hetherington,
1942). Obesity result when there was damage to the VMH, particularly when the lesion
destroyed "the capsule of tissue immediately surrounding that nucleus, especially on its
lateral and ventrolateral aspect”. Brobeck (Brobeck, 1946)and Kennedy (Kennedy,
1950)particularly observed that small lesion placed on the ventrolateral borders of the
VMH and extending to the base of the brain is singularly effective for evoking weight
gain. Anand and Brobeck (Anand and Brobeck, 1951a)later reported that obesity could
be produced by either VMH lesion or by small lesions just lateral to the VMH. In addition
to the VMH lesions, Hetherington and Ramson also observed obesity with lesions
posterior to the VMH dorsolateral to the mammillary body, which they attributed to an
interruption of descending fibers(A. W. Hetherington, 1942). According to Stellar, the
degree of hyperphagia as measured by overeating, rate of weight gain, and final weight
gain was related to the amount of damage to the ventromedial nuclei, bilaterally(Graff
and Stellar, 1962). Keesey and Ferguson found a direct correlation between size of

VMH Lesion and post lesion weight gain(Ferguson and Keesey, 1971).
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HYPERPHAGIA
Brobeck in 1943 attributed the obesity to hyperphagia. Rats with VMH lesions were

describe as voracious and ravenous during the first several days after surgery, eating
two or three times more food as normal(Brobeck, 1946; Brobeck et al., 1943) Brooks
even noted that some rats would begin eating before they had fully recovery from the
anesthesia (e.g. before they could stand up), often resulting in them choking to death
(Brooks and Lambert, 1946). Rats with VMH lesions eat continuously for several hours
after the lesion(Balagura and Devenport, 1970; Becker and Kissileff, 1974; Harrell and
Remley, 1973) Studies that used chronically implanted electrodes or injection of
procaine into the VMH in conscious animals generally found that the overeating began
almost immediately after the lesion or injections (Balagura and Devenport, 1970; Becker
and Kissileff, 1974; Berthoud and Jeanrenaud, 1979b; Epstein, 1960; Larkin, 1975;
Maes, 1980).The feeding pattern is characterized not only by an increased frequency in
meals, but by an even greater increase in meal size(King and Gaston, 1973; Teitelbaum
and Campbell, 1958). However, when fed ad libitum, hyperphagic rats do not eat faster
than normal animals(Sclafani, 1994). There are also large increases in food intake
during the day, when normally they eat their daily food intake at night(Kakolewski et al.,
1971). The hyperphagia and weight gained that follows complete bilateral VMH is quite
dramatic. In just 30 days is not uncommon that the weight gains reach double of the
body weight(King and Gaston, 1977). Brooks and Lambert coined the term of static and
dynamic phases to describe the pattern of hyperphagia and weight gain observed after
VMH lesions. They also noted that some animals did not reach a static phase and
continued to gain weight for months (Brooks and Lambert, 1946).VMH lesion induced

hyperphagia and obesity have been observed in a variety of species besides rats
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[rabbits(Romaniuk, 1962), cats(Anand and Dua, 1955), dogs(Rozkowska and Fonberg,
1971) pigs(Khalaf, 1969), monkeys(Brooks et al., 1942), even ruminants(Baile et al.,
1967)). Hypothalamic obesity has been well documented in human as well(Bray and
Gallagher, 1975; Powley, 1977).

All of this evidence convinced Kennedy in 1950 to propose that the VMH was the brain's
satiety center, that when activated, inhibited feeding behavior(Kennedy, 1950). When
Anand and Brobeck reported 1951 that lesions of the lateral hypothalamus (LH) in rats
and cats resulted in aphagia and weight loss they designated theLHA as the feeding
center, activation of which causes hunger(Anand and Brobeck, 1951b). Anand and
others reported that electrical stimulation of the VMH decreased food intake in food
deprived animals(Anand and Dua, 1955; Oomura et al., 1967; Wyrwicka and Dobrzecka,
1960), while Brobeck et al observed that intravenous injection of the appetite-depressant
drugs Benzedrine or Dexedrine resulted in an increased frequency and amplitude of the
EEG in the VMH (the EEG in other parts of the hypothalamus resemble that usually
observed during barbiturate anesthesia)(Brobeck et al., 1956). Later studies with cats
reported that brief stimulation of the VMH resulted in a decrease in single neuronal spike
frequency in the ipsilateralLHA and vice versa when theLHA was stimulated(Oomura et
al., 1964; Oomura et al., 1967). In cats, about 73% of the individual VMH Neurons
display a frequency related to feeding behavior, as do 63% ofLHA neurons(Oomura et
al., 1967). By 1954, the evidence was so strong that led Stellar to conceive the dual-
center hypothesis for motivated behavior, where all motivated behaviors (like hunger,
sex, thirst etc) were controlled by an excitatory and an inhibitory brain center(Stellar,

1954).
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CONTROVERSY REGARDING THE ROLE OF VMH
Serious questions regarding whether or not the VMH was the most effective anatomical

site for producing lesion-induced hyperphagia and obesity began to arise in the late
1960s. Several groups failed to produce hyperphagia with lesion limited to the VMH
nuclei (Joseph and Knigge, 1968). Studies of the changes incurred in the hypothalamus
of mice injected with goldthioglucose found that the changes first occurred ventral to the
VMH (including the ARC) and then spread to the VMH(Arees et al., 1969; Caffyn, 1972).
When radioactive isotopes were injected intravenously, radioactivity was observed not
only in the VMH, but also very heavily in the lateral part of the ARC and in the area
between ARC and VMH(Debons et al., 1974). These data demonstrated a clear role for
ARC in the lesion induced hypothalamic obesity. The major blow was struck by Gold.
Using female rats, he examined the effects on body weight of electrolytic lesions in and
around the VMH nuclei. He concluded that: "lesions restricted to VMH produced neither
overeating nor obesity. The VMH lesions cause obesity only when they overflow the
VMN and the amount of the obesity is proportional to the amount of overflow". Gold
claimed that the most effective lesions for producing obesity were rostral to the VMH,
and the larger the lesion, the greater the weight gain (as long as the damage does not
involve the nigrostriatal dopamine pathway at the lateral border of the hypothalamus).
He attributed the obesity observed in rats with lesions just rostral to the VMH to damage
to the Ventral noradrenergic bundle  (VNAB)(Gold, 1973). The VNAB originates in the
brainstem just caudal to the locus coeruleus and supplies noradrenergic terminals to the
midbrain, hypothalamus and a variety of forebrain structures(Ahlskog and Hoebel, 1973;
Jacobowitz and Palkovits, 1974; Maeda and Shimizu, 1972; Ungerstedt, 1971). Lesions

of the VNAB at the level of the midbrain substantially reduce hypothalamic
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norepinephrine (NE) and results in hyperphagia and obesity(Ahlskog, 1974).
Parasagittal knife cuts were most effective in producing obesity when they were long
and included an area rostral to VMH, the area where he said fibers of the VNAB turn
medially to supply the hypothalamus. He then reported that a unilateral lesion of the
VNAB in the midbrain or in the mammillary area combined with contralateral parasagittal
knife cut rostrolateral to the VMH resulted in hyperphagia and obesity equal to bilateral
mammillary lesions or long bilateral parasagittal knife cuts(Gold, 1973; Kapatos and
Gold, 1973).

In the early 1980, Gold and other also determined that the optimal site for parasagittal
knife cuts to produce hyperphagia and obesity was at the coronal level of the
PVN(Aravich and Sclafani, 1983; Leibowitz et al., 1981). The PVN was also found to be
the optimal site for electrical stimulation induced eating and also for NE-induced
feeding(Atrens and Von, 1972). Finally, Aravich and Sclafani found that lesion in PVN
without damage in VMH, resulted in hyperphagia and obesity in rats(Aravich and
Sclafani, 1983). These studies replicated earlier reports by Heinbecker that reported

PVN lesion-induced obesity in dogs (Heinbecker et al., 1944)

REEVALUATION OF THE ROLE OF THE VMH
Many researchers accepted Gold's conclusion that VMH has nothing to do with feeding

behavior. However, the fact of the matter is that Gold's conclusion flew in the face of
many previous, equally diligent anatomical studies that compared the effects of lesions
in and around the VMH. Hetherington, for instance came to a conclusion that was
completely the opposite than that made by Gold: "obesity is not produced by medium
size symmetrical lesions of the caudal half of the anterior hypothalamic area and rostral

ends of the ventromedial hypothalamic nuclei"(A. W. Hetherington, 1942). According to
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Anand and Brobeck, lesion just anterior to the VMH did not lead to hyperphagia and
obesity(Anand and Brobeck, 1951a). In seven studies that have examined the effects of
bilateral coronal knife cuts anterior to the VMH, five observed only modest weight gains
and two observed none(Grossman, 1971; Palka et al., 1969; Paxinos and Bindra, 1972;
Rollins et al., 2006; Sclafani, 1971; Storlien and Albert, 1972).

Hetherington initially found that maximum obesity was produced by lesion of the caudal
half of the VMH which includes part of the dorsomedial hypothalamic nuclei and
premammillary nuclei (Hetherington, 1941)Obesity could be produced by bilateral
lesions anywhere within a large longitudinal zone in the hypothalamus(A. W.
Hetherington, 1942). Their lesions had not doubt transected the VNAB. But recent data
has shown that isolated lesion in VNAB produced hyperphagia and obesity syndromes
different than the VMH syndrome(Ahiskog et al., 1975) ((Ahlskog, 1974; Ahlskog et al.,
1974; Hoebel, 1976). And lesion in VMH could produce and addictive effect to lesion in
VNAB(AhIskog et al., 1974; Hoebel, 1976)

Several non lesional studies seem to support the role play by VMH in feeding behavior.
SF-1 knockout mice, with an abnormal VMH became obese and eventually double their
normal body weight(Davis et al., 2004; Majdic et al., 2002; Parker et al., 2002). Fetal
VMH transplanted in third ventricle, not only diminish weight gain in VMH lesion
rats(Mickley et al., 1987), but diminished weight gain in Zucker obese rats as
well(Fukagawa et al., 1996). Studies using Positron emission tomography have found an
increase in regional blood flow to the hypothalamus during hunger and a decrease after
food intake(Morris and Dolan, 2001; Tataranni et al., 1999). Using functional magnetic
resonance imaging, Matsuda et al were able to differentiate among the hypothalamic

nuclei. They observed a decrease in both VMH and PVN activity after subjects drank a
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glucose solution and the response was smaller and delayed in obese subjects(Liu et al.,
2000; Matsuda et al., 1999). More important brain activity recorded in VMH nucleus
were specifically reduced by glucose ingestion whereas the response in PVN was non
specific (activity also decrease when the subjects drank water(Matsuda et al., 1999)).
Several recent studies have revealed the nature and mechanism of VMH
glucoresponsive neurons(de Vries et al., 2003; Kang et al., 2004; Routh, 2003; Song et
al., 2001; Song and Routh, 2005). Five types have been identified(Song et al., 2001),
which very dynamically respond to hypoglycemia and lactate levels(Routh, 2003) and
ghrelin(Chen et al., 2005). Microinjections of orexins into the hypothalamus decrease
cytosolic Ca levels in glucosensitive neurons(Muroya et al., 2004). Only VMH, nucleus
of the solitary tract, and cortex of the amygdala showed permanent changes in Fos
expression when rats were switched from normal diet to high protein diet(Darcel et al.,
2005). The PVN and ARC showed changes only during the initial transition period
(Darcel et al., 2005. Glucose responsive neurons in VMH might have an integrative
function in glucose homeostasis(Routh, 2003).

The role of VMH in feeding behavior could be assessed by injection of a variety of
agents into the VMH. Several lines of evidence suggest that histamine decrease food
intake via H1 receptors at least in the VMH or the PVN(Morimoto et al., 2001).
Intrahypothalamic injection of nicotine reduces food intake and is associated with an
increase in leptin biding in the VMH, ARC and PVN(Li and Kane, 2003). Food intake
increase 4 fold by injection of thyroid hormone T3 directly into VMH(Kong et al., 2004) ,
while intra VMH injection of glucagon-like peptide 1(GLP-1), significantly decrease food
intake(Schick et al., 2003). Gamma-aminobutyric acid (GABA) is also heavily involved in

VMH function. Electrophoretic injections of GABA depress the firing rate of almost all
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VMH neurons(Dreifuss and Matthews, 1972), and injections of GABA agonist like
muscimol, into VMH markedly elevates food intake in dose dependent manner(Kelly et

al., 1979).

POSSIBLE PATHWAYS INVOLVED IN VMH LESION INDUCED HYPERPHAGIA AND
OBESITY

Researchers in the middle of the 80s established that PVN has major connection with
key gustatory relay stations, including the dorsal vagal complex, the nucleus of solitary
tract, and parabrachial area(Luiten et al., 1987; Moga et al., 1990; Sawchenko and
Swanson, 1981). The discovery of the importance of the connection between ARC

and PVN in feeding behavior produced a profound shift and revision of the role of VMH
in the feeding behavior physiology(Broberger and Hokfelt, 2001; Schwartz et al., 2000).
Even more specific, the apparent lack of significant connections of VMH(Chi, 1970)
contributed to many researchers became skeptical about VMH playing any role in
feeding behavior. Early studies conducted by Millhouse gave the impression that VMH
was an isolated structure (Millhouse, 1973b).It was Millhouse who first described the
fiber capsule that surrounds the VMH nucleus; This capsule is made up of axons
originating from the stria terminalis, mammillary peduncle, medial forebrain bundle,LHA,
zona incerta, supraoptic decussation and periventricular neurons. Although the afferent
terminate in the capsule, some collaterals penetrate into the nucleus itself. The capsule
contains also some neurons that along with their dendrites form a “dendritic grid”
surrounding the nucleus. These dendrites extend beyond the nucleus into adjacent
hypothalamic regions. The axons projects to theLHA, anterior hypothalamus, zona
incerta, the medial forebrain bundle caudally and the periventricular fiber

system(Millhouse, 1973a; Millhouse, 1973b)
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It was with the use of the autoradiographic methods, that Saper et al. provided detailed
description of VMH efferents (Saper et al., 1976). They found that VMH axons projects
extensively to surrounding hypothalamic nucleus (but not median eminence). Studies
using Phaseolus vulgaris leucoagglutinin, later confirmed that the VMH established
massive intrahypothalamic terminal fields in other parts of the medial zone but not the
nuclei of the periventricular and lateral zones(Canteras et al., 1994). Most of the VMH
efferents originate from the ventrolateral part of the VMH(Saper et al., 1976). Anterior
targets of long VMH efferents include the preoptic areas, ventral part of the lateral
septum, bed nucleus of the stria terminalis and amygdala (dorsal part of the medial
nucleus and the capsule of the central nucleus). VMH also sends dense projections to
the subparafascicular nucleus of the thalamus, a target for nociceptive, visceral and
accessory gustatory stimuli from the parabrachial nucleus(Bester et al., 1999; Canteras
et al., 1994; Cechetto and Saper, 1987; Yasui et al., 1991). Kita an Oomura used HRP
injections into VMH and reported labeled cells in the amygdala (medial and basolateral
nuclei), subiculum peripeduncular nucleus and parabrachial area(Kita and Oomura,

1982).

Targets of descending VMH axons include (a) the mammillary complex,
supramamillary nucleus and ventral tegmental area via the medial hypothalamus and
ventral tegmental bundle; (b) posterior hypothalamic area and central gray (including
anterior pole of the locus ceruleus) via a periventricular route; and (c) contralateral
amygdala and zona incerta, central tegmental fields and peripeduncular nucleus via the
supraoptic commissure. The VMH afferents has been studied by Fahrbach using HRP

technique.(Fahrbach et al., 1989). The septal area, medial preoptic area, rostralLHA,
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and ventral subiculum project mainly to the ventrolateral VMH, whereas the median

amygdala projects to the VMH as well as to the area ventral to the VMH.

Several studies have shown that the VMH-input from the amygdala and bed nucleus of
the stria terminalis (particularly the posterior division) is extensive(Dong and Swanson,
2004; Krettek and Price, 1978; Petrovich et al., 2001). Lesion in of the medial
amigdaloid nucleus results in extensive degeneration throughout the capsule of the
VMH(Krettek and Price, 1978). Small bilateral lesions limited to the most posterodorsal
aspects of the medial amygdala results in hyperphagia and obesity in female rats, with
weights gains of as much as 100g in 20 days(King et al., 1993a; King et al., 1993b; King
et al.,, 2003b). Abundant literature exists that demonstrate that medial amygdala and
VMH are part of an ipsilateral pathway regulating feeding behavior and body weight
regulation(Grundmann et al., 2005; King et al., 2003a; Rollins et al., 2006). It remains to
be determined however what type of information is transported from the median
amygdala to the VMH to affect feeding behavior. It is most certainly different from the
information conveyed by the vagus nerve and blood to the ARC and VMH. The pattern
of anterograde degeneration observed after amigdaloid lesions (King et al., 2003a)is
remarkably parallel to pathways involved in sexual behavior. The VMH, in addition to its
role in feeding behavior/metabolism, has numerous terminals mediating sexual
behavior(Canteras et al., 1994). Similar to the VMH, the amygdala has numerous
estrogen receptors (Li et al., 1993; Pfaff and Keiner, 1973)and the fos inmunoreactivity
in the posterodorsal amygdala is highly correlated with satiation sexual activity(Coolen
et al., 1996; Coolen et al., 1997). Olfactory input is thought to be critical in this VMH-

median amygdala connection, regulating sexual behavior and modulator of food intake
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as well. Olfactory bulbectomy in static phase VMH lesioned rats results in an additional

stage of hyperphagia and excessive weight gain(Larue and Le Magnen, 1970).

VMH has a large number of glucoresponsive neurons and neurons responsive to
neurotransmitters involved in feeding behavior. VMH has numerous leptin receptors,
particularly in the dorsomedial portion(Baskin et al., 1999a; Elmquist et al., 1997;
Elmquist et al., 1998; Hakansson et al., 1998; Schwartz et al., 1996b). Many of these
neurons are also glucoresponsive(Shiraishi et al., 1999). Infusion of leptin in PVN or
VMH markedly decreases food intake and body weight and this effect can be countered
by pretreatment with corticotrophin releasing hormone antagonist(Masaki et al., 2003).
NPY, when injected in VMH, produce a strong feeding response(Stanley et al., 1985).
Cholecystokinine afferents from parabrachial nucleus to the VMH are abundant(Bester
et al., 1997; Fulwiler and Saper, 1985)and has been linked with the central inhibition of
food intake by this element(Takaki et al., 1990). By far, however, the best understood of
the neuropeptides with regards to their role in the VMH are the Melanocortins.
Receptors MC 3 and MC 4 of the anorexigenic POMC derivative a-MSH are found in
VMH(Gantz et al., 1993; Lindblom et al., 1998; Mountjoy et al., 1994; Roselli-Rehfuss et
al., 1993). The Melanocortins effectiveness on neuronal activity of the VMH is reduced
during starvation, reducing sympathetic stimulation and the satiety signal(Li and
Davidowa, 2004). The question remained as to how MC4 receptors regulated energy
balance. And the answer appears to be brain derived neurothophic factor (BDNF) a
neurotrophin that is critically important for brain development and neuronal
plasticity(Hofer and Barde, 1988) but which is involved in energy homeostasis in

mammals postnatally. Removal of the BDNF gene (Rios et al., 2001)or marked
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reduction in the BDNF receptor in mice(Xu et al., 2003) results in hyperphagia and
obesity. BDNF mRNA is expressed at high levels in the VMH and decrease during
fasting. This was not found in other hypothalamic or extrahypothalamic nuclei(Xu et al.,
2003). Obesity model SF 1 knockout mice have a complete loss of VMH BDNF(Tran et
al.,, 2003). MC4 receptor antagonist injected intracerebroventriculary reversed the
effects of fasting on VMH BDNF m RNA Levels, therefore demonstrating that BDNF
operates via melanocortin signallingg(Butler and Cone, 2002). Wisse and Schwartz
conclude that POMC neurons reduce food intake via activation of BDNF neurons in the
VMH (Figure 18), integrating definitively VMH into food ingestion and weigh regulation

mechanism.(Wisse and Schwartz, 2003)

VMN : : “Food

Figure 18: Diagram showing the interactions 3 s

between VMN (or VMH) and alimentary ’ —
behavior. Arcuate nucleus has apparently an S \
influence over VMN via BDNF. Humoral factors
have ‘“sensors” in both nuclei, indicating
metabolical states. Please note the close
relationship with the ventricle (modified from
Schwartz)
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CONCLUSIONS REGARDING THE ROLE OF VMH IN FOOD INTAKE AND WEIGHT
CONTROL

There is abundant evidence that VMH helps regulate autonomic responses, both
parasympathetic and sympathetic and that lesions of the VMH results, at least in part, in
a “metabolic obesity” independent of hyperphagia, as originally proposed by
Powley(Powley, 1977). This is supported by studies in pair fed tube rats with VMH
lesions(Han, 1968) and more recently with knockout mice that are deficient in the
orphan nuclear receptor SF-1(Davis et al., 2004). Changes in autonomic responses can
be detected within 20 minutes of lesioning the VMH in anesthetized rats (Berthoud and

Jeanrenaud, 1979a).

Many studies have also demonstrated that VMH lesions induced obesity, particularly in
adult female rats, cannot be due entirely to altered autonomic responses(Sakaguchi et
al., 1988). Recent neuroimages studies have demonstrated that neurons in the
immediate areas of both the VMH and PVN are activated during feeding, but are
different in function(Matsuda et al., 1999). VMH has many receptors that respond to
dopamine(Davidowa et al., 2002), serotonin(Hikiji et al., 2004), GABA(Dellovade et al.,
2001), histamine(Magrani et al., 2004) and estrogen(Pfaff and Keiner, 1973; Wade and
Zucker, 1970) to affect feeding behavior. The response to these receptors has been
found to be abnormal in obese animals that were overfed since birth(Davidowa et al.,

2002; Huang et al., 2004a).(Huang et al., 2004b; Huang et al., 2005)

VMH has neural connection with many other areas of the brain implicated in feeding

behavior. The dorsomedial portion of the nucleus is particularly dense with neurons that
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respond to feeding related stimuli, while the capsule is critical in receiving afferent
information. Most efferent exits from ventrolateral part of VMH to extrahypothalamic
location(Saper et al., 1976). VMH also has a massive terminal field throughout medial
hypothalamus(Canteras et al., 1994; Millhouse, 1973b).

In recent years an inhibitory feeding pathway between the medial amygdala and VMH
possibly carrying olfactory information has been identified and extensively
studied(Coscina et al., 2000; Grundmann et al., 2005; King et al., 2003a; King et al.,
1993b; Rollins and King, 2000). Melanocortins receptors within VMH have been found to
play a critical role in the regulation of feeding behavior(Bagnol et al., 1999; Elias et al.,
1998; Gantz et al., 1993; Harrold et al., 1999; Haskell-Luevano et al., 1999). Food intake
decrease when ARC POMC neurons activate VMH BDNF neurons(Wisse et al., 2006;

Wisse and Schwartz, 2001).

In summary, the dual centre hypothesis(Stellar, 1954) has give place to a hypothesis of
discreet neuronal pathways that generates integrated responses to afferent input related
to changing body fuel stores.
The causes of hypothalamic obesity are certainly numerous, but today, we can identify a
few of the major causes:

1. A primary metabolic effect of VMH damage due to alterations in both

parasympathetic and sympathetic functional
2. A primary effect on feeding behavior due to damage to ARC POMC neurons to

the VMH and or damage to VMH BDNF neurons
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CHAPTER IV NEUROSTIMULATION OF CENTRAL NUCLEI IN THE

BRAIN

Electrical stimulation of the nervous system for therapeutics purposes dates back to the
18th century. Floyer used electrical shocks in an attempt to reverse blindness, Jallabert
used spark to treat arm paresis and Kite reported revived the drowned with electrical
shock. During the last 15 years, neurosurgery has been greatly influenced by deep brain
stimulation .More recently, with the development of new hardware and
electrophysiological techniques, deep brain electrical stimulation(DBS) have been
routinely used for treating movement disorder(Benabid et al., 1998)), pain(Levy, 2003)
and lately obsessive compulsive disorders (Gabriels et al., 2003) and clinical refractory
epilepsy (Benabid et al., 2002b) With this tool is now possible to explore new targets

and extend therapeutically available options.

Physiological Principles of Neurostimulation

Neuropharmacology limitations have lead to the development of alternative ways of
dealing with brain circuits. Clinicians commonly use pharmaceutical agents that
modulate neural processes in order to treat disorders of the central nervous system
(CNS). Most drugs used to treat neurological disorders do so by affecting synaptic
transmission. However, they may not be specific in their action and can cause
modulation in other neural circuits not involved in the initial disorder. Often this leads to
unintended neural side effects. Electrical stimulation of the nervous system is an
alternative way to modulate the subcircuits of CNS with the possibility of greater

specificity (Rise, 2004)
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Nerve cells convey information from one part of the CNS to another through electrical
phenomena. An action potential is a transient reversal of the transmembrane voltage
potential of a nerve cell axon. The action potential propagates along the nerve cell
membrane. Neurostimulation affects the CNS through the creation of a voltage in the
neighborhood of a specific circuit of the nervous system artificially manipulating
membrane voltages. Manipulation of the membrane potential through the use of the
neurostimulator can cause nerve cells to propagate action potentials orthodromically
and antidromically along the axon. Alternatively appropriately applied voltages can block
the propagation of action potentials. Thus, the use of implantable extracellular
electrodes connected to neurostimulators to modulate the activity in selected pathways

of the CNS can be palliative treatment for central controlled disorders (Rise, 2004)

Biophysics of Neurostimulation

Neurostimulation can be thought of as being a tool for treating neurological dysfunction.
The particular therapeutic application will determine which part of the nervous system is
activated or deactivated by stimulation. There are some basic principles associated with
the use of neurostimulation to aid the clinician in predicting the effect of using different
kinds of stimulation settings in a safe manner with the desired outcome.

Reduced to its simplest form, a neurostimulator consist of a power supply (i.e. battery), a
pair of electrodes in contact with the tissue, extension wires to connect the electrodes to
the battery and a switch that enables the power to be intermittently connected to the
electrodes. Ohm's law governs the relationship between voltage and current. Much of
the basic understanding of the nerve cell electrophysiology was discovered as results of

experiences carried out with intracellular electrodes referenced to electrodes in the
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extracellular space. Neurostimulators used as a neuromodulators, however, make use
of extracellular electrodes to generate voltage/current fields.

By convention, there are two types of electrode configuration, referred as monopolar
and bipolar stimulation. Of course, for electricity to flow is necessary that there be two
electrodes, a positive anode and a negative cathode. Monopolar stimulation then refers
to an electrode configuration that includes an electrode of relatively small surface area
located near or in the nervous tissue to be stimulated. This electrode is typically the
negative electrode or cathode, for reasons described below. The positive electrode has
a larger surface area and is located remote to the stimulation target. Typically, the
outside surface area or 'case' of the neurostimulator is used as a positive anode when
performing monopolar stimulation. When performing bipolar stimulation, both positive
and negative electrodes are in or near the nervous tissue targeted for stimulation and
have the same or similar surface areas (Rowbottom and C., 1984).

Neuromodulation is performed by applying intermittent, electrical stimulation to
surrounding neural tissue. The electrical fields generated by DBS electrodes, using
therapeutic stimulation parameters, is capable of directly activating a large volume of
tissue. Extracellular stimulation generates a complex electric field in the tissue medium
that is applied to the underlying neural process as a distribution of extracellular
potentials. For that motive, analysis of the effects of DBS is complicated by our limited
understanding of the response of neurons surrounding the electrode to the applied
fields. The Extracellular potentials along with each stimulating electrode will produce
both transmembrane and axial currents that will be distributed throughout the neuron.
Each neuron exposed to the applied fields will experience both inward and outward

transmembrane currents and regions of depolarization and hyperpolarization. These
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theoretical predictions have been verified in numerous experimental preparations
demonstration the difference between anodic, cathodic, and bipolar stimulation on the
ability to both activate and block neural activity with Extracellular stimulation (Mclntyre
and Grill, 2002).Despite the difficulties explaining the mechanism of action of
Extracellular potential in DBS some general rules or guidelines can be summarized: a)
nerve cells further away from the electrode will be less likely to be stimulated, b) axons
will be stimulated at lower stimulation amplitudes than nerve cells bodies, c) larger
axons will respond to lower stimulus amplitudes than smaller axons, d) axons with
branching processes will be more easily stimulated than those without branching. Also
a key point is the orientation of nerve cells relative to voltage fields. The important
parameter of the voltage determining whether a nerve cell is stimulated is the second
spatial derivative of voltage. The value of the second derivative falls off rapidly with
distance from the surface of the electrode. Also nerve cells that are oriented along
isopotential lines may not be activated while nerve axons in the direction of the voltage
gradient will be preferentially stimulated. Orientation of cell body and axons with respect
to current flow is important. For an axon it is the component of the voltage gradient
parallel to the fibers that is important. The pia has a significant resistance and
capacitance. Gray matter, white matter, and cerebrospinal fluid have different
resistivities, which affect patterns of current flow. Finally, the nerve cells near the
cathode (negative) will be more easily activated than those near the anode (positive)
(Ranck, 1975).

The effect of DBS on the various neural elements depends on the nonlinear relationship
between the stimulus duration (pulse width) and the amplitude (voltage or current) that is

necessary to stimulate the neural element.
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DEEP BRAIN STIMULATION

DEFINITION

Excitability due to electrical stimulation was well known and applied in clinical settings as
far as 1950. However, the term ‘deep brain stimulation’ (DBS) dates back to the
1970s.The original therapy that lead to the development of DBS technology was
electrical stimulation of sensory thalamus to treat chronic pain (Hosobuchi, 1986). Low
frequency stimulation (LFS) (30-60 hertz) was applied in pain patients producing
excitation in target areas (Hosobuchi et al., 1977; Richardson and Akil, 1977b;
Richardson and Akil, 1977c). Patients with certain motors deficits (Liberson and
Pavasars, 1960) neurogenic sphincter disorders(Brindley, 1977), spasticity and epilepsy
(Cooper et al.,, 1973) were also successfully treated with LFS . But brain lesioning
procedures were irreplaceable until the emerging concept of high frequency stimulation
as a producer of functional neuronal inhibition was not recognized.

High frequency DBS provides functional inhibition of target structures producing
significant improvement in Parkinson symptoms in both animal and human studies
(Benabid et al., 1998; Fang et al., 2006)and mimicking the clinical effects of tissue
lesioning (Benabid et al., 1987; Bergman et al., 1990). As a consequence, well known
neurosurgical or basic research lesional targets can now be easily explored and studied.
There is also a recent exciting return to LFS due to a better understanding of electrical
stimulation, better available equipment and medical team expertise as shown with the
promising results in the treatment of non dopaminergic symptoms of Parkinson disease
using DBS LFS in the pedunculo pontine nucleus (Mazzone et al., 2005; Stefani et al.,

2007)The success of DBS in multiple neurological conditions as well as its capacity of
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producing diverse effects in target structures made it the ideal tool to consider for
application in morbid obesity. Some of the landmarks in DBS history are shown in Table
3.

Some characteristics of this method explain its popularity. DBS parameters can be
adjusted to a proper threshold avoiding secondary effects from surrounding structures
(Blomstedt and Hariz, 2006). In contrast to Stereotaxic lesion, DBS provides the added
benefit of reversibility and titratability (Deuschl et al., 2006) diminishing the risk of
causing major permanent neurological deficits. DBS is versatile; because while the
underlying mechanisms of electrical brain stimulation are only scarcely known (Benabid
et al., 2005a; Fraix et al., 2004)when appropriate parameters are chosen, DBS may
either excite or inhibit neural structures, providing a wide range of potential clinical
applications. The recognition of the frequency as a key factor for modulation of CNS
structures allowed the apparition of a large subset of applications and predicts an even
larger emerging field of DBS in the future (Benabid et al.,, 2005b). Modulation of
hypothalamic structures represents an exciting new objective in translational research of

DBS.

DEEP BRAIN STIMULATION OF THE HYPOTHALAMUS
The imbalance between food intake and energy exjpeadeads to weight gain in individuals

with weak central (hypothalamic) recognition of ipaeral signals (Leptin, ghrelin, glucose or
insulin)(Heini et al., 1998) Activation of thesenters throughout LFS DBS or inhibition (HFS
DBS) of overacting areas may change the body wtsgh point” in intractable morbid obese
patients (Benabid et al., 2005a; Benabid et al05B) Here we review the potential targets for

DBS in the hypothalamus.
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PUTATIVE TARGETS

LATERAL HYPOTHALAMUS
The LHA has long been implicated in feeding behavior and energy expenditure

(Bernardis and Bellinger, 1996).Its role in appetite regulation is well described in early
studies of LHA lesions, which induced leanness ). In 1951, Anad and Brobeck, shown a
diencephalic center for food intake in the hypothalamus: Bilateral lesions of the lateral
hypothalamus provoked weight lose with aphagia (Anand and Brobeck, 1951b)This
impact on appetite can be partially explained by peptides expressed predominantly in
the LHA such as melanin concentrating hormone (MCH) and orexins. Indeed, MCH -/-
mice are lean and hyperphagic, while mice with over-expression of MCH are obese and
insulin resistant (Ludwig et al., 2001)Chronic administration of an orally active selective
MCH 1 receptor antagonist decrease food intake, body weight and adiposity in rodent
obesity models(McBriar et al., 2006)Injections of orexins into LHA increases feeding
behavior and enhances arousal, and up regulated expression of the orexins gene occurs
in fasting rats (Kotz et al., 2002). Electrical stimulation of the LHA induced a pronounced
bout of eating in previously satiated cats, and electrical stimulation VMH caused food
deprived cats to stop eating(Anand et al.,, 1955). Here also a metabolic effect is
suggested by Teitelbaum and Stellar, because theirs rats were able to keep a low
weight and regain normal food intake after bilateral lesion of LHA(Teitelbaum and
Epstein, 1962). Low frequency stimulation of LHA produced ingesting behavior. Several
biochemical and neurophysiological studies have shown activation of LHA neurons
during fast period .Recently, Ruffin and Nicolaidis have confirmed that the metabolic

response is previous to behavioral changes in food intake(Ruffin et al., 1995).
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Given this evidence, it was proposed that chronic bilateral DBS of LHA would mimic the
results of lesion studies, just as STN-DBS mimics the effects of subthalamotomy (Andy
et al., 1963)providing significant and sustained weight loss in obese rats (Sani et al.,
2007).In the study, on post operative day 24, 13 % of total body weight was lost in rats
maintained on seven day high fat diet undergoing LHA-DBS, a difference that was

significant compared to controls.

VENTROMEDIAL HYPOTHALAMUS
Lesions of the VMH induce obesity (Brobeck, 1963) In 1940, Hetherington and Ramson

published that the bilateral lesion of the ventro-median region of the hypothalamus
produced hyperphagia followed by obesity with normophagia (A. W. Hetherington, 1944;
Kennedy, 1950). Like LHA VMH has also been implicated in appetite regulation, as well
as maintaining energy homeostasis VMH lesions results in substantially more carcass
lipid and hyperinsulinemia in rats even if pair-fed with ham-lesion controls, suggesting a
metabolic bias towards obesity (Cox and Powley, 1981)In contrast to electrolytic
lesioning, electrical stimulation of VMH at slight intensities (20-25 uA) suppresses
feeding in rats and increases their metabolic rate (Ruffin 1999). Beltt and Keesey had
shown eatrlier (1975) that VMH low frequency-stimulation was susceptible of inhibit food
intake (Beltt and Keesey, 1975). Pauwson in 1988 have also suggested that a metabolic
effect is probable in low frequency stimulation of VMH, leading to a chronic decrease in
weight without change in food intake behavior (Pauwson 1988). This increase in energy
expenditure was associated with increased fat oxidation given a concomitant drop in the
respiratory quotient. Thus, heightened metabolism induced by VMH stimulation is
sustained by utilization of fat stores via the lipolytic pathway and is most likely due to

noradrenergic turnover(Saito et al., 1987). Recently, VMH DBS in rat at four different
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frequencies (25, 50, 75 and 100 Hz) replicated this effect on energy expenditure,
demonstrating an increase in metabolism indicated by indirect calorimetry (Covalin et
al., 2005) There was a trend towards an indirect relationship between energy
expenditure and increase frequencies, suggesting lower frequencies have stimulating
effects (Benabid 2006 Personal communication) (Mcintyre and Grill, 2002)

In brief, VMH/LHA critical involvement in feeding regulation can be summarized by:

1) The suppression and facilitation of feeding regulation by electrical stimulation of the
VMH and the LHA respectively,

2) The hyperphagia and hypophagia after bilateral electrolytic ablations as well as
bilateral chemical lesions of the VMH and LHA respectively.

3) The presence of neurons in both nucleuses that sense the metabolic signals such a
glucose, free fatty acid and leptin.(Dhillon et al., 2006).

4) A metabolic effect plays a role in weight loss following electrical stimulation and it is
most likely to be related to an increase in autonomic sympathetic tone.

It is clear that hypothalamic nucleuses play an important role in weight regulation, food

intake and motivation for feeding.

Attempts have been made to use this knowledge in preclinical settings. In 1984 Brown
and cols using implantable chronic platinum-tipped electrodes in the ventromedial
hypothalamic area (VMH) showed changes in food intake in fasted dogs. Dogs that
received 1 hour of VMH stimulation every 12 hours for 3 consecutive days maintained
an average daily food intake of 65 % of normal baseline levels (Brown et al., 1984).In
the light of their results and the availability of this new technology, the authors

recommended deep brain stimulation as a potential mean of regulating food intake and
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therefore a possible therapeutic modality for human morbid obesity. Feeding
suppression was also elicited by electrical and chemical stimulation in non human
primate's hypothalamus. Ventromedian, dorsomedian and ventromedian part of lateral
hypothalamus produced prolonged suppression in food intake suggesting neuronal

inhibitory mechanism of feeding in these centers in awake monkeys(Takaki et al., 1992).

HUMAN STUDIES
In the early 70, Sano and colleges, explored and selective destroy posteromedial part of

the hypothalamus in men in cases of violent, aggressive behavior. This approach also
allowed them to stimulate discreet zone and to observe autonomic, somatomotor and
other responses. In a series of 51 lesioned patients, a tendency to gain weight after
posteromedial hypothalamic destruction was seen Also during acute electrical
stimulation (100 pps, 1 msec, 5 - 10 Volts) of the medial hypothalamus, autonomic
sympathetic response were obtained, probably related with stress and energy
expenditure mechanisms (Sano et al., 1970). The first human study specifically centered
in treating human obesity using lesion and stimulation of the specific brain centers was
carried out by Quaade in 1974. In that study, five patients with morbid obesity were
subject to an electro stimulatory exploration of the lateral hypothalamic area. In three
cases a convincing transoperatory hunger response was elicited. Two of theses patients
received unilateral electro coagulatory lesion, and in a third a contralateral coagulation
was performed. The patients with lesions showed a statistically significant, but transient
decrease in caloric intake and a slight and transient decrease of body weight(Quaade,
1974). Although no direct DBS of the hypothalamus has been attempted for weight

control, indirect evidence of weight modulation can be found as a secondary effect in the
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established or experimental indication of DBS in the hypothalamic or near hypothalamic
area. For instance, several studies have reported increased body weight and body mass
index after high frequency stimulation in the subthalamic nucleus. While the mechanism
is still unknown, possible explanations of body weight gain after DBS STN might include
reduction of energy output related to elimination of dyskinesias, improved alimentation
or direct influence on function of lateral hypothalamus by DBS STN. (Maschke et al.,

2005; Novakova et al., 2007; Tuite et al., 2005)

Chronic unremitting cluster headache refractory to medical treatment is a developing
indication of DBS in the posterior hypothalamus. Stimulation in this region in a previous
hyperphagic and hypersexual patient has produced pain relief and 25 kg. Weight
reduction(Franzini et al., 2007).Indirect observations of the effect of DBS in weight in the
hypothalamic regions have been also made in our center. A patient with intractable
gelastic epilepsy due to a hypothalamic hamartoma was implanted with 3 DBS
quadripolar electrodes. While her number and severity of crises were greatly reduced, a
15 kg weight gain associated to menstrual cycle disturbance appeared following high

frequency stimulation of the medial hypothalamus (Figure 19).(Kahane P et al., 2003)

Figure 19: Hypothalamic Hamartoma: Postoperative x ray
of 3 DBS Electrodes implanted in a Case of drug resistant
gelastic epilepsy. Acute stimulation at a frequency of 130 Hz-
100 ps - 0.4 mA, reduced Interictal spikes; but chronic high
frequency stimulation (130 Hz/90 ps/0.5V, and then
185 Hz/60 ps/0.1V) produced 10Kg weight gain, which returned
to baseline after turning stimulation off(Kahane P et al., 2003).
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" Table 3: History of Deep Brain Stimulation

| The first direct electrical stimulation of the cortex of the animals, (Fritsch and Hitzig, 1870)5}

The first direct stimulation of the human cortex((Bartholow, 1874; Zimmermann, 1982)5}
1874

A Stereotaxic frame that provides safe and efficient access to deep brain structures in animals is
developed(al-Rodhan and Kelly, 1992; Horsley, 1908)6}
1908

A Stereotaxic frame is adapted for use in human neurosurgery(Spiegel et al., 1947)3}
1947

Stimulation of frontal tracts is used in psychiatric surgery for the treatment of, among other things,
chronic pain
1948

Rats are implanted with self stimulation electrodes(Olds and Milner, 1954)4}
1954

Brain stimulation is used for the treatment of neuropsychiatry disorders(Heath, 1954)5}
1954

Direct thalamic stimulation is used to reduce tremor(Hassler et al., 1960)2}
1960

Intermittent chronic basal ganglia stimulation is used for the treatment of tremor in Parkinson
disease(Bechtereva et al., 1975)3}
1968

Stimulation of the somatosensory thalamus is used for the treatment of chronic pain
1973(Hosobuchi et al., 1973)6}

Stimulation is used for the treatment of movement disorders(Cooper et al., 1974)6} and epilepsy(Cooper
et al., 1976)1}
1973

Stimulation of the PVG/PAG is used for the treatment of chronic pain(Richardson and Akil, 1977a)1}
1977

Thalamic stimulation is used for the treatment of tremor(Brice and McLellan, 1980)3}
1980

Thalamic stimulation is used for the treatment of dyskinesia(Merienne and Mazars, 1982)4}
1980

Thalamic stimulation is used for the treatment of depression(Andy and Jurko, 1987)7}
1987

Stimulation of the Vim is used for the treatment of tremor and Parkinson’s disease(Benabid et al.,
1987)9}
1987

The usefulness of implantable battery driven DBS pacemakers is demonstrated(Benabid et al., 1996;
Siegfried and Lippitz, 1994)1}
1990

The efficacy of STN lesion in MPTP monkey is demonstrated(Aziz et al., 1991; Bergman et al., 1990)8}
1990

Stimulation of the STN is used for the treatment of Parkinson’s disease in human(Benabid et al., 1994)1}
1994

’he efficacy of PPN stimulation in an MPTP treated primate is demonstrated
2003(Jenkinson et al., 2004)7}

(Based on Kringelbach M, Jenkinson N, Owen S, Aziz T, Translational principles DBS Nature Neurosciences(Kringelbach et al.,
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CHAPTER VI SCIENTIFIC RATIONALE FOR THE STUDY

With the aim of extend therapeutical available options, new targets are currently been
tested. The hypothalamic nuclei are involved in the alimentary disorders and they could
provide excellent new strategies for treating pathological behavioral alimentary disorders
like morbid obesity and malignant anorexia. In principle, several basic statements can

be established as the basic rationale for the study.

Statement N°1: Hypothalamic Stimulation or Lesion in Ventromedian

Hypothalamic Area modulates Food Intake and Total Body Weight

The hypothalamic nucleuses implicated in feeding behavior have been the object of
several studies in mice. In 1940, Hetherington and Ramson published that the bilateral
lesion of the ventro-median region of the hypothalamus produced hyperphagia followed
by obesity with normophagia(A. W. Hetherington, 1942). These centers, according with
Cox and Powley 1981 were not only producing the obesity due to a hyperphagia, but
weight gains also follow even in the rats with restricted food intake(Cox and Powley,
1981). Beltt and Keesey had shown earlier (1975) that low frequency stimulation de
VMH was susceptible of inhibit food intake (Beltt and Keesey, 1975). Others also have
suggested that a metabolic effect is probable in low frequency stimulation of VMH,
leading to a chronic decrease in weight without change in food intake behavior(King,
2006). In 1951, Anad and Brobeck, shown a second diencephalic center for food intake
in the hypothalamus: the bilateral lesions of the lateral hypothalamus provoked weight
lose with aphagia(Anand and Brobeck, 1951b). Anand and Dua then reported that

electrical stimulation of the LHA induced a pronounced bout of eating in previously
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satiated cats, and electrical stimulation VMH caused food deprived cats to stop
eating(Anand et al., 1955; Delgado and Anand, 1953). Here also a metabolic effect is
suggested by Teitelbaum and Stellar, because theirs rats were able to keep a low
weight and regain normal food intake after bilateral lesion of LHA (Teitelbaum and
Epstein, 1962; Teitelbaum and Stellar, 1954). Low frequency stimulation of LHA
produced ingesting behavior. Several biochemical and neurophysiological studies have
shown activation of LHA neurons during fast periods .Recently, Ruffin and Nicolaidis
have confirmed that the metabolic response is previous to behavioral changes in food
intake (Ruffin et al., 1995). In brief, VMH/LHA critical involvement in feeding regulation
can be summarized by:

1) The suppression and facilitation of feeding regulation by electrical stimulation of the
VMH and the LHA respectively

2) The hyperphagia and hypophagia after bilateral electrolytic ablations as well as
bilateral chemical lesions of the VMH and LHA respectively.

3) The presence of neurons in both nuclei that sense the metabolic signals such a
glucose, free fatty acid and leptin (Dhillon et al., 2006).1t is clear that hypothalamic nuclei

play an important role in weight regulation, food intake and motivation for feeding.

Statement N°2 High Frequency DBS inhibits and conversely, Low Frequency
(LFS) DBS activates Central Brain Structures.

Low frequency stimulation LFS (30-60 hertz) was applied in pain patients producing
excitation in target areas (Hosobuchi et al., 1977; Richardson and Akil, 1977b;

Richardson and Akil, 1977c). Patients with certain motors deficits (Liberson and

Pavasars, 1960) neurogenic sphincter disorders(Brindley, 1977), spasticity and epilepsy

118



Thesis: DBS for obesity in the normal non human primate: N Torres
MD

(Cooper et al., 1973)were also successfully treated with LFS . But brain lesioning
procedures were irreplaceable until the emerging concept of high frequency stimulation
(HFS) as a producer of functional neuronal inhibition was not recognized.

High frequency DBS provides functional inhibition of target structures producing
significant improvement in Parkinson symptoms in both animal and human studies
(Fang et al., 2006)and mimicking the clinical effects of tissue lesioning (Benabid et al.,
1987; Bergman et al.,, 1990). As a consequence, well known neurosurgical or basic
research lesional targets can now be easily explored and studied. There is also a recent
exciting return to LFS due to a better understanding of electrical stimulation, better
available equipment and medical team expertise as shown with the promising results in
the treatment of non dopaminergic symptoms of Parkinson disease using DBS LFS in
the pedunculo pontine nucleus (Mazzone et al., 2005; Stefani et al., 2007). The success
of DBS in multiple neurological conditions as well as its capacity of producing diverse
effects in target structures made it the ideal tool to consider for application in morbid

obesity where discreet brain centers direct energy homeostasis.

Statement N°3 DBS can modulate hypothalamic structures

Hypothalamic nuclei have been targeted for several conditions in the past, either for
lesioning and more recently, for electrical stimulation. Pioneering works by Sano have
opened the way to this very complex and potentially dangerous region. In a classical
article, they presented a series of 51 patients with pathologically aggressive behavior, in
which they performed a series of electrical stimulation of the hypothalamic area. In the
points of the posteromedial hypothalamus where sympathetic responses were elicited,

lesions were made bilaterally (performed with an interval of 7-10 Days). A tendency to
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gain weight after posteromedial hypothalamic desitba was seen. Also, during acute electrical
stimulation (100 pps, 1 msec, 5 - 10 V) of the raktiypothalamus, autonomic sympathetic
response were obtained, probably related with staesl energy expenditure mechanisms (Sano
et al., 1970)Authors classified their results as excellent and good in 40 cases, with one
importantly postoperative death after one week of the procedure. Most importantly,
intraoperative electrical stimulation elicited several autonomic and somatomotor
responses. The stimulated area caused rise in the blood pressure, tachycardia and
pupillary dilatation, defining an area that is now known as the ergotopic triangle of
Sano(Sano et al., 1970).

Other clinical lesion study aimed the lateral hypothalamus in morbid obesity. In 1974
Quaade et al. performed electrostimulatory exploration of the lateral hypothalamus and
electrocoagulation in obese humans. Vegetative response, feeling of fear or euphoria
and alterations in the pulse rate and respiration were all seen. An important hunger
sensation was produced in 3 out 5 patients, but no lasting effect either in food intake or
weight was obtained (Quaade et al., 1974).

There are also other direct indications that electrical stimulation in the hypothalamus can
modulate their functioning. Leone et al, after extensive work with functional
neuroimaging (PET), defined a region in the posterior hypothalamus thought to be
implicated in the mechanism of the cluster headache. The hypothesis has lead to the
implantation of bilateral DBS in these region with very interesting preliminary
results(Leone et al., 2005). A recent multicentric study have found similar good results,
with 4 out six patients pain free in a 6 month follow up (Bartsch et al., 2008). In contrast,

others have warned over transoperative risks in this area and only temporary results
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which should not justify surgery until larger multicentric studies were performed (Pinsker
et al., 2008).

Indirect evidence of modulation of the weight and food intake in patients implanted with
neurostimulators comes incidentally from long term outcome analysis of STN DBS in
Parkinson’s disease(PD)(Krack et al., 2003; Novakova et al., 2007). Using retrospective
survey, authors intended to evaluate weight changes in patients with advanced PD
treated with DBS STN. 25 PD patients (16 men, 9 women), of mean age 55 (42-65)
years, mean PD duration 15 (9-21) years, who previously received bilateral DBS STN
were evaluated. In the first survey, 1 to 45 months after DBS, weight gain was found in
all patients comparing to pre-DBS period. The mean increase was 9.4 kg (from 1 to 25
kg). The patients' mean body mass index (BMI) increased from 23.7 to 27.0 kg/m2, i.e.
by 3.3 kg/m2 (+2 to +6.1 kg/m2). In the repeated survey one year later, in 12 of the
patients body weight moderately decreased, 3 did not change, and 6 patients further
increased their weight. (Novakova et al., 2007). Others have shown acute increase in
body weight after few weeks of HFS DBS STN in patients slightly overweight, and
reduction in energy expenditure in parkinsonian patients treated in STN(Montaurier et
al., 2007). In conclusion, DBS-STN implantation leads to body weight gain in both male
and female patients with Parkinson’s disease. The risk of body weight gain is highly
variable among patients and differs between genders. As men gained primarily fat free
mass, a reasonable weight gain may be tolerated, in contrast with women who gained
only fat. Parkinson’s disease is associated with profound alterations in energy
metabolism that are normalized after DBS-STN implantation (Montaurier et al., 2007).

Possible explanations of body weight gain after DBS STN include a reduction of energy
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output related to elimination of dyskinesias, improved alimentation or direct influence
on function of lateral hypothalamus by DBS STN (Novakova et al., 2007)

Clinical and Preclinical studies have shown that hypothalamic structures can be
accessible to DBS and hence used as a powerful tool for a variety of disorders. That has
led some to try DBS in morbid obesity. Until now, there have been no published reports
of patients been implanted for morbid obesity. But translational research has created
animal models in order to mimic clinical settings. Sani et al have implanted rats in the
lateral hypothalamic nucleus bilaterally and observed changes in food intake and body
weight after 24 days of continuous stimulation at HFS; unstimulated group has a mean
weight gain of 13.8 % whereas stimulated groups have a mean weight loss of 2.3%
(Sani et al., 2007). Similar results were seen in a study conducted in our group, which
found reduced weight gain when stimulating VMH and increase weight gain when HFS
LHA without permanent changes in food intake (Chabardes in preparation). Strong
evidence of functional modulation of the hypothalamic function as seen in those
aforementioned studies has naturally led to use non human primates and DBS leads to
try to reproduce more efficaciously a clinical conditions. Lacan et al assessed the
feasibility of ventromedial hypothalamus (VMH) DBS in freely moving vervet monkeys to
modulate food intake as a model for the potential treatment of eating disorders, showing
interesting results in terms of reduction in food intake and procedure safety (Lacan et al.,
2008). In summary, DBS has shown efficacy in modulating subcortical central structures
like the basal ganglia and have also shown promise when applied specifically to
hypothalamus in either preclinical and human studies. We hope that our study can
contribute to support the possible role of DBS in modulation of hypothalamic structures

and morbid obesity.
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Statement N°4 Intraventricular Approach is a safe and effective method to

reach intracranial medial Structures

A critical issue in functional neurosurgery is the acceptable overall amount of risk that a
determined therapy could bring to an individual patient whose condition, even though
severe or invalidating, is not life-threating. Morbid obesity, a severe condition with a
major morbidity, is a chronic disease that has to be managed with the least risk for the
patients. Some ethical concerns, some of them very well funded, could arise .Risks
that could be acceptable for other condition like dystonia(Pillon et al., 2006) or Parkinson
disease(Constantoyannis et al., 2005; Vesper et al., 2007) might be unacceptable for
Morbid obesity or anorexia nervosa. Keeping these arguments in mind and in view to a
possible clinical application, our team has developed a new, less invasive trajectory for
placement stimulating electrodes, without directing disrupting sensitive brain structure
like the median hypothalamus. Ventromedian and periventricular hypothalamic nucleus
are projecting to the lateral walls of the third ventricle while the anabolic areas of the
lateral hypothalamus are far from the stimulating leads in this location.

Reaching central structures like the third ventricle using CSF pathways is a common
neurosurgical practice extensively used in hydrocephalus (Cardia et al., 1986; Pople et
al., 1990), ventricular tumors (Buxton et al., 2001) and others procedures involving
shunts or endoscopic procedures (Hellwig et al., 2003). Instruments like flexible
endoscopes and ventricular catheters of different diameters can easily travel trough the
ventricular system and through Monro’s foramen decreasing the risk of complication
when compared to intraparenchymal trajectories. For instance, third ventriculostomy

endoscopy has shown advantage in terms of safety and reduction of morbidity when
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compare to standard stereotaxic procedure for third ventricle tumor’s biopsies (O'Brien
et al., 2006). In a large multicentric study, endoscopic catheterization of third ventricle
showed safety and provide good outcome in obstructive hydrocephalus (Gangemi et al.,
2007). Dusick found 6 surgical complications in a series of 180 adult patients
undergoing 3V endoscopy for noncommunicating hydrocephalus, none of them directly
related to endoscopic procedure per se (Dusick et al., 2008). Although it is clearly
exaggerated to make a parallelism between endoscopic ventriculostomy and electrode
3V placement, fiberscope studies using primarily Monro’s foramen approach can give an
idea of the type of complication that could be found using this pathway.

Intraventricular stimulation resembles the cortical stimulation in the sense that the
effective current should be directed toward a surface, in contrast to the intra-nucleus
stimulation where the stimulation is directed to a spherical volume. The lead position in
contact with the ependima layer and in direct relation with the medial structure situated
at less than 2 mm might effectively activate the tissue of the medial hypothalamus.
Conductive elements like CSF and the ependymal layer provide adequate impedance to
the passing current which can reach medial structures without altering surrounding more
lateral areas. Moreover, the use of DBS for stimulation subcortical structures using the
ventricular system has proven successful in the past for somatic pain. Lead placement
in the ventricular system has been attempted for modulation of the periventricular grey
(PVG) matter in chronic pain syndromes. Richardson review his own series of PVG
leads found good to excellent results in pain relief with no reported neurological
complication and few side effects (Richardson, 1982; Richardson, 1983; Richardson,
1995). Also, Hosobuchi has evaluated a series of 122 patients who underwent electrode

implantation for the control of severe chronic pain over a follow-up period of 2 to 14
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years. Of the 65 patients with pain of peripheral origin, who were treated with stimulation
of the PAG, 50 obtained successful pain control. The electrical stimulation technique
appears to provide in those series long-term pain control safely, with few side effects or
complications(Hosobuchi, 1986; Hosobuchi, 1987). These reports support the idea of
electrical stimulation could modulate central grey nuclei surrounding the ventricular
system.

Technological advances in DBS materials made now possible the use of electrical brain
stimulation in more flexible way for the study over longer period of time in nearly normal
condition the behavior in non human primates. Advances in DBS technology and in
Stereotaxic techniques make now possible to reach areas of difficult access with a
better security margin. This exploration could hopefully serve as a pre-clinical study for

future human application of this approach in diverse types of eating disorders.
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Experimental Design and
Methods
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CHAPTER VII EXPERIMENTAL DESIGN AND METHODS FOR

OUTCOME ANALYSIS
OBJECTIVES

The purpose of the present study is to assess the effects of chronic ventromedian
hypothalamic (VMH)/inferior dorsomedial hypothalamic (DMH) stimulation on feeding
behavior, metabolism, and global body weight in the primate model. The study was
conducted to replicate previously reported acute effect of VMH stimulation on food
intake (Takaki et al., 1992), to determine whether Intraventricular electrode positioning
can exert modulation in the third ventricle walls (where VMH lies), to observe the effects
of VMH stimulation at different frequencies on gross behavior in non human primate and
to evaluate the safety of the procedure using deep brain stimulation electrode
technology already available for human application. Until now investigation of the effects
of chronic deep brain stimulation of the medial hypothalamus in higher animals has
never been performed. We have reviewed the efficacy and safety associated with
stimulation in the chronic settings. Results of these experiments will be used to assess
the feasibility of using such stimulation as a potential, future therapy for cases of morbid

obesity.
EXPERIMENTAL DESIGN

Five Normal Weight Macaca Fascicularis monkeys (H4, H5, H7, H8 and H10) will be
acclimated to two daily meals. Two monkeys were implanted with one quadripolar
electrode (of 1.5 mm long in contact surface) in the third ventricle at the level of the

VMH/DMH nucleus. Two others monkeys were implanted with one unipolar electrode
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(3.5 mm long of active contact surface) at the same location. The last monkey was
implanted in an extrahypothalamic site, with the 1.5mm quadripolar electrode Figure 32.

Phase 1: of the study identified electrode contacts that are effective in reducing the
amount of food intake and lack of unacceptable side effects using different stimulation
parameters. The experiment was performed as follow: After a period of fast of 24hrs,
the animal received 8 hr biphasic wave stimulation at different frequencies and voltage
intensities and a full day standard meal was presented (17:00 to 18:00 hrs). Latency of
feeding initiation, time expends during feeding and total amount of food consumed was
recorded. Overall motor activity during stimulation was also recorded and video taped
for further behavioral analysis. Each animal underwent one or more control sessions in
which meals were presented in the same conditions but off-stimulation. The combination
of parameters settings that reduce meal size with longer latency feeding initiation and
without unacceptable side effects (best parameter settings or bps) were chosen to be in

use for the phase 2 or the chronic Stimulation period. Figure 20

(%

24\Hrs B

Start{fasting Stimyilation Test

Figure 20: Diagram showing the acute stimulation trial protocol: fasting for 24 hrs,
stimulation for 6-8 hrs and standard meal during which meal size, time eating and
locomotion are measured. Each monkey was stimulated several times at different
frequencies in order to establish the set of parameters able to reduced more effectively FI
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Phase 2: Assessed the effects of Intraventricular VMH/DMH continuous stimulation on
the feeding behavior and global body weight: Paradigm 1: Monkey H5 and H7 received
the best or more effective frequency stimulation (BPS) during an 8 week period. Monkey
H8 and H10 received simultaneously High frequency stimulation (HFS) at the parameter
in use for subthalamic DBS for Parkinson's disease (130 Hz). Monkey H4 was kept off
stimulation continuously during 8 weeks trial. Paradigm 2: Monkey H8 and H10
received BPS stimulation, for an 8 week period. Monkey H5 and H7 were given HFS for
the same period and monkey H4 received no stimulation. Paradigm 3: monkeys H5,
H7, H8, 10 all received stimulation considered as Low frequency stimulation (LFS) (30
Hz) currently in use in clinical settings (pain, gait freezing etc). Sham monkey H4

remained off stimulation. The animals were weighed and food intake,

. Phase2 .
hormonal/electrolyte levels We’Jtr=—n2LLa4u:allemonmimced1 (Figure 21)
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Figure 21: Protocol for chronic DBS at different frequencies. Between each paradigm, a washout periofi4
weeks was allowed to avoid ‘carry on’ effects. BF8r best frequency stimulation is the stimulation fequency
which produced the most important effect over Fl inthe acute trials. HFS or High frequency was set &t30Hz
as used in DBS for Movement disorders. LFS or Lowréquency was 30 Hz, the frequency used in pain and
other pathologies.
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Figure 22: Summary of phase 1 and 2 protocol for acute and chronic DBS at
different frequencies. Results in acute test were used in the crossover study for
determining the best frequency stimulation parameter able of producing reduction in FI. This
settings were test against other settings used in the clinical environment(HFS at 130 and
LFS at 30Hz)

STATISTICAL ANALYSIS

Statistical analysis of the data presented in this work was done using the following tests:
« The test non parametric of Kruskal-Wallis for multiple comparisons between
groups non-paired, was done for the analysis of the acute trials. This was

followed by a post hoc Dunn’'s Test. For each monkey, we transformed the
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variables in ratios (using off stimulation as baseline). For each acute trial, at a
given frequency, the variation in the variable was analyzed for each animal.

For multiple comparisons between groups, paired non parametric one way
ANOVA, Friedman’s test was performed. This was followed by a post hoc Dunn’s
Test. For comparison, all measures were transformed in ratios, representing % of
variation from baseline. The test was used to compare the influence of the
stimulation parameters or most specifically, the influence of the frequency in the
different variables (weight, fat, food intake etc.). To do that, all the subjects were
paired, and compared using the variation of each variable (or ratio) in response to

the stimulation of the electrode at different frequencies (Figure 23)
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Figure 23: Statistical test used and analysis of the differences.

Kruskal-Wallis test
The Kruskal-Wallis test is used to test:

* The null hypothesis HO according to which k independent
samples were drawn from the same population (or identical
populations),

* Against the alternative hypothesis H1 according to which
these samples were drawn from populations sharing the same
shape but with different central tendencies (medians).

The observations must be on a numeric or ordinal scale (not just
categorical).

The samples do not need to have the same number of
observations.

The Kruskal-Wallis test may be perceived as a generalization of the
(Wilcoxon)-Mann-Whitney test to more than two samples.

The Kruskal-Wallis test is non parametric, that is, it does not make
any assumption on the nature of the underlying distributions (As
many other non parametric tests, it will not use the values of the
observations directly, but will first convert these values into ranks
once these observations are merged into a single sample.

The statistic of the Kruskal-Wallis test is built from the means of the
ranks of the observations across the samples. This approach is
similar to that of one-way ANOVA: * ANOVA compares the sample
means. But it also assumes the populations to be normal with equal
variances, so in fact, it tests whether these populations are identical.

* The Kruskal-Wallis test does not assume normality or equal
variances, and instead of comparing sample means, it compares
sample means of ranks.

This similarity is the reason why the Kruskal-Wallis test is sometimes
called "one-way ANOVA on ranks".

The Kruskal-Wallis test should not be confused with the Friedman
test. This test also tests the hypothesis according to which several
samples originated from the same distribution, but these samples
must then be matched, that is be made of identical (or very simular)
individuals that were submitted to different conditions. The Friedman
test then attempts to detect differences in the effects of these
conditions.

Friedman test

The Friedman test addresses the issue of deciding whether k
matched samples were drawn from the same population. It is
therefore an identity test.

The observations must be measured on an numerical or ordinal scale
(i.e. not categorical).

The samples need to have the same number of observations.

The Friedman test more than two samples.

The test is non parametric, that is, it does not make any assumption on
the nature of the underlying distributions (except continuity). As many
other non parametric tests, it will not use the values of the observations
directly, but will first convert these values into ranks once these
observations are merged into a single sample.

Test does not assume normality or equal variances, and instead of
comparing sample means, it compares sample means of ranks.

The Friedman test is a non-parametric statistical test developed by the
U.S. economist Milton Friedman. Similar to the parametric repeated
measures ANOVA, it is used to detect differences in treatments across
multiple test attempts. The procedure involves ranking each row (or
block) together, then considering the values of ranks by columns.
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CHAPTER VIII IMPLANTATION SURGERY
MATERIALS AND METHODS

A pilot study was done, before starting our work, for evaluate the feasibility of the
hypothalamic monkey surgery and the efficacy of a direct intraparenchymatous

implantation VMH bilateral implantation.

PILOT STUDY: HYPOTHALAMIC BILATERAL DEEP BRAIN STIMULATION USING
INTRAPARENCHYMAL ELECTRODES

In order to evaluate the direct effect of DBS over medial hypothalamic structures, a non
human primate was implanted bilaterally intraparenchymal in the ventral hypothalamus.
Objectives
1. Analyze the technical feasibility of bilateral intraparenchymal implantation of
DBS electrodes in the ventromedial hypothalamic region in monkeys
2. Evaluate tolerance and safety of ventromedial and lateral (VMH/LHA)
Hypothalamic region DBS in the non human primate.
3. Assess the efficacy in terms of weight and food intake of bilateral VMH/LHA
DBS electrodes stimulation at different parameters in this model
Materials and Methods(pilot study)

Animal

Study was performed on a male macaque monkeys (Macaca fascicularis, CRP, Port
Louis, Mauritius) weighing 7.8 kg. Monkey was implanted bilaterally (March 2004) with
two 3389 DBS electrodes (Medtronic Corp. Richmond Minnesota).The exact age was
not known as they were captured in the wild. Animal was maintained in individual
primate cages under controlled conditions of temperature (25+1<C) and light (12 hour
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light/dark cycles, light on at 8 am), were fed regularly on a diet of fresh fruit and biscuits,
and had free access to water. The laboratory is authorized by the French Ministry of
Environment and all experiments were performed in accordance with the European
Communities Council Directive of November 24, 1986 (86/609/EEC) for care of
laboratory animals. Every effort was made to minimize the suffering of the animals while
maximizing the data obtained.

Surgical Technique

1. Anesthesia and Intraoperative Care

Anesthesia was a combination of ketamine (20 mg/kg loading dose, 5 mg/kg
maintenance im.) and diazepam (0.2 mg/kg iv.) in addition to 1% lidocaine with
epinephrine for local anesthesia of the scalp and muscles. 0.9% NaCl was continuously

infused intravenously during the operation for drug access and hydration. Figure 24

Figure 24: AP and lateral views of a monkey installed on the KOPF® (David Kopf
Instruments Tujunga, CA USA) stereotaxic frame

2. Stereotaxy
Stereotaxy was performed using a KOPF® frame with a primate adapter kit (KOPF®

David Kopf Instruments Tujunga, CA USA Instruments, USA). As shown in Figure 24,

the frame was modified by removing a central block from the piece holding the mouth
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hook and orbital bars. This was done to better visualize the third ventricle on
anteroposterior (AP) ventriculography.

3. Ventriculography and Targeting

AP and lateral ventriculography was performed(Figure 25) through a stereotactically
placed right lateral ventricular puncture through which 2 mL of ventricular contrast
(lopamiron® 200, iodine 200mg/mL, Bracco, ltaly) was injected after 0.5 mL of
confirmatory air. All films were processed in a darkroom adjoining our animal operating
room. The trajectory was chosen taking into account Paxinos and Huang atlas (Paxinos
et al., 1999)corrected by actual animal Ventriculography (reflecting internal nervous
systems landmarks as anterior/posterior commisure line and thalamus height). The
coordinates for VMH: The anteroposterior coordinate (y) was 2.8 12 of the ac pc
length posterior to the ac. The dorsoventral coordinate (z) was 6.12 8™ of the thalamic
height below the ACPC plane. The lateral coordinate (x) was 2 mm from the midline of

the third ventricular.

|

Figure 25: Lateral (left) and AP (right) ventriculograms with planning. Lines were
drawn between ac to pc and a parallel line passing through the dorsal thalamus. Central line
passed throughout the middle of the 3rd Ventricle. ac: anterior commisure, pc: posterior
commisure, ht: thalamus height, inf: infundibulum, 3V: third ventricle. Paxinos Atlas showed
cuts from a macaca mulatta, a larger animal than fascicularis, with an ac pc distance of
14.4mm (our monkeys had between 8-11 mm ac pc line distances). Normalization (dividing
all distances for animals internal landmarks) allowed proper targeting(Paxinos et al., 1999).
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4. Electrode Implantation

After fixing the head to the KOPF® frame with a primate adapter kit (David Kopf
Instruments Tujunga, CA USA) as shown in Figure, a midline incision was made. The
skull was accessed bilaterally and two burr holes of 2 mm over coronal suture were
drilled for the approach to the hypothalamic targets. Using the ventriculograms
previously performed and with the coordinates from Paxinos atlas(Paxinos et al., 1999),
a guide tube fitted with a stainless steel stylet was stereotactically inserted into the brain
bilaterally by using micromanipulators. Several twist drill holes were made for electrode
fixation. A four contact electrode Medtronic 3389 was introduced after withdrawal of the
stylet until the tip reached the target VMH area. AP and Lateral X rays were performed
and compared to previous ventriculograms. In this way, the accuracy of the implantation
was controlled and verified intra-operatively. After carefully checking final position, the
electrode was secure in place using ethicon sutures 4-0 and acrylic cement. This
method describe for human DBS procedure, allows effective anchoring the lead in
place.Short Medtronic extensions were then tunneled subcutaneously to the back of the
animal. Same procedure was repeated for the other side. Left and Right IPG were
subcutaneously implanted below the scapula, allowing unrestricted and free movement.

Non absorbable sutu jsed ecure the e i 3ds and P

Figure 26: AP and lateral views at the end of the procedure. Final
position of bilateral electrodes
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5. Postoperative Testing and DBS Programming

After two months of observation, animals were anesthetized briefly with ketamine (20
mg/kg loading dose, 5 mg/kg maintenance im.) and put in an operative table. Side
effects were tested for a wide arrangement of parameters setting. Using monopolar
stimulation, all contacts (0-3) in both electrodes were tested (1-5 V, 60us, 25-130 Hz).
All effects were recorded and the stimulation intensities that evoked minimal adverse

effect were used for programming IPG in the subsequent experiments.

6. Feeding Regimen and Weight Measurements

Animal received two daily meals compose by 150 g primate chow biscuits and 350 g of
fruits (carrots, apples, orange and bananas). Water supply was taken ad libitum by the
monkey from a bottle in the frontal part of the cage. Food intake was difficult to measure;
we did a subtraction from the amount of food delivered and the amount of food left in
cage. The daily food intake was between a range 390grs-500grs a day. Water intake
was not possible to measure due to problems with the bottle (monkey was able to
manipulate the bottle, some liquid was lost). The implanted pulse generator (IPG),
programming was made transdermally on the animal back using Medtronic N-vision
programmer, after temporarily restraining it with the sliding bottom of the cage. Two to
four weeks stimulation was then made using first unilateral and then bilateral monopolar
stimulation at different frequencies

7. Histological Analysis

Animals were anesthetized by intravenous injection of sodium pentobarbital (50mg/kg)

and perfused transcardially with 0.9% saline followed by 4% buffered formaldehyde.
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Brain was removed, blocked, immersed in the same fixative for 24hrs, and then placed
in saline with the addition of 30% sucrose until the block sank. They were then sectioned
coronally on a cryostat at a thickness of 40um. Every section was collected in sequence
onto gelatinized slides and processed for routine cresyl violet staining.

Results(pilot study)

Post Operative Period

Animal tolerated the surgical procedure without negative incidents. After recovery from
anesthesia, monkey was able to perform self maintenance in the cage. No appreciable
changes in behavior were seen. Wound healing was fast and uneventful.

The initial weight was 7.8 kg. After surgery, there was an important weight lost without
stimulation, reaching 6.8 kg in two weeks. The following weeks, the weight was
stabilized at 6.9 kg. Unable to reach the departing preoperative weight; we started the
chronic stimulation in the left electrode after two month stabilization.

Acute Side Effects during Postoperative DBS Testing

The stimulation parameters were estimated in the postoperative period, according to the
results of DBS testing at different amplitudes and frequencies in all contacts. Animal was
lightly anesthetized and put in an isolated mattress and several intensities were tested.
At 4.5V in contact 0, a flutter in upper eyelid was elicited in left side and in the right side,
and a unilateral midriasis compared with the contralateral side was seen when
stimulating in contacts 0, 1, 2 at 4.5 V. To avoid any possible effect due to current
spread beyond the target area, 2 volts were chosen as maximal stimulation intensity.
Behavioral Observations

Several important observations were made during this experiment. Behavioral changes

were occasionally seen when stimulating lateral hypothalamic region at 50 Hz. Penile
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erections, fear reaction, lip smacking piloerection were seen in left and right side that
last few hours-days. Also in lateral hypothalamus, adipsia was found once when
stimulating in VMH left side at 50 Hz, disappearing also after 48 hrs period. After the
change in the frequency (from 25 to 50 Hz), during 48 hrs the monkey stop drinking
water without change in solid feeding behavior. The animal wasn't presenting any sign of
dehydration, with its body weight remaining stable at 7.5 kg. Blood samples did not
showed any change in electrolyte concentration. This effect disappeared spontaneously
in few hours. Also the contact projecting to lateral hypothalamic area produced acute
responses over several behavioral. For instance , after starting stimulation, penile
erection were observed, sensible to intramuscular ketamine and a clear increase in
chewing movements, dorsal region piloerection and fear reaction when we approach the
animal (he was jumping to the back in the cage). All this changes were decreasing after

a period of adaptation, when the monkey regained it usual behavior

Weight and Hormonal Changes

The initial weight was 7.8 kg and immediately after surgery, there was a decrease in
body weight up to 6.9 Kgs. After two month stabilization period, stimulation was started
in the left side using 25Hz, 1.5 V, 0.6 ms and the deepest contact, projected to the VMH
nucleus. Using continuous chronic stimulation, we evaluated weight gain or loss, and
hormones levels related with basal metabolism. Weight and hormones levels were
measured after a period of continuous stimulation between 2-4 weeks, during the same
hour (The weight and the blood sample were obtained between 10:00-12:00 hours in a
fasting animal). The stimulation was monopolar with the positive polarity in the case.

Pulse width and intensity were kept constant during the duration of the whole experience
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at 60 us and 3v (after an initial short essay with 1.5V). Blood samples were analyzed in
an associated laboratory using standard human reactive and techniques. Results were

summarized in the (
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Table 4), (Table 5), and (Table 6)

Stimulation from unilateral left electrode in the LHA area at 50 Hz produced a drop in
weight from the baseline of 5% (We corrected this value with the postoperative baseline
weight of 6.91 Kg). This was effect did not last long time and animal returned to
baseline weight by the end of the period. Changes in the total body weight in general
ranged between 5% increase to 5% decrease. We did not obtain a clear tendency
towards a reduction or augmentation of weight related to the contact placement or the
fixed frequencies explored. Acute stimulation effects were seen when stimulating lateral
hypothalamic area: piloerection, penile erection, fear reaction (jumping back of the cage
when approached) that were decreasing after a period of adaptation. Bilateral
stimulation to the VMH produced a slight reduction in total body weight of <2% and in
LHA produced an increase in the total body weight of 3.94% at low frequency and

5.92% at 130 Hz (Table 6). No change in food intake was seen in this trial

141



Thesis: DBS for obesity in the normal non human primate: N Torres
MD

Table 4: Weight and hormones levels related to Frequency and Active Contact in monkey
H3 Unilateral (left) chronic stimulation.

Contact FQ W (Kgs) Variation (%) Cortisol TSH T3L T4
VMH 25 7,21211 0,046 614 <0.005 31 9,6
VMH 50 7,4389 0,0489 1111 <0.005 2,7 9,2
VMH 130 6,87191 -0.30% 633 <0.005 43 99

LHA 50 6,50904 -0,056
LHA 130 6,89459 0.00% 633 <0.005 43 9,9

Table 5: Weight and hormones levels related to Frequency and Active Contact in monkey H3
Unilateral (Right) chronic stimulation.

Contact FQ W (Kgs) Variation (%) Cortisol TSH T3L T4
VMH 130 6,667802 -0,0329 561 0.015 3 11,2
VMH 50 6,985316 0,0132 650 0.013 35 118

LHA 130 7,189433 0,0427
LHA 50 6,690482 -0,026 704 0.019 4 114

Table 6 Weight and hormones levels related to Frequency and Active Contact in monkey H3
Bilateral chronic stimulation.

Contact FQ W (Kgs) Variation (%) Cortisol TSH T3L T4
VMH 130 6,7812 -0,0164 868 <0.005 34 10.7
VMH 50 6,871918 -0.30% 540 0.013 35 141

LHA 130 7,302831 0,0592
LHA 50 7,166753 0,0394 551 <0.005 34 10.7
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Figure 27: Variation in weight during bilateral DBS of VMH and LHA at 50 and 130
Hz (2v, 0.60 msec). A tendency to increase weight during bilateral LHA was seen
regardless the frequency employed

Histological Changes

Macroscopic findings:

Brain with cortical damaged due to electrode passage and some inflammatory reaction
over the entry point in the right side. Macroscopic cuts showed small hemorrhagic zone
in temporal lobe and lesion in the floor of the third ventricle.

Microscopic changes: Third ventricle floor was partially missing and probably damaged.

No other changes in the surrounding tissue were remarked.

Discussion (pilot study)

Chronic electrical stimulation was delivered continuously in a normal weight bilateral
implanted non human primate in hypothalamic area. Variation from the post surgical
body weight (6.9kg) ranged between 5% increase to 5% decrease in different

parameters settings. Remarkably however, is the fact that monkey never regain initial
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pre-surgical body weight (7.8 kg) during the two month off-period before start
stimulation or afterwards(two weeks off stimulation the weight remained almost constant
between 6,44-6,71 Kgs). Hormonal changes were not significative: circulating T3L and
T4 remained at the same level, with no sign of induced secondary hyperthyroidism (TSH
is released in the Paraventricular region). We have not found in our study changes in the
levels of sexual hormones (diffusely distributed in the preoptical region) nor the cortisol
(corticotrophin-release hormone also located in the paraventricular region).

Several important observations were made during this experiment. Behavioral changes
were occasionally seen when stimulating lateral hypothalamic region at 50 Hz. Penile
erections, fear reaction, lip smacking piloerection were seen in left and right side that
last few hours-days. Also in lateral hypothalamus, adipsia was found once when
stimulating in VMH left side at 50 Hz, disappearing also after 48 hrs period. No objective
signs of dehydration were found from the blood laboratory electrolytes.

It has been well established that ventromedian hypothalamus and lateral hypothalamic
area play a cardinal role in the control of food intake and in weight control. There has
been, however some controversy regarding the results of studies on the monkey.
Although an electrical lesion placed in the VMH in monkey resulted in hyperphagia,
Robinson et al found that electrical stimulation of the monkey VMH did not constantly
suppress the ad libitum feeding even in partially satiated state. In fact VMH stimulation
at 50 Hz with high current up to 1ma induced food intake (Robinson and Mishkin, 1968),
effect been similar to a lesion. Lateral hypothalamic area also failed to shown which
specifical areas were able to facilitates or suppress food intake. More recent work for
Takaki (Takaki et al., 1992) revisited those issues and made very pertinent observation

that might be useful in our actual settings: One important aspect is the current spread
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and intensities. Strong electrical stimulation might electrotonically stimulate both feeding
inhibitory and facilitatory sites. Areas that induce feeding behavior are located
immediately lateral to the inhibitory nucleus VMH. In that study, when carefully control
electrical parameter and applied to smaller areas, they were able to obtain feeding
suppression in hungry monkeys. In this pilot study, we failed to show changes in food
intake and we obtained non significant changes in weight when stimulating either VMH
or LHA. A recent experience in vervet monkeys has found that during VMH DBS, total
food consumption increased. The 3-month bilateral implant of electrodes and
subsequent periods of high-frequency (185 Hz) VMH stimulation did not result in
significant changes in body weight, in concordance with our results(Lacan et al., 2008).
One possible explanation is electrode size and contact size. Human's electrodes with a
big surface area might easily spread electrical stimulation beyond the borders of the
nucleus of interest, and reach areas with opposite actions. Other issues that remains to
be solved in this Series is the effective parameters (frequencies, pulse width) that induce
changes in food intake and weight gain and whether continuous stimulation is better
than stimulation given in shorter periods during the day.

Methodological Consideration and Technical Problems

There were several technical difficulties that might help explain some results. The first
difficulties was related to the used of electrodes of big surface usually employed in
clinical practice. While there are more reliable for being tested for human use, the
contact surface is probably big enough for delivering energy to adjacent nuclei and
areas with opposite functions. In previous experiences we tested customized DBS

electrodes for non human primates of approximately a third the size of the 3389
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Medtronic lead. But the system was not strong enough and connections with the
extensions were easily damaged.

The external magnet activation of IPGs in the conscious and freely moving animal
allowed ready access for initiating DBS periods. Initially, the animal was anesthetized in
order to changes parameters, representing a possible change in behavior during the
post anesthesia periods. The cage was adapted for the passage of the magnet through
the bars and with the sliding cage bottom and some training, it was possible to change
the stimulation parameters without putting the animal to sleep.

The targeting in the Macaca fascicularis ventromedian hypothalamic region was an
adaptation from the methods used to localize structures in basal ganglia(Percheron,
1975; Percheron et al.,, 1986a), like the subthalamic nucleus in the MPTP primate
model(Benazzouz et al., 1996). The accuracy of the methods coupling Ventriculography
and atlas superposition was already assessed in previous studies, either when doing
lesions or when implanting DBS Leads(Wallace et al., 2007). Final electrode position
was evaluated using Ventriculography and indirect measures, like the relative position of
the contact to the AC PC line and the atlas coordinates for VMH and LHA. The area was
further explored using the leads to set appropriate stimulation parameters and the side
effects also provide us with information about final position. But the histological analysis
only revealed a lesion in the third ventricle floor, which does not allow us to confirm the
final position of the stimulating leads.

Other critical elements in the evaluation and interpretation of the results are the
stimulation parameters considered for chronic stimulation. Different parameters used
were obtained from current human stimulation protocols and clinical experience in the

movement disorder functional practice, like high frequency stimulation in Parkinson
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disease (Benabid 2003; Benabid 2003(Benabid, 2003a; Benabid, 2003b) and
dystonia(Coubes et al., 2000). Low frequency parameters were set from pain studies
found in the literature and clinical experience in chronic pain and cluster headache
accumulated in our center. The intensity in general was set under threshold for side
effects using also pulse width 0.60 msec as used in patients and monopolar cathodic
stimulation. This way of setting electrical parameters could be inadequate to stimulate
or inhibit this region. The anatomical complexity of the area composed of various nuclei
surrounding the Ill ventricle and a large area with mixed axons and neuronal body
accounts for the relative difficulty to reproduce an exclusively inhibitory effect when
using 130 Hz or avoid current spread and hence stimulation of surrounding areas when
using low frequency stimulation. It could have been interesting to test different
frequencies and different intensities and possible find a particular setting able to yield a
valuable response.

Conclusions (pilot study)

The pilot work has served to establish the possibility of the modulation of the
hypothalamic medial/lateral area in the study of possible therapies for obesity and eating
disorders. Monkey tolerated well the procedure without any significant life threatening
side effect. Eating behavior and weight are quantitative measurable variables which can
be obtained in a freely moving animal without learning task or using neurotoxins to
mimic neurological conditions. Stereotaxic DBS methodology can be applied to this
particular setting and the use of Ventriculography coupled with specific monkey
stereotaxic brain atlas wrapped to individual internal landmark provided good accuracy
in targeting hypothalamic structures as we have already seen in basal ganglia

structures( STN, GPi etc.). But many question remained unsolved and unanswered. The

147



Thesis: DBS for obesity in the normal non human primate: N Torres
MD

results obtained were not conclusive and significant weight changes were not seen.
Some results were even contradictory (weight gain during LFS of VMH) but in general,
the changes were short lived. Some of the results may be due to factors involved in the
anatomy of the structure and the geometry of the electrode. The confounding effects
might also be related to the current spread beyond nucleus boundaries, involving remote
structures. In summary, these results have shown that VMH DBS can be applied a might
represent a new interventional strategy, but new ways of modulate this medial structures
exclusively with minimal current spreading to antagonistic structures has to be found.
We establish a chronic non human primate model applicable to eating disorders. For this
motive we have chosen to try a new procedure for reaching medial structures: the
intraventricular deep brain electrode in the ventrobasal hypothalamic region for weight

modulation.

HYPOTHALAMIC DEEP BRAIN STIMULATION USING THIRD VENTRICLE
ELECTRODES (3V)

Animals

After a period of observation of behavioral parameters and stable base line food intake,

Five normal Weight Macaca Fascicularis monkeys (Macaca fascicularis, CRP, Port

Louis, Mauritius)(H4, H5, H7, H8 and H10) weighing 5.05 - 6.18 kg, were operated in
this experiment. The exact age of the animals was not known as they were captured in
the wild. Animals were maintained in primate cages (Genestil®, Royaucourt Franca)nder
controlled conditions of temperature (25+1<C) and light. Each monkey was housed
individually before and during these experiments, and had complete veterinarians

supervision throughout this period. They were acclimated to two daily meals on standard
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laboratory chow biscuits (150 grs) (Scientific Animal Food products SAFE, France, 15-
21 biscuits a day) and fruits. Lighting was maintained on a 12 h light-dark cycle (light
8:00 -20:00 h). The laboratory is authorized by the French Ministry of Environment and
all experiments were performed in accordance with the European Communities Council
Directive of November 24, 1986 (86/609/EEC) for care of laboratory animals. Every
effort was made to minimize the suffering of the animals while maximizing the data

obtained.

SURGERY FOR HYPOTHALAMIC INTRAVENTRICULAR DBS ELECTRODES

Anesthesia and Intraoperative Care

Each animal was initially anesthetized using ketamine (Imalgene®, MERIAL Lyon
France) (20 mg/kg loading dose, 5 mg/kg maintenance im.) followed by the
administration of diazepam (0.25 mg/kg IV, IM) Anesthesia was a combination of
ketamine and diazepam in addition to 1% lidocaine with epinephrine for local anesthesia
of the scalp and muscles. 0.9% NaCl was continuously infused intravenously during the
operation for drug access and hydration. Intubation and assisted ventilation were not

required.

Stereotaxic Procedure

A Stereotaxic Kopf® large animals frame was used. The procedure was performed
using a Kopf frame with a primate adapter kit (KOPF® David Kopf Instruments Tujunga,
CA USA). The frame was modified as previously explained. The frame is attached to a
fix base placed in a special room designed to use transoperative teleradiography. AP

and Lateral views Fluoroscopy can be obtained in this special set up that place monkey
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head distant from X rays sources, diminishing distortion. Our surgical methods are
based on Ventriculography and direct transsurgical visualization of internal landmarks
(anterior commisure, posterior commisure, thalamus height, infundibulum third ventricle)
designed mainly for targeting central structures in the brain(like the basal ganglia). This
approach, widely used in humans ((Talairach and Szikla, 1980)) and adapted for
monkeys (Percheron et al., 1986a) is quite valuable when targeting periventricular areas
(like in human’s periacueductal grey matter).  After fixing monkeys head in the frame,
AP and lateral X-ray’s views were obtained to avoid rotation in either sagittal or coronal

plane.

Ventriculography was performed using lopamiron contrast medium (lopamiron® 200,
iodine 200mg/mL, Bracco, Italy ) and introducing a ventricular rigid trocar (0.8 mm
diameter) at 70° to the horizontal 2mm lateral from sagittal suture coupled with a

Electrode holder (KOPF® David Kopf Instruments Tujunga, CA USA).

©
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Figure 28: KOPF® electrode holder used to perform Ventriculography and direct a
guide tube into the Monro’s Foramen allowing DBS lead to slide into the Third
ventricle
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Figure 29: Stereotaxic KOPF® (David Kopf Instruments Tujunga, CA USA) frame
used to introduce DBS electrode into the third ventricle. Two electrode holders are
needed: one for Ventriculography and the other for secure the DBS lead into place.

All films were processed in a darkroom adjoining our animal operating room. Between
16 to 20 mm from cortex we usually found the lateral ventricles. In seated animals CSF
pressure is neutral. There are no resistant when introducing the catheter, so the best
way of finding the ventricles is withdrawing the guide after reaching appropriate depth
.Then water level inside the trocar must drop when traversing the CSF Ventricular area.
About 2 ml was injected swiftly after 0.5 mL of confirmatory air and radiography was
obtained immediately, as the product is rapidly evacuated. Monro’s foramen is then
visualized in the two projections and a second catheter is introduced directed under
fluoroscopy reaching directly into the foramen. A DBS electrode is then advanced
through the trocar and wire guide is withdrawn when reaching third ventricle entrance.
Without wire guide, DBS electrode easily slips to anterior third ventricle near mamilaries
bodies. Coronal, and sagittal X rays views were obtained and fusion with previous initial

Ventriculography.
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Figure 30: AP and Lateral view of Macaca fascicularis after surgery. Through the
same incision, a pocket is made in the back of the animal to put the extension
cables and the IPG (Soletra). No Intubation was required.

Target Determination

The VMH targets were identified in a Macaca Mulatta Paxinos monkey Atlas. The VMH
target was identified on coronal sections between 16.95 13.80 mm- anterior to interaural
plane. Based on these reference images, the VMH was localized: 0 to 2.3 mm posterior
to the ac image in Ventriculography, and 2 mm superior to the ventral tip of the rostral
portion of the nucleus corporis mamillaris. We also used the normalized coordinates
calculated during the first implantation in the pilot study (see targeting section for pilot

study or Figure 25)

Figure 31: Paxinos and Huang Brain Monkey Atlas. VMH is
in close relationship with the third ventricle in both sides, causing
that only one electrode is needed for stimulation both sides.
Intraventricular electrode is in the midline, or slightly in contact
with one of the ventricle walls. Nucleus and nucleus capsule are
between 1 to 2 mm from ependymal ventricular layer(Paxinos et
al., 1999).
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Implantation of the Electrode and implantable pulse

generator

After making a midline incision, the skull was accessed bilaterally
and 2 mm-diameter holes were drilled for the approach to the
hypothalamic targets. A second rigid trocar tube [outer
diameter(OD) 1.04 mm, inner diameter (ID) 0.89] mm; Phelps
Dodge® High Performance Conductors HPC, Trenton GA USA)

fitted with a stainless steel stylet was stereotactically inserted into

the left brain hemisphere (right hemisphere were still holding the ventricular catheter to
further contrast injection) by using a micromanipulator SM-15 Stereotaxic Micromanipulator
coupled with IMS-3 Microinjector (NARISHIGE SCIENTIFIC INSTRUMEN LAB,
Setagaya-ku, Tokyo 157-0062, Japahhe distal tip of the guide tube was placed at the
Monro’s foramen entrance. Several anchoring stainless steel screws (OD 1 mm, length
3 mm) were placed around the burr hole, and the guide tube was secured to Stereotaxic
frame with Narishige electrode holder and micromanipulator (NARISHIGE SCIENTIFIC
INSTRUMENT LAB, Setagaya-ku, Tokyo 157-0062, Japahhe stylet was removed, and
the stimulating 4-polar DBS lead was stereotactically inserted through the guide tube
using the micromanipulator. The distal tip of the inserted electrode protruded 4-5 mm
from the tip of the guide tube. The Medtronic®, 3389 and 3388 DBS lead (Medtronic®,
Richmond MN)) had at its distal end 4 90% platinum/10% iridium contacts. The 3388
has one contact of 3.5 mm long. The 3389 has 4 contacts, each one of them of 1.5 mm

long separated by 0.5 mm. At the proximal end, the metallic contacts fit into a Medtronic
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Extension #7495 that was connected to the IPG [Soletra® and Itrel I® (Medtronic®,
Richmond MN, USA)] The lead was secured to the skull with acrylic and medical-grade
silicone cements (DePuy CMW 3 Bone Cement, Johnson & Johnson Gateway
Piscataway, New Jersey, USA.). Some days afterwards, a second surgery were made
for battery implantation in the back of the monkey [Soletra® or Itrel I® (Medtronic®,
Richmond MN USA)] allowing us to easy stimulate through the cage without the need of
using primate chair or training, reproducing more clearly normal condition. The lead was
connected to the extension cord tunneled subcutaneously to the back of the animal.
IPGs were subcutaneously implanted between the scapula, tolerating unrestricted and
free movement of the animal. Nonabsorbable sutures were used to secure the extension
leads and IPGs. Observations were design to video tape feeding behavior, locomotion,
eating time, and amount of regular and reward food ingested during trials. Monkeys
were allowed to recover full strength and appetite after surgery for 3 to 4 weeks. After

that period, they were put in observation cages and stimulated for periods of 5-6 hrs.
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Figure 32: Electrodes 3389 and 3388 showing the actual active contact surface.
3389 has contacts of 1.5mm and 3388 has only one contact of 3.5mm, which is the
equivalent to two contacts of 1.5 + 0.5mm space inter-contacts

MM24
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Figure 33: AP and Lateral views of Monkey Ventriculography showing actual
electrode position. Ventricular walls are in close relationship with lead contacts.
The antero posterior coordinate (y) was 2.3 mm posterior to AC. The dorsoventral
coordinate (z) was determined by third ventricle floor. The lateral coordinate(x)
was the midline of the third ventricle[modified from (Percheron, 1997)].
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Figure 34: Frontal (a) and Lateral (b) view of the monkey head after implantation
of the DBS Electrode with the head still fixed in the Stereotaxic frame. The four
electrode tips can clearly been seen and the battery is lying in the back of the head to allow
easy access to manipulation. The deepest contact is projecting to the VMH area. Monkey H5
and H10 were implanted with one quadripolar electrode Intraventricular at the level of the
VMH/DMH nucleus (Medtronic 3389 1.5 mm long contact). Monkeys H7 and H8 were also
implanted in the third ventricle at the level of VMH, but using a larger contact electrode
(Medtronic 3388 3.5 mm long).

MRI SCANING, FINALS X RAY AND HISTOLOGICAL PREPARATIONS
Animals were anesthetized by intravenous injection of sodium pentobarbital (50mg/kg)

and perfused transcardially with 0.9% saline followed by 4% buffered formaldehyde.
After adequate fixation was attained, the head was careful removed. All the metallic
elements were removed from the head in order to perform 3Tesla MRI before brain
removal and histological analysis. The main goal of this procedure was to obtain a clear
image of the DBS electrode before cutting the brain. The position of the DBS Lead in the

ventricle makes it difficult to find in the histological anatomical cuts.
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Before MRI scanning, AP and lateral x rays views for each animal’s head were obtained
in order to measure final contact position in relationship to Ventriculography landmarks
and also to make sure there was no fixation screws in monkey head. The animal’s
heads were then placed in the 3 Tesla MRI (Drucker® Biospin).Whole brains were
placed in a plastic bag filled with 4% PAF or neutral formalin and maintained in the
scanner with foam pieces. Images were acquired in two positions: with the head parallel
to the magnetic field and with the head perpendicular to the magnetic field. The head
was placed inside the MRI such that the DBS lead was approximately parallel to the
static magnetic field in order to reduce susceptibility artifacts in the images. All data
were acquired on a Bruker Medspec 3-Tesla whole-body horizontal MRI scanner. We
used a quadrate birdcage head coil (designed for humans) for RF transmission and
signal reception.

High-resolution images were acquired with a RARE sequence (Rapid Acquisition with
Relaxation Enhancement), see: Hennig J, Nauerth A, Friedburg H, "RARE imaging: a
fast imaging method for clinical MR." Magnetic Resonance in Medicine, Dec; 3(6):823-
33 (1986))(Hennig et al., 1986). Two image volumes were acquired with two different
slice orientations: one transversal and one coronal in a plane parallel to the DBS lead.
Except for the slice orientation, acquisition parameters for both acquisitions were
identical. We used: a field of view of 160x160mm, a matrix size of 320x320, (in-plane
voxel size 0.5x0.5mm), 30 slices of 1.5mm thickness, echo time (TE) 13.5ms, RARE
factor 8, effective echo time 54ms, repetition time 3500ms, number of averages (NA) 8,
total acquisition time for one orientation 18min40s.

The relatively short effective echo time and the long repetition time result in images that

are weighted by transversal relaxation time (T2) and proton density (PD). The T2
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contrast allows distinguishing between tissue and cerebro-spinal fluid in order to
visualize the ventricles. The PD weighting provides contrast between brain tissues, such
as gray and white matter. Differences in T2 between tissues are weak in formalin-fixed
brain, and T2 images with little PD weighting do therefore not provide satisfactory image
contrast (Pfefferbaum et al., 2004)

After images acquisition, brains were removed, blocked, immersed in the 4% buffered
formaldehydefor 24 hrs, and then placed in saline with the addition of 30% sucrose until
the block sank. They were then sectioned coronally on a cryostat at a thickness of
50um. Every section was collected and processed for routine cresyl violet staining and
for lugol staining. Coronal cuts were reviewed and compared with Paxinos atlas for
macaca mulatta (Paxinos et al., 1999). Using all those methods, we were able to

localize the electrode position in relationship to the hypothalamus.

IMAGES ANALYSIS
The Images obtained through these methods (X-rays and MRI) were compared to each

other and placed in a macaca atlas. We used macaca mulatta atlas of Paxinos and
Huang during surgery and for the determination of the final positioning done using
Ventriculography(Paxinos et al., 1999). Knowing ac-pc line and thalamus height values
for the brain fixed in the atlas, we were able to normalized this atlas and then easily
compare to the measures obtained in the monkey Ventriculography. In this way, it was
easily positioned the active contact in relationship with coordinates of VMH.

Identifying electrodes contacts in the autopsy brain piece was done using the 3 Tesla
MRI imaging. The study produced an easily identifiable artifact. The MRI image of the

active contact was projected into the atlas also using MRI-visible landmarks.
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With these two methods (MRI and Ventriculography) is possible to determine the actual

final position of the active stimulating contact.

CHAPTER IX PHASE 1: ACUTE STIMULATION PROTOCOL

Phase 1 of the study was performed according to the experimental design in order to
establish the most appropriate stimulation parameters. The principal goal was to
determine the influence of different frequencies over food intake during acute stimulation
using Intraventricular electrodes. The variability and complexity of the area requires
ample testing of different stimulation settings in order to establish parameters that can
be used during chronic stimulation and produce the desired effect. Other variables were

also measured, including velocity, to assess the primate energy expenditure.

MATERIALS AND METHODS

Before acute trials were performed, adequate voltage intensities were tested in animals
lightly anesthetized (Imalgene®, MERIAL Lyon France) (20 mg/kg loading dose, 5
mg/kg maintenance im.) Side effects at different intensities and frequencies were
registered and voltage threshold for acute stimulation were established. After that, trials
started as explained in chapter VII. Briefly, monkeys were kept in fasting for a period of
22-24 hrs. Stimulation started in the morning around 8:30-9:30 and was kept on during
6-8 hours prior to the trial. A fix meal, representing approximately total daily food intake
was given at a fixed hour (1700-1800 hrs).

Using a Plexiglas transparent window, 150 g of primate laboratory chow biscuits along

with fruits were given. A video camera (WV-CP470 Panasonic® Matsushita Electric
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Industrial Co ) was placed and connected to a desktop computer( Dell® Desktop
Computers; Dell Products; One Dell Way; Round Rock Texas US) equipped with a
special software( Mediacruised® Canopus) for video stock and digitization in order to
conduct posterior analysis. An hour meal was register. Using these settings, different
stimulations parameters were tested: A large spectrum of frequencies (between 0 up to
185 Hz) and voltage (0.1 to 2.5 V) were studied along with two different contacts(0 and 1
in electrode 3389 quadripolar and one contact in electrode 3388 unipolar) keeping fix
pulse width at 0.6.

Time expend eating complete meal, meals size and Locomotion (cm/s) during
stimulation were the parameters measured. 87 hours videos were stored and analyzed
using special software for movement recognition (Ethovision ® Noldus Information

technology)

Noldus® Ethovision® Software for Movement Recognition and Behavioral

Assessment:

Image analysis was made using Noldus ® software. ldentification was completed using
grey scale and image subtraction. With a reference first image, the animal is identified
and followed by a marker which measures the total distance and the velocity of the
movement during the experience. Software took a reference central point in the body of
the animal as an identification marker. One hour trial during meal was measured and

total distance and velocity were calculated.
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(A}

Figure 35: Schematic representation of experimental set up. Monkeys were video
recorded during one hour during meal after 24 hrs fasting. Different frequencies
and parameters were measured.

ime 04412440

Figure 36: Off line analysis were conducted to determine locomotion as an indirect
measure of energy expenditure. Changes in behavior were also close monitored

Animals (H5, H7, H8 and H10) were kept in observations cages and were free to move
in his normal environment. Baseline food intake was reached after 2 to three weeks post
operatively. Adverse effects connected to acute stimulation were observed under light
anesthesia (ketamine) and recorded for all range of frequencies and voltages (0-5V),
keeping pulse width constant (0.60 ms). Quadripolar 3389 electrode contacts 0 and 1

were tested for monkey H5 and safe voltage were set below 3v and 3.5v respectively. In
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monkeys H7 and H8, using a single contact electrode, a range of voltage and
frequencies were tested. Side effects are summarized in Table 7. H5 showed eyes
opening and bilateral internal eye deviation in contact 0, 1 and 2 and neck contraction in
contact 3. Monkeys H7 and H8 showed similar eye lids opening and binocular internal

conversion along with neck-shoulder contraction at different frequencies and intensities.
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RESULTS

Side Effect: During Acute Stimulation Of Intraventricular Electrode In The

VMH Region In Macaca Fascicularis

We summarize in Table 7 the results of the acutke seffects due to stimulation in
Intraventricular VMH implanted monkeys. Two animetseived quadripolar electrodes (H5 and
H10) and the others were implanted with the 3388dtkémic unipolar lead of 3.5 mm.
Stimulation of this region generated motor oculamgtoms and muscular contraction of the
neck and shoulder. The intensity threshold for gffects was different for each animal: ocular
signs like blinking and bilateral eyes opening weeen at 3 to 3.5 V setting an appropriate level

of voltage at to 2V
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Table 7: Table shows the acute side effects for each monkey at each contact
during testing. Animals were observed under light anesthesia

MONKEYS| CONTACTS |FREQUENCIES VOLTS SIDE EFFECTS
(0} 50 35 Byes opening
1 50 4.0 Byes opening
2 50 45 Right eye opening
H5 3 50 4.5 Vertical nystagmus
50 5.0 Neck & shoulder contraction
0 10 3.0 Eyes opening
3.25 Eyes opening , blinking.
30 3.5 Neck contraction
50 3.5 Neck & shoulder contraction
H7 80 2.50 Eyes opening , bilateral midriasis
Bilateral inward eye deviation
3.0 Bilateral inward deviation
Eyes Opening
130 2.00 Bilateral inward deviation and eye open
0 10 3.0 BEye lids tremor and slow iyes opening
35 Neck clonic contraction(frequency 10HZ
50 30 Byes opening.tremor In the shoulder
H8 80 25 Bilateral eyes opening
3.0 Left Shoulder contraction
130 25 Bilateral inward eye deviation
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ACUTE RESPONSES TO VMH STIMULATION VIA

INTRAVENTRICULAR

MONKEY Hb5:

Stimulation in contact 0 (located in the third ventricle floor adjacent to VMH) elicited a
reduction in food intake in all frequencies with a maximum effect in meal size reduction
at 80 Hz, 2V, 0.6 ms pulse width (reduction in meal size in off stimulation from 150 grs to
mean 70 grs £ 50 grs). At a frequency of 185 Hz, additional reductions in food intake
were seen (mean meal size was 90+56 grs from baseline of 150grs) (see Graphic 1).
Eating time was between 14.5 to 20.77 min (Baseline at 15.07 £ 10 min) with no
identifiable trend in frequencies. Locomotion expressed in velocity (cm/s) was recorded
during meals using Noldus movement recognition software. There was, between
frequencies 30 to 100 Hz, a significant increase in velocity during meals with a peak at
80 Hz of 16.37 £ 2.56 cm/s (baseline 8.06 cm/s). Another increase in velocity during trial

was seen at 185 Hz t0 12.75 + 6.7 cm/s (see Graphic 1).

Contact 1, located dorsal to VMH and whose center is at 1.75 cm to contact 0, was
explored, showing discrete reduction in meal size at 50 and 80 Hz (13.3% from the
baseline). Eating time was longer at 80 Hz and velocity during meals did not change

significantly. (Graphic 1)
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Graphic 1 Total Food Intake and velocity after 24hrs fasting in VMH 3V
stimulated Monkey H5. Comparaison between different frequencies and different
contacts
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Graphic 1: Several trials were conducted to determine the more effective parameters
settings for Intraventricular VMH stimulation. The first Monkey had an electrode 3389 with two
plots in the hypothalamic basal area, being 0 the more ventral and 1 the more dorsal. In the graphic,
important reductions in FI during monopolar stimulation of plot 0 were seen at 80Hz. Some effect was
also elicited at the same frequency in the dorsal contact n°l1 (13% reduction in FI). Velocity
augmented during stimulation at different frequencies in contact 0 but remained constant when
stimulating the more dorsal contact 1.

MONKEY H7:

Using a monopolar electrode 3388 Medtronic (3.5mm in height instead of 1.5 mm),
several acute stimulation trials were completed in Monkey H7. Food intake was reduced
at 80 Hz in relation with baseline (26.33 £17.6 grs of Fl in comparison with baseline 76.5
+23.73 grs )Additional reduction was seen at 30 Hz (see Graphic 2). Variability in
baseline food intake makes difficult to set an adequate “off” state level. Eating time, as in

the previous Macaca H5, did not represent a clear trend varying between 39.12 to 48.88
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min. Increasing speed in movements were found at 80 Hz (4.7+2.32 cm/s related to

baseline 2.55+0.36 cm/s).

Graphic 2 Total Food Intake and velocity after 24hrs fasting in VMH 3V stimulated
Monkey H7. Comparaison between different frequencies

Velocity Monkey H7 when stimulated at different
frequencies
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200 -

150 6 4

ans/ seg
B
L

£ 100
(=]

50 4

0 0 30 50 80 130

Gr 0 30 50 80 130 Frequeney 2d O Frequency

sei.l.llls: 1VI AjIviQVvVClIIuIVUuIAaln A A MIN] al.llllulﬂtion il'
one contact-electrode of 3.5mm of height (Medtronic 3388). Figures show FI and velocity during each
trial.

MONKEY HS:

Stimulation using monopolar one contact-electrode (3.5 mm Medtronic 3388) elicited a
reduction in food intake at 80 Hz(97.5 + 42.72grs from a baseline of 129 + 31.30 grs)
.Eating time remained between 51 and 61 min and velocity was increased at 80 Hz

(2.46 cm/s from 1.75 cm/s when stimulation was off).
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Graphic 3 Total Food Intake and velocity after 24hrs fasting in VMH 3V stimulated
Monkey H8. Comparaison between different frequencies
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Graphic 3: Several trials were conducted to determine the more effective
parameters settings for Intraventricular VMH stimulation in Monkey H8. This animal
was implanted with a one contact-electrode of 3.5mm of height (Medtronic 3388). Figures
show FI and velocity during each trial.

MONKEY H10:

In Monkey H10, quadripolar 3389 electrode was again used (contact surface 1.5mm).
Stimulation in contact 0 (located in the third ventricle floor adjacent to VMH) elicited a
reduction in food intake in all frequencies with a maximum effect in meal size reduction
at 80 Hz (FI of 56.33 + 49.09 grs) and at 130 Hz (FI of 47.6 £ 5.5) with a baseline FI of
122.55¢rs. Eating time was between 52 to 65.5 min (Baseline at 58.75 + 5min) with no
identifiable trend in frequencies.

Locomotion expressed in velocity (cm/s) was recorded during meals using Noldus
movement recognition software. There was, between 30 to 130 Hz, a significant
increase in velocity during meals with a pick at 30 Hz of 8.3 £ 3 cm/s and increases at

130 (7.54+3.59 cm/s). The baseline velocity during this monkey trial was 3.9 cm/s.
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Graphic 4 Total Food Intake and velocity after 24hrs fasting in VMH 3V stimulated
Monkey H10. Comparaison between different frequencies
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Graphic 4: Several trials were conducted to determine the more effective
parameters settings for Intraventricular VMH stimulation in Monkey H10. This
animal was implanted with a quadripolar electrode, each active contact of 1.5mm. The
contact used was the deepest one or contact 0. (Medtronic 3389). The contact 1 was not
explored in this animal. Figures show FI and velocity during each trial
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Effects of VMH Stimulation at Different Frequencies in Food Intake

Expressed In Ratio (n/Baseline Fi)

FOOD INTAKE RATIO AT DIFFERENT FREQUENCIES DURING ACUTE
STIMULATION

| H5
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Figure 37: Food intake ratio (n/baseline) during acute trial after 24 hrs fast in
monkeys implanted with an Intraventricular electrode. Baseline food intake was
obtained after several tests in off stimulation. Different animals have different daily food
ingestion. Monkeys H5, H7 reduced significatively the meal size when stimulated at 80Hz
and H10 when stimulated at 130Hz (** p< 0,01 *p< 0,05 Kruskal-Wallis non
parametric test with Dunn post test comparisons)

FOOD INTAKE AT DIFFERENT FREQUENCIES IN ACUTE VMH
INTRAVENTRICULAR STIMULATION IN FASTING NON HUMAN
PRIMATES (ALL MONKEYS)
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Figure 38: Mean change in meal size expressed in ratio (n/baseline) for VMH
Intraventricular stimulated monkey at different frequencies, after 24 h fasting *p<
0.05 Friedman Test (Nonparametric Repeated Measures ANOVA) with Dunn post test
comparisons) The P value is 0.0280, considered significant. Significative reduction in FI was

seen at 80Hz stimulation when compared with baseline stimulation (0 means off stimulation)
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Effects of VMH stimulation at different frequencies in velocity (cm/s) during

postprandial period

VELOCITY RATIO DURING ACUTESTIMULATION
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Figure 39: Velocity ratio (n/baseline) for each VMH Intraventricular monkey after
24 h fasting at different frequencies. A tendency to increase velocity during stimulation
was seen in all subjects, and it was significant in H8 at 50 Hz and in H5 at 80 Hz. There was
great variability between trials and subjects (* p< 0.05 ** p<0.01 Kruskal-Wallis non
parametric test with Dunn post test comparisons)

Locomotion after acute stimulation at diferent

frequencies in intraventricular vimh implanted
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Figure 40: Mean change in velocity measured in cm/s ratio (n/baseline) for each
VMH Intraventricular monkey after 24h fasting at different frequencies; no
significative different was revealed between different frequencies(* p< 0.05 Friedman Test
(Nonparametric Repeated Measures ANOVA) with Dunn post test comparisons)
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OFF ON
1.43 cm/s 2.34cm/s

Figure 41 : Example of post trial analysis
done after acute stimulation in hungry monkeys. Image A shows Monkey HS8
movements during meal in off stimulation during one hour postprandial. Blue dot
represents body centre and red line is the total trajectory of this centre during observation
period. Image B shows H8 during on stimulation at 80 Hz. In the right side, there is an
example of the behavior analysis done with Noldus observation software. It allows following
the subject during trial and measuring several locomotion parameters. Behavior can be
observed and readily record using keyboard commands. Total amount of biscuits left in cage
also can be recorded.

In summary, the meal size was reduced at a stimulation frequency of 80 Hz in a ratio of
0.85 £+ 0.04 from the baseline (or 15% reduction) when grouping all the data of all
animals (*p< 0.05 Friedman Test with Dunn post test comparisons). Locomotor activity
had a tendency of increasing when stimulating at all frequency, but no statistically

significative difference were seen.

DISCUSSION

There is evidence to suggest that electrical stimulation of the Ventromedian
hypothalamic (VMH) nucleus can produced reduction in food intake in fasting
animals(Beltt and Keesey, 1975; King, 2006)The results of this study replicate earlier
reports demonstrating acute decreases in food intake during electrical stimulation of
VMH in food deprived animals(Beltt and Keesey, 1975; Takaki et al., 1992). However,
this early reports were based on "intraparenchymal” electrode placements in VMH.

Electrical stimulation was limited to the nucleus with special care of avoiding
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surrounding structures. In contrast, we have introduced electrodes in the third ventricle
adjacent to VMH and produced effects over the medial-ventral hypothalamic area.

The idea of stereotactically implant Intraventricular electrode adjacent to VMH was
based on some important key points. Electrode introduction in ventral hypothalamic
area is not a risk free procedure. Intraventricular electrode clearly avoids midline
structures, thus inducing less risk associated to Transparenchymal passage. Using a
single electrode to stimulate both sides theoretically reduce in a half the risk of
complication associated to the introduction. Experience in Intraventricular electrode use
has showed safety and marked effectiveness when stimulating nucleus proximal to the
ventricular walls (Levy, 2003)Hosobushi et al and Richardson and Akril in 1977, reported
effective pain relief after acute and chronic stimulation of the periacueductal and
periventricular grey area at the level of posterior third ventricle in human patients
(Hosobuchi et al., 1977; Richardson, 1982; Richardson and Akil, 1977a; Richardson and
Akil, 1977b)Several studies have subsequently confirmed the phenomena:
Intraventricular electrodes can modulate surrounding structures(Dieckmann and

Witzmann, 1982; Hosobuchi et al., 1977)

The main finding in this study is that the observed effects over eating behavior were
related to the stimulation frequencies. Even when using different types of contacts (1.5
mm vs. 3.5 mm long), the range of frequencies showed a marked decrease in total food
ingestion at 80 Hz in all three subjects. These results differed from some previous
reports showing marked feeding suppression at 50 Hz. (Takaki et al., 1992). Takaki and
col. have found decrease in food intake in monkeys following trains of stimulation at 50

Hz, 100pA and 0.2 ms pulse width. His study, however was conducted using a different
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type of electrode tip (30 um diameter and 50 -80 um long) implanted directly in the
nucleus and using a bar-press feeding task instead of spontaneous feeding (Takaki et
al., 1992)There is a fair amount of controversy regarding the results of VMH stimulation
in monkeys. Although an electrical lesion placed in VMH in monkeys resulted in
hyperphagia(Anand et al., 1955; Hamilton and Brobeck, 1964; Hamilton et al., 1976) an
electrical stimulation in the same place did not constantly suppress the ad libitum
feeding pattern even in partially satiated state (Robinson and Mishkin, 1962).
Discrepancies between studies are thought to be related to the influence of the electrical
field spreading to the surroundings structures with opposite effects, i.e. lateral
hypothalamic area, arcuate nucleus(Takaki et al., 1992) .Our approach seems for the
moment to advantageously stimulate bilateral medial structures like VMH, avoiding the
lateral aspect of the hypothalamus and his anabolic effect. Surprisingly, high frequency
stimulation (>130Hz) failed to show an increase in total food intake in the same fasting
condition. In one monkey, food intake went to baseline, and in two other they were slight
increase in food intake with a wide variability range. Monkey H5 even present a
decrease in food intake at 185 Hz. Facilitatory effects on feeding behavior were not

seen, may be due to experimental conditions.

Eating time was surprisingly independent of the different stimulation frequencies. In
1984, Brown and cols found that electrical stimulation in VMH can delay next meal in
fasting dogs for a period ranging from 1 to 18 hrs (Brown et al., 1984). Our monkeys
started eating at once, varying only the total amount of food meal. One explanation may
be due to experimental design allowing monkeys to feed ad libitum with no bar press

feeding task to be done. Hence, motivated behavior, an important part of the VMH
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function, was not involved in feeding. In the same study, they have found that dogs,
when stimulate twice a day for three day, reduced their daily food ingestion by 35% of
the baseline (Brown et al., 1984). Electrode placement in the third ventricle could
account for some difference as long as other nucleus in the area, notably arcuate

nucleus might be modulated by the electrical field generated from the electrode.

Locomotion changed during meals under different stimulation conditions. Velocity (cm/s)
increased at low voltages (<130 Hz) with a peak at 80 Hz frequency. At least 3 subjects
presented a this increase at 80 Hz. Monkeys were having almost double the speed
during and immediately after meals at 80Hz, when compared with baseline (H5:
16.37/8.06, H7:4.77/2.55, H8: 2.75/1.75 cm/s).Stimulation outside the region (H5 contact
1) failed to increase the velocity of the animal during meal (baseline 8.59, 80Hz on
stimulation 6.71 cm/s), suggesting a clear involvement of ventromedian region of the
hypothalamus.Only H10 was different, having maximal increase in locomotion at 30 Hz
and 130 Hz, having only moderate increase at intermedian frequencies Studies
suggested that stimulation bound activity was an important contribution factor to
decrease weight gain and food intake during chronic VMH stimulation. .In rats, high
activity groups (represented by running, jumping, climbing) during VMH stimulation
showed significant reduction in food intake compare to control. VMH stimulation has
been shown to both increase metabolic rate and facilitate locomotor's activity (Bielajew
et al., 1994). Narita et al review of the literature on metabolic rate and locomotion
suggested that VMH may be involved in the integration of motor activity and energy
metabolism (Narita et al., 1993).In a study examining exercise metabolism, Vissing et al,

looked at the relationships between VMH activity, running and substrate mobilization;
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they speculate that exercise-induce increase in VMH activity may be regulated by the
same CNS structures that also activate locomotion and substrate mobilization (Vissing
et al., 1989). Pauwson have showed that when under sedatives/anesthetics, VMH
stimulated rats reduced the otherwise remarkable increase in metabolic rate in 50%. It
may be that muscle tone and activity were important contributing factors to the reduction
in weight gain observed in chronic studies when rats were conscious and free to move
about(Bielajew et al., 1994) . Large corps of evidence shows that VMH stimulation
weight loss can not be solely attributed to a reduction in food intake, so VMH stimulation
may augment energy expenditure. For example, studies carried on by Pauwson have
shown that conscious rats receiving VMH and anterior hypothalamic stimulation
increased more than 90% their metabolic rate (Bielajew et al., 1994).More recently,
Challet has hypothesized that ventromedial hypothalamus (VMH) may also modulate
locomotor activity. Using a test (wheel running) in rats with VMH lesion vs. sham
operated, he has found that both groups have increased their activity during fasting but
in VMH lesion group; this raise was significantly reduced and delayed. Motor activity
plays a role in the stimulation induce reduction of food intake, even though correlation
between food intake and velocity could not be established at the moment (Challet et al.,
1995) .

The zone heterogeneity could account for the variability in the data presented (food
intake, eating time and velocity). The stimulation in a region containing some connection
more or less anabolic (like the NPY neurons connecting with arcuate nucleus) mixed
with anorexigen neuronal highways (POMC) in a nucleus with a strong sympathetic
connection can explain at least some failure to block the anorexigenic effects at high
frequency stimulation (King, 2006). Low frequency stimulation did produce reduction in
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food intake even when rewarding food was present with daily meal, in ad libitum feeding.
Finally, stimulation in VMH induced increase in the motor activity represented by
movements in cage during meals. The present study shows that Intraventricular
electrode stimulation in VMH area could produced reduction in food intake in fasting
monkeys in a frequency-dependent fashion and highlights the need of study their

influence in weight gain in a chronic settings.

CHAPTER X PHASE 2: CHRONIC STIMULATION PROTOCOL

In the second phase of the study, the effects of chronic intraventricular stimulation in
feeding behavior, global body weight, % body fat and Fat free mass were studied. Using
parameter settings obtained in the first phase of the study, monkeys were stimulated
following prefixed paradigms. The main objective of this experience was to evaluate the
changes induced by three sets of frequencies in body composition. 130(HFS), 30(LFS)
and the frequencies that produced maximum depression in food intake BFS (80) were
tested. Complete fat related constants were obtained along with hypothalamic-pituitary
axis function hormones in order to study changes in complex fat body and lean body
composition. Food intake and stimulation induced behavior were all recorded and

analyzed.

MATERIALS AND METHODS

BASELINE PERIOD

Monkeys H5, H7, H8, H10 and control (sham) H4 were kept in a regular chow biscuits
diet and fruits, in order to establish a baseline food intake. During this period, monkeys

are not stimulated and any “carry on” effect from the acute tests in the phase one should
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decrease and eventually disappear. Baseline body constants are taken and several fat
mass indicators established.

All data were collected after an overnight fast (12 hours) and with the animals sedated
with ketamine (10-30 mg/kg IM). Blood samples were obtained following standard
guidelines. Body weights were recorded in kilograms using a calibrated electronic scale
(GSE, Chicago IL). Waist circumference was measured using a standard flexible tape
with the animal lying on its back. The iliac crest was identified and the tape placed
around the body just above the iliac crest and just above the umbilicus. Subscapular
skinfolds and iliac skinfolds are measured with a special caliper. Fat mass and Fat free
mass were obtained by bioimpedance (BIA) (see below section General principles of
Bioimpedance Analysis)) using a Xitron multi-frequency bioimpedance analyzer (Xitron
Technology Corp, San Diego, CA). The animal were placed in prone position (lying over
their abdomen and sternum) on a plastic covered wood table and electrodes were
attached to shaved areas on both wrists and ankles, and the proximal electrodes in the

occipital eminence and base of the tail

PARADIGM 1:

Monkey H5 and H7 underwent Intraventricular stimulation using the optimal parameters
(BFS) obtained in Phase 1 of the study (80Hz, 2volts, 60 us) for a 8 weeks period
.Monkey H8 and H10 received Intraventricular HFS (130 Hz, 2 volts, 60us).Monkey H4
served as a sham (operated non stimulated control) subject: electrode was placed in
third ventricle but not connected to the battery. As in baseline phase, Fat mass
measured by BIA, weight, food intake, Subscapular and lliac skinfolds thickness and

abdominal circumference were obtained. Blood samples for glucose, cortisol, complete
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electrolyte, total serum proteins were process for each subject at regular intervals.
Plasma was separated and congealed to -80 degrees to further analysis (Leptin and

hormones).

PARADIGM 2:

Monkey H8 and H10 underwent Intraventricular Stimulation using their optimal
parameters obtained in Phase 1 of the study (80Hz, 2volts, 60 ps )for a period of 8
weeks .At the same interval of time Monkeys H5 and H7 received HFS (130 Hz, 2volts,
and 60ps). Monkey H4 serve as a control (electrode placed in third ventricle but not

connected to the battery). Measures were done as in the paradigm 1.

PARADIGM 3:

Monkeys H5, H7, H8 and H10, after a wash out period of 4 weeks, received Low
frequency stimulation (30 Hz, 2 volts, 60 us) during another 8 week period. Monkey H4
serve as a sham operated control (electrode placed in third ventricle but not connected
to the battery).

Cross control in terms of architecture of the tip of the electrode will be achieved with
these patterns of stimulation (H5 and H10 have electrode 4 contacts 3389; H8 and H7
have one contact electrode 3388). Between the paradigms, four weeks of non

stimulation served to ensure the wash out of possible confounding effects.
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General principles bioimpedance analysis

Bioimpedance analysis (BIA) measures tissue conductivity. Under stable conditions the
conductivity of a body is directly proportional to the amount of electrolyte-rich fluid
present. BIA can therefore be used to measure several fluid compartments, including
Total body water (TBW),extracellular water(ECW) and Intracellular water(ICW). Fat is
anhydrous and thus all body fluids, including the water present in adipose tissue, reside
in the fat-free mass component.

The impedance of tissues is strongly dependent on frequency. At low frequencies the
impedance of the cell membranes and tissue interfaces is too large for conduction of
current within the cells to occur. As a result the current is conducted only through the
Extracellular fluid. Thus the measured impedance is considered resistive with no
reactive component (Lukaski, 1996). As frequency increases, reactance increases
because the capacitant properties start to retard the current, and resistance decreases.
At a critical frequency the reactance is maximal. At frequencies exceeding this critical
frequency the current flow in the intracellular route will increase, as cell membranes and
tissue interfaces start to lose their capacitive ability(Cox-Reijven and Soeters, 2000;
Lukaski, 1996). This frequency dependence can be modeled empirically by a function.
The most widely used model is the Cole-Cole equation . A plot of reactance vs. the
resistance at different frequencies results in a semicircular arc, the center of which is
depressed below the real axis(Foster and Lukaski, 1996) Fitting the measured
impedance data to this model the resistance at zero and at infinite frequency can be

extrapolated which are the resistances of ECW and TBW respectively.
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Several groups have found highly significant correlation between fat mass obtained by
DXA and that obtained by bioimpedance (Cox-Reijven and Soeters, 2000) following the
same procedure described here applied to non human primates (Comuzzie et al., 2003).
Our only problem was that the presence of an electrode and the Soletra in the body of
the monkey could produce some erroneous lectures. For avoiding that, we took

advantage of the euthanasia of H3 and calibrate the bioimpedancemeter.

Calibration Xitron Bioimpedancemeter

Following the same protocol, Monkey H3 was measured with and without two Soletra
and two extensions (104 grs total). Impedance in Extracellular water fluid (ECW) and
Intracellular water fluids (ICW) where unchanged and total body free fat mass was
calculated.

Calibration of Xitron bioimpedancemeter requires calculation of resistivity in ECW and
ICW. To accomplish that, three trials of the afore mention procedure were done in each
monkey and using Hydra acquisition utility software provided by Xitron Technology, we
were able to calculate those constants. Then using published data about body

composition in Macaca fascicularis, Fat Free mass and total fat content were calculated.
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Figure 42: Images from the phase 2 or chronic protocol trials. Left: monkey in
sternal recumbency during BIA testing. A multi impedance analysis is performed in order to
calculate total body, extracellular and intracellular water. Right: in the same session, Blood
samples were taken (all under general anesthesia)
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RESULTS

CHRONIC STIMULATION PROTOCOL
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WEIGHT, FAT BODY COMPOSITION AND INDIRECT FAT MEASURES

Animals (H4, H5, H7, H8, and H10) were weighted at regular intervals. At each time,
intravenous anesthetics were used for sedation (Imalgene, lab Merial Lyon France) at
10-30 mg/kg loading dose and maintenance doses were employed if necessary. A good
sedation is required for the adequate use of the BIA. The individual has to rest
motionless and in a fixed position at least 15 min before and during the test to assure
reproducibility. Wrist and ankles along with occipital and sacral areas were shaved and
served as Xitron electrodes placement( Figure 42)

Using Hydra utilities, total body single measure multimpedance analysis were carried

out and results were stocked for later analysis. At the same time, abdominal
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circumference, iliac and subcutaneous skinfolds measure and blood samples were

obtained. The baseline values at the start of the study are depicted in Table 8:

Table 8 : BASELINE CHARACTERISTICS OF THE ANIMALS

Monkey Sex Crown-rump Weight(Kgs) BMI Abdominal Subcutaneous lliac Food

Size (cm) circumference skinfolds skinfolds Intake
H4 M 37,00 7,20 52,59 45,00 6,92 16,55 340.82
H5 M 41,00 7,60 45,21 31,50 4,00 9,47 407,23
H7 M 39,00 7,00 46,02 36,50 5,36 9,87 410.95
H8 M 40.50 7,28 44,38 35,00 5,52 6,44 466,22
H10 M 41,00 6,10 36,29 32,00 4,60 3,55 376,36

Table 8: Baseline values characteristic in all 5 monkeys. The animal size was
measured between crown (head) and rump (tail base) and used to calculate Body weight

index. Food intake was an estimated averaged of daily intake of ad libitum food ingestion.

Changes in Weight and BMI During Chronic Stimulation

Changes in weight and BMI are divided in two groups: animals who received the BFS
(80 Hz) HFS (130 Hz) and LFS (30Hz) (Graphic 5) and animals who received first HFS,
then BFS and LFS (Graphics 6). Results are shown in ratio: weight divided by initial
weight at the beginning of each paradigm (<1 meaning a decrease from initial
weight/BMI and >1 meaning increase in weight/BMI from the baseline). A washout

period of 4 weeks was completed between the stimulation paradigms.
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Graphic 5: Evolution of the ratio weight/baseline at different frequencies during

Intraventricular stimulation chronic protocol monkeys H5 H7 and sham
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From baseline weight of 7.60 and 7.0 Kgs (BMI 45.21 and 46.02 respectively), a

significant reduction of 9% (0.91 for both H5 and H7) in body weight occurred in BFS
80Hz in Monkeys H5 and H7 at the end of 8 weeks (w) (*p<0.05). During the washout
period of 4 w, H5 monkey maintained the weight (0.92) but monkey H7 returned to

baseline. Stimulation at 130 Hz (HFS) produced an increase of 1-2% in both animals.

Finally LFS (at 30Hz) produced 8-5% (1.05-1.08) in weight gain.
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Graphic 6: Evolution of the ratio weight/baseline at different frequencies

during Intraventricular stimulation chronic protocol monkeys H8 H10 and
sham
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In the second group of animals (graphic 6), H10 increased body weight at HFS in 6%
(1.06), returned to the baseline weight during the washout and lost 12% (0.88) body
weight at BFS. At LFS, H10 increased again body weight in 6%. Animal H8 did not
change during the whole study (0.99, 1.0 and 1.01 at 130, 80 and 30 Hz respectively). In
non stimulated sham monkey, weight and BMI increased slightly (1.04) at the end of the
study. Overall average reduction in BMI and weight was 8% (ratio 0.92+0.04) at 80Hz
(*p<0.05) (Graphic 7). There is a non-responder animal (H8), weight/BMI did not
change. When only the responder animals were taken into account, the average ratio

weight/BMI loss during BFS (80 Hz) was 10% (ratio 0.91 + 0.017).
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Graphic 7 Changes in weight at different frequencies during Intraventricular
stimulation chronic protocol non human primates
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Average weight ratio (n/baseline) during chronic stimulation protocol at different
frequencies (* p< 0.05 ** p<0.01 Friedman’s non parametric paired test with
Dunn post test comparisons). Baseline means off stimulation before the start of the
study, and WO wash out period after paradigm II. Each period of stimulation lasted between
8 to 10 weeks. (continuous monopolar stimulation at 2 volts and 0.6 ms pulse width)
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Changes in Indirect Fat Measures (Skinfolds and Abdominal Circumferences

during Chronic Stimulation)

Indirect fat measures were obtained in fasting monkeys in sternal recumbency position,
and shaving the areas used for measure (Figure 43).Subcutaneous subscapular
skinfolds (SS) and abdominal circumference (CC) give an indirect indication of fat
content and fat distribution in mammals and it has been associated in humans to
hypertension and diabetes (Juhaeri et al., 2003; Larsson et al., 1992).Results have been
summarized in Graphic 8. Skinfolds obtained in the iliac region (IS) followed a pattern of
similar to the weight loss seen during 80 Hz Intraventricular stimulation. Average IS at
80 Hz was 0.69 = 0.08 (**p<0.01), while at HFS (130Hz) IS was 1.26 = 0.15 and at 30Hz

was 0.88 + 0.16. Results in abdominal circumference followed the same pattern with
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more discreet effects: average AC ratio at 80 HZ was 0.95 £ 0.09, 130Hz and 30Hz
were 1.06 £ 0.05 and 0.96 +0.06 respectively. SS showed no changes during the 3
series of 8 weeks of stimulation (80, 130 and 30 Hz produced averaged ratio of

0.9410.23, 0.96+0.11, 1.10+0.35 respectively).

Figure 43: ABDOMINAL CIRCUNSFERENCE, ILIAC AND SUBSCAPULAR SKINFOLDS:
With the primate in recumbent position over an isolating mattress, abdominal circumference
was obtained using a tape meter, taking great care of passing the band over the
supraumbilical area
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Graphic 8 Abdominal circumference and Iliac and Subscapular subcutaneous skinfolds
during chronic stimulation at different frequencies in V3 Stim Macaca fascicularis
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Considering the animals individually, results are shown in ratio: centimeters divided by
the initial measure in day 0 at the beginning of each paradigm (<1 meaning a decrease
from initial IS, SS or AC and >1 meaning increase from the baseline). A washout period
of 4 weeks was completed between the stimulation paradigms.

lliac skinfolds followed the trend seen in weight (Graphic 9). Monkey H5 reduced IS at
80 Hz to 0.63 (37% reduction), gained IS at 130 Hz (ratio 1.2) and reduced again at 30
Hz (0.89). H7 also reduced weight during 80 Hz (0.71) gained at 130 Hz (1.26) and
reduced at 30 Hz (0.8). Less important H8 was only reduced to 0.8 at 80 Hz, gained
11% (1.11) at 130 Hz and also gained in IS at 30 Hz (1.09). H10 showed a sharp
reduction in IS Ratio at 80 Hz (0.64), a rapid gain at 130 Hz (1.4) and finally a reduction
at 30 Hz to 0.73 (IS is a ratio from the baseline-measure at day 0 ). Sham macaca had

0.86, 1.03, and 1.09 during the 3 consecutives periods of the duration of the trials.

Graphic 9 Iliac skinfolds changes during chronic stimulation for each monkey in
V3 Stim Macaca fascicularis
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Abdominal circumference changes during chronic stimulation for each monkey in
V3 Stim Macaca fascicularis
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Abdominal Circumference (AC) when consider individual monkeys, had a large
variability with a trend towards weight reduction at 80Hz. H5, H7 had a ratio of 0.95 and
0.83 respectively at 80 Hz, whereas H8 did not change(0.99) and H10 increased to ratio
1.03. At HFS (130) values were in baseline or superior for all monkeys H5, H7, H8 and
H10 (1.0, 1.12, 1.04 and 1.08 respectively). At LFS (30 Hz) the results were (1.04, 0.97,
0.89 and 0.93 respectively). Sham monkey increased AC during the experiment from

baseline, to 1.08, 1.04 and 1.05.
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Subscapular Skinfolds changes during chronic stimulation for each monkey in V3
Stim Macaca fascicularis
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Subscapular skinfolds (SS) when consider individual monkeys, had a large variability. At
BFS (80Hz) H5 had a ratio of 1.22(22% increase from baseline skinfolds), H7, H8 and
H10 showed ratio of 0.91, 0.99, 1.03.At HFS (130) values were 0.99, 1.02, 1.04 and
1.08 respectively. At LFS (30 Hz) the results were scattered with an increase in SS in
H5 at 1.26 and H7 at 1.05; and decrease in H10 0.93; H8 0.89 and. Sham monkey (H4)

changed during the observation period with no specific pattern.
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Changes in Fat Content Measured Using Bioimpedance Analysis (BIA) During

Chronic V3 Stimulation

As explained above, animals were measured using BIA at regular interval during each 8
weeks stimulation period plus wash out. Bioimpedance analysis (BIA) measures tissue
conductivity. Under stable conditions the conductivity of a body is directly proportional to
the amount of electrolyte-rich fluid present. BIA can therefore be used to measure
several fluid compartments, including total body water (TBW), Extracellular and
intracellular water (ECW and ICW). Fat is anhydrous and thus all body fluids, including
the water present in adipose tissue, reside in the fat-free mass component. This
characteristic allows researchers to calculate the fat component in an organism.

The primates were anesthetized and put in recumbent position over an isolating
mattress. Xitron® special skin electrodes were used in wrist and rump area. A period of
absolute rest under general anesthesia of 15 minutes was allowed before the start of the

test. The results are depicted in Graphic 10.
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Graphic 10 %o Fat content measured using BIA during chronic stimulation
at different frequencies in V3 Stim Macaca fascicularis
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Average Ratio (n/baseline) Fat content during chronic stimulation protocol at
different frequencies (* p< 0.05 ** p<0.01 Friedman’s non parametric paired
test with Dunn post test comparisons).

Fat content was calculated from the fat free mass obtained directly from Xitron
bioimpedancemeter. Three trials per session were attempted and averaged. A
reduction in the fat content was observed at the end of the 80 Hz period. A ratio of 0.82
+ 0.08 was seen at the end of 80 Hz period, so a statistically significative reduction of
18% in fat mass in animals, (p< 0.05, using Friedman non parametric paired test with
Dunn post test comparison). During HFS, we observed a tendency to return to baseline
and during LFS (30Hz) an increase in fat mass, becoming significant at 8 weeks
stimulation (1.12 + 0.08, P< 0.05). Observation in non stimulated sham monkey showed
changes unrelated to periods of stimulation.

Considering each subject individually, at 80 Hz a considerable reduction in body fat

content was seen in all subjects(0,87; 0.71; 0.83; 0.88 for H5, H7, H8, H10); while
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during low frequency(30Hz) there was mostly an elevation in fat content in relationship
with baseline(1.15; 1.01; 1.18; 1,14 for H5, H7, H8, H10). During 130 HZ there was
mixed results (increase in H5, H7 and H8 to 1.15; 1.08; 1.14 respectively; and decrease
in fat content to 0.87 in monkey H10). Sham animal changes in fat content during
chronic protocol showed little variability spreading between 0.89-1.01 (1.00 0.89 1.01

0.95 0.99 at the end of each period) (see Graphic 11)

Graphic 11 % Fat content for each animal measured using BIA during chronic
stimulation at different frequencies in V3 Stim Macaca fascicularis
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Average Ratio (n/baseline) Fat content during chronic stimulation protocol at
different frequencies. In the graphic, final point at the end of period is
represented. ‘Off’ is the wash out period before Low frequency stimulation(30Hz).
Bioimpedance testing was performed with animal in fasting and at the same hour
under general anaesthesia
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Graphic 12 Summary: Weigh and Indirect fat measures during chronic
stimulation at different frequencies in V3 Stim Macaca fascicularis
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out period after paradigm II. Each period of stimulation lasted between 8 to 10 weeks.
(continuous monopolar stimulation at 2 volts and 0.6 ms pulse width) First plot is the
evolution in weight of sham monkey during the same 8 weeks periods
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Comparison in weight and fat content using different electrode geometry

Animals were implanted with two different kind electrodes, allowing extensive coverage
of the surrounding tissue. Two animals underwent stimulation using contact O (deepest
possible) in the electrode 3389 Medtronic, which has a 1.5 mm in height, and the other
two received stimulation thought a contact of 3.5 mm in height, using the electrode 3387
Medtronic. The current intensity was fixed to 2 volts and the rest of parameters were the
same used during DBS for PD of monopolar stimulation (case+, contact -) and 0.60
msec in pulse width. The area of modulation of the electrical field was increased in
height producing modulation to more dorsal structures in 3.5 mm than in 1.5 mm plot.
Considering this difference, we analyzed the influences over Weight and Indirect Fat
measures.

Weight and BMI is taken at the end of the 8 weeks period stimulation at different
frequencies. Animals were assembled in two groups: each one of them having one
monkey implanted with 1.5 mm and the other with the 3.5mm contact electrode. The
cross over protocol was already explained. For analysis, the variables at the end of each
period were divided by the baseline value at the beginning of each period. Weight/BMI

results are showed in the following table and graphic
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Table 9 Changes in weight considering contact size at different frequencies
during Intraventricular stimulation chronic protocol monkeys

WEIGHT/BMI
PLOT 30HZ 80HZ 130HZ
1.5mm 1.07 0.89 1.03
S'D) 0.016 0.018 0.036
3.5mm 1.03 0.95 1.01
SD 0.033 0.05 0.011
SHAM 0.998 0.97 1.04
During effective weight
WEIGHT BMI RATIO
reduction stimulation at 80 Hz, 115
114
the contact 1.5mm produced I

0.89+ 0.018 (11%) reductions in

[N
[=}
— (331
L
(

weight/BMI in monkeys after 8w

=

% FROM BASELINE
2 B8

continuous stimulation. At the 085 | ! e 15MM
' 35 MM
same parameters using 08 —a— SHAM
0,75 1
electrode 3.5mm, reduction in
07
weight was 0.95 + 0.05 (5%), 30z 80z 130Kz

FREQUENCY
meaning an additional 6%

weight loss when using the 1.5mm. At 30 Hz, increased in weight was seen in both plot
1.5mm (1.07£0.016) and plot 3.5 mm (1.03 +0.033). Also at 130 Hz a modest increase
in weight was seen for 1.5 mm (1.03+0.036) and for 3.5 mm (1.01+0.036). Sham

monkey changed weight during the protocol, increasing 4% at the end of the 36 w of
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observation. The trend seen in BMI and weight is found also when analyzing iliac
skinfolds measures. Monkeys implanted with 3389 Contact of 1.5mm had an important
reduction in IS during 80Hz to 0.63+£0.01 (37% reduction). Monkeys implanted with the
larger contact 3.5 mm had also a reduction (0.75£0.06) in IS but less marked (6%
difference). There is a larger difference at HFS (between 1.34 £0.19 and 1.18+0.11
for contact 1.5mm and 3.5mm respectively) and the difference at 30 Hz is also important

(14%). (Table 10)

Table 10 Changes in IS in relation with contact size at different frequencies
during Intraventricular stimulation chronic protocol monkeys

ILIAC SKINFOLDS

PLOT 30HZ 80HZ 130HZ
1.5mm 081 0.63 134
SD 0.11 0.01 0.19
3.5mm 0.95 0.75 1.18
SD 0.21 0.06 0.11
SHAM 0.86 1.03 0.97
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in weight and IS than the 3.5 mm plot
Number of observation is very limited (n=2) to fisdmething significant between the two
groups. Also the fat content did not follow thentletowards a more effective small electrode,
because at 80Hz the 3.5 mm produced 0.77+0.09 6t Bduction in fat measured by
bioimpedance, instead the 1.5mm produced 0.87+0®043% reduction in fat. A more

important number of subjects are necessary to arthigequestion about which active surface is

more appropriated to produce the catabolic effect.

Changes in food Intake during Chronic V3 Stimulation

Animals were fed with more than the required daily allowance: fruits (300grs) and
primates chow biscuits (200-250grs), in order to attain a food intake as ad libitum as
possible. A daily account of food left allows us to calculate total food intake. Water was
not measured due to technical problems with the water dispenser (which is easily
reachable by the monkey and present leakages that makes measure difficult). Baseline
food ingestion was reached before starting chronic stimulation protocol. During almost
two month careful observation in behavior allowed us to determine for each individual
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meal preferences and quantities. Food ingestion depends in several factors and can be
very variable inter-individually. The way chosen to compare different states was to
measure in off stimulation the food intake during two month and then calculates ratios in
relation with this off period. Results will be express as an increase in Fl when >1 or a

decrease when <1. Results are shown in Graphic 13

V3 Stim Macaca fascicularis

Graphic 13 Food intake ratio during chronic stimulation at different frequencies in
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Average food intake during trials and washout periods in stimulated and sham control
subjects Ratios were obtained using two month off-stimulation prior to the beginning of the trials as a
baseline FI. There is a significative increase in FI during WO period after effective weight reducing
stimulation of 80 Hz (* p< 0.05 ** p<0.01 Friedman’s non parametric paired test with Dunn post
test comparisons).

A significative increase in FI was observed in subjects during wash out period after
Efficient V3 stimulation at 80 Hz frequency (1.29 = 0.12 p<0.05). This hyperphagia
lasted the time of the wash out period, descending sharply at the beginning of HFS 130
Hz (0.90 = 0.10 at week 14) and then keeping around baseline during the rest of the
trials. Sham monkey had a tendency of increase food intake through the study from the
baseline. Considering each monkey individually, we have represented de average food
intake in monkeys during each period of stimulation at difference frequencies. At the first

glance, it is possible to realize that total daily ingestion lies between 300 to 600 grs in all
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monkeys. In the off period after effective weight reduction, an increase in food ingestion
is seen in all animals except sham. In the rest of the periods, average food intake has

maintained stability and less variability. (See Graphic 14)

Graphic 14 Average FI in grs during chronic stimulation at different frequencies in
V3 Stim Macaca fascicularis
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Average food intake during trials and washout periods in stimulated and sham
control subjects Total Food intake is displayed in average FI during each of the periods. It
is possible to see some increase in FI after effective weight reduction (after 80Hz
stimulation) except for sham monkey

LABORATORY ANALYSIS, BLOOD CHEMISTRY

Plasma samples were taken for blood chemistry analysis during trials and processed
using Hospital protocol and equipment. Animals were sedated with ketamine and
disposed in a mattress as described for impedance analysis and skinfolds measures.
Intravenous sampling was done using femoral veins at inguinal level or small saphenous
vein in the posterior leg. At each trial, 1 ml of blood was withdraw and centrifuged (3500
rpm during 10 min at 4C) and then separated in two 500 ml samples, one send to the
Biological Integrated Laboratory in the Grenoble Universitary Hospital and the other

stored at -80 C for further analysis. Glucose, proteins and electrolytes were directly
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processed and Hormones and Leptin waited until the end of the study at -80° C to be

processed. The Laboratory of « Hormonologie Pédiatrique et Maladies Métaboliques

Hopital Saint Vincent de Paul » collaborated with the project measuring serum Leptin

and Testosterone.

Changes in Blood Glucose and Electrolytes

Changes in blood glucose and
electrolytes are summarized in Graphic
15 and 16. Glucose is represented in G/I.

The first wash out period, after the

Graphic 15 Serum glucose during chronic
stimulation at different frequencies in V3
Stim Macaca fascicularis
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(80Hz), presented an increase in 0 m SHAM
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test with Dunn post test 0 -
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comparisons). This rise in plasmatic

glucose corresponds to a hyperphagia

period when animals regained weight after

effective 80 Hz stimulation (Graphic 16). Glucose results maintained low normal values

during the rest of the study (reference values for macaca 0.66 £ 0.15).
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Graphic 16 Serum glucose and Food Intake during chronic stimulation at
different frequencies in V3 Stim Macaca fascicularis

G/L
FOOD INTAKE RATIO
16 16
80HZ OFF 130 OFF 30HZ
%
[ 1 T 114
14 |
/L™ . 1 112
12 T - - b T l\. I/E\ -
'\-w : \ EEEREEEEEEE
t N 1 : 08
*
1 o6
08 0Fp8
] 0,645 glucose G/L 04
0.6 Gabos 0.55 0545 +0foct>)d intake ratio
’ E §l 04425 ' + 02
04 — T T T T + 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20\wgeks

There was no statistically significative difference in the electrolytes during the study, with
the exception of CI” during 80Hz trial (p<0.05) (Graphic 17). Reference values were in

the normal range for Na, K and Cl (Table 11).

Table 11: Reference Values in Macaca of Serum Electrolytes

Nal’ 145,5 156,8 mmol/L
KO 3,18 4.8 mmol/L
Cl- 104 110 mmol/L

Hypothalamic stimulation and Lateral hypothalamic lesion can produce severe adipsia,
characterized by the absence of thirst and presenting typically as hypernatremic dehydration. In
our study as said before, measuring water intake was technically difficult, so electrolytes in

serum can reflect the state of hydration of the subjects.
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Graphic 17 Changes in Na, K and CL during chronic stimulation at different
frequencies in V3 Stim Macaca fascicularis
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Average serum levels of Electrolytes during trials and washout periods in
stimulated and sham control subjects. Measures were done using automated modular
instruments (Coulter) used in human subjects in clinical facility (Biology Integrated
Laboratory Grenoble University Hospital)

Changes in Hormones during stimulation

Changes in hypothalamic relevant hormones were investigated during the study. Precise
dosages of hypothalamic releasing factors specific for Macaca genre were not available.
We use pituitary hormones and some final gland hormones (like adrenal cortisol) in
order to asses if changes seen in fat content and weight could reflect a hormonal
imbalance or a clinical endocrinological syndrome. The results could be grouped in

several axes: Corticotropic axis (including GH, cortisol); thyrotrophic axis (TSH, T3L and
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T3L) and gonadotropic axis (prolactin, FSH, LH and Testosterone). Results are

summarized in table n 12

Table 12 Hormones during chronic stimulation at different frequencies in V3

HORMONES BASELNE 80 HZ 130 HZ 30HZ REFERENCE VALUES

CORTSOL 60075 +1489) 70013  +14f 510 #1043 8402 32}, 25 689 nmol|
GH  [652 £1791659 1374 672 #69f 74 119 3 60 ullml
L 488 10741571 £074 554 +06) 629+ 04 3 6 pmolll
L (1023 127|966 £09] 104 10p 1284 131 12 22 pmolll
FSH  [243 $1131225  £114 254 #12p 259 £19 13 115 mUlml

PROLACTN 9775 £706 [2238¢  #112[1231¢ +6271[263  £341 302 2121 uliml

Table 12 Hormones during chronic stimulation at different frequencies in V
Hormones values during V3 Intraventricular Stimulation in Macaca fascicularis
Marked in yellow are the hormones over the range of the reference values published in tl
literature.*p=0.056 (Friedman’s non parametric paired test with Dunn post test comparison
All values were obtained using human reactive and standard clinical laboratory process.

Corticotropic axis: Cortisol was found to have large variation between tests with no
significative difference between frequencies and baseline values. Mean cortisol levels
were higher than reference values at 30 Hz and 80 Hz. Growth Hormone (GH) were
done using human recombinant hormone ( hGH-RIACT from CISBIO)(table 10).
Differences found were no statistically significative.

Thyrotrophic axis: Thriiodothyroxine (Free T3) was very tight regulated, with a tendency
to increase at 30 Hz LFS (6.29 p= 0.056) value also slightly over the reference normal
range. Free T4 presented almost no variation between different frequency stimulation.

Thyroid Stimulant Hormone (TSH) could not be analyzed because poor cross reaction
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between human TSH tests and Macaca genu, which is not the case with “superior” non
human primates like chimpanzees or gorillas (genu Pan, Pongo and Gorilla from
Hominidae Family)

Gonadotropic axis: Variations in Hormone FSH were not statistically significative. High
variability between each trial was seen in the levels of prolactin , with mean values
slightly superior to reference at 80 and 30 Hz frequency stimulation, no statistically
significative. Levels of LH were non detectable in two monkeys and there was a
tendency to increase the levels of Testosterone during on stimulation. The two
hormones seem to be correlated and with the increase of frequency. However,

observed differences in testosterone and LH are not significative. (Graphic n 18)
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Table 13 TESTS USED FOR MEASURE AND HORMONAL SERUM SENSIBILITY

HORMONES Test used for dosage Sensibility
CORTISOL Roche diagnostics Modular E170 <8nmol/L
GH H GH RIACT CISBIO 0.03 uUIl/ml
T3L BECKMAN COULTER 0.5 pmol/I
T4L BECKMAN COULTER 0.5 pmol/I
FSH IMMUNOTECH (IRMA) 0.2 muUI/ml
PROLACTIN IMMUNOTECH (IRMA) 0.2 muUI/ml
LH IMMUNOTECH (IRMA) 0.2 muUI/ml
TESTOSTERONE
GLUCOSE METHODE COLORIMETRIQUE A L'HEXOKINASE( Modular)

ROCHE Diagnostics)
Na, K, CL POTENTIOMETRIE INDIRECTE( Modular) ROCHE

Diagnostics)
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Graphic 18 Variation in Testosterone and LH levels during chronic
stimulation at different frequencies in V3 Stim Macaca fascicularis
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Changes in Leptin during stimulation

Leptin (Greek leptos meaning thin) is a 16 KDa protein hormone, derived from adipose
tissue. It plays a key role in regulating energy intake and energy expenditure, including
appetite and metabolism. Leptin act as adiposity signal, and is level is proportional to
adipose tissue. Leptin was measured from plasma samples stored at -80 C and send to
Laboratory of « Hormonologie Pédiatrique et Maladies Métaboliques Hodpital Saint
Vincent de Paul » in Paris at the end of the study. The results were analyzed and
organized in function of period of stimulation, averaging all subjects during 80 Hz,

130Hz, and 30 Hz. The results can be seen in Graphic 19

Graphic 19 Changes in Serum Leptin levels expressed in ratios (n/baseline) during
chronic stimulation at different frequencies in V3 Stim Macaca fascicularis
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Ratio of serum Leptin in macaca during chronic Intraventricular stimulation trial:
Serum leptin was divided by baseline serum leptin before the beginning of the trials. Leptin
was analyzed as we have done with fat measures which have an accumulative effect (Leptin
is an adipose signal).

Great variability in levels of leptin was observed during the experiment, even in non

stimulated sham subject. Observed Differences are no statistically significative (using

211



Thesis: DBS for obesity in the normal non human primate: N Torres
MD

non parametric paired ANOVA: Friedman Test). In general, sham monkey has higher
levels of leptin, as expected given its superior BMI, than other subjects and seems to
increase during the experience (Graphic 20). After the end of the experience, all

subjects experienced an increase in absolute leptin levels.

30,0
|
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1 //
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Absolute levels (ng/ml) of serum leptin during the chronic stimulation protocol
plus ten weeks after the end of the experiment. Absolute values are larger in control
monkey than stimulated animals and there is a tendency to increase levels of leptin toward
the end of the study. Stimulated animals maintained the leptin levels and only at ten week
post stimulation seem to augment the leptin values. Increasing leptin values may be related
to adiposity accumulation seen in animal with long periods of captivity.

Laboratory analysis summary

Several interesting finding were observed during Hypothalamic V3 chronic stimulation in

non human primates. In the first place, electrolytes, an indirect indication of adipsia and
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dehydration, remained in the normal reference values for Macaca sp. Chloride was
increased during 80 Hz (p<0.05) but its absolute values remained in normal range.

Other positive finding was concerning glycemia. During the wash out period after 80Hz
effective weight reduction stimulation, serum glucose augmented significatively (p<0.05)
coinciding with an increase in food intake (rebound hyperphagia).

GH, Cortisol, Prolactin, and FSH presented high variability with no statistically
significative difference between frequencies. Cortisol and Prolactin values at 80Hz and
30Hz are slightly elevated.

There is a tendency of increasing values of Free T3 at LFS (30Hz) (p=0.056). No
significative difference was seen in T4L.

LH was undetectable in two monkeys; Testosterone was within normal values but with a
tendency to increase with the frequency. Leptin presented high variability with no
changes during the study but with a tendency of increasing its levels in all subjects after

the end of the experience.

ELECTRODE PLACEMENT: MRI IMAGES AND STEROTACTIC

VENTRICULOGRAPHY.

As discussed in methods, we used two imaging methods for localization of the electrode
and the active contact. First, the Ventriculography and the X-ray in stereotactical
condition; which allows transforming the contact position into spatial coordinates,
permitting the comparison between different subjects and the atlas (after normalization
using internal landmarks like ac pc line or height of the thalamus). (Percheron et al.,
1986b) . And in second place, MRI 3Tesla adapted to the small animals; which can be

used to localize the electrode in the post mortem piece (Pfefferbaum et al., 2004). Using
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both methods is possible to have a clear idea of where the contacts were. In the
following table, we have summarized all the coordinates for each active contact. The
contacts coordinates are expressed as raw data, which means the distance measured
directly in the three planes without any further transformation (besides the coefficient of
magnification for all X-rays). The normalized data was created following the same rules
applied to human subjects: division in 1/12" the ac-pc line and in 1/8" the thalamus
height and expressing all the distances in twelve’s of the ac-pc line(Y coordinate) and in
eighths of the thalamus height (the coordinate Z). For review into this, please

see(Benabid et al., 2002a)(Table 14)

Table 14: Active contact coordinates for each monkey, measured using
Stereotactical X-rays and Ventriculography.

SUBJECTS  |TYPE |AC—PC TH |ELECTRODE MM RAW DATA NORMALIZED DATA
ELECTRODE Y VA X Y
| TIPINF [ TIPSUP [ TIPINF | TIPSUP | TIPINF | TIP SUP Ryl 1[50 2881111 S 1128 U 2R 1[4\ 23S U

H4 monkey 3389 8432 6,664f 045 | 045 [ 434 | 284 | 260 | 260 | 065 | 065 | -521 | -341 [ 2,60 | 260
H5 monkey 3389 9,258 5386 094 | 094 [ 510 | 360 | 025 | 025 | 122 | 122 | -749 | -529 | 025 | 025
H7 monkey 3388 1047 6,112) 153 | 153 | 520 | 170 | 000 | 000 | 176 | 1,76 | -7,03 | -230 | 0,00 | 0,00
H8 monkey 3388 1003 6,62 096 | 09 | 510 | 160 | 012 | 012 | 114 | 114 | -725 | -227 | 012 | 012
H10 monkey 3389 1045 7,33 000 | 000 [ 603 | 453 | 055 [ 055 | 000 | 000 | -657 | -494 | 055 | 055

Table 14 Showing contact coordinates in X, Y and Z planes: X is the laterality from
midline, Y is the antero-posterior distance from the AC, and Z is the depth from AC-
PC plane. Normalization was made taking into account the ac pc distances for each
monkey. TH is the thalamus height. ‘Tip inf’ and ‘Tip sup’ means inferior and superior
contact tip.

All the contacts lied in the 3 Ventricle. The X coordinates (laterality) were between O to
0.55 mm from the midline, with the exception of monkey H4 or sham control, who was

slightly off-center (2.6mm from the midline). The depth from the ac pc plane was
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between 4.34-6.03mm (5.21 to 6.21 normalized). And they were just posterior the
anterior commisure between 0-1.76 normalized data. Using the atlas of Paxinos and
normalizing the distances, we were able of represent the VMH in this stereotactical
space. Results are shown in Figure 44

Figure 44: VMH in Sagittal and Coronal views showing active contacts projections.
The contacts lied on the dorsal part of the nucleus.

SAGITTAL ATLAS CUT WITH INTRAVEN TRICULAR ELECTRODES VMH CORONAL ATLAS CUT WITH INTRAVEN TRICULAR
AND SHOWING VMH POSITION ELECTRODES

1 2 3 4 s 6 7 8 j> 1 2 3 4 5 6 7 8
1

H8 H7

VMH: Ventromedian nucleus

58;:%?1' HS5 I H7 I H8 I H10 SHAM I

Figure 44:
Active contact coordinates represented in the steogactical space in coronal and sagittal view. VMHs shown
in the coordinates obtained from Paxinos and Huandtlas Macaca Mulatta. (Paxinos et al., 1999)
The results from the MRI images were obtained and the centre of the hypo-intensity
artifact was used as a contact center. The electrodes 3389 had a smaller artifact than
electrode 3388, and it was further decreased when we orientated the lead parallel to the

magnetic field. In the figure 45, the position of the electrode relative to other brain

landmarks and to VMH is displayed.
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Figure 45: Coronal MRI images showing the electrode position: Comparison with
Atlas cuts and X-rays AP projections.
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The monkeys H5 and H10 were implanted with a quadripolar electrode and stimulated
with the lower contact (contact 0). In the control MRI, the contact O was in contact with
the floor of the third ventricle in both monkeys. The main difference was that in the
monkey H5 the contact seems posterior; corresponding with the atlas cut ac -3mm and
in the monkey H10 the center was more anterior corresponding to a cut ac -2mm. In
either case, the contacts were in close relationship with VMH nucleus. Both electrodes
were lying more to the left wall of the third ventricle. The monkeys H7 and H8, implanted
with a monopolar, monocontact of 3.5 mm in height generated an artifact in “arrow’s
point”. This characteristic made difficult to identify properly the center of the electrode
contact. If we consider the tip of the artifact as the tip of the electrode, both electrodes
lied in the floor of the 3rd ventricle in the corresponding atlas coronal cut ac—3mm (3mm
posterior to ac). There were discrepancies in the measures MRI and Ventriculography,
but both methods confirmed the Intraventricular placement of the electrode and the
close relationship with VMH. Sham subjects had as expected, a contact that is dorsal to
VMH and off center to the right, but inside 3V. (In the X ray correspond to 2.6 mm to the
midline).

In conclusion, the position of the active contacts in general, was at the level of the VMH
nucleus, Intraventricular but lying slightly off center to the Left, and with the tip touching

the floor of the third ventricle.

DISCUSSION

This is the first report to our knowledge, of effective decrease in total weight and fat
mass in non human primates following DBS in the hypothalamic region. This is also the

first time that the Intraventricular approach has been used to modulate hypothalamic
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structures in monkeys. Essential in our study is the use of this new, less traumatic
approach to central median brain structures: the Intraventricular way, which has been
proved easy to perform and safe. And because of the preclinical characteristic of this
work, Blood chemistry and hormones in serum were measured revealing no clinical
condition (endocrinological or related to electrolytes) that could hamper is application in

human settings. Details of the different findings are discussed.

Weight and fat content modulation

The most important finding of this study is that weight and fat mass can be modulated in
non human primate using the adequate electrical stimulation parameters in the
hypothalamic medial region. Animals reduced in 8-10 % in body weight and 18 %
reduction of fat content at the end of 8 week after stimulation at 80 Hz. Other
frequencies produced no changes in weight. The reduction in weight was accompanied
with reduction of fat mass and a reduction in iliac skinfolds and a tendency in reduction
in abdominal circumference. The reduction in weight was done primarily in fat content
and was achieved in the local areas where fat accumulates, like abdomen or iliac region.
On the contrary, Subscapular fat was not changed during the experience. Localized
abdominal fat reduction was related in humans with reduction in the risk of obesity
associated diseases like hypertension or diabetes (Larsson et al., 1989; Pender and
Pories, 2005). Several authors have showed modulation in weight in rats following lesion
of lateral structures in the hypothalamus or electrical stimulation in ventromedian
hypothalamus (Anand and Brobeck, 1951b; Bielajew et al., 1994; Sani et al., 2007;
Stenger et al., 1991)But the results in monkeys are limited and far from definite(Lacan et

al., 2008), and several conflict reports are published(Robinson and Mishkin, 1968)
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The contradictory reports in monkeys have a possible methodological reason. For the
most part, they use stimulation parameters (frequency, voltage etc.) coming from Basal
ganglia stimulation in Parkinson’s patients (Lacan et al., 2008; Takaki et al., 1992). In
this area, it is maybe critical to study stimulation parameters setting due to the
complexity of the region. In this study, careful acute stimulation protocol allowed to set
parameters according to acute reduction in food intake. This long period of testing might
be essential to produced effective weight reduction.

Other element in published studies that contrast with the present work was the
observation period. Very short protocols (Lacan et al.,, 2008) produced possibly
modulation in food intake, but fail to show weight loss. Long term assessment is maybe
needed. The present work presented a long period of acute stimulation and a cross over
protocol with periods of 8 to 10 weeks with washout of 4 weeks. Longer periods of
stimulation are sometime required in several disorders to achieve maximum benefit (like
dystonia and Obsessive compulsive disorders) (Krauss et al., 2003; Vercueil et al.,
2001)

A final element that distinguishes this study from others and could explain divergences
is the targeting and final active contact position. Targeting the VMH in the literature is
made by putting contact directly in the center of the nucleus. It is possible that spreading
to other areas and to the fiber of passage make difficult to evaluate the electrical
stimulation of VMH in those conditions. The difficulty with the intraparenchymatous
approach is that it is easy to modulated sub areas in the hypothalamus that are involved
in opposite function to VMH. Also the introduction of the lead can produce mechanical
lesion in VMH and therefore, the reverse effect. Intraventricular stimulation, which at the

first glance is less specific, present the advantage of complete covering medial
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hypothalamic areas (areas susceptible of anorexia and weight loss), and saving lateral
hypothalamus, a mostly fiber area(Beltt and Keesey, 1975)of modulation and

antagonizing the weight loss effect.

Modification in food intake

FI was stable during the stimulation periods. But after effective lost of weight and
reduction in fat mass (8 % in weight loss and 18% fat mass reduction at the end of 8
week 80Hz stimulation period) during washout there was an increase of 25% in FI (
p<0.05). Hyperphagia was accompanied by an increase in glucose and rebound weight
gain. Literature in Obesity usually finds periods of hyperphagia and rebound weight gain
after effective weight loss(Hensrud et al., 1994; Masuo et al., 2005)In the first part of the
present work, acute test showed decrease in food intake in hungry monkeys at particular
frequencies. During short periods of time and in specific condition of fasting, animals
reduce Fl measured as total meal size and increased locomotion at effective frequency
stimulation parameters. Those parameters that induced reduction in FI during acute
trials produced afterwards weight reduction during the 8 to 10 week chronic stimulation
crossover protocol. These finding suggest that a behavioral effect over Fl is obtained
when the stimulation is put on. The acute effect over FlI fades away in time and a
catabolic metabolism is established producing finally the necessary energy consumption
to provoke weight loss and fat mass reduction.

Finally, the increase in FI during off stimulation after weight loss and rebound weight
gain rise the question of how long the stimulation should continue to produce a stable

BMI and possibly a “new set point” for fat content in the subjects.
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Endocrinological and Blood Chemistry Changes

Electrical hypothalamic stimulation could induce several endocrinological conditions
secondary to the secretion of releasing factors into the hypothalamus pituitary portal
system or secondary to direct production of hormones(Fink, 1976; Martin and Reichlin,
1970; Martin and Reichlin, 1972)Some of those conditions could have explained the
weight loss and the reduction in fat mass during effective V3 medial hypothalamic
stimulation (hyperthyroidism)(Martin and Reichlin, 1970).

More importantly, some of those endocrinological conditions might have prevented or at
least delayed the possible clinical application of our study. Also, besides hormones, the
electrolytes and glucose might produce some undesirable side effects, like dehydration
(Szczepanska-Sadowska et al., 1979)or diabetes and put into risk the animal well being
and potentially human patients. So, for evaluating the safety of the procedure, is
necessary to take into account not only surgical tolerance or acute behavioral
symptoms, but also hormonal and ancillary laboratory tests.

In the other hand, Effective electrical stimulation of V3 seems to produce a catabolic
state associated to hyper-metabolism, which increases basal energy
expenditure(Bielajew et al., 1994) So in general, laboratory measures look to unveil
some of the causes of weight loss during V3 Stimulation and dissipate safety concern
that could eventually hamper further clinical experiences.

In the study, some interesting finding might help explain some of the physiological
characteristic of the fat and weight loss in the subjects during stimulation. And more
importantly, these data help clarify safety concerns associated to hypothalamic

stimulation.
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In the first place, electrolytes remained in the normal reference values, and only CL
was significative increased (but in the normal range) during effective weight loss
stimulation. In the literature, Lateral hypothalamic lesion and VMH electrical stimulation
(Anand and Brobeck, 1951b; Bernardis and Bellinger, 1996) (Stenger et al., 1991,
Teitelbaum and Epstein, 1962) in rodents were often accompanied with adipsia and
hypernatremia during weight loss. During the trial, it was difficult to measure water
intake for several technical reasons. So, measuring electrolytes provided at least an
idea of the degree of dehydration produced. The syndrome adipsia-hypernatremia was
not present in our study, meaning probably that thirst center were not compromised by
the stimulation or at least they maintained the compensatory mechanisms.

Glucose remained in the normal reference values throughout the experiment.
Nevertheless, an increase in the glycemia was seen immediately after reduction in body
weight and fat content following V3 80Hz effective stimulation. During this wash out off-
period, a surge in food intake and a partial rebound in weight were also noticed. Even
thought the levels of glucose increased, they maintained in the published normal range
for macaca.

Obesity treatment usually reports rebound weight gain after successful weight loss,
accompanied with hyperphagia and a peak in serum glucose. The fact that levels of
glucose remained in the normal range even during the increase indicate that pancreatic
regulatory mechanism compensate adequately this anabolic period.

GH, cortisol, prolactin, FSH , presented large variability with no significant variation. LH
and Testosterone seems correlated with a tendency of increasing with the stimulation
(at all frequencies) but no significative difference was found. No changes were found in

Thyrotropic axis, with the exception of free T3, which has a tendency of increase when
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the stimulation was at LFH 30 Hz (p=0.056). VMH and possibly DMH electrical
stimulation does not produce direct secretion of hypothalamic releasing factors (like
Somatostatin or ACTH). However, it is well known that VMH stimulation is associated to
an elevated sympathetic tonus, with an increase in noradrenalin exchange rate in
rodent’s brown fat tissue(Minokoshi et al., 1986) Increase sympathetic tonus associated
to increased metabolic basal energy expenditure can lead to changes in some stress
hormones (Vissing et al., 1989). Compensatory mechanism might be at work in our
study and help explain why hormones remained in reference levels. Also, additional
measurements of the metabolic rate should be done in metabolic chamber capable of
measure O2 consumption, heat, cardiac frequency, respiratory rate and other variables
reflecting the catabolic state, helping unveil mechanism of modulation in weight following
hypothalamic stimulation. Broad serum investigation in the search of markers should be
undergone for explaining the physiology of the electrical stimulation hypothalamic weight
loss.

Also, the Intraventricular V3 approach to the stimulation rather than
intraparenchymatous, might have been important for avoiding spreading to neighboring
areas. Some areas near ventromedial hypothalamus can effectively secrete
hypothalamic releasing factors putting into a risk the general health state of the
implanted subject. Specific medial hypothalamic stimulation, avoiding other nuclei and
fibers of passage seems to be reached with Intraventricular approach.

Finally leptin serum levels were very variable and did not follow a discernable pattern;
no statistical difference was found. Leptin is an adiposity signal that is proportional to the
amount of fat content. Thus, leptin levels should decrease after effective weight loss

treatment. However, authors have found that during weight loss, leptin do not follow
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exactly the fat content in treated subjects .Other factor involved was that leptin samples
were processed after a long period of storage and were sent to an external laboratory. In
consequence, storage and transport maybe in part responsible for high leptin variability.
And the decrease in fat content was not as important or long in time to produce variation

in those levels.

Safety Issues

The recent demonstration of the effectiveness of DBS in posterior hypothalamus has
opened several research pathways using the hypothalamic areas (Leone et al.,
2005)Unfortunately, some safety concerns in targeting this area remain (Pinsker et al.,
2008; Schoenen et al., 2005)These concerns have made us explore new approaches to
reach in a less invasive fashion these medial areas of the brain. Intraventricular DBS
electrodes theoretically should have a risk comparable to the insertion of ventricular
catheter use in hydrocephalus.

The first safety issue was the surgical procedure. Surgery was well tolerated in all
animals. One of them has an infection in the IPG that forced us to withdraw the battery.
After total recovery, this animal was used as a sham operated subject. In general, the
procedure generates weight loss during the first weeks before the starting of the trials.
During acute trials when the monkeys were recorded and analyzed, no behavioral
changes were seen. In the chronic protocol, no evident side effects were seen. Overall,
monkeys were healthy without signs of pain or reduction of movement. Some
stereotypical movements were observed in two monkeys, but were related to the long
captivity periods in small cages. When the animals were put in bigger cages and in-

pairs, the repetitive movements stopped.
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The most important limiting factor for using this stimulation in a clinical setting could be
theoretically the disruption of hormonal balance caused by directly stimulation and
secretion of hypothalamic releasing hormones producing potentially dangerous condition
(like acromegaly or hyperthyroidism). Careful analysis of serum samples allowed us to
conclude that stimulation were not inducing modulation in vital plasma elements that
could become a threat to the animals. The subjects were observed during a long period
of time, almost three years from surgery to euthanasia. During all those years, monkeys
tolerated well the hardware (IPG and Electrodes) .The position of the tip of the electrode
did no migrate to other areas, keeping the hypothalamus stimulated, without lesioning
V3 walls or other areas. Hypothalamus was modulated without risking producing
associated lesion, which could have had an antagonistic effect over weight control (in
contrast to STN stimulation in which lesion or HFS has the same effect).

In conclusion, this procedure could be adapted to human subjects in clinical settings

without evident risk to patients.

CONCLUSION

New indication for DBS are flourishing as our knowledge of the anatomo-physiology of
diverse region in the Central Nervous system develops. And the characteristics of
reversibility and minimum lesion to tissue of the DBS allow researchers to explore new
areas in Brain. Encouraging results in the modulation of posterior hypothalamus in
cluster headache and recent experiences in ES of Ventromedian hypothalamus in
obesity models in rodents has prompted investigation in this area. This is the first report
of DBS clear reducing weight and fat content in non human primates. Reduction in

weight and fat was not followed by important hormonal or electrolytes imbalance, or
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conditions that could have prevented the future application in clinical environment. Also
key in our study, the new approach or the revival and adaptation of the old
Intraventricular stimulation to reach medial structures has prove to be safe, stable in

time and possibly more effective in modulation of circumventricular structures.
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