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Résumé

Dans cette recherche, un modèle de propagation d’ondes de choc sur grandes distances sur
un environnement urbain est construit et validé. L’approche consiste à utiliser l’Equation
Parabolique Nonlinéaire (NPE) comme base. Ce modèle est ensuite étendu afin de prendre en
compte d’autres effets relatifs à la propagation du son en milieu extérieur (surfaces non planes,
couches poreuses, etc.). La NPE est résolue en utilisant la méthode des différences finies et
donne des résultats en accord avec d’autres méthodes numériques. Ce modèle déterministe est
ensuite utilisé comme base pour la construction d’un modèle stochastique de propagation sur
environnements urbains. La Théorie de l’Information et le Principe du Maximum d’Entropie
permettent la construction d’un modèle probabiliste d’incertitudes intégrant la variabilité du
système dans la NPE. Des résultats de référence sont obtenus grâce à une méthode exacte et
permettent ainsi de valider les développements théoriques et l’approche utilisée.
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Abstract

This research aims at developing and validating a numerical model for the study of blast wave
propagation over large distances and over urban environments. The approach consists in us-
ing the Nonlinear Parabolic Equation (NPE) model as a basis. The model is then extended to
handle various features of sound propagation outdoors (non-flat ground topographies, porous
ground layers, etc.). The NPE is solved using the finite-difference method and is proved to
be in good agreement with other numerical methods. This deterministic model is then used
as a basis for the construction of a stochastic model for sound propagation over urban envi-
ronments. Information Theory and the Maximum Entropy Principle enable the construction
of a probabilistic model of uncertainties, which takes into account the variability of the urban
environment within the NPE model. Reference results are obtained with an exact numerical
method and allow us to validate the theoretical developments and the approach used.
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List of Notations

Latin lowercase letters

c (x, z) Spatially-dependent average sound speed
c0 Ambient sound speed
c1 (x, z) Spatially varying sound speed perturbation
cp Specific heat at constant pressure
cv Specific heat at constant volume
e0 Energy per unit mass
f Frequency
h (x) Ground elevation
h′ Ground elevation first derivative with respect to x

h′′ Ground elevation second derivative with respect to x
k Wavenumber
mXi Mean value of random variable Xi

p′ Pressure perturbation
pfree (ω) Free field pressure at the receiver
p0 Peak overpressure
p0 Ambient pressure
p

T Total pressure
pXi Probability density function of random variable Xi

s Mean propagation model parameter
t
+ Positive phase duration
ta Shock arrival time
u Flow velocity in the x-direction
u Urban environment parameter
w Flow velocity in the z-direction
w Stochastic model parameter
x Shock formation distance

Latin uppercase letters

Di Random variable – space between buildings Bi and Bi+1

E Mathematical expectation
F (w) Multi-objective function
G Green’s function
H

(1)
0 Hankel function of the first kind and of order zero
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Hi Random variable – height of building Bi

Heav (x) Heaviside function
I/A Impulse per unit area
J (w) Objective function for the mean square method
Jn Bessel function of order n
L (ω,w) Relative SPL at the receiver. Output from the stochastic NPE model
Lexp (ω) Relative SPL at the receiver. Output from the reference model
L Log-likelihood function

Lred Reduced log-likelihood function

−Lred Objective function for the maximum likelihood method
Nx Number of points in the moving window in the x-direction
Pr (ω) Pressure at the pressure – stochastic model observation
P exp

r (ω) Pressure at the pressure – experimental observation
Q Cylindrical reflection coefficient
R Dimensionless density perturbation
Rp Plane wave reflection coefficient
V Flow velocity vector
Wi Random variable – width of building Bi

W Equivalent charge of TNT

Z Reduced distance in
[
m/kg1/3

]

Z Surface acoustic impedance
Z0 Characteristic impedance of air
Zc Material characteristic impedance

Greek lowerwase letters

α Shape parameter
β Coefficient of hydrodynamic nonlinearities
γ Ratio of specific heats
δth Sound diffusivity
δXi Coefficient of variation of random variable Xi

ǫ Scaling factor
κ Thermal conductivity
µ Shear viscosity
µB Bulk viscosity
ξ Forchheimer’s nonlinearity parameter
ρ′ Density perturbation
ρ0 Ambient medium density
ρ

T Total density
σ Nonlinear flow resistivity
σ Shock formation distance
σ0 Linear, static flow resistivity
σ2

Xi
Variance of random variable Xi

ψ Grazing angle
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Greek uppercase letters

Γ (z) Gamma function of argument z
Γ, Λ, Θ Random parameters of the ground layer
∆t Time step
∆x Spatial step in the x-direction
∆z Spatial step in the z-direction
Φ Material tortuosity
Φij Rate of shear tensor
Ω0 Ground porosity

Mathematical signs

∂i Partial derivative with respect to variable i
Dt Frame-following operator
δ Kronecker delta
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What gets us into trouble is not what we don’t know.

It’s what we know for sure that just ain’t so.

Mark Twain (1835 – 1910)

General introduction and context of

research

The motivation for this work, entitled Nonlinear acoustic wave propagation in complex media

– Application to propagation over urban environments, finds its origin in events such as the

explosion of the AZF factory in Toulouse (France) in 2001. This accident was responsible for

the death of 30 people, thousands of injured and cost around e3 billion.

Today there are still some facts about this event, such as a double echo, that scientists are

unable to explain with the tools they possess. The work presented in this document tries to pro-

vide an answer to such problems, through the development of a numerical method for the study

of blast wave propagation in complex media and over large distances, with the undercurrent

objective of risk assessment of such industrial sites.
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General introduction and context of research

Industrial explosion risk and consequences

Industrial explosions since 2001

Since 2001, eight major industrial explosions have been reported. These accidents caused

more than 80 casualties, tenth of thousands of injured and cost billions of euros. Tab. (1)

lists these events and gives their description. With eight major accidents in less than a decade

(approximately 1 accident per year), the risk and the consequences of industrial explosions

are far from being nonexistent.

Two major events can be denoted from Tab. (1): the explosion of the AZote Fertilisant (AZF)

factory in Toulouse (France) in 2001 and the explosion of an oil depot in Buncefield (England)

in 2005. These two accidents killed 30 people, injured thousands of others and cost around

e3 billion.

Table 1: List of main industrial explosions since 2001. Various web sources were used to
compile this list.

Year Place Company Casualties and injured Cost

2008 USA Georgia sugar refinery 13 deaths, 40 injured $15.5 million

2008 USA Goodyear plant 1 death, 6 injured unknown

2007 USA Little General Store 4 deaths unknown

2006 USA Falk Corporation 3 deaths , 47 injured $40 million

2005 England Buncefield oil depot no casualties £873 million

2004 Algeria LNG liquefaction plant 27 deaths unknown

2004 Denmark Jest fireworks 1 death unknown

2001 France AZF factory 30 deaths, e2 billion

several thousands injured

Three types of effects are generally considered for industrial explosions.

◮ Thermal effects from the combustion of inflammable materials. Depending on the mate-

rial and the detonation conditions, the combustion time can vary from some milliseconds

to several hours. Human consequences are burns; it can inflame neighboring structures.

◮ Overpressure effects which result from the propagation of a high pressure wave caused

by an explosion. Effects on humans range from eardrum rupture to death by lung

hemorrhage. Buildings can be heavily damaged and even collapse.

◮ Toxic effects resulting from a leak of a toxic substance. The most exposed are employees

and emergency services.
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Two examples: the AZF factory and the Buncefield oil depot explosions

In this work we only consider the effects from the overpressure wave. Possible damage to

buildings and injuries caused by an overpressure wave are briefly presented below.

Damage to constructions caused by blast waves

Common units to characterize an overpressure amplitude are millibars and psi. In this docu-

ment the overpressure amplitude is given in kPa, so that it can easily be linked to acoustical

quantities. As a reference for comparison, a charge of 1 kg of Trinitrotoluene (TNT) produces

a positive peak overpressure of approximately 10 kPa at 10 meters from the explosion.

Tab. (2) lists the overpressure levels and the corresponding observed damage on structures.

The figures are taken from Merrifield [1993] (figures from different sources can be found

in Appendix A). For very low overpressures, typically less than 1 kPa, very few damage

to buildings will occur. From 1 kPa to 5 kPa, minor damage will be observed: cracks in

walls, windows shattered, tiles displaced, etc. These overpressure strengths are not directly

harmful for humans (see next section), however, indirect harms through broken glass or

projected objects can be important. From 5 kPa to 15 kPa, serious damage will be observed

on buildings and the environment: inhabitable houses, partial collapse of walls and roofs,

trees blown down, etc.

Injuries caused by blast waves

Direct injuries to people are presented in Tab. (3); this table does not include indirect harms

caused, for example, by fallen tiles or broken glass. The threshold of fatality for a vulnerable

population is very low: 7 kPa is less than what is produced by 1 kg of TNT at 10 meters.

Most common direct injuries are eardrum ruptures: more than 500 cases were reported after

the AZF explosion. The threshold of fatality for a healthy population is around 15 kPa.

Psychological consequences, that do not appear in Tab. (3), are also important. The weeks

following the accident in Toulouse, more than 700 psychiatric consultations were recorded,

3 200 psychoactive drug prescriptions were given and more than 5 000 people were reported to

suffer from acute stress [see Sauret, 2002]. During the five days following the AZF explosion,

the number of heart attacks was three times more than the year before [see Rivière et al. ,

2006].

Two examples: the AZF factory and the Buncefield oil depot

explosions

Two of the most important industrial explosions occurred during the last decade in Europe.

Both were impressive by their amplitude and illustrate the consequences on humans and their

3
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Table 2: Blast overpressure values and corresponding commonly accepted damage to struc-
tures. This table is taken from Merrifield [1993].

Overpressure (kPa) Damage

0.1 Annoying noise, if of low frequency

0.7 Breakage of small windows under strain

1 Typical pressure for glass failure

2.1 Damage to some ceilings

2.8 Minor structural damage

3.4–7 Large and small windows shattered, damage to window frames

5.2 Minor damage to houses, 20-50 % of tiles displaced

6.3 Roof damage to oil storage tanks

7 Houses made uninhabitable

7–14 Asbestos cladding shattered, fastenings of corrugated steel panels fail,

tiled roof lifted and displaced

14 Partial collapse of walls and roofs of houses, 30 % of trees blown down

21 90 % of trees blown down, steel framed buildings distorted

and pulled away from foundations

21–28 Rupture of oil tanks

28–35 Severe displacement of motor vehicles

35 Wooden utility poles snapped

49–63 Collapse of steel girder framed buildings

56–70 Brick walls completely demolished

>70 Complete destruction of all un-reinforced buildings

living environment.

AZF chemical factory, Toulouse (France), 2001

The accident

On September 21st 2001 a huge explosion occurred in the AZF fertilizer factory in Toulouse,

belonging to the Grande Paroisse branch of the Total group. Three hundred tons of am-

monium nitrates exploded in hangar 221. The whole factory was destroyed making a crater

of depth 20 to 30 m, with a diameter of 200 m. Steel girders were found 3 km away from

the explosion. Fig. (1) shows a satellite view of the AZF site eight years after the explosion.
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Two examples: the AZF factory and the Buncefield oil depot explosions

Table 3: Commonly accepted figures for direct harm to people from blast overpressure. This
table is taken from Merrifield [1993].

Overpressure (kPa) Direct harm to people

7 Threshold of fatality (1-5 %) for a vulnerable population

13.8 Threshold for eardrum rupture

14 Threshold of fatality (1-5 %) for a normal population

10.3 – 20 People knocked down or thrown to the ground

60 50 % fatalities for a normal population

69 – 103 90 % probability of eardrum rupture

83 – 103 Threshold of lung hemorrhage

206 – 240 Near 100 % fatality from lung hemorrhage

The crater is still clearly visible at the top of the picture. The explosion was heard 80 km

away and was reported as occurring in multiple places; police at first believed that at least

five bombs had simultaneously gone off. There is still controversy over the exact number of

explosions. The results of the official inquiry were that a warehouse of ammonium nitrate

had exploded following improper handling of this dangerous material, including mixing with

chemical impurities. Specifically, it is believed by mandated official experts that∗

“a mislabeled 500 kg bin of sodium dichloroisocyanate mistakenly thought to be

ammonium nitrate was dumped in the off spec ammonium nitrate warehouse.

Here under sufficiently hot and humid conditions it could have reacted with the

ammonium nitrate to form nitrogen trichloride which is an exceedingly unstable

compound. The decomposition of the nitrogen trichloride could have provided the

heat and pressure required to detonate the ammonium nitrate which when used

as an industrial explosive typically requires detonators.”

Human, environmental and economic impact

The factory was close to the city: one of the most inhabited areas, Le Mirail, is just one

kilometer away from the factory site. Several schools, one university campus, one hospital

and a psychiatric hospital had to be evacuated. The disaster caused 30 deaths, 2 500 seriously

wounded and 8 000 light casualties. Two thirds of the city’s windows were shattered, causing

∗ At the time of writing this document (spring/summer 2009) the lawsuit is still ongoing. Experts are being
heard to determine what was the exact cause of the explosion. The explanation given here is the conclusion
of the first inquiry from 2002.

5



General introduction and context of research

Figure 1: Satellite view of the AZF factory site taken in 2009. Eight years after the explosion,
the crater is still clearly visible at the top of the picture.

70 eye wounds and several thousand wounds which had to be sutured. The full environmental

consequences of the catastrophe are not yet completely known. The total amount already

paid by insurance groups exceeded 1,5 billion euros in 2007. About 40 000 people –10 % of

the population– were made homeless for a few days.

Buncefield oil depot, Buncefield (England), 2005

The accident

The first and largest explosion occurred at 06:01 UTC near container 912. From all accounts,

it seems to have been an unconfined vapor cloud explosion of unusually high strength. The

explosions were heard 150 km away; there were reports it was audible in France and the

Netherlands. The British Geological Survey monitored the event, which measured 2.4 on
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Conclusions

the Richter scale. It was reported that people were woken in south London, and as far

west as Wokingham, where numerous people felt the shock wave after the initial explosion.

Subsequent explosions occurred at 06:27 and 06:28. Witnesses observed flames hundreds of

feet high from many miles away, with the smoke cloud visible from space.

Human, environmental and economic impact

Damage from the blasts, ranging from broken windows and blown-in or warped front doors to

an entire wall being removed from a warehouse, occurred more than 800 m away. Buildings in

neighboring St Albans also suffered. For example, Townsend School had serious blast damage,

and a window was blown out of St Albans Abbey (both 8 km from the site). Several nearby

office blocks were hit so badly that almost every window, front and back, was blown in as

the explosion ripped through them. Reports also indicated that cars in nearby streets caught

fire. The roof of at least one house was blown off. Fig. (2) illustrates the explosion impact

on buildings and the environment: more than 400 meters from the explosions, buildings

are seriously damaged. There were 43 reported injuries; two of them being seriously harmed.

Since the explosion occurred early in the morning, very few people were on site, which explain

the low number of casualties. This explosion cost almost a billion pounds (see Tab. (4)), the

main part being compensation claims.

Table 4: Summary of the overall cost of the Buncefield incident, by main category. This
table is taken from Buncefield 2008.

Sector Cost (£million)

Site operators (compensation claims) £625

Aviation £245

Competent Authority and Government response £15

Emergency response £7

Environmental impact (drinking water) £2

Total £894

Conclusions

Eight major explosions have occurred during the last decade. About a hundred people were

killed, thousands of others were harmed and the overall cost of these events exceeded e3

billion.
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Figure 2: Photograph of damaged cars and buildings near the Buncefield depot taken approx-
imately 400 meters from the main explosion site. This photograph is taken from
Buncefield 2008.
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Conclusions

This work aims at developing a numerical simulation tool for the study of propagation of

blast waves from industrial explosions. This would allow the physics of the phenomenon

to be better understood and ultimately, this tool could be used to assess the risks inherent

to a particular installation under certain circumstances (explosion strength, meteorological

conditions, etc).

The physical problem of blast wave propagation falls into the general category of acoustics

and more specifically of nonlinear outdoor sound propagation. Chapter 1 introduces the main

features of high-amplitude wave propagation outdoors and details the work presented in this

document.
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1
Main features of nonlinear sound

propagation outdoors

This chapter presents the features of high-amplitude sound propagation outdoors that are of

interest for the study of blast wave propagation in complex media. Section 1.1 details the

features of sound propagation outdoors that have a significant effect on sound pressure levels

(geometrical spreading, atmospheric absorption, meteorological effects, ground effects) while

Section 1.2 briefly summarizes the high-amplitude effects and their consequences on wave

propagation. Section 1.3 reviews the studies specifically dedicated to blast wave propagation

and finally, conclusions are given and the content of this document is described in Section 1.4.

Chapter content

1.1 Features of sound propagation outdoors . . . . . . . . . . . . . . 12

1.2 Nonlinear effects in sound propagation . . . . . . . . . . . . . . 22

1.3 Blast wave propagation . . . . . . . . . . . . . . . . . . . 28

1.4 Conclusions and outline of the document . . . . . . . . . . . . . . 34
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Chapter 1: Main features of nonlinear sound propagation outdoors

1.1 Features of sound propagation outdoors

This section is a review of most areas of sound propagation outdoors that are of interest for

long-range acoustic applications. Because the field is so diffuse only the dominant mecha-

nisms are presented here. More detailed information can be found in various papers [see e.g.

Embleton, 1996; Piercy & Embleton, 1977; Ingård, 1953] or in more complete publications

like the books by Salomons [2001] and Attenborough [2006].

The first two areas covered in this chapter are geometrical spreading and atmospheric absorp-

tion (Sections 1.1.1 and 1.1.2, respectively). Together these are the dominant mechanisms

determining the sound levels outdoors. Ground effects are treated in Section 1.1.3 and effects

of meteorological conditions on sound propagation in Section 1.1.4.

1.1.1 Geometrical spreading

Waves spread in three dimensions when the sound source is small compared to the distances

being considered. The resulting attenuation depends on the propagation distance and is

frequency independent. For a spherical sound source in a homogeneous medium in free field

the acoustic power is uniformly spread on a spherical wave front. The wave front area being

proportional to the square of the sphere radius, the acoustic intensity decays by 1/r2 and the

acoustic pressure by 1/r, r being the distance from the source to the receiver. At twice the

distance from the source, the wave front area is four times as large, and the Sound Pressure

Level (SPL) decreases by about 6 dB. Each time the distance is doubled, the SPL decreases

by the same quantity.

Sound waves spread cylindrically from a line of sources which are all similar but radiate

independently. The area of the cylindrical wave front is proportional to the distance, the SPL

thus decreases by about 3 dB per doubling of distance, at half the rate of spherical spreading.

1.1.2 Atmospheric absorption

Atmospheric absorption is a feature of wave propagation that is always present in outdoor

sound propagation. Although it may be neglected in some applications, this phenomena has

to be carefully taken care of in long-range applications. The global absorption phenomenon

is mainly due to three physical effects:

◮ classical absorption caused by the transport processes of classical physics (shear viscos-

ity, bulk viscosity, thermal conductivity, mass diffusion and thermal diffusion),

◮ rotational relaxation of molecules in air,
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Features of sound propagation outdoors

◮ and vibrational relaxation of molecules of oxygen and nitrogen.

The atmospheric absorption in decibels per hundred meters due to the different physical

effects is shown in Fig. (1.1). Note that the attenuation by absorption is constant for a given

difference in propagation path lengths unlike geometrical spreading, where it is constant for

a given ratio of propagation path lengths. Thus attenuation tends to be more and more

important with increasing distance between source and receiver. Fig. (1.1) also shows the

frequency dependency of the absorption coefficient. The sound attenuation is more and more

important as the frequency increases; only low-frequency noise is able to propagate through

large distances.

Figure 1.1: Atmospheric absorption in dB/100 m for an atmospheric pressure of 1 atmo-
sphere, temperature of 20 ℃ and relative humidity of 70 %. This figure is taken
from Piercy & Embleton [1977].
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1.1.3 Features due to the ground

In this section the different roles of the ground in sound propagation are detailed. First,

the case of sound reflections on a flat and rigid ground and its resulting interference pattern

are detailed. The second section deals with the case of non-rigid ground surfaces; different

impedance models are briefly presented.

Path-length differences (PLD)

When both the source and the receiver are above the ground a phase change occurs due to the

different lengths of direct and reflected waves paths. This phase change occurs in addition to

the change due to the ground characteristics. Fig. (1.2) shows a sketch of the configuration.

Assuming an acoustically rigid surface, the effect of PLDs is a cancellation of pressure at the

x

z

ψAir

Ground

Source

hs

Receiver

hr

Figure 1.2: Sketch of the configuration for wave propagation above a flat surface. The source
and receiver heights are hs and hr, respectively. The grazing angle is noted ψ.

receiver for PLDs of an odd numbers of half-wavelengths. Some examples of measured Excess

Attenuation (EA) spectra are shown in Fig. (1.3).

Ground impedance

The reflection coefficient Rp for a plane wave on a locally reacting plane surface is

Rp =
sin(ψ) − Z0/Z

sin(ψ) + Z0/Z
, (1.1)

where ψ is the grazing angle, Z0 = ρ0c0 is the characteristic impedance of air and Z is the

acoustic impedance of the surface. In the frame of a locally reacting surface, an hypothesis

which has been proved to be valid for most of the surfaces encountered in outdoor sound

propagation applications [see for example the papers and the book Attenborough, 1985, 1992;

Salomons, 2001], the acoustic characteristics of the ground may be represented by its acous-

tical impedance Z = R + jX. This impedance value may depend on the frequency but not
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Figure 1.3: Measured excess attenuation for propagation from a point source over asphalt,
with hs = 0.3 m, hr = 1.2 m. This figure is taken from Piercy & Embleton
[1977].

on the grazing angle. During the last decades several impedance models based on differ-

ent theoretical backgrounds have been developed. Two models often used in outdoor sound

propagation applications are presented here: these are the Zwikker–Kosten (ZK) and the

Delany–Bazley (DB) models.

Zwikker & Kosten [1949] impedance model. The ZK model originates from linearized

acoustic equations for a plane wave traveling in a rigidly-framed porous material. In one

dimension they can be generalized as follows:

− ∂xv =
Ω0

ρ0c20
∂tp

′ , (1.2a)

Φ

Ω0
ρ0∂tv + σ0v = − ∂xp

′ . (1.2b)

In the above Eqs. (1.2), ρ0 is the ambient medium density, c0 is the ambient sound speed, v

is the particle velocity, p′ is the acoustic pressure disturbance, Φ the material tortuosity, Ω0

the ground porosity, σ0 the flow resistivity of the material. The time variable is t while the

space variable is x, and ∂i means partial derivation with respect to variable i.
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The tortuosity is defined as the ratio of the arc length of the pore structure to the distance

between its end points. The porosity is the ratio of the air volume contained in the porous

material to its total volume.

The derivation presented in the paper by Salomons [2001] yields an expression for the char-

acteristic impedance Zc of the porous material, defined by

Zc = ρ0c0

√
Φ

Ω2
0

+ i
σ0

Ω0ρ0ω
, (1.3)

in which c0 is the ambient sound speed. This model has been shown to give good agreement

with more complex models over a wide range of frequencies [see e.g. Wilson et al. , 2006,

2007, 2004].

Delany & Bazley [1970] impedance model. It is an empirical model that allows absorb-

ing fibrous materials to be modeled. For a material with flow resistivity σ0 (here in N.m−4.s),

the expression of the characteristic impedance Zc is

Zc = ρ0c0

[
1 + 9.8

(
103f

σ0

)−0.75

+ j11.9

(
103f

σ0

)−0.73
]
, (1.4)

where f is the wave frequency. Although this model is simple (the impedance only depends

on the frequency and the flow resistivity) it has been shown that the results obtained are in

good agreement with measurements. The DB impedance model is commonly used in outdoor

sound propagation applications.

The validity of both models mainly depends on the frequency and the material considered.

Thanks to the use of four ground parameters, the ZK model can generally be used in a wider

range of applications than the DB impedance model, which uses a very simple parametrization.

Note that for low frequencies the ground impedance absolute value becomes very high and

thus the reflection coefficient is close to unity (almost acoustically rigid ground).

1.1.4 Effects of meteorological conditions

In this section meteorological conditions usually encountered in outdoor sound propagation

and their effects on wave propagation are described.

Relevant meteorological phenomena

The complete meteorological description of an environment is a complex task. A lot of

quantities such as temperature, wind velocity, air density, air pressure, intervene in this
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description. These quantities are obviously inter-independent and most of the time vary in

space and time. For a more exhaustive description of the different meteorological phenomena

we refer the reader to specialized literature such as the book by Munn [1966].

Nevertheless, from an acoustical point of view one can denote two dominant parameters

that will modify sound propagation paths: wind speed gradients and temperature gradients.

These two quantities locally affect the effective sound speed and thus change the way sound

propagates.

Temperature gradients. During daytime the variation of temperature with height for a

large flat area may be represented by the expression

T = T0 −Kt log (z/z0) , (1.5)

where T0 is the temperature for z 6 z0. The constant Kt is determined by the roughness of

the surface and the temperature above the boundary layer. During night the ground surface

cools due to radiation in the air, a phenomenon known as an inversion condition. Examples

of such temperature profiles are shown in Fig. (1.4).

Figure 1.4: Variation of temperature with altitude: examples of lapse and inversion condi-
tions. This figure is taken from Munn [1966].
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Wind velocity gradients. Wind velocity is a three-dimensional vector quantity difficult

to represent due to its spatial and temporal instability. The variation of the average wind

speed V with height z in the vicinity of the ground for a flat area is approximately as shown

in Fig. (1.5). This wind speed profile may be represented with a logarithmic law; for altitudes

greater than z0 the average wind speed can be expressed by

V = Kv log (z/z0) . (1.6)

The parameter z0 is determined by the roughness of the surface, often approximately a char-

acteristic height of obstacles. The constant Kv is related to the surface roughness and the

average wind velocity above this layer. If we neglect the vertical component of the average

wind velocity (which is often very small in comparison to the average values for the horizontal

component), we can write the average sound speed with the following formula:

c(x, z) = c0 + Vx , (1.7)

in which Vx is the average wind speed in the horizontal direction and c (x, z) is the spatially-

dependent average sound speed.

Figure 1.5: Variation of average wind velocity in the vicinity of a flat ground surface. This
figure is taken from Piercy & Embleton [1977].

Refraction

Variations of the average sound speed with the altitude are responsible for a phenomena called

refraction. Refraction caused by wind and temperature variations are different: temperature

is a scalar quantity, and thus the refraction is identical in all horizontal (compass) directions

while refraction caused by wind speed gradients depends on the sound propagation direction.
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If the sound propagates directly crosswind the refraction from wind is zero, and increases

progressively as the direction of propagation deviates from its original value. Two types of

refraction can be denoted: downward and upward refraction.

Downward refraction occurs when the sound speed increases with the altitude. The

sound field curves downwards as shown in Fig. (1.6). If the source and receiver are both

above the ground, downward refraction will cause multiple reflections on the ground, which

has two consequences: amplifying the ground effects and increasing the SPL close to the

ground.

Figure 1.6: Illustration of multiple reflections resulting from a downwind situation. This
figure is taken from Embleton [1996].

Upward refraction occurs, at the opposite, when the average sound speed is decreasing

with altitude, typically at daytime. If the source and receiver are above the ground sound

rays are bent upwards. This creates a shadow zone where the pressure is very small. The ray

delimiting this area is tangent to the ground surface (see Fig. (1.7)).

Figure 1.7: Illustration of sound rays resulting from an upwind situation. This figure is
taken from Piercy & Embleton [1977].

Combined effects of wind velocity gradients and temperature gradients

Combined effects of temperature gradients and wind velocity gradients can yield very complex

situations where sound ray paths can adopt various trajectories. Below are presented two cases

taken from the article by Ingård [1953] which illustrates complex situations that can be found

in outdoor sound propagation applications.
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Case 1 (see Fig. (1.8(a))): there is a change of wind gradient at the layer 3 km above

the ground. Above this layer the wind gradient can no longer compensate for the

temperature gradient, and the rays will all be bent upwards in this region. The rays

in the vertical plane in the wind direction are shown to reach out to a distance of

38.8 km from the source. Beyond this distance there will be a shadow zone.

Case 2 (see Fig. (1.8(b))): the wind gradient is everywhere the same except in a thin

layer located 1 km above the ground. The velocity jumps here from a value u1 to u2

and the sound rays are refracted as shown. The ray that is tangent to the layer at

a height of 1 km represents the limiting ray for the first audible region. Rays with

larger angles of elevation will enter the second layer and thus be bent downwards

to form a second audible region.

(a) Case 1

(b) Case 2

Figure 1.8: Illustration of combined effects of temperature gradient and wind gradient on
sound propagation. This figure is taken from Ingård [1953].

1.1.5 Sound propagation in urban environments

With the increasing need of transport during the last decades propagation of sound in ur-

ban areas has become a major topic of outdoor sound propagation. This section presents

the different methods used to study sound propagation in urban areas on different scales:

propagation around a single building and propagation in a district.
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Single building scale

Most of the works on sound propagation around a single building concentrates on determining

the Sound Pressure Level (SPL) in the shielded zone behind the building. It mainly consists

in using ray tracing methods and the Uniform Theory of Diffraction (UTD) by Kouyoumjian

& Pathak [1974] and its extension to multiple diffraction. Most recent works on this topic

include the publications by Li et al. [2008] and Kirkpatrick et al. [2008]. The number

of rays becoming incredibly high for multiple diffractions these methods are restricted to

small number of diffracting edges and are hence not adapted to long-range sound propaga-

tion simulations. Moreover there is no diffraction theory available for high-amplitude wave

propagation.

Street or district scale

Renterghem & Botteldooren [2008]; Renterghem et al. [2006]; Heimann [2007] use Finite

Difference Time Domain (FDTD) methods to study sound propagation over urban areas.

The geometries of buildings (overall dimensions, balconies, windows, etc.) and properties

(absorbing surfaces, diffusely reflecting facades, etc.) are explicitly accounted for in the

numerical methods. This yields accurate but time consuming simulations.

Picaut [2002] uses a different approach to the FDTD method. An energy method (based on

a diffusion equation, a mathematical extension to Sabine’s concept of diffuse sound fields) is

used to obtain the sound fields in a network of rectangular streets. This method has given

good agreement with other solutions for propagation in a single rectangular street but the

application of the method to a district seems difficult. Indeed, diffusion coefficients that

depend on the facade roughness have to be experimentally determined. This can be a long

and difficult process for large scale applications where there are several kinds of building

facades.

Experimental studies of sound propagation in districts were performed by Picaut et al. [2005]

and Thorsson et al. [2004].

1.1.6 Acoustically induced vibrations

Acousto-seismic coupling. Depending on the ground structure it is possible as a result

of the poro-elasticity of ground for the above ground acoustic blast wave to couple to seismic

waves, particularly at a frequency where the dispersive Rayleigh wave speed is the same as

that of the speed of sound above the ground [see Sabatier et al. , 1986; Madshus et al. , 2005].
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Coupling to buildings vibrations. The first resonance frequencies associated with flexu-

ral vibration modes of buildings are generally in the range [0, 10] Hz, which is also the range

of high energy of blast waves. It is then be possible for the blast wave to couple into building

vibrations directly. This phenomenon is investigated, for example, in the paper by Sutherland

et al. [2006].

Due to the high amplitudes involved, the attenuation associated with acoustic to seismic

coupling at the ground or at building surfaces may be important and ideally should be taken

into account. However, the study of ground and buildings vibrations being out of the scope

of this work, it will further be assumed that the acousto-seimic coupling is weak.

1.2 Nonlinear effects in sound propagation

This section deals with the different phenomena occurring during high-amplitude wave prop-

agation.

1.2.1 Wave steepening

The classical, linear theory of acoustics assumes that a wave speed only depends on its

propagation medium. In the absence of any perturbation of the fluid medium, the sound

speed is thus assumed to be constant with respect to space and time. While this assumption

is valid for most of outdoor sound propagation applications, special care must be taken when

high-amplitude waves are under concern.

Indeed, for plane waves in a homogeneous medium, we can derive from Euler equations∗

v ≈ p′

ρ0c0
, (1.8a)

c ≈ c0 + (∂pc)0 p
′ , (1.8b)

which combine to give

c ≈ c0 + βv , (1.9)

in which c0 is the adiabatic speed of sound and c is the actual speed of sound. In Eq. (1.9),

β is the coefficient of hydrodynamic nonlinearities defined by

β = 1 +
1

2

B

A
, (1.10)

∗ Eqs. (1.8) are given as equations 11-1.5 in Pierce [1989]
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with

A = (ρ∂ρp)0 , (1.11a)

B =
(
ρ2∂2

ρp
)
0
. (1.11b)

For a perfect gas, β is defined by

β =
γ + 1

2
, (1.12)

γ being the ratio of specific heats. Eq. (1.9) means that the sound speed is directly propor-

tional to the wave particle velocity v. This contribution is neglected for low-amplitude waves

but may be important for high-amplitude waves. For example if a wave has a peak pressure

of 5 kPa the sound speed increases by 15 m.s−1 at the positive pressure peak location∗†. For a

sine pulse the sound speed difference between its maximum and minimum pressures is hence

30 m.s−1, about 10 % of the ambient sound speed. The positive pressure peak will eventually

catch up the negative pressure peak, creating a shock. This phenomenon is known as wave

steepening and is illustrated in Fig. (1.9). The time waveform is shown at six different reduced

distances σ, defined by

σ =
x

x
, (1.13)

in which x is the shock formation distance. The shock formation distance mainly depends

on the initial waveform. For one-dimensional wave and sinusoidal waveforms in a lossless

medium, it is given by

x =
ρ0c

2
0

βkP0
, (1.14)

in which P0 is the initial wave amplitude and k is the wavenumber. As one can see in Eq. (1.14)

the shock formation distance x is frequency-dependent. At the distance x =x (or σ= 1), and

for a lossless medium, the slope between negative and positive pressures is infinite.

Wave steepening is responsible for three effects of high-amplitude wave propagation:

◮ generation of harmonics,

◮ shock coalescence,

◮ and anomalous energy dissipation.

∗ Assuming plane wave propagation, an adiabatic equation of state and a first-order approximation of the
relation between pressure and density.

† For air the coefficient of hydrodynamic nonlinearities β is approximately 1.2 under normal atmospheric
conditions.

23



Chapter 1: Main features of nonlinear sound propagation outdoors

Figure 1.9: Illustration of wave steepening. As the wave propagates, a shock forms. For
propagation in a lossless medium, the slope between negative and positive pres-
sures is infinite when σ = 1. This figure is taken from Wochner [2006].

Generation of harmonics

A high-amplitude sine waveform will decay into a shock wave (an N-shaped wave). The

consequence is that harmonics of the fundamental frequency, which initially did not exist,

will rise. In a lossless medium, the energy being conserved∗, the energy contained in the

fundamental frequency decreases to compensate for higher harmonics. Fig. (1.10) shows the

evolution of the first three Fourier components normalized amplitude with reduced distance.

The further the observation points is, the higher the harmonics amplitudes and and the lower

the energy of the fundamental is. Hence, it is possible that at some distance one observes

some frequencies that just did not exist in the source spectrum.

For simple waves one can easily derive analytical expressions for the wave Fourier components

amplitudes, but for realistic signals with complex frequency content, the shock formation

distance being dependent on the initial Fourier component amplitude and frequency, one has

to use more advanced numerical methods. Webster & Blackstock [1978] used an array of

loudspeakers to demonstrate and measure the harmonics generation phenomenon.

∗ As it will be seen in Section 1.2.2 this is valid only before shock formation.
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Figure 1.10: Illustration of harmonics generation during shock formation. The figure shows
the evolution of the first three Fourier components of a sinusoidal wave with
normalized distance σ. As the observation points moves away from the source,
the energy in higher frequencies increases, while the energy contained in the
initial frequency decreases, so that total energy is conserved. This figure is
taken from Wochner [2006].

Shock coalescence

In the frame of the weak shock theory (see e.g. section 11.3 in Pierce [1989]), once a shock

has formed due to wave steepening, its speed vsh can be approximated by

vsh = c0 +
1

2
β

(
p′+ + p′−
ρ0c0

)
, (1.15)

in which p′+ and p′− are the pressure values in front of and behind the shock, respectively.

Eq. (1.15) means that at some distance two shocks with different values of
(
p′+ + p′−

)
move

at different speeds. Hence, one shock may catch up the second: they may merge into a single

shock. This phenomenon is called shock coalescence. When shocks coalesce, the number

of zero-crossings typically decreases, increasing the characteristic time scale of the waveform.

One may thus observe transfer of energy from high to lower frequencies. Fig. (1.11) illustrates

shock coalescence: a high-amplitude Gaussian modulated sine pulse burst is shown at three

different distances. The initial waveform is given at distance x1. At distance x2, the larger

shocks which have a higher velocity catch up the weaker shocks, and finally, at distance

x3, zero-crossings disappear and shocks coalesce into a single one. Gallagher & McLaughlin

[1981] measured scale model jets and observed wave steepening and a shift of energy to lower

25



Chapter 1: Main features of nonlinear sound propagation outdoors

frequencies which may have resulted from shock coalescence.

Figure 1.11: Illustration of shock coalescence. A high-amplitude Gaussian modulated sine
pulse burst is shown at three different distances. The initial waveform is given
at distance x1. At distance x2, the larger shocks which have a higher velocity
catch up the weaker shocks, and finally, at distance x3, zero-crossings disappear
and shocks coalesce into a single one. This figure is taken from Wochner [2006].

1.2.2 Anomalous energy dissipation

In the absence of shocks nonlinear effects do not change the energy associated with a wave. As

seen in Section 1.2.1, energy will be rearranged over the frequency spectrum due to harmonics

generation (lower to higher frequencies). For plane waves, the energy per unit area transverse

to propagation direction is written as

E (t) =
1

ρ0c20

∫ +∞

−∞
p′2 (x, t) dx . (1.16)

If the propagation medium is lossless then the potential energy E (t) is independent of time.

However, if there is a shock, and since there is a discontinuity, then the integral in Eq. (1.16)

has to be split in two parts. After a few algebraic manipulations [see Rudnik, 1953] we can

obtain

dtE (t) = −βP
3 (t)

3ρ2
0c

3
0

, (1.17a)

P (t) =
P0(

1 + tβP0

L0ρ0c0

)1/2
, (1.17b)
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where P0 and L0 are the initial peak amplitude and the initial length of the positive and

negative phases, respectively. The quantity P (t) being positive, the energy time derivative

dtE (t) is negative. Hence, there is a dissipation process due to the presence of the shock,

even in a lossless medium.

1.2.3 Propagation of high-amplitude waves in porous media: the Darcy

law and the Forchheimer correction

Classical (linear) behavior of rigidly-framed porous materials has been presented in Sec-

tion 1.1.3: the material introduces an attenuation and a delay to the reflected wave, modify-

ing the Sound Pressure Level (SPL) at the receiver. In this section the nonlinear behavior of

porous materials is briefly presented.

For steady flows it is well accepted that the pressure gradient in a porous medium with flow

resistivity σ0 is in most cases proportional to the particle velocity, such that

−∂xp
′ = σ0v . (1.18)

Eq. (1.18), called Darcy’s law, can be viewed as a definition of the static flow resistivity σ0.

While this relation is valid for low flow velocities, measurements have shown that the Darcy

law is no longer valid for high flow rates. Forchheimer [1901] proposed to correct the external

force term with a term proportional to the square of the particle velocity, such that

−∂xp
′ = σ0 (1 + ξv) v , (1.19)

where ξ is the Forchheimer nonlinearity parameter. Eq. (1.19) implies that the global flow

resistivity increases with increasing particle velocity. Nelson [1984] slightly modified this

expression to adapt it to wave propagation:

−∂xp
′ = σ0 (1 + ξ |v|) v . (1.20)

Eq. (1.20), compared to Eq. (1.19), accounts for the fact that the flow resistivity increases

with the particle velocity absolute value. From Eq. (1.20) we can write a nonlinear flow

resistivity σ defined by

σ = σ0 (1 + ξ |v|) . (1.21)

Beavers & Sparrow [1969]; Beavers et al. [1981]; Joseph et al. [1982] have demonstrated the

validity of the Darcy–Forchheimer law for various applications. Behavior of porous materials

under high-amplitude acoustic excitation has been studied using the Darcy–Forchheimer law
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with some success by Kuntz & Blackstock [1987] [and later by Wilson et al. , 1988; McIntosh

& Lambert, 1990; Lambert & McIntosh, 1990; Auregan & Pachebat, 1999; Umnova et al. ,

2002, 2003]. The main conclusion about high-amplitude wave reflection at porous boundaries

is that the apparent porous layer rigidity increases with wave amplitude. However, note that

Umnova et al. [2003] demonstrated that, depending on the layer thickness and material

properties, the reflection coefficient associated with rigid-porous samples could decrease with

increasing signal amplitude.

1.3 Blast wave propagation

This section gathers together bibliographical data on the acoustics of detonations. A synthesis

of theoretical and experimental studies can be found in Bobin [1975]; Parmentier [1993].

1.3.1 Similarity law

The hypothesis of spherical propagation in a homogeneous atmosphere is made. Under this

hypothesis the similarity law is verified [see Kinney, 1962; Swisdak, 1975]. For two explosions

with energies W1 and W2, we have

K2 = K1

(
W2

W1

)1/3

, (1.22)

where K1 and K2 can be

◮ either distances from the explosion where one has the same overpressure peaks max p (t),

◮ either times of shock arrival t0,

◮ either positive phase durations t
+
− t0,

◮ or the overpressure impulses defined by I =

∫ t
+

t0

p (t) dt.

If ambient pressure P0 and temperature T0 are different from an explosion to another one,

the similarity law Eq. (1.22) must be corrected according to

K2 = K1

(
W2

W1

P01

P02

)1/3(T01

T02

)1/2

. (1.23)

The application of Eq. (1.23) allows us (as long as the atmosphere is homogeneous and the

explosions energies are known) to restrain the study to the case of a single explosion. Usually,

charts and curves are given for explosions occurring in standard atmospheric conditions at

sea level.
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1.3.2 TNT equivalence

For explosive materials of different compositions the source energy can be measured in terms

of kilograms TNT equivalent. This means that 1 kg of a certain explosive material is equivalent

to 1 kg of TNT times an equivalence factor. These factors are most of the time determined

through experiments [see Swisdak, 1975; Hyde, 1988]. Tab. (1.1) lists some equivalence factors

found in the literature for some common explosives for the positive pressure peak. Note that

the equivalence factor may depend on the mass of material and that they may be different

for different wave properties (e.g. maximum pressure/positive phase duration).

Table 1.1: TNT equivalence factors for some common explosives. Figures are taken from
Parmentier [1993].

Material Equivalence factor for pressure

TNT 1

Dynamite (Nitroglycerin) 0.9

C4 1.37

1.3.3 Analytical solutions

Theoretical studies performed during the last five decades aimed at overcoming the lack of

experimental data. The first attempt to develop a theory for blast wave propagation was done

by von Neumann [1961]. In the point source theory all the energy is concentrated at a single

point where the pressure is infinite. Gas dynamics equations allow analytical solutions to be

derived for the pressure field at any distance from the point source. This theory assumes

that the air is a perfect gas for which specific heats are constants and that the propagation

medium is homogeneous.

A variant of this method was developed by Taylor [1950]. Taylor supposes that the energy

is concentrated in a sphere with radius R0 and thus solves the infinite pressure issue and

makes the method more adapted to numerical calculations. These analytical solutions have

been used for comparisons with nuclear tests in New Mexico; good agreement has been found

between measurements and theory.

Laumbach & Probstein [1969] solved the gas dynamics equations in a cold atmosphere with

exponentially varying volumetric mass. The agreement with the results of Taylor [1950] is

very good for a homogeneous atmosphere.

Kinney & Graham [1988] derived analytical solutions for blast wave propagation from spher-

ical charges. The model gives the pressure history p (t) at a given reduced distance Z in a
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homogeneous medium, for an equivalent charge W of TNT. To the author’s knowledge, the

Kinney–Graham (KG) model is the most accurate and complete one. The Kinney–Graham

(KG) model is presented in Appendix B.

These theoretical studies are essential to the understanding of the phenomenon of blast wave

propagation. However, these solutions are most of the time obtained in the frame of very

restrictive hypotheses (homogeneous medium, point sources, etc.) and cannot be used for

simulations of high-amplitude wave propagation in complex media.

1.3.4 Experimental studies

Institut Saint Louis (ISL) has performed many experiments for spherical explosives in free

field [see for example Froböse, 1968; Froböse et al. , 1979, 1975]. These experiments have

been used for comparisons with analytical solutions, or to study nonlinear phenomena but

measurements were performed at short ranges from the sources.

Van der Eerden & Védy [2005]; Attenborough et al. [2005, 2004] have conducted experiments

on blast absorbing surfaces. This study investigates methods to develop design guidelines

for absorbing surfaces in a highly nonlinear shock environment. A full scale field test was

performed in Ft. Drum, NY, with C4 charges. Results from the experiments have been

compared with numerical solutions. Acoustic signals have been measured up to a few hundred

meters and ground effects have been deeply studied.

Misty Picture is the name of an experiment conducted by the United State Defense Nuclear

Agency on May 14th, 1987. This test involved the detonation of several thousand tons of

conventional explosives to simulate the explosion of a small nuclear bomb. This test allowed

numerous acoustic and seismic data to be gathered at large distances (more than 400 km

from the explosion). The Misty Picture experiment is still often used as a benchmark for

blast wave propagation codes [see Gainville et al. , 2006; Piserchia et al. , 2004], especially for

applications to propagation in inhomogeneous media (strong refraction effects, turbulence).

1.3.5 Numerical methods

This section presents the most commonly used models to simulate high-amplitude wave prop-

agation in inhomogeneous environments. Specifically, general time-domain methods and mod-

els based on a paraxial approximation are detailed.

General time-domain algorithms

Navier-Stokes equations and Euler equations for inviscid fluid are used for aeroacoustic sim-

ulations in Computational Fluid Dynamics (CFD). With the increase of the available compu-
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tational power and the advances in numerical methods Euler equations have become popular

for the study of wave propagation over moderate distances.

The Euler equations are composed of a continuity equation, N equations of conservation of

momentum, where N is the number of spatial directions under consideration, and one or more

equations for energy (or entropy) conservation.

Various constitutive equation sets have been derived those last years. Most recent models

[see for example Wochner, 2006; Sparrow & Raspet, 1991] are able to simulate absorption

from shear and Bulk viscosity, thermal conductivity, and molecular relaxation processes, and

account for realistic atmospheric conditions.

For a two-dimensional domain with coordinates (x, z), the equation set for propagation in a

lossless medium is

∂tρT + ∂x (ρTu) + ∂z (ρTw) = 0 , (1.24a)

∂t (ρTu) + ∂x

(
ρTu

2
)

+ ∂z (ρTuw) = −∂xpT , (1.24b)

∂t (ρTw) + ∂x (ρTuw) + ∂z

(
ρTw

2
)

= −∂zpT , (1.24c)

∂t (ρT e0) + ∂x (ρTue0) + ∂z (ρTwe0) = −∂x (pTu) − ∂z (pTw) , (1.24d)

where e0 is the energy per unit mass. The energy equation Eq. (1.25) and the ideal gas law

Eq. (1.26) close the equation system, such that

ρT e0 = ρT cvT +
ρT |V|2

2
, (1.25)

and

pT = ρTRT , (1.26)

in which T is the gas temperature, cv is the specific heat capacity at constant volume and R

is the gas constant.

For the sake of brevity detailed notations are not given here. This model requires advanced

numerical methods to be solved, one of the most commonly used being the finite-difference

method. Wochner [2006] used a third-order accurate Runge–Kutta (RK) scheme for time

discretization and a Weighted Essentially Non Oscillatory (WENO) scheme for space. Details

on these finite-difference schemes can be found in Appendix C. The RK scheme requires the

calculation of two fields at each time step, and for each of them, the evaluation of every

derivative appearing in Eqs. (1.24) has to be performed at each grid position. Although the

numerical model presented above yields very accurate solutions for nonlinear sound prop-

agation, its computational complexity makes it difficult to use for long-range propagation
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applications.

Paraxial approximations: the KZK equation and the NPE model

With hypotheses of weak nonlinearities and a paraxial approximation, the Khokhlov–Zabolo-

tskaya–Kuznetsov (KZK) equation [see Zabolotskaya & Khokhlov, 1969; Kuznetsov, 1970] can

be derived from Euler equations∗. The KZK equation writes

∂zp =
βp

ρ0c30
∂τp+

δ

2c30
∂2

τp+
c0
2

∫ τ

−∞
∂xp

2 dτ , (1.27)

where τ = t−z/c0 and δ accounts for absorption from air. In its original formulation the KZK

equation does not include the effects from spatially-varying sound speed. However, Blanc-

Benon et al. [2002] modified the equation so that it can account for sound speed variations

and turbulence [see also Ganjehi, 2008].

The Nonlinear Parabolic Equation (NPE) is derived using similar assumptions. The NPE has

first been developed by McDonald & Kuperman [1987] and has been successfully used for

underwater acoustics simulations [see Castor et al. , 2004] and blast wave propagation in air

[see van der Eerden & Védy, 2005; Attenborough et al. , 2005, 2004; Leissing, 2007]. The NPE

is based on the resolution of a nonlinear wave equation over a moving window that surrounds

the wavefront. While reducing domain size, and thus computational cost, the moving window

principle prevents backward propagation. For the derivation of the original NPE model we

refer the reader to articles by McDonald et al. [1994] or Caine & West [1995].

The NPE model for a two-dimensional domain with Cartesian coordinates (x, z) is based on

the following equation:

DtR = −c0R
2r

− ∂x

(
c1R+ c0

β

2
R2

)
− c0

2

∫
∂2

zRdx . (1.28)

The ambient sound speed is c0 while c1 is the sound speed perturbation in the window,

i.e. c1 = c (x, z) − c0, where c (x, z) is the spatially-dependent sound speed. The overdensity

variable R= ρ′/ρ0, in which ρ′ the acoustic density perturbation and ρ0 is the ambient medium

density, is dimensionless. The moving-window operator Dt is defined by

Dt = ∂t + c0∂x . (1.29)

The assumptions used to derive this model from the Euler equations are

◮ weak nonlinearities,

∗ The derivation can be found in Hamilton & Blackstock [1998], chapter 3, page 60.
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◮ weak sound speed perturbations,

◮ and propagation along a main direction.

Eq. (1.28) can be used to propagate weak shocks over moderate distances within a domain

with spatially-varying sound speed.

Various modifications and additions to this original model have been made during the past

two decades: spherical and cylindrical coordinate system versions [see Too & Ginsberg, 1992a]

and high-angle formulation [see McDonald, 2000] have been developed, and Too & Lee [1995a]

extended the NPE with an additional term to account for thermoviscous effects. Propagation

in multiple media has also been successfully studied using this model by Ambrosiano et al.

[1990].

The KZK equation and NPE model are based on the same assumptions and are closely re-

lated formulations of a nonlinear paraxial equation. The similarity between Eq. (1.27) and

Eq. (1.28) should be noted: the roles played by time and distance are reversed. The main dif-

ference between the KZK equation and the NPE model is the methods used for the treatment

of initial and boundary conditions.

The main feature of paraxial approximations is their capability to perform long-range sim-

ulations with low numerical costs. Indeed, the use of single variable one-way wave equation

makes them suitable tools for large scale applications. Limitations of these paraxial meth-

ods derive from the underlying assumptions: the hypothesis of weak nonlinearities prevents

the use of these methods in the near field of the source and moreover, the moving-window

technique restricts the initial acoustic field to transient signals.

1.3.6 Blast waves temporal and spectral characteristics

In the case of an explosion the amplitude of the wave in the near field of the source is

obviously highly dependent on the explosive charge. At moderate distances from the source

(a few hundred meters), the positive amplitude peak is on the order of some kPa while the

negative amplitude peak is lower, on the order of a few hundred Pa. Note that due to

nonlinear dissipation processes the wave amplitude does not decay at a geometrical rate, even

in a homogeneous medium (see Section 1.2.2). For a charge of 30 T of TNT
∗ at a distance of

200 m (or 1000 m) from the source the positive and negative peak pressures are 18.9 kPa (or

2.6 kPa), and -5.7 kPa (or -236 Pa) (see Tab. (1.2) and Fig. (1.12)).

Time scales of acoustic waves from explosions are on the order of a few milliseconds. The

positive phase duration is usually shorter than the negative one and as the wave propagates

∗ This charge corresponds to the median value given by experts during the inquiry concerning the AZF

factory explosion.
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further from the source, the difference becomes more and more important. For instance, for

an acoustic wave due to a charge of 30 T of TNT, the positive and negative phase durations

are 2.9 ms and 34 ms at a distance of 200 m, and 4.1 ms and 91 ms at a distance of 1000 m

(see Tab. (1.3) and Fig. (1.12)).

Generally speaking, the frequency where the amplitude is the highest is on the order of a few

dozen Hertz. As an example, a charge of 30 T of TNT at a distance of 200 m produces a wave

whose spectrum has a peak amplitude at a frequency of approximately 30 Hz. The waveform

being highly impulsive, the bandwidth where the spectrum has a high energy is often broad.

A -3 dB bandwidth yields a frequency range [0, 70] Hz (see Fig. (1.12)). As the negative

phase duration becomes more and more important as the wave propagates the energy in the

high-frequency range decreases with distance. At a distance of 1000 m the most energetic

frequency is approximately 5 Hz.

1.4 Conclusions and outline of the document

In this section, conclusions on blast wave propagation in complex environments are first

given in Section 1.4.1. With the help of these remarks on the features that are of interest for

this research the proposed work is described in Section 1.4.2 and finally, the outline of this

document is given in Section 1.4.3.

1.4.1 Conclusions

Features of nonlinear sound propagation in complex environments

Section 1.1 has summarized features of sound propagation that are of special importance when

propagation of acoustic waves over large distances is under interest. Within the propagation

domain one must take into account atmospheric conditions, since refraction effects can largely

modify sound rays paths: thanks to an inversion layer the sound from the Buncefield explosion

was heard in France, more than 150 km away from the depot.

Considering the frequencies studied, dissipation effects will be on the order of a few dB (see

Fig. (1.1)) per ten kilometers at 100 Hz. One could argue that dissipation effects are not

fundamental compared to other physical phenomena. However, a 6 dB reduction on the

Sound Pressure Level (SPL) means an overpressure reduced by a factor 2 (assuming linear

propagation). Considering the possible damage listed in Tab. (2), such a reduction of the

overpressure can be of great importance.

In Section 1.2 nonlinear effects on sound propagation have been reviewed. The combined

effect of wave steepening and shock coalescence induces a shift of energy from the original
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Table 1.2: Overpressure values at 200 m and 1000 m from the source for an explosion of 30
T of TNT calculated with the Kinney–Graham (KG) model.

Quantity Distance [m] Value [kPa]

Positive overpressure 200 18.9

Negative overpressure 200 -5.7

Positive overpressure 1000 2.6

Negative overpressure 1000 -0.236

Table 1.3: Phases durations at 200 m and 1000 m from the source for an explosion of 30 T
of TNT calculated with the KG model.

Quantity Distance [m] Value [ms]

Positive phase duration 200 2.9

Negative phase duration 200 34

Positive phase duration 1000 4.1

Negative phase duration 1000 91

Figure 1.12: Time signals (top) and Sound Pressure Levels (SPL) (bottom) for an explosion
of 30 T of TNT at 200 m (blue line) and 1000 m (green dashed line) from the
source calculated with the Kinney–Graham (KG) model.
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frequency band to the high frequency band due to steepening, and from the original frequency

band to lower frequency band due to shock coalescence. Dissipation at the shock introduces

some additional absorption that has to be taken into account.

The combined effects of meteorological conditions, of ground topography and impedance, and

of high-amplitude effects can yield extremely complex situations that can only be handled

through the use of advanced models and numerical methods.

On the size of the propagation domain and computational times

The main objective of this work is to develop a model for high-amplitude sound propagation

in complex media, with application to the study of blast waves from explosions. This involves

simulations in large domains whose typical distances are 10 km wide and 2 km high, with wave

frequencies up to one hundred Hertz. With a small-signal sound speed of 340 m/s, this yields

a domain size of approximately 3 000 by 600 wavelengths. Although no numerical method has

yet been chosen, one can choose as a first guess a spatial resolution of 10 points/λ. This yields

grids with 3.104 × 6.103 nodes, giving 1.8 billion grid points for two-dimensional simulations.

Hence, the numerical complexity of the available numerical methods is a fundamental choice

criteria.

It has been chosen to restrict simulations to two-dimensional (or three-dimensional with

azimuthal symmetry) calculations. Realistic (three-dimensional) cases can be approximated

by repeated 2.5D problems in different compass directions. This allows the problem size to

be considerably reduced compared to full problems. Note that this hypothesis can become

problematic in case of strong crosswinds. Even with two-dimensional simulations, the problem

size is still huge and the effective problem size has to be reduced. This can be done in two

ways:

◮ either by reducing the number of points in the calculation grid,

◮ or by reducing the model complexity.

Reducing the number of grid points. Two methods can be used to lower the number

of calculation points in the grid:

◮ Adaptive Mesh Refinement (AMR)

◮ and moving-window methods.

Both rely on the simple principle that it is not necessary to mesh the domain where there is

no acoustic perturbations.
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AMR techniques use a grid hierarchy: first the top-level grid is created with a coarse mesh.

For each of its cell an algorithm determines if the solution is accurate enough. If not the cell

is refined with a finer sub-grid, and so on until the desired level of accuracy is reached. The

main difficulty with AMR methods is to deal with boundary conditions between sub-grids of

different levels.

Another way to decrease the grid size is to use a moving-window technique, in which a window

moving with the wave surrounds the waveform. The implementation of such moving-windows

is straightforward: the grid remains Cartesian and no special boundary conditions are needed.

Note that the NPE uses a frame-following coordinate formulation and hence naturally uses

the moving-window principle.

Since we deal in this work with impulsive and finite-length signals, using any grid size reduc-

tion method should be extremely efficient.

Reducing model complexity. Another way of lowering the computational effort is to

reduce the model complexity. Indeed, a model such as the KZK equation or the NPE model

is based on a single-variable one-way wave equation. There is only one unknown and at most

first-order time derivatives. Oppositely, the two-dimensional Euler equations are composed

for the simplest models of five equations with five unknowns for the simplest models, and

the calculation of the different fields requires the evaluation of a dozen spatial derivatives.

Although Euler equations solutions provide very accurate solutions, the associated numerical

effort is often prohibitive in the context of long-range sound propagation applications.

1.4.2 Proposed work and methodology

Proposed work. A feature of long-range sound propagation outdoors that has been kept

apart until now is propagation over urban environments. Specifically, we are interested in the

effect of the surface irregularities (buildings) on the acoustic field above the urban layer.

This problem could be studied with deterministic numerical models where buildings geome-

tries are explicitly given. For example, ray tracing methods or models based on the Euler

equations allow the environmental context to be taken into account and would technically

be suited for this application. However, for long-range propagation applications, these meth-

ods suffer from their numerical complexity. Moreover, the suitability of these models for the

application under interest can be questioned: considering the high complexity of the real sys-

tem, the model approximations (e.g. using the uniform theory of diffraction for ray-tracing

methods) and the uncertainties on the model parameters (e.g. buildings geometries), the

computational model could be improved introducing a probabilistic model.
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In this work, a different approach is proposed. It consists in using a simplified model for the

urban and atmospheric layers. Propagation is modeled with a Nonlinear Parabolic Equation

(NPE). Since the calculation domain is limited to a small area around the signal, computa-

tional cost is generally reduced compared to Euler equations methods. For the propagation

in the urban layer, a NPE for porous ground layers (which has to be developed) will be used.

Therefore the simplified model is composed of two domains:

◮ the atmospheric layer, where propagation is modeled by a NPE for air,

◮ and the urban city layer, where propagation is modeled by a NPE for porous ground

surfaces.

Equations to couple the two domains complete the simplified model of sound propagation

over urban cities.

Using this model as a predictive model for the real system will only allow one to get a raw ap-

proximation of the propagation phenomenon. Hence a probabilistic approach of uncertainties

will be developed and used to enhance the model capabilities.

The work presented in this document can be separated in two main tasks.

Task 1. Development of a deterministic Nonlinear Parabolic Equation (NPE) model for high-

amplitude wave propagation over porous ground layers and in complex environ-

ments.

Task 2. Development of a probabilistic model of uncertainties associated with the NPE model

for propagation over urban environments.

The paragraph below explains and details the methodology to construct such a deterministic

sound propagation model and the probabilistic model of its parameters, yielding a stochastic

NPE model.

Methodology for the development of a deterministic NPE model for sound prop-

agation over porous layers and in complex media. The problem with time-domain

sound propagation models is that an absorbing ground surface cannot be taken into account

by an impedance condition. Complex impedance models can be used with frequency-domain

models, for example the PE or the Fast Field Program (FFP) models, but cannot directly

be used with the NPE model. The ground layer has hence to be included into the computa-

tional system as a propagation medium. It is hence proposed to derive a Nonlinear Parabolic

Equation (NPE) model for propagation in porous ground layers similar to Eq. (1.28).
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Concerning the porous layer, the model uses a minimal parametrization in which the layer

is assumed to be equivalent to a continuous fluid medium. A wave causes a vibration of air

particles contained in the ground pores, while the ground frame does not vibrate. Next, a

first-order boundary interface condition to link the two Nonlinear Parabolic Equation (NPE)

models (air and porous layers) is developed, which finalizes the construction of the determin-

istic NPE model for sound propagation in complex media.

Methodology for the development of a stochastic NPE model. The objective is

to develop a stochastic model for sound propagation over urban cities using a NPE model

originally designed for sound propagation over porous ground layers, in which the urban city

is taken into account through independent random porous layer parameters, denoted Γ, Λ, Θ.

The probability distributions of these random variables depend on a parameter w. The model

output is the pressure at the receiver which is noted Pr (ω). A second propagation model, in

which the urban city is explicitly accounted for, is used to provide reference solutions. Given

a parameter u which characterizes the urban city geometry and several probability models,

a urban city realization is generated, and then used in the reference model to obtain the

pressure P exp
r (ω) at the receiver. Fig. (1.13) shows a sketch and a diagram that detail the

basic principle of each model.

To construct the stochastic sound propagation model, for a given parameter u, one has:

Step 1: to construct the probability models of the urban city geometrical parameters. The

probability models are determined with the help of Information Theory [see Shannon,

1948] and the Maximum Entropy Principle [see Jaynes, 1957]. Once the probabi-

lity models of the geometrical parameters are determined, different city realizations

corresponding to a given parameter u can be generated.

Step 2: to use the city realizations generated in Step 1 and to perform simulations with

the reference model in order to obtain statistical information on the model output

P exp
r (ω).

Step 3: to construct the probability models of the stochastic NPE model random parameters

Γ, Λ and Θ. These models are determined using the same method as in Step 1 and

depend on parameter w.

Step 4: using the outputs from the reference model P exp
r (ω) (Step 2), to identify parameter

w corresponding to the given parameter u previously fixed. This identification is

done by solving an inverse stochastic problem: the “distance” between Pr (ω;w)

and P exp
r (ω) is minimized so that the optimal parameter wopt is obtained. Once

wopt is determined, the NPE stochastic model can be used to study nonlinear wave

propagation over urban cities.
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Main features of high-amplitude wave propagation outdoors, such as dissipation effects, re-

fraction effects or hydrodynamic nonlinearities, are naturally present in NPE models. The

constructed stochastic model, thanks to its low numerical cost, could thus be used to study

nonlinear wave propagation in complex environments.

Ground layer

Urban city layer

Atmospheric layer

Source

Receiver

P exp
r (ω)

Ground layer

Porous ground layer

Atmospheric layer

Source

Receiver

Pr (ω)

(Γ,Λ,Θ)H D

W

Explicit wave propagation model

Source

Propagation

model
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accounted for

Random
observation

P
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r

Random parameters H, W ,
D modeling a urban city

Probabilistic model de-
pending on a parameter u.

u depends on the mean values and disper-
sions of random variables H,W and D.

The urban city parameter u is given.

Simplified wave propagation model

Source

Propagation

model

over an
equivalent city

Random
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tion Pr

Random parameters Γ, Λ

and Θ of the porous medium

Probabilistic model de-
pending on a parameter w.
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ing a stochastic inverse problem.

=⇒
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Figure 1.13: Sketches and diagrams detailing the basic principles of each propagation model.
The reference propagation model is presented on the left, while the stochastic,
simplified NPE model is shown on the right.
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1.4.3 Outline of this document

The document is organized as follows.

Chapter 2 describes the original Nonlinear Parabolic Equation (NPE) model derived in 1987

by McDonald et al. . Section 2.1 presents the original derivation of the model and in the

second and third sections (Sections 2.2 and 2.3) the different extensions and re-formulations

of the NPE model are summarized. Section 2.4 details the available literature concerning the

use of the NPE model for sound propagation in multiple media. Section 2.5 deals with the

procedure to couple the NPE model with other sound propagation models. Finally, significant

applications using the NPE model are listed and briefly summarized in Section 2.6. Chapter

summary and conclusions are given in Section 2.7.

Chapter 3 details the development of a deterministic Nonlinear Parabolic Equation (NPE)

model for high-amplitude wave propagation over porous ground layers and in complex media.

Propagation over non-flat surfaces is handled through the use of the terrain-following coor-

dinates method and described in Section 3.1. The NPE model for propagation within porous

ground layers is detailed in Section 3.2 and propagation over porous layers in Section 3.3.

Chapter summary and conclusions are given in Section 3.4.

Chapter 4 concerns the numerical implementation of the NPE models developed in the previ-

ous chapters. The main principle of the numerical solution is the separation of the differential

operators with the operator splitting method, described in Section 4.1. The numerical so-

lution of nonlinear terms is detailed in Section 4.2 while the numerical solution of linear

terms appears in Section 4.3. Initial conditions and boundary conditions are treated in Sec-

tions 4.4 and 4.5, respectively, and Section 4.6 gives some notes about software development.

Chapter conclusions are given in Section 4.7.

Chapter 5 presents the validation of the deterministic Nonlinear Parabolic Equation (NPE)

model. The full validation of the computational model is separated in successive tasks and

simulation results are compared to analytical and numerical solutions. In Section 5.1 nonlinear

effects calculations are assessed using quasi-plane waves and analytical solutions. Simulations

of propagation in an inhomogeneous medium are compared with a linear, frequency-domain

implementation of the Parabolic Equation (PE) and presented in Section 5.2. In Section 5.3

propagation over a hilly ground is studied with the terrain-following coordinates version of the

NPE which is compared to solutions given by a BEM implementation. Section 5.4 presents the

validation of the NPE model for propagation over a finite-impedance ground surface in which

both linear and nonlinear examples are given. Finally, chapter summary and conclusions are

given in Section 5.5. Chapter 5 finalizes the development of the deterministic NPE model.

Chapter 6 concerns the development of a computational model for long-range nonlinear sound

propagation over urban environments. Section 6.1 briefly summarizes the previous chapters,
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and Section 6.2 details the methodology for constructing the computational model. Next

the probability models of the geometrical parameters of a urban environment are determined

using Information Theory and the Maximum Entropy Principle (Section 6.3) and then the

reference model is described (Section 6.4). The mean propagation model is then presented

in Section 6.5. In Sections 6.6 and 6.7 the construction of the probabilistic models of the

stochastic model parameters is detailed and in Section 6.8 the method used to identify its

parameters is presented. Section 6.9 details two applications using the constructed stochastic

propagation model and finally, chapter summary and conclusions are given in Section 6.10.

General conclusions and perspectives of this work are finally given in page 165.

Five Appendices follow the general conclusions. Appendix A presents blast wave overpressure

values and corresponding damage to structures and injuries to people from different sources.

Appendix B details the Kinney–Graham (KG) model used to obtain analytical waveforms

for blast wave propagation in free field. Appendix C details the numerical solution of Euler

equations used in Chapter 5. In Appendix D the Nonlinear Parabolic Equation (NPE) model

is derived from Euler equations without the use of the perturbation expansion method. The

Crank–Nicolson method and the Thomas algorithm are then presented in Appendix E and

Appendix F gives a brief overview of the Boundary Element Method (BEM).

References can be found in page 187. A long summary in French and a list of personal

publications appear in pages xxvii (201) and xxxv (209).
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2
Existing work on the Nonlinear

Parabolic Equation model for sound

propagation on plane and acoustically

rigid surfaces

This chapter describes the original Nonlinear Parabolic Equation (NPE) model derived in

1987 by McDonald et al. , its extensions and variants, together with main applications using

this model. The original derivation is given in Section 2.1. In the second and third sections

(Sections 2.2 and 2.3) the different extensions and re-formulations of the NPE model are

reviewed. Section 2.4 details the available literature concerning the use of the NPE model for

sound propagation in multiple media, Section 2.5 deals with the procedure to couple the NPE

model with other sound propagation models, and finally, significant applications using the NPE

model are listed and briefly summarized in Section 2.6. Chapter summary and conclusions

are given in Section 2.7.
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2.1 Derivation and properties of the original Nonlinear Parabolic

Equation model

Two different derivations that yield the original Nonlinear Parabolic Equation (NPE) model

have been published. The first, published in 1987, makes use of the perturbation expansion

method [see the papers by McDonald & Kuperman, 1987; McDonald et al. , 1994] while the

second uses some assumptions about the air particles motion [see Caine & West, 1995].

In this section a derivation procedure that yields the original NPE model is presented step-by-

step. Although the derivation presented here is different from what can be found in previously

cited papers, it is highly inspired from them.

2.1.1 Notations and variables definition

The propagation domain considered is two-dimensional with main axes x (horizontal direc-

tion) and z (vertical direction). The sound speed c (x, z) is allowed to vary with position but

is stable with respect to time and total density ρ
T

and total pressure p
T

variables are noted

as follows:

ρ
T

= ρ0 + ρ′ , (2.1a)

p
T

= p0 + p′ , (2.1b)

in which ρ0 and p0 are ambient density and ambient pressure, respectively, and ρ′ and p′ are

acoustic perturbations of these quantities. The components of the flow velocity vector V are u

and w, which are the flow velocities in the x- and z-directions, respectively. Ambient medium

properties are assumed to be fixed in space and time and without acoustic perturbations the

flow velocities are equal to zero. Partial derivation with respect to the variable i is noted ∂i.

2.1.2 Proposed derivation

In a two-dimensional coordinate system and in a lossless media∗ the continuity and conser-

vation of momentum equations are†

∂tρT
= −∂x (ρ

T
u) − ∂z (ρ

T
w) , (2.2a)

∂t (ρ
T
u) = −∂x

(
p

T
+ ρ

T
u2
)
− ∂z (ρ

T
uw) , (2.2b)

∂t (ρ
T
w) = −∂z

(
p

T
+ ρ

T
w2
)
− ∂x (ρ

T
uw) . (2.2c)

∗ Dissipation from thermoviscous effects are treated in Section 2.2.2.
† Eqs. (2.2) are given as equations 1-2.4 and 1-3.7 in Pierce [1989]
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The first step to derive the NPE model is to reduce Eqs. (2.2) to a single equation. Eq. (2.2a) is

differentiated with respect to time and Eqs. (2.2b, 2.2c) are substituted in this new expression,

yielding a fully nonlinear wave equation, such that

∂2
t ρT

= ∂2
x

(
p

T
+ ρ

T
u2
)

+ ∂2
z

(
p

T
+ ρ

T
w2
)

+ 2∂x∂z (ρ
T
uw) . (2.3)

We then make the assumption that the propagation is predominant in the x-direction and

thus eliminate nonlinear terms in z-derivatives in Eq. (2.3). Specifically, terms ∂2
z

(
ρ

T
w2
)

and

∂x∂z (ρ
T
uw) are discarded. This yields

∂2
t ρT

= ∂2
x

(
p

T
+ ρ

T
u2
)

+ ∂2
zpT

. (2.4)

To reduce Eq. (2.4) to a single variable equation the total pressure p
T

is substituted by a

second-order expansion in ρ′ from an assumed adiabatic equation of state defined by

p
T

= p0 + c2ρ′ + c2
(
γ − 1

2ρ0

)
ρ′ 2 , (2.5)

in which γ is the ratio of specific heats. It is furthermore assumed that the sound speed

c (x, z) can be written

c (x, z) = c0 + c1 (x, z) , (2.6)

where c0 is a constant and c1 (x, z) is a spatially varying perturbation. Substituting Eq. (2.6)

in Eq. (2.5) gives

p
T

= p0 + (c0 + c1)
2 ρ′ + (c0 + c1)

2

(
γ − 1

2ρ0

)
ρ′ 2 . (2.7)

With this new expression for the total pressure p
T

Eq. (2.4) becomes

∂2
t ρT

= ∂2
x

[
(c0 + c1)

2 ρ′ + (c0 + c1)
2

(
γ − 1

2ρ0

)
ρ′ 2 + ρ

T
u2

]
+ ∂2

z

[
(c0 + c1)

2 ρ′
]
. (2.8)

In order to further simplify Eq. (2.8) the assumption that the sound speed perturbation

c1 (x, z) is small compared to c0, i.e. c1 (x, z)≪c0, is made, and hence the term ∂2
z

(
c21ρ

′
)

in

Eq. (2.8) can be eliminated. This yields

∂2
t ρT

= ∂2
x

[
(c0 + c1)

2 ρ′ + (c0 + c1)
2

(
γ − 1

2ρ0

)
ρ′ 2 + ρ

T
u2

]
+ c20∂

2
zρ

′ . (2.9)

The last step to reduce Eq. (2.9) to a single-variable equation is to eliminate the variable

u, the flow velocity in the x-direction. A first-order result for plane waves is used, i.e. the
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velocity u is written

u = c0
ρ′

ρ0
. (2.10)

Substituting Eq. (2.10) in Eq. (2.9), and keeping only terms of order up to two in the x-

derivative term gives

∂2
t ρT

= ∂2
x

[(
c20 + 2c0c1

)
ρ′ + c20

(
γ + 1

2

)
ρ′ 2

ρ0

]
+ c20∂

2
zρ

′ . (2.11)

An important remark can be done at this stage of the derivation. Indeed, if one assumes

low amplitude waves (i.e. neglects the nonlinear term in Eq. (2.11)) and assumes that the

propagation medium is homogeneous (i.e. c1= 0), one obtains

∂2
t ρT

− c20∇2ρ
T

= 0 , (2.12)

which is the classical, linear wave equation.

Eq. (2.11) now contains only one variable, the density perturbation ρ′. The main principle

of NPE models is the simulation of sound propagation in a frame surrounding the wavefront

and moving at speed c0. The propagation is hence assumed to be outgoing only and a frame-

following formulation of Eq. (2.11) is sought. A moving-frame operator Dt is introduced. It

is defined by

Dt = ∂t + c0∂x , (2.13)

and taking the second time derivative yields

∂2
t = D2

t − 2c0Dt∂x + c20∂
2
x . (2.14)

Provided one is distant from the source and the solution can be written in the form

ρ (t, x, z) = F (x− c0t)G (x, z) , (2.15)

then it can be shown that if the (first-order) parabolic approximation holds [see Caine &

West, 1995] then

D2
t = 0 . (2.16)

Rewriting Eq. (2.11) with the moving-frame operator yields a one-way single-variable wave
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equation, defined by

−2c0Dt∂xρ
′ = ∂2

x

[
2c0c1ρ

′ + c20β
ρ′ 2

ρ0

]
+ c20∂

2
zρ

′ , (2.17)

in which β=
γ + 1

2
is the coefficient of nonlinearity. Integrating Eq. (2.17) with respect to

the variable x and rearranging the equation gives a first version of the Nonlinear Parabolic

Equation (NPE) model, such that

Dtρ
′ = −∂x

[
c1ρ

′ + c0
β

2

ρ′ 2

ρ0

]
− c0

2

∫
∂2

zρ
′ dx . (2.18)

Eq. (2.18) is then written with a dimensionless density perturbation R=
ρ′

ρ0
; this yields

DtR = −∂x

[
c1R+ c0

β

2
R2

]
− c0

2

∫
∂2

zRdx . (2.19)

Note that equivalently, one could use the dimensionless quantity Q =
p′

ρ0c20
[see Ambrosiano

et al. , 1990]. Since Q = R+O
(
ǫ2
)
, replacing R by Q in Eq. (2.18) gives an error consistent

to the order of accuracy sought.

The above equation Eq. (2.19) is the NPE model as presented in papers by McDonald &

Kuperman [1987]; McDonald et al. [1994]; Caine & West [1995]. However note that the

cylindrical spreading term c0R/2r, where r is the distance from the source, has been dropped

for clarity.

The derivation of the original NPE model without the use of the perturbation expansion

method can be found in Appendix D.

2.1.3 Properties of the Nonlinear Parabolic Equation model

Assumptions used for the derivation of the NPE model

To reduce the NPE Eq. (2.19) to a single-variable one-way wave equation, several hypothesis

are made. Listing these simplifications will help highlighting the model limitations.

◮ Main propagation along the x-direction: this hypothesis allows one to keep only linear

terms in z-derivative in Eq. (2.3), and thus eliminate the vertical flow velocity variable

w from the model.

◮ Weak sound speed perturbations: assuming c1 (x, z)≪c0 lets further simplify the model

by keeping only the first-order term in z-derivative (the term c20∂
2
zρ

′) in Eq. (2.8).
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◮ Weak nonlinearity: the pressure is replaced by a second-order expansion in ρ′, the

flow velocity u by a first-order approximation. The NPE model is hence limited to the

simulation of waves with moderate overpressure values.

◮ Paraxial approximation: the use of a moving-frame operator Dt implies a one-way

wave propagation (no back-scattering). The use of the NPE model is hence restricted

to far-field simulations of finite-length signals.

Modularity of the NPE model

One can identify three different differential operators in Eq. (2.19):

◮ the term −∂x (c1R) accounts for refraction effects due to spatially-varying meteorolog-

ical conditions,

◮ the term −c0
β

2
∂xR

2 accounts for nonlinear effects,

◮ and the last term −c0
2

∫
∂2

zRdx is the diffraction operator. It accounts for propagation

in the transverse direction (the z-direction).

These operators are graphically identified in Fig. (2.1). NPE models have the unique fea-

ture of segregating physical effects into separate differential operators. This makes the NPE

a very modular and flexible model. One can, for example, obtain a one-dimensional nonli-

near propagation equation by omitting the diffraction operator −c0
2

∫
∂2

zRdx , or obtain

a two-dimensional linear parabolic propagation equation by omitting the nonlinear term

−∂x

(
c0
β

2
R2

)
.

Relation to the frequency-domain Parabolic Equation (PE)

Dropping the nonlinear term in Eq. (2.19) yields

DtR = −∂x (c1R) − c0
2

∫
∂2

zRdx , (2.20)

and substituting R = ei(kx−ωt)f (x, z) in Eq. (2.20), in which ω and k are the wave pulsation

and wavenumber, respectively, and f (x, z) is slowly varying in the x-direction compared to

the exponential term, and retaining only dominant terms (terms from the rapid oscillations

of the exponential) gives

∂xf = −ik c1
c0
f +

i

2k
∂2

zf . (2.21)
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DtR = −∂x

[
c1R + c0

β

2
R2

]
− c0

2

∫
∂2

zRdx

◮ Mowing-frame operator

◮ Refraction effects

◮ Nonlinear effects

◮ Transverse propagation (diffraction operator)

Figure 2.1: Graphical representation of the NPE differential operators.

Eq. (2.21) is the (linear) frequency-domain Parabolic Equation (PE) in two dimensions. The

NPE model Eq. (2.19) is thus the nonlinear time-domain counterpart of the frequency-domain

Parabolic Equation (PE) [see McDonald & Kuperman, 1987]. We refer the reader to a paper

by Tappert [1977] for pioneering work on PE for linear underwater acoustics applications. A

synthesis of Parabolic Equations (PE) methods can be found in the paper by Lee & Pierce

[1995].

Relation to the inviscid Burgers equation

The inviscid Burgers equation is∗

∂xp
′ =

β

2ρ0c30
∂τp

′2 , (2.22)

where τ = t− x/c0 introduces a retarded time frame. The above equation is very similar to

the NPE model Eq. (2.19) in one dimension, written as

DtR = −∂x

[
c1R+ c0

β

2
R2

]
. (2.23)

Eq. (2.23) differs from the inviscid Burgers equation Eq. (2.22) only by the presence of the

term c1, which accounts for sound speed variations, and a scaling factor in front of the

nonlinear term, since the unknown variables used are different.

∗ Eq. (2.22) is given as equation 54 of chapter 3 in Hamilton & Blackstock [1998]
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Relation to the KZK equation

Blanc-Benon et al. [2002] used a modified KZK equation which accounts for sound speed

variations in order to study propagation of finite-amplitude sound waves through turbulence.

This equation, without the thermoviscous absorption term, is∗

∂xp =
1

c0
∂t

(
c1p+

β

2ρ0c0
p2

)
+
c0
2

∫ t

−∞
∂2

zp dt . (2.24)

This equation includes hydrodynamic nonlinearities and the effects of sound speed variations

with altitude. The NPE and KZK equations are similar with the roles of time and distance

reversed. These models mainly differ by their numerical implementation: the NPE uses an

accurate finite-difference scheme (Flux Corrected Transport (FCT) algorithm, see Chapter 4)

to evaluate the nonlinear operator [see Castor et al. , 2004].

2.2 Extensions to the original Nonlinear Parabolic Equation

model

The formulation of the NPE defined by Eq. (2.19) only accounts for sound speed variations

and nonlinear effects. The NPE model can be extended to handle geometrical spreading and

dissipative effects from thermoviscous absorption.

2.2.1 Geometrical spreading

For the case of azimuthal symmetry the NPE model contains an additional operator accounting

for geometrical spreading. The NPE model becomes

DtR = −c0R
2r

− ∂x

[
c1R+ c0

β

2
R2

]
− c0

2

∫
∂2

zRdx , (2.25)

in which r = c0t + x is the distance from the source and x denotes the range in the moving

window.

2.2.2 Thermoviscous effects

This section describes the procedure to include thermoviscous effects in the NPE propagation

model described in Section 2.1. The derivation is based on Too & Lee [1995a].

∗ Eq. (2.24) is given as equation (25) in Blanc-Benon et al. [2002]
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In a two-dimensional coordinate system the continuity and conservation of momentum equa-

tions including thermoviscous effects are [see Wochner et al. , 2005]

∂tρT
= − ∂x (ρ

T
u) − ∂z (ρ

T
w) , (2.26a)

∂t (ρ
T
u) = − ∂x

(
p

T
+ ρ

T
u2
)
− ∂z (ρ

T
uw) + µB

(
∂2

xu+ ∂x∂zw
)

+ µ (∂xΦxx + ∂zΦxz) , (2.26b)

∂t (ρ
T
w) = − ∂z

(
p

T
+ ρ

T
w2
)
− ∂x (ρ

T
uw) + µB

(
∂2

zw + ∂z∂xu
)

+ µ (∂zΦzz + ∂xΦzx) , (2.26c)

in which µ and µB are the fluid shear and Bulk viscosities, respectively and Φij represents

the rate of shear tensor which is defined by

Φij = ∂jvi + ∂ivj −
2

3
∇ · Vδij , (2.27)

where the vi are components of the particle velocity vector V and δ is the Kronecker delta.

The derivation procedure that yields a NPE model with thermoviscous effects is similar

to the one presented in Section 2.1.2: Eq. (2.26a) is differentiated with respect to time,

Eqs. (2.26b, 2.26c) are substituted in the newly developed expression, and only terms of first

order in z-derivatives are kept. Furthermore, it can be proved that to a certain order of

accuracy, and under the assumptions made, w= 0. The proof of this statement is voluntarily

omitted here: it is redundant to the derivation presented in Section 3.2. These assumptions

yield

∂2
t ρT

= ∂2
x

(
p

T
+ ρ

T
u2
)

+ ∂2
zpT

−
(

4

3
µ+ µB

)
∂x∇2u . (2.28)

The following equation of state is used∗ for the total pressure p
T
:

p
T

= p0 + c2ρ′ + c2
(
γ − 1

2ρ0

)
ρ′2 − κ

(
1

cv
− 1

cp

)
∇ · V , (2.29)

where κ is the thermal conductivity and cv and cp are the specific heats. Substituting

Eq. (2.29) in Eq. (2.28) and following the procedure described in Section 2.1.2 yields

∂2
t ρT

= ∂2
x

[(
c20 + 2c0c1

)
ρ′ + c20

(
γ + 1

2

)
ρ′2

ρ0

]
+ ∂2

z

(
c20ρ

′
)
− c0δth∂x∇2ρ′ , (2.30)

∗ The procedure yielding Eq. (2.29) is described in Hamilton & Blackstock [1998], pages 52–54
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where δth is the sound diffusivity [see Lighthill, 1980; Too & Lee, 1995a] and is defined by∗

δth = ρ−1
0

[
4

3
µ+ µB + κ

(
1

cv
− 1

cp

)]
. (2.31)

A NPE model that includes thermoviscous effects can be obtained in introducing the moving-

frame operator and rearranging Eq. (2.30). One obtains

DtR = −∂x

[
c1R+ c0

β

2
R2

]
− c0

2

∫
∂2

zRdx+
δth
2
∇2R . (2.32)

The second z-derivative in the Laplacian operator is then discarded; this yields

DtR = −∂x

[
c1R+ c0

β

2
R2

]
− c0

2

∫
∂2

zRdx+
δth
2
∂2

xR . (2.33)

Eq. (2.33) is an augmented NPE model that includes dissipation effects. Simulations from

this model have been compared to experimental results and excellent agreement was found

with measurements by Moffett et al. [1970, 1971] and Lockwood et al. [1973]. It has also

been proved that the presented model was able to recreate self demodulation phenomena [see

Too & Lee, 1995a].

2.3 Variants of the original Nonlinear Parabolic Equation model

The NPE model of Section 2.1 has been derived for a two-dimensional Cartesian coordi-

nate system and uses the first-order “small-angle” parabolic approximation. The following

two sections present Nonlinear Parabolic Equation (NPE) models for cylindrical and spher-

ical coordinate systems (see Section 2.3.1) and a “high-angle” formulation of the Cartesian

coordinate system version of the NPE (see Section 2.3.2).

2.3.1 Cylindrical and spherical formulations

Depending on the type of the coordinate system chosen different formulations of the NPE

model are obtained. Too & Ginsberg [1992a,b] derived such formulations for cylindrical

(Eq. (2.34)) and spherical (Eq. (2.35)) coordinate systems. These formulations are defined by

DtR = − c0
2r

− ∂r

(
c0
β

2
R2

)
− c0

2

∫
∂2

zRdr , (2.34)

∗ Eq. (2.31) is given as equation 42 of chapter 3 in Hamilton & Blackstock [1998]
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and

DtΓ = −∂r

(
c0
β

2

Γ2

r

)
− c0

2

(
∂2

θ +
1

tan θ
∂θ

)∫
Γ2

r
dr , (2.35)

in which r is the distance from the source to the calculation point, θ is the angle ∠ (−→x ,−→r )

and Γ = rR. Note that these formulations do not include sound speed variations. Further

in this document the Cartesian coordinate system formulation of the NPE model defined by

Eq. (2.19) is used.

2.3.2 High-angle formulation

A high-angle formulation of the original NPE has been derived by McDonald [2000] [see

also Claerbout, 1976]. This new formulation allows one to get a better accuracy at high

propagation angles, which is made possible by keeping terms of higher order in the expression

of the Laplacian operator and by retaining the second time derivative term in Eq. (2.14).

Note that this development to higher orders only concerns the diffraction operator, not the

nonlinear operator.

For azimuthally symmetric propagation problems the high-angle formulation of the NPE is

defined by

DtR = −c0
2

R

r
− ∂r

(
c1R+ c0

β

2
R2

)
−
∫ [

c0
2
∂2

zR+ c0
R

r2
− 1

2c0
D2

tR

]
dr = 0 . (2.36)

According to McDonald the above formulation allows the Root Mean Square (RMS) error at

high propagation angles (∼50°) to be reduced from 12% to 1.5% . This improved accuracy

comes with increased calculation times, roughly a factor two according to McDonald. Calcu-

lating the solution array at time n + 1 using Eq. (2.36) implies working with an additional

array at time n − 1 due to the second time derivative. This considerably increases memory

requirement, calculation complexity, and thus computational times.

Since in this work we are mainly interested in long-range sound propagation applications, the

high-angle formulation has not been retained. A higher accuracy close to the source is a weak

improvement compared to the numerical effort needed to integrate the additional terms.

2.4 Nonlinear Parabolic Equation model for propagation in

multiple media

To the author knowledge, the only attempt to use the NPE model to simulate high-amplitude

wave propagation in multiple media has been done by Ambrosiano et al. [1990], and later
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used by McDonald [1992]. Ambrosiano et al. used the NPE to investigate propagation

of acoustic pulses in a shallow ocean waveguide. The ocean–bottom interface is described

by a fluid–fluid interface which presents a density discontinuity. Boundary conditions are

continuity of pressure and normal particle displacement across the interface.

Before going further with interfacial conditions one must address the problem of possible

interface deformation by the wave. Indeed, high-amplitude waves may distort the interface

in such a way that for a flat and horizontal interface, normal particle displacement is not

vertical. Ambrosiano et al. investigated this issue; their conclusions are summarized below.

The interface deformation slope ζx is to the first order

ζx = −∂x

∫
dt

∫
dt′ρ−1∂zp

′ (2.37)

= −
∫
∂zRdx+O

(
ǫ

7

2

)
. (2.38)

The deformation of the surface normal introduces a nonlinear term in the normal velocity

continuity condition across the interface, which is written as

ρ−1
0w
∂zRw = ρ−1

0b
∂zRb −

(
ρ−1
0w

− ρ−1
0b

)
∂xRb

∫
∂zRb dx+O

(
ǫ

7

2

)
, (2.39)

in which Rw and Rb are adimensional overpressures in water and bottom fluid layers, respec-

tively, and ρ0w and ρ0b
are their respective ambient densities. Ambrosiano et al. estimated

that if the bottom density was ρ0b
= 1.5 ρ0w and the overpressure was less than 0.04, the

nonlinear term in Eq. (2.39) was less than 1% of the linear term. As the importance of

this term is weak and decreases with range it was discarded in the expression of interfacial

boundary conditions. Linear boundary conditions for a fluid–fluid interface were hence used

to investigate the reflection and transmission of a high-amplitude waves in a shallow ocean

waveguide.

In the case of wave propagation in air over a ground layer one has

ρ0ground
≫ ρ0air

, (2.40)

such that Eq. (2.39) can be reduced to

ρ−1
0air
∂zRair = ρ−1

0ground
∂zRground − ρ−1

0air
∂xRground

∫
∂zRground dx+O

(
ǫ

7

2

)
(2.41)

Fortunately the acoustic field in the ground layer is very small, ensuring that the nonlinear

term is small compared to the linear one in Eq. (2.41).

Using first-order finite-difference approximations of overdensity variables and their derivatives
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gives an expression for the interfacial boundary condition, which is defined by

Rairj
+Rairj+1

= Rgroundj
+Rgroundj+1

(pressure continuity) ,

(2.42a)

ρ−1
0ground

(
Rgroundj+1

−Rgroundj

)
= ρ−1

0air

(
Rairj+1

−Rairj

)
(normal velocity continuity) ,

(2.42b)

where the interface is taken to be midway between vertical grid points with indexes j+1 and

j. Eqs. (2.42) directly give expressions for the unknowns Rwj
and Rbj+1

:

Rwj
=

(
ρ0b

− ρ0w

ρ0b
+ ρ0w

)
Rwj+1

+

(
2ρ0w

ρ0b
+ ρ0w

)
Rbj

, (2.43a)

Rbj+1
=

(
ρ0w − ρ0b

ρ0b
+ ρ0w

)
Rbj

+

(
2ρ0b

ρ0b
+ ρ0w

)
Rwj+1

. (2.43b)

Including the interfacial boundary condition Eqs. (2.43) within the NPE model is straightfor-

ward. The diffraction operator is the only one containing z-derivatives; one has just to set

values on grid points with indexes j and j + 1 to the quantities in Eqs. (2.43).

2.5 Coupling the Nonlinear Parabolic Equation model with

near-field and far-field sound propagation methods

The NPE model has previously been coupled to various propagation methods. Attenborough

et al. [2005, 2004] and Van der Eerden & Védy [2005] coupled an Euler equations imple-

mentation∗ to the NPE model. The NPE was then coupled to a (linear) frequency-domain

Parabolic Equation (PE) implementation. Fig. (2.2) shows a schematic of the principle of

coupling Euler equations, NPE and PE models.

The Euler equations implementation uses a rectangular grid and axisymmetrical coordinates.

Outputs from this code are arrays of pressure and particle velocities on the grid at each time

iteration. The NPE uses the same kind of data representation. The pressure values from the

Euler equations code can thus be used to initialize the NPE calculations. When the pressure

amplitude is low enough so that nonlinear effects can be neglected (typically less than 1 kPa),

a linear propagation method can be used. The pressure values are then recorded along a

vertical line and their Fourier transforms are used as the input for the frequency-domain PE.

Coupling several codes allows us to take advantage of each method strengths and weaknesses.
∗ The expression “FCT method” is found in papers by van der Eerden & Védy [2005]; Attenborough et al.

[2005, 2004] and is used to describe a numerical implementation of Euler equations. The FCT method not
being restricted to Euler equations implementations, “FCT method” should in fact be understood as: “a
numerical implementation of the Euler equations using the FCT algorithm.”
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Euler

NPE

Moving window

PE

x

z

Figure 2.2: Schematic overview of the method for coupling Euler equations method with the
NPE model and the PE.

For the case where the NPE is initialized by another propagation code, we require this code to

be able to provide spatial waveforms at a given time. This can become tricky with frequency-

domain methods since a number of inverse Fourier transforms and temporal domain to spatial

domain mappings have to be performed. On the opposite coupling another time-domain

method is straightforward. One has to take a spatial sampling of the acoustic field at a given

time, extract the part of this sampling belonging to the moving-window (windowing), and

start the NPE calculations with this initial condition.

The NPE model can be used to initialize any other propagation code that only requires

overpressure values. Indeed, the NPE calculation result is the acoustic field at each time

iteration. Time signals can easily be extracted from them, and eventually Fourier transformed

to initialize a frequency-domain method like the PE. For the case where the NPE is used to

initialize another time-domain method which requires velocity values (e.g. a Linearized Euler

Equations (LEE) implementation), an approximation of the velocities can be obtained by

using a first-order plane wave result (see Eq. (2.10)).

2.6 Significant applications using the Nonlinear Parabolic Equa-

tion model

In this section publications where the NPE model has been used are briefly reviewed. The

model has mainly been used in two application fields: underwater acoustics and environmental

acoustics.
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2.6.1 Underwater acoustics

Ambrosiano et al. [1990] and Castor et al. [2004] used the NPE to study high-amplitude

wave propagation in shallow-water waveguides. More specifically the effects of nonlinearities

in the propagation, transmission and reflection of waves at a fluid–fluid interface were under

interest. The NPE was used to compare linear and nonlinear propagation. It appeared that

hydrodynamic nonlinearities have significant effects:

◮ the critical grazing angle at the ocean bottom is reduced, resulting in an increased

transmission of energy to the bottom,

◮ and due to shock formation, the energy loss near the source is enhanced compared to

linear propagation (see Section 1.2.2).

The NPE was then used to identify eigenmodes of the waveguides which have been compared

to normal mode calculations. For the linear regime, simulated profiles agreed with mode

predictions. Finally, to quote Ambrosiano et al. ’s paper:

“The consistency of linear results with the existing literature, taken together with

the physical plausibility of nonlinear results, lends credibility to the NPE as a

suitable numerical/theoretical tool for studying nonlinear acoustic phenomena.”

2.6.2 Environmental acoustics

Blanc-Benon et al. [2002] investigated the propagation in finite-amplitude sound through

turbulence. Two different models were used: the first is based on a geometrical acoustics

approach, in which a nonlinear transport equation is used, while the second is a KZK equation

modified to include a random temperature field (as explained in Section 2.1.3, KZK equations

and NPE models are equivalent, with role of distance and time reversed). Running several

numerical simulations allowed statistics to be calculated. The KZK equation was shown to

be in agreement with the geometrical acoustics method: location of caustics coincides with

the maximum peak pressure locations calculated with the KZK model.

Piacsek [2002] used a NPE model to study the effects of atmospheric turbulence on sonic

boom wave fronts.

The NPE has also been used to study propagation of explosion waves [see van der Eerden &

Védy, 2005; Attenborough et al. , 2005, 2004]. The waves propagated had an amplitude of

approximately 5 kPa at a distance of two meters from the source. Van der Eerden & Védy

[2005] demonstrated the possibility of coupling the NPE model to other propagation methods

(see Section 2.5). The NPE was successfully used to propagate explosion waves up to several

hundred meters. The authors noted that:
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“No satisfactory means has yet been found to include the absorption provided by

porous ground surfaces.”

2.7 Chapter summary and conclusions

In this chapter we detailed the existing work on the Nonlinear Parabolic Equation (NPE)

model. Two different derivations are found in the literature; the first uses the perturbation

expansion method (see Section 2.1.2) while the second makes some assumptions about the

particles motion (see Appendix D). The NPE model, closely related to similar propagation

models (the frequency-domain PE, the Burgers equation and the KZK equation), makes use

of three assumptions: propagation along a main direction, weak sound speed perturbations

and weak nonlinearities. The extension and variants of the model were then presented in

Sections 2.2 and 2.3.

The model can easily be coupled to other near-field or far-field propagation methods. More-

over, previous studies tends to indicate that simulation results obtained thanks to the NPE

model are in good agreement with more complex models or measurements.

The NPE model is promising in several ways. Its relative simplicity (single-variable, one-way

wave equation) supposes low computational times while its modularity indicates straightfor-

ward implementation and manipulation of the model (numerical implementation of the NPE

model is detailed in Chapter 4).

However, note that the model lacks some essential features of outdoor sound propagation

applications, such as the possibility of taking into account the ground topography and the

ground impedance. This point is treated in the next chapter.
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3
Development of a Nonlinear Parabolic

Equation model for sound propagation

in complex environments –

Deterministic aspects

This chapter details the development of a deterministic Nonlinear Parabolic Equation (NPE)

model for high-amplitude wave propagation over porous ground layers and in complex media.

Propagation over non-flat surfaces is handled through the use of the terrain-following coordi-

nates method and is described in Section 3.1. The NPE model for propagation within porous

ground layers is detailed in Section 3.2 and propagation over porous layers in Section 3.3.

Chapter summary and conclusions are given in Section 3.4.

Chapter content

3.1 Nonlinear Parabolic Equation model for propagation over rigid non-flat ground surfaces 60

3.2 Nonlinear Parabolic Equation model for sound propagation in rigidly-framed porous

media . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Nonlinear Parabolic Equation model for high-amplitude wave propagation over com-

plex surfaces . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Chapter summary and conclusions . . . . . . . . . . . . . . . . 79

59



Chapter 3: Development of a NPE model for propagation in complex environments

3.1 Nonlinear Parabolic Equation model for propagation over

rigid non-flat ground surfaces

In this section a Nonlinear Parabolic Equation (NPE) model for high-amplitude wave propa-

gation over non-flat terrains is developed.

3.1.1 Setting the problem

Due to the large distances considered in this work the propagation model used must account

for the effect of hilly or mountainous terrain on sound propagation. To achieve this goal a

convenient method is the use of terrain-following coordinates. The consideration of topog-

raphy in outdoor fluid dynamics by a transformed terrain-following coordinate system goes

back to the 50’s and the early mesoscale meteorological models [see for example Philips, 1957;

Mahrer & Pielke, 1975].

The ground height is noted h (x) and its first and second derivatives with respect to x (the

main propagation direction) are noted h′ and h′′, respectively. Modeling with transformed

coordinates often involves the transformation proposed by Gal-Chen & Sommerville [1975] in

which the spatial coordinates are transformed according to

x −→ x , (3.1a)

z −→ H
z − h (x)

H − h (x)
, (3.1b)

in whichH is the height of the top of the model domain. Using the transformation in Eqs. (3.1)

introduces model levels that change from coordinate-following near the ground to plane at

the top of the domain [see for example Pielke, 2002]. For the simulation of acoustic wave

propagation a rather shallow atmospheric layer is involved. It is therefore more convenient

to use a coordinate transformation that conserves the spatial resolution over the calculation

grid. The spatial coordinates are hence changed according to

x −→ x , (3.2a)

z −→ z + h(x) , (3.2b)

in such a way that model levels are following the ground elevation from the bottom to the

top of the model domain (see Fig. (3.1) for an illustration).

While pressure, density, sound speed and horizontal flow velocity variables are unchanged,
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the vertical flow velocity is modified to account for ground elevation, such that

w −→ w + h′u . (3.3)

Expressions for spatial derivatives of space and time dependent variables can be found using

the chain rule. One obtains

∂xR −→ ∂xR− h′∂zR , (3.4a)

∂zR −→ ∂zR , (3.4b)

∂xu −→ ∂xu− h′∂zu , (3.4c)

∂zu −→ ∂zu , (3.4d)

∂xw −→
[
∂xw − h′∂zw

]
+ h′

[
∂xu− h′∂zu

]
+ h′′u , (3.4e)

∂zw −→ ∂zw + h′∂zu . (3.4f)

3.1.2 Model derivation

In order to derive a NPE model for propagation over non-flat surfaces we start from the

nonlinear wave equation Eq. (2.11) written in dimensionless form, such that

∂2
tR = ∂2

x

[(
c20 + 2c0c1

)
R+ c20βR

2
]
+ c20∂

2
zR . (3.5)

Performing the replacements in Eqs. (3.4) yields a nonlinear wave equation in the transformed

coordinate system. This equation writes

∂2
tR = D

2
x

[(
c20 + 2c0c1

)
R+ c20βR

2
]
+ c20∂

2
zR , (3.6)

where D
2
x is the expression of the second x-derivative in the transformed coordinate system,

which is defined by

D
2
x −→ ∂2

x + h′2∂2
z − h′′∂z − 2h′∂x∂z (3.7a)

−→ ∂2
x + L , (3.7b)

where L = h′2∂2
z − h′′∂z − 2h′∂x∂z.

Introducing the moving-frame operator as in Section 2.1.2 yields

DtR = −∂x

[
c1R+ c0

β

2
R2

]
− c0

2

∫
∂2

zRdx−
∫

L

[(c0
2

+ c1

)
R+

c0β

2
R2

]
dx . (3.8)

The assumptions inherent to the NPE model are now used. Specifically, small meteorological
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perturbations and weak nonlinearities are introduced, i.e.

c1 ≪ c0
2
, (3.9a)

βR≪ 1 . (3.9b)

Associated with the assumption of dominant propagation in one direction∗, i.e. ∂xR≫ ∂zR,

Eqs. (3.9) allows Eq. (3.8) to be reduced to

DtR = −∂x

[
c1R+ c0

β

2
R2

]
− c0

2

∫
∂2

zRdx− c0
2

∫
LRdx . (3.10)

Rearranging Eq. (3.10) gives the NPE model with terrain-following coordinates defined as

DtR = −∂x

[
c1R+ c0

β

2
R2

]
− c0

2

∫ [(
1 + h′2

)
∂2

zR+ h′′∂zR
]
dx+ c0h

′∂zR . (3.11)

Note that if the ground elevation h (x) is set to zero, Eq. (3.11) exactly reduces to the NPE

defined by Eq. (2.19).

The new Nonlinear Parabolic Equation (NPE) model, further called Generalized Terrain –

Nonlinear Parabolic Equation (GT–NPE) model, contains three additional terms (see Fig. (3.2)

for a graphical representation of additional terms):

◮ the term
(
1 + h′2

)
∂2

zR in the integral increases transverse propagation speed by a quan-

tity c0h
′2, independently of the slope sign,

◮ the second term h′′∂zR in the integral increases or decreases the transverse propagation

speed depending on the ground slope direction,

◮ and the last term c0h
′∂zR shifts the waveform in the calculation window to correct for

ground elevation.

3.1.3 Including thermoviscous effects in the Generalized Terrain – Nonli-

near Parabolic Equation model

To include thermoviscous effects in the GT–NPE model we start from Eq. (2.33) where the

dissipative term is written in the transformed coordinate system, such that

DtR = − ∂x

[
c1R+ c0

β

2
R2

]
− c0

2

∫ [(
1 + h′2

)
∂2

zR+ h′′∂zR
]
dx+ c0h

′∂zR

+
δth
2

[
∂2

x +
(
1 + h′2

)
∂2

z − h′′∂z − 2h′∂x∂z

]
R . (3.12)

∗ Note that the main propagation direction is now the transformed x-direction.
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Figure 3.1: Illustration of the coordinate transformation used to take into account the ground
topography within the NPE model.

DtR = −∂x

[
c1R+ c0

β

2
R2

]
− c0

2

∫ [ (
1 + h′2

)
∂2

zR + h′′∂zR
]
dx+ c0h

′∂zR

◮ Locally increases transverse propagation speed
independently of the slope sign

◮ Modifies the transverse propagation speed
according to the slope sign

◮ Shifts waveform in the calculation window

Figure 3.2: Graphical representation of additional terms accounting for ground topography
in the GT–NPE model.
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Following the derivation of Section 2.1.2 in which one keeps only dominant terms allows one

to get a GT–NPE model with thermoviscous effects included, defined by

DtR = −∂x

[
c1R+ c0

β

2
R2

]
− c0

2

∫ [(
1 + h′2

)
∂2

zR+ h′′∂zR
]
dx+ c0h

′∂zR+
δth
2
∂2

xR .

(3.13)

3.1.4 Model properties

The GT–NPE model developed can be used to simulate sound propagation over non-flat

terrains. However, steepest slopes should not exceed a 45° angle, i.e. max |∂xh| < 1. Indeed

larger slopes may yield numerical instabilities unless spatial and temporal steps are adapted

accordingly. Generally speaking, the stability of finite-difference schemes depends on the

Courant–Friedrichs–Lewy (CFL) number defined as

CFL =
∆l

∆t cmax
, (3.14)

where ∆l is the smallest spatial step, i.e. ∆l = min (∆x,∆z), in which ∆x and ∆z are

the spatial steps in the x- and z-directions, respectively, ∆t is the time step and cmax is the

maximum wave speed. For the finite difference scheme to be stable the condition CFL < c

must be satisfied, where c is some positive constant that depends on the numerical scheme

used. In the transformed coordinate system the smallest spatial steps ∆s (x) depends on the

terrain slope so that it decreases with increasing slope such that

min (∆s (x)) =
∆l√

1 + max |∂xh|2
. (3.15)

For example, assuming a maximum slope max |∂xh| = 5 implies decreasing the time step ∆t

by a factor 5.1, and thus increasing the calculation time for this time iteration by about the

same factor. A fortiori obstacles with sharp angles and complex shapes cannot be modeled by

the terrain-following coordinates method. This would yield infinite slopes and hence infinitely

small time steps.

Besides these numerical considerations, a second limitation on the slope of the ground topog-

raphy arises from the approximations made during the derivation. It can be seen in Eq. (3.8)

that the integral contains a meteorological perturbation term (c1 term) and a nonlinear effect

term (R2 term). As explained in Section 2.1.3 one interesting feature of the NPE model is its

modularity: various effects can be included or excluded from the model and are segregated

into separate differential operators. Keeping these additional terms under the integral would

destroy this property since one would have to take into account meteorological and nonlinear
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effects in both directions∗. Neglecting these terms implies that

◮ the propagation is mainly along the transformed x-direction,

◮ and that the ground topography derivatives are small, i.e. h′ ≪ 1 and h′′ ≪ 1.

Ground topography is hence restricted to gentle slopes. This ensures numerical stability

and model correctness, while keeping all features of the NPE model and without any major

modification concerning numerical implementation.

Relation to the generalized terrain parabolic equation (GT-PE): the NPE model

Eq. (2.19) has been proved to be the time-domain counterpart of the frequency-domain PE

(see Section 2.1.3 and McDonald & Kuperman [1987]). We use the same procedure to prove

that the GT–NPE Eq. (3.11) is a proper equivalence of the Generalized Terrain – Parabolic

Equation (GT–PE) proposed by Sack & West [1995]. We drop the nonlinear term in Eq. (3.11)

and substitutes

R = f (x, z) ei(kx−ωt) . (3.16)

Neglecting non-dominant terms gives the first-order “narrow-angle” GT–PE defined by

∂xf = −ik c1
c0
f +

i

2k

[(
1 + h′2

)
∂2

zf −
(
2ikh′ + h′′

)
∂zf
]
. (3.17)

The GT–NPE model derived in Section 3.1.2 is thus the nonlinear time-domain counterpart

of the GT–PE.

3.2 Nonlinear Parabolic Equation model for sound propagation

in rigidly-framed porous media

The problem with time-domain sound propagation models is that an absorbing ground surface

cannot be taken into account by an impedance condition. Complex impedance models can

be used with frequency-domain models, for example the PE or the Fast Field Program (FFP)

models, but cannot directly be used with the NPE model developed. The ground layer has

hence to be included into the computational system as a propagation medium.

In this section it is proposed to derive a Nonlinear Parabolic Equation (NPE) model for porous

layers similar to Eq. (2.19). This model uses a minimal parametrization in which the layer

is assumed to be equivalent to a continuous fluid medium: a wave causes a vibration of air

particles contained in the ground pores, while the ground frame does not vibrate.
∗ Note that the same conclusion applies to thermoviscous effects, added to the GT–NPE model in Section 3.1.3
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3.2.1 Model derivation

In this section a Nonlinear Parabolic Equation (NPE) model for high amplitude wave propa-

gation within rigidly-framed porous media is developed. The Nonlinear Parabolic Equation

(NPE) model for sound propagation in porous ground media is based on a nonlinear extension

of the Zwikker–Kosten (ZK) model (see Zwikker & Kosten [1949] and Section 1.1.3). It is

characterized by a set of 4 parameters:

◮ the static air flow resistivity σ0,

◮ the porosity Ω0,

◮ the tortuosity Φ,

◮ and the Forchheimer nonlinearity parameter ξ.

The flow resistivity σ0 characterizes the visco-inertial effects at low frequencies and the poros-

ity Ω0 is defined as the ratio of the fluid volume occupied by the continuous fluid phase to the

total volume of the porous material. The tortuosity Φ is defined as the ratio of a curved path

length to the distance between its end points and the Forchheimer nonlinearity parameter ξ

characterizes the nonlinear part of the flow resistivity (see Section 1.2.3). These quantities

are assumed constant within the ground layer and with respect to time.

Considering these assumptions equations of continuity and conservation of momentum are

[see for example Krylov et al. , 1996a,b; Védy, 2002b; Umnova et al. , 2002]

∂tρT
= − ∂x (ρ

T
u) − ∂z (ρ

T
w) , (3.18a)

Φ∂t (ρ
T
u) + ∂x

(
p

T
+ Φρ

T
u2
)

+ ∂z (Φρ
T
uw) = − σ0Ω0 (1 + ξ |u|)u , (3.18b)

Φ∂t (ρ
T
w) + ∂z

(
p

T
+ Φρ

T
w2
)

+ ∂x (Φρ
T
uw) = − σ0Ω0 (1 + ξ |w|)w . (3.18c)

As one can see in Eqs. (3.18), the tortuosity Φ reduces the pressure gradients and flow resistive

terms amplitude.

In order to obtain a single variable wave equation, Eq. (3.18a) is derived with respect to time

and multiplied by the tortuosity Φ. This yields

Φ∂2
t ρT

+ ∂x [Φ∂t (ρ
T
u)] + ∂z [Φ∂t (ρ

T
w)] = 0 . (3.19)

Eqs. (3.18b, 3.18c) are then used to replace the terms Φ∂t (ρ
T
u) and Φ∂t (ρ

T
w), so that

Eq. (3.19) becomes

Φ∂2
t ρT

= ∂2
x

(
p

T
+ Φρ

T
u2
)

+ ∂2
z

(
p

T
+ Φρ

T
w2
)

+ 2Φ∂x∂z (ρ
T
uw)

+ σ0Ω0∂x [(1 + ξ |u|)u] + σ0Ω0∂z [(1 + ξ |w|)w] . (3.20)
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Since the propagation is mainly along the x-axis, only linear terms in z-derivatives are kept

in Eq. (3.20): terms ∂x∂z (Φρ
T
uw), ∂2

z

(
Φρ

T
w2
)

and σ0Ω0∂z (ξ |w|w) are neglected. More-

over, only terms of order up to two in x-derivatives are retained: the quantity ∂2
x

(
Φρ′u2

)
is

discarded. This leads us to

Φ∂2
t ρT

= ∂2
x

(
p

T
+ Φρ0u

2
)

+ ∂2
zpT

+ σ0Ω0∂x [(1 + ξ |u|)u] + σ0Ω0∂zw . (3.21)

One must now find expressions for the flow velocities u and w. The perturbation expansion

method is used, in which the same scalings and expansions as in publications by McDonald &

Kuperman [1987] and McDonald et al. [1994] are used (however note that the moving frame

speed is set to c0/
√

Φ). The replacements are given by

x −→ x− c0√
Φ
t , (3.22a)

z −→ ǫ1/2z , (3.22b)

t −→ ǫt , (3.22c)

in which ǫ is a scaling factor. The scaling of z by a factor of ǫ1/2 emphasizes the predominance

of the propagation in the x-direction. The partial derivatives associated with Eqs. (3.22) are

∂x −→ ∂x , (3.23a)

∂z −→ ǫ1/2∂z , (3.23b)

∂t −→ ǫ∂t −
c0√
Φ
∂x . (3.23c)

The dependent variables are expanded as follows:

ρ −→ ρ0 + ǫρ1 + ǫ2ρ2 + · · · , (3.24a)

u −→ ǫu1 + ǫ3/2u2 + · · · , (3.24b)

w −→ ǫw1 + ǫ3/2w2 + · · · . (3.24c)

Substituting Eqs. (3.23) and Eqs. (3.24) in Eq. (3.18a) yields

(
ǫ∂t −

c0√
Φ
∂x

) (
ρ0 + ǫρ′1 + ǫ2ρ′2 + · · ·

)
=

− ∂x

[(
ρ0 + ǫρ1 + ǫ2ρ2 + · · ·

) (
ǫu1 + ǫ3/2u2 + · · ·

)]

− ǫ1/2∂z

[(
ρ0 + ǫρ1 + ǫ2ρ2 + · · ·

) (
ǫw1 + ǫ3/2w2 + · · ·

)]
. (3.25)
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Elimination of particle flow velocities u and w in Eq. (3.25) is performed introducing a first

order approximation of these quantities. It can be obtained by equalizing terms of order ǫ

and ǫ3/2 in Eq. (3.25). One obtains

u1 =
c0√
Φ

ρ1

ρ0
, (3.26a)

w1 = 0 . (3.26b)

Furthermore, note that

ρ′ = ρ1 +O
(
ǫ2
)
, (3.27a)

u = u1 +O
(
ǫ3/2

)
, (3.27b)

w = w1 +O
(
ǫ3/2

)
. (3.27c)

Substitution of u and w by u1 and w1 in Eq. (3.21), respectively, hence leads us to an error

consistent with the assumptions made. With these replacements Eq. (3.21) becomes

Φ∂2
t ρT

= ∂2
x

(
p

T
+
c20
ρ0
ρ′2
)

+ ∂2
zpT

+
σ0Ω0c0

ρ0

√
Φ
∂x

[(
1 +

ξc0√
Φ

∣∣∣∣
ρ′

ρ0

∣∣∣∣
)
ρ′
]
. (3.28)

The total pressure p
T

is then eliminated from Eq. (3.28) by using a second-order expansion

in ρ′ from an assumed adiabatic equation of state. Variable p
T

is hence substituted by

p
T

= p0 + c20ρ
′ + c20

(
γ − 1

2ρ0

)
ρ′2 . (3.29)

Substituting Eq. (3.29) in Eq. (3.28) yields a single-variable nonlinear wave equation for

propagation in porous media defined by

Φ∂2
t ρ

′ = c20∂
2
x

[
ρ′ +

(
γ + 1

2ρ0

)
ρ′2
]

+ c20∂
2
zρ

′ +
σ0Ω0c0

ρ0

√
Φ
∂x

[(
1 +

ξc0√
Φ

∣∣∣∣
ρ′

ρ0

∣∣∣∣
)
ρ′
]
. (3.30)

The one-way propagation hypothesis of NPE models is introduced with a moving-frame op-

erator D⋆
t , defined by

D⋆
t = ∂t +

c0√
Φ
∂x . (3.31)
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The parabolic approximation (see Eqs. (2.15, 2.16)) yields

∂t = D⋆
t −

c0√
Φ
∂x , (3.32a)

∂2
t = − 2

c0√
Φ
D⋆

t ∂x +
c20
Φ
∂2

x . (3.32b)

Replacing the second time derivative in Eq. (3.30) by the expression in Eq. (3.32b) gives a

first version of the NPE model for propagation in porous media, defined by

−2c0
√

ΦD⋆
t ∂xρ

′ = c20∂
2
x

[(
γ + 1

2ρ0

)
ρ′2
]

+ c20∂
2
zρ

′ +
c0σ0Ω0

ρ0

√
Φ
∂x

[(
1 +

ξc0√
Φ

∣∣∣∣
ρ′

ρ0

∣∣∣∣
)
ρ′
]
. (3.33)

Integrating Eq. (3.33) with respect to x, rearranging, and introducing the dimensionless

overdensity variable R gives a NPE model for propagation in porous media, such that

D⋆
tR = − c0√

Φ
∂x

(
β

2
R2

)
− c0

2
√

Φ

∫
∂2

zRdx− σ0Ω0

2Φρ0

(
1 +

ξc0√
Φ
|R|
)
R . (3.34)

Eq. (3.34) can be used to simulate sound propagation in a porous ground layer. However, if

one wants to use this NPE model together with the NPE model for atmospheric propagation,

a last operation must be done. Indeed, both models use different frame speed: c0 and c0/
√

Φ

for atmospheric and porous medium propagation models, respectively. A last transformation

is introduced to account for the moving-frame speed difference defined by c0(1 − 1/
√

Φ). The

operator D⋆
t in Eq. (3.34) is replaced by

D⋆
t = Dt − c0

(
1 − 1√

Φ

)
∂x , (3.35)

so that Eq. (3.34) becomes

DtR = − c0√
Φ
∂x

[(
1 −

√
Φ
)
R+

β

2
R2

]
− c0

2
√

Φ

∫
∂2

zRdx− σ0Ω0

2Φρ0

(
1 +

ξc0√
Φ
|R|
)
R . (3.36)

The NPE model described by Eq. (3.36) is able to simulate finite amplitude sound propagation

within a rigidly-framed porous material described by a set of 4 parameters. Note that if one

sets Φ= 1 and neglects losses in the layer, i.e. σ0= 0, the model exactly reduces to the usual

NPE for atmospheric propagation defined by Eq. (2.19).

Terrain-following coordinates formulation. Transforming Eq. (3.36) in the terrain-

following coordinates system described in Section 3.1.1 is straightforward. The same assump-

tions as in Section 3.1.2 are made:
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◮ small meteorological perturbations,

◮ and weak nonlinearities.

This allows us to get a NPE model for porous grounds with terrain-following coordinates,

defined by

DtR = − c0√
Φ
∂x

[(
1 −

√
Φ
)
R+

β

2
R2

]
− σ0Ω0

2Φρ0

(
1 +

ξc0√
Φ
|R|
)
R

− c0

2
√

Φ

∫ [(
1 + h′2

)
∂2

zR+ h′′∂zR
]
dx+

c0√
Φ
h′∂zR . (3.37)

One more time if one sets Φ= 1 and neglects losses in the layer, i.e. σ0= 0, Eq. (3.37) exactly

reduces to the GT–NPE model for atmospheric propagation over non-flat terrains presented

in Section 3.1.2 (Eq. (3.11)).

3.2.2 Model properties

Eq. (3.36) allows some conclusions about finite-amplitude sound propagation in porous media

to be drawn (see Fig. (3.3) for a graphical representation of the NPE operators):

◮ the sound speed in the medium is inversely proportional to the square root of the

material tortuosity, i.e.

cground =
c0√
Φ
, (3.38)

◮ the attenuation in the ground layer is composed of a linear term plus a nonlinear term,

◮ and with the hypothesis used (the plane wave approximation for the flow velocity com-

ponent u, see Eq. (3.27b)), the dynamic material flow resistivity is linearly proportional

to the overdensity absolute value |R|, such that

σ = σ0

(
1 + ξ

c0√
Φ
|R|
)
. (3.39)

3.3 Nonlinear Parabolic Equation model for high-amplitude

wave propagation over complex surfaces

In the previous sections two different NPE models have been derived: the first can be used for

atmospheric propagation while the second is for finite-amplitude sound propagation within
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◮ Linear flow resistivity term

◮ Reduced sound speed

DtR = − c0√
Φ
∂x

[ (
1 −

√
Φ
)
R+

β

2
R2

]
− c0

2
√

Φ

∫
∂2

zRdx− σ0Ω0

2Φρ0

(
1 + ξ

c0√
Φ
|R|

)
R

◮ Correction for
moving-frame speed difference

◮ Nonlinear flow resistivity term

Figure 3.3: Graphical representation of the differential operators of the NPE model for prop-
agation in porous ground layers.

rigidly-framed porous media. Both can eventually be adapted to handle non-flat topographies.

As both models use the same moving-frame speed, they can be used together to simulate finite-

amplitude sound propagation over a rigidly-framed porous ground layer. This section aims at

establishing a first-order boundary interface condition to link these two Nonlinear Parabolic

Equation (NPE) models. It will be then transformed to handle non-flat topography cases.

In the following we assume that the deformation of the interface by the wave is small (see

Ambrosiano et al. [1990] and Section 2.4).

3.3.1 Derivation of the boundary interface condition

An air layer, whose fields are noted p′a, ua and wa, is considered. To construct the air-ground

interface condition a rigidly-framed porous ground layer is introduced; its fields are noted p′g,

ug and wg. With these notations boundary conditions across the interface are continuity of

pressure and normal flow velocity, defined by

[
p′a
]

=
[
p′g
]
, (3.40a)

[wa] = [wg] , (3.40b)

where the square brackets denote the field quantity on the air-ground interface.

Expressions of wa and wg involving the pressure disturbance p′ to the first order are sought;

linearized equations are hence used. For the air layer we use the linearized Euler’s equation

ρ0∂t (wa) = −∂zp
a
T
. (3.41)
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The perturbation expansion method is used and the same scalings as in Section 3.2.1 and in

publications by McDonald & Kuperman and McDonald et al. are used.

Rewriting Eq. (3.41) with these scalings and expansions yields

ρ0 (ǫDt − c0∂x)
(
ǫwa

1 + ǫ3/2wa
2 + . . .

)
= −ǫ1/2∂z

(
p0 + ǫp

′a
1 + . . .

)
, (3.42)

and by equalizing terms of order 1 and 3/2 one can find

wa
1 = 0 , (3.43a)

wa
2 = (ρ0c0∂x)−1 ∂zp

′a
1 . (3.43b)

Note that

wa = wa
1 + wa

2 +O
(
ǫ5/2

)
, (3.44)

and hence, to the order of accuracy sought in this work one can write

wa = wa
1 + wa

2 , (3.45a)

wa = (ρ0c0∂x)−1 ∂zp
′a
1 . (3.45b)

Now that an expression for the vertical flow velocity in the air layer wa has been obtained

one has to repeat the procedure for wg, the vertical flow velocity in the ground layer. To find

an expression for wg we start from the following momentum equation∗:

Φρ0∂tw
g = −Ω0∂zp

g
T
− σ0Ω0w

g . (3.46)

The same procedure is applied; Eq. (3.46) becomes

Φρ0 (ǫDt − c0∂x)
(
ǫwg

1 + ǫ3/2wg
2 + . . .

)
= − ǫ1/2Ω0∂z

(
p0 + ǫp

′g
1 + . . .

)

− σ0Ω0

(
ǫwg

1 + ǫ3/2wg
2 + . . .

)
, (3.47)

and one hence obtains

(√
Φρ0c0∂x − σ0Ω0

)
wg

1 = 0 , (3.48a)
(√

Φρ0c0∂x − σ0Ω0

)
wg

2 = Ω0∂zp
′g
1 . (3.48b)

With the help of Eqs. (3.48) one can finally obtain an expression for the flow velocity in the

∗ Eq. (3.46) is given as equation 10 in Salomons et al. [2002]
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ground layer wg involving the first-order pressure disturbance p
′g
1 , such that

wg =
(√

Φρ0c0∂x − σ0Ω0

)−1
Ω0∂zp

′g
1 . (3.49)

With the help of Eqs. (3.45b, 3.49) the boundary condition across the interface for the con-

tinuity of vertical velocities wa and wg can be written. It is defined by

[
(ρ0c0∂x)−1 ∂zp

′a
]

=

[(√
Φρ0c0∂x − σ0Ω0

)−1
Ω0∂zp

′g

]
. (3.50)

Rearranging Eq. (3.50) and re-introducing the pressure continuity condition leads us to

[
p′a
]

=
[
p′g
]
, (3.51a)

[√
Φ∂zp

′a − σ0Ω0

ρ0c0

∫
∂zp

′a dx

]
=
[
Ω0∂zp

′g
]
. (3.51b)

Eqs. (3.51) is the boundary interface condition that couples the atmospheric and porous

ground media NPE models. As it can be seen the coupling equations only involve spatial

derivatives and integrals instead of the time integral that is usually found in such time-domain

impedance conditions [see for example Wilson et al. , 2007, 2006, 2004]. This integral over

time comes from the convolution that appears when the relation between flow velocity and

pressure is transformed from the frequency-domain to the time-domain (see Section 1.1.3).

From a numerical point of view working with an integral over time is often synonym of fastid-

ious implementation and long calculation times. The use of the frame-following formulation

inherent to NPE models allows us to separate this time integral in two parts: a time and a

spatial integral, where we finally retain only the dominant part, the spatial integral.

3.3.2 Discretization of the boundary interface condition

In this section the continuous form of the boundary interface condition shown in Eqs. (3.51)

is discretised using the finite-difference method. The variables p
′a
i,j and p

′g
i,j are introduced to

denote pressures in layer a (air layer) and layer g (porous ground layer), respectively, at range

i∆x in the moving window and altitude j∆z. The air-ground interface is taken to be midway

between two vertical grid points with indexes j = 0 and j = 1; auxiliary virtual points with

pressures p
′a
i,0 and p

′g
i,1 are created. Fig. (3.4) shows a sketch of the configuration.

A trapezoidal law and finite-difference expressions for p
′a and p

′g and their derivatives are
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p
′a
i,j

p
′g
i,j

j = 1

j = 0

Figure 3.4: Illustration of the discretization of the boundary between the atmospheric layer
and the porous ground layer. The fluid-fluid interface is taken to be midway
between two vertical grid points with indexes j = 0 and j = 1. Auxiliary virtual

points (red circles) p
′a
i,0 and p

′g
i,1 are created.

used to discretise Eq. (3.51). For a generic layer l we use

[
p
′l
]

=
p
′l
i,1 + p

′l
i,0

2
, (3.52a)

[
∂zp

′l
]

=
(
p
′l
i,1 − p

′l
i,0

)
∆z−1 . (3.52b)

Replacing these approximations into Eqs. (3.51) gives expressions for unknown quantities p
′a
i,0

and p
′g
i,1, such that

(A+G) p
′a
i,0 = (A−G) p

′a
i,1 + 2Gp

′g
i,0 + S

i+1∑

m=Nx

(
p
′a
m,1 − p

′a
m,0

)
, (3.53a)

(A+G) p
′g
i,1 = (G−A) p

′g
i,0 + 2Ap

′a
i,1 + S

i+1∑

m=Nx

(
p
′a
m,1 − p

′a
m,0

)
, (3.53b)

where Nx is the number of points in the moving window in the x-direction and

A =
√

Φ +
1

2
S , (3.54a)

G = Ω0 , (3.54b)

S =
σ0Ω0∆x

c0ρ0
. (3.54c)

Eqs. (3.53) associated with Eqs. (3.54) give expressions for the unknown pressures pa
i,0 and pg

i,1.

Used together with the atmospheric and porous ground NPE models, these expressions allow
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weakly nonlinear sound propagation over a finite-impedance ground surface to be simulated.

3.3.3 Model properties

Limitations

First-order formulations of the constitutive equations have been used to derive the boundary

interface condition. This implies that nonlinearities cannot be taken into account in the

two-way coupling.

Causality

The x-integral present in NPE models (see for example Eq. (2.19)) is calculated from the right

side of the calculation grid to the left side, and the same method is used for coupling (note the

reversed sum indexes in Eqs. (3.53)). This ensures that no perturbation is introduced ahead

of the point where the wave hits the ground, and thus implies that the interfacial condition

is causal.

Consistency to simple boundary conditions

Classical boundary conditions can be obtained by setting specific values to the quantities Φ,

σ0 and Ω0.

◮ If one sets Φ= +∞ one obtains

Ra
i,0 = Ra

i,1 , (3.55)

which is the condition, with the discretization used, for an acoustically rigid surface

(null pressure z-derivative).

◮ If one sets σ0= 0, Ω0= 1 and Φ= 1 (parameters for an air layer) then

A = 1 , (3.56a)

G = 1 , (3.56b)

S = 0 , (3.56c)

and hence

Ra
i,0 = Rg

i,0 , (3.57a)

Rg
i,1 = Ra

i,1 , (3.57b)
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which is the condition for a transparent interface (perfect transmission).

◮ If one sets σ0= 0 and Ω0= 1, Eqs. (3.53) become

Ra
i,0 =

√
Φ − 1√
Φ + 1

Ra
i,1 +

2√
Φ + 1

Rg
i,0 , (3.58a)

Rg
i,1 =

1 −
√

Φ√
Φ + 1

Rg
i,0 +

2
√

Φ√
Φ + 1

Ra
i,1 , (3.58b)

which is the interface condition for two fluid layers with densities ρ0 and
√

Φρ0 [see

Ambrosiano et al. , 1990].

Relation to frequency-domain impedance

The frequency-domain complex characteristic impedance corresponding to the boundary con-

ditions shown in Eqs. (3.51) is given by (see Section 1.1.3 and Salomons et al. [2002])

Zc = ρ0c0

√
Φ

Ω2
0

+ i
σ0

Ω0ρ0ω
. (3.59)

On the causality of the Zwikker–Kosten (ZK) model. The causality of the Zwikker–

Kosten (ZK) model can be studied with the causality index proposed by Berthelot [2001]. In

its nonlocal form the causality index Cnl is defined by

Cnl =
HT [Re (Zc)]

Im (Zc)
, (3.60)

in which HT is the Hilbert Transform and Zc is the characterisic impedance of the material,

as defined by Eq. (1.3). A causality index of unity indicates that the model for the impedance

Zc is causal.

Fig. (3.5) shows the causality index Cnl for a porous material defined by the ZK model with

toruosity Φ= 1.2, porosity Ω= 0.3 and flow resistivity σ0=300 kPa.s.m−2, between 0 and

10 000 Hz. As it can be seen the causality index Cnl is equal to unity on the whole frequency

range (departure from causality near 0 Hz is due to the numerical evaluation of the Hilbert

transform), indicating that the Zwikker–Kosten (ZK) model is causal.

3.3.4 Terrain-following coordinates formulation of the boundary interface

condition

The boundary interface condition developed in Section 3.3.1 can be adapted to handle non-

flat terrains. Expressions for the vertical flow velocity components wa and wg are modified
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Figure 3.5: Causality index (nonlocal form) of the Zwikker–Kosten (ZK) model.

to account for elevation. In the transformed coordinate system Eqs. (3.41, 3.46) are

ρ0c0∂t

(
wa − h′ua

)
= −∂zp

a
T
, (3.61a)

Φρ0∂t

(
wg − h′ug

)
= −Ω0∂zp

g
T
− σ0Ω0

(
wg − h′ug

)
. (3.61b)

Using the perturbation expansion method as described in Section 3.3.1 and a plane-wave

approximation for the horizontal flow velocities ua and ug allows us to obtain transformed

expressions for Eqs. (3.45b, 3.49), such that

wa = (ρ0c0∂x)−1
[
∂zp

′a
1 − h′∂xp

′a
1

]
, (3.62a)

wg =
(√

Φρ0c0∂x − σ0Ω0

)−1
[
Ω0∂zp

′g
1 − h′

(√
Φ∂x − σ0Ω0

ρ0c0

)
p
′g
1

]
. (3.62b)

The vertical flow velocity equality condition in the transformed coordinates system is hence

[√
Φ
(
∂zp

′a − h′∂xp
′a
)
− σ0Ω0

ρ0c0

∫ (
∂zp

′a − h′∂xp
′a
)
dx

]
=

[
Ω0∂zp

′g − h′
(√

Φ∂xp
′g − σ0Ω0

c0ρ0
p
′g

)]
. (3.63)
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The discretization with finite-difference approximations of the continuous variables gives mod-

ified expressions for Eqs. (3.53), defined by

(A0 +G1) p
′a
i,0 = (A1 −G1) p

′a
i,1 + (G0 +G1) p

′g
i,0 + S

i+1∑

m=Nx

(
p
′a
m,1 − p

′a
m,0

)
, (3.64a)

(A0 +G1) p
′g
i,1 = (G0 −A0) p

′g
i,0 + (A0 +A1) p

′a
i,1 + S

i+1∑

m=Nx

(
p
′a
m,1 − p

′a
m,0

)
, (3.64b)

in which the coupling coefficients are

A0 =
√

Φ +
σ0Ω0∆x

2c0ρ0

(
1 − h′′∆z

2

)
− h′

∆z

2

(
σ0Ω0

ρ0c0
+

√
Φ

∆x

)
, (3.65a)

A1 =
√

Φ +
σ0Ω0∆x

2c0ρ0

(
1 +

h′′∆z

2

)
+ h′

∆z

2

(
σ0Ω0

ρ0c0
+

√
Φ

∆x

)
, (3.65b)

G0 = Ω0 − h′
∆z

2

(
σ0Ω0

ρ0c0
+

√
Φ

∆x

)
, (3.65c)

G1 = Ω0 + h′
∆z

2

(
σ0Ω0

ρ0c0
+

√
Φ

∆x

)
, (3.65d)

S =
σ0Ω0∆x

c0ρ0
. (3.65e)

3.3.5 Boundary interface condition for multilayered ground surfaces

A similar boundary interface condition can be derived for multilayered ground surfaces. We

consider two ground layers g and b, whose fields are noted with a g or b superscript. It is

assumed than the layer b is below the layer g and that the interface may be non-flat. We get

for the vertical velocity components

wg =
(√

Φgρ0c0∂x − σg
0Ω

g
0

)−1
[
Ωg

0∂zp
′g
1 − h′

(√
Φg∂x − σg

0Ω
g
0

ρ0c0

)
p
′g
1

]
, (3.66a)

wb =
(√

Φbρ0c0∂x − σb
0Ω

b
0

)−1
[
Ωb

0∂zp
′b
1 − h′

(√
Φb∂x − σb

0Ω
b
0

ρ0c0

)
p
′b
1

]
. (3.66b)

Writing the equality across the interface and using discrete expressions for the pressure values

p
′g
1 and p

′b
1 (and their derivatives) gives expressions for unknown quantities Rg

i,0 and Rb
i,1 and

the corresponding coupling coefficients (see Eqs. (3.70, 3.71) on page 81).
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3.3.6 Including Forchheimer’s nonlinearities in the two-way coupling

While the flow resistivity dependence on particle velocity (Forchheimer’s nonlinearities) are

accounted for in the NPE model for porous ground layers (last term in Eq. (3.36)), the two-way

coupling between both domains does not contain high-amplitude effects on ground properties.

This would yield erroneous solutions, since an additional attenuation would be introduced in

the ground layer but the increased rigidity of the interface would not be accounted for.

A solution is to artificially increase the static flow resistivity σ0 in Eq. (3.54) (and its variants

Eqs. (3.65, 3.71)) according to

σ (x, t) = σ0

(
1 + ξ

∣∣wi
∣∣) , (3.67)

where wi is the vertical particle velocity at the interface. Note that the flow resistivity is

now dependent on (x, t); it is thus noted σ (x, t). We then use Eq. (3.43b) to obtain an

approximation of wi, such that

wi = (ρ0c0)
−1
∫
∂zp

′i
1 dx+O

(
ǫ5/2

)
, (3.68)

where p
′i
1 is the first-order approximation of the pressure on the interface. The flow resistivity

σ0 in the coupling parameters defined in Eqs. (3.54) and its variants Eqs. (3.65, 3.71) is thus

replaced by

σ (x, t) = σ0

(
1 +

ξ

ρ0c0

∣∣∣∣
∫
∂zp

′i
1 dx

∣∣∣∣
)
. (3.69)

At each time iteration the flow resistivity is updated with the help of pressure values on the

interface at the previous time step. This method, although approximate, allows Forchheimer’s

nonlinearities to be included in the two-way coupling equations.

3.4 Chapter summary and conclusions

This chapter detailed the development of a deterministic NPE model for high-amplitude wave

propagation in complex media.

First, propagation over non-flat surfaces is handled through the use of terrain-following co-

ordinates. This method yields a NPE model with additional terms to account for ground

elevation and is restricted to gentle slopes (numerical and physical limitations). This NPE

model will allow, once the probabilistic model of uncertainties is developed, the use of the

stochastic NPE model in hilly urban areas.
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A NPE model for propagation within porous layers is then derived from a nonlinear extension

of the Zwikker–Kosten (ZK) model. It is assumed that the ground layer is equivalent to a

continuous fluid and with these hypothesis the model uses four parameters.

In order to develop a model for sound propagation over porous ground layers a boundary

interface condition that allows one to couple the two NPE models is derived. These two-way

coupling equations only involve spatial derivatives and integrals, making its implementation

natural and straightforward. The terrain-following coordinate formulation of this model is

then given together with expressions for multi-layered ground surfaces.
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Rg
i,0 =

(
G1 −B1

G0 +B1

)
Rg

i,1 +

(
B0 +B1

G0 +B1

)
Rb

i,0 +

(
Sg

G0 +B1

) i+1∑

m=Nx

(
Sg,1R

g
i,1 − Sg,0R

g
i,0

)

−
(

Sb

G0 +B1

) i+1∑

m=Nx

(
Sb,1R

b
i,1 − Sb,0R

b
i,0

)
, (3.70a)

Rb
i,1 =

(
B0 −G0

G0 +B1

)
Rb

i,0 +

(
G1 +G0

G0 +B1

)
RG

i,1 +

(
Sg

G0 +B1

) i+1∑

m=Nx

(
Sg,1R

g
i,1 − Sg,0R

g
i,0

)

−
(

Sb

G0 +B1

) i+1∑

m=Nx

(
Sb,1R

b
i,1 − Sb,0R

b
i,0

)
. (3.70b)

with:

G0 =
√

ΦbΩg
0 +

σb
0Ω

b
0

ρ0c0

∆x

2

[
Ωg

0 −
∆z

2

(
h′′
√

Φg − h′
σg

0Ω
g
0

ρ0c0

)]
− h′

∆z

2

(
√

Φb
σg

0Ω
g
0

ρ0c0
+

√
Φg

√
Φb

∆x
+
√

Φg
σb

0Ω
b
0

ρ0c0

)
, (3.71a)

G1 =
√

ΦbΩg
0 +

σb
0Ω

b
0

ρ0c0

∆x

2

[
Ωg

0 +
∆z

2

(
h′′
√

Φg − h′
σg

0Ω
g
0

ρ0c0

)]
+ h′

∆z

2

(
√

Φb
σg

0Ω
g
0

ρ0c0
+

√
Φg

√
Φb

∆x
+
√

Φg
σb

0Ω
b
0

ρ0c0

)
, (3.71b)

B0 =
√

ΦgΩb
0 +

σg
0Ω

g
0

ρ0c0

∆x

2

[
Ωb

0 −
∆z

2

(
h′′
√

Φb − h′
σb

0Ω
b
0

ρ0c0

)]
− h′

∆z

2

(
√

Φg
σb

0Ω
b
0

ρ0c0
+

√
Φb

√
Φg

∆x
+
√

Φb
σg

0Ω
g
0

ρ0c0

)
, (3.71c)

B1 =
√

ΦgΩb
0 +

σg
0Ω

g
0

ρ0c0

∆x

2

[
Ωb

0 +
∆z

2

(
h′′
√

Φb − h′
σb

0Ω
b
0

ρ0c0

)]
+ h′

∆z

2

(
√

Φg
σb

0Ω
b
0

ρ0c0
+

√
Φb

√
Φg

∆x
+
√

Φb
σg

0Ω
g
0

ρ0c0

)
, (3.71d)

Sg,1 =
σb

0Ω
b
0∆x

ρ0c0


Ωg +

∆z

2


h′′

√

Φg − h′
σg

0Ω
g
0

ρ0c0




 and Sg,0 =

σb
0Ω

b
0∆x

ρ0c0


Ωg −

∆z

2


h′′

√

Φg − h′
σg

0Ω
g
0

ρ0c0




 ,(3.71e)

Sb,1 =
σg

0Ω
g
0∆x

ρ0c0


Ωb +

∆z

2


h′′

√

Φb − h′
σb

0Ω
b
0

ρ0c0




 and Sb,0 =

σg
0Ω

g
0∆x

ρ0c0


Ωb −

∆z

2


h′′

√

Φb − h′
σb

0Ω
b
0

ρ0c0




 . (3.71f)81
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4
Discretization of the Nonlinear

Parabolic Equations with the

finite-difference method

This chapter concerns the numerical implementation of the NPE models derived in the pre-

vious chapters. The main principle of the numerical solution is the separation of the differ-

ential operators with the operator splitting method, described in Section 4.1. The numerical

solution of nonlinear terms is detailed in Section 4.2 while the numerical solution of linear

terms appears in Section 4.3. Initial conditions and boundary conditions are treated in Sec-

tions 4.4 and 4.5, respectively, and Section 4.6 gives some notes about software development.

Chapter conclusions are given in Section 4.7.
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Chapter 4: Discretization of the equations with the finite-difference method

4.1 The operator splitting method

An operator splitting method is used to solve the various NPEs. The operator splitting

method consist of a “divide and conquer strategy”, where the original Partial Differential

Equation (PDE) is split into simpler sub-problems which are treated individually with spe-

cialized numerical algorithms. The NPEs, see for example Eq. (2.19) in Section 2.1.2, are of

the form

DtR = LR , (4.1)

where L is a nonlinear differential operator which can be written

L =

S∑

s=1

Ls . (4.2)

In Eq. (4.2) above, Ls is a differential operator that represents a physical effect such as nonli-

near phenomena, thermoviscous absorption or diffraction. For example solving for Eq. (2.19)

(rewritten below as Eq. (4.3)) requires two successive steps, such that

DtR = − ∂x

[
c1R+ c0

β

2
R2

]
− c0

2

∫
∂2

zRdx (4.3)

=
2∑

s=1

LsR ,

in which

◮ L1R = −∂x

(
c1R+

βc0
2
R2

)
, which accounts for nonlinear and refraction effects,

◮ and L2R = −c0
2

∫
∂2

zRdx, which accounts for propagation in the transverse direction

(transverse propagation).

Note that nonlinear and refraction effects could as well be treated separately. Nevertheless, it

is numerically more efficient to gather them together. The acoustic field can then be updated

from time n to n+ 1 by successive application of the differential operators.

The operator splitting method implicitly assumes that the different physical effects occurring

in complex problems are uncoupled. Said differently, it is supposed that integration over

sufficiently small propagation steps allows physical effects to be fully decoupled. This question

has been investigated by Too & Lee [1995b] and Too [1993] when solving a KZK equation.

The operator splitting method appeared to have no significant effect on the convergence of the
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combined solution. Furthermore, Tavakkoli et al. [1998] investigated the effects of inverting

the order of the operators; it was shown to have no adverse effects on the numerical solution.

In this chapter the numerical solution of Eq. (4.3) is detailed. This Nonlinear Parabolic

Equation (NPE) only contains nonlinear effects, refraction effects and diffraction. Section 4.2

presents the numerical method used for solving for the refraction and nonlinear effects term

while Section 4.3 presents the method for solving for linear terms. Solving for more complete

NPEs like Eq. (3.11) (propagation over non-flat terrains) or Eq. (3.36) (sound propagation

within rigidly-framed porous media) can be done using the same numerical methods. Sec-

tions 4.3.2 and 4.3.3 briefly present modifications to perform to the original methods to solve

for the complete NPE set. The treatment of initial and boundary conditions is described

in Sections 4.4 and 4.5. Section 4.6 gives some aspects of software development and finally,

chapter summary and conclusions are given in Section 4.7.

4.2 Calculation method for nonlinear terms with the Flux Cor-

rected Transport algorithm

The PDE accounting for refraction and nonlinear effects is

DtR = −∂x

(
c1R+

βc0
2
R2

)
, (4.4)

which can be written as a generic scalar conservation equation, such that

DtR+ ∂x (f (R)) = 0 , (4.5)

in which the flux function is f (R) = c1R+
βc0
2
R2 .

Solving for Eq. (4.5) with traditional finite-difference schemes would yield erroneous solutions:

discontinuities in the solution during shock formation must be handled with specialized al-

gorithms. These so-called shock-capturing methods [see e.g. Leveque, 1992] introduce some

numerical viscosity in the scheme, allowing Gibb’s oscillations to be reduced.

As an example, Fig. (4.1) shows the analytical and numerical solutions of the problem defined

by

∂tu+
1

2
∂x

(
u2
)

= 0, −∞ < x <∞, 0 < t , (4.6a)

u (0, x) =





0 if x < 0

1 if x > 0

, (4.6b)
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for two different numerical schemes, the MacCormack scheme and the leapfrog scheme.

Eqs. (4.6) is the inviscid Burger’s equation. The similarity between Eq. (4.4) (the NPE)

and Eq. (4.6a) (the Burgers equation) should be noted: eliminating refraction effects (c1 = 0)

and setting c0 = β−1 in Eq. (4.4) gives Eq. (4.6a) subjected to specific initial conditions. As it

can be seen in Fig. (4.1) both schemes do not behave correctly near the shock. It can be noted

that while the leapfrog scheme has only numerical damping, the small amount of viscosity in

the MacCormack scheme allows one to keep numerical oscillations near the discontinuity. It is

thus possible to design numerical schemes that can handle shock formation and propagation

without introducing spurious oscillations. The challenging task is to use the least possible

numerical viscosity while suppressing Gibb’s oscillations.

Among the shock-capturing schemes bestiary [see for example Harten, 1983; Leveque, 1992;

Colella & Puckett, 1998], the Flux Corrected Transport (FCT) algorithm is second-order

accurate and shows high-quality shock resolution. The FCT algorithm accomplishes this

objective by combining integration schemes with low and high orders of spatial accuracy.

The low-order scheme provides a monotone solution, usually by the introduction of diffusive

numerical fluxes, while the high-order scheme provides high accuracy in regions of smooth

flow. The high-order solution is obtained by “anti-diffusing” the low-order, monotone solution,

but only to such an extent that no new extrema are created and no existing extrema are

accentuated. This is done by limiting, or correcting, the anti-diffusive fluxes of the high-order

scheme, hence the name of the algorithm. Detailed mathematical description can be found

in Boris & Book [1976]; Harten [1983]; Leveque [1992] and applications of the FCT algorithm

to wave propagation in Védy [2002b,a].

Below are presented the main calculation steps that form the FCT algorithm. The following

notations will be used:

∆+R
n
i,j = Rn

i+1,j −Rn
i,j , (4.7a)

∆−R
n
i,j = Rn

i,j −Rn
i−1,j , (4.7b)

where Rn
i,j denote the field value at range i∆x in the moving window, altitude j∆z and time

n∆t. We define the numerical flux of a first order Total Variation Diminishing (TVD) scheme

hn
i+ 1

2
,j
, such that

hn
i+ 1

2
,j

=





f
(
Rn

i+1,j

)
if ai+ 1

2
,j < 0

f
(
Rn

i,j

)
if ai+ 1

2
,j > 0

. (4.8)
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(a) MacCormack scheme

(b) Leapfrog scheme

Figure 4.1: Analytical (solid line) and numerical (circles) solution of the Burger equation
obtained with the MacCormack (top) and leapfrog (bottom) schemes. This figure
is taken from Sjögreen [1990].
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In Eq. (4.8), ai+ 1

2
,j is the local wave speed defined by

ai+ 1

2
,j =





f
′ (
Rn

i,j

)
if Rn

i+1,j = Rn
i,j

f
(
Rn

i+1,j

)
− f

(
Rn

i,j

)

Rn
i+1,j −Rn

i,j

otherwise

, (4.9)

in which f
′ (
Rn

i,j

)
is the flux function derivative, i.e.

f
′
(R) = ∂Rf (R) , (4.10a)

= c1 + c0βR . (4.10b)

A temporary field value R∗
i,j can be calculated with

R∗
i,j = Rn

i,j −
∆t

∆x
∆−h

n
i+ 1

2
,j
. (4.11)

Eq. (4.11) finalizes the first stage of the FCT method: it consists of a low-order transport

step. Numerical errors are introduced in the temporary solution R∗ and have to be corrected

by an anti-diffusive step.

The final acoustic field is obtained with

Rn+1
i,j = R∗

i,j −
(
bi+ 1

2
,j − bi− 1

2
,j

)
, (4.12)

where

bi+ 1

2
,j =





0 if ∆+R
∗
i,j∆−R

∗
i,j < 0 or ∆+R

∗
i+1,j∆−R

∗
i+1,j < 0

sign
(
∆+R

∗
i,j

) [
min

(
1

2

∣∣∆−R
∗
i+1,j

∣∣ , di+ 1

2
,j

∣∣∆+R
∗
i,j

∣∣ , 1
2

∣∣∆+R
∗
i+1,j

∣∣
)]

otherwise
,

(4.13)

with

di+ 1

2
,j =

1

2

(
Qi+ 1

2
,j −QLW

i+ 1

2
,j

)
, (4.14)

in which Qi+ 1

2
,j and QLW

i+ 1

2
,j

are numerical viscosities of upwind and Lax-Wendroff schemes,

respectively. They are defined by:

Qi+ 1

2
,j =

∆t

∆x

∣∣∣ai+ 1

2
,j

∣∣∣ , (4.15)
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and

QLW
i+ 1

2
,j

=

(
∆t

∆x

)2

a2
i+ 1

2
,j
. (4.16)

The two-stage method used by the FCT algorithm allows the numerical errors introduced in

the first step (the transport stage) to be corrected in the second step (anti-diffusion step). This

makes the FCT algorithm well-suited and efficient for shock wave propagation applications.

4.3 Calculation method for linear terms with a semi-implicit

scheme

4.3.1 Solving for diffraction

The diffraction operator is

DtR = −c0
2

∫ x

xf

∂2
zRdx , (4.17)

where xf is a point in the moving window ahead of the wave where the medium is quiescent,

and x is the position where the solution is sought. Note the inverted integral limits in

Eq. (4.17): the integration is done from the right side to the left side of the calculation grid,

taking the right-most point as initial point.

The Crank-Nicolson method is used to solve Eq. (4.17): the scheme is second order in time,

stable for all ∆t and is semi-implicit. It involves taking the spatial derivatives halfway between

the beginning and the end of the current time step, such that

∂k
i R ≡ 1

2
∂k

i

(
Rn+1 +Rn

)
. (4.18)

The Crank-Nicolson method is described in Appendix E.1.

Inverting integration limits in Eq. (4.17) and substituting spatial and temporal derivatives by

their discrete forms gives

Qn+1
i,j − 2Rn

i,j =
c0∆t

4∆z2

∫ xf

x

(
Qn+1

i,j+1 − 2Qn+1
i,j +Qn+1

i,j−1

)
dx , (4.19)

in which

Qn+1
i,j = Rn+1

i,j +Rn
i,j . (4.20)
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A trapezoidal law is then used to evaluate the integral, such that

∫ xf

x
Qn+1

i,j dx = ∆x

[
1

2

(
Qn+1

i,j +Qn+1
Nx,j

)
+

i+1∑

m=Nx−1

Qn+1
m,j

]
, (4.21)

in which Nx is the number of grid points in the window, and xf and x are defined by

xf = Nx∆x and x = i∆x. Since xf is a point ahead of the perturbation then Qn+1
Nx,j = 0 in

Eq. (4.21). Substituting Eq. (4.21) in Eq. (4.19) yields

(1 + 2α)Qn+1
i,j − α

(
Qn+1

i,j+1 +Qn+1
i,j−1

)
= 2Rn

i,j

+ 2α
i+1∑

m=Nx−1

(
Qn+1

m,j+1 − 2Qn+1
m,j +Qn+1

m,j−1

)
, (4.22)

where α =
c0∆t∆x

8∆z2
. Eq. (4.22) can be written in a matricial form, such that

[D]q = b , (4.23)

where [D] is a tridiagonal matrix, q =
[
Qn+1

i,1 , . . . , Qn+1
i,j , . . . , Qn+1

i,Nz

]T
is the solution vector,

and b is the right-hand-side term of Eq. (4.22). The matrix [D] and vector b are given by

[D] =




1 + 2α −α
−α 1 + 2α −α

. . .
. . .

. . .

−α 1 + 2α −α
−α 1 + 2α



, (4.24)

and

b =




2Rn
i,1 + 2α

∑i+1
m=Nx−1

(
Qn+1

m,2 − 2Qn+1
m,1 +Qn+1

m,0

)

...

2Rn
i,j + 2α

∑i+1
m=Nx−1

(
Qn+1

m,j+1 − 2Qn+1
m,j +Qn+1

m,j−1

)

...

2Rn
i,Nz

+ 2α
∑i+1

m=Nx−1

(
Qn+1

m,Nz+1 − 2Qn+1
m,Nz

+Qn+1
m,Nz−1

)




. (4.25)

Numerical integration is made column by column, from the right side of the window to

the left side, so that the terms appearing in the sums in Eq. (4.25) are known. Note that

Eqs. (4.24, 4.25) do not contain any information on boundary conditions. It is for now

assumed that boundary conditions on the top and on the bottom of the domain (points with
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indexes j = 1 and j = Nz) are somehow contained in the values Rn
i,Nz+1 and Rn

i,0 (boundary

conditions are treated in Section 4.5). The tridiagonal linear equations system Eq. (4.23) is

solved with a Thomas algorithm which is described in Appendix E.2. This method for solving

for linear terms has been used in the works by Lee & Hamilton [1995]; Coulouvrat [2003];

Marchiano et al. [2005] or more recently by Baskar et al. [2007]; Marchiano et al. [2007].

Non-flat terrains

When simulating wave propagation over non-flat terrains one has to use the terrain-following

coordinates version of the NPE (see Eq. (3.11) in Section 3.1.2). The equation shows a new

differential operator and a modified diffraction term. These changes are shown below in

Eq. (4.26), without refraction and nonlinear effects:

DtR = −c0
2

∫ [(
1 + h′2

)
∂2

zR+ h′′∂zR
]
dx+ c0h

′∂zR . (4.26)

The modified diffraction operator can be solved using the method presented in this section.

The main difference is that the left-hand-side matrix [D] (see Eq. (4.24)) becomes range-

dependent, due to the presence of the ground topography derivatives h′ (x) and h′′ (x) under

the integral term. This does not prevent previously presented methods to be used in the same

way, but this has an impact on numerical efficiency.

Indeed, for flat terrains the matrix [D] could be calculated outside the time iteration loop, and

more importantly the Lower/Upper (LU) decomposition performed in the Thomas Algorithm

(see Appendix E.2) could be performed once and for all, the work remaining in the iteration

loop being reduced to a forward and a backward substitution. When non-flat topographies

are used this LU decomposition has to be repeated at each x-position and it hence increases

the computational complexity (computational time is roughly multiplied by a factor 2).

Note that the new differential equation

DtR = c0h
′∂zR , (4.27)

the last term in Eq. (4.26), should be treated together with the diffraction term and should

not be split into a new differential operator. Indeed, the additional time needed to modify

the left-hand-side matrix [D] is far much shorter than the time required to solve a second

system of equations.

4.3.2 Solving for geometrical spreading and thermoviscous effects

The procedure to solve for geometrical spreading and thermoviscous effects is very similar to

the one presented in Section 4.3.1: the Crank-Nicolson method and the Thomas algorithm (see
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Appendix E) are used. The reader may refer to Leissing [2007] to get a complete description

of the implementation of these operators.

4.3.3 Solving the Nonlinear Parabolic Equation for sound propagation

over porous ground surfaces

Solving for propagation within the porous layer

The NPE used to simulate wave propagation within porous ground surfaces is (see Eq. (3.36)

in Section 3.2.1)

DtR = − c0√
Φ
∂x

[(
1 −

√
Φ
)
R+

β

2
R2

]
− c0

2
√

Φ

∫
∂2

zRdx− σ0Ω0

2Φρ0

(
1 +

ξc0√
Φ
|R|
)
R . (4.28)

Hydrodynamic nonlinearities and moving-frame speed correction operators can be solved

with the method presented in Section 4.2. The flux function and its derivative are modified

according to

g (R) =
c0√
Φ

(
1 −

√
Φ
)
R+

c0β

2
√

Φ
R2 , (4.29)

and

g′ (R) =
c0√
Φ

(
1 −

√
Φ
)

+
c0β√

Φ
R . (4.30)

The diffraction term is identical to the one for the air layer; the method presented in Sec-

tion 4.3.1 can directly be used by replacing c0 with c0/
√

Φ.

The absorption term in Eq. (4.28) can be solved in two stages: classical methods (Crank-

Nicolson method and Thomas algorithm) are used to solve for the linear part. The Forch-

heimer nonlinearities operator can then be written

DtR = −σ0Ω0ξc0

2Φ3/2ρ0
sgn (R)R2 . (4.31)

Eq. (4.31) is an autonomous nonlinear PDE which can be solved with any explicit finite-

differencing scheme. In the present work a first-order explicit differencing scheme is used.

Incorporating the boundary interface condition in the diffraction operator

Nonlinear sound propagation over porous ground surfaces involves the boundary interface

condition developed in Section 3.3. It is included by forcing values on corresponding grid
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points with the help of Eqs. (3.53, 3.54) (or eventually with Eqs. (3.64, 3.65) for non-flat

surfaces and Eqs. (3.70, 3.71) for multi-layered ground surfaces) which from a numerical

point of view can be tricky. To summarize the procedure, solving for diffraction with the

boundary interface condition consists in four steps:

Step 1: update of the sums appearing in Eqs. (3.53) (or Eqs. (3.64) or Eqs. (3.70)),

Step 2: backward integration over grid columns,

Step 3: calculation of left-hand-side matrix and right-hand-side vector,

Step 4: solution of the tridiagonal equation system with the Thomas algorithm.

These four steps must be repeated for each calculation grid column and at each time step.

Note that if backward integration is performed before updating the sums in Eqs. (3.53) (Step

2 before Step 1), the solver is highly unstable.

The same conclusions about numerical efficiency when the ground surface is non-flat can be

made. Re-evaluation of coupling parameters and left-hand-side matrix at each range position

is required, hence considerably increasing computational times.

For the case where Forchheimer’s nonlinearities are of importance, an additional step must be

performed before going through the procedure described above. Indeed, coupling parameters

must be re-evaluated with updated values of flow resistivity. As explained in Section 3.3.6, the

value of σ0 appearing in Eqs. (3.54) (or, again, Eqs. (3.65) or Eqs. (3.71)) must be updated

at each time iteration with the help of the field values on the interface at the previous time

step.

4.4 Treatment of initial conditions

Many methods can be used to initialize the NPE calculation. However, two of them covers

all initialization cases and are detailed in this section.

The Kinney–Graham (KG) model has the advantage of being fast but has some important

restrictions. Indeed, the analytical model gives time waveforms for blast wave propagation in

free field. If the wave amplitude is very important one has to initialize the NPE calculation

at a moderate distance so that nonlinear effects are weak (weak nonlinearities limitation of

the NPE, see Section 2.1.3). The KG model being unable to account for ground effects or

meteorological effects, another method has to be used instead if the configuration exhibit

sound speed gradients or a porous ground surface. If the wave amplitude is low enough, then

the KG model can be used. Several time waveforms have to be generated at different times so
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that a spatial waveform can be interpolated from these signals. Once the spatial waveform is

obtained it can be spherically extrapolated to obtain a starting grid for the NPE simulation.

The numerical solution of Euler equations can be used for initialization in the far-field. This

methods has the advantage of being accurate: two-dimensional simulations including the ef-

fects of meteorological conditions, dissipation effects and ground effects can be performed

and moreover, the method does not suffer from the weak nonlinearities limitation. The main

drawback is calculation times that are often on the order of hours for two-dimensional simula-

tions. Note that the numerical solution of Euler equations directly provides two-dimensional

arrays.

To put it simply, the analytical Kinney–Graham (KG) model can be used to initialize the

NPE calculations in the near-field while the solution of Euler equations can be used in the

far-field. The KG model is presented in Appendix B while the numerical solution of Euler

equations is described in Appendix C.

4.5 Treatment of boundary conditions

In this section the boundary conditions used on the calculation grid are detailed. Three types

of boundary conditions are needed:

◮ lateral boundaries: right-most and left-most points of the grid, see Section 4.5.1,

◮ the bottom row of the domain, see Section 4.5.2,

◮ and the absorbing layer at the top of the propagation domain, see Section 4.5.3.

4.5.1 Lateral boundary conditions

The right-most column of the computational grid is a point ahead of the perturbation, where

the medium is quiescent. This property has been used in Eq. (4.21) to eliminate the field

value Qn+1
Nx,j . One hence has

Qn
Nx,j = 0 , j = 1, . . . , Nz , ∀n . (4.32)

On the left-most column of the computational grid we assume that the perturbation is weak,

i.e. one has

Qn
1,j = 0 , j = 1, . . . , Nz , ∀n . (4.33)
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Note that these boundary conditions on the lateral sides of the computational grid induce

some restrictions on the choice of the moving-window speed and the resulting sound speed

perturbation. Indeed the right-most point was chosen as a point ahead of the perturbation.

This implies

c1 (x, z) ≤ 0 , (4.34)

so that the signal can only move backward in the window and does not reach the right

boundary. One hence has

cwin = max (c (x, z)) , (4.35)

where cwin is the moving-window speed.

Similarly, the window has to be chosen sufficiently wide with respect to the sound speed

perturbations. As a rule of thumb one must have

L > T max (|c1 (x, z)|) (4.36)

in which L is the window width and T is the time the wave propagates. This way the signal

stays into the computational grid.

One could think about the opposite solution: defining cwin = min (c1 (x, y)) gives a positive

sound speed perturbation and thus a forward propagation in the window. This solution may

appear simpler but is not necessarily a good choice. The signal would have to be placed

somehow in the middle of the window so that diffraction effects can occur in the left side

of the window and that wave propagation, due to sound speed perturbations, can occur in

the right side of the window. This solution would require a larger window and would thus

significantly increase computational times.

4.5.2 Boundary condition on the bottom of the domain

The bottom row of the ground layer is assumed to be acoustically rigid. A rigid boundary

condition ∂p/∂n = 0 is incorporated by assuming a solution which is symmetric with respect

to the boundary and modifying the recurrence accordingly for the boundary nodes. Note that

this boundary condition only appears in the diffraction operator; the other Partial Differential

Equations (PDE) do not use pressure value at location (i, j − 1).

Assuming that the bottom row of the computational domain has an index j = 1, the refor-

mulation of Eq. (4.22) including the rigid boundary condition gives an expression for the field
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on the bottom of the ground layer, such that

(1 + 2α)Qn+1
i,1 − 2αQn+1

i,2 = 2Rn
i,1 + 4α

i+1∑

m=Nx−1

(
Qn+1

m,2 −Qn+1
m,1

)
. (4.37)

The diffraction matrix [D] and right-hand-side vector b become

[D] =




1 + 2α −2α

−α 1 + 2α −α
. . .

. . .
. . .

−α 1 + 2α −α
−α 1 + 2α



, (4.38a)

b =




2Rn
i,1 + 4α

∑i+1
m=Nx−1

(
Qn+1

m,2 −Qn+1
m,1

)

...

2Rn
i,j + 2α

∑i+1
m=Nx−1

(
Qn+1

m,j+1 − 2Qn+1
m,j +Qn+1

m,j−1

)

...

2Rn
i,Nz

+ 2α
∑i+1

m=Nx−1

(
Qn+1

m,Nz+1 − 2Qn+1
m,Nz

+Qn+1
m,Nz−1

)




. (4.38b)

4.5.3 Domain truncation

This section briefly reviews available solutions to truncate the computational domain and

then details the development of a Perfectly Matched Layer (PML) for NPE models.

Absorbing Boundary Conditions (ABC) and absorbing layers

Whenever one solves a PDE numerically by a finite-difference method (or any other numerical

method) one must truncate the computational domain. The key question is how to perform

this truncation without introducing significant numerical oscillations into the solution. The

oscillating nature of wave equation solutions makes the truncation of the computational do-

main a difficult task. Simply truncating the grid with hard-wall conditions (see Section 4.5.2)

would produce unacceptable artifacts from boundary reflections. It means that any real co-

ordinate remapping from an infinite to a finite domain will result in solutions that oscillate

infinitely fast as the boundary is approached. Obviously, the larger is the absorbing layer

the better it will be, at the expense of computational time. Therefore wave equations require

something different: an absorbing boundary that will somehow absorb waves that strike it,

without reflecting them, and without requiring infeasible resolution.

The first attempts at such absorbing boundaries for wave equations involved Absorbing

Boundary Conditions (ABC) [see for example Clayton & Engquist, 1977; Peng & Toksöz,
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1994]. An ABC tries to somehow extrapolate from the interior grid points to the edge grid

points, to fool the solution into “thinking” that it extends forever with no boundary. It turns

out that this is possible to do perfectly in one dimension. However, the main interest for

numerical simulation lies in two and three dimensions, and in these cases the infinite number

of possible propagation directions makes the ABC problem much harder. Although two-

dimensional and three-dimensional formulations of ABC have been developed over the past

decades [see for example Bogey & Bailly, 2002; Sparrow & Raspet, 1990; Cao & He, 1996],

existing ABC restrict themselves to absorb waves exactly only at a few angles, especially

at normal incidence. Moreover many standard ABC are formulated only for homogeneous

materials at the boundaries. For the application of this work, propagation of blast waves

through large distances, waves are highly nonlinear, propagate in an inhomogeneous medium

and hit the top of the computational domain with a very small grazing angle. Despite the

development of an ABC for Parabolic Equation (PE) models by Yevick & Thomson [1999,

2000], the development of a ABC for NPE models is a very challenging task.

In 1994 Bérenger proposed an absorbing layer instead of an ABC to truncate computational

domains. An absorbing layer is composed of artificial absorbing material of a given thickness

that is placed adjacent to the edges of the grid. When a wave enters the absorbing material

it is attenuated by the absorption. The problem with this approach is that the transition

from the physical domain to the absorbing material generally introduces spurious numerical

reflection. However, Bérenger showed that an absorbing layer with special properties can

be constructed, so that waves do not reflect at the interface. The Perfectly Matched Layer

(PML) was originally derived for electromagnetic wave equations in the frequency domain

(Maxwell’s equations) but has later been adapted and used for acoustic wave equations [see

Hu, 2008] in the time-domain [see Diaz & Joly, 2006].

Basic principle of the Perfectly Matched Layer (PML)

Consider a wave propagating in a homogeneous and time-invariant media. The solution can

be decomposed into a superposition of plane waves such that

p (x, t) =
∑

k,ω

Pk,ωe
i(k·x−ωt) , (4.39)

in which x is the position vector, k is the wave vector, ω is the angular frequency and Pk,ω

are some constant amplitudes. Let’s suppose that one wants to truncate the domain in the

x-direction; Eq. (4.39) can be written

p (x, t) = P (y, z) ei(kx−ωt) . (4.40)
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Bérenger showed that the coordinate mapping

x −→ x+
i

ω

∫ x0+δ

x0

σ (x) dx , (4.41)

in which x0 and δ are the the position of the layer and its thickness, respectively, allows us

to transforms Eq. (4.40) into

p (x, t) = P (y, z) ei(kx−ωt)e−
k
ω

R x σ′(x′) dx′
. (4.42)

One can notice that provided σ (x) > 0 waves are exponentially decaying. In theory the layer

thickness can be chosen infinitely small. In practice the layer thickness is often chosen to be

equal to a wavelength and σ (x) quadratically increases from zero to a given value.

A Perfectly Matched Layer (PML) for NPE models

Application of the PML to Parabolic Equation (PE) models can be found in Collino [1997].

We use here the results of Collino to derive a Perfectly Matched Layer (PML) for (time-

domain) Nonlinear Parabolic Equation (NPE) models. A PML in the z-direction is created

by introducing the following change of variable:

z −→ z +
i

ω

∫ z0+δ

z0

σ (z) dz . (4.43)

Assuming a e−iωt time dependence, the partial derivative with respect to variable z is changed

according to

∂z −→ iω

iω + σ (z)
∂z . (4.44)

We start from a simplified NPE formulation: nonlinear effects are neglected and it is assumed

that there is no sound speed perturbations, i.e. c1 (x, z)= 0. The NPE writes

DtR = −c0
2

∫
∂2

zRdx . (4.45)

Rearranging Eq. (4.45) and substituting the change of variables in Eq. (4.44) yields

iω∂xR+
c0
2

iω

iω + σ (z)
∂z

(
iω

iω + σ (z)
∂zR

)
= 0 . (4.46)
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A few algebraic manipulations of Eq. (4.46) and a transformation back to the time-domain

give a NPE/PML model formulation, defined by

DtR+
c0
2

∫
∂2

zRdx = −3σ (z)R− 3σ (z)2
∫
Rdt

+
c0
2

∫ {∫ [
σ (z) ∂2

zR− ∂z (σ (z)) ∂zR
]
dx

}
dt− σ (z)3

∫∫
Rdt . (4.47)

Note that if σ (z) = 0 Eq. (4.47) reduces to the usual NPE Eq. (4.45). Similarly, NPE/PML

models can be derived for propagation in inhomogeneous media or for the terrain-following

coordinates formulation of the NPE model (see Eq. (3.11)).

In the derivation of Eq. (4.47) nonlinear effects were neglected. Although PMLs have been

developed for nonlinear wave propagation [see for example Appelö & Kreiss, 2007], it has

been found that high-amplitude effects have no adverse consequences on the performances

of the PML. The following NPE/PML formulation was thus used for high-amplitude wave

propagation:

DtR+
βc0
2
∂xR

2 +
c0
2

∫
∂2

zRdx = − 3σ (z)R− 3σ (z)2
∫
Rdt

+
c0
2

∫ {∫ [
σ (z) ∂2

zR− ∂z (σ (z)) ∂zR
]
dx

}
dt

− σ (z)3
∫∫

Rdt . (4.48)

The parameter σ (z) is set to

σ (z) =
c0
2δ

(
z − z0
δ

)2

, z ≥ z0 , (4.49)

in which δ is chosen to be equal to the main wavelength of the signal under interest.

The designed PML allows one to truncate the computational grid without introducing spurious

numerical oscillations in the domain. Near the source, for relatively high incidence angles,

the layer thickness can be chosen very thin: 5 points are often sufficient to completely absorb

waves while at very low incidence angles, far from the source, the thickness has to be increased

to be as large as a wavelength. From a numerical point of view the NPE/PML model shown

in Eq. (4.48) introduces some difficulties: the presence of time integrals implies keeping in

memory previous solution fields. Fortunately the layer thickness is seldom larger than a few

dozen points, keeping the addition numerical effort to integrate the terms acceptable.

An example of a simulation using the NPE/PML model can be observed in Fig. (4.2). The

figure shows snapshots of the propagation of a blast wave in a PML (the complete wave is

shown in the top figure; zoomed version in the bottom figure). The wave is shown at times
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Chapter 4: Discretization of the equations with the finite-difference method

0.11, 0.17 and 0.23 s (from left to right). The PML is 5 m thick (50 points, dashed white line).

The contours represent the wave amplitude in decibels, relative to the maximum amplitude of

the wave. As it can be seen, no reflections from the PML can be observed, meaning that the

amplitude of the spurious oscillations is at least 70 dB lower than the maximum amplitude

of the wave.
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(a) Complete wave

(b) Zoomed versions

Figure 4.2: Snapshots of the propagation of a blast wave in a PML (complete waves shown in the top figure; zoomed versions in
the bottom figure). The wave is shown at times 0.11, 0.17 and 0.23 s (from left to right). The PML is 5 m thick (50
points, dashed white line). The contours represent the wave amplitude in decibels, relative to the maximum amplitude
of the wave.
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4.6 Some aspects of software development

4.6.1 Choice of programming languages

Two programming languages were used to develop the simulation software. Python∗ was

used to drive computational routines written in Fortran 95. This combination of a high-level

programming language such as Python with Fortran allows one to take advantage of each

language strengths and weaknesses. Python and Fortran are bound together thanks to the

f2py program† which automatically generates python interfaces to Fortran routines.

4.6.2 Program structure

The complete simulation software, called NOnLInear Time domain Acoustics (NOLITA) im-

plements solvers of each NPE model described in this document and comes with Python

scripts for pre and post-processing. The whole program flow is far too complex to be repro-

duced here. Indeed the number of NPE versions (non-flat terrains, multi-layered surfaces,

refraction effects, thermoviscous effects, PMLs, etc.) yields multiple and complex branching

in the program structure. However, one can see in Fig. (4.6.2) a simplified flow chart for

solving for the NPE.

4.7 Chapter summary and conclusions

In this chapter the numerical methods used to solve the various NPE models have been

presented. This numerical solution assumes that the different physical effects are decoupled

over a time step, so that the different operators are split. Two finite-difference schemes

are then used to solve for these different operators. The Flux Corrected Transport (FCT)

algorithm solves for nonlinear effects while the Crank-Nicolson method is used to solve for

linear terms.

The FCT method uses a two-stage method that allows us to stably propagate shocks without

introducing numerical oscillations. The Crank-Nicolson method is semi-implicit and yields

tridiagonal systems of equations that are solved with a Thomas algorithm.

Two initialization methods have been reviewed: the Kinney–Graham (KG) model and the

numerical solution of Euler equations. The KG model gives time waveforms for propagation

of high-amplitude waves in free field. Hence, it cannot be used to determine waveforms in

the far-field, where meteorological effects and ground effects are of importance. Instead, the

∗ see http://www.python.org
† see http://cens.ioc.ee/projects/f2py2e/
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Field at time iteration n
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Figure 4.3: Simplified flow chart of the Nonlinear Parabolic Equation (NPE) solver.
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Chapter 4: Discretization of the equations with the finite-difference method

numerical solution of Euler equations has to be employed. It provides accurate waveforms

but suffers from its numerical complexity.

Boundary conditions on the computational grid are then detailed. On lateral and bottom

boundaries classical conditions are used. A Perfectly Matched Layer (PML) for NPE models

is developed for domain truncation. The PML allows us to truncate the domain without

introducing spurious oscillations while keeping the additional numerical effort low.

The validation of the implemented numerical solutions of the various NPE models is presented

in the next chapter.
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5
Validation of the deterministic

Nonlinear Parabolic Equation model

This chapter presents the validation of the deterministic nonlinear parabolic equation (NPE)

model. The full validation of the computational model is separated in successive tasks. In

Section 5.1 nonlinear effects calculations are assessed using quasi-plane waves and analytical

solutions. Simulations of propagation in an inhomogeneous medium are compared with a

linear, frequency-domain implementation of the parabolic equation (PE) and presented in

Section 5.2. Propagation over a hilly ground is studied with the terrain-following coordinates

version of the NPE, the Generalized Terrain – Parabolic Equation (GT–NPE), and compared

to solutions of a BEM implementation in Section 5.3. Section 5.4 presents the validation of

the NPE model for propagation over a finite-impedance ground surface in which both linear

and nonlinear examples are given. Chapter summary and conclusions are given in Section 5.5.
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Chapter 5: Validation of the deterministic NPE model

5.1 Propagation of high-amplitude quasi-plane waves in a ho-

mogeneous medium

In this section the propagation of high-amplitude waves is simulated with the NPE and numer-

ical solutions are compared with analytical results. The propagation medium is homogeneous

and the ground surface is flat and acoustically rigid. Since the nonlinear differential operator

appearing in the NPE is one-dimensional we consider the propagation of quasi-plane waves,

i.e. the NPE model is reduced to

DtR = −∂x

[
c0
β

2
R2

]
. (5.1)

5.1.1 The Fubini solution

The analytical solution used for comparison to the NPE is the solution proposed by Fubini

[1935] that gives pressure waveforms for propagation of high-amplitude harmonic waves. The

pressure distribution is expressed by an infinite sum of weighted Bessel functions, such that∗

p (σ, τ) = p0

∞∑

n=1

2

nσ
Jn (nσ) sin (nωτ) , (5.2)

where x is the shock formation distance, σ= x/x, τ = t − x/c0, p0 is the initial sinusoid

amplitude and Jn is the Bessel function of order n. The formulation presented in Eq. (5.2)

gives valid solutions for one-dimensional problems only in the pre-shock region (σ< 1). Note

that losses are not included in the Fubini solution described by Eq. (5.2).

5.1.2 Configuration

Results of nonlinear calculations given by the NPE are compared to Fubini’s analytical solu-

tions. The sound speed is constant in the propagation domain and is set to c0 = 343 m.s−1

and the nonlinearity coefficient is β = 1.2 (air under normal atmospheric conditions). The

initial condition for starting the NPE simulation is a quasi-plane sine pulse of frequency 0.1

Hz and peak amplitude 10 kPa (174 dB re 20 µPa). The waveform is recorded at each time

iteration. The spatial resolution is 100 points/λ, resulting in a time step ∆t = 100 ms. The

NPE simulation ran for 500 time iterations.

∗ see Hamilton & Blackstock [1998], Chapter 4, Section 2.4.1.

106



Sound propagation in an inhomogeneous medium

5.1.3 Results

The wave steepening process can be observed in Fig. (5.1), which presents three snapshots

of the wave at time 10, 16.4 and 22.8 seconds. As it can be seen, the NPE and the Fubini

solutions are very close: the wave steepens with the expected rate.

The criteria to evaluate the performances of the NPE is the harmonics amplitudes evolution

with time. During wave steepening, the amplitude of the fundamental frequency decreases

and the amplitude of higher harmonics increases (see Section 1.2.1). Fig. (5.2) presents

the evolution of the fundamental frequency together with the first and second harmonics

amplitudes over time. The first 120 time steps are shown in Fig. (5.2): this corresponds to

the shock formation distance, beyond which the Fubini solution is no longer valid.

Results given by the implemented NPE model are close to the analytical solution. The

maximum relative error is 0.4% for the fundamental frequency amplitude. For the first and

second harmonics the maximum relative errors are 2 % and 3.5 %, respectively, provided their

values are much greater than numerical uncertainty. Indeed, one may note that the relative

difference between the models may be rather high (for example: third harmonic amplitude,

at the beginning of the simulation). This is due to the very low harmonics amplitudes at the

beginning of the simulation. As a result relative errors are large but as the wave steepens it

quickly decreases. Nonlinear effects are accurately simulated by the implemented NPE model.

5.2 Sound propagation in an inhomogeneous medium over a

flat and acoustically rigid ground surface

This section presents validation results for low-amplitude wave propagation in an inhomoge-

neous medium over a flat and acoustically rigid ground surface. The NPE simulations are

compared to the numerical solutions of the (linear, frequency-domain) Parabolic Equation

(PE).

5.2.1 ATMOS sound propagation code: an implementation of the linear,

frequency-domain Parabolic Equation

The PE implementation used is called Advanced Theoretical Model for Outdoor Sound prop-

agation (ATMOS). Designed and developed by Centre Scientifique et Technique du Bâtiment

(CSTB) researchers [see Aballéa, 2004], ATMOS is a software which determines the acoustic

impact of all types of infrastructures, both near and far away, on their environment, taking

the geometry of the site into account as well as the meteorological factors inherent to each

local climate. Furthermore, ATMOS is also being used as a reference numerical model within
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Figure 5.1: Steepening of a sine wave calculated with the Fubini solution (red dashed line)
and the NPE model (blue line). The three plots show the wave at times 10, 16.4
and 22.8 seconds (from top to bottom).
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Figure 5.2: Fundamental and harmonics amplitudes evolution during wave steepening. The
curves present solutions given by the Fubini formula Eq. (5.2) (solid lines) and
NPE calculations (dashed lines). Fundamental amplitude: blue line; first har-
monic amplitude: red line; second harmonic amplitude: green line.

the European Harmonoise and Imagine projects [see Defrance et al. , 2007] dedicated to de-

veloping a harmonized method for predicting outdoor noise, in accordance with European

Directive 2002/49/EC of 25 June 2002, related to the assessment and management of envi-

ronmental noise. It implements a Parabolic Equation (PE), a frequency-domain method that

allows long-range sound propagation to be simulated. This code is used in this study as a

validation tool for linear propagation problems. Transmission Losses (TL) from both models

are compared to assess the accuracy of the implemented Nonlinear Parabolic Equation (NPE)

model.

The Transmission Loss (TL) is defined as the ratio in decibels between the acoustic intensity

I (x, z) at a field point and the intensity I0 at 1 m distance from the source, such that

TL = −10 log

(
I (x, z)

I0

)
(5.3a)

= −20 log

( | p (x, z) |
p0

)
[dB re 1m] . (5.3b)

109



Chapter 5: Validation of the deterministic NPE model

5.2.2 Coupling the Nonlinear Parabolic Equation model with the frequency-

domain Parabolic Equation

So that ATMOS can be used as a comparison tool the initial conditions used in the NPE

calculations (spatial pressure distributions) have to be transformed into frequency-domain

“starters” that are used as initial conditions in the ATMOS software. The pressure signal is

recorded along a vertical line and transformed into the frequency-domain with the help of a

Fourier transform (see Section 2.5).

This coupling method is validated with a simple configuration. The (linear) propagation of

a harmonic source is studied both with the NPE and ATMOS. The sound speed is constant

with altitude and equal to 340 m.s−1 and the source, a quasi-plane wave sine pulse with a

frequency of 0.1 Hz, is placed on the ground. The coupling between the models is performed

at two distances: 46 km and 112 km. Fig. (5.3) shows the TL at an altitude of 2 m, calculated

with ATMOS, the NPE coupled with ATMOS at 46 km, and the NPE coupled with ATMOS

at 112 km. As it can be seen all calculations lead us to the same TL except very close to

the coupling distance. The PE and NPE methods being parabolic approximations field values

near the source, or in this case near the coupling location, cannot be accurate.

Figure 5.3: Transmission loss (TL) calculated with a single NPE simulation and two coupled
NPE/ATMOS simulations. No coupling: blue line; coupling at 46 km: red line;
coupling at 112 km: green line.

One could think of using the NPE to handle nonlinear effects in the near field and at moderate
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distances from the source and then use the coupling method and finish the calculations with

ATMOS (see Section 2.5 and Fig. (2.2)). The most convenient (and most used) criteria

to initiate the coupling is the maximum amplitude of the signal. The limit under which

one can consider that nonlinear effects are weak is usually chosen as 100 Pa (134 dB re 20

µPa). The advantage is that ATMOS is faster for single frequency calculations. Indeed the

Parabolic Equation (PE) is a very fast method but for broad-band signals the calculation

has to be repeated for each frequency. This may result in extremely long calculations for

high-resolution spectra. Many cases were tested and it appeared that unless a specific and

reduced frequency range is of interest it is much faster to use the time-domain NPE, even

when the signal exhibits low amplitudes.

5.2.3 Configuration

The validation procedure for propagation in an inhomogeneous medium now follows. The

propagation of a low frequency wave in an inhomogeneous medium is considered. The source

is a Gaussian spatial distribution whose central frequency is 10 Hz. It is set at altitude z = 400

m close to the right edge of the computational domain (the signal propagates backward in the

window). The sound speed profile chosen is shown in Fig. (5.4) (the sound speed only varies

with altitude). Although this profile may not be extremely realistic it has the advantage of

presenting a lot of variations and thus allows the accuracy of refraction effects calculations

to be fully estimated. The window is moving with the maximum sound speed in the domain

which is 363.2 m.s−1 and the maximum sound speed perturbation is max c1 (x, z) = 22.2

m.s−1 and occurs at an altitude of 1550 m. The medium properties at rest are those found

for a temperature of 20 ◦C under 1 atmosphere (the nonlinearity coefficient β is here set to

zero, since we only consider linear propagation). The NPE calculation window is 2001 points

large in both directions and the spatial discretization steps have both been chosen equal to

1 m. Considering the wave central frequency (10 Hz), this yields a spatial resolution of 34

points/λ and a time step of approximately 2.9 ms. The simulation ran for 30 000 iterations

and resulted in the calculation over a domain which is 2 km high and 25 km wide; the wave

has propagated for approximately 75 seconds. In order start the ATMOS simulation which is

used as a reference, the time signals are recorded along a vertical line at a distance of 1 km

from the source and then Fourier transformed and used as initial condition for ATMOS.

5.2.4 Results

Transmission Loss (TL) is calculated for both the NPE and ATMOS simulations at the central

frequency of the wave (10 Hz). The TL map from the NPE calculation is shown in Fig. (5.5(a)).

One can observe on this figure downward refraction effects. The difference in TL between both
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Figure 5.4: Sound speed profile used for ATMOS and NPE calculations.

models is shown in Fig. (5.5(b)). In this figure blue areas denote regions where the difference

is lower than 2 dB. Transmission loss (TL) at three different altitudes (0.5, 1 and 1.5 km) for

both models are also shown on Fig. (5.6).

As it can be seen, on most of the domain the difference between ATMOS and the NPE model

is acceptable. A zone near the source presents higher differences: around 3∼4 dB. This

zone of lower accuracy is due to the coupling method: as shown in Section 5.2 the parabolic

approximation prevents obtaining accurate results near the coupling location. Some small

and localized areas also present variations higher than 2 dB but the relative difference never

exceeds 4 dB.

5.3 Sound propagation over a non-flat acoustically rigid ground

surface in a homogeneous medium

This section presents validation results for low-amplitude wave propagation in a homogeneous

medium over an acoustically rigid non-flat ground surface. The reference model used for
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(a)
Transmission Loss (TL) value calculated with the NPE model.

(b)
Transmission Loss (TL) difference between NPE and ATMOS calculations.

Figure 5.5: Transmission Loss (TL) calculated with the NPE model and ATMOS. The top
figure shows the TL calculated with the NPE model. Eight contour lines regularly
distributed between -60 dB and +10 dB are shown. The bottom figure shows the
difference between the values calculated with the NPE model and ATMOS. Five
contours are shown; blue areas denote a difference lower than 2 dB.
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Figure 5.6: Transmission loss (TL) at three different altitudes (from top to bottom: 1.5 km,
1 km and 500 m) for ATMOS (blue line) and NPE (dashed red line) simulations.
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comparison is an implementation of the Boundary Element Method (BEM) called Méthode

Intégrale pour le Calcul Acoustique de la Diffraction par les Obstacles (MICADO)∗[see Jean,

1998]. The BEM and the MICADO software are briefly presented in Appendix F.

5.3.1 Configuration

The Generalized Terrain – Nonlinear Parabolic Equation (GT–NPE) model (see Eq. (3.11)

in Section 3.1.2) is used to study the propagation of a finite-length signal over a hill. The

configuration of this example is taken from the article by Karle & Heimann [2006].

The ground elevation is given by

h (x) = htop

[
1 +

(x− x0)
2

l2

]−1

, (5.4)

where htop is the maximum ground elevation, equal to 5 m, l is the hill width, equal to

15 m and x0 is the maximum elevation location, equal to 70 m. The maximum slope is

max
∣∣h′ (x)

∣∣ = 0.22. Tab. (5.1) summarizes the characteristics of the hill. The source is

positioned at x = 0 m, z = 50 m and emits a 8-period 50 Hz sine wave pulse train. The sound

speed c0 is constant through the domain and set to c0 = 343.4 m.s−1. Spatial steps ∆x and

∆z are both equal to 30 cm, yielding a spatial resolution of approximately 22 points/λ and

a time step ∆t = 0.88 ms. The ground layer is 20 point thick (60 cm) and acoustically rigid.

The propagation domain is 100 m high and 500 m wide.

Table 5.1: Ground topography characteristics.

Quantity Maximum value Location [m]

max |h (x)| 5 m 70 m (and 78.8 m)

max
∣∣h′ (x)

∣∣ 0.22 61.2 m

max
∣∣h′′ (x)

∣∣ 0.01 m−1 55 m (and 85 m)

5.3.2 Results

Snapshots of the wave propagation can be seen in Fig. (5.7): the figure shows contour plots

of the field of the overpressure R taken at times 180 ms, 265 ms, 310 ms and 355 ms. The

thick black line represents the rigid ground.

Sound Pressure Level (SPL) maps have been calculated for both the GT–NPE model and

MICADO and are shown in Fig. (5.8). As one can see the results from the NPE model are
∗ in English Integral Methods for Acoustic Calculations of Diffraction by Obstacles
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Figure 5.7: Contour plots of the field of the overpressure R taken at times 180 ms, 265 ms,
310 ms and 355 ms (time evolution is from top to bottom). The thick black line
represent the (rigid) ground.
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close to the BEM calculations in the far-field. The parabolic approximation inherent to the

GT–NPE model prevents obtaining correct SPLs near the source. Sound pressure levels (SPL)

at three different altitudes (1.5 m, 15 m and 30 m) can be seen in Fig. (5.9). In the far-field

region good agreement is found between BEM and GT–NPE calculations. The difference is on

the order of 1 dB, except for receiver positions where destructive interference occurs. This is

mainly due to the numerical oscillations on the trailing part of the recorded signal inherent to

time-domain algorithms. These low-amplitude oscillations prevent the negative interferences

to be as important as they are with frequency-domain methods.

5.4 Sound propagation over a porous ground surface in a ho-

mogeneous medium

In this section numerical examples of sound propagation over porous ground layers are pre-

sented to illustrate the coupling method derived in Chapter 3 and to evaluate its perfor-

mances. Linear propagation examples are presented in Section 5.4.1 while high-amplitude

wave propagation examples appear in Section 5.4.2. Linear propagation results are com-

pared to analytical solutions and nonlinear cases are compared to numerical solutions of an

implementation of the Euler equations (see Appendix C).

5.4.1 Linear propagation

This section presents validation results for linear propagation over a flat, finite-impedance

ground surface in a homogeneous medium.

Description of the NPE model

Since there is no high-amplitude effects and no meteorological effects in this example the NPE

model is defined by

DtR
a = −c0

2

∫
∂2

zR
a dx in the atmospheric layer,

(5.5a)

DtR
g = − c0√

Φ
∂x

[(
1 −

√
Φ
)
Rg
]
− c0

2
√

Φ

∫
∂2

zR
g dx− σ0Ω0

2Φρ0
Rg in the ground layer,

(5.5b)
√

Φ∂zR
a − σ0Ω0

ρ0c0

∫
∂zR

a dx = Ω0∂zR
g on the interface,

(5.5c)
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(a) Sound Pressure Level (SPL) map calculated with the Boundary Element Method (BEM).

(b) Sound Pressure Level (SPL) map calculated with the Generalized Terrain – Nonlinear Parabolic Equation
(GT–NPE) model.

Figure 5.8: Sound Pressure Level (SPL) maps for the BEM (top figure) and the GT–NPE

model (bottom figure) for sound propagation over an acoustically rigid hilly
ground surface. Eight contours are shown regularly distributed between 40 dB
and 95 dB.
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Figure 5.9: Sound Pressure Level (SPL) at three different altitudes (from top to bottom:
1.5 m, 15 m and 30 m) for BEM (dashed blue line) and NPE (solid red line)
simulations.

in which Ra and Rg denote field values in the atmospheric layer and the ground layer, respec-

tively. Note that there is no geometrical spreading term included in the NPE model defined

by Eqs. (5.5).

Reference solutions

The solutions of the two-dimensional Helmholtz equation are used as references. In the case

of two-dimensional wave propagation over a flat and finite-impedance ground surface the

pressure is given by

pr = iπH
(1)
0 (kR1) +QiπH

(1)
0 (kR2) , (5.6)
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where pr is the complex pressure at the receiver, k is the wave-number, R1 and R2 are the

source–receiver and image source–receiver distances, respectively, and H
(1)
0 is the Hankel

function of the first kind and of order zero. The cylindrical reflection coefficient is noted Q;

it can be calculated with the help of Laplace transforms [see Di & Gilbert, 1993; Salomons

et al. , 2002]. The normalized impedance used to calculate the reflection coefficient is [see

Salomons et al. , 2002, and Section 1.1.3]

Z =

√
Φ

Ω2
0

+ i
σ0

ρ0Ω0ω
. (5.7)

Configuration

The sound speed is constant within the domain (c0 = 340 m.s−1) and absorption from air is

not included in the model. The source is positioned at (xs, zs) = (0.0, 1.4) m. The signal used

is a sine pulse with wavelength λ = 0.27 m (f = 1259.25 Hz) and its peak amplitude is low

enough for the propagation to be considered linear. A receiver is placed 10 m away from the

source at (xr, zr) = (10, 1.4) m. The source and receiver positions ensure that we are within

the parabolic equation angular validity domain (the angle from source to image–receiver is

θ ≈ 15◦). Spatial steps are equal to 7.5 10−3 m in both directions, thus giving a spatial

resolution of about 36 points/λ, ensuring sufficient resolution at higher frequencies and near

the air/ground boundary. The time step is ∆t = ∆x/c0, so that at each time step the window

advances one spatial step. Since the Crank-Nicolson method is used the numerical scheme is

stable (see Appendix E.1). Three different ground layers of thickness 1 meter are considered.

The first ground layer is a perfectly rigid surface (Φ ≫ 1). The second and third layers have

identical tortuosity (Φ = 3) and porosity (Ω0 = 0.3), but different flow resistivity values (σ0

= 500 kPa.s.m−2 and σ0 = 100 kPa.s.m−2). The NPE window including the ground layer is

3 meter wide and 4.125 meter high (400 by 550 points).

Results

Two modifications are done on signals at the receiver. First, in order to obtain a free field

reference, time histories are cropped after the direct wave. Next the trailing part of time

signals is cropped after the reflected wave to suppress the low-amplitude numerical oscillations.

Let’s denote the complex pressures at the receiver and in the free field by pr and pfree,

respectively. The relative Sound Pressure Level (SPL) ∆L is then calculated with

∆L = 10 log

(
p2

r

p2
free

)
. (5.8)
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Note that Salomons et al. [2002] found very little difference on relative SPLs when comparing

sources with different geometrical decay rates. Analytical solutions for cylindrical line sources

are thus valid references for comparison with the NPE model used in this work.

Relative SPLs at the receiver are shown in Fig. (5.10), for both analytical and NPE calcula-

tions. Very good agreement can be observed independently of the ground properties. Even for

the softest layer (σ0 = 100 kPa.s.m−2) the difference between analytical and NPE calculations

is at most 1 dB. The frequencies where negative interference occurs are 1325 Hz, 1273 Hz and

1246 Hz for the rigid case, the ground layer with σ0 = 500 kPa.s.m−2 and the ground layer

with σ0 = 100 kPa.s.m−2, respectively. As one can see in Fig. (5.10) the NPE model presented

does not only accurately recreate reflected wave amplitude decrease, but does account for the

change of least reflective frequencies due to the additional delay given during reflection.

Figure 5.10: Sound Pressure Level (SPL) relative to free field at the receiver for the three
different ground layers, for both NPE and analytical solutions. Markers: NPE

calculations; lines: analytical solutions. Blue: rigid ground layer; red: ground
layer with σ0= 500 kPa.s.m−2; green: ground layer with σ0= 100 kPa.s.m−2.
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5.4.2 Nonlinear propagation

This section presents validation results for high-amplitude wave propagation over a flat but

finite-impedant ground surface in a homogeneous medium.

Description of the NPE model

The NPE model used is similar to the one in Eqs. (5.5) with nonlinearities included (hydro-

dynamic and Forchheimer’s nonlinearities).

Reference solutions

To obtain reference results to compare to the NPE model simulations in the case of high-

amplitude waves, solutions of the Euler equations are used. The computational domain is

composed of an air layer and a ground layer. In a two-dimensional Cartesian coordinate

system the constitutive equations for the air layer are

∂tρT
+ ∂x (ρ

T
u) + ∂z (ρ

T
w) = 0 , (5.9a)

∂t (ρ
T
u) + ∂x

(
ρ

T
u2
)

+ ∂z (ρ
T
uw) = −∂xpT

, (5.9b)

∂t (ρ
T
w) + ∂x (ρ

T
uw) + ∂z

(
ρ

T
w2
)

= −∂zpT
, (5.9c)

∂t (ρ
T
e0) + ∂x (ρ

T
ue0) + ∂z (ρ

T
we0) = −∂x (p

T
u) − ∂z (p

T
w) , (5.9d)

where e0 is the energy per unit mass. Within the ground layer momentum conservation

equations write

Φ∂t (ρ
T
u) + ∂x

(
p

T
+ Φρ

T
u2
)

+ ∂z (Φρ
T
uw) + σ0Ω0 (1 + ξ |u|)u = 0 , (5.10a)

Φ∂t (ρ
T
w) + ∂z

(
p

T
+ Φρ

T
w2
)

+ ∂x (Φρ
T
uw) + σ0Ω0 (1 + ξ |w|)w = 0 . (5.10b)

The energy equation Eq. (5.11) and the ideal gas law Eq. (5.12) close the equation system.

They are defined by

ρ
T
e0 = ρ

T
cvT +

ρ
T
|V|2
2

, (5.11)

p
T

= ρ
T
RT , (5.12)

where T is the gas temperature, cv is the specific heat capacity at constant volume and R is

the gas constant. To solve this equation system a WENO algorithm [see Shu, 1998] for space
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discretization and a third-order TVD scheme [see Press et al. , 1996a] for time marching are

used. These numerical algorithms are briefly presented in Appendix C.

Configuration

In this example standard atmospheric conditions are used (T = 293 K, ρ0 = 1.2 kg.m−3,

p0 = 1.03 105 Pa). The source is positioned at (xs, zs) = (0, 3) m and the receiver at

(xr, zr) = (12, 3) m.

In order to start the reference calculation, the pressure, velocity, density and energy fields

need to be specified. A Gaussian pulse is propagated using a one-dimensional version of the

code presented in Appendix C. By adjusting the pulse amplitude and width one can obtain

a one-dimensional signal at a given distance. In this example an amplitude and signal length

of approximately 4 kPa and 1.5 m, respectively, were aimed for at a distance of 3 m from

the source. Spatial steps ∆x and ∆z are both equal to 0.015 m, yielding a resolution of

approximately 100 points per wavelength. This signal is then spherically extrapolated to

obtain a two-dimensional array. Fig. (5.11) shows the one-dimensional signal and its two-

dimensional extension used to start both reference and NPE calculations.

Figure 5.11: Pressure waveform used to start the reference and NPE simulations. Left: one-
dimensional waveform; right: two-dimensional extrapolation.

A simulation on a perfectly rigid ground has been performed together with two calculations

on different ground layers. Both have identical tortuosity (Φ = 3) and porosity (Ω0 = 0.3)

but have different flow resistivity values (σ0 = 100 kPa.s.m−2 and σ0 = 10 kPa.s.m−2). These

flow resistivity values have been chosen to test the model limitations rather than to represent
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a real situation. Chosen flow resistivity would correspond to grass (σ0 = 100 kPa.s.m−2) and

light, dry snow (σ0 = 10 kPa.s.m−2). The ground layer is 75 cm thick (50 points) and for

NPE calculations the moving-window is 4.5 m wide and 6 m high (300 by 400 points).

Results

Fig. (5.12) shows snapshots of the propagation for non-rigid ground layers at time t = 33 ms

for both models. Color maps represent results from the NPE model while contour lines are

results from Euler equations.

Time signals are recorded at the receivers; Fig. (5.13) shows these signals for NPE and refer-

ence calculations for the three ground layers considered. Although the Euler equations model

seems to smear out reflected waves more than the NPE model, the parabolic propagation

model produces time waveforms comparable to the reference ones.

Figure 5.12: Pressure field at time t = 33 ms. Left: σ0 = 100 kPa.s.m−2; Right: σ0 = 10
kPa.s.m−2; Color map: solution from NPE model; contour lines: solution
from Euler equations. Ten contour lines equally spaced from -800 to 800 Pa are
shown. Contours corresponding to negative values are represented by dashed
lines, positive ones by solid lines.

To evaluate the accuracy of the NPE model, some characteristics of the reflected wave are

studied: the maximum positive and negative peak pressures and their arrival times (noted

respectively p+ and p−, ta+ and ta−), and the positive phase duration (noted td). These

characteristics are summarized in Tab. (5.2). Since for the softest ground layer the negative

peak on the reflected wave is very weak, values of p− and ta− for this layer are irrelevant.

124



Sound propagation over a flat and finite-impedance ground surface

Figure 5.13: Time signals at the receiver for NPE and reference calculations for the three
ground layers considered (from top to bottom: perfectly rigid, σ0 = 100
kPa.s.m−2 and σ0 = 10 kPa.s.m−2). Solid line: Euler; Dotted line: NPE.

As one can see, arrival times differ by at most 0.3 ms. The difference is larger for the softest

layer; a possible reason is that the NPE model does not smear out pulses as the reference

model does, yielding erroneous positive peak position. One can thus expect that as the

flow resistivity decreases the error on arrival time increases. However, in outdoor sound

propagation applications the flow resistivity may seldom be lower than the one used here (σ0

= 10 kPa.s.m−2), so the error on arrival time will remain weak for most cases. These remarks

are also applicable to the positive phase duration td. Positive peak amplitudes differ by 6.2%

and 5.1 % for layers with σ0 = 100 kPa.s.m−2 and σ0 = 10 kPa.s.m−2, respectively. This

difference does not seem to be dependent on flow resistivity and as a comparison, the relative

error for the perfectly rigid layer is 1 %. Relative error for negative peaks are comparable:

2.4 % and 3.4% for the rigid layer and the layer with σ0 = 100 kPa.s.m−2, respectively.
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Table 5.2: Reflected wave characteristics for reference and NPE calculations.

Model ta+ p+ td ta− p−

[ms] [Pa] [ms] [ms] [Pa]

Rigid layer:

Euler 37.9 756 1.4 40.2 -449

NPE 38.0 749 1.3 40.0 -438

σ0 = 100 kPa.s.m−2:

Euler 38.1 387 1.8 40.3 -265

NPE 38.2 411 1.6 40.2 -274

σ0 = 10 kPa.s.m−2:

Euler 39.3 202 2.4 – –

NPE 39 213 2.0 – –

As a mean of comparison, calculation times for Euler and NPE models were about 3.5 hours

and 4 minutes, respectively (calculations were done on a modern desktop computer). Al-

though the Euler equations implementation could use more advanced numerical techniques

(AMR methods, see Plewa [2005], or moving window principle, see Sparrow & Raspet [1991]),

the NPE model, thanks to the use of a single-variable one-way wave equation and a fast solver

(Thomas algorithm, see Appendix E), is a very efficient tool for outdoor sound propagation

simulations.

5.4.3 Nonlinear propagation with Forchheimer’s nonlinearities

To illustrate the effects of Forchheimer’s nonlinearities a simulation is performed with a

Forchheimer nonlinearity parameter ξ = 2.5 s.m−1. According to the conclusions of the

previous section, a low flow resistivity yields a larger error on the positive phase duration and

on the time of arrival of the positive peak pressure. A low flow resistivity has been chosen

(σ0 = 10 kPa.m.s−2, with Φ = 3, Ω0 = 0.3) so that the method to include Forchheimer’s

nonlinearities can be fully evaluated. Simulation parameters and initialization array are

identical to those used in Section 5.4.2. The source is positioned at (xs, zs) = (0, 3) m and

the receiver at (xr, zr) = (12, 3) m.

Fig. (5.14) shows time signals at the receiver and Tab. (5.3) summarizes their characteristics

for both reference and NPE calculations. One can see that compared to the same ground

layer with no Forchheimer’s nonlinearities (bottom plot in Fig. (5.13)), the obtained reflected

wave has a larger positive peak amplitude and a shorter time of arrival. The relative error
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for positive and negative peak pressures are 4.38% and 4.34 %, respectively, while the error

on positive phase duration is 0.4 ms. These values, in agreement with the ones found in

Section 5.4.2, seem to indicate that the method used to include Forchheimer’s nonlinearities

in the two-way coupling does not introduce any additional source of error.

Figure 5.14: Time signals at the receiver for a Forchheimer parameter ξ = 2.5 s.m−1. Solid
line: Euler equations; Dotted line: NPE.

Table 5.3: Reflected wave characteristics for reference and NPE calculations with Forch-
heimer’s nonlinearities.

Model ta+ p+ td ta− p−

[ms] [Pa] [ms] [ms] [Pa]

Euler 38.6 246 2.1 40.4 115

NPE 38.4 258 1.7 40.5 120

To confirm this statement, differences of the signal characteristics for calculations with and

without Forchheimer’s nonlinearities are studied. Tab. (5.4) presents these figures for both

models. The positive peak amplitude is increased by 21.78% and 21.12 %, and the time of

arrival ta+ is reduced by 0.7 and 0.6 ms for Euler and NPE simulations, respectively, while the

positive phase duration is reduced by 0.3 ms for both models. The signals modifications due

to the addition of Forchheimer’s nonlinearities are nearly identical for both models, confirming

that the method presented to take into account the flow resistivity dependence on particle

velocity is accurate.
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Table 5.4: Differences in reflected waves characteristics with and without Forchheimer’s non-
linearities. Results are shown for both NPE and reference calculations.

Model ta+ p+ td

[ms] [Pa] [ms]

Euler -0.7 +21.78 % -0.3

NPE -0.6 +21.12 % -0.3

5.5 Chapter summary and conclusions

In this chapter different validation cases have been presented.

First, the NPE model is compared to analytical solutions to assess the accuracy of nonlinear

effects calculations. The implemented NPE has been proved to accurately simulate wave

steepening and harmonics generation with a relative error lower than 5 % until the third

harmonic. Quasi-plane waves were considered in this example, but the paraxial approximation

of the NPE ensures the validity of nonlinearity calculations for two-dimensional configurations.

The computational model has then been tested regarding meteorological conditions and com-

pared to a frequency-domain implementation of the Parabolic Equation (PE). It appeared

that Sound Pressure Levels (SPL) are accurate within a 2 dB relative error range except

on small localized areas, where the difference with the PE method is on the order of 3 dB.

This validation case also proved the feasibility of coupling the NPE model to other propaga-

tion codes, in this particular case the frequency-domain PE. The coupling between the two

different numerical methods has been shown to be successful.

The BEM is then used to perform a simulation on a hilly terrain. It has been shown that the

terrain-following coordinates formulation of the NPE, the Generalized Terrain – Nonlinear

Parabolic Equation (GT–NPE) model, is in good agreement with the BEM results in the

far-field. This model will allow to study wave propagation in hilly urban areas, once the

probabilistic approach of uncertainties is developed.

The performances of the NPE model for propagation over porous ground layers are then

assessed. For linear propagation, the results obtained with this method have shown very

good agreement with analytical solutions for a wide range of ground properties. For high-

amplitude waves, the NPE model produces time signals comparable to those obtained by the

numerical solution of Euler equations. Relative error on peak pressures has been shown to

be independent on material properties while differences on positive phase duration and time

of arrival increases with decreasing ground flow resistivity. However, the presented model

still gives good agreement even for very low flow resistivity values and provides a simple

128



Chapter summary and conclusions

but efficient way of taking into account ground impedances. The approximate method to

include the Forchheimer nonlinearities in the two-way coupling has then been proved to give

satisfactory results and does not introduce any additional source of error in the two-way

coupling.

To construct the NPE model, the assumption that the ground layer is equivalent to a con-

tinuous fluid has been made. This simplified approach allows one to derive a ground model

that is of the same form as the NPE model for atmospheric layer. Since the two-way cou-

pling equations involve only spatial derivatives and integrals, the complete NPE model is able

to perform simulations in very short times (about 50 times faster than the Euler equations

implementation used in this work). This enables the NPE model to be used as a stochastic

model solved by the Monte-Carlo method. Wave field statistics in the air layer could be deter-

mined by performing a large number of simulations of sound propagation in an environment

with varying parameters (e.g. propagation over a ground layer with random flow resistivity,

propagation through turbulence). However, note that for realistic simulations, a spherical

spreading term should be added to the NPE used in this work.

This chapter finalizes the development of a deterministic sound propagation model for high

amplitude wave propagation in complex media. The model can account for most of the

features of sound propagation outdoors (nonlinearities, refraction, hilly terrain and ground

impedance effects) and has been shown to provide results that are in very good agreement

with other numerical models. Furthermore, the fastness of the NPE model makes it a good

candidate for a basis of a stochastic sound propagation model.
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6
Application to stochastic

high-amplitude wave propagation over

urban environments using the

Nonlinear Parabolic Equation model

This chapter concerns the development of a computational model for long-range nonlinear

sound propagation over urban environments. Section 6.1 briefly summarizes the previous

chapters, and Section 6.2 details the methodology for constructing the computational model.

Next the probability model of the geometrical parameters of a urban environment are deter-

mined using Information Theory and the Maximum Entropy Principle (Section 6.3) and then

the reference model is described (Section 6.4). The mean propagation model is then pre-

sented: it is based on the Nonlinear Parabolic Equation (NPE) model and its extension to

propagation in porous media (Section 6.5). In Sections 6.6 and 6.7 the construction of the

probabilistic model of the stochastic propagation model is detailed. In Section 6.8 the method

used to identify its parameter is presented. Section 6.9 details two applications using the con-

structed stochastic propagation model and finally, chapter summary and conclusions are given

in Section 6.10.
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6.1 Summary of previous chapters and introduction

The objective of this chapter is to develop a computational model to simulate long-range

nonlinear wave propagation over urban cities. We are interested in the effect of the surface

irregularities (buildings) on the acoustic field above the urban layer.

This problem could be studied with deterministic numerical models where buildings geome-

tries are explicitly accounted for. For example, ray tracing methods or models based on the

Euler equations allow the environmental context (buildings, meteorological conditions, site

topography, etc.) to be taken into account and would technically be suited for this appli-

cation. However, for long-range propagation applications, these methods suffer from their

numerical complexity and the high computational effort associated. Moreover, the suitability

of these models for the application under interest can be questioned. Considering the high

complexity of the real system, the model approximations (e.g. using the Uniform Theory

of Diffraction (UTD) for ray-tracing methods) and the uncertainties on the model parame-

ters (e.g. buildings geometries), the computational model could be improved introducing a

probabilistic model.

In this work, a different approach is proposed. It consists in using a simplified model for the

urban and atmospheric layers. Propagation is modeled with a Nonlinear Parabolic Equation

(NPE) model. Since the calculation domain is limited to a small area around the signal,

computational cost is generally reduced compared to Euler equations methods. The urban

layer is modeled by a porous medium, in which a NPE formulation is used for analyzing shock

wave propagation. Therefore such a model is composed of two domains:

◮ the atmospheric layer, where propagation is modeled by a NPE for air medium,

◮ and the urban city layer, where propagation is modeled by a NPE for porous medium.

Equations to couple these two domains are added. Using this model as a predictive model for

the real system corresponds to a raw approximation of the propagation phenomenon. Hence a

probabilistic approach of uncertainties is used to enhance the model capabilities. Section 6.2

explains and details the methodology to construct such a stochastic sound propagation model

and the probabilistic model of its parameters, and outlines the content of the chapter.

6.2 Construction of the computational model: principles and

methodology

The objective is to develop a stochastic model for sound propagation over urban cities using

a NPE model originally designed for sound propagation over porous ground layers, in which
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the urban city is taken into account through independent random porous layer parameters,

noted Γ, Λ and Θ. The probability distributions of these random variables depend on a

parameter noted w. The model output is the pressure at the receiver which is noted Pr (ω).

A second propagation model, in which the urban city is explicitly accounted for, is used to

provide reference solutions. Given a parameter u which characterizes the urban city geometry

and several probability models, a urban city realization is generated, and then used in the

reference model to obtain the pressure P exp
r (ω) at the receiver. Fig. (6.1) shows a sketch and

a diagram that detail the basic principle of each model.

To construct the stochastic sound propagation model, for a given parameter u, one has:

Step 1: to construct the probability models of the urban city geometrical parameters. Since

from one city to another one, geometrical parameters (e.g. building density, mean

elevation, etc.) can greatly vary, the construction of a probabilistic model of these pa-

rameters should be done with measured data (for example, data from a geographical

information system). Moreover, town planning and buildings themselves complies

with many constraints which introduce a statistical dependence between the geomet-

rical parameters. The determination of these dependencies being out of the scope

of this work, probability models are constructed assuming that no information is

available concerning the relations between geometrical parameters. The probability

models are determined with the help of Information Theory [see Shannon, 1948] and

the Maximum Entropy Principle [see Jaynes, 1957]. Once the probability models of

the geometrical parameters are determined, different city realizations corresponding

to a given parameter u can be generated.

Step 2: to use the city realizations generated in Step 1 and to perform simulations with

the reference model in order to obtain statistical information on the model output

P exp
r (ω).

Step 3: to construct the probability models of the stochastic NPE model random parameters

Γ, Λ and Θ. These models are determined using the same methods as in Step 1 (In-

formation Theory and the Maximum Entropy Principle) and depend on parameter

w.

Step 4: using the outputs from the reference model P exp
r (ω) (Step 2), to identify parameter

w corresponding to the given parameter u previously fixed. This identification is

done by solving an inverse stochastic problem: the “distance” between Pr (ω;w)

and P exp
r (ω) is minimized so that the optimal parameter wopt is obtained. Once

wopt is determined, the stochastic NPE model can be used to study nonlinear wave

propagation over urban cities.
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The chapter is organized as follows. Section 6.3 presents the method to construct the proba-

bility models of a urban city (Step 1). The linear reference propagation model is detailed

in Section 6.4 (Step 2) while the mean NPE model for sound propagation over urban cities

and its parameters are presented in Section 6.5. In Section 6.6, the probability models of the

NPE model random variables are determined (Step 3). The stochastic NPE model is then

presented in Section 6.7. Section 6.8 deals with a hybrid method based on the mean-square

and the maximum likelihood methods to solve the inverse stochastic problem and to identify

the parameter wopt (Step 4). Finally, Section 6.9 presents an application and a validation

procedure for the computational model of sound propagation over urban cities. Chapter

summary and conclusions are given in Section 6.10.

6.3 Prior probabilistic model of geometrical parameters of a

urban city

A two-dimensional cross-section of a urban city is considered. It is composed of n buildings

of rectangular shape parametrized by a set of three parameters. For a given building Bi, its

height and width are noted hi and wi, and the distance between two consecutive buildings

Bi and Bi+1 is noted di (see Fig. (6.2)). The prior probability model of such a urban city

is then introduced with the help of the random variables {H1, . . . ,Hn}, {W1, . . . ,Wn} and

{D1, . . . , Dn−1}.
Let Xi be the positive-valued real random variable representing either Hi, either Wi, or Di.

Let pXi
be the probability density function of Xi and E be the mathematical expectation.

Let mXi
and δXi

= σXi
/mXi

be its mean value and its coefficient of variation, in which

σ2
Xi

= m2 −m2
Xi

is the variance and m2 the second-order moment. One has

mXi
=E {Xi} =

∫ +∞

0
xipXi

dxi , (6.1a)

m2 =E
{
X2

i

}
=

∫ +∞

0
x2

i pXi
dxi . (6.1b)

In order to construct the probability distributions of random variables families {H1, . . . ,Hn},
{W1, . . . ,Wn} and {D1, . . . , Dn−1} Information Theory [Shannon, 1948] and the Maximum

Entropy Principle [Jaynes, 1957] are used. One then has to define the available information

for these random variables, which is the following: For all i, denoting by Xi either Hi, either

Wi or Di one has:

(1) Xi is a random variable with values in ] 0,+∞ [ ,

(2) the mean value mXi
= E {Xi} is given and is equal to mX , independent of i,
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Figure 6.1: Sketches and diagrams detailing the basic principles of each propagation model.
The reference, linear propagation model is presented on the left, while the
stochastic, simplified NPE model is shown on the right.
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h1

w1 d1
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w2 di
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hi BiB1 B2 Bi+1 Bn−1 Bn

Figure 6.2: Sketch of a representative urban city.

(3) the inverse X−1
i of Xi is a second-order random variable that is satisfied if

E {log (Xi)} = ci, with |ci| < +∞ . (6.2)

The constraint defined by Eq. (6.2) introduces an arbitrary constant ci which does not have

any physical meaning and which is then rewritten as a function of the coefficient of variation

of Xi which is δX , independent of i.

The use of the Maximum Entropy Principle yields [see for example Soize, 2005]

pH1,...,Hn,W1,...,Wn,D1,...,Dn−1
(h1, . . . , hn, w1, . . . , wn, d1, . . . , dn−1) =

n∏

i=1

pHi
(hi)

n∏

i=1

pWi
(Wi)

n−1∏

i=1

pDi
(di) , (6.3)

with

pHi
(hi) = pX (hi ;mH , δH) , (6.4a)

pWi
(wi) = pX (wi ;mW , δW ) , (6.4b)

pDi
(di) = pX (di ;mD, δD) , (6.4c)

where

pX (x ;mX , δX) = ✶ ]0,+∞[ (x)
1

mX

(
1

δ2X

)
1

Γ
(
1/δ2X

)
(

x

mX

) 1

δ2
X

−1

exp

(
− x

δ2XmX

)
. (6.5)

In Eq. (6.5), ✶ ]0,+∞[ (x) = 1 if x > 0 and 0 otherwise, and Γ (z) is the gamma function of

argument z defined by

Γ (z) =

∫ +∞

0
tz−1e−t dt . (6.6)
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Since no available information concerning the statistical dependence between the families of

random variables {Hi}i, {Wi}i and {Di}i is used, the Maximum Entropy Principle yields

independence of all the random variables as a result, as can be seen in Eq. (6.3).

The following vector u of the parameters of the probabilistic model is introduced

u = (mH ,mW ,mD, δH , δW , δD) . (6.7)

Parameter u belongs to an admissible set U = (] 0,+∞ [ )6. Fig. (6.3) shows an example of a

realization with n = 20 and u= (10, 20, 30, 0.2, 0.2, 0.2).

Figure 6.3: Example of a city realization with n = 20 and u= (mH ,mW ,mD, δH , δW , δD) =
(10, 20, 30, 0.2, 0.2, 0.2).

6.4 Reference model: linear propagation over urban cities

This section presents the stochastic linear propagation model used to obtain reference solu-

tions of the problem. The problem setting (source and receiver, frequency range, etc.) is

first given in Section 6.4.1 and the stochastic propagation model itself is then described in

Section 6.4.2.

6.4.1 Setting the problem

Output P exp
r (ω) from the reference model is analyzed in the frequency-domain on a frequency

band defined by B = ] 0, ωmax ], in which ωmax is such that B is a low frequency band. Hence,

the buildings surfaces are assumed to be acoustically rigid and reflections are assumed to be

specular. The source and receiver are placed above the urban city layer and the source is

placed sufficiently far from the first building B1 to assume that the wave impinging on this

first building is a plane wave. The receiver is placed at the same altitude than the source and

at the right of the last building Bn. The quantity under interest is the normalized spectrum

Lexp (ω) at the receiver such that

Lexp (ω) = 10 log10

(∣∣∣∣
P exp

r (ω)

pfree (ω)

∣∣∣∣
2
)
, (6.8)
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where pfree (ω) and P exp
r (ω) denote free field pressure and the pressure in the presence of the

urban city at the receiver, respectively.

6.4.2 Stochastic Boundary Element Method (BEM) solver for constructing

a reference solution

The model used to construct the reference solution is an implementation of the Boundary

Element Method (BEM) [see Ciskowski & Brebbia, 1991; Jean, 1998], in which the city geom-

etry is explicitly entered into the computational model. For a fixed parameter u, the outputs

Lexp (ω) are calculated using the Monte Carlo method [see Hammersley & Handscomb, 1964]

with νexp independent realizations η1, . . . , ηνexp of urban cities generated with the probability

models presented in Section 6.3. The realization of the experimental observation for the urban

city νp is
{
Lexp

(
ω, ηνp

)
, ω ∈ B

}
.

6.5 Mean nonlinear parabolic propagation model for sound

propagation over urban cities

This section describes the mean parabolic propagation model that will be later used, asso-

ciated with a probabilistic model of uncertainties, to model sound propagation over urban

environments. Section 6.5.1 formally defines the NPE propagation model and Section 6.5.2

explains the choice of the propagation model parameters and details their algebraic properties.

6.5.1 Nonlinear Parabolic Equation model for sound propagation in mul-

tiple media

In this section, we summarize the NPE model for sound propagation in multiple media devel-

oped in the previous chapters.

This propagation model is composed of three entities. The two first are Nonlinear Parabolic

Equations (NPE) for the air and the urban layers, and the third one is an interface condition

to couple the two domains.

Let Ωa and Ωu be two domains occupied by the atmosphere and the urban environment, and

let Γa be the boundary at the top of the domain and Γu the boundary at the bottom. The

coupling interface between the domains is noted Γ and the boundary to the left and to the

right of the domain Ωa∪Ωu are Γl and Γr, respectively. The mean acoustic perturbation field

at points xa = (x, z) ∈ Ωa and xu = (x, z) ∈ Ωu are ra and ru, respectively. Fig. (6.4) shows

a sketch of the different domains with their boundaries. The NPE model for propagation in
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Ωu

Ωa
Γ

Atmospheric layer

Urban city layer

Γl Γr

Γa

Γu

x

z

Figure 6.4: Sketch of the different domains with their respective boundaries of the NPE model
for propagation in multiple media.

multiple media is written as

∂⋆
t ra + ∂x

(
c
1
ra + β

c
0

2
r2a

)
+
c
0

2

∫
∂2

zra dx = g (xa, t) in Ωa , (6.9a)

∂⋆
t ru + ∂x

(
c
0
(µ− 1) ru + β µ

c
0

2
r2u

)
+
µc

0

2

∫
∂2

zru dx+ αru = 0 in Ωu , (6.9b)

∂zra + ǫ

∫
∂zra dx = γ ∂zru on Γ , (6.9c)

ra = 0, ru = 0 on Γr , (6.9d)

ra, ru satisfy Sommerfeld radiation condition on Γl , (6.9e)

∂zru = 0 on Γu , (6.9f)

ra satisfies Sommerfeld radiation condition on Γa , (6.9g)

where g (xa, t) is an external pressure field applied in the atmospheric layer. Eqs. (6.9a, 6.9b)

handle propagation in the atmospheric and urban layers. Eq. (6.9c) is the interface condition

between the domains and Eq. (6.9d) is a standard boundary condition applied on the boundary

to the right of the moving window Γr. Eq. (6.9e) states that the wave must not reflect at the

left boundary of the domain, and hence the acoustic field must satisfy Sommerfeld radiation

condition on Γl. It is supposed that the bottom of the domain is perfectly rigid, hence

∂zru = 0 on Γu (see Eq. (6.9f)). Since the propagation problem is infinite in the +z direction

the acoustic field must satisfy Sommerfeld radiation condition on Γa (Eq. (6.9g)). For the
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sake of brevity the explicit expressions of Sommerfeld radiation conditions are not given here.

The propagation domain is truncated with the help of a Perfectly Matched Layer (PML) (see

Section 4.5.3).

Wave propagation in the urban layer (Eq. (6.9b)) is characterized by parameter µ which

modifies the sound speed in the urban layer so that cΩu = µcΩa , while α is the loss rate

in the layer. The interface condition between domains Ωa and Ωu (Eq. (6.9c)) depends on

parameters γ and ǫ. On the boundary Γr a null pressure ra = 0, ru = 0 is imposed, meaning

that no perturbation is introduced ahead of the wavefront.

The relative SPL at the receiver is given by

L (ω) = 10 log10

(∣∣∣∣
ρ

0
c2
0
r̂a (xr, zr, ω)

pfree (xr, zr, ω)

∣∣∣∣
2
)
, (6.10)

where quantities with hats denote Fourier-transformed quantities, and xr and zr are the

receiver coordinates.

6.5.2 Construction of the mean model and description of the algebraic

properties of its parameters

In this section the mean propagation model is derived from Section 6.5.1. One has to define the

parameters in the propagation model (see Eqs. (6.9)) which have the capability to represent

the natural variability of the real system (the urban environment). These defined parameters

will be modeled by random variables as explained in Section 6.2.

When a wave is reflecting on a plane surface, its amplitude is changed and a (possibly negative)

delay is given to the reflected wave. Parameters (µ, α, γ, ǫ) appearing in Eqs. (6.9b, 6.9c) could

be used because the propagation model can recreate the behavior of a porous ground layer

[see Leissing et al. , 2009c] and could thus be used “as is” to control the wave reflection.

However, in order to reduce the number of parameters in the mean model and consequently, to

reduce the stochastic model complexity, another solution is proposed. The urban layer is now

considered as semi-infinite, and one writes that no waves are transmitted back from the porous

ground layer to the atmospheric layer. This implies that the urban layer must behave like an

atmospheric layer, which can be simulated in writing that µ = 1 and α = 0 in Eq. (6.9b).

The time delay occurring during reflection is introduced by the use of a time-stretching. The

time variable is then transformed according to

t −→ 1

λ
t , (6.11)
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Mean NPE model for sound propagation over urban cities

and the time derivative is changed accordingly, such that

∂⋆
t −→ λ∂⋆

t . (6.12)

The change of amplitude of the reflected wave is accounted for using Eq. (6.9c). Parameter

γ can be used to tune the amount of reflected and transmitted waves. The time delay being

already taken into account with the time stretching, there is no need to keep parameter ǫ in

Eq. (6.9c). Parameter ǫ is set to ǫ = 0. One advantage of using such two parameters instead

of four in the mean model, is that these two parameters γ and λ do not introduce coupling

effects between wave amplitude and time delay. This means that changing parameter λ does

not change the reflected wave amplitude, and changing parameter γ does not change the time

delay of the reflected wave. This property will later help designing the probabilistic model of

these two parameters.

Note that parameter λ cannot take the value 0, which would correspond to an infinite speed

of sound. Parameter γ is used to tune the amount of reflected wave in the atmospheric

layer. Setting γ = 0 yields ∂zra = 0 on coupling interface Γ, which is the condition for perfect

reflection. Setting γ = 1 yields ∂zra = ∂zru on the coupling interface Γ, which is the condition

for perfect transmission; parameter γ thus belongs to [0, 1]. Introducing underlined quantities

related to the mean model, the mean NPE model for propagation in multiple media with the

two above parameters is rewritten as

λ∂⋆
t ra + ∂x

(
c
1
ra + β

c
0

2
ra

2
)

+
c
0

2

∫
∂2

zra dx = g (xa, t) in Ωa , (6.13a)

λ∂⋆
t ru + ∂x

(
β
c
0

2
ru

2
)

+
c
0

2

∫
∂2

zru dx = 0 in Ωu , (6.13b)

∂zra = γ ∂zru on ∂Ω , (6.13c)

ra = 0, ru = 0 on Γr , (6.13d)

ra and ru satisfy Sommerfeld radiation condition on Γl , (6.13e)

ru satisfies Sommerfeld radiation condition on Γu , (6.13f)

ra satisfies Sommerfeld radiation condition on Γa . (6.13g)

Furthermore, introducing a third parameter θ in order to control the output of the mean

model, the relative Sound Pressure Level (SPL) at the receiver is given by

L (ω) = 10 log10

(∣∣∣∣
ρ

0
c2
0
r̂a (xr, zr, ω + θ)

pfree (xr, zr, ω + θ)

∣∣∣∣
2
)
. (6.14)

Parameter θ is real and positive and has no physical meaning. Its only intent is to help

controlling the mean model output. The mean propagation model parameter s can now be
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defined as

s = (γ , λ , θ) . (6.15)

Vector s belongs to the admissible set S = ([0, 1] × ] 0,+∞ [ × [ 0,+∞ [ ) and the initial value

of s is arbitrarily chosen as

s0 = (γ 0, λ0, θ0)

= (0 , 1 , 0) , (6.16)

in which the superscript 0 refers to the nominal value of s. The value of the initial parameter

s0 is chosen so that the nominal mean model simulates a wave reflecting on a plane which is

an acoustically rigid surface.

6.6 Construction of the probabilistic model of random variables

Γ, Λ and Θ

Let Γ, Λ and Θ be the random variables associated with the mean model parameters γ, λ

and θ, respectively. Information Theory [Shannon, 1948] and the Maximum Entropy Princi-

ple [Jaynes, 1957] are used to determine the random variables probability distributions (see

Section 6.3).

6.6.1 Construction of the probability distribution of random variable Γ

The available information for random variable Γ is the following.

◮ Γ is a random variable with values in [0, 1] (see Section 6.5.2),

◮ Its mean value mΓ= E {Γ} is given,

◮ and its coefficient of variation δΓ is given.

It should be noted that the upper bound γ = 1 corresponds to perfect reflection at the

interface and that the lower bound γ = 0 corresponds to perfect transmission. Since the

neighborhoods of these two bounds can be reached with a non-zero probability, it is not

necessary to introduce an available information related to the behavior of the probability

distribution in the neighborhood of these two bounds. With such an available information,

the Maximum Entropy Principle yields

pΓ (γ) = ✶[0,1] (γ) e
−µ0−γ µ1−γ2 µ2 , (6.17)
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where the constants µ0, µ1 and µ2 depend on mΓ and δΓ and are the solutions of the equations

∫ 1

0
γ e−γ µ1−γ2µ2 dγ −mΓ

∫ 1

0
e−γ µ1−γ2µ2 dγ = 0 , (6.18a)

∫ 1

0
γ2e−γ µ1−γ2µ2 dγ −

(
m2

Γ + σ2
Γ

) ∫ 1

0
e−γ µ1−γ2µ2 dγ = 0 , (6.18b)

∫ 1

0
e−γ µ1−γ2µ2 dγ − eµ0 = 0 . (6.18c)

In the equations above, integrals are numerically evaluated with the Monte Carlo method and

the equations are solved using a nonlinear multidimensional root finding algorithm.

6.6.2 Construction of the probability distribution of random variable Λ

Taking into account the algebraic properties given in Section 6.5.2, random variable Λ is with

values in ] 0,+∞ [ . Since λ cannot take the value 0 which would correspond to an infinite

speed of sound, it is necessary to write that the probability distribution goes sufficiently fast

to zero when λ goes to zero with superior values. Such a property is satisfied in introducing

the following condition,

E{log Λ} = c , |c| < +∞ , (6.19)

which implies that the inverse Λ−1 of Λ is a second-order random variable. Therefore, the

available information for random variable Λ is the following.

◮ Λ is a random variable with values in ]0,+∞[,

◮ its mean value mΛ= E{Λ} is given,

◮ and Eq. (6.19) is satisfied.

With the constraints defined by the above available information, the use of the Maximum

Entropy Principle yields

pΛ (λ) = ✶ ]0,+∞[ (λ)
1

mΛ

(
1

δ2Λ

)
1

Γ
(
1/δ2Λ

)
(
λ

mΛ

) 1

δ2
Λ

−1

exp

(
− λ

δ2ΛmΛ

)
, (6.20)

in which δΛ is the coefficient of variation of Λ.
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6.6.3 Construction of the probability distribution of random variable Θ

The available information relative to random variable Θ is the same as the available infor-

mation defined in Section 6.6.2 for random variable Λ. Consequently, the probability density

function of random variable Θ is written as

pΘ (θ) = ✶ ]0,+∞[ (θ)
1

mΘ

(
1

δ2Θ

)
1

Γ
(
1/δ2Θ

)
(

θ

mΘ

) 1

δ2
Θ

−1

exp

(
− θ

δ2ΘmΘ

)
, (6.21)

in which mΘ and δΘ are the mean value and the coefficient of variation of random variable

Θ.

6.7 Stochastic Nonlinear Parabolic Equation model for high-

amplitude wave propagation over urban cities

The following vector w of the parameters of the probabilistic models of random variables Γ,

Λ and Θ is introduced

w = (mΓ , mΛ , mΘ , σΓ , σΛ , σΘ) , (6.22)

in which

σΓ = mΓ δΓ , (6.23a)

σΛ = mΛ δΛ , (6.23b)

σΘ = mΘ δΘ . (6.23c)

Parameter w belongs to the admissible set W = (] 0,+∞ [ )6. The stochastic model for

nonlinear sound propagation over urban cities is defined by

Λ ∂⋆
tRa + ∂x

(
c
1
Ra + β

c
0

2
R2

a

)
+
c
0

2

∫
∂2

zRa dx = g in Ωa , (6.24a)

Λ ∂⋆
tRu + ∂x

(
β
c
0

2
R2

u

)
+
c
0

2

∫
∂2

zRu dx = 0 in Ωu , (6.24b)

∂zRa = Γ ∂zRu on Γ , (6.24c)

Ra = 0, Ru = 0 on Γr , (6.24d)

Ra and Ru satisfy Sommerfeld radiation condition on Γl , (6.24e)

Ru satisfies Sommerfeld radiation condition on Γu , (6.24f)

Ra satisfies Sommerfeld radiation condition on Γa , (6.24g)
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and the relative Sound Pressure Level (SPL) at the receiver L (ω,w) is calculated with

L (ω,w) = 10 log10



∣∣∣∣∣
ρ

0
c2
0
R̂a (xr, zr, ω + Θ)

pfree (xr, zr, ω + Θ)

∣∣∣∣∣

2

 . (6.25)

In Eqs. (6.24, 6.25), the probability distributions of random variables Γ, Λ and Θ depend

on w, which in turn depends on u, the parameter that describes the urban city geometry.

Hence, to complete the construction of the computational model and to obtain observations of

L (ω,w), one has to express parameter w as a function of parameter u (it should be noted that

no explicit expression can be constructed but the corresponding mapping will be numerically

constructed).

6.8 Identification of parameter w of the stochastic model

6.8.1 Identification strategy

The identification of the parameter w is performed by solving an inverse stochastic problem.

Two methods are generally used to solve such problems: the mean-square method [see Spall,

2003; Walter & Pronzato, 1997] and the maximum likelihood method [see Soize et al. , 2008].

Both techniques were previously tested with different urban environments parameters u; the

conclusions of this comparative study are the following.

(i) Since the mean-square method introduces a mean-square distance between the exper-

imental data and the random response of the stochastic model, this type of method

is equivalent to a minimization of the sum of the variance for the stochastic model

response with the bias between the experimental mean value and the mean value of

the random response. If these two mean values are significantly different, the bias can

only be reduced in increasing the variance of the model. In this case, the distance

between the experimental mean value and the mean value of the random response of

the stochastic model is effectively reduced but in counterpart, the confidence region of

the random response increases.

(ii) For the application analyzed it has been seen that, for certain values of parameter u,

the maximum likelihood method under-estimates the width of the confidence region

which means that a significant number of experimental paths cross the upper and the

lower envelopes of the confidence region.

145



Chapter 6: Application to stochastic wave propagation over urban environments

In order to provide an accurate and robust identification method for all values of parameter

u, a hybrid method is used; the identification of the optimal parameter wopt is done in two

successive steps.

Step 1. The mean model is first updated with experimental data. This step consists in

finding the optimal mean model parameter sopt that minimizes the norm between

the mean value of the reference model outputs and the mean model output. As only

the mean value of the experimental observations is used, this first step only allows us

to identify the parameter that optimizes the mean response of the stochastic model.

Step 2. Next, to take into account the dispersion of the experimental observations, a multi-

objective optimization problem is solved: both the mean-square and the maximum

likelihood methods are used concurrently. This multi-objective optimization prob-

lem aims at finding the optimal parameter wopt that maximizes the log-likelihood

function between the experimental observations and the stochastic model outputs,

while minimizing the areas where experimental observations do not belong to the

confidence regions of the stochastic model. This problem is solved using an evolu-

tionary algorithm [see Deb et al. , 2002; Srinivas & Deb, 1994].

Step 1 allows us to obtain a rough approximation of the mean values mΓ, mΛ and mΘ

which are the three first components of vector w and hence helps initializing the optimization

problem in Step 2. Section 6.8.2 presents the procedure to update the mean model with

experimental data (Step 1). The mean-square method and the maximum likelihood method

are presented in Sections 6.8.3 and 6.8.4.

6.8.2 Updating the mean model with experimental data

The observation from the mean model depending on the choice of parameter s it is rewritten

as Ls (ω). The performance level of the nominal model can be measured in estimating the

norm

||E {Lexp} − Ls||B =

{∫

ω∈B
|E {Lexp (ω)} − Ls (ω)|2 dω

}1/2

, (6.26)

and the nominal value of the mean model parameter s0 can be updated in a vector sopt such

that

sopt = arg min
s∈S

||E {Lexp} − Ls||B . (6.27)
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Hence for a fixed value of u= (mH ,mW ,mD, δH , δW , δD), the parameter sopt that minimizes

the norm between the mathematical expectation of the experimental observations and the

observation from the mean model can be determined.

6.8.3 Identification of the stochastic model optimal parameter with the

mean-square method

This section presents the mean-square method [see Spall, 2003; Walter & Pronzato, 1997]

with non-differentiable objective function [see Soize et al. , 2008] for the identification of the

parameter wopt of the stochastic model.

The objective function is defined by writing that the ηνexp experimental observations

{Lexp (ω ; ηj) , ω ∈ B, j = 1, . . . , νexp} (6.28)

must belong to the confidence region of the stochastic model with a probability level Pc fixed

in ] 0, 1 [ . Before giving the formal definition of the mean-square method one must address

the problem of the construction of confidence regions.

Construction of confidence regions. The confidence region is constructed by using the

quantiles. Let FL(ω) be the cumulative distribution function of random variable L (ω), such

that FL(ω) (ℓ) = Proba {L (ω) ≤ ℓ}. For 0 < p < 1, the pth quantile (or fractile) of FL(ω) is

defined as

ζ (p ;ω) = inf
ℓ

{
FL(ω) (ℓ) ≥ p

}
. (6.29)

Then, the upper and lower envelopes ℓ+ (ω) and ℓ− (ω) of the confidence region are given by

ℓ+ (ω) = ζ

(
1 + Pc

2
;ω

)
, (6.30a)

ℓ− (ω) = ζ

(
1 − Pc

2
;ω

)
. (6.30b)

The estimation of ℓ+ (ω) and ℓ− (ω) is performed by using the sample quantile [see Serfling,

1980]. Consider ν independent realizations of the random variable L (ω) noted ℓ1 (ω) =

L (ω ; η1) , . . . , ℓν (ω) = L (ω ; ην) and let ℓ̃1 (ω) < . . . < ℓ̃ν (ω) be the ordered statistics as-

sociated with ℓ1 (ω) , . . . , ℓν (ω). One has the following estimations for the upper and lower
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envelopes:

ℓ+ (ω) ≃ ℓ̃+
j+ (ω) , j+ = fix

(
ν

1 + Pc

2

)
, (6.31a)

ℓ− (ω) ≃ ℓ̃−
j−

(ω) , j− = fix

(
ν

1 − Pc

2

)
, (6.31b)

in which fix (x) is the integer part of the real number x.

Now introducing the dependence on parameter w, the formal definition of the mean-square

method now follows. Let ℓ+ (w, ω) and ℓ− (w, ω) be the upper and lower envelopes of the

confidence region of the stochastic model. The functions ℓ+exp (ω), ℓ−exp (ω), z+ (w , ω) and

z− (w , ω) are such that

ℓ+exp (ω) = max
j
Lexp (ω; ηj) , (6.32a)

ℓ−exp (ω) = min
j
Lexp (ω; ηj) , (6.32b)

and

z+ (w, ω) =
(
ℓ+ (w, ω) − ℓ+exp (ω)

)
×
(
1 − Heav

(
ℓ+ (w, ω) − ℓ+exp (ω)

))
, (6.33a)

z− (w, ω) =
(
ℓ− (w, ω) − ℓ−exp (ω)

)
×
(
1 − Heav

(
ℓ− (w, ω) − ℓ−exp (ω)

))
, (6.33b)

in which Heav (x) is the Heaviside function such that Heav (x) = 1 if x ≥ 0 and Heav (x) = 0

otherwise. Functions z+ (w, ω) and z− (w, ω) represent selected parts of ℓ+ (w, ω)− ℓ+exp (ω)

and ℓ− (w, ω)−ℓ−exp (ω) where the experimental observations do not belong to the confidence

region calculated with the stochastic model.

The non-differentiable objective function J (w) is then defined by

J (w) =
∣∣∣∣z+ (w, .)

∣∣∣∣2
B

+
∣∣∣∣z− (w, .)

∣∣∣∣2
B
, (6.34)

and the optimal parameter wopt is solution of the following optimization problem:

wopt = arg min
w∈W

J (w) . (6.35)

The mean-square method hence aims at minimizing the areas where the experimental obser-

vations do not belong to the confidence region of the stochastic model: the only criteria to

select the optimal parameter wopt is the amount of information not covered by the stochastic

model.
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6.8.4 Identification of the stochastic model optimal parameter with the

maximum likelihood method and statistical reduction of information

This section deals with the maximum likelihood method to identify the optimal parameter

wopt. Let {ω1, . . . , ωm} ⊂ B be a sampling of frequency band B and let w→L be the

log-likelihood function from W into ❘, defined by

L (w) =

νexp∑

j=1

log10 p (Lexp (ω1 ; ηj) , . . . , L
exp (ωm ; ηj) ;w) , (6.36)

in which p (Lexp (ω1 ; ηj) , . . . , L
exp (ωm ; ηj) ;w) is the joint probability density function of

random variables L (ω1 ,w) , . . . , L (ωm ,w) for the values Lexp (ω1 ; ηj), . . ., L
exp (ωm ; ηj).

The maximum likelihood method [see Spall, 2003] consists in finding wopt as the solution of

the following optimization problem,

wopt = arg max
w∈W

L (w) . (6.37)

The standard method requires a direct evaluation of the joint probability density function

appearing in Eq. (6.36) which involves a very important computational effort. In order to

decrease this effort the method of statistical reduction of information introduced by Soize

et al. [2008] is used. The idea is to proceed to a statistical reduction of information using a

principal component analysis (see for instance Jolliffe [1986]) and then to use the maximum

likelihood method in the space of the uncorrelated random variables related to the reduced

statistical information.

Statistical reduction of information. For all w fixed in W, let be L (w) = (L (ω1 ,w) ,

. . . , L (ωm ,w)). Let m (w) = E {L (w)} be its mean value and let
[
CL(w)

]
be its (m×m)

covariance matrix defined by

[
CL(w)

]
= E

{
(L (w) − m (w)) (L (w) − m (w))T

}
, (6.38)

in which T superscript stands for transposition. The following eigenvalue problem is intro-

duced

[
CL(w)

]
x (w) = e (w)x (w) , (6.39)

for which the first largest q ≤ m positive eigenvalues are e1 (w) ≥ e2 (w) ≥ . . . ≥ eq (w)

and the associated eigenvectors are x1 (w) , . . . ,xq (w), in ❘
m. The approximation Lq (w) of
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L (w) is written as

Lq (w) = m (w) +

q∑

α=1

√
eα (w)Yα (w) xα (w) , (6.40)

in which Y1 (w) , . . . , Yq (w) are q real-valued random variables such that, for all α = 1, . . . , q

Yα (w) =
1√
eα (w)

xα (w)T (L (w) − m (w)) . (6.41)

It can easily be proved that Y (w) = (Y1 (w) , . . . , Yq (w)) is a second-order random variable

such that, for all α and β in {1 . . . q}

E {Yα (w)} = 0 , (6.42a)

E {Yα (w)Yβ (w)} = δαβ , (6.42b)

which means that the centered random variables Y1 (w) , . . . , Yq (w) are uncorrelated. The

order q of the statistical reduction is calculated in order to get an approximation with a given

accuracy ǫ which has to be chosen such that

max
w∈W

{
1 −

∑q
α=1 eα (w)

tr [CL (w)]

}
≤ ǫ . (6.43)

From Eq. (6.41) one can deduce that random variables Y exp
α (w ; ηj) associated with the

experimental realization ηj are given, for all α = 1, . . . , q and j = 1, . . . , νexp by

Y exp
α (w ; ηj) =

1√
eα (w)

xα (w)T (Lexp (ηj) − m (w)) . (6.44)

Finally, taking into account that the random variables Y1 (w) , . . . , Yq (w) are mutually inde-

pendent, one introduces the following approximation for the reduced log-likelihood function

Lred,

Lred (w) =

νexp∑

j=1

q∑

α=1

log10 pYα(w) (Y exp
α (w ; ηj) ;w) , (6.45)

where pYα(w) (y ;w) is the probability density function of the real-valued random variable

Yα (w). The optimal value wopt of w is then given by

wopt = arg max
w∈W

Lred (w) , (6.46)

and the objective function for the maximum likelihood method is −Lred.
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6.8.5 Multi-objective optimization using an evolutionary algorithm

In this work the Non-dominated Sorting in Genetic Algorithms (NSGA-II) method developed

by Srinivas & Deb [1994]; Deb et al. [2002] is used to solve the multi-objective optimiza-

tion problem. This method is part of the family of genetic algorithms, in which an initial

population evolves over several generations of individuals. For each generation a selection

process selects the “best” parents from which children are generated. The NSGA-II method is

composed of five major steps, summarized below.

Step 1, population initialization. The population is initialized based on the results of

Section 6.8.2. The mean model updated parameters are used as initial values for the

mean values mΓ, mΛ and mΘ and a 50 % variation of these quantities is allowed,

i.e.

mΓ ∈ ] 0.5 γopt,min
(
1, 1.5 γopt

)
[ , (6.47a)

mΛ ∈ ] 0.5λopt, 1.5λopt [ , (6.47b)

mΘ ∈ ] 0.5 θopt, 1.5 θopt [ . (6.47c)

The constraints on the dispersion of the random variables Γ, Λ and Θ are arbitrarily

set to

σΓ ∈ ] 0, 0.25 [ , (6.48a)

σΛ ∈ ] 0, 0.2 [ , (6.48b)

σΘ ∈ ] 0, 10 [ . (6.48c)

Eqs. (6.47, 6.48) define a reduced admissible set W red for the parameter w, defined

by

W red = ] 0.5 γopt,min
(
1, 1.5 γopt

)
[

× ] 0.5λopt, 1.5λopt [

× ] 0.5 θopt, 1.5 θopt [

× ] 0, 0.25 [

× ] 0, 0.2 [

× ] 0, 10 [ . (6.49)

The initial population of ni individuals is hence generated by calculating ni families

of ν observations from the stochastic model, where the parameters mΓ, mΛ, mΘ,

σΓ, σΛ and σΘ are uniformly distributed on their respective domains defined by
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Eqs. (6.47, 6.48).

Step 2, non-dominated sorting and crowding distance assignment. Once the fami-

lies of individuals are generated, the population is sorted against the multi-objective

function F (w) defined by (see Sections 6.8.3 and 6.8.4)

F (w) =
(
−Lred (w) , J (w)

)
. (6.50)

Each individual is assigned a rank: individuals in the first front (rank 1) dominate

individuals in the second front (rank 2) and so on. In addition to the rank value

a crowding distance is calculated for each individual. The crowding distance is a

measure of how close is an individual from its neighbors: large crowding distances

result in better diversity in the population.

Step 3, selection process. Parents are selected by using binary tournament selection based

on their rank and crowding distance. Individuals with smaller rank will be selected

first and between individuals of the same rank, individuals with large crowding

distances are favored in order to diversify the population.

Step 4, genetic operators. Genetic algorithms use a simulated binary crossover operator

[see Beyer & Deb, 2001; Deb & Agarwal, 1995] for offspring generation. Two parents

p1 and p2 (p1 and p2 different) are selected randomly within the population (Step

3) and children are generated according to

c1,k =
1

2
[(1 − βk) p1,k + (1 + βk) p2,k] , (6.51a)

c2,k =
1

2
[(1 + βk) p1,k + (1 − βk) p2,k] , (6.51b)

in which pi,k denotes the kth component of the ith parent, ci,k denotes the kth

component of the ith children and βk is a sample from a random number having the

probability distribution

p (β) =
1

2
(ηc + 1)βηc , if 0 ≤ β ≤ 1 , (6.52a)

p (β) =
1

2
(ηc + 1)

1

βηc+2
, if β > 1 . (6.52b)

The parameter ηc determines how well spread are the children from the parents. If

the parents p1 and p2 are identical, i.e. p1,k ≡ p2,k = pk, polynomial mutation is

used instead; the children component ck is then generated with

ck = pk +
(
pu

k − pl
k

)
δk , (6.53)
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where pu
k and pl

k are the upper and lower bound of the parent component, respec-

tively, and δk is a dispersion parameter defined by

δk = (2rk)
1

ηm+1 − 1, if rk < 0.5 , (6.54a)

δk = 1 − (2 (1 − rk))
1

ηm+1 , if rk ≥ 0.5 , (6.54b)

in which rk is a sample from a uniform distribution in [0, 1] and ηm is a mutation

distribution index, controlling how well spread is the children from the parent.

Step 5, recombination and selection. The offspring population is combined with the

current generation and selection is performed based on non-domination to set the

ni individuals of the next generation. The genetic operators, recombination and

selection steps are then repeated until the number of generations wanted is reached

and finally, the NSGA-II algorithm yields a final generation of individuals that best

minimizes the objective function F (w).

6.9 Application and experimental validation

It is proposed in this section to use the stochastic parabolic propagation model to study sound

propagation over given urban environments.

6.9.1 Summary of previous sections – Stochastic model validation proce-

dure

In order to construct and validate the stochastic propagation model one has

Step 1. to choose a parameter u= (mH ,mW ,mD, δH , δW , δD) that describes the urban city

geometry studied. With this parameter the νexp urban environment realizations

can be generated with the probability distributions given in Section 6.3 (see Sec-

tion 6.9.2),

Step 2. using the νexp realizations of the probabilistic model of the given city, and using the

stochastic reference model (see Section 6.4), to produce the family {Lexp (ω ; ηj)}j

(see Section 6.9.2),

Step 3. once the experimental realizations are obtained, to identify the optimal parameter

wopt of the stochastic model with the help of the method described in Section 6.8

(see Section 6.9.3),
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Step 4. and finally, using the stochastic parabolic propagation model derived in Section 6.7,

to construct the confidence region associated with the optimal parameter wopt de-

termined in Step 3 which finally allows the stochastic propagation model to be

validated (see Section 6.9.4).

6.9.2 Choice of parameter u, numerical experiment description and output

from the reference model

As explained in Section 6.4, the reference model is defined as a numerical experiment consist-

ing of two-dimensional numerical calculations using the Boundary Element Method (BEM).

The source and receiver are positioned 2000 m from the central point of the urban environ-

ment at an angle of 5◦ and the urban environment is composed of n = 20 buildings. The

ground and building surfaces are supposed acoustically rigid and computations are performed

on a frequency range B = ] 0 , 100 ] Hz with a frequency sampling ∆f = 2 Hz yielding data

vectors with 51 values. Fig. (6.5) shows a sketch of the configuration.

x

z
Incident wave

d = 2000m d = 2000m

5◦

Reflected wave

Urban layer

Atmospheric layer

Ground

Figure 6.5: Sketch for the reference model (numerical experiment).

In this application two different city morphologies are chosen. The corresponding parameters

are u1 and u2 such that

u1 = (mH ,mW ,mD, δH , δW , δD) ,

= (10, 20, 30, 0.2, 0.2, 0.2) , (6.55)

and

u2 = (mH ,mW ,mD, δH , δW , δD) ,

= (40, 40, 30, 0.2, 0.2, 0.2) . (6.56)

Once u1 and u2 are fixed the buildings dimensions are generated with the help of the pro-

bability distributions defined in Section 6.3. The number of realizations of the probabilistic
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model of the real urban city is νexp = 500, inducing a convergence with a 10−3 accuracy

(at least) for the first and second-order moment of the random variable Lexp. A calculation

with the nominal mean model described in Section 6.5 is also performed for comparison. It

is initialized with

s0 =
(
γ 0, λ 0, θ 0

)
= (0 , 1 , 0) , (6.57)

for which the interface behaves like a plane acoustically rigid surface. Fig. (6.6) compares the

reference model (made up of 500 outputs and the mean values estimates mLexp
1

and mLexp
2

)

with the nominal model output Ls0∗.

For the value u1 of the parameter describing the urban environment, a low dispersion on

the observations and quasi-specular reflection behavior are obtained. The output from the

nominal model and the mean value of the reference model output have a similar shape.

For the value u2 of the parameter describing the urban environment, low dispersion on the low

frequency range and high dispersion in the range [65, 90] Hz can be observed. It can also be

noted that the mean value estimate of the experimental realizations Lexp
2 (ω) is contained in

a relatively narrow region. The maximum and minimum values never exceed 6 dB and -6 dB.

The shape of the experimental realizations differs from the shape of the nominal model. As it

can be seen in Fig. (6.6) the output from the mean model Ls0 shows very poor performances

for the simulation of sound propagation over urban environments for both urban environments

parameters u1 and u2.

6.9.3 Identification of the stochastic model optimal parameter w
opt

In this section, the procedure described in Section 6.8 is used to identify the optimal pa-

rameters w
opt
1 and w

opt
2 of the stochastic model corresponding to the parameters u1 and

u2.

Determination of the updated parameter of the mean model

In the identification of the optimal parameter wopt of the stochastic model, the first step is

the determination of the updated parameter sopt of the mean model (Step 1 in Section 6.8.2),

solution of the minimization problem defined in Eq. (6.27).

The effects of parameters γ , λ and θ on the reflected wave being uncoupled, the minimization

problem is reduced to three one-dimensional searches. The parameters are real and we use

∗ Fig. (6.6) to Fig. (6.9) are shown full-page at the end of this chapter, starting from page 160.

155



Chapter 6: Application to stochastic wave propagation over urban environments

a parabolic interpolation and the Brent’s method [see for example Press et al. , 1996b]. The

optimal parameters found from this minimization problem are

s
opt
1 =

(
γ opt

1
, λ opt

1 , θ opt
1

)

= (0.366, 1.004, 6.377) , (6.58)

for u1 and

s
opt
2 =

(
γ opt

2
, λ opt

2 , θ opt
2

)

= (0.107, 1.814, 21.362) , (6.59)

for u2.

Fig. (6.7) shows the experimental observations {Lexp
1 (ω ; ηj)}j and {Lexp

2 (ω ; ηj)}j for u1 and

u2 from the reference model together with their respective mean value estimates mLexp
1

and

mLexp
2

and the output from the updated mean model with s
opt
1 and s

opt
2 . Fig. (6.7) shows

that the updated mean model yields an excellent prediction with respect to the reference

model. However it should be noted that for u=u2 the reference model is sensitive around the

frequency 80 Hz. These variabilities will be taken into account by the probabilistic model in

the section below.

Identification of the optimal parameter of the stochastic model with a genetic

algorithm

The updated parameters of the mean model s
opt
1 and s

opt
2 are then used to define the reduced

admissible set W red of w, which is used to initialize the genetic algorithm. For the evaluation

of the mean-square norm the 0 Hz point is removed from the calculation and the probability

level used for the construction of the confidence region is Pc = 0.98. For the statistical reduc-

tion of information performed in the maximum likelihood method the order of decomposition

q (see Eq. (6.39)) is q = 12. With this order of decomposition, the accuracy ǫ in Eq. (6.43) is

such that ǫ < 10−3, meaning that at least 99.9 % of the information is contained within the

random variables {Y1 (w) , . . . , Y12 (w)}.
Concerning the genetic algorithm, the number of individuals in the population is set to ni =

50, for each individual ν = 500 observations from the stochastic model are generated and the

population evolved over 50 generations. At each generation, half the population is replaced

with children. The parameters ηc and ηm in Eqs. (6.52, 6.54), which control how well spread

are the children from the parents, are both set to 20, ensuring a diversified population.

Fig. (6.8) shows the values of the objective functions −Lred (w) and J (w) of the 50 individuals

at generation 1, 10 and 50 (the final generation) for both parameters u1 and u2. It can be
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seen that as the population evolves the values of the objective functions −Lred (w) and J (w)

decrease.

For the case where the urban environment is parametrized by u1 one can see that the first

generation of individuals (after one selection/mutation/recombination process) shows very

high dispersion on the objectives space and low performances (about half the individuals

are out of the range of the figure). The parameters chosen to initialize the population (see

Eqs. (6.47, 6.48)) are not adapted to this urban environment morphology. A ten-generation

evolutionary cycle allows us to obtain a population with acceptable performances: the log-

likelihood is reduced to about 23 000 and the mean-square norm is below 200. The population

at the final generation is diversified: the lowest log-likelihood is 20 020 (with a mean-square

norm close to 300) and the lowest mean-square norm is 84 (with a log-likelihood near 24 000).

The log-likelihood increases at the expense of the mean-square norm, and inversely. To select

the final individual one has thus to chose between the two objectives which one should be

favored, or accept a trade-off between the log-likelihood and the mean-square norm. Note that

despite the fact that the initial parameters are not adapted to the city morphology studied

the evolutionary algorithm achieves good performances.

For the case where the urban environment is parametrized by u2 one can see that the initial

population shows better results: mean-square norm is below 10 for 42 individuals. Indeed as

experimental observations from parameter u2 exhibit high dispersion and a low amplitude

range (mean value between -6 dB and +6 dB), and as the initial population is uniformly dis-

tributed on Wred, it is more likely that the experimental realizations belong to the confidence

regions of the stochastic model, hence the low mean-square norm values.

The chosen criteria to select the final individuals is the mean-square norm: individuals that

show the lowest mean-square norm are selected first and within the remaining individuals,

the individual that exhibits the highest log-likelihood value is selected. This way, the least

possible under-estimation of the experimental observations is achieved.

The corresponding optimal parameters w
opt
1 and w

opt
2 are

w
opt
1 =

(
mopt

Γ , mopt
Λ , mopt

Θ , σopt
Γ , σopt

Λ , σopt
Θ

)

= (0.213 , 0.984 , 5.136 , 0.140 , 0.023 , 0.143) , (6.60)

for u1 and

w
opt
2 =

(
mopt

Γ , mopt
Λ , mopt

Θ , σopt
Γ , σopt

Λ , σopt
Θ

)

= (0.262 , 1.776 , 20.575 , 0.132 , 0.091 , 5.036) , (6.61)

for u2.
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6.9.4 Solution of the stochastic propagation model, construction of confi-

dence regions and validation

Once the parameters w
opt
1 and w

opt
2 are identified for u1 and u2 one can solve the stochastic

equations Eqs. (6.24, 6.25) using the Monte-Carlo method with these parameters and con-

struct the associated confidence region as explained in Section 6.8.3. Confidence regions are

constructed with a probability level Pc = 0.98 and with ν = 500 realizations of the stochastic

model.

Fig. (6.9) shows the experimental observations {Lexp
1 (ω ; ηj)}j and {Lexp

2 (ω ; ηj)}j , their mean

values estimates and the confidence region calculated using the stochastic model and the mean

value of the stochastic model. As one can see the experimental observations belong to the

constructed confidence regions (except for the very lowest frequencies outside the range of

interest). For the configuration corresponding to u2, the confidence region calculated using

the stochastic model shows a broad confidence region in the very low frequency range. This

means that the underlying deterministic model used is not robust in this very low frequency

range with respect to statistical fluctuations generated by the probabilistic model.

6.10 Chapter summary and conclusions

In this work a stochastic model for long-range nonlinear sound propagation over urban en-

vironments has been developed. The mean propagation model is based on the Nonlinear

Parabolic Equation (NPE) model and its extension for propagation over porous ground layers.

This mean model exhibits low numerical cost but in counterpart induces model uncertainties

for simulation of sound propagation over urban environments. Indeed the high complexity

of the urban environment requires more advanced models. The mean propagation model is

hence improved introducing a probabilistic model of uncertainties, whose construction involves

several steps.

First, the urban city geometrical parameters distributions are determined using Informa-

tion Theory and the Maximum Entropy Principle. The Maximum Entropy Principle, which

maximizes the uncertainty in the system, yields the independence of the random variables

describing the urban city.

The stochastic propagation model contains three entities: two nonlinear parabolic propagation

equations for the air and the porous layer and a boundary interface condition used to couple

these two domains. The model is then adapted for the application of sound propagation over

urban environments. Three parameters that allow the output of the model to be controlled are

selected and their algebraic properties are described. With this information, the Maximum

Entropy Principle is used to determine their probability distributions.
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Once the probability distributions are determined the stochastic model parameter is identi-

fied with an evolutionary algorithm. This inverse stochastic problem involves two different

methods: the mean-square method, which aims at minimizing the areas where the exper-

imental observations do not belong to the confidence regions of the stochastic model, and

the maximum likelihood method, which aims at maximizing the likelihood between the ex-

perimental realizations and the observations from the stochastic model. In order to reduce

the computational effort associated with the standard maximum likelihood method, a sta-

tistical reduction of information is performed. It consists in a principal component analysis

of the observations. This allows one to use the maximum likelihood method in the space of

reduced random variables, which are by construction uncorrelated, and hence do not require

the fastidious evaluation of their joint probability distribution. So as to provide a robust

and accurate identification method, the mean-square method and the maximum likelihood

method are then used concurrently in an evolutionary algorithm. It consist of initializing a

population of individuals, some of which being selected based on non-domination to be the

parents of the next generation. The initial population is generated with the help of the mean

model. It was shown that the evolutionary algorithm provides robustness: even if the ini-

tial population exhibits poor performances, after only 10 generations one can obtain almost

optimal individuals.

Within the final generation one can find well diversified individuals: the evolutionary algo-

rithm returns individuals that optimize one objective at the expense of the second one. The

decisive criteria to select the final individual was chosen to be the mean-square norm. This

way the least possible underestimation of experimental observations is achieved. Once the

optimal parameter wopt of the stochastic model is determined it is used to solve the stochas-

tic equations with the Monte Carlo method. Confidence regions are then constructed and

compared to experimental observations. It was shown that the observations fall within the

confidence regions, except at the very lowest frequencies, independently of the amount of

dispersion in the real system. To put it simply, the highly complex surface that represent the

urban environment was successfully replaced by a stochastic but flat porous surface, which

allows statistics on the acoustic fields above this layer to be obtained.

The constructed model could thus be used to study nonlinear wave propagation in complex

environments. Features of outdoor sound propagation, such as dissipation effects or refraction

effects, are naturally present in the NPE model and can be incorporated in the stochastic

model. Thanks to the low numerical effort associated with this model, large parametric

studies could be performed, including most of the features of sound propagation outdoors.
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Figure 6.6: Comparisons of the reference model with the nominal model (initial mean model). Reference model (made up of 500

outputs (thin lines) and the mean values estimates mLexp

1
and mLexp

2
(thick blue lines)). Nominal model output Ls0

(dashed lines). The value of parameter u is u1 (top figure) and u2 (bottom figure).
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Figure 6.7: Comparisons of the reference model with the updated mean model. Reference model (made up of 500 outputs (thin

lines) and the mean values estimates mLexp

1
and mLexp

2
(thick blue lines)). Updated mean model output Lsopt (dashed

lines). The value of parameter u is u1 (top figure) and u2 (bottom figure).
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Figure 6.8: Values of the objective functions −Lred (w) and J (w) for the 50 individuals at generations 1 (circles), 10 (squares)
and 50 (final generation, stars). The value of parameter u is u1 (left figure) and u2 (right figure). Note that some
individuals are out of the figure ranges.
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Figure 6.9: Comparisons of the reference model with the confidence region calculated with the stochastic propagation model. Ref-
erence model (made up of 500 outputs (thin lines) and the mean values estimates mLexp

1
and mLexp

2
(thick blue lines)).

The confidence region calculated with the stochastic model is represented by the yellow area, delimited by thick black
lines. The value of parameter u is u1 (top figure) and u2 (bottom figure).163



Chapter 6: Application to stochastic wave propagation over urban environments
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Synthesis of the research and

perspectives

Synthesis of the research

The objective of this research was to develop a numerical tool for the study of blast wave

propagation in complex environments and over urban environments with application to the

risk assessment of industrial installations. The solution proposed in this document was the

following. Instead of using time consuming numerical methods it was chosen to develop a

simplified model. This mean propagation model allows one to get a raw approximation of the

propagation phenomenon. To enhance the model capabilities, it is associated a probabilistic

model of uncertainties to take into account the real system complexity, yielding a stochastic

propagation model.

The deterministic simplified model is based on the Nonlinear Parabolic Equation (NPE)

model. The assumptions used for the derivation of this model are: weak nonlinearities, weak

meteorological perturbations and a paraxial approximation. The original model is unable to

take into account ground topography or ground impedance.

The deterministic model is then extended to handle various features of sound propagation

outdoors. The terrain-following coordinates method is used to take into account ground

topographies. This model allows to simulate sound propagation over hilly urban areas. A

second NPE model is then developed for propagation within porous ground layers. Associated

with coupling equations, the complete NPE model allows wave propagation within a moving

atmosphere, over a non-flat, non-rigid ground surface to be simulated.
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Synthesis of the research and perspectives

The NPE model is numerically solved using the finite-difference method. Specifically, the op-

erator splitting method is used to solve for the different operators with specialized algorithms.

Nonlinear terms are solved using the Flux Corrected Transport (FCT) algorithm, which allows

discontinuities to be stably propagated. Linear terms are handled with the Crank-Nicolson

method, yielding tridiagonal systems of equations, solved with a fast algorithm (the Thomas

algorithm).

The validation procedure is separated in successive tasks. First, the NPE model is compared to

analytical solutions to assess the accuracy of nonlinear effects calculations. The implemented

NPE has been proved to accurately simulate wave steepening and harmonics generation with

a relative error lower than 5 % until the third harmonic. The computational model has then

been tested regarding meteorological conditions and compared to a frequency-domain imple-

mentation of the Parabolic Equation (PE). It appeared that Sound Pressure Levels (SPL)

are accurate within a 2 dB relative error range except on small localized areas. The Bound-

ary Element Method (BEM) is then used to perform simulation on a hilly terrain. It has

been shown that the terrain-following coordinates formulation of the NPE model is in good

agreement with the BEM results in the far-field. The performances of the NPE model for

propagation over porous ground layers are then assessed. For linear propagation, the results

obtained with this method have shown very good agreement with analytical solutions for a

wide range of ground properties. For high-amplitude waves, the NPE model produces time

signals comparable to those obtained by the numerical solution of Euler equations. The ap-

proximate method to include the Forchheimer nonlinearities in the two-way coupling has then

been proved to give satisfactory results and does not introduce any additional source of error

in the two-way coupling. The model validation finalizes the development of the deterministic

sound propagation model for high-amplitude wave propagation in complex media. The model

can account for most of the features of sound propagation outdoors (nonlinearities, refraction,

dissipation, topography and ground impedance effects) and has been shown to provide results

that are in very good agreement with other numerical models. Furthermore, the speed of the

NPE model makes it a good candidate for a basis of a stochastic sound propagation model.

The deterministic model is then associated a probabilistic model of uncertainties to handle

sound propagation over urban environments. First, the urban city geometrical parameters

distributions are determined using Information Theory and the Maximum Entropy Principle.

Three parameters that allow the output of the stochastic model to be controlled are then

selected and their algebraic properties are described. With this information, the Maximum

Entropy Principle is used to determine their probability distributions. Once the probability

distributions are determined the stochastic model parameter is identified solving an inverse

stochastic problem. This problem involves two different methods: the mean-square method

and the maximum likelihood method. In order to reduce the computational effort associ-
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Perspectives

ated with the standard maximum likelihood method, a statistical reduction of information is

performed. So as to provide a robust and accurate identification method, the mean-square

method and the maximum likelihood method are then used concurrently in an evolutionary

algorithm. Once the optimal parameter of the stochastic model is determined it is used to

solve the stochastic equations with the Monte-Carlo method. It was shown that the observa-

tions fall within the confidence regions, except at the very lowest frequencies, independently

of the amount of dispersion in the real system. The complex surface that represents the urban

environment was successfully replaced by a stochastic but flat porous surface.

Perspectives

On the deterministic NPE model. The deterministic NPE model used is based on ex-

isting work presented in Chapter 2, and is further extended in Chapter 3. This model can

handle most of the features of sound propagation outdoors and can thus be used to study

shock wave propagation in complex media, including the effects of meteorological conditions,

topography and ground impedance, or thermoviscous effects. It hence provides a complete,

accurate and fast simulation tool, perfectly suited for the study of, for example, sonic boom

propagation, infra sound propagation, evaluation of noise from military tests, etc.

On the probabilistic approach of uncertainties. When comes the choice of a numerical

model for the study of a particular problem, one ideally chooses the most accurate model with

respect to the physical phenomenon involved. In practice, one must usually accept a trade-off

between the model accuracy and its complexity (related to its numerical implementation,

computational times, cost, etc.), so that the choice of a numerical model is often reduced to

the question “What trade-off is acceptable? ”. Without references (measured data or solutions

from a reference numerical model) or a solid experience of a specific numerical model, assessing

the model accuracy is a difficult task [Wilson & Petit, 2009].

We used in this work a quite different approach from classical sound propagation models.

We voluntarily choose a (too!) simple model for the physical phenomenon involved, so that

the trade-off would not be acceptable. For example, back-scattering between buildings, which

plays an important role in the propagation process, is totally absent from the NPE model. This

physical phenomena and others (and their coupling) are all accounted for in the probabilistic

model of uncertainties. This method for designing numerical models can be applied to a

wide varieties of physical problems, and most of the time provides very rich and interesting

answers. The key question is now “How well can the probabilistic model account for the

real system complexity? ”. Considering that the probabilistic model of uncertainties is not

restricted by physical parameters, it is often possible to derive sufficiently robust models.
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Synthesis of the research and perspectives

On the stochastic NPE model for the study of blast wave propagation. This

research corresponds to a first step in which the propagation models are developed in 2D.

The main perspective is the extension of the different models in 3D. The method presented in

this document is very general and nothing prevents this extension to be performed. However,

computations for three dimensional cases seem a quite computationally intensive task. In this

case, in order to obtain reference solutions, measured data or measurements on scale models

should be preferred instead of numerical calculations with the BEM.

The simulation tool developed could be used to perform risk assessment of industrial instal-

lations. A complete two-dimensional stochastic simulation, once the reference solutions are

obtained and the optimal parameter is identified, takes about an hour to complete on one CPU.

This would enable the use of the model for overpressure mapping. A complete map could be

obtained in about two days (about 50 compass directions). Moreover, the information on the

maps could be improved in two ways.

1. First, “conditional maps” could be obtained. Indeed, as we saw in Chapter 1, meteo-

rological effects can yield strong shadow zones, or can produce a double echo. Taking

into account this feature would allow one to produce maps related to the local (in space

and time) meteorological conditions.

2. The model could be used to produce “statistical maps”. Considering the high variability

of the system considered one may wonder what the induced variability on the over-

pressure levels is. The stochastic model allows one to provide a maximum overpressure

value with an associated probability level, which is, in the frame of risk assessment, and

in the author’s opinion, much more pertinent than a single overpressure value.

Concerning the practical use of the models proposed in this work, an improvement would be

the construction of the function (polynomial expression, neural network approach, etc.) that

relates the optimal parameter wopt to the urban city geometrical parameters u.

Future research with the stochastic NPE model. The stochastic NPE model can be

used to lead some research on wave propagation in random media. Specifically, the acoustical

consequences of propagation through regularly or randomly spaced obstacles can be observed.

The model can also be used to study wave scattering with respect to the scatterers properties

(density, characteristic size, shape, etc.). Among propagation in urban environments, room

acoustics, and specifically the study of acoustic diffusers, is a field where the stochastic sound

propagation model developed could provide interesting solutions.
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A
Blast wave overpressure values and

corresponding damage to structures

and injuries to people, from different

sources

This appendix presents figures found in the literature for some overpressure values and the

corresponding damage to constructions and injuries to people from different sources.

A.1 Overpressure values and corresponding damage to struc-

tures

Tabs. (A.1, A.2) presents overpressure values and corresponding damage to structures found

in Lannoy [1984]; Lees [1996] and TNO [1989].

A.2 Overpressure values and corresponding injuries

Tab. (A.3) presents overpressure values and corresponding injuries found in Lees [1996]; TNO

[1989]; Baker et al. [1983].
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Overpressure values and corresponding damage and injuries

Table A.1: Overpressure values and corresponding damage to structures from Lannoy [1984]
and Lees [1996].

Overpressure (kPa) Damage

1–7 Breakage of windows

3 Light damage to structures

10 Destruction of window frames

14 Partial collapse of walls and tiles

16 Lower limit for heavy damage to structures

17 50% deterioration of brick houses

25 Destruction of light buildings and storage tanks

50 Total destruction of houses

70 Total destruction of reinforced buildings

Table A.2: Overpressure values and corresponding damage to structures from TNO [1989].

Overpressure (kPa) Damage

83 Total destruction of structures

35 Heavy damage to structures

17 Moderate damage to structures

3.5 Light damage to structures

Table A.3: Overpressure values and corresponding injuries to people from various sources

Effects Overpressure (kPa) Reference

Lethal (lung hemorrhage, 99%) 70 TNO [1989]

Eardrum rupture 34 TNO [1989]

Lethal (indirect effects) 14 Lees [1996]

Baker et al. [1983]

Irreversible damage 5 Lees [1996]
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B
Kinney–Graham model

Kinney & Graham [1988] derived analytical solutions for the propagation of blast waves for

spherical charges in free field. The model gives the pressure history p (t) at a given reduced

distance in an homogeneous medium, for an equivalent charge W of TNT.

The waveform is given by

p (t) = p0

(
1 − t/t

+

)
eαt/t

+ , (B.1)

where p (t) is the overpressure at time t, p0 is the peak overpressure at time t = 0 (t = 0 at

the shock arrival time) and t
+

is the positive phase duration. For a chemical explosion, the

ratio of the overpressure to the ambient pressure pa can be calculated with

p0

pa
=

808
[
1 +

(
Z
4.5

)2]

√
1 +

(
Z

0.048

)2√
1 +

(
Z

0.32

)2√
1 +

(
Z

1.35

)2 , (B.2)

in which Z is a reduced distance which units is
[
m/kg1/3

]
. The positive phase duration t

+

is calculated with

t
+

W
=

980
[
1 +

(
Z

0.54

)10]

[
1 +

(
Z

0.02

)3] [
1 +

(
Z

0.74

)6]√
1 +

(
Z

16.9

)2 . (B.3)

The arrival time ta (t=0 in Eq. (B.1)) is defined by

ta =
1

c0

∫ r

rc

[
1

1 + 6p0

7pa

]
dr , (B.4)

where rc is the charge radius and r is the distance from the source. The shape parameter α
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Kinney-Graham model

is determined with the help of the impulse per unit surface I/A, defined by

I/A =

∫ t
+

0
p (t) dt = p0t+

[
α−1 − α−2

(
1 − e−α

)]
, (B.5)

with

I/A =
0.067

√
1 +

(
Z

0.23

)4

Z2 3

√
1 +

(
Z

1.55

)3 . (B.6)

With this set of equations, time waveforms (and hence spatial waveforms) can be calculated.

Examples of blast waveforms calculations using the Kinney–Graham (KG) model can be found

in Section 1.3.6.
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C
Numerical solution to Euler Equations

for propagation over a porous ground

layer

This appendix briefly presents the numerical solution and the associated algorithms used to

solve the Euler equations in Section 5.4.2.

The computational domain is composed of an air and a ground layer. For the air layer and

in a two-dimensional Cartesian coordinate system the constitutive equations are such that

∂tρT + ∂x (ρTu) + ∂z (ρTw) = 0 , (C.1a)

∂t (ρTu) + ∂x

(
ρTu

2
)

+ ∂z (ρTuw) = −∂xpT , (C.1b)

∂t (ρTw) + ∂x (ρTuw) + ∂z

(
ρTw

2
)

= −∂zpT , (C.1c)

∂t (ρT e0) + ∂x (ρTue0) + ∂z (ρTwe0) = −∂x (pTu) − ∂z (pTw) , (C.1d)

where e0 is the energy per unit mass. Within the ground layer momentum conservation

equations write

Φ∂t (ρTu) + ∂x

(
pT + ΦρTu

2
)

+ ∂z (ΦρTuw) + σ0Ω0 (1 + ξ |u|)u = 0 , (C.2a)

Φ∂t (ρTw) + ∂z

(
pT + ΦρTw

2
)

+ ∂x (ΦρTuw) + σ0Ω0 (1 + ξ |w|)w = 0 . (C.2b)

The energy equation Eq. (C.3) and the ideal gas law Eq. (C.4) close the equation system.

They are defined by

ρT e0 = ρT cvT +
ρT |V|2

2
, (C.3)
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Euler equations numerical solution

and

pT = ρTRT , (C.4)

in which T is the gas temperature, cv is the specific heat capacity at constant volume and

R is the gas constant. To solve this equation system a Weighted Essentially Non-Oscillatory

(WENO) algorithm [see Shu, 1998] for space discretization and a third-order Total Variation

Diminishing (TVD) scheme [see Press et al. , 1996a] for time marching are used.

The WENO scheme has fifth-order accuracy. The main principle of the WENO scheme is the

use of multiple stencils to evaluate the derivative at a given point. The algorithm first deter-

mines where there is a discontinuity and then weights stencils accordingly to avoid spurious

numerical oscillations. This features make the WENO scheme accurate for propagating shock

waves.

The time discretization scheme is of the form

w(1) = wn + ∆tKn, (C.5a)

w(2) =
3

4
wn +

1

4
w(1) +

1

4
∆tK(1), (C.5b)

wn+1 =
1

3
wn +

2

3
w(2) +

2

3
∆tK(2) , (C.5c)

where, for the air layer, wn is the solution vector at time iteration n, such that

wn =




ρT

ρTu

ρTw

ρT e0




n

, (C.6)

and K(i) is the right hand side of the equation system, i.e.

K(i) = − ∂x




ρTu

ρTu
2

ρTuw

ρT e0u




(i)

− ∂z




ρTw

ρTuw

ρTw
2

ρT e0w




(i)

−




0

∂xpT

∂zpT

−∂x (pTu) − ∂z (pTw)




(i)

. (C.7)

Note that for the ground layer, wn and K(i) have to be modified according to Eqs. (C.2).
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Although the combination of WENO and Runge–Kutta (RK) schemes allow discontinuities to

be stably propagated, it is unable to propagate waves of infinite slope. A shock smearing will

occur where the slope is too steep, resulting in small deviations from physical solutions for

very high amplitude waves.
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Euler equations numerical solution
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D
Nonlinear Parabolic Equation model

derivation without the use of the

perturbation expansion method

The derivation of the constitutive equations that yields the Nonlinear Parabolic Equation

(NPE) model is rewritten in a Cartesian, two-dimensional coordinate system. The procedure

presented here does not use the perturbation expansion method as in Section 2.1, but rather

makes use of specific assumptions about the flow movement. The aim of this section is to

provide the reader a different insight to the NPE model. The derivation is taken from the

article by Caine & West [1995].

The Cartesian formulation of the continuity equation is

∂tρT + ∂x (ρTu) + ∂z (ρTw) = 0 . (D.1)

Notations and variables are identical to the ones used in Chapter 2. It is assumed that the

flow is irrotational in the z-direction; this allows us to get an expression for the z-component

of the flow velocity vector, such that

∂zu = ∂xw , (D.2)

or

w =

∫
∂zu dx . (D.3)

Replacing Eq. (D.3) in Eq. (D.1) yields

∂tρT + ∂x (ρTu) + ∂z

(
ρT

∫
∂zu dx

)
= 0 . (D.4)
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NPE model derivation without the use of the perturbation expansion method

One has now to determine an expression for the quantity u (ρT ). The momentum equation

along the x-axis is used. This equation is defined by

∂t (ρTu) + ∂x

(
pT + ρTu

2
)

+ ∂z (ρTuw) = 0 . (D.5)

Integrating with respect to time leads us to an expression for ρTu, such that

ρTu = −
∫ [

∂x

(
pT + ρTu

2
)

+ ∂z (ρTuw)
]
dt . (D.6)

Substituting Eq. (D.6) in Eq. (D.4) yields

∂tρT − ∂x

{∫ [
∂x

(
pT + ρTu

2
)]
dt

}
− ∂x

[∫
∂z

(
ρTu

∫
∂zu dx

)
dt

]

+ ∂z

[
ρT

(∫
∂zu dx

)]
= 0 . (D.7)

The last term in equation Eq. (D.7) is associated with diffraction in the z-direction. Since the

term ∂x

[∫
∂z

(
ρTu

∫
∂zu dx

)
dt

]
represents contributions not predominantly in the propa-

gation direction and is of second order, one chooses to discard it. One obtains

∂tρT − ∂x

{∫ [
∂x

(
pT + ρTu

2
)]
dt

}
+ ∂z

[
ρT

(∫
∂zu dx

)]
= 0 . (D.8)

The pressure pT and the flow velocity component u are now developed with Taylor series,

such that

pT = p (ρ0) +

(
∂p

∂ρ

)

0

(ρT − ρ0) +
1

2

(
∂2p

∂ρ2

)

0

(ρT − ρ0)
2 + · · · , (D.9)

and

u =

(
∂u

∂ρ

)

0

(ρT − ρ0) +
1

2

(
∂2u

∂ρ2

)

0

(ρT − ρ0)
2 + · · · . (D.10)

To the first order, we obtain from Eq. (D.10)

u =
c0
ρ0
ρ′ . (D.11)

Replacing this expression in Eq. (D.8) yields

∂tρT − ∂x

{∫
∂x

(
pT + ρTu

2
)
dt

}
+ c0∂

2
z

{∫
ρ′ dx

}
= 0 . (D.12)
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The integral in Eq. (D.12) can be removed by differentiating Eq. (D.12) with respect to time,

such that

∂2
t ρ

′ − ∂2
x

(
pT + ρTu

2
)

+ c0∂
2
z

(∫
∂tρ

′ dx

)
= 0 . (D.13)

The term ∂tρ
′ can be simplified by using a one-dimensional linearized momentum equation

since one has only to maintain first-order accuracy in this term. The linearized momentum

equation is

∂tρ
′ = −c0∂xρ

′ , (D.14)

which yields

∫
∂tρ

′ dx = −c0ρ′ . (D.15)

Eq. (D.13) becomes

∂2
t ρ

′ − ∂2
x

(
pT + ρTu

2
)
− c20∂

2
zρ

′ = 0 (D.16)

Note that the classical (linear) wave equation can easily be derived from Eq. (D.16). If the

ambient medium pressure is constant then pT = p0 + p′ = p0 + c20ρ
′ in the linear case. If high

order terms are neglected one gets

∂2
t ρ

′ − c20∇2ρ′ = 0 , (D.17)

which is the well-known wave equation.

A one-way propagation is now assumed, i.e. there is no backward propagation. Thanks to

this new assumption Eq. (D.16) can be rewritten in a wave-following coordinate system. A

“moving window” operator is introduced, such that

Dt = ∂t + c0∂x . (D.18)

It can be proved that D2
t ρ

′ ≃ 0 [see Caine & West, 1995, and Section 2.1.2]; one then obtains

∂2
t ρ

′ = −2c0∂xDtρ
′ − c20∂

2
xρ

′ , (D.19)

and Eq. (D.16) becomes

∂xDtρ
′ +

1

2c0
∂2

x

[
pT + ρTu

2 + c20ρ
′
]
+
c0
2
∂2

zρ
′ = 0 (D.20)
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NPE model derivation without the use of the perturbation expansion method

Assuming a spatially-varying sound speed c (x, z), we define a sound speed perturbation

c1 (x, z), such that

c1 (x, z) = c (x, z) − c0 . (D.21)

So that a second order accuracy can be retained in Eq. (D.20), pT is transformed with the

help of Eqs. (D.9, D.10) with the derivatives coefficients corresponding to an isentropic flow,

i.e.

(
∂ρ′p

′
)
0

= c2 , (D.22)

and

(
∂2

ρ′2p
′
)

0
=
c2

ρ0
(γ − 1) . (D.23)

One hence obtains the following expression for the total pressure pT .

pT ≃ p0 + c2ρ′ +
1

2

(γ − 1) c2

ρ0
ρ′2 (D.24a)

u ≃ c
ρ′

ρ0
. (D.24b)

Carrying out the replacements in the equations above, integrating with respect to x and

replacing the density perturbation ρ′ by the dimensionless variable R=
ρ′

ρ0
lets one finally

obtain an expression for the NPE in a two-dimensional Cartesian coordinates system, defined

by

DtR+ ∂x

(
c1R+ c0

β

2
R2

)
+
c0
2
∂2

z

(∫
Rdx

)
= 0 (D.25)

The equation above is the original formulation of the Nonlinear Parabolic Equation (NPE),

as defined by Eq. (2.19).
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E
Crank-Nicolson method and Thomas

algorithm

E.1 Crank-Nicolson method

The Crank-Nicolson method is a finite-difference scheme used to numerically solve differential

equations such as the heat equation. The method was developed by John Crank and Phyllis

Nicolson in the mid twentieth century. The scheme is second order in time, and stable for

all time step ∆t. It involves taking the space derivatives half way between the beginning and

the end of the time space, i.e.

∂u

∂x
≡ 1

2

[
un+1

i+1,j − 2un+1
i,j + un+1

i−1,j

2δx
+
un

i+1,j − 2un
i,j + un

i−1,j

2δx

]
, (E.1a)

∂2u

∂x2
≡ 1

2

[
un+1

i+1,j − 2un+1
i,j + un+1

i−1,j

δx2
+
un

i+1,j − 2un
i,j + un

i−1,j

δx2

]
. (E.1b)

It is hence an average between fully explicit and fully implicit models of PDE’s. This is where

the second order convergence comes from. This yields a tridiagonal linear equation system

that can quickly be solved with a Thomas algorithm (see below).

E.2 Thomas algorithm

Semi-implicit schemes such as the Crank-Nicolson scheme require a linear system of equations

to be solved. If centered first-order finite-difference approximations of the derivatives are used

then the left-hand-side matrix is tridiagonal. The Thomas algorithm is an efficient method
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Crank-Nicolson method and Thomas algorithm

to solve the system [B]u = d where [B] is tridiagonal and of size N ×N such that

[B] =




α1 β1

γ1 α2 β2

. . .
. . .

. . .

γN−2 αN−1 βN−1

γN−1 αN




. (E.2)

The Thomas algorithm is decomposed in three steps:

◮ a Lower/Upper (LU) decomposition,

◮ a forward substitution,

◮ and a backward substitution.

Step 1, LU decomposition. The matrix [B] can be decomposed in a lower bidiagonal matrix

and an upper bidiagonal matrix, such that

[L] =




1

l1 1

. . .
. . .

lN−1 1




, (E.3)

and

[R] =




m1 r1

. . .
. . .

mN−1 rN−1

mN




. (E.4)

One can note that ri = βi for all i; the coefficients mi and li can be obtained as
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follows.

m1 := α1

For i = 1, 2, · · · , N do:

li := γi/mi

mi+1 := αi+1 − liβi

(E.5)

Step 2, forward substitution. The system [L]y = d is solved. One has

y1 := d1

For i = 2, · · · , N do:

yi := di − li−1yi−1

(E.6)

Step 3, backward substitution. The system [R]u = y is solved. One has

uN := yN/mN

For i = N − 1, N − 2, · · · , 1 do:

ui := (yi − βiui+1) /mi

(E.7)

183



Crank-Nicolson method and Thomas algorithm
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F
The Boundary Element Method

The Boundary Element Method (BEM) is a numerical method that arose from the theory of

Boundary Integral Equations (BIE) during the sixties. The reader may refer to the book by

Ciskowski & Brebbia [1991] for a complete description of the BEM. This method has been

developed alternatively to another family of numerical methods, the Finite-Element Method

(FEM), particularly for propagation problem involving infinite domains. Indeed, the BEM is

well suited for infinite domains since only the boundary has to be discretized while for the

FEM, the whole domain has to be meshed. The BEM allows the dimensionality of the problem

to be reduced, since the acoustic field in the domain is calculated with its boundary radiation.

Moreover, the Sommerfeld radiation condition is satisfied by integral formulations.

The numerical implementation MICADO used in this work is based on the direct integral

formulation [see Jean, 1998]. The pressure p (M) at any point M in the domain Ω must

satisfy the Helmholtz equation, defined by

(
∆ + k2

)
p (M) = f (M) , M ∈ Ω , (F.1)

in which f (M) is a source distribution and k is the wave number. Using the Green function G

and the Sommerfeld radiation condition and after a few algebraic manipulations one obtains

c (M) p (M) = p0 (M) +

∫

σ
[p (M) ∂nS

G (S,M) −G (S,M) ∂nsp (M)] dS , M ∈ Ω , (F.2)

where ns is the outward normal to the surface σ and c (M) is a coefficient depending on the

receiver position M such that

c (M) = 1 for M in Ω, except on its boundary , (F.3a)

c (M) =
1

2
for M on a plane , (F.3b)

c (M) = 1 − θ

4π
if M is an angular point . (F.3c)
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The Boundary Element Method

The implementation of the BEM used in this work (MICADO) is based on the variational

approach. The geometry of the problem is two-dimensional : the source is an infinite coherent

line of sources and the configuration remains unchanged in the direction perpendicular to the

vertical plane.
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Résumé long en français

1 Introduction générale et travail proposé

Ce travail intitulé Propagation d’ondes acoustiques non linéaires en milieu complexe – Applica-

tion à la propagation en environnement urbain trouve son origine dans des évènements comme

l’explosion de l’usine AZF à Toulouse en septembre 2001. Cette explosion fut responsable de

trente victimes, de milliers de blessés et coûta plus de 2 milliards d’euros à la communauté.

Il y a encore aujourd’hui certains faits de cet évènement qui restent incompris. La présence

d’un double écho entendu par certains témoins reste notamment sans explication.

Ce travail de recherche tente d’apporter une réponse à cette problématique en proposant le

développement d’un outil de simulation numérique pour l’étude de la propagation d’ondes

de choc en milieu complexe. Cette application rentre dans le cadre général de l’acoustique et

plus particulièrement de l’acoustique environnementale.

Propagation acoustique en milieu complexe

La propagation d’ondes acoustiques en milieu extérieur tel que sur un environnement urbain

et sur de longues distances implique la prise en compte de nombreux phénomènes du milieu

de propagation :

– l’absorption atmosphérique, pouvant être importante compte tenu des distances considérées,

– les effets de refraction dus aux conditions météorologiquies (gradients de vitesses de vent

ou de température)

– les effets du sol (par sa topographie et son impédances) modifiant la façon dont les ondes

sont réfléchies.

Compte tenu des grandes amplitudes en jeu lors de l’explosion, les effets non linéaires sont

importants et provoquent la formation d’un choc, ayant pour conséquences :

– la génération d’harmoniques,

– la coalescence des chocs,

– et une dissipation anormale au front de choc.

Les effets combinés des propriétés du milieu de propagation et des effets des grandes ampli-

tudes impliquent l’utilisation de modèles et méthodes numériques avancées.

xxvii



Résumé long

Travail de recherche proposé

Un phénomène de la propagation du son en milieu extérieur non traité jusqu’à maintenant

concerne la diffusion liée à de multiples diffractions en milieu ouvert causée par l’environ-

nement urbain sur le trajet de l’onde. Plus précisément, on s’intéresse à l’effet de la canopée

urbaine sur le champ acoustique dans la couche atmosphérique planétaire.

Cette problèmatique pourrait être étudiée à l’aide de modèles numériques dans lesquels la

géométrie du site est rentrée explicitement dans le modèle. Par exemple, les méthodes de

type lancer de rayons ou la solution des équations d’Euler sont techniquement viables pour

ce genre d’applications. Ces méthodes souffrent cependant de temps de calculs prohibitifs,

et compte tenu des incertitudes sur les paramètres du modèle (dimensions des bâtiments) le

modèle pourrait être amélioré par l’utilisation d’un modèle probabiliste d’incertitudes.

On propose donc dans ce travail une approche différente de la solution purement numérique.

On choisit de modéliser la propagation dans le milieu composé de l’atmosphère et de la couche

urbaine dont le modèle moyen est simplifié. La propagation dans la couche atmosphérique est

prise en compte par un modèle d’Équation Parabolique Nonlinéaire (NPE). La propagation

dans la couche urbaine est prise en compte par un modèle NPE de propagation dans un milieu

poreux.

Ce modèle permet de construire une première approximation qui sera améliorée en prenant en

compte la complexité du système réel. C’est pour cela que l’on introduit un modèle probabiliste

d’incertitudes au modèle NPE.

Le travail de recherche présenté dans ce document peut être séparé en deux tâches distinctes :

1. Développement d’un modèle déterministe NPE pour la propagation d’ondes de grandes

amplitudes en milieu complexe au-dessus d’un milieu poreux.

2. Développement d’un modèle probabiliste associé au modèle NPE pour la prise en compte

des effets de l’environnement urbain sur la propagation de l’onde.

Le développement du modèle déterministe NPE est résumé dans le paragraphe 2 et la construc-

tion du modèle probabiliste d’incertitudes est détaillée dans le paragraphe 3. Une synthèse de

ce travail et quelques perspectives de recherche sont présentées en paragraphe 4.

2 Développement d’un modèle NPE pour la propagation en

milieu complexe – Aspects déterministes

Méthodologie

L’effet de sols non plans sur la propagation est pris en compte grâce à la méthode de trans-

formées conformes. Cette transformation des coordonnées permet de prendre en compte la
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topographie du site de façon analytique (et non numérique) dans le modèle NPE. Il faut

cependant noter que, pour que la méthode soit exacte et à cause de l’approximation paraxiale

inhérente aux modèles NPE, la pente du terrain doit rester faible.

On développe ensuite un modèle NPE pour la propagation dans les matériaux poreux. Ce

modèle est basé sur une extension non linéaire du modèle de Zwikker–Kosten (ZK) [voir

Zwikker & Kosten, 1949], dans lequel le sol est caractérisé par quatre paramètres :

– la tortuosité Φ,

– la porosité Ω0,

– la résistivité à l’air σ0,

– et le coefficient de Forchheimer ξ.

Le modèle développé est similaire au modèle NPE pour la propagation atmosphérique, mais

contient des termes supplémentaires pour prendre en compte les propriétés du sol poreux.

Afin de développer un modèle NPE de propagation au-dessus de couches poreuses, on développe

ensuite une condition d’interface permettant de coupler les deux domaines (air et sol poreux).

Ces équations de couplages impliquent uniquement des dérivés et intégrales spatiales, rendant

son implémentation au sein du modèle existant directe et naturelle. La formulation de cette

condition d’interface pour les sols non plans et multi-couches est également donnée.

Implémentation numérique du modèle

La méthode des différences finies et le principe de séparation des opérateurs différentiels sont

utilisés pour la résolution numérique du modèle NPE. La séparation des opérateurs consiste à

utiliser des algorithmes spécialisés pour chaque terme. Ceci implique, de façon implicite, que

les effets des différents opérateurs sont découplés sur le pas d’intégration temporel.

Pour la solution des termes non linéaires, on utilise l’algorithme Flux-Corrected Transport

(FCT). Cette méthode permet de propager des discontinuités de façon stable et sans introduire

d’oscillations numériques.

Pour les termes linéaires, on utilise un schéma de différences finies semi implicite : la méth-

ode de Crank-Nicolson. Le schéma est inconditionnellement stable et donne des systèmes

d’équations tri diagonaux, résolus par l’algorithme de Thomas.

Validation du modèle

La validation du modèle déterministe est réalisée en plusieurs étapes successives.

Le modèle NPE est d’abord comparé aux solutions analytiques pour la propagation d’ondes de

grandes amplitudes en une dimension. Les résultats du modèle numérique sont comparés aux

solutions de Fubini [1935]. L’erreur relative sur l’amplitude de la fréquence fondamentale et
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sur les deux harmoniques supérieures est toujours inférieure à 5 %. Le modèle NPE implémenté

permet donc de prendre en compte les effets non linéaires de façon précise.

Le modèle est ensuite testé par rapport aux conditions météorologiques. On utilise une implé-

mentation de l’équation parabolique fréquentielle comme référence. Il apparaît que les niveaux

de pression calculés sont précis à 2 dB près, à l’exception de quelques zones locales où le niveau

diffère par au plus 4 dB. Ce cas de validation prouve aussi la faisabilité du couplage entre le

modèle NPE et d’autres codes de propagation, ici l’équation parabolique fréquentielle.

Pour évaluer la précision du modèle NPE pour la propagation sur sols non plans, une implé-

mentation de la méthode des éléments de frontière (BEM) est utilisée comme référence. Les

résultats du modèle GT–NPE sont en accord avec les prévisions de la méthode BEM.

La dernière étape de la procédure de validation du modèle concerne la propagation au-dessus

de sols poreux. Pour la propagation d’ondes de faibles amplitudes, on utilise la solution des

équations d’Helmholtz en deux dimensions comme référence. Les niveaux de pression sont

en parfait accord avec les prévisions analytiques. Pour la propagation d’ondes de grandes

amplitudes, une implémentation des équations d’Euler est utilisée. Les signaux issus des deux

méthodes sont comparables. L’erreur relative sur le pic de pression positive est indépendante

des propriétés du sol, alors que l’erreur relative sur la durée de phase positive croît lorsque la

résistivité du matériau diminue. Cependant, même pour des valeurs très faibles de résistivité,

le modèle NPE produit des résultats en accord avec la solution de référence. Il est également

prouvé que les effets des non linéarités de Forchheimer sur les signaux sont correctement

reproduits par le modèle de propagation développé.

Ce paragraphe finalise la construction du modèle de propagation déterministe d’ondes de

grandes amplitudes en milieu complexe. Le modèle permet de prendre en compte la majorité

des phénomènes intervenant lors de la propagation du son en milieu extérieur de façon précise,

et, de part sa simplicité, permet de réaliser des simulations en des temps très courts (de l’ordre

de quelques minutes sur un seul processeur). Cette propriété permet d’utiliser le modèle

comme base pour la construction d’un modèle de propagation stochastique résolu par la

méthode de Monte-Carlo. Dans le paragraphe suivant, on détaille la construction du modèle

probabiliste d’incertitudes pour la prise en compte de l’environnement urbain sur le trajet de

l’onde.
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3 Développement d’un modèle probabiliste d’incertitudes – Ap-

plication à la propagation stochastique non linéaire en milieu

urbain

Le modèle moyen est donc basé sur l’Équation Parabolique Nonlinéaire (NPE) et son extension

à la propagation au-dessus de sols poreux. Ce modèle moyen permet de réaliser des simulations

dans des temps très courts, mais en contrepartie ne donne qu’une première approximation

pour la simulation de la propagation au-dessus d’environnements urbains. On cherche donc

à améliorer le modèle de propagation moyen à l’aide d’un modèle probabiliste d’incertitudes.

Cette section en décrit les principales étapes de construction.

On utilise en premier lieu la Théorie de l’Information et le principe du maximum d’entropie

afin de déterminer les densités de probabilité des paramètres géométriques de l’environnement

urbain. Ces paramètres géométriques sont caractérisés par un vecteur de paramètres que l’on

note u. Le principe du maximum d’entropie, qui maximise l’incertitude du système sous les

contraintes définies par l’information disponible, conduit à l’indépendance des variables aléa-

toires décrivant l’environnement urbain. Différentes réalisations de canopées urbaines peuvent

donc être générées, et ensuite utilisées dans un modèle de propagation exact (ici une implé-

mentation de la BEM) afin d’obtenir des solutions de référence.

Le modèle de propagation NPE stochastique est paramétré par trois variables aléatoires. Leurs

propriétés algébriques permettent l’utilisation du maximum d’entropie pour la détermination

de leurs distributions de probabilités respectives. Ces distributions dépendent d’un vecteur

de paramètres noté w.

Le paramètre w est ensuite identifié en inverse par rapport au paramètre u. En d’autres

termes, on cherche à connaître (de façon numérique) la relation entre les paramètres de

l’environnement urbain (par exemple hauteur moyenne des bâtiments et dispersion associée)

et les paramètres de la couche poreuse du modèle stochastique. On utilise deux méthodes

pour résoudre ce problème inverse :

– la méthode dont la fonction coût est la norme de la moyenne d’ordre deux, qui permet de

minimiser les zones où les observations expérimentales n’appartiennent pas à la région de

confiance du modèle stochastique,

– et la méthode du maximum de log-vraisemblance, qui permet de maximiser la vraisemblance

entre les observations expérimentales et les observations du modèle stochastique.

Concernant la méthode du maximum de log-vraisemblance, on utilise une méthode de ré-

duction de l’information, afin de réduire l’effort de calcul. La méthode consiste à procéder à

une analyse en composantes principales des observations. Cela permet d’utiliser la méthode

du maximum de log-vraisemblance dans un espace réduit de variables aléatoires décorrél-

lées, et ainsi d’éviter l’évaluation fastidieuse de leur densité de probabilité jointe. Ces deux
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méthodes sont ensuite utilisées conjointement dans un algorithme d’optimisation génétique

multi-objectifs.

Une fois que le paramètre optimal wopt est identifié il est utilisé pour résoudre les équa-

tions stochastiques par la méthode de Monte-Carlo. Les régions de confiance sont ensuite

construites et comparées aux données de référence. La région de confiance enveloppe les ob-

servations expérimentales sur la quasi totalité du spectre, à l’exception d’une zone en très

basses fréquences, et ce quel que soit la dispersion du système réel.

4 Synthèse du travail et perspectives

Synthèse du travail

L’objectif de ce travail de recherche était de développer un modèle de simulation numérique

pour la propagation des ondes de grandes amplitudes en milieu complexe incluant un envi-

ronnement urbain. La solution proposée dans ce document utilise un modèle de propagation

simplifié, l’Équation Parabolique Nonlinéaire (NPE). Ce modèle est d’abord étendu pour

pouvoir prendre en compte les effets de sol et d’environnements urbains dans la propaga-

tion (topographie et diffusion par le milieu urbain). Les solutions numériques de ce modèle

sont obtenues grâce à la méthode des différences finies. On a montré que ces solutions sont

en accord avec les résultats donnés par d’autres méthodes numériques. On améliore ensuite

les performances du modèle pour la propagation au-dessus d’environnements urbains en lui

associant un modèle probabiliste d’incertitudes. Ce modèle est construit en utilisant les méth-

odes générales à la théorie des probabilités. On montre enfin que ce modèle de propagation

stochastique NPE présente de très bons résultats, quelque soit le niveau de dispersion sur la

diffusion induite par les multiples diffractions dans le milieu urbain.

Perspectives

Ce travail de recherche correspond à une première étape pour laquelle l’ensemble des modèles

a été développé en 2D. La principale perspective est l’extension de ces modèles en 3D, sachant

qu’il n’y a pas de difficultés particulières pour une telle extension. Concernant la validation

expérimentale il y aurait alors lieu de réaliser des mesures sur maquettes pour obtenir les

solutions de référence à la place de simulations numériques 3D avec la BEM.

L’outil développé peut être utilisé pour la cartographie dans le cadre de la prévention et de la

maîtrise des risques. Une simulation complète en 2D, une fois que les solutions de référence

sont obtenues, nécessite environ 1 heure de calcul sur un processeur. Cela permet de réaliser
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une cartographie complète en environ deux jours de calcul pour un processeur (50 directions

angulaires). De plus, les informations contenues sur ces cartes peuvent être améliorées de deux

manières.

1. Des cartes “conditionnelles” peuvent être obtenues. On peut imaginer réaliser plusieurs

cartes du même site, en fonction des conditions météorologiques, permettant ainsi l’é-

valuation des plages horaires critiques.

2. Des cartes statistiques peuvent également être réalisées. Compte-tenu de la grande vari-

abilité du système, on est en droit de se demander quelle est la variabilité répercutée

sur les niveaux de pression. Le modèle développé permet de répondre à cette question,

c’est-à-dire de donner un niveau de surpression maximal et un niveau de probabilité

associé.

Sur le plan de l’utilisation pratique des modèles proposés dans le cadre ci-dessus, une amélio-

ration consisterait à construire “point par point” (approche polynômiale, approche par réseau

de neurones, etc.) la fonction qui permettrait d’obtenir la valeur du paramètre wopt en fonc-

tion des paramètres géometriques qui décrivent les environnements urbains. La longue et

fastidieuse étape d’obtention des solutions de référence et d’identification du paramètre wopt

serait alors évitée.
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