N

N

Design Space Exploration for data-dominated image
applications with non-affine array references

Rosilde Corvino

» To cite this version:

Rosilde Corvino. Design Space Exploration for data-dominated image applications with non-affine
array references. Computer Science [cs]. Université Joseph-Fourier - Grenoble I, 2009. English.
NNT: . tel-00456577

HAL Id: tel-00456577
https://theses.hal.science/tel-00456577
Submitted on 24 Feb 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00456577
https://hal.archives-ouvertes.fr

THESE

présentée par

Rosilde CORVINO

pour obtenir le titre de
DOCTEUR de I'UNIVERSITE GRENOBLE I - JOSEPH FOURIER

Ecole Doctorale Electronique, Electrotechnique, Automatique & Traitement du Signal
Spécialité Micro et Nano Electronique

Design Space Exploration for data-dominated
image applications with non-affine array
references

These dirigée par M. Jeanny HERAULT
et co-encadrée par M. Stéphane MANCINI et M. Roberto GUIZZETTI

Date de soutenance : 14 Octobre 2009

Composition du jury:

Fan YANG Rapporteur
Jacques JAY Rapporteur
Virginie FRESSE Examinateur
Jeanny HERAULT Directeur de thése
Stephane MANCINI Co-encadrant

Roberto GUIZZETTI Co-encadrant

Contents

French translation

Introduction

I Context and Previous Works

1 Context and Previous Works

Introduction

1.1

1.2

1.3

Image processing applications and architectures

1.1.1

1.1.2

Image processing applications domain
1.1.1.1 Definitions o
1.1.1.2 Parallel and Sequential Algorithms
1.1.1.3 Application with affine or non-affine array references . . .
1.1.1.4 Algorithm representations in a C-like code
1.1.1.5 The uniform and non-uniform memory access
Parallel architecture for the image processing
1.1.2.1 Pipeline

The High Level Synthesis in the design method history

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5

The Y-chart and the synthesis levels
The abstraction level of a HLS input model
The HLS loop-based tools
The input C-code of the used HLS tool
The parallelism levels inferred by the HLS commercial tool: inter-

operations, intra-loop and inter-loops parallelism
1.2.5.1 The inter-operations parallelism
1.2.5.2 The inter-iterations parallelism
1.2.5.3 The inter-loops parallelism

The Data Transfer and Storage Management in Systems Design

1.3.1

1.3.2

The memory hierarchy

11

23

1.3.1.1 Methods used to construct an optimized memory hierarchy 45

The target code optimizations
1.3.2.1 The dependence analysis
1.3.2.2 The loop transformations

46

CONTENTS

11

1.3.2.3 The non-affine array references 49
1.4 Comprehensive methodologies 50
Conclusion L 51
Research works 61
MEXP: a Design Space Exploration tool 63
2.1 Motivation Lo e 64
2.2 Introduction to the Design Space Exploration tool 65
2.2.1 Advantages of the methodology 66
2.2.2 Overview of the target architecture 67
223 The MEXP flow 67
2.24 MEXP input and output oL 70
2241 The MEXP Input 70
2.2.4.1.1 The user-defined input C-functions 70
2.24.1.2 The input parameters 71
2.242 The MEXP output 72
2.3 Conclusion 72
The Target architecture 73
3.1 Imtroduction 73
3.2 The meta-architecture overview L L. 75
3.2.1 The MM table used to pre-fetch input from the external memory . 76
3.2.2 The IDX table used to read data from the internal memory 78
3.2.3 Example of a TPU time-line 78
3.2.4 Possible conflicts on hardware resources 79
3.3 The HLS model of the TPU 80
3.3.1 Re-calls of the HLLS principles 80
3.3.2 The TPU C-model, 81
3.3.3 The user-specified parallelism level inferred by MEXP: parallelism
between output tiles computations 82
3.4 Automatic generation Lo 83
3.5 Conclusion L 84
Super-tiling 89
4.1 Discussion about the problem of tiling non-affine loop nest 89
4.2 Presentation of the Super-tiling flow and of the Exploration of a set of
possible Super-tiling 92
4.2.1 The target application L0 93
422 Profiling 94
4.2.3 Non-uniform loop nest and 1/0 dependence list 94
4.2.3.1 The user-defined function 95

424 Tilingo 96

CONTENTS

4.24.1 The Tiling algorithm 97
4242 Thetileslabeling oo 97
4.2.5 Tiling Projection L Lo oo 99
4.2.5.1 Example of the super-tiling application 99
4.2.5.2 The projection algorithm 100
4.3 Obtained results 100
4.4 Conclusion. e 102
5 Scheduling 105
5.1 Introduction to the scheduling 105
5.2 Mathematical formulation of the TSP and the BTSP 108
5.3 The possible costs and problems to optimize the TPU 109
5.4 The genetic algorithms, the TSP and the BTSP 112
54.1 The Algorithms 113
5.4.1.1 The creation of the initial population of genotypes 114
5.4.1.2 The evaluation of the population through the phenotype
and the selection of the parents 114
54.1.3 Thecrossover 115
54.14 Themutation 116
5.4.1.5 The criterion to stop the evolution of the population . . . 116
5.5 Results supporting the chosen algorithm 116
5.5.1 Comparison between the GATSP, the Lin-Kernighan solver and
the Concorde 117
5.5.2 Comparison between the GABTSP and the GATSP 119
5.6 Conclusion L 120
6 Computation and Memory Mapping 121
6.1 Introduction 121
6.2 The Computation Mapping L. L 124
6.3 The needed amount of internal buffers 125
6.4 The Memory Mapping 126
6.4.1 The lifetime of the input tiles 129
6.5 How to reduce the area overhead due to the usage of MM 130
6.6 Conclusion 130
7 Design Space Exploration: System storage requirement and perfor-
mance estimation 135
7.1 The Design Space Exploration 135
7.2 The selection criteria Lo 137
7.2.1 The amount of internal memory used 137
7.2.2 The Temporal Performance of the TPU 139
7.2.2.1 The time to initialize a TPU task 143
7.2.2.2 The times neglected during the computation of TP 143

7.3

Conclusion o e 144

CONTENTS

IIT Applications 145
8 Tools used for the results analysis 147
8.1 Metrics for the results analysis L. 148
8.2 Graphical tools for the results analysis 151
8.3 Conclusion 152

9 The Log Sampling 155
9.1 The TPU synthesizable C-model for the LOG sampling 157
9.2 The MEXP analysis on the LOG sampling 157
9.2.1 SQCIF input image o 158

922 VGAinputimage. 163

9.3 HDTVinputimage 167
9.4 Conclusion e 171

10 The Pyramidal Log Sampling 173
10.1 The TPU synthesizable C-model of the Pyramidal LOG sampling 175
10.2 The MEXP analysis on the Pyramidal LOG sampling 175
10.2.1 SQCIF input image 176

10.2.2 VGA input image oo 182

10.2.3 HDTV input image 186

10.3 Conclusion L 190

11 The Polar Transform 191
11.1 The TPU synthesizable C-model of the Polar transform 191
11.2 The MEXP analysis on the Polar transform 192
11.2.1 128 x 128 input image 193

11.2.2 300 x 300 input iImaget e 198

11.2.3 600 x 600 input image 202

11.3 Conclusion L 206
Conclusion 206
Appendix 213
A The bilinear interpolation 213
B The hardware implementation and the Look-Up Table 215
B.1 Recalls on the Look-Up tables 215
B.2 The LUT associated to the LOG sampling 216

C The space-variant low-pass 223

CONTENTS

D A mipmapping application: the Pyramidal LOG sampling

D.1 Re-calls on the MIP mapping
D.2 The Pyramidal LOG sampling

D.2.1 The function to access and construct the pyramid levels

D.2.2 The pyramidal LOG sampling steps
List of Figures

List of Tables

225
225
226
227
228

233

236

CONTENTS

French translation

CONTENTS

11

Introduction

Ce mémoire présente une méthode d’exploration d’espace de conception destiné a trou-
ver architecture mémoire optimisée pour les systémes de traitement d’image. Dans ce
cadre, deux problémes majeurs doivent étre traités : la complexité des calculs effectués
et I'accés & de grandes quantités de données. Ces deux problémes sont reliés entre eux
et & la qualité des transformations d’image appliquées. Le but principal de la conception
de systémes de traitements d’images et, en général, des systémes multimédias, a tou-
jours été de trouvé un compromis entre la surface occupée et la performance temporelle
du systéme cible. Actuellement les circuits multimédias sont intégrés dans des systémes
portatifs, comme les téléphones mobiles ou les ordinateurs portables. Ainsi leur concep-
tion doit intégrer une nouvelle préoccupation : la consommation en puissance [1]. Cette
préoccupation s’inscrit, avant tout, dans le probléme de trouver une micro-architecture
optimisée pour améliorer la gestion du transfert et du stockage des données. En plus, une
telle micro-architecture peut éviter de “heurter”, dans les prochaines années, “le mur mé-
moire” [2], qui représente le fossé technologique entre le processeur et la bande passante
de la mémoire. Pour étre résolu, le probléeme du mur de la mémoire requiert des solu-
tions architecturales et technologiques. Dans ce travail, nous nous sommes intéressés aux
solutions architecturales possibles. Ces quinze derniéres années, se sont développées des
techniques d’exploration des niveaux systémes, qui comprennent certaines optimisations
orientées mémoire, effectuées t6t dans le flot de conception. Ces techniques permettent
d’explorer des réalisations possibles d’un algorithme en prenant en compte, d’une part,
le comportement de ’algorithme vis-a-vis de la gestion des données, et d’autre part, les
problémes technologiques et architecturaux qui peuvent empécher les spécifications du
systéme en terme de surface, de puissance et de consommation en puissance. Des travaux
précédents, portant sur les optimisations orientées mémoire, se focalisent sur des appli-
cations avec des références a tableaux affines, pour lesquels des solutions trés brillantes
ont été proposées pour améliorer la gestion des accés aux données et de leur transfert.
Néanmoins, comme dit dans [3], “de nombreux et importants problémes, comme les algo-
rithmes & matrices creuses, le calcul de maillages non-structurés, certaines méthodes de
tri et des transformations d’image spatio-variantes, contiennent des références a tableaux
non-affines, qui requiérent des accés en mémoire non-affines”. Certaines optimisations
du stockage et du transfert des données ont été étudiées au cours de ce doctorat, adap-
tées & un domaine défini d’algorithmes de traitement d’image et incluses dans un outil
d’exploration de I’espace de conception, appelée MEXP (pour Panglais Memory EXPlo-
ration). Le but de MEXP est d’étendre les optimisations orientées mémoire étudiées aux
algorithmes de traitement d’image avec des références a des tableaux non-affines, dans le
but de traiter I'implémentation d’applications spatio-variantes utilisées dans le modéle
de la rétine numeérique développée au GIPSA-lab [4].

Le mémoire est divisé en trois parties. La premiére partie présente le contexte des
travaux de ce doctorat et s’organise en trois points : Un premier point (1.1) décrivant les
paradigmes d’algorithmes de traitement d’image et présentant les architectures matérielles
utilisées pour les réaliser. Un deuxiéme point (1.2) décrivant deux méthodes pour op-

12

CONTENTS

timiser un sous-systéme mémoire : les transformations de code et les améliorations
matérielles. Un troisiéme point (1.3) qui présente la synthése de niveau systéme et
son automatisation. En particulier, est présenté I'outil de synthése de haut niveau utilisé
au cours de ce doctorat. La deuxiéme partie présente I'outil d’exploration de I’espace
de conception développé. Il contient sept chapitres : Le chapitre 2, qui introduit ’outil
développé et son flot. Le chapitre 3, qui décrit le matériel cible. Les chapitres 4, 5, 6 et
7 qui décrivent chaque étape du flot de l'outil. La troisiéme partie présente trois anal-
yses approfondies, réalisées sur trois applications cibles, et montre efficacité de Ioutil
développé.

Contexte

Ces travaux de thése qui portent sur le développement d’un outil d’exploration des ar-
chitectures mémoire possible pour des systémes de traitement d’image. L’analyse de cet
outil a été appliquée a des blocs fondamentaux de la rétine numérique développée au
GIPSA-lab.

Le contexte de ce travail est celui de la synthése de haut niveau, appliquée aux systémes
de traitement d’image. Plus en particulier, nous nous sommes attaqués au probléme de
Paccés et du transfert des données pour les algorithmes de traitement d’image manip-
ulant un grand nombre de données. C’est pourquoi, dans la partie de contexte, nous
allons vous présenter certaines caractéristiques des algorithmes de traitement d’image
qui sont sensible de nous intéresser dans notre cas. Nous allons en suite présenter la
synthése de haut niveau et le probléme de 'accés et du transfert des données dans le cas
des algorithmes de traitement d’image.

Un algorithme de traitement d’image est un algorithme itératif, qui, dans un langage de
haut niveau (type C), peut étre décrit par une suite de boucles imbriquées qui itérent la
méme opération sur un flot de données : les pixels. Une architecture correspondant & ce
type de fonctionnement est le réseau systolique. Un réseau systolique est constitué d’une
maille de processeur communicant par des liaisons point-a-point ou par des mémoires
internes. Chaque processeur prend en entrée un flot de données, les traite et les passe a
ses voisins pour la suite du traitement. La transformation d’un modéle algorithmique en
un modele structurale est applelé Synthése de Haut Niveau (SHN). La SHN, en effet, per-
met de passer d’un modéle séquentiel algorithmique non timé vers un modéle structural
paralléle et timé, appelé aussi modéle RTL pour Register Transfer Level. Les avantages
de la SHN sont multiples nous rappelons I'augmentation de la productivité du designer,
la réduction du nombres d’erreurs dans le phases qui permettent d’obtenir un modéle
RTL et le fait que les temps de simulation d’un modéle de haut niveau sont plus couts
par rapport aux temps de simulation d’un modéle structurale, ce qui permet d’effectuer
une exploration de ’espace des architectures plus poussée.

Dans notre cas, nous nous sommes intéressés aux outils de SHN qui prennent en entrée
des programmes en C décrits par des “boucles for” imbriquées et produisent en sortie
des architectures du type réseaux systolique. Ces outils sont, donc, adaptés au cas des
algorithmes de traitement d’image. Dans ces outils, la SHN s’effectue par deux étapes

CONTENTS

13

principales : une synthése comportementale et une synthése structurale. La synthése
comportementale permet de passer d’'un modéle séquentiel vers un modeéle paralléle in-
termédiaire ot a chaque boucle imbriquée corresponde un processeur. Pendant cette
étape : loutil effectue de 'analyse et de I'optimisation du code d’entrée, il trouve des
ordonnancements possibles des itérations qui optimisent le parallélisme et respectent les
contraints utilisateurs et, enfin, génére le controleur du séquencement des itérations sur
le processeur associé & une boucle. Pendant la synthése structurale, I'outil génére le
chemin des données associé au coeur de chaque boucle imbriquée. Pour chaque chemin
des données, on explore différentes solutions d’allocations de ressources et placement des
opérations pour optimiser les performances du systéme généré et respecter les contraints
utilisateurs.

Dans ce type d’outil la gestion de ’accés et du transfert des données doit étre fournie
par l'utilisateur. Le probléme de l’accés et du transfert des données concerne princi-
palement les systémes gourmands en calcul et manipulant un grand nombre de données.
Pour trouver une architecture optimisée 1'utilisateur doit faire face & un probléme double
: d'un coté le stockage des données manipulées en mémoire interne et d’un autre coté
le transfert des données depuis la mémoire externe. Le stockage en interne cause une
augmentation de la surface occupée par le circuit et le transfert de la mémoire externe
cause une dégradation des performances temporelles du circuit a cause de la latence pour
I’accés & la mémoire externe. Comme montré par la figure sur le transparent, cette la-
tence a plusieurs contributions : par exemple la requéte d’une donné de la part d’une
unité fonctionnelle peut étre mise en attente pendant que le controleur mémoire traite
des requétes précédentes.

Considerons un cas concret du probléme de 'accés et du transfert des données en con-
sidérant l'exemple de la rétine numérique. La rétine est constituée d’un bloc de pré-
traitement (I’échantillonnage logarithmique), d’un bloc de post- traitement (la projec-
tion polaire) et d’un coeur de la rétine, qui est a son tour la combinaison de plusieurs
blocs fondamentaux : comme le filtrage spatio-temporel, le filtrage pass-haut temporel
et 'adaptation a la luminance ambiante. Tous ces blocs ont des dépendances spatiales et
temporelles, qui imposent d’utiliser des images intermédiaires, plus en particulier pour
calculer une image de sortie en partant d'une image d’entrée, il faut stocker 17 image
intermédiaire, il faut effectuer 300 opérations par pixel et, en plus, nous souhaitons avoir
en sortie un taux d’au moins 15 images produites par seconde.

Sous ces conditions, nous avons estimé la quantité de mémoire interne nécessaire dans
le cas hypothétique ol toutes les images intermédiaires soient stockées en interne. Nous
avons aussi calculé la complexité correspondante de ’algorithme et cela pour trois taille
d’image d’entrée. Nous voyons que pour des images d’entrée de grande taille, la mémoire
interne requise est d’environ 300mm2, ce qui est inacceptable si nous considérons que
toute une application industrielle réelle tient sur 20mm2. D’un autre coté, il n’est pas
envisageable de transférer les images intermédiaires directement de la mémoire externe,
car cela dégraderait les performances temporelles du systéme ce qui n’est pas souhaitable
vu la complexité déja élevée de l'algorithme. Il faut donc trouver un compromis entre le
stockage des données en interne et le transfert des données depuis la mémoire externe. Ce

14

CONTENTS

compromis se trouve en proposant des solutions sur un plan architectural et des solutions
sur un plan algorithmique.

Une solution sur un plan architectural consiste & créer une hiérarchie mémoire. C.a d. que
les données manipulées par ’algorithme sont stockées en mémoire externe et une partie
des données utiles dans I'immédiat sont recopiées dans une mémoire interne en créant ce
qui s’appelle la localité des données. Une fois que les données contenues en mémoire in-
terne ne sont plus utiles nous pouvons les substituer avec d’autres données en réutilisant
les mémes ressources mémoire. Finalement, si la quantité de mémoire allouée permet
d’éviter les conflits en acceés a la mémoire, il est possible de pre-fetcher (ou bien copier a
priori) les données nécessaires pour effectuer la ta?che suivante pendant que nous effec-
tuons la ta?che courante. Pour trouver une hiérarchie mémoire optimisée il est nécessaire
de procéder a une exploration des solutions possibles en estimant et allouant les quan-
tités de mémoires internes nécessaires et en assignat & chaque mémoire interne allouée
le stockage d’un blocs de données. Sur un plan algorithmique, la solution au probléme
de l'acces et du transfert des données consiste & trouver un partitionnement des données
accédées par l'algorithme et des opérations effectuées. Les solutions présentes dans la
littérature consistent & partitionner 'espace des opérations effectuées par I'algorithme et
trouver les footptints correspondant & chaque répartition. Ou le footprint est la trace des
données accédées par un groupe d’opérations. Il existe deux méthodes pour trouver les
footprints : par analyse statique ou par analyse dynamique. Par analyse dynamique, on
construit une trace des acces faits & la mémoire en exécutant 'algorithme. Dans ce cas,
les footprints peuvent avoir des tailles variables et il n’y a pas de conditions sur les lois
d’accés aux données. Par analyse statique, on détermine les dépendances des données
par des méthodes de programmation linéaires. Dans ce cas, les lois d’accés aux données
doivent étre affines et les footprints ont une taille constante (car il sont affine entre eux).
Considérons le partitionnement dans le cas des footprints de taille variable. Pour faire
cela, considérons ’exemple du pre-traitement de la rétine : 1’échantillonnage logarith-
mique. Cet algorithme consiste & reconstruire une image de sortie en allant échantillon-
ner l'image d’entrée selon une loi pseudo-logarithmique, donc les accés aux données ne
sont pas affines. Si nous appliquons une répartition réguliére a I’ensemble des opérations
nécessaires pour calculer la sortie, nous aurons une répartition non réguliére de l’ensemble
des données en entrée. Une réalisation matérielle d’un algorithme ainsi partitionné doit
inclure un contréle qui peut étre cotteux sur le transfert des blocs de données d’entrée.
Considérons le partitionnement dans le cas des footprints de taille constate. Ceci peut
s’appliquer dans le cadre du modeéle polyédrique. Le modéle polyédrique donne une
représentation matricielle d’une boucle for imbriquée. (Par exemple, les indexes de boucle
sont représentés en tant que vecteur et les dépendances entre données (calculé par analyse
statique) sont représentées par une matrice). Appliquer une transformation de boucle
dans le cadre du modéle polyédrique consiste & effectuer des produits matriciels entre les
matrices représentant la boucle et la matrice de la transformation. La transformation
permettant d’obtenir un partitionnement des itérations de la boucle (et donc des opéra-
tions effectuées) est le ~ loop tiling ®. A7 cette répartition des itérations correspond une
répartition des données en blocs (ou tuiles) qui sont affines entre eux.

CONTENTS

15

En conclusion, il existe deux méthode de répartitions des données et des opérations d’un
algorithme. Une méthode qui permet de traiter des accés aux données non-affines et qui
peut demander un contréle complexe sur le transfert des données et une méthode qui ne
permet de traiter que des lois d’accés affines mais qui requiére un controle simple sur le
transfert des données. Un de nos objectifs a été de définir une méthode qui permet de
traiter des accés aux données non-affines et qui minimise le contréle sur le transfert des
données.

Plus en général 'objectif de ce doctorat a été de développer un outil d’exploration des
architectures mémoires possibles pour des systémes de traitement d’image. Cet outil
devait étre capable de gérer des accés aux données non-affines et de générer en sortie
en programme en C qui peut étre sysnhtésé par un outil commercial de SHN. Plus en
particulier, 'outil développé prend en entrée un programme en C, analyse les accés aux
données, optimise ces accés et génére en sortie un programme en C optimisé pour la SHN.
La génération est faite en customisant une architecture générique.

Chapitre 2

Dans ce chapitre nous avons présenté les principes de base de MEXP. MEXP permet
d’explorer un ensemble de couples entrée/sortie candidats de tiling pour un algorithme
manipulant un grand nombre de données et ayant des références aux tableaux non affines.
L’exploration est réalisée en fonction de de deux critére d’optimisation : la quantité de
mémoire interne utilisée et la performance temporelle du systéme généré.

En utilisant un modéle générique du code a généré et certaines fonctions spécifiées par
I'utilisateur, MEXP est capable de générer un code-C optimisé, qui peut étre synthétisé
au moyen d’un outil commercial de synthése de haut niveau.

Les optimisations appliquées au code sont déduites de la prise en compte le comportement
temporel de l'algorithme et les caractéristiques estimées du matériel cible.

Chapitre 3

Dans ce chapitre nous avons présenté ’architecture cible générique customisée par MEXP
pour générer le code-C de sortie. L’architecture est appelée unité de traitement des tuiles
(Tile Processus Unit 7 TPU) et réalise deux macro-t,ches paralléles : le pré-chargement
et le calcul. Le calcul est réalisé au travers d’un pipeline d’opérations et le pré-chargement
consiste & copier les tuiles d’entrée & partir d’une mémoire externe dans des tampons in-
ternes.

Pour une solution donnée, la correspondance entre les tampons des tuiles d’entrées et les
tampons internes disponibles est pré-calculée par MEXP et utilisée par le TPU customisé
pour réaliser le pré-chargement.

Le TPU a plusieurs niveaux de parallélisme qui peuvent étre distingués en : un par-
allélisme assuré par 'outil commercial de synthése de haut niveau sous les contraintes
pré-calculées de MEXP et un parallélisme inter-tuiles de sortie déduits par MEXP.

Le parallélisme inter-tuile requiert 'instanciation de pipelines paralléles supplémentaires

16

CONTENTS

réalisant le calcul. Le pré-chargement est commun & tous les différents pipelines, en vue
de respecter la bande passante, et ceci peut limiter les possibilités de parallélisations
supplémentaires.

Chapitre 4

Ce chapitre présentait le partitionnement superposé (SP pour anglais, Super-Tiling) qui
est une méthode permettant d’appliquer le partitionnement sur des boucles imbriquées
pas nécessairement affines. L’idée principale du SP est de partitionner séparément les
ensembles de données d’entrée et de sortie en tuiles, avec un partitionnement régulier.
Ensuite le partitionnement de sortie est projeté sur le partitionnement d’entrée selon la loi
de référence aux tableaux. L’intersection de la projection avec le partitionnement d’entrée
donne les dépendances entre les tuiles d’entrée et de sortie. Le SP a trois étapes : un
profilage dynamique des références aux tableaux de l'algorithme, un partitionnement qui
s’applique séparément aux espaces de données d’entrée et de sortie et une projection qui
relie les tuiles d’entrée et de sortie entre elles. Le partitionnement des données de sortie
correspond au partitionnement de l’espace de calcul de sortie. Ainsi, le partitionnement
permet de paralléliser les calculs des différentes tuiles de sortie. 1l rend également possible
la parallélisation entre pré-chargement des tuiles d’entrée et le calcul des tuiles de sortie.
Les résultats montrent que la non-affinité des références aux tableaux influence le rapport
largeur-hauteur et ainsi, le montant de la mémoire interne du matériel réalisé.

Chapitre 5

Dans ce chapitre nous avons présenté 'ordonnancement (Scheduling). I’ordonnancement
vise & réorganiser les calculs des tuiles de sortie dans le but d’optimiser le comportement
du TPU. 1l est possible de le faire vis-a-vis de trois cotts : la quantité de mémoire in-
terne utilisée, le nombre d’accés & la mémoire externe et le nombre de tuiles d’entrée qui
changent entre le calcul de deux tuiles de sortie successives. La minimisation de cha-
cun de ces trois colits produit une amélioration soit sur la puissance consommeée par le
systeme, soit sur la quantité de mémoire interne utilisée et le temps de pré-chargement.
Selon le critére d’optimisation choisi, nous devrions résoudre soit le probléme du voyageur
de commerce (PVC) classique, soit le PVC qui évite les goulots d’étranglement. Dans
notre travail, nous avons utilisé un algorithme génétique pour résoudre ces deux prob-
lémes. Nous avons comparé le PVC résolu en utilisant les algorithmes génétiques par
rapport & un résoluteur du type Lin-Kernighan et un autre résoluteur de référence : le
concorde. Les expériences montrent que notre algorithme génétique trouve des solutions
que celles d’une Lin-Kernigan dans 90 % des cas. L’écart entre les solution trouveés par le
résoluteur Lin-Kerighan et celle de I'algorithme génétique sont en moyenne de 35 %. La
comparaison de 'algorithme génétique par rapport au Concorde montre que le Concorde
trouve de meilleures solutions dans les 86 % des cas. L’écart moyen entre les solutions
de T'algorithme génétique et le Concorde est de 16 %. D’un autre coté, l'algorithme

CONTENTS

17

génétique est jusqu’a 76 fois plus rapides que le concorde. C’est pourquoi, par la suite
nous utilisons l'algorithme génétique développé.

Chapitre 6

Dans ce chapitre nous avons décrit le mappage des calculs et des données. Ces mappages
sont calculés pour chacune des solutions analysées par MEXP. Le mappage des calculs
divise les tuiles de sorti en Np groupes et alloue le calcul d’un groupe & un seul pipeline
des Np pipelines instanciés. Les tuiles d’un groupe sont calculées séquentiellement par
le méme pipeline, alors que chacun des groupes sont calculés en paralléle par différents
pipelines. Le pré-chargement des données pour tous les pipelines est effectué séquen-
tiellement, et les différents pipelines sont synchronisés a la fin du calcul en paralléle des
Np pixels de sorties. Le mappage des données vise & placer les tuiles d’entrée dans les
mémoires tampon internes disponibles. La premiére étape du mappage de données est de
compter le nombre de mémoires tampon internes nécessaires puis, pour chaque tuile de
sortie, de calculer la position des tuiles d’entrée dans les tampons internes. Le mappage
des données assure que les tuiles d’entrée partagées entre deux tuiles de sortie calculées
successivement par le méme pipeline sont copiées une seule fois depuis la mémoire ex-
terne. Il assure aussi que les blocs de pré-chargement et de chargement du TPU peuvent
accéder sans conflit aux mémoires tampon internes.

Chapitre 7

Ce chapitre présentait la méthode utilisée pour réaliser ’exploration de ’espace des
architectures mémoire possibles (EEAMP). Il décrit la structure des données utilisées
pour classifier les solutions et la méthode employée pour réduire 'espace des solutions
possibles par le biais de contraintes utilisateur. L’EEAMP est réalisée a travers un
“thiltre de validationf?qui réduit ’espace des solutions possibles et un “ffiltre de qualitét?
qui qualifie les solutions de dominantes ou d’équivalentes. ’EEAMP est effectuée par
rapport & deux critéres de sélection : les performances temporelles du systéme et la
quantité de mémoire interne utilisée. Ces critéres sont estimés et leurs formules sont
données.

Chapitre 8

Dans ce chapitre, on a présenté 5 critéres et deux types de graphique. Ces outils seront
utilisés dans les chapitres suivants. pour décrire les expériences réalisées. Les critéres
présentaient sont :

e Trois critéres pour décrire les améliorations des optimisations de MEXP sur les
performances temporelles : I’accélération due aux optimisations de MEXP (MEXP
SU - pour MEXP Speed Up), Paccélération due au parallélisme (Parallel SU) et
Iefficacité de parallélisme.

CONTENTS

e Deux critéres pour décrire le surcott surfacique qui peut étre da soit aux optimi-
sations de MEXP (MEXP AO - pour MEXP Area Overhead) ou au parallélisme
(Parallel AO).

Les outils graphiques sont :

e les nuages de points de 'espace d’exploration de MEXP, qui classe les les solutions,
dans ’espace exploré, en donnant leur performance temporelle en fonction de leur
quantité de mémoire interne utilisée. Nous donnerons cette représentation pour
trois fois valeurs de latence d’accés a la mémoire externe (30, 60 et 100 cycles) et
trois valeurs de niveau de parallélisme (Np = 1, 2, 4);

e Une représentation de la performance temporelle (TP pour Temporal Performance)
d’une solution en fonction de la latence d’accés & la mémoire externe. Cette
représentation graphique fait apparai?tre trois régimes de l'évolution de la TP
en fonction de la latence, selon la valeur prise par le rapport du temps de pré-
chargement sur le temps de calcul. Quand ce rapport est inférieur a 1, la TP est
indépendante de la latence et reste donc constante. Quand le rapport vaut envi-
ron 1, la performance temporelle augmente avec la latence de facon logarithmique.
Quand le rapport est supérieur & 1, la TP augmente linéairement avec la latence
d’accés a la mémoire externe.

Chapitre 9

Dans ce chapitre, nous avons présenté les résultats de trois explorations sur ’échantillonnage
logarithmique. Nous avons analysé trois tailles d’image d’entrée (SQCIF, VGA et HDTV).
Pour chaque taille d’image d’entrée, nous avons exploré des centaines de solutions. j par-
tir des résultats obtenus, on peut déduire que les optimisations de MEXP dépendent des
tailles de tuiles d’entrée et de sortie et des tailles des espaces de données en entrée et
en sortie. En particulier, elles sont plus efficaces quand on considére une grande image
d’entrée (VGA et HDTV) plutot qu’une plus petite image (SQCIF). Laccélération de la
performance temporelle due aux optimisations de MEXP peut aller jusqu’a un facteur de
93.3 pour une augmentation de surface d’un facteur de 27.21 (résultats observés avec le
format d’image d’entrée HDTV avec un niveau de parallélisme Np = 4). L’accélération
maximale observée, sans considérer de parallélisme atteint quant & elle, un facteur de
23.7 pour une augmentation de surface d’un facteur de 9.11. (observation faite sur une
image d’entrée HDTV). Le parallélisme n’est pas efficace dans le cas d’une image d’entrée
SQCIF et est tres efficace dans le cas de 'HDTV (efficacité supérieure a 0.9).

Chapitre 10

Dans ce chapitre, nous avons présenté les explorations réalisées sur I’échantillonnage log-
arithmique pyramidal. Nous avons exploré des centaines de solutions pour trois tailles

CONTENTS

19

d’images d’entrée (SQCIF, VGA et HDTV). ; partir des résultats obtenus nous pou-
vons voir que les optimisations de MEXP sont plus efficaces pour 1’échantillonnage
logarithmique pyramidal que pour I’échantillonnage logarithmique simple. FEn effet,
I’échantillonnage logarithmique pyramidal a un plus grand nombre d’accés & la mémoire,
cependant 'accroissement de surface est plus faible pour I’échantillonnage logarithmique
pyramidal du fait que les tailles des tuiles d’entrée et de sortie analysées sont plus adaptées
& cette application. L’accélération des performances temporelles dues aux optimisations
de MEXP peuvent atteindre un facteur de 134.12 pour une augmentation de surface cor-
respondante de 21.9 (résuktats observés pour 'image d’entrée de HDTV avec un niveau
de parallélisme Np = 4). L’accélération maximale observée, sans considérer de paral-
lélisme (Np = 1), atteint un facteur de 34, pour un accroissement de surface de 6.9 (pour
une image d’entrée HDTV). Le parallélisme n’est pas efficace dans le cas ot une image
d’entrée SQCIF et est trés efficace pour les images d’entrée VGA et HDTV (E>0.9).

Chapitre 11

Dans ce chapitre, nous avons présenté les explorations réalisées pour la transformation
polaire. Nous avons exploré des centaines de solutions pour trois tailles d’images d’entrée
(128x128, 300x300 et 600x600). Des résultats, on peut voir que l'accélération des per-
formances temporelles due aux optimisations MEXP peut monter jusqu’a un facteur de
40.9 pour une une augmentation de surface correspondante d'un facteur de 30.5 (résul-
tats observés pour une image d’entrée de 300x300 avec un niveau de parallélisme de
Np = 4). L’accélération maximale observée, sans considérer de parallélisme, atteint un
facteur de 22 pour une augmentation de surface d’un facteur de 9.4 (pour une image
d’entrée de 300x300). Le parallélisme n’est pas efficace dans le cas d’une image d’entrée
de 128x128 et est trés efficace dans les cas d’images d’entrée de 300x300 et de 600x600
(E>0.9). L’écart moyenne entre les estimations MEXP et les performances mesurées
aprées synthése sur l'outil de SHN est de 'ordre de 10%.

Conclusion

Le but de cette thése de doctorat était d’étudier une méthodologie qui améliore le trans-
fert et la gestion des données pour des applications & références de tableaux non-affines.
Les applications cibles sont des algorithmes de traitement d’image qui ne sont pas récur-
sifs et qui ont des dépendances statiques. Ces applications sont bien décrites par du
code-C basées sur des boucles et peuvent subir une synthése de haut niveau (SHN) qui
déduit un modéle RTL d’un code-C en entrée. Le code d’entrée de la SHN peut étre
optimisé, par des transformations de boucles, en fonction de la gestion et du stockage des
données. En fait, ces transformations augmentent la localité des données et permettent,
au travers du partitionnement de données, d’accomplir le parallélisme de calcul et le pré-
chargement des données. En particulier, le partitionnement des calculs et des données est
atteint a travers une transformation appelé tiling ("tuilage”). Gr,ce aux transformations
de boucle, certains outils de SDN existant sont capables de générer du matériel de haute

20

CONTENTS

qualité. Dans la premiére partie de cette dissertation, nous avons présenté le contexte du
probléme et les travaux précédents qui y sont reliés. En particulier, nous avons souligné
que les méthodes existantes, optimisant la gestion et le transfert de données, ne sont
pas adaptées aux références de tableaux non affines. Dans le but de fournir une solu-
tion au probléme de 'analyse et de 'optimisation des applications ayant des références
de tableaux non-affines, nous avons développé un outil appelé MEXP (pour Memory
EXPloration). MEXP est un outil d’exploration de ’espace de conception, destiné a
trouver un tuilage d’entrée/sortie (E/S) adapté pour un traitement d’image ayant des
références a des tableaux non-affines. Le but est de partitionner les données et les calculs
de D'application en vue d’équilibrer le pré-chargement des données d’entrée et les cal-
culs des sorties. Le matériel correspondant est généré a partir d’un modele customisable
appelé Unité de Traitement des Tuiles (TPU, pour I'anglais Tile Process Unit). Dans
les chapitres 2 et 3, nous avons décrit le flot de l'outil et le matériel cible customisable.
MEXP a l'avantage d’adapter le choix d’un couple de tuiles d’E/S & la non-affinité des
référence de tableaux de I’application. Un couple approprié de tuiles d’E/S peut mas-
quer complétement le temps de pré-chargement et assurer I'invariance des performances
temporelles du TPU vis-a-vis de la latence de la mémoire externe. Dans le chapitre 4,
nous avons décrit la méthode utilisée pour construire un ensemble de couples possibles
de tuilages d’E/S . I’analyse prend en compte deux fonctions spécifiées par 'utilisateur,
qui décrivent I'application cible, et plusieurs paramétres qui adaptent ’exploration de
I'espace de conception opérée par MEXP. MEXP est aussi capable de ré-ordonnancer
temporellement les calculs des tuiles de sortie en vue de réduire le transfert de données
a partir de la mémoire externe. Cela permet une réduction de la consommation en puis-
sance et une amélioration des performances temporelles du TPU. Le chpitre 5 décrit la
méthode utilisée pour ré-ordonnancer les calculs des tuiles de sortie. Le TPU accéde aux
données gr,ce a une table donnant le mappage entre les tuiles d’entrée et les mémoires
tampons internes. La tables est générée par MEXP pour chaque solution choisie. MEXP
peut explorer et optimiser des centaines de solutions. Il classifie ces solutions en fonction
de deux critéres : la performance temporelle estimée et la mémoire interne utilisée, dans
le matériel correspondant. Les chapitres 6 et 7 donnent les méthodes pour calculer le
mappage mémoire et exécuter 'exploration de ’espace de conception. MEXP évalue
aussi la possibilité de paralléliser les calculs de plusieurs tuiles de sortie en instanciant un
matériel paralléle au sein du TPU. Le mappage de calcul correspondant est décrit dans le
chapitre 77. Dans les chapitres 9, 10 et 11, nous décrivons les expériences réalisées pour
trois applications cible : ’échantillonnage logarithmique, I’échantillonnage logarithmique
pyramidal et la transformation polaire. Les expériences montrent que les optimisations
de MEXP dépendent de la taille des tuiles d’E/S et la taille de 1’espace des données
d’E/S. Les résultats sont évalués en fonction de I'accélération que les optimisations de
MEXP permettent sur les performances temporelles et sur le surcott surfacique. La plus
forte accélération observée atteint un facteur 134.12 pour un surcott surfacique de 21.9
(résultats observés pour I’échantillonnage logarithmique pyramidal calculant 4 tuiles de
sortie en paralléle et et pour une latence de mémoire externe de 100 cycles). Les expéri-
ences réalisées montrent également que, gr,ce & un choix judicieux de couple de tuiles

CONTENTS

21

d’E/S, un équilibre idéal entre le pré-chargement et le calcul peut étre atteint.

Une premiére limitation de MEXP consiste en ce que le générateur du code-C syn-
thétisable est seulement exploitable pour 'outil de SHN étudié, alors que ’analyse opérée
par MEXP peut étre étendue & d’autres outils HLS ou pour mapper des traitements
d’image sur d’autres types d’architectures et des processeurs programmables. Dans ce
cas, le patron générique du code-C synthétisable devrait étre adapté a 'architecture
cible. Une autre limitation de la version actuelle de MEXP réside dans le fait que ’outil
n’est appliqué qu’a un traitement d’image d’une seule étape. L’analyse n’est pas applica-
ble & une transformation multi-étape, c¢’est-a-dire une transformation réalisée au travers
d’une chaine de plusieurs étapes inter-dépendantes. L’adaptation requerrait plusieurs
changements dans l’architecture cible et du flot. Un solution possible serait d’instancier
un TPU par étape dans 'application. Un contréleur synchroniserait le démarrage et la
communication des TPU. L’architecture TPU pourrait rester la méme, mis & part que
I'ordonnancement des tuiles de sortie du premier TPU serait relié a ’ordonnancement
des tuiles de sortie du second TPU.

22

CONTENTS

23

Introduction

This dissertation presents a Design Space Exploration (DSE) method aimed to find an
optimized memory architecture for image processing systems. In this framework, two
major problems need to be handled: the complexity of the performed computations and
the access to a large amount of data. These two problems are related to each other
and to the quality of the applied image transformations. The main goal of the design of
image processing systems and, in general, of multimedia systems, has always been to find
a trade-off between the occupied area and the temporal performance of the target
system.

Nowadays the multimedia circuits are integrated in portable systems. Thus their
design has to integrate a new concern: the power consumption [1].

The three previously enumerated concerns (area occupancy, temporal performance
and power consumption) are related to the problem of finding an optimized micro-
architecture to improve the data storage and transfer management (DSTM).

The DSTM is a part of the “memory wall” problem [2]|, which represents the techno-
logical gap between the processor speed and the memory bandwidth. To be solved, the
memory wall problem needs technological and architectural solutions. In this work, we
are interested in the possible architectural solutions.

The last fifteen years have seen the rising of the early system level exploration tech-
niques which include some memory aware optimizations in the early phases of the
design flow. These techniques allow to explore possible realizations of an algorithm by
taking into account, on one hand, the algorithm behavior with respect to the data man-
agement and, on the other hand, the technological and architectural problems that may
prevent to achieve the system specifications on area, performance and power consump-
tion.

Previous works on memory aware optimizations focus on applications with affine
array references® for which very brilliant solutions have been proposed to improve the
data access and the storage management. Nonetheless, as said in [3]: “many important
problems, such as sparse matrix algorithms, unstructured mesh calculations, some sorting
methods and space-variant image transformations, contain non-affine array references,
which require non-uniform memory accesses”.

Some of the data transfer and storage optimizations have been studied during this
Ph.D., adapted to a defined domain of image processing algorithms and included in a

#an affine formula is a linear formula with a translation, i.e. y =a.x +b

24

CONTENTS

Design Space Exploration (DSE) tool called MEXP, from Memory EXPloration.

The goal of MEXP is to extend the studied memory aware optimizations to the
image processing algorithms with non-affine array references, in order to handle the
implementation of space variant applications used in the GIPSA-lab retina model [4].

This dissertation is divide into three parts:

The first part contains a single chapter and presents the context of the PhD works.
This chapter contains three sub-sections:

e Sub-section 1.1, which describes the image processing algorithm paradigms and
presents the hardware architectures used to realize them.

e Sub-section 1.2, which presents the System Level Synthesis and its automation. In
particular, it presents the High Level Synthesis tool used during this PhD work.

e Sub-section 1.3, which describes two methods for optimizing a memory sub-system:
the code transformations and the hardware improvements.

The second part presents the developed Design Space exploration tool. It contains
seven chapters:

e Chapter 2, which gives an introduction to the developed tool and its flow.
e Chapter 3, which describes the target hardware.

e Chapter 4, chapter 5, chapter 6 and chapter 7, which describe the different steps
of the tool flow.

The third part presents three extensive analyses, which are performed on three target
applications and show the efficacy of the developed tool.

25

Part 1

Context and Previous Works

27

Chapter 1

Context and Previous Works

Introduction

The context of this work is the High Level Synthesis (HLS) applied to the case of the
image processing systems. In particular, we propose a possible solution to the problem of
data storage and transfer management (DSTM). Thus in the first part of this dissertation
we will present

e few characteristics of the image processing systems, which are interesting in our
case;

e the HLS applied to the image processing systems;

e the existing solutions with respect to the problem of data storage and transfer
management.

An image processing algorithm is an iterative algorithm which can be described in a high
level language (as the “C”) as a series of nested loops iterating the same operation on a
flow of data: the pixels.

An architecture able to implement this behavior is the systolic array, which contains
a mesh of processors communicating to each other through a direct link or through an
internal memory.

The passage from an algorithmic model to an architectural model of a system is
ensured by the HLS, which allows to extract a parallel, structural and timed model from
a sequential, algorithmic and non-timed model [5].

The HLS allows to improve the designers productivity and dramatically reduces the
errors during the phases leading to the structural model. Furthermore, the rapidity of
the simulation of the high level model, permits to enlarge the design space and thus
enforce the exploration results [6].

In our work, we are particularly interested to the HLS tools taking a loop-based C-
program as input and producing a systolic array as output. These tools are adapted to
the image processing case. In these kinds of tools, the HLS is applied in two steps: a
behavioral synthesis and a structural synthesis. During the behavioral synthesis, the tool

28

1. CONTEXT AND PREVIOUS WORKS

applies some input code analysis and optimizations in order to enhance the data and task
parallelism. Then, it finds a first parallel model in which a processor corresponds to each
loop nest. Finally, it generates a sequence controller to execute the nested loop iterations
on each instantiated processor. During the structural synthesis, the tool generates the
data path corresponding to each loop core.

The main limitation in this kind of tools, with respect to the data transfer and storage
management, is that the corresponding micro-architecture has to be designed by the user.

The problem of the data transfer and storage management is double: the user has
to evaluate the pros and cons of storing the data into internal memories and of trans-
ferring data from an external memory. The storage into internal memories increases the
area occupied by the target circuit and the transfer from external memory degrades the
temporal performance of the system.

In the literature (cf. [7] and all the papers cited in it), we can find two kinds of
solutions to this problem: one concerning the architectural structure of generated sys-
tem and the other achieved by transforming the target algorithm. The architectural
solution consists in creating a memory hierarchy and the algorithmic solution consists in
partitioning the data access and the operations performed by the algorithm.

In this chapter we will present:

e The target image processing and architectures
e The High Level Synthesis

e The data transfer and storage management in system design.

1.1 Image processing applications and architectures

Image processing is a wide domain of applications which imply the manipulation of a
large amount of data and the realization of a high number of complex computations.
The basic data structure of an image processing application is a 2-dimensional table
storing the spatial distribution of the luminance values (gray levels or color). The volume
of manipulated data and performed computations, depends on the image size and is
exacerbated when the process involves several images of a sequence or is a real-time
application.

In this work, we will classify the image processing algorithms according to two char-
acteristics:

e the existence of data dependences that may impede or allow to execute parts of
the algorithm in parallel and

e the kind of the array references that the algorithms contain.

This classification helps to point out how the memory-aware optimizations apply to the
image processing algorithms and how some of these optimizations are limited to a specific
family of algorithms.

1.1. IMAGE PROCESSING APPLICATIONS AND ARCHITECTURES 29

The hardware architectures used in image processing can be either general purpose
or application specific architectures. The general purpose architectures are flexible, may
realize a high number of complex operations and are usually used to validate an algorithm.
The application specific architectures are used to obtain embeddable accelerators with a
low surface, a low power consumption and a high computational performance.

In this work, we are interested to the application specific architectures.

An image processing can implement several level of parallelism: a fine-grain paral-
lelism, which includes the operations pipelining?® and the operations parallelism and a
coarse-grain parallelism, which can be a data or task parallelism.

The data parallelism is inferred when all the data (in the manipulated set) undergo
to identical (and inter-independent) computations and, thus they can be processed in
parallel. The task parallelism consists in applying different tasks in parallel on different
data sets.

In this work we are interested to the both kinds of coarse-grain parallelism: the one
concerning data and the one concerning tasks.

The next paragraph presents:

e 3 general model of an image processing and a possible corresponding classification

e the parallel architecture paradigms used in image processing, by focusing only on
the coarse grain parallelism.

1.1.1 TImage processing applications domain

In this paragraph we will give the used nomenclature and the classification of the image
processing applications according to the array references that they contain.

1.1.1.1 Definitions

We define the following terms:
e D" is a n-dimensional discrete domain
e [is a set (called image) of elements (called pixels), which is defined on D™

e [;(p) is a pixel of coordinate p in the image I and at the instant ¢. We will use
I(p) for the output pixels and I;_1(q) for the input pixels

e W(p) is a window associated to the calculation of an output pixel I;(p) and con-
taining m input pixels

Definition An image processing algorithm is a transformation defined on a n-dimensional
discrete domain D™, n is usually n = 2 or 3 but can be higher in some applications (e.g.

#This pipeline can be either explicitly realized or by using a Very Long Instruction Word (VLIW)
architecture which parallelizes the operations thanks to a fixed schedule determined at the compilation
of the program

30

1. CONTEXT AND PREVIOUS WORKS

applications using a pyramidal structure to compute a texture). Given the input and
output images, I;_1 and I; defined on D™, each output pixel I;(p) is obtained by applying
a function f to a window W (p) of m input pixels.

Vp, Ii(p) = f(W(p))

The window W(p) contains pixels whose coordinates depend on p. We can classify the
image processing algorithm with respect to two features:

e the kind of dependences between the input and output images and

e the formula giving the coordinates of the pixels needed to compute It(p).

1.1.1.2 Parallel and Sequential Algorithms

Given the kind of dependences between the input and output images, the algorithms can
be classified as:

e Parallel algorithms
e Sequential or recursive algorithms.

In a parallel algorithm, the calculation of an output pixel does not depend on the
previously calculated output pixels, so that W (p) contains only pixels of the input image
Itfl.

In a sequential algorithm, the calculation of an output pixel depends on the pre-
viously calculated output pixels. In this case

W(p) = {Itfl(ql)a R Itfl(le)} U{It(pl)v s 7It(pm2)}

with m1 + mg = m. This means that the windows of pixels W (p) contains m; pixels of
the input image and mg pixels of the output image which have been previously calculated
with respect to I(p).

1.1.1.3 Application with affine or non-affine array references

The image processing algorithms can be classified with respect to the formula giving the
coordinates of the pixels needed to compute the output pixel I;(p).

Let g(p) and h(p) be the coordinates of two needed input pixels. If g(p) and h(p) are
affine they can be written as

g(p)=Ap+b
h(p) = Ap+c

and the two corresponding array references I;_1(g(p)) and I;_1(h(p)) are said affine
themselves.

1.1. IMAGE PROCESSING APPLICATIONS AND ARCHITECTURES

31

Input Image Output Image

Figure 1.1: For uniform memory accesses the window of input pixels associated to the calculation of
an output pixel I;(p) has invariant shape and size with respect to p

Definition It is possible to compute a distance vector between the two array references
I;_1(g9(p)) and I;_1(h(p)) as the difference between g(p) and h(p)

dgh:b—c

Remark If all the array references of an image processing algorithm are affine the win-
dow W(p) associated to the computation of each output pixel preserves its shape and
size for all the duration of the algorithm execution.

If the array references are not affine, W (p) size and shape depend on the position p
of the output pixel I;(p) to be calculated.

Example Let consider an image transformation f defined as follows:
11(27;’ 2.]) = f (10(227 2 — 2)7 10(27’ -2, 2.7)a I()(Qi, 2.7)7 10(27;7 2+ 2)7 IO<22 +2, 2.7))

Figure 1.1 shows that, due to the affinity of array references, the windows of input pixels
associated to the calculation of an output pixel I;(p) are equal by translation for different
value of p.

1.1.1.4 Algorithm representations in a C-like code

An image processing application is intrinsically iterative and can be represented as a loop
nest transforming a set of pixels into another according to a unique law. The loop nest
depth depends on the multidimensional data to process.

Definition Let consider the iterative application A represented through a perfectly
nested loop L (and given in table 1.1).

S and T are assignment statements.

A loop nest which assignment statements have affine array references is said to be
affine.

In such a loop nest, the spaces of the input and output coordinates and the iterations
space D™ are affine, which means that they are equal by translation. As a consequence,
in an affine loop nest, it is actually possible to re-use the same memory space to store
the input and output data if the data dependences are respected.

32

1. CONTEXT AND PREVIOUS WORKS

L: for1<i<N
L:for1<j<M
S: I (4, 5) = f(Lo(91(4,7)); - - - Lo(gm(5)))
T: IO(Z7]) = 11(27.7)
end
end

Table 1.1: Table presenting a generic loop nest

In an affine loop nest the loop bounds are usually constant or manifest, i.e. they are
unambiguously determined at the compile-time. This enables several compiler optimiza-
tions, such as loop transformations and parallelization (cf. paragraph 1.3.2.2 and all the
papers cited in it).

1.1.1.5 The uniform and non-uniform memory access

Definition Two memory accesses are said uniform when they require the same number
of processor cycles to be performed.

Definition An image processing application and the loop nest representing it are said
to be uniform, if they contain only uniform memory accesses.

In the frame of polyhedral (or hyper-plane) method (see paragraph 1.3.2 for more details),
it is possible to apply some loop transformations to an affine loop, in order to reorganize
both the array references and the data layout into the memory and, thus, to allow uniform
memory accesses.

Very few studies (cf. paragraph 1.3.2.3) attempt to solve the problems of loop trans-
formations and memory optimizations for a code with non-affine array references.

In this work we are interested in parallel image processing algorithms with
either affine or non affine array references. In particular, we want to adapt some
of memory-aware transformations, used to optimize affine loop nests, to the case of the
non-affine ones.

The iterative behavior of the image processing algorithm is well realized on pipelined
or systolic architectures. In the next paragraphs we will describe these kinds of architec-
tures.

1.1.2 Parallel architecture for the image processing

By using the Flynn’s taxonomy [8]|, we can describe the most two important parallel
architecture paradigms of image processing, which exhibit, respectively, data and task
parallelism.

The data parallelism can be achieved with a Single Instruction Multiple Data (SIMD)
architecture and the tasks parallelism can be achieved by using a Multiple Instructions
Multiple Data (MIMD) architecture.

1.1. IMAGE PROCESSING APPLICATIONS AND ARCHITECTURES

33

sync

Video d i | X d X
ad.c. .e. €. .e. La.c. monitor
source ¢ p i P 1 p | < !

. I
video i | !

High Level
- image processor

Pipeline
Control

Figure 1.2: A pipelined image processor, (figure from [10])

Another parallelism technique widely spread and very adapted to the image process-
ing is the use of pipelined processing units. These units allow iterating a set of complex
instructions on a flow of data. By pipelining instructions either data or task parallelism
(or both of them) can be achieved.

The rest of this paragraph shortly describes the pipelined architectures.

1.1.2.1 Pipeline

A pipeline structure consists of a chain of tasks, each one realized by a processor (or a
functional unit). The parallelism is obtained by sequentially streaming data through the
functional unit pipeline, i.e. by using the output of a unit as input of another unit [9].

An example of a pipeline image processor (taken from [10]) is given in figure 1.2.
As stated in [10]: “the raster scan analogue image from the video source is digitized by
the analogue to digital converter (a.d.c.) and transmitted with a synchronization signal
(sync) to the first processing element (PE) of the pipeline". Each PE processes only few
lines of the image frame. An example of a pipelined processing element is given in figure
1.3. Here the processing element performs a filter on a 3x3 window of pixels. The input
image is rastered by lines and the first output pixel is produced after the pipelined has
been filled (i.e. it has received the first 2 lines plus three pixels).

Several pipelined architectures have been realized to perform image processing: some
with a unidirectional [11] and other with a multi-directional data flow [12]. In this last
kind of pipelines, a combination of different directions allows to implement a pipeline of
variable length.

A particular category of pipelined architectures are the Systolic Arrays, which are
multi-dimensional pipelines® [13].

Figure 1.4 describes the functioning of a systolic array computing a matrix multipli-
cation.

The first difficulty concerning the systolic array is to choose the basic structure of the
architecture; this is strictly related to the problem of ‘how to feed the processing elements

bUsually 2-dimensional

34

1. CONTEXT AND PREVIOUS WORKS

Input line - 3]

") =~

line - 3

Output

Figure 1.3: Example of a processing element in a pipeline, realizing a pipeline itself.

with data’. In figure 1.4 we have a squared systolic array whose elements are connected
with the top, bottom, left and right neighbor. In [14], a different way of adapting the
architecture structure to the target algorithm, is presented.

Another important problem, that has kept the most of interest for the automatic
design, is: “how to map onto a finite number of physical PEs a larger number of the
pipeline instructions". In the example of the figure 1.4, the chosen solution is the most
obvious: there are as many processing elements as couples of values to be processed.

The problem of mapping applications onto a fixed-size systolic array is solved with
a projection method, which finds the optimal placement of the instructions in time
(scheduling) and space (mapping).

There are two possible ways of mapping applications on a fixed-size systolic arrays:

e Divide the instructions to be performed in blocks whose size corresponds to the
number of available processing elements [15]. Then process in parallel the instruc-
tions of a block on the different available processing elements. This method is
called the Locally Parallel and Globally Sequential (LPGS) mapping.

e Divide the instructions to be performed in blocks. Associate a virtual processing
element to each block. Further divide the blocks in independent groups (whose
number is equal to the number of available physical processing elements). Finally,
process the different groups in parallel on different physical processing elements and
the blocks of a same group, sequentially on the same physical processing element
[16]. This method is called the Locally Sequential and Globally Parallel (LSGP)

mapping.
The number of processing elements directly affects the temporal performance and the
area cost of the architecture.

1.2. THE HIGH LEVEL SYNTHESIS IN THE DESIGN METHOD HISTORY

35

The different PEs in a pipeline or in a systolic array can realize either the same task,
and in this case the corresponding architecture is a SIMD structure, or different tasks,
and in this case there is an inter-task parallelism which includes the resulting architecture
between the MIMD structures.

In this section we have presented the image processing classification with respect to
the array references that they contain. An image processing application is (usually) an
iterative algorithm that can be described as a loop nest. If all the array references that
it contains are affine, than the image processing algorithms and the corresponding loop
nest are said to be affine themselves. An affine loop can be transformed in order to re-
organize its array references and the layout into the memory of the accessed data. This
can lead to uniform memory accesses, i.e. memory accesses which require the same time
to be performed.

In this section we also presented the parallel architecture paradigms used in image
processing. The most important are the pipelined architectures. The systolic array are
one of the most studied image processing architectures.

To conclude, an image processing system can be described at different abstraction
levels. In our work, we have considered the algorithmic and the structural levels and the
process that allows passing from the first to the second one: the High Level Synthesis.

1.2 The High Level Synthesis in the design method history

The High Level Synthesis (HLS) allows extracting a parallel, timed and structural model
from a sequential, untimed algorithmic model. The HLS represents a forward step in the
process and history of the design of the integrated systems.

In order to handle the designs complexity, the abstraction level of the input model
has rose more and more for the last decades. As stated in [17], three historical phases
can be distinguished:

e The capture-and-simulate phase (from 1960s to 1980s), during which it was
mandatory to realize the hardware in order to capture and validate its behavior
through a simulation.

e The describe-and-synthesize phase (from late 1980s to late 1990s). During
which two abstraction models were introduced in order to validate the artifact
behavior before its realization. The two models were the functional model and
the gate-level structure. In the early 90s a new abstraction model was introduced
between the previous ones: the Register Transfer Level (RTL) model, which gives
the combinatorial logic realizing the target function and, at each clock-cycle, the
status of the internal registers.

e The Specify, Explore-and-Refine phase. Since the early 2000s, a new trend
has been taking place: to specify models at different abstraction levels and to

36

1. CONTEXT AND PREVIOUS WORKS

refine them by successive synthesis step. A new model above the RTL has been
introduced: the System Level (SL) model, which gives a description of the artifact
with respect to the communication system used: the busses, the links point-to-
point, etc. In this framework, each model at different abstraction levels (the SL,
the RTL and the gate level) is a refinement of the model at the previous level and
the specifications for the current specify-explore-and-refine step.

Until nowadays, however, and according to [18], “the Electronic Design Automation
(EDA) community has not succeeded in establishing a new layer of abstraction uni-
versally agreed upon (...)" as the RTL. Alway according to [18]: “The International
Technology Road-map for Semiconductors (ITRS) in 2004 placed SL Design “a level
above RTL including both HW and SW design". SL Design is defined to “consist
of a behavioral (before HW/SW partitioning) and architectural level (after)" and
is claimed to increase productivity by 200K gates/designer-year".

1.2.1 The Y-chart and the synthesis levels

In order to give an idea of the possible models and processes implied in the current
hardware design flow, we describe the Y-chart, implemented by D. Gajski and presented
in [17].

According to the Y-chart (see figure 1.5) we can state that any design can have three
models, each one focusing on a design property:

e the behavioral model, pointing out the functionality of the system;

e the structural model, giving the structure of the macro-blocks that realize the target
functionality and

e the physical model, which adds the dimensionality to the structure, i.e. information
on the area occupancy, the temporal performance and the power consumption of
the target structure.

In figure 1.5 these models are represented through three axes forming a “Y". This figure
is adapted from [17, 19].

As pointed out by figure 1.5(a), for each model, there are several levels of abstraction
according to the components granularity of the model. For example, at the System
Level, the basic components are processors, co-processors, busses and memories; at the
processor level, the basic components are the functional units (such as ALUs) and some
storage elements (such as the register files); at the logic level, the basic components are
the logic gates and the flip-flop and, finally, at the circuit level, the basic components are
the transistors.

The abstraction levels on the Y-chart are represented by concentric circles which
intersect the “Y" axes. As shown by figure 1.5(b), each motion along or across the “Y"
axes represents a step of the specify-explore-refine design flow. For example: a radial
movement along an axe represents a refinement or an abstraction of the considered model;
a circular movement along an abstraction level is called synthesis, when it leads from a

1.2. THE HIGH LEVEL SYNTHESIS IN THE DESIGN METHOD HISTORY

37

behavioral to a structural model; analysis, in the inverse case; generation, when it brings
from a structural to a physical model and eztraction, in the inverse case.

At each abstraction level, it is possible to optimize the considered model by “explor-
ing" different implementations.

As shown by figure 1.5(c) and by starting from the more abstract model, there are
three possible syntheses:

e The System Level Synthesis (SLS), which consists in passing from an sys-
tem behavioral model to a system structural model, with programmable micro-
processors, customized hardware, IPs, memories, buses and interfaces and is con-
cluded with the synthesis of communications (see figure 1.6(a)). Several tools are
available to run efficient Design Space Explorations at this level for SLS (Artemis|20]
Metropolis|21]).

e The High Level Synthesis (HLS), which consists in passing from a behavioral
description of a processor to a structural RTL logically synthesizable model as
shown in figure 1.6(b) and presented in [5].

The synthesizable structural model contains a control unit (which is a Finite State
Machine (FSM)) and a Data Path Unit, which executes the application under the
F'SM control.

e The Logic Synthesis, which allows to pass from a RTL model, through a gate
level model, to a technology-specific network

On a same abstraction level and thanks to the synthesis it is possible to have models
which are intermediate between the behavioral and the structural and have a different
time granularity. These models are said to be approximate-timed, because they integrate
more information than an un-timed (algorithmic model) and less than a cycle-accurate
(implementation) model.

In our work, we are interested to the High Level Synthesis.

1.2.2 The abstraction level of a HLS input model

An efficient exploration front-end of the HLS is able to find a good trade-off between
the parallelism level, the temporal performance, the power consumption and the area
occupancy of the system. This exploration is related to the abstraction level of the input
model to be optimized and also to the semantic of the used description language.

An un-timed behavioral code (usually written in C or C++) has a simulation time
from 10 up to 100 times faster than a HDL® synthesizable model. This enables the
possibility to rapidly change the algorithm or the chosen structure of the target hardware
[22]. On the other side, even with HDL language it is possible to describe an algorithm in
a behavioral (and thus in a non-synthesizable) manner. For this reason, in our opinion the
HLS input problem does not concern the language used to describe it but its abstraction
level. Nevertheless, the standard C needs some expedients to enable an optimized HLS.

“Hardware Description Language

38

1. CONTEXT AND PREVIOUS WORKS

In [23] it is stated that: “C/C++ is a poor choice for specifying hardware” and that
“C-like thinking is actually detrimental to hardware design". The problem of C/C++
concerns first of all the impossibility to express concurrency and the hardware data-
types?. Another limit of the C/C++ language is the memory model, which is a very
flexible access-random memory, i.e. all the memory locations are equally cost to access.
While in a hardware model the memory hierarchy introduces delays that may prevent to
achieve the required temporal performance.

Two different approaches exist to overcome the limitations of a C-like input code for
HLS:

e to add parallel constructs to the language, this is the case of the SystemC (which
is actually a HDL-like language) or other software-like language that provides con-
struct to dispatch collection of instructions, as for example Handle-C [24], Spec-
C[25] or Bach C [6].

e to let the compiler the burden of inferring parallelism.

In both these cases, it seems a widely spread opinion that the results are all the better
since the C-code to be synthesized into parallel handware is written from the architect
point of view and contains knowledge about the target architecture.

However, the higher the abstraction level of the input model (i.e. un-timed and
sequential) the greater the possibility we have to:

e give a model which is not architecture-specific
e make simulations from 10 to 100 times faster [6]

e reduce the workload to introduce changes into the hardware structure or the algo-
rithmic functionality

These features enable the Exploration of a larger Design Space and thus significantly rise
the possibility to find an optimal hardware solution [22]. Furthermore an automatic flow
which infers a RTL from a behavioral model consequentially speeds up and secures the
error-prone task of manually transforming a behavioral model into a hardware structure.

In the HLS framework, particular cases are the loop-based C- tools [22, 26] which
mix the two approaches, by giving the possibility to express parallelism and data-width
through extensions of the standard C and pragmas, but also automatically infer paral-
lelism through loop transformations.

1.2.3 The HLS loop-based tools

In most of HLS tool which take as input an un-timed behavioral model, we can distinguish
two phases of the HLS process [27, 28, 29, 30]:

din particular, it is impossible to express a one bit-bool type

1.2. THE HIGH LEVEL SYNTHESIS IN THE DESIGN METHOD HISTORY

39

e A behavioral synthesis, which optimizes, transforms and partitions the input code
and finally produces an architectural structure usually containing the control and
data path unit;

e A structural synthesis, which results in a generation of a detailed data-path and
controllers net-list related to the RTL library. At this step, the back-annotation
techniques allow a fast estimation of the performance and area occupancy of the
final hardware by taking into account a target technology.

Let consider the HLS tool used to support the work of the presented PhD thesis and
described in [26, 27, 31, 32]. It is a loop-based C-tool, which takes as input a C-code
containing a series of loop-nests.

The corresponding synthesis is based on a target architecture template (figure 1.7
and paper [26]) which contains a Very Long Instruction Word (VLIW) processor and a
Systolic Array. The used HLS tool focuses on the synthesis of the Systolic array.

The systolic processor array contains interfaces to the VLIW processor and to the
external main memory, internal memories and interconnected processing elements (PEs).
The PE architecture is shown in figure 1.8 and contains a loop-specific instruction se-
quencer and a data path consisting of functional units (FU), distributed registers and
sparse interconnect customized to the loop nest [26].

The HLS flow of the studied tool has two phases [27]: a behavioral synthesis which
allows passing from the iteration space of an un-timed loop-based C-code to a timed space
of the platform presented in figure 1.7, and a structural synthesis which leads from
the parallel program to the hardware.

The behavioral synthesis goes through the following steps:

e The dependence analysis, which identifies the inter-iterations dependences.

e The code optimization based on loop transformations (Tiling in particular). The
tiling divides the iterations into blocks.

e The placement of a n-deep iteration space in time and space.

e The recurrence-based control generation, which allows the loop-specific sequencer
of a processing element to compute the coordinates of the iterations, the addresses
to be used in the main memory, the coordinates in the cluster of iterations tile
processed and other informations concerning the data communications. A part
of this information is directly read as an input in order to simplify the iteration
control.

The placement of the n-deep iteration space in time and space is performed through
a loop transformation:

S

40

1. CONTEXT AND PREVIOUS WORKS

where S is a scheduling function, i.e. the placement of iterations in time, and II is a
mapping function, i.e. the placement of iterations onto the systolic arrays.

This technique has been previously presented in [15]. In the case of the used HLS
tool it is performed by assigning each iteration in the space to an (n-1)-dimensional
array of virtual processing elements, each one corresponding to a tile of iterations. The
virtual PEs are then divided into clusters and the execution of cluster is assigned to a
specific physical processing element. This technique is presented in [27, 16] and is directly
inferred from the loop tiling.

Furthermore, in the used HLS tool, the iteration scheduling on each physical process-
ing element is inferred according to a tight scheduling formula [33].

The structural synthesis goes through

e The Functional Unit allocation
e The Operations mapping and scheduling
e The Data path and iteration control generation

e System synthesis, which consists in the synthesis of several processing elements
communicating through point-to-point connection or internal memories (see figure

1.7).

The Functional Unit allocation allocates the least-cost set of Functional Units by taking
them from a library. Each functional unit can handle several kinds of operations. The
allocation is performed by solving a mixed integer linear programming problem which
minimizes the cost due to the allocation under the following constraints:

e The number of assigned operations is inferior or equal to the number of allocated
FUs per initiation interval (II)®

e The number of assigned FUs which can handle a given type of operations is superior
(or equal) to the number of operations of this type to be performed.

The Operations mapping and scheduling are performed by a VLIW compiler , Elcor [32],
which compiles the operations on a programmable abstract VLIW. Once the optimized
architecture is chosen only the required data-path and interconnect are generated. The
compiler performs a modulo-scheduling by respecting the user-defined II and minimizing
the area cost with an efficient mapping.

1.2.4 The input C-code of the used HLS tool

Loop-nest based C codes are particularly adapted to describe multimedia applications.
The input code is synthesized as a Pipelined Processing Array (or systolic architec-
ture) on which it is possible to process more sets of input data (e.g. different frames in

i.e. the initiation interval is the user-defined number of cycles between the start of the execution of
two successive iterations on the same hardware. Suppose that there are two operations of a type “o",
they can be handled by a unique FU of a type “", if II=2.

1.2. THE HIGH LEVEL SYNTHESIS IN THE DESIGN METHOD HISTORY

41

an image flow). Each loop-nest of the code is synthesized as a Processing Element, which
contains a control unit and data-pathf. The control unit iteratively executes operations
on the data-path which corresponds to the loop core.

As specified in paragraph 1.2.2, even if the usage of C language maintains high the
abstraction of the input model and, thus, allows an efficient design space exploration,
there are some limitations due to C semantics and philosophy.

e A problem of the C-language is the impossibility to have a single bit signals or
signals which contains a number of bit different from 8, 16, 32 and 64 (which
corresponds to the C data type char, short, int, long). The used HLS tool provides
the possibility of specifying the signal bit-width through a pragma and, recently,
with a C++ class (ac_int<... nbr. of bits ...>).

e Another important problem of the C language with respect to the evaluation of the
inferred parallel model is its flexible access-random memory. Indeed, in a C-code
all the memory locations have the same cost to be accessed.

In order to overcome this problem, the HLS tools provide an expedient consisting
in specifying a HLS compiler parameter ((-DMEMORY LATENCY=...) and a
function as follows:

unsigned char delay(unsigned char dummy){
#pragma bitsize delay
#pragma bitsize dummy
return dummy;

}

This function is generated as a clock cycle delay and can be iteratively called in
order to simulate a memory latency of more cycles.

e Finally, a C-code is un-timed and sequential, which is, on one side, desirable be-
cause of the possibility to extend the design space explored, but, on the other side,
severely limits the possibility to introduce concurrency between process.

The first way to introduce parallelism is to pipeline the iterations of a loop nest on
the same hardware, in order to overlap parts of iterations with each other.

Another way is to apply tiling, in order to parallelize the process of independent
regions of the manipulated data set, which means to use more PEs for a single
loop-nest.

On the other side, independent loop-nests are processed in parallel on different
PEs but, the used HLS tool also offers the possibility to parallelize loop-nests
which depends on each other, by using streams.

The streams are elements of communication between two loop nests, the one
producing and the other consuming data. They have different implementations:

fi.e. a set of FUs

42

1. CONTEXT AND PREVIOUS WORKS

the one for the sequential and the other for the parallel model. In the sequential
model, they are used to store all the data produced by the first loop nest until
the second loop nest uses them. In the parallel model, they include a (handshake)
communication protocol and a few temporary registers. The data produced by the
first loop nest are either stored in the temporary registers until the second loop
nest is ready to start or directly passed to the second loop-nest. For this reason,
not all the produced data have to be stored and the two loop-nests, producing and
using data, can be executed in parallel.

If inter-dependent loop nests communicate through memories they could be paral-
lelized by using a double buffering mechanism [34|, which consists in duplicat-
ing the memory buffer in order that the loop producing data fills the first buffer
while the loop consuming data reads the second buffer and, vice-versa, the loop
producing data fills the second buffer while the loop consuming data reads the first
buffer.

In our work we encountered the problem of inter-dependent loop communicating
through memories, but the size of the required double buffer would have been too
important. Thus we have solved the problem as shown by figure 1.9.

We have applied tiling to each loop nest of the initial code (figure 1.9(a)) which
accesses a memory of N elements, in this way we have obtained the code of figure
1.9(b). By merging the more external loops (on tiles) we obtain the code in figure
1.9(c) in which we can use a memory containing only % elements. By using a
double buffering mechanism on the smaller obtained memory, the two loop nests
can be parallelized.

A problem arises from these transformations: the obtained code (figure 1.9(c)) does
not contain perfectly nested loops, thus it is not synthesizable, according to the
rules of the used HLS tool. In order to synthesize this code and as it was feasible,
in our case, we have displaced the more external loop out of the synthesized systolic
array, in order to be performed by the VLIW controller.

In other cases this solution could not be possible and it would be helpful if the
vendor of the HLS tool proposes a memory, which (as for the streams) has two
versions, one for the sequential model and one for the parallel model (including a
synchronized access protocol).

1.2.5 The parallelism levels inferred by the HLS commercial tool: inter-
operations, intra-loop and inter-loops parallelism

Thanks to the previously presented optimizations and design flow it is possible to have
three levels of parallelism: the inter-operations, inter-iterations and inter-loops paral-
lelism, which are inferred by the HLS tool under some user’s constraints [31].

To detail the possible levels of parallelism let consider the loop-based code in figure
1.10. The notation op;(op;, m) means that the execution of the operation op; depends
on the operation op; and uses the hardware resource m. For example, r,(RQ : ws, s) (in

1.2. THE HIGH LEVEL SYNTHESIS IN THE DESIGN METHOD HISTORY

43

the figure) means that the reading access to the stream s depends on the writing access
to s made in the loop RQ. The hardware resource used is the stream s.

1.2.5.1 The inter-operations parallelism

The operations of a loop core can be scheduled sequentially or in parallel depending
on the hardware resources and the inter-operation dependences. Figure 1.11 shows two
possible scheduling for the operations in the RQ loop core of the code in figure 1.10
and their possible hardware realizations. The amount of resources used depends on the
number of operations executed in parallel.

The inter-operations parallelism is automatically inferred by the HLS which found
the solutions meeting the user’s constraints on the temporal performance and using the
minimum amount of hardware resources.

The hardware instantiated represents the processing element associated to the loop
core.

1.2.5.2 The inter-iterations parallelism

The iterations of a same loop nest can be pipelined on the same processing element.
To avoid conflicts on streams and memories accesses, a minimum interval of time (II-
Initiation Interval) has to pass between the beginning of two successive iterations. The
user can force the inter-iterations (and the inter-operations) parallelism by fixing the IT
as the minimum possible.

Figure 1.12 shows an example of pipelined iterations for the loop nest RQ. The
hardware instantiated at this step counts a data path and a controller used to pipeline
the iterations; it represents the processing element associated to the loop nest.

1.2.5.3 The inter-loops parallelism

Different loop-nests run in parallel but their communications (for example a memory
or a stream access) create inter-loop dependencies which have to be respected. Two
communicating loop nests can exchange data through a stream and, at the same time,
be synchronized by the handshake communication protocol of the stream in order to
execute in parallel.

Figure 1.13 shows an example of loop nests parallelism between the loops RQ and
FH.

The biggest problem with the used loop-based High Level Synthesis tool is that the
micro-architecture ensuring the data transfer and storage has to be defined by the user
and included in the input C-code. The choice of an optimize memory architecture is a
difficult problem that has to take into account many possible solutions. Thus in the next
section we will describe this problem, the existing kinds of solutions, their advantages
and their limitations. The ultimate aim is to propose a comprehensive methodology
able to apply the described memory-aware optimizations to the parallel image processing

44

1. CONTEXT AND PREVIOUS WORKS

algorithms with affine or non-affine array references. This methodology has to be used as
a front-end of the used HLS tool and thus, it has to refine an abstract C-model towards
a model including a set of memory-oriented optimizations.

1.3 The Data Transfer and Storage Management in Systems
Design

One of the big challenges in the design of current digital systems is the Data Transfer
and Storage Management (DTSM) [35, 1|. This concern is inscribed in the framework
of the «memory wall» problem, which represents the gap between the memory band-
width and the processor speed [36]. This gap increases despite the miniaturization trend
of technology and needs to be solved by proposing new architectural and algorithmic
solutions.

The DTSM is a critical point especially for the implementation of multimedia appli-
cations, such as image processing ones. Indeed, the growing concern about the image
quality requires to handle more and more important image sizes (cf. High Definition
TV).

The DTSM affects the area, the power consumption and the temporal performance of
the hardware and, in the last decades, it has retained the attention of parallel compiler,
parallel architecture and computer aided design research communities.

As stated in [7], two fundamental kinds of optimizations are needed in order to
improve the DTSM:

e the architectural optimizations
e the algorithmic optimizations.

The architectural optimizations are aimed to create a memory hierarchy in order
to facilitate the data access and to reduce the area of the circuit reserved to the data
storage. The algorithmic optimizations are aimed to enhance some algorithm character-
istics as spatial and temporal data locality, data parallelism, etc. With respect to the
DTSM problem the algorithmic optimizations consist in re-ordering the data accesses
and partitioning the data and the instructions involved in the target algorithm.

In the next paragraphs we will describe what is a memory hierarchy and which are the
related optimizations. Then we will describe the code optimizations aimed to improve
the DTSM.

1.3.1 The memory hierarchy

The different existing kinds of memories can be classified with respect to the access time,
the access cost and the volume of data that they can store. Usually the fastest and most
expansive memories are the smallest ones. A memory hierarchy consists in optimizing
the use of the differnt memories by taking into account their phisical caracteristics. In
particular, applications using a large amount of data can store them in a larger and

1.3. THE DATA TRANSFER AND STORAGE MANAGEMENT IN SYSTEMS DESIGN

45

slower off-chip memory (usually a DRAM [37]). Then, to reduce the data access time,
they can use smaller on-chip memories (usually SRAM) to copy part of the manipulated
data next to the the computation units.

The access to the off-chip stored data can be delayed due to many factors which
contribute to increase the “external memory latency” (cf. figure 1.14 and [38]). For
example the data request of a computation unit can be queued due to other requests
with a high priority.

Among the possible on-chip memories we can distinguish two kinds of memories:

e the cache memory
e the scratch-pad memory

The cache memory [39] creates a copy of the external data in a new memory space.
A control mechanism establishes if the required datum is contained in the cache (cache
hit) or is not cached yet (cache miss). When a cache miss happens, the missing datum
(and may be its neighborhood) is fetched from the external memory.

The scratch-pad [40, 41] is a memory in which data are mapped after the scheduling
of the instructions (and thus of the memory accesses). For this kind of memory it is not
necessary to check for the data availability.

The difference between the scratch-pad and the cache memory is that the scratch-pad
always guarantees a data access in a single clock-cycle, while the cache is subject to the
cache misses.

Several mechanisms can help masking the external memory latency by using local
memories. More specifically, the data pre-fetching [42], which consists in copying the
data needed for the next task during the computations of the current task. The pre-
fetching requires to instantiate an amount of memory that avoids the conflicts on memory
access, i.e. an amount of memory in which it is possible to store the data used by the
current task and to copy the data needed by the next task. An example of pre-fetching
instantiating the double of internal memory amount is the double buffering [34].

1.3.1.1 Methods used to construct an optimized memory hierarchy

To implement an optimized memory hierarchy the designer has to develop an exploration
method including:

e the estimation of the needed memory amount [43, 44, 45, 46|

e the allocation of chosen number and types (single-port, dual-port, etc.) of used
memories [47, 48, 49|

e the assignment of the sets of manipulated data

The estimation of the needed internal memory amount depends on the data access
pattern (and thus on the instructions scheduling). It is possible to run a coarse estimation
before the instruction scheduling and a finer estimation after. In this last case the

46

1. CONTEXT AND PREVIOUS WORKS

estimation can take into account the lifetime of the variables or array cases accessed
during the algorithm execution [45, 50].

Most of the techniques coupling the estimation before and after the instruction
scheduling consist in computing a set of possible scheduling and choosing the one us-
ing the least internal memory amount [51].

The memory assignment consists in mapping data into the allocated internal mem-
ories. It has to solve three problems:

e the conflict caused by mapping different data into the same memory location [52,
53, 54|

e the reduction of the number of used memory ports [7, 55]
e the tradeoff between the area occupancy and the power consumption [56, 57|

The conflict on the data access can be solved in two ways: by mapping dummy elements
into the conflicting locations [58]; by tiling data before the memory mapping. In this last
case the tiling has to respect the internal memory size and mask the external memory
latency [53, 59, 60, 61].

The number of memory ports depends on the mapping of sets of data accessed in
parallel into the same internal memory. This problem can be solved through conflict
graph [7] or stream buffers [55].

The area occupancy and the power consumption depend on the number and size of
the used internal memories. In particular large internal memories storing contemporary
more data arrays occupy more circuit area, while a larger number of internal memories
causes a higher power consumption. Methods exist to find a trade-off between the two
previous solutions |56, 57].

Other methods to reduce the power consumption are to reduce the memory bus
activity by an optimized data encoding [62] or by reorganizing the data accesses [56].

1.3.2 The target code optimizations

The target code optimizations have been largely studied in the last 90s by the parallel
compiler community. They are essentially aimed to enhance the temporal and spatial
locality of data and to allow the data and task parallelism.

During the last decade, these techniques have been included into the research frame-
works of Computer Aided Design and High Level Synthesis communities. Indeed their ef-
fect on the DTSM is critical, especially for applications permitting a customized memory
subsystem. Most of previous works focus on loop transformations, which are particularly
adapted to optimize an image processing algorithm, usually represented by a series of
nested loops.

The first step of a code optimization flow is the data dependence analysis. Thus in
this section we will first describe the possible methods to infer the algorithm dependences
and then we will describe the loop transformations used to improve the DTSM.

1.3. THE DATA TRANSFER AND STORAGE MANAGEMENT IN SYSTEMS DESIGN

47

1.3.2.1 The dependence analysis

The dependence analysis is aimed to find the data and instructions dependences of an
algorithm. In our work we are only interested in the data dependences. This kind of
dependences can occur between two data accesses to the same memory space. The data
dependences can be caused by the data address only (static dependences) or can also
be due to the data-value. In our work we only focus on static dependences. The data
addresses, in their turn, can be affine or non affine (cf. paragraph 1.1.1.3).

According to the type of dependences and data addresses there exist different methods
to infer the data dependences. We will consider the two following main methods:

e the profiling of the code during its execution

e the data dependences analysis through a formal method

The first method consists in constructing a trace of the data accesses by executing
the target algorithm [3, 63, 64]. This method associates a footprint, i.e. a set of accessed
data, to each instruction or set of instructions and it does not impose a condition on the
address affinity.

The formal dependence analysis consists in deducing the lexicographical order of
the data accesses |65, 66] by solving linear programming problems [67]. This method
describes the dependences by distance or direction vectors and impose that the data
references are affine. For example in [65] and [66], the data dependences in a loop nest
are represented as vectors, which coordinates are affine to the iteration indexes (e.g. in a
n-dimensional space a reference array is v = (v1, va,...,vy,)). For each pair of dependent
array references (e.g. v and w, with v dependent on w reference), the dependences can
be described through:

e a distance vector which calculates the differences between the two vectors rep-
resenting the array references; e.g. d =7 —w = (v — w1,v2 — Wa, ..., Uy — Wp)
or

e adirection vector which indicates if the coordinates of the distance vector are less
than, equal to or greater than 0; this vector is easier to compute but gives less infor-
= if V; — W; = 0
mation than the previous one; e.g. d= (di,...,dy) with d; = < v <w;
> if v; > w;
Figure 1.15 gives an example of a perfectly nested affine loop, for which there are
three true dependences due to the couples of array references (Alig][i1], Alio + 1][i1]),
(Alio]lir], Alio]lir + 1]) and (A[io][i1], Alio — 1][ix —1]).
The corresponding distance vectors are (1,0), (0,1) and (—1, —1), while the directions
vectors are (>,=), (=,>) and (<, <).

After that the dependence analysis has been applied, it is possible to transform the
input code by enhancing the data locality, the parallelism and other features related to
the data storage and transfer. As the considered input code is a loop-based one, the code
transformations are essentially loop transformations.

48

1. CONTEXT AND PREVIOUS WORKS

1.3.2.2 The loop transformations

A framework using the formal method analysis and proposing a set of code transfor-
mations is the polyhedral model [68, 69]. In this model a perfectly nested loop code is
represented by a set of matrices. Methods exist to make a code perfectly nested [70]. A
code transformation consist in multiplying all the matrices representing the target code
by the matrix representing the transformation.

The transformations are divided in unimodular transformations, which are repre-
sented by an unimodular® matrix [71, 70, 72, 73] and the non-unimodular transforma-
tions [74], such as: the loop fusion [75], the loop pipelining [76, 77, 78], the loop unrolling
[79] etc...

Unimodular transformation The transformations having a matrix representation T,
defined and invertible on N®*" and, thus, with det(T") = 41, are said to be unimodular
transformations.

These transformations are applied to all the statements of a perfectly nested loop,
at the same time. They transform the iterations distribution, the loop bounds and the
array references, in order to enhance the data locality and, thus, allow uniform memory
accesses. The unimodular transformations are: loop interchange (or permutation), loop
reversal and loop skewing 72, 73, 30]. They are shortly presented in figure 1.16 and are
legal if they respect the data dependence, i.e. if they preserve the temporal sequence of
all the dependences.

Tiling The loop transformation allowing to apply the data and instruction partitioning
is the tiling.

The problem of finding an optimal tiling was first introduced by [80] and is a double
problem. On one hand it is necessary to chose an optimal tile shape [81] and on the other
hand it is necessary to find an optimal tile size [82, 83, 84| (some authors have proposed
to resolve both problems at once [85]).

The optimality of shape or size choice is defined with respect to the purpose of the
tiling use. Basically we can distinguish two purposes: tiling for data locality enhancement
[58, 86] and tiling for parallelism [87, 81, 88].

Tiling for data locality, i.e. for memory hierarchy, depends on: which architectural
features are modeled (e.g. associativity, prefetching, etc...); which resolution methods are
used (e.g. heuristic search based for example on genetic algorithms [89, 90], closed form
solution, exhaustive search, etc.); which cost metric is used and if it is a direct cost (e.g.
execution time with load balancing [59]) or an implicit one (e.g. cache misses [91, 90]).

Tiling for parallelism involves the search of the optimal tile size and shape with
respect to a metric cost, namely the total execution time and the communications cost
[92, 93].

The tiling validity According to [92], a valid tile is required to be:

i.e. with a determinant — +1

1.3. THE DATA TRANSFER AND STORAGE MANAGEMENT IN SYSTEMS DESIGN

49

e Bounded, which means that the matrix representing it is non-singular.

e Identical by translation, which means that the matrix representing it is an
integer matrix.

e Respectful of the data dependences, which means that the transformed de-
pendences has to remain lexicografically positive.

The tiling advantages There are many advantages in the use of tiling. We re-call:

e The re-use of internal memory. Tiles of data used in different stages of the image
processing can be stored in the same internal memory.

e The parallelism between independent tiles. As shown in figure 1.17, if the tile shape
follows the inter-tile dependences, we can distinguish groups of tiles which do not
depend on each other. They can be processed in parallel.

1.3.2.3 The non-affine array references

The previously presented transformations succeed in optimizing a large class of algo-
rithms, however they require that the array references are affine, otherwise neither the
polyhedral model nor the transformations leading to the uniform memory accesses are
applicable.

Most methods assume that a non-affine reference causes a data dependence.

In [94], the non-affine array references are evaluated with respect to the related affine
reference. For example, in the code of figure 1.18 there could be a dependence on the
array a; but the first subscripts of the two references to the array (i2 and 3 respectively)
do not interfere since there is no integer for which 2 = 3; the second subscripts of the
two references (2¢ and 2i + 1 respectively) do not interfere because one refers to the odd
locations and the other to the even ones. Thus, the two array references do not interfer
with each other.

[3, 63] propose a method, that performs a run-time analysis, in order to find all the
non-affine references and re-sort the corresponding instruction in order to create “bucket
tiles" of data which are stored so that the access memory result uniform.

[64] proposes a method which applies tiling to a loop that may contain non-affine
array reference. The associates to the different instruction tiles some footprints, i.e.
blocks of needed input data, which can overlap with each other and have a variable size.

The major problem in this kind of solution is the cost of the mechanism used to
transfer data from the external memory and to access internal memories. This mechanism
has to take into account the size of the transferred (or accessed) blocks of input data.
Yet the sizes of these blocks depend on the address of the output data to be computed.
This is why the used mechanism can be very expensive in term of occupied area, power
consumption and computation speed.

50

1. CONTEXT AND PREVIOUS WORKS

1.4 Comprehensive methodologies

A general approach in implementing a comprehensive memory-aware methodology should
go trough the following steps:

e A phase during which the loop transformations are applied in order to create uni-
form memory accesses

e 3 phase for tiling, in order to enhance parallelism and allow data pre-fetching
e a phase of hardware-oriented estimations and/or optimizations

Comprehensive methodologies are the Data Transfer and Storage Exploration (DTSE)
project [1, 35], EXPRESSION [95], PHIDEO [96], MMalpha [97] and [64].

1.4. COMPREHENSIVE METHODOLOGIES

51

Conclusion

In this chapter we presented the context of this PhD thesis, which is the High Level
Synthesis applied to the image processing transformations. More in particular, we have
focused on the problem of the Data Storage and Transfer Management for application
manipulating a large number of data.

In the first part of this chapter, we have classified the image processing algorithms
according to the array references that can be contained in code and that can be affine
or non-affine. The considered codes are the loop-based ones which represent well the
iterative behavior of image processing algorithms. The hardware architectures realizing
such a kind of behavior are the pipelined structures, as for example the systolic arrays.

Some HLS tools allow extracting a systolic timed structure from an algorithmic loop
based description by running a design exploration to find the best instructions scheduling
and mapping among a set of analyzed solutions. Although this kind of tools obtain
competitive results, they lack a design exploration to find an optimized micro-architecture
for the data transfer and storage management. Thus, they require the user to specify
the communication and memory architecture.

In the last decades many works have been published on the DSTM problem, due
to its interest for different research communities. In particular, the first works on code
transformations were run by parallel architecture and compilers communities and were
focused on loop transformations to enhance data locality for parallelism. Successive works
have shown the importance of the loop transformations on the data transfer and storage
management [98] and have invested other domains of research, as for example the HLS.
An affine loop based code can be transformed in order to reorganize its array references
and the layout into the memory of the accessed data. This can lead to uniform memory
accesses, i.e. memory accesses which require the same time to be performed. Another
important loop transformation is the tiling which allows partitioning the iterations and
the data of a loop nest. The resulting data and instructions partitioning can be exploited
to explore an optimized micro-architecture for data storage and transfer. In particular,
the tiling allows implementing a memory hierarchy by storing all the manipulated data
in an external memory and copying only part of immediately used data next to the
computation units. Some mechanisms exist to mask the external memory latency, such
as the data pre-fetching.

However, the previous works on loop transformations were mainly limited to the
case of loop having affine array references. The few works proposing a partitioning for
loop having non affine array references are based on run-time dependence analysis and
associate footprints of variable size to the different sets of instructions. These methods
impose to instantiate a control on the data transfer and access which has to take into
account the size of the blocks of data. The data block size, in its turn, depends on the
specific set of instructions to be executed. Thus, the used control mechanism can be very
expensive.

The aim of this PhD thesis has been to propose a method able to run a Design Space
Exploration oriented to the optimization of the data transfer and storage management.

52

1. CONTEXT AND PREVIOUS WORKS

The corresponding developed tool has been used as a front-end of HLS in order to help
the user to find an optimized memory micro-architecture. Our method is able to handle
image processing applications with non-affine array references. It is able to apply a tiling
which, on one hand, is based on a run-time dependence analysis and, on the other hand,
uses disjoint and equal-by-translation tiles to partition the data and instruction sets. The
non-affinity of the array references is taken into account by projecting the instruction
tiling on the data tiling. This method leads to a memory micro-architecture that is,
at the same time, adapted to the non-affinity of the array references of the application
and has a cheap control on the data transfer because of the invariability of the size of
transferred data blocks.

In the next part of this dissertation we will present the developed Design Space
exploration tool.

1.4. COMPREHENSIVE METHODOLOGIES 53

apg aip az bo b1 b2
az a4 as bs by b5
ag a7 ag bs b7 bg

(a) matrix multiplication

1
§ |
T 1
R 0 1 2 X
L 1
MEM MEM X
1
I 1
F 3 4 5 !
I ! bs
1 1
| [MEM INTERFACE | !
T T by bs
int SYS
P (){ be by b
r(i=1;i<N;i++)
a(i):b(i)+a(i-1) alignement in time by by
for(i=1;i<N;i++) @ @] o bo || |]
a(i)=K*a(i-1)
e as 2 az — =]]
for(i=1;i<N;i+-+
a(i)=K*a(i+1) I | I
e ag ar ag — —| |
}
(b) step 0: input data alignment (c) step 1
bs
by b
alignement in time be by by alignement in time
0 * by 0 * D1 ”U*b o b o % by
S e e
as ay " “ho =] *)*3": I’)‘ﬂh‘»faj: 21 1—>+3a>§ {1«2 5
as * Has Uy Has* b
- "R I R I o fio kol o Byl _po b
Hag * O Has =l Has*
(d) step 2 (e) step 5: end of processing

Figure 1.4: Example of a systolic array computing a matrix multiplication

54 1. CONTEXT AND PREVIOUS WORKS

Behavior Structure
(Function) System (Netlist)

System Specs CPUs, ASICs, BUS, Links, MEM

<Iransistors

Axes: Specification Domains

Circles: Abstraction Levels

Phisical
(Layout)

(a)

i < . Structure Behavior Structure
oo, Synthesis (Netlist) (Function) 1 (Netlist)

Analysis

CPUs, ASICs,
BUS, Links, MEM

Optimization Algorithm ALU, REGs, MUX
Boulean eq> GATEs, FLIP-FLOP

Transistor function ransistors

Generation
Extraction
1. System Level Synthesis
2. High Level Synthesis
3. Logic Synthesis

4. Physical Design

Phisical Phisical
(Layout) (Layout)

(b) (©)

Figure 1.5: Y-chart, figure adapted from [17, 19]

1.4. COMPREHENSIVE METHODOLOGIES

Transaction Level Model Processor Algorithm

pprocessor

CK, RESET

! }

High Level Synthesis

‘ ‘ Control Unit Data Path Unit
Interface ac
Interface 10 devices
CTRL
COND
Main Custom Processor
Memory
Communication
Synthesis i
! Logic
Synthesis

Cycleaccurate
communication
model Circuit

(a) (b)

Figure 1.6: System Level design flow

Systolic Array 1
|
c l
T 1
PE — PE — PE |
VLIW R |
Processor L :
l
I |
F PE —| PE —| PE | |
l
Cache Memory controller

Memory Bus

Figure 1.7: HLS tool architecture template, figure from [26]

1. CONTEXT AND PREVIOUS WORKS

Loop-specific

sequencer Interface

Command

Sparse interconnect 1

HJ HJ |

HJ

| | |

I

Sparse interconnect 2
T

T

LBt 55

Literals L

Sparse interconnect 1

Figure 1.8: Processing Element architecture template, figure from [26]

P: For(k=0:N){

¥
C: For(k=0:N){

- =IM[K]

M[k|= ...

For(i=0:N/T){
P: For(k=0:T){

IM[*T +K]= ...
}

For(i=0:N/T){
C: For(k=0:T){

- =IM[*T-+]
}

For(i=0:N/T){
P:For(k=0:T){

IM[b1][K]= ...

C: For(k=0:T){

- =IM[be][K]

}

(a) Input code

(b) Tiled code

(c¢) Final code with a reduced in-
ternal memory

Figure 1.9: Code transformation to parallelize inter-dependent loop-nests communicating through

memory. The transformation reduces the size of the internal memory used.

Producing data'" and “C" stands for “loop Consuming data".

“P" stands for “loop

1.4. COMPREHENSIVE METHODOLOGIES

RQ : for (i=0:N) {
c=a+b; // opl(,+)
write_stream_s(c); // w_s(opl,s)
cl=2xc; // op2(opl,*)
write_stream_s(cl); // w_s(op2,s)
a=c+a; // op3(opl,+)
b=c+b; // op4(opl,+)
}
FH : for (i=0:N) {
sl=read_stream_s(); // r_s(REQ:w_s,s)
s2=read_stream_s(); // r_s(REQ:w_s,s)
ad=s1+s2; // opi(r_s,+)

internal_memory[ad]=i; // w_a(opl,a)

Figure 1.10: Loop-based pseudo code; in the comments “s" stands for stream and “a" for memory
access.

RQ core possible schedulings Possible corresponding architectures

cycles

+
*
2 |
op; Operation
S; Stream communication
Figure 1.11: inter-operation parallelism
cycles
L 1 1 1
1 2 3 4
RQ |op1 Jopa op; Operation
| op3 Si Stream communication
| — IT a; Memory access
LI

Figure 1.12: inter-operation and intra-loop parallelism

58 1. CONTEXT AND PREVIOUS WORKS

cycles ; ; ; ;
1 2 3 4

RQ oPL _\OP2 A S1 $2 IT,

OP3 \Op4 o "
| Yo y op; peration
i op1 Jops)i 59
|- I > ops Lo IT, S; Stream communication
a; Memory access
FH :[sl I s9 Jop1 Jay 1T
dependences | 51 Js2 Jom) 1T,

due to the stream

communication

Figure 1.13: inter-operation, intra-loop and inter loop parallelism

—
DRAM
\
PU Memory \‘
controller
A (> C
—_— B —_—
: possible delay due to a queued request and to the physical request transmission
: convertion of a request into a commande sequence (can be queued)
: Commands sent to a DRAM

: delay due to the access mode (conventional, FPM, burst)

o a % »

: Transaction sent back to the Processing Unit (PU)

"DRAM latency''= A+B+C+D+E

Figure 1.14: The DRAM latency, figure from [38|

for(i=0;i<N;i++){
for(j=0;j<M;j++){
Aliol[ia]=Alio +1][i]+ Alio][ir+1]+ Alio-1][i1-1];
}
}

Figure 1.15: perfectly nested uniform loop

1.4. COMPREHENSIVE METHODOLOGIES

59

RN,
BN

for(i=1;1<N;i++){
for(j=1;j<M;j++){
Alili]=Af-1][-1];

)

SO,

(b) Data dependences

(a) input code

0 1\ (i) _
1 0)\j)
(d) Loop interchange

permutation

1

%) 6)-(

(g) Loop reversal

1
0

(

A 10)-(

(j) Loop skewing

(

J

j—i

for(j=1;j<Msj++){
for(i=L;i<N;i++){
Afi][j]=A[-1][-1];

)

1

}

(e) output code

or

for(i=1;i<N;i++){
for(j=-M;j<-13j-++){

! AII=A[L]:

)

—J

I

(h) output code

(c) Original data access
pattern

(f) Transformed data
access pattern

(i) Transformed data
access pattern

for(z =1;i <N;il++){

)

for(j' =1+4i'35 <M + '35 ++){
Al]lj — i]=Ali -] i -

1];
Transformed
dependence

V)

data

(k) output code

pattern

Figure 1.16: Unimodular Loop Transformations

GR; GRy

" AN
EENERN

Figure 1.17: Example of parallelism between independent tiles

for i=10: 20
ali?|[2i]=a[3][2i +1]+3;

Figure 1.18: example of a code with affine and non-affine array references

60

1. CONTEXT AND PREVIOUS WORKS

61

Part 11

Research works

63

Chapter 2

MEXP: a Design Space Exploration
tool

1S chapter introduces MEXP, a Design Space Exploration tool aimed to find an optimized
T;ardware realization for an algorithm with non-affine array references. MEXP uses the
estimations of the hardware cost and performance as selection criteria. It chooses the
pareto solutions in a set of possible candidates and, for each one of them, generates an
optimized and synthesizable®* C-code by customizing a generic template. The customized
C-models are afterwards synthesized by a commercial High Level Synthesis tool, which
infers a RTL model from o C-code. The optimizations of the C-code improve the generated
RTL model and are obtained through a loop transformation called tiling. The tiling divides
the iteration and data spaces of a loop nest into disjoint and equal blocks. It has been
used, in previous research, in order to optimize the memory accesses of the applications
having affine array references. In this work it has been adapted to the applications with
non-affine array references.

Chapter contents

This chapter goes through the following contents:

B The motivations of this work
B An introduction to the developed Design Space Exploration tool
B A description of the tool flow

B A description of the target architecture template

#i.e. written according to the rules of the High-Level Synthesis commercial tool used to obtain the
RTL.

64

2. MEXP: A DESIGN SPACE EXPLORATION TOOL

2.1 Motivation

In the last 20 years, we have assisted to a massive trend towards the design automation
of embedded systems, due to their increasing complexity.

Current automatic design flows (see chapter 1.2) refine an abstract model of a target
application, through a series of steps. In particular the step inferring a Register Transfer
Level (RTL) description from a behavioral model is called High Level Synthesis (HLS).

Each step of the automatic design includes a Design Space Exploration (DSE), which
perform a fast estimation of the behavior of a large amount of solutions. The DSE
chooses the solutions having a trade-off between the system performance and cost, with-
out realizing them. Thus, on one hand, it eliminates the superfluous costs of useless or
sub-optimal realizations and, on the other hand, it considerably rises the possibility to
find the optimal solutions in a large set of possible candidates.

In our work we are interested into the memory aware optimizations, which can im-
prove the area cost, the temporal performance and the power consumption of the whole
system. In particular we are interested in pre-fetching and caching mechanisms which
copy data close to the computation unit and, thus, can reduce or completely mask the
time needed to access data. These mechanisms are made possible tanks to a data parti-
tioning based on the temporal and spatial locality of the used data.

In the loop-based HLS tools, which take as input a loop-based C-code, the memory-
aware optimizations can be obtained through some loop transformations, such as the
loop tiling (see chapter 1.3).

The tiling partitions the iterations space of a loop nest and, as a consequence, the
data accessed in the loop core, into disjoint and equal blocks. Thus, it can allow the data
pre-fetching and the parallelization between the iterations of the loop. The tiling is used
in many existing DSE methodologies, but as it is automatically inferred from the data
dependence analysis, it requires that the data references of the loop core are affine (see
section 1.3.2.2 of chapter 1.3).

Our contribution to the optimization of the data storage and transfer management
problem has been to develop a DSE tool able to handle the exploration of possible
tiling for algorithms with non-affine data references. The developed DSE tool, called
MEXP (from Memory EXPloration), can be used as a front-end of the HLS in order to
optimize its input C-code and thus its generated RTL model.

Figure 2.1 gives the whole design flow, which counts two steps: an early DSE run
through MEXP and a second DSE run through a commercial HLS tool.

The MEXP DSE chooses the code transformations that are adapted to the non-
affinity of the memory accesses and generates the synthesizable optimized C-models by
customizing a generic template. The HLS DSE explores the space of possible corre-
sponding RTL models for different values of clock rate freq and of temporal constraints
(detailed in section 3.3.1 of chapter 3).

The generated RTL benefits of both (the MEXP and the HLS) DSE and is optimized
with respect to the area, the temporal performance and the power consumption.

2.2. INTRODUCTION TO THE DESIGN SPACE EXPLORATION TOOL

65

C-code

| loop core

MEXP - Infos and

constraints

freq. and

tempo. constr.

RTL

Figure 2.1: The whole flow

2.2 Introduction to the Design Space Exploration tool

MEXP is a Design Space Exploration tool that analyses a set of possible hardware
realizations of a target application having non-affine array references.

MEXP performs a dynamic profiling of the application array references. It constructs
two sets of possible partitioning for the input and output data spaces (called data tiling).
The output data partitioning corresponds to a partitioning of the output computations
(called loop tiling). MEXP combines the input and the output tilings and constructs
the space of possible solutions, i.e. possible couples of I/O tilings. It estimates the
behavior of the hardware realizations corresponding to the different couples of tilings. It
chooses the candidates reducing the amount of internal memory and improving the
performance of the system. Finally, It customizes an optimized and synthesizable
C-template with the parameters corresponding to the chosen couple of input and output
tiling.

The customized code can be used as an input of the HLS. And the measured performance
of the RTL generated after the HLS can be compared to the MEXP estimation in order
to endorse the MEXP analysis.

The MEXP analysis takes into account on one hand the application array references
and on the other hand the estimation of the hardware performance. For this reason, the

66

2. MEXP: A DESIGN SPACE EXPLORATION TOOL

chosen couples of input and output tilings are, at the same time, the most adapted to
the non-affinity of the array references and have the best (estimated) hardware behavior
with respect to the solutions of the analyzed set.

The hardware behavior evaluation takes into account the the target architectural
model and is run with respect to two optimization criteria: the used internal memory
and the temporal performance, i.e. the number of cycles needed by the hardware to
execute the target application.

The target architectural model may compute more output tiles in parallel and for
each output tile it performs two parallel macro-tasks: the pre-fetching of the next input
and the computations of the current output.

To estimate the needed internal memory per solution, MEXP reckons both the inter-
nal memory needed to compute the current output tile and the internal memory needed
to pre-fetch the next input data. This memory amount can be reduced by re-scheduling
the output tile computations in order to compute in a line the output tiles sharing the
most of input tiles.

To estimate the temporal performance of the resulting hardware, MEXP takes into
account all the parallelism levels of the target architectural model: the parallelism be-
tween the tiles of computations and the parallelism between the pre-fetching and the
computing.

A good choice of input and output tile sizes allows to mask the time needed to pre-
fetch data with the time needed to perform the computations.

2.2.1 Advantages of the methodology

There are two advantages in using MEXP: on one hand, it adapts the input model of the
HLS to the application behavior and, on the other hand, it provides an exploration at a
higher level with respect to the HLS.

This allows to include, in the final designs, some essential memory aware optimiza-
tions, such as:

1. The tiling as a loop transformation. It is used to improve the parallelism level and
implement the data pre-fetching.

2. The re-scheduling and mapping of the computations. They are used to improve
the temporal performance and reduce the internal memory of the system.

3. Some hardware effective improvements (such as load balancing, data prefetching,
etc.). They are used to reduce and tolerate the memory latency.

4. The usage of distributed memories. They are used to support a real parallelism
between the output tile computations.

The tiling has been adapted to the algorithms with non-affine array references as follows:
the input and output data spaces are separately partitioned with tiles that, due to the
non-affinity of array references, can be different. They are related to each other trough
a projection finding out which input tiles are needed to compute a given output tile.

2.2. INTRODUCTION TO THE DESIGN SPACE EXPLORATION TOOL

67

One of the two input and output data tiling (usually the output data tiling for
the image processing applications) corresponds to a loop tiling which divides also the
computations into tiles. This allows to re-schedule the tiles of computations in order to
minimize the amount of data to be prefetched.

The re-scheduling of the computation tiles can balance the prefetching and the com-
puting which are run in parallel. As a consequence, it can reduce the execution time of
the whole algorithm. It also reduces the number of external memory accesses and thus
the power consumption of the generated hardware.

Some minor optimizations are included in the generic C-template customized by
MEXP. As, for example, the usage of configurable shifts instead of dividers and a con-
figurable fixed point arithmetic, which optimize the RTL generated after the HLS.

The next part of this section describes:

e The target architecture and

e The MEXP analysis flow

2.2.2 Overview of the target architecture

The MEXP analysis is based on a target architecture model that allows several level of
parallelism.

The generic template of the target hardware is presented in figure 2.2 and is called
Tile Processing Unit (TPU).

A TPU performs two parallel macro-tasks: the pre-fetching of the input data and a
pipeline of three sub-tasks (REQ-FETCH-CALC) which is aimed to compute the output.

The pre-fetching, which consists in copying the input tiles from an external memory
into some local buffers, is performed through some tables giving the mapping of the input
tiles into the internal buffers (cf. MM in figure 2.2).

The pipeline (REQ-FETCH-CALC) is performed as follows: the module REQ reads
which is the current output tile to be computed, from an internal register (OT in figure
2.2). For each datum in this output tile, it computes, through a user-defined Look Up
Table (LUT), the non-affine coordinates of the needed input data. Finally, it requests
the input data from the module FETCH.

FETCH analyzes the requests of REQ and infers from them the addresses of the
input data in the internal buffers. Then it passes the needed input data to the module
CALC, which computes the corresponding output.

According to the user specifications, it is possible to instantiate more parallel pipelines
(REQ-FETCH-CALC) in order to compute more output tiles in parallel.

2.2.3 The MEXP flow
According to the work presented in [99], the MEXP DSE is performed through:

e a validity filter, which eliminates all the solutions that do not meet the user’s
specifications

68

2. MEXP: A DESIGN SPACE EXPLORATION TOOL

system bus - E \

| \

TPU iﬂinput H
\"Mé PRE-FETCH DRAM
external

or
Buffers @ internal
FETCH

oT | . EHH Tiles
| RE CALC
LUT| | @] memory

Outpu
Pﬁé Stream

Figure 2.2: The TPU generic template

e and a quality filter, which classifies the solutions with respect to the two opti-
mization criteria of internal memory used and temporal performance of the system.

The MEXP flow is detailed in figure 2.3 and is performed as follows: MEXP runs a
dynamic profiling of the array references through the execution of an input C-function
(REQ.c) specific to the application. This profiling only takes into account the depen-
dences between the input and output data, but it does not consider the value of data nor
the order of the memory accesses.

After the profiling and on the basis of user-defined volume of tiles, the tool selects the
initial sets of input and output tile layouts with a rectangular shape; this step is called
tiling.

For each possible couple of 1/0O tiling, MEXP performs the following steps:

1. the Super-Tiling. It projects the output tiling onto the input tiling and infers
which input tiles are needed to calculate a given output tile. In this step, a first
validity filter eliminates the solutions requiring more than a maximum of internal
memory fixed by a corresponding user’s constraint.

2. the Scheduling. It orders the computation of the output tiles by solving an
associated Traveling Salesman Problem. A second validity filter eliminates all the
solutions whose performance do not satisfy a user-defined constraint on the system
performance.

2.2. INTRODUCTION TO THE DESIGN SPACE EXPLORATION TOOL

69

Image and Tile

===

I tiling set

B =

O tiling set

_ Maximum amount of
REQ.c o Y Internal Memory
Memory Latency)
Mem Word Width —# | Scheduling [~e— Maximum Temporal
II of the loop core Performances
Nbr. of parallel PEs Mapping
IT OT
- TPU
’—@ation
CALC.c

Y

HLS C—to—RTL synthesis

Figure 2.3: MEXP flow

3. The Computation Mapping. It allocates the calculation of different groups of
output tiles to the available parallel pipelines REQ-FETCH-CALC. The number
of pipelines is specified by a user constraint.

4. The Memory Mapping. It allocates the needed amount of internal buffers and
computes the mapping between the needed input tiles and the available internal
buffers. The Memory Mapping permits to directly access the internal buffer con-
taining the needed input tile and ensures that the TPU executes without conflicts
in memory accesses.

After that these four steps have been applied to all the solutions of the space, the
Quality filter selects the Pareto solutions. For each solution MEXP evaluates the
temporal performance and memory requirements of the corresponding TPU and chooses
the solutions having the best characteristics. Finally, on the basis of a generic C-template,
the TPU generator generates a synthesizable C-description of a TPU, which will be

70

2. MEXP: A DESIGN SPACE EXPLORATION TOOL

the input of the HLS.

Each one of these steps will be detailed later in a dedicated chapter: the Super-
tiling is detailed in chapter 4, the Scheduling is detailed in chapter 5, the memory and
computation mapping are described in chapter 6, the Quality filter is described in chapter
7 and the TPU generation is described in chapter 3.

2.2.4 MEXP input and output

The TPU template is adapted to realize all the algorithms which:
e can have non-affine array references,
e have static dependences? and

e are non-recursive.

The information needed to customize the TPU generic template contains two user-
specified features:

e a user-defined function that describes the application behavior with respect to the
input data requests (REQ) and to the output data computations (CALC);

e a user-defined Look Up Table (LUT), which gives the non-affine formula to compute
the coordinates of the needed input data;

and three MEXP inferred features:
e the tables giving the mapping between the input tiles and the internal buffers;
e an optimized order to compute the output tiles and

e all the parameters characterizing the hardware (e.g. the internal memory size etc.).

2.2.4.1 The MEXP Input

The inputs of MEXP are the parameters used to tailor the DSE and the user-defined
input C-functions, which will be analyzed and included in the output C-code.

2.2.4.1.1 The user-defined input C-functions The behavior of a particular TPU
is defined by two input C-codes: one giving the algorithm behavior (with respect to
the memory accesses and the output computation) and another defining a LUT which
computes the non-affine addresses of the input data.

The first code defining the algorithm behavior contains (at least) two functions:

e REQ, which computes the input data coordinates by using the user-defined LUT
and

bj.e. input coordinates do not depend on input data volume

2.2. INTRODUCTION TO THE DESIGN SPACE EXPLORATION TOOL

71

e CALC, which computes the output.

These functions are intended to be synthesized with the commercial HLS tool, thus they
have to be written according to the rules imposed by this tool (see chapter 1.2 for more
details).

The second code can either directly define a LUT or define all the LUT parameters
(e.g. the LUT size, the number of LUTs, etc..) and a function giving the non-affine
formula of the array references to be realized with the LUT. In the second case the code
is executed by MEXP to generate the static array LUT used in REQ.

2.2.4.1.2 The input parameters Besides the input C-functions, MEXP takes as
input a set of parameters that tailor the DSE. These parameters are:

e A set of possible volumes for input and output tiles, i.e. the number of data that
the user wants to be in a tile. From these volumes V different input and output
tile layouts (% X 2, % x 4, ...) are inferred and then they are combined to each

other in order to form the space of possible couples of I/O tiling.
e The maximum of Internal Memory (IM) that the circuit may have.

e The maximum number of clock cycles accepted to perform the algorithm for a given
clock rate, used to run the HLS. The aim is to keep the clock rate as low as possible
in order to reduce the power consumption. The MEXP analysis does not take into
account the clock rate itself.

If the two constraints (on IM and number of clock cycles) are too tight, no solutions
are found.

e The external memory characteristics in terms of latency and word width

e The number of input data needed to compute an output datum, which will be also
considered as the minimum number of clock cycles needed to perform an output
datum computation.

e The desired parallelism level, i.e. the number of output tiles that the user wants
to be calculated in parallel.

Thanks to this information, the MEXP exploration can use a cycle estimation of the
system temporal performance which takes into account the delay due to the memory
latency, to the memory bandwidth and to the processing elements performance (i.e. the
number of input per output data and the parallelism level).

To estimate the area due to the memory sub-system, MEXP can take into account
the memory word bandwidth, which influences the data layout in the memory and the
memory area overhead due to the specified level of parallelism.

To conclude we can say that the early memory aware optimizations applied by MEXP
to the C code are inferred by taking into account the run-time behavior of the algorithm
and the estimated characteristics of the target hardware.

72

2. MEXP: A DESIGN SPACE EXPLORATION TOOL

2.2.4.2 The MEXP output

To ensure that the TPU executes according to generic hardware template described in the
paragraph 2.2.2, MEXP produces as output a set of synthesizable optimized C-models
of TPU and gives for each one of them:

e The corresponding layouts of the I/0O tilings
e A scheduling vector, which gives the order of the output tiles computations

e The Memory Mapping matrix, which gives the configuration of internal buffers dur-
ing the execution of the whole algorithm and for all the parallel pipelines specified
by the user.

2.3 Conclusion

In this chapter we have presented the basic principles of MEXP. MEXP allows to explore
a set of candidate input/output couples of tilings for a data-dominated algorithm having
non-affine array references. The exploration is performed with respect to two optimiza-
tion criteria: the amount of internal memory used and the temporal performance of the
generated system.

By using a generic template of the code to be generated and some user-specified
functions, MEXP is able to generate an optimized C-code, which can be synthesized
through a commercial HLS tool.

The optimizations applied to the code are inferred by taking into account the run-time
behavior of the algorithm and the estimated characteristics of the target hardware.

73

Chapter 3

The Target architecture

IS chapter introduces the target architecture used by MEXP. This architecture includes
ﬂome hardware effective memory-aware optimizations, such as: the data prefetching and
the balancing between the prefetching and the output computations. These memory-aware
optimizations bring to an improvement of the performance of the whole system. The
user can specify a certain level of parallelism which will be implemented with parallel
pipelines computing more oulput tiles in parallel. The C-code corresponding to the target
architecture is inferred from a generic template.

Chapter contents
This chapter goes through the following contents:

An introduction

A detailed description of the target architecture

A presentation of the different levels of possible parallelism of the TPU

B The automatic generation of the output C-code

3.1 Introduction

The MEXP analysis ends with the generation of a synthesizable C code. This code is
then transformed into a RTL model by a HLS tool. The target architecture of the RTL
model is built with respect to a generic hardware template called Tile Processing Unit
(TPU).

A TPU processes the output tiles according to the user-specified functionality and
reads the input tiles from the external memory as calculated by the MEXP analysis. The
functionality is specified through two user-defined C functions: a processing behavioral
function, which gives the algorithm core, and a function giving the input/output data
dependences.

3. THE TARGET ARCHITECTURE

(a) [PREFETCHING: P |
[COMPUTING:C | NO TILING
(b)] P] \ \ \ \
L] L T L] L] TILING
(c) O P 1] l \
C \ \ | | | PARALLELISM between P and C

[A I GOOD CHOICE of TILE SIZES

Time

Figure 3.1: Effect of tiling, of pre-fetching and computing parallelism and of tile sizes on the temporal
performance of the system.

The TPU model allows to perform in parallel the pre-fetching and the computations.
The objective of a MEXP analysis is to find a couple of I/O tiling which balances the
time to pre-fetch and the time to compute. This will improve the Temporal Performance
of the target hardware.

Figure 3.1 explains the effects (on the TPU temporal performance) of the tiling and
the parallelism between the pre-fetching and the computing:

o the tiling (figure 3.1(b)) partitions both the time to pre-fetch the input and the time
to perform the computations. This allows two kinds of parallelism: the parallelism
between output tile computations and the parallelism between the pre-fetching and
the computing. It may occur that due to the non-affinity of the application array
references, some input tiles are copied more than once into the internal memory in
order to be used for the computation of two different (and non-successive) output
tiles. This increases the total time needed to pre-fetch data and can be avoid with
a good choice of I/O tiling and the re-scheduling of the output tiles computations.

e The TPU parallelism allows to execute the pre-fetching and the computations con-
currently (figure 3.1(c)). This reduces the temporal performance of the final system
(even if the pre-fetching time and thus the number of accesses to the external mem-
ory have been increased).

e The choice of an appropriate couple of input output tile sizes (figure 3.1(d)) can
reduce the pre-fetching time. As a consequence it reduces the power consumption
and improves the temporal performance of the system.

3.2. THE META-ARCHITECTURE OVERVIEW

75

3.2 The meta-architecture overview

The TPU generic template is presented in figure 3.2. A TPU performs two parallel
macro-tasks: it prefetches data from the external memory into the internal buffers and
computes the output according to the user-specified functionality.

The pre-fetching is performed by the module PRE-FETCH. And the output com-
putations are performed by the blocks REQ, FETCH and CALC which communicate
through a handshake protocol and process all the output pixels in a pipeline.

The manipulated data are copied from an external memory into some internal buffers
and each internal buffer contains an input tile.

As detailed in paragraph 3.3.3, the pipeline REQ-FETCH-CALC can be replicated
N, times in order to compute IV, parallel output tiles. N, is a user-specified parameter.

system bus - H
oT llead MM read @ [Input Data 3@@
éiﬁ Buffers DRAM
TPU L INIT EEEEE ormal
external
e 5
PRE-FETCH st intemal
= EH
| C] @
C FETCH _,
T D
R
L
(i req {:] [:::] data
I User defined
F| pipeline
OT —— REQ HEE Tiles
Memory
]
LUT
v CALC Stream
Buffers
|
Outpu
%—%

Figure 3.2: Generic TPU template

The TPU model is customized for a target application through the two user-specified
functions (REQ and CALC) and through a MEXP generated table. This table gives the
mapping between the input tiles and the internal buffers. It ensures that the buffers
accesses are conflict free.

The access to the internal buffers is performed through the usage of two tables:

1. one used to pre-fetch the input tiles into the internal buffers (MM in the figure
3.2)

76

3. THE TARGET ARCHITECTURE

2. and the other used to directly read data from the internal buffers (IDX in the
figure 3.2)

MM is generated by MEXP and IDX is computed on line by the TPU. The following
paragraphs describe the two tables and their usage.

3.2.1 The MM table used to pre-fetch input from the external memory

MM is organized as presented in figure 3.3: each column index c¢ corresponds to an
output tile OT'(¢) and each line index r corresponds to an internal buffer. An element
mm(c,r) of the table MM gives the number of one of the input tiles needed to compute
OT(c). This input tile has to be copied in the internal buffer ». A column of the MM
table gives the set of all the input tiles needed to calculate a specific output tile. A line
of MM gives the input tiles to be pre-fetched into a specific internal buffer during the
execution of the whole algorithm.

MM is organized so that the input tiles common to more successive output tiles
remain in the same memory buffer without being re-copied from the external memory.
This reduces the power consumption and improves the temporal performance of the
system.

On the other hand, MM ensures that the internal buffers written by PRE-FETCH
are different from the internal buffers read by FETCH.

1 N
IT indices | IB indices
0 o

Figure 3.3: Table MM giving the memory mapping during the computation of all the output tiles

Figure 3.4 gives an example of a prefetching mechanism which uses the MM table
of figure 3.4(b). The figure 3.4(c) presents the evolution of the internal memory all over
the duration of the whole algorithm.

According to the pseudo-code in figure 3.4(a), if an input tile has to be copied into an
internal buffer, i.e. if M M|c][r] # 0, its coordinates in the input data space are computed
and then, the tile is copied from the external memory.

The time needed to copy each datum into the internal buffers depends only on the
external memory speed and, if the external memory allows it, the datum can be copied
in a single clock cycle.

3.2. THE META-ARCHITECTURE OVERVIEW 77

For a given output tile OT(c) to be computed
For all the IB indices (r)
Check i f (MM]c|[r]! = 0){
Compute the IT coordinates = f(MM]c][r]);
For all the data in the input tile
IB[r|[z]ly] = read _from ext mem(z + IT coordinates);

(a) pseudo-code of the pre-fetching mechanism

1 0 4 6 0
MM=12 3 0 7 1 } IB indices
0 0 5 8 2
1 2 3 4
—_——
OT indices

(b) MM table

time

i| 0x| 1 1 4 6 internal memory
/ forOT =4

IB |1 |2 |3 |3]}7

indices

OT indices 1 2 3 4

(¢) Internal Memory configuration during the computation of all the output tiles

Figure 3.4: Example of a prefetching mechanism based on the M M table

78

3. THE TARGET ARCHITECTURE

To limit the area overhead due to the MM table we exploit the fact that a TPU call
calculates a single (or a few) output tile(s) a time, thus MM is loaded a column a time.

3.2.2 The IDX table used to read data from the internal memory

The MM table associates an internal buffer to the storage of an input tile. Thus, given
a buffer index, the index of the input tile stored in it, is read from MM in a cycle. The
opposite is not true. In fact, given an input tile index, it could take M cycles to search
in MM in which internal buffer the input tile is stored, where M is the total amount of
internal buffers. Furthermore, as the input coordinates are non-affine, we have to search
the corresponding internal buffer for all the requested input data. In fact it is not known,
a priori, which input tile the data belong to. This could extremely degrade the temporal
performance of the TPU.
In order to avoid this degradation, another table, called IDX, has been introduced.

1

IM number IT number IT number

= O 0 0 0 D D
N O Ot W N

M
1 ¢ 2 8

(a) generic IDX table
(b) numerical example of IDX table (?:don’t care)

Figure 3.5: Hash table IDX which gives the correspondence between the input tiles and the internal
buffers

IDX associates the input tile indices to the internal buffer indices and is presented
in the figure 3.5. For example, the IDX of figure 3.5(b) says that the input tile (IT) 6 is
in the internal buffer (IB) 0, that the IT 7 is in the IB 1, etc ...

3.2.3 Example of a TPU time-line

To explain the usage of the two tables MM and IDX, we give an example of a typical
TPU time-line as presented in figure 3.6.

The module REQ requests the input data needed to calculate an output tile OT'(c).
Thanks to the prefetching and to the MEXP analysis and mapping, these data are already
in the internal buffers.

The module FETCH examines the request of REQ), calculates which input tile con-
tains the needed input data, accesses IDX to obtain the internal buffer where the input
tile is stored and reads the needed input data from this buffer. Finally, it returns the
read data to the module CALC, which computes the output.

Meanwhile the module INIT initializes the table MM, with the indices of the input
tiles needed to compute the next output tile OT'(c + 1). After INIT has finished, the

3.2. THE META-ARCHITECTURE OVERVIEW

Task1l Task2

REQ:

INIT and
PREFETCH:

FETCH:

CALC:

Figure 3.6: A typical TPU time-line

module PREFETCH reads MM to know which input tile to prefetch; copies the input
tiles from the external and updates the content of the table IDX.

The tables MM and IDX, the internal buffers and external memory are supposed
to be single port RAMs, i.e. they can only support a single write and a single read per
cycle. For this reason INIT and PRE-FETCH are sequential. On the other hand, thanks
to the tiling and mapping, INIT and PRE-FETCH are parallel to the pipeline REQ),
FETCH and CALC.

Some hardware optimizations are possible to reduce the area overhead due to the
MM table. They will be explained in chapter 6.

3.2.4 Possible conflicts on hardware resources

In the TPU architecture there are some possible conflicts on the hardware resources
that could cause a malfunctioning of the system; we enumerate them and specify the
corresponding found solutions.

e The modules FETCH and PREFETCH can have a conflict in accessing the internal
buffers, for example if PREFETCH modifies a buffer read by FETCH. This conflict
is solved by the MEXP analysis and mapping which ensures that internal buffers
accesses are conflict free.

e Some conflicts can be caused by a simultaneous access to the system bus. To ease
this problem we will consider that a single TPU a time uses the system bus and
that it has a Direct External Memory Access. In a configuration with more TPUs
connected on the system bus, an arbiter will manage the bus access according to a
set of pre-calculated priorities.

On the other hand, the “input data read" and the “output data write" of a single
TPU can cause a conflict on the system bus access, thus two separate slots of time

80

3. THE TARGET ARCHITECTURE

are reserved to the reading and writing. Furthermore the following rules have to
be respected: 1) the reading of an input tile is an atomic operation; 2) to avoid a
deadlock, the calculated output data are temporary stored in a local memory and
copied into the external memory before starting the calculation of a new output
tile.

3.3 The HLS model of the TPU

3.3.1 Re-calls of the HLS principles

The HLS, which is detailed in chapter 1.2, takes as input a loop-based C-code and
synthesizes it as a Pipeline Processing Array. That is a processor transforming more sets
of input data (e.g. different input images) in a pipeline. Each loop nest of the code is
synthesized as a Processing Element (PE) which contains a control path and a data path
(DP). The control path iteratively executes operations on the DP which corresponds to
the loop-core of the input C-code.

Two PAs (or loop nests), one producing and the other consuming the data, commu-
nicate through streams. This allows the PEs to execute in parallel (see chapter 1.2 for
more details).

The HLS offer four possible levels of parallelism to realize the hardware:

1. aparallelism between the operations of the same loop core (called the inter-operations
parallelism),

2. a parallelism between the iterations of the same loop (called inter-iterations or
intra-loop parallelism)

3. a parallelism between different loop nests of the code (called inter-loops parallelism)
and

4. a parallelism between different tasks of the PPA (called inter-tasks parallelism)

The inter-loop parallelism is ensured by the usage of the streams.

While the other kinds of parallelism are automatically inferred by the HLS tool under
two user constraints: the Initiation Interval (II) and the Minimum Inter Task Interval
(MITT).

The 1II is specific to a loop-nest and represents the number of clock cycles passing
between the start of two following iterations of the loop-nest when they are processed on
the target architecture. The II forces the LS tool to instantiate more or less hardware
resources in the processing element and thus allows the inter-operations and the inter-
iterations parallelism.

The MITT represents the number of clock cycles passing between the start of two
successive PPA tasks.

A task of the PPA is the execution of the whole algorithm realized by the PPA on a
set of input (for example an input image). The MITI allows the pipeline of more tasks
on a PPA (for example to process a set of different frames in a video).

3.3. THE HLS MODEL OF THE TPU

81

By variating the values of the II and the MITI it is possible to run a DSE to find a
trade-off between the amount of resources instantiated and the temporal performances
of the system.

3.3.2 The TPU C-model

According to the HLS roles, MEXP is able to generate a TPU C-model written as a series
of five perfectly nested loops*. The TPU code is given in figure 3.7.

This code contains 5 loop-nests corresponding to the TPU blocks (INIT, REQ, PRE-
FETCH, FETCH and CALC).

The bold elements of the code can be parameters to be customized by a MEXP
analysis (OT, IT, MM, ...), or user specified functions that characterizes the application
(REQ and CALC), or streams.

In order to realize the pipeline REQ-FETCH-CALC, the TPU uses the streams
(ADD_REQ and FROM_FETCH in the code).

The initialization and the prefetching are completely independent from the pipeline,
thus they can be executed in parallel with it.

Besides the C-code describing the TPU, MEXP is able to generate the HLS con-
straints (MITT and II), which according to the HLS-vendor rules are the tightest possible.

The HLS inter-tasks parallelism is not possible for the TPU, in fact two successive
tasks of the TPU are dependent on each other because of the pre-fetching. For these
reasons the MITI is set to 1.

However MEXP offers the possibility to have a parallelism between the output tiles
computations, i.e. an inter-tiles parallelism.

The user specifies the number N, of output tiles to be computed in parallel and MEXP
analyses the dependences, pre-calculates the scheduling and mapping of the computations
and generates the corresponding parallelizable C-code, with NV, parallel pipelines REQ-
FETCH-CALC.

The IIs of different loop-nests of the TPU are automatically deduced as follows:

e REQ and FETCH have an II=N_DATA, where N_DATA is the number of input data
needed to compute an output datum and thus the number of accesses to the streams
transmitting the corresponding information (data address and value).

e CALC has to read N_DATA and to write sequentially into the external memory the
N, output data of the N, parallel REQ-FETCH-CALC pipelines, thus it has a
[I=max(N_DATA, Np).

e PRE-FETCH has an II=1, because it reads 1 datum per cycles from the external
memory.

This configuration allows the maximal level of inter-operations and inter-iterations par-
allelism.

The user-defined functions REQ and CALC should use some MEXP defined macros

#i.e. all the operations are performed in the loop core

3. THE TARGET ARCHITECTURE

and global variables in order to allow the TPU customization and the communication
between the user-defined and the MEXP generated code.
Following are examples of these macros and variables:

e OT order|] is the global table containing the order to the output tiles to be com-
puted. It has a size equal to INV,.

e OT iandIT iare the width of the i** side of the output and input tiles respec-
tively, the labels ¢ are assumed to be as in figure 3.8.

e N OT i=1loga(OT i) and N _IT i=logo(IT 1) these values are given in order
to substitute divisions with shifts.

e out i and in_ i are the number of output and input tiles on the side i, with
N out_i=loga(out i) and N_in_i= logs(in_1).

e O WIDTH iandI WIDTH i are the width of size ¢ for the output and input
image respectively

e LUT, LUT WIDTH and LUT STEP defines the LUT itself (which has been
previously filled thanks to a user-defined function), the LUT width and the LUT
step, with LUT _STEP BITWIDTH=logs(LUT STEP)

e PREC is the precision of the used fixed point arithmetic (in our experiments
PREC=8 bits).

3.3.3 The user-specified parallelism level inferred by MEXP: paral-
lelism between output tiles computations

MEXP analysis can be run for a user-specified inter-tiles parallelism N, which corre-
sponds to the number of output tiles to be calculated in parallel and, thus, requires an
additional amount of hardware resources.

In the TPU model presented in figure 3.2 of the paragraph 3.2, the output tiles are
calculated sequentially on the same hardware. The corresponding C-code has essentially
five loop nests, one for each module: INIT, REQ, CALC, PREFETCH and FETCH.
And each loop nest is synthesized as a Processing Element with a single data path.

In a parallel TPU, the data paths of the different loop nests are replicated N, times.

In this case all the data paths DP; belonging to the different processing elements
REQ, CALC and FETCH communicate to each other through a reserved set of streams,
they access to a dedicated set of internal buffers and form an independent pipeline.

Figure 3.12 gives the code of a TPU able to compute two output tiles in parallel, it
shows that the data paths DFy of the modules REQ, FETCH and CALC communicate
to each other through the streams ADD REQ 0and FROM FETCH 0, access to
the buffers I My and form the pipeline py.

3.4. AUTOMATIC GENERATION

83

Only the DPs in the pipeline containing the instructions REQ, FETCH and CALC
are duplicated. While the prefetching of input tiles is made sequentially in order to
respect the bus bandwidth.

The advantage to duplicate only the DPs is that the hardware dedicated to the control
of the iterations pipeline is shared thus not all the TPU is duplicated. Furthermore the
internal memory amount is not duplicated but adapted to the output tiles that the
pipeline has to compute.

Figure 3.9 gives an example of several possible implementations to compute 8 output
tiles. This figure shows that the more parallel pipelines are used the more the time to
execute the whole algorithm is reduced.

Nonetheless, the scalability of the architecture is limited by the system bus bandwidth
and the external memory latency. In fact, as the external memory is a single port memory,
the prefetching of input data has to be performed sequentially for all the pipelines in the
TPU. Thus the more the TPU contains parallel pipelines the more the time to prefetch
data becomes preponderant with respect to the time to compute the parallel output
tiles. On the other hand, the time needed to prefetch the input tiles depends also on the
external memory latency whose increase can reduce the speedup due to the parallelism.
Figure 3.10 gives an example of a time-line for a TPU containing two parallel pipelines.
In this example, the pre-fetching of the input tiles needed to compute the output tiles
OTs and OTjy is preponderant with respect the time needed to compute in parallel the
output tiles OT3 and OT) (task 3).

For the algorithms tested the efficacy of the parallelism (i.e. the speedup of the exe-
cution time with respect to the the memory overhead due to the parallelism) is maximum
for N, < 4 and then decreases.

3.4 Automatic generation

This paragraph describes the synthesizable C-model of a TPU generated by MEXP.
Figure 3.11 shows the files of the model. The project counts:

e a main.c, which contains the TPU calls and will be turn into a benchmark of the
RTL by the HLS tool. Given d the total number of output tiles and N, the number
of output tiles to be calculated in parallel, the main.c calls the TPU function Nip

times and during each call the TPU computes NN, output tiles.

e a TPU TOP.c, which contains the TPU description as a set of loop nests. The
TPU TOP.c calls the functions TTC, REQ and CALC.

e o TTC.c, which contains the description of the INIT and PRE-FETCH macro-
blocks and the definitions of other functions which describe the external memory
accesses performed through the system bus. TTC stands for Tiles Transfer Control.

e a hardware_ config.h file which contains the hardware configuration, the MEXP
generated tables and the definition of the I/O and internal streams.

3. THE TARGET ARCHITECTURE

e a HLS config.tcl file which contains all the parameters to configure the High-level
Synthesis.

e o user-defined file containing the REQ and CALC description. REQ and CALC
are called IV, times in the TPU_TOP.c and their calls correspond to as much
of parallel pipelines instantiations needed to achieve the user-specified inter-tiles
parallelism.

e a file containing the user-defined LUT which implement the non-affine law of the
array references.

By using generic templates of the C-codes, MEXP automatically generates the main.c,
the TPU_ TOP.c, the TTC.c, the hardware config.h and the HLS config.tcl; while the
user has to specify the LUT and the functions REQ and CALC, according to the rules
imposed by the HLS tool.

3.5 Conclusion

In this chapter we presented the generic target architecture customized by MEXP to
generate its output C-code. The architecture is called Tile Processing Unit (TPU) and
performs two parallel macro-tasks: the pre-fetching and the computing. The computing
is performed through a pipeline of operations and the prefetching consists in copying the
input tiles from the external memory into the internal buffers.

For a given solution, the mapping between the input tile buffers and the available
internal buffers is pre-calculated by MEXP and used by the customized TPU to perform
the prefetching.

The TPU has several level of parallelism, that we can distinguish in: the parallelism
ensured by the commercial HLS tool under MEXP pre-calculated constraints and the
inter-output tiles parallelism inferred by MEXP.

The inter-tile parallelism requires the instantiation of more parallel pipelines perform-
ing the computing. The pre-fetching is common to all the different pipelines, in order to
respect the bus bandwidth, and this can limit the possibility of further parallelizations.

3.5.

CONCLUSION

85

void TPU_TOP(int I){
INIT: INIT(l);

REQ: for(i=0;i<OT 0; i++){
for(j=0;j<OT _1; j++){
if(1>0){
int DX[1];
int ADD_REQ[N DATAJ;
REQ(i ,J, 0, DX, ADD_REQ);
HLS stream output DX(DX][0]);
#pragma unroll z - -
for(z=0;z<N_ DATA;z++)
HLS stream output ADD REQ(ADD_REQ|z]);

PRE-FETCH: for(k=0;k<nbr of buffers;k++){
for(i=0;i<IT 0ji++){ -
for(j=03<IT_ 13j++){
(IT _x9,IT xp)=func(MM]Ik]); #IT origin
IM[K][i][j]=read from ext mem(i+IT zq, j+IT =z1);

}
¥

FETCH:for(i=0;i<OT_ 05i++){
for(j=0;j<OT _1;j++){
if(1>0){
int x_in[N_DATA]:
for(ii <N _DATA)
x_in[ii[=stream input ADD _ REQ();
data_out=FETCH(d,x_in,IM,MM _idx);
stream output FROM FETCH();
i
}

}
CALC: for(i=0;i<OT _0; i++){
for(j=0;j<OT_1; j++){
if(1>0){

int dx;
int DATA[N DATAJ;
int out_ DATA[N DATA], out ADD[N_ DATA]J;
dx = HLS stream input DX();

#pragma unroll z - - -
for(z=0;z<N_ DATA;z++)

DATA[z]=HLS stream input FROM FETCH();

CALC(i , j, 0, dx, DATA, out DATA, out ADD);

St

Figure 3.7: C-code of a TPU, this code can be customize for a given application and a particular
solution chosen by MEXP.

index i r 1

0

oT_ol|| 0T 1

O_WIDTH_0

out_1 = nbr. of tiles on side 0

O_WIDTH 1

out_1 = nbr. of tiles on the side 1

Figure 3.8: Example of some MEXP defined macros for an output image

3. THE TARGET ARCHITECTURE

TPU time
PREFEJCH >

FETCH REQ cacc > | 1 234|567 |8

produced
output tiles

— TPU
PREFEJCH

FETCH REQ cacc H=> | 1 2, 3|4

FETCH REQ 5 cac > |5 |16 |7 |8
1

|

FETCH REQ cacc H=> |1 2
Po

FETCH REQ cacc H=> [3| 4
b1

FETCH REQ CALC [T 5 6
P2

FETCH REQ CALC [T 7 8
b3

Figure 3.9: Example of a several possible implementations to compute 8 output tiles: a TPU with a
single pipeline, a TPU with 2 parallel pipelines and a TPU with 4 parallel pipelines

Figure 3.11: Set of files, contained in a MEXP generated project describing a TPU

3.5. CONCLUSION 87
Time [cycles] — —————
Task Task, Tasks Tasky
l l l l
PRE-FETCH AN NN AN
I I | I
| |
REQ | NANAN ANNNNN
| | | |
FETCH, Pipe; MNANNAANNNN ANNNNNY
| | ! |
| | | |
CALC, NNNNNNRNRNAY NNNNNY
| | I |
| | | |
REQ V7777 7277773 [777773
| | | |
| | | |
FETCH, Pipe, | | —
I I | I
CALC, IIIIY IV I s
| | |
| | | :
| | ! |
| | ! |
Figure 3.10: Example of a time-line for a TPU containing two parallel pipelines
MEXP automatically generated files
s N N N 1
main.c TPU_TOP.c TTC.c hardware_config.h HLS_config.tcl
For___ For___ IT, OT layouts I of loop0
""" . Ilofl 1
For__ REQ(0); prefetch(0,1); MM declaration : oop
REQ(1); io_streams other...
Call_TPUO; For For clock rate
_____ internal_streams
CALC(0); fetch(0); other...
CALC(1); fetch(1);
- J J - J
User-defined file
REQ(...){
LUTL...]={
}
CALC(..){
}

3. THE TARGET ARCHITECTURE

void TPU_TOP((int I){
INIT: INIT(L);

REQ: for(i=0;i<OT_ 0; i++){
for(j=0;j<OT_1; j++){

if(1>0){
int DX_0[1];
int ADD_REQ_O[N_DATA[;
REQ(,J, 0, DX_0, ADD_ REQ_0);
HLS_stream_oiutput_Dix_O(liio[O]); DPy
#pragma unroll z
for(z=0;z<N_DATA;z++)
HLS stream_ output ADD_ REQ_O0(ADD REQ_0[z]);
int DX_1[1];
int ADD_REQ_1[N_DATAJ;
REQ(i ,j, 1, DX_1, ADD_REQ_1);
HLS _stream_output_ DX _1(DX_1[0]); DP,
##pragma unroll z
for(z=0;z<N_DATA;z++)
HLS stream output ADD REQ _ 1(ADD_REQ_1[z]);
}
}
}
PRE-FETCH: for(k=0;k<nbr of buffers;k++){
for(i=0;i<IT 0;i++){ -
for(j=03j<IT_ 1;j+-+){
if(k<nbr of buffers 0){
(IT _z0,IT z1)=func(MM]Ik]); #IT origin
IM_O[K][i][j]=read from ext mem(i+IT_xq, j+IT_ x1);
if(k>nbr of buffers 0 && k<nbr of buffers 1){
(IT_x0,IT x1)=func(MM]Jk]); #IT origin
IM_1[K][i][j]=read _from _ext_mem(i+IT_xq, j+IT_x1);
}
}
}
FETCH:for(i=0;i<OT 03i++){
for(j=05j<0T_15j++){
if(1>0){
int x_in_O[N_DATA]:
for(ii <N_DATA)
x_in_0[ii]=stream_input_ ADD_REQ_ 0(); DP,
data out=FETCH(0,x in_ 0,IM_ 0,MM idx 0);
stream output FROM FETCH 0();
int x_in_ 1[N _ DATA]:
for(ii <N_DATA)
xiinif[ii]:stream_input_ADD_REQ_I(); DP;
data out=FETCH(1l,x in 1,IM 1,MM idx 1);
stream output FROM FETCH 1();

¥
}

}
CALC: for(i=0;i<OT _0; i++){
for(j=0;j<OT_1; j++){
if(1>0){
int dx;
int DATA_O[N_DATAJ;
int out DATA O[N_DATA], out ADD_ O[N_ DATAJ;
dx = HLS stream input DX 0(); N
#pragma unroll z
for(z=0;2<N_DATA;z++) DPo
DATA 0[z]J=HLS stream input FROM_ FETCH_0();
CALC(i, j, 0, dx, DATA 0, out DATA 0, out ADD 0);

int DATA 1[N _DATA]J;
int out_ DATA 1[N _DATA], out ADD_ 1[N DATA]J;
dx = HLS stream input DX 1(); -
#pragma unroll z - - -
for(z=0;z<N_DATA;z++)
DATA _1[z]=HLS stream input FROM FETCH 1(
CALC(i, j, 1, dx, DATA_1, out_DATA_1, out_ ADD_1);5

DP;y

Figure 3.12: C-code of a TPU, this code can be customize for a given application and a particular
solution chosen by MEXP

89

Chapter 4
Super-tiling

IS chapter presents the first step of the MEXP methodology: the Super-Tiling. Given an
T‘Zemtz‘ve application represented through a loop-nest, the Super-Tiling allows to tile the
iteration space even if the loop nest is non-affine. The Super-Tiling consists in separately
partitioning the 1/0 spaces of the assignment statements in the loop core. The 1/0
partitioning, called tiling themselves, are related to each other through a projection whose
law coincides with the data access law. The I/0 dependences are determined through a
dynamic profiling.

Chapter contents

This chapter uses the concepts of dependence vector, affine loop nest and loop tiling
(defined in section 1.3.2 of chapter 1.3) and it goes though the following contents:

Discussion about the problem of tiling non-affine loop nest

B Definition of the target applications

B Definition of the I/O dependence list

B Presentation of the Super-Tiling flow and of the Exploration of a set of possible
Super-Tilings

B Presentation of the algorithms used to run the Super-Tiling

Results supporting the Super-Tiling method

4.1 Discussion about the problem of tiling non-affine loop
nest

MEXP computes and explores a set of possible optimized C-models of a given iterative
data-dominated algorithm. The set is generated by transforming an input C-code through
an appropriate loop tiling.

90

4. SUPER-TILING

In the literature (see chapter 1.3), the tiling is a well defined loop transformation
aimed to partition the iterations space of a loop nest and, thus, it is largely used in parallel
compiler or in High-Level Synthesis tools to completely or partially parallelize groups of
iterations. It exploits data locality and can be combined to other loop transformations
in order to re-organize the array references.

Works in literature mainly focus on algorithms with affine array references while our
aim is to define a tiling for algorithms with non affine array references.

We give 3 reasons that may prevent the tiling of a non-affine loop nest:

1. The non-affinity of array references causes a non-regular partition of the
input address space

In a affine-loop nest all the array references are affine to each other and to the
loop indices. The first consequence is that the I/O address spaces and the iteration
space are equal by translation, which directly derives from the definition of affinity.
In this case, a loop tiling causes a regular partition of the I/O address spaces and
of the iteration space.

When the array references are not affine, the tiling of iterations space produces an
irregular data partitioning.

As an example, let consider the logarithmic sampling. The corresponding code in
figure 4.1 shows that the output space address (with coordinates i and j) coincides
with the iterations space but, due to the non-affinity of the array references (i.e.
coordinates 77 and jj in the code) it is different from the input address space.

LOG_SAMPLING (k){

r0=M/k;
r LIM=M/2;

for(i=05i<Niit++){
for(j=03j<M;j++){

ri=sqrt(i’+j2);
r=r0/(r_LIM - rl);
i=r*T

— * 3

LI -
Al[i]ljl= Ao[ii]ljjl; A
} Input data output data

Figure 4.2: Tiling applied to a

Figure 4.1: Pseudo code of a non-affine indexed application

Logarithmic Sampling

Applying the loop tiling on this example will cause a regular partitioning of output
data and a non regular partitioning of input data (figure 4.2).

This is an issue in the synthesis of ASIC, because the communication between the
hardware modules depends on the number and kind of data to transfer and the
easiest and cheapest way to realize it is to transfer blocks of a constant number of
data.

2. The tiling legality is verified with respect to the data dependences anal-
ysis, which is only possible with affine array references

4.1.

DISCUSSION ABOUT THE PROBLEM OF TILING NON-AFFINE LOOP NEST

91

The tiling is legal only if it respects data dependences.

The HLS tools or the parallel compiler extract data dependences by applying linear
programming solving methods (see chapter 1.3), thus, it is mandatory that the array
references of the algorithm are affine.

The first immediate consequence is that for code with non-affine array references
neither the tiling legality nor the data dependences can be verified through a static
analysis of the code.

. The tiling size and shape are determined by solving linear programming

problem with respect to the constraints imposed by the data depen-
dences.

This method is obviously not adapted to the non-affine array references.

To define an optimal tiling it is necessary to solve two problems: choosing an opti-
mal tile shape and finding an optimal tile size. In an affine-loop nest these problems
can be related to the dependence analysis because the dependences between data or
iterations can be expressed by a “distance vector" (see chapter ?? for more details)
containing two kinds of information:

e the dependences between two different iterations and their temporal distance,
in term of number of iterations;

e the I/O data dependence and their spatial distance.

An optimal loop tiling can be deduced from this information and produces at the
same time an optimal partition of the iteration space and of the corresponding
I/0O data spaces. Furthermore it produces Input and Output data partitions of the
same size and shape.

In an affine loop nest the tile edges are computed as parallel to the dependence
vectors in order to minimize the communications between the processing elements
that compute the tiles.

In a non-affine loop nest the vector, giving the dependences between I/0O data,
changes of sizes and directions over the iteration space thus they can not be chosen
as a reference for the tile edges.

92

4. SUPER-TILING

%
I

u

Super-Tiling

A L B | A

Input data output data

Figure 4.3: Super-Tiling

Our work overcomes these problems by replacing the “distance vector" with an I/0
dependence list computed by performing a dynamic profiling of the application array
references. A different data partitioning is separately applied to the input and output
data sets and, thanks to the information contained in the I/O dependence list, it is
possible to project the output tiling onto the input space and to find out which input
tiles are needed to compute a given output tile (Figure 4.3). This technique is called
Super-Tiling because it superposes the output to the input tiling through a projection.
The partitioning of output data causes a tiling over the loop nest calculating the output.
We will call tiling either the loop tiling or the data partitioning.

The input data tiling allows the HW model to transfer data per blocks of constant size
(the tiles) meanwhile the variable number of input tiles to transfer per each output tile,
adapts the transfer to the non-affinity of the array references.

4.2 Presentation of the Super-tiling flow and of the Explo-
ration of a set of possible Super-tiling

As shown in figure 4.4, the Super-Tiling is applied in three steps.

First a dynamic profiling of the program establishes the 1/O dependence list, i.e.
which input data are needed to calculate a given output datum. Then two sets of possible
input and output tiling are computed. Finally, for each couple of I/O tilings, a tiling
projection calculates the dependence between the input and output tiles and give them
through a ¥ matrix.

The Tiling is computed by taking as input the size of the space to be tiled and a set of
scalars. Each scalar represents the number of data that the user wants to be in a tile and
is called tile volume. The tiling calculates a set of possible tile layouts corresponding
to the given tile volumes.

The projection constructs the space of all possible combinations of I/O tilings and
each possible combination is also referred to as a possible couple of I/0O tilings or as a
possible Super-Tiling.

In this section, we, first, give the generic form that a target application should have,
then we give the algorithms used to run the three steps of the Super-Tiling: dynamic
profiling, tiling and projection. For each step, the following information will be given:

4.2. PRESENTATION OF THE SUPER-TILING FLOW AND OF THE EXPLORATION OF A SET OF
POSSIBLE SUPER-TILING 93

Image and Tile
Tiling ~— sizes
REQ.c

B =

Profiling I tiling set O tiling set
i7e) - Projection
dependence

list

set of all possible

couples of /0O tilings

Figure 4.4: The Super-tiling Flow

1)the mathematical framework and formula 2) the pseudo-code used to implement the
algorithm and 3) an example.

4.2.1 The target application

A typical application that can be tiled with the Super-Tiling is an iterative data-dominated
algorithm which have static dependences (i.e. the dependences do not depend on data
value) and is non-recursive (i.e. the output data depend only on the input data).

The iterative data-dominated algorithm is described by a loop nest as presented in
figure 4.5.

L: for1<p<N

S: It(p) = f(Wi—1(p))
end

Figure 4.5: A generic iterative data-dominated algorithm

A vector p parses a n-dimensional space N = (N1,..., N,) , where p can be both an
index of the iteration space or the coordinates of an output datum. As a consequence N
is either the iteration space or the space of the output coordinates.

The statement S in the code, computes an output datum I;(p) as a function of a
window (or set) of input data W;_;(p), computed as follows:

W(p) = J{Zi-1(0:(p)}
=1

94

4. SUPER-TILING

with Wi_1(p) C I,—1 (see section 1.1.1 of chapter 1.1 for more details).

The window of needed input data contains all the input data I;—1(g;(p)) which co-
ordinates are computed as a non-affine function g;(p) of the corresponding output data
coordinates p. The main differences between this definition of a loop-nest and the one
that is usually employed in previous related works is that:

1. no restrictions are given on the mathematical form of the addresses

2. the self-dependences are not allowed (i.e. algorithms are not recursive).

4.2.2 Profiling

The profiling, which code is given in figure 4.6, is aimed to compute the I/O dependences
list of the loop nest; it takes as input the user-defined function REQ, which gives the non-
affine formula of the array references, and recursively executes it in order to compute the
coordinates of each datum in the output space.

— data structure—

dim: space (and tile) dimension

d: index parsing the space (and tile) dimensions

vo[]: output data to compute

vi: pointer to an element of type stk, i.e. a list of needed input data

ws|]: output space bounds

curr_datum: pointer to an element of type stack, i.e. a list of I/O dependences

extern stack *curr_datum; void inputmap(int dim, int d, int vol[], int ws[]){
if(d>0){
for(p=0;p<ws[d];p++){
vo[d]=p;
inputmap(dim, d-1, vo, ws);
}else{
for(1=0;1<ws[d]; 14++){
vo[d]=1;

vi=REQ(vo, &q);
curr_datum=add _satck(curr_datum,vo,vi, q, dim);

}
d=dim;

}
)3

Figure 4.6: Code of the profiling algorithm

The profiling can be run for any algorithm which associates an output datum to one
or more input data; and the I/O data sets can be n-dimensional sets with n € N*.

The following paragraphs describe the method used to construct the I/O dependences
list and the template that a user-defined REQ function should have.

4.2.3 Non-uniform loop nest and I/O dependence list

Given a target application as described in paragraph 4.2.1, we express the I/O data
dependences of the application by listing them. We first construct for each output datum
the sub-list of input needed to compute it:

Dy0(p) = {9i(p), It-1(gi(p)) € Wi-1(p),Vi € [1,m]} (4.1)

Then we enlarge the list to all the output pixels, as follows:

4.2. PRESENTATION OF THE SUPER-TILING FLOW AND OF THE EXPLORATION OF A SET OF

POSSIBLE SUPER-TILING

95

Dyjo = {Dyjo(p),¥p € N}
As an example, consider the loop Lo :
L2: for 1 Spl < niy
for 1 < p2 < mg

Sa: Ii(p1,p2) = f(Li-1(91(p1, p2), 92(p1, p2)), L-1(93(p1, p2), 94(P1, P2)))
The I/O dependence list is calculated as follows:

output datum index input needed data indexes
0,0
— 91(0,0),92(0,0) g3<0a0)794(070)
0,1
— gl(oal)aQQ(Oal) 93(0a1)794(07 1)

4.2.3.1 The user-defined function

The user-defined function REQ has to be written according to the following rules:

e The function declaration has to be the following
stk *REQ(int vol[]l, intx*q)

(4.2)

i.e. the function name has to be REQ. REQ takes as entries an integer vector v, and
a pointer to an integer g. v,, represents the coordinates of an output datum to be
computed and ¢ gives the number of input data needed to compute the given output
datum. REQ returns a pointer to a list of the g elements giving the coordinates v;
of the needed input data.

The list of coordinates v; is constructed through the function

stk *add_stk(stk* curr, int vi[], int dim)

which is declared in a header file called mexp.h and included, by the user, in the
C-file defining REQ.

#include "mexp.h"
stk *REQ(int vo[], int *q){

*g=..
first= new_ stk();

curr=first;

— computations of input addresses—-
vi[]=...

curr=add stk(curr, vi, dim);

return first;

¥

Figure 4.7: template of a user-defined REQ function

Figure 4.7 gives an example of a REQ function template. This function corresponds to
the loop core of the REQ module in the synthesizable C-code of the TPU; except that,
in the synthesizable C-code, the MEXP streams are replaced by the HLS stream and the

function declaration is simpler (void REQ(int vo[l, ...)).

4. SUPER-TILING

4.2.4 Tiling

The tiling is performed under the following hypothesis:
e Tiles are n-dimensional as the space that they divide.

e Only the orthogonal tilings are considered. This hypothesis is a limitations intended
to ease the Supertiling analysis.

e In order to further ease the problem and to reduce the control cost in the generated
hardware, the edges of the tiles and the space to be tiled are power of 2.

Let consider:
e a n-dimensional space S™ = H?;Ol S; with S; = 2% and o; € N*

e a set of M possible tile volumes, specified by the user, Vp = Uﬁil VZ? with V* = 26°
and 5% € N*

For each user-specified tile volume V7# the tiling finds all the possible layouts which
contain V* data and exactly divide the space S™ into tiles equal by translation.

Furthermore, for each user-specified tile volume V?*, there are C(n, %) possible lay-
outs, with C(n, 3%) = Z?:o Cn—1,p*—1)and C(2,5%) =3+ 1.

For each couple of tile volume and tile layout, a tiling can be represented by its
canonical tile T7.

The set of all computed tilings is

C(n,p%)
T={ |J T&vzell,M] (4.3)
k=1

For each tiling T} the following properties are true:

o Ty = H?:_ol 2% with Z?z_ol Bi =5

e 57 €[0,5°].

o 37 <, Vi
Example For S =8 x 8 and Vp = {4, 8} the following tile layouts are possible:

o Vi=4— =2 — (C(2,2) =3 layouts: (22,2°);(2%;21);(20;22).

o V=8 — =3 — (C(2,3) =4 layouts: (23,2°); (2% 21);(2!;22); (2%, 23).
Thus the set of possible tilings is

T = {(47 1); (27 2)§ (1’4)§ (8’ 1); (4’ 2); (274); (17 8)}

4.2. PRESENTATION OF THE SUPER-TILING FLOW AND OF THE EXPLORATION OF A SET OF
POSSIBLE SUPER-TILING 97

4.2.4.1 The Tiling algorithm

The tiling algorithm is presented in figure 4.8. It is a recursive code that can execute
for any I/O space dimension (n) and for any I/O space volume (bound[]). It finds all
the tiles that exactly divides the I/O coordinate space and which volume is equal to the
user-defined volume V.

— Leged —
UD: User Defined
C : Calculated
— data structure—
n: space (and tile) dimension — UD
V: tile volume (i.e. nbr of data in a tile) — UD
bound[]: space bounds — UD
T: possible tilings set — C
maxT: maximum size of a given tile edge — C
tile[]: tile edges — C
TOP(){
set T=; maxT=V;
ALGO(n-1);

ALGO(j){
for(i=l:maxT){
if (>
if (bound[j]%i==0){
tile[j]=i;
ALGO(j-1);

Yelse{
r=+]] tile[k];
if (0<r<V){
if(bound[j]%(V/r) == 0 && bound|j]>= DpW){
tile[j|=V/r;
T=T | {tile[]}
}
}
i=maxT;

}

}

Figure 4.8: Code of the tiling algorithm

The tile bound has to exactly divide the bound of the space to which the tiling is
applied and has to be adapted to the data layout into the used memories. In our designs
we have chosen memories with 64 bits per memory word and, as we deal with image
processing on B&W images, the pixels are coded on 256 levels of gray. Thus a datum
(i.e. a pixel) is coded on 8 bits and a memory word contains 8 data.

In order to exploit this information and avoid exploration of non-realizable solutions,
the tile bounds labeled x(0) has to be superior than the number of data per memory
Word (DpW), i.e. 8.

4.2.4.2 The tiles labeling

The tiling algorithm previously presented is separately applied to the input and output
spaces, ST and S respectively.

Let consider a given couple of input and output tilings (I T,f;:, OT,f;’s:), where IT
stands for input tile and the couple (K, zin) represents the tile layout and tile volume
respectively. The same considerations are true for the output tile (OT).

For the given couple of input and output tilings, the input space S’ contains s tiles

98

4. SUPER-TILING

and the output space S© contains d tiles, so that
s d
ST = JITm(j) and S© = | OTu (i)
j=1 i=1

. I o
Wlthszﬁﬁandd:ﬁ.

The tile indices, ¢ and j are used to identify a specific translation of the canonic tile
in a tiling. Figure 4.9 gives the layout of the indices for data spaces with dimensions of

2, 3 and 4.
X(2)
m| 17 | 18 19 20
o o234y
5 6 7 8
28
x(2)
rx(l) ol 17 |18 |19 | 20 ? e
1 2 3 4
<0 0| ! 2 3 4, 13 4 | 15 16
5 6 7 8 5 6 7 8
28 49 | 50 51 52
9 10 11 12 9 10 11 12 x3)| 33 | 34 35 36
32 56
13 4] 15 16 13 14 | 15 16 37 38 39 40
60
41 2 | 43 44
64

45 46 47 48

Figure 4.9: Layout of tile labels for a 2-dimensional, a 3-dimensional and a 4-dimensional space

We do not use the index “0" because it is reserved for special case that we will detail
in chapter 6.

Given the layout of tile indexes as shown in figure 4.9 and given the coordinates of a
specific datum T = (z(0), z(1),...,2z(n)) the tile index is computed through the following

formula:
= | D3 { bl Il it 1} 4y

6=1 1=0

This formula is used twice: in the projection algorithm which associates the needed input

4.2. PRESENTATION OF THE SUPER-TILING FLOW AND OF THE EXPLORATION OF A SET OF
POSSIBLE SUPER-TILING 99

tile to the computation of a given output tile and in the hardware model of the TPU in
order to fetch the requests of the input data.

Thanks to the fact that the edges of the tiles and data spaces are power of two, the
formula 4.4 can be re-written as follows:

n—1 o0—1
i = (2(0) >> Bo) + Y {(w(é) << (O (az—p.) - ﬁa)} (4.5)
6=1

z=0

This simplifies the hardware operators dedicated to the computation of the data ad-
dresses.

4.2.5 Tiling Projection

For each couple of I/O tilings (I}, OT;°"), the projection algorithm computes a Super-
Tiling matrix ¥%%* which gives the dependencies between the input and output tiles. An
element o; ; of the Super-Tiling matrix is 1 if the projection of the output tile g(OT,fj:tt (1))
intersects the input tile 17" (5):

| (4.6)
0 otherwise

0”_{1Hm0ﬁﬁwwﬂﬂ$m#®
/[’7-] -

The couple (IT, ,f;:,OT ,f;’;‘;) is, then, characterized by a first estimation of internal
memory needed to store the input tiles:

kin 7kout

IMEm e = VO s max(Y - o1y), i € [1,d) (4.7)
7 -
J

where V57" is one of the user specified volumes of the input tile.
The couple of 1/0 tilings is retained if it respects the user’s constraint of maximum
internal memory:

IMm e < IMmag (4.8)

4.2.5.1 Example of the super-tiling application

Figure 4.10 gives an example of the Super-Tiling for the logarithmic sampling which code
has been given in figure 4.1. The Super-Tiling matrix is given in figure 4.10(b).

For a given couple of 1/0 tilings, the line indices of the ¥ matrix represent the output
tiles and the column indices of the ¥ matrix represent the input tiles. The tile indices
are shown in figure 4.10(a).

Figure 4.10(b) gives the number of needed input tiles per output tile (on the right of
the ¥ matrix). It also gives the minimum number of internal buffers needed to implement
the solution with the given couple of I/0O tilings.

100

4. SUPER-TILING

-'- ‘c"
1 2 ;_ R &4 1 2
u“\:“
RTTLLLLL T A ’: Super-Tiling 3 4
o
5 6 &7 8
s".
Input Output
til{)ng tiliII)1 g

(a) Super-Tiling layout

Zj Ti,j
1 1 0 0 1 1 0 0 0 0 0 0 0O 0 0 0 4
1 1.0 0 0 1 0 0 0 0 0 0 0 0 0 0 3
0o 1 1 0 0 1 0 0 0 0 0 0 0 0 0 3
0o 1 1 0 0 1 1 0 0 0 0 0 0 0 0 4
1 0 0 0 1 1 0 0 0 0 0 0 O 0O 0 0 3
00 0 0 0O 1 0 0 0 0 0O 0 0 0 0 O 1
00 0 0O 0O 01 0 0 0 0 0 0 0 0 0 1
o0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 3
OTle g MOT- 00 0 0 0O 00 0O 1 1 0 0 1 0 0 0 3
00 0 0 0O OO O O 1 0 0 0 0 0 O 1
00 0 0 0O 00O O 0O 0O 1 0 0 0 0 O 1
o0 0 00O 00O O 0O 0 1 1 0 0 0 1 3
o0 0 0000 0O 1 1 0 0 1 1 0 0 4
00 0 00O OO 0 0O 1 0 0 1 1 0 0 3
o0 0 00O 00O O OO0 1 0 0 0 1 1 3
o0 0 00O 00O 0O 0 1 1 0 0 1 1 4
max;(32; 04,5) =4
ITy,. nbr.

in

(b) £16X16 matrix

Figure 4.10: Super-Tiling example for a log sampling

4.2.5.2 The projection algorithm
Figure 4.11 gives the projection algorithm which:
e parses all the elements of an output tile;
e reads from the I/O dependence list which input references are needed;
e computes, through the formula 4.4, the indices of the corresponding I1/0 tiles;

e sets to 1 an element oy j of the ¥ matrix, when the output tile OT;°"* (i) depends
on the input tile I7," (j).

In order to improve the projection algorithm the 3 matrix is compacted as follows:
if each line contains more then 32 elements it is broken in 35 elements which are stored
into words of 32 bits. This reduces the amount of memory used to store the ¥ matrix
and the complexity of the following computations performed on it.

In the rest of this dissertation we will refer to a couple of 1/0 tiling as (IT,0T)

without specifying the chosen tile volume and layout (k,z).

4.3 Obtained results

This paragraph presents the Super-Tiling results for the following algorithms:

4.3. OBTAINED RESULTS

101

— data structure —

DMAXi, DMAXo: dimension of the I/O data spaces

IT[]: input tile edges

OT][]: output tile edges

IW[], OW[]: I/O data spaces edges

curr__datum, first _datum: pointers to an element of type stack,
i.e. the list of I/O dependences; the structure contains:
.vo[]: vector giving the output datum coordinates
.vi: pointer to a list of vectors giving the
needed input data coordinates
.d: the number of needed input data to compute .vo[]

curr_datum—first _datum;
while(curr_datum!=NULL){
if((*curr_datum).q!=0){
OT _index=find _index(OT,OW,(*curr_datum).vo,DMAZXo);
curr_input=(*curr_datum).vi;
while(curr__input!=NULL){
IT _index=find _index(IT,IW,(*curr_input).vi, DMAXi);
Sigma_ matrix[OT _index][IT_index]=1;
curr_input=(*curr_input).next;
}
}
}

return Compute IM(Sigma matrix);

Figure 4.11: Projection algorithm

e A Mean filter on a window 2 x 2 pixels (M22) applied on an input image of 128 x 128
pixels

e Rotation (ROT) of 90° of an input image of 128 x 128 pixels

e A Logarithmic sampling (LOG) of an input image of 256 x 256 pixels (the output
image contains 128 x 128 pixels)

The analysis has been run for input and output tiles containing 32, 16 and 8 data each.
The list of the exploration results is given in table 4.1. As we consider only orthogonal
tiles with the bound z(0) superior than 8, we have 36 possible couples of 1/0O tilings per
algorithm.

The analyzed solutions are divided in 3 groups according to the size of the input tile.
The groups are: from solution 1 to 18 for an input tile volume of 32 data, from solution
19 to 30 for an input tile volume of 16 data and from solution 31 to 36 for an input tile
volume of 8 data.

The figures 4.13(a) , 4.13(b) and 4.13(c) give the amount of IM used to realize any
of the 36 analyzed solutions. The IM amounts correspond to the number of I'T per OT
given in table 4.1 multiplied by the input tile volume. In the figures 4.13(a) , 4.13(b)
and 4.13(c), the amounts of IM are re-ordered from the lower to the higher value. From
the figures, we can see that the used IM amounts depend on the sizes of the input and
output tiles and on the kind of array references performed in the analyzed algorithm.

Because of the affinity of the array references, the best solutions for the mean filter
(figure 4.13(a)) are those using the same tile layouts for both the input and output spaces.
The solutions require a bigger amount of internal memory for a bigger input tile size.

Despite the affinity of the array references, the best solutions for the rotation algo-
rithm (figure 4.13(b) and code 4.12) do not have the same I/O tile layouts. In fact the

102

4. SUPER-TILING

for(i=0:128){
for(j=0:128)1
ATil[j1=BL[j1[-i+128];
}

Figure 4.12: Code of the ROT algorithm

Super-Tiling takes into account the inversion of the subscripts ¢ and j from the input to
the output space. The best solution for ROT algorithm uses an input tile layout having
more lines than columns. Furthermore the 3 groups of solutions have all a solution with
the minimum of internal memory amount, which means that for this algorithm the tiles
layout is preponderant with respect to the tile size.

Let consider the histograms in figures 4.13(a) , 4.13(b) and 4.13(c). For the applica-
tions with affine array references, the histograms variate by steps. For the Log sampling
(figure 4.13(c)), the envelope of the histogram is smoother, due to the non-affinity of
array references.

The Super-Tiling step is not sufficient to choose an optimized solution. Let consider,
for example, the solutions 18 and 36 for the Log sampling. The solution 36 uses a minor
internal memory amount, as shown in figure 4.13(c), but it accesses a greater amount
of input tiles per output tile (see the number of internal buffers in table 4.1) and thus,
it could have a worse temporal performance. To formally choose among these solutions
other explorations are necessary and they will be described in the next chapters.

4.4 Conclusion

This chapter presented the Super-Tiling which is a method to apply the tiling to the
loop-nests not necessarily affine.

The main idea of the Super-Tiling is to separately partition the input and output
data sets, with a regular tiling. Then the output tiling is projected on the input tiling
according to the array reference law.

The intersection of the projection with the input tiling gives the dependences between
the input and the output tiles.

The Super-tiling has three steps: a dynamic profiling of the array references of the
algorithm, a tiling which separately apply to the input and output data spaces and a
projection which relates the I/0 tilings to each other.

The output data tiling corresponds to a partitioning of the output computation space.
Thus, the tiling enables the possibility of parallelize the different output tile computations
with each other. It also enables the possibility to parallelize the prefetching of the input
tiles and the computing of the output tiles.

The results show that the non-affinity of the array references influences the tile layout
and, thus, the amount of internal memory used to realize the hardware.

4.4. CONCLUSION

103

IM amount

I amount

IM amount

m22
400
300
200
100
36 34 85 25 28 29 80 32 31 33 19 20 23 24 26 27 1 5 8 10 12 13 15 16 17 18 21 22 2 4 6 8 11 14 3 7
solution numbar
(a) MEAN 22, affine array references
ROT
1100
825
550
275
18 30 36 9 14 15 17 24 27 28 29 33 34 35 6 7 8 12 13 16 21 22 23 25 26 31 32 3 4 5 10 11 19 20 1 2
solution number
(b) ROT, affine array references with inversion of coordinates i and j
LOG
1100
825
550 -
275 &

36 30 29 34 35 28 27 17 18 31 26 15 32 33 25 13 16 22 14 23 24 12 19 8 9 21 20 4 7 5 &6 11 10 1 2 3
solution number

(¢) LOG, non-affine array references

Figure 4.13: Histograms corresponding to the nbr. of IT per OT given in table 4.1. These values are
multiplied by the tile volume.

104

4. SUPER-TILING

sol 1T oT nbr. of IT per OT
LOG ROT M22
1 (32,1) (32,1) 30 32 4
2 (16,2) 31 32 6
3 (8,4) 33 16 10
4 (16,1) 20 16 6
5 (8,2) 21 16 4
6 (8,1) 21 8 6
7 (16,2) (32,1) 20 8 10
8 (16,2) 18 8 6
9 (8,4) 18 4 4
10 (16,1) 23 16 4
11 (8,2) 21 16 6
12 (8,1) 15 8 4
13 (8,4) (32,1) 13 8 4
14 (16,2) 14 4 6
15 (8,4) 12 4 4
16 (16,1) 13 8 4
17 (8,2) 10 4 4
18 (8,1) 10 2 4
sol IT oT nbr. of I'T per OT
LOG ROT M22
19 (16,1) (32,1) 33 32 6
20 (16,2) 37 32 6
21 (8,4) 36 16 10
22 (16,1) 26 16 10
23 (8,2) 29 16 6
24 (8,1) 29 8 6
25 (8,2) (32,1) 25 16 4
26 (16,2) 21 16 6
27 (8,4) 19 8 6
28 (16,1) 17 8 4
29 (8,2) 14 8 4
30 (8,1) 12 4 4
sol IT oT nbr. of IT per OT
LOG ROT M22
31 (8,1) (32,1) 41 32 10
32 (16,2) 48 32 9
33 (8,4) 48 16 10
34 (16,1) 28 16 6
35 (8,2) 28 16 6
36 (8,1) 17 8 4

Table 4.1: Table of the Super-Tiling explorations for ROT,LOG and M22 algorithms

105

Chapter 5

Scheduling

IS chapter presents the second step of the MEXP methodology: the Scheduling. The
T?Chedulmg s atmed to choose an optimized order of the output tile computations. The
scheduling of the tiles computations can be optimized by reducing the amount of used
internal memory or the amount of input tiles copied from the external memory. The
reduction of the the input tiles copied from the external memory has two effects: it reduces
the system power consumption and improves the temporal performance of the system,
by reducing the time to pre-fetch the input. The scheduling also eliminates the useless
computations and chooses the first output tile to be computed in order to further reduce the
used internal memory. The re-organization of the output tiles computations is performed
by solving the traveling salesman problem through a genetic algorithm, i.e. an evolutive
algorithm.

Chapter contents

This chapter goes though the following contents:

B Motivation of the scheduling with a presentation of the different steps of the
scheduling.

B Presentation of the used genetic algorithms.

B Results supporting the chosen algorithms.

5.1 Introduction to the scheduling

After the Super-Tiling has been applied, MEXP has to deal with the scheduling and
mapping of the output tiles computations.

The output of the Super-Tiling is a matrix 3, which gives, for each possible couple
of input and output tilings, the dependences between the input and output tiles.

The scheduling has three steps:

e The elimination of useless computations.

106 5. SCHEDULING

e The re-ordering of the output tiles computations.

e The choice of the first output tile to be computed.

Due to the non-affinity of input data references it may occur that a needed input data
is out of the actually existing input data space and thus corresponds to an invalid data
request.

Generally an image processing algorithm gives a default value as response to an invalid
input data request. Let consider, for example, the figure 5.1 in which we show the output
of a logarithmic sampling. The black border of the output image is due to invalid input
data requests.

Figure 5.1: Example of an LOG sampling output with black borders

If a whole output tile OT(i) contains only invalid data requests, which means that
there are only 0s on the corresponding o; line of the super-tiling matrix >, MEXP
suppresses the useless computations that should produce the output tile OT'(i) and
thus the o; line of the ¥ matrix.

@
@

tiled output space

o7,

&
iy

Figure 5.2: Example of a graph corresponding to a 2-dimensional space with 4 output tiles

Under the hypothesis that the application analyzed does not have self dependences?,

#i.e. no dependences between output tiles

5.1. INTRODUCTION TO THE SCHEDULING

107

the output tiles computations can be re-ordered without any restriction.

The scheduling is aimed to compute an optimized timetable of the output tiles
computations in order to minimize at once the number of external memory accesses
and the amount of internal memory.

The scheduling problem can be formulated as a graph theory problem: given a pos-
sible the Super-tiling, i.e. a possible couple of input and output tilings and their depen-
dences, it is possible to let correspond a weighted graph to the output tilings (see figure
5.2).

Each output tile, corresponds to a graph vertex and the passage from the computation
of an output tile to another is represented through a weighted arc connecting the two
corresponding vertices. The weight of the arc is the cost of this passage in term of either
internal memory or number of external memory accesses.

The problem of scheduling the output tiles computations corresponds to visiting all
the vertices of the graph exactly once by minimizing the chosen cost.

(a) (b PVC :a,b,c,d

15 16 Cout Total = 42

% P
Cout le plus élevé = 22
: 0w
]
15
1 2
15 16
Mﬂ)
. \] \

Tiling de sortie

EPVC :a,b,d, c

Cout Total = 50

Cout le plus élevé = 16

Figure 5.3: Example of a graph for which the two problems of BTSP and TSP have different solutions.
The blue round-trip is a solution for a TSP with a total cost of the round trip of 11 and a maximum
edge cost encountered of 6; the red round-trip is a solution for the BT'SP with a total cost of 12 and a
maximum edge cost encountered of 4

This problem can be formulated as one of two NP-hard problems: the classical Trav-
eling Salesman Problem (TSP) or the Bottleneck Traveling Salesman Problem (BTSP),
depending on which optimization criterion is chosen to compute the best round-trip.

Many readers will probably be familiar with the Traveling Salesman Problem (TSP)
which was first proposed by Sir William Rowan Hamilton in the 1800s and since then
has been well studied especially in the field of combinatorial optimizations.

Given a number of cities and the costs to travel from a city to another, the TSP
wants to find the less expansive round-trip which visits all the cities exactly once.

The Bottleneck TSP is related to the TSP but instead of the total cost of the trip it

108

5. SCHEDULING

wants to minimize the maximum of all the costs that the traveler has to afford during
his trip.

As an example let consider the graph in figure 5.3, the BTSP and the TSP have two
different solutions each one optimizing a different criterion.

5.2 Mathematical formulation of the TSP and the BTSP

These definitions are adapted from [100]

Complete graph. A complete (weighted and oriented) graph of order d is a graph with
d vertices, where each vertex is connected (through a weighted and oriented) arc to every
other.

The cost matrix. Given a complete (weighted and oriented) graph of order d, the
weights of the graph arcs are given by a squared d x d matrix

0 w12 ... Wid
w 0
VC _ 2,1
Wd.1 0

an element of the matrix w,. corresponds to the cost to pass from the node v, to the
node v,.

The Hamiltonian cycle. Given a d complete oriented graph G(V, E), where V are
the vertices and FE the oriented edges connecting them, a Hamiltonian cycle is a cycle
m = (v1,v2,...,0q,v1) that visits once all the vertices of the graph.

The Traveling Salesman Problem. Given a d complete oriented graph G(V, E), a
cost matrix Vi giving the cost to pass from each vertex to every other and a set of possible
Hamiltonian cycles IT of G, the TSP exact solution is the cycle 7 = (vy,v9,...,v4,v1) € II
such that the total cycle cost (TCC) is minimized:

n—1
TCC = min {de + Zwl}i-H} (5.1)

i=1

The Bottleneck Traveling Salesman Problem. Given a d complete oriented graph
G(V,E), a cost matrix Vo and a set of possible Hamiltonian cycles II of G, the BTSP
exact solution is the cycle m = (v1,ve,...,v4,v1) € II such that the largest edge cost
(LEC) is minimized:

n—1
LEC = min {max {de, U {Wi,i+1}}} (5.2)

i=1

The cost w; . can be computed according to different formula which depend on the system
characteristic that has to be optimized.

5.3. THE POSSIBLE COSTS AND PROBLEMS TO OPTIMIZE THE TPU

109

5.3 The possible costs and problems to optimize the TPU

As presented in section 4.2.5 of chapter 4, the output of the Super-Tiling is a ¥ matrix
giving the dependences between the considered input and the output tilings. An element
o;; of the ¥ matrix is 1 if the input tile I7°(j) is used for the computation of the output
tile OT'(7).

Given two output tiles OT'(c) and OT(r), the corresponding lines in the ¥ matrix
are binary words that can be combined through the following operators:

i %ed T O
)

j %j‘f’w’)
J Uc,j’ffr,.7‘>

As presented in chapter 3, when the TPU computes the tiles OT'(r) and OT(c) one after
the other, it performs two parallel macro-tasks: the computing of the output tile OT'(r)
and the pre-fetching of the input tiles needed to compute the next output tile OT'(c).

j o

e A boolean “or", noted +. It has the following truth table: (

oo
o~ o3
RN

c,j 7

e A boolean “and", noted ». It has the following truth table: < ((13
1

—oro3
—~ooo

j o

e A boolean “XOR", noted . It has the following truth table: <

—~oob
= OoOr~O3
or o

e A boolean “not", noted &, ;.

The re-order of the output tile computations can be aimed to minimize three objective
functions (also called costs):

e The amount of input tiles loaded from the external memory.
e The amount of used internal memory.

e The amount of input tiles changing between the computation of two successive
output tiles.

The amount of input tiles loaded from the external memory into the internal buffers
is:

s—1
wi(r,c) = Z {ocj*0r;} (5.3)
j=0

Example: given 0, = (0110) and o, = (111 0), then wi(r,c¢) =1 and wi(c,r) = 0.

As shown by figure 5.4, the value of wy(r, ¢) is related to the used amount of internal
memory, the temporal performance and the power consumption of the system.

110 5. SCHEDULING

TP IS
SIS TPQ(Z(T,,]l(T,‘J
/77777 e

TC VAR aaes
7 VAR aaes

------ time

OT(r) OT(c)

TC : Temps de calcul
TP : Temps de pre-fetch

Tuiles d’entrée a

1
1
1
I charger de la
: mémoire externe \
\
\
\
\
A
Total des tuiles d’entée qui changent
entre ()T('r/') et OT(c)
/
E;:o Oc,j /
/
—————————— /
Tuiles d’entrée i/
de OT'(r) non S Tegeon;
utiles & OT'(c)

Internal Memory

(b)

Figure 5.4

In particular, if we solve the BTSP with the cost wi(r,¢) we minimize the time
needed to perform the pre-fetching, for each computed output tile. At the same time,
we minimize the part of the internal memory aimed to store the pre-fetched data.

If we solve the TSP with the cost w;(r,¢) we reduce the total amount of input tiles
pre-fetched and, thus, we reduce the power consumption of the system.

For a couple of two output tiles OT'(r) and OT(c), the amount of the used internal
memory is:

s—1
wa(r,c) = Z {or; +0cj} (5.4)

J=0

Example: given 0, = (01 10) and 0. = (1 1 10), then wa(r,c) = wa(c,r) = 3.

A scheduling, optimized with respect to this cost, is fund by solving a corresponding
BTSP. It is possible to express wy as follows:

s—1

wo(r,c) = wi(r,c) + Z Orj

j=0

5.3. THE POSSIBLE COSTS AND PROBLEMS TO OPTIMIZE THE TPU 111

This means that by solving the BTSP with respect to wa, we also reduce the the time
needed to perform the pre-fetching (cf. figure 5.4).

The last considered cost corresponds to the amount of the input tiles changing
between the computation of the two successive output tiles OT'(r) and OT'(c).
This cost is

s—1
ws(r,c) => {or; Boe,} (5.5)

J=0

Example: given 0, = (01 10) and 0. = (1 110), then w3(r,c) = ws(c,r) = 1.

It is possible to express w3 as follows:

s—1
wi(r,c) = {0c;°075 + 0r*0c5}
j=0

Figure 5.4 shows that ws is related to both the length of the time to pre-fetch the input
data and to the amount of used internal memory. In particular by solving the BTSP
with respect to the cost w3 we reduce both the time to pre-fetch data, for each output
tile computation, and the amount of internal memory needed to store the input tiles
changing between the computations of two successive output tiles. If we solve the TSP
with respect to the cost ws we reduce the power consumption to perform the whole target
algorithm.

Definition A possible couple of input and output tilings corresponds to a BTSP or a
TSP instance, i.e. a case of the problem to be solved. For each MEXP exploration, the
user specifies several possible volumes for the input tile and several possible volumes for
the output tile. For each possible input and output volumes there are several possible
layouts. Each combination of all the possible I/O layouts represents a BTSP or a TSP
instance. Thus a MEXP exploration could have to solve hundreds of BTSP or TSP
instances.

The cost specified in the equation (5.3) produces an asymmetric instantiation of the
problem, in fact wi(r, ¢) # wi(c,r) i.e. the cost to pass from the computation of OT'(r)
to the computation of OT(c) is not the same as the cost to pass from the computation
of OT'(c) to the computation of OT(r).

The asymmetric BTPS or TSP has a higher complexity than the symmetric BTPS or
TSP. In fact, an asymmetric BTSP or TSP may require twice the number of operations
needed to solve a symmetric BTSP or TSP, it depends on the algorithm used to solve the
problem. In order to reduce the complexity of the algorithm, we prefer using the costs
specified in the equations (5.4) and (5.5), which have a symmetric instantiation.

Figure 5.5 gives examples of different V. matrices according to the different considered
costs. Figures 5.5(c), 5.5(d) and 5.5(e) give the V. matrices for the costs given in equation
(5.3), (5.4) and (5.5) respectively. Figure 5.5(c) gives an asymmetric matrix, while 5.5(d)

112 5. SCHEDULING

and 5.5(e) give symmetric matrices, which can be replaced by triangular matrices. This
reduces the number of operations needed to prepare the input data for the BTSP or TSP
solver. The complexity of the problem depends on the number (d) of the nodes to be

oT,
< [= 00011
or,
f@i%ﬁg\ w000 10
o0 100
K %{%) 10100
@ (b) The ¥ matrix giving the mapping between
T the input and output tiling
(a) The tiled output space associated to a graph
0 0 1 2 02 3 4 01 3 4
1 01 2 00 2 3 00 2 3
Ye=19 1 0 1 Ye=10 0 0 2 e=10 0 0 1
21 00 00 0O 00 0O
(¢) The cost matrix for the opti- (d) The cost matrix for the opti- (e) The cost matrix for the opti-
mization criterion of equation 5.3 mization criterion of equation 5.4 mization criterion of equation 5.5

Figure 5.5: Example of a symmetric (B)TSP instantiation for an output tiling applied to a 2-
dimensional output space and producing 4 output tiles

visited during the round-trip. For large instances (i.e. d>20), it is impossible to solve
the problem with an exhaustive method.

5.4 The genetic algorithms, the TSP and the BTSP

In our work, we have used a genetic algorithm to solve both the TSP and the BTSP. In
particular, we have solved the TSP by minimizing the TTC with respect to the cost of
equation (5.5) and the BTSP by minimizing the LEC with respect to the cost of equation
(5.4).

The genetic algorithms (GAs) are part of the evolutionary algorithms and were in-
troduced by John Holland between the 70s and the 80s. They are based on Darwin’s
evolution theory of natural selection and “survival of the fittest".

The GAs make evolve a population of individuals which are represented by geno-
types (GTYPE) called also chromosomes. A genotype encodes the way an individual
possesses a specific characteristic; the characteristic is evaluated by solving a fitness
function and the value of the fitness function for a particular individual is called phe-
notype (PTYPE).

In an optimization problem with a single objective function (i.e. a single optimization
criterion), the fitness function is the optimization criterion, a genotype is a given solution
to the problem and the phenotype is the value of the cost to be optimized for the given
solution.

5.4. THE GENETIC ALGORITHMS, THE TSP AND THE BTSP

113

For example in the BTSP a genotype is a particular Hamiltonian cycle, the fitness
function is the LEC and the phenotype is the value, for the given solution, of the one of
the costs defined in the equations (5.3), (5.4) or (5.5).

The evolution, which selects genotypes having more and more improved phenotypes,
is an iterative process going through the following steps:

1. The creation of an initial population

2. The evaluation of the phenotypes for all the individuals in the population
3. The selection of the best candidate parents to make evolve the population
4. The reproduction of the parents (also called crossover)

5. The mutation of some individuals of the population

6. The update of the population and iteration from point 2 until the population
reaches the desired level of evolution

Several problems exist which are related to the parameterization of a genetic algorithm,;
among them there are the following:

e The choice of the code to encode the genotypes (the first used by Holland was the
binary code, but the most spread to solve a classical TSP has been the cardinal
encoding, i.e. a natural number per each city in a tour)

e The choice of the operators implementing the selection, the crossover and the mu-
tation

e The size of the population and the criteria that stop the genetic algorithm when
the desired evolution is achieved

All these parameterizations offer a large possibility of a GA implementation; the choices
that we made in our work are based on previous works. For example the work presented
in [101] classifies the different operators for different instances of a classical TSP; on the
basis of this study we have selected the operators to implement the crossover and the
mutation; they will be presented in detail in the following paragraph.

The work presented in [102] shows that a hybrid GA, i.e. a GA including heuristics,
converges faster and finds better solutions, thus as suggested in this paper we have
constructed the initial population by using the Nearest Neighbor algorithm by choosing
as initial point some of the cities in the round-trip.

The next paragraph gives the detail of the (B)TSP implementation through the hybrid
GA.

5.4.1 The Algorithms

The following algorithms are run on a given d graph G(V, E), with d € N*. The vertices
of the graph correspond to the output tiles to be computed.

114

5. SCHEDULING

5.4.1.1 The creation of the initial population of genotypes

The initial population of the GA is a sub-set of all possible Hamiltonian cycles of the
complete graph representing the output tiling. It is chosen by running the Nearest
Neighbor (NN) algorithm for the TSP defined in paragraph 5.2 and all the Hamiltonian
cycles are found by choosing each vertex as a starting point of the cycle.

The complexity of the whole GA depends on the number of individuals in the pop-
ulation. The work [102] shows that the optimal population size depends on the number
of vertices d and has to be d < Ny, < 2% d. In our study, as we can have very high
value of d (ex. 8192) and in order to keep a low complexity of the algorithm, we limit
the population size to the max(d, 256).

The NN is performed as follows:

1. For all individuals in the population to be constructed, select a vertex as starting
point of the cycle and mark it as visited

2. Find the next vertex having the minimum access cost from the current vertex and
mark it as visited

3. While there are vertices which have not been visited iterate 2 and 3

4. Once the tour is found copy it back as a population member

5.4.1.2 The evaluation of the population through the phenotype and the
selection of the parents

Once the initial population has been set we compute the phenotype per each individual
in the population. The phenotype is the cost of the Largest Edge Cost (LEC) for the
BTSP and the Total Cycle Cost (TCC) for the TSP.

Then, in order to prepare the future evolution of the population, two Hamiltonian
cycles are selected as parents. We have tried three selection criteria:

e The elitism; where the best two Hamiltonian cycles are selected as future possible
parents. This means that the selected parents have the minimum LEC for the BTSP
and the minimum TTC for the TSP.

e The roulette wheel; where a probability is associated to each individual with
respect to its phenotype. This means that the better the phenotype of an individual
is, the greater the chance it will be selected as a parent. But, on the contrary of
the elitism, it is not guaranteed that the fittest members go to the next generation.

e The Tournament; where 4 individuals are chosen randomly and the best two
ones among the 4 are selected as parents.

The two selected parents generate two new individuals which will replace the two worst
individuals and make the population evolve. The elitism and the roulette wheel will

5.4. THE GENETIC ALGORITHMS, THE TSP AND THE BTSP

115

always select more or less the same individuals and this increases the probability to find
a sub-optimal solution, i.e. a local minimum for the optimization criterion.

In order to avoid the local minima we have chosen the tournament algorithm and we
have introduced some diversity in the population through the generation of a random
child with a certain probability. This probability is another possible parameter of the
genetic algorithm; in our case we have chosen a probability of 2 random generated children
each 10 generations, because experiments show that a greater probability prevent the
convergence of the genetic algorithm and a lower probability does not introduce enough
diversity.

Another mechanism which may prevent the convergence towards a sub-optimal solu-
tion is the mutation, which will be presented later.

5.4.1.3 The crossover

The reproduction of the two selected parents is run through the crossover operator called
order crossover (OX1) in [101]. This operator has been shown to have a good behavior
with respect to the accuracy of the solution and the convergence of the search.

The OX1 constructs the two children by selecting a sub-path from one parent and
the order of the rest of vertices from the other. Next example is taken from [101]

Example Let consider the two parents
(1,2,3,4,5,6,7,8)
and
(2,4,6,8,7,5,3,1)

Suppose that two cuts are chosen: the first cut between the second and the third elements
and the second cut between the fifth and sixth elements of the parents:

(1,2[3,4,56,7,8)
and

(2,416,8,7]5,3,1)
The vertices between the two cuts form a sub-path s,. The first child takes the sub-path
sp from the first parent and the second child takes the sub-path s, from the second
parent.

(*7 *|37 47 5|*7 *7 *)
and

(, %(6, 8, 7|, *,)
The rest of the children paths are constructed by copying the missing vertices according
to the order given by the parent from which they have NOT inherited the sub-path s,.

(8,7[3,4,5]1,2,6)

and
(4,56,8,7|1,2,3)

116 5. SCHEDULING

5.4.1.4 The mutation

We perform a displacement mutation (DM), which has been shown to be efficient in [101].
The DM is presented in figure 5.6. It takes from the child to be mutated a sub-path
of a random length and place it in another random-chosen position.

123456738

AN

12673458

Figure 5.6: Example of a Displacement Mutation

5.4.1.5 The criterion to stop the evolution of the population

Several termination criteria exist to stop the genetic algorithm: a fixed number of iter-
ations, a threshold value for the fitness function or a convergence criterion. In our work
we have chosen a convergence criterion associated with a maximum number of iterations.
We also use a condition to ensure that the algorithm run for a minimum number of
iterations. The chosen criteria are:

e 100 < Niterations < 1000

e convergence criterion: the mean fitness of the population is less or equal to the
fitness of the best genotype

5.5 Results supporting the chosen algorithm

In this paragraph we characterize three TSP solvers:

e The TSP and the BTSP solvers, which have been developed through the genetic
algorithm and thus will be noted GATSP and GABTSP.

e A TSP solver, using the Lin-Kernighan method, which is a part of the Concorde.
e The Concorde, which is a reference TSP solver.

We have analyzed the results for three different algorithms applied on input images of
different sizes, in particular:

e An algorithm (ALGOL1) applied on an input image 128 x 128 and producing an
output image 64x64

e An algorithm (ALGOZ2) applied on an input image 512 x 512 and producing an
output image 256x128

5.5. RESULTS SUPPORTING THE CHOSEN ALGORITHM 117

e An algorithm (ALGO3) applied on an input image 1024 x 1024 and producing an
output image 256x256

For each algorithm, we have performed some of the explorations presented in table 5.1.

output tiles volume output tiles layout nbr. of analyzed
instances
EXP1 128 128x1, 64x2, 32x4, 16x8, 8x16 25
EXP2 64 64x1, 32x2, 16x4, 8x8 20
EXP3 32 32x1, 16x2, 8x4 15
EXP4 16 16x1, 8x2 10
EXP5 8 8x1 5

Table 5.1: Explorations run for an input tile volume of 128 with an input tile layout among 128x1,
64x2, 32x4, 16x8, 8x16

In particular, we have analyzed the results of EXP1, EXP2, EXP3, EXP4 and EXP5
for ALGOL; EXP1, EXP2, EXP3 for ALGO2 and EXP1 for ALGO3 for a total of 155
instances of (B)TSP analyzed.

ALGO | EXP | # inst # graph vertices

min. av. max.
ALGO1 | EXP1 20 - 32 -
EXP2 20 63 63.75 64
EXP3 15 124 | 123.3 | 126
EXP4 10 244 | 245.5 | 246

EXP5 5 - 481 -
ALGO2 | EXP1 25 - 256 -
EXP2 20 - 512 -
EXP3 15 - 1024 -

ALGO3 | EXP1 25 480 | 491.6 | 510

Table 5.2: Table giving the complexity of the analyzed instances in terms of number of vertices to be
visited. “min., av. and max." are respectively the minimum the average and the maximum of vertices
in the analyzed number of instances (# inst)

Table 5.2 gives the complexity of the analyzed instances in terms of vertices to be
visited.

5.5.1 Comparison between the GATSP, the Lin-Kernighan solver and
the Concorde

We will compare the GATSP to a TSP solver based on the Lin-Kernighan method and
to a reference TSP solver: the Concorde.

These three solvers (GATSP, Lin-Kernighan and Concorde) are all heuristics, thus it
is not sure that they will find an optimal solution. But, the Concorde [103], which has

118

5. SCHEDULING

been developed by William Cook, is able to obtain optimal solutions for many instances
of the TSP, even for very large ones”, thus it will be used as reference. The Concorde
uses the cutting plane method and solves symmetric TSP by using a linear programming
solver: the Qsopt.

The Lin-Kernighan solver uses a set of complex moves (called kicks) to approach the
optimal solution of a TSP and we have used the one that is furnished with the Concorde
project.

The table 5.3 compares the results of the Lin-Kernighan solver with respect to the
GATSP. The Lin-Kernighan has been run with a number of kicks of d x 100. This table
shows that, with this configuration, the Lin-Kernighan solver is faster than the GATSP
solver. It also gives the rank® of the two solvers with respect the TCC, and shows that
the GATSP finds solutions which are better than the Lin-Kernighan solution in 99% of
cases. The mean error of the solutions found with the Lin-Kernighan solver with respect
to the solutions found with the GATSP solver can be up to 101%.

ALGO | EXP | # inst TCC Exec. Time LK error
(sec.) WRT GATSP
GATSP | LK | comm | GATSP | LK

ALGO1 | EXP1 20 19 1 0 <1 <1 44
EXP2 20 20 0 0 1 1 69
EXP3 15 15 0 0 2 2 92
EXP4 10 10 0 0 5 4 86
EXP5 5 5 0 0 8 5 101

ALGO1 | EXP1 25 25 0 0 28 20 41
EXP2 20 20 0 0 58 36 49
EXP3 15 15 0 0 128 a8 67

ALGO3 | EXP1 25 25 0 0 9 9 64

Table 5.3: Table comparing the results of a GATSP and a Lin-Kernighan solver with a number of
kicks of d x 100, the experiments have been run for different target algorithms (ALGO) and different
explorations (EXP)

Table 5.4 gives the comparison between the Concorde and the Lin-Kernighan with
100 kicks. Results show that, for this configuration, the Lin-Kernighan is slower than the
GATSP. The GATSP finds still better solutions in 90% of cases. And the error of the
solutions found with the Lin-Kernighan solver with respect the solutions of th GATSP
is up to 35%.

Table 5.5 compares the quality of the results of the GATSP with respect to the
Concorde. As attended the Concorde has better or equivalent solutions in 86% of cases.

This table shows also that the TSPGA is up to 76 times faster than the Concorde
and, according to us, this is an advantage to be used in a DSE tool.

Pup to 15.112 vertices in a graph, which is the largest instance of the TSP solved up to now.
“nbr. of instances with respect to all the analyzed instances for which the considered solver has a
better solution.

5.5. RESULTS SUPPORTING THE CHOSEN ALGORITHM 119

ALGO EXP | # inst TCC Exec. Time LK error
(sec.) WRT GATSP
GATSP | LK | comm | GATSP | LK

ALGO1 | EXP1 20 17 3 0 <1 29 17
EXP2 20 15 b} 0 1 71 31
EXP3 15 12 2 1 2 106 35
EXP4 10 10 0 0 5 113 24
EXP5 5 5 0 0 8 78 29

ALGO1 | EXP1 25 25 0 0 28 376 13
EXP2 20 20 0 0 58 388 16
EXP3 15 15 0 0 128 339 24

ALGO3 | EXP1 25 21 4 0 9 175 25

Table 5.4: Table comparing the results of a GATSP and a Lin-Kernighan solver with a number
of kicks of 108, the experiments have been run for different target algorithms (ALGO) and different
explorations (EXP)

The table 5.5 also gives the mean error of the TSPGA solutions with respect to the
Concorde solutions. We can see that the mean error is up to 16 % for the TTC.

On the basis of these experiments we have decided to let the user chose among the
usage of the Concorde and the TSPGA in order to have more precision for explorations
on small solution spaces and to be faster to explore large solution spaces.

ALGO | EXP | # inst TCC Exec. Time GATSP error
(sec.) WRT CONC
GATSP | CONC | comm | GATSP | CONC

ALGO1 | EXP1 20 b} 10 b} <1 2 4

EXP2 20 1 13 6 1 3 b}

EXP3 15 0 14 1 2 6 6

EXP4 10 1 9 0 5 32 10

EXP5 5 0 5 0 8 611 16

ALGO1 | EXP1 25 0 25 0 28 296 4

EXP2 20 0 20 0 58 818 6

EXP3 15 0 15 0 128 4177 10

ALGO3 | EXP1 25 1 23 1 9 34 4

Table 5.5: Table comparing the results of a GATSP and The Concorde solver, the experiments have
been run for different target algorithms (ALGO) and different explorations (EXP)

5.5.2 Comparison between the GABTSP and the GATSP

Figure 5.7 gives the amount of used internal memory per each output tile, during
all the round-trip. We can see that the BTSP allows to use less internal memory than
the TSP. The TSP has one or few maxima of the internal memory which are higher than

120

5. SCHEDULING

the maximum of the BTSP solution, but except for these maxima it generally copies less
input tiles from the external memory.

26

IM per OT

0 5 10 15 20 25 30 35
OT index

Figure 5.7: Comparison between a TSP and a BTSP solution for an instance with 128 vertices in a
graph, i.e. 128 OT in the output image, ALGO1, a solution of EXP1

It is possible to optimize the TSP solution with respect to the amount of used internal
memory. For example, the output tile that needs the maxima of internal memory can be
divided into independent sub-tiles which will be computed sequentially and will require
less internal memory. This optimization has not been tested in this work.

5.6 Conclusion

In this chapter we have presented the Scheduling. The scheduling is aimed to re-organize
the output tiles computations in order to optimize the TPU behavior. It is possible to
optimize the TPU behavior with respect to three costs: the internal memory used, the
number of the external memory accesses and the amount of input tile changing between
the computation of two successive output tiles. The minimization of each one of these
three costs produces an improvement either on the power consumption of the system or
on the amount of used internal memory and on the pre-fetching time. According to the
criterion to be optimized we should solve a classical TSP or a BTSP.

In our work, We have used a genetic algorithm to solve the two problems. We have
compared the TSP developed by using a genetic algorithm (GATSP) with respect to a a
Lin-Kernighan solver and a reference TSP solver: the Concorde. Experiments show that
the GATSP finds better solutions than the Lin-Kernighan in 90% of cases. The error of
the Lin-Kernighan solutions with respect to the GATSP solutions is up to 35%.

The comparison of the GATSP with respect to the Concorde, shows that the Concorde
finds better solutions than the GATSP in 86% of cases. The error of the GATSP solutions
with respect to the Concorde solutions is up to 16%. On the other side the GATSP solver
is up to 76 times faster than the Concorde. In our experiments to evaluate the results of
MEXP analysis, we have used the GATSP.

121

C

hapter 6

Computation and Memory Mapping

IS

chapter presents the Computation and Memory Mapping. The Computation Mapping

allocates to one of the parallel pipelines the computations of a group of output tiles, while

the

Memory Mapping computes the amount of internal buffers needed by each independent

pipeline and maps the needed input tiles into the available internal buffers. The Memory
Mapping ensures that the memory accesses are conflict free and that the input tiles shared
between two or more successive output tiles are copied only once into the internal memory.

Chapter contents

This chapter goes though the following contents:

Introduction to the problem of the Computation and Memory Mapping
Description of the Computation Mapping algorithm

Computation of the needed amount of Internal Buffers

Description of the Memory Mapping algorithm

Description of the methods to reduce the area overhead due to the mapping tables

6.1 Introduction

The mapping is divided into two parts:

e a computations mapping, which allocates the computations of N, groups of output
tiles to the NN, parallel pipelines of the TPU. the parallelism level IV, is specified
by the user. And the functioning of a TPU with parallel pipelines is presented in
section 3.3.3 of chapter 3.

e a memory mapping, which instantiates for each one of the IV, pipelines the internal
memory needed to store the input tiles. Then, it maps the needed input tiles into

122

6. COMPUTATION AND MEMORY MAPPING

the available internal buffer. This mapping ensures that the access to the internal
buffers is conflict-free and that, in the same pipeline, the input tiles shared between
two successive output tiles are copied only once from the external memory.

The Memory Mapping is aimed to compute the M M matrix described in chapter 3. This
matrix gives the mapping between the internal buffers and the needed input tiles, for
each output tile to be computed. M M is inferred from the ¥ matrix, which gives the
dependences between the input and output tiles. M M is computed after the scheduling,
thus the lines of the 3 matrix have already been sorted.

An example of memory mapping MM is given in figure 6.1. MM is organized as
follows:

e Each column index ¢ corresponds to an output tile to be computed and

e cach line index 7 corresponds to an available internal buffer where is stored a needed
input tile;

e cach element M M (r,c) of the matrix gives the index of a needed input tile, used
to compute the output tile OT'(c) and stored in the buffer r.

First of all, to compute the M M matrix, it is necessary to reckon the number M of the
needed internal buffers.

M has to be determined according to the user-specified level of parallelism N, and
to the architectural model targeted. This model allows the parallelism between the
computing and the pre-fetching. Thus the internal buffers have to contain a part from
which to read the current input and a part in which to copy the input used in a successive
time.

Each internal buffer contains a single input tile. Two internal buffers can be accessed
simultaneously, one to be written from the PREFETCH module and the other to be read
from the FETCH module (see chapter 3 for more details). The memory mapping ensures
that the data loaded by the pre-fetching do not erase the data read by the fetching.

Let consider the M M matrix in figure 6.1. Let suppose that the corresponding TPU
has to compute two successive output tiles OT'(¢) and OT'(c + 1). To compute the tile
OT(c) the TPU needs the input tiles (1 and 2) and to compute the tile OT (¢ + 1) it
needs the input tile (2 and 3). The M M matrix will have two columns corresponding to
two TPU tasks, and thus to two output tile computations. During the TPU task ¢, the
TPU will pre-fetch the input data needed to compute the tile OT'(¢). During the TPU
task ¢ + 1, the TPU will compute the output tile OT'(c) and pre-fetch the input tile for
OT(c+1).

During the pre-fetching, it is necessary to ensure that:

e the shared input tiles (2 in the example) remain in the internal buffers and that
e the tiles needed to compute OT(c¢) are not erased by the new tiles pre-fetched.

For a TPU with more parallel pipelines, the M M computation is modified as shown
in figure 6.2: each column of a matrix corresponds to a TPU task and thus to the

6.1. INTRODUCTION 123

T(c) pre-fetching
OTEC) computation

OT(c+ 1) pre-fetching
MM c c+l
0 0 3 0
1| 1 0 ?
2 2 0 0

Figure 6.1: Example of a part of MM matrix for a TPU with a single pipeline (N, = 1). Each
column of the M M matrix corresponds to a TPU task and thus, to the computation of an output tile
OT(c). If an element of the matrix is 0, then the corresponding internal buffer is not used.

computation of IV, parallel output tiles. For each column of MM there are different
zones corresponding to the Memory Mapping of each pipelines. For example in the
figure 6.2, the internal buffers 0, 1 and 2 are reserved to the first pipeline while the
internal buffers 3 and 4 are reserved to the second pipeline. The input tiles needed by
both pipelines are duplicated in the different sets of the internal buffers (ex. the input
tiles 1 and 3).

MM C c+1
0 0 3 0
Ll 1 0 ? Pipeline 1
2 2 0 0
3 0 3 0
all 1 0 4 Pipeline 2

Figure 6.2: Example of a part of M M matrix for a TPU with a two pipelines (N, = 2). Each column
of the M M matrix corresponds to a TPU call and thus, to the computation of two parallel output
tiles. The IB amount is not equal between the two parallel pipelines.

In the rest of this chapter we will describe the Computation Mapping, the formula
giving the amount of the used internal buffers and the Memory Mapping.

124

6. COMPUTATION AND MEMORY MAPPING

6.2 The Computation Mapping

The target model for the TPU with parallel pipelines is detailed in section 3.3.3 of
chapter 3. The pre-fetching is common for all the parallel pipelines and feeds the internal
buffers, which are distributed to the different pipelines. An input tile shared between
more pipelines is replicated into the internal buffers of each pipeline using it.

The problem of the Computation Mapping is to distribute the computations of the
output tiles to the IV, parallel pipelines.

It is possible to exploit the optimization due to the previously performed scheduling
by respecting as long as possible the computation order imposed by the vector OT,,4e;

The easiest way to perform this distribution is to assign the computation of [N%j
output tile to the first IV, — 1 pipelines and the remaining tiles to the last pipeline.

According to this method, it is possible that the last pipeline remain inactive for a
certain time. We can show that (for the performed analysis) the inactivity time (Tinact)
of the last pipeline is negligible with respect to the Temporal Performance (T'P) needed

to perform the whole algorithm. (Tép”f;t% R~ NP(A}_D is inferior to 10% for d = 120 and
N, < 4).
1 2 3 4 5 6 7 8 d=8 N, =4
k=0 k=1 k=2 k=3
1 2 3 4 5 6 7 8 9 d=9 N, =4
k=0 k=1 k=2 k=3
1 2 3 4 5 6 7 8 8 9 d=10 N, =4
k=0 k=1 k=2 k=3

1 2 3 4 5 6 7 8 9 10 11 d=11 N, =4

k=0 k=1 k=2 k=3
Figure 6.3: Example of Computation Mapping for N, = 4 and different values of d.

However, another way to redistribute the output tile computations is to assign the
computation of (Nip] output tiles to the first d%N, pipelines and LN%,J output tiles to
remaining pipelines.

This Computation Mapping is presented in figure 6.3 and ensures that all the pipelines

6.3. THE NEEDED AMOUNT OF INTERNAL BUFFERS

125

are inactive for 1 output tile computation at most.

6.3 The needed amount of internal buffers

Let consider a TPU with a single pipeline (N, = 1), the first step of the Memory Mapping

is to compute the amount of internal buffers needed to execute the whole image processing
on the TPU.

1B Max of
amount used IB

::| Time

OT(0) OT(1) OT(2) OT(3) OT(4)

Entrées pour les calculs courants
|:| Entrées pour les calculs successifs

Figure 6.4

The amount of needed internal buffers, has to count two parts: one containing the
Current Input Tiles (CIT) and one in which to copy the Successive Input Tiles (SIT). As
shown in figure 6.4, the non-affinity of the array references in the target application can
make the CIT and the SIT parts increase or decrease all the application execution long.

For this reason the formula computing the needed amount of internal buffers (IB) is:

IB = mazd_ | (SIT(i) + CIT(i)) (6.1)
Where SIT (i) + CIT (i) = wa(i,i+ 1) and wa(i,7+ 1) is defined by the equation (5.4) of
chapter 5.

In a TPU with more parallel pipelines (N, > 1), each pipeline has a set of internal
buffers in which storing input data.

The amount IBJk] of internal buffer associated to a pipeline k is computed by mod-
ifying the formula 6.1 as follows:
IB[k] = mazB 5(SIT(i) + CIT(i)) (6.2)

where LB and UB are respectively the lower bound and the upper bound of the set of

output tiles to be computed by the pipeline k. Their value depends on the Computation
Mapping.

126

6. COMPUTATION AND MEMORY MAPPING

For example, for the first presented method of Computation Mapping

d d
LB=k [Np—‘ and UB = (k+1) [NJ
for the IV, — 1 first considered pipelines and
d
LB = (N,—-1) [-‘ and UB =d
Np

for the last considered pipeline.
For the Computation Mapping presented in figure 6.3 |

d d
LB =k {NpJ +dg, and UB = (k+1) L\G)J + dg, + di,
1 if k < d%N, ko if k < d%N,

with k € [0, N[, di, = and dy, =

0 otherwise 0 otherwise
. The formula 6.2 adapts the amount of internal buffers to the specific set of output
tiles that each pipeline has to compute.

6.4 The Memory Mapping

Suppose that the TPU is configured to execute the image processing according to a
solution associated with a couple of input/output tiles (IT,OT') and, thus, associated to:

e a partitioning of the input space in s input tiles IT(j) with j € [1, s]

a partitioning of the output space in d useful output tiles OT' (i) with ¢ € [1, d]

a Super-Tiling matrix ¥4*%, which gives the dependences between the input and
output tiles and whose elements are noted o; ;;

a scheduling vector OT,,.4e of d elements, which gives the order according to which
the TPU has to compute the output tiles. The lines of the 3 matrix are re-ordered
according to this scheduling.

Given the amount IB of internal buffers needed, the MM matrix is inferred by the
Y-matrix as presented by the code in figure 6.5.

In this code the available buffers are stored in a stack. When we assign a buffer to
the storage of a input tile, we extract it from the stack. When a IT is no longer used we
re-introduce the corresponding free buffer in the stack.

For each parallel pipeline (0 < k < N,,) we consider the group of output tiles that
the pipeline has to compute (LB < i < UB). For each output tile to be computed, we
evaluate which input tiles have to be copied into the internal buffers.

We consider two cases:

6.4. THE MEMORY MAPPING 127

— data structure —
typedef struct IB{ // Element of the stack storing the available internal buffers

struct IB next;

int b;
HB;
typedef struct PP{ // Structure storing the information about a pipeline mapping

struct PP next;

int Mapp[SMAX]; // Mapping between the IT and the IB

int Mapp to_ preserve[SMAX]; // Flag preserving a buffer mapping

IB top_of the_ stack; // Pointer to the stack of available buffers
PP
PP pipe[N _proc];
// each pipe[k].IB stack contains all the available buffers for the corresponding pipeline

for(k=0;k<N_ pipe;k-++){

for(=0;i<UB;i++){
new i=LB+i;
A: for(j=0:j<solution.s:;j++){
// The input tile IT(j) has not to be copied
if(solution.Sigma[new _i][j]==0 && pipe[k]-Mapp]j]'=-1&& pipe[k].Mapp_to_ preserve[j]==-1){

pipelk].top _of the stack=Push(pipe[k].Mapplj], pipe[k].top _of the stack);
pipe[k].Mapp|j|=-1;

}

B: for(j=0;j<solution.s;j++){
// The input tile IT(j) has to be copied
if(solution.Sigmalnew _i][j]==1 && pipe[k].Mappljl]==-1){
pipe[k]-Mapp[j]=Pop(& pipe[k].top_of the stack);
solution.MM] pipe[k].Mapplj]|[i]=];

}

}
C: for(j=0;j<solution.s;j++){
if(solution.Sigmalnew _i][j]==1)
pipe[k].-Mapp_to_preserve[j]=1;
else
pipe[k].Mapp to_ preserve[j]—=-1;
}
}
free_ IB(pipe[k].top_of the stack);

}

Figure 6.5: C-code to compute the M M matrix

e We first free the internal buffers from the tiles that have no longer to be used

128

6. COMPUTATION AND MEMORY MAPPING

(loop nest A in the code of figure 6.5). In order to do that, we evaluate for
all the input tiles, if a given input tile I7(j) has not to remain into the internal
buffers (solution.Sigma[new;][j] == 0). Then, we evaluate if it has been previously
allocated into an internal buffer (we use the value pipe[k].Mapp[j] which gives the
buffer to which the input tile IT(j) has been allocated to). If it has been previously
allocated and it has not to be preserved (pipelk]. M appiopreserve[j] == —1), then
we cancel the corresponding buffer allocation and push the free buffer into the stack
of available buffers.

The input tile to be preserved at the task ¢ are those allocated during the task i —1
because they have to be used for the current computation.

e In a second moment we map the new needed input tiles (loop nest B in the code
of figure 6.5). In order to do that, we evaluate if the input tile I7T'(j) has to
be copied from the external memory (solution.Sigmalnew;][j] == 1) and it is
not already mapped into an internal buffer (pipelk|.Mapp[j] == —1). Then we
extract the first available buffer from the stack of the considered pipe (i.e. POP on
pipelk].top_of the stack) and we map the input tile in it.

Example Figures 6.7 and 6.8 give an example of the MM matrix computation.

Figure 6.7(a) gives the configuration of the I/O tilings with the dependences between
the input and output tiles expressed by the corresponding Sigma matrix.

Figure 6.7(b) gives the Sigma matrix whose lines have already been re-ordered by
the scheduling algorithm. Figure 6.7(c) gives the MM matrix and figure 6.7(d) gives the
evolution in time of the internal buffer contents. The amount of internal buffers used is
IB =3.

Figure 6.8 gives the steps of the Memory Mapping to compute the matrix MM for a
TPU with a single pipeline (N, = 1).

The presented algorithm considers only the last mapped input tiles and does not
check the current contents of the internal buffers. Thus it may occur that some input
tiles already in the internal buffers may be mapped again in a different buffer. For
the example of figure 6.1, during the memory mapping of the input for the last output
tile (OTingex = 1), the input tile 1, which is already in the buffer 2, is mapped again
in the buffer 0. This causes an increase of the external memory access and the power
consumption that can be avoided.

In order to improve the Memory Mapping algorithm, we have to modify the loop (B)
of the code in figure 6.5 as follows:

e We add a vector Current IB_Content giving the current content of the Internal
Buffers.

e For each input tile to be mapped, we check if the vector Current IB _Content
contains it.

6.4. THE MEMORY MAPPING

129

e Ifthe input tile is in the vector Current IB_Content, then it is not mapped again
and the buffer which currently contains it is extracted from the stack of available
buffers. The function that extracts the internal buffers scans the content of the
stack until the wanted buffer is not found.

These modifications are presented in figure 6.6.

// CurrentIB Content gives the current content of the Internal Buffers
// B=>", IB[k] where IB[k| is defined by the equation (6.2)
int Current IB Content[B];
B: for(j=0;j<solution.s;j++){
// The input tile IT(j) has to be copied
if(solution.Sigma[new_i|[j]==1 && pipe[k].Mapp[j]==-1){
Copy IT=-1;
for(u=LB;u<UB;u+-+){
if(Current IB Content[u]==j)
Copy IT—u;

if(Copy IT==-1){
pipelk].-Mapp[j]=Pop(& pipe[k].top_of the stack);
solution.MM] pipe[k].Mapplj]][i]=j;
Current IB Content[u]==pipe[k].Mapplj];
}else{
extract(Copy IT,pipelk].top of the stack);
}
}
}

Figure 6.6: Modifications to the C-code to compute the M M matrix are in bold.

6.4.1 The lifetime of the input tiles

Some input tiles of a solution can be used to compute several output tiles during the
target algorithm execution. If the output tiles are not successive, the corresponding input
tiles can be:

e Erased from the internal memory in order to re-use their corresponding internal
buffers. This reduces the total amount of used internal buffers but requires that
the input tiles are copied again from the external memory.

e Kept into the internal buffers for all the duration of their lifetime. This reduces
the number of accesses to the external memory, but requires the instantiation of
more internal memory.

In our analysis we find a trade-off between these two hardware solutions by performing
an output tile re-scheduling. This re-scheduling minimizes the amount of input tiles
changing between the computation of two successive output tiles (cost ws defined in
equation (5.5) of chapter 5). Thus it reduces the lifetime of the major part of input tiles.

130

6. COMPUTATION AND MEMORY MAPPING

6.5 How to reduce the area overhead due to the usage of
MM

The TPU needs to read the contents of the M M matrix in order to know the Memory
Mapping. But, the MM matrix has a size of d x IB for N, = 1 and a size of {Nip-‘ X

ivigl IB(k) for N, > 1, where d is the number of output tiles to be computed and IB
is the amount of internal buffer used. In both these cases the area overhead due to the
usage of the MM matrix can be reduced, in order to keep low the size of the internal
memory used to configure the TPU.

The first improvement can be obtained by copying a MM column a time from the
external memory.

The second improvement is the following: let consider the ratio Ryp between the
maximum amount of internal buffers changing with respect to the total amount of internal
buffer used:
max; w1 (i,7+ 1)

where wy is defined in equation (5.3) of chapter 5, I B[k] defined in equation 6.2 and with
0<Rip<1.

We can reduce the area overhead due to the usage of the MM matrix by splitting it
into 2 matrices: one giving the indices of the input tiles to be copied from the external
memory and one giving the indices of the internal buffers where to copy the needed input
tiles.

An example of memory overhead reduction is given by table 6.1. This method is
useful only if Ry < %

MM matrix

0 2 0 O o

1 0 0 O . (1 2 3 4)IT indices
0 0 0 4 o

0 0 3 0 (1 0 3 2)IBindices

Table 6.1: Example of MM divided into two tables

6.6 Conclusion

This chapter described the Computation and Memory mappings. These mappings are
computed for each one of the MEXP analyzed solutions.

The Computation Mapping divides the output tiles in N, groups and allocates the
computation of a group to one of the N, available pipelines. The tiles in a group are
computed sequentially by the same pipeline, while the groups are computed in parallel
by different pipelines. As described in section 3.3.3 of chapter 3, the prefetching of the

6.6. CONCLUSION

131

data for all the pipelines is performed sequentially and all the pipelines are synchronized
at the end of the TPU task computing the N, parallel output tiles.

The Memory Mapping algorithm is aimed to map the input tiles into the available
internal buffers. The first step of the Memory Mapping is to reckon the amount of needed
internal buffers. Then, for each output tile, the Memory Mapping computes the position
of the input tiles into the internal buffers. The Memory Mapping ensures that the input
tiles shared between two successive output tiles of a same pipeline are copied only once
from the external memory. It also ensures that the prefetching and the fetching in the
TPU can access the internal buffers without a conflict. Finally by scanning the current
internal buffer content the mapping can further avoid useless accesses to the external
mMemory.

132 6. COMPUTATION AND MEMORY MAPPING

Input space Output space
1 2 1|2
3 4 3 4
IT index=1,2,3,4 OT index=1,2,3,4

(a) I/O tilings

1 1 0 O 2
5 — 0o 1 1 0 3 . .
=lo 0o 1 1 4 OT index according to the OT, g
1 0 0 1 1
1 2 3 4
| ——
IT index

(b) Super-Tiling matrix corresponding to the
I/O tilings

o 3 0 [l o
MM = 2 0 4 0 1 IM locations
B oo o 2
2 3 4 1
| —
OT index

(¢) Memory Mapping matrix. The input tile 1 is mapped
twice. Section 6.4 gives the needed MM modifications to
avoid this problem.

time
0 3 3 1
IM buffers 1 2 2 4 4

OT index 1 2 3 4

(d) Internal Memory configuration during the computa-
tion of all the output tiles

Figure 6.7: Example which compute an M M matrix from a ¥ matrix.

6.6. CONCLUSION

133

0

Initial stack

of available
IBs

Mem. Mapping

Mapplj] contains the internal buffer in which is mapped the IT(j)

MTPJ[j] says if the buffer storing IT(j) can be released
MTP = Mapping To Preserve

No Push i
2 | 2 Pop
: Mapp={2,1,—1,—1}
1 :
| MTP ={1,1,-1,-1}
0 | 0
j=0
1 1Po
: P Mapp={2,1,0,-1}
No Push ! T
| MTP ={-1,-1,1,-1}
o]
j=1
2 Push |
l l 1 Pop
: Mapp={—1,—1,0,1}
1 :
| MTP ={-1,-1,-1,1}
2 | 2
j:
1 Push |
l l 1 Pop
: Mapp={0,—1,—1,1}
0 :
: MTP ={....}
2 | 2
=3

Figure 6.8: Example of the Memory Mapping for the I/O tiling presented in figure 6.7

134 6. COMPUTATION AND MEMORY MAPPING

135

Chapter 7

Design Space Exploration: System
storage requirement and
performance estimation

IS chapter presents the Design Space Ezxploration method. This method is based on the
Tgstimation of two metrics used to evaluate a given solution. The solutions are classified
with respect to these two metrics and the pareto solutions of the set are chosen at the end
of the DSE. We apply a validity filter on the solution space, in order to reduce it. We
also reduce the number of comparisons between the possible solutions by using a binary
tree to classify them.

Chapter contents
This chapter goes through the following contents:

B Introduction to the Design Space FExploration
B Description of the algorithm used to perform the DSE

B Description of the selection criteria: the temporal performance of the TPU and the
amount of internal memory used

7.1 The Design Space Exploration

According to the work [99], the MEXP Design Space Exploration (DSE) is performed
through a validity filter and a quality filter. The validity filter eliminates all the
solutions which do not match the user constraints. The quality filter finds the pareto
solutions in the analyzed set. The quality filter uses two metrics to classify the solutions
and relates them to each other trough two criteria of dominance and equivalence. The
used metrics and criteria are defined as follows:

136

7. DESIGN SPACE EXPLORATION: SYSTEM STORAGE REQUIREMENT AND PERFORMANCE

ESTIMATION

1. Let s;, with i@ € [1, Ny, be a possible couples of 1/O tiling which correspond to a
possible hardware solution. We define two metrics fra(s;) and fyc(s;), representing
respectively the amount of Internal Memory used to implement the solution s; and the
number of cycles to execute the algorithm with an hardware solution s;.

2. Given two solutions s; and s; with i, j € [1, Ng|, we define the following dominance
criterion: the solution s; dominates the solution s; if it is more efficient than s; with
respect to the two metrics fras(s;) and fyo(si), i.e. if

(frm(si) < frm(si)) A (fne(si) < fye(sy))

3. Given two solutions s; and s; with 4, j € [1, Ng|, we define the following equivalence
criterion: the solutions s; and s; are equivalent if s; is more efficient than s; with respect
to one of the two metrics and s; is more efficient than s; with respect to the other metric,
ie. if

(fra(si) < fra(sj) A fne(si) > [ne(si) V (Fiu(si) > fra(si) A fne(si) < fne(s;i)

4. A pareto solution dominates or is at least equivalent to all the other solutions of a
set. All the pareto solutions are equivalent to each other.

Figure 7.1 shows three pareto solutions si, sy and s3 which are equivalent to each other
and dominant with respect to the solution s4. This figure also shows how the design
space is tailored by two user’s constraints (IMy;ax and NChrax).

IMyax

TP

53

IM

Figure 7.1: A Design Space is tailored by the user’s constraints of IMpyrax and NCprax. The
solutions s1, s2 and s3 are pareto, they are equivalent to each other, while the solution s4 is dominated
by all the pareto solutions.

The solutions of the Design Space are sorted by using a binary tree, as shown in figure
7.2. A solution which dominates another becomes its leaf: the right if the dominance
criterion is the internal memory amount and left if the dominance criterion is the number

7.2. THE SELECTION CRITERIA

137

of cycles. In figure 7.2 the dominance are expressed as follows: fras(s3) < frar(s1) <
frm(s2) and fyo(s2) < fvo(s1) < frar(ss). If a new solution has to be inserted in the
tree it will be compared only with the left or the right subpart of the tree and it could
be inserted as a new equivalent solution or substitute another solution or substitute a
whole part of the solution tree (as shown in figure 7.2(b)).

TP dominance

S1 S1
e
T
| <
S92 S3 : So 53
m] o :
/
IM domnance A
|
|
|
Sy4 | S4
L
(a) The Design Space solution tree. (b) A new solution inserted

Figure 7.2: Example of a DSE solution tree with the dominance criteria and the insertion of a new
solution.

7.2 The selection criteria
The two selection criteria to run the DSE are:
e The amount of internal memory used and

e The number of cycles that a TPU needs to execute the target algorithm. This
criterion is also called the temporal performance of the TPU.

In the rest of this paragraph we present the formula used to estimate the value of these
two criteria for a given algorithm and a given solution.

7.2.1 The amount of internal memory used

In a hardware design the area occupancy is due to both the sequential and the logic
operators. In our estimation we do not count the area occupancy due to the logic opera-
tors and we estimate the area due to the internal memories without taking into account
neither the local registers that the HLS could instantiate nor the area needed to store
the user-defined LUTs.

7. DESIGN SPACE EXPLORATION: SYSTEM STORAGE REQUIREMENT AND PERFORMANCE
138 ESTIMATION

A TPU uses some mapping tables to perform the prefetching and the fetching and
uses internal buffers to store the input tile. Thus, the amount of internal memory used
by the TPU model counts four known contributions:

e the internal buffers I B,

e the pre-fetching matrix MM which can be replaced by 2 smaller matrices as pre-
sented in paragraph 6.5

e the table ensuring a direct read access to the internal buffers (i.e. IDX) and

e the TPU configuration register(s) (i.e. OT), which give(s) the number(s) of the
current output tile(s) to be computed.

The amount (in term of bits) of Internal Memory (IM) needed to store these contributions
is computed as follows:

The Internal Memory to store IB (I/M;g)

Let the TPU have N, pipelines indexed by k € [0, N, — 1], with IB[k] the number
of internal buffers used per each pipeline, Vi the volume of an input tile* and m the
memory word bit-width, then the amount (in number of bit) of internal buffers used is:

Np—1
IMip =mxVir* Y IB[K]
k=0

The Internal Memory to store MM (I M)

As presented in paragraph 6.5 of chapter 6, the MM size depends on the parallelism level,
on the amount of output tiles to be computed and on the amount of IB used per each
pipeline.

The amount of IM needed to store the MM matrix can be reduced by copying into the
TPU a column of MM a time and by splitting MM in 2 smaller matrices. The splitting
is performed with respect to the ratio Rrp[k] defined in paragraph 6.5.

After these modifications the amount of internal memory used to store the MM matrix
is:

Np—1
IMyrar = 2% [lga(s)] * (> Ryplk] * IB[K])
k=0

where the factor 2 depends on the splitting of the MM matrix into two smaller matrices;
[{g2(s)] is the number of bits needed to encode an input tile and Zgial Riplk] « IBIK]
gives the number of lines of one of the two matrices in which MM has been split.

Vi also corresponds to the size of an internal buffer

7.2. THE SELECTION CRITERIA

139

The Internal Memory to store IDX (IM;py) table
The amount in number of bits of IM used to realize the table IDX is:

Np—1
IMipx =sx |lg2 | > IB[K]
k=0

where s is the number of input tiles and [lgg (Eljjﬁgl IB[/@‘])—‘ is the number of bits
needed to encode an internal buffer index.

The Internal Memory to store OT register (IMor)

The number of bits needed to encode the output tiles (and thus needed by the register
oT) is
IMor = [lga(d)] = N

Finally, the amount of internal memory used by the TPU model is (at least”)
IM = IMig + IMpyy + IMipx + IMor

A couple of input/output tilings (I7, OT) is retained as a possible solution if it respects
the user’s constraint of maximum internal memory possible:

IM < IMyax (7.1)

7.2.2 The Temporal Performance of the TPU

The aim of MEXP is to partition both the input data space and the computation space.
The data partitioning allows to store only parts of the input data space into the internal
buffers. The computation partitioning allows to improve the parallelism level of the
target hardware.

The Temporal Performance (TP) of the target hardware depends on:

e the chosen couple of input and output tilings,
e the external memory access,

e the target level of parallelism.

bwe do not take into account neither the local registers that the HLS tool may instantiate to perform
the computations nor the user-defined LUT memory requirements.

140

7. DESIGN SPACE EXPLORATION: SYSTEM STORAGE REQUIREMENT AND PERFORMANCE

ESTIMATION

In our hardware model the external memory is a single port RAM accessed ac-
cording to a burst mode. This means that the needed data can be read one after the
other by starting from the required address to the end of the burst (see section 1.3.1 in
chapter 1.1 for more details). The burst length depends on the particular architecture of
the memory.

In our model, we suppose that a burst contains a whole input tile and that a memory
word contains m elementary data (i.e. pixels).

Due to the burst mode, there is a latency of L cycles between the reading of two
successive input tiles.

As described in section 3.3.3 of chapter 3, during a TPU task, two sub-tasks are
executed in parallel: the prefetching and the computing.

Due to the fact that the external memory is a single port RAM, in a TPU with
N, parallel pipelines there is a single prefetching sub-task which sequentially copies the
needed input tiles for all the parallel pipelines. On the other hand, the TPU contains IV,
independent sets of internal buffers, that can be accessed in parallel. Thus the computing
sub-tasks can compute N, output tiles in a real parallelism. At the and of each TPU
task all the pipeline and the prefetching are synchronized. Figure 3.9 in chapter 3 gives
the typical time-line of a TPU with 2 parallel pipelines.

We define the following four values:

e TP: the temporal performance of the TPU.
e TPP: the time to pre-fetch the input tiles.

e TP¢: the time to compute the output of a TPU task. This can be a single output
tile when IV, = 1 or N, parallel output tiles when N, > 1.

e TP;: the time to execute a TPU task, i.e. to execute in parallel the prefetching
and the computation.

The previously defined values are computed (in number of cycles) as follows: The Tem-
poral Performance of a TPU is the sum of times (TP;) to execute [Nip—‘ TPU tasks:

%]
TP = Y TP cycles (7.2)

=1

The time to execute a TPU task (T'F;) (i.e. to execute in parallel the prefetching and
the computing) is the maximum between the time to prefetch and the time to compute
the output of a TPU task:

TP, =max{TPF, TP} cycles (7.3)

For each output tile, the TPU pre-fetches wy input tiles from an external memory (with
wy defined in 5.3 of chapter 5). The external memory contains m elementary data (i.e.
pixel) per memory word and has a latency of L cycles.

7.2. THE SELECTION CRITERIA 141

The time to prefetch is defined as

Zin

— > cwi(i,i 4+ 1) (7.4)

TP = (L +

where V#n is the volume of an input tile.
To define the time to compute the output of a TPU task, we have to consider the
following observations:

e A TPU task consists in computing 1 or N, output tiles in parallel, according to
the user-specified level of parallelism. The TPU contains 4 main loop nests (REQ),
Prefetch, FETCH and CALC). Thanks to the MEXP mapping and the usage of
streams the 4 considered loop nests (REQ, Prefetch, FETCH and CALC) can be
executed in parallel. Furthermore, thanks to the usage of N, independent sets
of internal buffers and logic operators (each one affected to a pipeline), the N,
pipelines can access the input and compute the output in a true parallelism.

e Except for the loop nest performing the prefetching, the other loop nests have
the same number of iterations, and this number is equal to the number of data
contained in an output tile. The loop cores of the three loops (REQ, FETCH and
CALC) perform the memory accesses and the computations concerning a single
output datum.

e As explained in paragraph 1.2.5.2 of chapter 1.2, the iterations of a loop nest can
be pipelined on the same hardware. In order to avoid a conflict on the memory
accesses, the starting times of successive iterations have to be delayed with respect
to each other, as shown in figure 7.3.

From figure 7.3, we can deduce that:

1. The delay between the beginning of two successive iterations (also called Ini-
tiation Interval (II)) is the maximum between the time to read the input (e)
and the time to write the output (w).

2. The time to execute the whole loop nest is TP = IT+(Nbr. of loop iterations)+
T, with T depending on the time to perform the operations of the loop core.
When the number of iteration increases, T' becomes negligible.

Let suppose that, in the target TPU, the computation of an output datum needs (at
most) e input data. Each pipeline has to access its own set of internal buffers at most e
times. After computing the output, the pipeline has to copy the result in a temporary
output buffer. The temporary output buffer can be written only by a pipeline a time,
thus N, pipelines will take IV, cycles to store their outputs. This time-line is described
in figure 7.4.

We can conclude that, in a TPU, the II of the loop nests (REQ, FETCH and CALC)

is :

IT = max(e, Np)

7. DESIGN SPACE EXPLORATION: SYSTEM STORAGE REQUIREMENT AND PERFORMANCE
142 ESTIMATION

Nbr. of iterations delay between the beginning of two successive iterations

in the loop nest called nitiation Interval (IT)

11 e c w
— AN | | |
4 < b | | \
11 | | | |
3 g | —
e = Nbr. of cycles
to read the input
I | | | |
26> | | —
¢ = Nbr. of cycles
to compute the output
1 | | { w = Nbr. of cycles

to write the output

Time

Figure 7.3: Example of the parallelization between the iterations of a loop nest. The beginnings of
the iterations are delayed one with respect to the other.

Nbr. of iterations
in the loop nest

LeN, | N,

. . { | A
4 — N, parallel pipelines $ H
LE i
! €1 f (&)
o
_ : ; er Nbr. of cycles
3 | | to read the input
[I of the pipeline k
| |
I [K I R ¢, Nbr. of cycles
2 —< > to compute the output
} - I - of the pipeline k

I N, Nbr. of cycles

1 — H to write the output

| : of the N, pipelines

Time

Figure 7.4: Example of the parallelization between the iterations of a loop nest with N, parallel
pipelines.

7.2. THE SELECTION CRITERIA 143

As the number of iterations of the considered loop nests is equal to the output tile volume
VZout the time to compute the output of a TPU task is:

TPf = Voout % [T

Once computed the temporal performance of the chosen solution, the corresponding
couple of input/output tilings (I7,OT) is retained if it respects the user’s constraint of
maximum temporal performance:

TP < TPyax (7.5)

7.2.2.1 The time to initialize a TPU task

The initialization of a TPU task, corresponds to load from the external memory the
corresponding column of the Memory Mapping (MM) matrix.

As the MM matrix is read from the external memory and the external memory is a
single port memory, the initialization has to be performed sequentially with respect to
the input tiles prefetching.

In order to parallelize the initialization and the computation of the output of a TPU
task, we use a double buffering mechanism on the Internal Memory storing the MM
column. The double buffering mechanism is described in paragraph 1.2.4 of chapter 1.2.

To take into account the initialization of a TPU task we have to modify the formulae
giving the TPU Internal Memory amount and Temporal Performance, as follows: The
used amount of Internal Memory becomes

IM =IMig+2*IMpypn +IMpx + 1Mot

where the factor 2 is due to the double buffering.
The time to execute a TPU task becomes

TP, = max {TP! + TP/N'T TPf} cycles
where TP,L-INIT is the time to initialize a TPU task and it is:

Np—1
T pINIT =L 4+2x% Z {R[B[k‘} *IB[k]}
k=0

where the factor 2 depends on the splitting of the MM matrix into two smaller matrices.

7.2.2.2 The times neglected during the computation of TP

During the computation of the temporal performance of a TPU we neglect two contri-
butions:

e The time due to the dependences between the loop nests REQ, FETCH and CALC.

e The time to copy the produced output tiles back into the external memory.

144

7. DESIGN SPACE EXPLORATION: SYSTEM STORAGE REQUIREMENT AND PERFORMANCE

ESTIMATION

The blocks of the pipeline REQ, FETCH and CALC are not execute in a true parallelism.
In fact the block CALC depends on FETCH, which depends on REQ. But the delay to
the dependences is negligible with respect to the computation of a whole output tile.

We do not consider the time to copy the output tiles back into the external memory
for two reasons:

1. We suppose that there is no latency to write into the external memory. Thus, the
time to copy all the produced output tiles back to the external memory is the same
for all the analyzed solutions.

2. In a hardware model containing a cascade of TPUs, the output tiles of a TPU
are directly copied into the internal buffer of the successive TPU, without using a
temporary output buffer nor the external memory.

7.3 Conclusion

This section presented the Design Space Exploration method. It described the data
structure used to classify the solutions and the method to reduce the space of possible
solutions by tailoring it with the user constraints.

The DSE is performed, through a validity filter which reduces the solutions space,
and a quality filter, which classify solutions as dominant or equivalent.

The DSE is run with respect to two selection criteria: the system temporal perfor-
mance and the amount of internal memory used. These criteria are estimated and their
formulae are given.

145

Part 111

Applications

147

Chapter 8

Tools used for the results analysis

This part describes the applications analyzed with MEXP and synthesized thanks to
a commercial HLS tool. These applications are taken from the digital retina model
developed at the GIPSA-lab [4].

The GIPSA-lab retina model is based on biological observations and reproduces a
human retina functioning. A Human retina counts three bodies of neuronal cells (photo-
receptors, bipolar and ganglion cells) separated by two synapses. The synapses are
chemical junctions through which the neuronal cells communicate.

Among the neuronal cells we have only considered the photo-receptors. They are
distributed on the retina according to a pseudo logarithmic law in order to ensure a
vision roughly spherical, blurred on the borders and neat on the center.

The photo-receptors distribution and communication is emulated by two transforma-
tions: a spatial-variant low pass and a LOG sampling. The spatial-variant low pass has
a filtering coefficient variable on the pixel eccentricity and emulates the blurred vision
on the borders scene. The LOG sampling emulates the geometrical distribution of the
photo-receptors on the retina.

After that the photo-receptors have caught the scene, they transfer it to the visual
cortex through the optic nerve. The visual cortex is the brain part in charge of elaborating
the visual information. The projection of the scene on the visual cortex is modeled by a
polar projection [104].

The applications chosen from the retina model are:

e The LOG sampling
e The polar transform
e The pyramidal LOG sampling

The LOG sampling consists in sampling an input image according to a pseudo logarithmic
law.

The polar transform is a projection of the input image which changes the coordinates
of the input pixels from the Cartesian to the polar ones.

148

8. TOOLS USED FOR THE RESULTS ANALYSIS

The pyramidal LOG sampling is a mip-map based method, which reproduces the
behavior of a spatial-variant low-pass followed by a log sampling.

These applications have been analyzed with MEXP and synthesized thanks to a
commercial HLS tool.

All the HLS experiments has been run for a clock rate of 100 Mhz and for a 45nm
technology.

For each application we give the MEXP exploration results, the HLS results and we
evaluate the solutions with respect to the temporal performance speed up and the area
overhead due to the optimizations and to the parallelism.

8.1 Metrics for the results analysis

For each one of the chosen applications we have performed a MEXP exploration for three
different sizes of input image:

e SQCIF, VGA and HDTYV for the LOG sampling and the Pyramidal LOG sampling

e input images containing 128x128, 3002300 and 60023600 pixels for the polar trans-
form

Each exploration has been run for three different values of external memory latency of
30, 60 and 100 cycles and for a mapping on 1, 2 and 4 parallel pipelines. Thus each
exploration evaluates hundreds of solutions.

The time to execute a MEXP exploration varies between 1 sec for a SQCIF and 10
sec for a HDTV, but the explorations for different memory latency and different number
of parallel pipelines only execute a short sub-part of the MEXP flow.

For each image size we will give

e The results of the MEXP exploration.

e The area and temporal performance measured after the HLS and their comparisons
with the MEXP estimations.

e The temporal performance of the generated RTL models corresponding to the
MEXP optimized solutions. They will be compared with each other and with
a solution that does not use an internal memory.

The temporal performance of the solutions will be evaluated with respect to the following
metrics:

e The Speed Up of the temporal performance due to the MEXP optimizations. It
will be called “MEXP SU" and will be measured as:

TP(NO IM)

1, Np

8.1. METRICS FOR THE RESULTS ANALYSIS 149

where TP(NO IM) is the TP of the implementation without internal memory and
TP(s.i,N,) is the measured TP of the solution s.i and having a parallelism level
N,=1, 20r4.

MEXP SU > 1 implies that the MEXP optimizations are efficient.

e The Speed Up on the temporal performance due to the parallelism. It
will be called “Parall. SU" and will be measured as:

| TP(s.i,N, = 1)
Parall: SU(s4:Np) = 5p N, =9, 4)
oy P — 4

where T'P(s.i, N, = 2, 4) is the temporal performance of the solution s.i, which
can have a parallelism level N, = 2 or 4, and T P(s.i, N, = 1) is the temporal
performance of the solution s.i having a single pipeline.

Parall SU > 1 implies that the parallelism is efficient.
We can also measure the parallelism Efficacy as:

B Parall. SU

Np

with 0 < E < 1. If £ > 0.5 then the parallelism is efficient. E gives the percentage
of hardware resources exploited during the algorithm execution and for E=1 all the
hardware resources are exploited.

The area cost of the analyzed solutions will be characterized by the following metrics:

e The Area Overhead due to the MEXP optimizations. It will be called
“MEXP AO" and will be computed as:

, Total cost(s.i, Np)
MEXP AO(s.i,N,) = L
Olsd, Np) Total cost(NO IM)

where Total cost(s.i, Np) is the number of gates necessary to implement the RTL
corresponding to the solution s.i with a parallelism N, and T'otal cost(NO IM) is
the number of gates necessary to realize a solution without internal memory.

e The Area overhead due to the parallelism is evaluated as follows:

Total cost(s.i, N, =2 or 4)
Total cost(s.i, N, =1)

Parall. AO =

The Parall. AO should be inferior than N,.
For each application and for each size of input image explored, we give two tables:
1. A table summarizing the information on the Temporal Performance of the solutions.

2. A table summarizing the information on the Area occupancy of the solutions.

150 &. TOOLS USED FOR THE RESULTS ANALYSIS

An example of table summarizing the information on the temporal performance is given
in figure 8.1. This table gives the Temporal Performance (TP) of two of the MEXP
chosen solutions. For each solution, it gives two values of TP: the MEXP estimated TP
and the TP measured after a logic simulation of the RTL generated by the HLS. The
error on the estimation is given as a percentage with respect to the measured value.
This table compares the MEXP solutions with a solution without internal memory
(and thus without prefetching mechanism). It also compares the MEXP solutions with
each other and the implementations of the same solution with a different level of paral-
lelism. In order to do that, the table gives: the speed up due to the MEXP optimization
(MEXP SU), the speed up due to the parallelism(Parall. SU) and the parallelism efficacy

Measured TP NO IM (cycles)

30

Latency 60
100

Est. TP (cycles) Meas. TP (cycles) error (%) MEXP SU Parall. SU Parall. E
s.i

30

Latency for 60
N, =1 100
30

Latency for 60
N, =2 100
30

Latency for 60
N, =4 100

mean value
max value

Table 8.1: Example of a table summarizing the information on the TP.

An example of table summarizing the information on the area occupancy is given in
figure 8.2. This table compares the area occupancy of a given MEXP solution s.i with
the area occupancy of an implementation without internal memory (NO IM). All the
area costs are measured after the RTL generation and take into account the following
contributions:

e The internal memories due to the MEXP optimizations (i.e. the mapping tables,
the internal buffers, etc..)

e The memory requirements of the user-defined LUT and
o The local registers instantiated by the HLS tool.

The table gives the Area overhead due to the MEXP optimizations (MEXP AO) and the
area overhead due to the parallelism (Parall AO).

8.2. GRAPHICAL TOOLS FOR THE RESULTS ANALYSIS 151

NO IM

cost - mm?
total (combi, seq)

N, cost - mm? MEXP AO Parall. AO
(nX) (nX)
total (combi, seq) total (combi, seq) total (combi, seq)
s.i
1
2
4

Table 8.2: Example of table giving the information on the area occupancy of a solution

8.2 Graphical tools for the results analysis
We have considered two graphical representations of the exploration results:

e A scatter representation of the solution space which classifies the solutions explored
by MEXP with respect to their Temporal Performance and their area occupancy.
A point of the scatter graph corresponds to a MEXP solution (i.e. to an input and
output tiling).

TP

Ty

&)
D +

+
@@&*

M

+ +

+ a solution

@ a Pareto solution

Figure 8.1: Example of a scatter representation of the solution space.

e A representation of the Temporal Performance of a solution with respect to the
external memory latency.

If we consider the ratio ggi between the average time to pre-fetch T PP and the

average time to compute T'P¢ we can individuate three zone in the TP represen-
tation:

152

8. TOOLS USED FOR THE RESULTS ANALYSIS

TP¢ temps de calcul moyen

TP? temps de pre-fetch moyen

Latency

Figure 8.2: Example of a representation of TP with respect to the external memory variations.

1. A zone where the time to compute is preponderant with respect to the time
to pre-fetch. During this phase the temporal performance of the final system
does not depend upon the variations of the external memory latency.

2. A zone where the variations of the time to pre-fetch start to influence the
Temporal Performance of the whole system.

3. A zone where the time to pre-fetch is preponderant with respect to the time
to compute, thus the Temporal Performance varies linearly with the latency.

The variations of the time to prefetch can be due to either the variations of the
external memory latency or the increase of the parallelism level N,,.

For both the scatter representation of the solution space and the representation of the
Temporal Performance, the graphs are given for different values of external memory
latency and different levels of parallelism N,

8.3 Conclusion

In this chapter, we have presented five metrics and two type of graphics. These tools will
be used, in the next chapters, to describe the performed experiments.
The metrics presented are:

e Three metrics to describe the improvements of the MEXP optimizations on the
temporal performance: the Speed Up due to the MEXP optimizations (MEXP
SU), the Speed Up due to the parallelism (Parall SU) and the parallelism efficacy

(E).

e Two metrics to describe the area overhead which can be due either to the MEXP
optimizations (MEXP AO) or to the parallelism (Parall. AO).

The graphical tools are:

8.3. CONCLUSION 153

e A scatter representation of the MEXP exploration space, which classifies the solu-
tions, in the explored space, by giving their temporal performance with respect to
their used amount of internal memory. We will give this representation for 3 values

of external memory latency (30, 60 and 100 cycles) and 3 values of parallelism level
(N, = {1, 2, 4}).

e A representation of the Temporal Performance(TP) of a solution with respect to
the external memory latency. In this graph, there are three different zones where
the value of the TP change in a different manner, depending on the ratio of the
time to pre-fetch with respect to the time to compute. When this ratio is inferior
than 1, the TP remain constant. When the ratio is around 1 the TP increases in a
logarithmic way. When the ratio is superior than 1, the TP increase linearly with
the increasing external memory latency.

154 &. TOOLS USED FOR THE RESULTS ANALYSIS

155

Chapter 9

The Log Sampling

The pseudo-log sampling (LOG sampling) is a space-variant sampling of an image, which
samples the pixels according to a pseudo-logarithmic law.

It can be used to correct the geometrical lens distortions, which occur when “the size
of each pixel in the image plane is magnified in a different way" [105, 106, 107]. These
distortions are symmetric with respect to the center of the image and can be corrected
digitally and in real-time.

In the retina model developed at GIPSA lab [4], the log sampling is used to emulate
the distribution of the photo-receptors (cones and rods) on the human retina. As the
photo-receptors are numerous around the foveal zone, which is the center of the retina,
the output image of a log sampling is magnified in the center. Figure 9.1 gives an example
of the input and output of the log sampling, in this example there is also a reduction of
the output image size.

(a) input (b) output

Figure 9.1: Example of an input and output images for a log sampling

Let consider the distances p;, and pgy, which are presented in figure in figure 9.2
and are the radial distances of an input and an output pixel respectively.

156 9. THE LOG SAMPLING

VVin
R
Wout
L <"
|
|
1 Pin A | You | i
|
Hm : : pOut
! Tin Hout : Toug
1 \/
l
\

Figure 9.2: The input and output radial distances p;y, and pouyt.

These two distances are related by the pseudo-logarithmic law:

Pin
= Plim ¥ —————— 9.1
Pout = Plim i + 0 (9.1)
with pi, = \/(xzn - V[/2m)2 + (yzn - Hgm)2 and pout = \/($out - Wsut)Q + (yout - H%”t)za

Plim 18 a constant fixing the reduction factor of the image sizes and pg a parameter which
determines the compression intensity. pyn, and pg are related by the formula:

1 Win H;
Plim = — * | max(5 ' 9)+ po

and their effect on the output image are shown in figure 9.3.

o~

(b) po ="~ and k=4

(a) poz%andk:2

(d) po="Cm and k=4

(c) poz%andk:2

Figure 9.3: Example of output image for different values of pg and k

In our experiments we have used pg = WQ”L and k = 2.

9.1. THE TPU SYNTHESIZABLE C-MODEL FOR THE LOG SAMPLING

157

From 9.1 it is possible to deduce the law giving the coordinates of the input pixels to
be sampled from the coordinates of the output pixel to be computed. This law is:

o Win _ Wous
(Lin B ngn) _ £0 * < Zout ngt) (92)
2

Yin 2 Plim — Pout Yout —

In our implementation we use a bilinear interpolation to avoid the aliasing caused by
the non-affinity of the law computing the input pixels coordinates (details are given by
annex A).

Furthermore, the non-linear function computing the input pixel coordinates is realized
by using a Look Up Table (details are given in annex B).

9.1 The TPU synthesizable C-model for the LOG sampling

Once the user has performed all the studies concerning the LUT, he has all the informa-
tion needed to construct the input for a MEXP analysis.

In order to customize the TPU generic model, the user has to define the functionality
of REQ and CALC and generate, through MEXP, the hardware configuration.

In the TPU model for the LOG sampling, the module REQ computes (by using the
user-defined LUT) the coordinates of the 4 input pixels needed to perform a bilinear
interpolation and requests them to the FETCH module. The CALC module receives the
input pixels and computes the output by performing the bilinear interpolation.

Figure 9.4 gives the C-code of the user-defined functions REQ and CALC for the
LOG sampling.

The REQ function computes the coordinates (OTx and OTy in the code) of the
currently computed output tile. It infers from them the absolute coordinates (a0 and
al in the code) of the output pixel to be produced. From these coordinates it computes
the LUT entry and, then, from the LUT, the needed input pixel coordinates. Finally it
transfers the address of the needed input pixel to the FETCH module. The transfer is
performed by streams. The CALC function receives the data from FETCH and computes
the output through a bilinear interpolation.

9.2 The MEXP analysis on the LOG sampling

The MEXP explorations for the LOG sampling have been run with respect to three input
image sizes: SQCIF, VGA and HDTYV. For each one of these sizes we have considered
several 1/0 tile sizes.

Table 9.1 gives an overview of the experiments run.

I; and Ip are the input an output images spaces; S and SO are the I /O spaces which
contains I and Ip and whose dimensions are power of two, Vir and Vor are the sets
of possible I/O tile sizes to be explored; Ny is the number of analyzed couples of 1/0
tilings. For example, for a SQCIF input image an analyzed possible couple of 1/0O tiles
is (IT,0T) = (4 x 4,4 x 2).

158

9. THE LOG SAMPLING

#define MASK(L)(1<<L)-1

#define N_PIXEL 4

void REQ(int i, int j , int np , int *DX, int *ADD REQ){
.... declarations -

OTy = ((OT order[np]-1)&MASK(N out 0))<<N OT O0;
OTx = ((OT _order[np]-1)>>N_out_ 0)<<N_OT 1;

a0 =1+ OTx;
al =j + OTy;

index = (a0 - O_WIDTH_0)*(a0 - O_WIDTH_0)
+ (al - O_WIDTH_1)*(al - O_WIDTH _1I);
index_int = index >>LUT_STEP_BITWIDTH;

if(index_int > LUT WIDTH - 2){

#pregma unroll z -
for(z=0;z<N_PIXEL;z++)

ADD_REQ[z]=0xFFFFFFFF;

Yelse{
pl =LUT([index_ int];

p2 =LUT[index _int +1];

dy = p2-pl;

dx = (index)&MASK(PREC);

p=((dx*dy)>>(LUT _STEP BITWIDTH{PREC))+pl;

x = p*(ad - (O WIDTH 0>>1))
+ (I WIDTH 0>>1)<<PREC;
y = p*(al - (O WIDTH 1>>1))
+ (I_WIDTH_ 1>>1)<<PREC;

dx = x&MASK(PREC); x = x >> PREC;
dy — y&MASK(PREC); y — y >> PREC;

if(x <I WIDTH 0&&y<I WIDTH 1){
DX[0] = (dx<<16)|dy; - -
ADD_REQ[0] = (x<<16)|y;
ADD_REQ[1] = ((x+1)<<16)|y;
ADD_REQ[2] = (x<<16)|(y+1);
ADD_REQ[3] = ((x+1)<<16)|(y+1);

Telse{

#pregma unroll z

for(z=0;2<N _PIXEL;z+-+)
ADD REQ[z]=0xFFFFFFFF;

}

b
s

void CALC(int i, int j, int np, int *DX,
int *DATA, int *out ADD, int *out DATA){
.... declarations - -
OTy = ((OT order[np]-1)&MASK(N out 0))<<N OT O0;
OTx = ((OT_order[np]-1)>>N_out_ 0)<<N_OT 1;
dy = DX [0] &MASK(16); -~ -
dx = (DX [0]>> 16) &MASK(16);
*out_ DATA = Interpol(dx, dy, DATAJ0],
DATA[1], DATA[2], DATA[3]);
*out_ ADD = ((i+0Tx)<<16)|(j+0Ty);

int Interpol(int dx, int dy, int a, int b, int ¢, int d){
val = (1-dx)*(1-dy)*a+dx*(1-dy)*b+(1-dx)*dy*c+dx*dy*d;

Figure 9.4: REQ and CALC code. All the macros and global variables, shared between the user-

defined and MEXP generated code are in bold.

Iy Io st s© Vir Vor N
SQCIF 128 x 96 64 x 48 128 x 128 64 x 64 32, 16, 8 32, 16, 8 36
VGA 640 x 480 320 x 240 1024 x 512 512 x 256 512, 256, 128 512, 256, 128 324
HDTV 1920 x 1080 960 x 540 2048 x 2048 1024 x 1024 2048,1024 2048,1024 272

Table 9.1: Experiments run for different input image sizes

For each possible couple of input and output tiling, we consider an implementation
with a TPU with 1, 2, or 4 parallel pipelines. Thus the solution space contains N x 3
solutions. Furthermore, the temporal performance of each on of the explored solutions
has been evaluated with respect to a memory latency of 30, 60 and 100 cycles. Thus
each input image size Ng X 9 explorations have been run.

The tools used to summarize the analysis are given in chapter 8.

9.2.1 SQCIF input image

In this paragraph we will describe the results of the MEXP exploration for a SQCIF input
image with I/O tile sizes of 32, 16, 8. The design space contains 108 possible solutions

9.2. THE MEXP ANALYSIS ON THE LOG SAMPLING

159

analyzed for 3 values of external memory latency.

Figure 9.5 gives the scatter representation of the MEXP exploration results for
a SQCIF input image. From the sub-figures we can see that the increase of external
memory latency degrades the temporal performance of the TPU. The increase of the
parallelism level improves the temporal performance and enlarges the area occupancy
of the solutions. The magnification of each sub-figure shows that the chosen solutions
(which are enclosed in a circle) are pareto. The following table shows some of the MEXP
analyzed solutions for an exploration with a single pipeline.

The pareto solutions are not necessarily trivial and bring to a real improvement with
respect to the non-pareto solutions.

Table 9.3 summarizes the information on the Temporal Performance (TP) for the
two MEXP chosen solutions (s.13 and s.6). Form this table we can conclude that the
MEXP SU variates between 3.2 and 6.7 and the “Parall SU" variates between 0.97 and
1.29. This means that, for a SQCIF input image, in the worst case and due to the
bandwidth limitations, the parallelism could even degrade the temporal performance of
the system. The mean error of the MEXP estimations is less than 10%.

Table 9.4 summarizes the information on the area occupancy of the two MEXP
solutions (s.13 and s.6). As we could have expected and due to the usage of the internal
buffers, the area cost of a MEXP solution is increased of a factor 2.5 with respect to
a solution without internal memory. However, the area of the sequential part of the
circuit is increased more than the area of the logic part, but its amount remains non-
preponderant with respect to the total area of the circuit.

On the other hand, the area overhead due to the parallelism is optimized, in fact a
parallelism with N, = 2 increases the area of a factor around 1.6 and a parallelism with
N, = 4 increases the area of a factor around 2.6.

Figure 11.5 gives the graph of the Temporal Performance of the MEXP chosen
solutions (s.13 and s.6) and of a solution without internal memory.

We can observe that, for both the solutions (s.13 and s.6), the ratio of the time to
pre-fetch with respect to the time to compute is superior than 1. Thus any variation of
the time to prefetch influences the temporal performance of the system.

In the graphs 9.6(a), 9.6(b) and 9.6(c) the temporal performance of the MEXP so-
lutions s.13 and s.6 are compared with each other. We can see that solution s.6 has a
better temporal performance than solution s.13, as we could have expected due to the
fact that s.6 uses a larger internal memory than s.13.

Graph 9.6(d) compares the MEXP solutions with a realization not using an internal
memory and confirms that the Speed Up due to the MEXP optimization variates between
3.2 and 6.7.

160 9. THE LOG SAMPLING

105 5 105
310 + TP T T 310 PR T T 310 PR T T

O Pareto Solutions O Pareto Solutions

O Pareto Solutions

\ 0) ,
0404 8.010% 4.010 8.010%
M
o+ "] " "
@ CoM
(a) L=30 and Np =1 (b) L=60 and N, =1 (¢) L=100 and N, =1
310° T T 310° T T 310% T T
+ TP + TP + TP
O Pareto Solutions O Pareto Solutions O Pareto Solutions
21051 1 2105+ 1 2105+ L g
o o o * :’
= = = *
* +
1105} 1 1105+ 1 t1105- o 1
-
0 \ 0 \ 0 L L
8.010% 8.010% 4.010% 8.010%
1
5 T
.©’ +]
+
® &
(d) L=30 and N, =2 (¢) L=60 and N, =2 (f) L=100 and N, = 2
3105 T T 310° T T 3105 T T
+ TP + TP + TP
O Pareto Solutions O Pareto Solutions O Pareto Solutions
21081 4 2105+ 4 210%- + E
+
o o - + &
= = = . +
1105} 1 1108f §# 4 1105k "'»’ e 4
. g -+
o . # ot
[B
0 L 0 0 L 1
4104 8104 410% 810%
I M
=N AT FT T
[e] © ’: *
[® 3 ®
N S
(g) L=30 and N, = 4 (h) L=60 and N, = 4 (i) L=100 and N, = 4

Figure 9.5: DSE for different external memory latency (L) and for different number of parallel
pipelines (Np); the input image is a SQCIF.

sol. (IT,0T) Area Est. TP (for Latency)
30 60 100
5.3 (16x2, 32x1) 10144 16878 30780 49700
s.13 (8x4, 16x1) 9312 22354 40128 64728
5.6 (8x4, 32x1) 10400 16896 30516 49116
5.35 (8x1, 8x1) 18390 72796 139576 228616

Table 9.2: Solutions s.3, s.13 and s.6 are pareto solutions, while s.35 is a non-pareto solution.

9.2. THE MEXP ANALYSIS ON THE LOG SAMPLING 161

Measured TP NO IM (cycles)

30 79883
Latency 60 172043
100 294923

Est. TP (cycles) Meas. TP (cycles) error (%) MEXP SU Parall. SU Parall. E

s.13

30 22354 24952 -10.41 3.2

Latency for 60 40128 37420 7.24 4.6

N, =1 100 64728 54620 18.51 5.4
30 18303 20030 -8.62 4 1.25 0.62
Latency 60 33767 33155 1.85 5.2 1.13 0.56
for N, =2 100 54447 50675 7.44 5.8 1.1 0.54
30 16554 19298 -14.22 4.2 1.29 0.32
Latency 60 30401 32798 -7.31 5.2 1.14 0.28
for N, =4 100 48881 50798 -3.78 5.8 1.1 0.27

s.6

30 16896 18480 -8.57 4.3

Latency for 60 30516 29185 4.56 5.9

N, =1 100 49166 44585 10.27 6.6
30 14794 16690 -11.36 4.7 1.11 0.55
Latency 60 27124 28480 -4.76 6 1.02 0.51
for N, =2 100 43564 44200 -1.44 6.7 1 0.5
30 13574 16690 -19.86 4.7 1.09 0.27
Latency 60 24848 29358 -15.36 5.9 0.99 0.25
for N, =4 100 39829 45918 -13.26 6.4 0.97 0.24

mean value 9.4
max value 6.7

Table 9.3: Estimated and measured Temporal Performance (TP) for a SQCIF.

NO IM

cost - mm?

total (combi, seq)
0,039 (0,03 - 0,009)

N, cost - mm? MEXP AO Parall. AO
(5X) (uX)
total (combi, seq) total (combi, seq) total (combi, seq)
s.13

1 0.096 (0.06 - 0.036) 2.49 (1.99 - 4.1)

2 0.153 (0.093 - 0.06) 3.95 (3.14 - 6.56) 1.58 (1.58 - 1.58)
4 0.24 (0.16 - 0.08) 6.2 (5.29 - 9.1) 2.49 (2.65 - 2.23)
s.6

1 0.097 (0.06 - 0.037) 2.5 (1.99 - 4.19)
0.163 (0.09 - 0.073) 4.2 (3.2 - 7.46) 1.67 (1.6 - 1.78)
0.270 (0.16 - 0.11) 6.9 (5.5 - 11.8) 2.7 (2.76 - 2.81)

=N

Table 9.4: Measured cost of the TPU after the RTL generation

162 9. THE LOG SAMPLING

Measured TP for Np=1 Measured TP for Np=2
80K B0K
45K 45K
30K 30K
15K 15K
O s.13 O 8.6 < s.13 o 5.6
0K - 0K
30 60 100 30 60
(a) Np=1 (b) Np =2

Measured TP for TPU without IM

Measured TP for Np=4 300K
80K
225K
45K
150K
30K
75K
15K
< 813 < 56 oK
- 30 80 100
30 80 100
< s.13 < 86 no IM
(c) Np=4

(d) No Internal Memory vs MEXP solutions

Loop activity for application 'SQCIF_LOG_MAPP_13_LATENCY_30: online’ for tasks 0 .. 193
(avg. MITI: 129 cycles)

Duration Stalls

LOOPS Avg Min Max Avg Min Max
Lo BT e O E D DA L0 MU DI INANTNA 2= 26 26 0 0 0

LA IO LT 1 - A
8= N1 IR (AR Hllﬂl]ﬁlﬂlﬂ[ﬂﬂ[ﬂﬂll]]]] MO OO o ss s s o o o

L3 | | A L O A W A DO e == s 23 382 o 763
L4 NI NUNTTI I WO 00D TN [»s 20 26 573 0 1152

0 2500 500 000 17500 20000 22500 25000

(TN -
(0 R

(e) Simulation of the TPU verilog model

Figure 9.6: Estimated temporal performance for different external memory latency (L) and for
different number of parallel pipelines (N,); the input image is a SQCIF.

9.2. THE MEXP ANALYSIS ON THE LOG SAMPLING 163

9.2.2 VGA input image

In this paragraph we will describe the results of the MEXP exploration for a VGA (640x480)
input image with 1/0 tile sizes of 512, 256, 128. The design space contains 972 possible
solutions, analyzed for 3 values of external memory latency.

Figure 9.7 gives the scatter representation of the MEXP explorations. Form this
figure we can infer that:

e the temporal performance of the set of analyzed solutions depends less on the
variations of the external memory latency with respect to the SQCIF and

e the improvements due to the parallelism are more efficient than those obtained for
a SQCIF

In fact, the temporal performance remains around 3 * 10° cycles for N, = 1 and is
bounded between 1.5 % 10° and 2 * 10° for N, = 2. It varies more for N, = 4.

Table 9.5 gives the information on the temporal performance for the solutions (3.220
and s.223). Where s.220 is pareto with respect to the used amount of internal memory
and 8.223 is pareto with respect to the temporal performance. From table 9.5, we can see
that the MEXP SU varies between 6.43 and 36.13. The Parallelism efficacy is superior
than 0.9 for N, = 2 and N, = 4. But it decreases with the increasing of the external
memory latency.

The mean error of the MEXP estimations is less than 6%, thus the MEXP exploration
can be considered quite accurate.

Table 9.6 gives the information on the area occupancy for the solutions (s.220 and
5.223). From this table we can infer that the Area Overhead with respect to a solution
without internal memory is around 4 (for an implementation without parallelism) and
around 9 for a parallelism level IV, = 4. The AO due to the parallelism with respect to
the solution with a single pipeline is around 1.6 for N, = 2 and around 2.9 for N, = 4.

Figure 9.8 gives the graphical representation of Temporal Performance with respect
to the latency variations. From this figure we can infer that:

e for the solution s.220, the ratio of the time to pre-fetch with respect to the time to
compute is inferior than 1 for IV, = 1, around 1 for N,, = 2 and higher than 1 for
N, =4;

e for the solution s.223, which uses a smaller amount of internal memory, this ratio
is around 1 for N, = 1 and N, = 2 and higher than 1 for IV, = 4.

164

9. THE LOG SAMPLING

™

™

i

810% 1 8109) 81051, 1
+
.
R
61051 1 6109) 5105>3"' 1
&
_are *,. "z:" .
+
. N ¢ PR = A
s 1]
410° Lo 4105 & 4105 Y
3L :
+
21051 1 210% 1 210+ 1
+ TP + TP + TP
Pareto Pareto
Pareto
0 0 " " " ") L " " "
0 1108 210° 310° 410° 5108 0 1108 2108 3108 4108 5108 [} 1108 2108 3108 4108 5108
™M ™ M
(a) L=30 and N, = 1 (b) L=60 and N, = 1 (¢) L=100 and N, = 1
810° 8109) 810°F 1
+
+
610° 6109) 6105- 1
+
4,
)
o * o e
[S F +¥ .
4105 410° + 4105 . 4
’0.“ + *u .
.. ."\,;;‘: N °.:.‘ LR J
3 + + pa R + &
Q“*: &, . ’,: P . ora
2108 ¢ 2105, g TEE 2105} * 4
@ ¥ + TP b + TP
+ TP pareto pareto
pareto
0 0 0
0 1108 2108 3108 4108 5108 0 1108 2108 3108 4108 5108 0 1108 2108 3108 4108 5108
™ ™ M
(d) L=30 and N =2 (e) L=60 and N, =2 (f) L=100 and Np = 2
810° 1 8109) 1 8105
.
610° 1 6109) 6105
+,
st
s
+
S . B % s
4105, 1 4105 + . 4105 1.{. Yoo
Do RS A
. N S WL e
+ F +
AL DO g *
210° b3 N 1 2109) ,,’.’.o v, 2105} A *
ot % "k + ¥TP Han s + + TP
“* e 3 + TP e pareto i pareto
Pareto
0 0 0 L L
[} 1108 2108 3108 4108 5108 0 1108 2108 3108 4108 5108 0 1108 2108 3108 4108 5108
™M ™ M

(g) L=30 and N, =4

(h) L=60 and N, = 4

(i) L=100 and N, =4

Figure 9.7: DSE for different external memory latency (L) and for different number of parallel
pipelines (Np); the input image is a VGA.

9.2. THE MEXP ANALYSIS ON THE LOG SAMPLING

165

Measured TP NO IM (cycles)

30 1996841
Latency 60 439981
100 7372841

Est. TP (cycles) Meas. TP (cycles) error (%) MEXP SU Parall. SU Parall. E
5.220

30 302179 310650 -2.72 6.43

Latency for 60 303511 311431 -2.54 13.8

Np=1 100 328143 321577 2.04 22.93
30 152844 155845 -1.93 12.81 1.99 0.99
Latency 60 173606 171781 1.06 25.04 1.81 0.91
for Np =2 100 226072 211906 6.68 34.79 1.51 0.75
30 97768 79936 22,31 24.98 3.88 0.97
Latency 60 141650 146162 -3.09 29.42 2.13 0.53
for Np =4 100 203322 204050 -0.35 36.13 1.58 0.39

5.223

30 282727 289832 -2.45 6.89

Latency for 60 297571 299118 -0.52 14.38

Np =1 100 356155 338718 5.14 21.77
30 153306 145535 5.34 13.72 1.99 0.99
Latency 60 193656 189279 2.31 22.72 1.58 0.79
for N, =2 100 263376 247781 6.29 29.75 1.36 0.68
30 111862 77332 44.65 25.82 3.74 0.93
Latency 60 162638 163165 -0.32 26.36 1.83 0.45
for N, =4 100 233182 228993 1.83 32.19 1.47 0.37

mean value 6.2
max value 36.13

Table 9.5: Estimated and measured Temporal Performance (TP) for a VGA input image.

NO IM

cost - mm?2

total (combi, seq)
0.041 (0.031, 0.01)

Np cost - gates AO WRT AO due to
NO IM (nX) the Parall. (nX)
total (combi, seq) total (combi, seq) total (combi, seq)
5.220

1 7 0.14 (0.06, 0.08) _ 3.56 (2.06, 8.23)
2 0.25 (0.1, 0.15) 6.11 (3.19, 15.15) 1.71 (1.55, 1.84)
4 0.45(0.17,0.28) 10.99 (5.52, 27.9) 3 (2.68, 3.39)

5.223
1 ~ 0.17(0.06,0.11) 4.2 (2.14, 10.62)
2 0.27 (0.1, 0.17) 6.7(3.25, 17.52) 1.59 (1.52, 1.64)

4 0.48(0.17,0.31) 11.6 (5.47,30.6) 2.75 (2.55, 2.88)

Table 9.6: Measured cost of the TPU after the RTL generation.

166 9. THE LOG SAMPLING

Measured TP for Np=1 Measured TP for Np=2
340K 340K
255K 255K
LELLS 170K
85K 85K
O s.220 O 8293
0K
0K
a0 &0 100 30 a0 100
Latency Latency
(a) Np =1 (b) Np =2
M od TP for Np=4 Measured TP for TPU without IM
sasr il 10.000K
340K ‘
200 1.000K
r e
170K =)
100K
85K
O s.220 O 8293 o
- 30 60 100
60 100
Latency o 2290 o s355 o
(¢) Np =4

(d) No Internal Memory vs MEXP solutions

Loop activity for application 'VGA_LOG_MAPP_220_L_30_Np_2: online’ for tasks 0 .. 296
(avg. MITI: 525 cycles)

Duration Stalls

LOOPS Avg Min Max Avg Min Max

L I T 528 24 818 295 0 298

L1 ||||||||||I\HHHHHHI|||||||||||||||IHHHH\HHHIIIIIIIIIIIIIIIIIHHHH\HHH||||||||||||||||I\HHHHHHH\I||||||||||||||||I\HHHHHHH\IIIIIIIIIIIIIIII\HHHHHHHIIIIIIIIIIIIII 22z 22 22 0 0 0

L2 I]\IIIIIIIIII\I\ L0 R AR OMIN IO IO~ 152 5 324 0 00

IIHHHHHHH\I|||||||||iII!!'\H\\H\H\\H\I||||||||||||||||I\HHHHHHHI||||||||||||||I\H\H\\H\\H\I||||||||||||||||I\\H\\H\HH\HIIIIIIIIIIIIIIIIIH\\H\\H\H\HI||||||||||||||||I\HHHHHH 517 & 521 587 0 1176

0

521 14 525 439 883

o]

Time [cycles] -
AT T

IIII\IIII!I\II

(e) Simulation of the TPU verilog model

Figure 9.8: Measured temporal performance for different external memory latency (L) and for dif-
ferent number of parallel pipelines (Np); the input image is a VGA.

9.3. HDTV INPUT IMAGE

167

9.3 HDTYV input image

This paragraph gives the results of the MEXP exploration for a HDTV(1920X1080) input
image, with I/O tiles sizes of 2048 and 1024. The explored space contains 272 solutions
evaluated with respect to three values of external memory latency (30, 60 and 100 cycles).

Figure 9.9 gives the scatter representation of the MEXP explorations. From this
figure we can see that the Temporal Performance of the solutions does not vary nei-
ther with the increasing of the external memory latency nor with the increasing of the
parallelism level, except for the case N, =4 and L = 100.

On the other side, the parallelism is efficient; in fact, the Temporal Performance is
around 2 * 10° for N, = 1; 1 % 10° for N, = 2 and 5 * 10? for N, = 4.

We will consider the solutions s.252 and s.165 from the analyzed space, where 5.252
is a pareto solution and s.165 is non-pareto. Their configuration is shown by table 9.7.

Table 9.8 gives the temporal performance of the RTL realizations of the considered
solutions (8.252 and s.165). From this table we can infer that :

e The MEXP SU variates between 6.4 and 93.3 for the pareto solution.

e The parallelism efficacy is always superior than 0.9 except for the non-pareto solu-
tion.

e The mean error on the MEXP estimations is 9.4%.

Table 9.9 gives the area overhead due to the MEXP optimizations and the area overhead
due to the parallelism. From this table we can observe that:

e the AO due to the MEXP optimization is important (form 9.11 to 27.21 for the
pareto solution s.252 and from 28.6 to 87.5 for the non-pareto solution s.165). This
may be due to :

— the analyzed sizes of the input and output tiles

— the total amount of input tiles, in fact this amount affects the size of the IDX
memory (which is used to directly access the internal buffers - see paragraph
3.2.2 of chapter 3 for more details)

However the pareto solution s.252 has a maximal speed up of 93.3 (for N, = 4) with a
corresponding area overhead of 27.2X.

While the non-pareto solution s.165 has a lower speed up (65 for N, = 4) for an area
overhead 4 times bigger (i.e. 87). This result shows the consequence, on the realized
RTL, of the choice of an input and output couple of tilings which are not adapted to the
target application.

Figure 9.10 gives the temporal performance variations with respect to the increasing
latency. For the pareto solution, the temporal performance does not depend on the

168 9. THE LOG SAMPLING

latency variations and the parallelism is efficient. In fact, the ratio of the time to pre-
fetch with respect to the time to compute is of 0.14.

* + 1 4 +
30100y 4 * 1 80100y & # 1 80108 oy & ¥ . 1
+* +
+ + A J *
+, - & + *+ & F3
- Y -—th ot g et ¥+ T AN
- P et -
106 K 4 106 1 4 6 [4
o 2010 o 2010 o 2010
= S =

61 4 108 4 106 4
1.010 . TP 1.010 . TP 1.0-10 . TP
) <, Pareto solution N <, Pareto solution . <& | Pareto solution
0 4108 8108 11 0 4108 810 11 0 4108 8108 1107
M M M
(a) L=30 and Np, =1 (b) L=60 and N, =1 (¢) L=100 and N, =1
T T T T T T T T T T T T T T T T T T
3108 B 31081 E 3108 .
106] 406 | 6]
o 210 e 210 e 210
. o * E i * + PR *
miad S g,
Vel o+t ﬂ?‘.n'f . 4 gy o+
1108 1 1108 E 1108 L
+ TP + TP + TP
X X X &, Pareto solution X X X <, Pareto solution § . . <, Pareto solution
0 4108 810% 1107 2107 2107 2107 0 4105 8108 1107 2107 2107 2107 0 4108 810% 1107 2107 2107 2107
M M M
(d) L=30 and Np =2 (e) L=60 and N, =2 (f) L=100 and Np = 2
3106} + TP 4 3106 + TP 4 3106 + TP i
Pareto solution < Pareto solution < Pareto solution
106 4 .106 4 106 4
o 210 o 210 o 210
= = =
+*
1108 + 1108 et 1108k % e, i’ *os +
10°F + * + b 10%F L + 7 10°F * + - 1
S bt 2 Sy 4 # gy i
Ll "0 il . bt " Pl . g e . .
0.010 1.0107 2.0107 3.0107 0.010 1.0107 2.0107 3.0107 0.010 1.0107 2.0107 3.0107
M M M
(g) L=30 and N, = 4 (h) L=60 and N, = 4 (i) L=100 and N, = 4

Figure 9.9: DSE for different external memory latency (L) and for different number of parallel
pipelines (Np); the input image is a HDTV.

9.3. HDTV INPUT IMAGE

169

Measured TP for Np=1

2.300K s i ﬁ
1.725K
1.150K
575K
O s.252 O s.165
0K
30 &0 100
Latency
(a) Np =1
Measured TP for Np=4
2.300K
1.725K
1.150K
575K 8 :
O s.252 O s.165
oK
30 €0 100
Latency
(c) Np=4

Loop activity for application ‘'HDTY_LOG_MAPP_252_L_30 Np_1: online’ for tasks O ..

Measured TP for Np=2

2.300K

1.725K

B =]

575K
O 8.252 < 8.185
0K
30 60 100
Latency
(b) Np =2
Measured TP for TPU without IM
100.000K ‘ |
10.000K l
& 5t
-
1.000K
100K
10K
30 60 100
O s5.252 O s.165 no M

(d) No Internal Memory vs MEXP solutions

{avg. MITI: 4098 cycles)
Loops| Avg
L ARG 4090
L0 OO RN 26
L2 OO 001G 582
(e 1 AT AT AT 4089
L) AR IO 4091
I T T T 1
0 500000 1e+06 1.5e+06 2e+06 2.5e+06
Time [cycles] ->

(e) Simulation of the TPU verilog model

511

Duraticn
Min Max
14 4506
26 26
5 1540

o 4106
10 4108

Stalls

Avg Min Max
389 0 400
0 0 0

0 0 0
1268 0 2545
1520 0 2053

Figure 9.10: Estimated temporal performance for different external memory latency (L) and for
different number of parallel pipelines (INp); the input image is a HDTV.

sol. (IT,0OT) cost
(bits)

Est. TP (for Latency)
30 60 100

5.252 (32x32, 64x16) 304420

2089476 2089596 2089756

5.165 (256x4, 32x64) 1138540

2213814 2215708 2225484

Table 9.7

170

9. THE LOG SAMPLING

Measured TP NO IM (cycles)

30 13478419
Latency 60 29030419
100 49766419
Est. TP (cycles) Meas. TP (cycles) error (%) MEXP SU Parall. SU Parall. E
5.252
30 289476 2098097 -0.41 6.42
Latency for 60 2089596 2098097 -04 13.8
Np=1 100 2089756 2098097 -0.39 23.7
30 1045001 1051866 -0.6 12.81 1.99 0.99
Latency 60 1045121 1051866 -0.6 27.6 1.99 0.99
for Np =2 100 1045281 1051866 -0.6 47.3 1.99 0.99
30 517400 533390 -2.09 25.26 3.93 0.98
Latency 60 522232 533390 -2.09 54.42 3.93 0.98
for Np =4 100 562360 533390 5.4 93.3 3.93 0.98
5.165
30 2213814 2223553 -0.44 6
Latency for 60 2215708 2225473 -0.44 13
Np =1 100 2225484 22236112 -0.47 22.25
30 1117536 1127892 -0.91 11.9 1.97 0.98
Latency 60 1132420 1142290 -0.86 25.4 1.94 0.97
for Np =2 100 1165070 1188116 -1.94 4188 1.88 0.94
30 605390 610149 -0.77 22 3.64 0.91
Latency 60 648054 652750 -0.72 44.5 3.4 0.85
for Np =4 100 713210 758350 -5.9 65.62 2.94 0.74
mean value 9.4
max value 93.3

Table 9.8: Estimated and measured Temporal Performance (TP) for a HDTV input image.

NO IM

cost - mm

2

total (combi, seq)
0,041 (0,03 - 0,01)

Np cost - mm? MEXP AO

(nX)

Parall. AO
(nX)

total (combi, seq)

total (combi, seq)

total (combi, seq)

5.252

1 7 037 (0.07-0.3) 9.11 (2.2 - 30.7)

2 0.6 (0.1 - 0.5) 14.8 (3.34- 50.37) 1.62 (1.54 - 1.64)
4 1.12(0.17-0.95) 2721 (5.59 - 94.3) 2.98 (2.58 - 3)
5.165

1 T 1.18(0.09-1.09) 28.6 (2.75- 109.5)
2 2.02(0.13-1.9) 48.9 (4.32 - 187.6) 1.7 (1.6 - 1.7)
4 3.6 (0.2 - 3.4) 87.5 (6.85 - 337.9) 3.05 (2.5 - 3)

Table 9.9: Measured cost of the TPU after the RTL generation.

9.4. CONCLUSION

171

9.4 Conclusion

In this chapter we have presented the results of three explorations on the LOG sampling.
We have analyzed three input image sizes (SQCIF, VGA and HDTV). For each input
image size we have explored hundreds of solutions. From the results we can infer that
the MEXP optimizations depend on the I/O tile sizes and on the I/O data space sizes.
In particular, they are more efficient when we consider an large input image (VGA and
HDTYV) than a smaller image (SQCIF).

The speed up of the temporal performance due to the MEXP optimizations can be
up to 93.3 for a corresponding area overhead of 27.21 (results observed for the HDTV
input image with a parallelism level N, = 4). The highest speed up observed, without
considering the parallelism is up to 23.7 for a corresponding area overhead of 9.11 (for a
HDTYV input image).

The parallelism is not efficient in the case of a SQCIF input image and is very efficient
for the HDTV (E>0.9).

172 9. THE LOG SAMPLING

173

Chapter 10

The Pyramidal Log Sampling

The LOG sampling is preceded by a space-variant low-pass for two reasons:

e In order to respect the Nyquist-Shannon sampling theorem and avoid the aliasing,
it is necessary to filter the high frequencies of the input image. As the LOG
sampling is space-variant, also the preceding low-pass has to be space-variant and
in particular its filtering factor has to increase with the increasing eccentricity of
the pixel position.

e The space-variant low-pass reproduces the behavior of the human retina, which
provides a vision blurred on the borders and neat on the center.

Figure 10.1 gives an example of the input and output of the chain composed by a space-
variant low-pass followed by a LOG sampling. We can see that the output image is

(a) input (b) output

Figure 10.1: Example of an input and output images for a space-variant low-pass followed by a LOG
sampling

blurred on the borders and neat on the center.

174

10. THE PYRAMIDAL LOG SAMPLING

The space-variant low-pass have several levels of dependences that require the storage
of the whole processed image and may prevent the application of the MEXP optimizations
(see annex C for more details).

In order to eliminate these dependences, we have approximated the chain composed
by the low-pass and the log sampling with a MIP mapping LOG sampling, where MIP
stands for “Multum in Parvo"?.

The MIP-mapping method consists in computing a pyramid of several levels indexed
by C. Each level C contains an image which is filtered and down-sampled with respect
to the image of the level C' — 1.

In the implemented version, that will be called pyramidal LOG-sampling, the MIP-
map contains 3 levels. The function used to construct and access the MIP-map levels is
logr(f(Zout, Yout)), Where f(Zout, Yout) = ﬁ is the LOG sampling transformation.
k is a parameter of the LOG sampling which gives the reduction factor of the output
image size and can have the following values k = 2, 4, 8... (for more details on why
we have chosen the function logg() and in general on the Pyramidal LOG sampling see

annex D).

An example of the pyramid is given in figure 10.2.

Figure 10.2: Example of a pyramid with 3 levels and constructed with a low-pass having a window
size variable with the number of level

The non-affinity of array references can cause an aliasing when sampling the input
pixels. In order to avoid it, we apply a tri-linear interpolation, which is composed of a
bilinear interpolation of the pixels sampled in a level and a linear interpolation of the
pixels sampled on two successive levels.

Furthermore in the hardware implementation of the Pyramidal LOG sampling we
have used a Look Up Tables to realize the LOG sampling transformation f(Zout, Yout)
and a Look Up Table to realize the pyramid access law logy().

#many things in a small space

10.1. THE TPU SYNTHESIZABLE C-MODEL OF THE PYRAMIDAL LOG SAMPLING

175

10.1 The TPU synthesizable C-model of the Pyramidal LOG
sampling

Figure 10.3 gives the code of the REQ and CALC functions for the Pyramidal LOG
sampling.

The first difference with the LOG sampling code is that the Pyramidal sampling uses
two LUTs : LUTj realizing the LOG sampling transformation and LUT) realizing the
function logy() used to access the pyramid levels.

By using the LUTy output, REQ computes on one hand the coordinates of the input
pixel to be sampled (x and y in the code) and on the other hand the entry of the LUT.
The LUT accesses are always performed together with a linear interpolation in order to
improve the precision of the LUT, for more detail see annex B.

The pyramid level is noted C, in the code. C' is not an integer, thus, in order to avoid
the aliasing, two levels of the pyramid are accessed: those indexed by the superior and
inferior integers of C.

From each level, 4 input pixels coordinates have to be requested and these coordinates
are computed from the value of x and y.

In total REQ sends 8 requests to FETCH, which responds by sending the 8 corre-
sponding data to CALC.

CALC receives the 8 data and performs two bilinear interpolations, one for each
level. The results of the bilinear interpolations are store in variables v1 and v2, which
are, then, linearly interpolated. Finally, CALC sends out the computed output datum
and the coordinates in the output image, where it has to be stored.

The loops realizing the modules REQ, CALC and FETCH (which is not given in
figure 10.3) lasts a number of cycles which is 8 times the volume of the output tile.

Furthermore, because of the stream accesses, FETCH is delayed of 8 cycles with
respect to REQ and CALC is delayed of 8 cycles with respect to CALC.

10.2 The MEXP analysis on the Pyramidal LOG sampling

As for the LOG sampling, we have run the MEXP analysis for three input image sizes:
SQCIF, VGA and HDTV. To each one of these image sizes corresponds a 3 levels pyramid,
which is the real input image I7 of the application. The output image Ip is the same as
for the LOG sampling.

The table 10.1 gives, for each analyzed input image size (SQCIF, VGA and HDTV),
the size of the corresponding pyramid (I7) and the size of the produced output image
(Io). It also gives the size of the analyzed spaces (S” and S©) which are power of two and
contain respectively the the input and output used images. Finally, it gives the volumes
of the input and output tiles Vir and Vpr, each one producing several input or output
tiling layouts, and the number Ny of analyzed couples of I/0O tilings.

Each one of the N couples of input and output tiles corresponds to a hardware
model whose temporal performance and area occupancy will be evaluated with respect
to three values of external memory latency (30, 60 and 100 cycles) and three levels of

176

10. THE PYRAMIDAL LOG SAMPLING

Ir Io st s© Vir Vor N
SQCIF 224 x 168 64 x 48 256 x 256 64 x 64 128, 64 128,64 72
VGA 1120 x 840 320 x 240 2048 x 1024 512 X 256 1024, 512 1024, 512 210
HDTV 3360 x 1890 960 x 540 4096 x 2048 1024 x 1024 2048 1024 72

Table 10.1: Experiments run for different input image sizes

possible inter-tiles parallelism (i.e. N, pipelines computing N, output tiles in parallel,
with N, = {1 2 4}). Thus the explored space contains Ny x 9 possible solutions.

The temporal performance and the area occupancy of the solutions are evaluated
with respect to the metrics defined in paragraph 8.1 of chapter 8.

10.2.1 SQCIF input image

In this paragraph we will describe the results of the MEXP exploration for a SQCIF
input image with I/0 tile sizes of 128 and 64. The design space contains 216 possible
solutions, analyzed for 3 values of external memory latency.

Figure 10.4 gives the scatter representation of the MEXP explorations.
We can see that the Temporal Performance of the solutions increases with the in-
creasing of the external memory latency and the parallelism level.

Table 10.2 gives two pareto solutions (s.33 and s.65) of the space and a non-pareto
solution (s.71). The pareto solutions have a better temporal performance and use less
internal memory than the solution s.71, which has a trivial layout.

sol. (IT,0T) Area Est. TP (for Latency)
30 60 100
5.33 (16x8, 32x2) 20956 24751 24969 26022

s.65 (16x4, 32x2) 17920 24842 25184 27760

s.71 (8x8, 8x8) 21036 24768 25768 31784

Table 10.2: Examples of solutions in the analyzed space

For N, = 1, the solution s.33 is pareto with respect to the temporal performance and
the solution s.65 is pareto with respect to the internal memory used.

From table 10.3, we can infer that:
e The MEXP SU varies between 7.8 and 48.9.
e The mean error of the MEXP estimations is 15.26%.

e The parallelism efficacy is around 0.8 for NV, = 2 and of 0.5 for N, = 4.. The
parallelism efficacy is reduced by the increase of the external memory latency and
this especially for the solution s.65 which uses a smaller amount of internal memory.

From table 10.4 we can infer that:

10.2. THE MEXP ANALYSIS ON THE PYRAMIDAL LOG SAMPLING

177

e The maximum area overhead due to the MEXP optimizations is of 5.8X; the area
overhead depends especially on the usage of internal buffers which is more impor-
tant than for the LOG sampling.

e The parallelism has a maximum area overhead of 1.56 for N, = 2 and of 3 for

N, =4

Figure 11.5 gives the Temporal Performance of the solutions along the external memory
latency variations. From figures 10.5(a), 10.5(b) and 10.5(c), we can infer that, for both
the solutions, the ratio of the time to pre-fetch with respect to the time to compute is
inferior than 1 for IV, = 1, around 1 for Np = 2 and higher than 1 for N, = 4.
This is also shown by figures 10.5(e) and 10.5(f) which give the time-line of the two
solutions for N, = 1 and Latency = 30. The average length of the loop performing the
pre-fetching (Ls) is shorter than the length of the computations loops Lo, L3 and Ly.
But the average length of the prefetching of the solution s.65 is more important than
that of the solution s.33, thus the temporal performance of solution s.65 is more affected
by the increase of the parallelism level, than that of solution s.33.

Measured TP NO IM (cycles)

30 202817
Latency 60 479287
100 847927
Est. TP (cycles) Meas. TP (cycles) error (%) MEXP SU Parall. SU Parall. E
5.33
30 24751 25763 -3.9 7.87
Latency for 60 24969 26085 -4.2 18.4
Ny =1 100 26022 26952 -3.4 31.5
30 12467 13897 -10.3 14.6 1.85 0.93
Latency 60 13103 14814 -11.5 32.3 1.76 0.88
for N, =2 100 15412 17323 -11 48.9 1.55 0.77
30 6499 9625 -32.5 21.07 2.67 0.66
Latency 60 8041 12748 -36.9 37.6 2.4 0.51
for N, =4 100 11049 17879 -38.2 47.42 1.5 0.37
5.65
30 24842 25837 -3.85 7.8
Latency for 60 25182 26293 -4.26 18.22
Np =1 100 27760 27774 -0.05 30.53
30 12561 14041 -10.5 14.44 1.84 0.92
Latency 60 14327 15978 -10.3 29.99 1.64 0.82
for Np =2 100 21092 22618 -6.74 37.5 1.22 0.61
30 7326 10504 -30.25 19.3 2.46 0.61
Latency 60 12204 17164 -28.9 27.9 1.53 0.38
for Np =4 100 18884 26164 -27.82 32.4 1.067 0.26
mean value 15.26
max value 48.9

Table 10.3: Estimated and measured Temporal Performance (TP) for a SQCIF input image.

178 10. THE PYRAMIDAL LOG SAMPLING

NO IM

cost - mm?

total (combi, seq)
0,039 (0,03 - 0,009)

Ny cost - gates MEXP AO Parall. AO
(nX) (nX)
total (combi, seq) total (combi, seq) total (combi, seq)
5.33
1 0.14 (0.08 - 0.06) 1.9 (1.42 - 4)
2 0.218 (0.124 - 0.094) 3(2.1-6.8) 1.56 (1.47 - 1.7)
4 0.41 (0.21 - 0.2) 5.8 (3.7 - 14.4) 3 (2.63 - 3.7)
5.65
1 T 0.137 (0.084 - 0.053) 1.88 (1.43 - 3.8)
2 0.21(0.12 - 0.09) 2.92 (2.1-64) 1.55 (1.46 - 1.69)
4 042(0.23-0.195) 5.78 (3.7 - 14.3) 3 (2.66 - 3.7)

Table 10.4: Measured cost of the TPU after the RTL generation.

10.2. THE MEXP ANALYSIS ON THE PYRAMIDAL LOG SAMPLING 179

#define MASK(L)(1<<L)-1
#define N_PIXEL 4
void REQ(int i, int j , int 1, int *DX, int *ADD _REQ){

.. declarations

OTy = ((OT_order[l]-1)&MASK(N_out_0))<<N_OT_0;
OTx = ((OT_order[l]-1)>>N_out_0)<<N_OT_1;

a0
al

=i+ OTx;
=]+ OTy;

index = (a0 - O WIDTH 0)*(a0 - O WIDTH 0)

+ (al - O WIDTH 1)*(al- O WIDTH 1I);

index_int = index >>LUT_STEP_ _BITWIDTH_ 0;

if(index_int > LUT_WIDTH_ 0 - 2){
##pregma unroll z

for(z=0;z2<N_PIXEL;z++)
ADD_REQ[z]=0xFFFFFFFF;

Telse{

pl =LUT _O[index_ int];

p2 =LUT_O[index int +1];

dy = p2-pl;

dx = (index)&MASK(PREC);

p=((dx*dy)>>(LUT STEP BITWIDTH 1+PREC))+pl;

x = p*(ad - (O WIDTH 0>>1))
+ (I_WIDTH 0>>1)<<PREC;
y =p(al - (O WIDTH 1>>1))
+ (I_WIDTH_1>>1)<<PREC;

if(x <I_ WIDTH 0&&y <1 WIDTH 1){
index_int = p >>LUT_STEP BITWIDTH 1;
pl =LUT_ 1[index_int]; - -
p2 =LUT_1[index_int +1];
dy = p2-pl;

dx = (index)&MASK(PREC);

C=((dx*dy)>>(LUT_STEP_BITWIDTH _1+PREC))+pl;

C_1=C_>>PREC;
Cc 2=C_1+1;

x1 = (x >> C_1) >> PREC;

yl =(y >>C_1) >> PREC;

if(C_1==1){ x14+=I WIDTH 0;
yl+=I WIDTH 1; - -

dx = (x>>C_1)&MASK(PREC); x

- x >> PREC;
dy = (y>>C_1)&MASK(PREC); y

y >> PREC;

DX[0] = (dx<<16)|dy;

ADD_REQ[0] = (x1<<16)|y1;
ADD_REQI1] = ((x14+1)<<16)|y1;
ADD_ REQ[2] = (x1<<16)|(y1+1);
ADD_REQ3] = ((x1+1)<<16)|(y1+1);

x1 = (x >> C_2) >> PREC;
yl = (y >> C_2) >> PREC;
if(C_2==1){
xl+=I WIDTH O0;
yl4+=I_ WIDTH 1;
telse{ - -
x1+=I WIDTH 0+I WIDTH 0>>1;
yl4+=I_WIDTH 1+I WIDTH 1>>1;

}

dx = (x>>C_2)&MASK(PREC); x

- x >> PREC;
dy = (y>>C_2)&MASK(PREC); y

=y >> PREC;
DXJ[1] = (dx<<16)|dy;
ADD_REQ[4] = (x1<<16)|yl;
ADD_REQ[5] = ((x14+1)<<16)|y1;
ADD_ REQ[6] = (x1<<16)|(y1+41);
ADD_ REQ[7] = ((x14+1)<<16)|(y1+1);
DX[2]=C&MASK(PREC);

Telse{

#pregma unroll z

}
i

for(z=0;2<N_ PIXEL;z+4+)
ADD_REQ|z]=0xFFFFFFFF;
}

void CALC(int i, int j, int 1, int *DX,
int *DATA, int *out ADD, int *out DATA){
.... declarations - -
OTy = ((OT order[l]-1)&MASK(N out 0))<<N OT O0;
OTx = ((OT _order[l]-1)>>N_out_0)<<N_OT 1;

dx[0][1] = DX [0] &MASK(16);
dx[1][1] = DX [1] &MASK(16);
dx[0][0] = (DX [0]>> 16) &MASK(16);
dx[1][0] = (DX [1]>> 16) &MASK(16);

vl = Interpol(dx[0][0], dx[0][1], DATA[O],
DATA[1], DATA[2], DATA[3]);
v2 = Interpol(dx[1][0], d[1][1], DATA[4],

DATA[5], DATA[6], DATA[7]);

*out_DATA =(1 -DX[2])vl +DX[2]*v2;
*out_ ADD = ((i+0Tx)<<16)|(j+oTy); }

int Interpol(int dx, int dy, int a, int b, int ¢, int d){
val = (1-dx)*(1l-dy)*a+dx*(1-dy)*b+(1-dx)*dy*c+dx*dy*d;
}

Figure 10.3: Pyramidal TPU code. All the macros and global variables, shared between the user-

defined and MEXP generated code are in bold.

180

10. THE PYRAMIDAL LOG SAMPLING

TP

™

P

T T T T T T ¥ T T
4104 1 4104 1 a0tk + 0 * 1
+*t+ *
1- +.
+
3104t . 310t :1' + 1 3.104_i e]
ot ol
. 2 = =
2104+ g 2104t 1 2104 9
+ TP TP + TP
1104 A 1104 = A 1104+ o
< Pareto solutions & Pareto solutions < Pareto solutions
2.0104 1.2110° 24108 2.0104 1.210% 2.410° 2.0104 1.2110% 24108
M M Y
(a) L=30 and Np, = (b) L=60 and N, =1 (¢) L=100 and Np, =1
T T T T T T T T
4104} + TP 1 4100 + TP 1 a0t 4
< Pareto solutions & Pareto solutions i
+
+ + + +
3104+ 1 3104+ 1 3104 : 1
o o o : "||'+ + +
= i = h
+ + + e, +
2104} 1 2104 : ++ + + 4 2104 ﬁ_‘_ + o+ B
+ + Fuy
% + + + T
wdiind + o -
1104+ 4 1104k] 1404 + -
L L L L L L .) < Pareto solutions
2.010% 1.2110% 24105 2.410% 1.210% 2.410¢ 2.0104 1.2110% 24108
M M M
(d) L=30 and N, = 2 (e) L=60 and N, = 2 (f) L=100 and N, = 2
T T T L T T T T T
4100 + TP 1 410 ' 1 sr04p + TP E
& Pareto solutions <& Pareto solutions & Pareto solutions 4
+ + +
3104+ q 3104t E 3104t + 4
g
o o +
= + = L 3 at +,
+ + +
210%f 4 2104} + + i 2104k + + % 4
o 0 e+ b + apth + 3
+
+ + o+, + A
+h i 4+ T 1 +-;’-h'l- + 5
1104f + $. % . 4 110t ? m # E 1104f LA 1
. e By .) F T
2.0104 1.210° 2.410° 2104 1108 2105 2.0104 1.2108 2.410°
M M M

(g) L=30 and Np =4

(h) L=60 and N, = 4

(i) L=100 and N, =4

Figure 10.4: DSE for different external memory latency (L) and for different number of parallel

pipelines (Np); the input image is a SQCIF.

10.2. THE MEXP ANALYSIS ON THE PYRAMIDAL LOG SAMPLING

Measured TP for Np=1

Measured TP for Np=2

28K ﬁ 2BK
21K MK
14K 14K
7K 7K
O 533 O s.65 O s.33 O s.65
0K DK :
30 80 100 30 60 100
Latency Latency
(a) Np=1 (b) Np =2
Measured TP for Np=4 Measured TP for TPU without IM
28K 1.000K
21K
14K 100K
7K -~
1 T
0K ! 10K
30 80 100 30 80 100
Latency
£ 833 O 865 no IM
(c) Np=4 (d) No Internal Memory vs MEXP solutions

Loop activity for application 'SQCIF_PYR_MAPP_33_L_30_Np_1: online’ for tasks 0 .. 49

{avg. MITI: 515 cycles)

Loops|

Duration stalls

Avg Min Max Avg Min Max

Lo|| (LT T T A A AT T 504 18 662 137 0 140
L1 ILLCTELLLT TUCELLELELLELT [T 1 16 16 0 0 0
LA AREnOn e e oo anr e oreareartl 101 5326 0 0 0
L3 [TITTTTTITTT ERRNRENR NN RN RN NN RRAN]| 500 6 521 93 0 188
L4 TIITT [T [T 504 18 525 65 0 139
T T T T T T 1
0 5000 10000 15000 20000 25000 30000

Time [cycles] ->

(e) Simulation of the TPU verilog model

Loop activity for application 'SQCIF_PYR_MAPP_65 L_30 Np_1: online’ for tasks 0 .. 49

{avg. MITI: 517 cycles)

Duration stalls

Loops| Avg Min Max Avg Min Max
Lo|| CO T T T T T T O AT A AT 506 18 752 225 0 230
CAEELLCEET PR LT LR LT 18 18 18 0 0 0
L2[00InrnLappoeuapoonoonoroogopaniaaaroenenroreatl 147 5308 0 0 0
L3 | [[TITIT] T 500 6 521 93 0 188
La4|||[LLLIITIIT [T [INRRRRINNNRENENNN 504 18 525 65 0 139

i T T T T T 1
0 5000 10000 15000 20000 25000 30000

Time [cycles] ->

(f) Simulation of the TPU verilog model

Figure 10.5: Measured temporal performance for different external memory latency (L) and for
different number of parallel pipelines (N},); the input image is a SQCIF.

182

10. THE PYRAMIDAL LOG SAMPLING

10.2.2 VGA input image

This paragraph describes the results of the MEXP exploration for a VGA input image
with 1/0 tile sizes of 1024 an 512. The design space contains 630 possible solutions
analyzed for 3 values of external memory latency.

Figure 10.6 gives the scatter representation of the MEXP explorations. From this
figure we can infer that the temporal performance of the solutions does not vary with the
increasing latency and is improved by the parallelism. In fact the TP of the solutions is
around 8 x 10° for N, =1, around 4 * 10° for N, =2 and around 2 * 10° for N, =4.

For a variable latency L = 30, 60,100 and a parallelism level N, = 1, we can distin-
guish three separate clouds of solutions whose temporal performance is around 9 * 105,
7% 10° and 6 % 10°. The temporal performance depends on the I/O tilings layout, in fact
the solutions in the cloud with the worse TP have an output tile layout which is the less
squared possible. For several solutions the area occupancy can became very high because
of the parallelism.

Table 10.5 compares the MEXP estimations on the area occupancy and the temporal
performance for two solutions (the pareto s.200 and the non-pareto s.150) with N, = 1.

sol. (IT,0OT) Area Est. TP (for Latency)
30 60 100
5.200 (16x32, 32x16) 161310 598337 598457 598617

s.150 (16x32, 64Xx16) 213900 615099 615339 615659

Table 10.5: Examples of explored solutions

The Temporal Performance of the two solutions does not vary with respect to the
latency variations, but s .200 has a better TP than s.150 and uses less internal memory.

From table 10.6, we can infer that:
e The MEXP SU varies between 8.22 and 127.81.
o The mean error of the MEXP estimations is 5.69%.

e The parallelism efficacy is always superior than 0.93 (except for the non pareto
solution and N, = 4).

From table 10.7 we can infer that:

e The maximum area overhead due to the MEXP optimizations is of 14.47 for the
non-pareto solution and of 12.3 for the pareto solution.

e The parallelism has a maximum area overhead (with respect to the solution with
a single pipeline) of 1.84 for N, = 2 and of 3.4 for N, = 4.

10.2. THE MEXP ANALYSIS ON THE PYRAMIDAL LOG SAMPLING 183
The results obtained after the HLS confirm that the pareto solution is faster and uses
less internal memory than the non pareto solution.
Figures 10.7(a), 10.7(b) and 10.7(c) confirm that the temporal performance of
the solutions are invariant with the increasing latency. Figure 10.7(d) confirms that the
speed up due to the MEXP optimization can be up to 127.81. Figures 10.7(e) and 10.7(f)
confirm that, for both the pareto and the non-pareto solutions, the ratio of the time to
pre-fetch with respect to the time to compute is inferior than 1. But the pareto solution
is faster than the non-pareto solution. In fact the pareto solution identifies 4 output tiles,
on the corners of the output image, whose corresponding input data requests are invalid
and thus can be eliminated.
1105|ﬂ T T T T 1-106|ﬂ T T T T 1-106‘“ T T T T
8105 . 1 8105 Lo+ R 810° -"H’ R
+ o+
5»105w+ *w . 6'105w+ 4 B e‘1o5w E
2 E 2
4108 . 4105 q 4105+ E
210°r + TP 1 210°r + TP 1 210°r + TP 1
)) ‘<> Parello solutions)) .0 Paret? solutions)) ‘0 Paret‘osolulions
0 2108 4108 6108 8106 1107 0 2108 4108 6106 8106 1107 0 2108 4108 6108 8108 1107
M M M
(a) L=30 and N, =1 (b) L=60 and Np =1 (c) L=100 and N, =1
1-108 - - - T 1108 T T T T 1108 T T T T
8105k | 8105 1 8105}]
6105 g
o 6105F 1a o 6105F 4
" prep " 4.105_""#” . 1" -
41051 E P + 4105 + 5+ 4+ 4 q
i +
e + pal] -
2105| + TP | + TP 21051 + TP]
)) ‘O ParetP solutions)) Io F'arel? solutions)) Io Paret? solutions
0 2108 4108 6108 8108 11(0 2108 4108 6108 8108 11(0 2108 4108 6108 8108 1107
M M M
(d) L=30 and N, =2 (e) L=60 and N, = 2 (f) L=100 and N, =2
1-108 - - - T 1108 T T T T 1108 T T T T
+ TP + TP + TP
< Pareto solutions < Pareto solutions
81051 R 8105 4 8105+ R
o 610%F 1o 610°F 1o 610° g
[F =
4105 E 41081 4 4108 R
+. & % # ++“I- +
+ +
2108} w+3* M + 2105 w«-}ﬂ- L + 2108 Wﬁ&;ﬂ' - * *
0 2,1‘05 4,1‘05 6 1‘06 8 1‘06 11(0 2-1lo6 4-1|06 s-1|06 B-1I05 11(0 2 1|05 4 1|05 6 1|05 8 1|05 1107
M M M

(g) L=30 and Np =4

(h) L=60 and N, =4

(i) L=100 and N, =4

Figure 10.6: DSE for different external memory latency (L) and for different number of parallel
pipelines (Np); the input image is a VGA.

184 10. THE PYRAMIDAL LOG SAMPLING

Measured TP NO IM (cycles)

30 5068865
Latency 60 11980855
100 21196855

Est. TP (cycles) Meas. TP (cycles) error (%) MEXP SU Parall. SU Parall. E
5.150
30 615099 616673 -0.25 8.22
Latency for 60 615339 616673 -0.21 194
Np =1 100 615659 616673 -0.45 34.27
30 295622 315552 -6.31 16.06 1.95 0.97
Latency 60 295862 315552 -6.23 37.97 1.95 0.97
for Np =2 100 296182 315552 -6.13 67.17 1.95 0.97
30 140245 163689 -14.32 30.92 3.76 0.94
Latency 60 140245 163689 -14.32 73.19 3.76 0.94
for Np =4 100 140565 174289 -19.34 121.61 3.54 0.88
5.200
30 598337 600882 -0.42 8.43
Latency for 60 598457 600882 -04 19.94
Np =1 100 598617 600882 1-0.6 35.2
30 299333 301345 -0.66 15.77 1.87 0.93
Latency 60 299353 301345 -0.63 37.28 1.87 0.93
for Np =2 100 299613 301359 -0.57 65.96 1.87 0.93
30 143829 158435 -9.21 31.99 3.79 0.94
Latency 60 143829 158435 -9.21 75.62 3.79 0.94
for Np =4 100 144130 165835 -13 127.81 3.63 0.9
mean value 5.9
max value 127.81

Table 10.6: Estimated and measured Temporal Performance (TP) for a VGA input image.

NO IM

cost - mm?2

total (combi, seq)
0,07 (0,06 - 0,01)

Np cost - gates MEXP AO Parall. AO
(aX) (nX)
total (combi, seq) total (combi, seq) total (combi, seq)
s.150
1 0.3(0.08-0.23) 4.24 (1.44 - 16.4)

2 058 (0.13-0.45) 7.8 (2.19-32.15) 1.84 (1.52 - 1.96)
4 1.08(0.24-0.84) 14.47 (5.29 - 60) 3.4 (2.7 - 3.66)
5.200

1 T027(008-0.19) 3.6 (1.42-13.2)
2 0.8 (0.13 - 0.35) 6.4 (2 - 25.6) 177 (144 - 1.93)
4 0.92 (0.23 - 0.69) 12.3 (3.8 - 49.5) 3.4 (2.67 - 3.74)

Table 10.7: Measured cost of the TPU after the RTL generation.

10.2. THE MEXP ANALYSIS ON THE PYRAMIDAL LOG SAMPLING

185

Measured TP for Np=1

620K ge————Ce———80

465K
310K
156K
O s.150 O s.200
oK
30 60 100
Latency
(a) Np =1
Measured TP for Np=4
620K
465K
310K
155K (m— < .
O s5.150 O 8.200
oK
30 60 100
Latency
(c) Np=4

Measured TP for Np=2
620K

465K

3K e —l

156K
O s5.150 O 8.200
oK
30 60 100
Latency
(b) Np =2
Measured TP for TPU without IM
100.000K
10.000K
1.000K i .
“
100K
10K
30 60 100
O s.150 < s.200 no IM

(d) No Internal Memory vs MEXP solutions

Loop activity for application 'VGA_PYR_MAPP_150_L_30_Np_1: online’ for tasks 0 .. 76

(avg. MITI: 8006 cycles)

Loops

Lo OO AT AT
S
o A AR
L3 (T O AT AT T A O A T T T AT
L4 [T IO O O I I T O O I O I O OO IO

Duration stalls
Avg Min Max Avg Min Max
7995 18 8660 452 0 458

0 100000 200000 300000 400000 500000 600000 700000

Time [cycles] ->

(e) Simulation of the TPU verilog model

Loop activity for application'VGA_PYR_MAPP_200_L 30 Np_1: online’ fortasks 0 .. 147

Figure 10.7: Estimated temporal performance for different external memory latency (L) and for

(avg. MITI: 4060 cycles)

Loops|

e 00 O 0 A AR
LA 00000 00 AR A
200 00O AT A
00 O A A A AR

L) [e O

24 24 24 0 0 0
372 5 708 0 0 0
7988 6 8201 147 0 296
7992 18 8205 106 0 220
1
Duration stalls

Avg Min Max Avg Min Max
4052 18 4295 187 D 189

20 20 20 0 0
224 5 580 0 0
4049 & 4106 291 583

0
0
0
4053 18 4109 202 0 422

0 100000 200000 300000 400000 500000 600000 700000

Time [cycles] -=

(f) Simulation of the TPU verilog model

different number of parallel pipelines (N},); the input image is a VGA.

186

10. THE PYRAMIDAL LOG SAMPLING

10.2.3 HDTYV input image

This paragraph describes the results of the MEXP exploration for a HDTV input image
with an input tile size of 2048 and an output tile size of 1024. The design space contains
216 possible solutions, analyzed for 3 values of external memory latency.

Figure 10.8 gives the scatter representation of the MEXP explorations.
As for the explorations on a VGA input image, the temporal performance of the
solution does not depends on the latency variations and the parallelism is efficient.

Table 10.8 compares the MEXP estimations on the area occupancy and the temporal
performance for three solutions with N, = 1: two solutions are pareto (s.44 and s.55)
and the other is non-pareto (s.45) .

Concerning the pareto solutions, one of them is pareto with respect to the temporal
performance (s.44) and the other is pareto with respect to the area occupancy (s.55).

sol. (IT,0T) Area Est. TP (for Latency)

30 60 100
5.44 (64x32, 64x16) 406716 4178816 4178936 4179096
5.55 (32x64, 8x128) 342610 4883041 4883131 4883251

s.45 (64x32, 32x32) 505098 4178819 4178936 4179096

Table 10.8: Examples of solutions from the analyzed space

The non pareto solution has a worse temporal performance and uses more internal
memory than the two other solutions.
From table 10.9, we can infer that:

e The speed up due to the MEXP optimizations variates between 6.97 and 134.12.
e The mean error of the MEXP estimations is 1.2%.

e The parallelism efficacy is always superior than 0.98 and is not reduced by the
increase of the external memory latency.

From table 10.10 we can infer that:

e The maximum area overhead due to the MEXP optimizations is of 21.9.

e The parallelism has a maximum area overhead of 1.71 for IV, = 2 and of 3.1 for
N,=4

Figures 10.9(e) and 10.9(f) confirm that, for both the pareto solutions, the average
length of the pre-fetching is shorter than the average length of the other loops.

The differences between the temporal performance of the two solutions is due to
their output tile layouts. In fact, the minimum temporal performance® to execute the

PThis temporal performance corresponds to the case when the whole input image already is in an
internal memory and each input pixel is accessible in a clock cycle.

10.2. THE MEXP ANALYSIS ON THE PYRAMIDAL LOG SAMPLING

187

algorithm is of 960*540*8=4147200 cycles (where 960*540 is the output image size and
8 is the number of input needed per output tiles). For the solution s.55, the output tile
layout is so that the amount of computations includes some useless computations which

are not eliminated.

P T T T F— T
+ + + B
+4+ 4+ e
4.0108 4 4.010°8 4 40108 R
o o o
= = =
2.0108 4 20108 4 20108 1
+ TP + TP + TP
& Pareto solutions < Pareto solutions < Pareto solutions
0 1107 2107 3-1(0 1107 2107 31(0 1107 2107 3107
M M M
(a) L=30 and Np =1 (b) L=60 and N, =1 (¢) L=100 and N, =1
T T T T T T
+ TP + TP + TP
< Pareto solutions & Pareto solutions < Pareto solutions
4.01001 4 40108} 4 40108} 1
o o o
= = = +
+ ¥ +
&1 o 4 F A
PR o+ o+
2.0108 4 20108 4 20108 E
\ \ L L L \
0 1107 2107 31(0 1107 2107 31(0 1107 2107 3107
M M M
(d) L=30 and Np =2 (e) L=60 and N, =2 (f) L=100 and Np =2
+ TP + TP + TP
& Pareto solutions & Pareto solutions < Pareto solutions
4108 g 4.010%- 4 4.0108- E
o o o
= = =
+
2108 & 1 201081 + o, 1 20108 + B
L ot + + *r,t * t.; + + *
m&‘h e - P I + fatatl o *
0 1107 2107 3107 0 1107 2107 31(0 1107 2107 3107
M M

M

(g) L=30 and Np =4

(h) L=60 and N, = 4

(i) L=100 and N, = 4

Figure 10.8: DSE for different external memory latency (L) and for different number of parallel
pipelines (Np); the input image is a HDTV.

188

10. THE PYRAMIDAL LOG SAMPLING

Measured TP

NO IM (cycles)

30 3421439
Latency 60 8087435
100 143078435
Est. TP (cycles) Meas. TP (cycles) error (%) MEXP SU Parall. SU Parall. E
s.44
30 4178816 4196116 -0.41 8.1
Latency for 60 4178936 4196116 -0.44 19.3
Np=1 100 4179096 4196116 -0.4 34
30 2089860 2105650 -0.7 16.2 1.99 0.99
Latency 60 2089980 2105650 -0.7 38.4 1.99 0.99
for Np =2 100 2090140 2105650 -0.75 67.9 1.99 0.99
30 1033102 1066750 -3.15 32 3.93 0.98
Latency 60 1033222 1066750 -3.14 75.8 3.93 0.98
for Np =4 100 1033382 1066750 -3.12 134.12 3.93 0.98
5.55
30 4883041 4902692 -0.4 6.97
Latency for 60 4883131 4902692 -0.39 16.5
Np =1 100 4883251 4902692 -0.39 29.18
30 2441829 2459153 -0.7 13.9 1.99 0.99
Latency 60 2441919 2459153 -0.7 32.88 1.99 0.99
for Np =2 100 2442039 2459153 -0.7 58.18 1.99 0.99
30 1221242 1245064 -1.91 4.2 27.5 0.98
Latency 60 1221332 1245064 -1.9 69.9 3.93 0.98
for Np =4 100 1221452 1245064 -1.89 114.9 3.93 0.98
mean value 1.2
max value 134.12

Table 10.9: Estimated and measured Temporal Performance (TP) for a HDTV input image

NO IM

cost - mm?2

total (combi, seq)
0,07 (0,05 - 0,02)

Np cost - mm? MEXP AO Parall. AO
(nX) (nX)
total (combi, seq) total (combi, seq) total (combi, seq)
s.44
1 7 0.5 (0.00- 0.41) 6.0 (1.6 - 24.9)

2 0.86(0.13-0.73) 11.9 (2.23-44.3) 1.71 (1.44 - 1.77)
4 157 (0.22-1.35) 21.9 (4- 81.5) 3.1 (2.59 - 3.26)
5.55

1 043 (0.085 - 0.34) 6 (1.54 - 21)
2 0.8 (0.126 - 0.68) 11.2 (2.28 - 40.9) 1.7 (1.48 - 1.78)
4 1.53(0.22-1.31) 21.27 (4 - 78.8) 3.1 (2.6 - 2.81)

Table 10.10: Measured cost of the TPU after the RTL generation.

10.2. THE MEXP ANALYSIS ON THE PYRAMIDAL LOG SAMPLING 189

Measured TP for Np=1 Measured TP for Np=2
5.000K & 5.000K
®
3.750K 3.750K
2.500K 2.500K O
< : 3
1.250K 1.950K
O s.44 O 855 o s.44 O s.55
0K N
30 80 100 oK a0 60 100
Latency Latency
(a) Np =1 (b) Np =2
Measured TP for Np=4 Measured TP for TPU without IM
5.000K 1.000.000K
3.750K
100.000K
2.500K
10.000K
1.250K
oK 1.000K
30 a0 100 30 60 100
Latency
O s.44 O 855 no 1M
(¢) Np =4

(d) No Internal Memory vs MEXP solutions

Loop activity for application "HDTV_PYR_MAPP_55_L_30_Np_1: online’ for tasks 0 .. 597
{avg. MITI: 81989 cycles)
Duration stalls
Loops| Avg Min Max Avg Min Max
L A 274 22 g202 o0 o
LA, 26 26 16 [
L O, 422+ 5 1708 o0 o
L3 R RO R, 8122 & szo1 1180 0 zz84
L O R YRR~ 8280 12 8208 1785 o 3578
T T T T T 1
0 1e+06 2e+06 3e+06 4e+06 5e+06

Time [cycles] -

(e) Simulation of the TPU verilog model

Loop activity for application "HDTV_PYR_MAPP_44_L_30_Np_1: online’ for tasks 0 .. 511
(avg. MITI: 8196 cycles)

Duraticn stalls

Loops| Avg Min Max Avg Min Max
LO| £170 1% §202 LI 0
L1 18 18 18 o0]
L2 571 5 2052 o0 0

L3
L4

8168 6 8201 101g 0 2040
8176 1% gz08 1527 0 3060

T T T 1
1e+06 2e+06 3e+06 4e+06 5e+06
Time [cycles] -

[<)

(f) Simulation of the TPU verilog model

Figure 10.9: Estimated temporal performance for different external memory latency (L) and for
different number of parallel pipelines (NN,); the input image is a HDTV.

190

10. THE PYRAMIDAL LOG SAMPLING

10.3 Conclusion

In this chapter we have presented the explorations performed for the pyramidal LOG
sampling. We have explored hundreds of solutions for three input image sizes (SQCIF,
VGA and HDTV). From the results we can see that the MEXP optimizations are more
efficient for a Pyramidal LOG sampling than for a simple LOG sampling. In fact, the
pyramidal LOG sampling has a higher number of memory access, however the area
overhead is lower for the pyramidal LOG sampling because the analyzed I/0O tile sizes
are more adapted to the application.

The speed up of the temporal performance due to the MEXP optimizations can be
up to 134.12 for a corresponding area overhead of 21.9 (results observed for the HDTV
input image with a parallelism level N, = 4). The highest speed up observed, without
considering the parallelism is up to 34 for a corresponding area overhead of 6.9 (for a
HDTYV input image).

The parallelism is not efficient in the case of a SQCIF input image and is very efficient
for both the VGA and the HDTV input image (E>0.9).

191

Chapter 11

The Polar Transform

The polar transform is a projection of the input image which changes the coordinates of
the input pixels from the Cartesian to the polar ones. The corresponding formulae are:

x = p*cos(0)
y = p*sin(f) (11.1)
Where z, y, p, 0 are as shown in figure 11.1.

y

Figure 11.1: Example of a polar transform

This transformation emulates the projection of a scene on the visual cortex. And
thanks to it, it is possible to easily code a rotations of the objects in the visual scene as
a translation.

Figure 11.2 gives an example of a polar transform input and output image. In our
hardware implementation the formula 11.1 are implemented through two LUTs whose
sizes are fixed at the value ©,,,.. In these experiments, we have chosen ©,,,, = 128.

11.1 The TPU synthesizable C-model of the Polar trans-
form

Figure 11.3 gives the code of the REQ and CALC functions for the Polar transform.

192

11. THE POLAR TRANSFORM

mézzogiorno

(a) input (b) output

Figure 11.2: Example of an input and output images for a Polar transform

In the code, LUT realizes the sin(6) and LUT) realizes cos(0).

From the output tile coordinates (OT, and OT, in the code), REQ computes the
absolute coordinates of the desired pixel in the output image. By accessing the LUTy
and LUT), REQ computes the input pixel coordinates (x and y in the code).

As these coordinates are not integer, REQ requests the coordinates of the input pixels
whose coordinates are the superior and inferior integer of x and y.

In total REQ sends 4 requests to FETCH, which responds by sending the 4 corre-
sponding data to CALC.

CALC receives the 4 data, performs a bilinear interpolations and sends out the com-
puted output datum and the coordinates in the output image, where it has to be stored.

11.2 The MEXP analysis on the Polar transform

We have run the MEXP analysis for three input squared images: 128 x 128, 300 x 300
and 600 x 600. As O,,4, = 128, the output image sizes I, corresponding to the analyzed

: width
inputs, are =5— X 128.

The following table gives, for each analyzed input image size, the size of the produced
output image (Io) , the size of the analyzed spaces (S’ and S©) which are power of two
and contain respectively the the input and output used images, the volumes of the input
and output tiles Vi and Vor, which will produce several tiling layouts, and the number
N of analyzed couples of 1/O tilings.

Iy Io st s© Vir Vor N
128 x 128 64 x 128 128 x 128 64 x 128 128, 64,32 128,64,32 132
300 x 300 150 x 128 512 x 512 256 x 128 512,256 512,256 156
600 x 600 300 x 128 1024 x 1024 512 x 128 1024,512 1024,512 210

Table 11.1: Experiments run for different input image sizes

11.2. THE MEXP ANALYSIS ON THE POLAR TRANSFORM

193

11.2.1 128 x 128 input image

In this paragraph we will describe the results of the MEXP exploration for a 128 x 128
input image with [/O tile sizes of 128, 64 and 32. The design space contains 396 possible
solutions, analyzed for 3 values of external memory latency.

Figure 11.4 gives the scatter representation of the MEXP explorations. The tem-
poral performance of the solutions varies with the increasing latency. The parallelism
for N, = 4 is not efficient and for IV, = 2 is efficient only for the pareto solutions. Some
pareto solutions are not selected because they hit the user constraint on the maximum
of internal memory.

Table 11.2 gives two pareto solutions (s.38 and s.96) of the space and a non-pareto
solution (s.86); the pareto solution .38 has a better temporal performance and the
solution 5.96 uses less internal memory than s.86. The non-pareto solution s.86 has a
trivial layout, while the pareto solutions have a non-trivial layout.

sol. (IT,0T) Area Est. TP (for Latency)
30 60 100

5.38 (8x16, 16x4) 14016 32848 34783 41500

5.96 (8x8, 32x1) 9818 33713 40073 56393

5.86 (8x8, 8x8) 14480 32980 38460 54540

Table 11.2: Examples of solutions n the analyzed space

From table 11.3, we can infer that:
e The speed up due to the MEXP optimizations variates between 5.9 and 31.7.
e The mean error of the MEXP estimations is 8.6%.

e The parallelism efficacy is around 0.7 for N, = 2 and inferior than 0.5 for N, = 4.
Thus for IV, = 4 the parallelism is not efficient.

From table 11.4 we can infer that:
e The maximum area overhead due to the MEXP optimizations is of 7.68.

e The parallelism has a maximum area overhead of 1.6 for IV, = 2 and of 2.9 for
N, =4.

Figures 11.5(a), 11.5(b) and 11.5(c) show that, for N, = {1 2}, the ratio of the
time to prefetch with respect to the time to compute is around 1. For N, = 4, this ratio
is higher than 1. In fact, figures 11.5(e) and 11.5(f) show that, for both the solutions
and N, = 1, the average time to compute is preponderant with respect to the average
time to pre-fetch. But, for solution s.96, the maximum time to pre-fetch is higher than
the maximum time to compute. Figure 11.5(d) confirms that the speed up due to the
MEXP optimizations is up to 31.7.

194 11. THE POLAR TRANSFORM

Measured TP NO IM (cycles)

30 213028
Latency 60 458788
100 766468

Est. TP (cycles) Meas. TP (cycles) error (%) MEXP SU Parall. SU Parall. E

5.38

30 32848 34324 -4.3 6.2

Latency for 60 34783 34582 0.58 13.26

Np =1 100 41500 37082 11.9 21.2
30 16704 17655 -5.38 12.06 1.94 0.97
Latency 60 20288 19402 -4.56 23.64 1.78 0.89
for Np =2 100 28594 24659 15.9 31.89 1.5 0.75
30 10468 11688 -10.3 18.26 2.94 0.73
Latency 60 20288 17097 -5.3 26.8 2 0.5
for Np =4 100 28594 24811 -1.7 31.7 1.5 0.37

5.96

30 33713 36097 -6.6 5.9

Latency for 60 40073 39214 2.1 11.7

Np =1 100 56393 45894 22.8 17.13
30 18174 36097 -8.5 10.7 1.81 0.9
Latency 60 26957 39214 4.1 17.7 1.51 0.75
for Np =2 100 41557 45894 16.11 21.9 1.28 0.64
30 13055 15872 -17.74 13.42 2.27 0.56
Latency 60 22312 25522 -12.6 17.98 1.53 0.38
for N, =4 100 34872 36202 -3.7 21.72 1.26 0.31

mean value 8.58
max value 31.7

Table 11.3: Estimated and measured Temporal Performance (TP) for an input image containing
1282128 pixels

NO IM

cost - mm?2

total (combi, seq)
0,028 (0,02 - 0,008)

Np cost - mm? MEXP AO Parall. AO
(nX) (nX)
total (combi, seq) total (combi, seq) total (combi, seq)
.38
1 ~0.075 (0.04-0.035) 2.68 (2.11 - 4.9)

2 0.12 (0.07 - 0.05) 4.3 (2.1-7.2) 1.6 (1.52 - 1.7)
4 0.22 (0.12 - 0.1) 777 (3.7 - 13.4) 2.9 (2.68 - 3.2)
5.96

1 0.07 (0.04 - 0.03) 2.48 (2.03 - 3.68)
2 0.11(0.06 - 0.05) 42 (32-6.8) 1.68 (1.58 - 1.84)

4 0.2(0.11 - 0.084) 7.1 (5.6 - 10.98) 2.86 (2.78 - 2.97)

Table 11.4: Measured cost of the TPU after the RTL generation.

11.2. THE MEXP ANALYSIS ON THE POLAR TRANSFORM 195

#define MASK(L)(1<<L)-1

#define N_PIXEL 4

void REQ(int i, int j , int np , int *DX, int *ADD REQ){
.... declarations -

OTy = ((OT order[np]-1)&MASK(N out 0))<<N OT O0;
OTx = ((OT order[np]-1)>>N out 0)<<N OT 1;

a0
al

=i+ OTx;

=] + OTy;

x=al*LUT_0[al];

y=al*LUT_1[al];
dx=x&MASK(PRECQC);
dy=y&MASK(PREC);
xl=x>>PREC +I WIDTH 0>>1;
yl=y>>PREC +I_WIDTH_0>>1;

if(x1 <1I_WIDTH_0 && yl <1_WIDTH_1){

DXJ[0] = (dx<<16)|dy;

ADD_REQ[0] = (x1<<16)|y1;
ADD_REQ[1] = ((x1+1)<<16)y1;
ADD_REQ[2] = (x1<<16)|(y1+1);
ADD_REQ[3] = ((x1+1)<<16)|(y1+1);

Telse{
#pregma unroll z
for(z=0;z2<N _PIXEL;z++)
ADD_RED[z]=0xFFFFFFFF;
}
b
s

void CALC(int i, int j, int np, int *DX,
int ¥DATA, int *out ADD, int *out DATA){

.... declarations - -
OTy = ((OT order[np]-1)&MASK(N out 0))<<N OT O0;
OTx = ((OT _order[np]-1)>>N_out_ 0)<<N_ OT '1;
dy = DX [0] &MASK(16); -~ -~
dx = (DX [0]>> 16) &MASK(16);
*out DATA = Interpol(dx, dy, DATAJ0],

" DATAJ1], DATA[2], DATA[3]);
*out_ ADD = ((i+0Tx)<<16)|(j+0oTy); }

int Interpol(int dx, int dy, int a, int b, int ¢, int d){
val = (1-dx)*(1-dy)*a+dx*(1-dy)*b+(1-dx)*dy*c+dx*dy*d;
s

Figure 11.3: Polar transform TPU code. All the macros and global variables, shared between the

user-defined and MEXP generated code are in bold.

196

11. THE POLAR TRANSFORM

105+ 4 105+ 4 105+ 4
1-10 110 1105 4
+
. .
8104 1 810t 4 8-104—& 1
B B |4 3
o+ 35
&
+
410 -%*H 1 4-104%1*_* 1 4104 g&::n 1
+ TP + TP + TP
& Pareto solutions < Pareto solutions < Pareto solutions
0 1108 2105 3105 0 110° 2105 3105 0 110% 2105 310%
M M M
(a) L=30 and Np, =1 (b) L=60 and N, =1 (¢) L=100 and N, =1
T T T T T T
11051 + TP 41 115 + TP 4 1105} + TP 1
< Pareto solutions < Pareto solutions + & Pareto solutions
+
+
b
8104 4 s&10tt g 8104 ++ *:_-* g
E E N N
+ Iy +
it 4 e f;
10tk | 10tk by | 10tk # + |
410° 410° ++ 410° + +
+3:*‘_ 8 . e 4 ¥
w + 4 &4 g N Sl
\ L . \ \ L
0 1108 210% 31(0 1108 2108 310°% 0 1105 210% 3108
M M M
(d) L=30 and N =2 (e) L=60 and N, =2 (f) L=100 and Np =2
1105 + TP 1 1105F + TP 4 11051 + TP 1
< Pareto solutions < Pareto solutions < Pareto solutions
+
+ Y
8104 4 8104t R 8104 + 1
o o o ++ n ++ +
[[+, L f +
+ 1* + T
b oyt + P
4104k . 1 410t o+ A 1 4100 Fa e .
+ Ty + g F f"‘ ‘H‘I-p"’ +
1 ¥ + f* *'t ,,,,:+ ‘*':_-ﬁ’ "‘”‘++ + 4
&. Bt w4 o . # _ + . ‘
0 110% 2105 31 0 110% 2105 3105 0 1108 2105 310°
M M M

(g) L=30 and N, =4

(h) L=60 and N, = 4

(i) L=100 and N, =4

Figure 11.4: DSE for different external memory latency (L) and for different number of parallel
pipelines (Np); the input image is a 128 x 128.

11.2. THE MEXP ANALYSIS ON THE POLAR TRANSFORM

197

Measured TP for Np=2

Measured TP for Np=1 50K
38K
25K
13K
© .38 O 596
DK
30 60 100
30 €0 100 Latency
Latency
(a) Np=1 (b) Np =2
Measured TP for Np=4 Measured TP for TPU without IM
50K 1.000K
38K
25K 100K
13K
O 538 O 596
10K
o 30 80 100 30 a0 100
Latency
4 538 O 596 ne M
(¢c) Np =4 (d) No Internal Memory vs MEXP solutions

Loop activity for application 'SQCIF_POL_MAPP_38_L 30_Np_1: online’ for tasks 0 .. 129
(avg. MITI: 264 cycles)

Duration

Loops o ¥ 3 v Avg Min Max
LT A aai i - 2se - 2o sos
L1\IHIIIIIIIIH\HI\HHIHHHIH\HIIIIIIIIIHHH\\HHHHIIHHHIIIIIIIH\HIIHH\IHHH\HHIIIIIIIIHHHHHHIH 0 10 10
L2 NOODOON 10000000 ECAERED 00 RER00 OO DN D DA 0 IIIIIIHIHHHHIH 67 5 188

LR T AT Wﬂﬂﬂ AR RO \H[Wﬂﬂﬂ 257 6 261
L4\I\HTII]TH\H\HWHI HT\H]HIIH\HFHHH[HHII[]]HHHW ﬂ\ﬂ\ﬂ\ﬂ[llﬂﬂ\ﬂ\m [l 259 10 263

r
0 5000 10000 15000 20000 25000 30000 35000
Time [cycles] ->

(e) Simulation of the TPU verilog model

Loop activity for application 'SQCIF_POL_MAPP_96_L_30_Np_1: online’ for tasks 0 .. 257
(avg. MITI: 140 cycles)

Duration

Loops Avg Min Max
L A T N Asg: i4iEgy
L1 \I\I\IH\III\HHIIH\IHIHI\HI\I\IH\IHI\JH\l\I!UH\IHHIINHI\I\HI\!HI\HII\HIH!IIHHI\I\I\H.IIHI\HI\IH\HIHIHIH\I!IHJHIII\HIHI\HI\LH\.IIHIH\I\I!HH\IHHHI\HIIWHIUHHI\I\IMﬂHII!HUHI\I\HIH!HIH\I\I 12 12 12
L2 N\IHI\II\\W\INIH.II\HHI\IIHU\IHHHIIHIJ\!H]HIHI\IIUHIIIIH\HI\UWIIIIIHII\II\HI\II\II\IVIIIIHW]MI\IHI][IU\H]I\IIHIHHII N 46 5194

L3 e Mﬂmm\lﬂ\ﬂﬂﬂ[wmﬂﬂ[ﬂ ﬂﬂlﬂﬂlﬂ'ﬂ | 132 6133
Lt g O A III\HJW[M I H[Il 134 10 135

T T T T T 1
0 5000 10000 15000 20000 25000 30000 35000 40000
Time [cycles] ->

(f) Simulation of the TPU verilog model

Figure 11.5: Measured temporal performance for different external memory latency (L) and for

Stalls

Avg Min Max
46 0 47
[[[

[[[

0 0 0
63 0 128
Stalls

Avg Min Max
334 0 532
[[[

[[[

[[[
127 0 256

different number of parallel pipelines (IVp); the input image is a 128 x 128.

198

11. THE POLAR TRANSFORM

11.2.2 300 x 300 input image

This paragraph describes the results of the MEXP exploration for a input image of
300 x 300 pixels, with I/O tile sizes of 512 and 256. The design space contains 468
possible solutions, analyzed for 3 values of external memory latency.

Figure 11.6 gives the scatter representation of the MEXP explorations.
From this figure we can infer that:

e When N, = 1, the temporal performance of the solutions does not vary with the
increasing latency.

e The temporal performance is improved by the parallelism (especially for the pareto
solutions).

Table 11.5 compares with each other the MEXP estimations on the area occupancy and
the temporal performance for two pareto solutions (.68 and the 5.71) with N, = 1.

sol. (IT,0T) Area Est. TP (for Latency)
30 60 100
5.68 (32x16, 64x4) 77688 98528 98618 98936

s.71 (32x16, 8x32) 168932 78682 79312 80472

Table 11.5: Examples of explored solutions

The solution 5.68 is pareto with respect to the area occupancy and the solution s.71
is pareto with respect to the temporal performance.

From table 11.6, we can infer that:
e The speed up due to the MEXP optimizations variates between 5 and 40.9.
e The mean error of the MEXP estimations is 6.14%.

e The parallelism efficacy is around 0.9 except for N, = 4.

From table 11.7 we can infer that:

e The maximum area overhead due to the MEXP optimizations is of 30.48 for the
solution s.71 and of 21.9 for the solution s.68.

e The parallelism has a maximum area overhead of 1.9 for IV, = 2 and of 3.4 for
N, =4.

Figures 11.7(a), 11.7(b) and 11.7(c) confirm that the solution s.71 has better tem-
poral performance than the solution s.68. They also show that the temporal performance
of solution s.68 does not vary with the increasing latency and when N, = {1 2}. For

11.2. THE MEXP ANALYSIS ON THE POLAR TRANSFORM

199

Np

with respect to the time to compute is higher than 1.

Figurel1.7(d) shows that the speed up due to the MEXP optimization is up to 40.9.
Figures 11.7(e) and 11.7(f) confirm that, for both the solutions, N, = 1 and a latency
of 30 cycles, the average time to pre-fetch (loop Ls) is shorter than the average time to

= 4 and the external memory latency of 100 cycles, the ratio of the time to pre-fetch

compute.
2105 T T T T 2105 T T T T T T T T T T
+ TP + TP 2105 o ¥ + TP 1
ae F 4+ < Pareto solutions o i + < Pareto solutions ‘._#;.,,"' b < Pareto solutions
+,
1105 41 1105+ J + +
gt i i +
e ¥f ot . 4
N o ';:_ " N «;.- w * N 1100 g E
Fay T H A
T e0t: +F 1 F grotfopp it 1 F gt
5104 1
4104 . 4104+ 4
\ . \ . L L L L L L
0 5105 1108 1108 2108 2108 0 4105 8105 1108 2106 2106 2106 0 510% 1108 1108 2108 2108
M M M
(a) L=30 and N, =1 (b) L=60 and N, =1 (¢) L=100 and Np =1
210° T T T 2105 T T T T T T 210° T T T T
+ TP + TP + TP
< Pareto solutions < Pareto solutions
1105 4 1105F R 11051 R
+ +
+ +
+ +*
o o + + el o + + +
+ +
F g0t " 1" 810t +. 5 " % 3 E L ST +. 4 " . E
e et F + o ﬂ-&h * T+ W o #* CE e
+ra 4T * v He b #F A
L r* + ft T . I I < P
410 SR+ TF 1 410tf + ¥4+ 1 4104 ++ 1
0 410% 8105 1108 241 0 4105 8105 110 210% 210% 2108 0 5105 1108 1108 2108 2108
M M M
(d) L=30 and N, = 2 (e) L=60 and N, = 2 (f) L=100 and N = 2
2105 T T T T T T 2105 T T T T T T 2105 T T T T T T
+ TP + TP + TP
& Pareto solutions & Pareto solutions & Pareto solutions
11051 1 1105 R 1105 g
= & + * & + *
8104+ 1 8104f + + PR 4 8104k % + I 4
:.,,4'!' +$+.p + + + :4.11' +$+.p + +
+
+ + + +
+ . F + + + +
4100F P N s 4t a0t % +% b E RN +4 A _
I o + ¥
i & S . . . , kT A A A . , *F
0 4105 8105 110% 210% 2106 2106 0 4105 8105 110% 210% 210% 210 0 4105 8105 1108 2108 2106 2106
M M M

(g) L=30 and N, =4

(h) L=60 and N, =4

(i) L=100 and N, =4

Figure 11.6: DSE for different external memory latency (L) and for different number of parallel
pipelines (Np); the input image contains 300 x 300 pixels.

200 11. THE POLAR TRANSFORM

Measured TP NO IM (cycles)

30 499236
Latency 60 1075236
100 1843236

Est. TP (cycles) Meas. TP (cycles) error (%) MEXP SU Parall. SU Parall. E

5.68
30 98528 99831 -1.3 5

Latency for 60 98618 99831 -1.2 10.8

Np =1 100 98936 100631 -1.7 18.3
30 49379 50783 -2.8 9.8 1.97 0.98
Latency 60 49469 50783 -2.6 21.2 1.97 0.98
for Np =2 100 53947 54713 -1.4 33.7 1.84 0.92
30 25980 27884 -6.8 17.9 3.58 0.9
Latency 60 25980 27884 -6.8 38.6 3.58 0.9
for Np =4 100 41532 46565 -10.8 39.6 2.16 0.5

s.71

30 78682 80085 -1.8 6.2

Latency for 60 79312 80085 -1 13.4

Np =1 100 80472 83966 -4.2 22
30 39866 41934 -4.9 11.9 1.9 0.95
Latency 60 39866 41934 -4.9 25.6 1.9 0.95
for Np =2 100 44000 49328 -10.8 37.4 1.7 0.85
30 22158 25217 -12.1 19.8 3.2 0.8
Latency 60 22158 25217 -12.1 42.6 3.2 0.8
for N, =4 100 34344 45028 -23.7 40.9 1.9 0.5

mean value 6.16
max value 40.9

Table 11.6: Estimated and measured Temporal Performance (TP) for an input image containing
3002300 pixels.

NO IM

cost - mm?2

total (combi, seq)
0,03 (0,02 - 0,01)

Np cost - mm? MEXP AO Parall. AO
(1X) (nX)
total (combi, seq) total (combi, seq) total (combi, seq)
.68
1 ~0.22(0.04-0.78) 7.76(2.2 - 24.2)

[\

0.36 (0.07 - 0.29) 12.6 (3.3 - 40.3) 1.63 (1.55 - 1.66)
4 063(0.13-0.5) 219 (6.2-68.7) 2.83 (2.8 - 2.84)

s.71
1 0.27(0.05 - 0.22) 9.4 (2.5 -29.9)
2 0.49 (0.07 - 0.42) 17 (3.6 - 57) 1.81 (1.43 - 1.9)

4 0.87(0.13 - 0.74) 30.5 (5.8 - 103.3) 3.2 (2.35 - 3.45)

Table 11.7: Measured cost of the TPU after the RTL generation.

11.2. THE MEXP ANALYSIS ON THE POLAR TRANSFORM

201

Measured TP for Np=1

Measured TP for Np=2

110K oK
E
83K P — 83K
55K 5K : —=— ——
=
8K 28K
o 568 o s71 &S00 I
oK
0K
30 80 100 30 60 100
Latency Latency
(a) Np=1 (b) Np =2
Measured TP for Np=4 Measured TP for TPU without IM
S 10.000K
BoK 1.000K
55K
100K
28K
10K
UK 30 80 100
30 80 100
SIS O sE8 o 871 ne 1M
(¢) Np=4

Loop activity for application "VGA_PCL_MAPP_68_L_30_Np_1: online’ for tasks 0 .. 97
(avg. MITI: 1019 cycles)

Duration

Loops Avg Min Max
LO| [T T T 2020 20 2164
R R 14 14 14
e TR RN etE R BRI
Lo\ L T O T TN a00e & 202
L4y [T O O O T O T TITOTI 2020 20 1031

T T T T T T T T T T 1
0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000
Time [cycles] -=

(e) Simulation of the TPU verilog model

Loop activity for application 'VGA_POL_MAPP_71_L_30_Np_1:online’ for tasks 0 .. 77
(avg. MITI: 1027 cycles)

Duration

Loops| Avg Min Max
Lol | [T I T [T [T 1007 10 1194
LA T [T I 38 38 38
= T LR 191§ 1158
La)| [T [T I[[T [T 1002 & 1029
L4l [T I 1T T T 1004 10 1031

T T T T T T T T T 1
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time [cycles] ->

(f) Simulation of the TPU verilog model

Figure 11.7: Estimated temporal performance for different external memory latency (L) and for

stalls

Avg Min Max
132 0 124
0 0 0

0 0 0

0 0 0
47 0 96
Stalls

Avg Min Max
186 0 274
0 0 0

0 0 0

0 0 0
3 0 76

different number of parallel pipelines (INVp,); the input image is a VGA.

(d) No Internal Memory vs MEXP solutions

202

11. THE POLAR TRANSFORM

11.2.3 600 x 600 input image

This paragraph describes the results of the MEXP exploration for an input image con-
taining 600 x 600 pixels and with two input and output tile sizes of 1024 and 512. The
design space contains 630 possible solutions, analyzed for 3 values of external memory
latency.

Figure 11.8 gives the scatter representation of the MEXP explorations.

From this figure we can see that the Temporal Performance of the solutions does not
depends on the latency variations and that the parallelism is efficient.

Table 11.8 compares the MEXP estimations on the area occupancy and the temporal
performance for two pareto solutions: the s.197, which is pareto with respect to the area
occupancy, and the s.200, which is pareto with respect to the temporal performance. In
this table, IV, = 1.

sol. (IT,0OT) Area Est. TP (for Latency)
30 60 100

5.197 (16x32, 256x2) 150816 260556 262944 262944
5.200 (16x32, 32x16) 183320 162262 173082 173082

Table 11.8: Examples of solutions from the analyzed space

From table 11.9, we can infer that:
e The speed up due to the MEXP optimizations variates between 3.77 and 30.61.
e The mean error of the MEXP estimations is 13.78%.

e The parallelism efficacy is around 0.99, except for N, = 4.

From table 11.10 we can infer that:
e The maximum area overhead due to the MEXP optimizations is of 34.18.

e The parallelism has a maximum area overhead of 1.9 for IV, = 2 and of 3.7 for
N,=4

From figures 11.9(a), 11.9(b) and 11.9(c) we can see that:

e For solution s.197, the ratio of the time to-prefetch with respect to the time to
compute is inferior than 1 for NV, = 1 and N, = 2 and is higher 1 for N, = 4 and
a latency of 100 cycles.

e For solution s.200, the ratio of the time to-prefetch with respect to the time to
compute is inferior around 1 for N, = 1 and it is higher 1 for N, = {2 4} and a
latency of 100 cycles.

11.2. THE MEXP ANALYSIS ON THE POLAR TRANSFORM 203
Figures 11.9(e) and 11.9(f) confirm that the average length of the pre-fetching is shorter
than the average length of the other loops, for both solution, with N, = 1 and a latency
of 30 cycles. However the prefetching length is more important for solution s.200, which
explains the difference with respect to the other solution.
Figure 11.9(d) confirms that the temporal performance is increased of a factor 34.18
with respect to a solution without any internal memory.
5105 T T T T 5105 T T T T 510° T T T T
+ TP e F oL ®
41051 & Pareto solutions | 4105k 4 41051 i
Y + +++ 4 +++
3105} + * 4 3105+ HEE 4 R 31051 +HEE 4 g
& +1‘: [o i 4;"* * & L i -;* *
210° -ﬂf; b 4 2108 &*. ¥ 1 2108 ﬁ*’ ot i
1105 4 1105} % TP 4 1105+ + TP R
o)))) o)) .0 Paret? solutions 0) . ‘o Parek‘) solutions
0 2108 4108 6108 8106 11(0 2108 4108 6106 81068 1107 0 2108 4108 6106 8106 1107
M M M
(a) L=30 and N, =1 (b) L=60 and Np =1 (c) L=100 and N, =1
5105 T T T T 5105 T T T T 5105 T T T T
+ TP
24105} & Pareto solutions i 4105} ® : + i 4105} + i + i
+ +
3105 S 1 305} + 1 a0k + g
" E ty # ® T & & ‘3#+
2105+ ++ +f+ﬂ'1 1 21000, ¥ s’ S h * 4 2105 %"5_& +
% o, ¥y T ¥y T
5*»«’* S s * 5 +
110! 1 11051 R 4 1105 & TP «
o)))) o)) Io Paretlo solutions o)) Io Fareklj solutions
0 2108 4108 6108 810° 1107 0 2108 4108 6108 8108 1107 0 2108 4108 6108 8108 1107
M M M
(d) L=30 and N, = 2 (e) L=60 and N, = 2 (f) L=100 and N, =2
5105 T T T T T 5105 T T T T T 510° T T T T
+ TP + TP + 1P
24105} < Pareto solutions i 24105F < Pareto solutions] 2105 < Pareto solutigns + |
+ + + 4
3105 + + 3105 * + 3105 E
o + o + N LW
[= = Y 4+ +
21050 + ol PR {1 2105 """+$ "' 1 2105 " +-§+ Yy * E
4- *
e %{ +1“ " " 1 " ﬁ:‘h‘_ i - 1 11050 g :H' e ,
Oo 2105 4,105 6-106 81‘05 1v1'o7 1107 00 2-1lo6 4-1|06 s-1lo6 s-1|06 1-1'07 1107 0o 2,1'05 4-1lo6 61'05 81‘05 1-1'07 1107
M M M

(g) L=30 and N, =4

(h) L=60 and N, =4

(i) L=100 and N, =4

Figure 11.8: DSE for different external memory latency (L) and for different number of parallel
pipelines (Np).

204

11. THE POLAR TRANSFORM

Measured TP NO IM (cycles)

30 9984
Latency 60 2150415
100 3686415
Est. TP (cycles) Meas. TP (cycles) error (%) MEXP SU Parall. SU Parall. E
5.197
30 260556 264531 -1.5 3.8
Latency for 60 260556 264531 -1.5 8.1
Np =1 100 262944 266131 -1.2 13.9
30 131656 133661 -1.5 7.5 1.98 0.99
Latency 60 131656 133661 -1.5 16.1 1.98 0.99
for Np =2 100 134624 138538 -2.8 26.6 1.92 0.96
30 88571 70244 26.1 142 3.77 0.94
Latency 60 88571 70244 26.1 30.6 3.77 0.94
for Np =4 100 116131 125659 -7.6 29.3 2.12 0.53
5.200
30 162262 166097 -2.31 6
Latency for 60 162262 166097 -2.3 12.95
Np=1 100 173082 174771 -0.9 21.09
30 100911 85663 17.8 1.6 1.94 0.97
Latency 60 100911 85663 17.8 25.1 1.94 0.97
for Np =2 100 126238 130112 -2.98 28.3 1.34 0.67
30 91396 56631 61.39 17.63 2.93 0.73
Latency 60 91396 56631 61.39 37.97 2.93 0.73
for N, =4 100 120276 135675 -11.35 27.17 1.29 0.32
mean value 13.78
max value 30.6

Table 11.9: Estimated and measured Temporal Performance (TP) for an input image containing

6002600 pixels.

NO IM

cost - mm?2

total (combi, seq)
0,03 (0,02 - 0,01)

Ny cost - mm? MEXP AO Parall. AO
(nX) (nX)
total (combi, seq) total (combi, seq) total (combi, seq)
s.197
1~ 0.24 (0.05-0.19) 7.9 (2.22 - 24.8)

2 0.35 (0.07 - 0.27) 11.4 (3.27 - 35.4) 1.43(1.47 - 1.42)
4 0.64(0.132 - 0.52) 21 (5.27- 66.3) 2.65 (2.59 - 2.67)
5.200

1 0.29 (0.05 - 0.24) 9.6 (2.31 - 31.16)
2 0.54 (0.08 - 0.46) 17.7 (3.55 - 59.6) 1.8 (1.53 - 1.91)
4 1.05 (0.144 - 0.9) 34.18 (6.29 - 116.43) 3.55 (2.7 - 3.7)

Table 11.10: Measured cost of the TPU after the RTL generation.

11.2. THE MEXP ANALYSIS ON THE POLAR TRANSFORM

205

Measured TP for Np=1

300K & I 4 s

Measured TP for Np=2

225K
228K
—)
150K 50K
B
75K
TEK
s8.197 5.200
b @ O s.197 © s.200
oK
30 60 100 oK
30 a0 100
Latency
Latency
(a) Np =1 (b) Np =2
Measured TP for Np=4 Measured TP for TPU without |M
300K 10.000K ‘ i
205K 1.000K
F o
100K L~
150K
10K
75K
1K
oK 0K
30 &0 100 30 &0 100
Latency
O s44 O s.55 nce M
(¢) Np=4 (d) No Internal Memory vs MEXP solutions
Loop activity for application 'HDTY_PCL_MAPP_197_L_30_Np_1: online’ for tasks 0 .. 129
(avg. MITI: 2035 cycles)
Duration Stalls
Loops| Avg Min Max Avg Min Max
Lo [T A 2024 10 2332 275 0 278
Lt 100000000 0000 OO %6 26 26 0 0 0D
L2 0000000000000 0O S 353 05 1772 0 0 0
{10 R A AR R M R A RRRT RN AR 2021 62055 0 0 D
L RO RN R RN T ERRTNR IR ERROEAN RRRRY 2023 10 2055 63 O 128
1
0 50000 100000 150000 200000 250000 300000
Time [cycles] ->
(e) Simulation of the TPU verilog model
Loop activity for application '"HDTY_POL_MAPP_200 L 30 Np_1: online’ for tasks 0 .. 81
(avg. MITI: 2026 cycles)
Duration Stalls
Loops| i 363 Avg Min Max Avg Min Max
Lol (O A O [T [MOOOMOO - 2007 10 2350 292 0 296
LT LTI 3 3 3% 0 0 0
QOLEIEEO00Or T bropanEg i1t ORI gooc b pre ot 585 81094 0 0 O
I [T IOOOOOOOTOOONONI 2003 6 2053 o o o
[T I [11T [IOMTOTON 2005 10 2055 39 0 80
T T T T T T T 1
0 25000 50000 75000 100000 125000 150000 175000

Time [cycles] ->

(f) Simulation of the TPU verilog model

Figure 11.9: Estimated temporal performance for different external memory latency (L) and for

different number of parallel pipelines (INp)

206

11. THE POLAR TRANSFORM

11.3 Conclusion

In this chapter we have presented the explorations performed for the polar tansform. We
have explored hundreds of solutions for three input image sizes (1282128, 3002300 and
6002600). From the results we can see that the speed up of the temporal performance
due to the MEXP optimizations can be up to 40.9 for a corresponding area overhead
of 30.5 (results observed for the 3002300 input image with a parallelism level N, = 4).
The highest speed up observed, without considering the parallelism is up to 22 for a
corresponding area overhead of 9.4 (for a 3002300 input image).

The parallelism is not efficient in the case of a 1282128 input image and is very
efficient for both the 3002300 and the 6002600 input image (E>0.9).

The mean error on the MEXP estimations is around 10%.

207

209

Conclusion

The aim of this Ph.D. thesis is to study a methodology that improves the data transfer
and management for application having non-affine array references.

The target applications are iterative image processing algorithms which are non-
recursive and have static dependences. These applications are well described by a loop
based C-code and they can undergo a High Level Synthesis (HLS) which infer a RTL
model from an input C-code.

The input code of the HLS can be optimized, by the loop transformations, with
respect to its data storage and management. In fact, these transformations enhance
the data locality and allow, through the data partitioning, to achieve the computation
parallelism and the data prefetching. In particular the data and computation partitioning
is achieved through a transformation called tiling. Thanks to the loop transformations,
some existing HLS tools are able to generate a high quality hardware.

In the first part of this dissertation, we have presented the context of the problem and
the previous related works. In particular, we have underlined that the existing methods
to optimize the data transfer and management are not adapted to the application with
non affine array references.

In order to provide a solution to analyze and optimize the application with non-affine
array references we have developed a tool called MEXP (Memory EXPloration).

MEXP is a Design Space Exploration tool aimed to find an adapted I/O tiling for
image processing with non-affine array references. The aim is to to partition the data and
the computations of the application in order to balance the input data pre-fetching and
the output computations. The corresponding hardware is generated from a customizable
model called Tile Processing Unit (TPU). In the chapters 2 and 3 we have described the
tool flow and the customizable target hardware.

MEXP has the advantage of adapting the choice of a couple of I/O tiling to the
non-affinity of the application array references. An appropriate couple of 1/O tiling can
completely mask the time to prefetch and ensure the invariance of the TPU temporal
performance with respect to the external memory latency. In chapter 4 we have described
the method used to construct a set of possible couples of 1/0 tiling. The analysis takes
into account two user-specified functions, which describes the target application, and
several parameters, which tailor the MEXP Design Space Exploration.

MEXP is also able to re-schedule the output tiles computations in order to reduce the
the data transfer from the external memory. This permits a reduction of the power con-

210

11. THE POLAR TRANSFORM

sumption and an improvement of the TPU temporal performance. Chapter 5 describes
the method used to re-schedule the output tiles computations.

The TPU accesses the data thanks to a table giving the mapping between the input
tiles and the internal buffers. This table is generated by MEXP for each chosen solution.

MEXP is able to explore and optimize hundreds of solutions. It classifies these
solutions with respect to two metrics: the estimated temporal performance and the used
internal memory of the corresponding hardware.

Chapters 6 and 7 give the methods to compute the memory mapping and to perform
the Design Space Exploration.

MEXP also evaluates the possibility to parallelize the computations of several output
tiles by instantiating parallel hardware into the TPU. The corresponding Computation
Mapping is described in chapter 6.

In chapters 9, 10 and 11 we describe the experiments performed for three target
applications: the LOG sampling, the pyramidal LOG sampling and the polar transform.
The experiments show that the MEXP optimizations depend on the 1/0O tile sizes and
on the I/O data space sizes. The results are evaluated with respect to the Speed Up that
the MEXP optimizations permits on the Temporal Performance and the area overhead
required to implement the optimizations. The highest Speed Up observed is up to 134.12
for a corresponding area overhead of 21.9 (results observed for a pyramidal LOG sampling
computing 4 output tiles in parallel and for an external memory latency of 100 cycles).
The performed experiments also show that, thanks to a good choice of couple of 1/0
tiling, the balance between the prefetching and the computing can be achieved.

A first limitation of MEXP is that the generator of synthesizable C-code is only
exploitable for the studied HLS tool, while the MEXP analysis can be extended to other
HLS tools or to map image processing on other kind of architectures and programmable
processors. In this case, the generic template of the synthesizable C-code should be
adapted to the target architecture.

Another limitation of the current version of MEXP, is that it only applies to a single
step image processing, i.e. to a transformation computing an output from an input
image by applying a single transformation. The analysis is not applicable to a multi-
step dependent application, i.e a transformation applied through a chain of several inter-
dependent steps. The adaptation will require several transformations in the MEXP target
architecture and flow. A possible solution could be to instantiate a TPU per each step
in the application. A controller would synchronize the TPUs start and communication.
The TPU architecture could remain the same except that the output tiles scheduling of
the first TPU would be related to the output tile scheduling of the second TPU.

211

Appendix

213

Appendix A

The bilinear interpolation

When the law computing the input from the output pixels coordinates is non-affine, the
result of the computation may be not integer. But the pixels coordinates are integers,
thus it is mandatory to round up or down the computation results. As a consequence,
this introduces an aliasing.

(-
—idxe<-
[

TR

dy
¢ :: q Transformation \‘
C []
o: o
| | |
T
Input Pixels Output Pixel

Figure A.1: Example of a bilinear interpolation.

In order to limit the aliasing it is possible to perform a bilinear interpolation, whose
mechanism is shown in figure A.1. Given an output pixel, to which the non-linear trans-
formation associates non-integer input coordinates (the spotted bold lines in the figure),
the bilinear interpolation computes the output value by a linear weighted combination of
the 4 input pixels surrounding the non-integer coordinates (a, b, ¢ and d in the figure).

The weighted linear combination of the input pixels values depends on the distances
(dz and dy in the figure) between the point with non-integer coordinates and the point
with the inferior integer coordinates. It is performed as follows:

val=(1—dx)*x (1 —dy)*a+dx* (1 —dy)*«b+ (1 —dx)xdy*c+dr*xdy=d

214 A. THE BILINEAR INTERPOLATION

Figure A.2 compares two figures: figure A.2(a) is obtained by sampling the input pixels
having the inferior integer coordinates and figure A.2(b) is obtained by using a bilinear
interpolation. The improvements due to the bilinear interpolation are visible.

't

(a) without bilinear interpolation (b) with a bilinear interpolation

Figure A.2: Magnification of a detail of an output image showing the anti-aliasing effect of the
bilinear interpolation

215

Appendix B

The hardware implementation and
the Look-Up Table

B.1 Recalls on the Look-Up tables

One of the fastest and easier way to realize non-linear function is to use a Look-up
table (LUT), since it is often faster to retrieve a datum from a memory then to undergo
“expansive" computations . A LUT is a memory which takes as input a set of samples
of a function domain and gives as output the corresponding function values.

The precision of the LUT depends on the number of the samples taken into the
function domain and thus on the LUT size; but it also depends on the uniformity or not
of the samples distribution. Figure B.1 shows how two LUTs with the same number of
entries can have a different precision due to the fact that the samples distribution follows
the non-linearity of the function to be realized. When the samples distribution is not
uniform it is mandatory to provide the LUT with an address decoder.

K Va

v | : : : [[N

Vo

Zo T To T3 Ty) Ty

(a) Uniform distribution (b) Non-uniform distribution

Figure B.1: Example of two different LUTs realizations with a different distribution of the samples
into the function domain. The LUT entries are data in the intervals [z;, z;+1[and the LUT output are
exactly the data v;, with ¢ € [0, 4].

Real computations are often made on values which are different from the chosen

216

B. THE HARDWARE IMPLEMENTATION AND THE LOOK-UP TABLE

samples x;, thus it is necessary to round the manipulated values to one of the LUT
possible entries. Given x an input value so that ; <z < z;41, « can be rounded down
to x; or up to x;41.

An efficient way to improve the LUT precision and to maintain low its size is to
approximate the function to be realized by a piecewise linear function, i.e. given two
successive samples of the function domain z; and z;y1, the function is approximated
by the line passing through v; and ve. In this case, given x an input value so that
z; <z < xi41, the LUT output will be a weighted linear interpolation of the values vy
and vs.

In the hardware realization of the log sampling, a LUT has been used to compute
the input pixels coordinates. In order to simplify the mechanism used to access the LUT
we have chosen a uniform distribution of the function domain samples. On the other
hand to improve the LUT precision we have approximated the pseudo-logarithm with a
piecewise linear function.

B.2 The LUT associated to the LOG sampling
The function to be realized is:
PO
Touts Yout) = — B.1
f< vy t) Plim — Pout ()
with pg = max(%, %) and k =2 (i.e. prm = po)?.
The formula B.1 can be expressed as:

0
F(out: Your) = - — (B.2)
Plim — \/(xout - Sm)2 + (yout - %)2

where e(Zout, Yout) = (Tout — Wé’“t 2+ (Yout — H%’“)2 is taken as the entry of the LUT and
if we suppose that % > %, then the entry of the LUT is a radial symmetric function
which varies in the following interval: 0 < e(Zout, Your) < 2 * (%)2 Figure B.2 gives
two examples of the entry function e(xout, Yout), one for Wy = Hpyy = 128 and one for
Wout = 256 and H,,,; = 128.

The upper bound of the entry function e(z,y) is (%gu)2 4 (£sut)? | but it is overes-
timated as 2 % (%)? , where w = maz(Wout, Hout). Thus the upper bound of the entry
function depends on the input image size.

For a Given possible size for the LUT noted Lg;,., which also represents a possible
number of function domain samples or a possible number of LUT entries, the uniform
LUT step is defined as follows:

2 x (%)2
Lsize

The problem is how to determine a good Lg;.. that gives an efficient image

quality and requires an acceptable area overhead due to the LUT utilization.

Lstep =

#This configuration reproduces the behavior of the photo-receptors in a human retina.

B.2. THE LUT ASSOCIATED TO THE LOG SAMPLING 217

20 %0 . B —

80
100 120 40 140 X

(a) Wout = Hm,,t =128 (b) Wguz = 256 and Hout =128

Figure B.2: The entry function of the LUT.

First of all we can imply that, as the upper bound of the entry function depends on
the input image size, the LUT size should depend on it either.

The size of the LUT in hardware depends also on its depth which, in our case, is of
16 bits per LUT word. In fact, in our hardware implementations, we use a fixed point
arithmetic and the numerical values are represented on 16 bits with a precision (i.e. the
number of bits following the points) of 8bits.

In order to determine a good Lg;.., we have evaluated some possible values of Lg;.e
(%, %, W and 2W)P with respect to two aspects: the precision of the approximated
function and the quality of the produced output image.

The precision of the approximated function

The function to be approximated is described by the formula B.2 and by the figure B.3(a).
Figure B.3(b) gives the approximated function, which, in this case, is obtained by using
a LUT of 32 entries and in order to process a SQCIF input image.

To evaluate the precision of the approximated function we have analyzed the following
values:

e The Root Mean Squared Deviation (RMSD), which is a good measure of an ap-
proximation accuracy and is defined as:

1 Wout*Hout

RMSD = m * 2 (f($a y) - 7(:5’ y))2

where f(x,y) and f(z,y) are respectively the function to be approximated and its

W = maz(Wout, Hout)

218 B. THE HARDWARE IMPLEMENTATION AND THE LOOK-UP TABLE

(a) Reference function (b) Approximated function

-0.10 L B e e e S s s o e e

0 10 20 30 40 50 60 50 45 40 35 30 25 20 15 19 5 0

(¢) Residuals between the reference function and its ap- (d) Distribution of the error with respect to the output
proximation pixels coordinates

Figure B.3: Example of a f(z,y) approximation for a SQCIF input image (i.e. 128 x 96 pixels).
The figure gives the error distribution on the pixels. An error on a pixel position can be at most of
one along both directions and y.

approximation, while f(z,y) — f(z,y) are called residuals. The more the RMSD is
negligible, the more the approximation is accurate.

e The percentage of output pixels for which the approximated function gives an error
on the estimation of the corresponding input pixels coordinates; this percentage will
be noted P..

e The distribution of these errors in the space of output pixels coordinates.
e The maximum error on the input coordinates estimation, which will be noted max..

For example, figure B.3(c) gives the residuals between the function reference and its
approximation, the residuals are more significant at the center, where the function to
be approximated variates the most and, as a consequence, the LUT approximation is

B.2. THE LUT ASSOCIATED TO THE LOG SAMPLING

219

the less accurate. Figure B.3(d) gives the distribution of the error with respect to the
output pixel coordinates: a blue position corresponds to a correct estimation and a black
position corresponds to a wrong estimation. In this case, the maximum error on the input
pixels coordinates is of 1, which means that if there is an error, instead of sampling the
correct pixel we will sample one of its 8 nearest neighbors.

SQCIF VGA

Lsize Lsize

w 2W 4W

p‘%

w w 2W AW

2W

4w

0,01 0,005 0,002
23,23 11,41 5,54
3 1 1 1 1

(=3

04
,37
2

0,002 0,001 0,0006
19,99 10,87 4,96
1 1 1

0,008 0,
58,60 35
3

0,0004
8,93
1

0,0002

4,49
1

Table B.1: Values of the different indicators for different image sizes: SQCIF (128 x 96), VGA (640
x 320) and HDTV (1920 x 1080)

Table B.1 gives the values of the indicators RMSD, P, and max, for different values
of input image SQCIF (128 x 96), VGA (640 x 320) and HDTV (1920 x 1080). These
indicators have been evaluated for different sizes of LUT (%, %, W, 2W and 4W)°.

Table B.1 shows that to have an percentage of incorrect pixels inferior than 10%, a
LUT of 4W;, should be used. For a HDTV input image, the LUT would have a hardware
size of 0,12 mm?2d.

In order to reduce this size, it is possible to tolerate some errors on the output image

provided that its quality remains of an acceptable.

The quality of the output image

To define the quality of an image there are different indicators, we have used the Peak Sig-
nal to Noise Ratio (PSNR) and the Structural SIMiliarity (SSIM). These two indicators
are used to estimate the distortions introduced by a compression algorithm.

The PSNR formula is the following:

1

PSNR =10% lOgl(] <W
ou ou

Ve ~Ten)r)
where I(z,y) and I(x,y) are the reference image and the approximated image respec-
tively. A good quality approximation has a PSNR superior than 30dB.

While the PSNR takes into account the existing differences pixel by pixel and under
the hypothesis that the human eye is more sensible to the structural changes of an image,
the SSIM measures the structural similarities between the reference and approximated
images.

The SSIM formula [108] is the following:

(2pzpy + C1)(2c0Ugy + C)
(3 + py + C1) (07 + 0 + C)

‘W = maz(Wout, Hout) and Woye = i with k = 2.
dThis estimation has been performed for a 45 nm technology and is given by the formula 16 X Lg;z. X

0,91, where 16 is the number of bit per LUT word and 0,91 a factor due to the considered technology.

SSIM =

220

B. THE HARDWARE IMPLEMENTATION AND THE LOOK-UP TABLE

where x = I(z,y) and y = I(x,y) are the reference image and the approximated image
respectively. fig, iy, o2, 05 and o, are the mean of x, the mean of y, the variance of z,
the variance of y and the covariance of x and y.

Cy = (k1L)? and Cy = (koL)? are two constants used to ensure the stability of the
SSIM formula; where L is the dynamic range of the pixels values (i.e. L = 255 for 8
bit/pixel gray scale images); k1 = 0.01 and ko = 0.03 as suggested in [108].

The SSIM variates between -1 and 1. It is 1 fro two identical image = = I(x,y) and

In order to evaluate the local structural differences between the reference and the
approximated image the SSIM is computed on a sliding window of 8 x 8 pixels and a
mean, which parses the image from the top left to the bottom right corner. The quality
of the whole image is evaluated as the mean of the SSIM values (MSSIM) for all possible
positions of the sliding window.

lena saurus cars man
PSNR____MSSIM | PSNR___ MSSIM | PSNR___ MSSIM | PSNR MSSIM
SQCIF
w 23.22 0.999918 26.93 0.999403 28.36 0.999957 20.96 0.981926
% 27.24 0.999971 32.72 0.999874 33.48 0.999984 24.73 0.995750
w 32.09 0.999996 39.26 0.999995 38.47 0.999994 28.37 0.998626
2W 37.52 1 45.87 0.999995 47.73 1 34.8 0.999938
4w 50 1 53.15 0.999999 56.16 1 49.8 0.999974
VGA

w 29.93 0.999996 33.79 0.999962 36.38 0.999996 28.13 0.951211
% 33.99 0.999999 39.1 0.999991 39.75 0.999998 30.63 0.957258
w 38.19 1 45.23 0.999998 43.1 1 33.99 0.959493
2W 40.85 1 51.13 146.19 1 35.9 0.960229

4w 42.42 1 56.49 1 47.67 1 37.63 0.960313

HDTV

w 37.26 0.999999 42.84 0.999994 42.62 0.999999 33.51 0.976242
% 40.51 1 48.72 0.999999 45.2 1 35.58 0.9941170
w 43.94 1 54.28 1 48.1 1 38.7 0.997749
2W 46.15 1 58.95 1 50.4 1 40.79 0.999106
4w 49.13 1 62.65 1 53.42 1 43.44 0.999218

Table B.2: PSNR and MSSIM for several images of different sizes. W = Woys.

Table B.2 gives the PSNR and the SSIM for several images (lena, saurus, cars, man)
with different sizes®.

From this table we can infer that a LUT size of % gives a good output image
quality for each input image size tested.

Image B.4 gives an example of an output image for a VGA input image and for a
LUT size of % or % It shows that the image distortions due to the insufficiency of
LUT size are not visible for a LUT size of W‘Q’“t.

It was important to test for different images because the PSNR and the SSIM depend on the image
content.

B.2. THE LUT ASSOCIATED TO THE LOG SAMPLING 221

(¢) reference image

Figure B.4: Output of an approximated LOG sampling applied to a VGA image and using different
LUT size

222 B. THE HARDWARE IMPLEMENTATION AND THE LOOK-UP TABLE

223

Appendix C

The space-variant low-pass

The space-variant low pass used in the retina model of the GIPSA-lab is the following.

—

=l

Figure C.1: Example of a spatial-variant low pass, the input image is filtered along the two directions
(x,y) and in the two ways for each direction

As shown by figure C.1, the space-vatriant low pass can be divided into four filters
Fy, Fs, F3 and Fy, so that the input image is filtered along the two directions of the image
plane (x,y) and in the two ways for each direction (from bottom upperwards, from up
bottomwards, from left rightwards and from right leftwards).

The formula of the filters F1, F5, F3 and Fy are given in the group of equations C.1.
These filters are recursive and iterative functions which are applied one after the other
on an input image (noted Ip) in order to obtain an output image (noted Iy).

Fi: L(zy) = (1-alzy)l(@y)+alz,y)h(z,y—1)
B Dbry) = (1-alzy)h(ry) +alz,y) @,y +1) (C.1)
Py Lzy) = (1-a(z,y)l(z,y) +a(z,y)l3(z—1,y)
Fyo L(zy) = (1—oa(z,y)s(2,y) +a(z,y)la(z+1,y)

The filtering factor a(x,y) variates with the excentricity of the pixel position and has

224

C. THE SPACE-VARIANT LOW-PASS

the following formula

Heigh i

()_ |£L‘— e;gt|_|_|y_W12dth

o\, Y) = Height+Width
2

In this application there are three kinds of dependences:

e the dependence between output pixels on a line for filters F} and Fb, in fact these

filters re-use the previously computed output pixel (on the left for F; and on the
right for F3) in order to compute the current output pixel.

the dependence between output pixels on a column for filters F3 and Fj, in fact
these filters re-use the previously computed output pixel (on the top for F; and on
the right for Fb) in order to compute the current output pixel.

the dependences between the different filters Fi, F, F3 and Fy. The order of the
filters is not strict, in fact the filters can be executed in any desired order with
a slight difference on the borders of the image that is acceptable for the target
application. But it is mandatory to execute all the filters to obtain the desired
output and, no matter which order we choose, it is necessary to store, at least
once, the whole processed image in order to respect these dependences. We give
some examples of the possible orders, each one of them requiring different hardware
resources:

— Fi is applied on the first line then, after it has processed the whole first line,
Fy is applied to the first line while F} processes the second line. The two
filters are pipelined to process the lines until the bottom line of the image is
reached. After processed and store the whole image with the filter F} and
Fy, it is possible to apply F3 on the last column of the image then, after it
has processed the whole last column, Fy can be applied to the last column
while F3 processes the penultimate column. The two filters are pipeline to
process the columns of the image until the rightest column is reached. The
memory resources needed to implement this version of the low-pass are : a
local memory to store the line of pixels produced by F} before the start of Fy,
a local memory to store the column produced by F5 before the start of £y and
an internal memory of the size of input image to store the output of F5 before
the start of Fj.

— Fy and F3 are pipelined to procces a single pixel from the top left to the
bottom right of the input image, then F5 and Fj are pipelined to proccess a
single pixel from the bottom right to the top left of the input image. The
memory resources needed to implement this version of the low-pass are: two
local registers to store the output of F; and F5 before the start of F3 and Fy
rispectively; an internal memory of the size of the input image to store the
results of F3 before the start of F5.

225

Appendix D

A mipmapping application: the
Pyramidal LOG sampling

D.1 Re-calls on the MIP mapping

The MIP mapping is a method used in 3D computer graphics to compute the texture
objects. It was introduced in 1983 by Lance Williams [109].

Let consider an image representing 3D object, if the image is re-sized or the observer
point of view changes, the image has to be rendered by changing the texture of the 3D
objects. This will take into accounts the changes in the perspective and will increase the
realism and the information content of the image.

A MIP-map is a set of filtered and down-sampled versions of the original texture.
These versions are instanced belove and to the right of the originals in a series of smaller
and smaller images. Each image has half the linear dimension (and a quarter the number
of samples) of its parent.

Figure D.1: Example of a MIP-map with 4 levels

226

D. A MIPMAPPING APPLICATION: THE PYRAMIDAL LOG SAMPLING

A MIP-map has a pyramidal structure, as shown in figure D.1?, and can be indexed
by three coordinates (U,V and D in the figure). U and V are spatial coordinates of the
map and D indexes the levels of the pyramid. We will use the texture contained in top
left level to map zone with more precision and the bottom right level to map zones with
less precision or more distant.

The MIP-map can be used with a trilinear interpolation in order to avoid the aliasing.
The trilinear interpolation is composed by a bilinear interpolation between the pixels of
a level and a linear interpolation between different levels.

D.2 The Pyramidal LOG sampling

The MIP mapping can be applied to approximate the chaine composed by the space-
variant low-pass followed by the LOG sampling.

In this case we will construct a pyramid and then samples the input pixels from a level
of the pyramid which is a function of the output pixel excentricity: if the output pixel to
be computed is in the center of the image, the needed input pixels will be sampled from
the top right levels, if the output pixel is on the borders of the image the needed input
pixels will be sampled from the bottom right levels.

One of the major problem of this approach is the memory requirement to store the
MIP-map. Our aim is to store the MIP-map into the internal memory and use the tiling
to pre-fetches only some parts of the it when they are needed. However the MIP-map
size remain a problem for the external memory size.

Two observations can bring to a reduction of the memory requirement.

A first observation is that the LOG sampling has a radial symmetry, thus we need to
use only the levels on the dyagonal of the MIP-map.

A second observation is that the kind of low-pass applied to obtain the different levels
of the MIP-map influences the correcteness of the results.

As an example let consider the pyramids shown in figure D.2; these pyramids are
obtained by applying two kinds of filters:

e A mean fliter on a window of 5 x 5 pixels
e A mean filter whose window size is a function of the level of the pyramid.

We can observe that the mean filter with a variable window produces a pyramid
having on the bottom right levels the same strength of blurring as on the borders of the
reference image.

To conclude we can obtain the desired strength of blurring either by increasing the
number of levels of the pyramid or by adapting the low-pass to the pyramid levels. The
last solution reduces the memory requirement to store the pyramid but increases the
number of operations performed to construct it.

#In the paper of Lance Williams [109] the pyramid is constructed in a symmetric way with respect
the ours.

D.2. THE PYRAMIDAL LOG SAMPLING

227

(b) Pyramid obtained with a mean filter having applied on a
window of variable size

Figure D.2: Examples of pyramids constructed with different kinds of low-pass.

D.2.1 The function to access and construct the pyramid levels

The formulae of the LOG sampling are given in equation 9.2 of chapter 9; they compute
the needed input pixels coordinates by multiplicating the output pixel coordinates by a
fuction f(Zout, Yout), which depends on the output pixel excentricity. This function is:

f(xouta yout) = Po (Dl)
Plim — Pout

Where py = % and prim = %, with W = max(Woyt, Houwr) and k a parameter of the

LOG sampling which gives the reduction factor of the output image size and can have
the following values k =2, 4, 8....

As the function f(Zout, Youtr) is used (in the LOG sampling) to compute the needed
input pixels coordinates, the access law to the pyramid levels has to depend on it. The

228

D. A MIPMAPPING APPLICATION: THE PYRAMIDAL LOG SAMPLING

access law searched has to be bounded between 0 and L — 1, where L is the number of
levels in the pyramid.

Remark The function f(Zout,Your) 18 maximal when the output pixel excentricity is
maximal. The output pixel excentricity is pout = \/(%)2 + (Hgut)2 « W\/2 — ¢, with
W = mazx(Wout, Hoyut) and € a negligeable term, which garantees that pout < ppim. We
can say that the values of the function f(zout, Yout) are contained in the following interval

k
< Touts You < —/——F——
_f(s Y t) 2—kﬂ+€

|

with € = % a negligeable term.

Among all the possible access law, we have chosen the logi(), which is bounded
between 0 and 1.41 as shown in table D.1. In this configuration the constructed pyramid

k logk (g) logy (ﬁ)
2 1.41
4 0.5 1.2
8 0.6 1.13
16 0.75 1.10

Table D.1: Bounds of the function logk (f(Zout,Yout)) With respect to k

has three levels indexed by | € {0,1,2} . The function log() is used twice:

e [t is used to compute the variable size of the mean filter window used to construct
the pyramid levels. The window size is n x n with n = m(logg({)+1). The strength
of the blurred can be renforced by fixing the value of m. In our experiments we
have observed that m = 11 gives good results.

o [t is used to access the pyramid levels in order to sample the needed input pixels.

D.2.2 The pyramidal LOG sampling steps
The Pyramidal log sampling goes through the following steps:

e From the output pixels coordinates, we compute f(Zout, Yout) and the needed in-
put pixel coordinates (2, ¥in). Due to the non-affinity othe memory accesses, the
found input coordinates are not integer, thus we sample the 4 input pixel surround-
ing the non-integer coordinates in order to perform a bilinear interpolation.

e Then we compute the pyramid level | = logk(f(Zout, Yout)), as this value is not
an integer we take the two levels I} = [I| and ly = [; 4+ 1, in order to perform
a linear interpolation between the results of the two previously computed bilinear
interpolations.

229

List of Figures

1.1

1.2
1.3
14
1.5
1.6
1.7
1.8
1.9

1.10

1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18

2.1
2.2
2.3

3.1

3.2

For uniform memory accesses the window of input pixels associated to
the calculation of an output pixel I;(p) has invariant shape and size with
respect tO P L L oL e e e
A pipelined image processor, (figure from [10]).
Example of a processing element in a pipeline, realizing a pipeline itself.
Example of a systolic array computing a matrix multiplication
Y-chart, figure adapted from [17,19]
System Level design flow
HLS tool architecture template, figure from [26]
Processing Element architecture template, figure from [26]
Code transformation to parallelize inter-dependent loop-nests communi-
cating through memory. The transformation reduces the size of the inter-
nal memory used. “P" stands for “loop Producing data" and “C" stands
for “loop Consuming data". L oo
Loop-based pseudo code; in the comments “s" stands for stream and “a"
for memory access. e e e
inter-operation parallelism
inter-operation and intra-loop parallelism
inter-operation, intra-loop and inter loop parallelism
The DRAM latency, figure from [38]
perfectly nested uniform loop
Unimodular Loop Transformations
Example of parallelism between independent tiles
example of a code with affine and non-affine array references

The whole flow
The TPU generic template
MEXP flow

Effect of tiling, of pre-fetching and computing parallelism and of tile sizes
on the temporal performance of the system.
Generic TPU template o

o7

74

230

LIST OF FIGURES

3.3

34
3.5

3.6
3.7

3.8
3.9

3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

4.12
4.13

5.1
5.2

5.3

9.5

5.6

Table MM giving the memory mapping during the computation of all the

output tiles 76
Example of a prefetching mechanism based on the MM table 7
Hash table IDX which gives the correspondence between the input tiles

and the internal buffers 0000 78
A typical TPU time-line 79
C-code of a TPU, this code can be customize for a given application and

a particular solution chosen by MEXP. 85
Example of some MEXP defined macros for an output image 85

Example of a several possible implementations to compute 8 output tiles:
a TPU with a single pipeline, a TPU with 2 parallel pipelines and a TPU

with 4 parallel pipelines 86
Example of a time-line for a TPU containing two parallel pipelines 87
Set of files, contained in a MEXP generated project describing a TPU . . 87
C-code of a TPU, this code can be customize for a given application and

a particular solution chosen by MEXP. 88
Pseudo code of a Logarithmic Sampling 90
Tiling applied to a non-affine indexed application 90
Super-Tiling 92
The Super-tiling Flow 93
A generic iterative data-dominated algorithm 93
Code of the profiling algorithm 94
template of a user-defined REQ function 95
Code of the tiling algorithm 97
Layout of tile labels for a 2-dimensional, a 3-dimensional and a 4-dimensional
SPACE « « v v e e e e e e e e e e e e e e e e e 98
Super-Tiling example for a log sampling 100
Projection algorithm o oo 101
Code of the ROT algorithm 102
Histograms corresponding to the nbr. of IT per OT given in table 4.1.
These values are multiplied by the tile volume. 103
Example of an LOG sampling output with black borders 106
Example of a graph corresponding to a 2-dimensional space with 4 output

tiles . . . 106

Example of a graph for which the two problems of BTSP and TSP have
different solutions. The blue round-trip is a solution for a TSP with a
total cost of the round trip of 11 and a maximum edge cost encountered
of 6; the red round-trip is a solution for the BTSP with a total cost of 12

and a maximum edge cost encountered of 4o oL 107
Example of a symmetric (B)TSP instantiation for an output tiling applied
to a 2-dimensional output space and producing 4 output tiles 112

Example of a Displacement Mutation 116

LIST OF FIGURES

231

5.7

6.1

6.2

6.3
6.5
6.6
6.7
6.8

7.1

7.2

7.3

7.4

8.1
8.2

9.1
9.2
9.3
9.4
9.5

9.6

9.7

Comparison between a TSP and a BTSP solution for an instance with 128
vertices in a graph, i.e. 128 OT in the output image, ALGO1, a solution
of EXPL e 120

Example of a part of M M matrix for a TPU with a single pipeline (N, =
1). Each column of the M M matrix corresponds to a TPU task and thus,
to the computation of an output tile OT'(¢). If an element of the matrix
is 0, then the corresponding internal buffer is not used. 123
Example of a part of M M matrix for a TPU with a two pipelines (N, = 2).
Each column of the M M matrix corresponds to a TPU call and thus, to
the computation of two parallel output tiles. The IB amount is not equal

between the two parallel pipelines. 123
Example of Computation Mapping for N, = 4 and different values of d. . 124
C-code to compute the MM matrix 127
Modifications to the C-code to compute the M M matrix are in bold. . . . 129
Example which compute an M M matrix from a ¥ matrix. 132

Example of the Memory Mapping for the I/O tiling presented in figure 6.7 133

A Design Space is tailored by the user’s constraints of IMy;ax and NCprax.
The solutions s, s and s3 are pareto, they are equivalent to each other,

while the solution s4 is dominated by all the pareto solutions. 136
Example of a DSE solution tree with the dominance criteria and the in-
sertion of a new solution. 137
Example of the parallelization between the iterations of a loop nest. The
beginnings of the iterations are delayed one with respect to the other. . . 142
Example of the parallelization between the iterations of a loop nest with
N, parallel pipelines. 142
Example of a scatter representation of the solution space. 151
Example of a representation of TP with respect to the external memory
variations.o e e e e e e e 152
Example of an input and output images for a log sampling 155
The input and output radial distances p;, and poys. - - - 156
Example of output image for different values of ppand & 156
REQ and CALC code. All the macros and global variables, shared between
the user-defined and MEXP generated code are in bold. 158
DSE for different external memory latency (L) and for different number
of parallel pipelines (NN,); the input image is a SQCIF. 160

Estimated temporal performance for different external memory latency
(L) and for different number of parallel pipelines (NNp); the input image is
a SQCIF. 162
DSE for different external memory latency (L) and for different number
of parallel pipelines (N,); the input image isa VGA. 164

232

LIST OF FIGURES

9.8

9.9

9.10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.1
11.2
11.3

11.4

11.5

11.6

Measured temporal performance for different external memory latency (L)
and for different number of parallel pipelines (N,); the input image is a

VGA. e 166
DSE for different external memory latency (L) and for different number
of parallel pipelines (/Np); the input image isa HDTV. 168
Estimated temporal performance for different external memory latency

(L) and for different number of parallel pipelines (NN,); the input image is

a HDTV. . . e 169
Example of an input and output images for a space-variant low-pass fol-
lowed by a LOG sampling 173
Example of a pyramid with 3 levels and constructed with a low-pass having
a window size variable with the number of level 174
Pyramidal TPU code. All the macros and global variables, shared between
the user-defined and MEXP generated code are in bold. 179
DSE for different external memory latency (L) and for different number
of parallel pipelines (IV,); the input image is a SQCIF. 180
Measured temporal performance for different external memory latency (L)

and for different number of parallel pipelines (N,); the input image is a

SQCIF. © o o oo e 181
DSE for different external memory latency (L) and for different number
of parallel pipelines (/N,); the input image isa VGA. 183
Estimated temporal performance for different external memory latency
(L) and for different number of parallel pipelines (Np); the input image is
a VGA. . e e 185
DSE for different external memory latency (L) and for different number
of parallel pipelines (/N,); the input image isa HDTV. 187
Estimated temporal performance for different external memory latency
(L) and for different number of parallel pipelines (Np); the input image is
a HDTV. . e 189
Example of a polar transform 0oL 191
Example of an input and output images for a Polar transform 192
Polar transform TPU code. All the macros and global variables, shared
between the user-defined and MEXP generated code are in bold. 195
DSE for different external memory latency (L) and for different number
of parallel pipelines (N,); the input image is a 128 x 128. 196
Measured temporal performance for different external memory latency (L)

and for different number of parallel pipelines (N,); the input image is a
128 X 128. e e e 197
DSE for different external memory latency (L) and for different number
of parallel pipelines (/NV,); the input image contains 300 x 300 pixels. . . . 199

LIST OF FIGURES

233

11.7 Estimated temporal performance for different external memory latency

11.8

11.9

Al
A2

B.1

B.2
B.3

B4

C.1

D.1
D.2

(L) and for different number of parallel pipelines (NNp); the input image is

a VGA. o 201
DSE for different external memory latency (L) and for different number
of parallel pipelines (Np). 203
Estimated temporal performance for different external memory latency
(L) and for different number of parallel pipelines (Np) 205
Example of a bilinear interpolation. 213
Magnification of a detail of an output image showing the anti-aliasing
effect of the bilinear interpolation 214

Example of two different LUTs realizations with a different distribution
of the samples into the function domain. The LUT entries are data in
the intervals [z, z;41[and the LUT output are exactly the data v;, with

The entry function of the LUT. 217
Example of a f(z,y) approximation for a SQCIF input image (i.e. 128 x
96 pixels). The figure gives the error distribution on the pixels. An error
on a pixel position can be at most of one along both directions z and y. . 218
Output of an approximated LOG sampling applied to a VGA image and

using different LUT size o Lo 221
Example of a spatial-variant low pass, the input image is filtered along the

two directions (x,y) and in the two ways for each direction 223
Example of a MIP-map with 4 levels 225

Examples of pyramids constructed with different kinds of low-pass. 227

234 LIST OF FIGURES

235

List of Tables

1.1

4.1

5.1

5.2

5.3

0.4

5.5

6.1

8.1
8.2

9.1
9.2

9.3
9.4
9.5

9.6

Table presenting a generic loopnest 32
Table of the Super-Tiling explorations for ROT,LOG and M22 algorithms 104

Explorations run for an input tile volume of 128 with an input tile layout
among 128x1, 64x2, 32x4, 16x8, 8x16 117
Table giving the complexity of the analyzed instances in terms of number
of vertices to be visited. “min., av. and max." are respectively the mini-
mum the average and the maximum of vertices in the analyzed number of
instances (# inst) 117
Table comparing the results of a GATSP and a Lin-Kernighan solver with
a number of kicks of d x 100, the experiments have been run for different
target algorithms (ALGO) and different explorations (EXP) 118
Table comparing the results of a GATSP and a Lin-Kernighan solver with
a number of kicks of 10%, the experiments have been run for different target
algorithms (ALGO) and different explorations (EXP) 119
Table comparing the results of a GATSP and The Concorde solver, the
experiments have been run for different target algorithms (ALGO) and

different explorations (EXP) oo 119
Example of MM divided into two tables 130
Example of a table summarizing the information on the TP. 150

Example of table giving the information on the area occupancy of a solution151

Experiments run for different input image sizes 158
Solutions s.3, .13 and s.6 are pareto solutions, while s.35 is a non-pareto

solution. Lo 160
Estimated and measured Temporal Performance (TP) for a SQCIF. . . . 161
Measured cost of the TPU after the RTL generation 161
Estimated and measured Temporal Performance (TP) for a VGA input

IMAZE. © o o v v e e e e 165

Measured cost of the TPU after the RTL generation. 165

236

LIST OF TABLES

9.8 Estimated and measured Temporal Performance (TP) for a HDTV input
IMAZE. « o o v v v e e e 170
9.9 Measured cost of the TPU after the RTL generation. 170
10.1 Experiments run for different input image sizes 176
10.2 Examples of solutions in the analyzed space 176
10.3 Estimated and measured Temporal Performance (TP) for a SQCIF input
IMAZE. « o o o o o 177
10.4 Measured cost of the TPU after the RTL generation. 178
10.5 Examples of explored solutions L. 182
10.6 Estimated and measured Temporal Performance (TP) for a VGA input
Image. 184
10.7 Measured cost of the TPU after the RTL generation. 184
10.8 Examples of solutions from the analyzed space 186
10.9 Estimated and measured Temporal Performance (TP) for a HDTV input
Image Lo 188
10.10Measured cost of the TPU after the RTL generation. 188
11.1 Experiments run for different input image sizes 192
11.2 Examples of solutions n the analyzed space 193
11.3 Estimated and measured Temporal Performance (TP) for an input image
containing 128x128 pixels Lo oL 194
11.4 Measured cost of the TPU after the RTL generation. 194
11.5 Examples of explored solutions L. 198
11.6 Estimated and measured Temporal Performance (TP) for an input image
containing 3002300 pixels. Lo oo 200
11.7 Measured cost of the TPU after the RTL generation. 200
11.8 Examples of solutions from the analyzed space 202
11.9 Estimated and measured Temporal Performance (TP) for an input image
containing 6002600 pixels. oL oL o oo 204
11.10Measured cost of the TPU after the RTL generation. 204
B.1 Values of the different indicators for different image sizes: SQCIF (128 x
96), VGA (640 x 320) and HDTV (1920 x 1080) 219
B.2 PSNR and MSSIM for several images of different sizes. W = Wy, 220
D.1 Bounds of the function logi(f(out, Yout)) With respect to k 228

237

Bibliography

1]

2]

3]

4]

[5]

[6]

7]

8]

[9]
[10]

[11]

[12]

F Catthoor et al. Data access and storage management for embedded programmable
processors. Kluwer Academic Publishers, 2002.

WA Waulf and SA McKee. Hitting the memory wall. ACM SIGARCH Computer
Architecture News, 23(1):20-24, 1995.

N Mitchell, L Carter, and J Ferrante. Localizing non-affine array references. Parallel
Architectures and Compilation Techniques, 1999. Proceedings. 1999 International
Conference on, pages 192-202, 1999.

Jeanny Hérault and Barthélémy Durette. Modeling visual perception for image
processing. IWANN, 4507:662-675, 2007.

D Gajski and L Ramachandran. Introduction to high-level synthesis. IEEE Design
& test of computers, 11:44-54, 1994.

T Kambe et al. A C-based synthesis system, Bach, and its application (invited
talk). Proceedings of ASP-DAC’01, pages 151-155, 2001.

PR Panda, F Catthoor, ND Dutt, K Danckaert, E Brockmeyer, C Kulkarni, A Van-
dercappelle, and PG Kjeldsberg. Data and memory optimization techniques for em-

bedded systems. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 6(2):149-206, 2001.

M Flynn. Very high-speed computing systems. Proceedings of the IEEE, pages
1901-1909, 1966.

R Duncan. A survey of parallel computer architectures. Computer, 23:5-16, 1990.

N Storey and RC Staunton. An adaptive pipeline processor for real-time image
processing. Proc. SPIE, Paper, 1197:238-246, 1989.

R Lougheed and D McCubbrey. The cytocomputer: A practical pipelined image
processor. Proceedings of the Tth annual symposium on Computer Architectures,
pages 271-277, 1980.

EW Kent, MO Shneier, and R Lumia. Pipe. Journal of Parallel and Distributed
Computing, 2:50-78, 1985.

238

BIBLIOGRAPHY

[13] H Kungt and C Leisersont. Systolic arrays (for VLSI), pages 256-282. Society for
industrial and applid mathemathics, 1979.

[14] Abbas Bigdeli et al. A new pipelined systolic array-based architecture for matrix
inversion in FPGAs with Kalman filter case study. EURASIP J. Appl. Signal
Process., 2006:1-13, 2006.

[15] D Moldovan and J Fortes. Partitioning and mapping algorithms into fixed size
systolic arrays. IEEE Transactions on Computers, C-35:1-12, 1986.

[16] A Darte. Regular partitioning for synthesizing fixed-size systolic arrays. INTE-
GRATION, the VLSI journal, 12:293-304, 1991.

[17] DD Gajski. System-level design methodology, lecture notes, university of califor-
nia. http://camars.kaist.ac.kr/ aeng/cs710/esd07/System Level Design Methodol-
ogy.pdf, 2003.

[18] A Sangiovanni-Vincentelli. Quo vadis, sld? reasoning about the trends and chal-
lenges of system level design. Proceedings of the IEEE, 95(3):467-506, 2007.

[19] C Jego. Conception de systémes numériques le codesign, lecture enst bretagne.
http://public.enst-bretagne.fr/ marzel/codesign/cours_CoDesign.ppt, 2006.

[20] A Pimentel et al. Exploring embedded-systems architectures with artemis. Com-
puter, 34:57-63, 2001.

[21] A Sangiovanni-Vincentelli. Compositional modeling in metropolis. Second Inter-
national Workshop on Embedded Software (EMSOFT), 2491:93-107, 2002.

[22] Mentor Graphics. Catapult C synthesis-based design flow: Speeding im-
plementation and increasing flexibility. http://www.techonline.com/electronics-
directory/techpaper/193102520.

[23] S Edwards. The challenges of hardware synthesis from c-like languages. DATE’05,
pages 66—67, 2005.

[24] D Rao and M Venkatesan. An efficient reconfigurable architecture and implemen-
tation of edge detection algorithm using handle-c. ITCC04, 2:846, 2004.

[25] J Zhu et al. Syntax and semantics of SpecC language. SASIMI’97, pages 75-82,
1997.

[26] Vinod Kathail, Shail Aditya, and B Ramakrishna. PICO: Automatically designing
custom computers. Compuler, 35:39-47, 2002.

[27] R Schreiber et al. PICO-NPA: High-level synthesis of nonprogrammable hardware
accelerators. The Journal of VLSI Signal Processing, 31(2):127-142, 2002.

BIBLIOGRAPHY

239

[28]

[29]

[30]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

Stefaan Note et al. Cathedral-IIT architecture-driven high-level synthesis for high
throughput DSP applications. Proceedings of DAC’91, pages 597-602, 1991.

Sumit Gupta, Manev Luthra, Nikil Dutt, Rajesh Gupta, and Alex Nicolau. Hard-
ware and interface synthesis of FPGA blocks using. International Conference on
Parallel and Distributed Computing Systems, 2003.

Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alexandru Nicolau. Loop shifting and
compaction for the high-level synthesis. Design, Automation and Test in Europe
Conference and Exhibition, 2004. Proceedings, 1:10114, 2004.

Nitin Chawla et al. Multimedia application specific engine design using high level
synthesis. Designcon’08, 2008.

Shail Aditya, B Ramakrishna, and Rau Vinod Kathail. Automatic architectural
synthesis of vliw and epic processors. Proceedings of the 12th international sympo-
sium on System Synthesis, page 107, 1999.

R Schreiber, B Rau, A Darte, and F Vivien. A constructive solution to the juggling
problem in processor array synthesis. 14th International Parallel and Distributed
Processing Symposium, pages 815-821, 2000.

C Zinner and W Kubinger. ROS-DMA: a DMA double buffering method for embed-
ded image processing with resource optimized slicing. Proceedings of the 12th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS’06),
pages 361-372, 2006.

Imec. Data transfer and storage exploration.
http://www.imec.be/wwwinter /mediacenter/en/SR2005/html/142230.html.

SA McKee. Reflections on the memory wall. Proceedings of the 1st conference on
Computing frontiers, page 162, 2004.

M Gries. A survey of synchronous ram architectures. Technical Report 71, Com-
puter Engineering and Networks Laboratory, 1999.

B Jacob. Lecture 2 university of meriland, DRAM circuit and architecture basics.
www.ece.umd.edu/ blj/dram/, 2003.

Wikipedia. Cache. http://en.wikipedia.org/wiki/Cache.

R Banakar, S Steinke, BS Lee, M Balakrishnan, and P Marwedel. Scratchpad mem-
ory: design alternative for cache on-chip memory in embedded systems. Proceedings
of the tenth international symposium on Hardware/software codesign, pages 73-78,
2002.

S Udayakumaran and R Barua. An integrated scratch-pad allocator for affine and
non-affine code. Proceedings of the conference on Design, automation and test in
Europe: Proceedings, pages 925-930, 2006.

240

BIBLIOGRAPHY

[42]

[43]

|44]

[45]

[51]

[52]

[53]

[54]

AJ Smith. Cache memories. ACM Computing Surveys (CSUR), 14(3):473-530,
1982.

IM Verbauwhede, CJ Scheers, and JM Rabaey. Memory estimation for high level
synthesis. Proceedings of the 81st annual conference on Design automation, pages
143-148, 1994.

S Wuytack, JP Diguet, FVM Catthoor, and HJ De Man. Formalized methodology
for data reuse: exploration for low-powerhierarchical memory mappings. [IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 6(4):529-537, 1998.

T Van Achteren, G Deconinck, F Catthoor, and R Lauwereins. Data reuse explo-
ration techniques for loop-dominated applications. Proceedings of the conference
on Design, automation and test in Furope, page 428, 2002.

F Balasa et al. Computation of storage requirements for multi-dimensional signal
processing applications. [EEE Transactions on VLSI Systems, 15:447-460, 2007.

J Seo, T Kim, and PR Panda. Memory allocation and mapping in high-level
synthesis—an integrated approach. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 11:928-938, 2003.

A Darte, R SChreiber, and G Villard. Lattice-based memory allocation. IEEE
Transactions on Computers, 54(10):1242-1257, 2005.

Darko Kirovski, Chunho Lee, Miodrag Potkonjak, and Williamm H Mangione-smith.
Application-driven synthesis of memory-intensive systems-on-chip. IEEE Transac-
tions on Computer-Aided Design, CAD-18:1316-1326, 2001.

E De Greef, F Catthoor, and H De Man. Memory size reduction through stor-
age order optimization for embedded parallel multimedia applications. Parallel
Computing, 13:1811-1837, 1997.

W Thies, F Vivien, J Sheldon, and S Amarasinghe. A unified framework for sched-
ule and storage optimization. Proceedings of the ACM SIGPLAN 2001 conference
on Programming language design and implementation, pages 232-242, 2001.

HL Muller, PWA Stallard, and DHD Warren. The application of skewed-associative
memories to cache only memory architectures. Proceedings of the international
conference on Parallel Processing, pages 1150-1154, 1995.

GE Suh, S Devadas, and L Rudolph. A new memory monitoring scheme for
memory-aware scheduling and partitioning. High-Performance Computer Archi-
tecture, 2002. Proceedings. Eighth International Symposium on, pages 117-128,
2002.

G Memik, M Kandemir, M Haldar, and A Choudhary. A selective hard-
ware/compiler approach for improving cache locality. Technical Report CPDC-
TR-9909-016, Northwestern University, 1999.

BIBLIOGRAPHY

241

[55]

[56]

[57]

[59]

[60]

[66]

[67]

M Weinhardt and W Luk. Memory access optimization and RAM inference for
pipeline vectorization, pages 61-70. New York : Springer Verlag, 1999.

F Catthoor et al. Custom memory management methodology: Fzxploration of mem-
ory organisation for embedded multimedia. Kluwer Academic Publishers, 1998.

E Brockmeyer, A Vandecappelle, and F Catthoor. Systematic cycle budget versus
system power trade-off: a new perspective on system exploration of. Proceedings
of the 2000 international symposium on Low power electronics and design, pages
137-142, 2000.

PR Panda, H Nakamura, ND Dutt, A Nicolau, S Inc, and M View. Augmenting
loop tiling with data alignment for improved cacheperformance. IEEFE transactions
on computers, 48(2):142-149, 1999.

G Goumas, A Sotiropoulos, and N Koziris. Minimizing completion time for loop
tiling with computation and communication overlapping. Proceedings of 15th In-
ternational Parallel and Distributed Processing Symposium, page 39, 2001.

F Rastello and Y Robert. Loop partitioning versus tiling for cache-based mul-
tiprocessors. Proceedings of International Conference on parallel and Distributed
computing Systems, pages 477-483, 1998.

Sungdo Moon and Rafael H Saavedra. Hyperblocking: A data reorganization
method to eliminate cache conflicts in tiled loop nests. Technical report, Com-
puter Science Department; University of Southern Carolina, 1998.

M Stan and W Burleson. Bus-invert coding for low-power i/o. IEEE Transactions
on Very Large Scale Integration (VLSI), 3:49-57, 1995.

L Carter and J Ferrante. CROPS: coordinated restructuring of programs and
storage. ACM SIGSOFT Software Engineering Notes, 25(1):38-39, 2000.

C Huang, S Ravi, A Raghunathan, and N Jha. Generation of heterogeneous dis-
tributed architectures for memory-intensive applications through high level synthe-
sis. IEEE Transactions on Very Large Scale Integration, 15:1191-1204, 2007.

T Jacobson and G Stubbendieck. Dependency analysis of for-loop structures for au-
tomatic parallelization of C code. Mathematics and Computer Science Department
South Dakota School of Mines and Technology, pages 1-13, 2002.

Yi ging Yang, Corinne Ancourt, and Centre De Recherche En Informatique. Min-
imal data dependence abstractions for loop transformations (extended version).
International Journal on Parallel Processing, 23:359-388, 1995.

W Pugh. The omega test: a fast and practical integer programming algorithm for
dependence analysis. Proceedings of the 1991 ACM/IEEE conference on Supercom-
puting, pages 4-13, 1991.

242

BIBLIOGRAPHY

[68]

[69]

73]

C Bastoul, A Cohen, S Girbal, S Sharma, and O Temam. Putting polyhedral loop
transformations to work. Lecture Notes in Computer Science, 2958:209-225, 2004.

H Le Verge, V Van Dongen, and DK Wilde. Loop nest synthesis using the poly-
hedral library. Technical report, INRIA, Unité de recherche de Rennes, Rennes,
FRANCE, 1998.

J Xue. Unimodular transformations of non-perfectly nested loops. Parallel Com-
puting, 22(12):1621-1645, 1997.

M O’Boyle and G Hedayat. Load balancing of parallel affine loops by unimodular
transformations. Technical report, Departement of Computer Science, University
of Manchester, 1992.

RH Saavedra, W Mao, D Park, J Chame, and S Moon. The combined effectiveness
of unimodular transformations, tiling, and software prefetching. Parallel Processing
Symposium, 1996., Proceedings of IPPS’96, The 10th International, pages 39-45,
1996.

J Torres, E Ayguade, J Labarta, and M Valero. Loop parallelization: revisiting
framework of unimodular transformations. Proceedings of the Fourth Euromicro
Workshop on Parallel and Distributed Processing, 1996. PDP’96., pages 420-427,
1996.

J Ramanujam. Non-unimodular transformations of nested loops. Proceedings of
the 1992 ACM/IEEE conference on Supercomputing, pages 214-223, 1992.

SK Singhai and KS McKinley. A parametrized loop fusion algorithm for improving
parallelism and cache locality. The Computer Journal, 40(6):340-355, 1997.

JMP Cardoso. Self-loop pipelining and reconfigurable dataflow arrays. Computer
Systems: Architectures, Modeling, and Simulation, 3133:234-243, 2004.

J Cortadella, RM Badia, and F Sanchez. A mathematical formulation of the loop
pipelining problem. Technical report, Universitat Politecnica de Catalunya, 1996.

J Jeon and K Choi. Loop pipelining in hardware-software partitioning. Proceedings
of the ASP-DAC"98, pages 361-366, 1998.

PMW Knijnenburg, T Kisuki, and MFP O’Boyle. Combined selection of tile sizes
and unroll factors using iterative compilation. The Journal of Supercomputing,
24(1):43-67, 2003.

F Irigoin and R Triolet. Supernode partitioning. Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
319-329, 1988.

K Hogstedt, L Carter, and J Ferrante. On the parallel execution time of tiled loops.
IEEE Transactions on Parallel and Distributed Systems, 14(3):307-321, 2003.

BIBLIOGRAPHY

243

[82]

[91]

92]

[93]

Gabriel Rivera and Chau wen Tseng. Tiling optimizations for 3D scientific com-
putations. Proceedings of the 2000 ACM/IEEE conference on Supercomputing,
page 32, 2000.

C Hsu and U Kremer. A quantitative analysis of tile size selection algorithms. The
Journal of Supercomputing, 27(3):279-294, 2004.

PMW Knijnenburg, T Kisuki, and MFP O’Boyle. Combined selection of tile sizes
and unroll factors using iterative compilation. The Journal of Supercomputing,
24(1):43-67, 2003.

J Ramanujam and P Sadayappan. Tiling multidimensional iteration spaces for
multicomputers. Journal of Parallel and Distributed Computing, 16(2):108-120,
1992.

Chung-Hsing Hsu. A stable and efficient loop tiling algorithm. Mid-Atlantic Student
Workshop on Programming Languages and Systems, 2000.

P Boulet and J Dongarra. Tiling for heterogeneous computing platforms. Technical
Report UT-CS-97-373, University of Tennessee, 1997.

A Darte, GA Silber, and F Vivien. Combining retiming and scheduling techniques
for loop parallelization and loop tiling. Parallel Processing Letters, 7(4):379-392,
1997.

S Parsa and S Lotfi. A new genetic algorithm for loop tiling. The Journal of
Supercomputing, 37(3):249-269, 2006.

Jaume Abella, Antonio Gonzalez, Josep Llosa, Xavier Vera, and Malardalens
Hogskola. Near-optimal loop tiling by means of cache miss equations and genetic
algorithms. ICPP’02, page 568, 2002.

Zhiyuan Li and Yonghong Song. Automatic tiling of iterative stencil loops. ACM
Transactions on Programming Languages and Systems, 24(17):1639-41, Sep 2000.

P Boulet, A Darte, T Risset, and Y Robert. (pen)-ultimate tiling? Integration-The
VLSI Journal, 17(1):33-52, 1993.

F Rastello and Y Robert. Automatic partitioning of parallel loops with
parallelepiped-shapedtiles. IEEFE Transactions on Parallel and Distributed Sys-
tems, 13(5):460-470, 2002.

DE Maydan, JL Hennessy, and MS Lam. Effectiveness of data dependence analysis.
International Journal of Parallel Programming, 23:63-81, 1995.

A Halambi, P Grun, V Ganesh, A Khare, N Dutt, and A Nicolau. Expression: A
language for architecture exploration through compiler/simulator retargetability.
Proceedings of the conference on Design, automation and test in Furope, page 485,
1999.

244

BIBLIOGRAPHY

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105]

[106]

[107]

[108]

[109]

P Lippens, J Van Meerbergen, and A Van der Werf. Phideo: a silicon compiler for
high speed algorithms. Euro DAC’91, pages 436—441, 1991.

D Cachera et al. Hardware design methodology with the alpha language. FDL’01,
2001.

A Darte et al High level code transformations, compsys.
http://jeudi.inrialpes.fr /2003 /Raweb/compsysuid28.html, 2003.

S Abraham, B Rau, and R SChreiber. Fast design space exploration through valid-
ity and quality filtering of subsystem designs. Technical report, Hewlett-Packard,
2000.

J LaRusic. A heuristic for solving the bottleneck traveling salesman problem.
Master’s thesis, University of New Brunswick, Canada, 2005.

P Larranaga, CMH Kuijpers, RH Murga, I Inza, and S Dizdarevic. Genetic al-
gorithms for the travelling salesman problem: A review of representations and
operators. Artificial Intelligence Review, 13(2):129-170, 1999.

Bernd Freisleben and Peter Merz. A genetic local search algorithm for solving
symmetric and asymmetric traveling salesman problems. Proceedings of IEEE In-
ternational conference on Evolutionary Computation, pages 616-621, 1996.

William Cook. Concorde. http://www.tsp.gatech.edu/concorde.html.

M. Schira and al. Two-dimensional mapping of the central and parafoveal visual
field to humain visual cortex. J. Neurophysiology, 97:4284-4295, 2007.

W Yu, SIT Center, and SK Daejeon. An embedded camera lens distortion correc-
tion method for mobile computing applications. IEEE Transactions on Consumer
FElectronics, 49(4):894-901, 2003.

AGJ Nijmeijer, MA Boer, CH Slump, MM Samson, MJ Bentum, GJ Laanstra,
H Snijders, J Smit, and OE Herrmann. Correction of lens-distortion for real-time

image processingsystems. VLSI Signal Processing, VI, 1993.,[Workshop on/, pages
316-324, 1993.

L Qiang and N Allinson. Spatial optical distortion correction in an fpga. IEEE
Workshop on Signal Processing Systems Design and Implementation, pages 268—
273, 2006.

AC Brooks and TN Pappas. Using structural similarity quality metrics to evaluate
image compression techniques. IEEE International Conference on Acoustics, Speech
and Signal Processing, 2007. ICASSP 2007, 1, 2007.

Lance Williams. Pyramidal parametrics. SIGGRAPH Comput. Graph., 17(3):1-11,
1983.

BIBLIOGRAPHY 245

Résumé de thése :

Dans le cadre de la synthése de haut niveau (SHN), qui permet d’extraire un modéle
structural a partir d’un modéle algorithmique, nous proposons des solutions pour opti-
miser 'accés et le transfert de données du matériel cible.

Une méthodologie d’exploration de I'espace des architectures mémoire possibles a été
mise au point.

Cette méthodologie trouve un compromis entre la quantité de mémoire interne utilisée
et les performances temporelles du matériel généré.

Deux niveau d’optimisation existe :

1. Une optimisation architecturale, qui consiste & créer une hiérarchie mémoire,

2. Une optimisation algorithmique, qui consiste & partitionner la totalité des données
manipulées pour stocker en interne seulement celles qui sont utiles dans I'immeédiat.
Pour chaque répartition possible, nous résolvons le probléme de I’'ordonnancement
des calculs et de mapping des données. A la fin, nous choisissons la ou les solutions
pareto.

Nous proposons un outil, front-end de la SHN, qui est capable d’appliquer 'optimisation
algorithmique du point 2 & un algorithme de traitement d’image spécifié par I'utilisateur.
L’outil produit en sortie un modéle algorithmique optimisé pour la SHN, en customisant
une architecture générique.

Abstract:

In this dissertation we present a method able to run a Design Space Exploration oriented
to the optimization of the data transfer and storage management.

The corresponding developed tool has been used as a front-end of HLS in order to help
the user to find an optimized memory micro- architecture.

Our method is able to handle image processing applications with non- affine array refer-
ences. It is able to apply a paving which, on one hand, is based on a run-time dependence
analysis and, on the other hand, uses disjoint and equal-by- translation blocks to parti-
tion the data and instruction sets. The non- affinity of the array references is taken into
account by projecting the instruction paving on the data paving.

This method leads to a memory micro-architecture that is, at the same time, adapted to
the non- affinity of the array references of the application and has a cheap control on the
data transfer because of the invariability of the size of transferred data blocks.

