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Mme. M.J. Rendas Chercheur I3S (Sophia Antipolis, France) Encadrant de thèse
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ᾱ (bottom) estimated from 3 different proposals:

real in red, P1 proposal in magenta, P2 proposal in green and
P3 in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 σ2 estimated from 3 different proposals: real in red, P1 pro-
posal in magenta, P2 proposal in green and P3 in blue. . . . . 86

4.7 Maximum log-likelihood with the index of the run in abcissae. 87



LIST OF FIGURES 9

4.8 Parameters estimated for the global maxima (in blue) and for
some local maxima (in green), with the real model (in red):
µ0 on the top, α in the bottom left and α
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Chapter 1

Introduction

In many contexts it is important to be able to find compact representations
of the collective morphological properties of a set of objects. This is the
case, for instance, of autonomous robotic platforms operating in natural
environments that must use the perceptual properties of the objects present
in their workspace to correctly plan their motion, navigate and execute their
mission. This thesis is a contribution to the definition of formalisms and
methods for automatic identification of such models. The shapes we want to
characterize are closed curves in an ambient Euclidean space, corresponding
to contours of objects detected in the scene.

We begin with the formal definition of the notion of shape as classes of
equivalence with respect to groups of basic geometric operators, introducing
two distinct approaches that have been used in the literature: i) the discrete
theory of shape introduced in the seminal work of Kendall [30] and ii) the
definition of space of continuous closed curves recently proposed by Klassen
and Srivastava [31]. We briefly characterize their topology and geometry,
and point out their relative advantages and limitations from the point of
view of the specific goals of our work. The discrete theory, admitting the
existence of a finite number of recognizable landmarks, provides in an ob-
vious manner a compact representation. Its strong advantage is that the
shape space is finite dimensional, its topology is known, and use of complex
algebra enables analytical treatment in the important case of two dimen-
sional shapes, for which shape space is a smooth manifold embedded in an
ambient Euclidean space. Most importantly, the definition of probability
distributions corresponding to a set of observed shapes can be addressed, by
considering the local mappings of neighborhoods of this shape space to their
tangent vector spaces. However, its use can lead to unstable results when
the definition of these landmarks needs to be automated, as we consider
here. The continuous theory of shapes, presented for closed curves in R

2

in [31], provides a more fundamental approach, but leads to shape spaces
of infinite dimension, lacking the parsimony of the discrete representation.
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CHAPTER 1. INTRODUCTION 14

This space of continuous shapes is an infinite dimensional Riemannian man-
ifold whose finite dimensional orthogonal spaces are known, and study of
its topology can be assessed using differential geometry tools. It presents
two main drawbacks with respect to our goals: it is subject to numerical
instabilities when building discrete approximations of the relevant elements
and operators, and, more fundamentally, we are not aware of attempts to
define probability distributions in this infinite dimensional shape space.

Based on the remarks above, we combine in our work the advantages
of both approaches. We base shape description on spline representations of
curves: piece-wise continuous polynomials defined by sets of knots (limits
of the polynomial pieces) and control points (the coefficients of the polyno-
mials). Our shapes are thus continuous, at the same time benefiting from
the flexibility (we consider a varying number of free knots, and thus our
model is dense in the set of continuous curves) and the sparsity of the spline
representation. The compact model of the properties of a set of shapes that
we learn from a given data are parametric probability distributions defined
over the space of parameters of the spline representation, inducing in this
manner a probability distribution in the dense subset of all continuous closed
curves. In the rest of the manuscript, we first study the simpler problem of
fitting free-knots splines of varying complexity to a single observed curve,
to address, in a subsequent step, the estimation of probability distributions
over the spline parameters that will represent a set of curves.

Real observations are affected by noise, and exact representation of all
samples of a given curve would lead to overly complex models. One must
then find a balance between the parsimony of the representation and its
fidelity to the observations, looking for minimal spline representations with
good fitting properties. This trade-off is a well known characteristic of model
identification using nested families of increasing dimension, and is an active
research topic addressed by many authors. After presenting an overview of
methods previously proposed in the literature, pointing out some inconsis-
tencies in previously published references, we single out a two-step approach
which is formally sound and matches our specific requirements. It splits the
identification, simulating a reversible jump Markov chain to select the com-
plexity of the model (number of knots in the case of splines) followed by a
simulated annealing algorithm to estimate its parameters. We investigate
the link between Kendall’s shape space and spline representations when we
take the spline control points as landmarks. Two important questions arise:
in which measure our approach provides, as a by-product, a method for auto-
matic landmark identification, and, how much discriminative and descriptive
power do we gain by using the more complex continuous representation.

After having discussed modeling of a single curve, we consider the more
complex problem of modeling a set of objects with similar morphological
characteristics. We equate the problem to finding the statistical distribu-
tion of the parameters of the spline representation, modeling the knots and
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control points as unobserved variables.The identified distribution is the max-
imizer of a marginal likelihood criterion, and we propose a new Expectation-
Maximization algorithm to optimize it. Because we may want to treat a
large number of curves observed sequentially, we adapt to our problem an
iterative (on-line) version of the EM algorithm recently proposed in the lit-
erature, where one data curve is processed at each iteration. For the choice
of statistical distributions that we consider, both the expectation and the
maximization steps must resort to numerical approximations. We rely on
sequential Monte Carlo simulations to compute the expected value at each
EM iteration, leading to a stochastic/on-line variant of the EM algorithm
that, as far as we know, is implemented here for the first time.

Several illustrating examples are shown throughout the presentation, so
that no separate chapter of manuscript is reserved to numerical results.
In the last chapter, we recall the main novel aspects and contributions of
the thesis, and discuss possible directions for future work. In particular,
further work is required concerning the important problem of reducing the
numerical complexity of the algorithms presented in the thesis to make them
suitable for real robotic applications. More fundamentally, extension of the
stochastic/on-line EM method to mixtures of exponentials would enable a
joint estimation of all (structural and continuous) model parameters. Fi-
nally, we return to the motivating framework of the thesis and conclude
with a discussion of how this shape modeling framework can be integrated
into navigation and mapping systems of autonomous mobile platforms.





Chapter 2

The theory of shape

2.1 Introduction

Many applications require to distinguish objects with respect to their mor-
phology: color, texture or geometry, for example. In our case, dealing with
side-scan sonar images of the ocean bottom, we are interested in character-
izing the objects’ appearance: their sizes, locations, orientations and shapes.
While the first three characteristics are mainly determined by the observer’s
point of view, the shape of large scale objects lying on the sea floor is fun-
damentally an intrinsic property of the objects themselves. For this reason,
we want to be able to clearly separate the description of shape from other
factors, and derive representations allowing the direct comparison of two
shapes. Since our observations are uncertain, our aim is not only to iden-
tify a single possible instance of a convenient mathematical definition of the
shape of an object, but rather to do this statistically, i.e., to be able to de-
fine probability measures over the set of possible shapes. This is particularly
important, for compactness and robustness reasons, if we are interested in
collectively describing the shape of a collection of observed objects.

We thus focus our attention on the definition of shape given by Kendall
[29] as “what is left when the differences which can be attributed to transla-
tions, rotations, and dilatations have been quotiented out”. We distinguish
two major approaches that share this point of view that shapes are orbits
under the action of certain classes (groups) of operators. The first one is
the original theory developed by Kendall in [30] and represents an object
as a finite set of landmarks: for example, the vertices of a polygon or the
characteristic points on monkey skulls. We refer to this approach as the
discrete theory of shape, and present its basic definitions in the first section
of this chapter. In the second section, we present an alternative approach,
in which shapes are infinite-dimensional continuous curves describing object
contours. This theory has been initiated by Klassen and Srivastava in [31].
In contrast with the discrete theory, we refer to this theory as the continuous

17



CHAPTER 2. THE THEORY OF SHAPE 18

theory of shapes. We outline their approach and focus on the special case
of two dimensional closed curves which is the relevant case in the context of
this thesis.

2.2 Discrete shape space (Kendall)

Kendall’s theory, developed in [29], relies on the postulate that any change
in position, size or orientation of an object does not change the global per-
ception we have about its shape. An object is represented by a set of dis-
tinguishable points called landmarks that characterize it: the vertices for
polygonal shapes or the tips of the fingers for human hands for example.
This set is called the configuration of an object and noted Z. It is rep-
resented by the configuration matrix Z ∈ R

m×k whose columns are the k
landmarks zi =∈ (zi1 zi2 · · · zim)T

R
m, where (u)T denotes the transpose of

u, and Z = (z1 z2 · · · zk).
The shape associated to Z is then the orbit of Z with respect to the

transformations that leave unchanged its shape: translation, rotation and
scaling. Let [Z] denote the shape of Z.

Let SO(m) denotes the special orthogonal group in R
m, i.e. the group

of rotation matrices.

Definition (2.1): Shape equality

Let [Z1] and [Z2] be the shapes associated to two configurations Z1

and Z2. We say that [Z1] and [Z2] are identical and write: [Z1]
s
=[Z2] if

and only if ∃ α ∈ R
∗
+, R ∈ SO(m) and t ∈ R

m that map Z2 into Z1:

[Z1]
s
=[Z2] ⇔ Z1 = αRZ2 + t . (2.1)

It can be shown that
s
= is an equivalence relation (reflexive, symmet-

ric and transitive) that partitions the configuration space into equivalence
classes.

2.2.1 The preshape space

For notational simplicity, let introduce the Vec (·) operator:

Definition (2.2): Vec (A)

Let A = [Aij ] , i = 1 · · ·m, j = 1 · · · k be a R
m×k matrix, Vec (A) ∈

R
mk is the column vector that stacks the columns of A one under the

other:
[Vec (A)](j−1)m+i = Aij .
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The study of the set of shapes, or the equivalence classes, is usually not
done directly in the configuration space R

m×k . We present below definitions
that are classically used to analyze its geometry.

Definition (2.3): Centered representation

Let Z ∈ R
m×k be a configuration. We denote by Zc its centered

representation:
Zc , Z − zc1k , (2.2)

where 1k is the k-dimensional row vector with unit components, and

zc = (zc
1 zc

2 · · · zc
m)T ∈ R

m is the barycenter of Z: zc =
1

k

k
∑

i=1

zi.

The application Z → Zc that maps each point of R
m×k in the orthogonal

subspace of 1k is invariant with respect to translation.

Definition (2.4): Frobenius norm

We denote by ||Z|| the Frobenius norm of Z ∈ R
m×k or equivalently,

the Euclidean norm in R
mk of Vec (Z):

||Z|| ,
√

Tr (ZT Z) =

√

(Vec (Z))T Vec (Z) . (2.3)

Definition (2.5): Preshape

Let Z ∈ R
m×k be a configuration. The preshape of Z, denoted by

Z̃, is the centered and normalized version of Z:

Z̃ ,
Zc

||Zc||
. (2.4)

The application Zc → Z̃ is invariant to scaling. Figure 2.1 illustrates the
computation of the preshape of a planar object.

Definition (2.6): Preshape space Sk
m

We denote by Sk
m the preshape space, the set of all preshapes ob-

tained from objects with k landmarks in R
m:

Sk
m ,

{

Z ∈ R
k×m ; zc =

(

0k
)T

and ||Z|| = 1

}

, (2.5)

where 0k is the column vector with k zeros.

From this definition, Sk
m is the hypersphere of unit radius in R

m(k−1). It
is a (m(k − 1) − 1)- dimensional non-linear variety. The preshape space is
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Figure 2.1: Illustration of preshape determination: Z (in blue) is the con-
figuration, Zc (in red) is the centered configuration and Z̃ (in green) is the
preshape.

thus a mathematical object with a simple and well-known structure.

Three distinct distances have been defined in the preshape space, en-
abling the direct comparison of two preshapes Z̃1 and Z̃2 (see Figure 2.2 for
a geometric interpretation):

• the scaled distance, noted Ds, which is an extrinsic distance defined
outside Sk

m by scaling one of the preshapes (Definition 2.7),

• two intrinsic distances:

– the chordal distance DP (Definition 2.8),

– the great-circle distance D (Definition 2.9).

Definition (2.7): Scaled distance

The scaled distance Ds is the minimum Euclidean distance between
Z̃1 and the line through the origin containing Z̃2 (its scaled version):

Ds(Z̃1, Z̃2) = inf
α∈R

+
∗

||Z̃2 − αZ̃1|| , (2.6)

with || · || the Frobenius norm (definition 2.4) and R
+
∗ , the set of non-null

positive real numbers.
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Figure 2.2: Illustration of the scaled distance Ds, the chordal distance Dc

and the great-circle distance D, in the preshape space.

Definition (2.8): Chordal distance

The chordal distance Dc is the Euclidean distance between the pre-
shapes Z̃1 and Z̃2:

Dc(Z̃1, Z̃2) = ||Z̃2 − Z̃1|| , (2.7)

with || · || the Frobenius norm (definition 2.4).

Definition (2.9): Great-circle distance

The great-circle distance D is the length of the geodesic in Sk
m be-

tween Z̃1 and Z̃2:

D(Z̃1, Z̃2) = arg
(

Z̃2, Z̃1

)

, (2.8)

where arg(Z̃2, Z̃1) denotes the angle between Z̃1 and Z̃2.

Note that:

• Ds ∈ [0, 1] and Ds = sinD,

• Dc ∈ [0, 2] and Dc = 2 sin D
2 .

• D ∈ [0, π] and D(Z̃1, Z̃2) = arccosTr
(

Z̃T
1 Z̃2

)

,

We thus have that geodesics of the preshape spaces Sk
m are the geodesics

of spheres, the great circles.
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2.2.2 The shape space

It follows from definitions 2.1 and 2.6 that the shape [Z] of a configuration
Z is:

[Z] ,
{

RZ̃ : Z̃ ∈ Sk
m , R ∈ SO(m)

}

. (2.9)

Definition (2.10): Shape space Σk
m

Let Sk
m be the preshape space of the configuration space R

m×k. The
shape space, noted Σk

m, is the set of all shapes of objects of k landmarks
in R

m. Σk
m is the quotient space of Sk

m:

Σk
m , Sk

m/SO(m) . (2.10)

Construction of the shape space is summarized in Figure 2.3.

Z
R

m×k
Z̃
Sk

m

[Z]
Σk

m

Translation
Scaling

Rotation

Figure 2.3: Summary of the shape representation process and the corre-
sponding spaces.

The shape space is a

(

m(k − 1) − 1 − m(m − 1)

2

)

- dimensional non-

linear space [30]. Figure 2.4 illustrates the shape space as the set of orbits
of Sk

m under the action of SO(m). Note that this figure does not correspond
to any real shape space: when m = 2 and k = 2, S2

2 is a one-dimensional
sphere in R

2, a point, and the minimal non-trivial shape space is obtained
for m = 2 and k = 3, implying that S3

2 is a three-dimensional sphere in R
4.

In [30], Kendall studies the topology of generic shape spaces Σk
m, showing

that:

• Σ2
1 is a 2-point space and thus a zero-dimensional sphere of unit radius.

• Σ3
2 (the space of planar triangles) is a metric 2-dimensional sphere in

R
3 of radius 1/2, largely studied in the litterature [7, 34, 29, 18, 30, 45].

• Σk
1 is equivalent to the (k−2)- dimensional sphere of unit radius, noted

S
k−2(1).

• Σk
2 is equivalent to the (k − 2)- dimensional complex projective space

of curvature 4, noted CP k−2(4).

• Σk
k−1, k ≥ 3, are topological spheres but not metric spheres studied in

[30].
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Sk
m

Z̃

[Z]

Figure 2.4: Illustration of the preshape space as an hypersphere and shapes
as orbits.

• Σk
m, k ≤ m are overdimensioned spaces. They are topologically equiv-

alent to hemispheres, the halved version of Σk
k−1 [30].

• Σk
m, k ≥ m+2 and m ≥ 3 are not spheres, nor manifolds, as they have

singularity sets [30]. Note that outside the singularity set, the shape
space is a differential manifold that can be endowed with a Rieman-
nian metric and where geodesics can be defined.

In [30], three distances in Σk
m are defined almost everywhere (outside

the singularity sets) as the distances inherited from the distances in Sk
m

with definitions 2.7, 2.8 and 2.9.

Definition (2.11): Distances in Σk
m

Let D(·, ·) be a distance in Sk
m. Then,

d([Z1], [Z2]) = inf
R∈SO(m)

D(Z̃1, RZ̃1) , (2.11)

is a distance in Σk
m between two shapes [Z1] and [Z2], obtained by search-

ing the minimum distance between the orbits of the preshapes Z̃1 and
Z̃2.

We will use the following notations:

• dF is called the full Procrustes distance inherited from Ds (Defini-
tion 2.7),

• dP is called the partial Procrustes distance inherited from Dc (Defini-
tion 2.8),
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• d is called the Procrustes distance inherited from D (definition 2.9).

The determination of geodesics in Σk
m is a difficult problem treated in

[30].

2.2.3 Planar shapes

In the context of this thesis, we are interested in characterizing shapes of
planar objects i.e. m = 2 and Σk

2, which, as the authors of [30] show, is a
Riemannian manifold.

In the special case of planar objects, we can exploit the complex represen-
tation of the plane: zi ∈ C, Z = (z1, z2, · · · zk) ∈ C

k, where C is the complex
representation of R

2, is possible. The Frobenius norm is: ||Z|| =
√

ZZH

where ZH denotes the conjugate transpose of Z, and the rotations are equiv-
alent to multiplication by unit modulus complexes eiθ (i2 = −1), θ ∈ [0, 2π[,
so that shapes are the equivalence classes:

[Z] =
{

eiθZ̃, Z̃ ∈ Sk
2 , θ ∈ [0, 2π[

}

. (2.12)

All distances given in definition 2.11 have analytical expressions in Σk
2:

• dF ([Z1], [Z2]) = 1 − |Z̃1Z̃
H
2 |,

• dP ([Z1], [Z2]) =
√

2
(

1 − |Z̃1Z̃
H
2 |
)

,

• d([Z1], [Z2]) = arccos |Z̃1Z̃
H
2 |.

2.2.4 Extension to closed shapes

Kendall’s original theory considers sets of distinguishable points. In many
applications, these points are samples of closed curves c(t), t ∈ T ⊂ R

+ such
that zk = c(ϕ(tk)). The parametrization ϕ(t) of curves is not fixed and there
is no guarantee of a systematic labeling of the points as there is generally
no natural origin for curves.

z14

z11 z12

z13 z24

z23 z22

z21

Figure 2.5: Two objects with the same shape and different labeling of their
landmarks.
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Figure 2.5 shows two closed objects with the same shape but with dif-
ferent labeling of their landmarks. Any of the distances introduced before
between their shapes is non-null, d = π/2 for example, as they are in dif-
ferent orbits. The two objects will have the same shape if we additionally
impose invariance with respect to labeling. An additional invariance with
respect to parameterization ϕ(t) should be imposed to recover the intuitive
notion of shape, such as, fixed chord-length for the set of points or regular
sampling of the curve. This invariance, not considered here in the discrete
case, is imposed for shape of continuous curves in section 2.3. However since
points correspond to samples taken along the curve such that: k1 > k2 im-
plies tk1 > tk2 , we consider only relabeling that preserve their order.

We give a new definition of shape, denoted by (Z), as the equivalence
class of [Z] with respect to the group noted P, the set of shift and reflective
operators:

Definition (2.12): Shift and reflective group

Let P be the subset of the permutation group generated by 2 ma-
trices ∆1 ∈ R

k×k and ∆2 ∈ R
k×k such that any matrix P ∈ P ∈ R

k×k

can be written:
P = (∆1)

r (∆2)
p ,

p ∈ {1, 2 . . . k} and r ∈ {0, 1}.

∆1 =



















0 · · · · · · 0 1
... . .

.
. .

.
. .

.
0

... . .
.

. .
.

. .
.

vdots

0 . .
.

. .
.

. .
. ...

1 0 · · · · · · 0



















and ∆2 =



















0 0 · · · 0 1

1
. . .

. . .
. . . 0

0 1
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · · · · 1 0



















.

Note that these operators act upon the labels and not the points and
form a cyclic group of order k with the finite set {1 · · · k}.
Definition (2.13): Circular shape

Let Z1 and Z2 be two configurations in R
m×k. We say that Z1 and

Z2 have the same circular shape and write (Z1)
circ
= (Z2) if and only if

∃ α ∈ R
+
∗ , R ∈ SO(m), t ∈ R

m and P ∈ P:

(Z1)
circ
= (Z2) ⇔ Z1 = αRZ2P + t .

Let Z be a configuration. (Z) is the equivalence class:

(Z) =
{

RZ̃P : Z̃ ∈ Sk
m , P ∈ P, R ∈ SO(m)

}

. (2.13)
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Definition (2.14): Circular shape space

We denote by Σ∗k
m the circular shape space, the set of circular shapes

in R
k
m. It is the quotient of the shape space defined in 2.10 by the shift

group:
Σ∗k

2 = Σk
2/P . (2.14)

As quotient spaces, Σ∗k
m inherit distances defined in Σk

2. Let d be a
distance defined in Σk

m. Then, D:

D((Z1), (Z2)) = min
P∈P

d([Z1], [Z2 P ]) , (2.15)

is a distance between two circular shapes in Σ∗k
m .

When D is derived from dF or dP , i.e. when d in the previous equation
is given by equation (2.11) and either equation (2.6) or eqaution (2.7), its
determination is a version of the general Procrustes problem, more partic-
ularly, the two sided orthogonal Procrustes problem [43], as it is a double
minimization problem, for example with dP :

DP ((Z1), (Z2)) = min
P∈P

dP ([Z1], [Z2]) = min
R∈SO(m),P∈P

||Z̃1 −RZ̃2P || , (2.16)

where Z̃1 and Z̃2 ∈ Sk
m are any two preshapes representing (Z1) and (Z2).

When no special restrictions are imposed on Z1 and Z2 (such has their
rank for example), there exists no closed form expression for D and the
minimization must be solved it numerically.

To conclude this brief review on the discrete shape theory, we must
note that preshape spaces have a well-known geometry allowing very simple
definition for distances and, in the planar case (that is the focus of this
thesis), analytical expressions exist which are easy to handle. However, the
theory suffers a major basic drawback that is the selection of landmarks and
their one-to-one correspondence, detailed in the concluding section of this
chapter 2.5.

2.3 Continuous shape space (Srivastava)

As we have seen, the definition of the discrete shape space presented in the
previous section goes through the identification of the preshape space, that
collects selected representatives of each class of equivalence with respect to
two groups of operators: translation and scaling. The shape space is finally
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built as the quotient of this space with respect to the actions of SO(m), the
group of rotations in R

m.
The approaches that stem from the work introduced in [31] follow the

same construction even if considering distinct configuration spaces Lc, the
set of mathematical objects that contains all possible instances of shapes.
First a selection function Q(·) is defined such that the corresponding many-
to-one mapping of Lc, noted C, is invariant with respect to the action of a
given set of groups G:

Q : Lc → C ⊂ Lc

C → Q(C) = s (2.17)

The sets {C : Q(C) = s} are equivalence classes with respect to G, i.e.
if s = Q(C1) = Q(C2), then, ∃g ∈ G: C1 = g(C2). The preshape space C is
thus the set of possible values of Q(C) ∈ Lc.

Let L
2 be the Hilbert space of functions from [0, 2π] to R with inner

product 〈f, g〉
L2 :

〈f, g〉
L2 =

∫ 2π

0
f(t)g(t)dt , (2.18)

and associated norm ‖f‖L2 =
√

〈f, f〉
L2 .

Let L
2(R2) be the set of continuous and differentiable functions defined

on [0, 2π] with values in R
2. Let f(t) = (fx(t), fy(t)) and g(t) = (gx(t), gy(t))

be two elements of L
2(R2), the inner product is:

〈f, g〉
L2(R2) =

∫ 2π

0
〈f(t), g(t)〉E dt , (2.19)

where, 〈f(t), g(t)〉E = fx(t)gx(t)+fy(t)gy(t) is the standard Euclidean inner
product in R

2.

The following two configurations have been proposed as a basis for the
definition of shape spaces:

• the angle function with respect to arc-length parametrization [31],
noted θ(t) ∈ L

2,

• the square-root velocity function [25], noted q(t) ∈ L
2(R2).

Some other functions have been proposed [31, 37] that we do not expose
here as they are extensions of the former two.

Definition (2.15): Velocity vector

The velocity vector α(t) of the curve c(t) is:

α(t) =
dc(t)

dt
. (2.20)
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Definition (2.16): Curve length

Let c(t) be a curve. The length of c(t), noted L(c) is:

L(c) =

∫

2π

0

√

〈α(t), α(t)〉dt . (2.21)

When the parametrization of c(t) is fixed to arc-length (unit speed), as
it is the case for the first proposed configuration, |α(t)| = 1. Then:

Definition (2.17): Angle function

θ(t) ∈ L
2 is the angle between the x-axis and the velocity vector

α(t) such that:

α(t) = eΦ(t)eiθ(t) , t ∈ [0, 2π] . (2.22)

where Φ(t) is the log-velocity function:

Φ(t) = log |α(t)| .

If the parametrization is fixed to arc-length, or unit speed, then |α(t)| = 1
and, for all t ∈ [0, 2π], eΦ(t) = 1 and Φ(t) = 0. In this case, θ(t) is a
representation of c(t).

Definition (2.18): Square-root velocity function

The square-root velocity function, q(t) ∈ L
2(R2) by definition is:

q(t) =
α(t)

√

||α(t)||E
, t ∈ [0, 2π] , (2.23)

with α(t) given in equation (2.20).

2.3.1 The preshape space

As differentiable functions, the two configuration spaces L
2 and L

2(R2) are
invariant with respect to translation of the original curves. Corresponding
preshape spaces are obtained considering the action of selected groups:

• For θ(t), G is the group of rotations, and the selected representative,
the preshape, is such that

E[θ(t)] =
1

2π

∫ 2π

0
θ(t)dt = π .
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Then, the preshape space Cθ is:

Cθ = {θ(t) = arg(α(t)) :

c(t) is arc-length parametrized,L(c(t)) = 2π, E[θ(t)] = π} .

• For q(t), G is the group of scalings, and the selected representative,
the preshape, is such that

∫ 2π

0
||q(t)||2dt = 1 ,

Then the preshape space Cq is:

Cq =

{

q(t) =
ċ(t)

√

||ċ(t)||
: E
[

||q(t)||2
]

= 1

}

. (2.24)

Let c(t) be a curve. We note c̃(t) its preshape (either with θ or q con-
figuration space. In figure 2.6, we give, on the left, an example of a closed
curve c(t) (seahorse) and, on the right, its preshape θ(t).
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Figure 2.6: Example of the angle function (right) for the contour of the
object on the left.

In [31, 25], authors define differentiable mappings from the configuration
space Lc to R that define preshape spaces:

F : Lc → R (2.25)

F(C) = a . (2.26)

Then, the preshape space C = F−1(a). They conclude that both preshape
spaces Cθ and Cq are infinite-dimensional “Riemannian” manifolds and they
determine the tangent and normal spaces to the preshape space. Indeed,
from the computation of the directional derivative of the mapping F , it
follows that the normal space is a one-dimensional space with inner product
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inherited from Lc, and the tangent its infinite-dimensional complement in Lc.
With definition 2.24, Cq is an infinite-dimensional unit radius hypersphere
with well characterized geometry and for which geodesics are great-circles.
However there is no analytical expression for geodesics in Cθ and in [31]
authors propose a numerical method to find them.

Definition (2.19): Distance in S
Distance D between the preshapes of two continuous curves is the

length of the geodesic between them and it is numerically computed.

2.3.2 The shape space

Let c(t) be a curve. The shape of c(t), noted [c(t)], is the orbit of the
preshape c̃(t) with respect to some group operators.

• Let χx.f (t) = f(t − x) + x, x ∈ [0, 2π] be a function that changes the
initial point of f(t) defined on [0, 2π], preserving its mean value, and
let Xf be the set of such functions for x ∈ [0, 2π].

• Let Γ be the set of orientation preserving diffeomorphisms of [0, 2π]
(equivalent to actions on the circle noted S

1), or re-parametrization
group. For γ ∈ Γ and q(t) ∈ L

2(R2), q̃(t) =
√

γ̇(t) (q ◦ γ(t)).

• Let SO(2) be the special orthogonal group of rotations in R
2.

Definition (2.20): Shape space

Shape space, noted S, is the quotient space of the preshape space C
under the action of groups operators:

• Sθ = Cθ/Xθ,

• Sq = Cq/ (Xq × Γ × SO(2)).

In [31, 26], the authors determine that the shape space is an infinite-
dimensional Riemannian manifold that inherits the distance definition from
those defined in the preshape space (definition 2.19).

Definition (2.21): Distance in S
The distance d between two shapes [c1(t)] and [c2(t)] is defined as

the minimal distance between orbits of preshapes c̃1(t) and c̃2(t):

d([c1(t)], [c2(t)]) = min
P∈P

D(c̃1(t), P · c̃2(t)) , (2.27)

where P is the group of actions that form the equivalence class given in
definition 2.20 (P = Xθ for θ(t) representation and P = Xq × Γ× SO(2)
for q representation), and D is the distance in S (definition 2.19).
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2.3.3 Closed shapes

The representation of closed curves requires an additional closure condition.
For the two representations introduced previously, these conditions are:

• for θ(t),
∫ 2π
0 eiθ(t)dt = 0,

• for q(t),
∫ 2π
0 ||q(t)||Eq(t)dt = 0.

The closure condition (in fact two conditions in the plane) must be added
in the mapping F given in equation 2.26: F : Lc → R

3. Then, both preshape
spaces are infinite-dimensional Riemannian manifolds with tangent spaces
that are the complement of three-dimensional normal spaces for whose bases
are known.

The closure condition is a nonlinear constraint and Cq is thus no longer
a sphere. For both representations, geodesics and distances in the preshape
spaces have no analytical expressions and in [31, 26], authors propose nu-
merical methods to determine them.

2.4 Statistical shape spaces

We now focus on the construction of statistical shape spaces by first focusing
on the definition of statistics such as mean and variance, and then summa-
rizing current efforts on the definition of probability distributions in shape
spaces.

2.4.1 Statistics in shape space

Definition (2.22): Fréchet mean

Let (S, dist) be a metric space with probability measure w. The
Fréchet mean S̄F is the set of global minimizers of f(x):

f(x) =

∫

S
dist2(x, y)dw(y) x ∈ S ,

i.e. it is the set {([µ]dist ∈ S : f([µ]dist) ≤ f(x), x ∈ S}.

Let {Xi}n
i=1 , Xi ∈ S be independent and identically distributed elements

of S. Then, we obtain the sample Fréchet mean or Karcher mean of {Xi}n
i=1

using in the previous equation the empirical distribution, as the local mini-
mizers of F (x):

F (x) =
1

N

N
∑

i=1

dist2(x, Xi) x ∈ S . (2.28)
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Definition (2.23): Fréchet variation

Let µ denotes a minimizer of f(x). Then, the variation, noted Vµ,
of the Fréchet mean is Vµ = f(µ).

Continuous and discrete mean shape can be defined with the correspond-
ing distances definitions (2.11), (2.27).

For discrete planar shape in Σk
2, the Fréchet means and their variations

are studied in [6], with the full Procrustes distance dF . The mean associated
to the full Procrustes distance, noted [µ]F , has an analytical expression. An
example of this mean shape is given in Figure 2.7 with, in the left, 10 objects,
and, in the right, their preshapes and their mean shape [µ]F . Note that the
mean shape is not rotationally aligned with the preshapes as it is the mean
of orbits, invariant to rotation, and not the mean of preshapes.

Definition (2.24): Full Procrustes mean shape

Let
{

Z̃i

}n

i=1
be a set of preshapes defined in equation (2.4). Let

[µ]F be the Fréchet mean shape of the set. Let S be the matrix S =
∑N

i=1 Z̃H
i Z̃i, and let λ and ν be its largest eigenvalue and its correspond-

ing eigenvector. Then, [µ]F = ν.
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Figure 2.7: Example of a set of curves (left) and, in the right, their preshapes
(blue) and the Karcher mean shape [µF ](red).

Uniqueness of the Fréchet mean in Σk
2 is proven in [6]. They also propose

nonparametric tests to compare mean and variations of two sample sets of
shapes. We do not further explore these properties here.

For continuous shape spaces, as their is no analytical expression for the
distance, the Fréchet mean must be numerically computed.
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2.4.2 Statistical shape models

We now want to go further in the statistical analysis and define distribu-
tions in shape spaces. In the literature there are different approach to the
definition of shape distributions.

We begin by introducing an approach for discrete representations of ob-
jects, that consists in defining distributions in the configuration space R

m×k

and transposing them in the shape space. Authors in [30, 45] and in [34]
give some of them:

• [30, 45] transpose the distribution of k labeled iid (independently iden-
tically distributed) isotropic Gaussian distributions in R

m, to its in-
duced shape measure in Σk

m, outside the singularity set (that has mea-
sure zero). Note that for m = 2, this shape measure is the uniform
measure on Σk

2.

• [30, 45] transpose the distribution of k labeled iid non-isotropic Gaus-
sian distributions in R

2, to its induced shape measure in Σk
2,

• [30] transpose the complex normal distributions in C, to its induced
shape measure in Σk

2,

• [34] transpose k independently distributed bivariate Gaussian with
Bookstein’s coordinates to its induced shape measure in Σk

2.

Note that these approaches do not directly define distribution in the
shape space but consider a distribution in the configuration space and trans-
form it to the shape space. It is only possible to do so for a reduced number
of well-known distributions.

We also introduce the point distribution model (PDM), presented in [11]:

Definition (2.25):

Let {xi}n
i=1 be a set of aligned objects, then each object is described

using a typical object x̄ with a typical variation:

xi = x̄ +

p
∑

j=1

hijvj . (2.29)

A standard tool for computing the modes of the variations {vj}p
j=1 in

the set of objects is the principal component analysis of the data set.
This theory is the basis of lots of studies. One major issue in PDM

determination is the way landmarks are selected and aligned. [48, 13] pro-
pose methods for automatic selection of landmarks and [5] proposes to use
equally spaced control points of a spline as the landmarks. In [23],the au-
thors propose a multimodal PDM for tracking applications.
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In this part on PDM, we intentionally did not mention shape but rather
refer to mention objects. Indeed the method does not consider the global
shape of the objects but their variations inside an observed set. Thus, even
when some restrictions are applied to objects (such as, size, position, . . . ),
the model is still in the configuration space and not in the shape space.

A second type of approach for shape distribution definition is when defin-
ing distributions in the preshape space and then transporting them in the
shape space. Considering the discrete theory, this method requires to define
distributions on hyperspheres. [18] and [40] present some distributions in
the preshape space:

• the complex Bingham distribution [18] in Sk
2 , denoted CBk−2(A),

where A is a matrix determining the mode of the distribution and
its concentration around the mode. Note that CBk−2(A) is invariant
with respect to rotations and is equivalent to a zero-mean complex
multivariate normal distribution conditioned to have unit norm: if
w ∼ CN(0, Σ),1

w|||w|| = 1 ∼ CBk−2(−Σ−1) .

• the complex Watson distribution [18] in Sk
2 , denoted CWk−2(µ, ξ),

where µ and ξ determine its mode and concentration. Note that
CWk−2(µ, ξ) is a special case of CBk−2(A) when A has just two distinct
eigenvalues.

• in [40], Pennec propose a generalization of the Gaussian distribution
for manifolds, and particularly for spheres. This could be applied for
the definition of Gaussian mixtures on the preshape space for example.

The last approach introduced in this thesis for the definition of shape
distributions is those that are defined in the tangent space of the preshape
space or of the shape space. In general, considering geometry on Riemannian
manifolds, the projection on the tangent space is defined with the exponen-
tial mapping.

1
CN(0, Σ) denotes the complex gaussian distribution with null mean and covariance

matrix Σ.
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Definition (2.26): Exponential map

Let M be a manifold and µ, a point in M. Let Tµ(M) be the
tangent space to M at µ and v a vector of Tµ(M). Let gµ,v be the
geodesic in M going through µ in the direction v.
The exponential map maps each vector v ∈ Tµ(M) to a point in M
attained in a unit time along gµ,v:

Tµ(M) → M
v → expµ(v) = gµ,v(1) .

The inverse mapping, from the manifold to the tangent space, is called
the logarithmic map. So the projection detailed above (2.30) can be seen
as the inverse of exponential mapping with geodesic on the preshape space
(hypersphere).

So defining distributions on the tangent space to shape space and then,
transporting them onto the shape space with the logarithmic mapping, we
can define distributions on the shape space.

Let T[µ](Σ
k
2) be the tangent space to Σk

2 at the shape [µ]. T[µ](Σ
k
2) is an

Euclidean approximation of the shape space in the neighborhood of [µ].
The vector v ∈ T[µ](Σ

k
2) corresponding to the shape [Z] 6= [µ] is its

orthogonal projection in the tangent space. Ẑ, the icon of [Z] that minimizes
the distance with [µ], is first selected:

Ẑ = arg min
Z∈[Z]

dist(Z, [µ]) .

where dist(·) is one of the three distances defined above. Then, Ẑ is pro-
jected on T[µ](Σ

k
2) so that:

v =
(

Ik − µHµ
)

Ẑ , (2.30)

with µ the preshape of [µ] closest to Ẑ. Note that v is a complex vector.
The inverse projection from v to Z, an icon of the shape [Z], is given by:

Z =
√

(1 − vvH)µ + v . (2.31)

Note that (2.31) and (2.30) correspond respectively to the exponential
and logarithm mappings, generally defined above.

In the case of continuous shape spaces, infinite-dimension Riemannian
manifolds, one must resort to approximations for distributions definition.
The tangent space to a shape space is also an infinite dimensional space.
Thus exponential mapping is not defined and [31, 25] propose to restrict to
a finite-dimensional subspace of the tangent space (with Fourier descriptors
for example in [31]). Then, one can define the exponential map 2.26 to
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transport distributions from the tangent space to the shape space, that is a
Riemannian manifold and benefits from the work described in [40].

2.5 Conclusion and discussion

2.5.1 Discussion on Kendall’s approach

Kendall’s shape spaces are very powerful in the sense that they are manifolds
of fixed dimensions. The main advantage of the discrete shape theory is its
ease of manipulation, especially in the case of planar shapes where we have
analytical expressions for distances, mean shape, and where its Riemannian
structure allows to use the tangent space as an Euclidean approximation to
the shape space.

The major drawback comes from the definition of an object as a set
of remarkable points. Indeed they are usually manually selected and thus
their selection highly varies with the perception of the selector itself. Some
authors proposed to automate the selection [13, 5] but the problem due
to the matching of points between distinct objects still remains. We can
also easily define two sets of points that have the same shape but does not
correspond to the same object. A solution may be to use sample points
of a curve to define its shape. Then, the sampling scheme must be tight
enough to capture the global shape but this goes paired with an increased
computational cost.

Practically, to be able to compare the shapes of two distinct objects, their
configurations must lie in the same space. This corresponds to establish that
they have the same number of landmarks. But when trying to compare the
shapes of a fish and a triangle it may be difficult to use the same number
of key points to determine their shapes and thus it is meaningless to try to
match them.

To avoid these major problems due to the discretization of the definition
of the shape, we have seen that some authors propose continuous approaches
to the shape definition.

2.5.2 Discussion on this continuous approach

The continuous approach to the definition of shape is an appealing theory
as it overcomes the main drawback of Kendall’s theory: the selection of
landmarks. Continuous shape spaces are infinite dimensional Riemannian
manifolds and Riemannian geometry tools allow the definition of some major
elements such as the distance between two shapes, the geodesic on the shape
space and the mean of a set of shapes. A problem with this approach is that
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their is no analytical expressions available for these tools and one must use
numerical methods for their determination.

The main drawback arises as the shape space are non-linear infinite-
dimensional spaces. So they are not probability spaces and to perform sta-
tistical analysis and modeling, one must resort to approximations. The Rie-
mannian structure allows to use the tangent space to shape space and the
exponential mapping between the two spaces. However the tangent space
is still infinite-dimensional and to define standard statistics and probability
density functions we must approximate it with a finite-dimensional vector
space with, for example, Fourier descriptors or wavelet bases.

The representation of the shape of a curve is a continuous function and
generally not a sparse representation. In the continuous theory there is
no requirement about the sparsity or the smoothness of the representation
and, for numerical computations, there is no discussion on the choice of the
sampling scheme of curves.

We note that this theory is a burning issue in the shape theory domain
and authors of papers quoted above are still working on this theory, espe-
cially on the statistical point of view. Besides A. Srivastava and E. Klassen
kindly provides to us a pre-press version of their book “Statistical analysis
of shapes of curves and surfaces”. This book mainly refers to the articles
we cited along this section and generalizes the theory for open curves in R

n,
and was a grateful help for us in the preparation of this chapter.





Chapter 3

Spline modeling

3.1 Introduction

Splines are piecewise polynomials functions. They form a dense set in the
space of continuous and differentiable functions [14], in the sense that, given
a function f in this set, we can find a spline that gets as close as we want to
f . In this chapter, we focus on the problem of representing contours with
splines. A spline is completely determined by a set of parameters and thus
is an efficient and sparse representation of a contour.

In the first section, we introduce spaces of spline functions, noted S,
giving some definitions and notations used in this chapter. The traditional
problems involving splines are briefly reviewed and we focus, in the third
section, on the regression problem where some conditions are imposed on
the complexity of the spline representation such as its order (the degree of
the polynomials) or the number of polynomials in the piecewise representa-
tion. We dedicate the fourth section to free-knots spline modeling that is a
special case of the regression problem where the number of polynomials is a
parameter of the modeling problem. We present this problem as the identi-
fication of a model using nested families of increasing dimension. We review
the solutions available in the literature and we recommend an approach that
first selects the complexity of the model and then estimates the parameters
of the model. The last section is dedicated to results of spline modeling for
simulated and real contours.

3.2 Spline generalities

We begin this chapter on spline modeling with some basic definitions and
properties of splines. A more detailed presentation can be found in [14].

39
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3.2.1 Piecewise polynomials and splines

Definition (3.1): Piecewise polynomials of order m

Let f(t) be a piecewise polynomial (pp) function of order m (degree
m − 1) with l + 1 breakpoints τ = (τi)

l+1
i=1:

f(t) = Pi(t) if τi ≤ t < τi+1 , i = 1 · · · l . (3.1)

For each i = 1 · · · l, Pi(t) is a polynomial of order m on its interval.

The function f(t) is defined on I = [τ1 τl+1]. Let Πm,τ be the set of all
pp functions f(t) of order m with breaks τ .

In definition (3.1) no indication is given about the continuity and deriv-
ability of f(t) at the break points. Let ν = (νi)

l
i=2 be a vector of positive

integers, νi ≤ m, where each νi denotes the number of continuity conditions
enforced at the corresponding break:

• νi = 0 means that there is no condition at τi,

• νi = 1 means that f(t) is continuous at τi and

• νi = r, r > 1, means that f(t) is rth-differentiable at τi.

Let Πm,τ,ν be the set of all functions of Πm,τ satisfying these conditions.
From τ and ν, define the vector ξ of (k + m) elements, called the knot

vector, such that:

• ξ1 ≤ ξ2 · · · ≤ ξm ≤ τ1,

• τl+1 ≤ ξk+1 ≤ ξk+m,

• and τi is repeated m − νi times in ξ for i = 2 · · · l.

The set of functions f(t) in Πm,τ,ν , also noted Sm,ξ, is the set of spline
functions of order m with knot vector ξ. Sm,ξ admits a basis consisting of
B-spline functions (or basis splines) commonly used for representing spline
functions as they are easily defined and computed by means of the recursive
equation (3.2). Figure 3.1 shows an example of a B-spline basis with knot
vector ξ = (0, 0, 0, 0, 0.3, 0.4, 0.7, 0.8, 1, 1, 1, 1) .
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Definition (3.2): B-splines

The jth B-spline function, j = 1 . . . k, is:

bm
j (t; ξ) = ωj,m(t)bm−1

j (t; ξ) + (1 − ωj+1,m(t))bm−1
j+1 (t; ξ) , (3.2)

with,

ωj,m(t) =

{

t−ξj

ξj+m−1−ξj
if ξj+m−1 > ξj

0 otherwise,

b0
j (t; ξ) =

{

1 if ξj ≤ t < ξj+1

0 elsewhere.
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Figure 3.1: Example of a cubic B-spline basis.

Definition (3.3): B-spline representation

Any spline function s(t) ∈ Sm,ξ, t ∈ [a b] is a linear combination of
the B-splines:

s(t) =
k
∑

j=1

βj bm
j (t; ξ) with ξm = a and ξk+1 = b . (3.3)

Figure 3.2 gives an example of a spline curve, a two dimensional spline
function, with ξ = (0, 0, 0, 0, 0.3, 0.4, 0.7, 0.8, 1, 1, 1, 1).
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Figure 3.2: Example of cubic splines (in red) with β points in blue.

We now define some spline spaces that will be useful for the problem
presented later.

Definition (3.4): Sets of spline functions

Let S
k
m be the set of splines of order m with fixed number of knots

k:
S

k
m =

{

Sm,ξ; ξ = (ξi)
k
i=1

}

.

Let Sm be the set of splines of order m:

Sm =
∞
⋃

k=m+1

S
k
m .

3.2.2 Brief review of traditional problem solved with spline
functions

In the literature, a large amount of research is involved with spline functions.
In this section, some of them are briefly exposed and discussed.

Interpolating spline.
A traditional problem aims at finding a spline that interpolates a set of

observed data. Such splines are called interpolating splines. Let (yi)
N
i=1 be

a set of data points. Then s(t) is an interpolating spline if and only if ∃
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sampling times (ti)
N
i=1

yi = s(ti) i = 1 · · ·N, (3.4)

where (ti)
N
i=1 are sampling times.

This interpolating problem may be solved by imposing continuity con-
ditions at the break points leading to a system of equations developed in
[14]. An example of an interpolating cubic spline for a set of points {yi}N

i=1

is given in figure 3.3.
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Figure 3.3: Example of interpolating spline (in blue) with (yi)
N
i=1 (in red).

Regression spline.
In the previous example, the spline function exactly fits the data points.

For noisy data, splines are used as approximating, denoising functions:

yi = s(ti) + ǫi i = 1 · · ·N , (3.5)

where (ǫi)
N
i=1 are unknown noise samples.

The problem reduces to finding the spline function that minimizes a
function of the error. Let ||ǫ|| be the L2-norm of the error also called residual
sum of squares (RSS).

RSS(s) =
1

N

N
∑

i=1

(yi − s(ti))
2 . (3.6)

The regression spline is the spline that minimizes RSS(s).
Identifying a spline is equivalent to determining its parameters β and ξ, a

problem known as regression. Figure 3.4 shows an example of such a spline
where the knot vector is fixed to ξ = (0, 0, 0, 0, 0.3, 0.4, 0.7, 0.8, 1, 1, 1, 1).
The estimation of β is a linear problem detailed later in section 3.3.1.
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Figure 3.4: Example of approximating spline with noisy data in red and the
spline in blue.

Smoothing spline.
Considering the regression spline problem, one may impose a smoothness

condition on the spline function resulting in minimizing criterion SC which
is the sum of an error term and a smoothing term:

SC(s) =
1

N

N
∑

i=1

(yi − s(ti))
2 + λ

∫ 1

0

(

s(p)(u)
)2

du , (3.7)

where s(p)(u) denotes the p-th derivative of s(·).
The parameter λ controls the degree of smoothness of the solution. The

automatic selection of λ is still a current issue in spline estimation, and has
been studied e.g. in [12, 47]. Figure 3.5 shows examples of smoothing splines
with different values for λ: λ1 < λ2 < λ3.

With this example we can see that the least smooth spline (λ1) is the
closest to the data and when λ = 0 the problem reduces to the regression
spline presented above. If the smoothness of the spline is large, then it
does not necessarily capture the details of the data (underfitting), but when
the smoothness is near zero, it may model the noise present in the data
(overfitting).

3.3 Curve modeling with spline

In the context of this thesis, the contour of an object is a continuous curve
and we want to find a spline curve that best represent the data. Because
we are dealing with noisy data, we focus on the regression problem and
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Figure 3.5: Example of smoothing splines with λ1 (blue), λ2 (magenta) and
λ3 (black), with data in red.

the identification of a spline with its parameters β and ξ that are a good
representation of the contour.

We assume that cubic splines (order fixed to m = 4) are sufficiently
smooth while being flexible enough to represent a wide variety of observed
curves.

In this section, we focus on the modeling problem where a (cubic) spline
must “best” fit the data that are noisy samples of a 2D curve. s(t) ∈
Sm (definition 3.4) is a function defined from I = [a, b] to R

2. The two
coordinates in the plan are spline functions of the same order and with the
same knot vector: they just differ by their control points.

s(t) = (sX(t), sY (t)) ,

sX(t) =
k
∑

j=1

βjXbj(t; ξ) ,

sY (t) =
k
∑

j=1

βjY bj(t; ξ) .

We use the complex representation of the plan so that s(t) is a complex
function: s(t) =

∑k
j=1 βjbj(t; ξ), (βj = βjX + iβjY )k

j=1 ∈ C
k. Determining

a spline curve is equivalent to estimating the parameter θ = (ξ, β).
Modeling equation given in (3.5) is given in its matrix representation as:

Y = Bξβ + ε , (3.8)
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where Y = (y1 · · · yN )T ∈ C
N is the data vector, ε = (ε1 · · · εN )T ∈ C

N is
the noise vector, Bξ is the spline design matrix depending on the knot vector
ξ with generic element [Bξ]i,j = bj(ti; ξ) ∈ R defined in equation (3.2), and

β = (β1 · · ·βk)
T ∈ C

k is the vector of control points.

3.3.1 Regression splines with fixed knot vector ξ

When the knot vector ξ is fixed, the design matrix Bξ is constant and the
problem reduces to the estimation of the control points which are linear
parameters in (3.8) and s(t) ∈ Sm,ξ.

The least-squares (LS) criterion aims at minimizing the L2−norm of the
error and has an analytical solution:

β̂LS = arg min
β∈Ck

||Y − Bξβ||2 , (3.9)

β̂LS =
(

BT
ξ Bξ

)−1
BT

ξ Y . (3.10)

The same solution is observed when applying the Maximum Likelihood
(ML) criterion, assuming a Gaussian model for the error, ε ∼ N (0, σ2IN ):

β̂ML = arg max
β∈Ck

p(Y |β, σ2) . (3.11)

Figure 3.6 shows two examples of spline curve with fixed knot vector
and its control points estimated from the sampled data for different number
of knots. This example illustrates that we can get a spline arbitrarily close
to the observed data when augmenting the number of knots. It also shows
that these two splines do not capture the details in the tail of the seahorse.
To do so, we must either add some knots to the representation, either adapt
the knots position so that less knots are assigned to the part of the head
and more are assigned to the tail.

As noted in [27], a sufficient condition for
(

BT
ξ Bξ

)

to be invertible, so

that the solution is identifiable, is that the matrix Bξ has rank k. To ensure
this, one may check if the data samples are dense with respect to the knots
vector in the sense that there is at least one data sample between two knots.
In practice this condition is usually verified as we want to find a represen-
tation with smaller dimension than the size of the full data set.

If the knot vector is unknown, the estimation problem is nonlinear and
its solution requires numerical methods. The knot vector is composed of two
spline parameters: its dimension k ∈ N (N is the set of positive integers),
and the locations of the k knots in I. We emphasize this point by changing
the notation: ξ → ξk = (ξ1 · · · ξk). Since once the knot vector is fixed,
the problem is linear, the estimates of the control points have an analytical
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Figure 3.6: Example of spline curve estimation for data in blue: with 15
equispaced knots and β (green), with 25 equispaced knots and β (red).

expression, (3.10). We focus on the major difficulty: the estimation of the
knots.

The knot estimation is a major problem when interested in determining
the most sparse spline model for the data. Indeed we expect that fewer well
placed knots will yield a spline more efficient to represent the data than
fixed knots spline.

3.3.2 Regression splines with fixed number of knots

In this section, the number of knots k is fixed and their locations are free.
The solution of the regression problem s(t) ∈ S

k
m. Note that B-splines no

longer form a basis S
k
m. The estimation problem is known as the “free

knots” spline problem. The space of all possible knot vector is the simplex
in k dimensions with I = [a, b].

Definition (3.5): Knot space

Let Sk
I be the space of all ξk configurations on I:

Sk
I =

{

ξk : a ≤ ξ1 ≤ ξ2 · · · ≤ ξk ≤ b
}

, (3.12)

A LS approach to this nonlinear problem is proposed in [27], applying
a Gauss-Newton algorithm with Marquardt modification [35] to search for
the minimum error with a parameter that is a transformation of the knot
vector. This approach suffers from drawbacks traditional on nonlinear es-
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timation problems: sensitivity to initialization, local convergence, and a
specific drawback, resulting from freeing the knots, that is the existence in
Sk

I of many stationary points of the LS function. This last point is called
the “lethargy” problem in [27].

Another approach to the estimation of knot locations is to consider a
statistical model for the noise in (3.8): εi ∼ N

(

0, σ2IN

)

, IN being the
N × N identity matrix. The noise variance σ2 is unknown and introduced
as an additional unknown parameter in the estimation problem. A solution
can be found applying a Maximum Likelihood (ML) criterion with parameter
θ = (β, ξ, σ2).

Definition (3.6): Maximum Likelihood criterion

The Maximum Likelihood (ML) criterion aims at determining the
estimate of parameter θ ∈ Θ that maximizes the criterion:

θ̂ML = arg max
θ∈Θ

p(Y |θ) . (3.13)

For the spline fitting problem, the ML criterion leads to:

σ̂2
ML|ξ =

Y H(IN − Bξk

(

BT
ξkBξk

)−1
BT

ξk)Y

2N
, (3.14)

β̂ML|ξ =
(

BT
ξ Bξ

)−1
BT

ξ Y , (3.15)

ξ̂k = arg max
ξk∈∆k

I

p(Y |ξk, β̂k
ML, σ̂2

ML) . (3.16)

We must resort to numerical methods to find the estimates of the knots
by solving the maximization problem. For example one can built a Markov
Chain that simulates knot vectors from p(Y |ξk, β̂k

ML, σ̂2
ML) and, using a

Simulated Annealing (SA) algorithm, the chain will converge to the maxi-
mizers of the function. Details about the SA algorithm can be found in [39].
In figure 3.7, we can see an application of this numerical method with ML
criterion and a SA algorithm, where the number of knots has been fixed to
k = 15.

Other criteria can be used to estimate the knot vector. For example, if we
have some a priori knowledge on the parameters, such as their distributions,
we can maximize the posterior distribution of the parameters with a similar
numerical method.

3.3.3 Regression splines with fixed location of knots

If we now fix the location of the knots but not their number, the problem is
to choose a correct model complexity: if the number of knots is too small,
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Figure 3.7: Example of the estimation of a spline curve and its control points
(in red) for data in blue with k = 15.

the spline curve will not be a good representation of the data (underfitting)
and if the number of knots is too high, the spline curve will try to fit the noise
in the observed data (overfitting). We give an example for both situations
in figure 3.6 where we choose knots that are equispaced in I: ξi+1 − ξi = c,
for i = 1 · · · (k − 1), where c is a constant in R

+
∗ .

The determination of the model complexity k, relates to the model se-
lection problems largely studied in the literature (e.g. [44, 28, 8]). Within
the statistical approach exposed above in section 3.3.2 with the Gaussian
noise model, we use a classical method: the penalized likelihood criterion.

Definition (3.7): Penalized ML criterion

θ̂penML = arg max
θ∈Θ

(log p(Y |θ) − P(k)) , (3.17)

where P(k) is a penalty term that increases with k.

The criterion is a trade-off between under- and over-fitting of the result-
ing spline curve. Standard penalizing term are:

• Akaike Information Criterion (AIC), PAIC(k) = k,

• Bayesian Information Criterion (BIC), PBIC(k) = k
2 ln(N),

• Minimum Description Length (MDL).

These penalties have been studied in [19, 1]. The choice of the penalty
term is further explored in the next section where we study the likelihood
approaches for the free-knot spline modeling. Figure 3.8 shows an example
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of spline identification with penalized ML criterion with the BIC penalty
term.
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Figure 3.8: Example of spline curves estimation (left) (in red) for data
in blue with equispaced knots vector: k =. Penalized likelihood criterion
(right): no penalty (in blue), BIC (in red), AIC (in green).

3.4 Free-knots spline

Spline modeling without fixing the dimension of the spline curve (i.e. the
number of knots) nor the locations of the knots is a difficult problem that
has been addressed by many authors [27, 16, 33, 17]. This section highlights
the major difficulties. The discussion presented here is not restricted to
spline modeling but can be extended to other problems of model fitting. We
thus use general notations and we come back to spline modeling at the end
of the section.

3.4.1 Model structure

Free-knots spline modeling is a particular case of sparse model fitting where
the model is the set of spline functions. In this domain, a convenient way of
adjusting the model dimension to the data complexity is to consider a set
M of candidate models that is the union of nested families of parametric
models Mk:

M =
⋃

k∈K

Mk ; K = {kmin · · · kmax} (3.18)

Mk = {p(·|θ), θ ∈ Θk} ⊂ Mk+1 . (3.19)

In this setting, models are probabilistic parametric functions assumed gen-
erally to be Gaussian distribution for the noise.
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We note that the integer k is no longer the number of knots in the spline
representation but an index directly related to the complexity, or number of
degrees of freedom, of each family of models Mk: if k′ > k, the complexity
of models in Mk′ is higher than the complexity of those in Mk.

The overall parameter space Θ of M is simply

Θ =
⋃

k∈K

Θk . (3.20)

Even when each Θk is a vector space, Θ is not a vector space, but a union
of vector spaces.

We turn now to the definition of criteria to estimate the parameter θ ∈ Θ.
Two common choices for parameter estimation are Maximum Likelihood
(ML) and Bayesian. We detail them below in our particular setting.

3.4.2 Likelihood approaches

Maximizing the log-likelihood of the parameter θ yields

θ̂ML = arg max
θ∈Θ

log p(Z|θ) . (3.21)

As noted previously (section 3.3.1), under Gaussian models, this is equiva-
lent to minimizing the L2-norm of the error between the data and the sam-
ples of the spline model. As it tries to reduce the error term, the ML criterion
will always choose the most complex model to fit the data: k̂ML = kmax.
This is a well-known drawback of ML estimation in nested families of models.

To correct the overfitting behavior of ML, many authors proposed the
addition of corrective terms that favor selection of models using less param-
eters:

θ̂PL = arg max
kK ; θ∈Θ

(log p(Z|θ) + P(k)) , (3.22)

where P(k) is a decreasing function of k. These techniques are generally
known by the name of “penalized likelihood” methods, and have received
three distinct justifications.

• they are sometimes dictated by the desire to impose some regularity
characteristics on the solution, requiring in this case prior knowledge
on its characteristics which is not necessarily available,

• they have also been justified as particular cases of MAP (Maximum a
Posteriori) estimation for special selections of the prior p(θ), e.g. in
[4, 8]. We will see below in section 3.4.3 that there is a fundamental
flaw in this approach,
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• a more generic approach says that they are derived on the basis of
asymptotic arguments (when the data set is infinite) which relate them
to the models’ Bayesian marginal posterior Pr(Mk|Z) [28]. This is
the case for AIC (Akaike Information Criterion), BIC (Bayesian Infor-
mation Criterion) [44] and MDL (Minimum Description Length) [41].
They cannot offer any guarantee of optimality for finite data sets.

3.4.3 Bayesian approaches

Bayesian approaches regularize the identification problem through the defi-
nition of a prior over Θ, and optimize the expected value of some function
of the estimation error under the posterior distribution over Θ. As noted
above, generic justifications of penalized likelihood link it to Bayesian esti-
mates: either to the model posterior p(θ|Z) or to the marginal model pos-
teriors Pr(Mk|Z). The two most popular Bayesian criteria are the MMSE
(Minimum Mean Square Error) and the MAP (Maximum A Posteriori).

For the union-type models like (3.18)-(3.19)-(3.20), the MMSE criterion
is meaningless, since the associated cost function (θ− θ̂)2 is undefined when
the complete parameter space is not a vector space. On the contrary, the
0/1 cost function of the MAP criterion is well defined, and should enable
determination of a unique model among the set of candidate models. When
Θ has the simple structure of a vector space, this criterion leads to

θ̂MAP = arg max
θ∈Θ

p(θ|Z) . (3.23)

Definition of distributions which are the basic entities manipulated by
Bayesian techniques (e.g. prior or posterior distributions) must be done with
care. When parametric probabilistic families over each Θk are known, as we
assume here, an intuitive way is to use a mixture-like approach, writing
posterior densities over Θ as

p(θ|Z) =
∑

k∈K

pk(θ|Z), θ ∈ Θ , (3.24)

where each pk(θ|Z) is the Radon-Nikodym derivative of an un-normalized
measure with respect to (w.r.t) the invariant measure over Θk: if θ /∈ Θk

then pk(θ|Z) = 0, and

1 ≥
∫

Θk

pk(θ|Z)dθ ≡ Pr(Mk|Z) . (3.25)

A proper density νk(θ|Z) over Θk is obtained by normalization:

νk(θ|Z) ,
pk(θ|Z)

∫

Θk
pk(θ|Z)dθ

≡ p(θ|Mk, Z) , θ ∈ Θk , (3.26)
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where we stressed the meaning of νk as resulting from conditioning on
θ ∈ Θk. Note that these “local” densities (as well as their un-normalized
versions) are defined w.r.t distinct reference measures, the invariant mea-
sures over each Θk, and are thus not directly comparable.

Surprisingly, several authors have proposed estimators based on a direct
transposition of the MAP criterion (3.23) to the model structure considered
herein [3, 8]:

θ̂nMAP = arg max
θ∈Θ

p(θ|Z) = arg max
k∈K

max
θ∈Θk

pk(θ|Z) (3.27)

= arg max
k∈K

pk(θ̂k|Z) ,

θ̂k = arg max
θ∈Θk

pk(θ|Z)

We designate them by “näıve MAP” estimators.
As we pointed out before, the un-normalized densities pk(θ|Z) defined

over each Θk are not defined with respect to the same measures. This cri-
terion, that abusively compares them directly, may lead to estimates with
pathological behavior as demonstrated by the example below.

3.4.4 Pathological behaviour of the “naive” MAP estimator

Let Y = [y1, . . . , yn] ∈ R
n be the observation vector, and consider a model

with just two families: M = M1 ∪M2, where

Mk =
{

N
(

fk(·|θ), σ2In

)

, θ ∈ Θk

}

, k = 1, 2 ,

with N (µ,Σ) the normal density with mean µ and covariance matrix Σ.
Above, fk(·|θ) is a k-piecewise linear signal, see Figure 3.9, such that

the parameters of the models are θ1 = [P 0, σ2] and θ2 = [P 1, P 2, σ2], where
{P i = (P i

x, P i
y) ∈ R

2}2
i=0 are the break point coordinates.

We use a factored prior distribution over both parameter spaces: P i
x ∝

U([0L]), P i
y ∝ N (0, Σ2), i = 0, 1, 2, and σ2 ∝ U(R+)1. To minimize the im-

pact of the prior over the breakpoints we set Σ2 ≫ 1. Models are equiprob-
able: π (M1) = π (M2).

Apparently, the prior chosen is uninformative and does not express pref-
erence for M1. One would expect that the ML overfitting behaviour would
not be corrected and that M2 will always be selected.

1X ∝ p indicates that random variable X is drawn according to p and U(A) denotes
the uniform distribution over set A.
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In this example, parameters are set at: P 1 = (250, 10), P 2 = (800, 6),
Σ = 1016, X = {10m}100

m=0 and L = 1000, see figure 3.10. Table 3.1 displays

estimates of the error probability Pr
(

θ̂ ∈ Θ1|θ ∈ M2

)

for several values of

the noise variance σ2, obtained over 200 Monte Carlo runs. We see that even
for small values of the noise variance the error probability is very high: the
“naive MAP” estimator is biased toward the simplest model M1, even if
the data clearly shows the existence of 3 different slopes. The ML overfitting
behaviour is not observed and there is a bias of opposite sense that exhibits
a strong preference for the simpler model M1.
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Figure 3.9: f(·|θ1) (− blue), f(·|θ2) (−− red).
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Figure 3.10: Z ∝ p(·) ∈ M2, σ2 = 1.2.
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σ2 0.6 1 1.2 1.6 2 4

Pr(θ̃ ∈ M1|M2) 0 0.25 0.61 0.945 0.985 1

Table 3.1: Pr(θ̃ ∈ M1|M2), σ2 = (0.6, 1, 1.2, 1.6, 2, 4).

We now show that this preference for the simplest models is actually
an artifact caused by the comparison of densities defined with respect to
distinct measures. Let ρ2

i = ||Y − fi(X; θi)||2 be the residuals for model

Mi, i = (1, 2). Criterion (3.27) leads to a model selection rule r
M1

≶
M2

1 where

r is the ratio

r =
π (M2) p2(θ2|Y )

π (M1) p1(θ1|Y )

=

(

2πσ2
)−n/2

exp
(

− ρ2
2

2σ2

)

L−2
(

2πΣ2
)−1

exp
(

− (P 1
y )2+(P 2

y )2

2Σ2

)

(2πσ2)−n/2 exp
(

− ρ2
1

2σ2

)

L−1 (2πΣ2)−1/2 exp
(

− (P 0
y )2

2Σ2

)

=
1√
2π

1

ΣL
exp

(

ρ2
1 − ρ2

2

2σ2

)

exp

(

−
(P 1

y )2 + (P 2
y )2 − (P 0

y )2

2Σ2

)

.

If Σ2 ≫ 1, such that exp
(

− (P 1
y )2+(P 2

y )2−(P 0
y )2

2Σ2

)

≃ 1, then

ρ2
1 − ρ2

2

M1

≶
M2

2σ2 log
(

ΣL
√

2π
)

= γ.

Note that ΣL is the ratio of the normalizing constants of the prior densi-
ties over Θ1 and Θ2, that increases with the number of breakpoints, then
larger for M2. As the previous equation shows, the decision region for M1

increases monotonically with ΣL, explaining why the apparently uninfor-
mative prior leads to a strong bias in favor of M1. This is the opposite
behaviour of the ML criterion drawback.

This biased behaviour is entirely due to the fact that we are comparing
the “densities” pk(·|Z) defined with respect to measures µk (the Lebesgue
measure in both cases) over spaces of distinct dimensions (d1 = 3, d2 = 5).
Depending on the priors chosen, this may bias the decision, in an unclear
manner, in favor of simpler or more complex models. We stress that these
remarks do not concern penalized likelihood methodologies globally, but
only their interpretation as Bayesian MAP estimators. Indeed penalized
likelihood function is defined in the data space , with respect to to the same
measure.

3.4.5 Bayesian model selection

We address now the second justification of penalized likelihood, that relates
it to Bayesian Model Selection (BMS) which does not attempt at directly
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selecting the model set and the parameter value, but instead starts by select-
ing the model Mk first using the posterior probabilities Pr(Mk|Z), k ∈ K
[49]:

k̂ = arg max
k∈K

∫

Θk

p(θ|Z) dθ . (3.28)

Determination of these posteriors requires specification of a priori dis-
tribution π(θ) defined over Θ. If π(θ) is of the form (3.24), ∀k ∈ K, we
have

Pr(Mk|Z) =
p(Z|Mk)π(Mk)
∑

j∈K

p(Z|Mj)π(Mj)
, (3.29)

Pr(Z|Mk) =

∫

Θk

p(Z|Mk, θk)π(θk|Mk)dθk . (3.30)

We refer to [28] for discussion about the prior selection.
Once the model has been determined, the parameter θ ∈ Θk̂ can be

estimated using one of the standard statistical estimation criteria (MMSE,
MAP,...). This (sound) estimation approach selects k by comparing the
total posterior probability mass accumulated over Mk. One may question
whether this marginal approach can guarantee the aptitude of the elements
of Mk̂, alone, to fit the data well. We will see below that in all the examples
considered the models selected by BMS have fitting properties close to those
obtained by penalized likelihood criteria.

More surprisingly, numerical studies presented below in section 3.5.5
show that their fitting performance in “signal-in-noise” problems is similar
to direct MMSE “signal” estimation, which belongs to a set much richer
class of models than M.

3.4.6 Consistent MAP estimator

We present now a numerical implementation of the “Two-step MAP esti-
mator”,

(i) k̂ = arg max
k∈K

Pr(Mk|Z) , (3.31)

(ii) θ̂ = arg max
θ∈Θ

k̂

p(θ|Z,Mk̂) . (3.32)

that uses BMS to select Mk and MAP to identify a θ ∈ Θk̂. In this manner,
optimization is done in each step using commensurable score functions: the
(discrete) posterior distribution over the families of models Mk in (i), and
a regular posterior density over Θk̂, with respect to a selected base measure,
in (ii). Note that [32] proposes a similar idea for ML estimation, selecting
first the Mk using the BMS criterion and computing the ML estimates of
the θ ∈ Θk in a second step.
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We here consider a prior π of the form (3.24),

πθ(θ) =

kmax
∑

k=kmin

π(θ|Mk) Pr(Mk), θ ∈ Θ .

For most problems the posterior probabilities Pr(Mk|Z) have no closed-
form and their maximum must be determined numerically. We obtain es-
timates P̂ r(Mk|Z) by sampling from p(θ|Z), θ ∈ Θ using Reversible Jump
Markov Chain Monte Carlo (RJMCMC) [24] and computing the total mass
of each Mk as the corresponding marginals.

RJMCMC uses a proposal distribution q(θ′|θ), θ′ ∈ Θk′ , θ ∈ Θk, where
θ (resp. θ′) is the current (resp. candidate) state of the chain, that is a mix-
ture of basic transition distributions (birth, death or change) moving across
neighboring families of models Mk , Mk−1 and Mk+1. To ensure chain
reversibility (and thus convergence in distribution to the target distribution
p(θ|Z)) the acceptance function of the chain is [24] αRJ(θ, θ′) = min {1, rRJ},
with

rRJ =
p(θ′|Z)

p(θ|Z)

q(θ′|θ)
q(θ|θ′)J(θ′, θ) , (3.33)

where J(θ′, θ) is the Jacobian of the mapping from θ to θ′.
In our application the proposal is a mixture of basic transition distribu-

tions: birth (b) of a new knot, death (d) of a knot or change (c) of a knot
location. This allows the chain to “jump” from one model Mk to its neigh-
bors Mk−1 and Mk+1. Details about the implementation of RJMCMC are
given below in section 3.5.2.

Finally, the family Mk̂ is chosen using the RJMCMC samples
(

θ
(i)

k(i)

)M

i=1
∝

p(θ|Z) in the following manner

k̂ = arg max
k

P̂ r(Mk|Z), P̂ r(Mk|Z) =
Mk

M
, (3.34)

where Mk = #

{

(

θ
(i)

k(i)

)M

i=1
: k(i) = k

}

and # A is the cardinality of set A.

Once the family Mk̂ has been determined, parameter estimation is done
for θ ∈ Θk̂. Again, there is, in general, no analytical solution, and we must
resort to a numerical method to find the model with the maximal poste-
rior density pk̂(θ|Z). A common choice for approximating the solution of
this optimization problem is Simulated Annealing (SA), with an acceptance
probability αSA:

αSA(θ′
k̂
, θk̂, Ti) = min











1;

(

p(θ′
k̂
|Z,Mk̂)

p(θk̂|Z,Mk̂)

)

1
Ti











, (3.35)
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where θk̂ (resp. θ′
k̂
) is the current (resp. candidate) state, and Ti is the chain

temperature that must decrease according to a convenient cooling scheme.
We refer the interested reader to [39] for details on SA.

3.5 Experimental results

In this section, we compare BIC to the two-step BMS/MAP semi-parametric
identification described in section 3.4.6 for curve modeling with free-knot
(cubic) splines. We begin with a brief description of the model and of nu-
merical issues related to its optimization, presenting our comparative study
in a second step.

We assume that the observations follow a normal model

p(Z|θ,Mk) = N
(

f(t; θ), σ2I
)

, f(t; θ) =
k
∑

i=1

βibi(t, ξk) . (3.36)

where k is the number of knots, bi(t, ξk) is the ith B-Spline function, ξk ∈
[0, 1]k is the (ordered) knots vector, and βk ∈ R

2k is the vector of control
points. We refer to [14] for details about splines. The parameter vector of
Mk is θk = (ξk, βk, σ

2).
We use the factored prior already proposed for this problem in [17],

except for the prior over k which we consider uniform, hence establishing
not a preference for simpler models:

π(θk) = π(βk|Mk, ξk, σ
2)π(ξk|Mk)π(Mk)π(σ2).

• π(Mk) = U(k ∈ [kmin, kmax]),

• π(ξk|Mk) ∼ U([0 1]k),

• π(βk|Mk, ξk, σ
2) = N

(

0, σ2N(BT B)−1
)

where B = Bk̂,ξ is the spline

design matrix with entries bi(t, ξk),

• π(σ2) = 1/σ2.

3.5.1 Numerical issues for BIC

Once ξ determined, maximization of the likelihood allows analytic determi-
nation of the estimates of βk and σ2 for a fixed model order k. Using the
reduced likelihood at this estimated values as the target distribution of the
SA algorithm, we can find the ML estimate of the knot vector ξk. Tempera-
ture Ti is initialized at T0 = 50 and decreases every 500 iterations by a factor
of 5. The maximum number of iterations is fixed to 10000. We thus obtain
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the ML estimate of the parameter vector (with k fixed). Adding the BIC
penalty term defined in section 3.3.3 to the likelihood and maximizing the
sum with respect to k allows determination of the BIC-penalized estimate
of k.

3.5.2 Numerical issues for RJMCMC

As described in section 3.4.6, we first identify Mk̂, using RJMCMC to esti-
mate Pr(Mk|Z). The prior given in (3.5) allows analytical expressions for
MAP estimate of βk and σ2. Details about this are given in Appendix A.
We thus show that k and ξk are the structural parameters of the model and
the target distribution of RJMCMC reduces to

P(Mk, ξ|Z) = p(Mk, ξ|Z)p(σ̂2
k,ξ|Z,Mk, ξ)p(β̂k̂,ξ|Z,Mk, ξ, σ̂2

k,ξ). (3.37)

The proposal distribution q(θ′|θ) reduces to q(k′, ξ′|k, ξ) and is taken as
a mixture of basic transition laws that allow “jumps” between families of
models: birth (b), death (d) and change (c) of a knot point in the knot
vector ξk.

q(θ′|θ) = m(kcand|kcurr)p(ξcand|ξcurr, kcurr) , (3.38)

where m(·|·) is the probability associated with each type of move and p(ξcand|ξcurr, kcurr)
is the probability to select the candidate knot vector.

We choose:

m(kcand|kcurr) =



























c min
{

1,
π(M

kcand )

π(Mkcurr )

}

if kcand = kcurr − 1 or kcand = kcurr + 1,
1 − m(kcurr + 1|kcurr) − m(kcurr − 1|kcurr)

if kcand = kcurr,
0 otherwise.

(3.39)

The three types of move, addition, deletion or change of a knot location,
completely determine the chain of the RJMCMC algorithm. The probability
to choose a move depends on the parameter c in equation (3.39). We set
c = 0.2 so that exploring a subspace Mk by changing a knot location is
preferred on jumping to another subspace by either adding or deleting a
knot.

Leaves us to define p(ξcand|ξcurr, kcurr) and the Jacobian computation:

• When “change” move is selected, we change a knot of the current knot
vector by choosing randomly ξj ∈ ξk and we replace it by ξj∗, a random
knot in ξj neighborhood (between the previous ξj−1 and the next knot
ξj+1 of the vector). Then, we have kcand = kcurr, J(scurr, scand) = 1
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(there is no change of space dimension) and the selection function
becomes:

q(ξcand|ξcurr, kcurr) =
1

kcurr − 2m
× 1

ξj+1 − ξj−1
.

• For the “birth” move, we add a knot to the current knot vector by
choosing a location ξj∗, randomly in [0 1] and we place it in the knots
vector. Then kcand = kcurr + 1 and the selection function becomes:

q(ξcand|ξcurr, kcurr) = 1 ,

J(scurr, scand) =

∣

∣

∣

∣

∂(ξk+1)

∂(ξk, ξj∗)

∣

∣

∣

∣

= 1 .

• For the “death” move, we delete a knot to the current knot vector by
choosing a location ξj∗, randomly in the knot vector. Then kcand =
kcurr − 1 and the selection function becomes:

q(ξcand|ξcurr, kcurr) =
1

kcurr − 2m
,

J(scurr, scand) =

∣

∣

∣

∣

∂(ξk)

∂(ξk−1, ξj∗)

∣

∣

∣

∣

= 1 .

We performe M = 10000 iterations of the RJMCMC algorithm.

3.5.3 Numerical issues for SA

Fixing k = k̂, the second step identifies the parameters of Mk̂ by maximizing
the “local posterior density” p(θ|Z,Mk̂), θ ∈ Θk̂. Maximization with respect
to (βk̂, σ

2) can again be found analytically, see appendix A.
A SA algorithm is run with P(ξk̂|Z,Mk̂) as the score function, producing

a sequence of values of ξk̂ that converge in distribution to its maximum,
completely identifying a single model amongst M. We performe L = 2000
SA iterations. Temperature Ti is initialized at T0 = 0.02, and is halved every
500 iterations.

3.5.4 BMS-MAP and BIC on simulated data

We first compare the two methods BIC and BMS/MAP on simulated data,
with the goal of exposing the asymptotic nature of the BIC criterion, which
only for very large data sets is an approximation of BMS, inheriting the
problems of “naive Bayes” under its interpretation as a posterior computed
for a particular “prior.”

We simulated data from a spline model with k = 13 knots and σ2 = 0.04
(see Fig. 3.11), and considered two observation sets: D1 with N = 51 data
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Figure 3.11: Spline model (-) and data sets D1 (*) and D2 (·).
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Figure 3.12: BIC criterion for D1 (−−) and D2 (−) depending on the model
order in abscissa.

points and D2 with N = 401 data points, see Figure 3.11. Figures 3.12 and
3.13 summarizes the comparison of the two methods.

For the shorter data set D1 BIC systematically chooses a ’wrong’ model
order k = 12 (Fig. 3.12), underestimating the data complexity, while BMS/MAP
correctly identifies the true value k = 13 (Fig. 3.13). For the larger data
set D2 both criteria choose the same (and correct) model order, confirming
that only asymptotically BIC yields an unbiased estimate of the model com-
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Figure 3.13: Log-posterior probability of models for D1 (black) and D2

(gray) with model order in abscissa.

D1 D2

BIC 0.0597 0.0848

BMS/MAP 0.0620 0.0845

Table 3.2: Average (over 50 runs) of the mean square error between data
and models.

plexity, while the two-step numerical estimator BMS/MAP has an unbiased
behavior for all values of N . Table 3.2 shows the mean square error of the
models identified by the two criteria, averaged over the 50 MC runs. We
note here that while producing overall similar error figures, for the larger
data set D2 the two models have indeed virtually identical residual error,
while for D1 BIC yields a slightly smaller error, revealing its close relation
to ML.

3.5.5 BMS-MAP and BARS on real data

BARS (Bayesian Adaptive Regression Splines) is a spline fitting method
introduced in [17]. It allows to find a function that best fit the data points,
this function being the average over splines obtained with a RJMCMC. It
is thus no longer a sparse representation and we compare our BMS-MAP
method to BARS. As a mixture of splines, BARS solution should provide a
better fit than BMS-MAP with a single spline. We compare the results by
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computing the mean square error, MSE:

MSE =
1

N

N
∑

i=1

{

Zi − f̂(ti, θ̂)
}2

.

We present 2 examples:

• the first one is one of the sin-exp function used by DiMatteo in [17]
and

• the second one is a benthic contour between a region of posidonia and
a region of sand ripples extracted from a seabed Sonar image.
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Comparison of BARS and RJSA methods on artificial noisy data.

 

 
y(x)
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BARS
RJSA

Figure 3.14: The red line is the sin-exp function and the magenta + are the
noisy data points. The blue line is the result of the BARS method and the
green line is the BMS-MAP result.

With figure 3.14, we can see that both methods produce the same visual
results. Figure 3.15 displays the original contour of the second example and
results of the BARS and the BMS-MAP methods.

We compare the results with their respective MSE in Table 3.5.5. For
these 2 examples, MSE are in the same range and they are both equally
good approximation of the original data. In addition to the results accu-
racy (shared with BARS), we can compare the resulting number of knots of
BMS-MAP and the histogram of k for BARS samples. Figure 3.5.5 displays
histograms of k for the first set of data (function+noise) on the left and
the second set (contour) on the right. For the first set of data, the mode
of the posterior of k with the BARS method is located for k = 5, while we
obtain k̂ = 9 with BMS-MAP. For the second set of data, the mode of the
posterior of k with the BARS method is located for k = 10 while we obtain
k̂ = 8 with BMS-MAP. These results show that BMS-MAP method yield to
similar accuracy than BARS but with a sparse model.
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Boundary contour between sand and posidonia and its BARS and RJSA models.
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Figure 3.15: The red line is the detected boundary. The blue line is the
result of the BARS method and the green line is the BMS method result.

MSE y(x) contour

BARS 0.0181 2.0

BMS-MAP 0.0174 (k̂ = 9) 4.3(k̂ = 8)

Table 3.3: MSE for BARS and BMS-MAP are in the same range for these
2 examples.

3.5.6 BMS-MAP on real data

Posidonia clutter contour.
The contour of posidonia clutter example used to compare with BMS-

MAP and BIC is shown in figure 3.17, together with the control points
estimated in the 50 runs and an example of the resulting spline model.
Figure 3.18 displays the knot vector in [0, 1] for the 50 runs (y axis). We
can see that there exists a small variability in knots estimation due to the
complexity of the right part of the contour, while the knots corresponding
to the left part, less complex, have a more stable identification. We can see
this also in the 50 spline models shown in figure 3.19.

Sand ripple contour.
We consider here a sand ripple contour extracted from of side-scan sonar

image. Figure 3.20 show results of 10 runs of BMS-MAP with the estimated
knot vectors on the right and one example of histogram on the left. We note
first that BMS always selects k̂ = 9 and that the knot estimate is very stable
due to the simplicity of the contour. Figure 3.21 show the model given by
the 10 runs and the contour itself with similar conclusions.
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Figure 3.16: These figures are histograms of the number of knots for the
first set of data (left) and for the contour data (right).
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Figure 3.17: Posidonia clutter (blue data points) with the estimated spline
model (red curve) and the 50 control points vector estimated (magenta).

Seahorse contour.
This example consider a more complex contour: a seahorse (it is a contour

from a data base of fishes kindly provided to us by Prof. Srivastava). Fig-
ure 3.22 show one histogram resulting from BMS and selecting k̂ = 25. We
run BMS-MAP 10 times and it always selects the same model complexity.
Estimated knot vectors of the 10 runs are shown in the right of figure 3.22.
We can see that even with this complex contour (compared to the sand rip-
ple above), the resulting spline model is stable both for the knot vector and
for the curve (see figure 3.23. A closer look at the variabilty between models
is given in figure 3.24.
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Figure 3.18: Posidonia clutter: estimated knots for the 50 runs in the y-axis.

Figure 3.19: Posidonia clutter: the spline model estimated for the 50 runs.

3.6 Conclusion

In this chapter, we show that free-knot spline is a tool for curve modeling
that allow to adjust the complexity of the data to the complexity of the spline
model. We also stress a major misunderstanding of the MAP criterion when
identification is performed in nested families of models. We thus recommend
a two-steps approach: BMS-MAP. We show with some examples that BMS-
MAP identify a sparse free-knots spline model with good fitting properties
and thus is the representation corresponding to our requirements.
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Figure 3.20: Sand ripple.
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Figure 3.21: Sand ripple.
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Figure 3.22: Seahorse contour with an example of BMS histogram (left) and
results of knot vectors (right) over 10 runs of BMS-MAP (y axis).
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Figure 3.23: Seahorse contour: 10 BMS-MAP models with data in red,
control points in magenta and splines in blue.
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Figure 3.24: Seahorse contour: zoom of figure 3.23 over the space below the
head of the sehorse.





Chapter 4

Collective spline modeling

4.1 Motivation and problem formulation

Figure 4.1: Example of side-scan sonar image.

Autonomous underwater robots, operating in natural environment, rely
in their environment of objects present in the area to correctly plan their
trajectory. In [42], the transition zones between distinct seabed regions are
proposed as the features that must be used for safe navigation. The iden-
tified regions are those with different habitats such as sand ripples areas,
posidonia area, . . . . An example of side-scan sonar image is given in fig-
ure 4.1 with sand ripples in the bottom left, flat sand in the bottom right,
posidonia in the upper left and mixing of posidonia and sand ripples in the
upper right. The goal is thus to characterize these distinct regions and to

70
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characterize the different elements constituting the regions. In this chapter,
we want to determine a model for a set of closed curves: the contours of
objects (sand ripples, posidonia clutters, . . . ).

Let Lc be the space of continuous functions from [0, 1] to R
2. Let C =

{ci(t)}n
i=1 be a set of continuous planar closed curves: ci(t) ∈ Lc, i = 1 · · ·n.

We choose a parametric family of models such that:

ci(t) ∼ µ(γ) ,

with µ(·) a probability measure in the curve space Lc and γ ∈ G, the pa-
rameter vector.

Note that ci(t) is a closed curve that is defined with respect to a fixed
origin t = 0. To model the set C, we must first align the curves with re-
spect to a reference curve (the first one for example) so that they all have
the same origin. This is a common normalization when modeling curves
[36, 11]. Abusing the notation, we keep C = {ci(t)}i=1 n for aligned version
of the curves.

We adopt a mixture model for the curves:

p(C) =
∑

k∈K

ωkpk(C)
∑

k∈K

ωk = 1 , (4.1)

where pk(C) denotes the probability density function in S
k
m (definition 3.4.

Model determination for both the mixture weights and the curves is quite
difficult and in this chapter, we restrict to simpler problem where each curve
is represented by a single spline with fixed complexity. Thus the weights ωk

correspond to the ratio of the number of curves in C with complexity k,
with the total number of curves:

ωk =
nk

n
,

where nk = #
{

cj ; k̂j = k, j = 1 · · ·n
}

. Note that k̂j can be determined

with a Bayesian model selection criterion such as the one defined in chap-
ter 3. Then C is the union of subsets Ck of curves with complexity k. We
are now left with the determination of a model for subset Ck. To simplify
notation, we do not specify the subscript k in the following and C is a set
of observed curves with fixed complexity spline model, and n is their number.

Based on section 3.3, ci(t) is modeled by a spline curve with control
points β and knots ξ. We recall here the curve modeling with spline such
that:

ci(t) = si(t) + ǫi(t) i = 1 · · ·n ,
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where si(t) is the spline model with knots ξi and control points βi, and ǫi(t)
is the approximation noise function. The corresponding matrix notation
where Zi is the column vector of observed samples of ci(t) is:

Zi = Biβi + εi i = 1 · · ·n , (4.2)

where Bi is the spline design matrix with knots ξi and εi is the noise vector
for both the approximation and the observation noises. We choose a fixed
order spline, m = 4 (cubic splines), with fixed number of knots k. We thus
restrict the model space to S

k
m given in definition 3.4.

We assume a Gaussian model for the noise in the curve samples in equa-
tion (4.2):

εi ∼ N
(

0, σ2INi

)

, (4.3)

where σ2INi
assumes independent realizations of the noise with similar vari-

ance σ2.
The closed spline curve depends on knots intervals, noted ∆i

j , as they
are defined circularly. As the curves are aligned we propose to fix the first
knot position ξi

1 so that we fix the parametrization of the curve. We choose
to set the first knot position to t = 0, in other words, ξi

1 = 0.

Definition (4.1): Knot intervals

The knot intervals vector, noted ∆i =
(

∆i
1∆

i
2 · · ·∆i

k

)

, is such that:

∆i
j = ξi

j+1 − ξi
j , j = 1 · · · (k − 1) and ∆i

k = 1 − ξi
k . (4.4)

Definition (4.2): (k − 1)-dimensional simplex

The simplex in (k − 1) dimensions is the subset of R
k such that:

D(k−1) =







(∆1, · · · , ∆k) ∈ R
k|

k
∑

j=1

∆j = 1, ∆j > 0∀j = 1 · · · k







.

(4.5)

As ξi
1 = 0 is fixed,

{

∆i
j

}k

j=1
uniquely defines a knot vector and deter-

mining a model for ξi is equivalent to determining a model for ∆i. ∆i is an
element of the (k − 1)-dimensional simplex, Dk−1 (definition 4.2), and de-
fines a partition of the unity: i.e.

∑k
j=1 ∆i

j = 1. Intervals can thus be inter-
preted as determining a probability law and we choose a parametric model
for ∆i: a Dirichlet distribution with unknown parameter α = (α1 · · ·αk)
(αj > 0, j = 1 · · · k). Since there is a one-to-one correspondence between
intervals and knots, we make abuse of notation and use ξ instead of ∆ in
the following.
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Definition (4.3): Dirichlet distribution

The Dirichlet distribution is

D(ξi|α) =
1

B(α)

k
∏

j=1

(

∆i
j

)αj−1
, (4.6)

where B(α) =
∏k

j=1 Γ(αj)

Γ(
∑k

j=1 αj)
is the normalizing constant, and Γ(·) is the

standard Gamma function.
The mode of D(ξi|α) is

(

α1
ᾱ , α2

ᾱ , · · · , αk

ᾱ

)

with ᾱ =
∑k

j=1 αj .

Note that the parameter α determines the variability of the distribution:

• α = (1 · · · 1) defines a uniform distribution over Dk−1,

• αj → 0 defines a distribution with large probability centered around
zero and one. Thus, if ξj−1 is fixed, ξj is in its close neighborhood
which tends to produce a discontinuity in the spline curve,

• large values for {αj}k
j=1 defines a highly peaked distribution (small

variance) around its mode.

For the control points, we choose a Gaussian model with unknown mean
vector noted µ0 and a covariance matrix noted Σi. Similarly to [17], we

choose Σi = σ2Ni

(

BiT Bi
)−1

. It is the inverse of the averaged Fisher infor-
mation matrix evaluated for the Ni samples of the curve ci and thus reflects
the amount of knowledge about the control points given by the observed
samples. The averaged Fisher Information matrix is:

Ī(βi) = − 1

Ni

∂2 log p(Zi|wi)

∂βi ∂βiH
= (Niσ

2)−1BiT Bi . (4.7)

So the parameter vector of our model is:

γ =
(

µ0, α, σ2
)

, (4.8)

and the parameter space is:

G = C
k ×Dk−1 × R

+
∗ . (4.9)

We can interpret the model parameters from the point of view of shapes:

• µ0 may be the mean shape of the control points
{

βi
}n

i=1
, determining

the coarse mean shape of curves,

• α allows to determine variability in knot vector
{

ξi
}n

i=1
and thus re-

fines the shape of curves; moreover the mode
(

α1
ᾱ , α2

ᾱ , · · · , αk

ᾱ

)

of the
Dirichlet distribution can be seen as the mean knot vector.
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To identify the model we choose a criterion that maximizes the likelihood
of the data and:

γ̂ = arg max
γ∈G

p(C|γ) . (4.10)

Note that we could choose a Bayesian criterion by specifying a prior on
γ ∈ G so as to maximize the posterior p(γ|C) for example.

Figure 4.2 shows the hierarchical model we adopt and the important
expressions of the model are:

σ2

µ0

α ξi

βi si ci

Figure 4.2: Hierarchical design of our curve model showing the dependencies.

Noise model:

p(Zi|βi, ξi, γ) =
(

2πσ2
)−Ni exp

(

−(Zi − Biβi)H(Zi − Biβi)

2σ2

)

,

(4.11)

Spline parameters models:

ξi, βi|γ ∼ Dirichlet(ξi|α) ×N
(

βi|µ0, Σ
i
)

p(ξi, βi|γ) =
1

B(α)

k
∏

j=1

(∆i
j)

(αj−1) × (2πσ2Ni)
−k|BiT Bi| ×

exp

(

−(βi − µ0)
HBiT Bi(βi − µ0)

2σ2Ni

)

. (4.12)

Definition (4.4): Curved exponential family density

Density f(x; γ) belongs to the curved exponential family if and only
if ∃ functions, h(x), S(x), Ψ(γ) and Φ(γ) such that:

f(x; θ) = h(x) exp {−Ψ(γ) + 〈S(x), Φ(γ)〉} , (4.13)

where < ·, · > denotes the standard Euclidean inner product in R
d, d

being the dimension of Φ(γ). Note that d ≥ dim(γ). S(x) is called the
sufficient statistics.
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Let wi =
(

βi, ξi
)

. Note that the model p(Zi, wi|γ) = p(Zi|wi, γ)p(wi|γ)
belongs to the exponential family with:

p(Zi, wi|γ) = h(Zi, wi) exp
(

−Ψ(γ) +
〈

S(Zi, wi), Φ(γ)
〉)

, (4.14)

with

h(Zi, wi) = Ni|BiT Bi| ,

Ψ(γ) = (Ni + k) log
(

2πσ2
)

+ log B(α) , (4.15)

S(Zi, wi) =



















ln∆i

(Zi − Biβi)H(Zi − Biβi) + βiHBiT Biβi

Ni

ℜ
(

BiT Bi

Ni
βi
)

ℑ
(

BiT Bi

Ni
βi
)

Vec(BiT Bi)
Ni



















, (4.16)

Φ(θ) =















α − 1
− 1

2σ2

ℜ
(µ0

σ2

)

ℑ
(µ0

σ2

)

−Vec(µ∗

0µT
0 )

2σ2















. (4.17)

S(Zi, wi) is the sufficient statistics of the model. ℜ(·) (resp. ℑ(·)) de-
notes the real (resp. imaginary) part of its argument. Vec (A) is defined in
definition 2.2.

4.2 Model identification

With the model detailed above, we want to identify a model for the set of
curves C. But if n, the number of curves, is large, the identification of the
model may be computationally expensive. As we may observe new curves
that will be added to the set along the identification, the modeling problem
should be performed sequentially so that parameters γ are updated with
each new observation. This can be summarized in the schematic algorithm:

Initialization: Set i = 1,
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Update: ci(t) is observed and:

γ̂(i) = arg max
γ∈G

p({cj}i
j=1 |γ) ,

Iteration: loop until the set of observed curves is completely processed.

4.2.1 Unwanted parameters

For the identification of the model detailed in Figure 4.2, we distinguish two
different approaches:

• a straightforward approach consists in first estimating the hidden pa-
rameters βi and ξi for all i = 1 · · ·n, followed by an estimation of
parameter γ,

• a marginal likelihood approach where hidden parameters are marginal-
ized out.

The first approach would require to process each curve at a time to find
its spline model following one of the methods described in chapter 3. Once
all spline parameters are estimated, another estimation should be done to
identify the model and γ ∈ G. Then, for i = 1 · · ·n:

(

β̂i, ξ̂i
)

= arg max
β∈Ck,ξ∈Dk−1

p(Zi|β, ξ, γ) ,

γ̂ = arg max
γ∈G

p(
{

β̂i, ξ̂i
}n

i=1
|γ) ,

This method is computationally demanding as each iteration corresponds to
spline modeling in S

k
m.

The second approach consists in integrating the likelihood with respect
to hidden variables

(

βi, ξi
)

which corresponds to averaging over them:

γ̂ = arg max
γ∈G

∫

Wi

p(Zi, wi|γ)dwi . (4.18)

Generally the integration and the maximization are untractable and we must
use numerical methods to identify γ̂. The Expectation-Maximization (EM)
method is one of them.

4.2.2 EM algorithm

In this section we briefly review the EM algorithm and some of its variants
we use in the next section for the collective spline modeling problem.



CHAPTER 4. COLLECTIVE SPLINE MODELING 77

Note that for simplicity we conserve the notation given above for general-
ities about EM algorithm: Z is the observed data set, W are the unavailable
variables and γ is the model parameter. The data likelihood is p(Z|γ) and
the complete data likelihood, taking into account the unobserved variables,
is p(Z, W |γ).

The EM algorithm [15] has been developed to identify models with miss-
ing variables with a marginalization approach. This algorithm has proved to
be useful in a multitude of problems such has the identification of Gaussian
mixture densities (e.g. [20]) where both the parameters of the distributions
and weights of the mixture are unknown. It is a two steps iterative process
where the observed data likelihood is increased at each iteration guarantee-
ing the (local) convergence of the algorithm as it reaches a bound of the
function.

Expectation (E) step: the expectation of the log-likelihood of the com-
plete data is computed, noted Q(γ|γ(t)) where γ(t) is the parameter
estimated at the previous iteration:

Q(γ|γ(t)) = EW

[

log p(Z, W |γ)|Z, γ(t)
]

, (4.19)

where E denotes the expectation operator and t denotes the iteration
number.

Maximization (M) step: the maximizer of Q(·|γ(t)) is evaluated and be-
comes the estimate of the parameter at iteration (t + 1), γ(t+1):

γ(t+1) = arg max
γ∈G

Q(γ|γ(t)) . (4.20)

Loop until: the process is iterated until a convergence criterion is met such
as no major change in the parameter estimates.

When the complete data likelihood p(Z, W |γ) belongs to the exponential
family, as it is our case, the (E) step in EM algorithm reduces to:

s̄(Z, γ) = E[S(Z, W )|Z, γ] , (4.21)

S(Z, W ) given in equation (4.16).
This standard algorithm suffers some major drawbacks:

• the estimate depends on initialization γ(0) of the algorithm as the
algorithm converges to a local maximum of p(Z|γ), not to the global
maximum,

• the convergence may be very slow.
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The EM algorithm is useful when both the computations of the expected
value in (4.19) and the maximum in (4.20) are analytically tractable. This is
not the case in general, although for simple problem such as the identification
of mixture of Gaussian densities [15]. In all other cases one must resort on
numerical approximations. Some authors propose variants of EM algorithm:

• Monte-Carlo EM allows to approximate the expectation in (4.19),

• Metropolis EM allows to find numerically the maximum in (4.20).

Monte-Carlo EM.
When Q(γ, γ(t)) has no closed form, an alternative is to use an empiri-

cal approximation. Wei and Tanner in [50] propose to use a Monte-Carlo
method to approximate it, called MCEM (Monte-Carlo EM):

Monte-Carlo step:

Wm ∼ p(W |γ(t), Z), for m = 1 · · ·M , (4.22)

(E) step:

Q(γ, γ(t)) ≈ 1

M

M
∑

m=1

log p(Wm, Z|γ) . (4.23)

Then, the standard maximization step is performed.
The sampling step of equation (4.22) is in general not an easy task and

one must use numerical method to sample from the conditionnal posterior,
such as Metropolis-Hastings (MH) method.

Note that if M = 1, then MCEM is equivalent to a method presented
in [10], the Stochastic EM (SEM). If M → +∞, then, by the law of large
numbers, MCEM is equivalent to EM. The quality of the approximation
depends on the number of samples, M , and the authors propose to use an
increasing scheme for M . Then, MCEM can be interpreted as a Simulated
Annealing algorithm with M equivalent to the inverse of the temperature.

In [21], author proves the convergence of MCEM to a local maxima in
the case of complete likelihood function being an element of the exponential
family. They also give some results on the rate of convergence and recom-
mend to use a polynomial scheme for the increase of M . We do not explore
this point here, but we retain their conclusions and:

Mt = tρ ρ > 1 (4.24)

In practice, they recommend to use: Mt = M0 + t1.2.

In our case, the computation of the expectation is only partly untractable:
W = (β, ξ) and the computation of the expectation with respect to to β is
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tractable (details are in appendix B), while the computation with respect to
ξ is untractable. We thus require to use a MCEM approach to approximate
the expectation in the (E) step. As our complete data likelihood belongs
to the exponential family, based on results in [21], our MCEM application
converges to a local maximum of the observed data likelihood.

Metropolis EM.
To deal with models where both (E) and (M) steps are untractable, [22]

proposes an approach called Metropolis EM (MEM) based on MCEM with
a Metropolis-type step. While MCEM allows to compute an approximation
of Q(γ, γ(t)), the Metropolis-type step is building a Markov chain with the
parameters estimated at each iteration:

MC step: First step follows MCEM detailed in (4.23) and draw M samples
{Wm}M

m=1,

Metropolis update: A parameter γ′ is simulated from a proposal Pt(γ
(t−1), γ),

and is acceptated as parameter estimate with probability At:

At(γ
(t−1), γ′, M) = min

{

1, rt(γ
(t−1), γ′, M)

}

,

rt(γ
(t−1), γ′, M) = exp

(

M(Q(γ′, γ(t−1)) − Q(γ(t−1), γ(t−1)))
)

.

The Metropolis step allows updates of the parameter γ that do not in-
crease the likelihood function and thus this algorithm may escape from local
minima. As detailed in [22], the MEM algorithm produces a sequence of pa-
rameters which distribution converges to the set of global maxima of the
marginal likelihood, under the condition that the number of samples, M ,
increases with t.

In our case, the maximization is untractable but as our parameter vector
γ is not very complex (small vector size: 3k + 1, and standard parameter
space C

k,Dk−1, R+
∗ ), and as the maximization can be separated into two

independent maximizations (detailed in appendix B), we prefer to adopt a
Gradient approach for the maximization step.

Sequential EM.
In all EM procedures exposed above, we note that the observed data

are entirely used at each iteration.As we discuss in the introduction of this
section, it would be preferred to update the estimate of the parameter se-
quentially as the observations (curves) are acquired.

In the literature, [46] proposes to update the parameter estimate after
each new observation, the iteration being thus equivalent to the number
of processed data. Let ci(t) be the curve observed at time i with its sam-

ples Zi. Let S
(

Zi, γ
)

= ∂ log p(Zi|γ)
∂γi

, γ = (γ1 · · · γp) be the score vector.
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Each parameter update involves a stochastic gradient approach requiring
the computation of the Fisher Information Matrix I−1(γ) corresponding to
one observation:

I−1(γ) = Eγ

[

S
(

Zi, γ
)

ST
(

Zi, γ
)]

.

Then,

γ̃(i) = γ̃(i−1) +
(

iI−1(γ(i))
)−1

S
(

Zi, γ̃(i−1)
)

. (4.25)

This approach is a general sequential setting and its use in EM algorithm
is only one of its applications. This method is computationally expensive
as each iteration require the computation of the inverse of the matrix I(γ).
The major drawback of the recursive approach is that the estimated param-
eter may be outside the definition space: γ̃(t) /∈ G. For example, when G is
not a vector space, imposing for example some constraints on the parame-
ters, the parameter update in equation (4.25) may leads to a parameter that
do not fit the constaints and thus outside the parameter space. Moreover,
the evaluation of I(γ) is not possible here as we do not have access to the
marginal likelihood p(Z|γ).

The online EM proposed in [9] follows the idea of sequentially processing
the data and overcomes the drawbacks of Titterington’s recursive approach.
Instead of treating the (M) step as the one to update at each new data, the
sequential feature arises by the mean of stochastically approximating the
expectation value in the traditional (E) step. This is the online (E) step:

Q̃i+1(γ) = Q̃i(γ) + ηi+1

(

E
[

log p(Z(i+1), w(i+1)|γ(i), Z(i+1))
]

− Q̃i(γ)
)

,

(4.26)
where γ(i) is the parameter estimated at the previous step i.

In the special case of exponential family, the online (E) step 4.26 reduces
to:

ŝi+1 = ŝi + ηi+1 (s̄(Zi+1, γ̂i) − ŝi) . (4.27)

The choice of the step size ηi is discussed in [9] and the authors rec-
ommend to use ηi = η0i

−κ, κ ∈]1/2, 1[ and η0 ∈ [0, 1]. In practice, they
recommend to put η0 = 1 and κ = 0.6.

This method is thus more related to the incremental version of EM intro-
duced in [38]. The online EM has the advantage of not having to compute
the inverse Fisher Information Matrix of the sequential approach. The max-
imization step in equation (4.20) is then performed within the defined pa-
rameter space. If it is not tractable then we must use a numerical approach
to identify the maximizer.
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4.3 Monte-Carlo Online EM

We propose in this section a new variant of the EM algorithm, the Monte-
Carlo Online EM, as the solution of the problem exposed at the beginning
of this chapter: collectively modeling a set of curves with splines. Numerical
results of this method are given in the next section of this chapter.

Firstly, MC online EM algorithm processes the data curves sequentially.
Let γ̂i be the parameter estimated at iteration (i). We describe here the
(i + 1)-th iteration of the algorithm corresponding to the curve ci+1(t) and
its sampled version Zi+1:

Computation of s̄(Zi+1, γ̂i):

s̄(Zi+1, γ̂i) = Ewi+1

[

S(Zi+1, wi+1)|Zi+1, γ̂i

]

, (4.28)

=

∫

Wi+1

S(Zi+1, wi+1)p(wi+1|Zi+1, γ̂i)dwi+1 .

As the integration is untractable, we use a Monte-Carlo method to
approximate s̄(Zi+1, γ̂i):

• Let M i = M0 + i1.2 (equation (4.24)),

• Let
{

wj
i+1

}M i

j=1
be M i samples of p(wi+1|Zi+1, γ̂i),

• Then,

s̄(Zi+1, γ̂i) ≈
1

M i

M i
∑

j=1

S(Zi+1, wj
i+1) .

Online step:
ŝi+1 = ŝi + ηi

(

s̄(Zi+1, γ̂i) − ŝi

)

, (4.29)

with ηi = i−0.6.

Maximization step: Let ℓ(s, γ) , −Ψ(γ) + 〈s,Φ(γ)〉, Ψ(·) and Φ(·) given
in equations (4.15) and (4.17). Then,

γ̂i+1 = arg max
γ∈G

ℓ(ŝi+1, γ) . (4.30)

The maximization is performed numerically with a gradient approach.

To simplify the notation, we remove the index corresponding to the iter-
ation, i + 1 and i, in the next section where the computation of s̄(Zi+1, γ̂i)
is detailed.
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4.3.1 Computation of s̄(Z, γ)

We consider the general problem of computing s̄(Z, γ) = Ew [S(Z, w)|Z, γ].

s̄(Z, γ) =

∫

W
S(Z, w)p(w|Z, γ)dw ,

=
1

p(Z|γ)

∫

W
S(Z, w)p(Z|w, γ)p(w|γ)dw ,

=
1

p(Z|γ)

∫∫

Ck×Dk−1

S(Z, β, ξ)p(Z|β, ξ, γ)p(β|γ, ξ)p(ξ|γ)dβdξ .

The first integral with respect to β is tractable (see appendix B) and
leads to:

s̄(Z, γ) =





















∫

Dk−1 log ∆iq(ξ|Z, γ)dξ ,
ZHZ + kσ2 − 2ℜ

(∫

Dk−1 ZHBϕq(ξ|Z, γ)dξ
)

+ · · ·
· · · + N+1

N

∫

Dk−1 ϕHBT Bϕq(ξ|Z, γ)dξ ,

ℜ
(

∫

Dk−1
BT B

N ϕq(ξ|Z, γ)dξ
)

,

ℑ
(

∫

Dk−1
BT B

N ϕq(ξ|Z, γ)dξ
)

,
∫

Dk−1 Vec
(

BT B
)

q(ξ|Z, γ)dξ ,





















(4.31)

where

• q(ξ|Z, γ) =
exp

[

−
T (Z,ξ,γ)

2σ2

]

p(ξ|γ)
∫

exp
[

−
T (Z,ξ,γ)

2σ2

]

p(ξ|γ)dξ

• T (Z, ξ, γ) = ZHZ+ 1
N µ0B

T Bµ0− N
N+1

(

Z + Bµ0

N

)H
B(BT B)−1BT

(

Z + Bµ0

N

)

• ϕ = N
N+1

(

BT B
)−1

BT (Z + Bµ0

N ) . .

Note that s̄(Z, γ) ∈ R
k2+3k+1.

For our spline model, there is no analytical expression for s̄(Z, γ): the
integral with respect to ξ ∈ Dk−1 is untractable. We thus use a Monte-
Carlo approach to approximate it, following the MCEM approach. Let I
denotes any one of integrals listed above in equation (4.31) and let f(ξ) be
the corresponding function such that

I =

∫

Dk−1

f(ξ)q(ξ|Z, γ)dξ

Then, using a sampling scheme, we approximate I, such that:

I ≈ 1
M

M
∑

j=1

f(ξj) , ξj ∼ q(ξ|Z, γ) j = 1 · · ·M . (4.32)
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4.3.2 Sampling from q(ξ|Z, γ)

Sampling from q(ξ|Z, γ) is not straightforward and we use a Metropolis-
Hastings (MH) algorithm with proposal density P (ξ′|ξp) to obtain samples
ξj , j = 1 · · ·M . Let ξp be the state of the chain at time p and ξ′ the
candidate state simulated from a known probability P (ξ′|ξp).

Initialization: Set ξ0 and p = 0,

Draw a state: ξ′ ∼ P (ξ′|ξp),

Accept the new state: ξ′ is accepted as the next state of the Markov
chain with probability r(ξ′, ξp) given below in equation (4.33),

Iterate: loop until a stop criterion is reached such as the number of samples
for example.

MH builds a Markov Chain over ξ which distribution converges toward
the target distribution q(ξ|Z, γ). Detailed balance condition for the conver-
gence is respected by using an acceptance ratio r(ξ′, ξp) such that:

r(ξ′, ξp) =
q(ξ′|Z, γ)

q(ξp|Z, γ)

P (ξp|ξ′)
P (ξ′|ξp)

, (4.33)

In practice, we begin the chain with a burn-in period: a predefined num-
ber of states that allow the chain to converge to the target distribution. We
choose 1000 iterations for the burn-in.

The choice of the proposal is crucial for the mixing of the chain. We
consider, for the simulations, different proposals:

• P1(ξ
′|ξp) : we change randomly one knot in its neighborhood following

a triangular distribution,

• P2(ξ
′|ξp) : ξ′ ∼ Dir(ξ; α0 = [11 · · · 1]), corresponding to uniform dis-

tribution in the simplex ,

• P3(ξ
′|ξp) : ξ′ ∼ Dir(ξ; αi), using the estimated parameter αi at itera-

tion i of the online EM algorithm.

In the next section, we give results for these 3 different proposals.

4.3.3 Numerical method for maximization

Once ŝi is computed, γ is updated by maximizing the log-likelihood function,
ℓ(ŝi, γ), (4.30).

The maximization has no analytical solution and we use numerical method,
a standard gradient algorithm, to perform it. However the estimation of the
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Dirichlet parameter α is independent of other parameters estimation and we
can separate the maximization into two maximizations:

α̂ = arg max
α∈(R

+
∗ )

k



− log B(α) +

k
∑

j=1

(αj − 1) log ∆j



 ,

(

µ̂0, σ̂2
)

= arg max
µ0∈Ck,σ2∈R

+
∗

(

−(N + k) log(2πσ2) − µH
0 BT Bµ0

2Nσ2
+ · · ·

· · · − 1

2σ2

(

(Z − Bβ)H(Z − Bβ) +
βHBT Bβ

N

)

+ ℜ
(

µH
0 BT Bβ

σ2

))

.

4.4 Results

In this section, we show results obtained on curves simulated from a cubic
spline model with k = 12 knots. Figure 4.3 shows 20 curves amongst the
200 simulated from the model with µ0, the red crosses,

α = [3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27] and σ2 = 2.310−3.
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Figure 4.3: Subset of the 200 curves simulated from .

We now test different proposals presented in section 4.3.2. Results are
shown in figures 4.4 and 4.5: in the first figure, we can see that the estimated
µ0 are similar, in the second, we can see that α is better estimated using
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the proposal P1 while for the other proposals the Markov chain is not mixed
enough to obtain a good estimation of α. But, when looking at the bottom
figure, the mode of the estimated Dirichlet distribution is estimated correctly
for all the proposals.
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Figure 4.4: µ0 estimated from 3 different proposals: real in red, estimated
µ0, P1 proposal in magenta, P2 proposal in green and P3 in blue.
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Figure 4.5: α (top) and α
ᾱ (bottom) estimated from 3 different proposals:

real in red, P1 proposal in magenta, P2 proposal in green and P3 in blue.

Figure 4.6 show that the estimated value of the noise covariance σ2 is
away from the exact value. However, we see that P1 and P3 proposals
converge to the estimated value while for P2, there is no convergence. It
is due to the lack of mixing of the Markov Chain in the MC step of the
algorithm.
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Figure 4.6: σ2 estimated from 3 different proposals: real in red, P1 proposal
in magenta, P2 proposal in green and P3 in blue.

We conclude that the first proposal has the best properties for MC online
EM algorithm.

We then test on the same set of simulated curves the influence due to
the initialization of the algorithm. We know that EM algorithm converges
locally and thus the identified model depends on the initialization. We
perform 22 Monte Carlo runs of the algorithm with P1 as proposal and with
different initializations. We choose a random knot vector sampled from

Dirichlet distribution with parameter [1, 1, · · · , 1]. Then, mu
(0)
0 and σ2(0)

are initialized with the maximum likelihood estimates, and α(0) is set to
[1, 1 · · · 1].

Figure 4.7 show the maximum log-likelihood of the 22 runs with lots of
local maxima and one global maxima for 18-th run. The estimated param-
eters of the run corresponding to this maxima are very close from the real
model (see figure 4.8) while some of the estimated parameters of runs with
local maxima are rotated with respect to to real model. The remaining runs,
9 out of the 22, are corresponding to local maxima that are not close from
the model.

We now take the parameters estimated at the run with the maximum of
the log-likelihood, and we simulate some curves with this model and with a
ba estimated model to compare them qualitatively with those of the data set.
We can see in figure 4.9 that the correctly estimated model is a coherent
model with the data set (left) while the badly estimated model does not
produce curves similar to the data set (right).
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Figure 4.7: Maximum log-likelihood with the index of the run in abcissae.

4.4.1 Real data

In this section, we present the results of modeling a set of real data curves:
30 contours of sand ripples extracted manually from side-scan images which
forms are characteristic of the sand ripples contours. For MC online EM, we
choose the first proposal that demonstrates the better results on simulated
data. We show here the dependence of the identified model on the complex-
ity of the spline, or equivalently with k. We present 3 identified models with
the maximum log-likelihood over the Monte-Carlo runs: γ1 for k = 8 over
50 runs, γ2 for k = 15 over 26 runs and γ3 for k = 25 over 25 runs.

Figure 4.10 show the identified µ0 in each case. We can see that the
more complex model (k = 25) is not identifying a correct model. It is due
to the fact that our data set is only composed of 30 curves which is too
small to be able to identify 3k + 1 = 76 parameters. In figure 4.11, we
show the identified model for α. We can see that coefficients are closed from
one, meaning that the variability in curves is high and thus the Dirichlet
distribution is almost uniform in the simplex.

4.5 Conclusion

In this chapter, we proposed a new variant of the EM algorithm that se-
quentially identify a collective spline model of a set of curves. We show that
when applied to simulated data, the model is coherent with the data. With
real data curves, one must take care of adjusting the dimension of the model
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Figure 4.8: Parameters estimated for the global maxima (in blue) and for
some local maxima (in green), with the real model (in red): µ0 on the top,
α in the bottom left and α

ᾱ in the bottom right.

with the number of available curves. In the context of sequentially acquiring
the curves, we can update the model at each observation and thus stabilize
the identified parameters.
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Figure 4.9: Simulated curves from the model estimated with the maximum
log-likelihood (left, in green) and curves extracted of the data set (in blue)
and with a bad estimation (right, in magenta).
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Figure 4.10: µ01 (red), µ02 (green) and µ03 (magenta) with some sand ripples
contours (blue).
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Figure 4.11: α (left) and α
ᾱ (right) of γ1 (red), γ2(green) and γ3 (magenta).





Chapter 5

Spline-based shape model

5.1 Introduction

The major advantage justifying our choice of spline representations to char-
acterize shapes is that it has the power of continuous descriptions while still
leading to sparse representations through its parameters β and ξ. As several
authors have already suggested, the identification of spline parameters, in
particular of control points, can be interpreted as an automatic way to select
the landmarks of the discrete shape theory presented in chapter 2. This idea
is for instance presented in [5] considering the special case of fixed equis-
paced knots selecting the remarkable points of the object as the identified
control points. In this chapter, we study how we can base the definition of
a shape space in spline models.

Figure 5.1: Illustration of spline-based shape identification of contours.

Figure 5.1 illustrates the scheme we follow for the shape (s̄(t)) definition

91
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of a curve s(t), passing through the spline model s(t)(chapter3).
We study the definition of shapes of free-knots spline representations of

curves using the basic Kendall’s shape definition: “what is left after remov-
ing information of position, size and orientation of an object”. Since our
objects are continuous curves, we also add the parametrization invariance
as it is customary in the continuous theories (see chapter 2). In the first
section, we study on spline representations what is the result of imposing
invariances with respect to a number of operating groups, and we show that,
contrary to what happens in both shape theories presented in chapter 2 –
where the shape space has no simpler representation than a set of equiva-
lence classes – we can here select a unique spline as a representative of each
shape, i.e. of an entire class of equivalence with respect to the operating
groups considered.

In the second section, we briefly compare Kendall’s shapes and spline-
based shapes, focusing on the comparison of distances between shapes de-
fined in each theory.

5.2 Spline-based shape definition

In this chapter, as we already did in previous sections, we use the complex
representation of points in the plane. Let s(t) = (sX(t), sY (t)) be a spline
curve from [0, 1] to R

2 ≡ C. Let s(t) ∈ S
k
m be a cubic spline with parameters

(β, ξ), β ∈ C
k and ξ ∈ [0, 1]k.

We maintain the shape definition used for continuous curves presented
in chapter 2, restriciting it to splines:

Definition (5.1): Spline-based shape

Two splines s1(t) ∈ S
k
m and s2(t) ∈ S

k
m have identical shapes [s1(t)]

and [s2(t)], i.e. [s1(t)] = [s2(t)], if and only if ∃ α ∈ R
+
∗ , R ∈ SO(2),

t ∈ R
2 and γ(t) ∈ Γ such that:

s1(t) = αRs2(γ(t)) + t ,

where Γ is the parametrization group defined in section 2.3.2.

5.2.1 Translation and scaling invariances

We study now the impact of these shape invariances on the spline parame-
ters.

We begin by fixing the position of s(t) in the plane, so that the repre-
sentation becomes invariant with respect to translation. We will denote by
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sc(t) the centered version of s(t), so that:

∫ 1

0
sc(t)dt = 0 . (5.1)

Let Bi =
∫ 1
0 bi(t; ξ)dt and B = [B1 · · · Bk].

∫ 1

0
sc(t)dt =

∫ 1

0

k
∑

i=1

βc
i bi(t; ξ)dt =

k
∑

i=1

βc
i

∫ 1

0
bi(t; ξ)dt ,

=
k
∑

i=1

βc
iBi = Bβc = 0 .

Thus, the control points of the centered spline are orthogonal to the hy-
perplane B. Note that this is not equivalent to centering the control points,
i.e.

∑k
i=1 βc

iX 6= 0, unless B = b1, which happens, for instance, when ξ is
uniform, and the bi(t; ξ) are shifted versions of the same function.

We can now impose invariance with respect to scale to the centered
spline representation sc(t) by fixing its size. We may consider two distinct
definitions of the size of a curve:

• unit length, given in definition 2.16 and recalled here:

L2
1[sc] =

∫ 1

0

〈

dsc(t)

dt
,
dsc(t)

dt

〉

dt = 1 , (5.2)

• ‘unit-‘ball” size:

L2
2[sc] =

∫ 1

0
||sc(t)||2dt = 1 , (5.3)

We denote by G ∈ R
k×k the Gramian matrix of the B-splines and by

H ∈ R
k×k the Gramian matrix of the derivatives of B-splines:

Gij =

∫ 1

0
bi(t; ξ)bj(t; ξ)dt i, j = 1 · · · k , (5.4)

Hij =

∫ 1

0

dbi(t; ξ)

dt

dbj(t; ξ)

dt
dt i, j = 1 · · · k . (5.5)

Then,

L2
1[sc] =

∫ 1

0

k
∑

i=1

k
∑

j=1

〈

βc
i

dbi(t; ξ)

dt
, βc

j

dbj(t; ξ)

dt

〉

dt ,

L2
1[sc] = βcHHβc . (5.6)
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and

L2
2[sc] =

∫ 1

0

k
∑

i=1

k
∑

j=1

〈

βc
i bi(t; ξ), β

c
jbi(t; ξ)

〉

dt ,

L2
2[sc] = βcHGβc . (5.7)

We see that both the curve length and the “ball” length are Frobenius
norms of the vectors of control points under convenient metrics defined by
the B-spline basis. Let Ln[sc], n = 1, 2 be the size definitions above. The
corresponding unit size representations s̃n(t) are

s̃n(t) =
sc(t)

Ln[sc]
n = 1, 2 , (5.8)

The mapping from s(t) to the centered and normalized spline s̃n(t) is
a many-to-one application that allows to select a unique representation of
all translated and scaled representations of a spline curve. Imposing these
conditions on the spline leads to spline representation that is invariant to
translation and scaling.

For fixed k and ξ, the space of control points of the corresponding cen-
tered and normalized spline functions, noted S̃ξ

m, is thus an ellipsoid:

S̃k
m =

{

s(t) ∈ S
k
m :

∫ 1

0
s(t)dt = 0 and Ln[s] = 1

}

. (5.9)

5.2.2 Origin and rotational invariances

We now consider the invariance with respect to the origin of the curve
parametrization. Indeed, any closed curve has identical shape when chang-
ing its origin.For closed spline curves, we choose to fix the origin on a knot
point so that changing the origin corresponds to a circular shift of param-
eters β and ξ. We select the knot vector ordered so that intervals between
knots, ∆i = ξi+1 − ξi, i = 1 · · · (k − 1) and ∆k = 1 − ξk + ξ1, are following
the lexicographic order:

T = arg max {∆i, i = 1 · · · k} ,

∆̌i = ∆(T+i−1) mod k i = 1 · · · k .

And we fix the origin t0 of the curve so that ξ̌1 = t0.
We note š(t) the new spline representation with parameters (β̌, ξ̌) that

are circularly shifted version of (β, ξ). Figure 5.2 illustrates this selection.
The mapping from s̃(t) to š(t) is thus invariant to the choice of the curve

parametrization.
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Figure 5.2: Illustration of the fixed lexicographic parametrization of splines:
the original parametrization (β, ξ) is above and the circularly transformed
parametrization (β̌, ξ̌) is below.

Kendall’s landmarks are distinguishable points, i.e. their labeling is de-
fined by the selection mechanism, on the basis of relevant criteria for the
problem at hand. In our case, as the enforcement of permutation invariance
discussed in section 2.2.4 demonstrates, all points are in principle exchange-
able (points are just points). The coupling between control points and knots
allow us to select a canonical labeling of the control points, the one that leads
to a knot vector whose intervals are sorted by lexicographic order.

We remark here that this choice of ordered knot vector is impossible
for some problematic cases: the splines that present a periodicity between
their knots for which uniform splines with equispaced knots is a special case.
However we consider here that this does not occur in practice as the spline
model of an arbitrary curve identified with approaches detailed in chapter 3,
does not have this very particular setting. Indeed, the set of such splines in
S

k
m are a set of null measure in S

k
m.

Note that when considering open curves, the origin of the curve is nat-
urally fixed and there is no meaning in considering this invariance.

We now consider the orbits of šn(t) under the group of rotations in R
2.

We fix the orientation of the spline by fixing the origin on the positive x-
axis so that š(t0) ∈ R+. This arbitrary convention allows to select a unique
representative of the equivalence class with respect to rotation. We expect
that once t0 and the knots have been fixed as explained before, in a manner
that is driven by the characteristics of the shape itself, fixing the orientation
in this manner is sufficient to align curves and thus to distinguish spline
shapes.

We can question this choice as this fixed orientation may not minimize
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the difference between two shapes in the sense that it does not lead to
the minimum L

2-distance between their corresponding equivalence classes.
However this is also the case for Kendall’s definition of distances, for example
the full Procrustes distance considers explicitly minimization with respect
to scaling and in this sense needs to consider elements outside the set of
normalized representations. We hope that in practice this selection will not
significantly impact the distance between curves determined through their
spline-based shape representations: if they are close, the distance should be
small (near zero), if they are highly dissimilar, the distance should be high.

Any L
2-induced distance in the spline-based shape space will be an up-

per bound on the true L
2 distance between the corresponding equivalence

classes. The problem may thus be that two close shapes will not be prop-
erly aligned, resulting in a spline-based shape distance that is larger than it
should be.

We note ŝ(t) the rotated version of š(t). The mapping from š(t) to ŝ(t)
is a many-to-one mapping that is invariant to rotations.

5.2.3 Invariant spline parametrization

In the previous sections we considered the standard shape invariances that
Kendall used to define a shape: translation, scaling, rotation, and we added
the invariance with respect to the definition of origin. We now consider
the invariance with respect to the choice of parametrization of the curve.
Figure 5.3 shows the same closed curve with different parametrizations: the
spline with non-uniform knots s(t) and the uniform spline s(γ(t)) where γ(t)
is given in figure 5.4.

50 100 150 200 250 300

0

50

100

150

200

Figure 5.3: Closed spline curve with two distinct parametrizations corre-
sponding to uniform (in red) and non-uniform (in blue) knot vector.

Curve re-parametrization directly affects the knot positions and, obvi-
ously indirectly, also the control points of the spline description. So we
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Figure 5.4: Parametrization function with the initial knot (in red) on the
x-axis and the uniform knot vector (in magenta) on the y-axis.

would like to be insensitive with respect to the particular observed knot
vector. We do this by imposing uniform knots vector ξ̄ so that, ∆i = 1

k
and ξ̄i = (i − 1)/k for i = 1 · · · k. This is equivalent to a piecewise linear
re-parametrization of the original curve:

γ : t ∈ [ξi, ξi+1] → u = ait + bi ∈ [(i − 1)/k, i/k] , (5.10)

where ai ∈ R+
∗ and bi ∈ R.

Figure 5.5 illustrates the re-parametrization for a particular ξ. This re-
parametrization also affects the control points and we will denote it by

(

β̄, ξ̄
)

,
and designate it by the “matched curve parametrization”. The detailed
computation of β̄ is given in appendix C for the particular cases of m =
1, 2, 3. Similar formulas can be obtained for higher values of m.

Note that this is not the usual re-parametrization group consider in
shape theory which elements are commonly considered strictly increasing
continuous differentiable functions.

Being linear, the re-parametrization γ does not change the degree of the
spline. However, being piecewise, the differentiability of s(u) = s(γ(t)) at
the knots is generally lost. For example for ξi, i = 1 · · · k:

d(s ◦ γ(t))

dt

∣

∣

∣

∣

ξi−δ

=
dγ(t)

dt

ds(u)

du

∣

∣

∣

∣

ξi−δ

= ai−1
ds(u)

du

∣

∣

∣

∣

(i−1)/k−δ

,

and,

d(s ◦ γ(t))

dt

∣

∣

∣

∣

ξi+δ

=
dγ(t)

dt

ds(u)

du

∣

∣

∣

∣

ξi+δ

= ai
ds(u)

du

∣

∣

∣

∣

(i−1)/k+δ

,

Assuming that the spline s(t) is a continuous and differentiable function,
then s(u) is continuous as γ(t) is continuous but it will not be differentiable
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β̌1 β̌2 β̌3 β̌4 β̌5
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Figure 5.5: Illustration of the re-parametrization of splines to obtain the
matched curve parametrization.

if γ(t) is not. To cope with this non-differentiability at the knot points, we
must use multiple knots in the matched curve representations. For splines of
order m, knots are repeated (m − 1) times in the knot vector. For example
for cubic splines:

ξ̄ = [0, 0, 0, 1/k, 1/k, 1/k, · · · (k − 1)/k, (k − 1)/k, (k − 1)/k] . (5.11)

Note that this matched curve representation transfers complexity from
the knot sequence (which is now always uniform) to the control points (which
now belong to a space of higher dimensionality).

With the matched curve parametrization, we expect to reduce vari-
ability of spline representation inside the equivalence class with respect to
parametrizations. Finally s̄(t) is the spline-based shape of s(t). Figure 5.6
shows a diagram for the spline-based shape selection. Note that contrary
to other shape theories, the spline shape is a unique representation of the
complete equivalence classes.

c(t)

free-knots spline modeling

s(t)
(β, ξ) centering

sc(t)
(βc, ξ) scaling

s̃(t)
(β̃, ξ) origin

š(t)
(β̌, ξ̌) orienting

ŝ(t)
(β̂, ξ̌)

parametrizing

s̄(t)
(β̄, ξ̄)

Figure 5.6: Diagram showing the spline shape identification.
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The set of spline shape functions, noted S̄m is the union of spline shape
functions with k knots S̄

k
m:

S̄
k
m =







s(t) ∈ Sm :
L[s] = 1,
fixed origin and orientation

s(t) is matched curve parametrized







,(5.12)

S̄m =
⋃

k

S̄
k
m . (5.13)

Note that due the re-parametrization of the spline, s̄(t) is not, in general,
a centered curve and

∫ 1
0 s(t)dt 6= 0.

5.2.4 Spline-shape distance definition

S̄m is a subset of the set of continuous functions L
2 from [0, 1] to R

2. It
thus inherits the L

2 inner product given by:

〈f, g〉 =

∫ 1

0
〈f(t), g(t)〉E dt .

Let s̄1(t) ∈ S̄
k1
m and s̄2(t) ∈ S̄

k2
m be two spline curves with respective

control points vector β1 and β2. Note that due to the matched curve
parametrization, βi, i = 1, 2, is no longer an element of C

ki but is an element
of C

(m−1)ki .
(

S̄m, d
)

is a metric space if we define distance d such that:

d2(s̄1, s̄2) =

∫ 1

0
(s̄2(t) − s̄1(t))

H(s̄2(t) − s̄1(t))dt . (5.14)

Let Wk1,k2 be the (k1 × k2) real matrix such that,

[Wk1,k2 ]i,j =

∫ 1

0
bi(t; ξk1)bj(t; ξk2)dt .

The distance (5.14) can be expressed in terms of the spline parameters
and matrix Wk1,k2 :

d2(s̄1, s̄2) = 2
(

1 −ℜ
(

β2HWk1,k2β
1
))

. (5.15)

Note that when k1 = k2 = k, Wk,k = G the Gramian matrix of B-splines,

and the mapping from s to G1/2β is an isometry from S̄
k
m to C

(k−1)m with
the standard norm.
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5.3 Spline-based shape and the discrete theory of
shape

In this section we briefly study the link between Kendall’s discrete shape the-
ory and the spline-based shape theory sketched in the previous section, by
taking the uniquely identified control points β̄ as the landmarks of Kendall’s
theory.

Let s(t) ∈ S̄
k
m and (β, ξ) be its spline parameters 1. Remember that s(t)

is a uniform spline and β ∈ C
(m−1)k.

We begin by studying the shape of the set of control points β under
Kendall’s theory. The control points β are not centered and not normalized
(in Kendall’s meaning):

∑2k
i=1 βi 6= 0 and βHβ 6= 1.

Let [β] denotes the Kendall’s shape of the configuration β. In this case,

Kendall’s shape space is Σ
(m−1)k
2 and distances between shapes are given in

section 2.2.3.

We now develop the partial Procrustes distance between two control
points configurations β1 and β2 obtained with the matched curve parametriza-
tion of their corresponding spline curves. Note that we use the notations
introduced in section 2.2.

dP ([β1], [β2]) =
√

2
(

1 − |β̃1β̃2H |
)

.

We now develop the distance between spline curves with similar complexity,
defined in (5.15), and:

d(s̄1, s̄2) =
√

2
√

(1 − |β2HGβ1| cos θ) ,

where θ is the argument of β2HGβ1.

The angle θ has the sense of the rotation between G1/2β1 and G1/2β2.
When θ ≈ 0, then d2 =

√
2dP . This suggests that our apprehension in sec-

tion 5.2.3 that distance between spline-based shapes is maintained is correct.

5.4 Conclusion

This chapter reports our preliminary work on the definition of spline-based
shape space for closed curves. We propose to use the free-knots spline model
identified in chapter 3 as the representative of the contour of an object and

1Note that we adopt the simpler notation β for β̄ of the previous section
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to define its shape. From equivalence classes with respect to group actions
we select a unique representative spline so that the spline-based shape of
the curve is normalized, with fixed origin and matched curve parametrized.
We also define a distance between two spline-based shapes and discussed its
relation with Kendall’s partial Procrustes distance.

In this chapter we succeeded in proposing a spline-based shape space.
We put forward a tentative definition of a matched spline representation
that enabled us to move all the complexity of the curve representation to
the representation of uniform splines.

This thesis does not fully establish the properties of this representation
which we expect to address in detail in future work.





Chapter 6

Conclusion

6.1 Contributions

This thesis is a contribution to the definition of formal representations of
the shape of objects as “what is left after removing information of posi-
tion, scale and orientation” following the seminal definition of Kendall. Our
objects are the contours of identified distinct regions such as sand ripples
or posidonia clutters in the special case of underwater images. Chapter 2
presents two theories reported in the literature that define shape as equiva-
lence classes with respect to some groups action: translations, scales, rota-
tions and parametrization. Both the discrete and the continuous definitions
of shapes allow the determination of planar shape spaces that are Rieman-
nian manifolds, and relevant geometric tools are defined such as distances
between shapes, geodesics, and mean shape. These approaches suffer from
major drawbacks: the selection of landmarks for the discrete case and the
infinite dimension of continuous shape spaces. In both cases, the defini-
tion of statistical shape models is not an easy task and requires approx-
imations procedures, for example, using tangent spaces or projections on
finite-dimensional spaces.

We propose here to combine both approaches by using spline curves to
represent the shape of the contours. We begin by studying the curve model-
ing problem with splines in chapter 3 and we introduce the free-knots spline
model as the one to use to obtain a sparse representation of a contour with
good fitting properties. We formulate the identification of a spline curve
as a problem of selecting a model amongst nested families of models. Our
review of the solutions proposed in the literature (with maximum likelihood
or Bayesian criteria) reveals a major flaw when applying the MAP criterion
to the identification problem that may lead to paradoxical behaviors. The
two steps approach proposed in section 3.4.6 is the procedure that can be
safely used in this framework. This work has been published in [2].
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We can now identify a spline model for any arbitrary contour. We pro-
pose in chapter 5 to use the spline parameters to express the shape of the
contour. We address the basic issues involved on building spline-based shape
theory, studying shape invariances when imposed on spline curves and show-
ing that we can select a spline representative in each equivalence class so
that its spline-based shape is uniquely defined. We also define a distance in
spline-based shape spaces as the distance inherited from the one in the set
of continuous curves.

Chapter 4 presents a method for the determination of a probabilistic
spline-based model for a set of curves. We propose to use a hierarchical
parametric model and to consider the spline parameters as unobserved vari-
ables of the modeling problem. Then, the identification of the model is
performed using a variant of the expectation-maximization algorithm that,
as far as we know, is proposed here for the first time: the Monte-Carlo On-
line EM. This method sequentially processes the observed curves updating
the estimates of the model parameters with each new observation and, as
some steps cannot be analytically performed, resorts to Monte-Carlo ap-
proximations.

6.2 Perspectives

During this thesis we identified some major axis that would require future
developments. We enumerate here some of them.

The results presented in chapter 4 indicate that the Monte-Carlo On-
line EM algorithm may converge to local maxima of the likelihood function.
This is a well-known EM problem. Some studies have been published on the
convergence of MCEM algorithm [21] and on the convergence of the online
EM [9], in the special case of exponential family. The results on these refer-
ences do not allow simple characterization of the convergence of MC online
EM algorithm. The formal establishment of the properties of the algorithm
is an important issue that requires further work.

The work presented in chapter 5 is both innovative and very preliminary.
The geometry of the spline-based shape spaces needs to be studied so that
it becomes a useful tool to define geodesics between curves, distance (as the
length of the geodesic), mean shape of a set of curves and also distributions
of shapes. Addressing these issues will reveal the real pertinence of the
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notion that is put forward here.
A key stone of our construction is the matched representation that maps

a free-knots spline to a given uniform spline. The intuition behind the defi-
nition of this representation is that the knots of a free-knots spline capture,
in a non-linear manner, the most distinctive elements of the morphology of
a curve. Our representation moves this information from the non-linear part
of the spline representation to its linear parameters.

We did not have the opportunity to study the properties of the resulting
shape. This definitely needs further work.

Links between the spline-based shape and the discrete and continuous
shapes require further explorations so that bridges can be build between the
different shape theories. It would be also interesting to compare the shape
distances given by each theory to extract similarities and/or dissimilarities
that may be due to imposed invariances.





Appendix A

Details for RJMCMC
implementation

When Mk and ξ are fixed, the MAP estimation of β and σ2 can be done
analytically.

Posteriors are given by:

p(β|Z,Mk, ξ, σ
2) = (2πσ2)−(k−m)

(

N + 1

N

)(k−m)

|BT
k,ξBk,ξ| · · ·

exp

(

− 1

2σ2

N + 1

N
(β − ϕk,ξ)

HBT
k,ξBk,ξ(β − ϕk,ξ)

)

,

p(σ2|Z,Mk, ξ) =
(σ2)−(N+1)

Γ(N)

(

ZHαk,ξZ

2

)N

exp

(

−ZHαk,ξZ

2σ2

)

,

with

αk,ξ = IN − N

N + 1
Bk,ξ(B

T
k,ξBk,ξ)

−1BT
k,ξ ,

ϕk,ξ =
N

N + 1

(

BT
k,ξBk,ξ

)−1
BT

k,ξZ .

The MAP estimate are:

β̂k,ξ = ϕk,ξ , (A.1)

σ̂2
k,ξ =

ZHαk,ξZ

2(N + k − m + 1)
. (A.2)

We introduce a new notation:

P(Mk, ξ|Z) = p(Mk, ξ|Z)p(σ̂2
k,ξ|Z,Mk, ξ)p(β̂k̂,ξ|Z,Mk, ξ, σ̂2

k,ξ).

Then, k and ξ are the structural variables of our model and we call
P(k̂, ξ|Z) the reduced posterior that is the target of the RJMCMC.
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Appendix B

Details of Monte-Carlo
Online EM algorithm

In this appendix, we give the detailed expression involved in MC online EM
algorithm.

The marginal likelihood is:

p(Z|γ) =

∫

W
p(Z, w|γ)dw ,

=

∫

W
p(Z|w, γ)p(w|γ)dw ,

=

∫∫

Ck×Dk−1

p(Z|γ, β, ξ)p(β, ξ|γ)dβdξ .

Given models in equation (4.11) and (4.12), we can perform the integra-
tion with respect to β. This leads to:

p(Z|γ) = (2πσ2)−N (N + 1)−k

∫

Dk−1

exp

[

−T (Z, ξ, γ)

2σ2

]

p(ξ|γ)dξ ,

with

T (Z, ξ, β) = ZHZ+
µ0B

T Bµ0

N
− N

N + 1

(

Z +
Bµ0

N

)H

B(BT B)−1BT

(

Z +
Bµ0

N

)

.

Then, we can express s̄(Z, w) (equation (4.28)):

s̄(Z, γ) =

∫

W
S(Z, w)p(w|Z, γ)dw ,

=
1

p(Z|γ)

∫

W
S(Z, w)p(Z, w|γ)dw ,

=
1

p(Z|γ)

∫∫

Ck×Dk−1

S(Z, w)p(Z|β, ξ, γ)p(β|γ, ξ)p(ξ|γ)dβdξ .
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We note q(ξ|Z, γ) =
exp

[

−
T (Z,ξ,γ)

2σ2

]

p(ξ|γ)
∫

Dk−1 exp
[

−
T (Z,ξ,γ)

2σ2

]

p(ξ|γ)dξ
. Then,

s̄(Z, γ) =

∫

Dk−1

s̃(Z, ξ, γ)q(ξ|Z, γ)dξ ,

where s̃(Z, ξ, γ) is such that:

s̄(Z, γ) =





















∫

Dk−1 log ∆iq(ξ|Z, γ)dξ ,
ZHZ + kσ2 − 2ℜ

(∫

Sk ZHBϕq(ξ|Z, γ)dξ
)

+ · · ·
· · · + N+1

N

∫

Dk−1 ϕHBT Bϕq(ξ|Z, γ)dξ ,

ℜ
(

∫

Dk−1
BT B

N ϕq(ξ|Z, γ)dξ
)

,

ℑ
(

∫

Dk−1
BT B

N ϕq(ξ|Z, γ)dξ
)

,
∫

Dk−1 Vec
(

BT B
)

q(ξ|Z, γ)dξ ,





















with ϕ = N
N+1

(

BT B
)−1

BT (Z + Bµ0

N ).



Appendix C

Details of the matched curve
parametrization

In this appendix, we detail the computation of the B-splines from the knot
vector ξ to the uniform knot vector ξ̄. Each interval [ξi, ξi+1] corresponds
to [ξ̄i, ξ̄i+1] with ξ̄i = i−1

k , for i = 1 · · · k.
On interval [ξi, ξi+1], let ui = γ(t) be the re-parametrization such that:

ui = ait + bi , i = 1 · · · k .

Considering the one order B-splines b0
i (t, ξ) and b0

i (u, ξ̄), the re-parametrization
is evident:

b0
i (t, ξ) =

{

1 , t ∈ [ξi, ξi+1] ,
0 , t elsewhere .

b0
i (u, ξ̄) =

{

1 , u ∈ [ i−1
k , i

k ] ,
0 , u elsewhere .

We develop the computation for two order B-splines:

b1
i (t, ξ) =











t−ξi

ξi+1−ξi
, t ∈ [ξi, ξi+1] ,

ξi+2−t
ξi+2−ξi+1

, t ∈ [ξi+1, ξi+2] ,

0 , t elsewhere .

Then, for t ∈ [ξi, ξi+1], t = u−bi

ai
, and for t ∈ [ξi+1, ξi+2], t = u−bi+1

ai+1
. We thus

obtain:

b1
i (u, ξ) =











u−(aiξi+bi)
(aiξi+1+bi−(aiξi+bi)

, u ∈ [ i−1
k , i

k ] ,
(ai+1ξi+2+bi+1)−u

ai+1ξi+2+bi+1−(ai+1ξi+1+bi+1) , u ∈ [ i
k , i+1

k ] ,

0 , u elsewhere .
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It follows that,

b1
i (u, ξ̄) =



















u− i−1
k

1
k

, u ∈ [ i−1
k , i

k ] ,
i+1
k

−u
1
k

, u ∈ [ i
k , i+1

k ] ,

0 , u elsewhere .

From this last computation, we can see that the re-parametrization only
affects the knot vector. This is not the case for higher order B-splines. We
develop below the computation for the three order B-spline b2

i (t) to show
that the re-parametrization can be done analytically. We will not develop
it for higher order but the computation is similar.

b2
i (t, ξ) =



















t−ξi

ξi+2−ξi

t−ξi

ξi+1−ξi
, t ∈ [ξi, ξi+1] ,

t−ξi

ξi+2−ξi

ξi+2−t
ξi+2−ξi+1

+ ξi+3−t
ξi+3−ξi+1

t−ξi+1

ξi+2−ξi+1
, t ∈ [ξi+1, ξi+2] ,

ξi+3−t
ξi+3−ξi+1

ξi+3−t
ξi+3−ξi+2

, t ∈ [ξi+2, ξi+3] ,

0 , t elsewhere .

The re-parametrization induces some equalities for i = 1 · · · k:

ξi+1 − ξi =
1

kai
,

ξi+2 − ξi =
1

k

(

1

ai+1
+

1

ai

)

.

Then,

b2
i (u, ξ) =











































2
1+ai/ai+1

u−(i−1)/k
2/k

u−(i−1)/k
1/k , u ∈ [(i − 1)/k, i/k] ,

2
1+ai+1/ai

u−(i−1)/k
2/k

(i+1)/k−u
1/k +

+ 2
1+ai+1/ai+2

(i+2)/k−u
2/k

u−i/k
1/k +

+ai+1−ai

ai+1+ai

(i+1)/k−u
1/k + ai+1−ai+2

ai+1+ai+2

u−i/k
1/k , u ∈ [i/k, (i + 1)/k] ,

2
1+ai+2/ai+1

(i+2)/k−u
2/k

(i+2)/k−u
1/k , u ∈ [(i + 1)/k, (i + 2)/k] ,

0 , u elsewhere .
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