
HAL Id: tel-00457458
https://theses.hal.science/tel-00457458

Submitted on 17 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Angular Resolution Diffusion MRI: from Local
Estimation to Segmentation and Tractography

Maxime Descoteaux

To cite this version:
Maxime Descoteaux. High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation
and Tractography. Human-Computer Interaction [cs.HC]. Université Nice Sophia Antipolis, 2008.
English. �NNT : �. �tel-00457458�

https://theses.hal.science/tel-00457458
https://hal.archives-ouvertes.fr


PhD THESIS

prepared at

INRIA Sophia Antipolis

and presented at the

University of Nice-Sophia Antipolis
Graduate School of Information and Communication Sciences

A dissertation submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF SCIENCE
Specialized in Control, Signal and Image Processing

High Angular Resolution Diffusion
MRI: from Local Estimation to

Segmentation and Tractography
Maxime DESCOTEAUX

Adviser Rachid Deriche INRIA Sophia Antipolis, France

Reviewers Peter Basser NICHD, USA

Cyril Poupon NeuroSpin / CEA, France

Carl-Fredrik Westin Harvard University, USA

Examiners Nicholas Ayache INRIA Sophia Antipolis, France

Habib Benali INSERM / Pitié-Salpêtrière, France

Denis Le Bihan NeuroSpin / CEA, France

Invited members Alfred Anwander Max Planck Institute, Germany

Olivier Faugeras INRIA Sophia Antipolis, France

Stéphane Lehéricy Pitié-Salpêtrière, France





UNIVERSITÉ NICE-SOPHIA ANTIPOLIS - UFR Sciences

École Doctorale STIC
(Sciences et Technologies de l’Information et de la Communication)

THÈSE

pour obtenir le titre de

DOCTEUR EN SCIENCES
de l’UNIVERSITÉ de Nice-Sophia Antipolis

Discipline: Automatique, Traitement du Signal et des Images

présentée et soutenue par

Maxime DESCOTEAUX

IRM de Diffusion à Haute Résolution
Angulaire: Estimation Locale,

Segmentation et Suivi de Fibres
Thèse dirigée par Rachid DERICHE

Date prévue de soutenance, 5 février 2008

Composition du jury:

Rapporteurs Peter Basser NICHD, USA

Cyril Poupon NeuroSpin / CEA, France

Carl-Fredrik Westin Harvard University, USA

Examinateurs Nicholas Ayache INRIA Sophia Antipolis, France

Habib Benali INSERM / Pitié-Salpêtrière, France

Denis Le Bihan NeuroSpin / CEA, France

Membres invités Alfred Anwander Max Planck Institute, Germany

Olivier Faugeras INRIA Sophia Antipolis, France

Stéphane Lehéricy Pitié-Salpêtrière, France





Contents

Contents v

List of Figures x

List of Tables xi

List of Symbols xiii

Abstract xv

Résumé xvii

Acknowledgments xix

I Introduction 1

1 Introduction 3

2 Introduction (français) 11

II Background 21

3 Neural Tissue and Human Brain White Matter 23
3.1 The Human Brain and Neural Tissue . . . . . . . . . . . . . . . . . . . . 24

3.2 Organization of the White Matter . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Important white matter bundles for this thesis . . . . . . . . . . . 30

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Principles of Diffusion MRI: Going Beyond the Diffusion Tensor 35
4.1 Basic Principles of Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . 36

i



4.1.1 Brownian Motion of Water Molecules and Fick’s Law . . . . . . . 37

4.2 NMR and Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Pulse Gradient Spin Echo (PGSE) . . . . . . . . . . . . . . . . . . 40

4.2.2 Diffusion-Weighted Imaging (DWI) . . . . . . . . . . . . . . . . . . 42

4.2.3 Apparent Diffusion Coefficient (ADC) and Trace Imaging . . . . . 43

4.2.4 Diffusion Tensor Imaging (DTI) . . . . . . . . . . . . . . . . . . . . 44

4.2.5 High Angular Resolution Diffusion Imaging (HARDI) . . . . . . . 46

4.3 Multiple Fiber HARDI Reconstruction Techniques . . . . . . . . . . . . . 50

4.3.1 Diffusion Spectrum Imaging (DSI) . . . . . . . . . . . . . . . . . . 51

4.3.2 Single Shell HARD Imaging . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Mathematics on the Sphere: The Spherical Harmonics 61

5.1 Solving the Laplace’s Equation . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 The Modified Spherical Harmonics Basis . . . . . . . . . . . . . . . . . . 65

5.4 Spherical Function Estimation with Spherical Harmonics . . . . . . . . 66

5.5 The Funk-Hecke Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Properties of Spherical Harmonics Used in this Thesis . . . . . . . . . . 69

III Methods 71

6 Apparent Diffusion Coefficient Estimation and Applications 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 ADC Profile Estimation from HARDI . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Fitting the ADC with the Spherical Harmonics . . . . . . . . . . . 76

6.2.2 Fitting the ADC with a High Order Diffusion Tensor (HODT) . . 77

6.2.3 A Regularization Algorithm for HARDI Signal/ADC Estimation . 78

6.2.4 From SH Coefficients to HODT Coefficients . . . . . . . . . . . . . 79

6.3 High Order Anisotropy Measures from ADC Profiles . . . . . . . . . . . . 83

6.3.1 Frank and Chen et al Measures . . . . . . . . . . . . . . . . . . . . 83

6.3.2 Alexander et al Measure . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.3 Generalized Anisotropy Measure . . . . . . . . . . . . . . . . . . . 84

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.1 Optimal Regularization Parameter with the L-Curve Method . . 85

6.4.2 High Order Anisotropy Measures Results . . . . . . . . . . . . . . 89

6.4.3 Biological Phantom Results . . . . . . . . . . . . . . . . . . . . . . 96

6.4.4 Human Brain HARDI Data Results . . . . . . . . . . . . . . . . . 96

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5.1 Contributions of this chapter: . . . . . . . . . . . . . . . . . . . . . 100

6.6 Appendix A: Independent Elements of the HODT . . . . . . . . . . . . . 102

ii



6.7 Appendix B: Spherical Harmonics to the High Order Tensor . . . . . . . 103

7 Analytical Q-Ball Imaging 105
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Q-Ball Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 Analytical Q-Ball Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4 Validation and Comparison of QBI methods . . . . . . . . . . . . . . . . . 114

7.4.1 Numerical QBI Implementation . . . . . . . . . . . . . . . . . . . 114

7.4.2 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . . . 114

7.4.3 Computational Complexity Analysis . . . . . . . . . . . . . . . . . 115

7.4.4 Effect of Spherical Sampling Density . . . . . . . . . . . . . . . . . 115

7.4.5 Robustness to Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.4.6 ODF Shape Comparison . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4.7 Fiber Detection and Angular Resolution . . . . . . . . . . . . . . . 116

7.4.8 Power Spectrum of the Spherical Harmonics Representation . . . 117

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.5.1 Running Time Comparison . . . . . . . . . . . . . . . . . . . . . . 117

7.5.2 ODF Shape Comparison and Robustness to Noise . . . . . . . . . 118

7.5.3 ODF Reconstruction for Different Sampling Schemes . . . . . . . 120

7.5.4 Fiber Detection and Angular Resolution . . . . . . . . . . . . . . . 121

7.5.5 Power Spectrum of the Spherical Harmonic Representation . . . 127

7.5.6 Biological Phantom Results . . . . . . . . . . . . . . . . . . . . . . 129

7.5.7 Human Brain HARDI Data Results . . . . . . . . . . . . . . . . . 131

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.6.1 Contributions of this chapter: . . . . . . . . . . . . . . . . . . . . . 136

7.7 Appendix A: Funk-Radon transform and the diffusion ODF . . . . . . . . 138

7.8 Appendix B: Rigorous Proof of the Analytical QBI Solution . . . . . . . . 140

7.9 Appendix C: Exact ODF From the Multiple-Tensor Model . . . . . . . . . 141

8 Segmentation in High Angular Resolution Diffusion MRI 143
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2 Background on Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.3 Statistical Surface Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.3.1 Distances between ODFs . . . . . . . . . . . . . . . . . . . . . . . . 148

8.3.2 Segmentation by Surface Evolution . . . . . . . . . . . . . . . . . 150

8.4 Segmentation Results & Discussion . . . . . . . . . . . . . . . . . . . . . 153

8.4.1 Synthetic Simulation Results . . . . . . . . . . . . . . . . . . . . . 153

8.4.2 Biological Phantom Results . . . . . . . . . . . . . . . . . . . . . . 155

8.4.3 Human Brain HARDI Data Results . . . . . . . . . . . . . . . . . 156

8.4.4 Multi-Subject Study on a public HARDI Database . . . . . . . . . 159

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.5.1 Contributions of this chapter: . . . . . . . . . . . . . . . . . . . . . 164

iii



9 Improving Q-Ball Imaging: from Diffusion ODF to Fiber ODF estimate165

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.2 Spherical Deconvolution Using Spherical Harmonics . . . . . . . . . . . 167

9.2.1 Spherical Deconvolution of the q-Ball diffusion ODF . . . . . . . . 168

9.2.2 Spherical Deconvolution of the raw HARDI Signal . . . . . . . . . 170

9.3 Evaluation of the Spherical Deconvolution Methods . . . . . . . . . . . . 178

9.3.1 Synthetic Data Experiment . . . . . . . . . . . . . . . . . . . . . . 178

9.3.2 Real Data Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.4.1 Effect of Varying Signal Generation Parameters . . . . . . . . . . 180

9.4.2 Fiber Detection and Angular Resolution . . . . . . . . . . . . . . . 184

9.4.3 Robustness to Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.4.4 Real Data Spherical Deconvolution Reconstructions . . . . . . . . 188

9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.5.1 Contributions of this chapter: . . . . . . . . . . . . . . . . . . . . . 197

9.6 Appendix A: Diffusion ODF Kernel for Sharpening . . . . . . . . . . . . . 198

9.7 Appendix B: Coefficients of A in the FORECAST Solution . . . . . . . . . 199

9.8 Appendix C: Relation between the fODF and FORECAST . . . . . . . . . 200

10 Tractography in High Angular Resolution Diffusion MRI 205

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

10.2 Background on Tractography . . . . . . . . . . . . . . . . . . . . . . . . . 208

10.3 Tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10.3.1 Deterministic Multidirectional ODF Tracking . . . . . . . . . . . 210

10.3.2 Probabilistic fiber ODF Tracking . . . . . . . . . . . . . . . . . . . 212

10.4 Tractography Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

10.4.1 Synthetic Simulation Results . . . . . . . . . . . . . . . . . . . . . 214

10.4.2 Biological Phantom Results . . . . . . . . . . . . . . . . . . . . . . 215

10.4.3 Human Brain HARDI Data Results . . . . . . . . . . . . . . . . . 216

10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

10.5.1 Contributions of this chapter: . . . . . . . . . . . . . . . . . . . . . 226

IV Application 227

11 Quantitative Assessment of Transcallosal Fibers 229

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

11.2 Quantifying Lateral Projections of the Corpus Callosum . . . . . . . . . 233

11.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

11.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

11.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

iv



V Conclusion 237

12 Conclusion 239

13 Conclusion (français) 249

VI Appendix 257

A Synthetic HARDI Data Generation and HARDI Acquisitions 259
A.1 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

A.2 Biological Phantom Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

A.3 Human Brain Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

A.3.1 Data from McGill University, Montréal, Canada . . . . . . . . . . 261

A.3.2 Data from the Minnesota University, Minneapolis, USA . . . . . 262

A.3.3 Data from the Max Planck Institute (MPI), Leipzig, Germany . . 262

A.3.4 Public HARDI Database from NeuroSpin / CEA, Paris, France . . 263

B Publications of the Author Arising from this Work 265

Bibliography 269

v



vi



List of Figures

1.1 Sketch of the chapters of the thesis . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Graphical sketch of the contributions of the thesis . . . . . . . . . . . . . 6

2.1 Organisation des chapitres de cette thèse . . . . . . . . . . . . . . . . . . 13

2.2 Contributions de cette thèse . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Human brain white and gray matter . . . . . . . . . . . . . . . . . . . . . 25

3.2 The four lobes of the cerebral cortex and the cerebellum . . . . . . . . . . 26

3.3 The typical neuron or axonal nerve fiber . . . . . . . . . . . . . . . . . . . 27

3.4 The projections fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 The association fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 The corpus callosum and its commissural fibers . . . . . . . . . . . . . . 31

3.7 The corticospinal tract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 The corona radiata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 The superior and inferior longitudinal fasciculus . . . . . . . . . . . . . . 33

3.10 The commissural fibers and the anterior commissure . . . . . . . . . . . 33

4.1 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Brief history of diffusion MRI. . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Stejskal-Tanner imaging PGSE sequence . . . . . . . . . . . . . . . . . . 41

4.4 Diffusion-weighted images at different b-values . . . . . . . . . . . . . . . 43

4.5 Diffusion-weighted images with two diffusion gradient directions . . . . 44

4.6 Diffusion tensor representation . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Field of diffusion tensors and principal diffusion direction . . . . . . . . 47

4.8 Limitation of DTI in voxels with crossing configurations . . . . . . . . . 48

4.9 Diffusion propagator in isotropic, single fiber and crossing fibers voxels . 49

4.10 Simplifying visualization of the diffusion propagator . . . . . . . . . . . . 50

4.11 Sketch of diffusion MRI acquisitions and reconstructions methods . . . . 52

4.12 Tessellation of the sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 The ADC and ODF in a two crossing fibers configuration . . . . . . . . . 54

4.14 Illustration of q-ball imaging and the Funk-Radon transform . . . . . . 57

4.15 q-ball diffusion ODF reconstruction in an axial slice . . . . . . . . . . . . 58

vii



5.1 Spherical harmonics basis up to order 3 . . . . . . . . . . . . . . . . . . . 65

5.2 Modified spherical harmonics basis up to order 4 . . . . . . . . . . . . . . 67

6.1 Crossing fiber distribution and ADC profiles from DTI and HARDI . . . 75

6.2 Transform from the HODT to the standard SH basis . . . . . . . . . . . 80

6.3 Transform from the HODT to the modified SH basis . . . . . . . . . . . . 81

6.4 Sketch of the ADC regularization algorithm . . . . . . . . . . . . . . . . . 82

6.5 L-curves for 1, 2 and 3 fibers with optimal parameter . . . . . . . . . . . 88

6.6 Synthetic ADC profiles for different estimation algorithms . . . . . . . . 91

6.7 Two orthogonal fiber crossing synthetic data example . . . . . . . . . . . 93

6.8 Three orthogonal fiber crossing synthetic data example . . . . . . . . . . 94

6.9 ADC reconstruction results on a biological phantom . . . . . . . . . . . . 95

6.10 ADC reconstruction results on real HARDI data . . . . . . . . . . . . . . 97

6.11 High order anisotropy results on a ROI from the corpus callosum . . . . 98

7.1 Laplace-Beltrami regularization reduces ODF estimation errors . . . . . 119

7.2 Analytical QBI of Hess et al. (2006) for different sampling schemes . . . 121

7.3 Analytical QBI for different spherical sampling schemes and noise level 122

7.4 ODF regularization decreases small perturbations due to noise . . . . . 123

7.5 ODFs recover multiple fiber crossing in synthetic data . . . . . . . . . . 125

7.6 Power spectrum of the spherical harmonics at low b-values . . . . . . . . 127

7.7 Power spectrum of the spherical harmonics at high b-values . . . . . . . 128

7.8 ODFs recover multiple fiber crossing in the biological phantom. . . . . . 130

7.9 ODFs for the analytical and numerical QBI are qualitatively the same . 131

7.10 ODFs recover multiple fiber crossings on a human brain dataset . . . . 132

7.11 ODF crossings between the genu of the CC and capsule fibers . . . . . . 133

7.12 ODF crossings in the centrum semiovale . . . . . . . . . . . . . . . . . . . 134

7.13 ODF crossings and fanning in the corona radiata . . . . . . . . . . . . . . 134

7.14 Zeroth-order Bessel function smoothing of the q-ball ODF . . . . . . . . 140

8.1 Illustration of the distance measure between ODFs . . . . . . . . . . . . 149

8.2 Sketch of distance between crossing and single peaked ODF . . . . . . . 150

8.3 Spherical harmonic coefficients in the corpus callosum . . . . . . . . . . 151

8.4 Spherical harmonic coefficients in the cortico-spinal tract . . . . . . . . . 152

8.5 Segmentation of the 90◦ crossing synthetic example . . . . . . . . . . . . 154

8.6 Time evolution of the segmentation flow on the 90◦ crossing . . . . . . . 154

8.7 Segmentation on a synthetic branching example . . . . . . . . . . . . . . 155

8.8 Segmentation on a synthetic ’U’-fiber example . . . . . . . . . . . . . . . 156

8.9 Segmentation on a biological phantom . . . . . . . . . . . . . . . . . . . . 157

8.10 Time evolution of the segmentation flow on the biological phantom . . . 157

8.11 Segmentation of the corpus callosum . . . . . . . . . . . . . . . . . . . . . 158

8.12 Segmentation of the cortico-spinal tract . . . . . . . . . . . . . . . . . . . 159

viii



8.13 Segmentation of the corpus callosum on the HARDI database . . . . . . 160

8.14 Segmentation of the cortico-spinal tract on the HARDI database . . . . . 161

9.1 Spherical deconvolution sketch of the HARDI signal . . . . . . . . . . . . 168

9.2 Spherical deconvolution sketch of the diffusion ODF . . . . . . . . . . . . 169

9.3 Regularization incorporated in the FORECAST method . . . . . . . . . . 172

9.4 Regularization incorporated in the spherical deconvolution methods . . 175

9.5 Filtered, constrained and super-resolution spherical deconvolution . . . 177

9.6 Effect of varying estimation order on the sharp fiber ODF . . . . . . . . 180

9.7 Effect of varying SNR on the sharp fiber ODF . . . . . . . . . . . . . . . . 181

9.8 Effect of varying estimation separation angle on the sharp fiber ODF . . 182

9.9 Effect of varying estimation volume fraction on the sharp fiber ODF . . 183

9.10 Effect of varying SNR on the detected maxima of the sharp fiber ODF . 186

9.11 Sharp fiber ODF crossings on the biological phantom. . . . . . . . . . . . 187

9.12 Sharp fiber ODF crossings on the MPI dataset . . . . . . . . . . . . . . . 189

9.13 Sharp fiber ODF crossings in a region of interest of the MPI dataset . . 190

9.14 Sharp fiber ODF crossings on the BIC dataset . . . . . . . . . . . . . . . 191

9.15 Sharp fiber ODF crossing between the genu of the CC and capsule fibers 192

9.16 Sharp fiber ODF crossings in the CMRR dataset . . . . . . . . . . . . . . 193

9.17 Sharp fiber ODF versus FORECAST . . . . . . . . . . . . . . . . . . . . . 202

9.18 Sharp fiber ODF versus FORECAST represented in SH coefficients . . . 203

10.1 Deterministic tracking in a synthetic branching example . . . . . . . . . 214

10.2 Probabilistic tracking in a synthetic branching example . . . . . . . . . . 214

10.3 Deterministic tracking in the biological phantom . . . . . . . . . . . . . . 215

10.4 Tracking of the superior longitudinal fasciculus . . . . . . . . . . . . . . 216

10.5 Deterministic and probabilistic tracking of the thalamic radiations . . . 217

10.6 Tracking recovering a known fanning/crossing region . . . . . . . . . . . 218

10.7 Tracking of the anterior commissure fibers . . . . . . . . . . . . . . . . . 219

10.8 Deterministic and probabilistic tracking of the tapetum. . . . . . . . . . 220

10.9 Tracking of the projections of the corpus callosum to Broca’s area . . . . 221

10.10Tracking comparison of different fiber ODFs in the corpus callosum . . . 222

11.1 DTI tracking misses transcallosal fibers to the lateral cortex . . . . . . . 231

11.2 DTI tracking is blocked by the corona radiata and SLF . . . . . . . . . . 231

11.3 Diffusion and fiber ODFs in a region with crossing transcallosal fibers . 232

11.4 Fiber ODF tracking of the transcallosal fibers . . . . . . . . . . . . . . . . 233

11.5 Transcallosal fibers projecting to ventral and lateral parts of the cortex 234

11.6 Quantification of lateral projections of the corpus callosum . . . . . . . . 235

12.1 Sub-voxel fiber configurations and their associated diffusion ODF . . . . 242

12.2 Schematic tracking in ambiguous sub-voxel configurations . . . . . . . . 243

12.3 HARDI clustering, tracking and segmentation . . . . . . . . . . . . . . . 247

ix



x



List of Tables

4.1 Diffusion MRI acquisition techniques . . . . . . . . . . . . . . . . . . . . 51

4.2 Diffusion MRI acquisition techniques. . . . . . . . . . . . . . . . . . . . . 60

6.1 Summary of each algorithm used to compare HODT estimation . . . . . 87

6.2 Laplace-Beltrami regularization reduces the estimation error . . . . . . 90

6.3 Mean generalized anisotropy measure on simulated ADC profiles . . . . 91

6.4 Regularization improves classification from anisotropy measures . . . . 92

7.1 Summary of the regularized, fast and robust analytical QBI algorithm. . 113

7.2 Running times comparison between numerical and analytical QBI . . . 118

7.3 Laplace-Beltrami regularization improves fiber detection . . . . . . . . . 124

7.4 Angular resolution of analytical QBI with/without regularization . . . . 126

7.5 Quantitative fiber detection on the biological phantom . . . . . . . . . . 131

9.1 The fiber ODF improves fiber detection and angular resolution of QBI . 185

9.2 Fraction of crossing voxels in the human brain white matter . . . . . . . 192

9.3 Mean difference between our sharp fiber ODF and FORECAST . . . . . 201

xi



xii



List of Symbols

3D 3 dimensional

5D 5 dimensional

AC Anterior Commissure

ADC Apparent Diffusion Coefficient

ATR Anterior Thalamic Radiations

BIC Brain Imaging Center

CC Corpus Callosum

Cg Cingulum

CHARMED Composite Hindered And Restricted ModEl of Diffusion

CNS Central Nervous System

CPT CorticoPontine Tract

CR Corona radiata

CRE Cumulative Residual Entropy

CSF Cerebral Spinal Fluid

CST Corticospinal Tract

dMRI Diffusion MRI

DOT Diffusion Orientation Transform

DSI Diffusion Spectrum Imaging

DTI Diffusion Tensor Imaging

DW Diffusion-Weighted

DWI DW Images

FA Fractional Anisotropy

FMI Fractional Multifiber Index

FOD Fiber Orientation Distribution

FRT Funk-Radon Transform

GA Generalized Anisotropy

gDTI generalized DTI

GFA Generalized Fractional Anisotropy

HARDI High Angular Resolution Diffusion Imaging

HOT High Order Tensor

HODT High Order Diffusion Tensor

xiii



IFO Inferior Fronto-Occiptal fasciculus

ILF Inferior Longitudinal Fasciculus

LB Laplace-Beltrami

LR Linear Regression

NMR Nuclear Magnetic Resonance

MRI Magnetic Resonance Imaging

ODF Orientation Distribution Function

PAS Persistent Angular Structure

PC Posterior Commissure

PDE Partial Differential Equation

PDF Probability Density Function

PGSE Pulse Gradient Spin Echo

PNS Peripheral Nervous System

PTR Posterior Thalamic Radiations

QBI Q-Ball Imaging

QSI Q-Space Imaging

RA Relative Anisotropy

ROI Region Of Interest

SD Spherical Deconvolution

SFO Superior Fronto-Occiptal fasciculus

SH Spherical Harmonics

SHDE Spherical Harmonics Differential Equation

SHPDE Spherical Harmonic PDE

SLF Superior Longitudinal Fasciculus

SNR Signal to Noise Ratio

STR Posterior Thalamic Radiations

TAP Tapetum

TR Thalamic Radiations

UNC Uncinate fasciculus

vMF von Mises-Fisher

xiv



Abstract

At the current resolution of diffusion-weighted (DW) magnetic resonance imaging

(MRI), research groups agree that there are between one third to two thirds of imag-

ing voxels in the human brain white matter that contain fiber crossing bundles. This

thesis tackles the important problem of recovering crossing fiber bundles from DW-

MRI measurements. The main goal is to overcome the limitations of diffusion tensor

imaging (DTI). It is well-known that imaging voxels where there are multiple fiber

crossings produce a non-Gaussian DW signal. This is precisely where DTI is lim-

ited due to the intrinsic Gaussian assumption of the technique. Hence, this thesis is

dedicated to the development of local reconstruction methods, segmentation and trac-

tography algorithms able to infer multiple fiber crossing from DW-MRI data. To do so,

high angular resolution diffusion imaging (HARDI) is used to measure DW images

along several directions. Q-ball imaging (QBI) is a recent such HARDI technique that

reconstructs the diffusion orientation distribution function (ODF), a spherical func-

tion that has its maxima aligned with the underlying fiber directions at every voxel.

QBI and the diffusion ODF will play a central role in this thesis.

There are many original contributions in this thesis. First, we propose a robust

estimation of the HARDI signal using a closed-form regularization algorithm based

on the spherical harmonics. Then, we estimate the apparent coefficient coefficient

(ADC) to study HARDI anisotropy measures and to discriminate voxels with under-

lying isotropic, single fiber and multiple fiber distributions. Next, we develop a linear,

robust and analytical QBI solution using the spherical harmonic basis, which is used

in a new statistical region-based active contour algorithm to segment important white

matter fiber bundles. In addition, we develop a new spherical deconvolution sharp-

ening method that transforms the diffusion q-ball ODF into a fiber ODF. Finally, we

propose a new deterministic tractography algorithm and a new probabilistic trac-

tography algorithm exploiting the full distribution of the fiber ODF. Overall, we show

local reconstruction, segmentation and tracking results on complex fiber regions with

known fiber crossing on simulated HARDI data, on a biological phantom and on mul-

tiple human brain datasets. Most current DTI based methods neglect these complex

fibers, which might lead to wrong interpretations of the brain anatomy and function-

ing.
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Résumé

La résolution actuelle des IRM pondérées en diffusion suggère qu’il y a entre un

et deux tiers des voxels de la matière blanche qui contiennent plusieurs faisceaux

de fibres qui se croisent. L’IRM par tenseur de diffusion (DTI) classique est intrin-

sèquement limitée à ces endroits par son hypothèse de base qu’un seul faisceau tra-

verse chaque voxel de l’image. Le but de cette thèse est donc de développer des tech-

niques d’IRM à haute résolution angulaire (HARDI) pour pouvoir retrouver une ou

plusieurs fibres et surmonter aux limites DTI. L’imagerie par q-ball (QBI) est une

technique récente qui permet d’estimer la distribution d’orientation des fibres (ODF).

La technique de QBI ainsi que l’ODF de diffusion des fibres permettent de retrouver

plusieurs directions de fibres en chaque voxel de l’image. Ceux-ci joueront donc un

rôle important tout au long de ce document.

Cette thèse propose plusieurs contributions originales. D’abord, nous développons

l’estimation robuste du signal HARDI en utilisant une base modifiée d’harmoniques

sphériques et un terme de régularisation. Ensuite, nous proposons la modélisation

du coefficient de diffusion apparent (ADC) pour étudier les mesures d’anisotropie

HARDI et faire la classification des voxels contenant une distribution isotrope, une

distribution d’une seule population de fibres et une distribution de plusieurs fais-

ceaux fibres. Nous proposons de plus, le développement d’une solution analytique

pour estimer l’ODF de diffusion en QBI ainsi qu’un nouvel algorithme de segmenta-

tion de ces images d’ODF obtenues par le QBI. Nous présentons également le calcul

de l’ODF de fibres avec une nouvelle méthode de déconvolution sphérique à partir

des données QBI. Enfin, nous développons de nouveaux algorithmes de suivi de fi-

bres (tracking) déterministes et probabilistes à partir de l’ODF du q-ball et l’ODF de

fibres. Finalement, tous ces nouveaux algorithmes sont testés et appliqués sur des

données HARDI simulées, sur un fantôme biologique et sur des données réelles de

plusieurs sujets dans des régions complexes avec plusieurs faisceaux qui se croisent.

Nos résultats illustrent clairement la valeur ajoutée de nos méthodes HARDI sur la

plupart des méthodes courantes en DTI qui négligent ces faisceaux complexes, ce qui

peut amener à une mauvaise analyse et interprétation de l’anatomie et des fonctions

cérébrales.
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CHAPTER 1

INTRODUCTION

“All great deeds and all great thoughts have a ridiculous beginning”

–Albert Camus

CONTEXT

How can we get information about the human brain anatomy and in particu-

lar, about cerebral white matter? Cerebral dissection used to be the only way

to access the neural architecture [Dejerine (1901); Gray (1918); Williams et al.

(1997)]. Then, anatomists started using chemical markers to do neuronogra-

phy [Pribam and MacLean (1953); Selden et al. (1998)]. More recently, neural fiber

tractography based on local injection of chemical markers and subsequent observa-

tion of the induced propagation yielded high-quality connectivity mapping in the

cat and monkey cerebral cortex [Young et al. (1995); Selden et al. (1998)]. As of to-

day, diffusion-weighted (DW) magnetic resonance imaging (MRI) is the unique non-

invasive technique capable of quantifying the anisotropic diffusion of water molecules

in biological tissues like the human brain white matter.

The great success of DW-MRI comes from its capability to accurately describe the

geometry of the underlying microstructure. DW-MRI captures the average diffusion

of water molecules, which probes the structure of the biological tissue at scales much

smaller than the imaging resolution. The diffusion of water molecules is Brownian

under normal unhindered conditions, but in fibrous structure such as white matter,

water molecules tend to diffusion along fibers. Due to this physical phenomenon,

DW-MRI is able to obtain information about the neural architecture in vivo.

DW-MRI is a recent field of research with a history of roughly twenty years.

It is a technique that was introduced in the middle of the 80’s by Le Bihan et

al [LeBihan and Breton (1985)], Merboldt et al [Merboldt et al. (1985)] and Taylor

et al. [Taylor and Bushell (1985)]. Shortly after the first acquisitions of diffusion-

weighted images (DWI) in vivo [Moseley et al. (1990); Osment et al. (1990)], Basser

et al [Basser et al. (1993, 1994b,a)] proposed the rigorous formalism of the diffusion

tensor (DT) model. Diffusion tensor imaging (DTI) describes the three-dimensional
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(3D) nature of anisotropy in tissues by assuming that the average diffusion of water

molecules follows a Gaussian distribution. DTI has now proved to be extremely useful

to study the normal and pathological human brain [LeBihan et al. (2001); Dong et al.

(2004)]. However, the Gaussian assumption is over-simplifying the diffusion of water

molecules and thus has some limitations. While the Gaussian assumption is ade-

quate for voxels in which there is only a single fiber orientation (or none), it breaks

down for voxels in which there is more complicated internal structure. This is an

important limitation, since resolution of DTI acquisition is between 1mm3 and 3mm3

while the physical diameter of fibers can be between 1µm and 30 µm [Poupon (1999);

Beaulieu (2002)]. Research groups currently agree that there is complex fiber archi-

tecture in most fiber regions of the brain [Pierpaoli et al. (1996)]. In fact, it is cur-

rently thought that between one third to two thirds of imaging voxels in the human

brain white matter contain multiple fiber bundle crossings [Behrens et al. (2007)].

The starting point and motivation of this thesis is therefore to recover fiber cross-

ing information and overcome limitations of the DTI model. To do so, we use high an-

gular resolution diffusion imaging (HARDI) and define new mathematical model-free

approaches for the reconstruction of the angular part of the diffusion displacement

probability density function (PDF) of water molecules, also called the diffusion ori-

entation distribution function (ODF). This problem is of high complexity in the input

HARDI data, in the mathematical tools used to describe the HARDI data and in the

computational tools used to process the HARDI data. Hence, we address many dif-

ferent theoretical and computational issues related to the processing of HARDI data.

One can simplify the HARDI estimation problem by modeling only the apparent dif-

fusion coefficient (ADC) of water molecules or the diffusion ODF of water molecules.

Ultimately, the goal is to recover the underlying fiber distribution so that the white

matter architecture can be inferred with segmentation and tractography algorithms.

Therefore, this thesis takes the reader from local HARDI reconstruction methods, to

fiber bundle segmentation algorithms and fiber tractography algorithms for HARDI

data. As the magnetic field strength of scanners increase, as the strength and speed

of gradients increase, as new acquisition techniques like parallel imaging appear,

and as new and powerful processing tools are developed, the development of HARDI

processing methods is of utmost importance.

ORGANIZATION AND CONTRIBUTIONS OF THIS THESIS

This thesis is organized in three parts. The Background part describes the white

matter cerebral anatomy, the principles of DW-MRI and the mathematical concepts

required to understand the thesis. Then, the Methods part describes the theoretical

and methodological contributions of the thesis. Finally, the Application part describes

the contributions for a specific neuroscientific application. Figures 1.1 and 1.2 provide

a graphical depiction of the organization of the thesis. The thesis covers several
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Figure 1.1: Sketch of the chapters of the thesis. Chapters in blue, orange and green

correspond to chapters in the Background, Methods and Applications parts respec-

tively. The thesis makes contributions from the local spherical harmonic (SH) es-

timation of the HARDI signal, to the ADC modeling to recover HARDI anisotropy

measures able to classify multiple fiber distributions, to analytical QBI and spheri-

cal deconvolution (SD) methods used to develop new deterministic and probabilistic

tractography algorithms and fiber bundle segmentation algorithms.

topics: from the local spherical harmonic (SH) estimation of the HARDI signal, to the

ADC modeling to recover HARDI anisotropy measures able to classify multiple fiber

distributions, to analytical QBI and spherical deconvolution (SD) methods used to

develop new deterministic and probabilistic tractography algorithms and fiber bundle

segmentation algorithms that describe the human brain white matter architecture.

The introduction and conclusion chapters are not represented in Figures 1.1 and 1.2.

We now give an overview of the organization and of the contributions of each chapter

in turn.

Part I: Background

The Background part describes the white matter cerebral anatomy, the principles of

DW-MRI and the mathematical concepts required to understand this thesis.
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Figure 1.2: Graphical depiction of the contributions of the thesis: (1) The apparent

diffusion coefficient (ADC) modeling and HARDI anisotropy measures used to classify

voxels with isotropic, single fiber population and multiple fiber configurations. (2) The

analytical QBI solution to obtain the diffusion ODF (dODF). (3) The segmentation of

fiber bundles with coherent fiber tracts from QBI data. (4) The fiber ODF (fODF)

reconstruction from spherical deconvolution of QBI data. (5) The deterministic and

probabilistic tractography algorithms based on the q-ball and fiber ODF.

Chapter 3 answers the following question: What are we looking for in the human

brain white matter? The principal interest of the thesis is anatomical connectivity.

This chapter covers the basic cerebral anatomy of the white matter. In particular,

what are the different brain and neural tissues? What is the organization of the

white matter? How is the brain connected? What are some of the large fiber bundles

in the brain? First, we review the different human brain tissues and neural tissue

types, from the neuron, the gray matter, to the white matter. Then, we cover the

composition and organization of the human white matter. Finally, we highlight the

different fiber tracts and highlight the way different parts of the brain interact.
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Chapter 4 answers the following question: How do we image white-matter non-

invasively? This chapter covers the principles of DW-MRI and high angular resolu-

tion diffusion imaging (HARDI) reconstruction techniques. In particular, what are

the physical principles of DW-MRI? What are the fiber reconstruction algorithms to

infer microstructure of biological tissues? First, we describe the basic principles of

DW-MRI. Next, we review the different DW-MRI acquisition techniques. Properties

of each acquisition technique are described separately. Finally, a special emphasis

is put on the approaches designed to reconstruct the multiple fiber distributions of

water diffusion. Many functions are used in the literature to measure the diffusion

properties of the underlying biological tissue. Some methods are model dependent,

some model-free, some methods have linear solutions whereas others require non-

linear optimization schemes. These different methods are described.

Chapter 5 answers the following question: What is the appropriate mathematical

tool to process HARDI data? This chapter covers the mathematical concepts needed

to understand the thesis. In particular, what is the appropriate mathematical tool

to represent discrete data that lives on the sphere? The SH basis is chosen to be the

appropriate tool to represent discrete spherical functions in this thesis. The spherical

harmonics are first defined as the solution to the Laplace’s equation in spherical co-

ordinates. Then, important properties of the SH basis are described and we see how

the SH basis can be used to estimate spherical functions. Finally, the Funk-Hecke

theorem is stated. It is an important theorem to solve integrals on the sphere.

Part II: Methods

The Methods part describes the original and most important contributions made in

this thesis.

Chapter 6 answers the following question: Given a set of discrete measurements

on the sphere, how do we estimate this signal robustly? This chapter covers the

HARDI estimation using spherical harmonics and regularization. As a consequence,

the apparent diffusion coefficient (ADC) can be modeled and reconstructed robustly.

First, we develop a closed-form regularization algorithm to estimate the HARDI sig-

nal and the ADC. Second, we develop the link between the SH basis and the high

order diffusion tensor (HODT) so that it is possible to compare HARDI anisotropy

measures. Finally, we see how the HARDI anisotropy measures can be used to high-

light voxels containing multiple fiber distributions.

Chapter 7 answers the following question: Given our new regularized method to

obtain the HARDI signal, can it be used to do q-ball imaging (QBI)? This chapter

proposes a new analytical QBI solution using our regularized spherical harmonics

estimation. In particular, can the Funk-Radon transform be solved in a single step
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with spherical harmonics? First, we develop a regularized, fast and robust analytical

solution for the QBI reconstruction. To do so, a new corollary of the Funk-Hecke the-

orem is proved to obtain an elegant mathematical simplification of the Funk-Radon

transform and to obtain the analytical QBI solution in a single step. Second, we val-

idate and compare the analytical QBI solution with the numerical QBI solution on

synthetic simulations, on a rat biological phantom and on real datasets. Finally, a

discussion on its benefits over the other state-of-the-art approaches is done.

Chapter 8 answers the following question: Now that we have robust q-ball recon-

structions, can we segment this image of q-ball diffusion ODF into coherent fiber

bundles? This chapters covers a new statistical region-based active contour algo-

rithm to segment HARDI data. In particular, how can the segmentation problem be

formulated and solved efficiently on HARDI data? What is gained by the HARDI

segmentation with respect to the DTI segmentation? Is it possible to validate the

segmentation results and make the segmentation automatic? First, a new method

to segment HARDI data is developed using our fast, robust and analytical QBI solu-

tion. Then, a region-based statistical surface evolution is done on this image of dif-

fusion ODF to efficiently find coherent white matter fiber bundles. Next, our method

is shown to be appropriate to propagate through regions of fiber crossings and our

results outperform state-of-the-art DTI segmentation methods. Finally, results ob-

tained on synthetic data, on a biological phantom, on real datasets and on all 13 sub-

jects of a public HARDI database show that our method is reproducible and brings a

strong added value to DW-MRI segmentation.

Chapter 9 answers the following question: Can we improve angular resolution of

QBI? This chapter covers the problem of reconstructing a fiber ODF and not only a

diffusion ODF. In particular, can the diffusion ODF be transformed into a sharper

fiber ODF? Can this sharper fiber ODF be obtained from QBI? Can it be related to

the raw HARDI signal and other spherical deconvolution methods that also estimate

a fiber ODF? First, we develop a new spherical deconvolution operation that trans-

forms the q-ball diffusion ODF into a sharper fiber ODF. This deconvolution trans-

formation improves angular resolution and fiber detection of QBI by approximately

15◦. Then, our new fiber ODF is shown to behave similarly to the fiber ODF esti-

mated from the filtered, regularized and constrained spherical deconvolution meth-

ods of [Tournier et al. (2004, 2007); Sakaie and Lowe (2007)] as well as the fiber ODF

estimated with FORECAST [Anderson (2005)]. Next, we extensively compare these

methods quantitatively by varying the harmonic order ℓ, the b-value, the sampling

density N , the noise level (SNR), the separation angle between fibers and the volume

fraction of each fiber. We also evaluate the robustness to noise and the angular reso-

lution of each method. Finally, all fiber ODFs are reconstructed and compared on the

biological phantom and the real datasets.
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Chapter 10 answers the following question: Now that we have robust fiber ODF

estimates, how can we integrate this local information into new deterministic and

new probabilistic tractography algorithms? This chapter covers a new deterministic

tractography algorithm and a new probabilistic algorithm based on the fiber ODF. In

particular, how can the deterministic DTI tracking be generalized? Can determin-

istic tracking take into account all the maxima of the fiber ODF? Can DTI proba-

bilistic tracking be generalized? How does deterministic and probabilistic tracking

compare? First, we develop a new deterministic tracking algorithm and a new prob-

abilistic tracking algorithm are developed to extend the classical DTI tractography

algorithms. To do so, our new fiber ODF is used. Then, accurate results of complex

fiber bundles with crossing, fanning and branching configurations are obtained from

our new tracking algorithms. Finally, an extensive comparison of the new determin-

istic and the new probabilistic tracking algorithms is performed on a human brain

dataset.

Part III: Application

The Application part is short but illustrates the added value and remaining limita-

tions of HARDI-based probabilistic tractography algorithms.

Chapter 11 answers the following question: Now that we have state-of-the-art local

reconstruction methods and tractography algorithms, can we track through regions of

complex fiber crossings for a neuroscientific application? This chapter covers the trac-

tography of transcallosal fibers. Current DTI based methods neglect these transcal-

losal fibers, which might lead to wrong interpretations of the brain functions. In par-

ticular, can transcallosal fibers be reconstructed with our new fiber ODF-based prob-

abilistic tractography? Are the tracking results consistent and reproducible across

subjects? First, we apply our new fiber ODF probabilistic tractography algorithm to

reconstruct the transcallosal fibers. Then, we see how we improve the tractography

results of transcallosal fibers intersecting with the corona radiata and the superior

longitudinal fasciculus. Finally, the tracking results are reproduced and compared on

a group of 8 subjects.

Appendix A

Appendix A describes the datasets used in most chapters of this thesis. Our syn-

thetic data simulations is first described in Appendix A.1. Then the acquisition of a

biological phantom composed of rat spinal cords is described in Appendix A.2. Finally,

the real human brain datasets acquisitions are described in Appendix A.3. We have

collaborated with four institutes to obtain these real datasets. The Brain Imaging

Center (BIC) in Montreal, Canada, the Max Planck Institute (MPI) in Leipzig, Ger-

many, the Center for Magnetic Resonance Research (CMRR) in Minneapolis, USA
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and the Neurospin/CEA in Paris, France. We are very grateful to these institutions

for allowing us to use their datasets.

Appendix B

The appendix enumerates the publications from the author arising from this thesis.

We have published in major international journals, in important conferences and we

have made a special effort in publishing research reports of most of our work.

Software contributions

Finally, we would like to point out that most of the algorithms presented in this

manuscript are now available upon request1 as an extension to the Brainvisa2 soft-

ware platform for visualization and analysis of multi-modality brain data. The ODF

and spherical function visualization using spherical harmonics basis will also be soon

available as part of the Slicer33 open source software. This integration work has been

done in collaboration with Christophe Lenglet (Siemens Corporate Research, Prince-

ton, USA) and Demian Wassermann (INRIA Sophia-Antipolis, France / Computer

Science Department, University of Buenos Aires, Argentina).

1https://gforge.inria.fr
2http://brainvisa.info
3http://www.na-mic.org/Wiki/index.php/Slicer3
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CHAPTER 2

INTRODUCTION (FRANÇAIS)

“Le commencement est la moitié de l’action ”

–Wilfrid Laurier (politicien canadien)

CONTEXTE

Comment peut-on obtenir de l’information sur l’anatomie cérébrale et plus partic-

ulièrement sur la matière blanche du cerveau humain? À l’époque, les anatomistes

réalisaient des dissections du cerveau [Dejerine (1901)] et des neuronographies à

base de strychnine ou autres marqueurs chimiques [Pribam and MacLean (1953)],

[Selden et al. (1998)]. Plus récemment, l’estimation des connexions neuronales par

injection de marqueurs chimiques et observation de leur propagation a permis

d’obtenir des cartes de connectivité de haute qualité du cortex cérébral chez le chat

et le singe [Young et al. (1995)], [Selden et al. (1998)]. Actuellement, l’Imagerie par

Résonance Magnétique (IRM) de diffusion est la seule technique non-invasive perme-

ttant de quantifier l’anisotropie de la diffusion des molécules d’eau dans des tissus

biologiques tel que la matière blanche du cerveau de l’homme.

Le phénomène de diffusion est un processus physique macroscopique résultant

du mouvement aléatoire des molécules d’eau. Toutes les particules microscopiques

subissent en permanence un mouvement de translation et de rotation dû à leur én-

ergie thermique. Ce phénomène est également connu sous le nom de mouvement

Brownien. Ce dernier a été formalisé en 1905 par Albert Einstein et caractérisé

comme dépendant de la température, de la viscosité du domaine et de la taille des par-

ticules. À une échelle macroscopique, la diffusion traduit la tendance des molécules

à migrer des régions à forte concentration vers les régions à faible concentration. Le

concept essentiel pour l’IRM de diffusion est que tout processus de diffusion dans un

milieu biologique reflète directement l’architecture de ce dernier à une échelle micro-

scopique. Ceci s’explique par le fait que le mouvement moléculaire est favorisé dans

les directions alignées avec les faisceaux de fibres et contraint dans les directions or-

thogonales. À chaque voxel, la mesure de ce mouvement le long d’un certain nombre

de directions fournit de précieuses informations sur l’orientation locale des fibres. Les
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données ainsi obtenues constituent des IRM pondérées en diffusion.

Le développement de l’IRM et ses applications en neuroimagerie ont apporté de

grands espoirs au cours des vingt dernières années pour l’exploration non-invasive

de l’anatomie et de l’activité du cerveau humain. L’IRM de diffusion est une tech-

nique introduite au milieu des années 1980 par Le Bihan et al [LeBihan and Breton

(1985)], Merboldt et al [Merboldt et al. (1985)] et Taylor et al [Taylor and Bushell

(1985)]. Sensible au mouvement des molécules d’eau, elle permet d’inférer des infor-

mations sur l’architecture des tissus biologiques étudiés. Peu après les premières

acquisitions d’images caractérisant la diffusion anisotrope des molécules d’eau in

vivo [Moseley et al. (1990); Osment et al. (1990)], Basser et al [Basser et al. (1993,

1994b,a)] ont proposé le formalisme rigoureux du modèle du tenseur de diffusion.

Celui-ci fournit une forme analytique décrivant précisément la nature tridimen-

sionnelle de l’anisotropie des tissus. Ce modèle donna alors naissance à l’imagerie

par tenseur de diffusion (DTI), une technique qui a maintenant un vaste do-

maine d’applications [Mori and van Zijl (2002); Neil et al. (2002); Horsfield and Jones

(2002); Sotak (2002); Lim and Helpern (2002)]. Le tenseur de diffusion encapsule les

propriétés de diffusion moyenne des molécules d’eau au sein d’un voxel dont la taille

est typiquement de 1 à 3 mm. Effectivement, à cette résolution spatiale, il est main-

tenant reconnu [Pierpaoli et al. (1996)] qu’il y a entre un et deux tiers des voxels de la

matière blanche [Behrens et al. (2007)] qui contiennent plusieurs faisceaux de fibres

qui se croisent. De par son hypothèse de base qu’un seul faisceau traverse chaque

voxel de l’image, le DTI est donc intrinsèquement limité à ces endroits de croise-

ments de fibres. Par conséquent, la plupart des méthodes courantes de traitement en

DTI négligent alors les faisceaux complexes qui se croisent, ce qui peut amener à une

mauvaise analyse et interprétation de l’anatomie et des fonctions du cerveau.

Cette thèse est donc dédiée au développement de techniques d’IRM à haute ré-

solution angulaire (HARDI) pour retrouver une ou plusieurs directions de fibres à

chaque voxel de l’image. Le but est de surmonter les limites du DTI. Pour ce faire,

l’imagerie par q-ball (QBI) est une technique de reconstruction HARDI récente qui

permet d’estimer la distribution d’orientation des fibres (ODF). La technique de QBI

ainsi que l’ODF de diffusion permettent de retrouver plusieurs directions de fibres.

Ces techniques joueront donc un rôle très important tout au long de cette thèse.

Les données HARDI soulèvent depuis moins de dix ans un grand nombre de ques-

tions mathématiques et computationnelles, de par la complexité des données, le be-

soin de modèles et d’algorithmes adéquats pour retrouver la distribution de fibres

sous-jacentes ainsi que le besoin de méthodes de traitement du signal adaptées à

ces nouvelles images. Dans cette thèse nous nous attaquons à de nombreux prob-

lèmes théoriques et computationnels liés au traitement des données HARDI: de la

reconstruction locale de l’information de diffusion, à la segmentation et au suivi de

fibres (c.f. tracking ou tractographie). Nous appliquons également certains des outils

proposés à l’analyse des connexions anatomiques reliant les hémisphères du cerveau
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Figure 2.1: Organisation des chapitres de cette thèse. Les chapitres de couleur bleue,

orange et verte correspondent respectivement aux chapitres des parties Préliminaires

et Théorie, Méthodes et Application.

humain par les fibres du corps calleux. Grâce à l’accroissement de la puissance des

champs magnétiques, à l’arrivée de nouvelles techniques d’acquisition ainsi qu’au

développement de nouveaux et puissants outils de traitement, notre compréhension

de la structure la plus complexe du corps humain s’améliore progressivement. Ces

avancées sont cruciales pour le diagnostic rapide et aussi précis que possible des

pathologies neurologiques.

ORGANISATION ET CONTRIBUTIONS DE CETTE THÈSE

Cette thèse est organisée en trois parties. La première, Préliminaires et Théorie,

décrit l’anatomie cérébrale, les principes de base de l’IRM de diffusion et les no-

tions mathématiques importantes pour comprendre la thèse. La seconde, Méthodes,

développe nos contributions théoriques et algorithmiques. Il s’agit de la partie la

plus importante de ce document. Enfin, la partie Applications présente une appli-

cation précise de nos outils pour la reconstruction des fibres transcallosales, fibres

très importantes dans le fonctionnement du cerveau. Les Figures 2.1 et 2.2 illustrent

l’organisation et les grandes lignes de cette thèse.

Comme le titre de la thèse le suggère, nous abordons un grand nombre de sujets:
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Figure 2.2: Schéma des contributions de cette thèse. (1) L’estimation du coefficient

de diffusion apparent (ADC) et l’étude des mesures d’anisotropie HARDI pour la

classification des voxels contenant une distribution isotrope, une distribution d’une

seule population de fibres et d’une distribution de plusieurs faisceaux fibres. (2)

Le développement d’une solution analytique du QBI pour obtenir l’ODF de diffu-

sion (dODF). (3) Nouvel algorithme de segmentation de ces images d’ODFs obtenues

par QBI. (4) Le calcul de l’ODF de fibres avec une nouvelle méthode de déconvolu-

tion sphérique à partir des données QBI. (5) Nouveaux algorithmes de suivi de fibres

(tracking) déterministes et probabilistes à partir de l’ODF du q-ball et de l’ODF de

fibres.

l’estimation locale du signal HARDI, la segmentation et le suivi de fibres. D’abord,

nous décrivons une méthode d’estimation robuste du signal HARDI en utilisant une

base d’harmoniques sphériques et un terme de régularisation. Ensuite, nous présen-

tons la modélisation du coefficient de diffusion apparent (ADC) et le développement

de mesures d’anisotropie HARDI pour la classification des voxels contenant une dis-

tribution isotrope, une distribution d’une seule population de fibres et d’une distri-

bution de plusieurs faisceaux fibres. De plus, nous proposons une solution analy-

tique pour QBI ainsi qu’un nouvel algorithme de segmentation de ces images d’ODF
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obtenues par QBI. Nous présentons également le calcul de l’ODF de fibres avec une

nouvelle méthode de déconvolution sphérique à partir des données QBI. Enfin, nous

développons de nouveaux algorithmes de suivi de fibres déterministes et probabilistes

à partir de l’ODF du q-ball et de l’ODF de fibres. Tous ces nouveaux algorithmes sont

testés et appliqués sur des données HARDI simulées, sur un fantôme biologique et

sur des données réelles de plusieurs sujets dans des régions complexes où plusieurs

faisceaux se croisent, illustrant ainsi la valeur ajoutée de nos méthodes HARDI sur

la plupart des méthodes courantes en DTI qui négligent ces faisceaux complexes.

Partie I : Préliminaires et Théorie

Cette partie décrit l’anatomie cérébrale, les principes de base de l’IRM de diffusion et

les notions mathématiques importantes pour comprendre la thèse.

Chapitre 3 - Tissu Neuronal et Anatomie Cérébrale de la Matière Blanche :
Comment la matière blanche du cerveau humain est-elle organisée? Ce chapitre

présente donc l’essentiel de l’anatomie cérébrale et de la matière blanche nécessaire

pour comprendre les résultats de ce document. Nous présentons les différents tissus

neuronaux ainsi que les différents lobes cérébraux. Nous décrivons certains faiceaux

de fibres importants qui servent à connecter certains lobes entre eux. Nous intro-

duisons également les fibres d’association, des fibres de communication entre des ré-

gions lointaines au sein d’un même hémisphère, les fibres de projection, fibres qui se

projètent à partir des noyaux gris centraux jusqu’aux différentes parties du cortex, et

les fibres commissurales, fibres très importantes connectant les hémisphères et pas-

sant par le corps calleux. Ce chapitre servira, tout au long de la thèse, d’élément de

comparaison qualitative avec nos résultats de segmentation et de suivi de fibres.

Chapitre 4 - Principes de l’IRM de diffusion: Au Delà du Tenseur de Dif-
fusion : Comment peut-on imager la matière blanche de façon non-invasive?

Ce chapitre présente les principes de base de l’IRM de diffusion et des tech-

niques de reconstruction pour l’imagerie de diffusion à haute résolution angulaire

(HARDI). Après un bref historique de la résonance magnétique nucléaire (NMR) et

de l’IRM, nous présentons les principes physiques de base de la diffusion molécu-

laire et du mouvement Brownien. Par la suite, nous décrivons les techniques

d’IRM pondérée en diffusion (IRM-PD). Pour ce faire, nous introduisons la séquence

de diffusion classique de Stejskal-Tanner [Stejskal and Tanner (1965)] qui permis

d’acquérir les premières images pondérées en diffusion le long d’une seule direc-

tion [LeBihan and Breton (1985)]. Ces premières acquisitions inspirèrent alors le

dévelopement de l’IRM-PD mesurée le long de plusieurs directions de gradient de

diffusion. C’est ainsi que les gens commencèrent à faire de l’IRM du coefficient ap-

parent de diffusion (ADC) [Moseley et al. (1990)]. Basser et al [Basser et al. (1993)]

proposèrent ensuite le formalisme rigoureux du modèle du tenseur de diffusion, ce
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qui donna naissance à l’imagerie par tenseur de diffusion (DTI). Le DTI a besoin d’au

moins six images pondérées en diffusion pour reconstruire le tenseur de diffusion.

C’est seulement depuis moins de 10 ans que les acquisitions HARDI avec plus d’une

soixantaine d’images pondérées en diffusion existent. L’historique du développement

de l’IRM de diffusion est illustré à la Figure 4.2. La dernière partie du chapitre

présente enfin toutes les méthodes de reconstruction HARDI récentes. Ces méthodes

formaient l’état de l’art au moment de la rédaction de ce document. Ce chapitre per-

met donc de motiver le sujet de cette thèse et de situer les méthodes choisies par

rapport aux techniques existantes jusqu’à ce jour.

Chapitre 5 - Mathématiques sur la Sphère: la Base des Harmoniques
Sphériques : Quel est l’outil mathématique approprié pour traiter les données

HARDI? Ce chapitre décrit les outils mathématiques ainsi que les propriétés math-

ématiques importantes pour comprendre cette thèse. Les données HARDI sont en

fait des mesures physiques qui ont des contraintes. Les données sont discrètes, elles

vivent sur la sphère, elles sont symétriques et positives. Il faut donc trouver le bon

outil pour estimer au mieux ces données. Pour ce faire, nous utilisons la base des

harmoniques sphériques. Comme la transformée de Fourier dans le plan, la trans-

formation en harmoniques sphériques est très naturelle pour traiter les données

sphériques. D’abord, le chapitre présente la définition des harmoniques sphériques

comme étant la solution de l’équation de Laplace. Ensuite, nous révisons certaines

propriétés des harmoniques sphériques qui nous permettront d’estimer, de lisser et

de calculer des distances et statistiques entre nos fonctions sphériques. Enfin, nous

définissons le théorème de Funk-Hecke. Ce théorème sera d’une grande importance

pour le développement de nos solutions analytiques en imagerie par q-ball.

Partie II : Méthodes

Cette partie développe nos contributions théoriques et algorithmiques.

Chapitre 6 - Estimation et Applications du Coefficient Apparent de Diffu-
sion (ADC) : Comment estimons-nous le signal HARDI de façon robuste? Ce

chapitre présente une solution linéaire et régularisée pour l’estimation du signal

HARDI à partir des harmoniques sphériques. Par conséquent, nous pouvons recon-

struire l’ADC avec une représentation en harmoniques sphériques. Nous faisons donc

le point sur les techniques d’approximation de l’ADC à partir de modèles de tenseurs

d’ordres supérieurs et présentons aussi leur application à la définition de mesures

d’anisotropie. Nous développons plus spécifiquement les outils adéquats pour traiter

et estimer l’ADC bruité provenant des données HARDI. À partir d’une base modifiée

d’harmoniques sphériques et de ses propriétés, nous proposons une nouvelle méth-

ode de régularisation avec l’opérateur de Laplace-Beltrami obtenant des coefficients
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de diffusion plus lisses. Nous développons également le lien entre la base des har-

moniques sphériques et le tenseur d’ordre supérieur. Il s’avère qu’une simple trans-

formation linéaire est possible entre les deux espaces. Nous validons notre nouvelle

approche sur des données synthétiques, sur un fantôme biologique ainsi que sur un

cerveau humain. De plus, nous étudions l’état de l’art des mesures d’anisotropie cal-

culées à partir de modèles d’ordres supérieurs et nous évaluons leur capacité à décrire

le processus de diffusion. Finalement, nous démontrons que les mesures d’anisotropie

HARDI peuvent être utilisées pour la classification des voxels contenant une distri-

bution isotrope, une distribution d’une seule population de fibres et une distribution

de plusieurs faisceaux de fibres.

Chapitre 7 - Solution Analytique pour l’Imagerie par Q-Ball (QBI) :
Pouvons-nous utiliser notre méthode robuste d’estimation du signal HARDI pour

faire du QBI? Ce chapitre présente une solution linéaire, rapide, régularisée et analy-

tique pour faire du QBI. La reconstruction de la fonction de distribution d’orientation

des fibres (ODF) par q-ball est une technique largement répandue dans l’étude des

croisements de fibres. L’ODF nous renseigne sur la distribution de probabilité des di-

rections de diffusion des molécules d’eau présentes dans la matière blanche. Cepen-

dant, cette méthode ainsi que les autres techniques d’estimation HARDI sont basées

sur des solutions numériques complexes et sans aucun processus de régularisation.

Nous approximons d’abord le signal par une série d’harmoniques sphériques lissées.

Cette formulation nous permet d’obtenir une simplification élégante de la transfor-

mée de Funk-Radon en utilisant le théorème de Funk-Hecke. Nous obtenons donc

un algorithme robuste et rapide pour l’estimation de l’ODF. L’efficacité et la préci-

sion de l’approximation sont évaluées sur des données synthétiques et réelles. Nous

faisons varier les paramètres importants dans la formation de l’image et observons

les différentes répercussions sur la forme des ODFs. Contrairement au tenseur de

diffusion, nous démontrons que l’extraction des maxima de l’ODF permet de retrou-

ver des croisements de fibres dans de nombreux voxels de l’image.

Chapitre 8 - Segmentation d’Images de Diffusion à Haute Résolution Angu-
laire : Maintenant que nous avons des ODF de diffusion q-ball, comment pouvons-

nous segmenter et extraire certains faisceaux de fibres de la matière blanche? Ce

chapitre décrit une nouvelle méthode de segmentation des images HARDI obtenues

par QBI. D’abord, l’ODF de diffusion est estimée à l’aide de la base des harmoniques

sphériques et de notre nouvelle méthode d’estimation analytique, robuste et rapide.

Nous utilisons ensuite une évolution de surface par statistique de région sur cette im-

age d’ODF, pour retrouver des ensembles de faisceaux de fibres cohérents partageant

les mêmes caractéristiques. Nous montrons que notre nouvelle méthode reproduit

les résultats de l’état de l’art basés sur le tenseur de diffusion et que nous améliorons

les résultats de segmentation dans les régions de croisements de faisceaux de fibres,
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régions où le tenseur de diffusion est intrinsèquement limité. Enfin, nos résultats sur

des données simulées, sur un fantôme biologique, sur des données réelles ainsi que

sur la base de données HARDI publique [Poupon et al. (2006)] comportant 13 sujets,

démontrent que notre approche est reproductible, automatique et apporte une valeur

ajoutée importante pour la segmentation des IRM pondérées en diffusion.

Chapitre 9 - Améliorer l’Imagerie par Q-Ball: de l’ODF de Diffusion à une
Estimation de l’ODF de Fibres : Pouvons-nous améliorer la résolution angu-

laire du QBI? Ce chapitre décrit une nouvelle méthode de déconvolution sphérique

pour transformer l’ODF de diffusion en une ODF de fibres. Cette transformation de

sharpening augmente la résolution angulaire d’environ 15◦ et facilite l’extraction des

maxima de l’ODF. L’outil mathématique important est encore une fois le théorème

de Funk-Hecke. La déconvolution de l’ODF de diffusion par le profil de diffusion

ODF estimé à partir des données HARDI réelles nous permet de réduire la partie

isotrope de l’ODF et donc de rehausser les compartiments de fibres sous-jacents. Par

la suite, nous démontrons que l’ODF de fibres et les distributions obtenues par décon-

volution sphérique classique [Tournier et al. (2004); Anderson (2005); Tournier et al.

(2007); Sakaie and Lowe (2007)] se comportent de la même manière sur des simula-

tions de données HARDI. Nous étudions également l’effet des différents paramètres

d’acquisition. Faisant varier la valeur de b, le nombre de mesures pondérées en dif-

fusion, le bruit, l’angle de séparation entre les compartiments de fibres et leurs pro-

portions dans le voxel, nous pouvons quantifier les limites et avantages de chaque

algorithme de déconvolution sphérique. Finalement, tous les algorithmes de décon-

volution sphérique ont des comportements très similaires et nous démontrons que

l’ODF de fibres produite par la plupart de ces techniques donnent des résultats sem-

blables sur le fantôme biologique et sur nos jeux de données réelles HARDI.

Chapitre 10 - Suivi de Fibres Déterministes et Probabilistes en Imagerie de
Diffusion à Haute Résolution Angulaire : Maintenant que nous avons des esti-

mations robustes de l’ODF de fibres, comment faut-il intégrer cette information locale

dans de nouveaux algorithmes de suivi de fibres? Ce chapitre décrit de nouveaux al-

gorithmes de suivi de fibres (tracking) déterministes et probabilistes basés sur l’ODF

de fibres. La nouveauté dans le suivi de fibres déterministe est d’utiliser toutes les

orientations maximales de l’ODF pour permettre au suivi de fibres de se séparer en

plusieurs directions. La nouveauté du suivi de fibres probabiliste est d’utiliser l’ODF

de fibres comme distribution de probabilité pour tirer un très grand nombre de fois

une orientation aléatoire à chaque pas du suivi. Ainsi, nos résultats de suivi de fi-

bres permettent de retrouver des réseaux complexes de l’architecture neuronale de la

matière blanche comportant des croisements, des embranchements et des configura-

tions de fibres en éventail. De plus, nous démontrons que le suivi de fibres fait à par-

tir de l’ODF de fibres est plus complet et de meilleure qualité qu’à partir du tenseur
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de diffusion ou de l’ODF de diffusion. Enfin, une autre contribution importante est

l’étude poussée et la comparaison des algorithmes de suivi de fibres déterministes et

probabilistes sur des données HARDI réelles à partir du DTI, de l’ODF de diffusion

et de l’ODF de fibres.

Partie III : Applications

Cette dernière partie présente une application précise de nos outils pour la recon-

struction des fibres transcallosales, fibres très importantes dans le fonctionnement

du cerveau.

Chapitre 11 - Reconstruction des Fibres Transcallosales à Partir d’un Suivi
de Fibres Probabiliste : Maintenant que nous avons des méthodes état de l’art de

suivi de fibres, pouvons-nous retrouver des réseaux de fibres complexes pouvant être

utilisés dans une application neuroscientifique? Ce chapitre décrit une application

intéressante sur le corps calleux et la reconstruction des fibres transcallosales. Ces

fibres sont normalement ignorées par les techniques de suivi de fibres en DTI car

elles croisent le faisceau supérieur longitudinal ainsi que la couronne rayonnante.

Notre suivi de fibres HARDI basé sur l’ODF de fibres nous permet de retrouver ces

fibres transcallosales sur une base de données de huit sujets. De plus, nos résultats

quantitatifs de suivi de fibres sur plusieurs sujets nous permettent de déterminer les

endroits où le suivi de fibres DTI est limité. Ce suivi de fibres nous confère donc une

connaissance anatomique plus fine de ces parties du cerveau.

Annexe A - Données HARDI utilisées dans cette thèse :

L’annexe A décrit les jeux de données utilisés tout au long de cette thèse. D’abord,

l’annexe A.1 présente notre génération de données synthétiques pour tester et valider

nos algorithmes. Nous utilisons le modèle de plusieurs tenseurs de diffusion pour pro-

duire des signaux isotropes, des signaux comportant une seule fibre et des signaux

comportant plusieurs croisements de fibres. Dans l’annexe A.2, nous décrivons en-

suite l’acquisition du fantôme biologique de Campbell et al de l’Université McGill

à Montréal, Canada [Campbell et al. (2005)]. Ce fantôme biologique est composé

de deux moelles épinière de rat placées en configuration de croisement. Ce jeu de

données nous est d’une grande utilité pour valider nos algorithmes de détection de

croisements de fibres. Finalement, nous présentons les jeux de données réelles dans

l’annexe A.3. Les données ont été acquises au Brain Imaging Center (BIC) à Mon-

tréal au Canada, au Max Planck Institute (MPI) à Leipzig en Allemagne, au Center

for Magnetic Resonance Research (CMRR) à Minneapolis aux USA et au CEA / Neu-

roSpin à Paris en France. Nous sommes très reconnaissant envers tous nos collabo-

rateurs d’avoir partagé leurs données avec nous.
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Annexe B - Publications de l’auteur issues des travaux de cette
thèse :

Cette annexe énumère nos publications issues des contributions de cette thèse. Nous

avons publié dans plusieurs journaux internationaux, dans plusieurs conférences de

haut niveau et nous nous sommes efforcés de publier nos travaux dans plusieurs

rapports de recherche INRIA.

Contributions logicielles

Par ailleurs, nous souhaitons souligner que tous les algorithmes présentés dans cette

thèse sont maintenant disponibles, sur demande1, comme extension de la plate-

forme logicielle Brainvisa2 pour la visualisation et l’analyse d’images cérébrales

provenant de différentes modalités. De plus, la visualisation des ODFs et des fonc-

tions sphériques avec leur représentation en harmoniques sphériques sera bien-

tôt disponible dans Slicer33. Ce travail d’intégration a été réalisé en collaboration

avec Christophe Lenglet (Siemens Corporate Research, Princeton, USA) et Demian

Wassermann (INRIA Sophia-Antipolis, France / Computer Science Department, Uni-

versity of Buenos Aires, Argentina).

1https://gforge.inria.fr
2http://brainvisa.info
3http://www.na-mic.org/Wiki/index.php/Slicer3
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Background
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CHAPTER 3

NEURAL TISSUE AND HUMAN

BRAIN WHITE MATTER

“The human brain is a most unusual instrument of elegant and as yet unknown ca-

pacity.”

–Stuart Seaton ()
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OVERVIEW

What are we looking for in the human brain white matter? The principal interest of

the thesis is anatomical connectivity. This chapter covers the basic cerebral anatomy

of the white matter. In particular, what are the different brain and neural tissues?

What is the organization of the white matter? How is the brain connected? What are

some of the large fiber bundles in the brain? First, we review the different human

brain tissues and neural tissue types, from the neuron, the gray matter, to the white

matter. Then, we cover the composition and organization of the human white matter.

Finally, we highlight the different fiber tracts and highlight the way different parts of

the brain interact. Overall, this introductory chapter is inspired from atlases, review

articles and thesis chapters from [Gray (1918); Williams et al. (1997); Stanisz et al.

(1997); Poupon (1999); Beaulieu (2002); Jbabdi (2006); Perrin (2006); Lenglet (2006)],

which are great sources for a general understanding of the neural tissue and cerebral

anatomy.

Keywords: gray matter, white matter, fiber tracts, projection fibers, association

fibers, commissural fibers

Organization of this chapter:
The chapter is organized as follows. We first give a brief overview of the human

brain structure and neural tissue in Section 3.1. Then, the organization of the white

matter is described in Section 3.2. Finally, the important white matter fiber tracts

for this thesis are reviewed in Section 3.2.1.

3.1 THE HUMAN BRAIN AND NEURAL TISSUE

The human brain is extremely complex. We know very little of the complex

functioning of the brain but we know quite a lot about its anatomy [Gray (1918)]. The

anatomy of the brain has been studied for more than one hundred years. The brain

controls the central nervous system (CNS), the peripheral nervous system (PNS) and

regulates all human activity. Neural tissue is specialized for the conduction of elec-

trical impulses that convey information or instructions from one region of the body to

another. How is this information carried through the white matter and how are the

different parts of the brain connected remains unknown. About 98% of neural tis-

sue is concentrated in the brain and spinal cord, the control centers for the nervous

system.

At a microscopic scale, neurons transmit signals as electrical impulses which af-

fect their cell membrane potentials. The electrical impulse usually affects the cell

membrane potential of one of the neuron’s dendrites and then eventually travels

along the length of this axon to transmit to other neurons. Axons are often called

nerve fibers and bundles of these axons are called fiber tracts. In this thesis, we will
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Figure 3.1: Coronal slice taken from a human specimen from the brain museum

(www.brainmuseum.org). The white matter is in light white color and the gray mat-

ter in purple. (a) shows regions of the ventricles containing CSF. (b) shows a trans-

verse slice taken in the white matter where we see small and larger circular axons

tightly packed together. The image was taken in the corpus callosum of a monkey’s

brain [Stanisz et al. (1997)]. (c) shows a sketch of the axons filled with microtubes

and neurofilaments in the longitudinal axis, taken and adapted from [Williams et al.

(1997); Mori and van Zijl (2002)]. (d) shows the gray matter as a thin purple layer on

the outside of the brain.

be most interested in recovering information about these fiber tracts.

At a larger scale, the human brain is made of different elements such as blood,

cerebrospinal fluid (CSF), white matter and gray matter. All these different element

classes produce a different signal contrast under magnetic resonance imaging (MRI).

Figure 3.1 shows a typical coronal slice of the human brain with some of the tissue

classes highlighted. First, the CSF occupies the ventricular system around and inside

the brain. It acts as a "cushion" for the cortex, providing also a basic mechanical and

immunological protection to the brain inside the skull. Second, the white matter is a

major component of the CNS. It is composed of axonal nerve fibers or neurons covered
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Figure 3.2: The four lobes of the cerebral cortex and the cerebellum. Figure adapted

from [Gray (1918)].

by a myelin sheath giving it its distinctive color. White matter axons are often tightly

packed together and highly organized. This is seen in Figure 3.1(b) with a transverse

slice of the corpus callosum (CC) of the monkey’s brain and in Figure 3.1(c) with a

schematic view of the microtubes and neurofilaments that fill the axon. White matter

connects various gray matter areas (the locations of nerve cell bodies) of the brain to

each other and carries nerve impulses between neurons. Finally, the gray matter

is also a major component of the CNS. Gray matter is composed of unmyelinated

neurons as opposed to white matter. It has a gray brown color which comes from the

capillary blood vessels and the neuronal cell bodies. The cerebral cortex is the most

important structure of the gray matter and plays a major role in cognitive functions.

It constitutes the outermost layer of the brain and is highly folded to increase its

surface in the limited volume of the skull. This folding process creates grooves on the

surface of the brain called sulci and ridges called gyri. About two thirds of the cortical

surface is buried in those sulci.

The two hemispheres of the brain are separated by a prominent central fissure.

Each hemisphere of the cerebral cortex is made of four lobes (Figure 3.2). 1) The

frontal lobe, located in front of the central sulcus, play an important role in reasoning,

planning, language, memory and motor control. 2) The parietal lobe, behind the

central sulcus, are more important to integrate sensory information and process some

visuo-spatial stimuli. 3) The temporal lobes, on the most lateral parts of the cortex

and below the lateral fissure, are involved in auditory processing as well as language

26



(a) Structure of a typical neuron (b) Real myelinated optical nerve in a

(figure adapted from Wikipedia) longitudinal micrograph of the garfish

Figure 3.3: Sketch of a typical neuron or axonal nerve fiber in (a). In (b), we see

an electron micrograph in a longitudinal section of a freshly excised garfish. We see

tightly packed axons running diagonally across the micrograph. Image (a) is adapted

from Wikipedia and image (b) is taken from [Beaulieu (2002)].

and vision related functions. 4) The occipital lobe occupy the rearmost part of the

cortex and are the processing centers of visual stimuli.

In this thesis, we are interested in the “wiring” or architecture of the human brain.

What are the connections within and between each lobe? How are the different lobes

connected with each other? How are they connected to the basal nuclei of the brain?

This wiring is done by the white matter connection or fiber tracts. We now describe

the organization of the white matter in more detail and describe the important white

matter fiber tracts for the rest of this thesis.

3.2 ORGANIZATION OF THE WHITE MATTER

As mentioned above, white matter is composed of neurons and axonal nerve

fibers. These are covered by a myelin sheath giving it its distinctive color. The human

nervous system is made of about 100 billion neurons. A typical neuron is illustrated

in Figure 3.3. The axon conducts electrical impulses away from the neuron’s cell

body or soma, to the axonal endings and dendrites of other connected neurons. The

axons form the wiring of the nervous system and in particular, the white matter

architecture. The white matter axons can be distributed diffusely or concentrated in

bundles, also called fiber tracts. This is clear from real transverse and longitudinal

slices of Figure 3.1(b) and Figure 3.3(b). Three main types of neural tracts are found

in the white matter:

Projection tracts establish connections between the cerebral cortex and subcorti-

cal structures, such as the basal ganglia and the thalamus. There are two types of
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(a) axial view (b) sagittal view

Figure 3.4: The projection fibers pass through and around the basal nuclei (putamen,

pallidum, caudate nucleus, thalamus) seen in (a). The projection fibers form parts of

the internal, external and extremal capsules and form the coronal radiata, as seen in

(b). Figure (a) was taken from [Gray (1918)] and figure (b) was taken from [O’Donnell

(2006)].

projections tracts: afferent tracts and efferents tracts. Afferent tracts carry informa-

tion from different parts of the body to the cerebral cortex. All sensory information,

except olfactory, end up in the primary sensory cortex by the means of the optic and

acoustic fibers. The optic, acoustic and somatosensory tracts pass in the thamalus

before projecting to the cortex. The optic tract projects to the occipital lobe and the

acoustic tract to the temporal lobe. There are also numerous thalamo-cortical affer-

ent fibers arising within the thalamus and projecting to the different parts of the

cortex.

Efferent tracts carry motor commands from the motor cortex down to the muscles

and glands through the lower brain structures and the spinal cord. They reach struc-

ture like the basal ganglia, the cerebellum, the brainstem and the spinal cord. The

basal ganglia include the striatum (which consist of the putamen, the caudate nu-

cleus and the ventral striatum), the globus pallidus, the subthalamic nucleus and the

substantia nigra. Other important efferent fibers include the motor tracts, which oc-

cupies a large part of the genu and anterior occipital part of the internal capsule and

the corticopontine fibers. Some of these fiber tracts and basal nuclei are illustrated

in Figure 3.4.
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(a) (b)

Short association fibers

(c) (d)

Long association fibers

Figure 3.5: The association fibers. Short association fibers in (a)-(b) and long associa-

tion fibers in a sagittal view (c)-(d). Figure (a) and (c) are adapted from [Perrin (2006)]

and figure (d) was taken from [Nieuwenhuys et al. (1981)]. In (b), the very short tan-

gential fibers in the gray matter are sketched in region A, the ’U’ fibers sketched in

region B and the short association fibers in region C.

Association tracts are the communication fibers between different cortical areas

within a given hemisphere. They can be divided into two categories: short and long

association tracts. Short association tracts build up connections between regions

within a given lobe and connect adjacent gyri. The smallest link adjacent cortical

zones separated by a sulcus. They are called the ’U’-fibers. The short association

fibers lie immediately beneath the gray substance of the cortex of the hemispheres,

and connect together adjacent gyri. Long association fibers establish connections

between different cerebral lobes passing between more distant parts. The long as-

sociation fibers include fibers such as the uncinate fasciculus (UNC) from frontal to

temporal lobe, the cingulum (Cg) from the cingulate gyrus to the entorhinal cortex,

the superior fronto-occipital (SFO) fasciculus from the parietal lobe to frontal lobe,

the inferior fronto-occipital (IFO) fasciculus from the occipital lobe to frontal lobe, the

superior longitudinal fasciculus (SLF) from the frontal lobe to occipital lobe, the infe-
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rior longitudinal fasciculus (ILF) from occipital lobe to temporal lobe and the fornix

from the hippocampus to the mammillary body. Figure 3.5 sketches some of these

short and long association fibers.

Commissural tracts are bundles of axons connecting a region in one hemisphere

to another region of the opposite hemisphere. The important commissural fibers in-

clude the transverse fibers of the CC, also called the transcallosal fibers, the anterior

commissure (AC) and the posterior commissure (PC). The CC and AC are illustrated

in Figures 3.6 and 3.10.

3.2.1 Important white matter bundles for this thesis

We now review the important fiber tracts that will be examined across the rest of this

thesis.

Corpus Callosum

The CC is a structure that connects the left and right cerebral hemispheres. It is

the largest white matter structure in the brain, consisting of 200-250 million con-

tralateral axonal projections or transcallosal fibers. It is a wide, flat bundle of axons

beneath the cortex. Much of the inter-hemispheric communication in the brain is con-

ducted across the CC. The CC is often divided in four parts, as seen in Figure 3.6(a).

From most anterior to posterior, the CC is divided into the rostrum, genu, body and

splenium.

On either side of the CC, the fibers radiate and pass to the various parts of the

cerebral cortex. The transcallosal fibers curving forward from the genu into the

frontal lobe constitute the forceps minor (also called anterior forceps) and those curv-

ing backward into the occipital lobe constitute the forceps major (also called posterior

forceps). Between these two parts is the main body of the fibers which constitute the

tapetum (TAP) and extend laterally on either side into the temporal lobe, and cover

the central part of the lateral ventricle. This is shown in Figure 3.6. The CC will

come in most chapters. In particular, Chapter 11 is entirely dedicated to the recovery

of the transcallosal fibers.

Corticospinal Tract (CST)

The corticospinal or pyramidal tract is a massive collection of axons that travel be-

tween the cerebral cortex of the brain and the spinal cord. The CST mostly contains

the motor axons. The CST is illustrated in Figure 3.7.

Closely related to the CST is another important fiber bundle, the corona radiata

(CR). The CR is associated with the CST. In neuroanatomy, the CR refers to the

descending bundle or sheet of axons that are involved with the fine coordination of

movement. The CR is seen in Figure 3.8. Figure 3.8 also shows the anterior thalamic
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(a) CC division in a coronal view

(b) Transcallosal fibers and forceps (c) CC, TAP and SLF

Figure 3.6: The corpus callosum. In (a) we see the division of the CC in a zoomed

sagittal view. In (b)-(c) we see a top view where we see the transcallosal fibers, the

forceps and the tapetum (TAP). Figure (a) and (b) are adapted from [Williams et al.

(1997); Perrin (2006)] and figure (c) is adapted from [Gray (1918)].

radiations (ATR). The ATR are radiations that pass through the internal capsule.

The ATR interconnects the frontal lobe and other cerebral regions such as the pons,

the thalamus and the basal ganglia.

Superior and Inferior Longitudinal Fasciculus

The SLF and ILF are important association fiber seen above. The SLF connects the

front and back of the cerebral cortex. The ILF connects the temporal lobe and the

occipital lobe, running along the lateral walls of the ventricles. Figure 3.9 shows

these two fiber bundles.

Figure 3.9 also shows two other important association fibers, the uncinate fasci-

culus and the cingulum. The UNC passes across the bottom of the lateral fissure, and
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CST in red and the brain-stem CST to the motor areas of the cortex

(coronal view)

Figure 3.7: The corticospinal tract (CST). Both figures are adapted from [Gray

(1918)].

Figure 3.8: The corona radiata (CR), the corticospinal tract CST and the anterior

thalamic radiations (ATR) in a sagittal view. Figure adapted from [Williams et al.

(1997)].

connects the gyri of the frontal lobe with the anterior end of the temporal lobe. The

Cg is a collection of fibers projecting from the cingulate gyrus to the entorhinal cortex

in the brain. It allows the communication between components of the limbic system

and the cortex.

The Anterior Commissure

The AC is a fiber bundle connecting the two cerebral hemispheres across the middle

line. The AC is placed in front of the columns of the fornix. The AC has an oval cross-
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(a) (b)

Figure 3.9: Association fibers in details. The superior longitudinal fasciculus (SLF),

the inferior longitudinal fasciculus (ILF) and the uncinate fasciculus (UNC) are seen

in (a)-(b) in a sagittal view. In (a), we also see short corticocortical fibers (’U’ fibers),

the CC and the cingulum (Cg). (a) was taken from [Gray (1918)] and (b) adapted

from [Williams et al. (1997)].

coronal view

Figure 3.10: Illustration of the commissural fibers and the anterior commissure (AC).

Both figures were taken from [Gray (1918)]. In the right figure, we also see the CC,

the internal capsule, the caudate nucleus and putamen in a coronal view.

section with a long vertical diameter that measures about 5 mm. Its fibers can be

traced laterally and backwards on either side into the substance of the temporal lobe.

It thus serves in this way to connect the two temporal lobes. The AC is illustrated in

Figure 3.10.

3.3 CONCLUSION

This brief background chapter has introduced the important neural tissue,

33



brain tissues and brain structures that will be examined in the rest of this thesis.

More particularly, in this thesis, we are mostly interested in the white matter, from

the local reconstruction of the neural tissue using diffusion MRI to the recovery of

information about the wiring of the human brain. We have introduced the necessary

nomenclature of small and larger fiber bundles that will come back in most chapters

of the thesis.

In the next chapter, we introduce the foundations of diffusion MRI. We will show

that diffusion MRI constitutes a powerful non-invasive mean to investigate the ar-

chitecture of the human brain white matter that we have just described.
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CHAPTER 4

PRINCIPLES OF DIFFUSION MRI:
GOING BEYOND THE DIFFUSION

TENSOR

“A water story”

–Denis Le Bihan

“Water is the driving force of all nature”

–Leonardo da Vinci
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OVERVIEW

How do we image white-matter non-invasively? This chapter covers the principles

of DW-MRI and high angular resolution diffusion imaging (HARDI) reconstruction

techniques. In particular, what are the physical principles of DW-MRI? What are the

fiber reconstruction algorithms to infer microstructure of biological tissues? First,

we describe the basic principles of DW-MRI. Next, we review the different DW-MRI

acquisition techniques. Properties of each acquisition technique are described sepa-

rately. Finally, a special emphasis is put on the approaches designed to reconstruct

the multiple fiber distributions of water diffusion. Many functions are used in the lit-

erature to measure the diffusion properties of the underlying biological tissue. Some

methods are model dependent, some model-free, some methods have linear solutions

whereas others require non-linear optimization schemes. These different methods

are described. Overall, this introductory chapter is inspired from review articles and

chapters from [Tuch (2002); LeBihan (2003); Campbell (2004); Alexander (2005a);

Hagmann et al. (2006b); Lenglet (2006)], which are great sources for a general un-

derstanding of the diffusion MRI field.

Keywords: Nuclear magnetic resonance (NMR), magnetic resonance imaging

(MRI), diffusion MRI, diffusion tensor imaging (DTI), high angular resolution dif-

fusion imaging (HARDI)

Organization of this chapter:
The chapter is organized as follows. We first review the basic principles of molecu-

lar diffusion in Section 4.1 and then diffusion NMR and diffusion MRI in Sections 4.2.

We then describe the state-of-the-art multiple fiber HARDI reconstruction algorithms

in Section 4.3.

4.1 BASIC PRINCIPLES OF DIFFUSION MRI

Diffusion MRI is a relatively recent field of research with a history of more

or less twenty years. Diffusion MRI is of growing interest because it helps under-

stand functional coupling between cortical regions of the brain, which is useful in

characterization of neuro-degenerative diseases, in surgical planning and in other

medical applications. The great success of diffusion MRI comes from its capabil-

ity to accurately describe the geometry of the underlying microstructure. To do so,

diffusion MRI captures the average diffusion of water molecules, which probes the

structure of the biological tissue at scales much smaller than the imaging resolution.

The diffusion of water molecules is Brownian under normal unhindered conditions,

but in fibrous structure such as white matter, water molecules tend to diffusion along

fibers. Due to this physical phenomenon, diffusion MRI is able to obtain information

about the neural architecture in vivo. It is also the only imaging modality able to do
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Figure 4.1: An image of Brownian motion, done with three different step sizes. The

hierarchical structure is clearly visible. More saturated colors represent smaller step

sizes. Image under the Gnu Free Documentation License 1.2

so non-invasively. We now review the basics physical principles of diffusion MRI.

4.1.1 Brownian Motion of Water Molecules and Fick’s Law

At a microscopic scale, water molecules freely move and collide with each other in an

isotropic medium according to Brownian motion [Brown (1828)]. This is illustrated

in Figure 4.1.

At a macroscopic scale, this phenomenon yields a diffusion process. In an isotropic

medium, the diffusion coefficient D was related by Einstein [Einstein (1956)] to the

root mean square of the diffusion distance as

D =
1

6τ
〈RT R〉, (4.1)

where τ is the diffusion time, 〈〉 denotes an ensemble average and R = r − r0 is the

net displacement vector, with r0 the original position of a particle and r its position

after the time τ . The scalar constant D, known as the diffusion coefficient, measures

the molecule’s mobility. In the isotropic case, it depends on the molecule type and the

medium properties but not on the direction.

The macroscopic process of diffusion can also be described by Fick’s first law, de-

rived by Adolf Fick in 1855 [Fick (1855)]. It relates the concentration difference of

the diffusion substance C to a flux. The flux, J, is proportional to the gradient of the
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concentration, ∇C. The proportionality constant D is the diffusion coefficient and the

governing equation is given by

J = −D∇C. (4.2)

In anisotropic biological tissues, a water molecule’s mobility is constrained by

obstacles formed by surrounding structures, such as the axons in the brain. For

example, it is known that the myelin sheath can modulate the anisotropy of the

diffusion while the microtubules and neurofilaments do not modify it [Beaulieu

(2002)]. The general diffusion displacement probability density function (PDF), also

called diffusion propagator, of water molecules is extremely complex and is still un-

known today. Hence, historically, simple models of diffusion have been proposed.

Amongst these models, the most popular model is certainly the diffusion tensor (DT)

model [Basser et al. (1994b)] arising from the transport tensors theory that had been

studied in the mathematics literature for a long time [?]. In this simplified model of

water diffusion, Einstein’s and Fick’s law of diffusion can be generalized using the

DT model. The scalar diffusion coefficient D can be replaced by a DT, D. Hence, Ein-

stein’s relation 4.1 can be generalized considering the covariance matrix of the net

displacement vector R

D =






Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz




 =

1

6τ
〈RRT 〉. (4.3)

The diffusion PDF is written as P (R, t). It represents the probability that a water

molecule located at r0 will have moved by amount R = r − r0 in time τ . In the

diffusion tensor model, if we take the Taylor’s expansion of P about R and τ and

ignore the higher order terms, we can use Einstein’s relation of Eq. 4.3 to obtain

∂P (R, t)

∂t
= D∇2P (R, τ). (4.4)

The detailed intermediate steps and mathematical derivations are done in [Campbell

(2004)]. The solution to Eq. 4.4 is P , the diffusion PDF of water molecules under the

DT model assumption.

In Fick’s formulation, the diffusion tensor D can also be introduced to model the

anisotropic diffusion of the biological tissue. We then have,

J = −D∇C (4.5)

If we use Fick’s Law and the law of conservation of mass, ∂C/∂t = −∇ · J, we get

∂C

∂t
= ∇ · (D∇C) = D∇2C, (4.6)

which is the same as Eq. 4.4 with the diffusion PDF P replaced by the concentration

of the medium C. Both the Einstein’s Eq. 4.4 and Fick’s Eq. 4.6 describe the classical
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diffusion equation. In the case D is the identity matrix (isotropic medium), it is called

the heat equation and in the anisotropic case, it is called the geometric heat equation.

Both the isotropic and anisotropic description of diffusion are used in many diffu-

sion MRI applications for different normal and pathological tissue studies. Note that

the diffusion coefficient measured in diffusion MRI is not the true diffusion coefficient

of water unless the imaging object is pure water. The diffusion is restricted by the

structure of the tissue and this is normally called the apparent diffusion coefficient

(ADC). We now detail how we can acquire DWI, measure the ADC and measure the

diffusion PDF using diffusion NMR. Note that in this section we have derived the

diffusion equations using the diffusion tensor model. However, for the rest of this

chapter we will treat the diffusion PDF, P , in a general model-free fashion.

4.2 NMR AND DIFFUSION MRI

A brief history

A long time before MRI and diffusion MRI were invented, NMR was used to measure

properties of substances in chemistry to perform NMR spectroscopy.

NMR was simultaneously described in 1946 by Felix Bloch [Bloch (1946)] and by

Edward Mills Purcell [Purcell et al. (1946)]. In 1952, they both received the Nobel

Prize in Physics for their discovery. The basic principle behind NMR is that after

aligning a magnetic nucleus such as 1H (the proton) with a very strong external

magnetic field, its response to a perturbation of the alignment by an electromagnetic

field is characteristic. Four years after this discovery, in 1950, Herman Carr, proposed

to create the first one-dimensional (1D) MR images by introducing a gradient in the

magnetic field [Carr and Purcell (1954)]. Shortly after Bloch and Purcell discovery,

Hahn published his seminal paper [Hahn (1950)] on the NMR spin echo in which

he noted that the random thermal motion of the spins would reduce the amplitude

of the observed signal in the presence of a magnetic field inhomogeneity. This is a

fundamental notion to understand diffusion MRI.

As soon as 1973, Paul Lauterbur proposed a method [Lauterbur (1973)], based

on gradients of magnetic field, to reconstruct two dimensional MR images. Peter

Mansfield [Mansfield (1977)] further developed the use of magnetic fields gradients

and, by studying the mathematical properties of the MRI signal, proposed a new

ultrafast acquisition technique known as the echo-planar technique. In 2003, they

jointly received the Nobel prize in Physiology and Medicine for their discoveries on

MRI. At the heart of diffusion MRI are the principles of NMR just highlighted but also

the gradient spin echo sequence of [Stejskal and Tanner (1965)] that we now describe.

A schematic view of our brief history of diffusion MRI is shown in Figure 4.2.
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Principles of Nuclear Magnetic Resonance (NMR)
[Bloch, Purcell, Carr, Hahn, Lauterbur, Mansfield, ...]

↓

The Pulse Gradient Spin-Echo (PGSE) sequence
[Stejskal and Tanner (1965)]

↓

Scalar Diffusion-Weighted Imaging (DWI)
DWI ADC & Trace Imaging

[Wesbey et al (1984), Taylor and [Moseley et al 1990, Douek et al 1991]

Bushell (1985), Le Bihan and Breton (1985)]

↓

Diffusion Tensor Imaging (DTI)
[Basser et al, (1992-1994)]

↓

Beyond Tensor Imaging
Single shell HARDI Diffusion Spectrum Imaging (DSI)

[Tuch et al (1999)] [Callaghan et al (1988),

van Wedeen et al (2000)]

Figure 4.2: Brief history of diffusion MRI.

4.2.1 Pulse Gradient Spin Echo (PGSE)

The Stejskal-Tanner imaging sequence [Stejskal and Tanner (1965)] is used to mea-

sure the diffusion of water molecules in a given direction gi, i = 1, ..., N . This pulse

sequence is illustrated in Figure 4.3. This sequence uses two gradient pulses g(t)

in the direction g, of duration time δ, to control the diffusion-weighting. They are

placed before and after a 180◦ degrees refocusing pulse. More specifically, a first 90◦

degrees RF is applied to flip the magnetization in the transverse plane. The first gra-

dient pulse causes a phase shift of the spins whose position are now a function of time.

Spin position is in fact assumed to stay constant during time δ. Finally, the 180◦ pulse

combined with the second gradient pulse induces another phase shift. It is applied

after a time ∆ separating the two gradient pulses. This pulse cancels the first phase
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Figure 4.3: Schematic Stejskal-Tanner imaging PGSE sequence. RF pulses could

more realistic.

shift only for static spins. On the other hand, spins under Brownian motion during

the time period ∆ separating the two pulses undergo different phase shifts by the

two gradient pulses, resulting in a T2 signal attenuation [Cercignani and Horsfield.

(2001)].

By assuming the pulses to be infinitely narrow (narrow pulse approximation), i.e.

if the gradient pulse duration δ is short enough for the diffusion of the water molecule

to be negligible during that time, [Stejskal and Tanner (1965)] showed that the signal

attenuation S(q, τ) is expressed as the 3-dimensional (3D) Fourier transform F of the

ensemble average propagator P ,

S(q, τ)

S0
=

∫

ℜ3

P (r|r0, τ ) exp(−2πiqT R)dr = F [P (r|r0, τ)], (4.7)

where the value of q is given by q = γδG/2π, with γ the nuclear gyromagnetic ratio

for water protons, G the applied diffusion gradient vector, S0 is the baseline image

acquired without any diffusion gradients (also called b = 0 image) and P (r|r0, τ) is the

diffusion PDF or diffusion propagator of water molecules introduced earlier. This P

is ultimately the function we are looking to reconstruct in diffusion MRI. Intuitively,
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one has to sample the diffusion PDF along many q vectors to be able to reconstruct

the diffusion PDF. The space of all possible 3D q vectors is called q-space. This is the

idea behind q-space imaging [Callaghan (1991)].

If the diffusion PDF is assumed to be Gaussian, one can work out the Fourier

integral in Eq. 4.7 analytically. The Stejskal-Tanner signal attenuation equation then

becomes

S(q, τ) = S0e
−τqT Dq, (4.8)

where D(q) = qTDq is the ADC. The signal attenuation is also often written with

respect to unit vector, g = q/|q|, and it is common to introduce the b-value, b = τ |q|2.

We thus obtain a signal attenuation with respect to the b-value given by

S(q, τ) = S0e
−τ |q|2gT Dg ⇐⇒ S(b,g) = S0e

−bgT Dg = S0e
−b·ADC. (4.9)

This is the most common formulation of the Stejskal-Tanner equation under a Gaus-

sian assumption. Thus, for large b-values, the true signal quickly falls off, while the

background noise is relatively unaffected, resulting in very noisy data measurements.

Figure 4.4 shows DW images for different b-values. We note the importance of the b-

value. One has to appropriately tune the b-value to avoid either a very low signal

attenuation when b is too small or a poor signal-to-noise ratio (SNR) when b is too

high.

To conclude, it is important to remember that the ratio S(q, τ)/S0 has a Fourier

relationship with the diffusion PDF, which is not necessarily Gaussian. This is a

key observation that is at the heart of q-space imaging using high angular reso-

lution diffusion imaging, since it potentially gives access to the complex diffusion

profile of water molecules at each voxel. However, the actual computation of the in-

verse Fourier transform to obtain the diffusion PDF is difficult in practice and has

given rise to many research developments of alternative acquisition and reconstruc-

tion techniques. Historically, people have first measured scalar-valued DWI, then,

tensor-valued DWI and finally 3D images of the the full diffusion PDF at each voxel.

We now describe these different diffusion MRI acquisition techniques.

4.2.2 Diffusion-Weighted Imaging (DWI)

It was in 1984-1985 that diffusion NMR and imaging techniques were put together to

make the first diffusion MRI acquisitions. Wesbey et al were the first to demonstrate

DWI, but their sequence was not clinically feasible [Wesbey et al. (1984b,a)]. A little

later, the first DWI acquisition was done by Taylor and Bushell using a hen’s egg as

a phantom in a small bore magnet [Taylor and Bushell (1985)]. Then, Le Bihan et

al did the first DWI acquisition in vivo of the human brain using a whole-body scan-

ner [LeBihan and Breton (1985); LeBihan et al. (1986)] and introduced the famous

b-value. At that time, a DWI was simply the unprocessed result of the application of

the PGSE sequence in one gradient direction (Figure 4.5). This image corresponded

to a single point in q-space [Hagmann et al. (2006b)].
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b = 0 s/mm2 b = 700 s/mm2

gi = (0.066, 0.55, 0.83)T

b = 0 s/mm2 b = 3000 s/mm2

gi = (−0.27, 0.43, 0.86)T

Figure 4.4: Diffusion-weighted images for different b-values. DWI taken from one of

the subjects of the HARDI database described in Appendix A.3.4.

4.2.3 Apparent Diffusion Coefficient (ADC) and Trace Imaging

It was not long after the first DWI acquisition, in 1990, that diffusion anisotropy

measurements were first done in more than one direction by [Moseley et al. (1990)] in

cat brain. It was known that diffusion truly was a 3D process with a faster diffusion

presumed in the direction of fibers than in perpendicular directions. Hence, there

was no reason that the diffusion in biological tissue was the same in all directions.

Assuming a Gaussian diffusion PDF, the log version of the Stejskal-Tanner equa-

tion with respect to the b-value (Eq. 4.9) was written as

ln

(
S(b,g)

S0

)

= −b · ADC. (4.10)

[Moseley et al. (1990)] proposed to measure this ADC along the x and z axis and

take the anisotropy index ADCz / ADCx to characterize the level of anisotropy in the

tissue. Hence, at least two DWI acquisitions were required at that point of time.

[Douek et al. (1991)] then suggested that diffusion MRI and measures of the ADC
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Figure 4.5: Axial slice of diffusion-weighted images (DWI) with two different diffusion

gradient directions (red arrows). MR signal attenuation is found in regions having

fibers mostly aligned with diffusion gradient direction (yellow arrows).

along two directions could be used to determine orientations of fiber bundles in the

white matter. Note that [Wesbey et al. (1984b,a)] had also proposed the formula to

measure the ADC in one direction of each voxel, but their sequence was not clinically

feasible.

However, these ADC measures and anisotropy index were very dependent on the

direction of the gradient encoding used in the acquisition. Figure 4.5 shows examples

of diffusion weighted images acquired with two different directions. It illustrates the

direction specific attenuation related to white matter fibers orientation. The ADC

and the proposed anisotropy measures were then confounded to be rotationally vari-

ant. Therefore, it was starting to be clear that rotationally invariant measures were

needed. It was also clear that a mathematical model with invariant properties was re-

quired to describe the 3D displacement distribution of water diffusion. As we will see

in the next section, DTI, proposed by Peter Basser, was introduced to overcome this

limitation and rotationally invariant measures were defined [Basser et al. (1994b);

Pierpaoli and Basser (1996); Pierpaoli et al. (1996)].

4.2.4 Diffusion Tensor Imaging (DTI)

In 1992, Basser et al proposed to use a second order symmetric and positive-definite

tensor to model the intrinsic diffusion properties of biological tissues [Basser et al.

(1992, 1993, 1994b,a); Basser (2002); Basser and Jones (2002)]. This is the same

diffusion tensor (DT) as encountered earlier in Einstein’s Eq. 4.3 and Eq. 4.5 for

anisotropic diffusion. In fact, if one solves for P in Eq. 4.4, the solution obtained

is the Gaussian diffusion PDF. In this case, the probability P to find a molecule, ini-
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H2O Brownian motion Eigen decomposition Ellipsoidal visualization

along the fibers of the DT of the DT

[Poupon (1999)]

Figure 4.6: Diffusion tensor representation.

tially at position r0, at r after a delay τ is then given by

P (r|r0, τ) =
1

√

(4πτ)3|D|
exp

(

− 1

4τ
(r − r0)

T D−1(r − r0)

)

, (4.11)

where |D| is the determinant of the DT, D. In other words, DTI approximates the

diffusion PDF by a 3-variate normal distribution with zero mean. Hence, D can be

viewed as the covariance matrix describing the Brownian motion of water molecules

at each imaging voxel.

Since D is symmetric (Eq. 4.3), it has six unknown coefficients that we need to es-

timate. Hence, DTI needs at least six DW images and one unweighted diffusion image

(b = 0 s/mm2) to solve the system of equations. Typically, a b-value of 1000 s/mm2 is

used with 7 to 60 gradient directions. The DT estimation problem has been the sub-

ject of much research and several theses in the past decade. DTI estimation meth-

ods go from classical linear and non-linear least-squares [Basser et al. (1994a)] to

much more sophisticated Riemannian frameworks [Lenglet (2006); Arsigny (2006);

Fillard et al. (2007a)] that forbid degenerate tensors. There are trade-offs between

speed, robustness to noise, symmetric diffusion guaranty of the DT and positive

definite guaranty of the DT that one must consider when estimating the diffusion

tensor. [Lenglet (2006)] and [Arsigny (2006)] give extensive details on this sub-

ject and [Fillard et al. (2007a)] reviews these contributions and introduces the latest

state-of-the-art tensor estimation algorithms for clinical applications and to study

brain variability [Fillard et al. (2007b)].

Most importantly, the DT is a rich mathematical tool with interesting properties

that one can exploit for diffusion MRI visualization and analysis. The DT is system-
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atically decomposed into its three eigenvalues λ1, λ2, λ3, where λ1 ≥ λ2 ≥ λ3, and

corresponding eigenvectors e1, e2, e3. The largest eigenvalue λ1 gives the principal

direction of the DT e1 and the other two eigenvectors span the orthogonal plane to

it. This is illustrated in Figure 4.6. Note that we can have isotropic tensors when

λ1 = λ2 = λ3 and planar tensors when λ1 = λ2.

From this eigenvalue decomposition, several rotationally invariant quantities can

be extracted such as the trace (equal to ADCx + ADCy + ADCz), the mean diffusivity

λ = trace / 3, the fractional anisotropy (FA) and other measures [Westin et al. (2002)].

A very popular and extensively studied measure is the FA [Pierpaoli and Basser

(1996)], defined as

FA =

√

3

2

√

(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2

λ2
1 + λ2

2 + λ2
3

. (4.12)

Most often the FA map itself is used to visualize the regions of anisotropy. DTs are

also visualized with a Red-Blue-Green (RGB) colormap [Pajevic and Pierpaoli (1999)].

The RGB map encodes the x-y-z coordinates of the principal eigenvector e1. The RGB

map gives a good orientation description of the DT field. The areas of red, blue and

green color indicate tensors aligned with x, y, z directions respectively. One can also

visualize the principal eigenvector or the DT ellipsoids themselves. Figure 4.7 shows

diffusion tensors, their corresponding principal diffusion directions, the FA map and

RGB map in an axial slice of the MPI dataset described in Appendix A.3.3.

Even though the DT is a powerful tool which has earned success in many clinical

applications [Mori and van Zijl (2002); Neil et al. (2002); Horsfield and Jones (2002);

Sotak (2002); Lim and Helpern (2002)], tractography studies (see Chapter 10) and

segmentation studies (see Chapter 8), the DT model is intrinsically limited when

imaging voxels with multiple fiber populations crossing, branching, fanning or kiss-

ing1[Basser et al. (2000)]. The DT model is limited because of the Gaussian PDF

assumption and the limited number of degrees of freedom in the model. Hence, we

need higher order models to be able to describe non-Gaussian distributions. This

limitation of the DT model is illustrated in Figure 4.8 for two orthogonally crossing

fibers. The expected fiber distribution has two maxima whereas the reconstructed

DT profile is planar-like with no preferred diffusion direction.

4.2.5 High Angular Resolution Diffusion Imaging (HARDI)

The idea now is to sample q-space along as many directions and q-magnitudes as

possible in order to reconstruct the true diffusion PDF. This true diffusion PDF is

model-free and can recover the diffusion of water molecules in any underlying fiber

population. For example, Figure 4.9 illustrates the expected diffusion PDF in the

case of an isotropic imaging voxel, a single fiber imaging voxel and two crossing fibers

1Figure 12.1 illustrates these different crossing sub-voxel configurations.
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FA map RGB map

Field of DTs Principal direction e1 of the DT

Figure 4.7: FA, RGB, field of diffusion tensors and principal diffusion direction of the

DTs in an axial slice. The DTs are colored with respect to the FA map, blue to red

corresponds to isotropic to anisotropic tensors. The DTs and e1 vectors are shown

where FA > 0.1 in half the axial slice.

imaging voxel. Note that we no longer have a scalar-valued or tensor-valued image

but we now have a 3D image of 3D diffusion distributions. Hence, one can imagine

that there are technical requirements and trade-offs that one must make in HARDI

acquisition. In particular, HARDI depends on the number of measurements N and

the gradient strength (b-value), which will directly affect acquisition time and signal

to noise ratio in the signal. Typically, there are two strategies used in HARDI: 1) sam-
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H2O diffusion fiber distribution diffusion tensor

in a crossing voxel

[Poupon (1999)]

Figure 4.8: Limitation of DTI in voxels with crossing configurations. DTI cannot

resolve imaging voxels containing multiple fiber crossings.

pling of the whole q-space 3D Cartesian grid or 2) single shell spherical sampling.2

In the first case, a large number of q-space points are taken over the discrete grid

(N > 200) and the inverse Fourier transform of the measured DWI signal is taken

to obtain an estimate of the diffusion PDF P . This is Diffusion Spectrum Imaging

(DSI) [Wedeen et al. (2000)] in the HARDI literature and the theory of DSI goes back

to the development of QSI by [Callaghan et al. (1988); Callaghan (1991)]. The method

requires very strong imaging gradients (500 ≤ b ≤ 20000 s/mm2) and a long time for

acquisition depending on the number of sampling directions (see Table 4.1). The

visualization of 3D diffusion PDF at every voxel is computationally intensive. Hence,

people either take an isosurface of the diffusion PDF for a certain radius r or the

diffusion orientation distribution function (ODF) is computed. The diffusion ODF

contains the full angular information of the diffusion PDF and is defined as

Ψ(θ, φ) =

∫ ∞

0
P (r, θ, φ)dr, (4.13)

where (θ, φ) obey physics convention in this thesis (θ ∈ [0, π], φ ∈ [0, 2π]). These data

representations and data reductions for visualization are seen in Figure 4.10. The

diffusion ODF will play a central part of the thesis and is at the heart of Q-Ball

Imaging (QBI).

In the second case, a discrete uniform sampling of the sphere is done for a certain

radius in q-space (given by the b-value). The signal attenuation is thus measured on

a single shell of q-space. In this chapter, we refer to this acquisition as single shell

HARDI [Tuch et al. (1999)].3 The idea is that the radial information of the diffusion

2There is very recent development in multiple-shell acquisition schemes. See [Khachaturian et al.

(2007)].
3HARDI acquisitions as described by D. Tuch in [Tuch (2002)] are generally used to mean acquisi-
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Figure 4.9: Expected diffusion PDF in isotropic, single fiber and two crossing fibers

from images taken from [Hagmann et al. (2006b)] and the brain museum coronal slice

of the previous chapter (www.brainmuseum.org/Specimens).

PDF can be discarded if one is interested in fiber directions. Thus, most single shell

HARDI techniques aim at reconstructing the diffusion ODF or variants of this func-

tion in order to have a function whose maxima are aligned with the underlying fiber

structure. More than 60 measurements are desirable and medium gradient strengths

are acceptable although strong gradients give better diffusion ODF reconstructions.

Typically, 60 ≤ N ≤ 200, b ≥ 3000 s/mm2 is used and acquisition time is between 10

and 20 minutes.

Summary Discussion

We have just described a brief (not exhaustive) overview of the history of diffusion

NMR and diffusion MRI: from the physics of molecular diffusion, the PGSE sequence,

tions on a single shell in q-space to simplify sampling uniformly the whole 3D q-space. In this thesis,
HARDI is more general and refers to any high angular sampling of q-space for many q-magnitudes. We

prefer to specifically say single-shell and multiple-shell HARDI for acquisitions done on a single and

multiple spherical shells.
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Figure 4.10: Simplifying visualization of the 3D diffusion PDF or 3D displacement

distribution by either taking an isosurface of the distribution or computing the diffu-

sion ODF. Image taken from [Hagmann et al. (2006b)].

to diffusion MRI. Overall, we saw the evolution of diffusion MRI from simple scalar

DWI, to tensor DWI or DTI and beyond to HARDI techniques able to recover the

3D diffusion PDF and diffusion ODF of water molecules in biological tissues. This

brief history of diffusion MRI is summarized in Figure 4.2. We also summarized

the principal diffusion MRI acquisition techniques and enumerated some of their

technical requirements in Table 4.1.

4.3 MULTIPLE FIBER HARDI RECONSTRUCTION
TECHNIQUES

The goal of HARDI is to capture multiple fiber directions within the same imaging

voxel. HARDI acquisitions are currently being improved every day with better ma-

terial and better reconstruction algorithms. This thesis is on the latter - improving

software development for processing HARDI data. We will now review the exist-

ing multiple fiber reconstruction algorithms. Some HARDI reconstruction methods

are model dependent, some model-free, some have linear solutions whereas others

require non-linear optimization schemes. A schematic view of the diffusion MRI

techniques and major multiple fiber HARDI reconstruction algorithms is shown in

Figure 4.11 and Table 4.2. We now describe each method in turn.
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dMRI Gradient strength # of measurements Acquisition time

(sec / mm2) (min)∗

modality weak medium strong N fast slow

DWI
√

N = 1
√

≤ 1000 1-3

Trace
√

2 ≤ N ≤ 4
√

& ADC ≤ 1000 2-4

DTI
√

N ≥ 7
√

≤ 1000 3-6

Single shell
√ √

N ≥ 60
√ √

HARDI b ≥ 1000 (b ≥ 3000 desirable) 10-20

DSI
√

N ≥ 200
√

b > 8000 (more the better) 15-60
∗ Assuming 30 axial slice with thickness of approximately 3 mm each.

Table 4.1: Diffusion MRI acquisition techniques. Acquisition times are assuming

thickness of 3 mm as reported in [Hagmann et al. (2006b)]. However, note that is too

coarse for most application and typically, a slice thickness of 2 mm is chosen. In that

case, one has to expect longer acquisition times. We also assume that a non-diffusion

weighted measurement must be done for Trace and ADC imaging and for DTI.

4.3.1 Diffusion Spectrum Imaging (DSI)

Eq. 4.7 suggests the fairly straightforward means of extracting the diffusion PDF

from measurements in q-space by measuring the signal on a Cartesian grid of

points in q-space and then taking the 3D inverse Fourier transform to obtain an

approximated PDF. This technique is called q-space imaging (QSI) [Callaghan et al.

(1988); Callaghan (1991)] or diffusion spectrum imaging (DSI) [Wedeen et al. (2000)].

QSI was originally done only in the radial dimension taking 1D inverse Fourier

transforms [Callaghan et al. (1988); King et al. (1994, 1997); Assaf et al. (2000);

Cohen and Assaf (2002)]. Then, QSI was done with a full 3D Fourier inversion with

high radial and high angular measurements of the diffusion PDF. At that point, the

technique was named DSI [Wedeen et al. (2000)]. In the context of diffusion MRI,

full human brain DSI acquisitions have been developed and used with some success

(see [Tuch (2002); Lin et al. (2003)]).

However, DSI is restricted by severe technical limitations. First, in order to re-

solve features in the PDF of the order of some scale 1/a, it requires a box of side length

> a in q-space. In practice, this requires many measurements and very large b-values

compared to those used on conventional scanners. As we want δ small to satisfy the

narrow pulse approximation, the gradients G must be very high which creates eddy

current distortions, and even can induce harmful electric fields in the subject. This
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Figure 4.11: Sketch of diffusion MRI acquisition and reconstruction methods.

results not only in an engineering limitation as to the maximal b-values attainable,

but also in a SNR problem. The latter arises from the fact that the measured quan-

tity is signal attenuation. This results in a major practical problem because of the

number of samples required to tightly fill in a large 3D Cartesian grid. This prob-

lem is mainly one of imaging time, which increases like N3 as the size of the grid is
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162 points 252 points

Figure 4.12: Discrete samplings of the sphere for different numbers of gradient direc-

tions corresponding to order 3rd and order 4th tessellation of the sphere respectively.

increased, and makes it less practicable to obtain very high resolution images using

the q-space method.

As a result of the DSI limitations, other techniques have been developed

to attempt to extract the desired diffusion PDF and diffusion ODF information

in a more efficient way. One such clinically feasible approach is single shell

(HARDI) [Tuch et al. (1999, 2002); Tuch (2002)].

4.3.2 Single Shell HARD Imaging

The idea of single-shell HARDI is to sample a single sphere with N discrete gradient

directions as illustrated in Figure 4.12. Then, the signal attenuation is measured

along each of theN directions. In practice, one can sample only the hemisphere as the

diffusion PDF is assumed to be symmetric. Given these discrete measurements over

the surface of the sphere, several methods have been proposed to extract estimates of

the ADC, the diffusion ODF and the diffusion PDF. The values of b required in single

shell HARDI are relatively small (b = 4000 s/mm2 used in [Tuch (2002)]) compared

to the maximal values of b required for the use the DSI technique (b = 20000 s/mm2

used in [Wedeen et al. (2000)] and b = 60000 s/mm2 used in [Ozarslan and Mareci

(2003a)]). Therefore, the advantage of single shell HARDI is that samples are only

taken on a single sphere in q-space and thus, the imaging time is much smaller than

that of the DSI despite high angular resolution measurements. Moreover, due to a

relatively smaller b-value, the SNR is greatly improved. We now perform a survey of

the major existing high order reconstruction methods from single shell HARDI.

Apparent Diffusion Coefficient (ADC) Modeling

The first attempts to characterize multiple fiber configurations were done by model-

ing the apparent diffusion coefficient [Frank (2002); Alexander et al. (2002)] without

assuming a Gaussian diffusion. From HARDI signal measurements, we can solve

for the ADC using Eq. 4.10. That is, from N samples of the signal on the sphere,

one computes the function log(S(b)/S0). As seen in Figure 4.13, even though the
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fiber distribution ADC ODF

Figure 4.13: The ADC and ODF in a two crossing fibers configuration The ADC and

diffusion ODF have multiple maxima, which reveals the intravoxel multiple fiber

population. The maxima of the ADC are not aligned with the underlying fiber distri-

bution whereas for the ODF, the maxima are aligned.

ADC reveals information about intravoxel of multiple directions, the maxima of the

ADC do not agree with the underlying fiber population. This was shown in phan-

toms [von dem Hagen and Henkelman (2002)] and in vivo [Tuch et al. (2002)] as well

as analytically with a cylindrical diffusion model [von dem Hagen and Henkelman

(2002)]. This is due to the nature of the ADC measurement which is the projec-

tion of spin displacements onto the diffusing gradient axis. Hence, in the presence

of two perpendicular fiber fibers, the greatest diffusion coefficient and hence signal

drop occurs, surprisingly, at an angle midway between the fibers and not in the direc-

tion of either of the fibers, illustrated in [von dem Hagen and Henkelman (2002)].

Hence, the ADC cannot be used directly for fiber tractography. Nonetheless, the

ADC can be useful to identify the presence of multiple fiber compartments without

actually computing the orientations themselves. The ADC profile can be modeled

with spherical harmonics (SH), high order tensors (HOT) and similar generalized

DTI (gDTI) approaches [Frank (2002); Alexander et al. (2002); Ozarslan and Mareci

(2003a); Zhan et al. (2003); Hirsch et al. (2003); Liu et al. (2004); Chen et al. (2004b)].

Estimation techniques as well as high order anisotropy measures that can be ex-

tracted from ADC modeling will be seen in great details in Chapter 6.

Mixture Models

Multi-Gaussian Modeling It is a simple extension of the DTI model to assume

that a mixture of Gaussians can describe the diffusion PDF, P . [Tuch et al. (2002)]

proposed to model the HARDI signal as a finite mixture of n Gaussians to obtain the

diffusion PDF as

P (r) =
n∑

i=1

(
1

(4πτ)3|Di|

)1/2

exp

(−rTD−1
i r

4τ

)

. (4.14)
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In [Tuch et al. (2002)], an iterative gradient descent is used for the reconstruction of

the PDF which is unstable and sensitive to the starting point. The multiple Gaus-

sian modeling also depends on a possibly over-simplified and incorrect fiber model

when fixing the number of fiber compartments. However, [Blyth et al. (2003)] uses

the voxel-classification of [Alexander et al. (2002)] to automatically select the num-

ber of compartments at every voxel. Typically, people manually set n = 2. However,

it is reported [Tuch (2002); Alexander (2005b)] that the solution can be quite unsta-

ble and considerably affected by the number of measurements and SNR. To make the

numerical solution more stable, one can make assumptions about the estimated DT

and enforce constraints on the multiple compartment fitting problem. In fact, one can

impose symmetry of eigenvalues, force certain magnitude and ratios of eigenvalues

or impose positive definiteness of the DT [Alexander et al. (2001); Tuch et al. (2002);

Tuch (2002); Blyth et al. (2003); Chen et al. (2004a); Maier et al. (2004); Peleda et al.

(2006)]. Finally, a very recent multi-Gaussian extension uses a diffusion basis func-

tion of Gaussians [Ramirez-Manzanares et al. (2007)] to recover multiple crossing

fibers.

Note that multi-Gaussian modeling is also called multi-tensor modeling. In this

thesis, we choose this technique to generate synthetic datasets because it has an an-

alytical PDF and an analytical ODF expression, which facilitates validation against

a ground truth. Appendix A.1 describes our synthetic multi-tensor simulations.

Ball & Stick Model A similar approach to multi-Gaussian modeling is the ball &

stick mixture model. It assumes that water molecules in an imaging voxel belong to

one of two populations, a restricted population within or near fiber structures and a

free population that is not affected by fiber structure barriers. An anisotropic Gaus-

sian distribution Pr is used for the restricted population and an isotropic Gaussian

distribution Pf is used for the free population. The diffusion PDF is then given by

P = αPf + (1 − α)Pr , where α represents the volume fraction of the free population.

The approach extends to a mixture of restricted compartments and is thus able to re-

cover multiple fiber compartments [Hosey et al. (2005); Behrens et al. (2007)]. How-

ever, note that this method has room for improvement with physically more mean-

ingful compartment models. Restricted diffusion does not behave like a stick and the

extra-axonal compartment does not behave like a ball.

Composite and hindered restricted model of diffusion (CHARMED) A

similar approach to the multi-Gaussian and ball & sticks models, with slightly more

complex compartment modeling, is the technique proposed in [Assaf et al. (2004);

Assaf and Basser (2005)]. This technique assumes a highly restricted compartment

that is non-Gaussian and a hindered compartment that is approximately Gaussian.

Hence, the solution combines a QSI non-Gaussian modeling and a DTI Gaussian

modeling. The restricted compartment uses a Neuman’s model for restricted dif-
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fusion in a cylinder [Neuman (1974)]. The approach can also be formulated as

a mixture of restricted compartments and is thus able to recover multiple fiber

compartments.

The multi-Gaussian, Ball & Stick and CHARMED models all suffer from the

same shortcomings regarding model selection and numerical implementation. One

must select the number of compartments a priori, one must use non-linear optimiza-

tion to solve for the parameters and the methods are sensitive to noise and to the

number of measurements.

Spherical Deconvolution (SD)

SD methods generalize the mixture modeling methods of the previous section by as-

suming a distribution of fiber orientations rather than a discrete number of them.

Hence, the limitation of the number of compartment selection n is overcome in the

formulation of the problem. The original SD method was proposed in [Tournier et al.

(2004)]. The idea is to view the HARDI signal as the convolution of the response func-

tion produced by a single fiber with the expected true fiber distribution. The origi-

nal SD method is linear and uses spherical harmonics and rotational harmonics to

parameterize the signal and fiber response function respectively. Spherical deconvo-

lution methods are able to recover fibers crossing but suffer from severe instabilities

for high harmonic orders [Tournier et al. (2004); Alexander (2005b)]. The original SD

method of [Tournier et al. (2004)] is improved in [Alexander (2005b)] using a non-

linear maximum entropy implementation of the spherical deconvolution. Other lin-

ear and non-linear SD methods have quickly appeared in the literature to better deal

with the SD instabilities, noise and negative diffusivities appearing in the deconvo-

lution process [Anderson (2005); Ramirez-Manzanares et al. (2007); Dell’Acqua et al.

(2007); Kaden et al. (2007); Jian and Vemuri (2007b)]. Spherical deconvolution meth-

ods will be reviewed and some implemented in great details in Chapter 9.

Just as in mixture models, a disadvantage of deconvolution methods is that a fiber

response function needs to be assumed a priori. In [Alexander (2005b)], the response

function is a standard Gaussian function whereas in [Tournier et al. (2004); Anderson

(2005)], the response function is chosen to be a symmetric diffusion tensor estimated

from real datasets.

Mixture of Wishart Distributions

In [Jian and Vemuri (2007a); Jian et al. (2007)] the case of multiple fiber bundles is

handled in a similar way to the spherical deconvolution methods. The novelty is

that each fiber bundle is represented by a Wishart distribution. Hence, the signal

is thought to be given by a Laplace transform defined on the manifold of symmetric
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Figure 4.14: Funk-Radon Transform G[S] illustrated for the HARDI signal S with 1

fiber (left) and two orthogonal fibers (right). The thin lines are the true underlying

fiber orientations and the thicker tubes are the detected maxima. These functions

are spherical functions and for visualization purposes, the radius of the respective

spheres are scaled by the corresponding value on the surface.

positive definite tensors. This leads to a reformulation of DTI in the presence of a

single orientation but is also able to account for multiple fibers crossing. The solution

is obtained with a non-linear Levenberg-Marquardt optimization technique.

q-Ball Imaging (QBI)

q-ball imaging [Tuch (2002, 2004)] has the advantage of being model-independent.

QBI showed that it was possible to reconstruct a smoothed version the diffusion ODF

directly from single shell HARDI acquisition with the Funk-Radon transform (FRT).

Intuitively, the FRT value at a given spherical point is the great circle integral of

the signal on the sphere defined by the plane through the origin perpendicular to the

point of evaluation. The FRT is qualitatively illustrated in figure 4.14.

The ODF is intuitive because it has its maximum(a) aligned with the underly-

ing population of fiber(s). Hence, it is a more interesting function for tractography

than the ADC. The original QBI has a numerical solution [Tuch (2004)] and more

recent methods [Anderson (2005); Hess et al. (2006); Descoteaux et al. (2007a)] have

introduced an analytical spherical harmonic reconstruction solution that is faster

and more robust to noise. QBI is at the heart of this thesis and will come back of-

ten. Review of the existing methods and discussion will be given in great details in

Chapter 7.

Figure 4.15 shows the q-ball diffusion ODF reconstruction in the same mid-axial

slice as Figure 4.7. Where the DT is planar and greenish in Figure 4.7, the diffusion

ODF has multiple maxima in Figure 4.15.

von Mises-Fisher (vMF) Mixture Model of the Diffusion ODF
In [McGraw et al. (2006a)], the diffusion ODF is modeled with a mixture of
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Figure 4.15: q-ball diffusion ODF reconstruction in the same mid-axial slice as Fig-

ure 4.7. The ODFs are visualized only where FA > 0.1. When the DT is planar with

greenish color in Figure 4.7, the diffusion ODF has multiple maxima here.

Von Mises-Fisher distributions. As with a spherical harmonic basis, this ODF

representation allows to represent the diffusion ODF with a few parameters instead

of having to deal with all spherical values. Although one must solve for the Von

Mises-Fisher distribution parameters with non-linear methods, the formulation

allows the definition of closed-form Riemannian distances between diffusion ODFs,

which is useful for interpolation and segmentation applications [McGraw et al.

(2006b)].

Multiple Shell HARD Imaging It is interesting to point out a very recent

work that shows that the QBI can be extended to multiple shell HARDI data.

In [Khachaturian et al. (2007)], a two-shell acquisition is used to improve angular

resolution of QBI. The method combines a low b-value and a high b-value acquisi-

tion - one at low b-value b = 700 s/mm2 with 70 gradient directions and the other

with a higher b-value b = 3200 s/mm2 and 262 directions. The reconstruction com-

bines the benefits of the high SNR of the low b-value shell and high angular contrast
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and peak separation of the high b-value shell. With hardware improvements of cur-

rent scanners, these multiple shell HARDI acquisitions might become more popular.

Multi-shell HARDI is a trade-off between a DSI acquisition and a single shell QBI

acquisition.

Persistent Angular Structure MRI (PAS-MRI)

Another model-independent method to estimate an ODF was proposed

in [Jansons and Alexander (2003)]. The method reconstructs the radially per-

sistent angular structure (PAS), p̂, of the diffusion PDF. Assuming independence of

the angular and radial structure of the diffusion PDF, the problem is formulated as

P (r) =
1

r0
2
p̂(̂r)δ(|r| − r0). (4.15)

This formulation forces probabilities to be non-zero only on a spherical shell of radius

r0, which can be a questionable assumption. Plugging Eq. 4.15 in Eq. 4.7 and using a

maximum entropy cost function, the PAS function p̂(̂r) can be reconstructed by fitting

the raw data with a non-linear iterative algorithm. Hence, the PAS is the function

on the sphere that best describes the signal measurements and that best represents

the relative mobility of spins in each direction. Although it is not obvious why the

peaks of the PAS should agree with the underlying fiber distribution, the method

is accurate [Alexander (2005b)] and produces ODFs that look sharper than the q-

ball estimation of the diffusion ODF. However, the reconstruction is extremely heavy

computationally and can take several hours/days to reconstruct a full brain dataset

of PAS functions. Recent efforts [Seunarine and Alexander (2006)] have been done to

propose a linearized solution to PAS-MRI. This is based on the fact that PAS-MRI is

a special case of spherical deconvolution methods [Alexander (2005b)]. This relation

is indicated by a dotted arrow connection between SD and PAS-MRI in Figure 4.11.

Diffusion Orientation Transform (DOT)

The diffusion orientation transform (DOT) proposed by [Ozarslan et al. (2006)] is yet

another model-independent reconstruction algorithms. The DOT is a function that

maps the ADC profile to the diffusion PDF. From this diffusion PDF, the ODF can

be obtained by integrating the radial component of the PDF (Eq. 4.13). The key idea

is to note that the Fourier transform can be done using the Rayleigh expansion of a

plane wave in spherical coordinates. This was also used in [Ozarslan et al. (2004a)]

to fit high-order tensors to the HARDI measurements. The DOT has the advantage

of being based on the exact PDF of Eq. 4.7 whereas the QBI solution is a smoothed

version of the diffusion ODF using the Funk-Radon transform approximation. How-

ever, [Ozarslan et al. (2006)] use a {mono,bi,tri}-exponential decay assumption of the

signal whereas in QBI, the method does not assume anything about the signal at-

tenuation. Finally, similar to QBI, it is important to point out that the DOT has a
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Reconstruction Model Solution is

methods dependent independent linear non-linear

DTI
√ √ √

DSI
√ √ √

QBI
√ √

DOT
√ √

PAS
√ √ √

SD
√ √ √

Wisharts Mixture
√ √

vMF Mixture
√ √

CHARMED
√ √

Ball & Sticks
√ √

Multi-Gaussian
√ √

Table 4.2: Diffusion MRI acquisition techniques.

possible multiple shell HARDI extension with the bi and tri exponential fit sugges-

tion [Ozarslan et al. (2006)]. However, as of today, the bi- and tri-exponential decay

modeling has only been done on synthetic numerical phantoms.

4.4 CONCLUSION

We have presented a brief history of diffusion MRI: from the physics of

molecular diffusion, the PGSE sequence, to diffusion MRI (Figure 4.2). We have also

presented the state-of-the-art multiple fiber reconstruction algorithms. The methods

were grouped into two classes: model independent and model dependent (Figure 4.11

and Table 4.2) reconstruction methods. Overall, we saw the evolution of diffusion

MRI from simple scalar DWI, to tensor DWI or DTI and beyond to HARDI tech-

niques able to recover the 3D diffusion PDF and diffusion ODF of water molecules in

biological tissues. In this thesis, we focus on techniques beyond the diffusion tensor

imaging because they are able to recover complex multiple fiber distributions. We will

be most interested in ADC modeling, QBI and spherical deconvolution from HARDI

measurements in the next chapters. One has to keep in mind that at the start of

this thesis, DTI was very well studied by C. Lenglet [Lenglet (2006)] in the Odyssée

Project Team and HARDI reconstruction algorithms were at their beginning. It was

thus important to first understand the HARDI data and the crossing fiber problem,

then, find the right mathematical tools to process HARDI data and finally propose

new methods to overcome the limitations of DTI. In this thesis, we use spherical har-

monics as our mathematical tool and develop linear and fast reconstruction methods

for ADC modeling, for analytical QBI and for spherical deconvolution reconstruction

to obtain information on the underlying complex fiber distribution.
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CHAPTER 5

MATHEMATICS ON THE SPHERE:
THE SPHERICAL HARMONICS

“The differential equations of the propagation of heat express the most general condi-

tions, and reduce the physical questions to problems of pure analysis, and this is the

proper object of theory.”

–Joseph Fourier
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OVERVIEW

What is the appropriate mathematical tool to process HARDI data? This chapter cov-

ers the mathematical concepts needed to understand the thesis. In particular, what is

the appropriate mathematical tool to represent discrete data that lives on the sphere?

The SH basis is chosen to be the appropriate tool to represent discrete spherical func-

tions in this thesis. The spherical harmonics are first defined as the solution to the

Laplace’s equation in spherical coordinates. Then, important properties of the SH

basis are described and we see how the SH basis can be used to estimate spherical

functions. Finally, the Funk-Hecke theorem is stated. It is an important theorem to

solve integrals on the sphere.

Keywords: Laplace’s equation, spherical harmonics, Funk-Hecke theorem

Organization of this chapter:
The chapter is organized as follows. We first solve the Laplace’s equation to see

how the spherical harmonics are defined in Section 5.1 and then review some power-

ful properties of the spherical harmonic basis in Section 5.2. We then describe how

any spherical function can be represented with a series of spherical harmonics in Sec-

tion 5.3. Next, we define and give the intuition behind the Funk-Hecke theorem in

Section 5.5. Finally, Section 5.6 concludes the chapter by enumerating the important

mathematical properties that will be used in this thesis.

5.1 SOLVING THE LAPLACE’S EQUATION

According to [Evans (1998)] the “Laplace’s equation is undoubtedly among

the most important partial differential equation (PDE)”. In comes up in a wide variety

of physical problems such as Fick’s law of diffusion, Fourier’s law of heat conduction

and Ohm’s law of electrical conduction. Here, we consider the Laplace’s equation in

3-dimensions (3D). The problem is to find twice-differentiable complex-valued func-

tions, ψ, of variables x, y, z such that

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= 0. (5.1)

This is the steady state form of the diffusion equation in 3D and is often written as

∆2ψ = 0, (5.2)

where ∆ is the Laplacian operator.

DEFINITION .1. A C3 function (3D complex function) satisfying Eq. 5.2 is called a

harmonic function.

In this thesis, we are dealing with spherical functions arising from discrete sam-

ples on the sphere, which come from HARDI acquisitions. Hence, it is natural to
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seek for spherical harmonics, i.e., complex functions satisfying the Laplace’s equa-

tion in spherical coordinates (r, θ, φ). For the rest of the thesis, we suppose that (θ, φ)

obey physics convention, where θ ∈ [0, π], φ ∈ [0, 2π). Laplace’s equation in spherical

coordinates is given by

1

r2
∂

∂r

(

r2
∂ψ

∂r

)

+
1

r2 sin2 θ

∂2ψ

∂φ2
+

1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

= 0. (5.3)

To solve it, we use separation of variables. We suppose the solution will have the form

ψ(r, θ, φ) = R(r)Φ(φ)Θ(θ). (5.4)

Inserting this in Eq. 5.3 and multiplying by r2 sin2 θ/(RΦΘ), we have

sin2 θ

R

d

dr

(

r2
dR

dr

)

+
1

Φ

d2Φ

dφ2
+

sin θ

Θ

d

dθ

(

sin θ
dΘ

dθ

)

= 0. (5.5)

Separating the φ-dependent part first and using separation constant −m2, we

have
1

Φ

d2Φ

dφ2
= −m2. (5.6)

Although not necessary, the separation constant is chosen in anticipation of a peri-

odical dependency on the azimuthal coordinate φ. It will make the solution easier

thereafter. Now, it is easy to see that the solution to Eq. 5.6 is

Φ(φ) = Ame
imφ +Bme

−imφ, (5.7)

where m is restricted to be an integer by the necessary periodical condition that Φ(φ+

2π) = Φ(φ). Now, substituting Eq. 5.7 in Eq. 5.5 and dividing by sin2 θ, we obtain

1

R

d

dr

(

r2
dR

dr

)

− m2

sin2 θ
+

1

Θ sin θ

d

dθ

(

sin θ
dΘ

dθ

)

= 0. (5.8)

In our problem, because of the nature of the single shell HARDI acquisitions, we

can suppose that all spherical values live on a sphere with constant radius. Hence, we

assume that the radial part is equal to the constant ℓ(ℓ+ 1). The reason for choosing

separation constant as ℓ(ℓ + 1) is because we are anticipating the appearance of the

associated Legendre differential equation [(Arfken and Weber, 1995, Ch.12)]. Hence,

we have

ℓ(ℓ+ 1) − m2

sin2 θ
+

1

Θ sin θ

d

dθ

(

sin θ
dΘ

dθ

)

= 0. (5.9)

Expanding the θ-dependent part and multiplying by Θ, we obtain

ℓ(ℓ+ 1) − m2

sin2 θ
+

cos θ

sin θ

1

Θ

dΘ

dθ
+

1

Θ

d2Θ

dθ2
= 0 (5.10)

=⇒ d2Θ

dθ2
+

cos θ

sin θ

dΘ

dθ
+

[

ℓ(ℓ+ 1) − m2

sin2 θ

]

Θ = 0. (5.11)
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This last equation is the standard associated Legendre differential equation for x =

cos θ, ℓ ≥ 0 and |m| ≤ ℓ with solution

Pm
ℓ (cos θ). (5.12)

Therefore, with the φ-dependent (Eq. 5.7) solution and the θ-dependent (Eq. 5.12)

solution, we can obtain the general complex solution for the constant radius Laplace’s

equation in spherical coordinates as

ψ(θ, φ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

cmℓ P
m
ℓ (cos θ)eimφ =

∞∑

ℓ=0

ℓ∑

m=−ℓ

cmℓ Y
m
ℓ (θ, φ), (5.13)

where Y m
ℓ (θ, φ) = Pm

ℓ (cos θ)eimφ are defined as the spherical harmonics (SH).

Hence, spherical harmonics Y m
ℓ satisfy the angular part of the Laplace’s equation

in spherical coordinates. This PDE is also called the spherical harmonic differential

equation (SHDE) and is given by

1

sin θ

∂

∂θ
(sin θ

∂Y m
ℓ

∂θ
) +

1

sin2 θ

∂2Y m
ℓ

∂φ2
+ ℓ(ℓ+ 1)Y m

ℓ = 0. (5.14)

The first two terms of this equation correspond to the Laplacian in spherical coordi-

nates, also called the 3D Laplace-Beltrami operator ∆b.

DEFINITION .2. The 3D Laplace-Beltrami operator ∆b is defined as

∆b =
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2
. (5.15)

Thus, according to Eq. 5.14, the spherical harmonics satisfy the relation

∆bY
m
ℓ = −ℓ(ℓ+ 1)Y m

ℓ . (5.16)

This relation will be useful in the rest of the thesis for regularization purposes.

5.2 SPHERICAL HARMONICS

DEFINITION .3. Spherical harmonics Y m
ℓ of order ℓ and degree m are the angular

portion of Laplace’s equation in spherical coordinates. They are defined as

Y m
ℓ (θ, φ) =

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm

ℓ (cos θ)eimφ (5.17)

The normalization factor in Eq. 5.17 is chosen so that the spherical harmonics

form an orthonormal set of functions with respect to the inner product

< Y m
ℓ (θ, φ), Y m′

ℓ′ (θ, φ) >=

∫

Ω
Y m

ℓ (θ, φ)Y m′

ℓ′ (θ, φ)dΩ (5.18)
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ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

m = −3 m = −2 m = −1 m = 0 m = 1 m = 2 m = 3

Figure 5.1: Real part squared Re[Y m
ℓ (θ, φ)]2 of the spherical harmonics basis up to

order 3. The color map is going from red to blue for maximal to minimal values on

the sphere respectively. The 0-th order harmonic is blue because it is constant on the

sphere.

where integration over Ω denotes integration over the unit sphere (dΩ = sin θdθdφ),

and Y m′

ℓ′ denotes the complex conjugate of Y m′

ℓ′ . That is,

< Y m
ℓ (θ, φ), Y m′

ℓ′ (θ, φ) >= δmm′δℓℓ′ , (5.19)

where δij is the Kronecker delta, i.e.

δij =

{

1 i = j

0 i 6= j

Finally, observe that with respect to the transformation T : (θ, φ) → (π − θ, φ+ π),

the spherical harmonics have the following very simple behavior,

Y m
ℓ (T (θ, φ)) =

{

Y m
ℓ (θ, φ), if ℓ even

−Y m
ℓ (θ, φ), if ℓ odd

(5.20)

In other words, the even order spherical harmonics are antipodally symmetric, while

the odd order spherical harmonics are antipodally anti-symmetric. In order to have

an idea of what spherical harmonics look like, we show in Figure 5.1 the real part

squared, Re[Y m
ℓ (θ, φ)]2, of the spherical harmonics Y m

ℓ up to order 3.

5.3 THE MODIFIED SPHERICAL HARMONICS BASIS

The spherical harmonics Y m
ℓ (Eq. 5.17) are a basis for complex functions on

the unit sphere. Hence, any complex function defined on the sphere can be expressed

as a series of spherical harmonics. This is very powerful and analogous to the Fourier
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transform very often used in image processing. In that case, any image can be decom-

posed in a Fourier series, namely in a sum of sinusoids and cosines. In this thesis, we

have physical diffusion MRI measurements that represent the average attenuation of

the diffusion of water molecules. Hence, the HARDI signal is assumed to be real and

symmetric. Therefore, we want to define a modified spherical harmonic basis that is

also real and symmetric.

In order to impose the symmetry constraint on the expansion, we consider only

spherical harmonics of even degree. As mentioned above, spherical harmonics of odd

order are antipodally anti-symmetric, while spherical harmonics of even order are

antipodally symmetric (Eq. 5.20). In order to impose the real-valued constraint, we

appropriately choose real and imaginary parts of the spherical harmonics depending

on the degree m.

For ℓ = 0, 2, 4, ... , L and m = −ℓ, ... , 0, ... , ℓ, we define a single index j in terms of

ℓ and m such that j(ℓ,m) = (ℓ2 + ℓ+ 2)/2 +m. The modified basis then is

Yj =







√
2 · Re(Y

|m|
ℓ ), if m < 0

Y m
ℓ , if m = 0√
2 · (−1)m+1Im(Y m

ℓ ), if m > 0.

(5.21)

where Re(Y m
ℓ ) and Im(Y m

ℓ ) represent the real and imaginary parts of Y m
ℓ respectively.

The basis is designed to be symmetric, real and orthonormal because of the normal-

ization factor
√

2. Examples and proofs are given in [Descoteaux et al. (2005a)]. More-

over, note that there are exactly

R = (1/2)(L + 1)(L+ 2) (5.22)

terms in the spherical harmonic series of order L. Figure 5.2 shows the spherical

harmonics in the modified basis of order 4, L = 4. For the rest of this thesis, Y =

{Y1, . . . , YR} will refer to the modified spherical harmonic basis.

5.4 DISCRETE SPHERICAL FUNCTION ESTIMATION WITH
THE SPHERICAL HARMONICS

We want to use spherical harmonics to describe the HARDI signal S consisting of

N discrete diffusion-weighted measurements on the sphere. As seen in Figures 1.1

and 1.2, this SH estimation step is the backbone of the entire thesis.

Since the spherical harmonics form an orthonormal basis for all functions on the

unit sphere, any spherical function can be expressed by an infinite series of spherical

harmonics as expressed in Eq. 5.13. High order spherical harmonics correspond to

high frequency modes of the unit sphere, and thus a truncated spherical harmonic

series can be effectively used to fit relatively smooth functions. Hence, the problem

is to find the best coefficients of the modified SH basis (Eq. 5.21) that describe the

HARDI signal S at each of the N diffusion-weighted gradient encoding directions i.
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Y1

Order-0 term, ℓ(j) = 0, j = 1

Y2 Y3 Y4 Y5 Y6

Order-2 terms, ℓ(j) = 2, j ∈ {2, ..., 6}

Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

Order-4 terms, ℓ(j) = 4, j ∈ {7, ..., 15}

Figure 5.2: Modified spherical harmonics up to order L = 4. ℓ(j) represents the

harmonic order for the jth coefficient.

Thus, the truncated smooth estimation of the HARDI signal S can be formulated

as

S(θi, φi) =

R∑

j=1

cjYj(θi, φi) (5.23)

where R is the number of terms (Eq. 5.22) in the modified SH basis Y of order L.

Letting X be the N x 1 vector representing the input HARDI signal, Si, for every

encoding gradient direction, C the R x 1 vector of SH coefficients cj and B is the N x

R matrix constructed with the discrete modified SH basis

B =







Y1(θ1, φ1) Y2(θ1, φ1) · · · YR(θ1, φ1)
...

...
. . .

...

Y1(θN , φN ) Y2(θN , φN ) · · · YR(θN , φN )






, (5.24)

we can write the set of equations as an over-determined linear system

X = BC. (5.25)

Hence, we need to solve for the SH coefficients cj , where

cj =

∫

Ω
S(θ, φ)Yj(θ, φ)dΩ. (5.26)

Due to orthonormality of the SH basis, the coefficients of the SH series cj can be

calculated by forming the inner product of S with the spherical harmonics,

cj = 〈S(θ, φ), Yj(θ, φ)〉 =

∫ 2π

0

∫ π

0
S(θ, φ)Yj(θ, φ) sin θdθdφ (5.27)

67



This idea was first used to fit the ADC obtained from HARDI data by [Frank (2002)]

where S is the discrete sampling of the diffusivities. [Frank (2002)] performs the

direct discretization of the integrals. This is a computationally inefficient method to

obtain the coefficients; recent work by [Alexander et al. (2002)] uses a least-squares

method to solve for the unknowns. The least-squares method was first proposed in the

vision community for the parameterization of closed surfaces for 3D shape description

by [Brechbuhler et al. (1995)].

Here, we also use the least-squares solution for the coefficients C. The least-

squares solution looks for the spherical harmonic series that passes nearest to the

discrete samplings on the sphere. Hence,

X = BC + E, (5.28)

where the error vector E should be small. This system of overdetermined equations

is solved with least-square sums over the columns of E by minimizing ||X − BC||2
yielding

C = (BTB)−1BTX . (5.29)

The vector C of spherical harmonic coefficients gives the best-fitting truncated series

to the signal. The estimated signal is then simply recovered by evaluating

S(θ, φ) =

R∑

j=1

cjYj(θ, φ), (5.30)

for any (θ, φ) outside the discrete measurements X or in the discrete case, by sim-

ple matrix multiplication X = BC. Therefore, one can interpolate over any (θ, φ)

directions. Though this works fairly well so long as noise is small, an important

contribution of this thesis will be to propose a more general fitting procedure that

takes advantage of the properties of spherical harmonics and the Laplace-Beltrami

operator to quantify the smoothness of spherical functions.

5.5 THE FUNK-HECKE THEOREM

The Funk-Hecke theorem was first published by Funk in 1916 and by Hecke

in 1918 [(Andrews et al., 1999, chap.9)]. Here, we give only its 3D version. The Funk-

Hecke formula is a theorem that relates the inner product of any spherical harmonic

with the projection on the sphere of any continuous function f(t) defined on the inter-

val [−1, 1]. We write the dot product between two vectors u,w ∈ ℜ3 as uTw. The key

observation is that any continuous function f on the interval [−1, 1] extends to a con-

tinuous function of two variables g(u,w) on the sphere defined by g(u,w) = f(uTw).

With this formulation,

THEOREM .1. Funk-Hecke Theorem: Let f(t) be continuous on [−1, 1] and Yℓ any

spherical harmonic of order ℓ in C3. Then, given a unit vector u
∫

|w|=1
f(uTw)Yℓ(w)dw = λ(ℓ)Hℓ(u), (5.31)
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where

λ(ℓ) =
2π

Pℓ(1)

∫ 1

−1
Pℓ(t)λ(ℓ) = 2π

∫ 1

−1
Pℓ(t)f(t)dt

with Pℓ the Legendre polynomial of degree ℓ.

The Funk-Hecke theorem will be very useful in this thesis to solve integrals over

the sphere.

5.6 PROPERTIES OF SPHERICAL HARMONICS USED IN
THIS THESIS

We now summarize the important mathematical properties of spherical harmonics

that will come up often in the later chapters.

1. The modified spherical harmonic basis of Eq. 5.21 is real and symmetric. This

is useful to describe the HARDI signal in a physically meaningful way.

2. The spherical harmonic basis and the modified spherical harmonic basis

(Eq. 5.19) are orthonormal with respect to the inner product of Eq. 5.18. This

will be useful to compare spherical functions and to introduce an efficient metric

between spherical functions.

3. The spherical harmonics differential equation of Eq. 5.16 defines the Laplace-
Beltrami operator. This Laplace-Beltrami operator will be useful to regu-

larized and smooth spherical functions by simple operations of the spherical

harmonic coefficients.

4. The Funk-Hecke theorem will be useful to solve integrals between spheri-

cal functions and spherical harmonics. This will be particularly important to

develop the analytical QBI solution and solve spherical deconvolution integrals.

Note that this list is not an exhaustive list of existing spherical harmonics prop-

erties. There are more interesting properties that can be found in standard mathe-

matical handbooks [Ferrers (1969); Arfken and Weber (1995)]. We listed the prop-

erties that will appear many times in this thesis. Note that other groups such

as [Frank (2002), Alexander et al. (2002), Zhan et al. (2003), Tournier et al. (2004),

Ozarslan et al. (2005a), Anderson (2005), Hess et al. (2006)] have also converged to

the spherical harmonics as HARDI processing tools. This is reassuring and the spher-

ical harmonics seem to be a natural way to decompose signals that live on the sphere,

just as the Fourier transform. We will now describe how the spherical harmonic basis

can be used to model the ADC, to find an analytical solution to QBI and to perform

spherical deconvolution operations in a simple, efficient and robust way.
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CHAPTER 6

APPARENT DIFFUSION

COEFFICIENT ESTIMATION AND

APPLICATIONS

It would be vain to search for a rule if there were no regularity.

–Ludwig von Mises
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OVERVIEW

Given a set of discrete measurements on the sphere, how do we estimate this signal

robustly? This chapter covers the HARDI estimation using spherical harmonics and

regularization. As a consequence, the apparent diffusion coefficient (ADC) can be

modeled and reconstructed robustly. First, we develop a closed-form regularization

algorithm to estimate the HARDI signal and the ADC. Second, we develop the link

between the SH basis and the high order diffusion tensor (HODT) so that it is possible

to compare HARDI anisotropy measures. Finally, we see how the HARDI anisotropy

measures can be used to highlight voxels containing multiple fiber distributions.

Keywords apparent diffusion coefficient (ADC), spherical harmonics (SH), high or-

der diffusion tensor (HODT), Laplace-Beltrami operator, regularization, anisotropy

measures, HARDI

Contributions of this chapter:

• The new Laplace-Beltrami regularization algorithm to estimate the HARDI sig-

nal and the ADC more robustly.

• The linear transformation between coefficients of the modified SH basis and the

independent elements of the HODT.

• The comparison between the state-of-the-art high order anisotropy measures

computed from the SH basis and HODT representations.

• ADC estimation on synthetic data, on a biological phantom and on a human

brain dataset and ability to discriminate voxels with isotropic diffusion, single

fiber and multiple fiber distributions.

Organization of this chapter:
The chapter is organized as follows. We motivate the ADC modeling problem in

Section 6.1. In Section 6.2, we review the existing techniques to estimate the ADC

profile from noisy HARDI data and propose a new regularization method that recov-

ers a smoother ADC that is closer to the ADC without noise. In Section 6.3, we review

the different high order anisotropy measures and in Section 6.4, we evaluate and val-

idate our algorithm against state-of-the-art algorithms using SH and the HODT. We

conclude with a discussion of the results and our contributions in Section 6.5.

6.1 INTRODUCTION

In the presence of multiple fibers, the ADC profile is oblate or planar and

there is no unique principal direction, where a multiple maxima ADC profile is ex-

pected, as illustrated in Figure 6.1. Hence, clinicians and neurosurgeons are quite
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fiber distribution true ADC profile ADC profile from DTI

Figure 6.1: ADC profile estimate from DTI fails to recover multiple fiber orientations.

The maxima of the ADC profile do not agree with thin green lines corresponding to

the true synthetic fiber orientations (small lines).

skeptical of tracking and segmentation methods developed on DTI data due to the

well-known limitations of the DT model, as seen in Chapter 4.

In current clinical applications, people instead choose to use simple anisotropy

maps computed from the ADC profile [Doug et al. (2004)] to infer white matter

connectivity information. These measures are fast and easy to interpret with

regions of anisotropy that clearly stand out. Many anisotropy measures exist

and the most commonly used are FA (fractional anisotropy) and RA (relative

anisotropy) [Basser and Pierpaoli (1996)] but again, these measures are limited in

non-Gaussian diffusion areas when computed from DTI data.

In this chapter, we study the estimation of the ADC profile from HARDI data and

its ability to describe complex tissue architecture. We want to design the appropriate

tools to describe noisy HARDI data and explore scalar anisotropy measures computed

from high order formulation. In particular, we address the problem of estimation

of the ADC profile with a HODT. One proposed possibility by [Ozarslan and Mareci

(2003a)] is to use direct linear regression by least-squares fitting. This can be effective

but its robustness to noise is questionable as there does not appear to be any straight-

forward way to impose a viable smoothness maximizing criterion. We approach the

problem with a SH series approximation as done in [Frank (2002); Alexander et al.

(2002); Chen et al. (2004b); Zhan et al. (2003, 2004, 2006); Descoteaux et al. (2006a)].

An important contribution of our work is to propose a generalization of the stan-

dard least-squares evaluation method to include a regularization criterion. From

this result, we compute the linear transformation taking the coefficients of the

SH series to the independent elements of the HODT using the relation presented

in [Ozarslan and Mareci (2003a)]. Therefore, any technique developed for SH formu-

lation can be quickly and easily applied to the HODT formulation and vice versa. This

bridge is very useful for comparison purposes between state-of-the-art anisotropy

measures for high order models computed from SH and tensor coefficients. Pub-

lished results are reproduced accurately and it is also possible to recover voxels with

isotropic, single fiber anisotropic and multiple fiber anisotropic diffusion from syn-
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thetic data, from a biological phantom and from a real human brain dataset.

6.2 ADC PROFILE ESTIMATION FROM HARDI

We want to estimate the HARDI signal and ADC profile. At each voxel, we

have a discrete spherical function with no a priori assumption about the nature of

the diffusion process within the voxel. The problem is to recover a smooth ADC close

to the true ADC from the measured diffusion MRI noisy signal. Recall that the ADC

was defined in Eq. 4.10 as

ADC := D(g) = −1

b
ln

(
S(b,g)

S0

)

, (6.1)

where the b-value is the diffusion-weighting factor, S0 is the T2-weighted signal

acquired without any diffusion gradients and D(g) is the ADC along unit gradi-

ent direction g == (sin θ cos φ, sin θ sinφ, cos θ)T, where (θ, φ) obey physics convention

(θ ∈ [0, π], φ ∈ [0, 2π]). We explore two ways to estimate this ADC profile. First, an

estimation with the SH basis as described in Section 5.4 and second, with a HODT

estimation.

6.2.1 Fitting the ADC with the Spherical Harmonics

We formulate the estimation of the ADC profile at each discrete sampling i as we did

for the signal S in Section 5.4 of the last chapter, i.e.

D(g(θi, φi)) =

R∑

j=1

cjYj(θi, φi), (6.2)

We let X represent the N x 1 ADC vector obtained from the raw HARDI signal S in

Eq. 6.1. We can thus write the equations given above as an overdetermined linear

system

X = BC + E, (6.3)

where B is the SH basis of Eq. 5.24, C is the R x 1 vector of SH coefficients and E is

the error vector as before. The least-squares solution to the above system Eq. 6.3 is

given by

C = (BTB)−1BTX, (6.4)

as seen before in Section 5.4. Note that the condition number of the pseudo-inverse

matrix BTB is always small for estimation order ℓ and sampling scheme N used in

our simulations and experiments. Note also that this is an unweighted linear least-

squares fit and that it can be simply extended to a weighted fit, as in [Basser et al.

(1994a)], to account for the expected variation in each diffusion coefficient and dis-

tortions introduced by the logarithmic transformation of Eq. 6.1. The estimated ADC

profile is thus recovered by evaluating Eq. 6.2 for any (θ, φ) outside the discrete mea-

surements or in the discrete case, by simple matrix multiplication X = BC.
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6.2.2 Fitting the ADC with a High Order Diffusion Tensor (HODT)

In [Ozarslan and Mareci (2003a)], instead of fitting the ADC profile with a rank-2

tensor, the diffusivities are expressed in terms of a HODT. Replacing the classical

rank-2 tensor D by a HODT into the standard Stejskal-Tanner leads to a generalized

Stejskal-Tanner equation [Ozarslan and Mareci (2003a)] given by

D(g) =

3∑

i1=1

3∑

i2=1

...

3∑

iℓ=1

Ti1i2...iℓgi1gi2 ...giℓ (6.5)

where the Ti1i2...iℓ ’s are the elements of HODT and the gi’s are the components of the

unit vector specifying the direction of the applied diffusion gradient. This model as-

sumes no a priori knowledge of the ADC profile. However, one must assume that a

rank-ℓ tensor is sufficient to determine the ADC profile, X. Given this assumption,

it is possible to simplify the problem by noting that the DT must be totally symmet-

ric, which means that the HODT can be fully expressed in terms of its independent

elements, whose vector representation is denoted by T1. Hence, one can rewrite the

expression for each ADC D(g(θi, φi)) along direction g(θi, φi) in a more compact form,

D(g(θi, φi)) =
R∑

k=1

µkTk

ℓ∏

p=1

gk(p)(θi, φi), (6.6)

where R is the number of independent elements in the HODT (same as the number

of modified SH coefficients), Tk is the kth independent element of the HODT vector

representation T, µk is the corresponding multiplicity of the element, and gk(p) gives

the component of the gradient direction corresponding to the pth index of the kth in-

dependent element of the tensor. The complete derivation is in [Ozarslan and Mareci

(2003a)] and is sketched in Appendix 6.6. There is also a rank-2 example showing the

link between Eq. 6.5 and Eq. 6.6.

[Ozarslan and Mareci (2003a); Ozarslan et al. (2005b)] fit the ADC profile with

a HODT (Eq. 6.6) using linear regression with processing routines written in IDL

(Research Systems, Inc., Boulder, CO). Here, we have implemented a standard linear

regression with least-squares fitting as described in the previous section. Letting

X represent the ADC profile, T the vector representation of the HODT independent

elements and R the N x R matrix

R =













µ1

ℓ∏

p=1

g1(p)(θ1, φ1) · · · µN

ℓ∏

p=1

gN(p)(θ1, φ1)

...
. . .

...

µ1

ℓ∏

p=1

g1(p)(θns , φns) · · · µN

ℓ∏

p=1

gN(p)(θns , φns)













, (6.7)

1For order 2, T = [Txx Txy Txz Tyy Tyz Tzz], see Figures 6.2 and 6.3.
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we define an error term E′ so that X = RT + E′. We seek to minimize the quantity

E′TE′ using the same technique described previously. We then obtain the expansion

for the HODT

T = (RTR)−1RTX. (6.8)

The estimated ADC profile is thus recovered by evaluating Eq. 6.6 for any (θ, φ) out-

side the discrete measurements or in the discrete case, by simple matrix multiplica-

tion

X = RT. (6.9)

The method does not have a smoothing or regularization parameter and will therefore

be more sensitive to noise.

6.2.3 A Regularization Algorithm for HARDI Signal/ADC Estimation

As seen in Chapter 4, diffusion-weighted images are quite noisy and this is even

more the case at high b-values. It is thus important to seek for regularity in the

estimation. Hence, instead of performing a simple least-squares minimization as in

Eq. 5.29, Eq. 6.4 and Eq. 6.8, we add a regularization to the fitting procedure. Note

that this can be done in the estimation step of any spherical function. In this chapter,

we show the regularization on the ADC estimation but is can also be done directly on

the raw HARDI signal S.

We define a measure of the deviation from smoothness E of a function f defined

on the unit sphere as

E(f) =

∫

Ω
(∆bf)2dΩ, (6.10)

where Ω denotes integration over the unit sphere and ∆b is the Laplace-Beltrami

operator. The Laplace-Beltrami operator is a natural measure of smoothness for

functions defined on the unit sphere and we know that the SH satisfy the relation

∆bY
m
ℓ = −ℓ(ℓ + 1)Y m

ℓ (Eq. 5.16), as described in the SH properties of the previous

chapter. Using the orthonormality property of the modified basis (Eq. 5.19), the above

functional can be rewritten straightforwardly in terms of the coefficient vector C as

follows:

E(f) =

∫

Ω
∆b





R∑

p=1

cpYp



∆b





R∑

q=1

cqYq



 dΩ =
R∑

j=1

c2j ℓ(j)
2(ℓ(j) + 1)2 = CTLC,

(6.11)

where L is simply the R x R matrix with entries ℓ(j)2(ℓ(j) + 1)2 along the diagonal.2

Therefore, the quantity we wish to minimize can be expressed in matrix form as

M(C) = (X − BC)T(X −BC) + λCTLC, (6.12)

2ℓ(j) is the order associated with the jth element of the SH basis, i.e. for j = 1, 2, 3, 4, 5, 6, 7, ... ℓ(j) =

0, 2, 2, 2, 2, 2, 4, ...
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where λ is a variable weighting factor on the regularization term. The coefficient

vector minimizing this expression can then be determined just as in the standard

unweighted linear least-squares fit (λ = 0), by setting each of the ∂M/∂cj = 0, from

which we obtain the generalized expression for the desired SH series coefficient vector

C = (BTB + λL)−1BTX . (6.13)

The estimated ADC profile is thus recovered by evaluating Eq. 6.2 for any (θ, φ) out-

side the discrete measurements or in the discrete case, matrix multiplication X = BC

as before. Note that a variation on the above derivation will hold in other geometries

if a proper basis of functions is chosen. Intuitively, this approach penalizes an approx-

imation function for having higher order terms in its modified SH series. Therefore,

higher order terms will only be included in the fit if they significantly improve the

overall accuracy of the approximation. This eliminates most of the high order terms

due to noise while leaving those that are necessary to describe the underlying func-

tion.

It is important to point out that there are other possible choice of error function E

(Eq. 6.10) to impose the regularization. A recent work by [Sakaie and Lowe (2007)]

uses the gradient square of the spherical function, i.e. (∇f)2, to regularize the spher-

ical deconvolution reconstruction. In that case, the regularization is also analytical

and can be expressed with a matrix with diagonal elements given by ℓ(j)(ℓ(j) + 1).

Hence, our regularization strength (ℓ(j)2(ℓ(j) + 1)2) is the square of the one proposed

by [Sakaie and Lowe (2007)]. There is also another method using Tikhonov regu-

larization [Hess et al. (2006)] and some post-processing of the spherical functions to

reduce errors involved in high frequency harmonics such as heuristic low-pass fil-

tering methods in [Tournier et al. (2004); Tuch (2004)]. The important point here is

that regularization is needed in HARDI estimation to reduce effects of noise. Which

regularization method is best is part of ongoing research in the community. More de-

tails on this issue will be given in the next chapters on q-ball imaging and spherical

deconvolution methods.

6.2.4 From SH Coefficients to HODT Coefficients

We now explicitly derive the correspondence between coefficients of the modified SH

series and the independent elements of the HODT. [Ozarslan and Mareci (2003a)]

showed the analytical relationship between the SH coefficients and the independent

elements of the HODT. Conceptually, they showed that evaluating the ADC in terms

of a rank-ℓHODT is equivalent to fitting the ADC with a SH series truncated at order

ℓ. In fact, in Appendix 6.7 we prove that both even order SH up to order ℓ and the

rank-ℓ HODT polynomials restricted to the sphere are bases for the same function

space. Therefore, it is possible to define a general linear transformation M between

both spaces. We express the coefficients of the modified SH series cj in terms of the
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ℓ = 2, using standard spherical harmonics basis Y m
ℓ :

SH basisY =

















1
2
√

π

1
4

√
15
2π sin2 θe−2iφ

1
2

√
15
2π sin θ cos θe−iφ

1
4

√
5
π (3 cos2 θ − 1)

−1
2

√
15
2π sin θ cos θeiφ

1
4

√
15
2π sin2 θe2iφ

















T =














Txx

Txy

Txz

Tyy

Tyz

Tzz














M =

















√
4π
9 0 0

√
4π
9 0

√
4π
9√

2π
15

√
8π
15 i 0 −

√
2π
15 0 0

0 0
√

8π
15 0

√
8π
15 i 0

−
√

4π
45 0 0 −

√
4π
45 0

√
16π
45

0 0 −
√

8π
15 0

√
8π
15 i 0

√
2π
15 −

√
8π
15 i 0 −

√
2π
15 0 0

















MT = C =

















√
4π
9 (Txx + Tyy + Tzz)

√
2π
15 (Txx − Tyy + 2iTxy)
√

8π
15 (Txz + iTyz)

−
√

4π
45 (Txx + Tyy − 2Tzz)
√

8π
15 (iTyz − Txz)

√
2π
15 (Txx − Tyy − 2iTxy)

















Figure 6.2: Illustration of transformation M from independent elements of the

HODT, T, to the standard SH series coefficients, C, for a rank-2 tensor. Us-

ing the standard SH basis, we obtain the exact same expression as presented

in [Ozarslan and Mareci (2003a)].
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ℓ = 2, using modified SH basis Yj (Eq. 5.21):

SH basis := Y =














1/(2
√
π)√

15/(4
√
π) sin2 θ cos(2φ)√

15/(2
√
π) sin θ cos θ cos φ√

5/(4
√

2π)(3 cos2 θ − 1)√
15/(2

√
π) sin θ cos θ sinφ√

15/(4
√
π) sin2 θ sin(2φ)














M =














2
√
π/3 0 0 2

√
π/3 0 2

√
π/3

2
√
π/

√
15 0 0 −2

√
π/

√
15 0 0

0 0 4
√
π/

√
15 0 0 0

−2
√
π/

√
45 0 0 −2

√
π/

√
15 0 4

√
π/

√
15

0 0 0 0 4
√
π/

√
15 0

0 4
√
π/

√
15 0 0 0 0














T =














Txx

Txy

Txz

Tyy

Tyz

Tzz














MT = C =














2
√
π/3(Txx + Tyy + Tzz)

2
√
π/

√
15(Txx − Tyy)

4
√
π/

√
15Txz

−2
√
π/

√
45(Txx + Tyy − 2Tzz)

4
√
π/

√
15Tyz

4
√
π/

√
15Txy














Figure 6.3: Rank-2 example of the important matrices in the algorithm. Note that

coefficients of Y are real. The change-of-basis matrix M relating the SH coefficients

C and HODT independent elements T are given.

independent elements of the high order tensor T. From Eq. 6.2, we have the relation

cj =

∫

Ω
D(g(θ, φ))Yj(θ, φ)dΩ. (6.14)

We can replace D(g) with the high order tensor formulation of Eq. 6.6 and obtain

an expression in matrix form, where cj is the jth element of vector C = MT and

R = (1/2)(ℓ + 1)(ℓ+ 2) is the number of elements in the SH basis:

cj =
N∑

k=1

Dk

∫

Ω
µk

ℓ∏

p=1

gk(p)(θ, φ)Yj(θ, φ)dΩ =⇒ C = MT , where (6.15)
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Figure 6.4: Sketch of our regularization algorithm. It illustrates the main equations

of the method and most importantly, it shows the bridge between SH coefficients and

the independent coefficients of the HODT.

M =













µ1

∫

Ω

ℓ∏

p=1

g1(p)(θ, φ)Y1(θ, φ)dΩ . . . µN

∫

Ω

ℓ∏

p=1

gN(p)(θ, φ)Y1(θ, φ)dΩ

...
. . .

...

µ1

∫

Ω

ℓ∏

p=1

g1(p)(θ, φ)YN (θ, φ)dΩ . . . µN

∫

Ω

ℓ∏

p=1

gN(p)(θ, φ)YN (θ, φ)dΩ













.

(6.16)

From Appendix 6.7, the R x R square matrix M is a change-of-basis matrix, and

thus is invertible. Therefore, given a vector C of SH coefficients, we can use M−1 to

compute the corresponding vector of HODT coefficients.

Hence, we obtained a linear mapping between SH coefficients and HODT indepen-

dent elements. When using the standard SH basis of Figure 6.2, we obtain the exact

same relationship presented by [Ozarslan and Mareci (2003a)]. Figure 6.3 illustrates

the transformation procedure analytically for the example of the rank-2 diffusion ten-

sor. Note that all matrix entries are real, which captures the real-valued constraint

on the problem.

Putting everything together, the linear transformation taking the ADC X to the

vector T of HODT independent coefficients using our regularization method with is

T = M−1(BTB + λL)−1BTX . (6.17)
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The technique is fast because it only involves linear transformations and more im-

portantly, matrices B (Eq. 5.24) and M (Eq. 6.16) are the same for all voxels in the

dataset and need only be computed once. In the end, we have a handle on both the SH

series coefficients and the independent elements of the HODT. The important equa-

tions of the algorithm and the bridge between SH and HODT coefficients are clearly

sketched in Figure 6.4.

6.3 HIGH ORDER ANISOTROPY MEASURES FROM ADC
PROFILES

The ultimate goal when estimating and denoising the ADC profile is to use it to infer

the underlying diffusion process. This is commonly done using anisotropy measures

defined on the set of coefficients used to describe the ADC profile. In the literature,

there are two classes of high order anisotropy measures based on the ADC profile of

HARDI data. One class is defined on the coefficients of a SH series [Frank (2002);

Alexander et al. (2002); Chen et al. (2004b)] and the other on the independent ele-

ments of a HODT [Ozarslan and Mareci (2003a)]. One important advantage of our

algorithm is that we have a handle on both the SH and HODT coefficients and we

thus can implement all these measures.

6.3.1 Frank and Chen et al Measures

The two measures found in [Frank (2002)] and in [Chen et al. (2004b)] papers are

similar and based on SH coefficients. Frank proposed a simple Fractional Multifiber

Index (FMI) that is the ratio of the sum of squared high order coefficients coefficients

over order-2 coefficients. It is given by

FMI =

∑

{j:ℓ≥4}
|cj |2

∑

{j:ℓ=2}
|cj |2

. (6.18)

Note however that limits and range of the FMI and other such ratios based on the SH

coefficients vary depending on the input HARDI signal and cannot be known a priori.

[Chen et al. (2004b)] claim that the FMI ratio was insufficient to separate

isotropic, 1-fiber and multi-fiber behavior within a voxel. They decided to introduce

the variance of the ADC profile about its mean into the characterization of the under-

lying diffusive behavior with the following ratios:

R0 =
|c0|

∑

∀j

|cj |
, R2 =

∑

{j:ℓ=2}
|cj |

∑

∀j

|cj |
, Rmulti =

∑

{j:ℓ≥4}
|cj |

∑

∀j

|cj |
. (6.19)

In their paper, they restricted the maximum number of fibers in a voxel to 2 and they

used a rank-4 approximation. Hence, they only used R0 and R2 ratios. We generalize
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their approach for more than two directions and use a rank-8 estimation. Rmulti is a

natural multi-fiber ratio extension. These anisotropy ratios can be used to formulate

a 3-step algorithm to distinguish between isotropic, 1-fiber and multi-fiber diffusion.

That is, large R0 and/or small ADC variance is isotropic; if not, then large Rmulti

is multi-fiber; anything else is 1-fiber. As mentioned in [Chen et al. (2005)], there

are several thresholds involved in this method that must be carefully picked by per-

forming tests on synthetic data to obtain the best results. To overcome the previous

limitations, Chen et al proposed to use cumulative residual entropy (CRE) [Rao et al.

(2004)] in their recent paper [Chen et al. (2005)]. They used this new information

theory measure together with the estimated diffusivities and claimed that it can clas-

sify diffusion processes with only two ratios. CRE is based on a probability measure

computed from the discrete ADC profile estimates whereas we are focusing on mea-

sures defined from the coefficients of the SH or HODT vector parameterizing the

ADC profile. An implementation, comparison and longer discussion can be found

in [Descoteaux et al. (2005a)]. Note that another possible anisotropy measure using

entropy and information theory is defined in [Ozarslan and Mareci (2003b)].

6.3.2 Alexander et al Measure

ANOVA is used in [Alexander et al. (2002)] to determine if truncating the series at

a higher order as opposed to a lower order significantly changes the fit to the model

data. The F-test is

F (M2,Mℓ) =
(ns − pℓ − 1)(V ar(Mℓ) − V ar(M2))

(pℓ − p2)E(Mℓ)
(6.20)

where E is the mean squared error between the true ADC profile and the estimated

ADC profile at the ns sampled points and pi is the number of free parameters in model

Mi. In our case, the lower order model is M2 (order-2 diffusion tensor) and we test it

against higher order approximation models Mℓ, for ℓ = 4, ..., L. In [Alexander et al.

(2002); Blyth et al. (2003)], ANOVA was used to dynamically choose the order of the

SH series approximation.

6.3.3 Generalized Anisotropy Measure

In [Ozarslan et al. (2005b)] the well-known FA measure computed with the DT is

generalized for HARDI data fitted with HODT. Their generalized anisotropy (GA)

measure is based on the generalization of the trace, generalized mean diffusivity and

the variance of the normalized diffusivity of HODT. The trace of a rank-2 tensor T

is given by the sum of its eigenvalues, and if it is antipodally symmetric, it can be

expressed as the integral over the unit hemisphere Ω of its quadratic form

trace(T) =
3

2π

∫

Ω
gTTgdg.
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Thus, it is possible to generalize this trace expression for any antipodally symmetric

spherical function f and obtain the generalized trace “gentr”,

gentr(f(g)) =
3

2π

∫

Ω
f(g)dg.

Inspired by the rank-2 tensor case where FA is expressed in the form

FA =

√

1

2

(

3 − 1

trace(T2
N )

)

related to the variance of the eigenvalues of the normalized tensor (TN = T/trace(T))

in the case that T is diagonalized, Ozarslan et al propose a generalized version using

the variance of the generalized trace of the normalized ADC,DN (g). This generalized

variance is defined as

V =
1

3

(

gentr(DN (g)2) − 1

3

)

, where DN (g) =
D(g)

gentr(D(g))
(6.21)

The last step of the GA measure is to make sure it is restricted to the interval [0, 1)

by choosing a monotonic function that maps the interval [0,∞) to [0, 1). This choice

seems to be relatively “ad-hoc” and dependent on the dataset to be processed. The

final generalized anisotropy (GA) measure is defined as

GA = 1 − 1

1 + (250V )e(V )
, where e(V ) = 1 +

1

1 + 5000V
. (6.22)

We have skipped some important details in the GA derivation and we strongly refer

the reader to the article [Ozarslan et al. (2005b)] for the complete description. Con-

trary to ratios/measures/algorithms proposed from spherical harmonic coefficients re-

viewed in this section, GA has the property of being scaled between 0 and 1 and does

not assume any specific approximation order. It can be quickly and easily visualized

to obtain cues on the anisotropy regions, just as FA in the DTI case.

6.4 RESULTS

We now evaluate the performance of our ADC profile fitting procedure com-

pared with other techniques in the literature and secondly test the different HARDI

anisotropy measures on both synthetic and real data. First, we want to find the opti-

mal regularization parameter.

6.4.1 Optimal Regularization Parameter with the L-Curve Method

As mentioned earlier, the proposed algorithm penalizes the approximated SH and

HODT coefficients for having higher order terms unless they significantly improve

the overall accuracy of the estimation. This eliminates most contribution due to noise

while leaving those that are necessary to describe the underlying ADC profile. How-

ever, obtaining this balance depends on choosing a good value for the parameter λ.
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There are several numerical methods to find the optimal regularization parameter

such as L-curve [Hansen (2001)] and the Generalized Cross Validation (GCV) [Wahba

(1990); Sakaie and Lowe (2007)]. In this thesis, we chose the L-curve approach.

The L-curve is a plot of the norm of a regularized solution versus the norm of

the corresponding residual form. The idea is to vary the values of the regularization

parameter λ and to plot the points corresponding to regularization errors on the ordi-

nate and the data perturbation errors on the abscissa. In our minimization problem

given in equation M(C) (Eq. 6.12), we record the points (x, y) = (||X−BC||2, CTLC)

while varying λ. This gives a set of noisy points to which one can fit a best curve

to obtain the L-curve. The optimal λ is then the point on the curve with maximum

curvature. This is the location that separates the flatter and more vertical part of

the graph, where the solution is dominated by perturbation errors and regularization

errors respectively. In our problem, we choose a 4th order polynomial least-squares

fit, which models the data well.3 We find parameters {a, b, c, d, e} that best model the

data such that y(x) = ax4 + bx3 + cx2 + dx + e. To find the optimal λ, we seek the

discrete point x where the curvature κ(x) of the L-curve y(x) is maximum. The cur-

vature of a 2D curve expressed as y(x) is given by κ(x) = y′′(x)/(1+(y′(x))2)3/2. Since

y′(x) = 4ax3 + 3bx2 + 2cx + d and y′′(x) = 12ax2 + 6bx + 2c, we easily get an analytic

expression for the L-curves curvature and its derivative κ′(x). In practice, we have

discrete sampling of these curves and the optimal λ is then simply given by the λ

associated with the discrete x value where κ′(x) = 0. Note that this is an automatic

way to find the optimal λ.

L-curve Numerical Simulation

In order to find the optimal λ for our regularization algorithm, we must plot the L-

curves for 1, 2, and 3 fiber distributions. It is important to note that there is a differ-

ent optimal λ depending on the underlying fiber distribution. In fact, in the cases of

1 or no fibers, a HODT formulation is unnecessary and thus, it is expected to obtain a

higher optimal λ for these cases than for multiple fiber diffusion. As described above,

we need to plot the data errors ||X − BC||2 on the abscissa and the regularization

term CTLC on the ordinate while incrementally varying λ ∈ [0, 0.5]. We systemati-

cally increment λ by 0.0005 for each set of simulated data. Hence, we simulate three

separate tests with 1, 2, and 3-fiber distributions respectively. We decide to choose

a relatively high b-value, b = 3000 s/mm2, to be able to better distinguish 2 and 3

fibers within a voxel, as noted in [Alexander and Barker (2005)]. A b-value of 1000

s/mm2 is more standard for clinical diffusion MRI acquisitions but research-oriented

acquisitions tend use higher b-values We perform an order-8 approximation. For each

L-curve plot, note that the number of fibers in the simulated ADC profile, the noise

level and the approximation order ℓ are the same for all green points whereas the λ
3Before a polynomial curve can be fit, there is a necessary sorting of the x and the corresponding y

and associated λ. Otherwise, the curve can potentially come back on itself.
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parameter, the relative weights (pk ’s) of fibers and the orientation angle(s) and an-

gle(s) between fibers change for every point in the graph.

L-curves Results

The L-curves for 1, 2 and 3 fiber distributions are plotted in Figure 6.5. Each curve

was created separately by estimating the ADC profile while incrementally varying λ

by 0.0005 from synthetic noisy ADC profiles with random fiber orientations and fiber

compartments fractions. We show the set of measured points (||X−BC||2,CTLC), the

fitted L-curve and indicate the optimal estimated λ with a circle. From the L-curves

the optimal λ are 0.308, 0.006 and 0.0155 for 1, 2, and 3 fiber distributions respectively.

Numerical Simulations

One can now ask how valid these optimal λ’s really are and in particular, how well

do they agree with the initial true signal without noise. Hence, in order to verify the

L-curve optimal values, we test the effectiveness of recovering the original (without

noise) synthetic ADC profile from noisy sparse data measurements as above. In doing

so, we compare our algorithm with SH estimation without regularization of [Frank

(2002); Alexander et al. (2002)] and HODT fitting of [Ozarslan and Mareci (2003a)].

Table 6.1 summarizes how we obtain each HODT estimation. For our algorithm, T

is obtained from Eq. 6.17. For the [Ozarslan and Mareci (2003a)], we use Eq. 6.8 to

obtain T and for the un-smoothed SH technique, we use Eq. 5.29 to obtain C which is

essentially the same as techniques proposed by [Frank (2002)] and [Alexander et al.

(2002)] except that their SH basis is different. In the latter case, we need to apply

our transformation matrix M−1(Eq. 6.16) to obtain T. For all cases, we obtain the

estimated ADC profiles on the unit sphere for any angle using Eq. 6.6. In the follow-

ing, the errors recorded are the mean and standard deviation (std) of the error vector

specified by the point-wise absolute difference between points on the estimated ADC

and points on the true ADC profiles (Eq. A.2 of Appendix A.1) before adding noise)

[Ozarslan [Frank (2002)] Our method

and Mareci (2003)] [Alexander et al. (2002)]

Regularization no no yes (λ = 0.006)

Signal C Not applicable (BTB)−1BTX (BTB + λL)−1BTX

HODT T (RTR)−1RTX M−1C M−1C

Table 6.1: Summary of each algorithm used to compare HODT estimation. As before,

X represents the measured HARDI signal, C the SH representation of X, B is the

SH basis, R is the HODT matrix for the generalized Stejskal-Tanner equation and M

is the change of basis matrix between HODT elements and SH coefficients.
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Figure 6.5: L-curves for 1, 2 and 3 fibers with optimal λ circled. Points represent

data perturbation errors and regularization errors (||X − BC||2,CTLC).
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for different regularization parameter λ. We generate a single simulation with 1000

synthetic ADC profiles of 1, 2 and 3 fibers mixed together.

From Table 6.2, there are several expected observations that one can make.

Firstly, from the first two columns, we note that the LR fit of a HODT (Eq. 6.8) and the

SH series fit with no regularization (Eq. 6.4) are the same up to a very small numer-

ical error. As previously discussed, this is to be expected because the two models are

equivalent and there exists a direct change-of-basis transformation between the two

(Eq. 6.16). Secondly, as observed with the L-curve, single fiber voxels are optimally

fit with larger λ than in the multiple fiber voxels. This occurs because in the case of a

single fiber, higher order estimation is unnecessary. Intuitively, a large λ in Eq. 6.13

cancels the effect of high order tensor terms so that the model is closer to a rank-2

tensor formulation. However, as soon as we have more structure, as in the cases of 2

or 3 fibers, λ of 0.006 and 0.015 are best, respectively. This is expected as we need to

maintain significant contributions from higher order terms in order to accurately fit

multi-fiber ADC profiles. If this is so, one can wonder why the optimal λ for 3-fiber

is higher than for 2-fiber distributions. This is because as fibers are added within a

voxel, the signal tends to be more isotropic due to partial volume averaging. Thus,

the need for higher terms becomes less needed in the approximation. It is important

to note that these best simulated λ values closely agree with the L-curve points of

maximum curvature, which validates the automatic and analytic L-curve optimal λ

procedure. Finally, note that the optimal value in the 2-fiber case is quite broad for

different λ values which suggest that there is a range of possible λ one can choose

without changing the resulting estimation. In practice, we have noted that the exact

optimal λ chosen is flexible within a small range that depends on the dynamics of the

signal. Nonetheless, since in all cases λ = 0.006 performs better than both LR and the

SH fit with λ = 0 and the optimal value found with the L-curve in the case of 2 fibers

is λ = 0.006, we choose to set λ = 0.006 for the rest of this thesis (unless specified).

This avoids having to compute optimal λ at each voxel of the dataset.

Qualitatively, Figure 6.6 illustrates how we obtain a smoother ADC profile esti-

mation that visually agrees with our quantitative results. Our regularized tensor

estimation gives a ADC profile closer to the true ADC without noise. Here, we have

stretched the surface mesh with respect to each ADC profile value D(g(θi, φi)). The

color map is red for high values and blue for low ADC values.

6.4.2 High Order Anisotropy Measures Results

We implemented the high order anisotropy measures defined in Section 6.3 to study

their ability to identify the underlying synthetic diffusion process. We have used

the same synthetic data generation process as before with Gaussian complex noise

with standard deviation σ = 1/35 and b = 3000 s/mm2. We create a large set of

simulated profiles where the number of fibers is picked randomly between 0 and 3.

Our goal is to correctly classify synthetic noisy data, generated as before, into three
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1 fiber test with λ

LR 0 0.006 0.012 0.1 0.3 0.5

mean 0.083 0.083 0.071 0.068 0.052 0.051 0.054

std 0.064 0.063 0.051 0.046 0.036 0.035 0.037

2 fiber test with λ

LR 0 0.003 0.006 0.009 0.012 0.015

mean 0.076 0.075 0.070 0.069 0.070 0.070 0.072

std 0.052 0.052 0.043 0.041 0.040 0.041 0.042

3 fiber test with λ

LR 0 0.006 0.009 0.012 0.015 0.1

mean 0.092 0.092 0.049 0.040 0.034 0.031 0.057

std 0.037 0.037 0.028 0.026 0.025 0.025 0.026

Table 6.2: Numerical simulation to test the behavior of our algorithm with varying

regularization parameter λ. LR corresponds to the linear regression (LR) method

of [Ozarslan and Mareci (2003a)], Eq. 6.8. We report the mean and standard devia-

tion of the point-wise absolute difference between true (without noise) and estimated

ADC profiles.

classes: isotropic diffusion, 1-fiber anisotropic diffusion and multi-fiber diffusion, i.e.

diffusion corresponding to either 2 or more fibers.

First, we show the results of computed GA values in Table 6.3 for different order

approximations. Even though the exact values are different because we use a differ-

ent synthetic data generation, we are able to reproduce the same behaviors of the GA

measure published by [(Ozarslan et al., 2005b, Table 4)]. In particular, for a single

fiber, the measures are almost independent of the rank being used for the estimation

(first row in table). However, GA measures are significantly higher for rank-{4,6,8}

than for the rank-2 model when there are multiple fibers. There is also an overlap in

GA values between diffusion in 3-fiber distributions and isotropic diffusion. It is in

these cases that the rank-2 model is unsatisfying. We have computed a similar table

for all other anisotropy measures (not shown here). One can then attempt to find the

best thresholds that separate the different measures into these three classes for all

anisotropy measures. We test the robustness of the classifications with and without

smoothing parameter while changing the rank of the approximation. We also analyze

the behavior of the different measures by recording the classification success rate.

From Table 6.4, we see that the best results for Chen et al (Eq. 6.19) and ANOVA

(Eq. 6.20) obtained from λ = 0.006 produce better classification percentages than the

best outcome of FMI (Eq. 6.18). FMI is the simplest of the measures and is not able

to capture as many details as the other two methods which include statistical infor-

mation and a better comparison between estimation order used to model the data.

90



1 fiber

true ADC noisy ADC LR SH, λ = 0 SH, λ = 0.006

2 fibers

true ADC noisy ADC LR SH, λ = 0 SH, λ = 0.006

3 fibers

true ADC noisy ADC LR SH, λ = 0 SH, λ = 0.006

Figure 6.6: Visualizing the ADC profile fitting procedure. We have in row 1 the ADC

profile for a single synthetic fiber, in row 2 the ADC profile for two orthogonal fibers

and row 3 is for three orthogonal fibers. Qualitatively, the last column gives the best

approximation of the true ADC, confirming the L-curve results and Table 6.2

Our method (λ = 0.006), LR

ℓ = 2 ℓ = 4 ℓ = 6 ℓ = 8

1 fiber 0.92, 0.92 0.92, 0.92 0.92, 0.92 0.92, 0.92

2 fibers 0.64, 0.65 0.71, 0.73 0.72, 0.73 0.70, 0.71

3 fibers 0.09, 0.09 0.19, 0.21 0.20, 0.13 0.10, 0.09

isotropic 0.09, 0.09 0.09, 0.10 0.09, 0.09 8x10−4, 0.01

Table 6.3: Mean GA measure over 10000 simulated ADC profiles. This table shows

the mean GA calculated from our algorithm and Ozarslan’s LR method. We observe

similar overall behaviors as the ones reported in [(Ozarslan et al., 2005b, Table 4)].
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FMI Chen et al ANOVA GA

ℓ λ = 0 λ = 0.006 λ = 0 λ = 0.006 λ = 0 λ = 0.006 λ = 0 λ = 0.006

8 93.1% 85.1% 83.2% 96.0% 91.7% 94.8% 99.9% 99.8%

6 93.1% 84.2% 89.1% 97.0% 90.9% 94.5% 99.6% 99.8%

4 83.2% 82.2% 93.1% 97.0% 88.7% 91.1% 99.9% 100%

2 54.4% 54.5% 97.6% 97.6%

Table 6.4: Success rate for the classification of synthetic voxels into isotropic, 1-fiber

and multi-fiber diffusion class using different high order anisotropy measures. For

each measure, we select thresholds that best distinguish the three class. FMI and

ANOVA measure make no sense in the ℓ = 2 case.

The advantage of Chen et al’s algorithm over other measures is that it involves well-

chosen SH coefficient ratios and the variance of ADC profile about its mean. Experi-

mentally, we find it more robust to noise and less sensitive to the threshold selection.

In fact, we do not have to adapt thresholds between tests when changing λ and the

rank of the HODT. This is not the case with ANOVA. It is also important to note the

better performance of our regularization procedure with a non-zero λ used in con-

junction with the Chen et al and the ANOVA measures than with no regularization

(λ = 0). This illustrates the added value brought by our regularization method. This

is because the estimated ADC profile is smoother, and hence, the SH and HODT co-

efficients incorporate less noise. On the other hand, for FMI measure, we note that it

performs better when λ = 0. This is not surprising because of the nature of the ratio

and in particular, because the numerator depends only on high order terms of the SH

series. With a non-zero λ, the coefficients of higher order are penalized, and therefore

have lower values than without a smoothing term. The ratio is thus not designed to

be used with our method. Note also the higher success rate of the GA measure com-

pared with the other measures. Being a high order generalization of FA, it is better

theoretically founded and its characterization is better than with ’ad hoc’ ratios on

SH coefficients. In our experiments, we also note that the GA values are more stable,

i.e. have less variations between random trials, which makes it easier to find the best

thresholds.

In order to validate the approach on a field of noisy spherical functions, we have

also extended our single voxel synthetic generation to construct a noisy high angular

resolution 30 x 30 slice with a 5 x 5 crossing configuration in the center Figures 6.7

and 6.8. The ADCs were estimated with an order 6 SH series and λ = 0.006. We

perform one experiment with two and another with three orthogonal fibers crossing.

Note that all voxels in this slice have the same mean diffusivity. We compare the

shape of the DTI ellipsoids with the shape of the ADC profiles computed with an

order 8 SH basis and the resulting FA and GA anisotropy measures. Although we

choose only to show results of the FA measure, it is important to note that RA and FA
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DTI ellipsoids HARDI field of ADC profiles

FA GA

Figure 6.7: Two orthogonal fiber bundles crossing at 90◦. The color map for the

DTI ellipsoids is blue for isotropic, green for planar and red for anisotropic ellipsoids.

Note that ellipsoids are flat and have no preferred principal direction in the crossing

area whereas ADC profiles have multiple peaks. The last row shows the FA and GA

anisotropy maps. The anisotropy is much lower in the crossing area in both cases but

higher in the GA case than in the FA.

have similar properties [Ozarslan et al. (2005b)] and there is no notable differences

between the two measures when comparing them against GA. The DTI ellipsoids

were computed using standard least-squares fit from all discrete high angular mea-

sures. The color map is blue for isotropic, green for planar and red for anisotropic

ellipsoids. While the ellipsoids are flat and have no preferred principal direction in

the crossing area of Figs. 6.7 and 6.8, the ADC profiles clearly have multiple peaks

reflecting multiple fibers. Although the multiple peaks do not agree with the under-

lying fiber orientations4, the high order anisotropy measures like GA are able to pick

up these differences. The limitation of FA measure is even more evident on a 3-fiber

distribution example in Figure 6.8. The FA measure is in the same range as the back-

ground whereas the GA map is able to distinguish the multi-fiber diffusion processes.

4As seen in Chapter 4, diffusion profile maxima do not agree with fiber directions for two or more

underlying fibers. One must define functions in real space like the orientation distribution function

(ODF) to extract fiber orientations.
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DTI ellipsoids HARDI field of ADC profiles

FA GA GA color bar

thresholding at 0.06 thresholding at 0.08 thresholding at 0.1

Figure 6.8: Three orthogonal fiber bundles crossing at 90◦ where one bundle is com-

ing out of the page. GA can distinguish the crossing area whereas the FA cannot.

The last row illustrates the effect of varying the threshold in the classification pro-

cess. blue := isotropic, red := 1-fiber, green := multi-fiber class respectively. Some

voxels are incorrectly classified due to noise and partial volume averaging.

In the last row of Figure 6.8, we see the effects of varying the threshold separating

isotropic from multi-fiber diffusion. The threshold are selected experimentally and

we see that the critical threshold is in the range of the mean GA measure of the ℓ = 8

column in Table 6.3. We see that GA values can discriminate the different diffusion

processes with some errors made when there are overlap between noisy 3-fiber dis-

tributions and noisy isotropic diffusion signals. If the 3-fiber threshold is too high,

some multi-fiber voxels are incorrectly classified as isotropic and vice versa when the

3-fiber threshold is too low. This is due to noise and partial volume averaging.

Finally, it is worth mentioning that the choice of noise level and b-factor surely

affect the classification results as one would expect. Noisy data makes classification
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T1-weighted image FA GA

DTs in crossing ADC profiles in crossing DTs + ADC profiles

Figure 6.9: Biological phantom produced by [Campbell et al. (2005)] described in

Appendix A.2. We show the baseline T1-weighted image and fields of DTI ellipsoids

and estimated ADC profiles overlaid on the GA map in the crossing area. The DTI

ellipsoids tend to be flat (greenish) and spherical (bluish) whereas the ADC profiles

clearly have multiple peaks.

harder for all classes since major overlap appear between 1-, multi- and isotropic

distributions. A lower b-value also produces less reliable results in multi-fiber voxels.

This is because the ADC profiles are wider and less sharp than for high b-value.

Conclusion of Synthetic Data Experiments

There are several important messages from this section. Most importantly, we have

seen that regularization is important to obtain an accurate HARDI signal estima-

tion and a robust ADC reconstruction that agrees closely with ground truth. Then,

we have seen numerical experiments that illustrate the equivalence of the SH esti-

mation and HODT estimation, known in theory. Finally, we have seen that regular-

ization and HARDI anisotropy measures can be exploited to discriminate isotropic

voxels from voxels with single fiber distribution and multiple fiber distributions. In

particular, although the multiple peaks of the ADC do not agree with the underlying

fiber distribution, high order anistropy measures can be used to detect these multiple

fiber distributions.
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6.4.3 Biological Phantom Results

Figure 6.9 shows the results on the biological phantom. The acquisition of this

dataset is described in Appendix A.2. The baseline T1-weighted image illustrating

the ground truth configurations of the fibers is seen in the top left of Figure 6.9. We

compare the ellipsoid surfaces obtained from the standard DTI least-squares fit using

all 90 directions against the ADC profile computed with our regularized SH estima-

tion. The ellipsoids and ADC profiles are overlaid on the computed GA map. A rank-8

estimation with λ = 0.006 was used. As expected, the DTI ellipsoids are planar and

tend to be spherical in the crossing area whereas our high order estimation of the

ADC profile recover multiple peaks. Moreover, even though the GA map has slightly

noisy background, it recovers both fiber bundles and is different in the crossing than

in certain straight single fiber parts. However, contrary to the synthetic data char-

acterization, the GA difference between 1- and 2-fiber regions is not clear enough to

fully distinguish the two with simple thresholding.

6.4.4 Human Brain HARDI Data Results

The human brain dataset used is the CMRR dataset described in Appendix A.3.2.

Based on expert knowledge of the anatomy and the FA anisotropy measures, vox-

els with one and two fibers in the corpus callosum and the corticospinal tract were

selected to illustrate the performance of our regularization algorithm on real data.

A rank-8 approximation with λ = 0.006 was used. Figure 6.10 shows some of the

results.

Classification on real data is a much more difficult task than the synthetic data

experiments where the noisy generated signal is more homogeneous and GA statis-

tics are easily computed. On real data, one has to manually select regions with known

crossings and regions with single fiber anisotropy to analyze the corresponding GA

measure behavior. Due to noise and partial volume effects there is too much overlap

between diffusion process classes. Nonetheless, we observe that the measured data

ADC profiles have very similar shapes and properties as compared to our synthetic

data. Even though we do not believe one can simply threshold the real data GA map

to classify the diffusion process, one can make better use of the GA than FA scalar

measure to look for multiple fibers crossing. Visual inspection of the peaks of the ADC

profile in the small regions of interest shows agreement with known neuroanatomy

(Figure 6.10) of single and multiple fiber bundles. In the left subfigure, two profiles

were chosen in the corpus callosum, one with 1-fiber and the other with 2-fiber distri-

bution evidence. The FA map illustrates the location where the 2-fiber distribution

was extracted with a low FA value of 0.35. In the right sub-figure, profiles were ex-

tracted from a 1-fiber region of the corticospinal tract and a nearby 2-fiber crossing

with the corpus callosum. The FA map shows the location of the 1-fiber diffusion

voxel with a high FA value of 0.67.
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single fiber distribution

FA = 0.35, GA = 0.93

multi-fiber distribution

FA = 0.18, GA = 0.87

FA map
(a) Voxels chosen from the corpus callosum

single fiber distribution

FA = 0.67, GA = 0.94

multi-fiber distribution

FA = 0.24, GA = 0.88

FA map
(b) Voxels chosen from the corticospinal tract

Figure 6.10: ADC profiles selected from real data voxels in the corpus callosum and

the corticospinal tract. We have manually selected voxels with one and two fibers

based on knowledge of the anatomy and FA measure. The left column in each sub-

figure represents the measured profile and the right column is the estimated ADC

profile from our algorithm. We report the corresponding FA and GA measures for

each and include the FA map with the region of interest marked with a pink overlaid

cross.
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Transverse, coronal and sagittal FA slice of the region of interest

FA crop GA crop classification

Figure 6.11: Region of interest from the genu of the corpus callosum, similar as

in [(Tuch, 2004, fig. 12-f)]. We show FA, GA and the thresholded classification map

obtained. Green: multi-fiber, red: 1-fiber and blue: isotropic diffusion class respec-

tively. Green voxels agree with known crossings in that area.

Finally, we reproduce a similar figure as in [(Tuch, 2004, Fig. 12-f)] from the genu

of the corpus callosum in Figure 6.11. This region is known to have multiple fibers

crossing. We thus observe a lower FA than that found in strong anisotropic areas

and a stronger GA value in the range corresponding to 2 or 3 fibers in Table 6.3. If

one locally thresholds this region of interest, the obtained classification provides some

valuable information. The multi-fiber regions in red clearly stand out and we can thus

identify areas of transition between single (blue) and multiple (red) fiber diffusion

class. The classification of Figure 6.11 agrees with voxels containing multiple fiber

crossings such as presented in [(Tuch, 2004, Fig. 12-f)].

6.5 DISCUSSION

Overall, there are several contributions in this chapter. Firstly, we pro-

posed a new regularization algorithm to estimate a smoother ADC profile closer to

the true ADC profile without noise. We chose a meaningful modified SH basis to

98



capture the physical constraints of the problem, defined a regularization term based

on the smoothing properties of the Laplace-Beltrami operator for functions defined

on the unit sphere and derived the linear transformation taking SH coefficients to

HODT coefficients. We thus obtained a HODT from a regularized SH estimation of

the HARDI signal. The method was tested against state-of-the-art techniques from

the literature on synthetic data, on a biological phantom and on real human brain

data. Our experiments verify the equivalence of the HODT and the SH formulations

of the ADC profile up to a good numerical approximation. This is useful because it im-

plies that any technique developed for the SH formulation can be quickly and easily

applied to the diffusion tensor formulation and vice versa.

Moreover, the continuous smoothing parameter λ generalizing the traditional

least-squares fitting algorithm for SH series is appropriate whenever there is a

sparsely sampled set of noisy data on a sphere and the expected approximation func-

tion is relatively smooth. However, minimizing the squared error is not the only

important characteristic of a good approximation function. In particular, if we wish

to be able to extract a fiber probability distribution for the voxel from our ADC profile

model, we need the approximation to be sufficient to capture details up to the desired

level of resolution. For example, over a data set that contained a large proportion

of voxels with only a single fiber direction, an order-2 fit would certainly minimize

the squared error from the actual data averaged over the entire data set. However,

the higher order voxels would be modeled very poorly, making various tasks, such as

tractography, considerably more difficult. For this reason, simple truncation, which

is the equivalent to fitting the data with a lower order tensor is not comparable to a

procedure that retains higher-order detail, such as the proposed fit with a well-chosen

regularization weight λ. Up to the resolution that we were considering, order-4 trun-

cation was a valid choice of fitting procedure but does not have the ability to retain

detail at the 6th and 8th orders shown by the smoothness maximizing criterion we

propose.

Furthermore, we have used the modified SH basis of the previous chapter. This

basis is physically meaningful and adapted to the HARDI modeling problem be-

cause it is real and symmetric. However, note that the physical positive con-

straint of the ADC profile and HARDI signal is not ensured in our derivation, i.e.

the property that D(g) > 0, for any g is not ensured in theory. This is an in-

teresting open question that is the subject of much current research in the field

(see [Tournier et al. (2007); Jian and Vemuri (2007b)]). In implementing our algo-

rithm, we found that this was rarely relevant at reasonable noise levels, as our algo-

rithm gave everywhere positive results without being explicitly constrained to do so.

However, in the standard rank-2 DTI problem, methods have been proposed to deal

with data where some of the estimated tensors step out of the positive-definite matrix

space [Tschumperlé and Deriche (2001); Chefd’hotel et al. (2004); Wang et al. (2004);

Arsigny et al. (2006); Lenglet et al. (2006b)]. The question of how to extend these
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approaches in the space of HODT is still open. Recent works on different HODT for-

mulations have started to appear in the literature such as [Basser and Pajevic (2007);

Barmpoutis et al. (2007)]. It is part of current work to look for numerical schemes in

the space of HODT that impose a positive diffusion ADC reconstruction.

In addition to the contributions mentioned above, another important part of the

chapter is the careful study of the existing anisotropy measures for SH and HODT

representation of the HARDI ADC profiles. We extended the study by attempting

to classify the diffusion process from these anisotropy measures. This showed to

be easier on synthetic data than on real data where selecting sensible thresholds is

much harder. We have successfully reproduced the properties of the GA measure

and clearly showed its advantages over the other scalar indices computed from SH

coefficients. In addition to being the high order generalization of the popular FA

measure for DTI, it is stable and has the advantage of being scaled between 0 and

1. With a fast visual inspection, this allows the detection of non-Gaussian diffusion

processes in cerebral regions from real data. This can potentially be of great help to

clinicians and neurosurgeons. However, even though the ADC modeling from HARDI

data can describe intravoxel fiber crossings, it is important to point out that, if one is

interested in the underlying fiber distribution for fiber tractography, the ADC is not

the right function to be used. The ADC maxima do not agree with fiber directions

for two or more underlying fibers and thus cannot be used for fiber tractphraphy.

One must use functions in real space like the diffusion PDF and diffusion ODF to

extract correct fiber orientations. Therefore, it is now important to look into HARDI

reconstruction algorithms that estimate functions with their maxima aligned with

the underlying fiber distribution.

6.5.1 Contributions of this chapter:

In summary, the contributions of this chapter are:

• The new Laplace-Beltrami regularization algorithm to estimate the HARDI sig-

nal and the ADC more robustly.

• The linear transformation between coefficients of the modified SH basis and the

independent elements of the HODT.

• The comparison between the state-of-the-art high order anisotropy measures

computed from the SH basis and HODT representations.

• ADC estimation on synthetic data, on a biological phantom and on a human

brain dataset and ability to discriminate voxels with isotropic diffusion, single

fiber and multiple fiber distributions.

Contributions from this chapter appear in [Descoteaux et al. (2005a, 2006b,a)].
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6.6 APPENDIX A: INDEPENDENT ELEMENTS OF THE
HODT

Since the HODT must be totally symmetric, the problem of determining the total

number of independent elements is then equivalent to finding the number of pos-

sible combinations of two integers such that their sum is less than or equal to the

rank of the tensor. This is a straightforward calculation from which the number of

independent elements of a rank-ℓ tensor is

R =

ℓ+1∑

n=1

n =
1

2
(ℓ+ 1)(ℓ+ 2). (6.23)

As in the modified SH basis, we use letter R as well because both the number of

SH coefficients in the modified basis and the number of independent elements in the

HODT are the same.

In order to re-write the generalized ADC profile of Eq. 6.5 in a more compact form,

the multiplicity of each independent element of the HODT is needed. Consider the

group of all permutations of ℓ elements, Sℓ. The subgroup of unique permutations is

equal to Sℓ modulo the subgroup of all permutations that do not change the indices.

Note that permuting only the x’s (or y’s or z’s) does not create a distinct set of indices.

With a little more algebra, the subgroup of permutations fixing the indices turns out

to be the product of permutations of x’s, permutations of y’s and permutations of z’s.

Thus, the multiplicity µ of a component of a rank-ℓ tensor is

µ =
|Sℓ|

|Sx| · |Sy| · |Sz|
=

ℓ!

nx!ny!nz!
(6.24)

where Sx, Sy, and Sz are respectively the permutation groups of the x, y, and z indices,

and nx, ny, and nz are just the number of x, y, and z indices contained in the subscript

of the given independent element. With this information, much of Eq. 6.5 becomes

redundant, and we can reduce it to

D(g) =
R∑

k=1

µkTk

ℓ∏

p=1

gk(p),

where Tk is the kth independent element of the tensor, µk is its corresponding mul-

tiplicity, and gk(p) gives the component of the gradient direction g corresponding to

the pth index of the kth independent element of the tensor. To illustrate this sim-

plification, consider the vector of independent elements of a rank-2 diffusion tensor

T = (Txx Txy Txz Tyy Tyz Tzz )T which has multiplicity vector µ = (1 2 2 1 2 1)T . We
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then have

D(g) =
∑

i1∈{x,y,z}

∑

i2∈{x,y,z}
Ti1i2gi1gi2

= g2
xTxx + g2

yTyy + g2
zTzz + gxgyTxy + gygxTyx

+gxgzTxz + gzgxTzx + gygzTyz + gzgyTzy

= g2
xTxx + 2gxgyTxy + +2gxgzTxz + g2

yTyy + 2gygzTyz + g2
zTzz

=
6∑

k=1

µkTk

2∏

p=1

gk(p)

which illustrates the simplification.

6.7 APPENDIX B: RELATION BETWEEN THE SPHERICAL
HARMONICS TO THE HIGH ORDER TENSOR

Here, we aim to prove that the M matrix (Eq. 6.16) is simply a change of basis, i.e.

that for all integers n ≥ 0, the tensor polynomials of rank 2n and the modified set

of SH up through rank 2n both form a basis for the same space of functions. We

note that this implies that M is invertible. Before proving this, we will make some

preliminary comments. Firstly, the SH of order ℓ are defined to be the restrictions of

homogeneous harmonic polynomials of order ℓ to the unit sphere [Gia (2003)]. Both

the standard set of SH and the modified set we introduced in this thesis are just

particular choices of basis for this space. Secondly, the tensor polynomials of rank ℓ

are simply the set of unique monomials of degree ℓ, i.e. {xaybzc|a, b, c ≥ 0, a+b+c = ℓ}
which we also restrict to the unit sphere. Finally, both of the above sets (modified SH

of order ≤ 2n and tensor polynomials of rank 2n) are linearly independent and have

the same number of elements. Therefore, it suffices to show that all the elements in

one set can be expressed as linear combinations of elements in the other set to prove

that both sets form a basis for the same space.

THEOREM .2. For all integers n ≥ 0, the tensor polynomials of rank 2n, i.e.

{xaybzc|a, b, c ≥ 0, a + b + c = ℓ}, restricted to the sphere, and the set of modified

spherical harmonics of order ≤ 2n form a basis for the same space of functions.

Proof: Our approach will be to show that every even order homogeneous har-

monic polynomial restricted to the unit sphere of order ≤ 2n can be expressed as a

linear combination of the tensor polynomials of rank 2n. As discussed above, this

result is equivalent to the statement of the theorem. We proceed by induction. Note

that we will use ∝ to denote “is proportional to”.
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Base case: For n = 0, the set of homogeneous harmonic polynomials of order 0

restricted to the unit sphere is simply the set of constant functions, and we have that

{xaybzc|a, b, c >= 0, a+ b+ c = 0} = x0y0z0 ∝ 1.

Therefore, any homogeneous harmonic polynomial of order 0 restricted to the unit

sphere is simply a linear scaling of the unique tensor polynomial of order 0.

Inductive step: Assume that all homogeneous harmonic polynomials of order

≤ 2n−2 can be expressed as linear combinations of tensor polynomials of rank 2n−2.

Since we are restricted to the sphere, we can multiply each of these formulas by

x2 + y2 + z2 = 1 to express each of the homogeneous harmonic polynomials of order

≤ 2n − 2 as linear combinations of tensor polynomials of rank 2n. For example, the

homogeneous harmonic polynomial of order 2, xz, is itself a tensor polynomial of rank

2. However, it can also be written as a linear combination of rank 4 tensor polyno-

mials in the following way: xz(x2 + y2 + z2) = x3z + xy2z + xz3. Furthermore, every

homogeneous harmonic polynomial of order 2n can be expressed as a linear combina-

tion of tensor polynomials of rank 2n simply because the set of unique monomials of

degree 2n spans the set of polynomials of degree 2n. This completes the proof.

Here is a brief illustrative example. Below we express each of the elements of our

modified SH basis of order ≤ 2 (Figure 6.3) in terms of linear combinations of tensor

polynomials of rank 2. (Restricting to the unit sphere gives, as in standard spherical

coordinates, the relations: x = cosφ sin θ, y = sinφ sin θ, z = cos θ and 1 = x2 + y2 + z2).

Y1 ∝ 1 ∝ x2 + y2 + z2

Y2 ∝ sin2 θ cos(2φ)

∝ sin2 θ(cos2 φ− sin2 φ) ∝ x2 − y2

Y3 ∝ sin θ cos θ cos φ ∝ xz

Y4 ∝ 3 cos2 θ − 1

∝ 3z2 − (x2 + y2 + z2) ∝ 2z2 − x2 − y2

Y5 ∝ sin θ cos θ sinφ ∝ yz

Y6 ∝ sin2 θ sin(2φ)

∝ sin2 θ(2 sinφ cos φ) ∝ xy

With linear combination of the Y1, Y2 and Y4 terms, one can obtain the monomials x2,

y2 and z2. Hence, the modified basis of order 2 spans the set of degree two monomials.

This result explains why fitting with the high order tensor formulation and fitting

with the SH formulation are equivalent. This is seen in the similarity of the λ = 0 fit

and the linear regression HODT fit in Table 6.2.
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CHAPTER 7

ANALYTICAL Q-BALL IMAGING

Beautiful Evidence is about the theory and practice of analytical design

– Edward Tufte
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OVERVIEW

Given our new regularized method to obtain the HARDI signal, can it be used to

do q-ball imaging (QBI)? This chapter proposes a new analytical QBI solution using

our regularized spherical harmonics estimation. In particular, can the Funk-Radon

transform be solved in a single step with spherical harmonics? First, we develop a

regularized, fast and robust analytical solution for the QBI reconstruction. To do so,

a new corollary of the Funk-Hecke theorem is proved to obtain an elegant mathe-

matical simplification of the Funk-Radon transform and to obtain the analytical QBI

solution in a single step. Second, we validate and compare the analytical QBI so-

lution with the numerical QBI solution on synthetic simulations, on a rat biological

phantom and on real datasets. Finally, a discussion on its benefits over the other

state-of-the-art approaches is done.

Keywords q-ball imaging (QBI), orientation distribution function (ODF), Laplace-

Beltrami (LB) operator, regularization, Funk Radon transform (FRT), spherical har-

monics (SH), Funk-Hecke theorem

Contributions of this chapter:

• Regularized, fast and robust analytical QBI solution.

• Proof of a new corollary of the Funk-Hecke theorem.

• Comparison of the Laplace-Beltrami regularization of the signal with the state-

of-the-art numerical and analytical QBI methods using no regularization and

Tikhonov regularization.

• Extensive study of the fiber detection, robustness, compression and reconstruc-

tion properties of the analytical QBI solution.

• Quantitative validation performed against ground truth from synthetic data

and against real data from a biological phantom and a human brain dataset.

Organization of this chapter:
The chapter is organized as follows. We motivate the QBI problem in Section 7.1

and develop the theory of QBI in Section 7.2. Then, the analytical QBI solution is

developed in Section 7.3. Next, we validate and compare QBI methods in Section 7.4

and show the fiber detection, robustness and compression properties of the ODF re-

construction in Section 7.5. Finally, we conclude with a discussion of the results and

our contributions in Section 7.6.
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7.1 INTRODUCTION

As already seen many times in this thesis, DTI is limited in regions of low

anisotropy where there are multiple crossing fibers. Chapter 4 exposed the recent

works done to generalize the existing DTI model [Basser et al. (1994a)] with new

HARDI acquisition techniques such as DSI [Wedeen et al. (2000)] and single shell

HARDI [Tuch et al. (1999); Tuch (2002)]. There are currently two classes of high

order processing methods for these high resolution acquisition techniques. The first is

based on the apparent diffusion coefficient (ADC) modeling and the second is based on

the reconstruction of the diffusion probability density function (PDF) of the average

spin displacement of water molecules or variants of this function. ADC modeling was

seen in the previous chapter. This chapter is on the second class of HARDI processing

methods. In particular, the chapter details the state-of-the-art QBI reconstruction

solution and our contributions on this problem.

As seen in Chapter 4, the existing functions in the literature that ap-

proximate the diffusion PDF or variants of it are the diffusion orientation

distribution function (ODF) [Tuch (2002)], the Persistent Angular Structure

(PAS) [Jansons and Alexander (2003)] of the diffusion PDF, the fiber orientation dis-

tribution (FOD) [Tournier et al. (2004); Alexander (2005b)] and the diffusion orienta-

tion transform (DOT) [Ozarslan et al. (2005a)]. For all these high angular resolution

functions, the important property is that their maxima agree with the underlying

fiber distribution. However, these methods are based on numerical methods, lacking

a straightforward regularization process and failing to take into account the useful

tools for both estimation and regularization that have been developed for estimating

spherical functions.

The backbone mathematical tool of this chapter is again the spherical harmonics

(SH). Other groups have also converged to this tool. The SH seem to be a natural

way to decompose signals that live on the sphere, just as the Fourier transform is the

widespread tool used to decompose images. Hence, it is not surprising that [Anderson

(2005)], [Hess et al. (2006)] and our group [Descoteaux et al. (2005b, 2006c, 2007a)]

have recently developed separately and in parallel an analytical solution for the ODF

reconstruction in QBI. Despite the fact that the three analytical solutions are similar,

the regularized estimation part, the derivation, the experimental results and the

validation phase are quite different. In this chapter, we carefully present the different

solutions and put up front the differences in derivations and contributions between

our proposed method and methods of [Anderson (2005); Hess et al. (2006)].

More precisely, our solution is obtained by modeling the signal with high order SH

series using a Laplace-Beltrami regularization method developed for the ADC profile

estimation in the previous chapter. This leads to an elegant mathematical simplifica-

tion of the Funk-Radon transform (FRT) that approximates the ODF. We prove a new

corollary of the Funk-Hecke theorem to obtain this simplification. We then obtain

a fast algorithm for the extraction of a robust regularized ODF, which offers advan-
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tages over previous numerical approaches. Another contribution is the quantitative

validation on synthetic data and on real data obtained from a biological rat phantom

and from a human brain dataset. Overall, the contributions are three-fold: 1) Our

ODF estimation is up to 15 times faster than Tuch’s numerical method. 2) Our ODF

estimation is regularized with the Laplace-Beltrami operator, which is theoretically

and practically better than Tikhonov regularization [Hess et al. (2006)] as well as

more robust to noise. 3) At the cost of slightly reducing angular resolution, our ODF

estimation reduces errors and improves fiber detection while reducing angular error

in the ODF maxima detected.

7.2 Q-BALL IMAGING

[Tuch (2002, 2004)] showed that the diffusion ODF could be estimated di-

rectly from the raw HARDI measurements on a single sphere of q-space without

computing the full diffusion PDF. The basic assumption of QBI is that angular in-

formation is enough to recover fiber orientation distributions (forgetting about radial

information). Hence, QBI is a modality which takes advantage of the fact that sig-

nificantly less information is required to construct an angular function in real space

than is required to construct a volume function, as in DSI. Specifically, QBI seeks

to reconstruct the diffusion ODF, a function defined in Eq. 4.13, which is the radial

projection of the diffusion PDF. Recall that it is given by

Ψ(u) =

∫ ∞

0
P (αu)dα, (7.1)

where u is restricted to be a unit vector. Thus, the ODF is a function on the unit

sphere describing the probability averaged over the voxel that a particle will diffuse

into any given solid angle.

To compute the ODF, the QBI modality uses the Funk-Radon transform (FRT)

G, a transformation from the unit sphere to itself. It was illustrated in Figure 4.14.

In order to find the Funk-Radon transformed value of the signal on the sphere at a

given point u, one needs to first find the plane through the origin with normal vector

u and then compute the one dimensional integral over the intersection of that plane

with the function on the original sphere. Intuitively, to find the new value at an arbi-

trarily defined “pole”, one integrates the spherical function f over the corresponding

“equator” or great circle. This can be written explicitly as

G[f(w)](u) =

∫

δ(uT w)f(w)dw (7.2)

where u and w are constrained to be unit vectors. To see why this spherical trans-

formation is close to the true diffusion ODF of Eq. 7.1, [(Tuch, 2004, Appendix A)]

proves that the FRT of Eq. 7.2 can be written as

Gq′ [S(q)](u) = 2πq′
∫

P (r, θ, z)J0(2πq
′r)rdrdθdz, (7.3)
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where q′ is the radius of the acquisition shell in q-space and J0 the zeroth-order Bessel

function. In Appendix 7.7, we reproduce a more detailed proof and introduce the

important Fourier analysis tools that clarify the relation between the FRT and the

true diffusion ODF. From this Appendix, if we assume, without loss of generality, that

the evaluation direction u is along the z-axis, Eq. 7.1 can also be written as

Ψ(u) =

∫

P (r, θ, z)δ(r)δ(θ)rdrdθdz. (7.4)

Hence, when comparing Eq. 7.3 and Eq. 7.4, it is clear that the FRT is a smoothed

version of the true diffusion ODF. In fact, the higher q′ (higher is the b-value), the

closer the FRT approximation is to the exact ODF because the zeroth-order Bessel

function J0 gets sharper and approaches a Dirac delta function (see Appendix 7.7

and Figure 7.14). Fortunately, the values of b required to satisfy this condition are

relatively small (b = 4000 s/mm2 used in [Tuch (2002)]) compared to the maximal

values of b required for the DSI technique (b = 20000 s/mm2 used in [Wedeen et al.

(2000)] and b = 60000 s/mm2 used in [Ozarslan and Mareci (2003a)]).

In practice, the FRT can be implemented by a matrix multiplication. However,

computing this matrix involves several non-trivial numerical computations. In par-

ticular, a regridding and an interpolation of the spherical input data is needed to

compute the equator points in the FRT integral of Eq. 7.2 since many points outside

the actual measurements are required. This interpolation requires a good a priori

basis function and many sampling directions are required to obtain a good QBI re-

construction. In fact, the implementation of [Tuch (2004)] uses a fivefold tessellated

icosahedron (252 samples on the sphere) and a regridding of the signal onto equa-

tors around vertices of a fivefold tessellated dodecahedron (48 x 755 = 36240 points).

Hence, it is a method less intensive than DSI but that still requires non-trivial com-

putational steps.

In this chapter, we significantly reduce the computation burden of QBI and im-

prove its robustness to noise. We apply our technique of the previous chapter for the

approximation of functions on the sphere from noisy sparse data in order to obtain a

robust signal estimation with a regularization procedure. In the previous chapter, it

was shown to be very useful to characterize isotropic, 1- and multi-fiber fiber distri-

butions. We will now show that the use of the spherical harmonics basis can greatly

simplify the FRT integral.

7.3 ANALYTICAL Q-BALL IMAGING

As mentioned in the introduction, we are proposing a similar analytical QBI

solution for the ODF reconstruction as [Anderson (2005)] and [Hess et al. (2006)].

However, despite the similarity of the analytical solution, the derivations are quite

different and use other properties of the spherical harmonic (SH) basis that are worth

reviewing.
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First, [(Anderson, 2005, Appendix B)] proposes an analytical solution using spher-

ical harmonics. It is not the focus of the paper and this is the reason why the full

potential of the solution was not studied as Hess et al did and as we do in this chap-

ter. Nonetheless, the derivation is simple and different from that of both Hess et al

and ours. The idea is that the signal on the sphere can be represented in terms of

the standard polar angles (θ, φ) or in terms of coordinates in a rotated frame. Us-

ing the Wigner rotation matrix, there is a simple relation between SHs evaluated

at (θ, φ) and SHs evaluated at the same physical angle but expressed in the rotated

frame. This is used to evaluate and simplify the FRT by expressing the integral in a

carefully chosen rotated frame.

Second, the solution of [Hess et al. (2006)] is based on the analytical solution to

great circle integrals over SHs. This is based on a previous work by [Backus (1964)]

for an application to geophysical data. Two important properties of the SH are ex-

ploited in this proof: 1) any rotated SH can be uniquely expressed as a linear com-

bination of SH of the same degree and 2) SH satisfy the addition theorem. The two

properties allows them to rewrite the Funk-Radon integral and solve it analytically.

In our case, we use the 3D Funk-Hecke theorem of Section 5.5 to analytically

evaluate integrals of functions on the sphere. The SH formulation of Section 6.2.3 is

crucial for our analytical simplification of QBI and the Laplace-Beltrami regulariza-

tion gives the robustness to the solution.

Signal Approximation with the Spherical Harmonics

For the analytical solution, the signal S (S(b) / S0) is described in a SH series with

coefficients C using the regularized solution of Eq. 6.131. As shown in the previous

chapter, the Laplace-Beltrami (LB) regularization approach is used to eliminate un-

necessary higher order terms in the SH approximation. In [Hess et al. (2006)], classi-

cal Tikhonov regularization is used to obtain the cj coefficients at high orders (ℓ > 4)

and a simple un-regularized solution for ℓ = 4. It is a simple technique used to nu-

merically better condition the matrix involved in the pseudo-inverse of Eq. 6.13. The

solution is expressed in the same form as Eq. 6.13 but the Laplace-Beltrami matrix L

is replaced with the identity matrix I. The regularization is thus uniform, i.e. lower

and higher order coefficients are weighted in the same way, which is less desirable

than a smoothing that minimizes perturbing effects occurring mainly at higher order

harmonics. Moreover, the underlying assumption of Tikhonov regularization is that

the space where the data lives is a flat manifold. This is a rough approximation in

the ODF reconstruction problem since the data actually lives on a sphere, for which

the right and appropriate tool to use is the Laplace-Beltrami operator.

Finally, other works propose some post-processing of the ODF to reduce errors

involved in high frequency harmonics. In [Tournier et al. (2004)], higher order
1The ADC vector X in Eq. 6.13 is replaced with the raw HARDI signal vector S(b)/S0, as in the

un-regularized solution of Eq. 5.29
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terms of the SH fiber ODF reconstruction are attenuated by a heuristic amount.

In [Tuch (2004)], an isotropic spherical smoothing filter of a certain width is ap-

plied to the reconstructed ODFs. More recently, as mentioned in the previous chap-

ter, [Sakaie and Lowe (2007)] proposed a gradient-based regularization which is sim-

ilar in spirit as our regularization.

Funk-Radon Transform Using Spherical Harmonics

We now prove a corollary to the Funk-Hecke theorem needed to solve the Funk-Radon

transform (FRT) integral. Recall that the FRT of the signal in a unit direction u is

the integral over the great circle perpendicular to u, as stated in Eq. 7.2. Hence,

replacing the signal by the SH series approximations, Eq. 5.30 can be written as

G[S/S0](u) =
1

S0

∫

|w|=1
δ(uTw)S(w)dw

=
1

S0

∫

|w|=1
δ(uTw)

R∑

j=1

cjYj(w)dw

=
1

S0

R∑

j=1

cj

∫

|w|=1
δ(uTw)Yj(w)dw

︸ ︷︷ ︸

Ij

(7.5)

Note that if the Dirac delta function δ was continuous on the interval [−1, 1], Ij could

be directly evaluated using the Funk-Hecke formula of Eq. 5.31. However, δ(t) is

discontinuous at zero. To overcome this problem, we approximate the delta function

with a delta sequence δn(x) and take the limit as n goes to infinity. We only need the

existence of such a sequence and for example, the Gaussian of decreasing variance

1/n2, given by δn(x) = (n/
√
π) exp(−n2x2), is a well-known delta sequence. As n

goes to infinity, the variance of this Gaussian tends to zero, so that this sequence of

functions satisfies the defining property of the delta sequence, i.e. that

lim
n→∞

∫ ∞

−∞
δn(x)f(x)dx = f(0). (7.6)

It is a straightforward corollary to show that this definition is valid over the interval

[−1, 1] if δn is continuous sequence of functions. This is the case for the Gaussian

sequence for all n. Hence, we can evaluate Ij as

Ij(u) =

∫

|w|=1
δ(uTw)Yj(w)dw

= lim
n→∞

∫

|w|=1
δn(uTw)Yj(w)dw (def ’n of delta sequences in Eq. 7.6)

= 2π

(

lim
n→∞

∫ 1

−1
δn(t)Pℓ(j)(t)dt

)

Yj(u) (Funk-Hecke theorem Eq. 5.31)

= 2πPℓ(j)(0)Yj(u),

(7.7)
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where ℓ(j) is the order associated with the jth element of the SH basis, i.e. for j =

{1, 2, 3, 4, 5, 6, 7, ...}, ℓ(j) = {0, 2, 2, 2, 2, 2, 4, ...} as before. The rigorous proof can be

found in Appendix 7.8. The strength of this derivation is that it greatly simplifies the

FRT integral in one simple step. We have thus proved the following corollary of the

Funk-Hecke theorem in 3D:

COROLLARY .1. Corollary of the Funk-Hecke Theorem: Let δ(t) be the Dirac

delta function and Yℓ any spherical harmonic of order ℓ. Then, given a unit vector u

∫

|w|=1
δ(uTw)Yℓ(w)dw = 2πPℓ(0)Yℓ(u), (7.8)

where Pℓ(0) the Legendre polynomial of degree ℓ evaluated at 0,

Pℓ(0) =







0 ℓ odd

(−1)ℓ/2 1 · 3 · 5 · · · (ℓ− 1)

2 · 4 · 6 · · · ℓ ℓ even
(7.9)

Note that had we used a standard SH basis, the odd coefficients of the ODF es-

timation would have vanished. Therefore, Funk-Hecke theorem may be useful for

anyone working with SH and seeking solutions to integrals over the sphere. Refer-

ring back to Eq. 7.5, the FRT of a function given in terms of our modified SH series

in a given unit vector direction u is simply given by

G[S](u) =
R∑

j=1

2πPℓ(j)(0)

S0
cjYj(u). (7.10)

Thus, the SHs are eigenfunctions of the FRT with eigenvalues depending only on the

order ℓ of the SH series. When the signal S is parameterized by the vector C of SH

coefficients, i.e. S = BC as before, the ODF reconstruction in terms of SH coefficients,

denoted by the R x 1 vector C′, is simply a diagonal linear transformation given by

C′ =









. . .

2π
(−1)ℓ(j)/2

S0

1 · 3 · 5 · · · (ℓ(j) − 1)

2 · 4 · 6 · · · ℓ(j)
. . .















...

cj
...







(7.11)

Note that if one is interested in a final estimated ODF on the sphere Ψ, it can be

obtained using the simple matrix multiplication

Ψ = BC′, (7.12)

where B is given by Eq. 5.24 as before. The detailed steps of the analytical QBI

reconstruction algorithm are presented in Table 7.1.

Hence, by using the SH for the approximation of the signal attenuation func-

tion at a given radius in q-space, the QBI can be solved analytically, as also shown
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Table 7.1: Summary of the regularized, fast and robust analytical QBI algorithm.

Input:

V : X x Y x Z x N diffusion weighted MRI volume

Sxyz : N x 1 diffusion weighted signal vector at voxel (x, y, z)

Θ : 2 x N matrix of gradient encoding directions in spherical coordinates,

i.e. Θi = (θi, φi) for each i ∈ {1, N}
ℓ : order of SH basis =⇒ R = (1/2)(ℓ + 1)(ℓ+ 2)

λ : regularization parameter

Output:

C′
xyz : R x 1 diffusion ODF vector in SH coefficients at voxel (x, y, z)

Algorithm:

B := Eq. 5.24 : Construct N x R matrix of SH basis elements using Θ and

modified SH basis Y = (Y1, ..., YR)T defined by Eq. 5.21.

ℓ(j) : order associated with element Yj

For j = {1, 2, 3, 4, 5, 6, 7, 8, ...}, ℓ(j) = {0, 2, 2, 2, 2, 2, 4, 4, ...}.

L =







. . .

ℓ(j)2(ℓ(j) + 1)2

. . .







: R x R LB smoothing matrix

P =








. . .
2πPℓ(j)(0)

S0

. . .








: R x R FRT matrix (Pℓ(j)(0) from Eq. 7.9)

Tr = P(BTB + λL)−1BT : R x N signal to ODF transform matrix

For each (x, y, z) ∈ V

C′
xyz = Tr · Sxyz : Compute SH coefficients of the ODF in one step
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in [Anderson (2005); Hess et al. (2006)]. An important contribution in favor of our

approach is that this solution can be obtained while imposing a well-defined reg-

ularization criterion. The accuracy of the modified SH series approximation with

the Laplace-Beltrami smoothing was established in the previous chapter for sparse

measurements on the sphere. The analytical ODF estimation method offers the ad-

vantages that the discrete interpolation over many equators is eliminated and the

solution for all directions is obtained in a single step. We now validate our new an-

alytical QBI method and analyze the computational complexity gain. We also point

out the different and complementary results obtained in [Hess et al. (2006)].

7.4 VALIDATION AND COMPARISON OF QBI METHODS

7.4.1 Numerical QBI Implementation

The implementation of [Tuch (2004)] involves several numerical computations such

as a regridding to find points outside the actual measurements required to compute

the discrete points on each great circle. Our implementation of Tuch’s numerical

QBI is adapted from [Campbell et al. (2005)] QBI computation which is successfully

used for multiple fiber characterization and tracking. Given N points spaced ap-

proximately uniformly on the surface of the sphere, the interpolation on each unit

great circle can be done at every (1/2)
√

2π/N radians to take full advantage of the

N discrete measurements. This gives k =
√

8πN points per equator. We also set the

width parameter (angular width) of the spherical Gaussian interpolation kernel au-

tomatically to three times the angle between equator points, i.e. σ = (3/2)
√

2π/N .2

This heuristic choice gives a good trade-off between the accuracy and stability in our

experiments.

7.4.2 Synthetic Data Generation

We generate synthetic data using the multi-tensor model of Appendix A.1, which

leads to an analytical computation of the exact ODF. This exact ODF is derived in

Appendix 7.9. For a given b-value, noise level and encoding direction i, we generate

the diffusion-weighted signal S for N = 81 or N = 321 gradient encoding directions

on the hemisphere (for 3rd or 7th order tessellation of the icosahedron respectively).

As in [Hess et al. (2006)] we vary SNR values between 5 and 50. This SNR range

covers expected low to high quality of real in vivo HARDI data.

2In Tuch (2004), k is set to 48 and σ to 5◦ although it is argued that k and σ can be selected for a

desired level of numerical precision.
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7.4.3 Computational Complexity Analysis

We refer to Table 7.1 for the analytical QBI and to [(Tuch, 2004, Tbl.1)] for the nu-

merical QBI. Assuming that the input diffusion MRI volume is of size X x Y x Z x N ,

we have a diffusion signal vector of N x 1 at each voxel, where N is the number of gra-

dient directions taken. We let k be the number of points on each equator over which

the numerical Funk-Radon integral is computed. In our technique, we have defined

R = (1/2)(ℓ + 1)(ℓ + 2) to be the number of elements in the SH basis. It is straight-

forward to see that the analytical ODF reconstruction is O(XY ZNR) because of the

O(NR) matrix multiplication at every voxel, while the original ODF reconstruction is

O(XY ZNk) because of the integration of k equator points for each sampling direction

N at every voxel. Therefore, the difference in computational complexity between the

two methods can be explained by the difference between R and k, where R is gener-

ally smaller than k. For example, at orders ℓ = 4, 6, 8, for our method R = 15, 28, 45

respectively; in [Tuch (2004) k is set to be 48.

7.4.4 Effect of Spherical Sampling Density

To study the effect of sampling density, we vary the number of gradient encoding

directions along which we generate the signal and we also vary the SNR between 30,

20 and 10. We fix b = 3000 s/mm2, estimation order ℓ = 8, λ = 0.006 and generate

signal for fibers crossing at 90◦ with equal volume fractions.

7.4.5 Robustness to Noise

We perform two simulations to evaluate the ODF estimation. In the first simula-

tion, SNR was fixed to 35 while varying the b-value between 500 and 12000 s/mm2

for estimation order ℓ = 4 and ℓ = 8. In the second simulation, we fix the b-value

to b = 3000 s/mm2 and estimation order to ℓ = 8 while varying the SNR between 5

and 50. In both tests, we randomly choose the number of fibers n per voxel between

1, 2 and 3 as described in Appendix A.1. The optimal regularization λ parameter

can be obtained from the L-curve numerical method [Hansen (2001)] or generalized

cross validation [Wahba (1990); Sakaie and Lowe (2007)]. To avoid having to com-

pute the optimal λ for each HARDI profile at every iteration, we set λ = 0.006 for

our reconstruction, a value shown to provide good separation of 1-fiber from 2-fiber

distributions over a range of SNR and b-values in the previous chapter. We apply the

transformation given in Eq. 7.11 to obtain the estimated SH coefficients of the ODF

and use Eq. 7.12 to obtain the corresponding discrete function on the sphere for the

N sampling directions.
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7.4.6 ODF Shape Comparison

Letting Ψ represent the exact ODF and Ψ′ the estimated ODF, we compute the aver-

age Euclidean squared error between Ψ and Ψ′ over all tests and N samplings of the

sphere, i.e.

[Ψ,Ψ′] =
1

N

N∑

i=1

(Ψ′(θi, φi) − Ψ(θi, φi))
2. (7.13)

This method is used to compare ODF shapes throughout the Results section, includ-

ing experiments using synthetic data, data from the biological phantom and human

brain data. However, other appropriate distances such as Kullback-Leibler diver-

gence [Tuch (2004)] could also be considered.

7.4.7 Fiber Detection and Angular Resolution

To evaluate fiber detection differences between Laplace-Beltrami and Tikhonov regu-

larization, we test on synthetic HARDI data generated using a 3rd order tessellation

of the icosahedron that gives 81 samplings on the hemisphere, a SNR of 10 and 2

orthogonal fibers. We vary estimation order ℓ and use two b-values of 3000 s/mm2

and 1000 s/mm2. 1) We generate 1000 such HARDI data separately, 2) we estimate

ODFs with/without Laplace-Beltrami and Tikhonov regularization, 3) we count the

number of times we correctly detect 2 ODF maxima and 4) we report the percentage

and average angular error ± standard deviation in degrees over all 1000 trials.

We also perform a numerical experiment to evaluate angular resolution limita-

tions of the ODF reconstruction with/without Laplace-Beltrami and Tikhonov regu-

larization. We generate noise-free synthetic HARDI profiles for 2 fibers, for b-values

of 3000 s/mm2 and 1000 s/mm2 and for spherical sampling densities N = 81 and

N = 321. Then, we vary the crossing angle between fibers to determine the critical

angle at which only a single maxima starts to be detected instead of two. We report

this critical angle as the angular resolution of the estimation.

Maxima Extraction To extract the fiber ODF maxima, it is generally assumed

that they are simply given by the local maxima of the normalized ODF ([0,1]), where

the function exceeds a certain threshold (here, we use 0.5). In practice, we project the

ODF onto the sphere tessellated with a fine mesh. We use a 16th order tessellation

of the icosahedron, which gives 1281 sample directions on the sphere.3 Then, we

implement a finite difference method on the mesh. If a mesh point is above all its

neighbors and if this point has a normalized ODF value above 0.5, we keep the mesh

point direction as a maxima. This thresholding avoids selecting small peaks that

may appear due to noise. Other more complex methods exist to extract the maxima

such as the method presented in [Hlawitschka and Scheuermann (2005)] or spherical

Newton’s method [Tournier et al. (2004)], Powell’s method [Jansons and Alexander

3The angle between each spherical grid point is approximately 4◦.
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(2003)] or sequential quadratic programming [Sakaie and Lowe (2007)]. However,

one must be careful with these more complex methods to avoid getting trapped in

small local maxima. We prefer our simple finite difference scheme because it is very

efficient and robust in practice.

7.4.8 Power Spectrum of the Spherical Harmonics Representation

[Hess et al. (2006)] also analyze the power spectrum of the SH representation up to

order ℓ = 10 for signal with 1, 2 and 3 fibers crossing. The contribution of each

angular frequency of the power spectrum is computed with

Eℓ =
1

ET

∑

{j:ℓ(j)=ℓ}
|c′j |2, (7.14)

where c′j are the coefficients of describing the ODF (Eq. 7.11), ℓ(j) is the order as-

sociated with the jth coefficient as before and ET denotes the total power of the

10th-order harmonic representation for all coefficients of order ℓ ≥ 2. The 0th-order

harmonic is excluded as it is constant and does not contribute to the anisotropy of

the ODF. We have reproduced the power spectrum study for different b-values and

we study the difference between the power spectrum of the regularized (λ = 0.006)

and un-regularized (λ = 0) analytical QBI reconstructions. The power spectrum was

computed and averaged for 1000 simulated noisy HARDI signal of 1 fiber, 2 fibers

and 3 fibers crossing respectively with SNR of 35 and sampling density of N = 81. As

before, the separation angle for crossings was random between 45◦ and 90◦ and fibers

had random fiber fractions as described in Appendix A.1.

7.5 RESULTS

We show five contributions of the regularized analytical QBI method; 1)

it is up to 15 times faster than Tuch’s numerical method, 2) it requires fewer DWI

measurements than numerical QBI to perform a stable ODF reconstruction, 3) it

is robust to noise, 4) it improves accuracy in ODF maxima detection at the cost of

slightly reducing angular resolution and 5) it recovers fiber crossings from synthetic

data, from a biological phantom and from real human brain data.

7.5.1 Running Time Comparison

Table 7.2 shows that analytical QBI is up to 15 times faster than Tuch’s numerical

QBI in practice. Computation was performed on a Dell single processor, 3.4 GHz, 2

GB RAM machine. Given N samples on the sphere and a SH basis of order ℓ, the

theoretical speed-up factor for order ℓ = 4, 6, 8 is approximately 3, 2, 1 respectively.

However, in practice the running time of the analytical QBI is nearly 15 times faster.

The factor of 5 gap between the theoretical and experimental speed-up is because

of the constant time operation hidden and not accounted for in the “big O” analysis
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Phantom (A.2) Brain (A.3.1) Brain (A.3.3)

dataset size (voxels) 35 x 17 x 35 x 90 128 x 128 x 63 x 99 93 x 116 x 93 x 61

Numerical QBI 0:13.59 13:27.12 5:43.86

Analytical QBI

ℓ = 4 0:01.27 0:40.42 0:27.07

ℓ = 6 0:01.61 0:53.06 0:35.76

ℓ = 8 0:02.09 1:49.37 0:58.38

Table 7.2: Analytical QBI is up to 15 times faster than Tuch’s numerical QBI in

practice. Computation experiments are performed on a Dell single processor, 3.4

GHz, 2 GB RAM machine.

of the running time in theory. This is mainly due to the interpolation kernel width

of Tuch’s approach which is not considered in the complexity analysis and which

adds a constant number of operations (4 to 7 in practice) at every equator point. The

reading/writing of 4D volumes with 4th dimensionN instead ofR is also slower. Thus,

as mentioned in [Hess et al. (2006)], there are interesting potential data compression

applications offered by the SH basis, since only a few harmonic coefficients need to be

stored per voxel.

7.5.2 ODF Shape Comparison and Robustness to Noise

Figure 7.1 shows that the Laplace-Beltrami regularization reduces ODF estimation

errors. First, Figure 7.1a shows that the estimation is precise. As expected, we

observe that for optimal b-value, the error is less than 1%. Note also that the best

results are not for the highest b-values because in this case, the diffusion-weighted

signal decreases sharply in SNR. This is because the signal intensity of the Gaussian-

like profile of the signal varies more rapidly with ADC. At the extremity of very high b-

values, most of the signal is lost. One would need to choose a much higher λ to prevent

the regularized curve from approaching the un-regularized curve. It is also expected

that for low b-values, the accuracy of the estimation is reduced. This is mostly due to

the Bessel function averaging effect explained in Section 7.2 and Appendix 7.7. The

signal is too smooth and there is very small contrast. Regularization is unnecessary

in these cases. It is also interesting to note that a lower estimation order (ℓ = 4) can

outperform the regularized and un-regularized estimation of order ℓ = 8 for low b-

values (b < 1500 s/mm2). the higher angular resolution afforded by higher estimation

order is not possible. Finally, lowest error is observed in a plateau of relatively high

b-values between 2000 and 6000 s/mm2, which agrees with reported results in the

literature [Tuch (2002); Tournier et al. (2004)]. How to choose the optimal b-value

for a particular HARDI acquisition is still an open question but in our particular

synthetic experiment, we find the smallest error occurring for b-values between b =
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Figure 7.1: Laplace-Beltrami regularization reduces ODF estimation errors. Plotted

is the point-wise Euclidean squared error [f, f ’] of Eq. 7.13 between the ground truth

f and estimated normalized ODFs f’. (a) In the first simulation, the SNR was fixed

to 35 while varying the b-value between 500 and 12000 s/mm2 for combinations of

regularization parameter and estimation order of (λ = 0.006, ℓ = 8) in blue, (λ = 0,

ℓ = 8) in red and (λ = 0, ℓ = 4) in black. (b) In the second simulation, we fix b =

3000 s/mm2 and estimation order ℓ = 8 while varying the SNR between 5 and 50.
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4000 and 5000 s/mm2.

Last, Figure 7.1b shows that the error decreases when the noise level decreases,

from more than 12% for a noisy signal (small SNR) to less than 1% for high quality

data (large SNR). It is also important to compare the green curve (numerical QBI)

with the analytical QBI blue/red curves with/without regularization that we have

added in this test to report robustness results of the different approaches. We note

that for high quality data, numerical QBI and analytical QBI with/without regular-

ization are almost identical whereas for noisy data, the analytical QBI with regu-

larization λ = 0.006 performs best, while numerical QBI is better than analytical

QBI without regularization (λ = 0). Finally, as in Figure 7.1a, we have analyzed the

behavior of the un-regularized estimation of lower order ℓ = 4. The un-regularized

estimation errors of order 4 overlap the regularized estimation errors of order 8 for

low quality data with SNR less than 20 and for high quality data with SNR larger

than 20, the un-regularized estimation errors of order 4 overlap the un-regularized

estimation errors of order 8. Because of these overlaps and for clarity of Figure 7.1b,

we do not plot the curve.

Finally, it is worth mentioning that Tikhonov regularization produces curves that

overlap with the λ = 0 curves in the two experiments. This is why it is not necessary

to illustrate it in Figure 7.1. As pointed in the last section, this is expected because

Tikhonov regularization does not alter the shape of the ODF. Therefore, the Laplace-

Beltrami regularization weight reduces the effect of noise while allowing the use of a

high order ℓ in the estimation.

7.5.3 ODF Reconstruction for Different Sampling Schemes

Figures 7.2 and 7.3 show the effect of varying the number of DWI measurements

(sampling density) while varying noise level. Figure 7.2 was taken from [(Hess et al.,

2006, Fig.3)] and Figure 7.3 extends the study for more sampling density schemes.

The signal generation used here is also slightly different from that used in [Hess et al.

(2006)]. Overall, we see that the reconstructions behave similarly for high SNR

values and also behave similarly for high sampling density schemes. However, as

noted in Hess et al. (2006), the analytical ODF reconstruction is more stable for low

SNR and low number of DWI directions. Tuch’s numerical QBI as well as the un-

regularized analytical QBI (λ = 0) are more affected by noise in the SNR 10 column

and when the number of directions is less than 100. The reconstructions are slightly

more noisy. Note also that for very low sampling density N = 21, Tuch’s numerical

reconstruction is very smooth and maxima less clear than for the analytical recon-

structions. Overall, reconstructions of the ODF with Laplace-Beltrami regulariza-

tion (λ = 0.006) more stable over a large range of sampling density schemes and SNR

values.
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Figure 7.2: ODF reconstruction for different spherical sampling schemes and noise

level. Figure taken from [(Hess et al., 2006, Fig.3)]. The analytical QBI solution

requires fewer DWI measurements to obtain a stable reconstruction at low SNR. The

signal was generated with slightly different parameters, namely b = 3000 s/mm2, 90◦

crossing fibers with equal volume fractions and FAs of 0.7 for each tensor profile.

7.5.4 Fiber Detection and Angular Resolution

In this section, we show four results: 1) Laplace-Beltrami regularized ODFs decrease

small perturbations due to noise that can create false maxima, 2) Laplace-Beltrami

regularized ODFs improve the detection of crossing fibers while reducing angular

error as calculated from the maxima of the ODF and 3) ODF maxima agree with the

known underlying fiber configurations under different signal parameters. 4) Angular

resolution of the QBI method depends on regularization technique, estimation order

ℓ, acquisition b-value and spherical sampling density N .

First, Figure 7.4 shows that Laplace-Beltrami regularized ODFs remove small

perturbations due to noise that can create false maxima and errors in detected max-

ima in ODFs estimated without regularization and with Tikhonov regularization (last

two rows of Figure 7.4). In particular, in this test, there are 3 maxima detected for

Tikhonov regularization at ℓ = 8 and for no regularization at ℓ = 8, 10 and up to 4

maxima (one is less obvious and comes out of the page) for Tikhonov regularization

at order ℓ = 10. Hence, not only there is a danger of over-modeling the data when

using a high order (ℓ > 6) with/without Tikhonov regularization but also, there is

an angular error made on the detected maxima at ℓ = 6. One can potentially tweak

the threshold in the fiber detection method to remove some of the spurious maxima

but cannot correct for the angular error made. The Tikhonov regularization results
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SNR 30 SNR 20 SNR 10 SNR 30 SNR 20 SNR 10

21 directions 65 directions

λ = 0.006

λ = 0

Tuch

81 directions 129 directions

λ = 0.006

λ = 0

Tuch

Figure 7.3: At low SNR, the regularized analytical QBI solution requires fewer DWI

measurements to obtain a stable reconstruction. For high SNR and with sufficient

DWI measurements the un-regularized (λ = 0) and regularized analytical (λ = 0.006)

QBI as well as the numerical QBI of (Tuch (2004)) are stable and behave similarly.

The signal was generated with b = 3000 s/mm2, 90◦ crossing fibers with equal vol-

ume fraction and profiles as described in Appendix A.1. The ODF reconstruction was

done for order ℓ = 4. Sampling density N = 21, 65, 81 and 129 correspond to a 2nd,

3rd, 3rd and 4th order tessellation of the icosahedron, tetrahedron, icosahedron and

octahedron respectively.

shown in Figure 7.4 were obtained with parameter λ = 2.

Second, Table 7.3 confirms the observation made in Figure 7.4. Table 7.3 shows

that Laplace-Beltrami regularized ODFs improve the detection of crossing fibers

while reducing angular error as calculated from the maxima of the ODF, as seen

in the example of ℓ = 6 of Figure 7.4. For these tests, we recorded the percentage of

correct 2-fiber ODF maxima detected and noted the average angular error ± standard
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ℓ = 4 ℓ = 6 ℓ = 8 ℓ = 10

Laplace-Beltrami regularization

No regularization

Tikhonov regularization [Hess et al. (2006)]

(a) (b) (c) (d)

Figure 7.4: ODF regularization decreases small perturbations due to noise that can

create false maxima and errors on the detected maxima. Thin lines are the true

underlying fiber directions and thicker tubes are the detected ODF maxima. Simu-

lations are done with harmonic order between ℓ = 4, 6, 8, 10 without regularization

(λ = 0), with Tikhonov regularization (λ = 2) and with our Laplace-Beltrami regular-

ization (λ = 0.006). ODFs are generated with N = 81, SNR = 10, b = 3000 s/mm2 and

orthogonal fibers crossing.

deviation made in degrees. In the case there were more than 2 maxima detected, the

error was estimated on the two closest ODF maxima to ground truth. With Laplace-

Beltrami regularization the detection is nearly perfect at b = 3000 s/mm2 and above

88% at b = 1000 s/mm2 for all orders whereas the detection dramatically decreases for

high order estimations ℓ = 6, 8, 10 for Tikhonov regularization and without regular-

ization. Table 7.3 shows also that Laplace-Beltrami smoothing reduces the average

angular error as calculated from the ODF maxima detected and their ground truth.

Overall, orthogonal fibers are detected accurately by all methods for ℓ = 4 even at the

lower b-value. The approximation is smooth enough that effects due to noise are re-

duced. However, Laplace-Beltrami regularization is necessary to obtain good results
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b-value order LB (λ = 0.006) without LB Tikhonov

s/mm2 ℓ λ = 0.006 λ = 0 λ = 2

4 99.9%, 2.1 ± 5.4◦ 99.6%, 1.6 ± 4.7◦ 99.6%, 1.6 ± 4.7◦

3000 6 99.6%, 2.8 ± 6.1◦ 95.8%, 4.4 ± 7.2◦ 95.9%, 4.2 ± 7.0◦

8 99.4%, 2.5 ± 5.8◦ 62.9%, 4.6 ± 7.4◦ 63.1%, 4.5 ± 7.2◦

10 99.6%, 2.6 ± 5.8◦ 31.5%, 6.0 ± 7.5◦ 31.1%, 6.6 ± 7.7◦

4 96.2%, 8.6 ± 10.6◦ 96.1%, 7.1 ± 8.9◦ 96.2%, 7.0 ± 8.8◦

1000 6 90.3%, 10.4 ± 10.8◦ 69.4%, 11.9 ± 10.1◦ 71.0%, 11.1 ± 9.7◦

8 88.5%, 10.8 ± 11.4◦ 23.4%, 11.3 ± 10.9◦ 24.3%, 11.1 ± 10.5◦

10 88.0%, 10.8 ± 11.3◦ 4.5%, 12.6 ± 10.7◦ 4.4%, 12.8 ± 10.2◦

Table 7.3: Laplace-Beltrami regularization improves the percentage of detecting

crossing fibers while reducing angular error as calculated from the maxima of the

ODF. Percentage reflects if ODF were correctly detected with 2 maxima. We report

success %, average angular error in degrees ± standard deviation in degrees for the

ODF estimated with Laplace-Beltrami (LB) regularization, with Tikhonov regular-

ization and without regularization. The simulations are HARDI signal of 1000 sep-

arate pairs of orthogonal fibers, with a SNR of 10 and spherical sampling density of

N = 81, while varying estimation order ℓ and the b-value. For ℓ > 4, Laplace-Beltrami

regularization is necessary to obtain good fiber detection.

for higher order (ℓ > 4).

The behavior of ODFs in Figure 7.4 and better performance in Table 7.3 due

to the Laplace-Beltrami regularization in the ODF estimation are expected. High-

order modeling error due to noise is avoided while minimally altering the lower order

coefficients involved in the description of the ODF. A regularization approach like

that of [Sakaie and Lowe (2007)] based on the gradient squared would most likely

also be able to reproduce this behavior. However, the Tikhonov regularization used

in [Hess et al. (2006)] is an approach mainly used to improve the numerical condi-

tioning of the matrices. However, it is not designed to smooth the spherical functions

as it perturbs the diagonal elements uniformly which has the effect of adding λ to

every eigenvalue. This does not change the overall shape of the ODF and does not

eliminate spurious peaks. Moreover, in our experiments, we found that both Hess et

al SH basis and our basis are well conditioned. That is, the ratio of the largest over

the smallest eigenvalue of the BT B matrix involved in the least-square expression of

Eq. 6.13 remains small, even when varying density N for N = 30, 66, 81, 99, 130, 321

samplings on the hemisphere.

Next, Figure 7.5 qualitatively shows that we are able to reliably recover the un-

derlying fiber population for imaging parameters similar to clinical applications. The

example is generated with b-value of 1500 s/mm2, with sampling density N = 81, with

noise level of SNR = 15 and with a 2-fiber population crossing at 90◦ and 60◦ respec-
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field of ODFs maxima extracted field of ODFs maxima extracted

(a) (b)

Figure 7.5: ODFs recover multiple fiber crossing in synthetic data generated with

b = 1500 s/mm2, SNR = 15. (a) 90 degree crossing and (b) 60 degree crossing. An

order 6 estimation with λ = 0.006 was used.

tively. Other examples for b-values (500, 1500, 3000 s/mm2) and other SNR (5, 15,

35) can be found in [Descoteaux et al. (2005b)]. Note that the detected ODF maxima

qualitatively agree with the underlying fibers with some small angular error due to

noise level, even though a relatively low b-value is used. The average angular error

between ground truth directions and detected maxima was calculated to be approx-

imately 10◦ for both datasets. Simulation with a 3rd order tessellation gives a 16◦

difference between each ODF reconstruction point. The error is thus less than an an-

gular sampling unit and separating both fiber configurations is done with the same

quantitative precision. As one would expect, the smaller the angle between fibers,

the harder it is to distinguish them.

Last, Table 7.4 illustrates the angular resolution of the analytical QBI technique

with respect to the SH order ℓ and the regularization method used in the ODF es-

timation as well as the b-value and spherical sampling density used to generate the

synthetic signal. The critical separation angle is reported, i.e. the angle between 2

fibers under which only a single ODF maximum starts to be detected. Five expected

observations can be made from Table 7.4. 1) It is harder to distinguish crossing fibers

for lower b-values. In fact, there is approximately a 15◦ gain in angular resolution

when going from b-value 1000 s/mm2 to b-value 5000 s/mm2 and higher. 2) For ℓ > 4

there is an improvement in angular resolution of roughly 3 to 10◦ for all methods be-

cause higher order estimation include higher order frequencies in the approximation

of the signal. The largest angular resolution improvement occurs for high b-value

and high spherical sampling density (N = 321). 3) Tikhonov and no regularization

have a better angular resolution than using Laplace-Beltrami regularization. In the

Laplace-Beltrami case, the critical angle remains reasonable and about 0 to 5◦ higher.

This decrease in angular resolution is due to smoothing of the higher frequency in-

formation in Laplace-Beltrami regularization. Hence, there is a trade-off between

accuracy of the fiber detection and angular resolution. 4) There is an improvement of
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(a) N = 81

b = 10000 s/mm2 b = 5000 s/mm2 b = 3000 s/mm2 b = 1000 s/mm2

ℓ LB TK λ = 0 LB TK λ = 0 LB TK λ = 0 LB TK λ = 0

4 57◦ 55◦ 55◦ 59◦ 56◦ 56◦ 63◦ 60◦ 60◦ 75◦ 71◦ 71◦

6 53◦ 49◦ 49◦ 55◦ 52◦ 53◦ 59◦ 53◦ 54◦ 74◦ 68◦ 68◦

8 52◦ 46◦ 48◦ 55◦ 50◦ 50◦ 58◦ 53◦ 53◦ 74◦ 68◦ 68◦

10 52◦ 46◦ 47◦ 55◦ 49◦ 49◦ 58◦ 52◦ 53◦ 74◦ 68◦ 68◦

(b) N = 321

4 54◦ 54◦ 54◦ 56◦ 55◦ 55◦ 60◦ 59◦ 59◦ 72◦ 71◦ 70◦

6 44◦ 42◦ 43◦ 47◦ 45◦ 46◦ 52◦ 50◦ 50◦ 69◦ 67◦ 67◦

8 39◦ 35◦ 36◦ 44◦ 40◦ 41◦ 50◦ 46◦ 47◦ 69◦ 66◦ 67◦

10 36◦ 31◦ 31◦ 43◦ 38◦ 39◦ 50◦ 46◦ 46◦ 69◦ 66◦ 67◦

Table 7.4: Angular resolution limitations of the ODF reconstruction with/without

Laplace-Beltrami (LB) (λ = 0.006) and Tikhonov (TK) [Hess et al. (2006)] regulariza-

tion. Noise-free synthetic HARDI profiles are generated for 2 fibers, for b-values of

10000, 5000, 3000 and 1000 s/mm2 and for spherical sampling density using N = 81

and N = 321. The crossing angle between fibers is varied to report the critical angle

under which only a single maxima starts to be detected instead of two.

a few degrees in angular resolution when increasing spherical sampling density used

to generate the synthetic data. 5) For higher b-values and higher sampling density,

there is an important angular resolution improvement of about 10◦ when comparing

the Laplace-Beltrami regularized estimation of order ℓ > 4 with the Tikhonov and

λ = 0 estimations at order ℓ = 4. This increase in angular resolution is even more

apparent at higher b-values.

In a different angular resolution study, [Hess et al. (2006)] have studied the the-

oretical relationship between the approximation order ℓ and angular resolution, as

calculated from the full width half max of the main lobe of the spherical point spread

function (PSF). In particular, for ℓ = 4, 6, 8, 10, the angular resolution is approxi-

mately 65◦, 45◦, 35◦, 30◦ respectively. This is described in [(Hess et al., 2006, Fig.1)].

This study mainly looks at the impact of SH estimation order without considering the

HARDI signal parameters or the regularization technique used in the estimation. In

practice, we observe critical angles that are higher because there are many other pa-

rameters than order ℓ that may influence angular resolution of the solution. In this

section, not only have we studied the SH order ℓ but we have also studied the regu-

larization method and λ parameter as well as the b-value and the spherical sampling

density N in synthetic simulations.
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Figure 7.6: Power spectrum (Eq. 7.14) of the spherical harmonic representation at

low b-values. ODFs were estimated with regularization λ = 0.006 (indicated with

regul in the legend of the figure and dashed texture on the chart bars) and without

regularization for ℓ = 10 from N = 81 spherical sampling density and SNR 35 for

different b-value. 1000 HARDI profiles were simulated for 1 fiber (blue), 2 fibers

(green) and 3 fibers (red). Note that for low b-values, most of the SH information is

contained in the SH orders ℓ ≤ 4.

7.5.5 Power Spectrum of the Spherical Harmonic Representation

Figures 7.6 and 7.7 are the power spectrum graphs summarizing the fraction of the

power that each harmonic order has in the ODF reconstruction for different b-values.
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Figure 7.7: Power spectrum (Eq. 7.14) of the spherical harmonic representation at

high b-values. ODFs were estimated with/without regularization as in the previous

figure. Note that for high b-values, high order ℓ ≥ 6 SH information is more im-

portant than at low b-values. The effect of noise is also seen in the un-regularized

reconstructions where there is an abnormal amount of energy in the high SH orders.

Figure 7.6 shows the power spectrum of the ODF SH representation at low b-values.

We note that most of the SH information is contained in the SH orders ℓ ≤ 4. In fact,

at b = 1000 s/mm2, more than 95% and 98% of the energy is contained in order ℓ ≤ 4

without/with regularization respectively. At b = 3000 s/mm2 the energy is slightly

lowered by more or less 6 to 10%. Hence, most of the SH information is contained in
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harmonics of order 4 and less for QBI reconstructions from HARDI signal at relatively

low b-values (b ≤ 3000 s/mm2).

Figure 7.7 shows the power spectrum of the ODF spherical harmonic representa-

tion at high b-values. Note that for high b-values, high order (ℓ ≥ 6) SH information

is more important than at low b-values. We note strong contributions in the SH order

of ℓ = 6 and ℓ = 8. As expected, energy is even higher for ℓ = 6 and ℓ = 8 when

the signal has a multiple fiber configuration, where higher frequency information is

needed to describe the crossings. Another important effect seen is the strong effect of

noise in the un-regularized reconstructions (solid chart bars). There is an abnormal

amount of energy in the high SH orders of ℓ = 6 and ℓ = 8. This effect is dramatic

at b = 8000 s/mm2 where energy in SH coefficients of order 8 is higher than energy of

coefficients of order 6. This is due to the over-modeling of the estimation and the fact

that high order coefficients are perturbed by noise. In the regularized case (dashed

chart bars), this noise effect is not seen and as expected, the energy decreases as SH

order increases.

Conclusion of Synthetic Data Experiments

There are several important messages from this section. Overall, we showed that

there is a trade-off between angular resolution and accuracy of the fiber detection. We

have seen that the Laplace-Beltrami regularization reduces errors in fiber detection

while keeping a reasonable angular resolution, and in the case of high b-value acqui-

sitions with high number of sampling directions on the sphere, the Laplace-Beltrami

regularized solution for high orders (ℓ > 4) has better angular resolution than the un-

regularized solution at order ℓ = 4. The Laplace-Beltrami regularization also allows

for more stable ODF reconstruction over a large range of sampling scheme density

and SNR values. Moreover, although still an open question, we find that the small-

est estimation errors in our simulations occur for b-values between 4000 s/mm2 and

5000 s/mm2. The best angular resolution is also observed for high b-values of 5000

s/mm2 and larger where a 15◦ gain in angular resolution is observed when compared

to a b = 1000 s/mm2 simulation. Finally, we have also seen that the analytical QBI

solution is up to 15 times faster than the standard numerical QBI solution. These

are advantages in favor of our analytical QBI solution.

7.5.6 Biological Phantom Results

Figure 7.8 shows that ODFs recover multiple fiber crossing in the rat biological phan-

tom of Appendix A.2. Note that the ODFs have multiple peaks that agree with the

known underlying fiber population, which we have emphasized with the sub-figure

showing only ODF maxima. This is not the case when looking at the DTI ellipsoids

which are flat and sphere-like in the crossing. Moreover, ODF shapes shown in the

second row of Figure 7.8 are qualitatively nearly identical. In fact, when comput-
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T1-weighted Ground truth orientations DTI ellipsoids

numerical QBI analytical QBI ODF maxima detected

Figure 7.8: ODFs recover multiple fiber crossing in the rat biological phantom.

Ground truth orientations were obtained from [Savadjiev et al. (2006)]. An order 6

estimation with λ = 0.006 was used.

ing the mean and standard deviation of the average Euclidean squared difference

(Eq. 7.13) between the ODFs at every voxel of the volume, we obtain a 0.55 ± 0.17%

difference, demonstrating the strong agreement between the methods. That is, ODFs

computed from the analytical and numerical QBI [Tuch (2004)] are more than 99%

in agreement.

Table 7.5 shows that analytical and numerical QBI [Tuch (2004)] methods yield

essentially the same results on the rat phantom while reducing errors obtained from

DTI. To perform a quantitative evaluation of the ODF maxima, we used the “ground

truth” orientations from [Savadjiev et al. (2006)] (illustrated in Figure 7.8). The ori-

entations are in fact more like a silver standard (a gold standard does not exist in

a biological phantom) as they were determined by extracting the centerlines of each

super-sampled rat cord and then smoothly extended to the center of the boundaries.

For each ODF dataset and for the DTI ellipsoids, the maxima are extracted. Then, at

each voxel, the smallest angular difference between the available maximum(a) and

ground truth orientation(s) is recorded. The median and mean ± standard deviation

(std) orientation errors in degrees are shown in Table 7.5. The analytical and numer-

ical QBI methods yield essentially the same results while significantly reducing the

errors obtained from the DTI profiles. It is important to note that due to the discrete

sampling of the sphere, even perfect ODF data will be expected to have some error

with respect to the ground truth orientations. This minimal expected error is related

to the solid angle subtended by one facet of the sphere tessellation induced by the

sampling. For example, it can be found to equal 7.2◦ for a uniform sampling of the
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Comparison with ground truth directions

median mean ± std

analytical QBI 12.20◦ 15.94 ± 15.32◦

numerical QBI 12.19◦ 15.94 ± 15.40◦

DTI 15.2◦ 19.4 ± 16.2◦

Table 7.5: Analytical and numerical QBI methods yield essentially the same results

on the rat phantom while reducing errors obtained from DTI. Ground truth orienta-

tions and comparison are done as in [Savadjiev et al. (2006)].

rgb map Tuch’s numerical QBI analytical QBI

Figure 7.9: Overall shapes of the ODFs are nearly the same for the analytical and

numerical QBI. The region of interest shows the cortical spinal tract (cst) and corpus

callosum (in the plane) and the cst and longitudinal superior fibers (coming out of the

plane) cross.

hemisphere by 100 directions [Savadjiev et al. (2006)].

7.5.7 Human Brain HARDI Data Results

As for the rat biological phantom, if we compare ODFs on the human brain dataset of

Appendix A.3.1, the overall shapes of the ODFs are nearly the same for the analytical

and numerical QBI [Tuch (2004)] methods. We record a small mean and standard

deviation of the average Euclidean squared difference (Eq. 7.13) between ODFs from

the two methods of 0.68 ± 0.23%. This is seen qualitatively in Figure 7.9. Here, b =

3000 s/mm2 with isotropic voxels of 2 mm.

Crossings in the Max Planck Institute Dataset

Qualitatively, Figure 7.10 shows that ODFs recover multiple fiber crossing in the

human brain dataset of Appendix A.3.3 where DTI profiles are limited. Here, b =

1000 s/mm2 with isotropic voxels of 1.7 mm. Diffusion tensors (DTs) were estimated

with a classical least-squares method. DTs and ODFs are overlaid on the classical FA

anisotropy measure and its high order generalization GFA [Tuch (2004)] respectively.

We zoom on the ODFs in two ROI. Again, ODF maxima agree with our knowledge of
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Figure 7.10: ODFs recovering multiple fiber crossing in a ROI similar to the previous

figure where DTI profiles are limited. The ODFs and diffusion tensors are overlaid on

the GFA and FA measure respectively and we zoom on the ODFs of two smaller ROI.

The ROI(a) shows crossing fibers between the cortical spinal tract (cst) and superior

longitudinal fibers (coming out of the plane) and the ROI(b) shows crossing between

the corpus callosum (in the plane) and the cst. ROI(a) is tilted to see the fiber crossing

better. An order 6 estimation with λ = 0.006 was used.

the crossings between the cortical spinal tract (cst) and superior longitudinal fibers

(coming out of the plane) in ROI (a) and crossings between the cst and corpus callo-

sum (in the plane) in ROI (b). Figure 7.10 also emphasizes the limitations of DTI and

the ability of the ODF to recover multiple fiber orientations that are nearly orthogo-

nal even from a dataset with relatively low b-value of 1000 s/mm2.

Crossings in the CMRR Dataset

We illustrate the analytical ODF estimation on three regions of interests (ROI) in the

human brain dataset of Appendix A.3.2. Here, b = 1000 s/mm2 with isotropic voxels
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analytical QBI DTI ellipsoids

Figure 7.11: Axial slice showing intersection between the genu of the corpus callo-

sum, the capsule fibers and the superior frontal gyrus fibers such as in Tuch (2004).

An order 6 estimation with λ = 0.006 is used.

of 3 mm. Figures 7.11, 7.12 and 7.13 were selected in an axial, coronal and sagittal

slice respectively. We highlight the ROI on the FA map and compute the least-squares

DTI ellipsoids in that ROI. We adjust the opacity of each ODF surface with respect to

the underlying GFA measure.

The first ROI in Figure 7.11 is in an axial slice showing the intersection between

the genu of the corpus callosum, the capsule fibers and the superior frontal gyrus

fibers. This slice is taken towards the front of the head and corresponds to the ROI

of [(Tuch, 2004, Fig.11)]. Note that we pick up the main fiber bundles as well as

multiple fiber voxels where we detect evidence for multiple directions.

The second ROI in Figure 7.12 is a coronal slice of the intersection between tran-

scallosal projections of the body of the corpus callosum, the corona radiata and the

superior longitudinal fasciculus. This region is very similar to the ROIs in the cen-

trum semiovale of [Tuch et al. (2005)] and [Tournier et al. (2004)]. We see two impor-

tant crossings. First, the corona radiata crossing the transcallosal fibers projecting to

the precentral gyrus and secondly, we have high-lighted the crossings between tran-

scallosal projections and superior longitudinal fasciculus. The superior longitudinal

fibers are harder to see as they come out of the page. This is also the case for the

corpus callosum body coming out of the page as well in the lower left corner.

Finally, we show a sagittal slice in Figure 7.13 taken in the corona radiata showing

diverging and crossing fibers. We detect multiple fibers towards the top right of the

brain. Some crossings are due to diverging and splitting fibers in the corona radiata.

There are also crossings between the corona radiata and the superior longitudinal
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analytical QBI DTI ellipsoids

Figure 7.12: Coronal slice in the centrum semiovale, where the intersections between

the corpus callosum commisural fibers and the corona radiata and superior longitu-

dinal fasciculus are seen. The zoomed ROI on the right is slightly tilted to better see

the directions coming out of the plane. An order 6 estimation with λ = 0.006 is used.

analytical QBI DTI ellipsoids

Figure 7.13: Sagittal slice showing the corona radiata diverging fibers and crossings

with the superior longitudinal fasciculus. An order 6 estimation with λ = 0.006 is

used.

fasciculus (left-right) fibers.

7.6 DISCUSSION

In this chapter, we have developed a regularized, fast and robust analyti-
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cal solution for the ODF estimation problem in QBI. We have derived the analytical

solution for QBI that agrees with previous solutions [Anderson (2005); Hess et al.

(2006)] recently developed in parallel in the literature. As already pointed out in the

chapter, [Hess et al. (2006)] paper is very close in spirit to our approach but both com-

plement each other. Each makes separate contributions that support the strength of

the analytical solution using SH. Hess et al have shown interesting properties of the

analytical solution such as the theoretical angular resolution limitation with respect

to the harmonic order ℓ of the basis, the better performance of the analytical solution

for low sampling density schemes of q-ball ODF reconstruction compared to Tuch’s

numerical technique and the data compression potential of the approach. Moreover,

they have studied the power spectrum of the SH decomposition of the ODF. We have

reported these results and successfully reproduced and extended them for different

signal generation and different b-value, sampling density scheme N and SNR.

Further, we have made additional contributions: 1) we have included the Laplace-

Beltrami regularization in the signal-fitting step, 2) we have proved a novel corollary

to the Funk-Hecke theorem to derive the analytical solution for ODF reconstruction,

3) we have done a complexity analysis with a practical running time experiment that

shows an increase in speed by a value of 15 over numerical QBI [Tuch (2004)], 4)

we have shown the advantages of Laplace-Beltrami regularization theoretically and

experimentally and 5) we have performed a careful validation of both analytical and

numerical QBI [Tuch (2004)] techniques on noisy synthetic data and real data where

ground truth is known.

The new analytical solution comes from the fitting of the signal with SH, which

allowed us to impose the Laplace-Beltrami regularization criterion. The Funk-Hecke

corollary was proved using a delta sequence so that the Funk-Hecke formula could

be used to solve the FRT integral and obtain a simple regularized expression for the

ODF reconstruction. Without this derivation, the FRT can only be computed with a

more complicated numerical scheme. This solution eliminates the discrete numerical

integration step over each equator needed in Tuch’s numerical QBI implementation

which speeds up computation by a factor of up to 15, while solutions stay in close

agreement. As imaging techniques are improved and the number of gradient direc-

tions are increased, this can potentially be an important speed-up value even with the

optimal numerical QBI implementation. It can also have potential data compression

applications.

We have also shown the better performance and robustness of the ODF recon-

struction in the presence of noisy synthetic data. Theoretically, we have argued that

the Laplace-Beltrami is the right regularization criterion to use. Experimentally, at

the cost of slightly reducing angular resolution, we have shown that it introduces less

noise in the high order SH coefficients describing the ODF and thus better describes

voxels with multiple fibers, especially in the presence of high noise level. Therefore,

it is possible to use a high order approximation while limiting the over-modeling of
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perturbations due to noise. This is not the case without regularization or when using

Tikhonov regularization.

Determining the angular resolution of the analytical QBI method is a difficult

problem that depends on the b-value and spherical sampling density N used in the

QBI acquisition, and regularization parameter λ and estimation order ℓ used in the

ODF reconstruction. Some answers to this angular resolution problem have been pro-

posed in the literature. [Tuch (2004)] reported the angular limitation of the QBI pro-

tocol due to the intrinsic Bessel function smoothing of the FRT whereas [Hess et al.

(2006)] studied the theoretical angular limitation arising from the choice of SH order

ℓ. In general, it would be of great interest to know the achievable angular resolution

given the specific sampling N , b-value and SNR in the diffusion-weighted data and

given the order ℓ and regularization λ used in the ODF reconstruction.

Overall, we illustrated the power of the SH representation, which have interest-

ing post-processing applications. First, Gaussian/Laplacian smoothing on the sphere

by the Laplace-Beltrami operator extension is easy to compute and allows one to im-

pose a regularization criterion on the solution. Second, derivatives and integrals on

the sphere have analytical expressions. This could allow for an automatic maxima

extraction on the ODFs. The SH basis will also allow easy ODF sharpening opera-

tions to attempt to transform the diffusion ODF into a sharp fiber ODF. This will be

the topic of the next chapter. Finally, we will also integrate this SH analytical ODF

reconstruction in high order tracking and segmentation algorithms in the following

chapters.

7.6.1 Contributions of this chapter:

In summary, the contributions of this chapter are:

• Regularized, fast and robust analytical QBI solution.

• Proof of a new corollary of the Funk-Hecke theorem.

• Comparison of the Laplace-Beltrami regularization of the signal with the state-

of-the-art numerical and analytical QBI methods using no regularization and

Tikhonov regularization.

• Extensive study of the fiber detection, robustness, compression and reconstruc-

tion properties of the analytical QBI solution.

• Quantitative validation performed against ground truth from synthetic data

and against real data from a biological phantom and a human brain dataset.

Contributions from this chapter appear in [Descoteaux et al. (2005b, 2006c,

2007d,a)].
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7.7 APPENDIX A: FUNK-RADON TRANSFORM APPROXI-
MATES THE DIFFUSION ODF

The proof in this section is more detailed and slightly different than the one pub-

lished in [(Tuch, 2004, Appendix A)]. Let F2D, F3D and G represent the 2D Fourier, 3D

Fourier and Funk-Radon (FRT) transforms respectively. We want to prove that the

FRT of Eq. 7.2 approximates the diffusion ODF of Eq. 7.1, i.e. that G[S(q)](u) ≈ Ψ(u).

For this, we first state the important Fourier analysis tools required for the proof.

1. Parseval-Plancherel Theorem relates the integral of two functions over real

space to the integral of their Fourier transforms over q-space as

∫ ∞

−∞
f(x)ḡ(x)dx =

∫ ∞

−∞
F (k)Ḡ(k)dk, (7.15)

where F (k) and Ḡ(k) are the Fourier transforms of f(x) and ḡ(x) respectively

and ḡ is the complex conjugate of g.

2. The Central Slice Theorem states that the 2D Fourier transform of the pro-

jection of a function f(x) onto the plane defined by the vector u is the same as

the intersection of that plane with the 3D Fourier transform of f(x). Letting

u be a unit normal vector defining the projection plane and x a point on that

plane, we can define the projection L of a 3D function f(x) as

L[f(x))](u) =

∫ ∞

−∞
f(x + αu)dα. (7.16)

Define now the intersection of a 3D function f(x) with the plane defined by the

normal vector u to it as I[f(x)](u) = f(x)δ(xT u), where δ is the Dirac delta

function. Hence, we can formally write the central slice theorem as

F2D[L[f(x)](u)] = I[F3D[f(x)]](u) or L[f(x)](u) = F2D[I[F3D[f(x)]](u)]

(7.17)

if f is antipodally symmetric.

3. The Hankel transform H is a special case of the 2D Fourier transform of a

function f when this function has no angular dependence, i.e. f(x, y) = f(r)

when written in polar coordinates. Letting x = r cos θ, y = r sin θ, u = q cos φ,
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v = q sinφ, we can derive the Hankel transform as

F2D[f(x)] =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) exp (−2πi(ux+ vy)) dxdy

=

∫ ∞

0

∫ 2π

0
f(r) exp (−2πiqr(cos θ cos φ+ sin θ sinφ)) rdrdθ

=

∫ ∞

0

∫ 2π

0
f(r) exp (−2πiqr cos(θ − φ)) rdrdθ

=

∫ ∞

0
f(r)

(∫ 2π

0
exp(−2πiqr cos ζ)dζ

)

rdr

= 2π

∫ ∞

0
f(r)J0(2πqr)rdr sinceJ0(z) =

1

π

∫ π

0
exp(iz cos ζ)dζ

= H[f(x, y)]

(7.18)

We can now derive the relation between the diffusion ODF Ψ and Funk-Radon

transform G of the measured signal S(q). To do so, we express both functions in

cylindrical coordinates (r, θ, z). Without loss of generality, the point of the unit sphere

u where we want to evaluate the diffusion ODF is along the z-axis. Thus, we can

express the diffusion ODF along u as the projection of diffusion PDF onto the xy-

plane with value taken at the origin.

Ψ(u) =

∫ ∞

0
P (αu)dα

= L[P (0)](u) (using Eq.7.16)

=

∫ ∞

−∞
P (0, 0, z)dz

=

∫ ∞

−∞

∫ 2π

0

∫ ∞

0
P (r, θ, z)δ(r)δ(θ)rdrdθdz

(7.19)

Now, the raw signal on a single shell of q-space of radius q′ is given by S(q). We

can expand the FRT of this signal, Gq′ [S(q)](u) and show that it approximates the

diffusion ODF. First, since u is along the z-axis, the FRT in the direction u is integral

over the great circle in the xy-plane, i.e.

Gq′ [S(q)](u) =

∫ 2π

0
S(q′, qθ, 0)dqθ

=

∫ 2π

0

∫ ∞

0
S(q′, qθ, 0)δ(qr − q′)qrdqrdqθ

=

∫ 2π

0

∫ ∞

0
F2D[S(q′, qθ, 0)]
︸ ︷︷ ︸

I1

· F2D[δ(qr − q′)]
︸ ︷︷ ︸

I2

rdrdθ

(7.20)

using Parseval-Plancherel theorem (Eq. 7.15). We solve for I1 using the central slice

theorem (Eq. 7.17) through the xy-plane defined by u as

I1 = F2D[S(q′, qθ, 0)] = F2D[I[F3D[P (r, θ, z)]](u)] = L[P (r, θ, z)](u) =

∫ ∞

−∞
P (r, θ, z)dz.

Noting that δ(qr − q′) is independent of θ, we can use the Hankel transform (Eq. 7.18)

to evaluate I2,

I2 = H[δ(qr − q′)] = 2π

∫ ∞

0
δ(qr − q′)J0(2πqrr)qrdqr = 2πq′J0(2πq

′r).
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Figure 7.14: Zeroth-order Bessel function y = J0(2πzx) approaches a Dirac delta

function as z increases.

Therefore, inserting I1 and I2 into Eq. 7.20, we obtain

Gq′ [S(q)](u) = 2πq′
∫ ∞

−∞

∫ 2π

0

∫ ∞

0
P (r, θ, z)J0(2πq

′r)rdrdθdz. (7.21)

Comparing Eq. 7.19 and Eq. 7.21, we note that the approximation depends on

how close the zeroth-order Bessel function resembles the Dirac delta function. The

width of J0 is inversely proportional to q′. Hence, the larger b, the narrower the Bessel

function, the closer the FRT approximation is to the exact diffusion ODF. This is clear

from the shapes of the graph in Fig. 7.14.

7.8 APPENDIX B: RIGOROUS PROOF OF THE
ANALYTICAL QBI SOLUTION

The delta sequence definition is

lim
n→∞

∫ ∞

−∞
δn(x)f(x)dx =

∫ ∞

−∞
δ(x)f(x)dx = f(0).

It is a straightforward corollary to show that for any continuous function f on the

interval [−1, 1], the relation

lim
n→∞

∫ 1

−1
δn(x)f(x)dx =

∫ 1

−1
δ(x)f(x)dx = f(0), (7.22)

also holds true.

In order to do a rigorous proof of the step between the first and second line of

Eq. 7.7, we need to do a change of variable. The integral along the great circle orthog-

onal to vector the u, Ij(u), can be rewritten without lost of generality as the integral

along the xy-plane equator, where u is assumed to be along the z-axis. Letting (θ, φ)

be the natural spherical coordinates defined relatively to vector u, we can write Ij(u)
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as

Ij(u) =

∫

|w|=1
δ(uTw)Yj(w)dw

=

∫ 2π

0
Yj

(π

2
, φ
)

dφ (equator integral on the xy-plane)

=

∫ 1

−1
δ(ζ)

(∫ 2π

0
Yj(arccos(ζ), φ)dφ

)

dζ (arccos(0) = π/2)

= lim
n→∞

∫ 1

−1
δn(ζ)

(∫ 2π

0
Yj(arccos(ζ), φ)dφ

)

dζ (delta sequence corollary Eq. 7.22)

= lim
n→∞

∫ 2π

0

∫ π

0
δn(cos θ)Yj(θ, φ) sin θdθdφ (change of variable θ = arccos(ζ))

= lim
n→∞

∫

|w|=1
δn(uTw)Yj(w)dw (uTw = cos θ)

= 2π

(

lim
n→∞

∫ 1

−1
δn(t)Pℓ(j)(t)dt

)

Yj(u) (Funk-Hecke theorem Eq. 5.31)

= 2πPℓ(j)(0)Yj(u), (delta sequence corollary Eq. 7.22)

This is the detailed proofs using the delta sequence.

7.9 APPENDIX C: EXACT ODF FROM THE
MULTIPLE-TENSOR MODEL

Assuming signal S(u) is generated from the multi-tensor model for n fibers with rel-

ative weight pk,

S(u) =

n∑

k=1

pke
−buT Dku,

we want to derive the exact ODF for this fiber distribution. Recalling that the signal

is the Fourier transform F of the underlying probability density function of water

molecules P (r), we first need to compute the inverse Fourier transform F−1 of S(u)

to obtain the corresponding PDF. We consider a single tensor and then, by linearity,

we obtain the result for the general multiple tensors. We will need the following

inverse Fourier transform expression

F−1[exp
(
−bk2

)
](x) =

1

2π

√
π

b
exp

(−x2

4b

)

. (7.23)
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We assume a symmetric diffusion tensor D with diagonal entry [e2, e2, e1], S0 = 1 and

signal formation given by S(u) = exp(−buTDu) is4

P (r) = F−1[exp
(
−buTDu

)
]

= F−1[exp
(
−b(e2u2

x + e2u
2
y + e1u

2
z)
)
]

= F−1[exp
(
−be2u2

x

)
]F−1[exp

(
−be2u2

y

)
]F−1[exp

(
−be1u2

z

)
]

=
1

2π

√
π

be2
exp

(−x2

4be2

)
1

2π

√
π

be2
exp

(−y2

4be2

)
1

2π

√
π

be1
exp

(−z2

4be1

)

(Eq. 7.23)

=
1

8π3

√

π3

b3e22e1
exp

(

− 1

4b

(
x2

e2
+
y2

e2
+
z2

e1

))

=
1

√

(4πb)3|D|
exp

(−rTD−1r

4b

)

Now, we can obtain the exact ODF by integrating the radial direction of the

PDF (Eq 7.1). We will also need the Gaussian integral formula
∫∞
0 exp(−r2C)dr =

1/2
√

π/C. Hence, for one fiber we have,

Ψ1(u) =

∫ ∞

0
P (ru)dr =

1
√

(4πb)3|D|

∫ ∞

0
exp

(−r2uTD−1u

4b

)

dr

=

√

πb

(4πb)3|D|

√

1

uTD−1u
=

1

Z

√

1

uTD−1u

(7.24)

where Z is the normalization factor for which the integral over the sphere of the ODF

is 1, i.e.

Z =

∫

|u|=1
(uTD−1u)−1/2du =

√

(4πb)3|D|
πb

= 8πb
√

|D| (7.25)

Thus, for n fibers, we have

Ψ(u) =

n∑

k=1

pk

Z

√

πb

uTD−1
k u

, (7.26)

where Z is again a normalization factor that assures that the ODF still has the prop-

erties of a PDF.

4Note that if we use the standard signal formation in q-space, S(q) = exp(−τqTDq) and b = τ |q|2,

we obtain the same expression with τ instead of b (as in [(Tuch, 2004, Eq.2)]).
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CHAPTER 8

SEGMENTATION IN HIGH
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“Go with the flow”
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OVERVIEW

Now that we have robust q-ball reconstructions, can we segment this image of q-ball

diffusion ODF into coherent fiber bundles? This chapters covers a new statistical

region-based active contour algorithm to segment HARDI data. In particular, how

can the segmentation problem be formulated and solved efficiently on HARDI data?

What is gained by the HARDI segmentation with respect to the DTI segmentation?

Is it possible to validate the segmentation results and make the segmentation au-

tomatic? First, a new method to segment HARDI data is developed using our fast,

robust and analytical QBI solution. Then, a region-based statistical surface evolu-

tion is done on this image of diffusion ODF to efficiently find coherent white matter

fiber bundles. Next, our method is shown to be appropriate to propagate through re-

gions of fiber crossings and our results outperform state-of-the-art DTI segmentation

methods. Finally, results obtained on synthetic data, on a biological phantom, on real

datasets and on all 13 subjects of a public HARDI database show that our method is

reproducible and brings a strong added value to DW-MRI segmentation.

Keywords: region-based segmentation, level set framework, Euclidean and Rie-

mannian distances, DTI, HARDI, QBI, diffusion ODF

Contributions of this chapter:

• Definition of an efficient and simple distance measure between spherical func-

tions based on their SH representation.

• New statistical region-based segmentation framework for HARDI data segmen-

tation.

• Efficient and semi-automatic implementation using the level set method.

• Validation and reproducibility of the results on a biological phantom and the

public HARDI database.

Organization of this chapter:
The chapter is organized as follows. We motivate the HARDI segmentation prob-

lem in Section 8.1. Then, we review the existing methods in DTI and HARDI seg-

mentation in Section 8.2. Next, Section 8.3 describes our new statistical region-based

segmentation method implemented using the level set method. Results on complex

synthetic HARDI datasets, on a biological phantom and on real datasets are pre-

sented in Section 8.4. Finally, we conclude with a discussion of the results and our

contributions in Section 8.5.
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8.1 INTRODUCTION

In this chapter, we are interested in recovering larger bundles or groups

of fiber tracts instead of recovering fibers one by one1 like done in tractography. We

would like to segment white matter fiber bundles in which diffusion properties are

similar and ultimately compare their features to those in other ROI in the same sub-

ject or on multiple subjects. The goal is thus to find global coherence that exists

among white matter fiber tracts belonging to the same fiber bundle. Most existing

segmentation methods are based on DTI [Zhukov et al. (2003); Wiegell et al. (2003);

Feddern et al. (2003); Rousson et al. (2004); Wang and Vemuri (2004); Jonasson et al.

(2005a); Wang and Vemuri (2005); Lenglet et al. (2006a)] and are inherently limited

by the DT model. As expected, these segmentation methods are most often blocked

in regions of fiber crossings where DTs are oblate and isotropic. Hence, it is nat-

ural to extend existing DT-based methods and to design new segmentation meth-

ods based on HARDI data to aid the inference of crossing, branching and kissing

fiber configurations. New methods have thus started to appear to segment bundles

from fields of ODFs [Jonasson et al. (2005b); Hagmann et al. (2006a); McGraw et al.

(2006b); Jonasson et al. (2007)].

In this chapter, we answer the following three questions: 1) How can the segmen-

tation problem be formulated and solved efficiently on a field of ODFs? 2) What is

gained by the ODF with respect to the DT? 3) Is it possible to validate the segmenta-

tion results? To do so, we propose an efficient region-based level set approach using

a regularized and robust SH representation of the ODF presented in Chapter 7. We

first show that a better local modeling of fiber crossings improves segmentation re-

sults globally. Then, we show that our ODF segmentation is more accurate than the

state-of-the-art DTI segmentation based on the Euclidean and Riemannian distances

in regions of complex fiber configurations from synthetic data, from a biological phan-

tom and from real data. The ODF better captures statistics in crossing areas and is

thus able to flow through complex fiber regions without leaking in the whole white

matter. Finally, we show that our q-ball segmentation is reproducible by segmenting

automatically the corpus callosum (CC) and the cortico spinal tract (CST) of the 13

subjects of a public HARDI database [Poupon et al. (2006)].

8.2 BACKGROUND ON SEGMENTATION

DT-based segmentation The existing DT-based segmentation techniques in the

literature are [Zhukov et al. (2003); Wiegell et al. (2003); Feddern et al. (2003);

Rousson et al. (2004); Wang and Vemuri (2004, 2005); Jonasson et al. (2005a);

1Note that in tractography we are not actually tracking individual fibers at the micrometer scale but

actually tracking bundles of fibers at the millimeter scale corresponding to the size of the imaging voxel.
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Lenglet et al. (2006a)]. They can be grouped into four categories: 1) scalar-

based method [Zhukov et al. (2003)], 2) Euclidean distance methods based on

the full DT [Wiegell et al. (2003); Feddern et al. (2003); Rousson et al. (2004);

Wang and Vemuri (2004)], 3) Geometric-based measure of dissimilarity between

DTs [Jonasson et al. (2005a)] and 4) more complex DT metric-based approaches such

as the Kullback-Leibler divergence metric [Wang and Vemuri (2005)] and Rieman-

nian metric [Lenglet et al. (2006a)].

In [Zhukov et al. (2003)], they define an invariant anisotropy measure in order to

drive the evolution of a level set and isolate strongly anisotropic or strongly isotropic

regions of the brain, such as the CC and the ventricles. However, the reduction

of the full tensor to a single scalar value can result in a relatively low discrim-

inate capability and potentially yields the segmentation of mixed structures. Al-

ternatively, [Wiegell et al. (2003); Feddern et al. (2003, 2004); Rousson et al. (2004);

Wang and Vemuri (2004, 2005); Jonasson et al. (2005a); Lenglet et al. (2006a)] use or

propose different measures of dissimilarity between DTs. In [Wiegell et al. (2003);

Wang and Vemuri (2004); Rousson et al. (2004)], the authors use the Frobenius norm

of the difference of tensors (i.e. the Euclidean distance). A k-means algorithm based

on the Euclidean distance with a spatial coherence constraint and an active con-

tour model with a regularity term were respectively used by the last two methods

([Wang and Vemuri (2004)], [Wiegell et al. (2003)]) to perform the segmentation of

different cerebral structures such as the thalamus nuclei or the corpus callosum. The

first method of [Rousson et al. (2004)] also used the Euclidean distance between DTs

in a region-based surface propagation inspired by general works on image segmen-

tation [Chan and Vese (2001); Paragios and Deriche (2002)]. In [Wang and Vemuri

(2004)], a generalization of the region-based active contours to matrix-valued im-

ages is proposed for two-dimensional images, also using the Euclidean distance be-

tween DTs. In [Feddern et al. (2003, 2004)], partial differential equations based

on mean curvature motion, self-snakes and geodesic active contours models are

extended to two-dimensional and three-dimensional tensor-valued images by gen-

eralizing the notion of structure tensor to matrix-valued data. This method still

relies on the Euclidean metric between tensors. The authors apply this frame-

work to the regularization and segmentation of diffusion tensor images. The other

methods [Wang and Vemuri (2005); Jonasson et al. (2005a); Lenglet et al. (2006a)] do

not use the Euclidean distance and propose different similarity measures between

DTs. In [Jonasson et al. (2005a)], the authors introduce a new geometric measure

of dissimilarity by computing the normalized tensor scalar product of two tensors,

which can be interpreted as a measure of overlap. Finally, the methods presented

in [Wang and Vemuri (2005)] and [Lenglet et al. (2006a)] rely on the symmetrized

Kullback-Leibler divergence and Riemannian geodesic metric to derive an affine in-

variant dissimilarity measure between DTs.

In this chapter, our statistical surface evolution is inspired by the original meth-

146



ods of [Chan and Vese (2001); Paragios and Deriche (2002)] and recent DTI extension

of [Rousson et al. (2004); Lenglet et al. (2006a)]. We use a similar region-based sur-

face propagation but the surface evolution is based on a Euclidean distance between

q-ball ODFs described in a SH basis representation.

HARDI-based segmentation To our knowledge there are only two exist-

ing HARDI-based segmentation algorithms, namely [Jonasson et al. (2005a);

Hagmann et al. (2006a); Jonasson et al. (2007)] and [McGraw et al. (2006b)].

In [Hagmann et al. (2006a); Jonasson et al. (2007)], the segmentation is developed

in a non-Euclidean 5-dimensional (5D) position-orientation space, (x, y, z, θ, φ) ∈ ℜ3 x

S2. using the ODF map reconstructed from diffusion spectrum imaging (DSI), a pro-

cedure computationally more expensive than QBI. The extension from 3D to 5D space

leads to huge 5D matrices, creating large problems with data handling and storage,

which only allows one to segment small parts of cerebral structures. [Jonasson et al.

(2007)] and [Hagmann et al. (2006a)] use the same algorithm but [Jonasson et al.

(2007)] is implemented with a level set framework whereas [Hagmann et al. (2006a)]

is implemented with a hidden Markov random field framework. In [McGraw et al.

(2006b)], the main contribution is to model the ODF with a mixture of von Mises-

Fisher distributions and use the associated metric in a hidden Markov measure field

segmentation scheme. Both the ODF modeling and the segmentation technique are

different from our proposed method. Moreover, results are promising but only prelim-

inary on synthetic 2D simulations and on a rat spinal cord dataset. Hence, the first

approach suffers from computational efficiency and the second is still preliminary

and lacks real data results. Furthermore, both HARDI-based methods do not show

the gain in using a high-order spherical function such as the ODF in comparison with

the simpler DT model. Therefore, the motivations for our new HARDI segmentation

algorithm are the three questions previously asked: 1) How can the segmentation

problem be formulated and solved efficiently on a field of diffusion ODFs? 2) What is

gained by the ODF with respect to the DT? 3) Is it possible to validate the segmenta-

tion results on human brain datasets?

In this chapter, we propose an efficient level set statistical surface evolution based

on the ODFs computed from QBI that we thoroughly test on synthetic and real data

with complex fiber configurations. The level set implementation is simple and effi-

cient and the statistical evolution is robust with automatic convergence. Moreover,

the ODF reconstruction from QBI has several advantages that make it a good choice

of input image. First, samples are only taken on a single sphere in q-space and thus,

the imaging time is much smaller than that of the DSI despite significantly higher

angular resolution measurements and good signal to noise ratio. QBI also has the

advantage of being model-independent, robust, fast to compute and represented in a

compact SH basis, as seen in Chapter 7.
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8.3 STATISTICAL SURFACE EVOLUTION

Given a HARDI signal with N discrete measurements on the sphere, we

transform it into a spherical harmonic (SH) series of order ℓwith R coefficients (R <<

N ) describing the diffusion ODF. Then, we look for the most probable partition of this

ODF image of SHs using our new region-based statistical surface evolution. We now

want to find a global coherence in this field of q-ball ODFs represented in the SH

basis. We denote the image of ODFs by F : ℜ3 7→ ℜR so that for all x ∈ ℜ3, F(x)

is the ODF of order ℓ at voxel x represented by a vector of R real SH coefficients,

F(x) := {f1, ..., fR} ∈ ℜR. Recall that R = (1/2)(ℓ + 1)(ℓ + 2). Now, the question is

what is a good metric to compare ODFs?

8.3.1 Distances between ODFs

We want to capture similarities and dissimilarities between two ODFs, i.e two spher-

ical functions Ψ,Ψ′ ∈ Ω that can be represented by real SH vectors f, f ′ ∈ ℜR, as

shown in the previous chapters. Since the ODFs come from real physical diffusion

measurements they are bounded and form an open subset of the space of real-valued

L2 spherical functions with an inner product 〈, 〉 defined as

〈Ψ,Ψ′〉 =

∫

Ω
Ψ(θ, φ) · Ψ(θ, φ)′dΩ =

∫

Ω





R∑

i=1

fiYi(θ, φ)

R∑

j=1

f ′jYj(θ, φ)



 dΩ, (8.1)

where Ω denotes integration over the unit sphere. As before, because of the orthonor-

mality of the SH basis, the cross terms cancel and the expression is simply

〈Ψ,Ψ′〉 =

R∑

j=1

fj · f ′j. (8.2)

Therefore, the induced L2 norm ||Ψ|| =
√

〈Ψ,Ψ〉 giving us the distance metric between

two ODFs is

||Ψ − Ψ′|| =

√
√
√
√

R∑

j=1

(fj − f ′j)
2. (8.3)

How does this metric behave when comparing two spherical functions?

To illustrate the metric behavior, we generate synthetic profiles with

b =1000 s/mm2, FA = 0.7, N = 81 directions and vary the azimuth angle θ of the

ODF at each pixel (x, y) according to the angle with the center pixel (xcenter, ycenter),

i.e. θ = arctan ((y − ycenter)/(x − xcenter)). This gives a distribution of ODFs with vary-

ing azimuth angle dispersion, as illustrated in Figure 8.1. At every pixel, the brighter

the underlying color, the more distant from the central single maximum ODF is the

ODF and conversely, the darker the underlying color, the closer it is. The distance

range for each figure is normalized differently to give better idea how the distances

between crossing ODFs and single maximum ODFs vary. The metric behaves as
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Single maximum ODFs 90◦ crossing ODFs

Figure 8.1: Illustration of the distance measure between a single maximum ODF

placed at the center and single maximum ODFs on the left. On the right, illustration

of the distance measure between a single maximum ODF placed at the center and

90◦ crossing ODFs with varying angular dispersion. At every pixel, the brighter the

underlying color, the more distant from the central single maximum ODF is the ODF

and conversely, the darker the underlying color, the closer it is.

one would expect. First, for single maxima ODFs, the distance between two ODFs

is smaller when they are aligned and increases as their angular difference increases.

Second, for ODFs with crossing configurations and two maxima, the distance between

a single maximum ODF aligned with one of the two maxima is smaller than if the

crossing ODF is not aligned with the single maximum ODF. Finally, we note that the

distance between two single maximum ODFs with angular difference less than about

60◦ to 75◦ is smaller than the distance between a crossing ODF and a single maxi-

mum ODF aligned with one of the maxima of the crossing ODF. That is, it is easier

to connect two single maximum ODF even if they are separated by angles of 0-75◦

than to connect a crossing ODF with a single maximum ODF. This is sketched in

Figure 8.2. This property turns out to have the desired effect of facilitating the flow

through fanning and branching configurations as well as allowing to flow through

pure crossing configurations when the maxima are aligned.

The Euclidean distance was also used successfully for DTI segmentation

in [Rousson et al. (2004); Lenglet et al. (2006a)] and DTI registration [Zhang et al.

(2004)] even though more appropriate metrics exist such as the symmetrized

Kullback-Leibler distance [Wang and Vemuri (2005); Lenglet et al. (2006a)] and Rie-

mannian geodesic distance [Lenglet et al. (2006a)]. Similarly, one can think of choos-

ing another metric to compare ODFs. For instance, since the ODF can be viewed
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Figure 8.2: Sketch of distance between crossing and single peaked ODF. The distance

between two single maxima ODFs at angles difference between 0 and 75◦ is smaller

than the distance between a crossing ODF with a single maximum ODF that has its

peak aligned with one of the crossing maxima.

as a probability distribution function (PDF) of fiber orientations, one can use the

Kullback-Leibler distance between two PDFs. However, in that case the problem

quickly blows up computationally because one needs to use all N discrete data on the

sphere instead of the R SH coefficients (R << N ). For example, one needs to process

N = 200 values instead of R = 15 SH coefficients.

8.3.2 Segmentation by Surface Evolution

Inspired by general works on image segmentation by [Chan and Vese (2001);

Paragios and Deriche (2002)], we search for the optimal partition boundary B in two

regions F1 and F2 of the image F . We maximize the a posteriori frame partition

probability p(B|F) of obtaining the desired segmentation for the observed image of

ODFs F . The major difference in our approach is that we use order-4 ODFs, with

R = 15 real coefficients whereas in the DT Euclidean flow of [Rousson et al. (2004)],

DTs represented by 6D vectors are used as input to the region-based segmentation.

We use the level set framework [Dervieux and Thomasset (1979, 1981);

Osher and Sethian (1988)] to represent the optimal partition boundary B as the zero-

crossing of the level set function φ. φ is defined as the usual signed distance function,

i.e.

φ(x) =







D(x,B) if x ∈ F1

−D(x,B) if x ∈ F2

0 if x ∈ B,
(8.4)

where D(x,B) is the Euclidean distance between x and B. Hence, the optimal par-

tition is obtained by maximizing p(φ|F) ∝ p(F|φ)p(φ) using Bayes’ rule. Assuming
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Figure 8.3: Histograms of the SH coefficients representation of the ODF {f1, ..., f15}
in the corpus callosum (CC). The CC was manually segmented from subject 7 of the

public HARDI database [Poupon et al. (2006)].

ODFs to be independent within each region, F1 and F2, of the image F , we have

p(F|φ) =
∏

x∈F1

p1(F(x)) ·
∏

x∈F2

p2(F(x)). (8.5)

At this point, the main and debatable assumption is that p1 and p2 are Gaussians,

which means that each SH coefficient of the ODFs follow a Gaussian distribution

in the different partitions of the q-ball ODF image. Figure 8.3 and Figure 8.4 show

that this Gaussian assumption is reasonable. In fact, we see that the histograms for

most of the R coefficients of the ODF are “bell-shaped”. Histograms were computed

from all voxels in a manual segmentation of the CC and CST in a subject of the

HARDI database [Poupon et al. (2006)] (histograms are similar for all subjects of the

database). Hence, we consider a parametric representation with a R-dimensional

Gaussian. Letting Fr ∈ ℜR be the mean SH ODF vector in region r = 1, 2 and Λr be

the R x R covariance matrix of the ODF vectors in region r, the likelihood of the ODF

F(x) to be part of region r is defined as

pr(F(x)|Fr ,Λr) =
1

(2π)3|Λr|1/2
exp

(

−1

2
(F(x) − Fr)

TΛr
−1(F(x) − Fr)

)

. (8.6)

Concerning the term p(φ), it expresses the probability that the evolving surface

represents the structure of interest and it can be used to introduce a prior shape

knowledge [Lenglet et al. (2006a)]. Here, we want to favor structures with smaller

surface. Letting |B| represent the number of points on the boundary, i.e., points on

the zero level set, we can introduce the shape prior in the term p(φ) so that it is

proportional to exp(−ν|B|) and favors smooth surfaces. This regularization term can

be expressed with φ by introducing the Dirac function δ [Zhao et al. (1996); Rousson
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Figure 8.4: Histograms of the SH coefficients representation of the ODF {f1, ..., f15}
in the cortico spinal tract (CST). The CST was manually segmented from subject 7 of

the public HARDI database [Poupon et al. (2006)].

(2004)] and thus, we have

p(φ) = exp

(

−ν
∫

F
δ(φ)|∇φ(x)|dx

)

. (8.7)

The optimal segmentation is then obtained by maximizing p(F|φ)p(φ) or by mini-

mizing of the negative logarithms of Eqs. (8.6, 8.7). Therefore, the final energy mini-

mization is

E(φ, p1, p2) = −
∫

F1

log p1(F(x)|F1,Λ1)dx−
∫

F2

log p2(F(x)|F2,Λ2)dx+ν

∫

F
δ(φ)|∇φ|dx.

(8.8)

Then, for given statistical parameters F1,F2,Λ1,Λ2 and regularization ν of the evolv-

ing surface, the Euler-Lagrange [Arfken and Weber (1995)] equation can be computed

to derive the implicit surface evolution

∂φ

∂t
= δ(φ)

(

ν div
∇φ
|∇φ| + log

p1(F(x)|F1,Λ1)

p2(F(x)|F2,Λ2)

)

= δ(φ)

(

ν div
∇φ
|∇φ| +

1

2
log

|Λ2|
|Λ1|

+
1

2

(
−(F(x) − F1)

TΛ1
−1(F(x) − F1) + (F(x) − F2)

TΛ2
−1(F(x) − F2)

)
)

.

(8.9)

The statistics can be updated after each iteration of the ODF flow, as described

in [Lenglet et al. (2006a)]. More details on this level set optimization can be found

in [Chan and Vese (2001); Vese and Chan (2002); Rousson (2004); Cremers et al.

(2007)]. The flow formulation is flexible and one can easily replace the input im-

age vector of ODFs F with the standard DT coefficient vector, as in [Rousson et al.
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(2004)] or any vector representation of a spherical function. We now compare the Eu-

clidean DT [Rousson et al. (2004)] version of the flow and more complex Riemannian

DT [Lenglet et al. (2006a)] version of the flow with our proposed ODF flow.

8.4 SEGMENTATION RESULTS & DISCUSSION

ODF-based segmentations can deal with regions of complex fiber configura-

tions. We first show that the ODF flow is able to propagate through regions of com-

plex fiber crossings better than the DT-based flow using the Euclidean [Rousson et al.

(2004)] and Riemannian distances [Lenglet et al. (2006a)]. We show comparison

results on synthetic data, on a biological phantom and on real datasets. We

also show that the corpus callosum and the corticospinal tract of the HARDI

database [Poupon et al. (2006)] can be segmented automatically for all subjects and

that there exist a variability in these structures across the subjects.

Visualization In this chapter, as always, DTs and ODFs are visualized as spherical

functions stretched with respect to the surface values. However, the surfaces are

colored according to the FA or GFA value, with color map going from red to blue for

anisotropic to isotropic profiles. The more isotropic is the spherical function, the bluer

it is and the more anisotropic is the spherical function, the redder it is. Greenish

spherical functions are often locations where there are crossing fiber configurations.

We use this same color map for both the DTI and ODF segmentations to allow easy

visual comparisons between DTs and ODFs.

8.4.1 Synthetic Simulation Results

First, Figure 8.5 shows that initialization has a strong influence on the final seg-

mented surface. If the initialization contains strictly anisotropic DTs/ODFs, the final

surface is not able to pass through the fiber crossing area, as seen in Figure 8.5(a,b).

Similarly, the final surface is trapped in the crossing area when initializing strictly in

the 2-fiber region, as seen in Figure 8.5(c). This is because the statistics of the initial

region have a large difference with the rest of the DTs/ODFs and hence, the evolving

surface is blocked from connecting to the rest of the structure. However, if the ini-

tialization contains a mixture of both single fiber and 2-fiber DTs/ODFs, the DT flow

propagates through the crossing region to connect to the similar anisotropic DTs on

the other side of the crossing and the second fiber is completely ignored, as seen in

Figure 8.5(d,e). The DTs in the crossing are oblate and there is no information on the

second orientation. In contrary, there is information about the second orientation in

the ODF flow and the surface evolution, seen in Figure 8.6, finds the whole 2-fiber

structure as coherent.

Figure 8.7 and Figure 8.8 show more complex fiber configurations with a branch-

ing example and the “U”-fibers example. In the Riemannian DT flow, we see that the
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ODF spherical functions DTs in crossing area ODFs in crossing area

(a) (b) (c)

(d) (e)

Init DT Riemann ODF flow Init DT Riemann ODF flow

Figure 8.5: Segmentation of the 90◦ crossing example. In (a-e), from left to right,

the initialization used overlaid on the FA map, the DT Riemannian [Lenglet et al.

(2006a)] segmentation and the ODF flow segmentation.

t = 0 t = 20 t = 40 t = 60 t = 100 t = 140

Figure 8.6: Evolution in time of the ODF flow on the 90◦ crossing. The flow is able to

propagate through the fiber crossing area and recover the whole 2-fiber structure.

surface remains trapped in the regions of the initial seeding for all initializations. In

contrary, in the ODF case, when the flow is initialized in the bottom and middle part

of the branch, the whole branching structure is recovered because the ODF contains a

broader range of orientations in its statistics. For all synthetic data experiments, DT

Riemannian and DT Euclidean flows produced nearly identical qualitative segmen-

tations and we decided only to show results for the DT Riemannian case. A factor of

ν = 2 for the smoothness of the surface was used for all flow evolutions.
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DTI ellipsoids ODF spherical functions

(a) (b)

(c) (d)

Init DT Riemann ODF flow Init DT Riemann ODF flow

Figure 8.7: Segmentation on a synthetic branching example. In (a-d), from

left to right, the initialization used overlaid on the FA map, the DT Rieman-

nian [Lenglet et al. (2006a)] segmentation and the ODF flow segmentation. The ODF

flow is able to propagate through the fiber crossing area and recover the whole struc-

ture.

8.4.2 Biological Phantom Results

Figure 8.9 and Figure 8.10 show that the DT flow with the Euclidean distance is

unable to segment the structure. The surface leaks outside the cords and the surface

diverges because the isotropic DTs in the fibers and isotropic DTs in the background

have a mean diffusivity in a similar range. Hence, the Euclidean distance cannot

make the difference between the two regions. There is no convergence of the flow.

This result was also obtained in [Lenglet et al. (2006a)]. However, our new ODF flow

segments the whole structure quite easily. The segmentation also agrees with similar

results published using the DT Riemannian flow [(Lenglet et al., 2006a, Figs.12-13)].

This similarity between the ODF flow and DT Riemannian flow can be explained

because the crossing region is very small (roughly 3 x 3 x 2 voxel region) and thus, the

overall coherence and statistics of the desired structure are not dramatically affected

by this crossing. Although the overall shape of the segmentations look the same in

Figure 8.9, the actual zero level set of the segmenting surface in DT Riemannian and
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(a) (b)

(c) (d)

Init DT Riemann ODF flow Init DT Riemann ODF flow

Figure 8.8: Segmentation on a synthetic ’U’-fiber example. In (a-d), from left to right,

the initialization used overlaid on the FA map, the DT Riemannian [Lenglet et al.

(2006a)] segmentation and the ODF flow segmentation. The ODF flow is able to

propagate through the fiber crossing area and recover the whole structure.

ODF case are slightly different for some voxels at the border the structure, as seen in

Figure 8.10. A factor of ν = 2 for the smoothness of the surface was used for all flow

evolutions.

8.4.3 Human Brain HARDI Data Results

We have segmented two large and well-known fiber bundles, the CC and the CST, on

a human brain with b-value 1000 s/mm2 and 60 sampling directions (MPI dataset

of Appendix A.3.3) and on the public HARDI database (Appendix A.3.4) with a

higher b-value 3000 s/mm2 and 200 sampling directions. Our ODF segmentation

on real datasets recovers more structure than other published results on the CC and

CST [Zhukov et al. (2003); Rousson et al. (2004); Rousson (2004); Jonasson (2006);

Lenglet et al. (2006a)]. First, we reproduced the results from [Lenglet et al. (2006a)]

with the DT-based flows using both the Euclidean and Riemannian distances in Fig-

ure 8.11. Figure 8.11 and Figure 8.12 also show that in the DT Euclidean flow, the
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T1 DTs ODFs (a)

Init DT Euclid DT Riemann Init DT Euclid DT Riemann

ODF flow ODF flow

(b) (c)

Figure 8.9: Segmentation on a biological phantom. In (a-c), from left to right, the

initialization used overlaid on the FA map, the DT Euclidean [Rousson et al. (2004)]

flow at t = 40 where we see the surface starting to leak outside the fiber structure

and the segmentation of the ODF flow.

t = 0 t = 20 t = 40 t = 60

Figure 8.10: Evolution in time of the zero level set for the DT Eu-

clidean [Rousson et al. (2004)] flow (green), DT Riemannian [Lenglet et al. (2006a)]

flow (red) and our ODF flow (blue). The contour is placed over the inverted FA map.

evolving surface stops near complex crossing area where oblate and isotropic DTs

(yellow-greenish DTs) block the flow. The DT Riemannian is able to connect more vox-

els than the DT Euclidean by slightly evolving into the crossing area. It is interesting

to note, in the CST example (Figure 8.12), how the flow evolves as to go around com-

plex fiber crossings, i.e. the evolution leaves the expected straight inferior-superior

direction to go and pick up the projections of the CC overlapping with the CST and

going to project to the superior cortex of the brain. However, in the CST, the flow is

still unable to recover the branching fiber structure projecting to the cortex. The ODF

flow recovers that branching structure to the different sulci and also recovers more of

the posterior parts of the splenium of the CC.

We also observe that the ODF flow evolves more easily through the crossing area

and does so after fewer iterations of the evolution. Convergence is obtained after 100
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DT Riemannian ODF flow

t = 0 t = 10 t = 50 t = 75 t = 100

Figure 8.11: ODF flow segmentations can propagate through crossing regions and

get a more accurate segmentation of the corpus callosum (CC). DT-based results

from [Lenglet et al. (2006a)] are reproduced. The DT-based segmentations are over-

laid on an axial slice with DTs and the ODF flow is overlaid on the same slice with

the ODFs. The last row shows the evolution in time of the ODF flow with convergence

after 100 iterations.

iterations in the CC and more rapidly after 60 iterations in the CST. It is important to

point out that this convergence is obtained automatically without having to heuristi-

cally stop the surface evolution at a certain time t. At some point in the evolution, the

background and foreground statistics stabilize, i.e. the mean and covariance matrix

in the two regions become coherent and convergence is attained. Only a few voxels os-

cillate in and out of the regions F1 and F2 on the boundary of the evolving structure.2

However, as it is often the case in surface evolution algorithms with a boundary term

and/or a smoothness term we have to choose a certain value of ν. Here, a factor of

2This is seen in the surface evolutions of the CC and CST on the author’s web page:

http://www-sop.inria.fr/odyssee/team/Maxime.Descoteaux/pages/seg.html
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DTI Riemannian ODF flow

t = 0 t = 5 t = 20 t = 40 t = 60

Figure 8.12: ODF flow can propagate through crossing regions and get a

more accurate segmentation of the cortico-spinal tract (CST). DT-based results

from [Lenglet et al. (2006a)] are reproduced. The last row shows the evolution in

time of the ODF flow with convergence after 60 iterations.

ν = 5 was used for all flow evolutions shown. In practice, we observe that for ν too

large the evolution stops prematurely and for ν too small the evolution leaks and

connects the whole white matter. Fortunately, results are not extremely sensitive to

ν and in our experiments, convergence is obtained for ν between 2 and 10 for both

synthetic and real data. One still needs to try a few values of ν to obtain the best

qualitative results.

8.4.4 Multi-Subject Study on a public HARDI Database

Figure 8.13 and Figure 8.14 show the ODF segmentations for the CC and CST of all

subjects of the public HARDI database [Poupon et al. (2006)] (Appendix A.3.4). The

same parameters were used for all 13 subjects from a single voxel in the medial part

159



initialization 1 2 3

4 5 6 7 8

9 10 11 12 13

Figure 8.13: Automatic segmentation of the corpus callosum (CC) using the ODF

flow on the 13 subjects of the HARDI database [Poupon et al. (2006)] from a single

seed point in the middle of the CC. Overall CCs are similar and we observe some

variability across subjects.

of the CC and CST selected (manually) to initialize the flow. A factor of ν = 10 for

the smoothness of the surfaces was used for all flow evolutions on the database. It

is thus possible to segment the datasets automatically and results are reproducible

across many subjects.

Convergence was always obtained automatically for all subjects. Depending on

the subject, 80 to 120 iterations of the flow were needed. An iteration takes roughly

1 second on a Dell single processor, 3.4 GHz, 2 GB RAM machine when R = 15. It is

thus quite fast to obtain the segmentation for all subjects.

In Figure 8.13, we have segmented the complete CC for most subjects with the

longer posterior parts of the splenium and the full genu, as in Figure 8.11. In the

CST example of Figure 8.14, we have also obtained segmentation results that are in

most cases as complete as the segmentation in Figure 8.12. For the CST example, we

overlaid the segmented surface on the GFA to clearly see the intended white matter

structure to be segmented and also to note the white matter structure differences

across subjects. For all subjects, the GFA slice was always the 53rd coronal slice in

voxel space.

In both the CC and CST, we note that some evolutions prematurely stopped near

the crossing areas for some subjects (e.g. subjects 1, 11 and 13 for the CC and subjects

6 and 7 for the CST). One may think that playing with the segmentation parameters

such as initialization and the smoothness ν of the surface might improve and change
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Figure 8.14: Automatic segmentation of the cortico-spinal tract (CST) using the ODF

flow on the 13 subjects of the HARDI database [Poupon et al. (2006)] from a single

seed point in the middle of the CST. For this example, the segmented surface is over-

laid on the 53rd coronal slice of the GFA map for all subjects to clearly see the multi-

subject variability of the white matter. Overall CSTs are similar and we observe an

important variability across subjects.

the results. In fact, in our experiments, this was not the case. A careful visual in-

spection of the QBI data for these subjects in regions where the flow stops shows two

things: 1) Some subjects have “unusual” and “less complete” structures anatomically

than others. For instance, subject 13 does not have a curving genu of the CC as all

the other subject have. Hence, the CC recovered agrees with the anatomy of subject

13. 2) The ODFs are very isotropic in regions where the flow stops prematurely. The

spherical shape of the ODFs are almost as isotropic as the DTs. We believe this is be-

cause the HARDI signal suffers from major partial signal averaging because of noise

due to the high b-value acquisitions and multiple fibers crossing (up to three) in those

crossing areas. Hence, there is no coherence between the crossing area and the rest

of the desired CC/CST structure to segment. It is thus not surprising that the surface

evolution stops. Why does it occur for these subjects and not for the others and why

does it not occur for the dataset presented in Figures 8.11 and 8.12? Is it better to

have a higher spatial resolution with less angular sampling of the sphere and smaller

b-value or a higher angular resolution sampling density with a larger b-value at the

cost of larger voxel size and lower SNR?
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Overall, most CC and CST structures are similar and a significant variability

across subject is observed. Hence, it is now important to better understand why

these differences occur and propose ways to quantify this multi-subject variability.

8.5 DISCUSSION

We have presented a unified statistical surface evolution framework for the

segmentation of HARDI data and in particular, for the segmentation of ODF images

reconstructed from QBI. The proposed method combines state-of-the-art HARDI re-

construction and state-of-the-art region-based surface evolution. To answer questions

from the introduction: 1) The segmentation problem on ODF images can be formu-

lated efficiently with the level sets evolving to partition similar ODF based on their

SH representation. This allows a computationally feasible similarity measure be-

tween ODFs based on the Euclidean distance between their SH representation. Note

that this segmentation framework is general and could be used with any input vec-

tor of coefficients, for instance coefficients from other HARDI reconstruction methods

such as persistent angular structure (PAS), spherical deconvolution (SD), diffusion

orientation transform (DOT) or other high order spherical functions. 2) The ODF

flow is able to deal with complex fiber configurations such as crossing and branch-

ing fibers better than DT-based segmentation using the Euclidean and Riemannian

distances. 3) It is possible to validate the segmentation results. In particular, we

obtained sets of globally coherent ODFs agreeing with well-known real data cere-

bral anatomical structures as well as with synthetic and biological phantom datasets

where the ground truth was known. Moreover, compared to DTI segmentation, the

ODF flow produces more complete segmentations of fiber bundles with crossings.

One might ask why we have not done the segmentation on a field of fiber ODFs,

as for the tractography chapter. In our experience, a smoother ODF representation

is more appropriate when looking for global statistics of ODFs in white matter. In

practice, we find that the best results are obtained when using the diffusion ODF and

not the fiber ODF. The segmentation applied on a field of fiber ODFs produce similar

successful segmentations on synthetic datasets and on the biological phantom. How-

ever, on the real datasets, the fiber ODF flow is unstable and it is hard to find good

convergence. We obtain more complete and accurate segmentations and obtain them

with more stable convergence across subjects with the diffusion ODF flow. We find

that the sharper peaks of the fiber ODF and the small perturbations around the ori-

gin of the fiber ODFs make the statistics between fiber ODFs within the same bundle

further apart than if we use the diffusion ODF. Therefore, it seems that a smoother

ODF representation is more appropriate when looking for a global coherence of white

matter tracts.

There is room for improvement in our proposed segmentation algorithm. First, we

believe that the search for good distance measures between spherical functions and

orientation distributions is an important open problem in this field. Candidate met-
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rics have been proposed in the literature such as the Kullback-Leibler distance but,

as mentioned before, this measure works on the discrete spherical values and cannot

be applied directly on the SH representation. Is it possible to propose a better dis-

tance measure between ODFs? In our opinion, the best distance measure should be

computed directly on the SH coefficients for efficiency and should capture geometrical

and shape properties of the ODF. It might also be interesting to investigate measures

that take into account the diffusion properties of the original HARDI signal.

Another improvement to the algorithm could be made around the Gaussian dis-

tribution assumption of the SH coefficients in each region of the ODF image to be

segmented. Is there a more appropriate parametric distribution that better describes

the variability of the ODF in their SH representation? Is is possible to use a non-

parametric probability distribution? The choice of a parametric family of functions

to approximate distributions may be seen as a limitation to model region statis-

tics. Contrary to parametric models, non-parametric distribution estimations can

approximate any type of distribution for a sufficiently large dataset. In the scalar-

valued and vector-valued images, people have estimated non-parametric distribu-

tions (see [Rousson (2004)] and references therein) of intensities to perform segmen-

tation. These non-parametric methods have had some success but are much more

involved computationally. Nonetheless, it might be worthwhile exploring this possi-

bility.

Finally, a last improvement of the algorithm could be made regarding the initial-

ization step. As for any image segmentation algorithm, initialization is an important

problem. As seen in the result section, the initialization is crucial and will influence

the final segmentation surface. Is it possible to find a more automatic and optimal ini-

tialization? This question is even more important if we intend to do multiple subject

studies. Since we have an a priori knowledge about the white matter structure we

are looking for, there is no reason why this cannot be done more automatically with

atlases and appropriate image analysis tools. A first attempt to be able to do such

a reproducible and automatic seeding is proposed in [Clayden et al. (2006, 2007)],

where results from multiple subject probabilistic tracking are used to find consistent

and reproducible segmentation of tracts.

Overall, the segmentation algorithm proposed in this chapter gives promising re-

sults. We have showed the reproducibility of the surface evolution on real datasets

with different b-values and also on the 13 subjects from the public HARDI database.

It is now important to focus on more difficult and small fiber bundles to test the

limits of the algorithm. Nonetheless, it is possible to imagine performing a multi-

subject study with segmented fiber bundles to quantify certain diffusion properties

and attempt to follow the evolution of white matter diseases such multiple sclerosis,

Parkinson, Alzheimer, etc...

163



8.5.1 Contributions of this chapter:

• Definition of an efficient and simple distance measure between spherical func-

tions based on their SH representation.

• New statistical region-based segmentation framework for HARDI data segmen-

tation.

• Efficient and semi-automatic implementation using the level set method.

• Validation and reproducibility of the results on a biological phantom and the

public HARDI database.

Parts of the contributions from this chapter appear in [Descoteaux and Deriche

(2007b,a)].
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CHAPTER 9

IMPROVING Q-BALL IMAGING:
FROM DIFFUSION ODF TO FIBER

ODF ESTIMATE

The sharp thorn often produces delicate roses

–Ovid
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OVERVIEW

Can we improve angular resolution of QBI? This chapter covers the problem of re-

constructing a fiber ODF and not only a diffusion ODF. In particular, can the diffu-

sion ODF be transformed into a sharper fiber ODF? Can this sharper fiber ODF be

obtained from QBI? Can it be related to the raw HARDI signal and other spherical

deconvolution methods that also estimate a fiber ODF? First, we develop a new spher-

ical deconvolution operation that transforms the q-ball diffusion ODF into a sharper

fiber ODF. This deconvolution transformation improves angular resolution and fiber

detection of QBI by approximately 15◦. Then, our new fiber ODF is shown to behave

similarly to the fiber ODF estimated from the filtered, regularized and constrained

spherical deconvolution methods of [Tournier et al. (2004, 2007); Sakaie and Lowe

(2007)] as well as the fiber ODF estimated with FORECAST [Anderson (2005)]. Next,

we extensively compare these methods quantitatively by varying the harmonic order

ℓ, the b-value, the sampling density N , the noise level (SNR), the separation angle

between fibers and the volume fraction of each fiber. We also evaluate the robust-

ness to noise and the angular resolution of each method. Finally, all fiber ODFs are

reconstructed and compared on the biological phantom and the real datasets.

Keywords diffusion ODF, fiber ODF, spherical deconvolution (SD), spherical har-

monics (SH), Funk-Hecke theorem

Contributions of this chapter:

• New deconvolution sharpening operation transforming the q-ball diffusion ODF

into a sharper fiber ODF.

• Derivation, implementation and comparison of the state-of-the-art spherical de-

convolution methods based on the spherical harmonic basis.

• Extensive validation study of our new fiber ODF from numerical simulations,

on the biological phantom and on the real human brain datasets.

Organization of this chapter:
The chapter is organized as follows. We motivate the spherical deconvolution of

QBI data in Section 9.1. We develop the analytical spherical deconvolution operation

that transforms the q-ball diffusion ODF into a fiber ODF in Section 9.2.1 and we

describe the relationship and our implementation of the other state-of-the-art spher-

ical deconvolution methods in Section 9.2.2. Then, Section 9.3 describes the different

numerical simulations used to compare and validate the fiber ODF reconstruction

methods. Results of the comparison between fiber ODF methods are presented in

Section 9.4 on the synthetic simulations, on the biological rat phantom and on the

human brain datasets. We conclude with a discussion of the results and our contri-

butions in Section 9.5.

166



9.1 INTRODUCTION

A current open problem that we have not discussed so far in the the-

sis is the relation between the measured diffusion ODF and the underlying

fiber distribution, the fiber ODF. This relation between diffusion and fiber ODF

is still unknown today [Tuch (2002); Perrin et al. (2005)] even though we know

that the relation between the diffusion of the water molecule and the under-

lying fiber distribution can depend on the physics of diffusion, the cell mem-

brane permability, the free diffusion coefficients, the axonal packing, the distri-

bution of axonal diameters and the degree of myelination in the underlying fiber

bundles. As described in Chapter 4, spherical deconvolution methods simplify

the problem by assuming simple mixture models to reconstruct an estimation of

the true fiber ODF, also called a fiber orientation density (FOD) [Tournier et al.

(2004); Alexander (2005b); Anderson (2005); Ramirez-Manzanares et al. (2007);

Dell’Acqua et al. (2007); Kaden et al. (2007); Jian and Vemuri (2007b)]. These spher-

ical deconvolution methods work directly on the raw HARDI signal, without the

need of the diffusion ODF. However, anybody working with QBI and diffusion ODFs

such as [Tuch (2004); Khachaturian et al. (2007); Perrin et al. (2005); Hagmann et al.

(2006a); Bergmann et al. (2006); Jonasson et al. (2007); Haroon and Parker (2007);

Fonteijn et al. (2007)] has the problem of dealing with smooth ODFs that have a large

diffusion part outside the principal fiber directions (see Figure 9.2). Hence, it is im-

portant to investigate SD operations that can work on the diffusion ODF and also to

study its relation with the other spherical deconvolution methods working directly on

the HARDI signal.

In this chapter, we propose a new ODF sharpening deconvolution operation that

has the desired effect of transforming the q-ball diffusion ODF into a sharp fiber ODF.

Again, the solution is based on the spherical harmonic representation of the HARDI

signal. Hence, we extensively compare our new fiber ODF estimation with the other

spherical deconvolution methods based on spherical harmonics. We implement the

fiber ODF estimation from the classical filtered SD (fSD) [Tournier et al. (2004)] and

also compare against the more recent fiber orientation estimated using continuous

axially symmetric tensors (FORECAST) [Anderson (2005)], the Tikhonov regularized

SD [Sakaie and Lowe (2007) and the very recent Constrained SD (CSD) and super-

resolution CSD (super-CSD) of [Tournier et al. (2007)]. These methods are all based

on the spherical harmonics representation. We show that our fiber ODF is a valid

choice to obtain a stable fiber ODF estimation. We also show that our new fiber ODF

behaves similarly to the other SD methods studied.

9.2 SPHERICAL DECONVOLUTION USING SPHERICAL
HARMONICS

In this section, we describe our new method to perform spherical deconvolution
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S = R
⊗

fiber distribution

Figure 9.1: Spherical deconvolution illustration as in [(Tournier et al., 2004, Fig.1)].

The measured HARDI signal S is the convolution of the single fiber response function

R and the fiber distribution.

of the q-ball diffusion ODF. We also describe our implementation of the FORE-

CAST [Anderson (2005)], the fSD [Tournier et al. (2004)], the Tikhonov regularized

SD [Sakaie and Lowe (2007)] and the CSD and super-CSD [Tournier et al. (2007)]

methods. All these methods are similar in spirit to our approach and are all based on

the spherical harmonic representation of the HARDI signal.

9.2.1 Spherical Deconvolution of the q-Ball diffusion ODF

We describe the sharpening operation that aims to transform the smooth diffusion

ODF into a sharp fiber ODF. The sharpening operation is a simple linear transforma-

tion of the SH coefficients describing the diffusion ODF. Our approach is inspired by

the original spherical deconvolution approach proposed in [Tournier et al. (2004)] and

uses a diffusion model for the single fiber similar to that of [Anderson (2005)]. In SD

methods, the measured HARDI signal S is expressed as the convolution on the unit

sphere of the fiber response function R with the fiber distribution, as illustrated in

Figure 9.1. Assuming a particular fiber response function representing the diffusion

signal attenuation that would be measured for a single fiber, the deconvolution of the

signal with the response function gives an estimation of the fiber distribution. Here,

we call this fiber distribution estimation the fiber ODF.

The starting point of our deconvolution method is not the measured signal but the

estimated q-ball diffusion ODF described in Chapter 7. We want to deconvolve the

estimated smooth diffusion ODF by the diffusion ODF for a single fiber in order to

obtain a sharpened fiber ODF. The procedure is sketched in Figure 9.2. We assume

that the estimated diffusion ODF, Ψ, is formed by the convolution between the single

fiber diffusion ODF kernel, R′, and the true fiber ODF F . Note that we use R′ not

to confuse with the single fiber response function R used in Figure 9.1. Hence, the

deconvolution of the diffusion ODF by the diffusion ODF kernel can recover an esti-

mation of the true fiber ODF. In this chapter, we make use of the term fiber ODF for

the estimation of the true fiber ODF. We abbreviate our new fiber ODF with fODF

and use Ψsharp in the equations.

The convolution on the sphere between the single fiber diffusion kernel R′ and
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(a) dODF kernel R′ ⊗
fiber distribution = dODF Ψ

(true fiber ODF)

(b)

Signal S dODF Ψ fODF Ψsharp

Figure 9.2: Sketch of the convolution/deconvolution. In (a), the convolution between

the dODF kernel and true fODF produces a smooth dODF. In (b), we show a sketch

of the deconvolution sharpening. The Funk-Radon Transform (FRT) of the simulated

HARDI signal on the sphere produces a smooth dODF. This dODF is transformed

into a sharp fODF by the deconvolution with the dODF kernel of (a). The simulated

HARDI signal was generated with noise-free orthogonal fibers crossing each with a

FA = 0.7, with b-value of 3000 s/mm2, spherical sampling density N = 60 and an

order ℓ = 6 reconstruction.

Ψsharp (Figure 9.2a) can be written as

Ψ(u) =

∫

|w|=1
R′(u · w)Ψsharp(w)dw. (9.1)

In order to solve this integral, we first replace Ψ and Ψsharp with their respective

SH estimation of order ℓ, Ψ =
∑

j c
′
jYj(u) and Ψsharp =

∑

j fjYj(u) and obtain

R∑

j=1

c′jYj(u) =

R∑

j=1

fj

∫

|w|=1
R′(u ·w)Yj(w)dw. (9.2)

At this point, we use the Funk-Hecke theorem stated in Section 5.5 to solve the con-

volution integral between R′ and the spherical harmonic Yj over the sphere. We then

obtain

fj =
c′j
r′j
, where r′j = 2π

∫ 1

−1
Pℓ(j)(t)R

′(t)dt, (9.3)

where coefficients r′j come from the Funk-Hecke formula.

The main consideration is thus the creation of a viable single fiber diffusion ODF

kernel R′. As done in [Anderson (2005)], we assume an axially symmetric tensor
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model of diffusion for a single fiber. Hence, we choose a prolate profile with eigenval-

ues [λ2, λ2, λ1] such that λ1 >> λ2 to represent this tensor. Then, using the analytical

relation between diffusion tensor and diffusion ODF, we obtain the diffusion ODF

kernel R′ as

R′(t) =
1

Z ′
1

√

(λ2/λ1 − 1)t2 + 1
, (9.4)

where Z ′ is a normalization constant so that the integral over all directions is 1.

In the case of an axially symmetric tensor model, Z ′ = 8πb
√

λ2
2λ1. Details can be

found in Appendix 9.6. In the end, the SH coefficients of the new fiber ODF can be

reconstructed with

fj =
4b
√
λ2λ1

A′
ℓ(j)(1 − λ2/λ1)

c′j , (9.5)

where A′
ℓ(j)(α) =

∫ 1
−1(1 − αt2)−1/2Pℓ(j)(t)dt are given analytically in Appendix 9.7 up

to order 8.

Therefore, the final sharp fiber ODF expression is computed with

Ψsharp(u) =

R∑

j=1

fjYj(u) , (9.6)

for any direction u.

9.2.2 Spherical Deconvolution of the raw HARDI Signal

We now describe in detail the SD methods working directly on the raw HARDI signal.

The convolution on the sphere of Figure 9.1 between the single fiber response function

R and signal S can be written in two different ways. First, the original formulation

of [Tournier et al. (2004)] is

Sn = RnFn, (9.7)

where Sn and Fn are vectors of length (2n + 1) of spherical harmonic coefficients

representing the signal and fiber ODF respectively and Rn is a (2n + 1) x (2n + 1)

matrix representing the rotational harmonic decomposition of the axially symmetric

response function R. Rotational harmonics are defined and given in [(Healy et al.,

1998, Eq. 2.1)].

The second formulation is the approach by [Anderson (2005)]. The SD can be

written as

S(u) =

∫

|w|=1
R(u ·w)F (w)dw, (9.8)

where F is the fiber ODF and R is assumed to be the response function arising from

an axially symmetric diffusion tensor model. We now describe the implementation of

these two methods and relate them to our sharp fiber ODF described in the previous

section. Even though the second formulation appeared after the original SD formu-

lation of Tournier et al, we start with the second because it is closest to our method

described in the previous section.
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FORECAST Spherical Deconvolution

FORECAST [Anderson (2005)] is similar in spirit to our deconvolution method. It

also reconstructs an estimation of the true fiber ODF from a linear transformation

of the SH coefficients describing the raw HARDI signal. As now seen many times in

this thesis, the signal S and fiber ODF F can be expressed in SH series of order ℓ

as S(θ, φ) =
∑

j cjYj(θ, φ) and F (θ, φ) =
∑

j fjYj(θ, φ). Hence, the integral of Eq. 9.8

becomes
R∑

j=1

cjYj(u) =

R∑

j=1

fj

∫

|w|=1
R(u · w)Yj(w)dw. (9.9)

At this point, we use a different derivation from [Anderson (2005)]. Our derivation is

equivalent but uses the Funk-Hecke theorem to solve the SD integral, as done in our

solution of the previous section. We then obtain

fj =
cj
rj
, where rj = 2π

∫ 1

−1
Pℓ(j)(t)R(t)dt, (9.10)

where coefficients rj come from the Funk-Hecke formula. R is chosen to be an axially

symmetric diffusion tensor D with eigenvalues [λ2, λ2, λ1] with λ1 >> λ2, which can

be written as

R(t) = S0e
−b(λ2+t2(λ1−λ2)). (9.11)

This is the standard signal attenuation formula of Appendix A.1, which we have re-

written for an axially symmetric fiber along the z-axis using similar simplifications

as in Appendix 9.6 (see also [Anderson (2005)]).

Therefore, the SH coefficients of the fiber ODF from the FORECAST reconstruc-

tion are given by

fj =
ebλ2

2πS0Aℓ(j) (b(λ1 − λ2))
cj := FORECASTj , (9.12)

where Aℓ(j)(a) =
∫ 1
−1 e

−at2Pℓ(j)(t)dt are given analytically in Appendix 9.7 up to or-

der 8.

Recall the coefficients of our sharp fiber ODF in Eq. 9.5. They are written in terms

of the q-ball diffusion ODF SH coefficients c′j . From the last chapter, we know that

these coefficients can be written in terms of the HARDI signal S/S0 represented in

SH coefficients cj , namely c′j = (2π/S0)Pℓ(j)(0)cj (Eq. 7.10). Hence, Eq. 9.5 can be

re-written as

fj =
8πb

√
λ2λ1Pℓ(j)(0)

S0A
′
ℓ(j)(1 − λ2/λ1)

cj := fODFj . (9.13)

This expression is similar to the FORECAST solution of Eq. 9.12 but they are not

equal. However, in Appendix 9.8 we show that they have the same behavior. It

turns out that the normalized spherical function projected back to the sphere from

fODFj and FORECASTj are the same up to small numerical errors propagating in

the high order harmonics (see Appendix 9.8 and Figures 9.17 and 9.18) on a noise-free

example.
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λ = 0 λ = 0.006 λ = 0 λ = 0.006 λ = 0 λ = 0.006

FORECAST ℓ = 4 FORECAST ℓ = 6 FORECAST ℓ = 8

Figure 9.3: Effect of varying estimation order ℓ on the FORECAST reconstruction

with and without (λ = 0) Laplace-Beltrami regularization incorporated in the signal

estimation. Signal is noise-free and generated with two orthogonal fibers each with a

FA = 0.7, b = 3000 s/mm2 and N = 60 data points.

Implementation: In addition to the axially symmetric tensor assumption, the orig-

inal FORECAST [Anderson (2005)] also assumes uniform diffusivity in the white

matter tissue, i.e. it assumes that the mean diffusivity (ē = (λ1 + 2λ2)/3) is constant

in all the white matter. Hence, the FORECAST solution can be reformulated only in

terms eigenvalue λ2 and ē, which are estimated from the real data. Moreover, the SH

coefficients representing the signal, the cj coefficients, are estimated using a simple

least-squares method, as described in Section 5.4 and Eq. 5.29.

In the rest of the chapter, we implement an extended and improved version of

FORECAST based on previous work presented in this thesis. First, we do not as-

sume uniform diffusivity in the white matter and estimate λ1 and λ2 directly from

our real datasets from voxels where we have high confidence that they contain only

a single fiber population (typically voxels of the corpus callosum). Second, we use a

Laplace-Beltrami regularization incorporated in the least-squares solution to solve

for the cj coefficients representing the signal. This regularization of Eq. 6.13 has

showed success in our ADC and q-ball diffusion ODF estimation in the earlier chap-

ters. Here, it also improves FORECAST reconstructions. To show this, Figure 9.3

shows a noise-free example with and without the regularization in the estimation of

cj coefficients. As expected, spurious peaks and lobes around the center of the cross-

ing area are eliminated with the Laplace-Beltrami λ-regularization. Perturbations

of the fiber ODF arising numerical instabilities of the deconvolution occurring in the

high order SH coefficients are reduced. Therefore, we are consistent with our fiber

ODF implementation and previous methods proposed in this thesis.

172



Filtered Spherical Deconvolution

The original formulation of SD was proposed in [Tournier et al. (2004)]. Here, the

fj coefficients are the unknowns. We need to estimate the rotational harmonic ma-

trices for each even order n. Due to the axial symmetry assumption of the response

function, only the rotational harmonic coefficients along the diagonal are non-zero.

Hence, each Rn collapse down to a single real scalar constant, which can be eval-

uated using the rotational harmonic expression given in [Healy et al. (1998)]. As

pointed out in [(Tournier et al., 2007, Appendix A)], the actual rotational harmonics

do not need to be computed explicitly. If we imagine that the fiber ODF is a spherical

Dirac function aligned with the z-axis, then the signal S measured has to be identi-

cal to the response function R, i.e. if the fj coefficients correspond to a Dirac delta

function, then the cj coefficients representing the signal must correspond to the re-

sponse function. In this case, as both functions are axially symmetric, all coefficients

corresponding to m 6= 0 coefficients are zero. Therefore, if the Dirac delta function δ

and response function R are expressed in a SH series as δ(θ, φ) =
∑

j δjYj(θ, φ) and

R(θ, φ) =
∑

j rjYj(θ, φ), the rotational harmonic coefficients can be computed by sim-

ple scalar division of the nth order, m = 0 SH coefficients of R by the corresponding

coefficient for the Dirac delta function. Note that there is also a simple expansion for

the SH coefficients of the spherical Dirac function [Bulow (2004)]. The δj ’s are given

by

δj =

√

2ℓ+ 1

4π
Y 0

ℓ(j). (9.14)

Hence, we can solve for the fiber ODF without the need to compute the actual rota-

tional harmonics. The SD Eq. 9.7 becomes

fj = R−1
jj cj , (9.15)

where Rjj = rj/δj are the diagonal entries of matrix R. Finally, the reconstructed

fiber ODF on the sphere is computed as before with

F (u) =
R∑

j=1

fjYj(u), (9.16)

for any direction u and fj given in Eq. 9.15.

Implementation: We implement the fSD [Tournier et al. (2004)] because it reduces

the effects of noise and it has been extensively studied in the literature. Noise can

introduce spurious peaks and negative values on the sphere. So, we implement

the fSD using a low-pass filter [1, 1, 1, 0.8, 0.1] multiplying each coefficient of order

ℓ ∈ {0, 2, 4, 6, 8} respectively, as used in [Tournier et al. (2004, 2007); Sakaie and Lowe

(2007)]. That is, terms of order 0, 2 and 4 are not altered, the terms of order 6 are

multiplied by 0.8 and the terms of order 8 are multiplied by 0.1. The SH cj coeffi-

cients representing the signal are estimated using a standard least-squares solution
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as in Eq. 5.29. In the next sections, we describe other possible regularization of the

deconvolution procedure to reduce negative values and spurious peaks.

Regularization of Spherical Deconvolution Methods

fSD proposes a heuristic low-pass filtering of the high order harmonics. Alterna-

tively, [Sakaie and Lowe (2007)] propose to use a gradient-based Tikhonov regular-

ization procedure. As mentioned in the previous two chapters, this regularization is

similar in spirit to our Laplace-Beltrami regularization. Intuitively, the gradient of

a spherical function is large at the peaks of the function. Hence, a possible choice of

constrained function E is the squared norm of the gradient of the fiber ODF for all

directions on the sphere, i.e.

E(F (θ, φ)) =

∫

Ω
|∇F (θ, φ)|2dΩ =

R∑

j=1

ℓ(j)(ℓ(j) + 1)fj , (9.17)

which again simplifies nicely due to the orthonormality of the SH basis (Eq. 5.19).

Note that our Laplace-Beltrami regularization (Eq. 6.10) is the squared version of

this gradient-based approach. Then, as before, the quantity we wish to minimize can

be expressed in matrix form as

M(F) = (S − BRF)T(S− BRF) + λFTLF, (9.18)

where B is the SH basis matrix, S is the N x 1 discrete HARDI signal on the sphere,

F is the R x 1 SH representation of the fiber ODF, R is the R x R rotational har-

monic decomposition of the response function, λ the regularization weight and L is

the matrix from the gradient-based approach with ℓ(j)(ℓ(j) + 1) on the diagonal or

the Laplace-Beltrami based regularization with ℓ(j)2(ℓ(j) + 1)2 on the diagonal. Note

that it is also possible to use a zeroth order Tikhonov regularization with L = I,

the identity matrix, as described in the previous chapter and in [Hess et al. (2006);

Descoteaux et al. (2007a); Jian and Vemuri (2007b)].

The coefficient vector minimizing the expression in Eq. 9.18 can then be deter-

mined by setting each of the ∂M/∂fj = 0, from which we obtain the generalized

expression for the desired SH series coefficient vector of the fiber ODF F as

F =
(
(BR)T(BR) + λL

)−1
(BR)TS. (9.19)

For the rest of this chapter, let LB-SD and GB-SD represent the Laplace-Beltrami

(LB) and Gradient-Based (GB) regularized spherical deconvolution respectively.

Figure 9.4 compares fSD, GB-SD and LB-SD reconstructions on a very noisy syn-

thetic simulation with SNR 10, sampling density N = 60 and b = 3000 s/mm2. We

also vary the estimation order between ℓ = 4, 6 and 8. We see that fSD and the reg-

ularized GB-SD and LB-SD behave similarly and have the desired effect of reducing

noise in the high order harmonic coefficients. Although not shown here, on higher
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ℓ = 4

ℓ = 6

ℓ = 8

unfiltered SD fSD GB-fSD LB-fSD

Figure 9.4: Effect of varying estimation order ℓ on the unfiltered SD, the fSD, the

GB-SD and the LB-SD. Signal is generated with two orthogonal fibers each with FA

= 0.7, b = 3000 s/mm2, N = 60 data points and high noise level of SNR 10. We fix

λ = 5x10−3 for GB-SD and λ = 5x10−5 for LB-SD. The opaque surface corresponds

to the mean FOD over 100 noise trials, whereas the transparent surface corresponds

to the mean + 2 standard deviations. Blue and red lines correspond to ground truth

fiber directions and detected maxima respectively.

SNR simulations (SNR > 10) all three regularization methods give more or less the

same fiber ODF shape. However, in this very noisy simulation, we see that both

LB-SD and GB-SD reduce spurious peaks better than fSD. Theoretically, the LB reg-

ularization method imposes a stronger weight on the high order harmonics than the

GB regularization and is thus more aggressive. A more aggressive regularization can

be better suited when the signal is very noisy. In our experiments, we observe that

the regularization parameter λ can be adapted so that both the LB-SD and GB-SD

methods essentially give the same level of regularization and a very similar fiber ODF

shape. Here, an optimal λ was used and computed with the L-curve method [Hansen

(2001)], as in Chapter 6 (the generalized cross validation method [Wahba (1990)] is

used in [Sakaie and Lowe (2007)]). It is not the purpose of this chapter to perform

an extensive quantification and assessment of the advantages and disadvantages of

both the LB and GB or Tikhonov SD regularization. It will be part of future work to

do so. We refer the interested reader to [Jian and Vemuri (2007b)] for more on this

issue.

Therefore, both the LB-SD and GB-SD are well-defined regularization procedures

that can be used to replace the heuristic low-pass filtering used in fSD. For the rest of

the chapter, we more often choose to compare against the classical fSD [Tournier et al.

(2004)] because it has been extensively studied in the literature and also used for

comparisons in [Sakaie and Lowe (2007); Tournier et al. (2007)].

175



Constrained and Super-Resolution Spherical Deconvolution

In our experience, negative values do not appear in large numbers when perform-

ing a low order reconstruction such as reconstructions at order ℓ = 4 and ℓ = 6.

Moreover, we find that a large number of spurious negative peaks are reduced with

our Laplace-Beltrami regularization of the signal (estimation of the cj as described

in Section 6.2.3) as well as when incorporating a regularization of the SD with a

Tikhonov, gradient-based or Laplace-Beltrami method, as described in the previous

section. This is also observed by [Jian and Vemuri (2007b)] with a classical Tikhonov

regularization. Nonetheless, if one wants high order reconstructions with ℓ ≥ 8, such

as reconstructions in [Tournier et al. (2007)] up to order ℓ = 14, negative values and

noise are very problematic. It is also physically meaningless to have negative values

on the sphere and it does make sense to want to suppress them just as negative eigen-

values need to be suppress in diffusion tensor imaging [Tschumperlé and Deriche

(2001); Chefd’hotel et al. (2004); Arsigny et al. (2006); Lenglet et al. (2006b)].

Here, we describe the iterative approach of [Tournier et al. (2007)], which imposes

a non-negativity constraint on the reconstructed fiber ODF using spherical harmon-

ics. The idea is to look for an improved fiber ODF, using an optimization method

that incorporates a term in which the fiber ODF is assumed to be zero in directions

where the current estimate of the fiber ODF is negative. The problem is formulated

as follows

Fi+1 = arg min{||BRFi − S||2 + λ2||LFi||2}, (9.20)

where as before B is the SH basis matrix, S is the HARDI signal on the sphere, Fi

is the SH representation of the fiber ODF at iteration i, R is the rotational harmonic

decomposition of the response function and λ the regularization weight. It is the

L matrix that is different from the other formulations we have seen so far. L is

formulated as

Lmn =

{

(BR)mn if (BRF)m < τ

0 otherwise,
(9.21)

where τ is a user-specified threshold controlling the amplitude of the current fiber

ODF under which the fiber ODF is assumed to be zero. Hence, L provides the ampli-

tude of the current estimate of the fiber ODF for the set of directions along which the

amplitude fiber ODF is assumed to be zero. Hence, a stronger weight will be imposed

on the coefficients of Fi that produce the negative values on the sphere.

Implementation: The initial estimate of the fiber ODF F0 is computed from stan-

dard fSD of order ℓ and then the iterative procedure is repeated until the matrix L

does not change, which typically takes between 5 to 10 iterations for a wide range of

imaging parameters [Tournier et al. (2007)]. We have implemented the CSD version

with our modified SH basis framework and thus, cannot we certain that our imple-

mentation is the same as in [Tournier et al. (2007)].
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dODF fSD CSD super-CSD super-CSD super-CSD

ℓ = 8 ℓ = 8 ℓ = 8 ℓ = 10 ℓ = 12 ℓ = 14

Figure 9.5: Comparing the q-ball dODF, the fSD, the CSD and the super-CSD.

Signal generated with two fibers with 60◦ separation each with FA = 0.7, with

b = 1000 s/mm2, N = 60 data points and SNR 30. Results agree with simulations

of [(Tournier et al., 2007, Fig.4)]. Note that we cannot compute fSD and CSD for

ℓ ≥ 10 because in these cases, there are more unknown parameters to estimate than

there are measurements. The opaque surface corresponds to the mean FOD over

100 noise trials, whereas the transparent surface corresponds to the mean + 2 stan-

dard deviations. Blue and red lines correspond to ground truth fiber directions and

detected maxima respectively.

Tournier et al point out that it is possible to reconstruct high order fiber ODF even

when the number of SH coefficients in the representation of F is larger than the

actual number of data points N of the signal S. For example, if we have a spherical

sampling scheme with N = 60 data points and seek an order ℓ ≥ 10 reconstruction,

where there areR ≥ 66 SH coefficients to estimate, the normal formulation of Eq. 9.20

gives an under-determined system of equations. To overcome this problem, Tournier

et al rewrite Eq. 9.20 as

Fi+1 = arg min

{

||
(

BR

λL

)

Fi −
(

S

0

)

||2
}

(9.22)

and thus, one notes that the system is over-determined as long as the number of rows

in L, i.e. the number of negative fiber ODF values on the sphere, is always greater

than |R − N |, where R is number of SH coefficients in Fi and N is number of data

points in S. This solution is called super-resolution CSD (super-CSD) [Tournier et al.

(2007)].

Figure 9.5 reproduces the behavior of fSD, CSD and super-CSD satisfactorily on

a synthetic signal example generated with N = 60 data points, b = 1000 s/mm2 and

SNR 30. In contrast to standard fSD, very high order estimations are possible while

reducing effects of noise and spurious peaks in the reconstruction. Moreover, note

that for ℓ ≥ 10, R > 60 and there are more unknowns than measurements in the CSD

formulation. However, super-CSD is able to recover a stable fiber ODF that becomes

sharper as order ℓ increases.

The CSD and super-CSD methods reduce negative values on the sphere but do

not force their elimination completely. The argument of [Tournier et al. (2007)] is

that imposing a very strict non-negative constraint with high λ results in the reduc-
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tion of the angular resolution of the fiber ODF, which for tractography application

is not desirable. Moreover, Tournier et al note that the fiber ODF expressed with a

truncated SH series is expected to contain some negative lobes due to the spherical

equivalent of Gibb’s ringing observed in classical Fourier analysis.1 Hence, Tournier

et al prefer to impose a softer regularization weight λ. Nonetheless, a very recent

method of [Jian and Vemuri (2007b)], eliminates the negative values completely with

a non-negative least squares optimization problem stated as

min{||BRF − S||2} subject to BF ≥ 0, (9.23)

which is solved as a quadratic programming problem. After the minimization, the

fiber ODF estimation, BF, cannot have negative values on the sphere. It is part

of future work to implement this non-linear method and compare it with CSD and

super-CSD. It is of interest to investigate the difference made on the fiber ODF re-

constructions under soft and strict non-negativity constraints and really decide if

negative values on the sphere are desirable or not.

9.3 EVALUATION OF THE SPHERICAL DECONVOLUTION
METHODS

In the synthetic simulations of [Tournier et al. (2004); Anderson (2005);

Dell’Acqua et al. (2007)], values of [λ2, λ2, λ1] are chosen from physiological data.

Here, we prefer to estimate the single fiber diffusion ODF kernel and the single fiber

response function directly from our real datasets, as also done in [Tournier et al.

(2004, 2007)] for the single fiber response function. In practice, the average prolate

tensor profile is estimated from 300 voxels with the highest FA values, as these

tensors can each be assumed to contain a single fiber population. This average

prolate tensor profile is used for values of λ2 and λ1 in the fODF and FORECAST. For

fSD, CSD and super-CSD, the average prolate tensor is used to generate DW signal

and a SH series of order ℓ is fitted to this signal to obtain the SH coefficients of the

response function R (the rj coefficients in Eq. 9.15).

9.3.1 Synthetic Data Experiment

First, we show qualitative reconstruction results of the dODF, the sharp fODF, the

fSD, the FORECAST and the CSD from synthetic signal simulations varying the b-

value, SNR, separation angle between fibers and fiber volume fraction in Eq. A.1

of Appendix A.1. We use a prolate tensor profile of [3.55, 3.55, 13.9]x10−4 mm2/s, as

estimated from the MPI dataset.

1In the Cartesian case, the Dirac delta function expressed as a truncated Fourier series becomes a
sinc function which has some negative lobes. Similarly, the spherical Dirac delta function expressed as

a truncated SH series also contains small negative lobes. Hence, it seems that completely eliminating

negative lobes is not desired and smoothes the reconstructions too much.
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Second, we concentrate on the dODF, the sharp fODF and fSD to quantify the

angular resolution limitation, the fiber detection success and angular error made on

the detected maxima. To evaluate angular resolution limitations, we generate noise-

free synthetic data for two fibers where we vary the crossing angle between fibers to

determine the critical angle at which only a single maximum is detected instead of

two.

Then, to evaluate fiber detection success, we use noisy synthetic data generated

with SNR 35 and with 1, 2, or 3 fibers chosen randomly with equal volume fraction

and random angle between fibers set above 45◦. We generate 1000 such HARDI

profile separately and count the number of times we correctly detect the number of

ODF maxima. For the simulations, we also vary estimation order ℓ = 4, 6 and 8,

use b-values of 1000, 3000 and 5000 s/mm2 and use sampling densities of N = 81

and 321 on the hemisphere, corresponding to a 3rd and 7th order tessellation of the

icosahedron respectively. We also record the angular error made in degrees on each

direction.

Finally, to evaluate angular error made on the detected maxima, we fix the fODF,

fSD and CSD estimation order at ℓ = 6 and use a simulation with b = 3000 s/mm2,

N = 60 (same gradient directions as the MPI acquisition of Appendix A.3.3), separa-

tion angle of 60◦, SNR = 30 and volume fraction p1 = p2 = 0.5. We use a fine mesh, a

16th order tessellation of the icosahedron with 1281 directions on the hemisphere to

perform fiber ODF maxima detection.

9.3.2 Real Data Experiment

We illustrate the q-ball dODF, our sharp fODF, the fSD, the FORECAST and the

CSD reconstructions on the real datasets of Appendix A. We use the same ROIs as

used in the previous chapter and show reconstructions on the biological phantom,

the BIC dataset, the MPI dataset and the CMRR dataset. The acquisition param-

eters are all described in Appendix A. For all the figures, we estimate the cj SH

coefficients representing the signal S using ℓ = 4 and Laplace-Beltrami regular-

ization with λ = 0.006. The average prolate tensor profile was estimated for each

dataset from 300 voxels in the white matter with the highest FA value, as suggested

in [Tournier et al. (2004)]. For the MPI dataset, we estimated the profile [λ2, λ2, λ1] =

[3.55, 3.55, 13.9] x10−4 mm2/s, for the BIC dataset: [2.00, 2.00, 7.64] x10−4 mm2/s and

for the CMRR dataset: [3.50, 3.50, 13.5] x10−4 mm2/s. The BIC profile is markedly dif-

ferent with a much lower mean diffusivity. Nonetheless, it is interesting to note that

all three profiles have a ratio of smallest to largest eigenvalue of λ2/λ1 = 0.26.

9.4 RESULTS

We now qualitatively show the effect of varying the HARDI signal param-

eters on the q-ball dODF, the sharp fODF, the fSD, the FORECAST and the CSD re-
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b = 1000 s/mm2

ℓ = 4

ℓ = 6

ℓ = 8

b = 3000 s/mm2

ℓ = 4

ℓ = 6

ℓ = 8

dODF fSD FORECAST CSD fODF

Figure 9.6: Effect of varying estimation order ℓ and b-value on the q-ball dODF, the

fSD, the FORECAST, the CSD and our fODF. W The signal is generated with N = 60

data points, b = 3000 s/mm2 and SNR 30. The opaque surface corresponds to the

mean FOD over 100 noise trials, whereas the transparent surface corresponds to the

mean + 2 standard deviations. Blue and red lines correspond to ground truth fiber

directions and detected maxima respectively.

constructions. In these synthetic simulations, we have used simulations with N = 60,

b = 3000 s/mm2, separation angle of 60◦, equal volume fraction p1 = p2 = 0.5 and then

have varied independently the b-value, SNR, separation angle and volume fraction.

9.4.1 Effect of Varying Signal Generation Parameters

Figures 9.6-9.9 all show a striking angular resolution gain of all SD methods recon-

structing a fiber ODF over the q-ball diffusion ODF. There is a clear improvement in

angular resolution of QBI with our new deconvolution operation. Also, we see that

the fODF profile is overall more sharp than the fSD profile while as sharp as the
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dODF

Noise-free SNR = 50 SNR = 30 SNR = 20 SNR = 10

Figure 9.7: Effect of varying SNR on the q-ball dODF, our fODF, the CSD, the FORE-

CAST and the fSD. Estimation order is fixed to ℓ = 6 and the signal is generated with

N = 60 data points, b = 3000 s/mm2 and SNR 30. The opaque surface corresponds

to the mean FOD over 100 noise trials, whereas the transparent surface corresponds

to the mean + 2 standard deviations. Blue and red lines correspond to ground truth

fiber directions and detected maxima respectively.

FORECAST and CSD profiles. However, it is possible to see that the fODF peaks are

not always as perfectly aligned with the true direction as are the fSD and CSD peaks.

In particular, Figure 9.6 shows the difference in the reconstruction when changing

estimation order ℓ and b-value. As expected, the best angular resolution is obtained

for higher ℓ and higher b-values. Low order reconstructions with ℓ = 4 have trou-

ble discriminating the two fiber compartments. Note also that at the low b-value of

1000 s/mm2 and ℓ = 4, the regularized solutions of fSD produces a smoother profile

that cannot discriminate the two fiber compartments. Overall, as ℓ and b-value in-

crease, angular resolution is improved for all SD methods. We fix the order at ℓ = 6
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fODF

CSD

FORECAST

fSD

dODF min-max

dODF

90◦ 60◦ 50◦ 45◦ 40◦

Figure 9.8: Effect of varying separation angle on the dODF, our fODF, the CSD, the

FORECAST and fSD. Estimation order is fixed to ℓ = 6 and the signal is generated

with N = 60 data points, b = 3000 s/mm2 and SNR 30. The opaque surface cor-

responds to the mean FOD over 100 noise trials, whereas the transparent surface

corresponds to the mean + 2 standard deviations. Blue and red lines correspond to

ground truth fiber directions and detected maxima respectively.

and b = 3000 s/mm2 for the other simulations.

Figure 9.7 shows that all SD methods reconstructing a fiber ODF are robust to

noise. Even at low SNR, the angular resolution is conserved and the spurious peaks

effect is not dramatic for SNR > 10. However, for higher noise levels such as when

SNR is 10, there are small spurious lobes in the center of most SD methods and a

larger standard deviation of the surfaces. We fix SNR to 30 for other simulations.
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Figure 9.9: Effect of varying volume fraction on the q-ball dODF, our fODF, the CSD,

the FORECAST and fSD. Estimation order is fixed to ℓ = 6 and the signal is gen-

erated with N = 60 data points, b = 3000 s/mm2 and SNR 30. The opaque surface

corresponds to the mean FOD over 100 noise trials, whereas the transparent surface

corresponds to the mean + 2 standard deviations. Blue and red lines correspond to

ground truth fiber directions and detected maxima respectively.

Figure 9.8 qualitatively shows the gain in angular resolution for the fODF, the

FORECAST and the CSD as compared to the fSD. The fODF, fSD, FORECAST and

CSD are able to better discriminate the two fiber compartments at a separation an-

gle of 45◦ whereas the dODF is limited to the separation angle of 60◦. We fix the

separation angle to 60◦ for other simulations.

Finally, Figure 9.9 shows that all SD methods reconstructing a fiber ODF are able

to discriminate fiber compartments clearly for equal fractions up to volume fraction

of 30%. For smaller fractions than 30% only a single compartment is detected for all

fiber ODFs.
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Overall, Figures 9.6, 9.7, 9.8 and 9.9 are in agreement with published results that

can be found in [Tournier et al. (2004); Anderson (2005); Sakaie and Lowe (2007);

Tournier et al. (2007); Dell’Acqua et al. (2007)].

9.4.2 Fiber Detection and Angular Resolution

Table 9.1 confirms qualitative observations made from Figures 9.6-9.9. Table 9.1(a)

first shows that the angular resolution of QBI is improved with our new fiber ODF by

more than 10◦ over all simulations. The table also shows that fODF has a slightly bet-

ter angular resolution than fSD, with an average 5◦ difference in favor of the fODF.

The improvement for order ℓ = 8 is the most apparent with an increase of approxi-

mately 25◦ between fODF and dODF. At order ℓ = 6, the increase is approximately

15◦ between fODF and dODF. As expected, the less apparent improvement is for low-

est order ℓ = 4, where the ODF is too smooth for the deconvolution sharpening to

make an important difference. Moreover, it is also expected that the angular reso-

lution increases considerably for higher b-values. However, note that the difference

is very small when comparing b = 5000 s/mm2 and b = 3000 s/mm2 columns. Note

also that increasing the sampling scheme does not make an important gain in angu-

lar resolution in this experiment. There is a difference of only a few degrees when

going from sampling N = 81 to N = 321. This suggests that increasing the number of

sampling directions is not important if one uses a low spherical harmonic order esti-

mation. Finally, it is important to point out that when both the q-ball dODF and our

new fODF successfully detect the underlying fiber populations, we record no notice-

able difference in angular error made on the detected maxima, i.e. the deconvolution

sharpening does not introduce errors on the detected maxima.

Then, Table 9.1(b) shows that the fiber ODF estimate increases the success rate

of fiber detection in the synthetic data simulation described in Section 9.3.1. We also

see that the fODF and fSD have very similar success rates in this simulation even

though the fSD profile is smoother qualitatively than the fODF profile in Figures 9.6-

9.9. The fODF has better success rate than fSD in some cases because it has a slightly

better angular resolution. The more important increase in success rate occurs for

high estimation order. In particular, for b-value 1000 s/mm2, order ℓ = 8 and sampling

N = 321 there is an increase of 40% and for b = 3000 s/mm2, ℓ = 6, 8 and N = 81 there

is an increase of more than 30% between fODF and dODF. Note that sharpening

the b-value 1000 s/mm2 data has the effect of improving fiber detection to above the

level of b-value 3000 s/mm2 data without sharpening for most order estimations and

similarly, when comparing the dODF column at b = 5000 s/mm2 and fODF column

at b = 3000 s/mm2. Moreover, increasing the spherical sampling density N increases

the success rate of fiber detection. This is more apparent at high order ℓ = 8 and for

b-value > 1000 s/mm2 for the dODF. Finally, note also that, for a given b-value, the

fODF column at a low sampling N = 81 has better fiber detection success than for

the dODF column at high sampling N = 321.
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Angular resolution limitations (a)

b = 5000 s/mm2 b = 3000 s/mm2 b = 1000 s/mm2

ℓ fODF fSD dODF fODF fSD dODF fODF fSD dODF

8 30◦ 33◦ 55◦ 31◦ 38◦ 58◦ 52◦ 54◦ 74◦

N = 81 6 39◦ 42◦ 55◦ 42◦ 46◦ 59◦ 52◦ 58◦ 74◦

4 51◦ 52◦ 59◦ 52◦ 54◦ 63◦ 57◦ 63◦ 75◦

8 29◦ 32◦ 44◦ 30◦ 36◦ 50◦ 45◦ 50◦ 69◦

N = 321 6 37◦ 40◦ 47◦ 38◦ 43◦ 52◦ 45◦ 55◦ 69◦

4 50◦ 50◦ 56◦ 52◦ 55◦ 60◦ 56◦ 62◦ 72◦

Fiber detection success (b)

b = 5000 s/mm2 b = 3000 s/mm2 b = 1000 s/mm2

ℓ fODF fSD dODF fODF fSD dODF fODF fSD dODF

8 100% 100% 78% 94% 94% 61% 86% 85% 56%

N = 81 6 99% 99% 76% 91% 90% 60% 69% 67% 54%

4 70% 70% 62% 63% 63% 55% 62% 60% 52%

8 100% 100% 96% 100% 100% 87% 95% 95% 55%

N = 321 6 100% 100% 88% 100% 100% 84% 66% 70% 53%

4 83% 83% 62% 78% 76% 62% 58% 56% 52%

Table 9.1: The fiber ODF estimation improves fiber detection and angular resolution

of QBI. We change estimation order ℓ, b-value and spherical sampling density N .

Simulations were done on 1000 HARDI profiles. In (a) HARDI profiles are generated

with SNR 35 and with a random number of crossing fibers between 1, 2 and 3 and

with random angle between fibers above 45◦. In (b), noise-free HARDI simulations

are generated with 2 fibers crossing. We report the angle between fibers under which

only a single ODF maxima is detected.

Table 9.1 shows results for the dODF, fODF and fSD only. Although not the same,

fODF and fSD have a similar behavior. Note that for clarity and to make the table

more readable, we have not included results for the FORECAST and CSD. In practice,

the quantitative results for these two also agree with the qualitative observations

made in the previous synthetic simulations. In fact, the angular resolution and fiber

detection success of the FORECAST, CSD and our sharp fODF are nearly the same.

Hence, we have not allocated a distinct column for both the FORECAST and the CSD

methods.
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Figure 9.10: Effect of varying SNR on the detected maxima of our fODF, the fSD and

the CSD. We plot the mean and standard deviation of the estimated angle error for

the fiber simulation with separation angle of 60◦, b = 3000 s/mm2 and N = 81. The

reconstructions used ℓ = 6.

9.4.3 Robustness to Noise

Figure 9.10 shows the effect of noise on the angular error of detected maxima from

the sharp fODF, the fSD and the CSD. The three curves have a similar profile but

we see a small improvement of approximately 1 to 2◦ in angular error for the CSD

method over the sharp fODF and fSD. Overall, the mean and standard deviation of

the angular error is more or less 2.8◦ ± 1.5◦ for the sharp fODF, 2.5◦ ± 0.9◦ for the fSD

and 2.1◦ ± 0.8◦ for the CSD on average over all SNR noise levels. Note that the ODF

maxima were detected using a fine mesh with 1281 directions on the hemisphere,

giving roughly 4◦ between each mesh point. Hence, the angular error for all methods

is less than the angle separation between two points of the spherical grid.

Conclusion of Synthetic Data Experiments

There are several important messages from this section. Overall, SD reconstruction

methods have a striking angular resolution gain over the q-ball diffusion ODF of

more than 15◦. Moreover, as expected, the best angular resolution of SD methods is

obtained for higher estimation order and b-value. However, surprisingly, increasing
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Diffusion tensors Diffusion ODF Our sharp fiber ODF

Filtered SD FORECAST Constrained SD

Figure 9.11: Fiber ODF reconstructions from SD methods presented in this chapter.

We show the diffusion tensors, the q-ball dODF, the our fODF, the fSD. the FORE-

CAST and the CSD overlaid on the GFA map.

sampling density from N = 81 to N = 321 only improves the angular resolution by 2

to 5 degrees.

Focusing on the SD deconvolution sharpening, the SD operation applied on the

q-ball diffusion ODF improves QBI and our synthetic data simulations show that

crossing fibers are more easily detected while noise effect is kept under control. The

deconvolution transformation has the desired effect of enhancing the underlying fiber

population, which makes it easier to detect crossing fiber configurations with smaller

separation angle. Compared to fSD, FORECAST and CSD, our fODF behaves very

similarly while working on the q-ball dODF and not directly on the signal. It is thus

another option. Moreover, our new fiber ODF has a slightly better angular resolu-

tion and fiber detection than the original fSD but behaves essentially in the same

way as FORECAST and in a similar way to CSD. Finally, regarding angular error

made on the detected maxima, SD methods make less than 4◦, which is less than

the separation angle between two spherical grid points. Note however that CSD pro-

files in [Tournier et al. (2007)] seem to be even sharper with better angular resolution

than the ones produce by our implementation. Numerical schemes used in the differ-

ent implementations might have an impact on the end results and thus, it would be

worth investigating what gives the optimal implementation of these spherical decon-

volution.
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9.4.4 Real Data Spherical Deconvolution Reconstructions

Biological Phantom Dataset

Figure 9.11 shows that the fiber ODFs from all SD methods enhance the multiple

fiber compartments in the crossing region of the biological phantom. Fiber ODFs

from all SD methods have multiple peaks that agree with the known underlying fiber

populations. Again, we see that the diffusion tensors are more flat and sphere-like

in the crossing region. As expected, the fiber ODF profiles are also much sharper

than the diffusion ODF profiles, at the cost of small spurious peaks appearing in the

fiber ODFs, especially in voxels on the borders of structure and background. Most

spherical deconvolution fiber ODF reconstructions qualitatively look similar in this

dataset.

Max Planck Institute (MPI) Dataset

Figure 9.12a qualitatively shows the effect of the deconvolution sharpening transfor-

mation on a single voxel of the MPI dataset. This voxel was selected at the interface

between the fibers to the lateral motor stripe and the SLF (Talairach -34 -4 29). We

see that the q-ball diffusion ODF finds only one maxima but there seems to be an-

other single fiber compartment with a smaller volume fraction. The sharp fiber ODF

is able to discriminate the second fiber compartment and the recorded separation an-

gle is 62◦. As the estimation order increases, the second fiber compartment is more

evident at the cost of spurious peaks appearing for ℓ = 8. We again see that fiber

detection and angular resolution are improved with the deconvolution sharpening

transformation.

Figure 9.12b shows the multi-directional information coming from the diffusion

ODF and the sharp fiber ODF on a region of interest in a coronal slice (Talairach

-4 ) of the human brain dataset. In this ROI, the CC forms the roof of the lateral

ventricles and fans out in a massive collateral radiation, the corticospinal tract (CST)

lies lateral to the ventricle and is directed vertically and the SLF crosses the base

of the precentral gyrus in anterior-posterior direction. The lateral projections of the

CC cross the CST and the SLF. Fibers of the SLF partly intersect with the fibers

of the CST and the CC. Some voxels of the q-ball diffusion ODF and fiber ODF in

area (a,a’) contain these three fiber bundles crossing. It is thus surprising that recent

work [Behrens et al. (2007)] report no voxels with three crossings. In fact, area (a) in

this ROI, contains a large strip of voxels with low FA < 0.15 running at the medial

border of the SLF, where crossings with three fiber populations are detected in the

fiber ODF. Overall, our fiber ODF recovers more voxels with 2-fiber crossings than

the diffusion ODF.

Figure 9.13 shows the other spherical deconvolution methods in the same ROI as

Figure 9.12b. Again, we note that all SD methods improve angular resolution and

fiber detection. As in the synthetic simulations, we note that our fODF profiles are as
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(a)

dODF dODF min-max ℓ = 4 ℓ = 6 ℓ = 8

(b)

Figure 9.12: Spherical deconvolution sharpening improves fiber detection of QBI by

increasing angular resolution on coronal slice ROI of the MPI dataset. In (1), the sec-

ond maxima is missed in the q-ball dODF and min-max normalized dODF. With SD,

the second fiber direction is identified even at low orders of ℓ = 4 and ℓ = 6. The real

data voxel in (a) is at the interface between motor stripe and superior longitudinal

fasciculus. It was manually selected by an expert. In (b), there are more crossings de-

tected using the fiber ODF (a,b) than dODF (a’,b’). The ROI shows crossings between

the cortical spinal tract / corona radiata (cst/cr) (going up in the plane), superior lon-

gitudinal fibers (slf) (coming out of the plane) and the lateral projections of the corpus

callosum (cc) (in the plane). (a,a’) are tilted to see the fiber directions more clearly.
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dODF fODF fSD FORECAST CSD

Figure 9.13: We show the q-ball dODF, our fODF, the fSD, the FORECAST and CSD

crossings in the same ROIs as in Figure 9.12b.

sharp as the CSD profiles and almost identical to the FORECAST profiles. We also

see that our fODF profiles are sharper than the fSD profiles.

Brain Imaging Center (BIC) Dataset

As for the biological phantom and the MPI dataset, if we compare the fiber ODFs

reconstructed from all SD methods on the BIC dataset, we see that the overall shapes

of the fiber ODFs are nearly the same. The crossing fibers are between the CST and

CC (in the plane) and the CST and SLF (coming out of the plane). Again, we see

that the fiber ODF reconstructions from the different SD methods improve angular

resolution while remaining robust to noise levels.

Center for Magnetic Resonance Research (CMRR) Dataset

We reconstruct the fiber ODF from all SD methods for the same axial, coronal and

sagittal ROIs of the CMRR dataset in Figures 9.15 and 9.16, as in the previous chap-

ter. The spherical deconvolution and sharpening operations are even more important

on this dataset because the voxels are quite large (3 x 3 x 3) and hence, there is

higher averaging of the diffusion signal due to each fiber compartment. The spheri-

cal deconvolution effect is thus quite striking in these ROIs. The QBI reconstructions

are improved considerably by our sharp fiber ODF and by the fSD, FORECAST and

CSD methods.

Percentage of Crossing Voxels in the Human Brain Datasets

As a final experiment on the real datasets, we count the number of voxels with

FA > 0.1 that have two or three maxima in their respective diffusion and fiber ODF.

As in the previous chapter, we use an order ℓ = 6 reconstruction for the diffusion

ODF and use an order ℓ = 4 reconstruction for the fiber ODF from all SD methods, as

in this chapter. If there are more than 3 maxima, the voxel is ignored in the statis-

tics because it is considered as part of background voxel. In practice, for low order
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Figure 9.14: Crossings in the BIC dataset between the CST and CC (in the plane)

and the CST and SLF (coming out of the plane). We show the diffusion tensors, the

q-ball dODF, our fODF, the fSD, the FORECAST and the CSD on the GFA map.

estimation, voxels with more than 3 maxima are rare.

Results are shown in Table 9.2. The lowest percentage is systematically recorded

for the q-ball diffusion ODF, with less than 10% of voxels for datasets with b = 1000

s/mm2 and nearly one fourth of the voxels in the BIC dataset with b = 3000 s/mm2.
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Filtered SD FORECAST Constrained SD

Figure 9.15: Axial slice showing intersection between the genu of the corpus callo-

sum, the capsule fibers and the superior frontal gyrus fibers. We show the diffusion

tensors, the q-ball dODF, our fODF, the fSD, the FORECAST and the CSD overlaid

on the GFA map. This is the same region of interest as Figure 7.11.

human brain datasets diffusion and fiber ODF reconstructions

name N b (s/mm2) voxel dODF fODF fSD FORECAST CSD

MPI 60 1000 (1.7mm)3 7.3% 41.4% 29.0% 39.9% 40.4%

CMRR 81 1000 (3mm)3 9.3% 47.6% 29.9% 43.12% 53.2%

BIC 99 3000 (2mm)3 24.0% 56.7% 55.1% 56.1% 59.3%

Table 9.2: Fraction of crossing voxels in the white matter of the CMRR, BIC and MPI

datasets. We count the number of voxels with FA > 0.1 with two or three maxima in

their diffusion and fiber ODF.

The percentages are considerably higher when looking at the fiber ODF reconstruc-

tions from most SD algorithms. Again, the percentages are lower for the lower b-value

datasets than for the BIC dataset. For the b = 1000 s/mm2 datasets, the fiber ODF

from fSD records nearly one third of the voxels as crossings and the other fiber ODFs
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GFA and DTI Diffusion ODF Our sharp fiber ODF
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(b)

GFA and DTI Diffusion ODF Our sharp fiber ODF

Filtered SD FORECAST Constrained SD

Figure 9.16: (a) Coronal slice in the centrum semiovale, where the intersections be-

tween the corpus callosum commisural fibers and the corona radiata and superior

longitudinal fasciculus are seen. (b) Sagittal slice showing the corona radiata diverg-

ing fibers and crossings with the superior longitudinal fasciculus.
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(fODF, FORECAST and CSD) record more or less two fifth of the voxels as crossings.

For the b = 1000 s/mm2 datasets, note that percentages are systematically higher for

the CMRR dataset. We believe this is because the MPI dataset is smoother due to 3

signal averages and fewer diffusion encoding directions. For the higher b-value BIC

dataset, more than half of the voxels are classified as crossings and approach nearly

60% for all fiber ODF reconstructions. These percentage results surely depend on the

scanner and acquisition parameters but are interesting to report because we know

that it is in these voxels that the classical DTI will provide unreliable results. To our

knowledge, only [Behrens et al. (2007)] have performed such an analysis. Behrens

et al report that one third of voxels with FA > 0.1 were classified as crossing vox-

els in their high-order model applied to a dataset acquired with a 1.5T scanner with

b = 1000 s/mm2, N = 60 directions and 2 mm isotropic voxel size.

9.5 DISCUSSION

We have developed a new SD sharpening operation that transforms the

q-ball diffusion ODF to a sharper fiber ODF from our regularized and analytical es-

timation of the ODF. We have shown that this fiber ODF considerably improves fiber

detection and angular resolution compared to the q-ball diffusion ODF by approx-

imately 15◦. Results show that our ODF deconvolution transformation is a valid

choice to obtain a stable fiber ODF. We have also shown that our new fiber ODF be-

haves very closely to the fSD, the FORECAST, the GB-SD and the CSD methods. We

have extensively compared these SD methods and reproduced simulated results pub-

lished in the literature. We have also improved and extended some of these methods

by adding our Laplace-Beltrami regularization term in the signal estimation.

Our new fiber ODF is an important improvement to QBI. The classical q-ball dif-

fusion ODF reconstruction is smooth with large contributions outside the principal

directions of diffusion. Even after min-max normalization, the diffusion ODF has

poor angular resolution, especially at lower b-values. Hence, the q-ball diffusion ODF

is not necessarily the best function to be using if one is interested in the underly-

ing fiber population. To our knowledge, our SD is the first attempt to transform the

diffusion ODF into a fiber ODF. It is this fiber ODF that will be useful for later trac-

tography developments in the rest of the thesis.

The SD sharpening is well-defined and the diffusion ODF kernel is estimated

directly from the real data (values of λ1 and λ2). Therefore, we have very few pa-

rameters to set in this approach. One only needs to choose the truncated SH series

order ℓ of the estimation and the regularization parameter λ. This makes our new

fiber ODF estimation fast and robust when working with spherical harmonics. The

powerful tool in the derivation was again the Funk-Hecke theorem, as in the deriva-

tion of the analytical ODF solution in the previous chapter. The theorem allows to

solve the integral on the sphere between the single fiber diffusion ODF kernel and

any spherical harmonic. We have also shown that the Funk-Hecke theorem can be
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used to solve the FORECAST spherical deconvolution problem. In the end, our new

fiber ODF is a linear transformation of the coefficients of the raw HARDI signal, as

for the other linear SD methods (fSD and FORECAST).

Therefore, our diffusion ODF SD improves QBI considerably. Anybody working

with QBI and/or a diffusion ODF can apply the sharpening transformation to ob-

tain the fiber ODF. Results in this chapter show that crossing fibers are more easily

detected and that the angular resolution limitation is improved with all fiber ODF re-

constructions (fODF, FORECAST, fSD and CSD). All SD methods enhance the under-

lying fiber population, which makes it easier to detect crossing fiber configurations

with smaller separation angles. Compared to fSD, FORECAST and CSD, our fiber

ODF behaves very similarly while working on the diffusion ODF and not directly on

the signal. Overall, our fiber ODF has a slightly better angular resolution and fiber

detection than the original fSD but behaves essentially the same as CSD.

We have shown that, on a noise-free example, our new fiber ODF and FORECAST

are the same up to small perturbations in the high order harmonics if the SH coeffi-

cients of the signal are estimated in the same way. Intuitively, this makes sense as

both methods are based on the same underlying diffusion model, the axially symmet-

ric tensor, and both use the exact same spherical harmonic derivation to obtain the

respective SD solution. The principal difference is that FORECAST acts directly on

the HARDI signal and uses the single fiber signal response as the deconvolution ker-

nel whereas our new fiber ODF acts on the q-ball diffusion ODF and uses the single

fiber diffusion ODF response as the deconvolution kernel. Hence, in the FORECAST

solution, a single linear transformation of the signal is needed to obtain the fiber

ODF whereas in our solution, two linear transformations are needed. One to trans-

form the signal into the q-ball diffusion ODF and another to transform this q-ball

diffusion ODF into a fiber ODF. Nonetheless, we have shown that FORECAST and

our fiber ODF are qualitatively the same on synthetic simulations, on the rat biolog-

ical phantom and on the real datasets. We have also shown that the two methods

are quantitatively the same in a noise-free simulation even though small numerical

differences are observed for higher order reconstructions. Further analysis needs to

be done to understand the behavior of FORECAST and our fiber ODF. In our simu-

lations, our fiber ODF seems to be less sensible to negative values on the sphere and

spurious peaks in the reconstructions. This could be due to the two linear transfor-

mations included in our fiber ODF solution. The q-ball step might be adding an extra

low-pass filtering in the reconstruction.

In our fiber ODF reconstruction, we have two mechanisms that limit the spurious

peaks and negative-values-effect problems observed in the SD methods. First, we

choose to focus on low order estimations of the ODF, i.e. we use a 4th or 6th order es-

timation of the fiber ODF. We find that the trade-off between noise in the higher order

frequencies and gain in angular resolution is not necessary for our later tractography

application. Moreover, the best results in our real data experiments are obtained

195



for estimation order ℓ = 4. It also has the advantage of a very fast fiber ODF esti-

mation (less than 20 seconds on the real datasets) and good compression properties

because we only need to store 15 coefficients at every voxel. Note that [Tournier et al.

(2004, 2007)] mostly consider high estimation orders of ℓ ≥ 8. Thus they need to filter

high order frequencies and to do so with an iterative non-negativity constraint on

the spherical deconvolution [Tournier et al. (2007)]. However, the SD operation then

becomes non-linear and reduces computational efficiency of the solution. A second

mechanism that limits the effect of spurious peaks in our solution is the Laplace-

Beltrami regularization included in the estimation of the spherical harmonic coeffi-

cients describing the HARDI signal. This regularization is similar in spirit as the

gradient constraint regularization recently proposed in [Sakaie and Lowe (2007)].

However, note that Sakaie and Lowe (2007) estimates the optimal regularization pa-

rameter at every voxel whereas we have fixed our regularization parameter to keep

a fast solution. We could have also used L-curves to determine the optimal regu-

larization λ, as in Chapter 6. Overall, we have shown that our new fiber ODF is

robust to spurious peaks and negative values on the sphere by using a low approxi-

mation order and a regularization parameter. We prefer to keep our reconstruction

linear and fast. Nonetheless, it is part of current work to see how we can theoret-

ically deal with negative values and spurious peaks appearing at higher harmonic

orders while working directly on the harmonic coefficients. This would avoid having

to project to many data points on the sphere and also avoid the need for a non-linear

algorithm [Tournier et al. (2007); Dell’Acqua et al. (2007); Jian and Vemuri (2007b)].

Finally, this chapter also showed that it is possible to resolve and improve fiber

crossing detection on our real datasets, even on datasets with low spherical sampling

schemes and a low b-value (60 and 81 DW images and b = 1000 s/mm2). We have

shown that the fiber ODF reconstruction dramatically increases the number of voxels

with crossing configurations computed from q-ball diffusion ODF. This is even more

the case for a higher b-value acquisition. It is thus important to improve quality of

high b-value acquisitions. We believe it is also important for the HARDI community

to report the proportion of crossing voxels in their datasets. These voxels are locations

where a classical DTI is limited and even standard single shell HARDI acquisition

such as QBI reconstruction is also limited for fiber populations crossing at angles less

than 90◦. Proportions of crossing voxels in each dataset used should always be given,

just as the SNR of the unweighted image S0 is often given as well.

In theory, q-space imaging methods need the narrow pulse approximation and in

particular, QBI approximation of the diffusion ODF is best for high b-values. There-

fore, the fact that the sharp fiber ODF estimation is fast and simple to implement and

that it can resolve more fiber crossings in datasets with low b-values and low spheri-

cal sampling schemes is promising for potential clinical applications of QBI. We will

now see how our sharp fiber ODF is a good function to be used for tractography.
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9.5.1 Contributions of this chapter:

• New deconvolution sharpening operation transforming the q-ball diffusion ODF

into a sharper fiber ODF.

• Derivation, implementation and comparison of the state-of-the-art spherical de-

convolution methods based on the spherical harmonic basis, namely fSD, FORE-

CAST, GB-SD, LB-SD, CSD and super-CSD [Tournier et al. (2004); Anderson

(2005); Sakaie and Lowe (2007); Tournier et al. (2007)].

• Extension and improvement of the FORECAST reconstruction using a Laplace-

Beltrami regularized estimation of the SH coefficients describing the signal.

1. Solution to the FORECAST reconstruction proved to be equivalent using a

derivation using the Funk-Hecke theorem.

2. Parallel between the FORECAST solution and our new fiber ODF solution.

We have shown the numerical equivalence of the FORECAST and our new

fiber ODF reconstructions in noise-free synthetic simulations.

• Extensive validation study of our new fiber ODF on numerical simulations, on

the biological phantom and on the real human brain datasets.

Parts of the contributions from this chapter appear in [Descoteaux et al. (2007c);

Descoteaux and Deriche (2007c); Descoteaux et al. (2007b)].
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9.6 APPENDIX A: DIFFUSION ODF KERNEL FOR
SHARPENING

As in [Tournier et al. (2004); Anderson (2005)], we assume the simplest model of dif-

fusion in axon fiber bundles, i.e. diffusion in each voxel follows an axially symmetric

diffusion tensor D. As before, the corresponding diffusion signal that would be mea-

sured in direction u is S(u) = e−buTDu. Without loss of generality, we assume that

the fiber is aligned with the z-axis and it has a profile with eigenvalues [λ2, λ2, λ1]

(λ1 >> λ2),

D =






λ2

λ2

λ1




 ,

This profile is estimated directly from the real data, taking 300 voxels with highest

FA values as we are confident that there is a single fiber population at those locations.

Now, recall that the general analytical expression for the diffusion ODF Ψ, for any

diffusion tensor profile D, is given by Eq. 7.24

Ψ(u) =
1

Z

√

1

uTD−1u
,

where Z is the normalization constant defined in Eq. 7.25. Here, in the case of an

axially symmetric tensor, we have

uTD−1u =
1

λ2
sin2 θ +

1

λ1
cos2 θ, (9.24)

where u = [x, y, z]T with x = cosφ sin θ, y = sinφ sin θ, z = cos θ.

Ψ(u) =
1

Z

(
1

λ2
sin2 θ +

1

λ1
cos2 θ

)− 1
2

=
1

Z

[
1

λ2

(
1 − cos2 θ(1 − λ2/λ1)

)
]− 1

2

, (9.25)

With the expression of Z in Eq. 7.25, we expand it to find a new normalization factor

in the case of an axially symmetric tensor. The new normalization Z ′ is defined as

Z ′ = 8πb
√

λ2
2λ1. (9.26)

Letting t := cos θ represent the dot product between the direction of the fiber and the

point of evaluation, we define the single fiber diffusion ODF kernel R′ as

R′(t) :=
1

8πb
√
λ1λ2

1
√

1 − (1 − λ2/λ1)t2
, (9.27)

Therefore, the Funk-Hecke integral between the diffusion ODF kernel and spher-

ical harmonic of Eq. 9.10 is

r′j = 2π

∫ 1

−1
Pℓ(j)(t)R

′(t)dt =
2π

8πb
√
λ1λ2

∫ 1

−1
Pℓ(j)(t)

(
1 − αt2

)−1/2
dt

=
1

4b
√
λ1λ2

A′
ℓ(j)(α),

(9.28)
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where α = (1 − λ2/λ1) has the property that 0 < α < 1 and A′
ℓ(j)(α) is

A′
ℓ(j)(α) =

∫ 1

−1

1√
1 − αt2

Pℓ(j)(t)dt. (9.29)

To solve this integral, the Legendre polynomial Pℓ(j)(t) can be expressed as a power

series and A′
ℓ(j)(α) can be evaluated by integrating each term of the power series. We

list A′
ℓ(j)(α) up to order 8

A′
0(α) =

1

α1/2
· 2 arcsin(

√
α)

A′
2(α) =

−1

2α3/2
· [(−3 + 2α) arcsin(

√
α) + 3

√
1 − α

√
α]

A′
4(α) =

1

32α5/2
· [(105 − 120α + 24α2) arcsin(

√
α) + (−105 + 50α)

√
1 − α

√
α]

A′
6(α) =

−1

128α7/2
· [(−1155 + 1890α − 840α2 + 80α3) arcsin(

√
α) + (1155+

−1120α + 196α2)
√

1 − α
√
α]

A′
8(α) =

1

8192α9/2
· [(225225 − 480480α + 332640α2 − 80640α3 + 4480α4) arcsin(

√
α)+

(−225225 + +330330α − 132440α2 + 12176α3)
√

1 − α
√
α]

(9.30)

9.7 APPENDIX B: COEFFICIENTS OF A IN THE
FORECAST SOLUTION

Here, we list Aℓ(j)(a) up to order-8. Recall that Aℓ(j)(a) is given by

Aℓ(j)(a) =

∫ 1

−1
e−at2Pℓ(j)(t)dt, (9.31)

Note that these are slightly different than the A coefficients in [(Anderson, 2005, Ap-

pendix A)] because we have used a different derivation and the normalization in front

of the integral is simplified. Nonetheless, the ultimate fiber ODF reconstructions of
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the fj coefficients are the same and the Aℓ(a) coefficients are given by

A0(a) =
1

a1/2
·
√
π erf(

√
a)

A2(a) =
−1

4a3/2
· [6

√
ae−a + (−3 + 2a)

√
π erf(

√
a)]

A4(a) =
1

32a5/2
· [−10

√
a(21 + 2a)e−a + 3(35 − 20a+ 4a2)

√
π erf(

√
a)]

A6(a) =
−1

128a7/2
· [42

√
a(165 + 20a+ 4a2)e−a + 5(−693 + 378a − 84a2+

8a3)
√
π erf(

√
a)]

A8(a) =
1

2048a9/2
· [−6

√
a(225225 + 30030a + 7700a2 + 248a3)e−a + 35(19305−

10296a + 2376a2 − 288a3 + 16a4)
√
π erf(

√
a)]

(9.32)

9.8 APPENDIX C: RELATION BETWEEN OUR FIBER ODF
AND THE FORECAST

Recall the SH coefficients of our fiber ODF and the FORECAST from Eqs. 9.13

and 9.12

fODFj =
8πb

√
λ2λ1Pℓ(j)(0)

S0A
′
ℓ(j)(1 − λ2/λ1)

︸ ︷︷ ︸

t′j

cj and FORECASTj =
ebλ2

2πS0Aℓ(j) (b(λ1 − λ2))
︸ ︷︷ ︸

tj

cj ,

(9.33)

with A′
ℓ(j) and Aℓ(j) defined in Eqs. 9.30 and 9.32 respectively and Pℓ(j)(0) given by

Pℓ(0) =







0 ℓ odd

(−1)ℓ/2 1 · 3 · 5 · · · (ℓ− 1)

2 · 4 · 6 · · · ℓ ℓ even.

Now one quickly realizes that the respective coefficients of t′j and tj are not equal.

However, we can show that they are both zero, non-zero, positive and negative for

each coefficient j. Hence, they have the same global effect on the reconstructed spher-

ical functions. In fact, we note that both reconstructed fiber ODF are the same after

projecting them on the sphere and normalizing them between 0 and 1. They are the

same up to small perturbations propagating in the higher order harmonics.

We illustrate this numerically on the following synthetic simulation.

• We generate a noise-free signal with two orthogonal fibers, each with FA = 0.7,

N = 60 DW images and b = 3000 s/mm2.

• We estimate the SH representation of the cj with our Laplace-Beltrami regular-

ization of Eq. 6.13 as seen many times in this thesis (it could be any technique,

as long as it is the same for both the fODF and FORECAST).
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Mean difference between fODF and FORECAST

ℓ = 2 ℓ = 4 ℓ = 6 ℓ = 8

2.86x10−8 6.22x10−3 9.98x10−3 0.0502

Table 9.3: Mean difference between the fiber ODFs reconstructed from our sharp

fiber ODF and from FORECAST.

• We compute fODFj and FORECASTj given in Eq 9.33.

• We map the SH representation of the fODF and FORECAST to the sphere with

the modified SH basis of Eq. 5.24 (the B matrix).

• We normalize both the fODF and FORECAST spherical function between 0 and

1. We compute the point-wise mean difference between the two functions and

we visualize them.

In Figure 9.17, we compare the two spherical functions represented as 1D sig-

nals for each of the 81 points on the hemisphere. We also visualize them on the

sphere for a 16th order tessellation of the sphere. Both our sharp fiber ODF and

the FORECAST are nearly identical. The greatest difference appears for order ℓ = 8

around the small amplitudes of the signal. These are due to the small spurious peaks

appearing for high order SD. Quantitatively, Table 9.3 confirms these observations.

Both the fODF and the FORECAST are in close agreement. There is less than 1%

difference at reconstruction orders ℓ ≤ 6 and 5% difference at the higher order of

ℓ = 8. Finally, in Figure 9.17, we show the bar graph and signature profile of the

SH representations of fODFj and FORECASTj. We plot fODFj / max(fODFj) and

FORECASTj / max(FORECASTj) for all j up to order ℓ = 8. We see that the SH

representations are quite different but are both zero, non-zero, positive and negative

for the same coefficients. It is also interesting to note that for order ℓ ≤ 6, j ≤ 28, the

normalized FORECAST is always higher in absolute value than fODF whereas for

ℓ = 8, j ∈ [29, 45], the fODF becomes always higher in absolute value. This coefficient

analysis needs further investigation numerically and needs a theoretical explanation.

Overall, we can conclude that our SD operation generating the sharp fiber ODF is

behaviorally equivalent to the FORECAST SD method on a noise-free example.
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fODF FORECAST fODF FORECAST

ℓ = 2 ℓ = 4

fODF FORECAST fODF FORECAST

ℓ = 6 ℓ = 8

Figure 9.17: Our fiber ODF and the fiber ODF reconstructed from FORECAST are in

close agreement.
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Bar graph of the normalized SH coefficients, fODFj and FORECASTj

Signature profile of the normalized SH coefficients, fODFj and FORECASTj

Figure 9.18: Our fiber ODF versus the fiber ODF reconstructed from FORECAST

represented in SH coefficients. We have normalized the SH coefficients according the

respective maxima of fODFj and FORECASTj. Recall that for j ∈ [2, 5] ℓ = 2, for

j ∈ [6, 15] ℓ = 4, for j ∈ [16, 28] ℓ = 6 and for j ∈ [29, 45] ℓ = 8.
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CHAPTER 10

DETERMINISTIC AND

PROBABILISTIC TRACTOGRAPHY

IN HIGH ANGULAR RESOLUTION

DIFFUSION MRI

“Follow the leader”
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OVERVIEW

Now that we have robust fiber ODF estimates, how can we integrate this local infor-

mation into new tractography algorithms? This chapter covers a new deterministic

tractography algorithm and a new probabilistic algorithm based on the fiber ODF. In

particular, how can the deterministic DTI tracking be generalized? Can determinis-

tic tracking take into account all the maxima of the fiber ODF? Can DTI probabilistic

tracking be generalized? How does deterministic and probabilistic tracking compare?

First, a new deterministic tracking algorithm and a new probabilistic tracking al-

gorithm are developed to extend the classical DTI tractography algorithms. To do

so, our new fiber ODF is used. Then, accurate results of complex fiber bundles with

crossing, fanning and branching configurations are obtained from our new tracking

algorithms. Finally, an extensive comparison of the new deterministic and the new

probabilistic tracking algorithms is performed a human brain dataset.

Keywords: fiber tractography, deterministic tractography, probabilistic tractogra-

phy, DTI, HARDI, QBI, diffusion ODF, fiber ODF

Contributions of this chapter:

• Extensive literature review of the existing state-of-the-art deterministic and

probabilistic tractography methods in DTI and HARDI.

• New deterministic HARDI tractography based on the full multidirectional in-

formation of the fiber ODF.

• New probabilistic HARDI tractography based on the full fiber ODF distribution.

• Qualitative comparison and validation of our new deterministic and probabilis-

tic HARDI tractography algorithm using the DT, the diffusion ODF and the fiber

ODF. The results are shown on synthetic data, on the biological phantom and

on a real human brain HARDI dataset.

Organization of this chapter:
The chapter is organized as follows. We motivate the tractography problem on

HARDI data in Section 10.1. Then, we review the existing methods in DTI and

HARDI deterministic and probabilistic tractography in Section 10.2. Next, Sec-

tion 10.3 describes our new deterministic and probabilistic q-ball tractography al-

gorithms. Results on synthetic HARDI data, on a biological phantom and on the MPI

dataset are presented in Section 10.4. Finally, we conclude with a discussion of the

results and our contributions in Section 10.5.
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10.1 INTRODUCTION

Now that we have developed state-of-the-art local reconstruction meth-

ods able to deal with multiple fiber compartments, we need to integrate this local

information to obtain more global information about the white matter geometry. Dif-

fusion MRI fiber tractography or fiber tracking is the only non-invasive tool to obtain

information on the neural architecture in vivo of the human brain white matter. Trac-

tography is needed to understand functional coupling between cortical regions of the

brain and is important for characterization of neuro-degenerative diseases, for sur-

gical planning and for many other medical applications [Mori and van Zijl (2002)].

Tractography and tracking will be used interchangeably and as synonyms in this

chapter. Currently, white matter fiber tractography is most commonly implemented

using the principal diffusion direction of the DTI data. The DT model [Basser et al.

(1994a)] characterizes the orientation dependence of the diffusion probability density

function (PDF) of the water molecule. However, as seen many times in this thesis,

an important limitation of the DT model is the Gaussian diffusion assumption, which

implies that there can only be a single fiber population per voxel. At the resolution

of DTI acquisitions, this is an important problem since it is known that many vox-

els have low anisotropy index due to non-Gaussian diffusion coming from multiple

fibers crossing, branching, fanning or in a bottleneck. In fact, the resolution of DTI

acquisitions is usually between 3 mm3 and 15 mm3, while the diameter of bundles of

axons considered in fiber tractography are on the order of 1mm and individual physi-

cal fibers on the order of 1-30 µm [Mori and van Zijl (2002)]. In the previous chapter,

it was shown that between one third and two thirds of white matter voxels with FA

≥ 0.1 in our brain datasets contain evidence for a multiple fiber configurations. These

are locations where we know that the DT model is unreliable. Thus, tractography al-

gorithms based on the DT can follow false tracts due to DT profiles that are prolate

or can prematurely stop in regions of isotropic tensors.

To overcome these limitations of the DT, we have seen that HARDI techniques

have been proposed to estimate the ODF. All the existing HARDI techniques are de-

veloped to deal with non-Gaussian diffusion process and reconstruct spherical func-

tions with potentially multiple maxima aligned with the underlying fiber distribu-

tion. Hence, one naturally wants to generalize existing DT-based tractography algo-

rithms with HARDI-based techniques to better deal with some fiber crossings.

In tractography, two families of algorithms exist: deterministic and probabilistic

algorithms. Research groups have recently started to generalize both deterministic

and probabilistic DT-based tractography algorithms to use some of the HARDI re-

construction methods mentioned in Chapter 4. Popular high order functions used

in the literature are the ODF [Tuch (2002); Hagmann et al. (2004); Campbell et al.

(2005); Perrin et al. (2005); Campbell et al. (2006); Haroon and Parker (2007)], the

PAS function [Parker and Alexander (2005); Seunarine et al. (2006, 2007)], vari-

ants of the multi-tensor fitting models [Kreher et al. (2005); Guo et al. (2006);
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Ramirez-Manzanares and Rivera (2006); Behrens et al. (2007)] and parametric

spherical deconvolution [Kaden et al. (2007)]. The latter techniques show improve-

ment in tracking results where the DT model fits the data poorly and show prelimi-

nary fiber bundles with some crossing and branching configurations handled.

Normally, an advantage of the probabilistic tractography techniques is that they

are based on the full spherical function considered (DT, ODF, PAS, etc...) and not only

on the principal direction or maximum(a) extracted. However, this creates a problem

when the spherical function profiles are smooth and have significant isotropic parts.

In that case, tractography produces diffusive tracking results that leak into unex-

pected regions of the white matter. This is a well-known problem in probabilistic DT

tractography and has not been thoroughly studied in the literature. Typically, one

simply takes a power of the diffusion tensor [Lazar et al. (2003); Koch et al. (2002);

Tournier et al. (2003); Descoteaux et al. (2007c); Anwander et al. (2007b)] to increase

the ratio of largest to smallest eigenvalue and thus have enhanced and more elon-

gated tensors. To avoid diffusive tracking and leaking in ODF-based tracking meth-

ods, one needs to use the fiber ODF to obtain more complete and accurate tracts. In

this chapter, the high order spherical function used is the fiber ODF developed in

the previous chapter. We will compare the behavior of DTI tracking, diffusion ODF

tracking and fiber ODF tracking.

The goal of this chapter is thus to integrate the full multidirectional information

of the fiber ODF in both a new deterministic and a new probabilistic tractography

algorithm with emphasis on a comparison on real human brain fiber bundles where

classical deterministic and probabilistic DT techniques fail.

10.2 BACKGROUND ON TRACTOGRAPHY

The most intuitive tracking algorithms are the classical determinis-

tic streamline (STR) tracking algorithms [Mori et al. (1999); Conturo et al. (1999);

Basser et al. (2000); Poupon (1999)] and slightly more complex tensor deflection

(TEND) algorithms [Lazar et al. (2003); Westin et al. (2002)] used in many applica-

tions [Horsfield and Jones (2002)]. Many other DT-based streamlines and flow-based

approaches also exist. A good review and discussion of DT-based algorithms can be

found in [Mori and van Zijl (2002)]. Here, we focus on HARDI-based tractography

algorithms.

Recently, [Tuch (2002); Hagmann et al. (2004)] have proposed a generalized

streamline tracking algorithm based on the principal direction of the diffusion ODF

computed from DSI. In [Kreher et al. (2005)] and in [Bergmann et al. (2007)], a multi-

tensor local model of the data is used to extend the fiber assignment by continuous

tracking (FACT) [Mori et al. (1999)] algorithm and in [Chao et al. (2007b)], multi-

ple maxima of the q-ball ODF are used to also extend FACT into a multiple ODF

maxima FACT (M-FACT). Moreover, to deal with more complex fiber configura-

tions, [Parker and Alexander (2003)] extended streamline tracking with a mixture
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of Gaussian densities and similarly, [Guo et al. (2006)] recently extended the TEND

model with a bi-Gaussian model. Finally, based on the classical diffusion ODF recon-

structed from QBI [Tuch (2004)] and the very recent regularized version of the diffu-

sion ODF [Campbell et al. (2006)] proposed an extension of the streamline approach

with curvature constraint that allows to deal with fibers crossing. In this chapter, we

propose another extension to streamline tractography based on the multiple maxima

information of the fiber ODF. From this fiber ODF, we extract all available maxima

and allow for splitting in multiple directions at each step. Not only can the tracking

propagate through crossing fibers but it can also deal with some fibers fanning and

branching.

Existing deterministic HARDI-based techniques mostly show that tracking is im-

proved where the DT model fits the data poorly. However, these deterministic tractog-

raphy algorithms inherit the classical limitations of deterministic algorithms such as

choice of initialization [Jones and Pierpaoli (2005)], sensitivity to the estimated prin-

cipal direction, lack of a straightforward way to compute statistics on tracts, and lack

of connectivity information between regions of the brain [Tuch (2002)]. To overcome

limitations of deterministic tractography, DT-based probabilistic [Koch et al. (2002);

Parker and Alexander (2003); Behrens et al. (2003); Lazar and Alexander (2005);

Friman et al. (2006); Ramirez-Manzanares and Rivera (2006)] and geodesic [Lenglet

(2006); Jbabdi et al. (2004, 2007a)] algorithms have been used. This also motivates

the development of new HARDI-based probabilistic algorithms. Probabilistic algo-

rithms are computationally more expensive than deterministic ones but can better

deal with partial volume averaging effects and noise uncertainty in underlying fiber

direction. Most importantly, the output of the algorithms are usually designed to

give a connectivity index measuring how probable two voxels are connected to one

another.

HARDI-based probabilistic tractography have recently been published in the lit-

erature [Perrin et al. (2005); Parker and Alexander (2005); Seunarine et al. (2006);

Behrens et al. (2007); Jbabdi et al. (2007b); Savadjiev et al. (2007); Chao et al.

(2007a); Seunarine et al. (2007); Haroon and Parker (2007); Kaden et al. (2007)] to

generalize several existing DT-based methods. First, in [Kaden et al. (2007)] para-

metric spherical deconvolution is used and in [Behrens et al. (2007)] a mixture

of Gaussian model is used to extend the probabilistic Bayesian DT-based track-

ing [Behrens et al. (2003)]. Related to these techniques, [Jbabdi et al. (2007b)] uses

a Bayesian framework to do global tractography instead of tracking through lo-

cal orientations. In [Perrin et al. (2005)], Monte Carlo particles move inside the

continuous field of q-ball diffusion ODF and are subject to a trajectory regulariza-

tion scheme. In [Parker and Alexander (2005); Haroon and Parker (2007)], an ex-

tension to their DT-based approach [Parker and Alexander (2003)] is also proposed

using a Monte Carlo estimation of the white matter geometry. Their implementa-

tion is based on PAS-MRI with a new noise modeling component and recently, a
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Bingham distribution is used to model the peak anisotropy in the fiber distribu-

tions [Seunarine et al. (2007)]. In [Chao et al. (2007a)], large number of M-FACT

QBI streamlines are reconstructed and all pathways are reversed-traced from their

end points to generate of map of connection probability. Overall, these methods show

successful tracking of several fiber bundles difficult to recover with DT-based tech-

niques. Although [Seunarine et al. (2007)] does take fanning configurations into con-

sideration, most of these methods have mainly focused on fiber bundles with cross-

ing configurations and have not attempted to account for bundles demonstrating

high curvature or points where fiber populations branch or fan. Only very recent

work by [Savadjiev et al. (2007)] show preliminary results that can take into account

branching fiber configurations. In this chapter, our new probabilistic algorithm at-

tempts to account for branching and fanning fiber populations as well as fibers cross-

ing. The novelty is to use our new q-ball fiber ODF.

As seen in Chapter 9, anybody working with QBI and diffusion ODFs has the

problem of dealing with smooth ODFs that have a large diffusion part not aligned

with the principal fiber directions. One needs to use a fiber ODF to obtain more

complete and more accurate fiber tracts. The sharper peaks of the fiber ODF will

make the probabilistic tracking have a smaller fiber orientation range to choose from

at each step and will thus improve the spatial resolution of the connectivity measures.

10.3 TRACTOGRAPHY

In this section, we use our analytical solution to QBI of Chapter 7 to

compute the diffusion ODF and our spherical deconvolution operation of Chapter 9

to obtain a sharper fiber ODF. We now introduce a new deterministic and a new

probabilistic tracking algorithm that will be used with the DT, the diffusion ODF and

the fiber ODF.

10.3.1 Deterministic Multidirectional ODF Tracking

We extend the classical streamline techniques [Mori et al. (1999); Mori and van Zijl

(2002); Conturo et al. (1999); Basser et al. (2000)] based on the DT principal direction

to take into account multiple fiber ODF maxima at each step. We denote p(s) as the

curve parameterized by its arc-length. This curve can be computed as a 3D path

adapting its tangent orientation locally according to vector field v. Hence, for a given

starting point p0, we solve

p(t) = p0 +

∫ t

0
v(p(s))ds. (10.1)

The integration is typically performed numerically with Euler or Runge-Kutta

schemes of order 2 or 4. In the Euler case, we have the discrete evolution equation

pn+1 = pn + v(pn)∆s, (10.2)
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where ∆s is a small enough step size to obtain subvoxel precision. A contin-

uous linear, cubic, spline or geodesic [Lenglet et al. (2006a)] interpolation of the

vector field can be done at each step for the subvoxel points. A good review is

found in [Mori and van Zijl (2002)] and more recently in [Campbell et al. (2005);

Hagmann et al. (2006b)].

For our deterministic algorithm, we need one or more seed points p0; we need an

anisotropy measure map A (FA, GFA or any other anisotropy measure); we need an

anisotropy measure threshold taniso to make sure we stay in the white matter; we

need a curvature threshold tθ to make sure curves do not come back on themselves;

we need a function ExtractMax(Ψ, p) that returns the list l of directions lj along each

fiber ODF maxima Ψ′ at point p; we need a function size(l) that returns the size of

list l.

The deterministic fiber ODF tracking algorithm can be described as follows:

(0) Estimate field of fiber ODF, Ψ′, at every point p

(1) Set seed p0 and set v(p0) = argmax
u

Ψ′(u)p0

(2) Update curve according to Eq. 10.2.

If A(pn) < taniso

then STOP;

If
v(pn) · v(pn−1)

||v(pn)||||v(pn−1)|| > tθ

then STOP;

Let l = ExtractMax(Ψ′, pn). If size(l) > 1

then SPLIT curve;

for i = 1 to |l|
do (1) with p0 = pn and v(p0) = li;

The stopping criteria of the algorithm is based on the anisotropy measure threshold

and the curving angle threshold provided. In the DT tracking, we normally provide

the FA measure. However, for diffusion and fiber ODF tracking, we prefer to provide

the GFA or GA measure because they are more stable in the fiber crossing regions,

as seen in Chapter 6. The ExtractMax function is the same as described earlier in

Chapter 7, Section 7.4.7. Recall that to extract the fiber ODF maxima, we use a

16th order tessellation of the icosahedron, which gives 1281 sample directions on the

sphere. Then, a finite difference method is applied on the mesh points. If a mesh

point is above all its neighbors and if this point has a normalized ODF value above

0.5, we keep the mesh point direction as a maxima.

Implementation We use taniso = 0.1 as a mask to prevent tracks to leak outside

white matter, we set curving angle threshold tθ = 75◦ and ∆s = 0.1 unless specified.

We also use a Euler integration and trilinear interpolation to obtain the diffusion

ODF, the fiber ODF and the DT at subvoxel precision. The diffusion and fiber ODF

are interpolated directly on their spherical harmonic representation, which is also
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very efficient. For the rest of the chapter, DT-STR refers to this algorithm using the

DT principal eigenvector, dODF-STR and fODF-STR refers to this algorithm using

a single diffusion/fiber ODF maxima that is the closest to the incoming direction,

and SPLIT-STR refers to this algorithm using all available fiber ODF maxima with

splitting at each step.

10.3.2 Probabilistic fiber ODF Tracking

In this section, we propose an extension of the random walk method proposed for

DTI by [Koch et al. (2002)]. We want to use the full multidirectional of the fiber ODF.

That is, we want to use the whole fiber ODF and not only the maxima detected. We

imagine a particle in a seed voxel moving in a random manner with a constant speed

within the brain white matter, where the transition probability to a neighboring point

depends on the local fiber ODF, Ψ′. This fiber ODF is discretized into N directions

evenly distributed and at every time step, one of these N direction is picked at ran-

dom according to the fiber ODF distribution. This yields higher transitional proba-

bilities along the main fiber directions. Hence, the particle will move with a higher

probability along a fiber direction than perpendicular to it. We start a large number

of particles from the same seed point, let the particles move randomly according to

the local fiber ODF and count the number of times a voxel is reached by the path of

a particle. The random walk is stopped when the particle leaves the white matter

mask provided by the user.

For each elementary transition of the particle, the probability for a movement

from the seed point x to the target point y in one of the N directions uxy is computed

as the product of the local fiber ODFs in direction uxy, i.e.

P (x→ y) = Ψ′(uxy)x · Ψ′(uxy)y (10.3)

where P (x→ y) is the probability for a transition from point x to point y, Ψsharp(uxy)x

is the fiber ODF at point x in direction xy and Ψsharp(uxy)y is the fiber ODF at point y

in direction yx (by symmetry, direction xy and yx are the same). Note that in the orig-

inal DTI formulation of [Koch et al. (2002)] and implementation of [Anwander et al.

(2007b)], the transitional probability from point x to point y is given by

P (x→ y) = (D(uxy)x ·D(uxy)y)
α , (10.4)

where D(u)x is the DT at point x in direction u and the heuristic tensor sharpening

factor1 used is α = 7.

The transition directions in the local model are limited to N discrete directions

corresponding to the angular sampling resolution of the acquired data, and the step

1This DTI sharpening operation can be done more formally with a spherical deconvolution on the

spherical harmonic representation of the DT [Descoteaux et al. (2007c)], in a similar way has done in

the previous chapter.
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size of the particle step was fixed to 0.5 times the voxel size. We used trilinear in-

terpolation of the fiber ODF for the subvoxel position and projected to N discrete

directions (same as our real data gradient encodings). Moreover, voxels within the

CSF and voxels containing mainly gray matter were excluded from the tracking us-

ing a mask computed from a minimum FA value of 0.1 and a maximum ADC value

of 0.0015 mm2/s. These values were the best to produce a good agreement with the

white matter mask from the T1 anatomy. The mask was morphologically checked for

holes in regions of low anisotropy due to crossing fibers. Finally, a total of 100000 par-

ticles were tested for each seed voxel. To remove artifacts of the random walk, only

voxels which were reached by at least 100 particles were used for further processing.

For visualization purposes, the dynamic range of the connectivity values was changed

by logarithmic transformation and the entire connectivity measure is normalized be-

tween 0 and 1. For the rest of the chapter, the 3D distribution of connected voxels to

the seed voxel is called a tractogram.

The main novelties in the probabilistic algorithm compared to previous published

versions [Koch et al. (2002); Anwander et al. (2007b)] are the use of the fiber ODF, the

higher angular sampling N combined with a continuous interpolation of the data and

the subvoxel interpolation. The use of the fiber ODF is shown to have an important

impact on the quality of the tractogram. For the rest of this thesis, the method just

described is referred to as DT-PROBA, dODF-PROBA and fODF-PROBA depending

on how the transitional probabilities (Eq. 10.3 and Eq. 10.4) are used with the DT,

the diffusion ODF or the fiber ODF respectively.

10.4 TRACTOGRAPHY RESULTS

In this section, we compare and study tracking results from the deter-

ministic tracking algorithms, DT-STR, dODF-STR, fODF-STR, and SPLIT-STR of

Section 10.3.1, and from the probabilistic tracking algorithm, DT-PROBA, dODF-

PROBA and fODF-PROBA of Section 10.3.2. The tracking is performed on a synthetic

branching data example and on human fiber bundles with known crossings in regions

where DT-based algorithms are limited. We also compare deterministic and proba-

bilistic tracking methods on complex fiber bundles from the MPI human HARDI data.

We reconstruct several commissural fiber tracts (see Chapter 3) from different seed

points. Overall, we observe three results: 1) fODF-PROBA and SPLIT-STR are able

to track through fiber crossings and recover crossing, fanning and branching fiber

configurations, 2) SPLIT-STR and fODF-PROBA are better than dODF-based and

DT-based tracking in regions of fiber crossings, and 3) fODF-PROBA has the classical

advantages of probabilistic algorithms over deterministic SPLIT-STR and also is able

to recover more projections from the CC to lateral areas of the cerebral cortex.
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DTs fODFs DT-STR

dODF SPLIT-STR fODF SPLIT-STR fODF-STR

Figure 10.1: SPLIT-STR is able to recover the known fiber fanning configurations.

In the brain, example of fanning configurations occur in the corticospinal tract and

corona radiata where fibers fan out to different parts of the motor cortex. The deter-

ministic tracking was started at the bottom of the branch in all cases. HARDI data

was generated with b-value of 3000 s/mm2, FA = 0.7, N = 81 and SNR 35.

fODF-PROBA with (left, middle, right) initialization voxel

Figure 10.2: fODF-PROBA tracking done with 3 different initializations overlaid on

DT principal eigenvector. fODF-PROBA is not particularly sensitive to initialization.

10.4.1 Synthetic Simulation Results

Figure 10.1 shows the limitations and differences of DT-STR results compared to the

fODF-STR and SPLIT-STR results. Tracking was started at the bottom of the branch

in all cases. Note that where DTs are prolate with principal direction not agreeing

with the true fiber orientations, the fiber ODFs have multiple maxima that match

with the underlying fiber population. Hence, the path followed by DT-STR is wrong

and follows a false direction that takes it to the middle of the branch. Had there been
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DT-STR DT-STR dODF/fODF/SPLIT-STR SPLIT-STR

FA taniso = 0.1 FA taniso = 0.05 GFA taniso = 0.1 GFA taniso = 0.1

tθ = 75◦ tθ = 75◦ tθ = 75◦ tθ = 90◦

Figure 10.3: Deterministic tracking on the biological phantom. DT-STR cannot track

through the crossing area with a standard FA threshold of 0.1 whereas dODF-STR,

fODF-STR and SPLIT-STR can. Moreover, HARDI tracking results are able to re-

cover parts of the high curvature fibers.

another structure behind the branching fibers, the tract could have easily leaked in

the other structure and diverged. On the other hand, fODF-STR has the advantage of

following the right direction. If there are two possible orientations, it goes in direction

closest to its incoming direction. On the other hand, SPLIT-STR splits and follows

both ODF directions when possible which recovers the full branching structure. In

the brain, example of similar fanning configurations occur in the corticospinal tract

and corona radiata where fibers fan out to different parts of the motor cortex. It is

interesting to note the difference between dODF and fODF streamlines in the cross-

ing area. The fODF-STR splitting occurs several voxels lower in the branching where

the separation angle between the two fiber compartments is lower than 60◦. This is

expected from comparison tables from the previous chapter.

In Figure 10.2, we see the tractograms of the fODF-PROBA for three different

initializations. The fODF-PROBA is not very sensitive to initialization and is able

to recover the branching structure starting from voxels at the left, middle and right

of the structure. Note that there is a fanning of tracts from one parallel fiber to the

neighboring fibers within the synthetic bundle. This is expected from probabilistic

tracking and this is why one typically thresholds the tractogram to obtain the most

probable tracts.

10.4.2 Biological Phantom Results

Figure 10.3 shows deterministic tracking on the biological phantom. DT-STR can-

not track through the crossing area with a standard FA threshold of 0.1 whereas
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DT-PROBA DT-STR

dODF/fODF-STR SPLIT-STR

Figure 10.4: Deterministic and probabilistic tracking of the arcuate fasciculus part of

the superior longitudinal fasciculus (SLF). The tracking is started from only a single

seed indicated with an arrow for all methods. See Chapter 3 for comparison with the

known cerebral anatomy.

dODF-STR, fODF-STR and SPLIT-STR can. It can go through the crossing if the

threshold is lowered to 0.05 but in this case, the tracking steps out of the fiber bundle

at the top of the structure. Deterministic tracking from the diffusion ODF and the

fiber ODF produce the same qualitative result, even if allowed to split. Not only can

dODF/fODF/SPLIT-STR go through the crossing area, it can also recover part of the

curving section of the spinal cord at the top. Finally, if there is no curvature con-

straint, i.e. tθ = 90◦, SPLIT-STR is able to recover parts of both spinal cord bundles.

In this case, most of the phantom structure is recovered.

10.4.3 Human Brain HARDI Data Results

Probabilistic Tracking Versus Deterministic Tracking

We now show tracking results on fiber bundles that are successfully reconstructed

from classical DTI probabilistic tracking and that are well documented in Mori’s

white matter brain atlas [Mori et al. (2005)]. We implement the DT-PROBA algo-

rithm of [Koch et al. (2002); Anwander et al. (2007b)] using Eq. 10.4. We want to see
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fODF-STR SPLIT-STR

Figure 10.5: Deterministic and probabilistic tracking of the thalamic radiations. The

tracking is started from four voxel seeds in the ATR in a small area indicated with an

arrow. The anterior thalamic radiations (ATR), the posterior TR (PTR), the superior

TR (STR) and the corticopontine tract are recovered by SPLIT-STR. See Chapter 3

for comparison with the known cerebral anatomy.

how the DT-PROBA results compare with deterministic DTI and HARDI tracking

from a low number of seed points.

The top left subfigure of Figure 10.4 and 10.5 are the tracking obtained from DT-

PROBA tracking of Eq. 10.4 ([Anwander et al. (2007b)]). They agree with Mori’s

white matter brain atlas and known fiber bundle cerebral anatomy seen in Chap-

ter 3. The SLF and ATR fiber bundles are well identified by DT-PROBA. Although

not shown here, tractograms produced by fODF-PROBA also qualitatively agree

with them as well. In Figure 10.4, the tracking is started from only a single seed

in the SLF. Note that DT-STR is unable to recover the high curvature part of the

fiber whereas dODF/fODF-STR can, as in the biological phantom results. Moreover,

SPLIT-STR can recover the splitting part at the end of the SLF. Then, in Figure 10.5,

the tracking is started from four voxel seeds in the ATR. As expected, DT-STR stops

in the area of high complexity whereas dODF/fODF-STR is able to step through the

crossings and recover the posterior TR (PTR) and corticopontine tract (CPT). Again,
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T1 and RGB maps SPLIT-STR fODF-STR dODF-STR DT-STR

Figure 10.6: SPLIT-STR recovers known fanning/crossing configurations to the two

motor gyri from both seed points. We have colored fibers starting from the CC in red

and fibers starting from the CST in green/yellow. The two motor areas of the cortex

are also reached by the fODF-STR tracking whereas DT-STR and dODF-STR only

captures one of the motor area.

SPLIT-STR is able to recover more by also splitting into the superior TR (STR). Over-

all, SPLIT-STR results qualitatively agree with the gold standard and known cerebral

anatomy of both the SLF and TR obtained from DT-PROBA.

Deterministic fiber ODF Tracking

Figure 10.6 shows a branching fiber configuration in the same ROI as seen in Fig-

ure 9.12. One set of tracts (red fibers) are started from a voxel in the CC and another

set of tracts are started from a voxel in the CST (green/yellow fibers). As expected,

SPLIT-STR recovers the branching configuration of both fiber tracts and recovers

fibers projecting in motor areas in two gyri. On the other hand, fODF-STR is able to

step through the crossings whereas dODF-STR and DT-STR are limited. Both fibers

starting from the CST and from the CC take the average direction of the two ODF

orientations and projects only the medial motor cortex. tracking. The angle between

fiber compartments varies between 60◦ and 80◦ in that area and the diffusion ODF

cannot discriminate clearly the two fiber populations.

Probabilistic fiber ODF Tracking

Anterior Commissural (AC) Fibers For the reconstruction of the fibers passing

through the AC fibers, a seed voxel was placed in the mid-sagittal cross section of the

AC and a second tracking was started from two seeds, one on the left and right side

of the mid-sagittal cross section. In Figure 10.7, the tracking results of the AC fibers

shows the advantages of the fODF-PROBA tracking over dODF-PROBA and DT-STR
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2 seed DT-STR 2 seed dODF-STR SPLIT-STR

Figure 10.7: Deterministic and probabilistic tracking of the anterior commissure (AC)

fibers. Probabilistic tracking is shown on coronal and axial slices through the AC.

We also show a 3D rendering of the tractogram iso-surface. fODF-PROBA reaches

the temporal pole close to the uncinate fasciculus (UNC) whereas dODF-PROBA can

only reconstruct a small part. Deterministic tractography needs multiple seeding

initialization in the DT and dODF case due to the small diameter of the AC on this

subject.

tracking. dODF-PROBA and DT-STR are blocked close to the seed point by low FA

areas. Particles of dODF-PROBA cannot propagate to the temporal poles because the

paths are diffusive and leak outside the anterior commissural bundle, which is only

a few voxel wide around the seed point. As a consequence, dODF-PROBA mostly

recovers shorter parts of the fiber bundles. However, with a multiple seeding ap-

proach, DT-STR and dODF-STR are able to recover both paths to the temporal poles,

as published in [Catani et al. (2002)] and as expected from cerebral white matter

anatomy of Chapter 3. In contrary, deterministic fODF-STR and SPLIT-STR track-

ing can reconstruct the fibers connecting the temporal pole via the AC from a single

seed point in the mid-sagittal cross section. Probabilistic tractography done with

the fiber ODF suggests additional projections to more posterior parts of the temporal

lobe and through the anterior subinsular white matter to the inferior fronto-occipital

(IFO) fasciculus and inferior longitudinal fasciculus (ILF). Moreover, a second ante-

rior pathway was found on the right hemisphere for this subject (Figure 10.7, top row
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Tractogram fODF-PROBA fibers

DT-STR fODF-STR SPLIT-STR

Figure 10.8: Deterministic and probabilistic tracking of the tapetum. Probabilis-

tic tractogram of a single seed point in the tapetum (TAP) reconstructs the fibers

crossing the CC and connecting both temporal lobes. Deterministic tracking was ini-

tialized from 4 seed points in the tapetum. SPLIT-STR reconstructed this complex

structure.

middle and right).

Callosal fibers to the temporal lobe For reconstruction of fibers in the tapetum

and temporal commissural fibers, we selected 4 seed voxels between the left lateral

ventricle and the optic radiation close to the splenium of the CC (Talairach -22, -42,

24). Figure 10.8 shows the fibers in the splenium of the CC, which sweep inferiorly

along the lateral margin of the posterior horn of the lateral ventricle which form the

tapetum. These fibers are in close contact to the commissural fibers connecting the

precuneus of both hemispheres. On the left hemisphere the splitting is close to the 4

voxel seed region and all methods can bind both parts. Only SPLIT-STR and fODF-

PROBA can reconstruct the splitting in both hemispheres to the bundles connecting

the temporal lobe and the parietal lobe. The fibers to the temporal lobe split to the

transverse temporal (Heschel’s) gyrus and to the ILF. Probabilistic tractography also

suggest a close relation to the posterior TR.

Callosal fibers to the inferior and middle frontal gyrus For reconstruction of

the commissural fibers connecting the contralateral inferior and middle frontal gyrus
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Tractogram top view top-left-front view fODF-PROBA fibers

DT-STR fODF-STR SPLIT-STR

Figure 10.9: Deterministic and probabilistic tracking of the projections of the corpus

callosum to Broca’s area. The probabilistic tractogram is shown on a coronal and

sagittal slice and as 3D rendering. The tractogram shows asymmetry with stronger

connections to the left inferior and middle frontal gyrus than to the homologue area.

We also show a selection of the probabilistic fibers colored differently depending on

their end point projections to the lateral or medial areas. From the deterministic

methods only SPLIT-STR can reconstruct this complex structure.

a seed voxel was defined in the mid-sagittal section of the rostral body of the CC

(Talairach 0, 18, 18). Figure 10.9 shows the tracking results. DT-STR and fODF-

STR tracking can only find the commissural fibers connecting the medial parts of the

frontal lobe (Figure 10.9, second row, left and middle). Fanning of the fiber bundle

to the inferior and middle frontal gyrus was found with the SPLIT-STR method on

the left hemisphere and to a lower extent on the right. The tractogram computed

with the fODF-PROBA method reveals a strong interhemispheric connection of the

lateral parts of the frontal lobe. Additional fibers are found branching to the anterior

thalamic radiation (Figure 10.9, top left). Figure 10.9, top right shows sample fiber

tracts included in the probability map (left, middle).

As a final comparison, we used the fiber ODF obtained from filtered spherical

deconvolution (fSD) [Tournier et al. (2004)] and from constrained spherical deconvo-

lution (CSD) [Tournier et al. (2007)] as input to our probabilistic tracking algorithm.

Results are shown in Figure 10.10. As expected from the numerical simulations and

real data reconstructions of the previous chapter, the tractogram produced by fODF-

PROBA, fSD-PROBA and CSD-PROBA are qualitatively similar. Same regions are
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Tractograms of the fODF-PROBA, fSD-PROBA and CSD-PROBA methods

fODF-PROBA fSD-PROBA CSD-PROBA

Figure 10.10: Comparison of the tracking results of the projections of the corpus callo-

sum from our sharp fiber ODF (fODF-PROBA), from the filtered spherical deconvolu-

tion (fSD-PROBA) and from the constrained spherical deconvolution(CSD-PROBA).

The probabilistic tractograms are shown on a coronal, sagittal and axial slice. We

also show the isosurface corresponding to the tractograms thresholded at 0.3.

222



connected in all tractograms with slightly different connection score. This result con-

firms that different local reconstruction fiber ODFs do not have a dramatic difference

on the global behavior of the probabilistic tracking connectivity measures. Above all,

the importance is to use a fiber ODF and not a diffusion ODF.

10.5 DISCUSSION

We have proposed an integral concept for tractography of crossing and

splitting fiber bundles in the brain based on the fiber ODF. We have extensively com-

pared both new tracking algorithms and have performed expert visual validation on

complex fiber bundles from the MPI human brain dataset.

The standard q-ball diffusion ODF reconstruction is smooth with large contribu-

tions outside the principal directions of diffusion. Even after min-max normalization,

the diffusion ODF has poor angular resolution, especially at lower b-values. Hence,

this diffusion ODF is not the best function if one is interested in the underlying fiber

population. Without the fiber ODF, the tracking is diffusive, stops prematurely and

favors shorter fiber tracts. From our experience, it is crucial to use a fiber ODF. Which

fiber ODF? It seems that the choice of spherical deconvolution algorithm used to ob-

tain a fiber ODF does not greatly influence the tractogram results. After all, this is

expected from our quantitative comparisons of Chapter 9.

The fiber ODF seems the right candidate function for tractography algorithms.

We have used it in both our deterministic and probabilistic tracking extensions of

previous DT-based methods. We clearly showed that the results are improved over

standard DT-based methods. Moreover, when crossing areas have separation angle

less than 90◦, the diffusion ODF averages the two fiber compartments and has the

same limitations as DT tracking [LeBihan et al. (2006)]. In the deterministic case,

the fiber ODF has a better angular resolution and the maxima of crossing and split-

ting fiber bundles are detected more easily. Hence, we showed that SPLIT-STR can

follow more multiple maxima and recover most of fanning structures in the regions

studied. However, more investigation and better characterization of crossing, kiss-

ing, fanning and branching fiber configurations remains to be done in the human

brain [Parker and Alexander (2005); Savadjiev et al. (2007)]. Although sensitive to

initialization, SPLIT-STR tracking was able to recover similar bundles as the fODF-

PROBA method in most cases.

SPLIT-STR is thus an efficient and easy way to obtain a good idea of fiber tracts

starting from only a few seeds. The underlying assumption of SPLIT-STR is that all

multiple peaked fiber ODF have an underlying branching structure, which makes it

reasonable to follow all available maxima at each step. This is the reason for using a

curvature threshold of the tracts of 75◦ instead of 90◦. This threshold avoids following

tracts through “pure” crossing configurations, where we know that we are then step-

ping into other fiber bundles. This was clearly seen in the biological phantom tracking

in Figure 10.3. When the curvature threshold was set to 90◦, both fiber cords were
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recovered even if the tracking was initialized in one of the two single fibers. This

raises questions for multidirectional deterministic tractography: Should the tracking

algorithm split as much as possible to recover as much fiber structure as possible

before clustering and post-processing the tracts to separate them into bundles? Or,

should the tracking have a built-in scheme to differentiate the different sub-voxel

crossing possibilities and decide whether or not a tract should be split in the tracking

process? For instance, split in the case of a branching bundle but not split in the

case of a crossing fiber because it is assumed that it steps into a different fiber bun-

dle. Information about the local geometry, curvature and torsion of tracts can help

for this problem [Savadjiev et al. (2006)] and in [Savadjiev et al. (2007)], preliminary

results are obtained discriminating and labeling crossing and fanning sub-voxel fiber

configurations.

To deal with the uncertainty in the diffusion ODF or fiber ODF maxima, a prob-

abilistic approach is more robust and gives more complete results. In a probabilistic

case, the sharpening operation or use of a fiber ODF has its greatest importance

just as it is in probabilistic DTI tracking [Lazar et al. (2003); Koch et al. (2002);

Tournier et al. (2003); Descoteaux et al. (2007c); Anwander et al. (2007b)]. For DTI

probabilistic tracking, heuristic sharpening taking a power of the diffusion tensor is

done to obtain a tensor representing the fiber distribution, which is crucial to obtain

decent tracking results.2 Similarly, in ODF-based probabilistic tracking, the trac-

tograms are diffusive and leak into unwanted bundles if done without sharpening.

However, this leaking effect is not as dominant in probabilistic ODF tracking as it

is probabilistic DTI tracking. The min-max normalization of the sampled diffusion

ODF values to the range between 0 and 1 removes some of the isotropic part and

the shape of the diffusion ODF is sharpened. However, this min-max normalization

subtracts a different value from each ODF and might introduce artifacts to the prob-

abilistic tracking result. We believe that the spherical deconvolution methods, either

based on the q-ball ODF or based on the raw HARDI signal itself, are the natural

operations to obtain a fiber ODF. The spherical deconvolution methods really recover

an estimation of the fiber distribution and really improve the angular discrimination

of crossing fibers.

In our method, we employ an estimate of the fODF and this function is sam-

pled directly to account for the fact that the fibers in a bundle are not all strictly

parallel. Our algorithm follows all possible fiber directions from this fODF. It is,

however, quite difficult to disentangle the uncertainty and the actual spreading of

fiber orientations. We are therefore conservative by tracking all directions that are

possible given the data and the assumed model assumptions. Other methods use

calibration [Parker and Alexander (2003); Seunarine et al. (2007)], statistical tech-

niques like Bayesian modeling [Friman and Westin (2005)], Markov Chain Monte

2Note that this DTI sharpening can also be done with spherical deconvolution applied on the spheri-

cal harmonic representation of the diffusion tensor [Descoteaux et al. (2007c)].
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Carlo [Behrens et al. (2003); Kaden et al. (2007)], bootstrap [Haroon and Parker

(2007)] to infer a peak uncertainty of the fiber distributions. It is now important

to compare these different HARDI-based probabilistic approaches and see how the

different integration of the local reconstruction information impacts the resulting

tractograms.

Microscopy of white matter shows that the nerve fibers are not completely paral-

lel within a bundle. Probabilistic tractography includes this uncertainty. The recon-

structed fibers spread out to neighboring voxels within the cross section of a fiber bun-

dle. This makes the algorithm robust to the initialization. Different starting points

within an area to the same bundle lead to similar tracking results. The spreading

of the tractography to the hole bundle enables the segmentation of the selected fiber

bundle in its total extent. This is a clear advantage over deterministic tracking. In

deterministic tracking, the sensitivity to initialization has to be solved with multiple

initialization using a larger starting region and a combination of target regions.

The probabilistic tractogram represents a connectional fingerprint of a piece of

brain tissue contained in a voxel. The information provided by the tractograms can

be employed in several ways. By summing the tractograms of several neighboring

seed voxel, one can obtain connectional fingerprints for greater regions (joint trac-

tograms). It is then straightforward to derive quantitative connectivity measures

between two different brain regions A and B, e.g. by just integrating the joint trac-

togram of region A over region B and dividing this by the norm of the entire joint

tractogram. Such a measure reflects an estimate of the proportion of the fibers start-

ing in A that reach B (see also [Kaden et al. (2007)]). Another use of the tractogram is

based on the assumption that the functionality of a neuron or a population of neurons

is strongly determined by its pattern of connectivity to the rest of the brain. If seed

points are placed in the cortex or at the boundary between cortex and white mat-

ter, the associated tractograms would yield estimates of the global connectivity pat-

terns of the respective pieces of cortex. By using the above hypothesis one can infer

from the connectional similarity between two voxels to its functional similarity and

thereby parcellate the cortex (or other grey matter structures) into internally rela-

tively homogeneous, but mutually distinct functio-anatomical areas [Anwander et al.

(2007b)]. Finally, tractograms yield a very intuitive representation of the connectivity

pattern of the seed point or region when overlaid on anatomical slices. This visualiza-

tion allows to look at the exact location of the fiber bundle in an anatomical context.

Moreover, a 3D rendering of the iso-surface of the probabilistic tractogram gives an

overview of the topology and the branching structure of the fiber bundles. In counter-

part, probabilistic tractography suffers from connectivity values decreasing with the

distance from the initial seed point due to the fanning of fiber bundles. It is part of

current work to study this open problem.

For all these reasons, although slower than SPLIT-STR, we find that fODF-

PROBA is more convenient to use for tractography. Overall, the tracking is less
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sensitive to initialization and the tractogram output more informative than the 3D

curves output by SPLIT-STR. fODF-PROBA is thus a very good tool to study specific

fiber bundles and compare the projections for many subjects. In particular, for fiber

tracts which are known to intersect with other bundles. DT-based tractography can

only reconstruct a part of the fibers or might even find wrong connections in the inter-

section position. It is now important to continue this type of experiment and focus on

complex fiber bundles involved in specific functional tasks where DTI tracking is in

most cases very limited. Chapter 11 will present one such tractography application,

where the transcallosal fibers are reconstructed and quantified on multiple subjects.

10.5.1 Contributions of this chapter:

• Extensive literature review of the existing state-of-the-art deterministic and

probabilistic tractography methods in DTI and HARDI.

• New deterministic HARDI tractography based on the full multidirectional in-

formation of the fiber ODF.

• New probabilistic HARDI tractography based on the full fiber ODF distribution.

• Qualitative comparison and validation of our new deterministic and probabilis-

tic HARDI tractography algorithm using the DT, the diffusion ODF and the fiber

ODF. Most results are compared against classical FACT tracking [Mori et al.

(1999)] and are shown on synthetic data, on the biological phantom and on a

real human brain HARDI dataset.

Parts of the contributions from this chapter appear in [Deriche and Descoteaux

(2007); Descoteaux et al. (2007c)].
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Application
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CHAPTER 11

QUANTITATIVE ASSESSMENT OF

TRANSCALLOSAL FIBERS USING

PROBABILISTIC HARDI
TRACTOGRAPHY

“If you find a path with no obstacles, it probably doesn’t lead anywhere”

–Frank A. Clark
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OVERVIEW

Now that we have state-of-the-art local reconstruction methods and tractography al-

gorithms, can we track through regions of complex fiber crossings for a neuroscientific

application? This chapter covers the tractography of transcallosal fibers. Current DTI

based methods neglect these transcallosal fibers, which might lead to wrong interpre-

tations of the brain functions. In particular, can transcallosal fibers be reconstructed

with our new fiber ODF-based probabilistic tractography? Are the tracking results

consistent and reproducible across subjects? First, we apply our new fiber ODF prob-

abilistic tractography algorithm to reconstruct the transcallosal fibers. Then, we see

how we improve the tractography results of transcallosal fibers intersecting with the

corona radiata and the superior longitudinal fasciculus. Finally, the tracking results

are reproduced and compared on a group of 8 subjects.

Keywords: Transcallosal fibers, corpus callosum (CC), corona radiata (CR), supe-

rior longitudinal fasciculus (SLF), fiber ODF, probabilistic tractography, DTI, HARDI

Contributions of this chapter:

• Transcallosal fibers reconstruction from our new fiber ODF probabilistic trac-

tography.

• Consistent and reproducible tractography results on 8 subjects of the MPI

HARDI database.

• Quantification and labeling of the areas of the corpus callosum that are able to

project to the ventral and lateral parts of the cortex.

Organization of this chapter:
The chapter is organized as follows. We briefly introduce the importance of tran-

scallosal fibers reconstruction in Section 11.1. Then, Section 11.2 describes our

method for quantifying the transcallosal projections with results shown on the MPI

HARDI database. Finally, we conclude with a discussion of the results and our con-

tributions in Section 11.3.

11.1 INTRODUCTION

The corpus callosum (CC) is the largest fiber bundle in the human brain

with 200-250 million fibers interconnecting both hemispheres. The CC is involved in

the interhemispheric interaction of cortical regions and the reconstruction of fibers

connecting the cerebral hemispheres is of major interest for cognitive research and

clinical practice. We know that the projections of the CC play an important role in

functional integration of perceptual, cognitive and learned information.
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Figure 11.1: DTI tracking misses transcallosal fibers to the lateral cortex. Only

connections to the medical and dorsal cortex are recovered. Images borrowed

from [(Hofer and Frahm, 2006, Fig.1)].

In this short application chapter, we focus on the complex projections of callosal

fibers to the cortex. These bundles have been studied extensively in the neuroanatom-

ical and DTI literature [Hofer and Frahm (2006)]. The problem is interesting for us

because the transcallosal fibers of the CC are normally missed by DTI tracking algo-

rithms, as seen in Figure 11.1 borrowed from [(Hofer and Frahm, 2006, Fig.1)]. While

Figure 11.2: The corona radiata (CR) and superior longitudinal fasciculus (SLF) are

major fiber bundles that block transcallosal fibers in standard DTI tracking. Images

are borrowed and adapted from [Leemans (2006)] and from the ’ExploreDTI’ open-

source software [Leemans et al. (2005)]. Red fibers correspond to the CC, blue fibers

to the CR and orange fibers to the uncinate fasciculus (UNC).
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Figure 11.3: Diffusion ODF and fiber ODF on the MPI dataset in a complex crossing

region between the transcallosal fibers, the CR and the SLF.

DT-based tractography finds fibers passing through the CC connected with the me-

dial and dorsal cortex, lateral and ventral fibers are not found, since these fibers cross

the corona radiata (CR) and the superior longitudinal fasciculus (SLF). The CR and

SLF are major fiber bundles that block transcallosal fibers in standard DTI tracking.

This is seen in Figure 11.2 with the CR in dark blue. The CR act as a wall for the

CC fibers in red. Images are borrowed from [Leemans (2006)] and they are masked

to only see the CC, CR and uncinate fasciculus.

Hence, local reconstruction and tractography of transcallosal fibers are a good test

for local HARDI reconstruction and HARDI-based tractography. Is it possible to re-

cover the multiple fiber information in these regions? Only a recent study [Price et al.

(2007)] proposed to use a HARDI-based method to reconstruct fibers of the genu and

splenium of the CC but they have not focus on the transcallosal projections to the lat-

eral cortex. We have already seen the interest of QBI and spherical deconvolution in

that area of the brain. Local reconstruction of Chapters 7 and 9 find multiple maxima

diffusion ODFs and fiber ODFs in that region, as seen and reproduced in Figure 11.3.

Moreover, our new fiber ODF tracking results of Chapter 10 are able to propagate

through this complex fiber region, as seen and reproduced in Figure 11.4.

In this chapter, we investigate how the reconstruction of transcallosal fiber con-
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Figure 11.4: Tracking from a single seed point in the splenium of the CC. The lateral

fibers intersect with the CR and SLF.

nections can be done with our fiber ODF tracking algorithm. We want to see if the

tracking results are consistent and reproducible across many subjects.

11.2 QUANTIFYING LATERAL PROJECTIONS OF THE
CORPUS CALLOSUM

We want to investigate how the reconstruction of transcallosal fibers can be improved

with our new fiber ODF tractography in a group of 8 subjects. The 8 datasets were

all acquired with the same MPI HARDI protocol described in Appendix A.3.3. We

want to show in which parts of the CC we can reconstruct fibers connecting the

ventral and lateral parts of the cortex. These fibers cross the CR and parts of the

SLF [Talairach and Tournoux (1988)] and cannot be detected with the simple DT

model and are limited and not well recovered with the diffusion ODF.

11.2.1 Methods

1. Regions of interest (ROI) for the white matter tractography in each subject were

defined manually in the sagittal cross section of the CC.

2. For each seed voxel in the ROI, the fODF-PROBA tractography of Chapter 10

was performed separately.

3. To evaluate the connectivity to lateral and ventral cortical areas, the percentage

of random fiber tracts reaching lateral parts of the brain (Talairach > 30) was

recorded.

4. The resulting quantitative count is color coded on the mid-sagittal plane of the
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Figure 11.5: Some transcallosal fibers project to ventral and lateral parts of the cor-

tex. These are fODF-PROBA tracking results on one subject of the MPI HARDI

database. The redder the color, the more connections cross and project to the ven-

tral and lateral cortex. The color corresponds to the percentage of fibers which cross

a para-sagittal plain (Talairach > 30) as indicated by the lines on the coronal slice on

the left subfigure.

CC to have a labeling indicating which parts of the CC connect to the ventral

and lateral parts of the cortex.

11.2.2 Results

Figure 11.5 shows the color labeling of the ROI indicating regions with strong lateral

connectivity in the MPI dataset. The color labeling is shown for all 8 subjects of

the MPI HARDI database in Figure 11.6. The color corresponds to the percentage

of fibers which cross a para-sagittal plain (Talairach > 30) as indicated by the lines

on the coronal slice in Figure 11.5. For all subjects, a maximum number of lateral

fibers was found in the genu or the rostral body of the CC connecting the inferior and

middle frontal cortex and the premotor cortex (see Figure 3.6 of Chapter 3.2 for the

anatomy of the CC). The callosal fibers interdigitates with the fibers of the corona

radiata. The tractogram for the voxel with the most lateral connections shows fibers

to the left and right middle frontal gyrus and the left inferior frontal gyrus in addition

to the connections of the medial frontal cortex. The proportion of lateral fibers in this
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Figure 11.6: Quantification of the ratio of lateral fibers ( Talairach > 30) in the differ-

ent parts of the corpus callosum (cc) typically completely missed in DT-based tractog-

raphy. All 8 subjects show strong lateral connectivity in the genu or the rostral body

of the cc and a second peak in the splenium. fODF-PROBA finds more than 10% of

lateral fibers in large parts of the cc.

voxel is 20% ± 6% for the 8 subject study.

A second peak (bright red color) was found in the splenium of th CC connecting

the temporal areas. The corresponding fibers lie deep to the optic radiation in the

tapetum and connect the temporal lobe and in particular to the auditory cortex. The

proportion of temporal fibers in this voxel is 30% ± 10% for the 8 subject study.

Note that both the stronger posterior and anterior responses in the labeling of

Figure 11.6 are consistent and reproducible for all subjects. These regions are areas

where we are certain that DTI tracking is limited and most probably inaccurate.

11.3 DISCUSSION

We have illustrated an important application for the modeling of inter-

hemispheric cognitive networks with a quantification of the projections of the cor-

pus callosum. We have quantified regions of the corpus callosum where we are able

to recover fibers projecting to the lateral cortex. Therefore, we have showed that

we can find fibers from the ventral and lateral cortex in a major part of the cor-

pus callosum. Current DT-based methods, such as those used in [Hofer and Frahm

(2006)], [Leemans (2006)] and references therein, neglect these fibers completely (at

least in the frontal lobe), which might lead to wrong interpretations of the brain func-

tions.
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The chapter also highlights remaining limitations of tractography algorithms,

even if one uses HARDI and probabilistic tractography. From the labeling of Fig-

ure 11.6, we clearly see that we are unable to find lateral projections from medial

parts of the corpus callosum. From post-mortem dissection and atlases, we know that

there are interhemispheric connections passing through these voxels that project to

parts of the ventral and lateral cortex. Why are we not able to recover these con-

nections in HARDI-based tractography? When we look more closely in these regions,

we see very round local diffusion ODF and DT profiles. This is because there are po-

tentially multiple major fiber bundles crossing (more than two), which results in low

anisotropy measurements and local ODF profiles that are almost isotropic or fiber

ODF profiles with more than three maxima. Improvement in spatial resolution of

current diffusion MRI acquisitions might help overcome this problem. However, we

believe that it is also worth investigating tractography algorithms that are less local.

All current tracking methods are based on a very local integration of DT or ODF in-

formation at the single voxel level. We need to look at more global tracking methods

that not only integrate the local fiber ODF information but that also integrate in-

formation that is further away in neighborhoods where other fiber ODF support the

local geometry of the fiber tracts we are interested in.

Nonetheless, we have showed the added value of current HARDI-based proba-

bilistic tractography in complex fiber configuration regions and a specific application

of tractography. The multiple subject study of this chapter opens to many other neu-

roscience perspectives and applications. It is now important to continue this type of

experiment and focus on complex fiber bundles involved in specific functional tasks

where DTI tracking is in most cases very limited.

Contributions of this chapter:

• Transcallosal connections reconstruction from fiber ODF tractography.

• Consistent and reproducible tractography results on 8 subjects of the MPI

HARDI database.

• Quantification and labeling of the areas of the corpus callosum that are able to

project to the ventral and lateral parts of the cortex.

Parts of the contributions from this chapter appear in [Descoteaux et al. (2007c);

Anwander et al. (2007a)].
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CHAPTER 12

CONCLUSION

“The end crowns all, And that old common arbitrator, Time, Will one day end it.”

–William Shakespeare

In this thesis, we have first proposed new methods for local HARDI reconstruction us-

ing spherical harmonics: from the ADC modeling, the analytical q-ball diffusion ODF

reconstruction, to sharper fiber ODF reconstructions using spherical deconvolution.

Then, we have proposed two new methodological contributions that integrated this

local HARDI reconstruction information for more global inference of the white matter

architecture: a new segmentation algorithm and new deterministic and probabilistic

tractography algorithms. Finally, we have focused on a specific neuroscientific appli-

cation to illustrate the added value of our new HARDI-based fiber ODF probabilistic

tractography algorithm. We were able to successfully reconstruct transcallosal fibers

and quantify regions of the corpus callosum where the DTI-based algorithms have

failed. These theoretical and methodological contributions were described and devel-

oped in the Methods part of the thesis and the tractography application was shown

in a separate Application part.

These contributions required some background knowledge on cerebral white mat-

ter anatomy, diffusion MRI principles, HARDI reconstruction algorithms and the

mathematical properties of the spherical harmonics. All these topics were reviewed

and covered in the Background part of the thesis.

All along this thesis, we have tried to make the good mathematical and algorith-

mic choices to model and solve the problems of interest. First, we used the spherical

harmonics basis with linear and regularized methods to perform HARDI estimations.

This was done with the Funk-Hecke theorem and the Laplace-Beltrami operator.

Then, we developed a new and efficient region-based surface evolution method to

segment fiber bundles efficiently from the HARDI data. Finally, we proposed a fast

deterministic HARDI tractography algorithm and a slower but more robust and more

informative fiber ODF probabilistic tractography algorithm. Overall, we have tested

and compared our methods on synthetic HARDI simulations, on a biological phan-

tom and real datasets described in the Appendix A. We have made a special effort
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to implement and discuss many existing state-of-the-art methods in the literature to

highlight the strengths and limitations of our proposed methods.

Throughout the thesis, we have enumerated our major contributions and more

specific contributions at the beginning and at the end of each chapters. We believe

some of these contributions have had and will have more impact than others. In

summary, the important and original contributions of the thesis are:

1. A robust and linear spherical harmonic estimation of the HARDI signal. This

contribution is the foundation of the thesis and has been used at the basis of all

our algorithms.

(a) A physically meaningful modified spherical harmonic basis taking into ac-

count the physical constraints of the HARDI data.

(b) A closed-form Laplace-Beltrami regularization term appropriate to smooth

spherical functions.

(c) Optimal regularization parameter estimation with the L-curve method.

(d) Estimation of the ADC and HARDI signal and successful validation against

ground truth.

(e) Theoretical link between the modified SH basis and the high order diffu-

sion tensor.

(f) HARDI anisotropy measures computation and classification of voxels con-

taining isotropic, single fiber and multiple fiber distributions.

2. A regularized, fast and robust analytical QBI solution. This is probably the

most important contribution of the thesis. The QBI solution using spherical

harmonics is now the standard in the literature.

(a) The analytical QBI solution was up to 15 times faster than numerical QBI

solution.

(b) The proof of a new corollary of the Funk-Hecke theorem.

(c) The analytical QBI solution validation and comparison against classical

numerical QBI solution and other analytical solution that use Tikhonov

regularization.

3. A new statistical region-based segmentation framework for HARDI data seg-

mentation based on the SH representation of the q-ball diffusion ODF. This

contribution will have some applications for shape analysis of major fiber bun-

dles in subject and patient populations.

(a) Efficient distance measure definition that captures similarities and dissim-

ilarities between diffusion ODFs.
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(b) Robust and reproducible results of the segmentation algorithm on multiple

subjects.

4. A new method to estimate the fiber ODF. This contribution is of interest for

anyone working with the diffusion ODF. Moreover, an important message is

that the fiber ODF is crucial to do tractography.

(a) A new analytical spherical deconvolution method that transforms the q-

ball diffusion ODF into a sharper fiber ODF.

(b) Improvement of the angular resolution of QBI by 15◦.

(c) The fiber ODF validation and extensive comparison against spherical de-

convolution methods using spherical harmonics.

(d) Existing spherical deconvolution methods extension and improvement us-

ing our Laplace-Beltrami regularized HARDI signal estimation of 1.

5. A new deterministic tractography algorithm and a new probabilistic tractogra-

phy algorithm based on the fiber ODF of 4. This contribution is likely to have

the most impact for applications in neuroscientific problems.

(a) Deterministic and probabilistic HARDI tractography comparisons on com-

plex fiber bundles where the DTI tractography algorithms fail.

6. Reconstruction of the transcallosal fibers intersecting with the corona radiata

and superior longitudinal fasciculus. This contribution shows the success of

our fiber ODF-based probabilistic tracking and can convince people to use our

method.

(a) Quantification of regions on 8 subjects where probabilistic fiber ODF track-

ing can recover transcallosal fibers projecting to the lateral cortex, regions

normally neglected by most DTI-based methods.

We believe that these contributions meet the initial goal of this thesis that was to

propose new HARDI processing techniques able to recover fiber crossing information

and overcome limitations of the DTI.

A central part of this thesis was the diffusion ODF and the fiber ODF. These spher-

ical functions are able to solve the crossing problem and overcome limitations of the

diffusion tensor. However, it is important to point out that the diffusion ODF and

fiber ODF estimates also have limitations. Many different sub-voxel configurations

can lead to the same diffusion ODF and fiber ODF profile (problem also mentioned in

[Tuch et al. (2003); Campbell (2004); Perrin (2006)]). This is illustrated and sketched

in Figure 12.1. We can see that within an imaging voxel, fibers can curve, fan/merge,

cross, kiss/bottleneck or branch/merge and still produce a similar looking ODF. The

exact diffusion ODF or fiber ODF that these fiber configurations produce on real data
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Sub-voxel fiber configurations Expected ODF profile

single curve

fanning / merging

crossing

bottleneck / kissing
or

branching / merging
or

Figure 12.1: Sketch of the possible sub-voxel configurations and their expected dif-

fusion ODF profile. We see curving single fibers, fanning or merging fibers, multiple

crossing fibers, fibers in a bottleneck and multiple branching or merging fibers. Im-

ages courtesy of J. Campbell of McGill University in Montreal, Canada.

remains unknown and ambiguous. An even more important problem it that it is still

unknown how to generate synthetic datasets, ex-vivo phantoms or biological phan-

toms that mimic these sub-voxel configurations. These datasets are crucial for the

development and understanding of these sub-voxel configuration problems. It is a

very local problem that can have global repercussions on tractography results. To

our knowledge, only a few research groups have started to address theses problems.

[Savadjiev et al. (2007)] and [Seunarine et al. (2007)] propose methods that can ac-

count for fanning configurations in the tracking but results are still preliminary and

the more complicated sub-voxel configurations are not addressed.

The problem with most of the sub-voxel configuration cases, except for the ”pure”
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Figure 12.2: A schematic illustration of sub-voxel fiber configurations that can cause

ambiguous fiber ODF shapes and thus confound fiber tracking algorithms. Both a

single curving fiber tract (top row) and a fanning fiber tract (bottom row) can yield a

similar ODF with a single broad peak (middle column in each row). In the case of the

curving fiber bundle, regardless of the incoming direction, tracking should follow the

medial direction in the peak (top row, right). In the case of the fanning fiber bundle,

however, when tracking enters the voxel in the fan direction (green arrow, bottom

row, right panel), it should follow all directions within the extent of the fan (green

cone within the voxel). If tracking enters the voxel from the opposite side of the fan

(blue arrow), it should only follow the medial direction of the peak. This illustrates

the importance of recovering the polarity of the fan in addition to its extent. Image

taken from article [Savadjiev et al. (2008)] under review.

multiple fiber crossing, is that the sub-voxel geometry can produce a single peak

ODF with a broad maxima. In this case, it is impossible to discriminate the multi-

ple fiber orientations (see Figure 12.2). Hence, although the problem is very local,

one must look in a neighborhood around the voxel of interest to infer the sub-voxel

configuration. If we do so, we can obtain information about the curving angle of the

tract locally (row 1 of Figure 12.2) as well as information about the possible cone

of directions that the fanning tracts cover (row 2 in Figure 12.2). We believe that

this information about the local geometry, curvature and torsion of the local curve

estimates [Savadjiev et al. (2006)] will be needed to solve this important problem to
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obtain more precise anatomical connectivity information.

Perspectives

We believe that the contributions from the thesis can now be applied to answer more

neuroscientific questions. In fact, our algorithms are starting to be used by other

groups in clinical settings, in part because they are available on demand through

the BrainVisa software1. In collaboration with A. Anwander and T. Knösche of the

Max Planck Institute in Leipzig, Germany, we are using the diffusion ODF and fiber

ODF reconstructions as well as probabilistic tractography to characterize complex

fiber bundles involved in the language areas of the brain. Furthermore, we are in-

terested in performing multiple subject study of the shape of major fiber bundles.

We would like to be able to say what is a “normal” or “abnormal” corpus callosum or

cingulum (or other bundles) and study how a population of subjects and patients can

have different fiber bundles. Another collaboration is with S. Lehéricy at the Pitié

Salpétrière Hospital in Paris. We are interested in the fiber tracts involved in the

motor tasks. Both our deterministic and probabilistic tractography algorithms from

QBI are being used to reconstruct tracts projecting from the basal nuclei to the motor

cortex [Thiebaut et al. (2007)]. Finally, another new application is q-ball imaging of

the spinal cord with J. Cohen-Adad and H. Benali of the INSERM in Paris, France

and S. Rossignol and R. Hoge of the Université de Montréal in Canada ([Adad et al.

(2008)]). Not only are we able to recover main longitudinal directions of the spine but

we can also recover smaller dorso-ventral paths in the gray matter of a cat’s spinal

cord.

Aside from these applications of HARDI, we can expect, in the near future, to see

more research development in modeling, in new data acquisition techniques, in better

visualization and in new algorithms. First, better models of diffusion in biological

tissues such as white matter are needed. To do so, mathematicians and computer

scientists will have to interact and surround themselves with biologists. The relation

between the measured diffusion signal of a fibrous biological tissue and the actual

fiber distribution needs to be refined and better known. Better models will allow for

better reconstruction of fiber distributions.

Second, the arrival of 7 Tesla scanners will generate new datasets that will raise

new image processing problems. New and better acquisitions techniques are needed

for high magnetic field imaging, which have access to more powerful and faster gradi-

ents. We will be able to obtain better spatial resolution and higher quality DWI. Our

current HARDI experiments in the gray matter of a cat gives us hope that we can

soon attempt to do the same in the human brain gray matter with high resolution 7T

diffusion MRI. We can also hope to get down to the cyto-architecture level to better

study the structures of the basal nuclei.

1Available on demand on https://gforge.inria.fr for the BrainVisa software http://brainvisa.info
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Then, faster visualization algorithms will be needed to better interact with com-

plex datasets coming from HARDI, q-ball and spherical deconvolution data. Work

by [Kindlmann et al. (2007a,b)] aims at facilitating the visualization of HARDI mea-

surements and spherical functions on the sphere. Note also that it is part of our

intention to add q-ball diffusion and fiber ODF visualization and HARDI tracking as

part of MedINRIA2 [Toussaint et al. (2007a,b)] and 3D Slicer3 developed at Harvard

University.

Next, improvement of local HARDI reconstruction methods need to be pushed

further. As acquisition techniques become faster, the limitation in the number of gra-

dient encoding directions will become less important. It is thus of interest to find

the best trade-off between the number of directions used in the sampling scheme,

the number of shell acquisitions and the b-value used to obtain best angular res-

olution while reducing effects of noise. This kind of study has been done in DTI-

like acquisitions Jones (2004); Jones and Basser (2004) but needs to be revisited for

HARDI-based reconstruction techniques. We believe that multiple shell acquisitions

([Khachaturian et al. (2007)]) will become more popular and provide better fiber ori-

entation distributions. Real-time HARDI acquisitions also has a bright future, and

in particular, real-time DTI and QBI [Poupon et al. (2007)] will give more insight into

the problem of trade-off between the right sampling scheme and achievable angular

resolution. Moreover, reconstruction algorithms need better noise models incorpo-

rated in their estimation. In diffusion tensor analysis, the latest state-of-the-art esti-

mation include a Rician noise model [Fillard et al. (2007a)]. Surprisingly, while it is

well-known that noise is Rician in DW images, none of the HARDI methods take this

noise profile into account in the HARDI reconstruction.

Furthermore, even if we now have robust estimates of fiber orientation distribu-

tions from the HARDI data, there are remaining questions to be answered regard-

ing post-processing of these spherical functions. First, peaks of these fiber distribu-

tions used for tracking have uncertainty in them due to noise in the data and actual

spreading of the underlying fibers in the biological tissue. Hence, it is important

to model this uncertainty in the peaks the fiber ODF estimates for calibration of the

tractography algorithms. Work by [Parker and Alexander (2003); Friman and Westin

(2005); Seunarine et al. (2007); Fonteijn et al. (2007); Haroon and Parker (2007)]

have started investigating this issue, which might have important implications on

tracking results. Another important question in post-processing HARDI data is to

find the right distance metric to use to compare and compute statistics on spheri-

cal functions. In this thesis, we have used Euclidean distance between the spherical

harmonic representation of the spherical functions but other distances such as the

Kullback-Leibler divergence might be better suited. We believe that better distance

measures will greatly improve segmentation and clustering algorithms of HARDI

2http://www-sop.inria.fr/asclepios/software/MedINRIA/
3http://www.slicer.org/
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data. Another open problem is how to extract maxima from spherical functions ob-

tained from HARDI. There are simple numerical finite difference methods and more

complicated gradient-descent optimization methods to do so. Can maxima extraction

be done analytically? We believe that exploring properties of the high order tensor

(HOT) and its corresponding decomposition in eigen tensors, eigen vectors and eigen

values might give insight into this problem. This research might lead to other sets of

basis functions to better describe spherical functions. Currently, spherical harmon-

ics are the popular mathematical tool used but other radial basis functions such as

spherical Gaussians, HOTs or spherical wavelets might have other attractive proper-

ties.

Finally, we can also expect many more developments in segmentation, clus-

tering and fiber tractography. It is our hope to study and compare these three

different classes, i.e. segmentation, clustering and tractography algorithms We

have note discussed the clustering problem in this thesis (see [O’Donnell (2006);

O’Donnell and Westin (2007); Leemans (2006); Kouby et al. (2005)]) but it does pro-

vide valuable information about white matter architecture. It is important to un-

derstand what information can be extracted precisely by HARDI clustering, HARDI

segmentation and HARDI tractography and how they can improve one another. What

is in common and complementary about these techniques? For example, Figure 12.3

shows an example of clustering, tracking and segmentation done on the same re-

gions of complex fiber crossings between the corpus callosum (CC), corona radiata

(CR) and superior longitudinal fasciculus (SLF). To do so, we will ultimately need

better tools for validation. Ex-vivo and biological phantoms such as [Lin et al. (2003);

Campbell et al. (2005); Perrin (2006)] are useful but their configurations are not com-

plex enough. We believe that further development of realistic and complex phantoms

will greatly help the validation problem. A special effort should also be put to make

these datasets publicly available so that the community can have benchmarks to test

and validate their algorithms. Only then, our work and algorithms will possibly

convince clinicians and be integrated in hospitals and used for many neuroscientific

applications.
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GFA in coronal slice Diffusion ODF clustering

Diffusion ODF tracking Diffusion ODF segmentation

Figure 12.3: Diffusion ODF clustering, diffusion ODF tracking and diffusion ODF

segmentation in similar regions of complex fiber architecture. Clustering was done

as in [Wassermann et al. (2007b,a)] from the field of diffusion ODFs. 7 clusters are

found indicated by different colors and overlaid on the diffusion ODFs. Deterministic

tracking was done on the diffusion ODF from a few seed points placed in the CR and

multiple seed points placed in the CC. The tracts are overlaid on a GFA with reduced

opacity. Segmentation was done on the image of diffusion ODF in the corona radiata,

as shown in Chapter 8. The information recovered from each algorithm is both in

agreement and complementary. It is now important to make these methods interact

with one another.
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CHAPTER 13

CONCLUSION (FRANÇAIS)

“En toute chose il faut considérer la fin”

–Jean de la Fontaine

Dans cette thèse, nous avons proposé de nouvelles méthodes pour le traitement

de l’IRM à haute résolution angulaire (HARDI). Nous avons apporté des contribu-

tions au niveau de l’estimation locale du signal HARDI, de l’estimation du coefficient

de diffusion apparent (ADC), de l’estimation de la distribution d’orientation des fi-

bres de diffusion (ODF) à partir de l’imagerie par q-ball (QBI) et de l’estimation

de l’ODF de fibres avec les méthodes de déconvolution sphérique. Nous avons dé-

montré avec succès que toutes ces estimations apportent une information impor-

tante servant à retrouver les croisements de fibres, valeur ajoutée importante par

rapport à l’imagerie par tenseur de diffusion (DTI). Cette thèse propose également

plusieurs contributions algorithmiques au niveau de l’intégration de cette informa-

tion locale obtenue par les reconstructions HARDI. Nous avons développé un nou-

vel algorithme de segmentation par contour actif basé sur les statistiques des har-

moniques sphériques des ODF de diffusion dans la matière blanche. Nos segmen-

tations arrivent à retrouver le tronc principal de certains faisceaux de fibres impor-

tants. Il est maintenant possible d’envisager l’étude de forme de ces faisceaux de

fibres segmentés sur plusieurs sujets et patients. Par ailleurs, nous avons aussi in-

troduit de nouveaux algorithmes de suivi de fibres adaptés aux données HARDI. Nous

avons présenté un nouvel algorithme de suivi de fibres déterministe qui utilise tous

les maxima de l’ODF de fibres ainsi qu’un nouveau suivi de fibres probabiliste qui

exploite toute la distribution de cette ODF de fibres. Nos résultats de suivi de fi-

bres retrouvent des réseaux de fibres complexes ayant des configurations de fibres en

éventail et des fibres qui se croisent et s’embranchent. Ces nouvelles techniques nous

ont alors permis de reconstruire, de façon robuste, les fibres transcallosales traver-

sant le corps calleux et qui intersectent les fibres du faisceau supérieur longitudinal

et les fibres de la couronne rayonnante. Toutes ces contributions ont été décrites en

détail dans la partie Méthodes et la partie Applications.
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Afin d’obtenir ces différents résultats, il a d’abord fallu introduire la théorie et les

notions de base sur l’anatomie cérébrale, sur la physique de l’IRM de diffusion et sur

les propriétés mathématiques des harmoniques sphériques. Cette section de la thèse

était décrite dans la partie Préliminaires et Théorie.

Tout au long de cette thèse, nous nous sommes efforcés de faire les bons choix

mathématiques et algorithmiques ainsi que les bons choix de modélisation pour ré-

soudre les problèmes HARDI d’intérêt. Pour toutes nos nouvelles approches, nous

avons fait l’effort de les placer dans le contexte de cette thèse ainsi que de les situer

par rapport aux autres méthodes existantes. Nous avons donc dû mettre en oeuvre

beaucoup de techniques de la littérature afin de les comparer à nos méthodes. Fi-

nalement, tous nos résultats ont été testés sur des données HARDI simulées, sur un

fantôme biologique et sur des données réelles variées, tous décrits dans l’annexe A.

Le début et la fin de chacun des chapitres commençaient par nos contributions

majeures et nos contributions plus spécifiques. Nous voulons maintenant en rappeler

les grandes lignes dans l’ordre des chapitres de la thèse. Évidemment, certaines

contributions ont eu et auront plus d’impact que d’autres et nous l’indiquons lorsque

c’est approprié. Les contributions de la thèse sont les suivantes:

1. L’estimation robuste et linéaire du signal HARDI avec la base des harmoniques

sphériques. Cette estimation en harmoniques sphériques est la fondation de

toute la thèse.

(a) Définition d’une base modifiée d’harmoniques sphériques modélisant les

contraintes physiques des données HARDI.

(b) Introduction d’un terme de régularisation analytique sur la sphère avec

l’opérateur de Laplace-Beltrami.

(c) Détermination du paramètre optimal de régularisation à l’aide de la méth-

ode L-curve.

(d) Lien théorique entre le tenseur d’ordre supérieur et la base modifiée des

harmoniques sphériques.

(e) Estimation de l’ADC et calcul des mesures d’anisotropie HARDI qui en

découlent afin de faire la classification des voxels isotropes, d’une seule

distribution de fibres et d’une distribution de plusieurs fibres.

2. La solution analytique pour le QBI. Cette méthode est maintenant le standard,

dans la littérature, pour faire du QBI. C’est certainement une contribution très

importante et celle qui a eu et qui aura le plus d’impact.

(a) La solution est régularisée et obtenue à partir de l’estimation robuste du

signal HARDI.

(b) La solution est environ quinze fois plus rapide que le QBI numérique clas-

sique [Tuch (2004)].
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(c) La preuve d’un nouveau corollaire du théorème de Funk-Hecke.

(d) La comparaison et la validation du QBI analytique par rapport à l’approche

classique de QBI numérique et aux autres méthodes QBI.

3. La nouvelle méthode de segmentation par contour actif des données HARDI à

partir de l’ODF de diffusion obtenue par la solution analytique du QBI. Cette

contribution aura certainement quelques applications pour l’analyse de forme

de certains larges faisceaux sur des populations de sujets et de patients.

(a) Nouvelle métrique euclidienne définie sur les harmoniques sphériques

pour calculer la distance entre deux ODFs.

(b) Segmentation robuste et efficace sur des faisceaux de fibres importants de

la matière blanche.

(c) Segmentation automatique et réplicable sur plusieurs sujets.

4. La reconstruction de l’ODF de fibres à partir du QBI. Cette contribution est

d’intérêt pour tous ceux qui font du QBI. De plus, et c’est l’un des rôle les plus

importants, l’ODF de fibres est cruciale afin d’effectuer un bon suivi de fibres.

(a) Solution analytique de l’ODF de fibres basée sur la solution analytique du

QBI.

(b) Amélioration de la résolution angulaire du QBI de 15◦.

(c) Lien théorique entre la déconvolution sphérique à partir du QBI et la dé-

convolution sphérique faite directement à partir du signal HARDI.

(d) Implémentation de toutes les méthodes courantes de déconvolution

sphérique et comparaison avec notre estimation de l’ODF de fibres.

5. Nouveau suivi de fibres déterministe et nouveau suivi de fibres probabiliste à

partir de l’ODF de fibres. Cette contribution aura un grand impact et certaine-

ment plusieurs applications en neuroscience.

(a) Comparaison des deux nouvelles méthodes de suivi de fibres et mise en

évidence des inconvénients et avantages de chacune.

(b) Valeur ajoutée du suivi de fibres à partir de l’ODF de fibres par rapport à

l’ODF de diffusion et au tenseur de diffusion.

6. Reconstruction des fibres transcallosales qui intersectent le faisceau supérieur

longitudinal et les fibres de la couronne rayonnante. Cette contribution illustre

la valeur ajoutée du suivi de fibres probabiliste à partir des données HARDI

et devrait encourager les neuroscientifiques à tirer parti du potentiel de nos

méthodes de suivi de fibres.
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(a) Expérience quantititative soulignant les régions du corps calleux où les

fibres transcallosales se projèttent dans le cortex latéral. En comparaison,

le suivi de fibres DTI n’y arrive pas.

Toutes ces contributions répondent bien au but initial de cette thèse de proposer

de nouvelles méthodes de traitement d’images HARDI afin de retrouver les croise-

ments de fibres et de surmonter les limites du DTI.

Une partie centrale de la thèse a été l’ODF de diffusion et l’ODF de fibres. Nous

avons montré ses avantages par rapport au tenseur de diffusion. En revanche, au jour

d’aujourd’hui, les ODFs de diffusion ou de fibres ont encore certaines limites impor-

tantes qui peuvent avoir un effet négatif sur les résultats de suivi de fibres. Comme

le démontrent les Figures 12.1 et 12.2, différentes configurations sub-voxelique peu-

vent engendrer la même ODF (également souligné dans les thèses de [Tuch (2002);

Campbell (2004); Perrin (2006)]). L’effet exact sur le signal HARDI et sur les méth-

odes de suivi de fibres qui en découlent de ces fibres qui s’embrassent, s’embranchent,

forment des éventails ou qui se joignent est encore inconnu. Ce qui s’avère encore plus

problématique est le fait que nous ne savons pas comment générer des données syn-

thétiques réalistes pour reproduire ces configurations. Nous n’avons pas non plus de

fantômes ex vivo ou in vivo avec ce genre de configurations. Il est donc très important

de raffiner nos modèles et de développer des méthodes qui regardent l’information de

façon plus globale autour du voxel d’intérêt afin de pouvoir inclure des notions locales

de courbure et de torsion des fibres ([Savadjiev et al. (2006)]). Il s’agit d’ailleurs d’un

de nos récents projets [Savadjiev et al. (2007)] et nous arrivons à identifier et à faire

un meilleur suivi de fibres dans les voxels contenant des éventails et des fibres avec

une grande courbure (voir Figure 12.2 et [Savadjiev et al. (2007)]). Nous croyons que

cette information géométrique plus globale permettra de discriminer un plus grand

nombre de ces configurations sub-voxeliques problématiques.

Perspectives

Nous pensons fortement que beaucoup de nos méthodes sont maintenant assez mûres

pour être utilisées dans les équipes de recherche en neuroscience, et également en mi-

lieu clinique. En fait, quelques uns de nos algorithmes sont déjà utilisés par d’autres

groupes de recherche, en partie grâce à la distribution gratuite de nos méthodes dans

BrainVisa1. Nous collaborons activement, par exemple, avec T. Knösche et A. Anwan-

der du Max Planck Institute à Leipzig en Allemagne. Nous appliquons les techniques

de suivi de fibres dans les régions de traitement du language. Nous tentons égale-

ment de faire une étude de population des faisceaux de fibres segmentés par notre

approche. Nous travaillons aussi avec S. Lehéricy de l’hôpital Pitié Salpêtrière à

Paris sur les faisceaux impliqués dans les fonctions motrices. Enfin, nous avons une

nouvelle application intéressante avec les gens de l’INSERM et de l’Université de

1Disponible sur demande au https://gforge.inria.fr
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Montréal sur le QBI de la moelle épinière chez le chat. Nous arrivons actuellement à

trouver des connections dorso-ventrales dans la matière grise qui croisent la direction

principale longitudinale de la moelle [Adad et al. (2008)]. Toutes ces collaborations

sont importantes car elles permettent de mettre en valeur et de tester nos méthodes

de même que de spécifier leurs limites.

Mises à part ces perspectives d’applications, on peut s’attendre à voir de plus

en plus de nouveaux modèles qui décrivent plus finement la diffusion dans les tissus

biologiques. Nous verrons également de nouvelles méthodes d’acquisitions en IRM de

diffusion, de meilleurs logiciels de visualisation pour mieux intéragir avec les données

HARDI et énormément de développements algorithmiques dans un futur proche.

D’abord, nous avons besoin de meilleurs modèles qui décrivent plus finement la

diffusion dans les tissus biologiques. Cela nous permettra d’imposer de meilleures

contraintes et de faire des reconstructions HARDI plus précises de la distribution

réelle des fibres. Pour ce faire, il est évident que mathématiciens, informaticiens et

biologistes devront se regrouper et intéragir de plus près.

Ensuite, avec les débuts de l’IRM à très haut champ magnétique, il y aura de

nouveaux jeux de données qui soulèveront de nouvelles problématiques. On trouve

de plus en plus d’IRM 7 Tesla dans les laboratoires de recherche, qui nécessitent

le développement de meilleures acquisitions avec des gradients de diffusion plus

puissants et plus rapides. Ces nouveaux scanners à haut champ nous permettront

d’atteindre une résolution spatiale plus fine. Avec les nouvelles images issues de nos

résultats récents sur la moelle épinière du chat, nous avons bon espoir de pouvoir ob-

server les connexions au sein de la matière grise. Nous pouvons aussi espérer imager

la cyto-architecture des noyaux gris centraux.

Il est de plus évident que les logiciels courants de visualisation (BrainVISA2,

3D Slicer3, MedINRIA4, etc...) devront s’adapter aux nouvelles données complexes

HARDI. De nouvelles méthodes rapides et efficaces devront être développer pour

mieux intéragir avec ces données. Nous sommes actuellement à ajouter le module de

visualisation des ODFs et le suivi de fibres à MedINRIA [Toussaint et al. (2007a,b)]

et 3D Slicer.

Il est également clair que les méthodes locales d’estimation HARDI continueront

de s’améliorer au cours des prochaines années. Avec les progrès technologiques des

imageurs, le problème du nombre de directions ne sera plus aussi important et il sera

donc essentiel de trouver le meilleur compromis entre nombre de directions, valeur

de b et nombre de “shell” d’acquisition dans le q-space, afin d’obtenir le meilleur

rapport signal sur bruit et la meilleure résolution angulaire. Nous entrevoyons de

belles perspectives en ce qui concerne les méthodes d’acquisition HARDI en temps

réel [Poupon et al. (2007)] ainsi que les méthodes à “multi-shell”, qui nous permet-

2http://brainvisa.info/
3http://www.slicer.org/
4http://www-sop.inria.fr/asclepios/software/MedINRIA/
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tront d’obtenir de meilleures estimations de la distribution des fibres. Il est égale-

ment important d’introduire les bons modèles de bruit dans nos algorithmes de re-

construction. Il est bien connu que le bruit est ricien dans les images pondérées en

diffusion. Par ailleurs, l’état de l’art en analyse de tenseur de diffusion injecte un

modèle de bruit ricien dans l’estimation [Fillard et al. (2007a)]. Il faudra donc inté-

grer cette composante dans nos futurs algorithmes de reconstruction.

Les algorithmes de suivi de fibres et de segmentation seront eux aussi

améliorés par les développements mentionnés. En revanche, il reste encore

des problèmes non résolus concernant le traitement des fonctions sphériques

provenant des données HARDI. Il faudra d’abord intégrer des modèles d’incertitude

dans le suivi de fibres afin de le calibrer par rapport à l’incertidude dans

les directions principales des distributions de fibres estimées. Les travaux

de [Parker and Alexander (2003); Friman and Westin (2005); Seunarine et al. (2007);

Haroon and Parker (2007); Fonteijn et al. (2007)] proposent déjà quelques idées sur

ce sujet. Un autre problème est de trouver la bonne métrique pour estimer des dis-

tances et faire des statistiques entre les ODFs. D’autres métriques, telles que la

divergence de Kullback-Leibler, méritent d’être explorées. Une métrique mieux adap-

tée aura pour effet d’améliorer la segmentation et les algorithmes de regroupement

(clustering). D’autre part, dans cette thèse, nous avons privilégié les harmoniques

sphériques comme fonctions de base pour représenter les fonctions sphériques.

Cependant, il est aussi important d’étudier d’autres fonctions comme les ondelletes

sphériques, les gaussiennes sphériques ou les tenseurs d’ordres supérieurs qui peu-

vent elles aussi avoir des propriétés intéressantes pour le traitement des données

HARDI. Une dernière problèmatique importante pour la communauté est l’extraction

des maxima de ces fonctions sphériques. À l’heure actuelle, des méthodes numériques

de différences finies simples ou des méthodes de descente de gradient sont utilisées

pour détecter les maxima. Nous pensons que la décomposition des tenseurs d’ordres

supérieurs en leurs tenseurs propres, vecteurs propres et valeurs propres donnera

peut-être un moyen d’extraire les maxima de façon plus analytique et automatique.

Enfin, nous sommmes vraiment intéressés par l’unification ou du moins par le

rapprochement des méthodes de regroupement, de segmentation et de suivi de fibres.

Nous avons peu abordé la question du regroupement dans cette thèse (voir [O’Donnell

(2006); O’Donnell and Westin (2007); Leemans (2006); Kouby et al. (2005)]) mais il

fournit également une information précieuse sur l’architecture de la matière blanche.

Nous pensons qu’il y a vraiment un intérêt à combiner l’information provenant de ces

trois classes d’algorithmes. Ces algorithmes fournissent une information commune

et complémentaire qui se doit d’être mieux exploitée (voir Figure 12.3). À cette fin,

il est clair que nous aurons besoin de meilleurs outils pour valider nos méthodes.

Les fantômes ex vivo and in vivo comme ceux de [Lin et al. (2003); Campbell et al.

(2005); Perrin (2006)] sont vraiment utiles et doivent continuer à être développés

avec une plus grande complexité géométrique. Un effort particulier doit être égale-
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ment fait pour rendre ces données accessibles à la communauté, un peu comme nous,

informaticiens, tentons de distribuer nos logiciels librement. C’est seulement à cette

condition que nous pourrons valider et tester nos méthodes et ainsi, peut-être con-

vaincre les cliniciens et les médecins d’utiliser nos approches dans leurs applications

neuroscientifiques.
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APPENDIX A

SYNTHETIC HARDI DATA

GENERATION AND HARDI
ACQUISITIONS

A.1 SYNTHETIC DATA GENERATION

To evaluate the performance of the ADC, q-ball diffusion ODF and fiber

ODF estimation as well as the performance of the tractography and segmenta-

tion algorithms, we generate synthetic data using the multi-tensor model. This

model was also used in [Alexander et al. (2002); Hess et al. (2006); Tuch (2004);

Alexander and Barker (2005); Descoteaux et al. (2006b)]. This model assumes that

single fiber responses can be described by a Gaussian (rank-2 tensor) and that the

tissue in a voxel with more than one fiber is simply composed of multiple Gaussian

fibers that do not exchange molecules. The precise steps to generate the DWI signal

are as follows:

1. Set diffusion encoding gradient directions gi = (sin θi cos φi, sin θi sinφi, cos θi)
T

using certain order tessellation of the icosahedron with N samples on the

sphere.

2. Set the number of fibers to a specific n between 0 and 3 (0 is for isotropic signal).

3. For each fiber 1 ≤ k ≤ n, randomly choose an orientation (θk, φk) and a relative

weight pk for the k-th fiber, where
∑n

k=1 pk = 1. In practice, we impose a min-

imum angle between fibers of 45◦ and relative weights between 0.3 and 0.7 for

2-fiber and between 0.2 and 0.4 for 3-fiber distributions. Otherwise, the fiber

compartments are too weak to distinguish them.

4. For the isotropic voxels, we use a profile with eigenvalues

[700, 700, 700] x10−6 mm2/s. For the other distributions, we generate 3x3

tensors with eigenvalues [λ1, λ2, λ3] = [300, 300, 1700]x10−6 mm2/s and generate

each fiber tensor Dk using rotation matrix Rot to orient the main axis of the
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tensor in direction (θk, φk), i.e. Dk = RotT
(θk,φk)diag(λ1, λ2, λ3)Rot(θk ,φk). Note

that we choose tensor profiles with anisotropy nearly as high as the most

anisotropic regions found in the human brain. This facilitates the discrimina-

tion of 2- and 3-fiber distributions. As in [Tournier et al. (2004)], the underlying

assumption is that lower anisotropy levels are due to noise and partial volume

averaging from fibers crossing, kissing or diverging.

5. Pick a b-value and for each encoding direction i generate the diffusion signal

S(b,gi) = S0

n∑

k=1

pke
−bgT

i Dkgi . (A.1)

6. Add complex Gaussian noise [Sijbers et al. (1998)] with a standard deviation

(std) of σ = S0/ζ to the raw signal of Eq. [A.1]. That is, to each S(gi), we add

a random complex number with independent real and imaginary parts coming

from a zero mean Gaussian distributions with σ = 1/ζ (S0 = 1) and take the

modulus to obtain the noisy synthetic data. A typical value is ζ = 35 so that the

unweighted signal S0 has a signal-to-noise ratio (SNR) of 35. [Alexander et al.

(2002); Tuch (2002); Alexander and Barker (2005)] also use a similar noise level

even though typical real HARDI acquisitions tend to be corrupted by more noise.

In our simulations, we need a relatively low noise level in order to characterize

2- and 3-fiber distributions.

This makes computation using this model relatively straightforward. We are try-

ing to obtain the ADC profile, however, rather than the signal itself and so, we wish

to find D(g) such that

D(g) = −1

b
ln

(
S(b,g)

S0

)

= −1

b
ln

(
n∑

k=1

pke
−bgTDkg

)

. (A.2)

It is worth mentioning that the hindered cylinder model is also

another popular synthetic data generation model used in other

works [von dem Hagen and Henkelman (2002); Ozarslan et al. (2004b, 2005b)].

In this formulation, [Soderman and Jonsson (1995)] assume that fibers are perfect

cylinders and that water molecules are confined to diffuse within the walls of

these cylinders. In the presence of multiple fibers, the signal attenuation from the

cylinders is additive. This gives a more physically-based mixture model but is less

realistic than the multi-tensor model that corresponds more closely to empirical

fiber data. In any case, the approaches have the same model-selection and fitting

problems [Alexander (2006)].

Another advantage of the multi-tensor model is that the exact ODF can easily

be computed analytically. It is given in [Tuch (2004)] for a single Gaussian fiber

and by linearity, we can easily obtain the exact ODF for n fibers and normalization
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constant Z,

Ψ(ui) =
n∑

k=1

pk

Z

√

πb

uT
i Dk

−1ui
. (A.3)

This expression is formally derived in Appendix 7.9.

A.2 BIOLOGICAL PHANTOM DATA

The biological phantom was produced by Jennifer Campbell at the Mc-

Connell Brain Imaging Center (BIC) [Campbell et al. (2005)], McGill University,

Montréal, Canada on a 1.5T Sonata MR scanner using a knee coil. It was created

from two excised Sprague-Dawley rat spinal cords embedded in 2% agar. The acqui-

sition was done with a single-shot spin-echo planar sequence with twice-refocused

balanced gradients, designed to reduce eddy current effects. The dataset is acquired

with 90 pairs of points generated using electrostatic repulsion algorithm [Jones et al.

(1999)]. The q-ball protocol was used with b = 3000 s/mm2, q = 0.35 µm−1, TR= 6.4 s,

TE= 110 ms, FOV 360 x 360 mm2, 128 x 128 matrix, 2.8 mm isotropic voxels and four

signal averages per direction. The SNR of the b = 0 image S0 was estimated to be

approximately 70 for the averaged phantom and around 10 for the cord at b = 3000

s/mm2.

A.3 HUMAN BRAIN DATA

Several datasets were generously given to us to test our new local rescon-

truction algorithms as well as our new tractography and new segmentation algo-

rithms. We would like to thank to Bruce Pike, V. V. Rymar and Jennifer Campbell

of the Brain Imaging Center at McGill University, Canada for the human brain and

biological phantom datasets. Thanks also to Thomas Knösche, Timm Wetzel and Al-

fred Anwander of the Max Planck Institute for Human Cognitive and Brain Sciences,

Leipzig, Germany for their human brain datasets. Thanks also to Cyril Poupon and

Jean-François Mangin and colleagues from NeuroSpin / CEA for the HARDI database

of 13 subjects. Finally, thanks to G. Sapiro of the University of Minnesota and Kamil

Ugurbill and Stéphane Lehéricy of the Center for Magnetic Resonance Research in

Minneapolis, USA. Thanks again to all these collaborators, without whom this thesis

would not have been possible.

A.3.1 Data from the BIC, McGill University Montréal, Canada

Just like the biological phantom, the human brain dataset was acquired by Jen-

nifer Campbell from the BIC. A Siemens 3T MR scanner 8 channel head coil

was used, using 99 pairs of points generated with the electrostatic repulsion algo-

rithm [Jones et al. (1999)], has 63 slices of 2 mm each, covering the entire cere-

brum. The FOV was 256 x 256 mm2, TR = 11.1 s, TE = 121 ms, b = 3000 s/mm2

(q = 0.35 µm−1), BW 1346 Hz/Pixel, 128 x 128 matrix and phase partial Fourier 7/8.
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Ten b = 0 images were acquired and averaged to produce the S0 image. The SNR in

the white matter of this S0 image was estimated to be approximately 41.

A.3.2 Data from the Center for Magnetic Resonance Research
(CMRR)

DWI were acquired at the CMRR, University of Minnesota, Minneapolis, USA, on a

3T Siemens Magnetom Trio whole-body scanner. We generate 162 gradient directions

with a 3rd order tessellation of the icosahedron, as seen in Figure 4.12. In practice,

assuming symmetry of the diffusion process, we use only one direction out of two to

obtain 81 gradient directions on the sphere. We acquired 3 repetitions per direction,

each with b = 1000 s/mm2, TR = 5100 s and TE = 109 ms. The three measurements

are averaged by default by the scanner to produce 81 individual measurements to

process. The voxel size was 3 mm3 cube and there were 24, 64 x 64 slices. The SNR

of the T2-weighted data was estimated to be approximately 30.

A.3.3 Data from the Max Planck Institute (MPI), Leipzig, Germany

DWI data and high-resolution T1-weighted images were acquired in 8 healthy right-

handed volunteers (25 ± 4 years, 4 females) on a whole-body 3T Magnetom Trio scan-

ner (Siemens, Erlangen) equipped with an 8-channel head array coil [Anwander et al.

(2007b)]. Written informed consent was obtained from all subjects in accordance

with the ethical approval from the University of Leipzig. The spin-echo echo-planar-

imaging sequence, TE = 100 ms, TR = 12 s, 128 x 128 image matrix, FOV = 220 x

220 mm2, consists of 60 diffusion encoding gradients [Jones et al. (1999)] with a b-

value of 1000 s/mm2. Seven images without any diffusion weightings are placed at

the beginning of the sequence and after each block of 10 diffusion weighted images as

anatomical reference for offline motion correction. The measurement of 72 slices with

1.7mm thickness (no gap) covered the whole brain. Random variations in the data

were reduced by averaging 3 acquisitions, resulting in an acquisition time of about

45 minutes. No cardiac gating was employed to limit the acquisition time. The issue

of cardiac gating is discussed in [Jones et al. (2002)]. The SNR in the white matter

of this S0 image was estimated to be approximately 37. Additionally, fat saturation

was employed and we used 6/8 partial Fourier imaging, a Hanning window filtering

and parallel acquisition (generalized auto-calibrating partially parallel acquisitions,

reduction factor = 2) in the axial plane.

The brain is peeled from the T1-anatomy, which was aligned with the Ta-

lairach stereotactical coordinate system [Talairach and Tournoux (1988)]. The

21 images without diffusion weightings distributed within the whole sequence

were used to estimate motion correction parameters using rigid-body transforma-

tions [Jenkinson et al. (2002)], implemented in [FSL (2006)]. The motion correction

for the 180 diffusion-weighted images was combined with a global registration to
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the T1 anatomy computed with the same method. The gradient direction for each

volume was corrected using the rotation parameters. The registered images were in-

terpolated to the new reference frame with an isotropic voxel resolution of 1.72 mm

and the 3 corresponding acquisitions and gradient directions were averaged.

A.3.4 Public HARDI Database from NeuroSpin / CEA, Paris, France

Finally, the public HARDI database of [Poupon et al. (2006)] is used. This

HARDI database can be obtained by contacting Cyril Poupon directly by email,

cyril.poupon@cea.fr. The 13 datasets were acquired on a 1.5T scanner with 200 encod-

ing directions, b = 3000 s/mm2, 60 slices with 2 mm thickness, twenty five b = 0 s/mm2

images, 128 x 128 image matrix, TE = 93.2 ms, TR = 1.9 s.
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APPENDIX B

PUBLICATIONS OF THE AUTHOR

ARISING FROM THIS WORK

Journal papers

1. Maxime Descoteaux and Rachid Deriche. Q-Ball Images Segmentation Using

Region-Based Statistical Surface Evolution. Journal of Mathetical Imaging in

Vision, special issue on Mathematics in Image Analysis, in press 2008.

2. Peter Savadjiev, Jennifer S. W. Campbell, Maxime Descoteaux, Rachid Deriche,

G. Bruce Pike and Kaleem Siddiqi Labeling of ambiguous sub-voxel fibre bundle

configurations in high angular resolution diffusion MRI. NeuroImage, in press

2008.

3. Maxime Descoteaux, Elaine Angelino, Shaun Fitzgibbons, Rachid Deriche. Reg-

ularized, Fast and Robust Analytical Q-Ball Imaging, Magnetic Resonance in

Medicine, Volume 58, Issue 3, Pages 497-510, 2007

4. Maxime Descoteaux, Elaine Angelino, Shaun Fitzgibbons, Rachid Deriche. Ap-

parent Diffusion Coefficients from High Angular Resolution Diffusion Images:

Estimation and Applications. Magnetic Resonance in Medicine Volume 56, Is-

sue 2, Pages 395-410, August 2006.

5. Demian Wassermann, Maxime Descoteaux, Rachid Deriche. Diffusion Maps

Clustering for Magnetic Resonance Q-Ball Imaging Segmentation. Interna-

tional Journal on Biomedical Imaging, special issue on Recent Advances in Neu-

roImaging Methodology, in press 2007.

6. (under review) Maxime Descoteaux, Rachid Deriche, Alfred Anwander. Deter-

ministic and Probabilistic Tractography: from Diffusion to Sharp Fiber Distri-

butions. Submitted to IEEE Transactions in Medical Imaging.

Conference papers

1. Maxime Descoteaux and Rachid Deriche. Segmentation of Q-Ball Images Using

Statistical Surface Evolution. Medical Image Computing and Computer As-

sisted Intervention (MICCAI) 2007, Brisbane, Australia, April 2007.
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2. Demian Wassermann, Maxime Descoteaux and Rachid Deriche. Diffusion Maps

Segmentation of Magnetic Resonance Q-Ball Imaging. Mathematical Methods

in Biomedical Image Analysis (MMBIA) Workshop 2007, held in conjunction

with the 11th International Conference on Computer Vision (ICCV), Rio, Bresil,

October 2007.

3. Rachid Deriche and Maxime Descoteaux. Splitting Tracking through crossing

fibers: Multidirectional Q-Ball Tracking. 4th IEEE International Symposium

on Biomedical Imaging: From Nano to Macro (ISBI’07) , Arlington, Virginia,

USA, April 2007

4. Maxime Descoteaux, Peter Savadjiev, Jennifer Campbell, G. Bruce Pike, Kaleem

Siddiqi, Rachid Deriche. Validation and Comparison of Analytical Q-Ball Imag-

ing Methods. 4th IEEE International Symposium on Biomedical Imaging: From

Nano to Macro (ISBI’07) , Arlington, Virginia, USA, April 2007.

5. Maxime Descoteaux, Rachid Deriche, Christophe Lenglet. Diffusion Tensor

Sharpening Improves White Matter Tractography. SPIE Image Processing:

Medical Imaging, San Diego, California, USA, Febuary 2007.

6. Maxime Descoteaux, Elaine Angelino, Shaun Fitzgibbons, Rachid Deriche. A

Fast and Robust ODF Estimation Algorithm in Q-Ball Imaging . 3rd IEEE In-

ternational Symposium on Biomedical Imaging: From Nano to Macro (ISBI’06),

April 2006.

7. Maxime Descoteaux, Elaine Angelino, Shaun Fitzgibbons, Rachid Deriche. Ap-

parent Diffusion Profile Estimation From High Angular Resolution Diffusion

Images. SPIE Image Processing: Medical Imaging, Febuary 2006.

Conference abstracts

1. (under review) Julien-Cohen Adad and Maxime Descoteaux and Rachid Deriche

and Serge Rossignol and Rick D. Hoge and Habib Benali. Q-Ball Imaging of the

Spinal Cord. Submitted to ISMRM 2008.

2. Alfred Anwander, Maxime Descoteaux and Rachid Deriche. Probabilistic Q-

Ball Tractography Solves Crossings of Callosal Fibers. Human Brain Mapping,

Chicago, USA, June 2007.

3. Maxime Descoteaux and Rachid Deriche. Sharpening Improves Clinically Feasi-

ble Q-Ball Imaging Reconstructions. Joint Annual Meeting ISMRM-ESMRMB,

Berlin, Germany, May 19-25th 2007.

4. Peter Savadjiev, Jennifer Campbell, Maxime Descoteaux, Rachid Deriche, G.

Bruce Pike, Kaleem Siddiqi. Disambiguation of Complex Subvoxel Fibre Config-

urations in High Angular Resolution Fibre Tractography. Joint Annual Meeting

ISMRM-ESMRMB, Berlin, Germany, May 19-25th 2007.
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5. Maxime Descoteaux, Rachid Deriche , Peter Savadjiev, Jennifer Campbell,

Bruce Pike, Kaleem Siddiqi. Analytic ODF Estimation and Validation in Q-Ball

Imaging. 12th annual meeting of the Organization for Human Brain Mapping

(HBM), Florence, Italie, June 11-15th 2006.

Research Reports

1. Demian Wassermann, Maxime Descoteaux and Rachid Deriche. Recovering

cerebral white matter structures with Spectral Clustering of Diffusion MRI Data.

INRIA Research Report 6351, November 2007.

2. Maxime Descoteaux, Rachid Deriche and Alfred Anwander. Deterministic and

Probabilistic Q-Ball Tractography: from Diffusion to Sharp Fiber Distributions.

INRIA Research Report 6273, August 2007.

3. Maxime Descoteaux and Rachid Deriche. Q-Ball Images Segmentation Using

Region-Based Statistical Surface Evolution. INRIA Research Report 6257, July

2007.

4. Maxime Descoteaux, Elaine Angelino, Shaun Fitzgibbons, Rachid Deriche. A

Linear and Regularized ODF estimation algorithm to recover multiple fibers in

Q-Ball Imaging. INRIA Research Report 5768, November 2005.

5. Maxime Descoteaux, Elaine Angelino, Shaun Fitzgibbons, Rachid Deriche. Ap-
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kinsâĂİ: How Noise Distorts Diffusion-Weighted MR Data’. Magnetic Resonance

in Medicine 52, 979–993. [245]

Jones, D. K., M. A. Horsfield, and A. Simmons: 1999, ‘Optimal strategies for mea-

suring diffusion in anisotropic systems by magnetic resonance imaging’. Magnetic

Resonance in Medicine 42, 515–525. [261, 262]

Jones, D. K. and C. Pierpaoli: 2005, ‘Confidence Mapping in Diffusion Tensor Mag-

netic Resonance Imaging Tractography Using a Bootstrap Approach’. Magnetic

Resonance in Medicine 53, 1143–1149. [209]

Jones, D. K., S. C. R. Williams, D. Gasston, M. A. Horsfield, A. Simmons, and R.

Howard: 2002, ‘Isotropic resolution diffusion tensor imaging with whole brain ac-

quisition in a clinically acceptable time’. Human Brain Mapping 15, 216–230. [262]

Kaden, E., T. R. Knosche, and A. Anwander: 2007, ‘Parametric spherical deconvolu-

tion: Inferring anatomical connectivity using diffusion MR imaging’. NeuroImage

37, 474–488. [56, 167, 208, 209, 225]

Khachaturian, M. H., J. J. Wisco, and D. S. Tuch: 2007, ‘Boosting the Sampling Effi-

ciency of q-Ball Imaging Using Multiple Wavevector Fusion’. Magnetic Resonance

in Medicine 57, 289–296. [48, 58, 167, 245]

Kindlmann, G., D. B. Ennis, R. T. Whitaker, and C.-F. Westin: 2007a, ‘Diffusion Ten-

sor Analysis with Invariant Gradients and Rotation Tangents’. IEEE Transactions

on Medical Imaging p. in press. [245]

Kindlmann, G., R. Estepar, M. Niethammer, S. Haker, and C. Westin: 2007b,

‘Geodesic-loxodromes for diffusion tensor interpolation and difference measure-

ment’. In: 10th International Conference on Medical Image Computing and

Computer-Assisted Intervention (MICCAI’07), Vol. LNCS 4791. pp. 1–9. [245]

King, M. D., J. Houseman, D. G. Gadian, and A. Connelly: 1997, ‘Localized q-space

imaging of the mouse brain’. Magnetic Resonance in Medicine 38(6), 930–937. [51]

279



King, M. D., J. Houseman, S. A. Roussel, N. V. Bruggen, S. R. Williams, and D. G.

Gadian: 1994, ‘q-Space imaging of the brain’. Magnetic Resonance in Medicine

32(6), 707–713. [51]

Koch, M., D. Norris, and M. Hund-Georgiadis: 2002, ‘An investigation of functional

and anatomical connectivity using magnetic resonance imaging’. NeuroImage 16,

241–250. [208, 209, 212, 213, 216, 224]

Kouby, V. E., Y. Cointepas, C. Poupon, D. Rivière, N. Golestani, J.-B. Poline, and J.-F.

Mangin: 2005, ‘MR diffusion-based inference of a fiber bundle model from a popu-

lation of subjects’. In: 8th International Conference on Medical Image Computing

and Computer Assisted Intervention (MICCAI’05). Palmsprings, California, USA,

pp. 196–204. [246, 254]

Kreher, B. W., J. F. Schneider, J. Mader, E. Martin, H. J, and K. Il’yasov: 2005, ‘Multi-

tensor Approach for Analysis and Tracking of Complex Fiber Configurations’. Mag-

netic Resonance in Medicine 54, 1216–1225. [207, 208]

Lauterbur, P.: 1973, ‘Image formation by induced local interactions: examples em-

ploying nuclear magnetic resonance’. Nature 242, 190–191. [39]

Lazar, M. and A. L. Alexander: 2005, ‘Bootstrap white matter tractography (BOOT-

TRACT)’. NeuroImage 24, 524–532. [209]

Lazar, M., D. Weinstein, J. Tsuruda, K. Hasan, K. Arfanakis, M. Meyerand, B. Badie,

H. Rowley, V.Haughton, A. Field, and A. Alexander: 2003, ‘White Matter Tractog-

raphy Using Diffusion Tensor Deflection’. In: Human Brain Mapping, Vol. 18. pp.

306–321. [208, 224]

LeBihan, D.: 2003, ‘Looking into the functional architecture of the brain with diffu-

sion MRI’. Nature Reviews Neuroscience 4, 469–480. [36]

LeBihan, D. and E. Breton: 1985, ‘Imagerie de diffusion in vivo par résonance mag-

nétique nucléaire’. C. R. Acad. Sci. Paris 301 Série II, 1109–1112. [3, 12, 15,

42]

LeBihan, D., E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. L. Jeantet:

1986, ‘MR imaging of intravoxel incoherent motions: application to diffusion and

perfusion in neurologic disorders’. Radiology 61, 401âĂŞ–7. [42]
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