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Abstract

This thesis deals with the development of new processing tools for diffusion tensor
Magnetic Resonance Imaging (MRI). This recent MRI technique is the unique non
invasive method currently available to explore the microstructure of biological tis-
sues like the human brain. It is thus of utmost importance to acquire a better un-
derstanding of the brain mechanisms and to improve the diagnosis of neurological
disorders. However, because of the complexity of the data, this imaging modality
raises a large amount of mathematical and computational challenges. We introduce
new algorithms relying on Riemannian geometry, partial differential equations and
front propagation techniques to process diffusion tensor MRI. The first part of this
work is theoretical. After a few reminders about the human nervous system, MRI
and important notions of differential geometry, we study the space of multivariate
normal distributions. The introduction of a Riemannian structure on that space al-
lows us to define statistics and intrinsic numerical schemes that will constitute the
core of the algorithms proposed in the second part. The properties of that space are
important for diffusion tensor MRI since tensors can be seen as covariance matrices
of normal laws modeling the diffusion of water molecules at each voxel of the acquired
volume. The second part of this thesis is methodological. We start with the introduc-
tion of original approaches for the estimation and regularization of diffusion tensor
MRI. We then show how to evaluate the degree of connectivity between cortical areas.
Next, we introduce a statistical surface evolution framework for the segmentation of
those images. Finally, we propose a non-rigid registration method. The last part of
this thesis is dedicated to the application of our tools to two important neuroscience
problems: the analysis of the connections between the cerebral cortex and the basal
ganglia, implicated in motor tasks, and the study of the anatomo-functional network
of the human visual cortex. This work was done in collaboration with the Center for
Magnetic Resonance Research of the University of Minnesota (Minneapolis), the cen-
tre IRMf of the hospital la Timone (Marseille) and the neuroradiology center of the
hospital La Pitié-Salpêtrière (Paris).
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Résumé

Cette thèse est consacrée au développement d’outils de traitement pour l’Imagerie
par Résonance Magnétique (IRM) du tenseur de diffusion. Cette technique d’IRM
récente est l’unique moyen non invasif disponible pour explorer la microstructure de
tissus biologiques tels que ceux du cerveau humain. Elle est donc d’une grande im-
portance pour mieux comprendre le fonctionnement du cerveau ou pour améliorer le
diagnostic de pathologies neurologiques. Cependant, de part la complexité des images
produites, elle soulève de nombreux problèmes mathématiques et computationnels.
Nous proposons des méthodes basées sur la géométrie Riemannienne, les équations
aux dérivées partielles et les techniques de propagation de front pour le traitement de
ces images. La première partie de ce travail est théorique. Après quelques rappels sur
le système nerveux de l’homme, l’IRM et sur des éléments de géométrie différentielle,
nous étudions l’espace des lois normales multivariées. L’introduction d’une structure
Riemannienne sur cet espace nous permet de définir des statistiques et des schémas
numériques intrinsèques qui sont à la base des algorithmes proposés dans la seconde
partie. Les propriétés de cet espace sont importantes pour l’IRM du tenseur de diffu-
sion car ces tenseurs sont les matrices de covariance de lois normales modélisant la
diffusion des molécules d’eau en chaque voxel du milieu imagé. La seconde partie de
cette thèse est méthodologique. Nous commençons par introduire des approches orig-
inales pour l’estimation et la régularisation de l’IRM du tenseur de diffusion. Nous
montrons ensuite comment évaluer le degré de connectivité entre aires corticales.
Puis nous introduisons un modèle statistique d’évolution de surface permettant de
segmenter ces images. Finalement, nous proposons une méthode de recalage non-
rigide. La dernière partie de cette thèse est consacrée à l’application de nos outils à
deux problèmes d’intérêt en neurosciences : l’analyse des connexions entre le cortex
cérébral et les noyaux gris centraux, impliquées dans des tâches motrices et l’étude
du réseau anatomo-fonctionnel du cortex visuel humain. Ces travaux ont été réalisés
en collaboration avec le Center for Magnetic Resonance Research de l’Université du
Minnesota (Minneapolis), le centre IRMf de l’hôpital de la Timone (Marseille) et le
centre de neuroradiologie de l’hôpital La Pitié-Salpêtrière (Paris).
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Appendix 247

A Directional Derivatives of Matrix Functions 249
A.1 Derivatives & Spectral Representation . . . . . . . . . . . . . . . . . . . . 249

A.1.1 Spectral representation of the derivative . . . . . . . . . . . . . . 250
A.1.2 Computation of dD

dt . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
A.1.3 Computation of dZ

dt Z
−1 . . . . . . . . . . . . . . . . . . . . . . . . . 253

A.2 Numerical experiments: The log function . . . . . . . . . . . . . . . . . . 254

B Details on the first Variation of JAC(h,Dh) 257
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
B.2 Computation of δkΛ2(x, h) . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

12



B.3 Computation of δkΛ̃12(x, h) . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
B.4 Computation of δkΛ̃21(x, h) . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

C Publications of the Author 267

Bibliography 271

13



14



CHAPTER 1

INTRODUCTION

CONTEXT
The development of Magnetic Resonance Imaging (MRI), and its application to
neuroimaging, have brought in the last 20 years great hopes to explore, in a non-
invasive manner, the anatomy and activity of the human brain. As the magnetic field
strength of scanners increases (up to 9.4 Tesla today for human), as new acquisition
techniques like parallel imaging appear and, as new and powerful processing tools
are developed, we are getting closer to a better undertanding of the most complex
structure of the human body. These improvements are also crucial for the rapid and
accurate diagnosis of neurological disorders.

This thesis is dedicated to the development of new processing tools for diffu-
sion tensor MRI, also known as Diffusion Tensor Imaging (DTI). Diffusion MRI is a
technique introduced in the middle of the 80’s by Le Bihan et al. [34, 35], Merboldt
et al. [205] and Taylor et al. [278]. It provides a very sensitive probe of biological
tissues architecture. Anatomical MRI enables us to distinguish and classify grey
matter, white matter and cerebrospinal fluid. However, with this contrast, white
matter retains a homogeneous aspect, preventing any observation of neural fibers
and thus of neuronal connectivity. In order to access the neural fibers bundle
architecture, anatomists used to perform cerebral dissection [87] and strychnine or
other chemical markers neuronography [251], [266]. More recently neural pathways
tracking based on local injection of chemical markers, and subsequent observation
of the induced propagation yielded high-quality connectivity mapping in the cat
and monkey cerebral cortex [317], [266]. As of today, diffusion MRI is the unique
non-invasive technique capable of quantifying the anisotropic diffusion of water
molecules in tissues like the human brain and muscles.
The diffusion phenomenon is the macroscopic physical process resulting from the
random walk of water molecules. All microscopic particles permanently undergo
a translation and rotation motion due to their thermal energy and also known as
Brownian motion. This microscopic phenomenon, related to the bombardment by
molecules obeying a Maxwellian velocity distribution, was formalized by A. Einstein
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in 1905 and identified as depending on temperature and viscosity of the domain, as
well as particles size. Diffusion shows, at a larger scale, how molecules tend to move
from low concentration areas to high concentration areas. The key concept that is of
primary importance for diffusion MRI is that diffusion in biological tissues reflects
their architecture at a microscopic scale. This is due to the fact that molecular motion
is favored in directions aligned with fiber bundles and hindered in the orthogonal
direction. Measuring, at each voxel, that very same motion along a certain number of
sampling directions provides an exquisite insight into the local orientation of fibers
and is known as Diffusion Weighted MRI.
Shortly after the first acquisitions of images characterizing the anisotropic diffusion
of water molecules in vivo [214], [224], Basser et al. [25, 24, 23] proposed the rigorous
formalism of the diffusion tensor model. It features an analytic means to precisely
describe the three-dimensional nature of anisotropy in tissues. The diffusion tensor
model encapsulates the averaged diffusion properties of water molecules inside a
voxel with typical extent of 1 to 3mm into the 3 × 3 covariance matrix of a Gaussian
distribution.

DTI has now proved to be extremely useful to study the normal and pathologi-
cal human brain [37, 98]. It has been applied, for instance, to investigate the brain
development [292, 101], the effects of aging [276], cerebral anatomo-functional
networks [170, 134] as well as the structure of the thalamus and various fiber
bundles [312, 299]. DTI is also particularly relevant to a wide range of clinical
studies related, for example, to brain ischemia [2] or stroke detection [274], multiple
sclerosis [132], Alzheimer’s [257] or Parkinson’s disease [264], schizophrenia [10],
neurosurgery [277], tumor growth modeling [148, 75] ...etc

DTI raises a large amount of mathematical and computational challenges be-
cause of the complexity of the data and the need for adequate models. In this thesis,
we address many different theoretical and computational issues related to the
processing of diffusion tensor images. We also apply some of the proposed techniques
to investigate the anatomo-functional architecture of the human motor and visual
systems.

ORGANIZATION AND CONTRIBUTIONS OF THIS THESIS
This manuscript is organized in three parts, which reflect the different types of con-
tributions of the thesis. They are threefold: theoretical, methodological and applied.

• Theoretical contributions deal with the introduction of a novel point of view
to compute statistics on the manifold of multivariate Gaussian distributions.
This will be at the core of many of our processing tools for DTI, since diffusion
tensors can be seen as the parameters of three-dimensional Gaussian laws. We
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Figure 1.1: Graphical depiction of the manuscript organization

also address the problem of the fast computation of directional derivatives of
matrix functions, which is a key element of our registration algorithm.

• Methodological contributions are related to the introduction of original tech-
niques for the estimation, regularization, segmentation and registration of dif-
fusion tensor images as well as for the mapping of the anatomical connectivity
of the human brain from DTI.

• Applied contributions are concerned with the use and validation of our connec-
tivity mapping techniques to study the human brain visual and motor systems.

Figure 1.1 provides a graphical depiction of the organization of this thesis.

Part I: Background

Chapter 3 is an introduction to the architecture of the human central nervous
system and, in particular, the human brain. It also introduces the principles of
Magnetic Resonance Imaging, with a particular emphasis on diffusion MRI. This
chapter provides the basic knowledge necessary to understand the biological and
physical basis of the diffusion MR signal.
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Chapter 4 is meant to be a reminder of Riemannian geometry. After describ-
ing the notion of differentiable manifold, we introduce the concepts of metric,
geodesic, connection and curvature. Finally, we show how to apply them to manifold-
valued datasets. This should give to anyone, not familiar with Riemannian geometry,
enough information to follow the developments in chapter 5.

Chapter 5 takes a differential geometrical point of view to analyze the space
of multivariate Gaussian distributions. It relies on the properties of the underlying
parameters space, endowed with a Riemannian metric, and allows us to overcome
many problems encountered when using the Euclidean metric. We will see that
this space is highly relevant for the study of diffusion tensor images because those
tensors are nothing but the covariance matrices of three-dimensional Gaussian
laws. We derive and experiment with original methods to compute the mean and
covariance matrix of a set of diffusion tensors. We also show how to approximate
a Gaussian law on the set of diffusion tensors. This chapter is at the core of the
algorithms proposed in chapters 6, 8 and 9.

Part II: Methods

Chapter 6 addresses two of the most basic processing tasks for Diffusion Weighted
Images (DWI), namely the estimation of diffusion tensors and the regularization
of the resulting matrix-valued images. We show that it is possible to formulate
these problems within the geometrical framework proposed in chapter 5 and thus to
naturally enforce the positiveness of the computed or regularized diffusion tensors.
The anisotropic regularization algorithm is a joint work with Carlos Castaño-Moraga
(Center for Technology in Medicine, University of Las Palmas de Gran Canaria,
Tafira, Spain).

Chapter 7 presents two different front propagation techniques, respectively
based on level set and fast marching methods, to estimate and quantify the like-
lihood of anatomical connections in the human brain. This chapter uses the fact
that a Riemannian metric can be derived from the diffusion tensor and used to
compute geodesic distance between cerebral regions. We want to stress here that
this metric (called “diffusion metric”) has absolutely no relation with the metric
described in chapter 5. Loosely speaking, this last metric is a similarity measure
between features (tensors), whereas the metric of chapter 7 is a spatial distance (in
R

3). Our goal in this chapter is to approximate neural fibers as shortest paths, ie.
geodesics, associated with this diffusion metric. To achieve this goal, a key step of
the algorithm is the computation of the geodesic distance function. It is obtained by
solving the so-called anisotropic Eikonal equation. This is much more tricky than
solving the classical Eikonal equation and requires specific numerical schemes. We
adopt an historical point of view in this chapter. We start with the level set (or
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dynamic) formulation of the anisotropic Eikonal equation, which we developed first
because of its easier numerical implementation. However, this approach has many
drawbacks which led us to the Fast Marching (or stationary) formulation of the
problem. We also show how to quantify the likelihood of each estimated fiber with
the two methods. The control interpertation of the stationary formulation yields
a very natural connectivity index that can be used to generate connectivity maps.
Chapters 10 and 11 respectively use the dynamic and stationary formulation of the
problem. The development of the theory and implementation of the Fast Marching
method is a joint work with Emmanuel Prados (INRIA Rhône-Alpes, Grenoble,
France) and Jean-Philippe Pons (CERTIS Laboratory, Ecole Nationale des Ponts et
Chaussées, Marne-la-Vallée, France).

Chapter 8 focuses on the problem of the segmentation of diffusion tensor im-
ages. We propose a statistical surface evolution method to estimate the optimal
partitioning according to two hypothesis: (1) Diffusion tensors exhibit different
Gaussian distributions within the structure of interest and the background. (2) The
surface evolution should stop wherever there exists a high variation in the diffusion
tensor image (ie. when different fiber bundles meet). The goal of this chapter is thus
to automatically extract a subpart of a DTI volume, corresponding to a fiber bundle
of interest. We demonstrate through extensive numerical experimentation that the
statistics derived from the Riemannian metric introduced in chapter 5 outperform
the statistics associated to the Euclidean or Kullback-Leibler metrics. This is a joint
work with Mikaël Rousson (Siemens Corporate Research, Princeton, NJ, USA).

Chapter 9 describes our last methodological contribution, namely a variational
framework for the dense non-rigid registration of diffusion tensor images. We pro-
pose a matching energy that aims to minimize the difference in the local statistical
content (means and covariance matrices) of two diffusion tensor images through a
gradient descent procedure. The result of the algorithm is a dense vector field that
can be used to warp one image onto the other. Of course, the statistics are computed
as proposed in chapter 5. A large part of this chapter is essentially mathematical
and the computations are a bit tedious. We provide, as a proof of concept, different
numerical examples that illustrate the feasibility of the method.

Part III: Applications

Chapter 10 is an application of the level set based connectivity mapping technique
introduced in chapter 7. Once again, this study relies on the dynamic formulation of
the anisotropic Eikonal equation because of historical reasons. It was initiated about
two years ago and it is in fact because of its high computational overhead that our
work on the stationary formulation was started. This chapter demonstrates that it
is possible, with this method, to identify different cortico-striatal networks involved
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in the acquisition and storage of motor skills. This is a joint work with Stéphane
Lehéricy (Center for Magnetic Resonance Research, University of Minnesota, Min-
neapolis, USA / La Pitié-Salpêtrière Hospital, Paris, France).

Chapter 11 studies the anatomical connections between the various visual ar-
eas of the human brain. We not only reproduce previous findings on the topology of
fibers linking the LGN to V1 or homologous regions of the visual cortex but also bring
new insights on the connectivity between the human MT complex and the retinotopic
areas. This study has been made possible by the development of our Fast Marching
method because the number and extent of the regions of interest simply prohibited
the computation of all the required geodesic distance functions with the level set
approach. This is a joint work with Nicolas Wotawa (INRIA Sophia-Antipolis,
France).

Appendices

Appendix A introduces an original formulation for the computation of directional
derivatives of matrix functions. It is based on the spectral decomposition of matrices
and we will show that it yields a fast algorithm. The case of the matrix logarithm is
studied since it is a fundamental building block of the registration method presented
in chapter 9. This is a joint work with Théo Papadopoulo (INRIA Sophia-Antipolis,
France).

Appendix B provides all the details for the computation of the gradient of the
matching term JAC(h,Dh) for the registration problem of chapter 9.

Appendix C presents the publications of the author.

Software contributions

Finally, we would like to point out that all the algorithms presented in this
manuscript are now available upon request as an extension of the Brainvisa1 soft-
ware platform for visualization and analysis of multi-modality brain data and as
a toolbox for SPM52. This integration work has been done in collaboration with
Demian Wassermann (INRIA Sophia-Antipolis, France / Computer Science Depart-
ment, University of Buenos Aires, Argentina) and Maxime Descoteaux (INRIA
Sophia-Antipolis, France).

1http://brainvisa.info
2http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
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CHAPTER 2

INTRODUCTION (FRANÇAIS)

CONTEXTE
Le développement de l’Imagerie par Résonance Magnétique (IRM), et ses applications
en neuroimagerie, a apporté de grands espoirs au cours des 20 dernières années pour
l’exploration non-invasive de l’anatomie et de l’activité du cerveau humain. Avec la
croissance de la puissance des champs magnétiques (jusqu’à 9.4 Tesla actuellement
pour l’homme), avec l’arrivée de nouvelles techniques d’acquisition comme l’imagerie
parallèle et, avec le développement de nouveaux et puissants outils de traitement,
notre compréhension de la structure la plus complexe du corps humain s’améliore
progressivement. Ces avancées sont cruciales pour le diagnostic rapide et aussi
précis que possible des pathologies neurologiques.

Cette thèse est dédiée au développement de nouveaux algorithmes de traite-
ment pour l’IRM du Tenseur de Diffusion, également connu sous le nom d’Imagerie
du Tenseur de Diffusion (ITD). L’IRM de diffusion est une technique introduite
au milieu des années 80 par Le Bihan et al. [34, 35], Merboldt et al. [205] et
Taylor et al. [278]. Sensible au mouvement des molécules d’eau, elle permet
d’inférer des informations sur l’architecture des tissus biologiques étudiés. Les IRM
anatomiques nous permettent en effet de distinguer et classifier la matière grise,
blanche et le liquide céphalo-rachidien. Cependant, avec ce contraste, la matière
blanche conserve un aspect homogène, empêchant toute observation des fibres
nerveuses et donc de la connectivité cérébrale. Afin d’accéder à la configuration
des faisceaux de fibres, les anatomistes réalisaient des dissections du cerveau [87],
des neuronographies à base de strychnine ou autres marqueurs chimiques [251],
[266]. Plus récemment, l’estimation des connexions neuronales par injection de mar-
queurs chimiques et observation de leur propagation a permis d’obtenir des cartes
de connectivité de haute qualité du cortex cérébral chez le chat et le singe [317], [266].

Actuellement, l’IRM de diffusion est la seule technique non-invasive permet-
tant de quantifier l’anisotropie de la diffusion des molécules d’eau dans des tissus
comme le cerveau ou les muscles de l’homme. Le phénomène de diffusion est le
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processus physique macroscopique résultant du mouvement aléatoire des molécules
d’eau. Toutes les particules microscopiques subissent en effet en permanence un
mouvement de translation et de rotation dû à leur énergie thermique, et également
connu sous le nom de mouvement Brownien. Ce phénomène microscopique, dont
l’origine est l’incessant bombardement moléculaire de particules obéissant à une
distribution de vitesse Maxwellienne, a été formalisé en 1905 par A. Einstein et
caractérisé comme dépendant de la température, de la viscosité du domaine et de la
taille des particules. La diffusion traduit, à une échelle plus grande, la tendance des
molécules à migrer des régions à basse concentration vers les régions à forte concen-
tration. Le concept clé, essentiel pour l’IRM de diffusion, est que tout processus de
diffusion dans un milieu biologique reflète directement l’architecture de ce dernier à
une échelle microscopique. Ceci s’explique par le fait que le mouvement moléculaire
est favorisé dans les directions alignées avec les faisceaux de fibres et contraint dans
les directions orthogonales. La mesure, à chaque voxel, de ce mouvement selon un
certain nombre de directions fournit de précieuses informations sur l’orientation
locale des fibres. Les données ainsi obtenues constituent des IRM pondérées en
diffusion.

Peu après les premières acquisitions d’images caractérisant la diffusion anisotrope
des molécules d’eau in vivo [214], [224], Basser et al. [25, 24, 23] ont proposé le
formalisme rigoureux du modèle du tenseur de diffusion. Celui-ci fournit une forme
analytique décrivant précisément la nature tridimensionnelle de l’anisotropie des
tissus. Le modèle du tenseur de diffusion encapsule dans la matrice de covariance
3×3 d’une distribution Gaussienne les propriétés de diffusion moyenne des molécules
d’eau au sein d’un voxel dont la taille est, typiquement, de 1 à 3 mm.

Il est maintenant admis que l’ITD constitue un outil extrêmement utile pour
étudier le cerveau humain sain ou pathologique [37, 98]. Cette modalité a d’ores et
déjà été appliquée, par exemple, pour mieux comprendre le développement cérébral
[292, 101], l’effet du vieillissement [276], l’architecture des réseaux anatomo-
fonctionnels cérébraux [170, 134] ainsi que la structure du thalamus et de différents
faisceaux de fibres [312, 299]. L’ITD est aussi particulièrement pertinente pour un
grand nombre d’études cliniques s’intéressant par exemple aux ischémies cérébrales
[2] ou à la détection d’accidents vasculaires cérébraux [274], la sclérose en plaques
[132], les maladies d’Alzheimer [257] ou de Parkinson citescherfler-schocke-etal:06,
la schizophrénie [10], la neurochirurgie [277], la modélisation de la croissance de
tumeurs [148, 75] ...etc.

L’ITD, de part la complexité des données et le besoin de modèles adéquats, soulève un
grand nombre de questions mathématiques et computationnelles. Dans cette thèse,
nous nous attaquons à de nombreux problèmes théoriques et computationnels, reliés
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au traitement d’IRM du tenseur de diffusion. Nous appliquons également certains
des outils proposés à l’analyse de l’architecture anatomo-fonctionnelle des systèmes
moteurs et visuels humains.

ORGANISATION ET CONTRIBUTIONS DE CETTE THÈSE
Ce manuscrit est organisé en trois parties qui reflètent les différents types de contri-
butions de cette thèse : théoriques, méthodologiques et appliquées.

• Nos contributions théoriques concernent l’introduction d’un point de vue orig-
inal pour le calcul de statistiques sur la variété des distributions Gaussiennes
multivariées. Ceci sera à la base d’un certain nombre de nos outils de traite-
ment pour l’ITD, étant donné que les tenseurs de diffusion peuvent être con-
sidérés comme les paramètres de lois Gaussiennes tridimensionnelles. Nous
nous intéressons également au problème du calcul rapide de dérivées direction-
nelles de fonctions matricielles. Ceci est un élément clé de notre algorithme de
recalage.

• Nos contributions méthodologiques consistent en l’introduction de techniques
originales pour l’estimation, la régularisation, segmentation et le recalage
d’images du tenseur de diffusion ainsi que pour l’analyse de la connectivité
anatomique du cerveau humain par ITD.

• Nos contributions appliquées sont liées à l’utilisation et la validation de nos
techniques d’analyse de la connectivité à travers l’étude des systèmes moteurs
et visuels du cerveau humain.

La figure 2.1 fournit une description graphique de l’organisation de cette thèse.

Partie I : Préliminaires et Théorie

Chapitre 3 - Le Système Nerveux Humain et l’Imagerie par Résonance
Magnétique : Le cerveau humain, selon le point de vue connexionniste, est
organisé en régions de traitement distinctes et connectées par un réseau de relais
anatomiques. Les unités de traitement assurent les fonctions cognitives primaires
tandis que les tâches cognitives de plus haut niveau émergent d’une coordination
globale entre ces unités. Le signal neural est analysé par le cortex cérébral et trans-
mis aux diverses aires du cerveau via la matière blanche. Celle-ci doit son nom à
l’apparence blanche des axones myélinisés. Les faisceaux de la matière blanche sont,
en général, classifiés en fibres commissurales, associatives et projectives, en fonction
des régions qu’elles relient. Comparé à notre compréhension de l’architecture
cérébrale chez des animaux comme le chat ou la souris, où l’utilisation de procédés
invasifs est possible [266], notre connaissance de l’organisation du cerveau humain
est assez pauvre.
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Figure 2.1: Description graphique de l’organisation de ce manuscrit

Les techniques de neuroimagerie comme l’Imagerie par Résonance Magnétique, et
en particulier l’IRM de diffusion, ont ouvert de nouveaux horizons pour accéder à
cette précieuse information. L’IRM est, de loin, l’application la plus connue de la
Résonance Magnétique Nucléaire (RMN) pour le diagnostic médical. Cependant, la
RMN est aussi largement utilisée en chimie dans le cadre de la spectroscopie par
RMN, i.e. l’étude de la composition atomique d’échantillons. La RMN fut décrite
simultanément par Felix Bloch [39], à l’université de Stanford, et par Edward Mills
Purcell [252], à l’université de Harvard en 1946. En 1952, ils reçurent le Prix Nobel
de Physique pour leur découverte. Le principe de base de la RMN est le suivant
: Après avoir aligné un noyau magnétique comme l’hydrogène-1 avec un champ
magnétique externe puissant, la réponse de ce noyau à une perturbation de son
alignement par un champ électromagnétique lui est propre. En 1950, quatre années
après cette découverte, Herman Carr proposa de créer les premières images MR
unidimensionnelles en introduisant un gradient dans le champ magnétique. En
1971, Raymond Damadian démontra que les temps de relaxation T1 et T2 de tissus
tumoraux étaient significativement plus longs que ceux de tissus sains, ce qui ouvrit
de grands espoirs pour améliorer les moyens de détection des cancers. Peu après
la découverte de Bloch et Purcell, Hahn publia un article séminal [137] sur l’écho
de spin RMN dans lequel il nota que le mouvement Brownien des spins réduisait
l’amplitude du signal observé en présence d’un champ magnétique inhomogène. Il
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s’agit d’une notion fondamentale pour comprendre l’IRM de diffusion.
Dès 1973, Paul Lauterbur proposa une méthode [171], basée sur des gradients de
champs magnétiques, pour reconstruire des IRM bidimensionnelles. Peter Mansfield
[203] prolongea ces travaux et, en étudiant les propriétés mathématiques du signal
RMN, proposa une nouvelle technique d’acquisition ultra-rapide, connue sous le
nom de technique écho-planaire. En 2003, ils reçurent le Prix Nobel de Physiologie
et de Médecine pour leur découvertes sur l’IRM. Actuellement, de nombreux types
d’images peuvent être obtenus grâce à un scanner IRM. Elles nous renseignent sur
l’anatomie, l’activité fonctionnelle, les propriétés de diffusion des molécules d’eau,
le flux sanguin, la distribution de divers métabolites ou la structure des vaisseaux
sanguins.
Ce chapitre est divisé en deux parties. Nous commençons par une rapide description
du système nerveux humain, et en particulier de la matière grise et la matière
blanche. Nous introduisons ensuite la technique d’IRM et montrons comment elle
peut être exploitée pour accéder à la connectivité anatomique cérébrale.

Chapitre 4 - Notions de Géométrie Différentielle : La géométrie différentielle,
et en particulier la géométrie Riemannienne, joue un rôle important dans cette thèse
et ce chapitre donne un aperçu des notions importantes de ce domaine. Développée
par Bernhard Riemann au cours du 19ème siècle, la géométrie Riemannienne
étudie les variétés lisses équipées d’une métrique Riemannienne. Ces deux concepts
fondamentaux sont expliqués dans ce chapitre. Une métrique Riemannienne fournit
une information locale sur les angles, la longueur des courbes et les volumes, ce qui
rend la géométrie Riemannienne particulièrement adaptée pour l’étude des courbes
et surfaces.
Après la description d’une variété différentiable, nous introduisons la notion de
métrique et de géodésique. Ensuite, nous discutons les concepts de connexion et de
transport parallèle qui seront importants pour le chapitre 9. Enfin, nous définissons
la courbure d’une variété car cette notion sera nécessaire pour le chapitre 5. Nous
montrons comment appliquer toutes ces notions à des images prenant valeurs dans
une variété Riemannienne, pour le calcul de statistiques et de gradients spatiaux.

Chapitre 5 - La Variété des Distributions Normales Multivariées : Ce
chapitre est dédié à l’analyse statistique de l’espace des distributions normales
multivariées, avec une application au traitement des images du tenseur de dif-
fusion. La définition de structures différentielles géométriques pour les modèles
statistiques commença en 1936 avec le travail de Mahalanobis [200] sur les distri-
butions normales multivariées à matrice de covariance fixe. Depuis lors, plusieurs
auteurs en géométrie de l’information [199], [9] et références associées, et physique
[57] ont contribué à la description de ces géométries. Rao [253] exprima l’un des
résultats fondamentaux en 1945 en montrant qu’il était possible d’utiliser la matrice
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d’information de Fisher comme une métrique Riemannienne entre densités de
probabilité paramétrées. L’information de Fisher est une mesure populaire de la
quantité d’information portée par les réalisations d’une variable aléatoire à propos
des paramètres inconnus de la densité sous-jacente. Elle est souvent utilisée pour
dériver des estimateurs au maximum de vraisemblance pour les paramètres de
densités. En 1982, Burbea et Rao [45] ont proposé une approche unifiée de la
dérivation de métriques dans des espaces de densités de probabilité. Ils ont introduit
la notion de φ-fonctionnelle dont la matrice Hessienne selon une direction de l’espace
tangent de l’espace des paramètres est prise comme métrique. Prolongeant le
travail séminal de Rao [253] et un théorème de Jensen (1976, communication privée
dans [15]), Atkinson et Mitchell obtinrent des expressions en forme close pour les
distances géodésiques entre éléments de familles de distributions connues telles que
les densités normales multivariées à moyenne fixe.
Dans ce chapitre, nous nous focalisons tout d’abord sur les propriétés géométriques
de ces distributions particulières et utilisons les résultats présentés dans [272],
[44], [48] et [117] pour proposer un nouveau cadre d’analyse statistique des densités
normales multivariées. Nous montrons ensuite comment approximer une loi normale
sur la variété des densités normales et dérivons les schémas numériques adaptés. Fi-
nalement, nous décrivons un algorithme simple pour générer des densités normales
aléatoires suivant une loi normale imposée. Nous montrons également comment
réaliser l’interpolation d’images du tenseur diffusion et illustrons ces techniques par
des expériences numériques.

Partie II : Méthodes

Chapitre 6 - Des Images Pondérées en Diffusion aux Images du Tenseur de
Diffusion : Ce chapitre s’attaque à deux des traitements les plus fondamentaux
pour les Images Pondérées en Diffusion (IPD) : l’estimation des tenseurs de diffusion
et la régularisation des images à valeur matricielle ainsi obtenues. Nous montrons
comment formuler ces problèmes dans le cadre géométrique proposé au chapitre 5 et
ainsi, comment naturellement préserver les propriétés des tenseurs de diffusion.
Comme nous le décrivons au chapitre 3, l’ITD estime, depuis un ensemble d’images
pondérées en diffusion (dépendantes de la direction et de l’amplitude des gradients de
diffusion), la matrice de covariance Σ du mouvement Brownien des molécules d’eau à
chaque voxel du volume d’acquisition Ω ⊂ R

3. En d’autres termes, l’ITD approxime la
densité de probabilité modélisant le mouvement des molécules d’eau par une distri-
bution normale tridimensionnelle de moyenne nulle r ∈ R

3. L’estimation du champ
de matrices 3 × 3 symétriques et définies positives est réalisée grâce à l’équation de
Stejskal-Tanner [275] pour la diffusion anisotrope. Cette équation relie l’atténuation
du signal de résonance magnétique au tenseur de diffusion et aux paramètres de la
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séquence d’acquisition de la façon suivante :

Si(x) = S0(x) exp (−bgTi Σ(x)gi) ∀x ∈ Ω, i = 1, ..., N (2.1)

gi = (g1
i , g

2
i , g

3
i )
T , i = 1, ..., N sont les directions des gradients de diffusion corre-

spondants à chaque image pondérée en diffusion Si et b est le facteur de pondération
en diffusion. De plus, une image de référence S0, sans gradient de diffusion, doit
être acquise [27], [157] , [140]. De nombreuses techniques ont déjà été implémentées
pour estimer les tenseurs de diffusion Σ(x) depuis un ensemble d’IPD (au nombre
minimum de 6 puisqu’un tenseur a 6 degrés de liberté) et nous référons le lecteur aux
articles suivants pour plus de détails [310], [202], [305], [285] [60], [217] [167, 168].
Nous appuyons également sur les divers travaux, tels que [139] ou [227], qui ont
étudié l’influence du choix des gradients de diffusion sur la qualité des tenseurs es-
timés. De manière générale, il est judicieux d’utiliser plus de 6 gradients de diffusion
de façon à minimiser la propagation du bruit des IPD aux composantes des tenseurs.
Comme démontré dans [156], un minimum de 30 directions est nécessaire pour
réaliser une estimation robuste du coefficient de diffusion apparente, de l’anisotropie
fractionnaire (voir section 6.1.4) et des vecteurs propres du tenseur.
Nous commençons par rappeler la méthode classique des moindres carrés et intro-
duisons ensuite une approche robuste et performante pour l’estimation des tenseurs.
Les méthodes de régularisation et de filtrage pour les champs de tenseurs sont
largement étudiées dans la littérature, en particulier dans le domaine de l’ITD.
Par exemple, [285] s’attaque à ce problème en résolvant une équation aux dérivées
partielles afin de régulariser des champs bruités de tenseurs de diffusion, i.e. des
matrices n × n symétriques et définies positives. Une approche complémentaire,
présentée dans [63], fournit une interprétation géométrique des flots de fonctions à
valeur matricielle. Elle aboutit à des schémas numériques basés sur l’application
exponentielle et préservant naturellement les propriétés des tenseurs. Dans [308],
les auteurs généralisent les processus de diffusion anisotropes et non-linéaires
aux données à valeur matricielle. Plus récemment, [80] a proposé une méthode
variationnelle restaurant la direction principale des tenseurs tout en utilisant le
résultat de ce processus pour régulariser les valeurs propres via un processus de
diffusion anisotrope. D’autres travaux ont couplé le processus de régularisation avec
l’estimation des tenseurs depuis les images pondérées en diffusion. Par exemple,
[305] s’appuie sur une formulation variationnelle contrainte nécessitant la minimisa-
tion d’un terme de régularisation. Ce dernier est basé sur des normes Lp et est sujet
à des contraintes non-linéaires sur les données pour obtenir des tenseurs définis
positifs. Récemment, [311] a introduit des techniques de régularisation basées sur la
convolution normalisée ou les champs aléatoires de Markov.
Nous nous appuyons sur les résultats mathématiques présentés au chapitre 5 pour
développer un algorithme de filtrage anisotrope contrôlé par l’amplitude du gradient
spatial du champ de tenseur. Une analyse détaillée des performances de notre
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approche est ensuite réalisée et des résultats quantitatifs et qualitatifs obtenus sur
des données synthétiques, par comparaison avec [308], démontrent la supériorité de
cette méthode.
L’algorithme de régularisation anisotrope est un travail réalisé en collaboration
avec Carlos Castaño-Moraga (Center for Technology in Medicine, University of Las
Palmas de Gran Canaria, Tafira, Spain).

Chapitre 7 - Analyse de la Connectivité Anatomique du Cerveau Hu-
main : Dans ce chapitre, nous introduisons une approche originale pour l’analyse
de la connectivité de la matière blanche cérébrale à partir d’ITD. Notre méthode
s’appuie sur une modélisation globale du volume IRM Ω ⊂ R

3 comme une variété
Riemannienne dont la métrique dérive directement du tenseur de diffusion. Il est
important de bien distinguer la métrique utilisée dans ce chapitre de la métrique
obtenue à partir de la matrice d’information de Fisher et utilisée dans les chapitres
précédents pour comparer les tenseurs de diffusion. Dans la suite, ces tenseurs
sont utilisés pour obtenir une “métrique de diffusion” (voir [83]) et pour mesurer
des distances physiques tridimensionnelles entre différents voxels d’une image
du tenseur de diffusion. Le concept clé de ce chapitre est la notion de distance
géodésique puisqu’elle va nous permettre de trouver les chemins optimaux de la
matière blanche et ainsi d’estimer les faisceaux de fibres nerveuses. La fonction
distance est la solution de deux problèmes théoriquement équivalents mais, en
pratique, extrêmement différents. Ils dérivent tous deux de la notion de propagation
de front et constituent des formulations équivalentes de l’équation Eikonale :

• Un problème de valeur initiale de la forme ∂ψ
∂t + F |∇ψ| = 0. F est la vitesse de

propagation du front et ce point de vue est intrinsèquement dynamique. Il sera
implémenté en ayant recours au cadre des ensembles de niveaux.

• Un problème de frontière de la forme |∇φ| = 1
F qui est, au contraire, in-

trinsèquement stationnaire. Il sera implémenté en ayant recours à la méthode
dite de cheminement rapide.

Comme nous le montrons dans ce chapitre, ces deux approches ont des propriétés très
différentes qui les rendent plus ou moins adéquates pour notre problème et plus ou
moins computationnellement efficaces. La formulation dynamique est assez aisée à
implémenter mais présente de nombreux inconvénients. Au contraire, la formulation
stationnaire repose sur la théorie du contrôle et s’avère beaucoup plus délicate à
mettre en oeuvre. Cependant, elle a de nombreux avantages (comme la rapidité et
la robustesse) qui la rendent plus appropriée pour notre problème d’analyse de la
connectivité cérébrale. Une fois la distance géodésique calculée, il est nécessaire
d’appliquer un algorithme de rétro-propagation sur le gradient de cette distance
pour retrouver les chemins optimaux. Comme nous le détaillons dans ce chapitre,
l’approche stationnaire produit naturellement ce champ de vecteur sans avoir à
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différencier la fonction distance, d’où sa robustesse. Finalement, nous présentons
différentes mesures de connectivité possibles, reflétant le degré de connectivité
entre régions du cerveau. Une mesure naturelle est dérivée depuis la formulation
stationnaire du problème. Nous illustrons ces notions sur des données synthétiques
et réelles.
Après avoir introduit la notion de “métrique de diffusion” et détaillé les formula-
tions dynamique et statique de l’équation Eikonale, nous montrons comment les
statistiques, le long des géodésiques, de notre mesure de connectivité permettent de
détecter avec une certaine confiance les connexions de la matière blanche.
Le développement de la théorie et l’implémentation de la méthode de chemine-
ment rapide est un travail réalisé en collaboration avec Emmanuel Prados (INRIA
Rhône-Alpes, Grenoble, France) et Jean-Philippe Pons (CERTIS Laboratory, Ecole
Nationale des Ponts et Chaussées, Marne-la-Vallée, France).

Chapitre 8 - Segmentation d’Images du Tenseur de Diffusion : L’ITD
est donc précieuse pour identifier les connexions neuronales du cerveau humain.
Cependant, la plupart des techniques d’estimation de cette connectivité travaillent
à “l’échelle” de la fibre. En d’autres termes, elles ne prennent pas en compte la
cohérence globale qui existe entre fibres d’un même faisceau. Le travail récent
de Corouge et al. [79] propose de grouper et d’aligner les fibres de façon à rendre
possible une analyse statistique des propriétés géométriques et physiologiques des
faisceaux. Un travail similaire d’O’Donnell et al. [219] a été récemment introduit
pour grouper ces fibres. Ces méthodes reposent sur l’extraction d’un ensemble de
courbes depuis des images du tenseur de diffusion par la méthode proposée dans
[212] et qui est sensible au bruit et instable dans les régions de croisements de fibres.
Pour ces raisons, nous proposons de réaliser directement la segmentation d’ITD de
façon à extraire les faisceaux de fibres. Alors que de nombreuses techniques ont été
proposées pour classifier la matière grise, blanche et le liquide céphalo-rachidien
depuis des images anatomiques (voir [322] par exemple), la littérature adressant la
segmentation des structures de la matière blanche à partir d’ITD est encore récente.
Zhukov et al. [326] ont défini une mesure d’anisotropie invariante afin de guider
l’évolution d’une surface et d’isoler les régions fortement anisotropes du cerveau.
La réduction du tenseur à une valeur scalaire est susceptible de résulter en de
relativement faibles capacités de discrimination, ce qui peut engendrer des erreurs
de segmentation. Wiegell et al. [312], Feddern et al. [111, 112], Rousson et al. [260],
Wang et al. [304] et [303], Lenglet et al. [185] et Jonasson et al. [154] utilisent
ou proposent d’autres mesures de dissimilarité entre tenseurs de diffusion. Dans
[312], [304] et [260], les auteurs utilisent la norme de Frobenius de la différence
de tenseurs (i.e. la distance Euclidienne). Un algorithme de type “k-means” avec
une contrainte de cohérence spatiale et un modèle de contours actifs avec un terme
de régularité sont respectivement utilisés par les deux premières méthodes ([312],
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[304]) pour segmenter diverses structures cérébrales telles que les noyaux du
thalamus ou le corps calleux. La troisième méthode [260] s’appuie sur une évolution
de surface utilisant des statistiques de régions. Dans [304], une généralisation
des contours actifs basés-région aux images à valeur matricielle est proposée.
Cependant, elle est restreinte au cas bidimensionnel et donc d’intérêt limité pour nos
images tridimensionnelles. Dans [111, 112], des équations aux dérivées partielles
basées sur le mouvement par courbure moyenne, les “self-snakes” et contours actifs
géodésiques sont étendus aux images bidimensionnelles et tridimensionnelles à
valeur matricielle grâce à une généralisation de la notion de tenseur de structure
aux données à valeur matricielle. Cette méthode repose toujours sur la métrique
Euclidienne entre tenseurs. Elle est appliquée à la régularisation et segmentation
d’ITD. Dans [154], les auteurs introduisent une mesure géométrique de dissimilarité
en calculant le “produit scalaire” normalisé de deux tenseurs, ce qui peut être
interprété comme une mesure de recouvrement. Enfin, les méthodes décrites dans
[303] et [185] utilisent la divergence de Kullback-Leibler symétrisée pour dériver
une mesure de dissimilarité affine invariante entre tenseurs de diffusion.
Nous montrons dans ce chapitre que la définition d’une mesure de dissimilarité et
de statistiques entre tenseurs est une tâche non triviale qui doit être adressée avec
précaution. Nous affirmons et démontrons que l’utilisation des concepts introduits
au chapitre 5 permet d’améliorer la qualité des résultats de segmentation obtenus
avec d’autres mesures de dissimilarité telles que la distance Euclidienne ou la
divergence de Kullback-Leibler. Le but principal de ce chapitre est de prouver que le
choix de cette métrique a d’importantes conséquences sur les statistiques de tenseurs
et donc sur les résultats de segmentation. Nous définissons un cadre variationnel
pour estimer la segmentation optimale d’une image du tenseur de diffusion. Nous
supposons, d’une part, que les tenseurs de diffusion suivent une distribution Gaussi-
enne dans les différentes partitions et que, d’autre part, le gradient spatial d’une
ITD permet de détecter les interfaces entre les différentes structures. Nous validons
et comparons les résultats obtenus sur divers exemples synthétiques, un fantôme
biologique et des ITD de cerveaux humains.
Ce travail a été réalisé en collaboration avec Mikaël Rousson (Siemens Corporate
Research, Princeton, NJ, USA).

Chapitre 9 - Recalage Non-rigide d’Images du Tenseur de Diffusion :
Ce chapitre traite du problème de l’estimation des déformations géométriques entre
deux images du tenseur de diffusion. Ce problème a déjà été extensivement adressé
dans le cas scalaire [110]. Il est résolu en minimisant un critère d’erreur par rapport
au champ de déformation tout en tenant compte de deux sources d’information a
priori, à savoir les propriétés des valeurs des images dont on estime les déformations
et les contraintes sur les déformations géométriques possibles. Dans notre cas,
“intensités” signifie tenseurs de diffusion. Comme nous l’avons déjà mentionné
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précédemment, le choix d’une mesure de dissimilarité entre ces intensités est une
tâche difficile. Le schéma numérique de descente de gradient, utilisé pour minimiser
le critère d’erreur, peut s’avérer très complexe.
Les travaux antérieurs dans ce domaine ont été initiés par Alexander et al. [4]
grâce à l’extension des techniques de recalage multi-résolution aux images du
tenseur de diffusion et grâce à l’introduction de diverses mesures de dissimilarité
pour ces images [5]. Dans [263] et [262], Les auteurs proposent de recaler des
images tridimensionnelles scalaires, vectorielles ou matricielles en alignant les
régions fortement structurées et propageant le champ de déplacement ainsi estimé
à l’ensemble du volume. D’autres approches telles que [155], [130], [229] et [255]
s’appuient sur un ou plusieurs invariants des tenseurs de diffusion comme les
valeurs propres, des mesures d’anisotropie, le coefficient de diffusion apparente
ou même les composantes du tenseur pour effectuer le recalage. Quand plusieurs
caractéristiques sont utilisées, ce qui est souvent le cas, des méthodes de recalage
multi-spectrales comme l’algorithme des démons [131] sont utilisées. Dans [321, 319]
puis [320], les auteurs ont proposé une technique de recalage affine par morceaux
basée sur la norme L2 de profiles de diffusion. Ils ont aussi étudié le problème de la
réorientation des tenseurs, soulevé par Alexander et al. dans [6]. Récemment, Cao
et al [52] ont appliqué le cadre des Transformations Métriques Difféomorphiques
pour les Grandes Déformations (TMDGD) aux ITD. Enfin, Leemans [177] a introduit
une technique de recalage affine multi-spectrale basée sur l’information mutuelle,
ainsi qu’une méthode rigide originale utilisant la courbure et torsion des fibres. Bien
que différents du problème de recalage d’ITD, nous mentionnons quelques travaux
récents [11, 236] qui font usage des métriques Riemannienne ou Log-Euclidienne,
dans un contexte de recalage d’images scalaires, pour caractériser les propriétés des
difféomorphismes estimés.
Nous étendons [110] à des images à valeur matricielle et proposons un cadre
variationnel original pour le recalage dense non-rigide d’ITD, basé sur la structure
Riemannienne de l’espace des lois normales multivariées. L’existence d’expressions
en forme close pour les géodésiques et les symboles de Christoffel nous permet de
définir des statistiques et de réaliser le transport parallèle de vecteurs tangents.
Notre énergie d’appariement vise à minimiser les différences entre statistiques
locales de deux images du tenseur de diffusion. Ce chapitre est essentiellement
une étude mathématique du problème de recalage dont l’implémentation est très
délicate. Nous illustrons la faisabilité de l’approche sur des exemples synthétiques
bidimensionnels.

Partie III : Applications

Chapitre 10 - Analyse des Connexions Cortico-striatales Impliquées dans
l’Apprentissage Moteur : Dans ce court chapitre, nous décrivons une application
de la méthode d’analyse de la connectivité présentée au chapitre 7, et reposant sur le
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cadre des ensembles de niveaux, pour l’étude du réseau cortico-striatal de l’homme.
Cette étude utilise la formulation dynamique de l’équation Eikonale anisotrope pour
des raisons “historiques”. Elle a été initiée il y a environ deux ans et c’est en fait à
cause de son coût computationnel important que nous avons ensuite travaillé sur la
formulation stationnaire du problème.
Comme rapporté par Lehéricy et al. dans [178], il est possible de parcelliser
les connexions du striatum de l’homme grâce aux algorithmes de suivi de fibres
déterministes basés sur la méthode présentée dans [26]. Les études invasives chez
l’animal ont montré en effet que les fibres projectives de la matière blanche entre le
cortex et le striatum sont organisées en un ensemble discret de circuits [8]. Chaque
circuit est responsable d’une fonction précise comme la préparation et l’exécution
du mouvement, la prise de décision, la planification ou l’apprentissage. Ces circuits
transmettent donc des informations de natures différentes (sensorimotrice, asso-
ciative ou limbique). Dans [178], les auteurs ont présenté la première étude chez
l’homme de la connectivité des noyaux gris centraux avec le cortex. Ils ont pu mettre
en évidence l’existence de connexions distinctes pour les compartiments postérieur
(sensorimoteur), antérieur (associatif) et ventral (limbique) du striatum avec les
aires corticales. Dans ce chapitre, nous montrons qu’il est possible, avec notre
méthode d’analyse de la connectivité, d’identifier différents réseaux cortico-striataux
impliqués dans l’acquisition et le stockage de connaissances motrices.
Ce travail a été réalisé en collaboration avec Stéphane Lehéricy (Center for Magnetic
Resonance Research, University of Minnesota, Minneapolis, USA / Hôpital La
Pitié-Salpêtrière, Paris, France).

Chapitre 11 - Analyse des Connexions Anatomiques du Cortex Visuel
Humain : L’analyse de la connectivité anatomique du système visuel de l’homme
par ITD a été réalisée par différents groupes de recherche, avec des protocoles
et méthodes variées. En utilisant une technique de suivi de fibres classique avec
interpolation du champ de tenseurs [212], les auteurs de [78] ont pu reconstruire
divers faisceaux dont ceux du système visuel. Ils ont mis en évidence une certaine
topologie des fibres du splénium du corps calleux ainsi que des connexions géniculo-
occipitales. Pour ces dernières, les fibres médiales/latérales du noyau géniculé
latéral (NGL) aboutissent respectivement dans la partie supérieure ou inférieure du
cortex occipital. En utilisant une technique similaire de suivi de fibres, [55] a pu
identifier différents faisceaux de fibres visuelles dont les faisceaux occipito-frontaux
et occipito-temporaux. Dans une étude plus récente [56], les auteurs sont parvenus
à mettre en évidence: (i) le faisceaux optique allant du chiasme au NGL; (ii) les
radiations optiques du NGL vers le cortex occipital, que l’on peut subdiviser en une
partie ventro-temporale arrivant dans la partie inférieure de la fissure calcarine et
en une partie dorsale aboutissant dans la partie supérieure de la fissure calcarine;
(iii) le faisceaux du splénium connectant les pôles occipitaux; (iv) des fibres courtes

32



en U occipito-temporales; (v) le faisceaux inférieur longitudinal. Malgré ces résultats
très intéressants, aucune information fonctionnelle n’a été utilisée pour identifier
les régions d’intérêt. Ciccarelli et al. ont utilisé la technique de Suivi de Fibres par
Cheminement Rapide (SFCR) proposée dans [231] pour analyser trois faisceaux de
fibres : le faisceau pyramidal, les radiations callosales antérieures et les radiations
optiques [72, 70]. Récemment, ils ont appliqué cette technique pour étudier les
changements dans les radiations optiques de patients atteints d’une pathologie
spécifique du nerf optique (névrite optique) [71]. La méthode SFCR a été partielle-
ment validée, dans une étude combinée sur les macaques et l’homme, en détectant le
faisceau cortico-spinal et les radiations optiques chez les deux espèces [233].
Actuellement, seules quelques études, comme [164], ont combiné IRM fonctionnelle
et ITD pour étudier le cortex visuel. Dans les travaux mentionnés ci-dessus, [78] a
utilisé des cartes d’activation IRMf pour grossièrement localiser le NGL et le cortex
occipital visuel. [309] a montré que l’anisotropie fractionnaire était plus basse dans
le cortex occipital activité que dans les radiations optiques, ce qui est cohérent avec
la relative isotropie de la matière grise, par comparaison à la matière blanche [243].
Grâce à une méthode de suivi de fibres probabiliste, [280] a étendu ce travail en
montrant une corrélation entre le degré d’activation IRMf du cortex visuel et les
valeurs moyennes d’anisotropie fractionnaire le long des fibres optiques. Cependant,
l’identification des aires visuelles considérées n’a pas été réalisée par IRMf. A notre
connaissance, l’étude la plus complète et précise est décrite dans [99]. Les auteurs ont
combiné une méthode de suivi de fibre déterministe avec l’identification fonctionnelle
des aires rétinotopiques occipitales pour estimer les fibres passant par le splénium.
Ils ont pu mettre en évidence que les fibres de la partie dorsale, respectivement
ventrale, du cortex se projettent dans la partie dorsale, respectivement ventrale, du
splénium. Ceci est en accord avec des études par autoradiographie chez le macaque.
Ils ont également constaté qu’un gradient de la fovéa vers la périphérie se retrouve
dans la direction antérieure-postérieure au niveau du splénium.
Dans ce chapitre, nous avons utilisé la méthode d’analyse de la connectivité présentée
au chapitre 7, et reposant sur la méthode de cheminement rapide, pour étudier les
connexions présentes entre les diverses aires visuelles du cerveau humain. Ces aires
ont été identifiées individu par individu, par IRMf. Nous avons tout d’abord validé
notre méthode en reproduisant des résultats de la littérature sur la topologie des
fibres reliant le NGL à V1 ou connectant des aires homologues du cortex visuel.
Nous proposons ensuite des résultats intéressants sur les connexions du complexe
MT avec les régions rétinotopiques.
Ce travail a été réalisé en collaboration avec Nicolas Wotawa (INRIA Sophia-
Antipolis, France).
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Appendices

Appendice A - Dérivées Directionnelles de Fonctions Matricielles : Cet ap-
pendice introduit une formulation originale pour le calcul de dérivées directionnelles
de fonctions matricielles. Cette méthode repose sur la décomposition spectrale des
matrices et est particulièrement rapide. Le cas du logarithme est étudié puisqu’il
constitue un élément fondamental de la méthode de recalage présentée au chapitre
9.
Ce travail a été réalisé en collaboration avec Théo Papadopoulo (INRIA Sophia-
Antipolis, France).

Appendice B - Détails sur la Première Variation de JAC(h,Dh) : Cet ap-
pendice présente les détails nécessaires au calcul du gradient du terme JAC(h,Dh)

de notre algorithme de recalage du chapitre 9.

Appendice C - Publications de l’Auteur : Cet appendice présente les pub-
lications de l’auteur.

Contributions logicielles

Enfin, nous souhaitons souligner que tous les algorithmes présentés dans ce
manuscrit sont désormais disponibles, sur demande, comme extension de la plate-
forme logicielle Brainvisa1 pour la visualisation et l’analyse d’images cérébrales
provenant de différentes modalités. Ils sont également disponibles sous la forme
d’une extension pour SPM52.
Ce travail d’intégration a été réalisé en collaboration avec Demian Wassermann (IN-
RIA Sophia-Antipolis, France / Computer Science Department, University of Buenos
Aires, Argentina) et Maxime Descoteaux (INRIA Sophia-Antipolis, France).

1http://brainvisa.info
2http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
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3.1 INTRODUCTION
The human brain, according to the connectionist point of view, is organized

into distinct processing regions interconnected by a network of anatomical relays.
The processing units handle the execution of primary cognitive functions and higher
cognitive tasks arise from a global coordination between those processing units. Neu-
ral signal is processed in the cerebral cortex and transmitted to various regions of
the brain through the white matter, so called because of the white appearance of
the myelinated axons. The white matter pathways are generally categorized into
commissural, association and projection fibers, depending on the areas they connect.
Compared to our understanding of neural circuitry in animals such as cat or mouse
where the use of invasive tracers is possible [266], our knowledge of the human brain
organization is relatively poor. Brain imaging techniques like Magnetic Resonance
Imaging (MRI), and in particular diffusion MRI, shall allow us to access this critical
information.

Organization of this chapter: This chapter is divided in two parts. We first start,
in section 3.2, by a quick description of the human nervous system with a particular
emphasis on the cerebral grey and white matters. We then introduce the MRI tech-
nique in section 3.3 and how it can be used to infer anatomical connectivity (diffusion
MRI).

Keywords: human nervous system, brain, cortex, white matter, basal ganglia, nu-
clear magnetic resonance (NMR), magnetic resonance imaging (MRI), diffusion MRI

3.2 THE HUMAN NERVOUS SYSTEM
The nervous system plays a major role in the muscular control, regulation

of sensory inputs and organs monitoring. It can be divided into the peripheral
nervous system (PNS) and the central nervous system (CNS) and its principal
building blocks are the neurons and the nerves.

The peripheral nervous system is an extension of the central nervous system,
dedicated to the control of the limbs and various organs. It consists of two type of
neurons: (i) the motor neurons which connect the CNS to muscles and glands to
control their activity, and (ii) the sensory neurons which inform the CNS of the stim-
uli recorded by our senses. It can also be subdivided into two functionally distinct
parts: (i) the sensory-somatic nervous system, whose nerves carry information from
and to the sensory organs and the muscles (i.e. the external environment) and (ii)
the autonomic nervous system, involved in the regulation of vital functions such
as breathing, blood circulation, digestion or hormones secretion (i.e. the internal
environment). Finally, sensory-somatic nervous system (SSNS) and autonomic
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nervous system (ANS) can each be divided into two subparts.

The former (SSNS) essentially supports conscious responses and comprises 12
pairs of cranial nerves and 31 pairs of spinal nerves. All spinal are mixed, meaning
they contain both sensory and motor neurons. Some cranial nerves are also mixed,
like the ones involved in taste, but they are otherwise typically either sensory or
motor. Pairs involved in smell, vision, hearing and balance are only sensory neurons.
Those involved in eyelid/eyeball control, tongue control, head/shoulders control and
swallowing are exclusively motor neurons.

The later (ANS) essentially supports unconscious responses and can be divided
into three subsystems: (i) The sympathetic nervous system regulates the activity of
smooth muscle, cardiac muscle and glands. It generally increases their activity. (ii)
On the contrary, the parasympathetic nervous system targets the same organs but
lowers their activity. It works to bring the body back to its normal level of activity
after a modification of metabolism induced by the sympathetic nervous system. (iii)
Finally, the enteric nervous system is dedicated to the control of the viscera.

This thesis focuses on the use of diffusion tensor MRI to investigate the archi-
tecture of the CNS and, more precisely, of the brain. We thus now concentrate on
the description of the CNS. For a more detailed view of the brain structures, various
atlases and books are now available. We refer the interested reader to the atlas by
Duvernoy [104].

3.2.1 The Central Nervous System

The central nervous system is composed of the brain and the spinal cord. It is the
largest part of the nervous system and is protected by the meninges. The brain is
itself composed by a lower part, the brainstem (figure 3.1), and an upper part, the
prosencephalon. The brainstem connects the prosencephalon to the spinal cord and
equally comprises an upper and a lower segment. The medulla oblongata, or lower
part, controls unconscious activity of muscles and glands involved in breathing,
heart contraction, salivation ...etc. Just above the medulla, the pons constitutes the
upper part of the brainstem. and connects the two hemispheres of the cerebellum.
The prosencephalon, or forebrain, is composed of two main units. One is known as
the diencephalon, is located in the midline of the brain and contains the thalamus
and the hypothalamus. The other is called the telencephalon (or cerebrum, figure
3.2) and holds the lateral ventricles, the basal ganglia and the cerebral cortex.

We now focus our description on parts of the cerebrum. Before describing the
main facts about grey and white matter tissues, we give some details on their major
building block: the neuron.

39



Figure 3.1: Superficial dissection of the brainstem. From
20th U.S. edition of Gray’s Anatomy of the Human Body (public domain)

Figure 3.2: The cerebrum, or telencephalon, and its four lobes. From
20th U.S. edition of Gray’s Anatomy of the Human Body (public domain)
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Figure 3.3: Various forms of nerve cells. (A) Pyramidal cell. (B) Small multipolar cell,
in which the axon quickly divides into numerous branches. (C) Small fusiform cell.
(D) and (E) Ganglion cells (E shows T-shaped division of axon). ax. Axon. c. Capsule.
From 20th U.S. edition of Gray’s Anatomy of the Human Body (public domain)

3.2.2 The Neuron

The human nervous system is made of about 100 billion nerve cells, or neurons. One
important characteristic of neurons is that they have excitable membranes which al-
low them to generate and propagate electrical signals to process and transmit the
neural information. Neurons exhibit a great diversity in shape and size (figure 3.3)
but present a common structure. Neurons can receive electrical stimulations from
other neurons on their soma, through their multiple dentrites. They can integrate
this information and propagate it to more or less distant locations of the cerebrum by
an extension called axon. Nerve signal communication is performed at specialized loci
called synapses. At those locations, the axon of a presynaptic nerve cell encounters a
dentrite or the soma of a postsynaptic cell. The vast majority of the synapses found
in the human brain are chemical synapses, i.e. the information transfer is achieved
by specific molecules known as neurotransmitters. Each neuron has on average 1000
synaptic connections with other neurons. This yields about 100 trillion of connec-
tions within a human brain. All these synapses result in an impressively dense and
complex network between functional areas, which can be understood as aggregates
of nerve cells’ soma and dendrites. They are essentially located in the grey matter
while the underlying wiring constitutes the white matter.

3.2.3 Organization of the Grey Matter

The grey matter essentially forms the outer part of the cerebrum, some nuclei within
the brain, as well as deep parts of the spinal cord. It is made of neurons and their
unmyelinated fibers.
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The cerebral cortex

The cerebral cortex is the most important structure of the grey matter and plays a
major role in functions such as memory, attention and language. It constitutes the
outermost layers of the cerebrum and is highly folded to increase its surface in the
limited volume of the skull. This folding process creates grooves on the surface of the
brain called sulci and ridges called gyri. About two thirds of the cortical surface is
buried in those sulci.
The two hemispheres of the brain are separated by a prominent central fissure. Each
hemisphere of the cerebral cortex is made of four lobes (figure 3.2): The frontal lobes,
located in front of the central sulcus, play an important role in reasoning, planning,
language, memory and motor control. Parietal lobes, behind the central sulcus,
are more important to integrate sensory information and process some visuospatial
stimuli. The temporal lobes, on the most lateral parts of the cortex and below the
lateral fissure, are involved in auditory processing as well as language and vision
related functions. Finally, the occipital lobes occupy the rearmost part of the cortex
and are the processing center of visual stimuli. In addition to these four lobes,
neurologists consider an internal lobe, called the limbic system, which lies along the
medial part of the cortex and the insular cortex buried within the lateral sulcus (aka.
the Sylvian fissure).

The thickness of the cerebral cortex ranges from 2 to 4 mm and is organized in
various layers (usually six) that are tangent to the cortical surface. These layers can
be distinguished histologically, functionally and through the connectivity pattern
they exhibit with each other. Moreover, neuroanatomists noticed that the neurons
distribution and size are not homogeneous across the cortex. This led some of them to
propose a parcellation of the cortex into distinct zones, or cortical areas with coherent
cells structure. The most famous ones are the cytoarchitectonic maps of Brodmann
[41] based on microscopical studies of local cellular and laminar structure.

Subcortical structures

The cortex is not the only grey matter part of the brain. The basal ganglia (figure
3.4) are the striatum, the internal/external segments of the globus pallidus (GPi/e),
the subthalamic nucleus (STN) and the substantia nigra (SN). They are composed
of grey matter and involved in motor and learning functions. It is also the case for
the thalamus which comprises many different pairs of nuclei, such as the pulvinar
or the lateral/medial geniculate nuclei (L/MGN), most of which project to the cortex.
Some thalamic nuclei are sensory relays, i.e. nuclei that receive signals from sensory
receptors, process them, and then transmit them to the appropriate areas of sensory
cortex. For example, the LGN, MGN, and the ventral posterior nuclei (VPN) are
important relay stations respectively in the visual, auditory, and somatosensory
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Figure 3.4: Two schematic drawings of coronal sections of human brain labelling
the basal ganglia. Blue=striatum, green=globus pallidus (external and internal seg-
ments), yellow=subthalamic nucleus, red=substantia nigra (pars reticulata and pars
compacta). Image by Andrew Gillies under the Gnu Free Documentation License 1.2

systems.

Connections between the cortex, the thalamus and the basal ganglia are as fol-
lows: The striatum is the principal entry gate to the basal ganglia for the cerebral
cortex (essentially motor and prefrontal cortical areas). Then, within the basal
ganglia, there are mainly two pathways back to the cortex and through the
thalamus:

• The direct pathway: striatum / GPi-SN / thalamus / cortex

• The indirect pathway: striatum / GPe / STN / GPi-SN / thalamus / cortex

In the following section, we describe the principal types of connections existing be-
tween regions of the grey matter.

3.2.4 Organization of the White Matter

White matter is composed of axonal nerve fibers, covered by a myelin sheath giving
its distinctive color. It is found in the inner layer of the cortex, the optic nerves,
the central and lower areas of the brain and surrounding the central shaft of grey
matter in the spinal cord. The white matter axons can be distributed diffusely or
concentrated in bundles, also referred to as tracts or fiber pathways. Three main
types of neural tracts are found in the white matter:

• The Projection tracts establish connections between the cerebral cortex and
subcortical structures. Two types of projection tracts can be distinguished: as-
cending tracts and descending tracts. Ascending tracts carry sensory informa-
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Figure 3.5: [Left] Diagram showing principal systems of asso-
ciation fibers in the cerebrum. [Right] Scheme showing cen-
tral connections of the optic nerves and optic tracts. From
20th U.S. edition of Gray’s Anatomy of the Human Body (public domain)

Figure 3.6: [Left] The fornix and corpus callosum from below. (From a specimen
in the Department of Human Anatomy of the University of Oxford.) [Right] Dis-
section showing the course of the cerebrospinal fibers. (E. B. Jamieson). From
20th U.S. edition of Gray’s Anatomy of the Human Body (public domain)
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Figure 3.7: Dissection of cortex and brain-stem showing associ-
ation fibers after removal of the superficial grey matter. From
20th U.S. edition of Gray’s Anatomy of the Human Body (public domain)

tion from different parts of the body to the cerebral cortex. All sensory informa-
tion, except olfactory, end up in the primary sensory cortex by the means of the
thalamo-cortical fibers. The thalamus receives the somesthetic, gustatory, vi-
sual and auditory stimuli through these ascending pathways. Descending tracts
carry motor commands from the motor cortex down to the muscles and glands
through the lower brain structures and the spinal cord. They reach structures
like the thalamus, the red nucleus, the medulla and serve muscles of the torso,
extremities, facial and neck region. The cerebrospinal fibers are one example,
see figure 3.6 [Right].

• The Association tracts are the communication paths between different cor-
tical areas within a given hemisphere (see examples on figure 3.5 [Left] and
figure 3.7). They can be divided into two categories: short and long association
tracts. Short association tracts build up connections between regions of a given
lobe. The smallest link adjacent cortical zones separated by a sulcus, hence
their name of U-shaped fibers. Long association fibers establish connections be-
tween different cerebral lobes and often form a bundle macroscopically visible
(see for instance the uncinate fasciculus on figure 3.7 [Right].

• The Commissural tracts are bundles of axons connecting a region in one hemi-
sphere to another region of the opposite hemisphere. The corpus callosum (fig-
ure 3.6 [Left]) is the most important of the commissural tracts and can be broken
down into four parts: The rostrum (anterior most part) and the genu (anterior
curvature) are made up of fibers connecting the anterior and ventral parts of
the frontal lobes. The corpus (large middle portion) links posterior portions of
the frontal lobes as well as the parietal lobes. Finally, the splenium (caudal
curvature) enables communications between the temporal and occipital lobes.
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In the next section, we will introduce the foundation of MRI and diffusion MRI. We
will show that diffusion MRI constitutes an amazing and non-invasive means to in-
vestigate the three-dimensional architecture of the human brain white matter that
has just been described.

3.3 MAGNETIC RESONANCE IMAGING
Magnetic Resonance Imaging (MRI) is by far the most popular application

of Nuclear Magnetic Resonance (NMR), for medical diagnosis. However, NMR is
also widely used in chemistry to perform NMR spectroscopy, ie. to study the atomic
composition of a given sample.

NMR was simultaneously described by Felix Bloch [39] at Stanford University
and by Edward Mills Purcell [252] at Harvard University in 1946. In 1952, they
both received the Nobel Prize in Physics for their discovery. The basic principle
behind NMR is that, after aligning a magnetic nucleus like hydrogen-1 with a very
strong external magnetic field, its response to a perturbation of the alignment by
an electromagnetic field is characteristic. Four year after this discovery, in 1950,
Herman Carr, proposed to create the first one-dimensional MR images by introducing
a gradient in the magnetic field. In 1971, it was shown by Raymond Damadian
that T1 and T2 relaxation times of tumoral tissues are significantly longer than for
the corresponding normal tissues, hence opening great hopes for cancer diagnosis.
Shortly after Bloch and Purcell discovery, Hahn published his seminal paper [137] on
the NMR spin echo in which he noted that the random thermal motion of the spins
would reduce the amplitude of the observed signal in the presence of a magnetic field
inhomogeneity. This is a fundamental notion to understand diffusion MRI.

As soon as 1973, Paul Lauterbur proposed a method [171], based on gradients
of magnetic fields, to reconstruct two dimensional MR images. Peter Mansfield
[203] further developed the use of magnetic fields gradients and, by studying the
mathematical properties of the MRI signal, proposed a new ultrafast acquisition
technique known as the echo-planar technique. In 2003, they jointly received the
Nobel prize in Physiology and Medicine for their discoveries on MRI.

MRI thus allows to acquire non-invasively 3D images at high spatial resolu-
tion. Various modalities can be obtained with the same device such as detailed
anatomy (structural MRI), functional activity (functional MRI), water-molecules
diffusion (diffusion weighted MRI), blood flow measurements (perfusion MRI),
distribution of various metabolites (MR Spectroscopy) and also blood vessels (MR
Angiography).
The first part of this section briefly exposes the basic principles of MR imaging. We
then give the outlines of diffusion MRI.
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B0

a) Random spins directions b) Spins aligned with −→B0

Figure 3.8: Random directions of spins in the absence of an external magnetic field
(a) and aligned spins in the presence of an external magnetic field −→B0 (b). Note that
the actual spin rotation around −→B0 occurs within a cone around −→B0.

3.3.1 MRI Principles

Physical model

Atoms are made of electrons, which hold a negative charge and rotate around a nu-
cleus. The nucleus can be divided in neutrons (not charged) and protons (charged
positively) and rotates around itself. MRI is based on this rotation motion. Some
nuclei have the property to align with a magnetic field if their mass number is odd,
i.e. if the sum of numbers of protons and neutrons is odd. This is named angular mo-
ment or spin. Among others, 1H atoms, which represent 99.89% of naturally found
hydrogens atoms and are widely represented in biological systems, have a spin. MRI
is thus particularly relevant to study the structure of biological tissues such as the
human brain.
Spin nuclei being positively charged, their motion induces a magnetic field. Con-
versely, the resulting magnetic moment can be oriented by the application of a mag-
netic field. This reciprocity is largely used in MRI. From a macroscopical point of
view, no resulting field can be observed directly since each spin has its own, inde-
pendent, random orientation (figure 3.8 (a). However, when placed in a powerful
external magnetic field −→B0, the spin directions align parallel to this field (figure 3.8
(b). More precisely, each spin rotates within a cone around −→B0. This is called the spin
precession. The frequency of rotation, called the Larmor frequency, is related to the
magnetic field −→B0 through the gyromagnetic ratio γ by the following equation:

ω0 = γ‖−→B0‖ (3.1)

γ depends on the nucleus. Hydrogen, for instance, has a gyromagnetic ratio γ =

42.57MHz/T. This corresponds to a rotation frequency of f1H = 63.86MHz in a 1.5

Tesla magnetic field. Because of this rotation motion, a spin can be modeled by a
small magnetic dipole with moment −→m verifying

d−→m
dt

= γ−→m ×−→B0

47



It is actually cumbersome to understand MRI at a microscopic scale. It is convenient,
at a macroscopic level, to replace the individual spin by a single magnetization vector
representing the spin of all the particles in a voxel (about 2.1015 protons/mm3). The
net resulting magnetization −→M is the sum of all the elementary moments and, by
making the assumption of a uniform distribution of the dipoles orientations in a given
voxel, we simply end up with a −→M =

−→
0 .

However, under the action of a static magnetic field −→B0 (from 1 and up to more than 9.4

Tesla), particles get aligned in the direction of that field and induce a magnetization
parallel to −→B0 at equilibrium. In that state, the amplitude of −→M represents only a
small fraction of what it would have been if all the particles were aligned in the same
direction. Actually, by the laws of thermal dynamics, the number of spins following
the orientation imposed by −→B0 (low energy state, called spin-up) slightly outnumbers
the amount of spins anti-parallel to the outer field (high energy state, called spin-
down). The difference is small and given by the ratio:

N−

N+
= exp

(
− E

kT

)

where N− and N+ are respectively the number of spins in the upper and lower
states, k is the Boltzmann constant and T the temperature in Kelvin. Applying the
Boltzmann relation, one can estimate that, at the ambient temperature and within a
1.5 T field, there is a difference of 10 in favor of low energy protons among a total of 1

million protons.

The net magnetization −→M can be decomposed into two components (figure 3.9):

• A longitudinal component −→Mz, i.e. parallel to −→B0

• A transverse component −−→Mxy, orthogonal to −→B0

At equilibrium, after a sufficient exposition time to −→B0, the transverse component
−−→
Mxy vanishes. All the individual spins are indeed precessing, but they are all out of
phase with each other.

Excitation phase

By applying an oscillating electromagnetic (radio-frequency) pulse toward the area of
the body to be examined, it is possible to compensate the difference in the number of
atoms between the two energy states. The idea is to use a much weaker field than
−→
B0 at the Larmor frequency of the targeted nuclei and to apply it through a rotating
reference frame orthogonal to −→B0. It causes the particles in that area to absorb the
energy required to make them spin in a different direction and move from the lower
energy state towards the higher.
The exposure to the radio-frequency pulse causes the net magnetization to spiral
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Figure 3.9: The net magnetization vector −→M , decomposed into a longitudinal compo-
nent −→Mz and a transverse component −−→Mxy.

away from −→B0. −→M rotates away from the longitudinal position in an amount propor-
tional to the duration of the pulse. It is even possible to flip the original direction of
−→
M . A pulse of 90 degrees would zero out the longitudinal component of −→M (figure 3.10)
while a 180 degrees pulse, or ”inversion pulse”, completely inverts the longitudinal
component through an excess of antiparallel spins.
The net magnetization also starts to dephase since different particles experience a
slightly different magnetic field. This is usually referred to as phase coherence. All
the magnetic moments are in phase in their precession motion. The MRI signal is ac-
quired by measuring a current induced in the plane where the radio-frequency pulse
was applied. The frequency of this current is the Larmor frequency of the nucleus
and its amplitude is directly linked to the amount of magnetization in that plane.

Relaxation phase

By removing the radio-frequency pulse, particles begin to return to their initial en-
ergy state, aligned with the external field, from the higher to the lower. This is as-
sociated with a loss of stored excess energy to surrounding particles which can be
detected by the coil of the MRI scanner. We can then observe two different types of
relaxation processes:

• T1 weighted images follow the evolution of the increasing longitudinal compo-
nent of −→M

• T2 weighted images follow the evolution of the decreasing transversal compo-
nent of −→M
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Figure 3.10: Excitation phase: the energy given by the RF pulse flips the net magne-
tization vector −→M of an angle α (here α = 90◦).

In clinical MRI, the radio-frequency pulse is typically chosen to coincide with the
Larmor frequency of the hydrogen nucleus. The energy release during relaxation is
thus an estimate of the number of protons or, in other words, the amount of water.

Spin lattice relaxation (T1): The spin lattice relaxation is based on the energy
exchange between protons and surrounding molecules. This energy dissipation is
characterized by the restoration of the longitudinal component to its equilibrium
value. This recovery process is modeled by an exponential function characterized
by a time constant T1, the period for the longitudinal magnetization to recover 63%
of its equilibrium value (figure 3.11). For a 90-degree excitation pulse, we have:

Mz = M0(1− exp

(
− t

T1

)
)

The recovery process is considered as finished after 5 T1 periods.

Spin-spin relaxation (T2): Spin-spin relaxation refers to the loss of net mag-
netization in the transverse plane related to protons dephasing. Spins do not only
give up their energy to surrounding lattice molecules but also to other neighboring
nonexcited spins. This process is also modeled by an exponential function character-
ized by another time constant T2, which corresponds to the period for the transversal
component to loose 63% of its value just after the RF pulse:

Mxy = M0 exp

(
− t

T2

)
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63%
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Figure 3.11: Spin lattice relaxation describes the longitudinal component recovery as
a function of time and is characterized by the T1 constant.

This dephasing is actually further increased by local magnetic field inhomogeneities,
since the Larmor frequency will also be nonuniform throughout the region. A time
constant slightly different to T2, T2∗, is therefore used. The transverse component
induces a current in a coil, known as Free Induction Decay (FID). The T2∗ constant
can be evaluated through the convex envelop of the FID curve (figure 3.12).

T2
37%

Signal

Time

Figure 3.12: Spin-spin relaxation describes the exponential decrease of the transver-
sal component as a function of time and is characterized by the T2 constant.

The different biological tissues are characterized by respective T1 and T2 values, as
shown in table 3.1. The intensities of MR images comes from these values.

Image construction through pulse sequence

A pulse sequence is a series of RF pulses and/or magnetic field gradients applied to
a sample to produce a specific form of MR signal. It is indeed possible to encode and
thus recover the MR signal from specific regions in the volume of interest by means
of RF and linear gradients applied along the 3 spatial directions.
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Tissue T1 (ms) T2 (ms)
CSF 2200-2400 500-1400

Grey matter 920 100
White matter 780 90

Fat 240-250 60-80
Blood (deoxygenated) 1350 50
Blood (oxygenated) 1350 200

Muscles 860-900 50

Table 3.1: Approximate T1 and T2 values (ms) in various tissues at 1.5T.

Figure 3.13 illustrates a basic pulse sequence. A first gradient Gz in the −→B0

magnetic field direction results in a linear intensity variation of the magnetic field
that can be used to select a slice. In this case, a slice is a plane orthogonal to −→B0 with
a typical thickness of 1-10mm. Based on relashionship (3.1), the spins of a given slice
are hence characterized by a specific Larmor frequency. After the RF pulse at the
frequency related to the target slice, two transient gradients are applied to encode
the x and y dimensions in the slice plane. A first gradient Gy in the y direction
induces a phase shift related to the position along the y axis: this is the phase
encoding. A second gradient Gx in the remaining x direction is applied, leading to a
precession frequency variation along the x axis: this is the frequency encoding. This
process actually performs an acquisition of the plane data in the frequency space (or
k-space). For each selected slice, an inverse Fourier transform finally maps these
data back into the 2D spatial domain.

A pulse sequence is first characterized by the delay between two similar RF pulses,
called the Repetition Time (TR). The other parameters of interest depend on the
actual sequence. Indeed, different pulse sequences were developed to measure the
relaxation times. For instance, Gradient Echo simply repeats the Free Induction
Decay described above and allows to sample T2∗. Most sequences often comprise
additional RF pulses following the slice selection one, to partially refocus the
transverse magnetization and produce an echo, leading to a more reliable measure.
Spin-Echo is the application of a 90 degree pulse followed by a 180 degree pulse
after a time TE/2. This second pulse, which refocuses the transverse magnetization
and results in an echo at time TE (Echo Time), removes local field inhomogeneities
dephasing, hence allowing to directly measure the T2 decay. On the other hand,
Inversion Recovery, which relies on a 180 degree pulse followed after a time TI
(Inversion Time) by a 90 degree pulse, enhances the T1 weighting. The choice of
the specific pulse sequence parameters (TR, TE, TI,...) finally determines the image
contrast. Two distinct tissues may for instance have similar T1 values but distinct
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Figure 3.13: A simplified MRI pulse sequence timing diagram.

T2 values, so the choice of the sequence depends on the information of interest.

The straightforward application of a given pulse sequence allows to get a static
image contrasting different tissues. However, based on the same principles, it is
possible to indirectly image dynamic processes such as oxygen flow or the motion of
water molecules. In the next section, we introduce the basic principles of diffusion
MRI.

3.3.2 Diffusion MRI

Diffusion MRI is the unique non-invasive technique that allows to probe and quantify
the diffusion of water molecules in the body. By modeling the local anisotropy of
this diffusion process, it becomes possible to indirectly infer the architecture and
properties of tissues such as the brain white matter.

Physical principles of Diffusion Tensor Imaging (DTI)

Above the absolute zero temperature, water molecules freely move and collide with
each other in an isotropic medium according to Brownian motion (figure 3.14) [42].
At a macroscopical scale, this phenomenon yields a diffusion process. In an isotropic
medium, the diffusion coefficient D was related by Einstein [105] to the root mean
square of the diffusion distance:

D =
1

6τ
〈RTR〉 (3.2)
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Figure 3.14: An image of Brownian motion, done with three different step sizes. The
hierarchical structure is clearly visible. More saturated colors represent smaller step
sizes. Image under the Gnu Free Documentation License 1.2

In this expression, τ is the diffusion time and R is the net displacement vector
R = r− r0, with r0 the original position of a particle and r, its position after the time
τ . 〈〉 denotes an ensemble average.
The scalar constant D, known as the diffusion coefficient, measures the molecules
mobility in the isotropic case and depends on the molecule-type and the medium
properties but not on the direction. For example, at normal brain temperature, 68%
of the water molecules diffuse in 50ms in a sphere of 17 µm diameter.

In anisotropic biological tissues, water molecules mobility is constrained by ob-
stacles formed by surrounding structures, such as the axonal membranes in the
brain. Moreover, it is known that the myelin sheath can modulate the anisotropy
of the diffusion while the microtubules and neurofilaments do not modify it [29]. In
this case, the scalar diffusion coefficient D must be replaced by a bilinear operator
D. Einstein relation 3.2 can be generalized be considering the covariance matrix of
the net displacement vector R

D =




Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


 =

1

6τ
〈RRT 〉 (3.3)

It was proposed in 1994 by Basser et al. [24] to use this second order symmetric and
positive-definite tensor to model the intrinsic diffusion properties of biological tissues.
The diffusion coefficient d related to any direction −→u ∈ R

3 is given by:

d = −→u TD−→u
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Figure 3.15: Stejskal-Tanner imaging sequence.

It possible to introduce a Gaussian model for water molecules free diffusion. The
probability to find a molecule, initially at position r0, at r after a delay τ is given by:

p(r|r0, τ) =
1√

(4πτ)3|D|
exp

(
−(r− r0)

TD−1(r− r0)

4τ

)
(3.4)

One of the first problems encountered in Diffusion Tensor Imaging (DTI) is to esti-
mate the 6 independent parameters of D. This can be achieved with a minimum of 6

diffusion weighted images (DWI), each measuring a T2 signal attenuation related to
the diffusion coefficient in a specific direction −→gi =

−→gi

|−→gi |
, i = 1, ..., N , plus one reference

image acquired without any diffusion weighting. The diffusion weighted images can
be obtained with an appropriate imaging sequence using diffusion gradients −→gi .

Imaging sequence

To measure water molecules diffusion in a given direction gi, i = 1, ..., N (for the
sake of clarity, we note gi = −→gi in the remainder), the Stejskal-Tanner imaging se-
quence [275] is used (figure 3.15). This sequence uses two gradient pulses g(t) in the
direction g, of duration time δ, to control the diffusion weighting. They are placed

55



before and after a 180 degrees refocusing pulse. More specifically, a first 90 degrees
RF is applied to flip the magnetization in the transverse plane. The first gradient
pulse then causes a phase shift φ1 of the spins whose position is now a function of
time r(t):

φ1(t) = γ

∫ δ

0
g(t)T r(t)dt (3.5)

Spin position is in fact assumed to stay constant during time δ. Finally, the 180

degrees pulse combined with the second gradient pulse induces another phase shift

φ2(t) = −γ
∫ ∆+δ

∆
g(t)T r(t)dt (3.6)

It is applied after a time ∆ separating the two gradient pulses. This pulse cancels the
phase shift φ1 only for static spins. On the other hand, spins under Brownian motion
during the time period ∆ separating the two pulses undergo different phase shifts by
the two gradient pulses, resulting in a T2 signal attenuation [58].
Figure 3.16 shows examples of diffusion weighted images acquired with two different
directions g(t). It illustrates the direction specific attenuation related to white mat-
ter fibers orientation. By assuming the pulses to be infinitely narrow (see [288] for
instance), equations 3.5 and 3.6 can be rewritten to yield a net phase shift

φ = φ1 + φ2 = γδgT (r(0)− r(∆)) = γδgTR

where R denotes the spin displacement between the two pulses. For the remaining of
this section, it is convenient to introduce the displacement reciprocal vector q = γδg

[288].

The signal attenuation can be modeled by the following equation [141]

S(q, τ) = S0〈exp (iφ)〉 (3.7)

where S0 is the reference signal without diffusion gradient. This expression can be
rewritten as follows:

S(q, τ) = S0

∫

R3

p(r|r0, τ) exp
(
iqTR

)
dr (3.8)

where p(r|r0, τ) is the so-called ensemble-average diffusion propagator (EAP)
[161, 288]. It is easy to see in equation 3.8 that the ratio S(q,τ)

S0
is nothing but

the Fourier transform of the EAP. This is a key observation that is at the core of
q-space or diffusion displacement imaging [46] since it potentially gives access to
the complex diffusion profile of water molecules at each voxel. However, the actual
computation of the inverse Fourier transform of S(q, τ) is difficult in practice and has
given rise to many acquisition and computational techniques to approximate the EAP.

Diffusion Spectrum Imaging (DSI) was proposed by Tuch et al. [289, 192] and
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Figure 3.16: Axial slice of diffusion-weighted images (DWI) with two different dif-
fusion gradient directions (red arrows). MR signal attenuation is found in regions
having fibers mostly aligned with diffusion gradient direction (yellow arrows).

based on the sampling of a three-dimensional Cartesian grid (of typical size
11 × 11 × 11) at each voxel. The subsequent 3D inverse Fourier transform of the
modulus of the diffusion signal yields the EAP. The major drawback of this technique
is its extremely high acquisition time. In order to alleviate this constraint, Tuch
proposed to sample the q-space only on a shell since we are, in fact, only interested
in the angular information of the EAP to differentiate multiple fiber orientations
within a given voxel. He showed [287] that it was indeed possible to reconstruct the
Orientation Distribution Function (ODF), ie. the radial projection of the EAP,

ψ(u) =

∫ ∞

0
p(ρu|r0, τ)dρ

by working directly on the sphere and thus bypassing the 3D grid sampling necessary
for DSI. Many techniques have been proposed to compute ODFs from High Angular
Resolution Imaging (HARDI) [118, 290, 225, 50, 90, 91]. HARDI typically requires
the acquisition of 30 to several hundreds diffusion weighted images with different
non collinear diffusion gradients gi to be able to clearly discriminate multiple
diffusion directions.

If we make the assumption of free diffusion, the probability density function
p(r|r0, τ) can be written as

p(r|r0, τ) =
1√

(4πτD)3
exp
|r− r0|2

4τD
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for isotropic media and it becomes as in equation 3.4 for anisotropic media. Using
these expressions of the EAP yields simple expressions for the signal S(q, τ), ie. re-
spectively [275]

S(qi, τ) = S0 exp (−bD)

(it is independent on the direction gi) and

S(qi, τ) = S0 exp
(
−bgTi Dgi

)

where b is the diffusion weighting factor depending on scanner parameters and pro-
posed by Le Bihan et al. [36]:

b = γ2δ2|g|2
(

∆− δ

3

)

We recall that |g| is the magnitude of the diffusion gradient pulse, δ its duration and
∆ the time separating two pulses (see figure 3.15).

Hence, signal attenuation, i.e. signal sensitivity to water molecules diffusion,
is stronger if the diffusion coefficient gTi Dgi is important. Note also the importance of
the b factor that has to be appropriately tuned with respect to gTi Dgi to avoid either
a very low signal attenuation if b is too small or a poor SNR if b is too high. A typical
value is b = 1000s.mm−2.

For the purpose of DTI, images are collected with one or more b factor(s) and
at least 6 independent gradient directions gi and one reference image S0. The
diffusion tensor D can then be estimated at each voxel using the S(qi, τ) and S0.
The classical method to derive the tensors uses least squares technique, but various
alternative methods have been proposed. We will come back to this particular point
in chapter 6. We finally end-up with a diffusion tensor image, i.e. a 3D image with
6 parameters describing the local tensor D at each voxel. From the eigenvalue
decomposition of D, one can visualize the diffusion in each voxel by a diffusion
ellipsoid: the directions of the main axes are given by the eigenvectors of D and
their lengths are proportional to the square root of their respective eigenvalues. If
all the eigenvalues are of the same magnitude, the ellipsoid will be spherical, while
if one of the eigenvalues is much greater than the others, it will be more elongated.
More details can be found for instance in [27, 310]. Figure 3.17 illustrates the
corresponding ellipsoids field in an axial slice. The blue (respectively red) color refers
to elongated anisotropic (resp. spherical isotropic) ellipsoids.

3.4 CONCLUSION
We have presented, in the first section of this chapter, an overview of the
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Figure 3.17: Axial slice of a Diffusion Tensor image. At each voxel, an ellipsoid rep-
resents the estimated diffusion tensor.

human nervous system with a particular emphasis on the cerebrum and, more specif-
ically, on the grey and white matters. The goal of this thesis was indeed to develop
new processing tools for a recent neuroimaging modality named DTI and, in the next
chapters, we will propose efficient numerical algorithms to recover the complex ar-
chitecture of the brain white matter networks from DTI. The objective of the second
section of this chapter was to recall basic notions on magnetic resonance imaging
and, in particular, on diffusion MRI. The following chapter is meant to be an intro-
duction to differential geometry since we will heavily rely on concepts from this area
on subsequent parts of this manuscript.
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4.1 INTRODUCTION
Differential geometry, and in particular Riemannian geometry, will play a

central role in this thesis and we hereafter give an overview of important notions of
this field. In section 4.2, after the description of a differentiable manifold, we intro-
duce the notion of metric and geodesic. Next, we discuss the concepts of connection
and parallel transport which will be important in chapter 9. Finally, we talk about
curvature since it will be useful in chapter 5. Section 4.3 shows how to apply all these
notions to manifold-valued data to compute statistics and spatial gradient. We refer
the reader to [33], [96, 97], [32] or [176] for in-depth studies of differentiable and
Riemannian manifolds.

Keywords: manifold, metric, geodesic, connection, Christoffel symbols, covariant
derivative, curvature

4.2 RIEMANNIAN GEOMETRY BASICS
Developed by Bernhard Riemann in the nineteenth century, Riemannian

geometry studies smooth manifolds equipped with a Riemannian metric. These two
fundamental concepts will be explained in the following. A Riemannian metric gives
local information on angles, length of curves and volumes which make Riemannian
geometry particularly suitable to work on curves and surfaces.

4.2.1 Differential Manifold

Manifolds are generalization of linear spaces like R
n that only locally look like R

n.
Their global structure can however be much more complicated. A formal definition is
the following:

Definition 4.2.1.1. An n-manifoldM is a Hausdorff space, ie. a topological space in
which points can be separated by neighborhoods, where every points has a neighbor-
hood that is homeomorphically mapped onto an open Euclidean n-dimensional ball
B = {x ∈ R

n/|x| < 1}.

Ũ

U

ϕ

R
n

Figure 4.1: A coordinate chart (U,ϕ)
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U
R

n

R
n

V

ϕ

ψ

ϕ(U)

ψ(V )

ψ ◦ ϕ−1

M

Figure 4.2: A transition map

In general, manifolds have additional properties, like differentiability, that re-
flects some degree of consistency between maps and overlapping maps. Differentia-
bility is necessary to perform calculus on manifolds like we do on R

n. To understand
the notion of differentiable manifold, we need to introduce the concept of coordinate
chart.

Definition 4.2.1.2. A coordinate chart (or just chart) on an n-manifold M is a pair
(U,ϕ) where U is an open subset of M and ϕ : U → Ũ is a homeomorphism from U

onto an open subset Ũ = ϕ(U) of R
n.

U is called a coordinate domain and, if ϕ(U) is an open ball in R
n, it is called a

coordinate ball. Moreover, ϕ is called a local coordinate map such that for any point
p ∈M, ϕ(p) = x = (x1, ...,xn)T defines the local coordinates of p on U .

Charts have to be at least compatible. That means that, for two charts (U,ϕ)

and (V, ψ) with U ∩ V non empty, the map taking a point from ϕ(U ∩ V ) into ψ(U ∩ V )

must be a homeomorphism. This map, defined as the composition ψ ◦ ϕ−1 is called
a transition map (or change of coordinates) (figure 4.2). We call atlas a collection of
coordinate charts whose union of coordinate domains entirely covers the manifoldM
(figure 4.3). A differentiable manifold is then simply a manifold with a differentiable
atlas, in other words with a chart whose any transition map is differentiable. Here
is a more formal definition:

Definition 4.2.1.3. A differentiable manifold of dimension n is a setM and a family
of coordinate charts (the atlas) (Uα, ϕα) with Uα ⊂M and ϕα :M→ R

n such that:

• ⋃α Uα =M

• for any α,β with Uα ∩ Uβ = W 6= Ø, the sets ϕα(W ) and ϕβ(W ) are open sets in
R
n and the mappings ϕβ ◦ ϕ−1

α are differentiable.
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Figure 4.3: An example of atlas: Each of the four charts maps part of the circle to an
open interval, and together, they cover the whole circle. (Image under the Creative
Commons Attribution ShareAlike 2.5 License)

If the transition maps are C∞ (ie. infinitely differentiable or smooth), we have
a smooth atlas and thus a smooth manifold. Riemannian geometry studies smooth
manifolds with Riemannian metrics and we now introduce the notions of metric and
geodesic.

4.2.2 Metric, Geodesic, Distance

Metric

For an n-dimensional manifold M, a Riemannian metric is a collection of inner
products 〈., .〉p defined for every point p of M. These inner products are defined on
the tangent space TpM ofM at p and provide a natural way to measure the lengths
of vectors tangent toM at location p.

First, let us define the notions of tangent vector and tangent space. A tangent
space, TpM is simply an n-dimensional real vector space, attached to p, which
contains all the possible directions of curves passing through p. The notion of
direction can be clarified by thinking of it as a direction of derivation along a curve.
Let γ : [−ε, ε] → R

n be a differentiable curve in R
n such that γ(0) = p and

γ(t) =
(
x1(t), ...,xn(t)

)T ∈ R
n, ∀t ∈ [−ε, ε]. Then

dγ(0)

dt
= γ̇(0) =

(
ẋ1(0), ..., ẋn(0)

)T ∈ R
n

can be used to define the directional derivative of a function f : M → R in the
direction γ̇(0).

Definition 4.2.2.1. A differentiable function γ : [−ε, ε]→M is called a differentiable
curve in M. Let γ(0) = p ∈ M and let D be the set of functions f on M defined in a

64



Figure 4.4: Tangent space at p of a Riemannian manifoldM

neighborhood of p and differentiable at p. f can be restricted to γ and its directional
derivative with respect to γ̇(0) is given by

d(f ◦ γ)
dt

∣∣∣∣
t=0

=
∑

i

∂f

∂xi

∣∣∣∣
t=0

dxi

dt

∣∣∣∣
t=0

=

(
∑

i

ẋi(0)
∂

∂xi

)
f = γ̇(0)f (4.1)

The tangent vector to the curve γ at t = 0 is the function γ̇(0) : D → R
n given by

equation 4.1, for all functions f ∈ D.

A tangent vector at p is simply the tangent vector at t = 0 of any curve γ : [−ε, ε]→
M starting at p. The set of all tangent vectors at p defines the tangent space of M
at p, TpM (figure 4.4). Given a local coordinate map ϕ, it is also possible to deter-
mine a basis in the tangent space TpM denoted by

(
∂
∂x1

, · · · , ∂
∂xn

)
(and also written

(∂1, · · · , ∂n)).
Any element of the tangent space can hence be expressed in the form

∑
i x

i ∂
∂xi

and
the inner products 〈 ∂

∂xi
, ∂
∂xj
〉p define an n×n symmetric, bilinear and positive-definite

form G = gij known as the local representation of the Riemannian metric. The inner
product of two tangent vectors u and v of TpM is then expressed as

〈u, v〉p = uTGv

(the reference to the location p is usually discarded in the notation gij). Here is a
more formal definition of the Riemannian metric:

Definition 4.2.2.2. A Riemannian metric on a differentiable manifoldM is a corre-
spondence associating a symmetric, bilinear and positive-definite form 〈 , 〉p on TpM to
each point p ∈M. This form varies differentiably in the sense that if ϕ : U ⊂M→ Ũ ⊂
R
n is a coordinate map defined in a neighborhood of p with ϕ(q) =

(
x1, ...,xn

)T ∈ R
n

and ∂
∂xi

(q) = dϕ−1
q (0, ..., 1, ...0) then 〈 ∂

∂xi
(q), ∂

∂xj
(q)〉q = gij

(
x1, ...,xn

)
is a differentiable

function on Ũ (for all q in the neighborhood of p).

Geodesic and Distance

Equipped with these notions we can now define the concept of geodesic on a Rieman-
nian manifoldM. It is the equivalent of straight line in Euclidean spaces and defined
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as the locally length-minimizing piecewise smooth curve γ : I ⊂ R 7→ M character-
ized by the fact that it is autoparallel, or in other words, that the field of tangent vec-
tors γ̇(t) stays parallel along γ(t) (this point will be detailed in the next paragraph).
It is equivalent to say that, in local coordinates notations, a curve is a geodesic if and
only if it is the solution of the n second order Euler-Lagrange equations:

d2xk(t)

dt2
+

n∑

i,j=1

Γkij
dxi(t)

dt

dxj(t)

dt
= 0 ∀k = 1, ..., n (4.2)

where the Γkij are the so-called Christoffel symbols of the second kind, introduced in
the next paragraph.

The tangent vector γ̇(t) = dγ(t)
dt ∈ Tγ(t)M defines the instantaneous speed of

the curve and its norm |γ̇(t)| = 〈γ̇(t), γ̇(t)〉1/2γ(t) is the instantaneous velocity. Inte-
grating |γ̇(t)| along γ yields its length between the two endpoints p1 = γ(t1) and
p2 = γ(t2), which we note Lγ(p1, p2):

Lγ(p1, p2) =

∫ t2

t1

|γ̇(t)|γ(t)dt =

∫ t2

t1

√
〈γ̇(t), γ̇(t)〉γ(t)dt

The geodesic distance between any two points p1 and p2 is defined as the infinimum,
over all the possible curves joining p1 and p2, of the length of those curves:

D(p1, p2) = inf
γ
{Lγ(p1, p2) : p1 = γ(t1), p2 = γ(t2)}

Finally, taking I = [0, 1] for simplicity, it is possible to show, under certain conditions,
that a geodesic γ : [0, 1] 7→ M is uniquely defined by its starting point γ(0) and its
initial velocity γ̇(0) ∈ Tγ(0)M. The endpoint γ(1) can be easily computed by applying
the exponential map at γ(0) to γ̇(0): γ(1) = expγ(0)(γ̇(0)). A detailed presentation
of this map can be found in [97]. The inverse map, known as the logarithm map of
γ(1) at γ(0): logγ(0)(γ(1)), yields the unique tangent vector γ̇(0) if we know the two
endpoints of the curve.
Moreover, it can be proved that

D(γ(0), γ(1)) = 〈γ̇(0), γ̇(0)〉1/2γ(0)

In the following chapters, we will often use the fact that the velocity γ̇(0) can be
computed from the gradient of the squared geodesic distance with respect to γ(0). In
other words, we have

γ̇(0) = −∇γ(0)D2(γ(0), γ(1)) (4.3)

Using these concepts, we will be able to define the notions of mean and covariance
matrix on a Riemannian manifold in section 4.3.
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Figure 4.5: Transporting a vector along two different curves with the same initial
and terminal point on a manifold gives different results. The pictures illustrates the
use of the Levi-Civita connection for parallel transport along the red an blue curves
on the sphere. (Image by Florian Jung in the public domain)

4.2.3 Affine Connection

Before introducing the notion of curvature, we need to precise the notion of connec-
tion. It is a crucial concept in geometry since it allows to transport quantities along
curves in a consistent manner and, ultimately, to compare local geometries defined at
different locations of a manifold [191]. In other words, the connection makes it possi-
ble to map any tangent space Tp1M at p1 onto another tangent space Tp2M at p2. The
need for the definition of such a mapping arises from the following observation: As
depicted on figure 4.5, let us imagine that we want to transport a given vector (the
black arrow), in a parallel manner, from its original location p1 to a different point
p2 of a manifold (the sphere here). In general, the parallel transport procedure is
dependent on the choice of coordinate system, which is not desirable. The Levi-Civita
parallelism [190], introduced in 1917, allows to solve this inconsistency by simply ro-
tating the sphere so that p1 follows the curve of interest without axis rolling.
If this procedure is applied along two different curves, joining p1 and p2 (the red and
blue arrows on figure 4.5), the vectors resulting from both parallel transports will
be different. This reflects the curvature of the sphere. We now detail the notion of
covariant derivative, parallel transport and Levi-Civita connection.

Covariant derivative and parallel transport

The dependence of parallel transport on the choice of coordinate system directly
comes from the fact that the classical directional derivative does not behave well un-
der changes of the coordinate system. In fact, ifM is a surface in R

3, C : I ⊂ R→M
is a curve in M and V : I → R

3 is a vector field tangent to M, the quantity dV
dt (t),

∀t ∈ I is not, in general, in the tangent space TC(t)M.
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It is possible to solve this problem, ie. to make the differentiation intrinsic, by
generalizing the directional derivative so that it behaves well under changes of the
coordinate system. It is achieved by considering the orthogonal projection DV

dt (t) of
dV
dt (t) on the tangent space TC(t)M. DV

dt (t) is called the covariant derivative.
DV
dt (t), which is also frequently noted ∇XV , with X = Ċ(t) is independent on the

chosen coordinate system. In fact, it can be expressed as a modification of the
directional derivative by the operator known as the Christoffel symbols Γkij :

(∇XV )k = X i∂iV
k + ΓkijX

iV j

where X = X i∂i and V = V i∂i. The concept of parallelism can then be expressed
quite naturally:

Definition 4.2.3.1. LetM be a differentiable manifold. A vector field V along a curve
C : I →M is called parallel when DV

dt (t) = ∇Ċ(t)V (t) = 0 for all t ∈ I.

Moreover, we have the following

Proposition 4.2.3.1. LetM be a differentiable manifold. Let C : I →M be a differ-
entiable curve on M and V0 a tangent vector in TC(t0)M at C(t0), t0 ∈ I. There exists
a unique parallel vector field V along C with V (t0) = V0 and we call V (t) the parallel
transport of V (t0) along C.

To be parallel along a curve C, a vector field V must verify the system of n differ-
ential equations in V k(t):

(
∇Ċ(t)V (t)

)k
=
dV k

dt
(t) + Γkij Ċi(t)V j(t) = 0 k = 1, ..., n

It is interesting to note that, by definition, the geodesics are the curves whose
velocity field is parallel. Parallel transport will be important for the registration
technique presented in chapter 9.

We can note that, like the directional derivative, ∇Ċ(t0)V depends on V (t0) around
t = t0 but only depends on the value of Ċ(t) at t0. An affine connection can directly be
defined from the covariant derivative. We have the following

Definition 4.2.3.2. Let Ξ(M) denote the space of vector fields of class C∞ onM. An
affine connection ∇ onM is a mapping (X,Y )→ ∇XY

∇ : Ξ(M)× Ξ(M)→ Ξ(M)

with the properties: For all functions of class C∞ and vector fields X,Y, Z onM,

1. ∇fX+gY Z = f∇XZ + g∇XZ

2. ∇X(Y + Z) = ∇XY +∇XZ
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3. ∇X(fY ) = f∇XY + (∂Xf)Y

The so-called Levi-Civita connection of a Riemannian manifold is symmetric and
parallel transports tangent vectors along a curve while preserving the inner product
of this vector along the curve (we say it is compatible with the metric). It is defined in
each local chart by the n3 Christoffel symbols and can thus be directly obtained from
the metric, hence the name metric connection:

∇kij = Γkij = gklΓijl =
1

2
gkl
(
∂gjl
∂σi

+
∂gil
∂σj
− ∂gij
∂σk

)
i, j, k, l = 1, ..., n (4.4)

We now briefly discuss the notion of curvature of Riemannian manifolds.

4.2.4 Curvature

The Riemann curvature tensor

The notion of curvature for Riemannian manifolds of dimension at least 3 cannot
be fully described by a scalar quantity at each point p of the manifold. Riemann
introduced the curvature tensor, in terms of the Levi-Civita connection. It can be
constructed from the metric tensor and its first and second derivatives. We have the

Definition 4.2.4.1. Let M be a differentiable manifold with an affine connection ∇.
The Riemann curvature tensor R is a correspondence that associates to every pair
(X,Y ) ∈ Ξ(M)× Ξ(M) a mapping R(X,Y ) : Ξ(M)→ Ξ(M) such that

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z

where Z ∈ Ξ(M) and [ , ] denotes the Lie bracket.

That is a quite formal definition, which makes it difficult to “feel” what R actually
measures. By taking X and Y to be some elements of a local coordinate basis, ie.
respectively ∂i and ∂j , we obtain:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ

In other words, the curvature tensor is a measure of the covariant derivative
non-commutativity.

In local coordinates
(
x1, ...,xn

)T , the curvature tensor can be expressed through the
Christoffel symbols as follows (see [97] page 92):

Rlijk = ∂jΓ
l
ki − ∂kΓlji + ΓljmΓmki − ΓlkmΓmji
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The sectional curvature

Sectional curvature also completely describes the curvature of a Riemannian man-
ifold. A sectional curvature κ(E , p) is associated to any two-dimensional subset of
vectors E in the tangent space at p, TpM. This 2-plane is called a section. It is defined
as the Gaussian curvature of that hypersurface made of the set of points reached by
the geodesics starting at p in all the directions described by the plane E . It can be
expressed as

κ(E , p) =
〈R(u, v)v, u〉
|u|2|v|2 − 〈u, v〉2

for any u, v ∈ E . Although this definition may seem a little tedious, we will see in
the next chapter that it is possible, in some very particular cases, to actually get
closed-form expressions for κ(E , p).

The Ricci and scalar curvatures

Respectively up to dimension 3 and 2, those quantities completely describe the
curvature of a Riemannian manifold. For manifolds of dimension equal to or greater
than 4 they become insufficient. However, they play an important role as we will see,
for instance in chapter 5, when we will define the notion of normal distribution over
the space of multivariate normal distributions.

The Ricci curvature tensor R can be thought of as a way to measure how much
n-dimensional volumes in regions of an n-dimensional manifold differ from the
volumes of equivalent regions in R

n. It can be defined as the contraction of the
Riemann curvature tensor

Rij = Rkijk = Rijklg
kl (4.5)

where gkl denotes the inverse of the metric. Finally, the scalar curvature, or Ricci
scalar S ∈ R, is the simplest way to characterize the curvature of a manifold. It is
given by the trace of the Ricci curvature tensor

S = gijRij

4.3 MANIFOLD-VALUED DATA
In this section, we consider an image I : Ω ⊂ R

3 7→ M and would like to
define the notions of statistics and spatial gradient, while taking into account the
properties of the spaceM where I takes its values. They will play a central role for
instance in the variational formulations (equations 8.16, 8.18 and 9.3) of the segmen-
tation and registration problems to be detailed in chapters 8 and 9. We also show
how to compute the spatial gradient of a tensor field which will be useful to introduce
a boundary term in our segmentation energy (equation 8.17).
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Figure 4.6: Definition of the covariance matrix Λp

4.3.1 Statistics

As defined by Fréchet in [119] and used by Pennec in [235], the empirical mean of a
set of N random elements {pi}, i = 1, ..., N ofM, such as diffusion tensors as we will
see in the next chapter, is defined as the minimizer p = p of the variance σ2

p ({pi}) of
the pi with respect to p:

σ2
p ({pi}) = E

[
D2(p, pi)

]
=

1

N

N∑

i=1

D2(p, pi) (4.6)

Here the set {pi} must be seen as the values taken by I in some neighborhood of a
pixel x ∈ R

3. The empirical covariance matrix of the set {pi}, with respect to the
mean p is defined as the expected value of the quantity βi.βTi and denoted by Λp. As
depicted on figure 4.6, βi is the initial velocity γ̇i(0) of the ith geodesic joining γi(0) = p

to pi (see equation 4.3) and expressed in local coordinates, i.e. it is taken to be the
n-dimensional vector of coordinates ϕ (γ̇i(0)) ∈ R

n and not the tangent vector γ̇i(0)
itself. The dot product then boils down to a simple Euclidean dot product and we
have:

Λp =
1

N

N∑

i=1

ϕ (βi)ϕ (βi)
T with βi = −∇pD2(p, pi) (4.7)

where ϕ is the coordinate chart introduced in section 4.2.2 and also used, for instance,
in section 8.2.1. In this section, we will apply these definitions to the Euclidean,
Kullback-Leibler and geodesic probability metrics in order to approximate Gaussian
distributions of diffusion tensors based on these various dissimilarity measures. We
point out, for the sake of clarity, that the expression −∇pD2(p, pi) has nothing to do
with the covariant derivative previously introduced. It is the simple gradient of a
scalar-valued function with respect to a point of interest.

4.3.2 Spatial Gradient

We recall that we are interested in images I associating to each location of a regular
sampling Ω of R

3 an element of a Riemannian manifoldM. The spatial gradient of I
can be estimated from the gradient of the squared distance as:

∇sek
I(x) = − s

|ek|
(
∇I(x)D2 (I(x), I(x+ sek))

)
∀x ∈ Ω
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where the ek, k = 1, 2, 3 denote the canonical basis of R
3 and are used to access the

neighbors of I(x) on the grid Ω. s is either +1 or −1 and denotes the forward and
backward approximation of the gradient. ∇−e1I(x) is, for example, the initial tangent
vector of the geodesic joining I(x) and its neighborhood I(x − |e1|(1, 0, 0)T ). ∇sek

I(x)

is a tangent vector living in TI(x)M.
It is then straightforward to compute the squared norm of the gradient at location x

as:

|∇I(x)|2 =
1

2

3∑

k=1

∑

s=±1

|∇sek
I(x)|2I(x)

=
1

2

3∑

k=1

∑

s=±1

D2(I(x), I(x+ sek))

where the 1
2 factor arises from the fact that we use 3×3×3 neighborhoods (ie. central

finite differences).

We purposely wrote the various quantities of interest in terms of the distance
D. This will allow us, in the chapter 8, to investigate different metrics and their
influences on the computed statistics and gradient norm.

4.4 CONCLUSION
In this chapter, we recalled basic notions for Riemannian geometry that

will be at the core the second part of this thesis, where processing tools for diffusion
tensor images will be introduced. These concepts will also play a fundamental role
in the next chapter where we study the structure of the space of multivariate normal
distributions from an information geometry point of view.
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OVERVIEW
This chapter is dedicated to the statistical analysis of the space of multivariate nor-
mal distributions with an application to the processing of Diffusion Tensor Images
(DTI). It relies on the differential geometrical properties of the underlying parame-
ters space, endowed with a Riemannian metric, as well as on recent works that led to
the generalization of the normal law on Riemannian manifolds. We review the geo-
metrical properties of the space of multivariate normal distributions with zero mean
vector and focus on an original characterization of the mean, covariance matrix and
generalized normal law on that manifold. We extensively address the derivation of
accurate and efficient numerical schemes to estimate these statistical parameters. A
major application of the present work is related to the analysis and processing of DTI
datasets and we show promising results on synthetic and real examples.

Keywords: multivariate normal distribution, symmetric positive-definite matrix,
information geometry, Riemannian geometry, Fisher information matrix, geodesics,
geodesic distance, Ricci tensor, curvature, statistics, mean, covariance matrix, diffu-
sion tensor magnetic resonance imaging

5.1 INTRODUCTION
The definition of differential geometrical structures for statistical models

started in 1936 with the work of Mahalanobis [200] on multivariate normal dis-
tributions of fixed covariance matrix. Since then, several authors in information
geometry [199], [9] and references therein, and physics [57] have contributed to the
description of those geometries. Rao [253] expressed one of the fundamental results
in 1945 by showing that it was possible to use the Fisher information matrix as a
Riemannian metric between parameterized probability density functions (pdf). The
Fisher information is a popular measure of the amount of information carried by the
realizations of a random variable about the unknown parameters of the underlying
probability density. This is classically used to derive maximum likelihood estimators
of density parameters. In 1982, Burbea and Rao [45] proposed a unified approach to
the derivation of metrics in pdfs spaces. They introduced the notion of φ-functional
whose Hessian in a direction of the tangent space of the parameters space is taken
as the metric. Following the pioneering work of Rao [253], and a theorem by Jensen
(1976, private communication in [15]), Atkinson and Mitchell obtained closed-form
expressions for the geodesic distances between elements of well-known families of
distributions such as multivariate normal pdfs of fixed mean. We focus, in this
chapter, on the geometrical properties of those particular distributions and make use
of results stated in [272], [44], [48] and [117] to propose a novel framework for the
statistical analysis of a set of multivariate normal pdfs.
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In [235], the author generalized the notion of normal law to random samples
of primitives belonging to an n-dimensional Riemannian manifold M. In that
framework, and under certain technical hypothesis, it is possible to define the mean,
as proposed by Karcher [160] and Kendall [163], as well as the covariance matrix of
a subset of M. Using an information minimization approach, Pennec approximated
the normal model by the usual Gaussian in the tangent space TxM at the mean
value x ∈ M. We propose to combine the Riemannian characterization of the
multivariate normal model, based on the Fisher information matrix, with this notion
of generalized normal law on manifolds to study the statistical properties of diffusion
tensor images. We also derive original, accurate and efficient computational tools to
process these images.

We recall that these tensors can be estimated from the acquisition of diffusion
weighted images (DWI) in several non-collinear sampling directions as well as a
T2-weighted image. Diffusion tensors must be understood as parameters of normal
distributions and, as such, perfectly fit the model we are about to develop.

Previous works related to DTI processing:
Preliminary results were presented in [187] and [186]. Other works related to the

statistical analysis or filtering of DTI datasets have been carried out by Basser et
al. [21], Pennec et al. [237, 238] and Fletcher and Joshi [116]. In [21], a symmetric
positive-definite fourth-order tensor is used to encode the variability of a set of diffu-
sion tensors but the geometry of the parameters space is not taken into account as
in the other works. Barbaresco et al. used similar ideas in [18] for purposes related
to the anisotropic regularization of normal or Gamma law parameters and of radar
or Doppler data. Independently to our contribution, [116] first analyzed the space
of symmetric, positive definite matrices from a Lie groups perspective and showed
that this space does not form a vector space but can rather be regarded as the Rie-
mannian symmetric space GL+(3)/SO(3). The authors used these ideas to develop
efficient and elegant methods for computing statistics and modes of variation of dif-
fusion tensor data. Interestingly, by extending the symmetry group to SL(3), [195]
studied a slightly different metric which turns out to exhibit an additional term in one
direction. This extension was also recently formulated by [206] in terms of a weighted
Fisher information matrix. They also generalized this approach to a wider class of
elliptical densities. More recently, [238] also developed a nice and elegant computa-
tional framework for tensor processing with a particular emphasis on interpolation,
regularization and restoration of noisy tensor fields. Fillard et al. [114] reported an
interesting application of these tools to study the variability of the human brain.
Arsigny et al. [12, 14, 13] also proposed an original log-Euclidean metric that yields
an efficient computational framework for tensor data processing. Fillard et al. [113]
successfully relied on this metric to propose efficient regularization and estimation
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algorithms for diffusion tensor images. Schwartzman [265] described a similar ap-
proach to derive statistical tests and false discovery rates for diffusion tensor images.
Adding to these works where similar tools have been developed in order to study the
statistical variability of diffusion tensor images, one can also refer to our original
point of view based on the information geometry, recently developed in [186], and
detailed in this chapter. It is thus very interesting to note that comparable results
were obtained through different means while studying the statistical variability of
diffusion tensor images.

Contributions of this chapter:
In this chapter, we derive and experiment with original methods to compute the

mean and covariance matrix of a set of multivariate normal distributions. We also
show how to compute and use the Ricci curvature tensor in order to accurately ap-
proximate a normal law on the manifoldM of multivariate normal distributions. In
the following chapters, we will successfully apply these numerical schemes to tackle,
in an original manner, important processing tasks for diffusion tensor datasets.

Organization of this chapter:
Section 5.2 reviews necessary material related to the Riemannian geometry of the

multivariate normal model. Section 5.3 introduces the theoretical basis and the nu-
merical schemes that lead to an approximated normal law on the manifold described
in section 5.2. In section 5.4, we first provide a simple algorithm to generate ran-
dom normal distributions following a given normal law. We also demonstrate how
to perform a correct spatial interpolation of diffusion tensor images. For these two
applications, numerical experiments are conducted to illustrate their respective per-
formance.

5.2 GEOMETRY OF THE MULTIVARIATE NORMAL MODEL
We hereafter review important notions that led to the metrization of prob-

ability density functions spaces and apply them to the multivariate normal model
with fixed zero mean. This yields a characterization of the connection and curva-
ture of that space as well as the definition of a distance between normal distributions
under certain regularity conditions.

5.2.1 Metrization of the Space of Probability Density Functions

We start by a general characterization of the space of probability density functions,
together with the characterization of its possible metrics. Let L1(X , µ) denote the
space of integrable µ-measurable real functions defined over the space X ⊂ R

m, e.g.:

L1(X , µ) = {P : ‖P‖µ =

∫

X
|P(r)|dµ(r) <∞}
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We are interested in the subset P of L1
+ such that:

P = {P ∈ L1
+ : ‖p‖µ = 1}

with L1
+ = {P ∈ L1(X , µ) : P(r) ≥ 0 for µ-almost all x ∈ X}

Let φ be a continuous real function on Iφ ⊂ R
+ and Fφ(X , µ) the set of µ-measurable

functions p defined over X and taking values in Iφ. The φ-entropy functional intro-
duced in [45] is defined as:

Hφ(P) = −
∫

X
φ(P(r))dµ(r) ∀P ∈ L1

φ = L1
+ ∩ Fφ

The second order differential of the entropy functional Hφ at P in the direction of
f ∈ L1

φ is given by:

d2Hφ(P; f) = −
∫

X
φ′′(P(r))(f(r))2dµ(r)

We now introduce the set of parameters {x : x = (x1, ...,xn) ∈ O ⊂ R
n}. This set

defines a manifoldM in R
n and we consider the subset FM of Pφ = P ∩ Fφ:

FM = {P(r|x) ∈ Pφ : x ∈ X ,x ∈M}

FM is the family of probability density functions of the random variable x ∈ X pa-
rameterized by the n-dimensional vector x. We wish to quantify the second variation
of the entropy functional Hφ in the direction dP(.|x) of the tangent space TM, with:

dP(.|x) =
n∑

i=1

∂P(.|x)

∂xi
dxi

denoting the first order approximation of the difference between the densities asso-
ciated with the parameters x and x + dx. Hence the second variation of Hφ at x

writes:
d2Hφ(P(.|x); dP(.|x)) = −

∫

X
φ′′(P(r|x))(dP(r|x))2dµ(r)

Under the assumption that φ is convex in Iφ, we set:

ds2φ(x) = −d2Hφ(P(.|x); dP(.|x)) =

n∑

i,j=1

g
(φ)
ij (x)dxidxj

with
g
(φ)
ij (x) =

∫

X
φ′′(P(r|x))

∂P(r|x)

∂xi
∂P(r|x)

∂xj
dµ(r)

g
(φ)
ij defines a positive-definite form on the tangent space TM and thus gives a

Riemannian metric onM, an n× n matrix known as the φ-entropy metric.
The line element ds = (ds2φ(x))1/2 is easily seen to be invariant under transformation
of x. Consequently, g(φ)

ij (x) is a second order covariant symmetric tensor.
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Various possible choices for the entropy function φ have been proposed.
We concentrate, in this chapter, on the Shannon entropy associated with
φ(P) = P log P, ∀P ∈ FM. Then,

H(P) = −
∫

X
P(r|x) log P(r|x)dµ(r)

and the components of the metric tensor gij , known as the Fisher information matrix,
become:

gij(x) =

∫

X

∂ log P(r|x)

∂xi
∂ log P(r|x)

∂xj
P(r|x)dµ(r) = E

[
∂ log P(r|x)

∂xi
∂ log P(r|x)

∂xj

]

It is interesting to note that, in this case, the squared line element ds2
φ(x) coincides

with the variance of the relative difference between P(.|x) and P(.|x + dx). Indeed,
we have:

dP(.|x)

P(.|x)
=

P(.|x + dx)−P(.|x)

P(.|x)
=

n∑

i=1

∂ log P(.|x)

∂xi
dxi

It follows that the expected value of the relative difference is zero since
∫

X

(
∂ log P(r|x)

∂xi
dxi
)

P(r|x)dµ(r) =
∂

∂xi

(∫

X
P(r|x)dµ(r)

)
dxi = 0

but that its variance does not vanish and defines a positive-definite quadratic form
ds2(x) =

∑n
i,j=1 gijdx

idxj , based on the Fisher information matrix, that can be used
as a metric. We exploit that result in the next section to describe the differential
geometrical properties of the space of multivariate normal distributions with fixed
zero mean.

5.2.2 Geometrical Properties of the Multivariate Normal Model

Our ultimate goal being to define statistics between multivariate normal dis-
tributions and to apply it to diffusion tensor data, in other words 3-variate
normal distributions with zero mean, we identify the space of parameters
M = {x : x = (x1, ...,xn) ∈ O ⊂ R

n} with the manifold S+(m,R) and endow it
with the information metric gij , i, j = 1, ..., n previously introduced.

S+(m,R) denotes the set of m × m (m = 3 in our case) real symmetric positive-
definite matrices. Its elements are used to describe the covariance matrices of
the zero mean normal distributions. Through the local coordinates chart ϕ that
associates to each Σ ∈ S+(m,R) its components σkl, k ≤ l, k, l = 1, ...,m, we see that
S+(m,R) is isomorphic to R

n with n = 1
2m(m+ 1). Hence, from now on, the elements

of parameter space M will simply be the components of the covariance matrices Σ

and linearly accessed through ϕ, with xi = σi = σkl with i = 1, ..., n, k ≤ l = 1, ...,m

and x1 = σ11,x
2 = σ12, ...,x

6 = σ33.
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We denote by ∂
∂xi = Ei the canonical basis of the tangent space TS+(m,R) = S(m,R)

(e.g. the space of vector fields). We equally denote by E∗
i , i = 1, ..., n the dual basis of

the cotangent space T ∗S+(m,R) = S∗(m,R) (e.g. the space of differential forms). The
tangent space S(m,R) coincides with the space of m×m symmetric matrices and the
basis is given by:

Ei = Ekl =

{
1kk , k = l

(1kl + 1lk) , k 6= l
E∗
i = E∗

kl =

{
1kk , k = l

1
2(1kl + 1lk) , k 6= l

where 1kl stands for the m×m matrix with 1 at row k and column l and 0 everywhere
else. For the clarity of expressions, we will drop the references to m and R in
S+(m,R) when no ambiguity is possible.

As detailed by the authors of [272], [44], [107], [48] and [117], we can charac-
terize S+ as a Riemannian manifold for which closed form expressions are available
for the metric g, the Christoffel symbols and the associated affine connection, the
Riemann curvature tensor, the solution of the geodesic equations as well as for
the geodesic distance (also known as Rao’s distance). Those constitute all the
fundamental mathematical tools that we need to derive algorithms for the mean and
covariance matrix of elements of S+ and express a generalized normal law on this
manifold.

Metric Tensor, Affine Connection and Curvature Tensors

The proofs of the theorems stated in this section are available in [271].

The metric tensor
The metric tensor for S+, derived from the Fisher information matrix presented in

section 5.2.1, is given by the following theorem:

Theorem 5.2.2.1. The Riemannian metric for the space S+(m,R) of multivariate nor-
mal distributions with zero mean is given, ∀Σ ∈ S+(m,R) by the twice covariant ten-
sor:

gij = g(Ei, Ej) = 〈Ei, Ej〉Σ =
1

2
tr(Σ−1EiΣ

−1Ej) i, j = 1, ..., n (5.1)

In practice, this means that for any vectors A,B ∈ S, their inner product relative
to Σ is 〈A,B〉Σ = 1

2tr(Σ−1AΣ−1B). In particular, the distance between two infinitesi-
mally close elements Σ and Σ + dΣ of S+, with respect to Σ, is:

‖dΣ‖Σ =

√
1

2
tr((Σ−1dΣ)2)

It is very informative, at this stage, to look at the well-known Kullback-Leibler diver-
gence Dkl, or relative entropy, that we also use for the segmentation task that will be
addressed in chapter 8. In [185], we used it as a measure of dissimilarity between
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probability density functions, as often done in the information theory community.
However, it can be shown by a second order Taylor expansion of the relative entropy
between two infinitesimally close pdfs parameterized by Σ and Σ+dΣ (assuming that
Dkl is twice differentiable around P(r|Σ)) that:

Dkl(P(r|Σ),P(r|Σ + dΣ)) =

∫

X
P(r|Σ) log

P(r|Σ)

P(r|Σ + dΣ)
dµ(r)

=
1

2

∫

X

(
1

p2(r|Σ)

∂P(r|Σ)

∂σi

∂P(r|Σ)

∂σj
− 1

P(r|Σ)

∂2P(r|Σ)

∂σi∂σj

)
P(r|Σ)dσidσjdµ(r)

which can be shown to reduce to:

Dkl(P(r|Σ),P(r|Σ + dΣ)) =
1

2
E

[
∂ log P(r|Σ)

∂σi

∂ log P(r|Σ)

∂σj

]
dσidσj

if the partial derivatives with respect to σi and σj commute with the integral.
As a consequence, the relative entropy simply equals half of the squared line element
ds2 and it coincides with the geodesic distance for infinitesimal distances. Computing
it between distant pdfs would yield a result very different from the geodesic distance.

The choice of the affine connection
We now would like to define the two fundamental tensors in Riemannian geometry

for the manifold S+, known as the Riemann and Ricci curvature tensor and denoted,
like in section 4.2.4 by R and R. The latter will play an important role in the expres-
sion of the generalized normal law on S+.
But before being able to define these elements, we have to choose a Riemannian con-
nection ∇. We recall that ∇ allows us to map any tangent space TΣ1

S+ at Σ1 to the
tangent space TΣ2

S+ at Σ2. The canonical affine connection on a Riemannian mani-
fold is known as the Levi-Civita connection (or covariant derivative, see section 4.2.3).
An important property of this connection is that it is compatible with the metric.
Using the local coordinates, the Christoffel symbols can also be expressed in terms of
the elements of the canonical and dual basis {Ei}i=1,...,n and {E∗

i }i=1,...,n.

Γ(Ei, Ej ;E
∗
k) = E∗

k .(∇FEi
Ej) (5.2)

By the fact that (see lemma 2.3 in [271]):

∂g(Ei, Ej)

∂σk
= −1

2
tr(Σ−1EkΣ

−1EiΣ
−1Ej)−

1

2
tr(Σ−1EiΣ

−1EkΣ
−1Ej)

the following result can be proved from equation 4.4:

Γ(Ei, Ej ;E
∗
k) = −1

2
tr(EiΣ−1EjE

∗
k)−

1

2
tr(EjΣ−1EiE

∗
k) (5.3)

It is then possible to use this result in order to derive the expression of the unique
affine connection (Levi-Civita)∇F associated with the Fisher information metric from
equation 5.2. However, other connections have been proposed and we still need to
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make a choice since this will greatly influence the curvature properties of the mani-
fold. Amari [9] has indeed introduced a one-parameter family of affine connections,
known as the α-connections, in order to better represent the intrinsic properties of
the family of probability distributions. The α-connections are defined in the following
manner:

〈∇αEi
Ej , Ek〉Σ = 〈∇FEi

Ej , Ek〉Σ + αT (Ei, Ej , Ek)

where we remind that 〈., .〉Σ denotes the inner product and the third-order symmetric
tensor Tijk is defined as

Tijk = E

[
∂ log P(r|x)

∂σi

∂ log P(r|x)

∂σj

∂ log P(r|x)

∂σk

]

Obviously, we see that the 0-connection boils down to the Levi-Civita connection. We
recall that it is the only one to be compatible with the metric, in other words, the
only one by which the parallel transport of a vector does not affect its length. The
α-connections are not compatible with the metric for α 6= 0.
Moreover, it was stated in [44] that, for any exponential family (a special type of
distributions in which the multivariate normal model can be recast), the α-Riemann
curvature tensor writes:

Rαijkl = (1− α2)RFijkl

thus giving an α-curvature to the multivariate normal model distinct from the cur-
vature induced by the Levi-Civita connection for all α 6= 0. Because of their non-
compatibility with the metric and their induced 0-curvature, the ±1-connections (re-
spectively known as Efron and David connections) do not seem to be good candidates
for the following derivations of statistics on the manifold of multivariate normal dis-
tributions. We will indeed require our space to exhibit a non-positive sectional curva-
ture in order to ensure the existence and uniqueness of the Riemannian barycenter.
For this reason, we will work with the classical Levi-Civita connection in the remain-
ing developments. We have to notice, however, that α-connections with α 6= ±1 will
have to be investigated.

The curvature tensors
The Riemann curvature tensor for S+ (see definition in section 4.2.4), derived from

the Fisher information metric presented in section 5.2.1, is given by the following
theorem (see [271]):

Theorem 5.2.2.2. The Riemann curvature tensor derived from the Fisher information
metric and the classical Levi-Civita affine connection in S+(m,R) is given by:

RFijkl = RF (Ei, Ej , Ek, El) =
1

4
tr(EjΣ−1EiΣ

−1EkΣ
−1ElΣ

−1)

− 1

4
tr(EiΣ−1EjΣ

−1EkΣ
−1ElΣ

−1)

where Ei, Ej , Ek and El denote the elements of the canonical basis of vector fields and
Σ ∈ S+(m,R)
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The important point is that we can now compute the sectional curvature κ of the
manifold S+ (see details in section 4.2.4) and verify that it is actually non-constant
and, more importantly, non-positive.

It can be shown that, if we denote by ρ2
rs = σ2

rs
σrrσss

the correlation coefficient be-
tween the components σrs, r ≤ s, r, s = 1, ...,m of the covariance matrices Σ, the
sectional curvature at Σ is given, for r 6= s, by

1. κ(E ,Σ) = − ρ2rs
1+ρ2rs

if E = span(Err, Ess)

2. κ(E ,Σ) = −1
2 if E = span(Err, Ers)

which indeed depends on Σ and is non-positive.

Finally, we recall that the Ricci curvature tensor R is defined as the contrac-
tion of the Riemann curvature tensor (see details in section 4.2.4), which can be
obtained through symbolic computations with a software like MapleTM by Maplesoft.

Summarizing everything, we have the expression for R and g. A quite inter-
esting point is that, by comparison of the Ricci tensor with the metric tensor, we
can also deduce that the space of zero mean multivariate normal distributions is, in
general, not an Einstein manifold. It is indeed a space of non-constant non-positive
sectional curvature for which there does not exist a constant L such that

Rij = Lgij

Now that we have defined the metric, connection and curvature in S+, we can char-
acterize the geodesics of that manifold.

Geodesics and Geodesic Distance between Normal Distributions

The geodesic distance D induced by the Riemannian metric g, derived from the
Fisher information matrix, was investigated for some parametric distributions in
[15], [45], [221], [44], [107] and references therein. More recently, Calvo and Oller
derived an explicit solution of the geodesic equations for the general multivariate
normal model in [48].

With our current notations, we recall that, if Σ : t 7→ Σ(t) ∈ M, ∀t ∈ [t1, t2] ⊂ R

denotes a curve segment inM between two parameterized distributions P(.|Σ1) and
P(.|Σ2), its length is expressed as:

LΣ(P(.|Σ1),P(.|Σ2)) =

∫ t2

t1

(
〈Σ̇(t), Σ̇(t)〉Σ(t)

)1/2
dt

=

∫ t2

t1




n∑

i,j=1

gij(Σ(t))
dσi(t)

dt

dσj(t)

dt




1/2

dt
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Solving the Euler-Lagrange equations 4.2 and evaluating the geodesic distance D
constitute, in general, a difficult task. However, for the multivariate normal model
with zero mean, it can be proved that those equations reduce to:

d2Σ(t)

dt2
− dΣ(t)

dt
Σ(t)−1 dΣ(t)

dt
= 0 (5.4)

Proof. This is straightforward from the use of equation 5.3 in the general geodesic
equation 4.2.

It is interesting to note that the closed-form expression for the geodesic curves
Σ(t), t ∈ [t1, t2] ⊂ R and the geodesic distance have been independently derived by
several authors:
In [271] and [211], the geodesics equation were obtained respectively by solving equa-
tion 5.4 and by identifying S+(m,R) with the quotient space GL+(m,R)/SO(m,R).
In this last case, it is easy to recast the expression of the geodesics from any point
Σ(0) of the space into the simpler configuration Σ(0) = I, because of the invariance
by congruence transformation of GL+(m,R).
Burbea [44] addressed this problem by using the properties of the group of automor-
phisms of S+ onto itself. Calvo and Oller, in [48], proposed a more general solution
on the basis of the information geometry described in [272], [44] and [107]. They
derived an explicit expression of the geodesics for the multivariate normal model
with non-constant mean vector.
Regarding the geodesic distance, it seems to have been derived for the first time
in 1976 by Jensen (private communication in [15]) for multivariate distributions of
fixed mean, and then again in the independent work [271]. Another distinct work
by Förstner and Moonen [117] proposed the same distance measure with a similar
point of view as the one used in [211]. However, the geodesic equations were not
solved in [117]. Other references related to the information geometry approach can
be found in [44] and [47]. Motivated by medical image processing tasks, Fletcher and
Joshi [116], Lenglet et al. [187, 186] and Pennec et al. [238] have recently used these
results to derive statistical and filtering tools on tensor fields.

As stated for example in [211], the geodesic starting from Σ(t1) ∈ S+ in the
direction Σ̇(t1) = Σ(t1)

1/2XΣ(t1)
1/2 with Σ̇(t1), X ∈ S = TS+ is given by:

Σ(t) = Σ(t1)
1/2 exp ((t− t1)X)Σ(t1)

1/2 ∈ S+, ∀t ∈ [t1, t2] (5.5)

where the matrix square root is well-defined since it always applies to symmetric
positive-definite matrices.
We recall that the geodesic distance D between any two elements Σ1 and Σ2 of S+ is
the length of the minimizing geodesic between Σ1 and Σ2. It is given by the following
theorem, whose original proof is available in an appendix of [15] but different versions
can also be found in [271] and [117].
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Theorem 5.2.2.3. (S.T. Jensen, 1976)
Consider the family of multivariate normal distributions with common mean vector
but different covariance matrices. The geodesic distance between two members of the
family with covariance matrices Σ1 and Σ2 is given by

D(Σ1,Σ2) =

√
1

2
tr(log2(Σ

−1/2
1 Σ2Σ

−1/2
1 )) =

√√√√1

2

m∑

i=1

log2(ηi)

where ηi denote the m eigenvalues of the matrix Σ
−1/2
1 Σ2Σ

−1/2
1 ∈ S+.

Properties of D:
D is indeed a distance on S+ and exhibits nice properties that we hereafter summa-
rize (see [117] for details and proofs):

[P1] Positivity: D(Σ1,Σ2) ≥ 0, D(Σ1,Σ2) = 0⇔ Σ1 = Σ2

[P2] Symmetry: D(Σ1,Σ2) = D(Σ2,Σ1)

[P3] Triangle inequality: D(Σ1,Σ3) ≤ D(Σ1,Σ2) +D(Σ2,Σ3)

[P4] Invariance under congruence transformations: ∀P ∈ GL+(m,R)

D(Σ1,Σ2) = D(PΣ1P
T , PΣ2P

T )

[P5] Invariance under inversion: D(Σ1,Σ2) = D(Σ−1
1 ,Σ−1

2 )

We must note however that no complete proof of [P3] was given in the work by
Förstner and Moonen. Now that we have setup all the mathematical tools that we
need, we define important statistical parameters on the manifold S+ and provide ef-
ficient numerical schemes to compute them. This will lead to the definition of the
generalized normal law on S+.

5.3 STATISTICS ON NORMAL DISTRIBUTIONS

5.3.1 Intrinsic Mean

Definition

We propose a new gradient descent algorithm for the computation of the intrinsic
mean distribution of a set of multivariate normal distributions with zero mean vector.
It relies on the classical definition of the Riemannian center of mass and uses the
geodesics equation to derive a manifold-constrained numerical integrator and thus
ensures that each step forward of the gradient descent stays within the space S+. As
we will show in the numerical experiments, this method is very efficient and usually
converges in just a few iterations.
We seek to estimate the empirical mean as proposed by Fréchet [119], Karcher [160],
Pennec [235] or Moakher [210].
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Definition 5.3.1.1. (Empirical Riemannian mean)
The normal distribution P(.|Σ) with zero mean vector, parameterized by Σ ∈
S+(m,R), and defined as the empirical mean of N distributions P(.|Σk), k = 1, ..., N ,
achieves a local minimum of the objective function λ2 : S+(m,R) → R

+ known as the
empirical variance and defined as:

λ2(Σ1, ...,ΣN ) =
1

N

N∑

k=1

D2(Σk,Σ) = E[D2(Σk,Σ)] (5.6)

Karcher proved in [160] that such a mean, also known as the Riemannian
barycenter, exists and is unique for manifolds of non-positive sectional curvature.
This was shown to be the case for S+ in the previous section so that we can be
assured to always find a solution, given that the numerical gradient descent is
carefully designed and does not get stuck in some local minimum.

In order to derive this gradient descent algorithm, we rely on the following re-
marks (see [64] and references therein for more details): We want to derive a flow
evolving an initial guess Σ(0) toward the mean of a set of N elements of S+. If we
denote by Σ(s), s ∈ [0,∞) the family of solutions for:

∂Σ(s)

∂s
= V(Σ(s))

where V denotes the velocity (e.g. the tangent vector) driving the evolution, we have
the equivalence:

Σ(s) ∈ S+(m,R), ∀s > 0

⇔ Σ(0) ∈ S+(m,R) and V(Σ(s)) ∈ TΣ(s)S
+(m,R) = S(m,R), ∀s > 0

In other words, we are guaranteed to stay in S+ as long as Σ(0) does and that the
velocity belongs to the space of real symmetric matrices. We shall see that the
artificial time-step ds will be directly related to the geodesic parameter t through the
definition of the exponential map.

We identify the velocity V with the opposite of the gradient of the objective
function λ2(Σ1, ...,ΣN ). This was shown to be (see [211]):

∇λ2(Σ1, ...,ΣN ) =
Σ(s)

N

N∑

k=1

log(Σ−1
k Σ(s)) (5.7)

Hence the evolution:
∂Σ(s)

∂s
= −Σ(s)

N

N∑

k=1

log(Σ−1
k Σ(s)) (5.8)
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Numerical Implementation

As mentioned in [64], the corresponding numerical implementation has to be dealt
with carefully and we have to build a step-forward operator Kds such that the discrete
flow:

Σl+1 = Kds(Σl), Σ(0) ∈ S+

provides an intrinsic, or ”consistent”, approximation of the evolution equation 5.8
(l denotes the discrete version of the continuous family parameter s and we have
dropped the overline for the clarity of the expressions). As we have previously pointed
out, a closed-form expression for the geodesics of S+ does exist. Hence, all we need
to do is to make sure that we perform our gradient descent along the geodesics of the
manifold. If we were to simply move in the direction given by −ds∇λ2, we would have
to check, at every single step, that the current estimate of the mean lies within S+

and reproject it if needed. Instead, we have the following proposition:

Proposition 5.3.1.1. For any Σ(s) ∈ S+(m,R), s ∈ [0,∞) and any tangent vector
V = −∇λ2 ∈ S(m,R), an intrinsic (or consistent) approximation of the flow 5.8 can be
obtained by using the step-forward operator:

Kds(Σl) = Σ
1/2
l exp (−dsΣ−1/2

l ∇λ2Σ
−1/2
l )Σ

1/2
l (5.9)

Proof. The geodesic starting from Σ(s) and pointing in the direction of interest V =

Σ(s)1/2XΣ(s)1/2, X ∈ S(m,R) is given by:

Σ(s+ ds) = Σ(s)1/2 exp (dsX)Σ(s)1/2 ∀ds ∈ [0, 1]

If V is now identified with the opposite of the gradient of any objective functional λ2

(which is in S(m,R)), we obtain:

X = −Σ(s)−1/2∇λ2Σ(s)−1/2 and
Σ(s+ ds) = Σ(s)1/2 exp (−dsΣ(s)−1/2∇λ2Σ(s)−1/2)Σ(s)1/2

Identifying Σ(s) with the current estimate of the solution of the gradient descent Σl

yields the result.

It is natural to ask how this numerical scheme compares to the gradient descent
associated with the following step-forward operator:

Kds(Σl) = Σl − ds∇λ2 (5.10)

We have the following proposition:

Proposition 5.3.1.2. The extrinsic step-forward operator 5.10 is a first order approx-
imation of the operator of Proposition 5.3.1.1.
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Proof. Recalling that the matrix exponential is defined by the following power series:

exp (A) =
∞∑

n=0

An

n!
= I +A+

AA

2
+
AAA

6
+ ... ∀A ∈ S(m,R)

A first order expansion of 5.9 yields:

Kds(Σl) = Σ
1/2
l (I− dsΣ−1/2

l ∇λ2Σ
−1/2
l )Σ

1/2
l

= Σl − ds∇λ2

The exponential map is defined from [0, 1] onto S+. The optimal time step ds is
then equal to 1 and we have checked that the gradient descent is indeed stable for
any value of ds between 0 and 1. The optimal step-forward operator is then expressed
as follows:

K(Σl) = Σ
1/2
l exp (−Σ

−1/2
l ∇λ2Σ

−1/2
l )Σ

1/2
l

This will be illustrated in the section dedicated to the numerical experiments.

Conclusion

We now come back to the derivation of a numerical algorithm to estimate the Rie-
mannian barycenter Σ of a set of parameterized multivariate normal distributions
with zero mean vector. We make use of the explicit expression of the gradient ∇λ2

given in 5.7. This yields the simple step-forward operator:

Kds(Σl) = Σ
1/2
l exp

(
−ds 1

N
Σ

1/2
l

(
N∑

k=1

log(Σ−1
k Σl)

)
Σ
−1/2
l

)
Σ

1/2
l (5.11)

whose associated flow converges toward the barycenter for any initial guess Σ0.
At this stage, we can verify that our result is consistent with the gradient descent
proposed in [238]. Indeed, using the fact that ∀A,B ∈ GL(m,R), log

(
A−1BA

)
=

A−1 log (B)A and log
(
A−1

)
= − log (A), we have:

Σ
1/2
l exp

(
−ds 1

NΣ
1/2
l

(∑N
k=1 log(Σ−1

k Σl)
)

Σ
−1/2
l

)
Σ

1/2
l

= Σ
1/2
l exp

(
−ds 1

N

(∑N
k=1 log

(
Σ

1/2
l Σ−1

k ΣlΣ
−1/2
l

)))
Σ

1/2
l

= Σ
1/2
l exp

(
ds 1

N

(∑N
k=1 log

(
Σ
−1/2
l ΣkΣ

−1/2
l

)))
Σ

1/2
l

which coincides with the result in the above mentioned work. We describe this proce-
dure in the Algorithm 1.
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Algorithm 1 Riemannian estimation of the mean tensor
Require: {Σi} ∈ S+(3), i = 1, ...N and nit, the number of iterations
Ensure: Σ, the mean tensor

1: M ← I

2: for k = 1 to nit do
3: V ← O {3× 3 zero matrix}
4: for i = 1 to N do
5: V ← log

(
Σ−1
i M

)

6: V = 1
NMV

7: M ←M1/2exp
(
−M−1/2VM−1/2

)
M1/2

8: Return M

5.3.2 Intrinsic Covariance Matrix and Principal Modes

We propose a new algorithm for the computation of the intrinsic empirical covariance
matrix of a set of N multivariate normal distributions with zero mean vector. We
follow [62], and references therein, where this problem was addressed in the infinite
dimensional case of a set of planar closed curves.
The works of [116] and [238] are closely related. They derived the expression of the
Riemannian logarithmic map by considering S+ as a homogeneous space and using
the invariance property of the metric under congruence transformation. In [187], we
addressed this problem with an information geometric approach. As it will become
clear in the following, we use the gradient of the squared geodesic distance as the
initial velocity of the unique geodesic connecting two elements of S+. The estimation
of the covariance matrix becomes then computationally easier.
Our objective is to derive an intrinsic numerical scheme for the estimation of the co-
variance matrix Λ relative to the empirical mean Σ of N normal distributions and
using the explicit solution of the geodesic distance. As we consider the 6-dimensional
manifold of parameterized normal distributions with zero mean vector, we will natu-
rally end up with Λ ∈ S+(6,R) acting on the space S(6,R).
We associate to each of the N normal distributions P(.|Σk) the unique tangent vector
βk ∈ S(m,R) (seen as an element of R

n) such that the empirical mean Σ is mapped
onto Σk by the exponential map expΣ (βk) = Σ

1/2
exp

(
Σ
−1/2

βkΣ
−1/2

)
Σ

1/2 (see Figure
5.1). We then have the following definition:

Definition 5.3.2.1. Given N elements of S+(m,R) and a mean value Σ, the empirical
covariance matrix relative to Σ is defined as:

ΛΣ =
1

N

N∑

k=1

βkβ
T
k

We identify the βk with the opposite of the gradient of the squared geodesic dis-
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Figure 5.1: Depiction of the velocity field βk at the empirical mean Σ (The black
dotted lines represent the geodesics between each pair (Σk,Σ) and the red arrows are
the associated initial tangent vectors βk)

tance function ∇D2(Σk,Σ). As detailed in [211], we have:

∇D2(Σk,Σ) = Σ log(Σ−1
k Σ)

Once we have computed Λ, it is fairly easy and instructive, in order to further under-
stand the structure of our subset of normal distributions, to compute the eigenvalues
and eigenvectors of the covariance matrix. Fletcher and Joshi [115] generalized the
notion of Principal Component Analysis to Lie groups by seeking geodesic submani-
folds, by analogy with the lower-dimensional linear subspaces of PCA, that maximize
the projected variance of the data. They successfully applied this method to diffusion
tensor datasets in [116]. This actually amounts to characterizing the tangent space
at the mean element Σ through classical PCA in order to construct an orthogonal
basis of tangent vectors vk, k = 1, ..., d ≤ n that can be used to generate l-dimensional
subspaces Vl = span(v1, ..., vl), l ≤ n that maximize the projected variance. The vk are
defined as the set of eigenvectors of the covariance matrix Λ. However, since we have
the geodesics equation in S+, we have a closed-form expression to generate elements
of any geodesic submanifold Hk defined as the exponential mapping of the Vk.

Indeed, we can define any linear combination of the vk, v =
∑d

k=1 αkvk ∈ S(m,R) and
then compute the unique element C of S+(m,R) reached by following the geodesic
emanating from Σ in the direction v and computed as:

C = Σ
1/2

exp

(
Σ
−1/2

(
d∑

k=1

αkvk

)
Σ
−1/2

)
Σ

1/2 (5.12)

It is straightforward to apply our definition of the covariance matrix Λ to compute
those principal modes. In the next section, we will see how the covariance matrix
must be modified, because of the manifold curvature, to yield the concentration ma-
trix and an approximated continuous Gaussian pdf on S+.
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5.3.3 A Generalized Normal Law on S+(3)

Our last contribution uses the various quantities derived up to that point and fully
exploits the information they provide in order to derive the expression of a normal
law on S+. We proceed by using the appropriate quantities in the generalization of
the normal distribution to Riemannian manifolds proposed in [235] for sufficiently
concentrated probability density functions, e.g. for small covariance matrices. The
main idea of this work was to correctly deal with the curvature of the manifold since
it modifies the definition of the concentration matrix γ. In Euclidean space, this
matrix is simply the inverse of the covariance matrix Λ. On a Riemannian manifold,
we must incorporate the contribution of the Ricci curvature tensor R. We have the
following theorem :

Theorem 5.3.3.1. The generalized normal distribution in S+(m,R) for a covariance
matrix Λ of small variance σ2 = tr(Λ) is of the form:

p(Σ|Σ,Λ) =
1 +O(σ3) + ε(σξ )√

(2π)m(m+1)/2|Λ|
exp
−βTγβ

2
∀Σ ∈ S+(m,R)

Σ is computed as in section 5.3.1.
β is defined as −∇D2(Σ,Σ) = −Σ log(Σ−1Σ) and expressed in vector form.
The concentration matrix is γ = Λ−1 −R/3 +O(σ) + ε(σξ ), with Λ defined as in section
5.3.2 and R as in section 5.2.2 (both are computed at location Σ).
ξ is the injectivity radius at Σ and ε is such that lim0+ x

−ωε(x) = 0 ∀ω ∈ R
+.

It should be clear now that, in section 5.3.2, the contribution of the Ricci curvature
tensor was not taken into account and the concentration matrix was identified with
the inverse of the empirical covariance matrix Λ. When approximating a continuous
probability density function such as p(Σ|Σ,Λ) in the theorem above, equation 4.5 can
be used to compute the tensor R and, hence, to modify the covariance matrix in order
to reflect the local curvature properties of the manifold.

5.4 NUMERICAL EXPERIMENTS
We now would like to propose two interesting illustrations of the theory we

just developed. The first one is a direct application of the notions presented in section
5.3 and shows how to consistently generate a set of random covariance matrices so
that they follow our generalized normal law. The second illustration deals with the
issue of the interpolation of sparsely sampled S+-valued data.

5.4.1 Generation of Normally Distributed Random Tensors

Background

Figure 5.1 is useful to understand the situation and the problem we have to solve. It
is basically the opposite of the covariance matrix estimation problem. Let us consider

90



that we lie in S+(m,R) at Σ and that we want to shoot along the geodesics of the
space to reach the random, normally distributed, symmetric positive-definite matri-
ces Σk, k = 1, ..., N . Knowing the 6 × 6 covariance matrix Λ that we want to impose,
all we need to do is to randomly choose the shooting directions, e.g. the tangent vec-
tors βk ∈ S(m,R). In other words, we must be able to draw random samples of the βk,
seen as elements of R

m(m+1)/2 with zero mean and covariance matrix Λ. Any random
element Σk ∈ S+ is then obtained by applying the exponential map at Σ in a given
direction βk. In practice however, there is no need to do so since we have the follow-
ing relation between βk and Σk: βk = −Σ log(Σ−1

k Σ). Hence, the random covariance
matrix is readily obtained as:

Σk =
(

exp(−Σ
−1
βk)Σ

−1
)−1

(5.13)

We now discuss how to compute the random vector βk. As described for example
in [94], it is always possible to produce a random vector according to an imposed
covariance matrix Λ and a zero mean value. Indeed, if Z is a random vector of R

n, n =

m(m+1)/2 with independent and identically distributed components Z1, ..., Zn of zero
mean and unit variance, the vector that we seek is βk = HZ, such that:

E[βk] = HE[Z] = 0

E[βkβ
T
k ] = E[HZZTHT ] = HE[ZZT ]HT = HHT = Λ

Putting everything together, the three steps to generate a random element of S+ with
imposed mean and covariance matrix are:

Algorithm 2 Generation of Gaussian noise in S+(3)

Require: Σ and Λ, mean tensor and covariance matrix
Ensure: Σi, N normally distributed elements of S+(3)

1: for i = 1 to N do
2: Λ = HHT {Cholesky decomposition of the covariance matrix}
3: Create a random vector Z ∈ R

6, with zero mean and unit variance
4: From βi = ϕ−1 (HZ) ∈ S(3)

5: Σi ←
(
exp

(
−Σ

−1
βi

)
Σ
−1
)−1

We illustrate this method with the following example and use it to demonstrate the
performance of the numerical schemes described in section 5.3.

Results

We have generated a set S of up to 100000 covariance matrices parameterizing 3-
variate normal distributions and following the statistical distribution p(Σ|Σ,Λ) as
defined in theorem 5.3.3.1. To that end, we have randomly chosen the mean tensor Σ
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Elements 10 100 1000 10000 100000
D
(
Σ, Σ̃

)
0.5787 0.1110 0.0267 0.0114 0.0028

D
(
Λ, Λ̃

)
2.1959 0.5518 0.1484 0.0490 0.0208

Table 5.1: Geodesic distances D
(
Σ, Σ̃

)
and D

(
Λ, Λ̃

)
in terms of the number of ele-

ments

and the covariance matrix Λ while ensuring to verify the main hypothesis of theorem
5.3.3.1, namely a moderate variance tr(Λ) = 1.0. Those two quantities are given
below. It is then straightforward to use them in the above algorithm to generate our
set S. Once this synthetic dataset was created, we applied the numerical schemes
presented in the previous section to estimate the mean and covariance matrix. The
results of these computations with 100000 elements are denoted by Σ̃ and Λ̃. As we
can notice, they are very close to the expected values.

Σ =




0.90324 0.12560 −0.3106

0.12560 0.74092 0.20922

−0.3106 0.20922 1.25043


 Σ̃ =




0.9040 0.1254 −0.3111

0.1254 0.7401 0.2107

−0.3111 0.2107 1.2495




Λ =




0.3956 −0.0538 −0.0204 0.1725 −0.1387 −0.0698

−0.0538 0.0551 −0.0140 −0.0013 −0.0041 0.0455

−0.0204 −0.0140 0.1236 −0.0256 −0.0550 0.0330

0.1725 −0.0013 −0.0256 0.1436 −0.1035 0.0220

−0.1387 −0.0041 −0.0550 −0.1035 0.1430 −0.0526

−0.0698 0.0455 0.0330 0.0220 −0.0526 0.1391




Λ̃ =




0.3954 −0.0541 −0.0209 0.1714 −0.1375 −0.0712

−0.0541 0.0549 −0.0143 −0.0013 −0.0036 0.0452

−0.0209 −0.0143 0.1253 −0.0258 −0.0555 0.0330

0.1714 −0.0013 −0.0258 0.1425 −0.1021 0.0213

−0.1375 −0.0036 −0.0555 −0.1021 0.1415 −0.0514

−0.0712 0.0452 0.0330 0.0213 −0.0514 0.1383




Table 5.1 shows how well the set S fits the imposed Gaussian distribution as the
number of elements increases. As expected, the error greatly decreases with the size
of the random set. One last point of interest before moving to the next application is
the performance of the gradient descent algorithm, as already pointed out in [187]. By
running it repeatedly with different initial guesses, we have ensured that it was not
affected by that parameter since it converged every time in no more than 5 iterations.
This was highly reproducible and tested on the synthetic dataset S. In practice, we
thus always start from the identity. We also present, in table 5.2, the evolution of the
time of convergence (on a Pentium IV at 2.4GHz) in terms of the number of elements
in S. This is, of course, O(N).

92



Elements 10 100 500 1000 5000 10000 50000
Time (in s) 0.0665 0.4143 1.9685 3.8459 19.5005 39.4221 193.7162

Table 5.2: Mean estimation convergence time in terms of the number of elements

Figure 5.2: Linear Euclidean (left) / Riemannian (right) interpolation examples be-
tween two elements of S+

5.4.2 S+-valued Data Interpolation

We hereafter apply the above theory to the interpolation of S+-valued images like
those obtained by DTI. We show that moving from the Euclidean to the Riemannian
metric has a deep impact on the interpolation results. We experiment on simple
synthetic data in one dimension and then show how the procedure can easily be
extended to data defined on a regular sampling of a domain Ω ⊂ R

n, with n typically
being 2 or 3. Many refined approaches have already been proposed in the literature
such as [226], [54], [198] and [208] but few have investigated the importance of the
choice of the metric [184, 238, 20].

We start by considering the simple problem of the linear interpolation between
two elements of S+, as shown in figure 5.2. In the top row, the interpolation is
performed between tensors Σ1 and Σ2 with identical eigenvalues but different
orientations. In the bottom row, we want to evolve from a perfectly isotropic tensor
to a very anisotropic one. In figure 5.2, the color code represents the anisotropy (low
is blue and high is red). The interpolation can be done in a Euclidean fashion with

Σ(t) = (1− t)Σ1 + tΣ2 ∀t ∈ [0, 1]

or by resorting to the Riemannian metric and following the geodesic joining Σ1 to Σ2

in S+:
Σ(t) = Σ

1/2
1 exp

(
−tΣ1/2

1 log
(
Σ−1

2 Σ1

)
Σ
−1/2
1

)
Σ

1/2
1

It is quite obvious, from figure 5.2 and figure 5.3 that the interpolation obtained with
the Riemannian metric is more natural. Indeed, the tensors shape and anisotropy
evolve in a much more consistent manner with this metric than in the Euclidean
case (see tensors shape and color code evolution in figure 5.2 and graph in figure 5.3).
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Figure 5.3: Evolution of the anisotropy (left) and determinant (right) for the exam-
ple depicted in figure 5.2 (bottom row) under Euclidean (red) and Riemannian (blue)
interpolation

This is certainly desirable when dealing with human brain DTI datasets since using
the Euclidean metric could result, for instance, in artificially low/high anisotropy
measures in resampled datasets.
It is straightforward to extend this one-dimensional interpolation procedure to two-
or three-dimensional datasets. We only detail the bilinear interpolation procedure in
the following, but trilinear interpolation can be achieved in a very similar way and
more advanced techniques, like bicubic or spline interpolation, could also be used (see
[20] for instance).
For a two-dimensional image I : Ω ⊂ R

2 →M such that I(x) ∈ M, ∀x = (x1, x2) ∈ Ω,
bilinear interpolation at location x = (x1, x2) can be done if we know the value of I
at four neighboring locations p1 = (p1

1, p
1
2), p2 = (p1

1, p
2
2), p3 = (p3

1, p
1
2) and p4 = (p3

1, p
2
2).

Successive linear interpolations in both directions yield:

I(x) ' (p3
1 − x1)(p

2
2 − x2)

(p3
1 − p1

1)(p
2
2 − p1

2)
I(p1) +

(x1 − p1
1)(p

2
2 − x2)

(p3
1 − p1

1)(p
2
2 − p1

2)
I(p3) +

(p3
1 − x1)(x2 − p1

2)

(p3
1 − p1

1)(p
2
2 − p1

2)
I(p2) +

(x1 − p1
1)(x2 − p1

2)

(p3
1 − p1

1)(p
2
2 − p1

2)
I(p4) (5.14)

In other words, I(x) is a simple weighted average of the values of I at locations p1,
p2, p3 and p4. As we will detail in section 6.2.1, it is easy to extend the numerical
scheme proposed in section 5.3 for the computation of the average of a set of elements
{Σi}, i = 1, ..., N of S+ to compute a weighted average. This is done by replacing the
uniform weights 1

N by any set of scalars ωi such that
∑N

i=1 ωi = 1. I(x) can thus be
approximated by evaluating the quantity

∑4
i=1 ωiI(p

i) with ωi readily obtained from
equation 5.14.

5.5 CONCLUSION
We have presented a geometric approach to the statistical analysis of mul-

tivariate normal distributions with zero mean vector. We have developed novel algo-
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rithms for the estimation of the mean and covariance matrix. We have also described
how to compute the Ricci tensor for the space of zero-mean multivariate normal dis-
tributions. All these contributions have been used in order to derive and fully charac-
terize a generalized normal law on the space of zero-mean multivariate normal dis-
tributions. Finally, we illustrated these concepts by applying them to the generation
of random elements of S+ and to the interpolation of S+-valued data.
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OVERVIEW
In this chapter, we will address two of the most basic processing tasks for diffusion
weighted images (DWI), namely the estimation of diffusion tensors and the regular-
ization of the resulting matrix-valued images. Estimation is of course necessary and
must be carefully addressed in order to enforce the properties of diffusion tensors.
Otherwise, this may yield, for example, inconsistent directional or anisotropy infor-
mation. Regularization, on the other side, can be useful to enhance tractography
results for instance, when dealing with particularly noisy datasets.

Keywords: diffusion tensor, estimation, M-estimators, weighted average,
anisotropic regularization, nonlinear diffusion

6.1 DIFFUSION TENSOR ESTIMATION
As already quickly described in chapter 3, DTI evaluates, from a set of

diffusion weighted images, the covariance matrix Σ of the water molecules Brownian
motion at each voxel of the acquisition volume Ω ⊂ R

3. In other words, it approxi-
mates the probability density function modeling the motion of water molecules by a
3-variate normal distribution of zero mean vector r ∈ R

3.

The estimation of the field of 3×3 symmetric positive definite matrices Σ : Ω→ S+(3)

is performed by using the Stejskal-Tanner equation [275] for anisotropic diffusion.
We recall that this equation relates the magnetic resonance signal attenuation to the
diffusion tensor and the sequence parameters:

Si(x) = S0(x) exp (−bgTi Σ(x)gi) ∀x ∈ Ω, i = 1, ..., N (6.1)

gi = (g1
i , g

2
i , g

3
i )
T , i = 1, ..., N are the unit and non-collinear gradient directions cor-

responding to each diffusion weighted image Si and b is the diffusion weighting factor.
Moreover a reference image S0, without diffusion gradient, must be acquired [27],
[157] , [140]. Many approaches have already been derived to estimate the diffusion
tensors Σ(x) from a set of DWI (at least 6 since a tensor has 6 degrees of freedom) and
references can be found for example in [310], [202], [305], [285] [60], [217] [167, 168].
We must also point out that various works, such as [139] or [227], have addressed
the issue of the optimal acquisition scheme for DTI. It is in general a good idea to
use much more than 6 diffusion gradients in order to minimize the propagation of
noise from the DW images on the tensor elements. As demonstrated in [156], at least
30 gradient directions are necessary to achieve a robust estimation of the apparent
diffusion coefficient, fractional anisotropy (see section 6.1.4) and tensor orientations.
In the following, we will first review the classical least squares approach and then
introduce a novel method, based on the geometry of S+(3), for tensor estimation. We
will show that the latter clearly outperforms the former.
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6.1.1 Classical Least Squares Estimation Procedure

The classical technique for tensor components estimation relies on a least squares
procedure. The basic idea is to rewrite equation 6.1 as a linear system which can
then be efficiently solved.
First, taking the logarithm in equation 6.1 yields

−1

b
ln

(
Si(x)

S0(x)

)
= gTi Σ(x)gi

Then, noticing that gTi Σ(x)gi can be rewritten as the Euclidean inner product
〈Gi, ϕ(Σ)〉 with

Gi = (g1
i g

1
i , 2g1

i g
2
i , 2g1

i g
3
i , g

2
i g

2
i , 2g2

i g
3
i , g

3
i g

3
i )
T ∈ R

6

and
ϕ(Σ(x)) = (σ11, σ12, σ13, σ22, σ23)

T ∈ R
6

as in section 5.2.1, we finally end up with the system



GT1
...
GTN




︸ ︷︷ ︸
G

ϕ(Σ(x)) =




−1
b ln

(
S1(x)
S0(x)

)

...
−1
b ln

(
SN (x)
S0(x)

)




︸ ︷︷ ︸
Y(x)

(6.2)

In general, N is larger than 6 and this over-determined system can be solved by
resorting to the linear least squares method (see [250] for instance):

ϕ(Σ(x)) =
((

GTG
)−1

GT
)
Y(x)

(
GTG

)−1
GT being the Moore-Penrose pseudoinverse of G.

This technique is very fast (no more than a few minutes even on large datasets)
but does not constrain the tensors to have positive eigenvalues. We now describe a
method, based on intrinsic numerical schemes for S+(3), which naturally produces
diffusion tensors with the right mathematical properties and, hence, the right
physical meaning (ie. negative eigenvalues are impossible).

6.1.2 Fitting Tensors on S+(3)

We now seek to minimize the following general objective function at each x ∈ Ω by
searching for the optimal Σ ∈ S+(3) (we note Σ instead of Σ(x) for the sake of clarity):

E (S0, ..., SN ) =
N∑

i=1

ψ

(
1

b
ln

(
Si
S0

)
+ gTi Σgi

)
(6.3)
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where ψ : R → R is a real-valued functional that, in the M-estimators framework,
tries to reduce the effect of outliers by replacing the classical squared residual
ψ(ri) = r2i /2 by another function. M-estimators, or “maximum likelihood estimators”,
always assume some particular distribution for the data of interest. If the data
do not follow this distribution or present many outliers, M-estimators can become
inefficient. It was proposed by Huber [144] to choose ψ, or its derivative ρ, so as to
exhibit an unbiased and efficient behavior when the data do fit the assumed model
and a reasonable behavior when it follows a different but close distribution. ψ must
have a unique minimum at zero and should be chosen to be less increasing than the
square function (see for example [323]).

Following [285], we will use intrinsic numerical schemes on S+(3), similar to
the gradient descent proposed in section 5.3 to estimate the empirical mean, for our
tensor estimation purpose. We will not incorporate any smoothness constraint on
the tensor field but the major advantage of this approach is to naturally evolve on
S+(3). Compared to simple least squares, this ensures the symmetry and positive
definiteness of each diffusion tensor. Moreover, the combination of robust regression
methods with this intrinsic gradient descent enables us to propose a more reliable
and efficient estimation technique.

In order to minimize energy 6.3 through a gradient descent, we follow exactly
the same idea than for the mean and thus need to compute the gradient of E . We
recall that, given a smooth function f : Σ ∈ S+(3) 7→ f(Σ) ∈ R, its derivative in the
direction v at Σ:

Df(Σ)v = lim
s→0

f(Σ + sv)− f(Σ)

s
and the inner product 〈., .〉Σ, the gradient ∇f exists and is unique by the Riesz-
Fréchet theorem. It is defined by the relationship:

Df(Σ)v =
df(Σ(t))

dt

∣∣∣∣
t=0

= 〈∇f(Σ(t)), v〉Σ(t)

∣∣
t=0

where Σ(t) is the unique geodesic starting from Σ(0) = Σ in the direction v = Σ̇(0).
With the residual ri(Σ(t)) = 1

b ln
(
Si
S0

)
+ gTi Σ(t)gi we have by the chain rule:

dψ(ri(Σ(t)))

dt

∣∣∣∣
t=0

=
dψ(ri)

dri

∣∣∣∣
t=0




3∑

k,l=1

∂ri(Σ(t))

∂Σkl(t)

dΣkl(t)

dt




∣∣∣∣∣∣
t=0

=
dψ(ri)

dri
tr
(
dri(Σ(t))

dΣ(t)

(
dΣ(t)

dt

)T)∣∣∣∣∣
t=0

= ψ′(ri)tr
(
gig

T
i Σ̇(0)

)

= ψ′(ri)tr
(
Σ−1Σgig

T
i ΣTΣ−T Σ̇(0)

)

= ψ′(ri)tr
(
Σ−1Σgi (Σgi)

T Σ−1Σ̇(0)
)
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The last line uses the symmetry of Σ, ie. Σ−T = Σ−1. Hence, because of equation 5.1,

∇ψ(ri(Σ)) = ψ′(ri(Σ))Σgi (Σgi)
T ∈ S(3)

and finally:

∇E =
N∑

i=1

ψ′(ri(Σ))Σgi (Σgi)
T

We can use the intrinsic step-forward integrator of proposition 5.3.1.1 to obtain the
gradient descent (which depends on the function ψ) to be carried out at each voxel x
of the volume Ω:

Σl+1 = Σ
1/2
l exp (−dsΣ−1/2

l ∇E Σ
−1/2
l )Σ

1/2
l

= Σ
1/2
l exp

(
−dsΣ−1/2

l

(
N∑

i=1

ψ′(ri(Σl))Σlgi (Σlgi)
T

)
Σ
−1/2
l

)
Σ

1/2
l

We now discuss some numerical issues and show that this methods yields better
results on synthetic and real datasets.

6.1.3 Numerical Experiments

The numerical scheme given above has been implemented for various well-known
functions ψ, namely the Cauchy, Fair, Huber and Tukey M-estimators, and their as-
sociated influence function ψ′(r). In practice however, we use Huber’s function

ψ(r) =

{
r2

2 for |r| ≤ k
k(|r| − k

2 ) for |r| > k

since this estimator is very satisfactory with the classical tuning constant k = 1.2107

which allows to achieve an asymptotic efficiency of 95% on the standard normal
distribution.

The combination of the M-estimators with our intrinsic gradient descent has
shown to be far less sensitive to noise than the classical least squares and to
naturally avoid the estimation of non-positive definite tensors. By applying a least
squares estimation procedure on various DTI datasets, we usually obtained a few
thousands negative definite or positive semidefinite tensors (see [167] for a recent
investigation on this matter). This is obviously always corrected by our method.
We however need to point out the higher computational overhead of the gradient
descent, by comparison to least squares. Our method, because of the need to
perform a gradient descent at voxel of the image (this can take up to a few hundreds
iterations), typically requires a computation time of one to two hours for volumes of
dimensions 128× 128× 64.

To prove the robustness of our method, we have generated a synthetic dataset
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NPD tensors Mean Variance Minimum Maximum
Least Squares 225 12.8906 40.4182 0.00198837 227.899

Gradient Descent 0 0.587561 5.78362 0.00409459 143.845

Table 6.1: Comparison of the performance of least squares and gradient descent ten-
sors estimation: [COL. 1] Number of non-positive definite tensors, [COL. 2-5] Statis-
tics of the geodesic distance between estimated and ground-truth tensor fields

consisting of a 50× 50 tensor field divided in 2 regions: the background and a 20× 20

square area centered at pixel (25, 25). Each region was assigned with a distinct
mean tensor and covariance matrix. We used the method proposed in section 5.4.1
to randomly choose the tensors belonging to each region. They follow 2 different
normal distributions and thus span a wide range of tensor configurations, which
is desirable to consistently evaluate the performance of our estimator. The tensor
field is presented on figure 6.1 (Left) where each of the 3 × 3 matrix is depicted
as a 3D ellipsoid. We created an artificial set of diffusion weighted images from
this tensor field by using the Stejskal-Tanner equation 6.1. S0 was taken to be
constant and equal to 10 everywhere while the diffusion weighting factor b was set
to 1s.mm−2. Finally, 12 gradient directions gi were used and given by the vertices of
the icosahedron. The images were corrupted by a Gaussian noise with variance 0.52

(images intensity amplitude was approximately [2, 10]).

We performed the estimation of the diffusion tensors by least squares and by
our gradient descent algorithm with time step ds = 0.2 and 600 iterations. It was
then possible to compare the accuracy of the reconstructed tensor fields by computing
the geodesic distance between the tensor estimates and the ground-truth data at
each voxel. Table 6.1 summarizes the results and is a striking proof of the gradient
descent approach superiority.

We also applied our approach to a real set of diffusion weighted images. They
were acquired at the Center for Magnetic Resonance Research at the University of
Minnesota, on a 3 Tesla Siemens Magnetom Trio whole-body clinical scanner. As
for the synthetic dataset, measurements were made along 12 gradient directions.
We used a classical diffusion weighting factor b = 1000s.mm−2, TE= 92ms and
TR= 1690ms. The images were obtained on 64 evenly spaced axial planes with
128 × 128 pixels per slice. Voxel size is 2 × 2 × 2mm. An axial slice of the obtained
tensor field, after 1500 iterations with ds = 0.2, is shown on figure 6.1 (Right).
We have observed particularly significant differences between the two estimation
methods in highly anisotropic regions, such as the corpus callosum, where the least
square method could lead to negative definite or positive semidefinite tensors. In
such cases, the nonpositive eigenvalues are artificially set to a very small non-null
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Figure 6.1: Diffusion Tensor Estimation: (Left) Synthetic tensor field used to com-
pare our method to least squares estimation, (Right) Estimation of diffusion tensors
from real DWI by gradient descent (Red: low anisotropy / Blue: high anisotropy / A:
anterior / P: posterior)

value, leading to unreliable, highly planar (with one negative or null eigenvalue)
or linear (with two negative or null eigenvalues) anisotropic tensors and possibly
to numerical instabilities in subsequent tensor based computations. This situation,
naturally, never occurs with the intrinsic gradient descent method as the solution
necessarily belongs to S+(3). Figure 6.2 illustrates these differences with a close up
of an axial slice containing the splenium of the corpus callosum.

6.1.4 From Diffusion Tensor to Tissues Properties

We quickly recall some of the important quantities that can be derived from diffusion
tensors to characterize the microstructure of the tissues of interest. First of all, a
tensor Σ can be diagonalized, since it is symmetric and positive definite, such that

Σ = UDUT

where U is an orthogonal matrix whose columns coincide with the eigenvectors u1,u2

and u3 of Σ and D is a diagonal matrix composed by the eigenvalues λ1 ≥ λ2 ≥ λ3

of Σ. Eigenvectors ui provide information on the local orientation of tissues. For
instance, the major eigenvector u1, also called principal diffusion vector, is widely
used to generate color coded images where the red, green and blue components of the
RGB image are given by the three elements of each vector u1. From the eigenvalues, it
is possible to derive several scalar quantities like, among others, the mean diffusivity
(MD), fractional anisotropy (FA), linear anisotropy (LA), planar anisotropy (PA) and
spherical anisotropy (SA) [22, 27, 242, 310] (see examples in figure 6.3):

• The mean diffusivity is independent of the orientation of diffusion, it is an over-
all evaluation of the mean-squared displacement of water molecules. It is com-

105



Least squares method Riemannian method

Figure 6.2: Estimation of Diffusion Tensors: comparison between classical least
squares (Left) and gradient descent in S+(3) (Right). (Blue: low anisotropy; Red:
high anisotropy). Notice the difficulty to represent tensors in the middle of the cor-
pus callosum with the least square approach, suggesting degenerate “needle-shaped”
tensors in this region.

puted from the trace of the diffusion tensor:

MD =
tr(Σ)

3
=
λ1 + λ2 + λ3

3

• The fractional anisotropy is certainly the most widely used anisotropy measure.
It is based on the variance of the eigenvalues and expressed as

FA =

√
3 ((λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2)√

2
(
λ2

1 + λ2
2 + λ3

3

)

• Westin et al. [310] introduced the notions of linear, planar and spherical
anisotropy which respectively measure the tendency of a tensor to be elon-
gated, oblate or spherical. They come from the fact that any tensor Σ can be
expressed in a basis composed by a linear tensor L = u1u

T
1 , a planar tensor

P = u1u
T
1 + u2u

T
2 and a spherical tensor S = u1u

T
1 + u2u

T
2 + u3u

T
3 , in other

words Σ = clL + cpP + csS with cl = LA = λ1−λ2

λ1+λ2+λ3
, cp = PA = 2(λ2−λ3)

λ1+λ2+λ3
and

cs = SA = 3λ3

λ1+λ2+λ3
.

6.1.5 Conclusion

We have demonstrated that it was possible to naturally enforce the positivity con-
strain in the tensor estimation procedure by working with adequate numerical tools
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Figure 6.3: From left to right: Principal diffusion vector u1, fractional anisotropy,
linear anisotropy, planar anisotropy and spherical anisotropy

on the manifold S+(3). Our experiments illustrated the advantage of the method
presented in section 6.1.2 over classical least squares. However, working with tensor
fields may also require some regularization to reduce the noise arising, for instance,
from the acquisition process. In the next section, we focus on the contribution of the
mathematical tools, developed in chapter 5, to the anisotropic filtering and regular-
ization of tensor fields. To validate our approach we present promising results on
both, synthetic and real DTI data.

6.2 REGULARIZATION OF DIFFUSION TENSOR IMAGES
Regularization and filtering schemes of tensor fields are widely studied in

the literature, especially in the domain of DTI. As an example, [285] deals with the
problem of regularizing noisy fields of diffusion tensors, considered as symmetric
and positive definite n × n matrices, through a PDE-based scheme and a spectral
decomposition. A complementary work is that presented in [63] which provides
a geometric interpretation of constrained flows for matrix-valued functions. This
yields, through the use of exponential maps, suitable numerical schemes that
are also constraints preserving. Another approach presented in [308] provides a
generalization of anisotropic and nonlinear diffusion process to matrix-valued data.
More recently, [80] proposes a scheme, based on variational methods, restoring the
main direction of the tensors and using the resulting direction to regularize the
eigenvalues by an anisotropic diffusion process. However, tensor eigenvalues tend
to regularize faster than the associated eigenvectors. This phenomenon is known
as the eigenvalue swelling effect for long regularization time, as shown in [284],
while noise removal is not quite significant for short regularization time. Other
works try to couple the regularization with the tensors estimation process from
diffusion-weighted images. For example, [305] presents a constrained variational
principle which involves the minimization of a regularization term, based on Lp

norms and subject to a nonlinear constraint on the data to obtain positive definite
tensors. Recently, [311] proposes techniques based on normalized convolution or
Markov random fields for the regularization of tensor fields.
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In this section, we will rely on the properties of the space of multivariate nor-
mal distributions, as presented in chapter 5.

Contributions of this section:
In the following, we use the mathematical framework presented in chapter 5 to

take into account the particular geometry of the set of symmetric, positive definite
matrices in the smoothing process. We introduce an anisotropic filtering algorithm
controlled by the magnitude of the spatial gradient of the tensor field. On the contrary
of [116], where a statistical analysis of diffusion tensors was proposed but without
addressing the problem of smoothing, or [238], where the regularization task was
addressed with a PDE point of view, our smoothing method, developed in parallel to
[238] and based on our previous work developed earlier in [187], only relies on simple
and local anisotropic averaging. Adding to that, our method is favorably compared
to a state-of-the-art approach [308]. A detailed analysis of the performances of our
approach is performed and qualitative and quantitative results obtained on noisy
and synthetic data show that our approach outperforms the one proposed in [308].
The emphasize of this section is on the clear and efficient application of the tools
presented in chapter 5 to solve the important problem of anisotropically smoothing a
set of noisy tensor data using the right concepts and tools, extending previous PDE-
based approaches such as [285].

Organization of this section:
Section 6.2.1 shows how the tools introduced in chapters 4 and 5 can be used to

compute local averages and spatial gradient of diffusion tensor images. Section 6.2.2
introduces the filtering process. Finally, section 6.2.3 presents and discusses numer-
ical experiments. We will show that our Riemannian anisotropic filtering method
yields better results on both synthetic and real DTI datasets when compared to other
approaches such as the nonlinear diffusion proposed in [308].

6.2.1 Local Average and Spatial Gradient of Diffusion Tensor Fields

We hereafter present how to compute the anisotropic local average and spatial gra-
dient of a diffusion tensor image. The first paragraph is a direct extension of section
5.3.1 and also useful for the interpolation task described in section 5.4.2. The second
paragraph is the application of section 4.3.2 to the particular case of the manifold of
interest here, namely S+(3).

Weighted intrinsic mean

In the same way the intrinsic mean was defined in section 5.3.1, we can also cal-
culate a weighted intrinsic mean which ponderates a set of N normal distributions
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Σ1,Σ2, . . . ,ΣN ∈ S+(3) with the weights ω1, ω2, . . . , ωN , ωi ∈ R
+ In this case, the nor-

mal distribution parameterized by Σ̂w ∈ S+(3) and defined as the weighted empirical
mean of N distributions Σ1,Σ2, . . . ,ΣN , achieves a minimum of the weighted sum of
squared distances defined by

µw(Σ̂w,Σ1,Σ2, . . . ,ΣN ) =

∑N
k=1 ωkD2(Σ̂w,Σk)∑N

k=1 ωk
(6.4)

Following the same steps as in section 5.3.1, the following evolution equation for the
weighted intrinsic mean is readily obtained:

Σ̂w
l+1 = Σ̂w1/2

l exp


−dt

Σ̂w1/2

l

(∑N
k=1 ωk log(Σ−1

k Σ̂w
l )
)

Σ̂w−1/2

l
∑N

k=1 ωk


 Σ̂w1/2

l (6.5)

In practice, for the sake of efficiency and stability, it is important to implement this
evolution by carefully checking the amplitude and direction of the velocity. This will
be detailed in section 6.2.2.

Spatial gradient of diffusion tensor fields

In this section, we show why the notions introduced in section 4.3.2 are true for the
manifold of interest S+. We recall, from sections 4.3.2 and 5.3, that it is possible to
estimate the magnitude of the gradient of a diffusion tensor field Σ(x) : Ω ⊂ R

3 7→
S+(3) at x ∈ Ω through the sum of squared geodesic distances between tensors in
orthogonal directions on a discrete grid, as indicated by the following expression:

|∇Σ(x)|2 '
3∑

k=1

D2(Σ(x),Σ(x± ek)) (6.6)

where ek denotes the elements of the canonical basis in R
3. To derive equation 6.6,

we use the explicit formulation of the geodesic presented in section 5.2, which allows
us to calculate the geodesic starting at Σ0 = Σ(x) in the direction V = Σ̇(0) as:

Σ(t) = Σ
1/2
0 exp(tΣ

−1/2
0 V Σ

−1/2
0 )Σ

1/2
0 (6.7)

Hence, as we know that Σ(1) = Σ(x± ek) = Σ1, we obtain that:

V = Σ
1/2
0 log(Σ

−1/2
0 Σ1Σ

−1/2
0 )Σ

1/2
0 = Σ̇(0) (6.8)

It can be shown that this quantity is actually equivalent to the opposite of the gra-
dient of the squared geodesic distance ∇D2(Σ0,Σ1) whose expression was given by
Moakher [211]:

∇D2(Σ0,Σ1) = Σ0 log
(
Σ−1

1 Σ0

)

Indeed, it is easy to see that Σ
1/2
0 log(Σ

−1/2
0 Σ1Σ

−1/2
0 )Σ

1/2
0 can be rewritten as

Σ0Σ
−1/2
0 log(Σ

−1/2
0 Σ1Σ

−1/2
0 )Σ

1/2
0 . Using the following property:

M−1
1 log(M2)M1 = log(M−1

1 M2M1), ∀M1,M2 ∈ GL(m) (6.9)
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we get
V = Σ0 log (Σ−1

0 Σ1) = −Σ0 log (Σ−1
1 Σ0)

The symmetric matrix V can thus be used to approximate the spatial directional
derivative of a tensor field. To better understand why this is correct, we can consider
the Euclidean distance between tensors

D2
E(Σ0,Σ1) = |Σ0 − Σ1|2F = tr

(
(Σ0 − Σ1)(Σ0 − Σ1)

T
)

for which, using the fact that ∇tr (XY ) = Y T , ∀X,Y ∈ GL(m), we have
∇D2

E(Σ0,Σ1) = Σ0 − Σ1. In other words, this corresponds to the difference tangent
vector, usually used in finite difference schemes to approximate a spatial gradient. V
generalizes this notion by taking into account the Riemannian structure of the space
S+(3).
All we need to prove now is that the magnitude of the tangent vector V , taking into
account the Riemannian metric of S+(3), is equal to the squared geodesic distance
between Σ0 and Σ1, so that equation 6.6 is true.
Noting that V is, by definition, the logarithm of Σ1 at Σ0, logΣ0

(Σ1) = Σ̇0, we know
this is true since one of its properties is:

〈Σ̇0, Σ̇0〉Σ0
= D2(Σ0,Σ1)

Indeed, we have

〈V, V 〉Σ0
=

1

2
tr
((
−Σ−1

0 Σ0 log (Σ−1
1 Σ0)

)2)
=

1

2
tr
((

log (Σ−1
0 Σ1)

)2)

and since the matrices Σ−1
0 Σ1 and Σ

−1/2
0 Σ1Σ

−1/2
0 are similar, we have

〈V, V 〉Σ0
= 1

2tr
(
log2

(
Σ
−1/2
0 Σ1Σ

−1/2
0

))
= D2(Σ0,Σ1). Hence, to obtain the gradi-

ent magnitude within the Riemannian framework, we simply calculate the geodesic
distances in orthogonal directions following equation 6.6.

Let us now compare the differences between the gradient magnitude in a Eu-
clidean sense and our definition in the Riemannian framework. For the sake of
simplicity, we are going to study the case of tensors in a two-dimensional neigh-
borhood N containing a boundary like that shown in figure 6.4, where white
dots represent tensors T1 = λ1v1v1

T + λ2v2v2
T and black dots represent tensors

T2 = k1λ1v1v1
T + k2λ2v2v2

T , with λi, (i = 1, 2) being the eigenvalues of T1, associated
to eigenvectors vi and some constants ki. Using equation 6.6 and the definition of the
geodesic distance in equation 9.4, it is not hard to see that:

|∇N |2 = D2(T1, T2) =
1

2
(log2(k1) + log2(k2)) (6.10)

while the magnitude of the Euclidean gradient is:

|∇N |2E = |T1 − T2|2F = λ2
1(1− k1)

2 + λ2
2(1− k2)

2 (6.11)
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Figure 6.4: 3 × 3 Neighborhood N of a tensor field. White dots represent tensors T1

whereas black dots are tensors T2
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Figure 6.5: Gradient magnitudes as a function of parameter K. Red Line: Rieman-
nian Gradient Magnitude. Blue Lines: Euclidean Gradient Magnitude for different
eigenvalues Dashed Line: λ1 = 0.22, λ2 = 0.22. Solid Line: λ1 = 0.94, λ2 = 0.33.
Dashed-Dotted Line: λ1 = 1.05, λ2 = 0.80.

It is remarkable that the Riemannian gradient magnitude is independent of the
eigenvalues since it only depends on the constant factors, that is to say, the magni-
tude is scale-independent. Figure 6.5 presents both gradient magnitudes for different
values of k1 = k2 = K and different values of λ1, λ2. While the Riemannian gradient
is not affected by different values of λ1, λ2, the slope of the Euclidean gradient
magnitude is determined by the square root of the sum of the squared eigenvalues,
showing that the larger the eigenvalues, the steepest the slope represented by the
blue lines in figure 6.5.

Let us now study the different behaviors when we have, in our neighborhood
N , the same tensors but rotated by an angle α. The white tensors are now defined as
T1 = λ1v1v1

T + λ2v2v2
T while T2 = P TT1P , with P an orthogonal unitary rotation

matrix. Again, using equations 6.6 and 9.4 it is not difficult to derive the following
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expression for the Riemannian gradient magnitude:

|∇N |2 = D2(T1, T2) =
1

2
(log2(A+) + log2(A−)) (6.12)

where A+ and A− are, respectively

A± =
(2λ1λ2 + sin2(α)(λ1 − λ2)

2 ± sin(α)(λ1 − λ2)
√

sin2(α)(λ1 − λ2)2 + 4λ1λ2)

2λ1λ2
(6.13)

On the other hand, the Euclidean gradient magnitude is:

|∇N |2E = |T1 − T2|2F = 2 sin2(α)(λ1 − λ2)
2 (6.14)

Again, the dependence of the Riemannian gradient magnitude on eigenvalues is less
important than that of the Euclidean gradient magnitude. Figure 6.6 shows different
responses of the gradient magnitudes as a function of the angle α ∈ [0, π]. On the
left, we show the gradient magnitudes for anisotropic tensors, for which eigenvalues
ratio is large. In that case, for λ1 = 0.99, λ2 = 0.2 it can be seen that the response
of the Riemannian gradient (solid red line) is larger than the response of the Eu-
clidean gradient. On the right, we show the gradient magnitudes with more isotropic
tensors, with eigenvalues ratio close to one (λ1 ' λ2). In this case, the Riemannian
gradient magnitude provides a smaller response (solid red line) than the Euclidean
gradient magnitude (solid blue line). However, as the Euclidean gradient magnitude
is proportional to the squared eigenvalues, a problem may arise with isotropic ten-
sors if the eigenvalues are too large, as the dashed lines show. In that case, with
λ1 = 19, λ2 = 17.5, the Euclidean gradient magnitude is much bigger than the Rie-
mannian one which, on the contrary, stays almost identical to its value for small λi.

6.2.2 Anisotropic Filtering

We now make use of the concepts previously presented to develop our Riemannian
anisotropic smoothing algorithm. It is detailed in the first paragraph of this section.
We also review, in the second paragraph, another filtering algorithm based on the
generalization of PDEs to tensor fields. These methods will be quantitatively com-
pared in the next section.

Riemannian anisotropic smoothing

In this section we develop a boundary preserving smoothing algorithm. In practice,
we simply use the step-forward operator of equation 6.5 to compute local weighted
averages. The anisotropic behavior is introduced by weighting each sample, within a
local neighborhood, by a function that depends on the Riemannian gradient magni-
tude, as developed in section 6.2.1. This function is chosen so that, in homogeneous
regions, the weights are constant and the tensors are isotropically averaged. On the
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Figure 6.6: Gradient magnitudes as a function of rotation angle α. Red Lines: Rie-
mannian Gradient Magnitude. Blue Lines: Euclidean Gradient Magnitude. Left
Image: Response for anisotropic tensors. Right Image: Response for more isotropic
tensors.

contrary, when lying on an edge of the image, we would like that only samples on
that boundary, and not those across, contribute to the local averaging. To achieve this
goal and avoid mixing structures of the image, one possible choice for the weighting
function is ωk = ε+ |∇Σ(x)|2.

A major advantage of this approach is that a straightforward C++ implemen-
tation yields a quite computationally efficient algorithm since, to regularize a
50 × 50 × 50 volume of 3 × 3 tensors, using a 3 × 3 × 3 averaging neighborhood, we
obtain a processing time of about 8 minutes on a 1.7 GHz Pentium M CPU with 1 Gb
of RAM. Moreover, it is easy to automatically detect the convergence of the gradient
descent, detailed in equation 6.5, by checking the evolution speed

Σw
l

(∑N
k=1 ωk log(Σ−1

k Σ̂w
l )
)

∑N
k=1 ωk

and stopping whenever a given norm (Frobenius, Riemannian ...etc for instance) of
this symmetric matrix has reached a certain threshold (10−6 in practice). Hence not
only do we ensure the convergence of the weighted mean but we also discard the need
for a parameter such as the number of iterations. Instead of setting a fixed number of
iterations, often too large (for the full volume) we can decide (for each voxel) whether
the gradient descent has converged or not.
In order to avoid any oscillating behavior in the gradient descent, we verify at each
iteration that the velocity does not change sign. If this is the case, it means that
we are close to the minimum but that the time step is too large, hence generating
oscillations around that minimum. Whenever this situation occurs, we simply come
back to the previous state of the gradient descent and adapt the time step by dividing
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it by 2 until convergence. This may be repeated while approaching the minimum, if
necessary.

Nonlinear diffusion of tensor fields

In this section, we focus on nonlinear diffusion filters, as presented in [308] and stud-
ied, in the context of local structure tensor estimation, in [43]. For scalar images,
diffusion filters provide a family of images {u(x, t) | t > 0} for an initial image u(x, 0)
by solving the following partial differential equation (PDE)

∂tu(x) = 4u(x) (6.15)

which is equivalent to a convolution with a Gaussian kernel with standard devia-
tion σ =

√
2t. The goal of nonlinear diffusion filters is to reduce smoothing across

boundaries [239]. To achieve that goal, it is necessary to introduce in equation 6.15 a
function g, called diffusivity function, which correlates the amount of smoothing with
the gradient magnitude of the image, as follows:

∂tu(x) = div(g(|∇u|)∇u(x)) (6.16)

Several diffusivity functions have been proposed in the literature with different im-
pact on the resulting image [239, 307, 61]. The total variation flow, for instance,
(Equation 6.17) has been widely used since it is theoretically well-founded:

g(|∇u|) =
1

|∇u| (6.17)

This scheme can also be generalized for a tensor field T (x) = (u(x)i,j) : Ω 7→ S+(3) as
proposed in [308], which leads to the following PDE:

∂tu(x)i,j = div(g(
m∑

k,l=1

|∇uk,l|2)∇u(x)i,j) (6.18)

To deal with digital images, whether tensor- or scalar-valued images, we have to dis-
cretize the PDE and build an iterative algorithm in order to obtain a filtered version
of the initial digital image. The final results mainly depends on the number of itera-
tions n and the time step δt between two consecutive iterations. The main drawback
of this approach is that there is no criterion to decide the optimal number of iterations
and/or time step, and different solutions may be obtained. However, it can be easily
shown that tensors evolving under equation 6.18 stay symmetric positive definite if
the initial value T (0) = (u(0)i,j) is symmetric positive definite [43].

6.2.3 Numerical Experiments

In this section, we present various numerical experiments and compare the regular-
ization methods previously detailed on synthetic and real DTI data.
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Figure 6.7: Left: Original synthetic dataset. Right: Noisy image. / Color code: Blue =
low FA and Red = high FA

Figure 6.8: Results on denoising synthetic data. Left: Gaussian convolution (Equa-
tion 6.15). Middle: Nonlinear diffusion (Equation 6.18). Right: Anisotropic Rieman-
nian filtering (section 6.2.2).

Synthetic Data

Experiment 1
In order to check the performance of our approach we generate a 50 × 50 × 50

synthetic field of 3 × 3 tensors which roughly simulates a bifurcation of two fibers.
In figure 6.7, we display a partial view of one slice in our volume, without noise on
the left and with a low level of noise on the right. For this image, as well as any
other tensor field presented in this section, the color code is related to the fractional
anisotropy (FA) of the tensors with: Blue = low FA / Red = high FA. To generate the
noise we use a generalization of the Gaussian distribution for samples belonging
to S+(3). By using the algorithm proposed in [184] (see section 5.4.1), we can
easily generate a set of random positive definite tensors with the desired mean and
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Figure 6.9: Detail of boundaries. Left: Gaussian filtering (Equation 6.15). Right:
Anisotropic Riemannian filtering (section 6.2.2).

covariance matrix. This is a much more satisfying approach than, as usually done,
simply building symmetric matrices with independent and identically normally
distributed components and then enforcing their positiveness since this leaves no
grasp on the actual distribution of the tensors. Moreover, the algorithm proposed in
[184] is consistent with the parametric model for noise in DTI proposed in [21]. In
this work, the authors proved that, assuming that the magnitude diffusion weighted
images are Rician distributed, noise in diffusion tensor data within a voxel follows a
6-dimensional Normal distribution.

We then try to recover the original image from the noisy version. Figures 6.8
compares the outputs of the filtering schemes presented in this section from a
qualitative point of view. The image on the left was obtained by convolving each
component of the tensor with a Gaussian kernel (σ = 1.5). This is equivalent to
the diffusion process presented in equation 6.15. In the middle we can see the
best output we have obtained with the nonlinear diffusion process presented in
equation 6.18 with time step 0.01 and 36 iterations. The result on the right uses
our anisotropic Riemannian approach presented in section 6.2.2. We must point out
here that the optimization of the diffusion time for the nonlinear diffusion scheme is
clearly both critical and difficult to adjust. It is definitely a major limitation of this
last approach. From figure 6.8, it is obvious that boundaries are better preserved by
anisotropic methods than by the isotropic approach. To more clearly emphasize these
different behaviors, figure 6.9 shows a detail of the output of the Gaussian filtering
scheme and of the anisotropic Riemannian approach.
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Mean Error Std Deviation Max Min
Anisotropic Riemannian Filtering 0.4216 0.1816 1.7076 0.1327

Nonlinear Diffusion 0.4240 0.1590 1.6562 0.1617
Gaussian Euclidean Filtering 0.7223 0.1471 1.7776 0.3827

Table 6.2: Statistics of the error measured following equation 6.19 for experiment 1
using the different regularization schemes proposed in this article.

Mean Error Std Deviation Max Min
Anisotropic Riemannian Filtering 0.5218 0.0712 1.0770 0.1651

Nonlinear Diffusion 0.5283 0.0409 0.9957 0.2044
Gaussian Euclidean Filtering 1.0542 0.0830 1.2246 0.5092

Table 6.3: Statistics of the error measured following equation 6.20 for experiment 1
using the different regularization schemes proposed in this article.

In order to quantify and compare the performances of the nonlinear diffusion
with our Riemannian anisotropic smoothing method, we propose to measure the
error at each voxel by using the squared geodesic distance between tensors:

Error(x) = D2(Σ(x), Σ̂(x)) (6.19)

where Σ(x) is the original tensor field and Σ̂(x) is the filtered one. Table 6.2 shows
some statistics on the error, where it can be seen that the Riemannian approach
improves the behavior of the Euclidean counterparts. Since using the geodesic error
metric may bias the comparison in favor of our approach, another error measure is
also used in table 6.3. It shows the statistics of the Frobenius norm of the difference
between Σ(x) and Σ̂(x):

Error(x) = tr
(
(Σ(x)− Σ̂(x))(Σ(x)− Σ̂(x))T

)
(6.20)

From those last results, it is also clear that our approach provides the most accurate
results.

Experiment 2
We now would like to evaluate the behavior of the different algorithms for a higher

amount of noise. To that end, we generate a 32×32×32 volume with tensors oriented
along the vertical direction and introduce a 16 × 16 × 16 cube with tensors oriented
in the orthogonal direction, as shown in the top left image of figure 6.10. Then,
we add a high level of Gaussian noise, resulting in the noisy tensor field in the top
right image of figure 6.10. The bottom right image corresponds to our proposed
anisotropic Riemannian filtering approach while the image on the left is the output
of the nonlinear diffusion. Differences arise when comparing these two images.
First of all, noise is better removed with the Riemannian approach than with the
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Mean Error Std. Deviation Max Min
Anisotropic Riemannian Filtering 0.2572 0.1313 1.3065 0.0300

Nonlinear Diffusion 0.8284 0.1209 3.2551 0.2630

Table 6.4: Statistics of the error measured following equation 6.19 for experiment 2.

Mean Error Std. Deviation Max Min
Anisotropic Riemannian Filtering 0.6296 0.5166 4.4222 0.0600

Nonlinear Diffusion 2.1677 0.7970 91.2742 0.7367

Table 6.5: Statistics of the error measured following equation 6.20 for experiment 2.

nonlinear diffusion, where some misoriented tensors remain even after 536 iterations
with a time step of 0.01, which are the parameters that provide the optimal response.
Furthermore, the well-known swelling effect, due to a faster regularization of the
eigenvalues, is observed for the nonlinear diffusion, whereas it is not noticeable
for our Riemannian approach. This can be observed by looking at the colors of the
tensors: First, we point out that the original tensors are blue because they are all
identical, thus have the same FA (0.77), and our visualization software assigns the
color associated to the lowest value in that case. But most importantly, we can see
that the regularized tensor field obtained with our approach is more anisotropic
(tensors are yellow and FA is around 0.75) than that obtained with the nonlinear
diffusion (tensors are green and FA is around 0.60).

From a quantitative point of view, we measure the error between the original
and the regularized images following equation 6.19 and equation 6.20. As shown
in table 6.4, mean squared geodesic distance is much lower for the anisotropic
Riemannian approach than for the nonlinear diffusion. Table 6.5 shows the error
statistics based on the Frobenius norm. It is also obvious that the accuracy of
the Riemannian approach is much better than that achieved with the nonlinear
diffusion.

Real DTI Data

For experiments with real data, diffusion weighted images were acquired on a 3 Tesla
MEDSPEC 30/80 AVANCE (Bruker) at the Centre IRMf de Marseille, France, using
a quadrature bird-cage head coil. We used 12 gradient directions and a b-value of
1000 s/mm2. Acquisitions were repeated 8 times for each direction to ensure a good
signal-to-noise ratio. The sequence parameters were chosen as follows: ∆ = 38.5ms,
δ = 21.6ms, TE= 79ms, TR= 10000ms and voxel size was 2 × 2 × 2 mm3. Diffusion
tensors were estimated by the robust gradient descent algorithm preserving their
symmetry and positive definiteness, as presented in section 6.1.2 (see also [184]).
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Figure 6.10: Results in presence of a high level of noise. Top Left: Original Image.
Top Right: Noisy Image. Bottom Left: Nonlinear diffusion (Equation 6.18). Bottom
Right: Anisotropic Riemannian filtering (section 6.2.2).

Figure 6.11 (top left) shows the estimated diffusion tensors. On the top right, we
display the regularized image using the Riemannian filtering approach, while bot-
tom images are regularized using nonlinear diffusion, both with 10 iterations, but
different time steps: 0.001 on the left and 0.01 on the right. If we analyze the differ-
ent structures found on this axial slice, we can see that tensors orientation within
the splenium of the corpus callosum (CC(S) in the image) and in the genu of the cor-
pus callosum (CC(G) in the image) is more coherent with our Riemannian filtering
scheme. Anisotropy in these areas is also better preserved than with the nonlinear
diffusion case, which yields blurred areas most likely because of the properties of the
Euclidean gradient. In addition, the ventricles areas (VE in the image), since they
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Figure 6.11: Results on real DTI data. Top Left: Original DTI data. CC(S): Splenium
of the Corpus Callosum. CC(G): Genu of the Corpus Callosum. VE: Ventricles. CR:
Corona Radiata. Top Right: anisotropic Riemannian filtering. Bottom Left: nonlinear
diffusion (time step 0.001, 10 iter.). Bottom Right: nonlinear diffusion (time step 0.01,
10 iter.)

are mainly homogeneous structures, are better regularized with our approach, as in-
homogeneities do not disappear with nonlinear diffusion. Finally, the corona radiata
(CR in the image) is well preserved in our approach while it is completely smoothed
away from the image with longer diffusion time. In figure 6.12 we show a complete
human brain volume where fiber orientation is color coded as follows: Red: Right-
Left / Green: Anterior-Posterior / Blue: Inferior-Superior. Original data is shown at
the top of the image, while the filtered version is shown at the bottom. An axial slice
from that volume is presented in figure 6.13, where we compare original data (on the
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Figure 6.12: Real data volume of a human brain.

Figure 6.13: Raw tensor field (left) compared to regularized tensor field (right)
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left) with the filtered version (on the right) using our approach. It is clear tensors
belonging to particular fiber bundles are more coherent while the interfaces between
the various tracts have been preserved.

6.2.4 Conclusion

In this section, we have presented a novel differential geometrical approach for the
anisotropic regularization of tensor fields, seen as fields of multivariate normal dis-
tributions. The anisotropic behavior is introduced through the gradient magnitude,
simply computed by using the geodesic distance between distributions. This gradient
magnitude, contrary to the Euclidean one, benefits from the affine invariance of the
underlying distance. It is not sensitive to the scale of the tensors which allows to bet-
ter discriminate tissues interfaces and regularize misoriented tensors because of the
noise as shown in our numerical experiments. Our filtering scheme is also compared
to nonlinear diffusion of matrix-valued data to point out its added value over the
PDE-based approaches and to show that our approach can easily solve some of their
limitations, yielding better results on synthetic and real DTI data. Regularization
may be important to enhance the results of subsequent processing like tractography
or segmentation. In the next chapter, we will address one of the most important ap-
plication of DTI: the mapping of anatomical connections in the human cerebral white
matter. We will tackle this task by recasting it into a front propagation problem in R

3

equipped with metric derived from the diffusion tensor itself.
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OVERVIEW
In this chapter, we introduce an original approach for the cerebral white matter con-
nectivity mapping from DTI. Our method relies on a global modeling of the acquired
MRI volume Ω ⊂ R

3 as a Riemannian manifold M whose metric g directly derives
from the diffusion tensor. We want to make it clear that the metric g used in this
chapter has absolutely nothing to do with the metric derived from the Fisher infor-
mation matrix and used, up to now, to compare diffusion tensors. In the following,
these tensors will be used to derive a “diffusion metric” (see [83]) and to measure
physical three-dimensional distances between different locations of a brain diffusion
tensor image. The key concept of this chapter is the notion of geodesic distance that
will allow us to find optimal paths in the white matter, approximating neural fiber
bundles. The geodesic distance function can be seen as the solution of two theoret-
ically equivalent but, in practice, very different problems. They both derive from
front propagation modeling and are equivalent formulations of the so-called Eikonal
equation:

• An initial value problem of the form ∂ψ
∂t + F |∇ψ| = 0. F is the front propagation

speed and this point of view is intrinsically dynamic. It will be implemented
within the level set framework.

• A boundary value problem of the form |∇φ| = 1
F which is, on the contrary, intrin-

sically stationary. It will be implemented by using the fast marching method.

As we will show, these two approaches have very different properties which make
them more or less adequate for our problem and more or less computationally effi-
cient. The dynamic formulation is quite easy to implement but has many drawbacks.
On the contrary, the stationary formulation relies on control theory and is much
more tedious to implement. However it has many virtue (like computational time
and robustness) which makes it more suitable for our connectivity mapping problem.
Once the geodesic distance has been computed, it is necessary to resort to a back-
propagation algorithm on the gradient of this distance to recover shortest paths. As
we will see, the stationary approach naturally yields this vector field without having
to differentiate the distance function, hence its robustness. Finally, we will present
different possible measures of connectivity, reflecting the degree of connectivity be-
tween different regions of the brain. A natural connectivity measure will be derived
from the stationary formulation of the problem. We will illustrate these notions on
synthetic and real DTI datasets.

Keywords: Brownian motion, diffusion process, control theory, partial differential
equations, Riemannian manifold, Hamilton-Jacobi-Bellman equations, level set, fast
marching method, anisotropic Eikonal equation, intrinsic distance function, brain
connectivity mapping
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7.1 INTRODUCTION
We recall that diffusion tensor (DT) imaging models the probability density

function of the three-dimensional molecular motion, at each voxel of a DT image, by
a local Gaussian process whose covariance matrix is precisely given by the diffusion
tensor. Among other applications, diffusion tensor imaging (DTI) is extremely useful
to estimate the anatomical connectivity of the human brain.

Following [212], various local approaches, often named deterministic tractogra-
phy, have been proposed to tackle this problem. They are based on line propagation
techniques and rely on the fact that the eigenvector of the diffusion tensor associated
to the major eigenvalue, provides a relatively accurate estimate of the fibers’ orien-
tation at each voxel. These methods (see for instance [158],[26], [297] , [213], [174])
may be refined to incorporate some natural constraints such as regularity or local
uncertainty and avoid being stopped in regions of low anisotropy. All these efforts
aim to overcome the intrinsic ambiguity of diffusion tensor data arising from partial
volume effects at locations of fiber crossings [3]. They provide relatively accurate
models of the white matter macroscopic bundles.

More recent work can be divided into approaches based on Bayesian models,
diffusion simulation and geometric methods, the latter being essentially based
on front-propagation techniques. These methods are both more robust to noise
and partial volume effects than deterministic tractography, and naturally yield
probability/scalar measures which can be used to evaluate the degree of connectivity
between voxels.

In [31], [230], [232], [38], [122, 121] stochastic tractography algorithms were
introduced by modeling the uncertainty of the local fiber orientation. Through
uncertainty propagation, they can also provide a powerful means to evaluate the
probability of connection between points of the white matter. However, the intrinsic
drawback of these methods is their computational complexity since it is necessary to
resort to Markov Chain Monte Carlo methods or, as in [121], to evaluate probability
density functions at enough locations of the space of interest. Other probabilistic
approaches like [169], [173], [201], [136], [172] use perturbation methods, random
walk ... etc to assess the uncertainty in tractography.
Diffusion simulation approaches like [28], [218], [68], [159], [318] or [135] use the
full diffusion tensor to simulate a diffusion process or a fluid flow. The resulting
concentration or flow maps can be used to evaluate some degree of connectivity
between regions of interest.
Finally, geometric methods use either level set (see [223]) methods [218], [183],
Fast Marching Methods (see [286, 268]) [234, 233], [246, 247] or iterative sweeping
techniques [147] to evolve a front on the basis of the diffusion tensor directional
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information. As described in [281] and [50], it is possible to adapt the level set
based front propagation technique to take advantage of the information provided
by high angular resolution diffusion MRI (HARDI). In [241, 240], the authors also
proposed to use curve evolution techniques to recover fibers from HARDI data. As
we will see in the following, level set approaches to connectivity mapping tend to be
somewhat inefficient since, even with a narrow-band implementation, the number
of points where the evolution speed has to be evaluated greatly increases as the
surface grows. We will show that this class of methods is also prone to interpolation
errors at the boundary of the domain. For our brain connectivity problem, this may
lead to erroneous connections in highly convoluted areas and will lead us to consider
another approach, namely the stationary formulation of the Eikonal equation.

Contributions of this chapter:
Our contribution is threefold:

1. First, we describe how to use the diffusion tensor as a Riemannian metric. We
clarify the link between Brownian motion and diffusion MRI and expose how
the knowledge of the diffusion properties of water molecules on a manifoldM =

(R3, g) is sufficient to infer its geometry.

2. Next, we present the dynamic formulation of the anisotropic Eikonal equation
(within the level set framework), show how to solve it and to estimate neural
fiber bundles by back-propagation.

3. Finally, we demonstrate that we can greatly improve the computational time
and the robustness of the previous method by recasting the intrinsic geodesic
distance computation into a stationary problem (with a fast marching imple-
mentation). In fact, it is possible to solve, quickly and simultaneously, for the
geodesic distance, the optimal vector field (optimal dynamics) corresponding to
the geodesics velocities and the statistics, along those curves, of a local connec-
tivity measure. To our knowledge, the proposed GCM (for “Geodesic Connectiv-
ity Mapping”) algorithm is faster than any other existing method.
Also, contrary to other approaches, we simply solve the anisotropic Eikonal
equation and do not resort to any anisotropy related parameter to constrain the
front propagation. Moreover, our algorithm can naturally work within a mask
of the white matter (accurately obtained by segmentation of a high-resolution
anatomical MRI for instance). As we will show, this is crucial for the appli-
cations of interest since we must strictly respect the geometry of the cortical
foldings or white matter / cerebrospinal fluid (CSF) interface to recover mean-
ingful connections.
For a region of interest x0 (i.e. a point of the white matter), our GCM method
generates statistics of a local connectivity measure along the geodesics linking
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x0 to other locations of the brain. This can be used to discriminate likely and
unlikely connections.

Organization of this chapter:
Section 7.2 justifies the use of the diffusion tensor as a metric. Next, section 7.3

details the dynamic formulation of our geodesic distance computation problem and
proposes a numerical scheme within the level set framework. Section 7.4 reformu-
lates the anisotropic Eikonal equation as an optimal control problem which leads, in
section 7.5, to a fast numerical algorithm for the distance function approximation.
We finally introduce a general local connectivity measure whose statistics along the
optimal paths may be used to evaluate the degree of connectivity of any pair of voxels.
All those quantities can be computed simultaneously in a Fast Marching framework,
directly yielding the connectivity maps. We illustrate our techniques by showing re-
sults on real and synthetic datasets in section 7.6.

7.2 WHITE MATTER AS A RIEMANNIAN MANIFOLD
Diffusion tensor, as thermal or electrical conductivity tensors, belongs to the

broader class of general effective property tensors and is defined as the proportional-
ity term between an averaged generalized intensity B and an averaged generalized
flux F . In our particular case of interest, B is the water molecules concentration gra-
dient ∇C and F is the mass flux J such that Fick’s (first) law holds: J = −D∇C. By
considering the conservation of mass, the general diffusion equation (Fick’s second
law) is readily obtained:

∂C

∂t
= ∇.(D∇C) (7.1)

In an isotropic and homogeneous medium, equation 7.1 boils down to the heat equa-
tion (D is the identity matrix) whose solution is well-known: a Gaussian distribu-
tion. In anisotropic tissues (like the cerebral white matter), water molecules motion
varies in direction depending on obstacles (such as axonal membranes). We recall
that the symmetric and positive definite tensor D has been related [105] to the root
mean square of the diffusion displacement R during time τ by D = 1

6τ 〈RRT 〉 (see
section 3.3.2) and is thus an effective means to characterize the diffusion properties
of anisotropic media.
For an unbounded anisotropic homogeneous medium, the minimal fundamental solu-
tion of equation 7.1 with initial concentration limt→0 p(r|r0, t) = δ(r− r0) is also well-
known and expressed as:

p(r|r0, τ) =
1√

(4πτ)3|D|
exp

(
−(r− r0)

TD−1(r− r0)

4τ

)

However, when dealing with anisotropic and inhomogeneous media (like the cerebral
white matter), explicit derivation of p becomes non-trivial since the tensor D depends
on its spatial location x ∈ Ω and will be noted Dx now on. It turns out that, in
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fact, this explicit derivation is not necessary. It is indeed possible to reformulate
equation 7.1 by considering the diffusion process to occur on a Riemannian manifold
M and not a linear space as up to now. The basic idea is to rely on the metric
(varying from point to point) to naturally take into account the space anisotropy
and inhomogeneity (ie. the spatial variation of Dx). Intuitively, we transform an
anisotropic and inhomogeneous diffusion on a linear space R

n into an isotropic and
homogeneous diffusion on a nonlinear spaceM.

The counterpart of the Laplacian on a Riemannian manifold is classically de-
fined as the divergence of the gradient. It is known as the Laplace-Beltrami operator
which, for a scalar function f , writes:

∆Mf = div(gradf)

The intrinsic divergence and gradient operators grad and div are defined as follows
in local coordinates:

(gradf)i = gij
∂f

∂xj
∀i, j = 1, ..., n (7.2)

and
divX =

1√
|det(g)|

∂

∂xi

(√
|det(g)|X i

)
(7.3)

where gij denotes the components of the inverse of the metric g, X is a vector field
on M and Einstein notation has been used. Putting things together, the Laplace-
Beltrami operator can be written in local coordinates as:

∆Mf =
1√
|det(g)|

∂

∂xi

(√
|det(g)|gij ∂f

∂xj

)
=

1√
|det(g)|

∂

∂xi

(√
|det(g)|G−1∇f

)

Comparing this expression with equation 7.1, we can see that the diffusion tensor D

plays the same role than the inverse of the Riemannian metric G−1. This relation is
actually at the basis of many works on stochastic processes on Riemannian manifolds
such as [85] or [83] and has been proposed, in the context of DTI, by O’Donnell et al.
[218]. In the following, we will use the inverse of the diffusion tensor (note that
inversion will not always be required in practice) as a Riemannian metric for the
cerebral white matter.

7.3 A LEVEL SET FORMULATION FOR THE GEODESIC
DISTANCE (THE DYNAMIC PERSPECTIVE)

We are now concerned with the computation of the distance function u from a closed,
non-empty subset K of the 3-dimensional Riemannian manifoldM = (R3, g). In the
remaining, K will be restricted to a single point x0 or to several voxels (ie. a region
of interest). We will formulate everything in term of K since considering the distance
to a larger subset ofM can be interesting.
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7.3.1 Distance on Riemannian Manifolds

Let us now further discuss the notion of distance function on a Riemannian manifold.
Given two points x, y ∈M, we consider all the piecewise differentiable curves joining
x to y. For a Riemannian manifold, such curves do exist and we have the

Definition 7.3.1.1. The distance φ(x, y) is defined as the infinimum of the lengths of
the C1 curves starting at x and ending at y.

The length L of a curve is defined by equation 4.2.2. Moreover, we also have (see
[204]) the

Proposition 7.3.1.1. If x0 ∈ M, the function u : M → R, called distance function
and given by u(x) = φ(x, x0), is continuous on M but in general it is not everywhere
differentiable.

We adopt the notation u(x) for the clarity of expressions but recall that u depends
of course on x0. We consider a general Hamilton-Jacobi partial differential equation
with Dirichlet boundary conditions

{
H(x,∇u(x)) = 0 onM\K
u(x) = u0(x) when x ∈ K

where u0 is a continuous real function on K and the Hamiltonian H :M× T ?M→ R

is a continuous real function. We make the assumption that H(x, .) is convex and we
set u0(x) = 0 ∀x ∈ K.

We denote by |v| the magnitude of a tangent vector v, defined as
√
g(v, v). In

matrix notation, by forming G = {gij} the metric tensor, this writes
√
vTGv. Then,

by setting H(x, p) = |p| − 1, we will work on the following theorem (for details on
viscosity solutions on a Riemannian manifold, we refer to [204])

Theorem 7.3.1.1. The distance function u is the unique viscosity solution of the
Hamilton-Jacobi problem

{
|gradu| = 1 onM\K
u(x) = 0 when x ∈ K

(7.4)

in the class of bounded uniformly continuous functions.

This is the well-known Eikonal equation on the Riemannian manifold M. The vis-
cosity solution u at x ∈ M is the minimum time t ≥ 0 for any curve γ to reach a
point γ(t) ∈ K starting at x with the conditions γ(0) = x and | dγdt | ≤ 1. u is the value
function of the minimum arrival time problem. This will enable us to solve equation
7.4 as a dynamic problem and thus to take advantage of the great flexibility of level
set methods. On the basis of [222], [267], [283] and [66], we reformulate equation 7.4
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by considering u as the zero level set of a function ψ and requiring that the evolution
of ψ generates u so that

{ψ(x, t) = 0} ⇔ {u(x) = t} (7.5)

Osher ([222]) showed by using Theorem 5.2 from [66] that, under the hypothesis that
the Hamiltonian H is independent of u, the level set generated by 7.5 is a viscosity
solution of 7.4 if ψ is the viscosity solution of

{
∂ψ
∂t + F (t, x,∇ψ(t, x)) = 0 ∀t > 0

ψ(x, 0) = ψ0(x)
(7.6)

provided that the speed F is strictly positive and does not change sign. This is typi-
cally the case for our anisotropic Eikonal equation where

F (t, x,∇ψ) = H(t, x,∇ψ) + 1 = |gradψ|.

To find our solution, all we need to do is thus to evolve ψ(x, t) while tracking, for all
x ∈ Ω, the time t when it changes sign. Now we have to solve 7.6 with F (t, x,∇ψ) =

|gradψ|. We recall that for any function f ∈ F, where F denotes the ring of smooth
functions on M, the metric tensor G and its inverse define isomorphisms between
tangent vectors (in TM) and 1-forms (in T ?M). In particular, we have seen earlier
that the gradient operator is defined as gradf = G−1∇f where ∇f denotes the first-
order differential of f . It directly follows that

|gradψ| =
√
g(gradψ, gradψ) =

(
gij

∂ψ

∂xl
gli

∂ψ

∂xk
gkj
)1/2

=

(
∂ψ

∂xk
∂ψ

∂xl
gkl
)1/2

(7.7)

and we now present the numerical schemes used to estimate geodesics as well as the
viscosity solution of

ψt + |gradψ| = 0 (7.8)

7.3.2 Numerical Schemes

Numerical approximation of the hyperbolic term in 7.8 is now carefully reviewed
on the well-known basis of available schemes for hyperbolic conservative laws. We
seek a three-dimensional numerical flux approximating the continuous flux |gradψ|2
and that is consistent and monotonous so that it satisfies the usual jump and entropy
conditions and converges towards the unique viscosity solution of interest. References
can be found in [189]. On the basis of the Engquist-Osher flux [267] and the approach
by Kimmel-Amir-Bruckstein for level set distance computation on 2D manifolds [165],
we propose the following numerical flux for our quadratic Hamiltonian ∇ψTG−1∇ψ:

|gradψ|2 =
3∑

i=1

gii(max(∇−
xiψ, 0)

2 + min(∇+
xiψ, 0)

2) +

3∑

i,j=1
i6=j

gijminmod(∇+
xiψ,∇−

xiψ)minmod(∇+
xjψ,∇−

xjψ)
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where the ∇±
xiψ are the forward/backward approximations of the gradient in xi. First

of all, we point out that, because of equation 7.7, we only have to use the inverse of
the metric, ie. the diffusion tensor, and not the metric itself. Consequently, we do
not have to invert the diffusion tensor, which could have been a source of instability
of the numerical scheme. Moreover, we have also experimented with higher order
approximation schemes in order to increase the accuracy of the method. This is done
by introducing WENO schemes in our numerical flux instead of the upwind gradients.
WENO schemes are based on ENO (essentially non-oscillatory) schemes, which were
first introduced by Harten, Osher, Engquist and Chakravarthy in [138] in the form of
cell averages. They basically use a polynomial approximation of the derivatives and
avoid oscillations when a shock is detected. WENO schemes of Liu, Osher and Chan
[194], instead of approximating the numerical flux using the best candidate stencil,
use a weighted convex combination of all the candidates stencils. We now quickly
describe a very well-known method that speeds up the estimation of the distance
function u.

Narrow Band Method: In order to overcome the high computational overhead of
the front propagation approach (O(N 3) if N denotes the number of grid points along
a side), the narrow band method relies on the fact that it is sufficient to compute
the level set function only in a small neighborhood (at a distance δ) around its zero
level set because only this zero level set is physically meaningful (representing the
interface). It was introduced by Chopp in [67]. In that case, the complexity drops
to O(kN2) in three dimensions, where k is the number of voxels in the band. In
practice, at an iteration n, only the points in the band are updated and other points
are kept intact. When the front moves near to the edge of the band, the calculation
is stopped and a new band is initialized with the zero level set interface boundary at
the center.

We finally describe the method used for the computation of geodesics, in order
to approximate paths of diffusion on M eventually corresponding to neural fibers
tracts. Geodesics are classically obtained by performing back-propagation from
a given point x to the source x0, in the direction provided by the opposite of the
distance function gradient. Our problem of interest thus consists in starting from a
given voxel of the white matter and in computing the optimal pathway in term of the
distance u until x0 is reached. The simplest way to infer a geodesic path from u is to
backtrace on the manifold itself by solving the ordinary differential equation

dγ(t)

dt
= −gradu = −G−1∇u (7.9)

where γ is the sought geodesic parameterized by t. gradu involves the Riemannian
metric as well as the differential of the distance function ∇u, evaluated with appro-
priate finite difference schemes. We have experimented with Euler, 2nd and 4th order
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Runge-Kutta integration methods with sensibly better results obtained by higher or-
der Runge-Kutta schemes but noticeable computational overheads. When integrating
within a voxel, trilinear interpolation of the vector field gradu is performed by us-
ing the 8 available values in the neighborhood (ie. the corners of the voxel of interest).

While a given geodesic is estimated, we also compute on-the-fly statistics of a
confidence measure C along this curve. Typically, as proposed in [234] we take C to be
the absolute value of the Euclidean inner product between the normalized geodesic
velocity and the principal diffusion vector of the interpolated diffusion tensor field at
location γ(t): ∣∣∣∣〈

γ̇(t)

|γ̇(t)|E
,u1〉

∣∣∣∣ (7.10)

This quantity reflects how well the local orientation of the geodesic matches the
directional information provided by the diffusion tensor image. In practice, we can
use the minimum of this quantity along γ as a “worst case” value (as close to 1 as
possible), its average (as close to 1 as possible) and standard deviation (as low as
possible) in order to discriminate geodesics that are likely to represent true neural
bundles from false connections.

Numerical experiments for the distance function computation and the geodesics
estimation will be presented in section 7.6. An application of this method to quantify
the likelihood of connection between the putamen and the motor areas of the human
brain will be presented in chapter 10. As we will see in the following, the method
that was just described, though quite easy to implement, presents some drawbacks
in term of efficiency and robustness and they will be detailled in section 7.6. We will
now introduce the counterpart of the dynamic formulation of the Eikonal equation,
namely its stationary formulation. This approach is based on notions from control
theory, which we introduce in the next section before proposing the associated
algorithm.

7.4 FROM GEOMETRY TO CONTROL THEORY
As in the previous section and in [218] [183], the white matter is interpreted

as a Riemannian manifold and the inverse of the diffusion tensor D−1
x , at location x,

provides the Riemannian metric, which in turn determines white matter fibers as
geodesic paths.

7.4.1 Overview

We remind the basic definition of geodesics for convenience [97] and to clarify the
notations.
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Definition 7.4.1.1. Let M be a Riemannian manifold. Let x, y ∈ M. The geodesic
connecting x to y is the curve γ0 which minimizes the arc length, i.e.

γ0 = arg minγ∈Γx,y

∫ Txy

0 |γ′(t)|Rdt

where Γx, y is the set of curves γ : [0, Txy] → M such that γ(0) = x, γ(Txy) = y and
|γ′(t)|R = 1, with |.|R the norm associated to the Riemannian metric.

In section 7.2, we showed that the appropriate metric to our problem is the one associ-
ated to the norm |.|R defined by |x|R =

√
xTD−1

x x, where Dx is the symmetric positive
definite 3×3-matrix given by the measured diffusion tensor. Let us also denote by Ax
the (symmetric positive definite) square root matrix of Dx and with |.|E the Euclidean
norm. Let us note that we trivially have

|x|R = |A−1
x x|E

Here, rather than interpreting the problem in terms of Riemannian geometry, we
adopt an optimal control point of view. The two interpretations are equivalent, but
focus on different aspects of the problem. In the Riemannian setting, the emphasis
is on the description of the geometry and in particular on the geodesics. In the op-
timal control interpretation, the emphasis is on the optimal control which coincides
here with the intrinsic gradient of the distance function and with the vector field
tangent to the geodesics. Also, from the computational point of view, the intrinsic
gradients are much more important and relevant than the geodesics by themself (see
next sections). In particular, the intrinsic gradients are fundamental for numerically
estimating the connectivity measure. Moreover the geodesics can be directly com-
puted from them.
Another advantage of the optimal control interpretation is the relaxation of the de-
pendency with respect to the specific geometry of the manifold. In the control inter-
pretation, all the objects are governed by the Euclidean metric.
Finally, the white matter is an open subset of R

3. If one forsakes the specific metric
attached to the white matter, that is to say, if one interprets the metric in another
way (i.e. not as a metric), then the representation of the white matter as a manifold
is unnecessary. Also, in the optimal control interpretation, we do not need to deal
with manifold [298, 146]. We will come back to the advantages of this interpretation
at the end of this section.

7.4.2 Optimal Control Problems

In this paragraph, we briefly state the determinist continuous optimal control prob-
lems on open subset of R

n [19]. We also describe the links between the introduced
mathematical objects and the brain connectivity mapping problem.
The problem is the following: we want that a particle reaches a target. We can control
the particle thanks to a “control”. The problem consists then in finding the sequence
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of controls which minimizes a certain cost (which depends on the position of the par-
ticle and on the choice of the value of the control).
Let a domain Ω be a subset of R

n. Ω is the space in which the particle can move. We
consider a target T ⊂ Ω. Specifically in our problem, the domain Ω ⊂ R

3 represents
the white matter; the target T is the point of interest x0, origin of the distance func-
tion.
We consider the set A (compact subset of R

m) of admissible controls a (a ∈ A).
We call control function, a function α(.) : Ω → A. In the following, the functions
ξ(.) : R

+ → Ω : t 7→ ξ(t) are candidate trajectories for the particle. The control func-
tions α(.) control the dynamics of the trajectories of the particles. This control is done
through a vector field

f : Ω×A → R
n : (x, a) 7→ f(x, a).

f is called dynamics. Mathematically, we pose

ξ′(t) = f(ξ(t), α(ξ(t))), t > 0.

Under some regularity assumptions, to each control function α and x ∈ Ω, we
can associate a single trajectory ξx,α(t) ∈ Ω following the dynamics ξ′(t) =

f(ξ(t), α(ξ(t))), t > 0 and s.t. ξ(0) = x, imposed by the control α, see [19].
Now, let us define a (local) cost

l : Ω×A → R : (x, a) 7→ l(x, a).

To each control function α and x ∈ Ω, we can then associate a global cost: the integral
of the (local) cost along the associated trajectory ξx,α(.), i.e.

∫ Tx,T ,α

0
l(ξx,α(t), α(ξx,α(t)))dt, (7.11)

where Tx,T ,α is the first time for which the trajectory ξx,α (controlled by the dynamics
f ) reaches the target T . Under some regularity assumptions, one can prove that there
exists a control function α∗ (the optimal control) such that for all x, the global cost
(7.11) is minimal [19]:

α∗ def
= arg max

α

∫ Tx,T ,α

0
l(ξx,α(t), α(ξx,α(t)))dt, (7.12)

We then denote the optimal trajectory starting from x by

ξ∗x
def
= ξx,α∗ ,

and the optimal dynamics at x by

f∗x
def
= f(x, α∗(x)).

In our specific problem, the optimal trajectories coincide with the white matter
fibers1 and the optimal controls and optimal dynamics give the direction of the fibers;

1when the start point x and the target point x0 of the white matter are connected by a fiber.
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the other candidate trajectories and the other control values describe the spectrum
of all the curves connecting x to x0 and staying in the white matter as well as their
tangent vector fields.
In the optimal control problems, the goal is then to characterize and compute this
optimal control α∗ which minimizes the cost (7.11) (f∗x being immediately deduced
from α∗).

7.4.3 Geodesics and the Optimal Control Framework

Now, let us consider the above optimal control problem with

l(x, a) = 1.

The problem consists then in finding the control function α∗ s.t. for all x in Ω and for
all α ∫ Tx,x0,α∗

0
l(ξx,α∗(t), α∗(ξx,α∗(t)))dt ≤

∫ Tx,x0,α

0
l(ξx,α(t), α(ξx,α(t)))dt,

then s.t.
Tx,x0,α∗ ≤ Tx,x0,α,

where Tx,x0,α is the first time for which the trajectory ξx,α (controlled by the dynamics
f ) reaches the target2 x0. Tx,x0,α = +∞ if the trajectory does not reach x0. In other
words, misusing the notations3, α∗ is

α∗ = arg min
α(.)

{∫ Tx,x0,α

0
1dt

}
= arg min

α(.)
{Tx,x0,α} . (7.13)

Furthermore let A be the unit Riemannian sphere SR(0, 1) associated to Ax, i.e.

A = SR(0, 1) = {ATx b | b ∈ SE(0, 1)},

SE(0, 1) being the Euclidean unit sphere, and let

f(x, a) = −a

i.e. the dynamics is equal to the control (up to the sign). Then for all t, ξ ′(t) = −α(ξ(t))

covers the unit Riemannian sphere when α covers the set of the functions Ω→ A.
Let us denote Tξ,T the first time t for which the trajectory ξ reaches the target T , i.e.
for which ξ(t) ∈ T . We have then Tx,x0,α = Tξx,α,{x0}. So, minimizing the cost

∫ Tx,x0,α

0
1dt

for α : Ω→ A is equivalent to minimize
∫ Tξ,x0

0
1dt

2for simplicity, we have fixed T = {x0}.
3α∗ minimizes (7.13) for all x ∈ Ω. Let us remind that we can prove that α∗ always exists [19].
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for ξ such that |ξ′(t)|R = 1. In other words, in this case, the optimal trajectories ξ∗x
correspond with the geodesics considered in [183] (see Definition 7.4.1.1).

7.4.4 Advantages of the Optimal Control Interpretation

The control interpretation has distinct advantages: All the objects of interest live
in R

3 (instead of a manifold), and are governed by the Euclidean metric, hence the
interpretation is independent of the geometric structure. As an illustration of this
benefit, in order to estimate the direction of the geodesics, we proposed in section
7.3 to compute the gradient of the distance function on the manifold, which requires
some care in order to take into account the geometry imposed by the metric and is
a challenging task when working on an irregular domain such as the brain white
matter. In the control formalism the interpretation is rather direct: the tangent of
the geodesics is in fact the optimal dynamics f ∗x (since the geodesic corresponds to
the optimal trajectories). Also, the optimal dynamics f ∗x coincides with the optimal
control (up to its sign), which is the direct outcome of our algorithm.

The control framework reveals the fact that the value function V defined by
the min of (7.11)

V (x) = min
α

{∫ Tx,x0,α

0
l(ξ(t), α(ξ(t)))dt

}
(7.14)

is the viscosity solution [193, 19] of the partial differential equation (PDE)

supa∈A{−f(x, a) · ∇u(x)− l(x, a)} = 0, (7.15)

verifying u(x0) = 0 and complemented by state constraints on the boundary of the
domain ∂Ω [273, 249]. This results is quite general and it applies to any optimal
control problem as the one described in section 7.4.2. In our specific case, for f(x, a) =

−a, l(x, a) = 1 and A = SR (see section 7.4.3), equation (7.15) coincides with the
explicit equations:

|Ax∇u|E = 1 (7.16)

i.e.
|∇u|R = 1. (7.17)

Also, we logically associate with this PDE the explicit Hamiltonian

HAEik(x, p) = |Axp|E − 1 (7.18)
= |p|R − 1. (7.19)

Proof. By the Cauchy-Schwarz inequality, we have

|Axp|E = sup
b∈SE(0,1)

(Axp) · b = sup
b∈SE(0,1)

p · (ATx b).
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Then
|Axp|E = sup

a∈SR(0,1)
p · a.

So
sup

a∈SR(0,1)
{a · p− 1} = |Axp|E − 1.

In other respects, in our application, we have

V (x) = min
α

{∫ Tx,x0,α

0
1dt

}
= min

α
Tx,x0,α. (7.20)

Since the control values stay in the Riemannian unit sphere SR(0, 1), we tautologi-
cally have

|a|R = 1.

Since we have moreover
|a|R = |f(ξ(t), a)|R = |ξ′(t)|R ,

then all the candidate trajectories have a constant speed of norm 1 for the Rieman-
nian metric. The covered distance coincides then with the time required for the
trajectories to reach the target. This was at the basis of the dynamic formulation in
section 7.3. The value function V (x) defined by equation (7.20) is then naturally the
distance function considered in the Riemannian context. Thus, one recovers the fact
that the (anisotropic) distance function is the viscosity solution of the Anisotropic
Eikonal equation (7.17).

The control framework [19] also reveals that f(x, α∗
x) = −∇H(x,∇u(x)) where

H is the Hamiltonian associated to the PDE (7.15) and ∇u is the gradient of its
solution. This trick is quite useful and efficient in practice for computing the optimal
dynamics.

More globally, let us remind that the Riemannian geometry focuses on the de-
scription of the geometry and in particular on the geodesics, when the main concern
of the optimal control framework is the optimal control which here coincides with the
optimal dynamics (up to its sign). Also, as we will see in the next sections, from the
computational point of view, the notion of optimal dynamics is a fundamental key. In
particular, this notion is essential for designing an efficient numerical scheme. In
fact, the control formulation of the problem directly yields our numerical method,
which we report in sections 7.5.2 and 7.5.3. Finally, the notion of optimal dynamics
is also at the basis of our connectivity measure, from the theoretical point of view as
well as from the computational point of view.
For practical purposes, we will adopt either interpretation (Riemannian geometry
versus optimal control) depending on the situation and exploit their complementary
benefits.
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7.4.5 Connectivity Measures

We would like to precise and improve the connectivity measure C introduced in
section 7.3.2. We start by pointing out that, for a fixed point x0 and any point x, the
geodesic γx (associated to the metric given by the tensors) connecting x to x0 always
exits. If x is connected to x0 by a white matter fiber then the associated geodesic
γx coincides with the fiber. Nevertheless, for any x, the associated geodesic γx does
not necessarily coincide with a fiber. Also, in order to reach our goal (reconstruction
of the white matter fibers) we then need to be able to trace the geodesics and to
evaluate if a point is potentially connected to x0.

In this section, we propose a well-founded score to measure the expectation
that a given geodesic truly represents the connection of a point x with x0. By
computing statistical maps of this measure for all points x in the brain, we can then
determine which points are likely to be connected to x0 and then trace the fibers.
In section 7.5 we propose an original numerical scheme based on Fast Marching
Methods (FMM) to efficiently compute these maps.

Let us fix a point of interest x0 ∈ Ω and let us consider the PDE/control/Riemannian
problem associated with DTI. In section 7.4, we show that, ∀x ∈ Ω, the optimal
dynamics f∗x coincides with the derivatives of the geodesics γ ′(t) at x and that they
are in the Riemannian unit ball BR(0, 1) which is also the set {Axq, q ∈ BE(0, 1)}.
So, for a fixed point x (and a fixed tensor Dx), the larger the Euclidean norm of f ∗x ,
the more confident we are in the local direction of the geodesic. Following this idea,
we then define a general (local) confidence measure:

C(x) =
√
f∗Tx Dα

xf
∗
x ,

α being in R. In addition to being intuitive, this measure inherits the robustness to
noise of the optimal dynamics. It also exploits the full information provided by the
diffusion tensor. Finally, it does not penalize any direction in case of isotropy. Let
us now discuss the possible values of α: if α = −1, we get C(x) = 1, ∀x ∈ Ω. This
simply means that, when we use the Riemannian metric given by the inverse of the
diffusion tensor, all the geodesics are equivalent. On the contrary, when α = 0, we
have C(x) = |f∗x |E and we claim that it is a natural local measure of connectivity since
this measures the speed of propagation at x. Finally, when α→∞, this boils down to
considering the alignment of the optimal dynamics with the local major eigenvector.
This was used in section 7.3.2 and [234] but it may be sensitive to isotropic areas
where, by definition, the major eigenvector is undefined.

From this local connectivity measure, we can define global information from its
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statistics (mean and standard deviation) along the optimal trajectory:

µ(x) = 〈C(x)〉 =
1

τ∗x

∫ τ∗x

0
C(ξ∗x(t))dt,

σ(x) =
√
〈C(x)2〉 − 〈C(x)〉2.

where τ ∗x is the length of the optimal trajectory ξ∗x. We should point out that, since
|ξ∗x ′|R = 1, this length (i.e. the geodesic distance between the curve endpoints x0 and
x) coincides with the arrival time Tx,x0

introduced in section 7.4.

A point x connected to x0 by a white matter fiber will ideally have a large
value for µ(x) and a small standard variation σ(x). The choice of using the mean
instead of just integrating along the trajectories allows the comparison of two points
x and y which are located at different distance from x0, i.e. s.t. τ∗x 6= τ∗y . Although
the mean value of the connectivity may be sufficient to discriminate likely fibers, the
variance of this quantity may also be of great help since an ideal fiber would exhibit
a high coherence of C(x) along its trajectory.

Remark 1.
To compute the optimal dynamics, we need to compute also the geodesic distance,
which in fact is equal to τ ∗x . In practice, we just need to compute

R(x) =

∫ τ∗x

0
C(ξ∗x(t))dt,

and
S(x) =

∫ τ∗x

0
C(ξ∗x(t))2dt .

The values of µ(x) and σ(x) are then derived immediately by using the value τ ∗x .

7.5 A FAST NUMERICAL ALGORITHM (THE STATIONARY
PERSPECTIVE)

We now describe a algorithm which can, in one single pass over the volume Ω, com-
pute all the quantities of interest.

7.5.1 Related Work and Contributions

To the best of our knowledge, there is no algorithm to compute directly the geodesics
or a fiber connectivity confidence map to a point x from DTI data. All the methods
recovering white matter fibers by using some front propagation technique proceed by
implementing successively the following four steps:

1. Computation of the distance function to x;

2. Extraction of the gradients of the distance function;
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3. Estimation of the optimal dynamics from the gradients of the distance function;

4. Tracing of the geodesics from the computed directions. This step needs in par-
ticular an interpolation of the derivatives of the geodesics.

Some slight variants are proposed in the literature (see [76, 166] and references
therein). For example, in the particular case of the isotropic Eikonal equation (where
the optimal dynamics coincide with the gradient of the distance function), [166]
suggests not to compute the gradients for all voxels and later interpolate them, but
rather to directly compute the interpolated gradients from the distance function.
We wish to emphasize that the explicit tracing of the geodesics is a prerequisite to
all the previous methods for computing connectivity confidence measures which in
fact consist in the integration of a local criterion along the entire geodesic during
the geodesics tracing step. Thus, the estimation of a complete map of connectivity
measures needs to explicitly trace all the geodesics starting from all the points of the
map. This approach is rather computationally intensive.

The numerical method we propose here for computing the confidence measures
does not need to trace any geodesic. The confidence measure map is a direct output of
our algorithm. It simultaneously and consistently computes the (geodesic) distance
function, the optimal dynamics and the confidence measures.

The methods of the type “Fast Marching” [286, 268, 269, 248] are “one-pass”
methods allowing to solve numerically partial differential equations of the type
(7.15). Based on a causality principle, the Fast Marching Methods (FMM) stand in
contrast to iterative methods (see for example [261, 282] and more specifically [147]
in our field) which iteratively update the approximations of the solution by using
paths that do not depend on the data. The idea of the FMM consists in computing the
solution of the PDE as a front propagates along the optimal trajectories. Moreover,
it has been recently shown in [315] that using a quantization of the priorities in the
marching computation reduces the original complexity of FMM from O(N logN) to
O(N). Our algorithm extends the classical FMM [286, 268, 269, 248] by computing
and returning, in addition, the optimal dynamics and the connectivity confidence
measures. The consistency of our results relies on the fact that for all the computa-
tions we use the same (optimal) simplex.

Remark 2.
1) All the quantities we compute are essential: The optimal dynamics is necessary in
order to trace the geodesics, which in turn is useful for the visualization of the fibers.
Even if the result of the computation of the (geodesic) distance is not required for
tracing the geodesic, it is essential for obtaining the final measures (expectation and
standard deviation) we use in practice to estimate the connectivity confidence.
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2) Our method is a “one pass method” based on front propagation. An impor-
tant consequence is that we do not need to wait for the complete computation of
the distance function on the whole domain to be able to exploit it for computing the
connectivity measures. Also, if at any time the process stops, all the values already
computed are valid approximations, unlike other iterative techniques.

In the sequel, we describe our global algorithm and then the implementation of each
specific step.

7.5.2 Global Algorithm

As in the classical Fast Marching Method [268, 269, 248], the grid points are divided
into the three classes: Accepted, Considered, Far. Below U , f , R and S are respec-
tively the approximations of the (geodesic) distance function, the optimal dynamics
f∗x , R and S (defined in section 7.4.5). x0 is the interest point. The algorithm is then
the following:

Algorithm 3 Fast Marching algorithm for the computation of U , f , R and S
1: Start with all the grid points in Far.
2: Move x0 and the grid points on the boundary ∂Ω to Accepted. Set U(x0) = 0 and
U(x) = +∞ (FLT MAX in practice) for all x ∈ ∂Ω.

3: Move all the grid points adjacent to the Accepted points into Considered and for
such points x, evaluate U(x) by using the update scheme (7.21) and modify the
associated optimal dynamics to f(x); see section 7.5.3.

4: Find the Considered point x̃ with the smallest value U(x). Move x̃ from Consid-
ered to Accepted. Compute and assign R(x̃) and S(x̃), see section 7.5.4.

5: Move from Far into Considered, all the Far points which are adjacent to x̃.
6: Re-evaluate U(x) and the associated dynamics f(x) for all the Considered points

adjacent to x̃, see section 7.5.3.
7: If the set Considered points is not empty, return to step 4.

7.5.3 Distance and Optimal Dynamics Computation

Here, we focus on the implementation of the updating step returning the approxima-
tion of the distance function and the optimal dynamics. Following [248], we use the
scheme

S(ρ, x, t, u) = sup
a∈A
{−f(x, a) · Ps1(x,a),..,sn(x,a) − l(x, a)} (7.21)

where [Ps1,..,sn ]i = t−u(x+sihiei)
−sihi

, si(x, a) = sign (fi(x, a)), hi denotes the grid size in the
ith direction and {ei} is the canonical basis of R

n. In our case, n = 3.

Basically, this scheme is obtained by replacing ∇u by Ps1,..,sn in equation (7.15)
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and by choosing the simplex (i.e. (s1, .., sn)) which contains the dynamics of the opti-
mal control. Moreover, we take advantage of this in order to obtain simultaneously
and consistently the approximations of the geodesic distance function and of the
optimal dynamics.

Separation and choice of the good simplex

Let us fix x ∈ Ω. The updating step consists in computing the value we want to assign
to U(x) from the values U(x± sihiei). The update value for U(x) is the solution of the
equation S(ρ, x, t, u) = 0 (equation in t), i.e.

max
s∈{±1}n

sup
a∈As

{−f(x, a) · Px,s,U (t)− l(x, a)} = 0

where we note s = (s1, ..sn) ∈ {±1}n, [Px,s,U (t)]i = t−U(x+sihiei)
−sihi

and

As = {a ∈ A | ∀i = 1..n, si(x, a) = si} .

Now, for all s ∈ {±1}n, let us denote

Gs(t) = sup
a∈As

{−f(x, a) · Px,s,U (t)− l(x, a)} (7.22)

and ts, the solution of the equation (in t) Gs(t) = 0. Since Gs(t) is increasing with
respect to t, the solution of maxsGs(t) = 0 is t0 = mins∈{±1}n ts. Hence, the imple-
mentation of the update step is reduced to the computation of the 2n solutions ts and,
finally, to the choice of the smallest one. We thus choose here the “good” simplex. We
call it the optimal simplex. In other respects, when we compute ts, we also compute
fs = f(x, as), where as ∈ As is the optimal control of (7.22) (see subsection 7.5.3). We
can then associate to t0 the optimal dynamics f0 = fs where s is the optimal simplex.

Computation of ts and of the associated dynamics

Now let us fix s = (s1, ..sn) ∈ {±1}n. If we denote

gs(a, t) = −f(x, a) · Px,s,U (t)− l(x, a) ,

then ts is the solution of
supa∈As

gs(a, t) = 0. (7.23)

By continuity of f(x, .), As is a closed subset of R
m. Let as in As be the optimal control

of (7.23). We then have two cases:

1. ∀k ∈ [1..n], fk(x, as) 6= 0 (in other words as ∈ Interior(As)): One can prove that
this is equivalent to: ts is the solution of the equation H(x, Px,s,U (t)) = 0 with the
associated optimal control4 in As.

4i.e. the optimal control of supa∈A{−f(x, a) · Px,s,U (t) − l(x, a)} = 0. This optimal control can be
anywhere in the whole set A.
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2. ∃k ∈ [1..n] such that fk(x, as) = 0: In this case, ts = min tis, where for each
i ∈ [1..n], tis is the solution of the equation in t: supa∈Ai+

s
gs(a, t) = 0 where

Ai+s = Aks ∩As and Aks = {a ∈ A | fi(x, a) = 0}.

In practice, we first compute the roots ts of H(x, Px,s,U (t)) = 0. We then test if the
optimal control as ∈ As (basically it is in A). To do that, we just have to estimate

f(x, as) = −∇H(x, Px,s,U (ts))

and to verify that ∀k, sign (fk(x, as)) = sk. In particular, this test does not require
the knowledge of the optimal control ai and directly provides the associated optimal
dynamics. If all the signs are correct, we have found our solution and we stop here.
Otherwise, we have to compute the solutions tis. To achieve this goal, we can make

H i
s(x, p)

def
= sup

a∈Ak
s

{−f(x, a) · p− l(X, a)} = 0

explicit and deal with H i
s in the same way we have dealt with H. To make H i

s explicit
we use the Legendre Transform [248].

Details for the 3D-anisotropic Eikonal equation

Here we detail the successive Hamiltonians necessary for the implementation of the
method described in the previous section in the case of the 3D-anisotropic Eikonal
equation.

Let us remind that for any Hamiltonian H(x, p), we call the Legendre Transform the
function H∗ defined by

H∗(x, a) = supp∈Dom(H(x,.)){p · a−H(x, p) ≤ +∞}

see for example [106, 244]. For simplicity, we denote below the Hamiltonian HaEik by
H. We have

Hi(x, p)
def
= sup

a ∈ R
3

ai = 0

{a · p−H∗(x, a)} = p̃it
T ([[D−1

x ]]i)−1 p̃it − 1,

Hij(x, p)
def
= sup

a ∈ R
3

ai = 0, aj = 0, i 6= j

{a · p−H∗(x, a)} =
ptk

2

(D−1
x )k,k

− 1,

where p̃it = (pt1, ..., pti−1, pti+1, ..., ptn), and [[D−1
x ]]i is the matrix D−1

x without the ith

row and ith column. In practice our method boils down to resolving basic second
order equations and to testing some signs.
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7.5.4 Connectivity Measures Computation

In this section we detail how to compute the connectivity measure R(x̃) at the step 4
of our global algorithm. At this stage, we already know the optimal dynamics f ∗

x̃ , the
optimal simplex (x̃, x1, x2, x3) (we denote xi = x̃ + si(x̃)hiei where si(x̃) is the sign of
the ith component of f∗x̃ and h1×h2×h3 is the size of the voxels) and the values R(xi)

for i = 1..3.

Let y be the intersection of the optimal trajectory with the front. By assuming
that the trajectory is locally affine, we have: y = x̃ + τf ∗x̃ where τ is the time for the
trajectory to reach the front, see figure 7.1(a). As in [245], we can prove that

τ = 1/
∑

i=1..3

qi

where qi is the absolute value of the ith component of f∗x̃ divided by hi. By assuming
that R is locally affine, we have [245]

R(y) =
3∑

i=1

τqiR(xi).

Thus by noting that
R(x̃) = R(y) +

∫ τ

0
C(ξ∗x̃(t))dt,

we obtain
R(x̃) '∑3

i=1 τqiR(xi) + τC(x̃). (7.24)

Remark 3.
1) The approximation of S(x̃) required for the computation of the standard deviation
σ(x̃) is obtained exactly in the same way. We just have to replace C by C2 in equation
(7.24).

2) This scheme can also be obtained by discretizing the equation 〈∇ER(x), f∗x〉E =

C(x) (obtained by evaluating limε→0
R(x+εf∗x )−R(x)

ε ) and by slightly modifying the
scheme proposed by [1] for solving a similar equation.

7.6 EXPERIMENTAL RESULTS
In this section, we first present some results illustrating the computation of

the distance function and geodesics by the method proposed in section 7.3. We then
emphasize its possible limitations. Finally, we show that the algorithm introduced in
the previous section can efficiently solve those issues.
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(a) (b)

Figure 7.1: (a) Approximation of the geodesic and localization of y, (b) Depiction of
the topological problem in a convoluted area of the white matter

Figure 7.2: Synthetic (left) and human brain (right) DTI datasets

7.6.1 The Level Set Perspective

We will consider synthetic and real DTI datasets to illustrate and quantify the
quality of the estimated distance functions with upwind or fifth order WENO finite
differences schemes. Our criterion will be the a posteriori evaluated map |gradu|
which must be equal to 1 everywhere except at the origin x0 since the distance
function is not differentiable at this location. Figures 7.2 and 7.3 present a synthetic
and a real DTI dataset and the associated distance functions. The synthetic tensor
field is composed by Y pattern with tensors aligned along the main orientations of
this pattern. The background is made of tensors following the direction orthogonal to
the main branch of the Y. Gaussian noise was added to the initial piecewise constant
dataset. We used the algorithm proposed in section 5.4.1. The origin x0 was chosen
to be at the lower part of the main branch of the Y (black cross). The resulting
distance function is shown in figure 7.3 (left) where we represent one axial slice of
the volume as an elevation surface to emphasize the variations of the function. We
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Figure 7.3: Axial slices of distance functions computed for the synthetic (left) and real
(right) datasets of figure 7.2 (Colormap: blue is small and red is large)

can notice that the distance stays small within the Y pattern and rapidly increases
as it reaches the background.

The human brain DTI dataset was acquired at CEA-SHFJ/Orsay, France and
provided to us by J.F. Mangin and J.B Poline. We focused on the posterior part of
the corpus callosum, known as the genu. The origin x0 of the distance was chosen in
the middle of the genu (black cross) and the resulting distance function is presented
in figure 7.3 (right) as an elevation surface (inverted for the sake of clarity). As
expected, from neuroanatomical knowledge, the distance functions stays small along
the commissural radiations towards the occipital areas of the brain and increases
otherwise. By initiating the back-propagation procedure of section 7.3.2 in the visual
area for instance (see chapter 11 for details on that point), or more generally in
regions of the occipital part of the brain, we could recover the geodesics of figure 7.4,
which agree with the well-known shape of neural fibers in these regions.

Finally, we compared the accuracy of the distance computation that can be
achieved with upwind or WENO schemes. We used the previous human brain DTI
dataset but resorted to a more complex synthetic example. This dataset is made
of three intersecting cylinders oriented along the x, y and z axis of the volume.
Tensors in each cylinder are aligned with the main direction of the cylinder and the
background is made of small isotropic tensors. This results in perfectly isotropic
tensors at the intersection of the three cylinders, surrounded by planar tensors in
the area where only two cylinders cross each others. The origin was chosen at one of
the extremity of one cylinder. Our numerical scheme 7.9 behaves fairly well on the
two datasets, as shown in table 7.1 where a sensible improvement is noticeable when
using fifth order WENO schemes.
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Figure 7.4: Geodesics recovered from distance function of figure 7.3 (right) by starting
from regions of the occipital areas

DataSet Scheme Mean Std. Dev Maximum
Synthetic Upwind 0.9854 0.123657 4.50625
Synthetic WENO 0.977078 0.116855 2.0871
Real DTI Upwind 0.994332 0.116326 4.80079
Real DTI WENO 0.973351 0.110364 3.72567

Table 7.1: Statistics on |gradu| for synthetic and real DTI datasets

7.6.2 Challenging Computational Issues

The nature of the problem we are trying to solve raises two major computational
difficulties which, to our knowledge, are not very well dealt with in the literature.
They may also be an issue, in certain circumstances, for the dynamic formulation of
the anisotropic Eikonal equation.

Handling the white matter convoluted geometry

First of all, as presented in figure 7.5 and detailed in figure 7.1(b), solving the
anisotropic Eikonal equation within a convoluted domain such as the brain white
matter is necessary and complicated. Indeed, the connections we are looking for are
defined between cortical areas or between cortical areas and the basal ganglia. In
other words, we are essentially interested in pathways linking together parts of the
domain boundary.
In figure 7.5, the geodesic distance to the blue cross in image (b) (i.e. x0) was com-
puted, for the DTI data presented in image (a) and within the mask outlined in red
in image (b). Its isovalues (in the range [0, 1500]) are depicted by the yellow lines in
images (c) and (d). With the level set implementation, the front diffuses through the
cerebrospinal fluid and directly connects the right hemisphere. This is anatomically
incorrect since the fibers starting from the blue cross (located in the V1 visual area)
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go through the corpus callosum (CC) to reach the other hemisphere. With the sta-
tionary formulation, we can correctly estimate the distance since, by definition, the
Fast Marching implementation ignores all the locations outside the mask.
This kind of difficulty is also encountered with the Ordered Upwind Method (OUM)
recently proposed by Sethian and Vladimirsky [269]. The OUM is a numerical
method of type FMM which uses enlarged neighborhoods. The more anisotropic the
tensor, the larger the neighborhood. In addition to increasing the computation time,
Sethian and Vladimirsky’s method explicitly authorizes this type of topological er-
ror by allowing the trajectories to step outside the mask and to directly connect any
nearby voxel located on the front. Figure 7.1(b) illustrates this potential problem.
The scheme presented in section 7.5 only uses nearest neighbors (six nearest neigh-
bors in 3D). It is thus not prone to this problem and always respects the topology of
the mask.

(a) DTI axial slice (Anisotropy color code: blue=low/red=high) (b) White matter segmentation

(c) Level set algorithm [183] (d) Fast marching algorithm [246]

Figure 7.5: Topological inconsistency in the occipital cortex.
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Robust estimation of the optimal dynamics

The second issue is related to the robustness of the optimal dynamics (i.e. the
geodesics tangent vectors) computation. Indeed, all the existing methods need to
explicitly compute the derivatives of the distance function. This is well-known to be
sensitive to noise, especially on the boundaries where the discretization of the dif-
ferential needs to be adapted. We present, in figure 7.6, a comparison of the vector
fields obtained by the method proposed in section 7.3 (top row) and by the approach
of section 7.5 (bottom row) on a 3D synthetic DTI dataset (see image (a)). The origin
of the distance function is located at the center of region B (see image (b)).

7.6.3 The Fast Marching Perspective

In the following, we illustrate our Fast Marching method by computing the quantities
µ and σ, introduced in section 7.4.5, as well as the geodesics associated to the highest
connectivity measure. This is done on the synthetic tensor field of figure 7.6 as well
as in the splenium (posterior part) of the corpus callosum for the real dataset of figure
7.5.

Data acquisition

Diffusion weighted images were acquired on a 3 Tesla MEDSPEC 30/80 AVANCE
(Bruker) at the Centre IRMf de Marseille, France, using a quadrature bird-cage head
coil. We used 12 diffusion gradient directions and a b factor of 1000 s/mm2. Acquisi-
tions were repeated 8 times for each direction in order to ensure a good signal-to-noise
ratio. Voxel size was 2 × 2 × 2 mm3 and diffusion tensors were estimated by the ro-
bust gradient descent algorithm proposed in section 6.1.2 [186]. An axial slice of the
resulting DT image is presented in figure 7.5(a).

Computational efficiency

PDE methods for brain connectivity mapping such as [218, 234, 183, 147, 50] have
the great advantage to yield connectivity information for a point of interest x0 to the
rest of the brain by exploiting the full information of the diffusion tensor. They are
however in general quite time consuming and must be iteratively applied to all the
voxels of functional regions of interest, which can contain hundreds or thousands
of points. By comparison with the methods presented in [147] and [183], our Fast
Marching algorithm achieves a dramatic improvement in computational speed. For
the geodesic distance computation, Jackowski et al. reported a convergence time of
about 7 minutes for their iterative sweeping method for a 128× 128× 40 DTI dataset
on a 1.7 GHz Intel Pentium Xeon with 1.5 Gb of RAM. Our level set formulation
required about 20 minutes for a 128×128×58 DTI dataset on a 1.7 GHz Intel Pentium
M with 1 Gb of RAM.
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(a) DTI axial slice (Anisotropy color code: blue=low/red=high) (b) Optimal dynamics

(c) Region A (d) Region B

Figure 7.6: Optimal dynamics estimation by differentiation of the distance [(c-d) Top]
and by the control theory formulation [(c-d) Bottom].

The computation of the geodesics, together with the evaluation of the statistics
of C(x), is itself a time-consuming task since for each curve, we need to explicitly
propagate through the tangent vectors field using, for instance, a 4th order Runge-
Kutta integration scheme. In [147], no time is given for the computation of the
14, 952 fibers of interest. However, on our data and for 135, 029 voxels inside the white
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matter mask, it took approximately 30 minutes on the same computer than the one
used for the distance computation. All these computations (distance, vector field
and connectivity measures) take about 7 seconds with our stationary/control theory
formulation.

Performance of the connectivity measure

We now demonstrate how the statistics of the quantity C(x) can be used to evaluate
the degree of connectivity of pairs of voxels. First of all, we use the synthetic dataset

Figure 7.7: Synthetic dataset: (left) Axial slice of the map µ, (right) Most likely con-
nections.

of figure 7.6. The point of interest x0 is again located at the center of region B (see
image (b)). Figure 7.7 (left) presents an axial slice of the thresholded map µ which is
consistent with the DT image since we can see that µ is higher along the centerline
of the Y shape where the tensors are more anisotropic. Moreover, the right branch
is clearly more connected to the origin. This is due to the asymmetry imposed by the
tensor field in the diverging region (see figure 7.6 (a)). In figure 7.7 (right), we show
the geodesics computed from the 873 voxels with values of µ in the range [1.5, 1.67],
i.e. the top 10% most likely connected voxels. Finally, we consider the real dataset
of figure 7.8. The origin is located in the middle of the splenium of the corpus callo-
sum. A first threshold is applied on the map σ in order to keep only coherent fibers.
This yields a binary mask (threshold value: 0.0056) which is applied to the map µ.
As previously, we then threshold this map to preserve only the top 10% most likely
connected voxels, with values of µ in the range [0.0335, 0.0380]. This yields 2561 fibers
that are consistent with neuro-anatomical knowledge.

7.7 CONCLUSION
We have proposed a novel global approach to white matter connectivity
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Figure 7.8: Real dataset: [Top] Axial and coronal slices of the map µ, [Bottom] Most
likely connections (Anisotropy color code: blue=low/red=high).

mapping. It relies on the fact that probing and measuring a diffusion process on
a manifoldM provides enough information to infer the geometry ofM and compute
its geodesics, corresponding to diffusion pathways. We then introduced a dynamic for-
mulation of the anisotropic Eikonal equation and a method to estimate neural fibers.
Exploiting both an optimal control and the Riemannian interpretation, we achieved
a number of improvements over existing methods. We proposed a fast algorithm that
reduces CPU time by 2 or 3 orders of magnitude relatively to existing work. We have
introduced a general local connectivity measure and experimentally demonstrated its
relevance on real data sets. Our algorithm is numerically stable and efficient, since it
simultaneously computes the distance function, the optimal dynamics and the statis-
tics of our local connectivity measure from the DT images. Finally we showed that
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our method overcomes some numerical limitations that cause existing algorithms to
fail in highly convoluted regions. The C++ implementation of our GCM algorithm
will be soon freely distributed on the web. In the next chapter, we address the issue
of the segmentation of diffusion tensor images. This is a complementary processing
task to fiber tracking where we seek to recover, at once, entire fiber bundles.

153



154



CHAPTER 8

SEGMENTATION OF DIFFUSION
TENSOR IMAGES

Contents

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.2 DTI Statistics and Gradient . . . . . . . . . . . . . . . . . . . . . . 158

8.2.1 Derivations of statistics and gradient norms . . . . . . . . . . 158
8.3 Segmentation by Surface Evolution . . . . . . . . . . . . . . . . . 167

8.3.1 Bayesian formulation for image partitioning . . . . . . . . . . 167
8.3.2 Smoothness constraint . . . . . . . . . . . . . . . . . . . . . . . 168
8.3.3 Data term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.3.4 Energy formulation . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.4 Results and Validation . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.4.1 Synthetic examples . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.4.2 Biological phantom data-set . . . . . . . . . . . . . . . . . . . . 177
8.4.3 Real DTI data-sets . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

155



OVERVIEW
In this chapter, we address the problem of the segmentation of cerebral white matter
structures from diffusion tensor images (DTI). As we will show in this chapter, the
definition of a dissimilarity measure and statistics between such quantities is a non
trivial task which must be tackled carefully. We claim and demonstrate that, by using
the theoretically well-founded differential geometrical properties of the manifold of
multivariate normal distributions, as exposed in chapter 5, it is possible to improve
the quality of the segmentation results obtained with other dissimilarity measures
such as the Euclidean distance or the Kullback-Leibler divergence. The main goal of
this chapter is to prove that the choice of the probability metric, i.e. the dissimilar-
ity measure, has a deep impact on the tensor statistics and, hence, on the achieved
results. We introduce a variational formulation, in the level-set framework, to esti-
mate the optimal segmentation of a diffusion tensor image according to the following
hypothesis: Diffusion tensors exhibit a Gaussian distribution in the different par-
titions. We must also respect the geometric constraints imposed by the interfaces
existing among the cerebral structures and detected by the gradient of the diffusion
tensor image. We show how to express all the statistical quantities for the different
probability metrics. We validate and compare the results obtained on various syn-
thetic data-sets, a biological rat spinal cord phantom and human brain DT images.

Keywords: diffusion tensor MRI, segmentation, probability metric, Riemannian
geometry, information geometry, Fisher information matrix, Kullback-Leibler diver-
gence, level-set

8.1 INTRODUCTION
As presented in the previous chapter, diffusion tensor imaging is extremely

useful in order to identify the neural connectivity patterns of the human brain [212],
[30], [51], [183]. However, most of the existing techniques addressing this last issue
work on a fiber-wise basis. In other words, they do not take into account the global
coherence that exists among fibers of a given tract. Recent work by Corouge et al.
[79] has proposed to cluster and align fibers by local shape parameterization so that
a statistical analysis of the tract geometrical and physiological properties can be
carried out. A similar work by O’Donnell et al. [219] has been recently proposed
to cluster fibers. These methods rely on the extraction of a set of streamlines from
diffusion tensor images by the method proposed in [212] which is known to be
sensible to noise and unreliable in areas of fiber crossings.
For these reasons, we propose to directly perform the segmentation of diffusion
tensor images in order to extract neural fiber bundles. While many techniques have
been proposed to classify the gray matter, white matter and cerebrospinal fluid
from T1-weighted MR images (see [322] for example), the literature addressing the
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segmentation of white matter structures from DTI is still new. We hereafter draw a
quick state of the art of the diffusion tensor images segmentation problem:

Zhukov et al. [326] defined an invariant anisotropy measure in order to drive
the evolution of a level-set and isolate strongly anisotropic regions of the brain. The
reduction of the full tensor to a single scalar value can result in a relatively low
discrimination capability, potentially yielding the segmentation of mixed structures.
Alternatively, Wiegell et al. [312], Feddern et al. [111, 112], Rousson et al. [260],
Wang et al. [304] and [303], Lenglet et al. [185] and Jonasson et al. [154] use or
propose different measures of dissimilarity between diffusion tensors. In [312], [304]
and [260], the authors use the Frobenius norm of the difference of tensors (i.e. the
Euclidean distance). A k-means algorithm with a spatial coherence constraint and an
active contours model with a regularity term were respectively used by the first two
methods ([312], [304]) to perform the segmentation of different cerebral structures
such as the thalamus nuclei or the corpus callosum. The third method [260] used
a region-based surface propagation. In [304], a generalization of the region-based
active contours to matrix-valued images is proposed. However, it is restricted to
the two-dimensional case and obviously limited when it comes to three-dimensional
brain data. In [111, 112], partial differential equations based on mean curvature
motion, self-snakes and geodesic active contours models are extended to two-
dimensional and three-dimensional tensor-valued images by generalizing the notion
of structure tensor to matrix-valued data. This method still relies on the Euclidean
metric between tensors. The authors apply this framework to the regularization and
segmentation of diffusion tensor images. In [154], the authors introduce a geometric
measure of dissimilarity by computing the normalized tensor “scalar product” of two
tensors, which can be interpreted as a measure of overlap. Finally, the methods
exposed in [303] and [185] rely on the symmetrized Kullback-Leibler divergence to
derive an affine invariant dissimilarity measure between diffusion tensors.

Contributions of this chapter:
Our contributions are threefold:

• First, we recast the DTI segmentation problem into a unified statistical surface
evolution framework. We also make use of the tensor field gradient to detect
boundaries between various structures of the white matter. This framework
can be implemented with different probability metrics. This is done for the
Euclidean distance, Kullback-Leibler divergence and geodesic distance on the
manifold of multivariate normal distributions.

• The second contribution is related to the use of the rigorous differential geo-
metrical framework, as presented in [188], rooted in the information geometry
and used to express a Gaussian law between diffusion tensors. We overcome
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the classical hypothesis considering covariance matrices as a linear space and
define relevant statistics to model the distribution of diffusion tensors. To that
end, we also extend the methods proposed in [303] and [185] by showing how to
compute the covariance matrix, associated to the Kullback-Leibler divergence,
of a set of tensors.

• Finally, we demonstrate that the properties of the geodesic distance lead to its
superiority, for our segmentation task, over the other two dissimilarity mea-
sures. This is achieved by presenting results on both synthetic and real data-
sets as well as on a biological phantom, for which only this method succeeds by
comparison with the ground truth or neuroanatomical knowledge.

Organization of this chapter:
Section 8.2 recalls how to approximate a Gaussian distribution between diffusion

tensors and how to evaluate the norm of a tensor field spatial gradient, needed for
the implementation of the boundary term. These three quantities are derived for the
three dissimilarity measures of interest. Section 8.3 sets up the Bayesian formula-
tion of the segmentation problem that will be used throughout this chapter. Section
8.4 presents and discusses experimental results on synthetic data-sets, a biological
phantom and human brain DT images .

8.2 DTI STATISTICS AND GRADIENT
In this section, we would like to investigate the various possible definitions

of a Gaussian distribution between diffusion tensors as well as the possible expres-
sions for the norm of a diffusion tensor image spatial gradient, depending on the
chosen metric. We denote such an image by Σ : Ω 7→ S+(3) so that for all x ∈ Ω, Σ(x)

is a diffusion tensor belonging to S+(3), the space of 3 × 3 real, symmetric, positive-
definite matrices. Ω is a bounded and regular region of interest, i.e. the acquisition
grid which is a subset of R

3.

8.2.1 Derivations of statistics and gradient norms

As described in chapter 5, the manifoldM of three-dimensional normal distributions
with zero mean can be identified with the manifold S+(3) of 3 × 3 real, symmetric,
positive-definite matrices which provides a natural means of parameterizing those
probability density functions. Ultimately, we will use the fact that the Fisher in-
formation matrix corresponds to the Riemannian metric on this manifold (see [107]
for example) and induces a geodesic distance Dg. However, other distances between
parameterized normal distributions (i.e. between covariance matrices and, hence,
diffusion tensors) have been introduced. We will first use the Euclidean distance De,
then exploit the properties of the symmetrized Kullback-Leibler divergence Dj , also
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known as the J-divergence [149], and finally describe the geometry of S+(3) equipped
with a metric derived from the Fisher information matrix.

Euclidean probability metric

We consider S+(3) with the simple Euclidean metric. In this case, the dissimilarity
measure between diffusion tensors is given by the Frobenius norm of the difference
such that for all A,B ∈ S+(3), we have

De(A,B) = |A−B|F =

√
tr
(
(A−B) (A−B)T

)
(8.1)

where tr denotes the trace operator. Using the fact that ∇Xtr (XY ) = Y T for X,Y ∈
GL(n), it is easy to see that:

∇AD2
e(A,B) = A−B (8.2)

In other words, we find that the gradient of the squared Euclidean distance corre-
sponds to the usual difference tangent vector. This is a symmetric matrix which can
be used to compute the 6× 6 covariance matrix 4.7 of a set of N diffusion tensors.
Plugging equation 8.1 into equation 4.6, the empirical mean diffusion tensor is esti-
mated as:

Σe =
1

N

N∑

i=1

Σi

where we denote by Σi the tensor located at voxel xi in Ω. The associated covariance
matrix is obtained as:

Λe =
1

N

N∑

i=1

ϕ
(
Σi − Σe

)
ϕ
(
Σi − Σe

)T

The map ϕ : S+(3) 7→ R
6 associates to each symmetric matrix βi = Σi − Σe its 6 inde-

pendent components. In this Euclidean setting, we can define a Gaussian distribution
between diffusion tensors with the probability function:

pe
(
Σi|Σe,Λe

)
=

1√
(2π)6|Λe|

exp

(
−ϕ (βi)

T Λ−1
e ϕ (βi)

2

)
(8.3)

with βi = Σi − Σe. We will use this expression, in the Euclidean case, for the proba-
bility distributions pin/out in equation 8.16 of section 8.3.3. Finally, the squared norm
of the spatial gradient of a diffusion tensor image Σ : Ω 7→ S+(3) is given by

|∇Σ(x)|2e =
1

2

3∑

k=1

∑

s=±1

tr
(
(Σ(x)− Σ(x+ sek)) (Σ(x)− Σ(x+ sek))

T
)

(8.4)

and is used in the distribution pb defined by equation 8.17 for the Euclidean case.
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J-divergence probability metric

We now adopt a more information-theoretic point of view and consider another dis-
similarity measure between Gaussian probability densities known as the Kullback-
Leibler divergence Dkl or relative entropy. This probability metric has the desirable
property of being invariant under affine transformation of the density parameters,
hence it is invariant under congruence transformations such that

Dkl (A,B) = Dkl
(
XAXT , XBXT

)
, ∀A,B ∈ S+(3), X ∈ GL(3) (8.5)

This property does not hold for the Euclidean distance previously introduced. The
Kullback-Leibler divergence is defined for parametric as well as non-parametric den-
sities. In equation 8.5, A and B actually stand for the covariance matrices of three-
dimensional normal distributions P (r|A) and P (r|B) with zero mean and we have:

Dkl (A,B) =

∫

R3

P (r|A) log
P (r|A)

P (r|B)
dr

We recall that diffusion tensors are indeed the parameters of Gaussian distributions
P modeling the local displacement r of water molecules.
It turns out however that the Kullback-Leibler divergence is not symmetric and hence
not a true metric. We will use, as in [303], its symmetrized version, or J-divergence:

1

2

∫

R3

P (r|A) log
P (r|A)

P (r|B)
+ P (r|B) log

P (r|B)

P (r|A)
dr

As we will see in the next section, the J-divergence is closely related to the squared
geodesic distance on S+(3) induced by the Fisher information matrix but only coin-
cides with the latter for special probability densities. Hence it is natural to define:

Dj (A,B) =

√
1

2
(Dkl (A,B) +Dkl (B,A))

As stated in [316] and used in [303], the expression of this distance is particularly
simple when P is a three-dimensional Gaussian density:

Dj (A,B) =

√
1

4
tr (A−1B +B−1A)− 6 (8.6)

We have the following proposition:

Proposition 8.2.1.1. The gradient of the squared distance D2
j between three-

dimensional normal distributions parameterized by their covariance matrix A,B ∈
S+(3) is

∇AD2
j (A,B) =

1

4

(
B−1 −A−1BA−1

)
(8.7)

Proof. This comes from the fact that ∇Atr
(
B−1A

)
= ∇Atr

(
ATB−T

)
= B−T = B−1

and that ∇Atr
(
A−1B

)
= −

(
A−1BA−1

)T
= −A−1BA−1
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From this result, we are able to compute the covariance matrix 4.7 of a set of diffusion
tensors. We just need to define the empirical mean diffusion tensor 4.6 associated to
the distance Dj 8.6. This was already proposed in [303] as the following theorem:

Theorem 8.2.1.1. The empirical mean diffusion tensor of a set of N tensors {Σi}, i =

1, ...N is given by

Σj = Arg min
Σ∈S+(3)

1

N

N∑

i=1

D2
j (Σ,Σi) = V −1/2

(
U1/2V U1/2

)1/2
V −1/2

with U = 1
N

∑N
i=1 Σi and V = 1

N

∑N
i=1 Σ−1

i

The associated covariance matrix is obtained as:

Λj =
1

N

N∑

i=1

ϕ (βi)ϕ (βi)
T

where, once again, the map ϕ associates to each symmetric matrix βi =

−1
4

(
Σ−1
i − Σ

−1
j ΣiΣ

−1
j

)
its 6 independent components. In this information-theoretic

setting, we now define a Gaussian distribution between diffusion tensors with the
probability function:

pj
(
Σi|Σj ,Λj

)
=

1√
(2π)6|Λj |

exp

(
−
ϕ (βi)

T Λ−1
j ϕ (βi)

2

)
(8.8)

with βi = −1
4

(
Σ−1
i − Σ

−1
j ΣiΣ

−1
j

)
. We will use this expression, in the J-divergence

case, for the probability distributions pin/out in equation 8.16 of section 8.3.3. Finally,
we can easily obtain the squared norm of the spatial gradient of a DT image Σ as

|∇Σ(x)|2j =
1

2

3∑

k=1

∑

s=±1

(
1

4
tr
(
Σ(x)−1Σ(x+ sek) + Σ(x)Σ(x+ sek)

−1
)
− 6

)
(8.9)

and use it in the distribution pb of equation 8.17 for the J-divergence case.

Geodesic probability metric

We introduce, as in chapter 5, a last dissimilarity measure between diffusion tensors,
which we claim to be more natural and powerful for the comparison of three-
dimensional normal distributions. Its superiority will be demonstrated through the
numerical experiments presented in section 8.4.

Using the Fisher information matrix, we already showed that the Riemannian
metric for the space of three-dimensional normal distributions with zero mean, S+(3)

is given, for all A ∈ S+(3) by:

gij = 〈∂i, ∂j〉A =
1

2
tr
(
A−1∂iA

−1∂j
)

i, j = 1, ..., 6
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Below are two examples of the metric tensor G, respectively computed for A1 = I and
A2 = diag

(
σ2

1, σ
2
2, σ

2
3

)
with I and diag () denoting the identity and diagonal matrices.

They correspond to a locally isotropic diffusion process and to the more general case of
an anisotropic diffusion, with variances σ2

1, σ2
2 and σ2

3, whose principal axes coincide
with the coordinate frame of the image:

GA1
=




1/2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1/2 0 0

0 0 0 0 1 0

0 0 0 0 0 1/2




GA2
=




1
2σ4

1

0 0 0 0 0

0 1
σ2
1
σ2
2

0 0 0 0

0 0 1
σ2
1
σ2
3

0 0 0

0 0 0 1
2σ4

2

0 0

0 0 0 0 1
σ2
2
σ2
3

0

0 0 0 0 0 1
2σ4

3




It is obvious from these examples that the second, third and fifth diagonal terms of
the metric tensor receive contributions from cross-terms of the diffusion variances.
Hence the factor 1/2 in the first, fourth and sixth diagonal terms.

We recall that the associated geodesic distance Dg between any two elements
A and B is given by the following expression:

Dg(A,B) =

√
1

2
tr(log2(A−1/2BA−1/2)) =

√√√√1

2

3∑

i=1

log2(ηi) (8.10)

where ηi denote the 3 eigenvalues of the matrix A−1/2BA−1/2.
Apart from being a true distance, hence being positive, symmetric and verifying the
triangle inequality (see [117] although no complete proof of the triangle inequality
was provided by the authors), this distance is also invariant under congruence
transformation (i.e. affine invariant) as well as under inversion.

It is interesting, at this stage, to study the relationship between this geodesic
distance and the J-divergence. As summarized in [16], given suitable technical
conditions on two nearby densities P(r|A) and P(r|A + dA), the zeroth and first
order terms of a Taylor expansion of the Kullback-Leibler divergence around P(r|A)

vanish. Assuming second-order differentiability of Dkl, a second order expansion of
Dkl (A,A+ dA) yields:

1

2

∫

R3

(
1

P2(r|A)

∂P(r|A)

∂xi
∂P(r|A)

∂xj
− 1

P(r|A)

∂2P(r|A)

∂xi∂xj

)
P(r|A)dxi dxj dr

162



which can be shown to reduce to

Dkl (A,A+ dA) =
1

2
E

[
∂ log P(r|A)

∂xi
∂ log P(r|A)

∂xj

]
dxidxj

(if the partial derivatives commute with the integral) and which is precisely half of
the squared geodesic distance between A and A + dA. Consequently it is easy to
see that the J-divergence coincides, up to the second order, with half of the squared
geodesic distance between two nearby diffusion tensors. Whenever the tensors are
not infinitesimally close, the two distances become inconsistent. This is another
reason supporting our claim that diffusion tensors statistics based on the geodesic
distance should improve the quality of DTI segmentation results.

It was shown in [211] that the gradient of the squared geodesic distance writes:

∇AD2
g (A,B) = A log

(
B−1A

)
(8.11)

Based on this result and on the method for the computation of the mean tensor in our
Riemannian setting (section 5.3.1), we will be able to estimate the covariance matrix
4.7 of a set of diffusion tensors {Σi}, i = 1, ..., N and, finally, approximate a Gaussian
distribution on S+(3). As presented in section 5.3.1 and [186], a closed-form expres-
sion for the empirical mean 4.6 cannot be obtained but a gradient descent algorithm
was proposed. It estimates a quantity, known as the Riemannian barycenter, which
exists and is unique for manifolds of non-positive sectional curvature (see [160]) like
S+(3). The algorithm is based on the evolution of an initial guess of the mean (like the
identify matrix I) along the geodesics of S+(3) (equation 9.20) with a velocity given
by the gradient of the variance, i.e. a tangent vector V such as

V = − 1

N

N∑

i=1

∇MD2
g (M,Σi) = − 1

N
M

N∑

i=1

log
(
Σ−1
i M

)

where M denotes the evolving mean tensor. The associated covariance matrix is
obtained as:

Λg =
1

N

N∑

i=1

ϕ (βi)ϕ (βi)
T

where βi = −Σg log
(
Σ−1
i Σg

)
and ϕ associates to each βi its 6 independent components.

The notion of Gaussian distribution was generalized to random samples of primitives
belonging to a Riemannian manifold in [235] where more details can be found regard-
ing this particular point. From this work, we have proposed in section 5.3 and [186] a
definition of the Gaussian law between diffusion tensors which can be approximated
as follows for a covariance matrix Λg of small variance σ2 = tr(Λg):

pg(Σi|Σg,Λg) '
1√

(2π)6|Λg|
exp
−ϕ (βi)

T Γϕ (βi)

2
(8.12)
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where βi is defined as βi = −Σg log
(
Σ−1
i Σg

)
and the concentration matrix is

Γ ' Λ−1
g − R/3, with R the Ricci tensor at the mean Σg. The computation of the

Ricci tensor R can be performed on the basis of closed-form expressions for the
metric and the Riemann tensor provided in [271] and simply involving traces of
matrix products (see section 5.2.2). As we will point out in section 8.4, our numerical
experiments have shown that the Ricci tensor exhibits a difference of at least 2 orders
of magnitude with the inverse of the covariance matrix. Hence we can approximate
Γ by Λ−1

g .

We will use pg, in the geodesic case, for the probability distributions pin/out in
equation 8.16 of section 8.3.3. Finally, the squared norm of the spatial gradient of a
DT image can be estimated as follows:

|∇Σ(x)|2g =
1

2

3∑

k=1

∑

s±1

(
1

2
tr
(
log2

(
Σ(x)−1/2Σ(x+ sek)Σ(x)−1/2

)))
(8.13)

and subsequently used in the distribution pb of equation 8.17 in the geodesic case.

Summary and numerical examples

We summarize, in table 8.1, the expressions of the squared distance, its gradient, and
of the mean tensor for the Euclidean, J-divergence and geodesic cases. The evalua-
tion of the squared distance and its gradient for the matrices A1 and B1 respectively
given below shows a good coherence (although the Euclidean distance is quite larger
than the other two) and, more importantly, illustrates the fact that the J-divergence
accurately approximates half of the squared geodesic distance when the tensors are
relatively close:




0.9878 −0.0527 0.0050

−0.0527 1.0112 −0.0372

0.0050 −0.0372 1.0391


 ,




1.0384 −0.0012 0.0107

−0.0012 1.0056 −0.0060

0.0107 −0.0060 1.0233




D2
e(A1, B1) = 0.010158, ∇A1

D2
e (A1, B1) =



−0.0506 −0.0515 −0.0057

−0.0515 0.0056 −0.0312

−0.0057 −0.0312 0.0158




D2
j (A1, B1) = 0.002526, ∇A1

D2
j (A1, B1) =



−0.0274 −0.0266 −0.0040

−0.0266 −0.0002 −0.0147

−0.0040 −0.0147 0.0066




D2
g(A1, B1) = 0.005050, ∇A1

D2
g (A1, B1) =



−0.0480 −0.0503 −0.0048

−0.0503 0.0074 −0.0314

−0.0048 −0.0314 0.0164




On the contrary, if we consider the matrices A2 and B2, which are much more dif-
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Figure 8.1: Statistics in the genu of the corpus callosum (R:right, L:left)

ferent than A1 and B1, we find out that the J-divergence becomes sensibly different
from half of the squared geodesic distance:




1.0696 −0.0563 0.4035

−0.0563 0.5621 0.1068

0.4035 0.1068 1.4086


 ,




1.2813 0.2320 0.0327

0.2320 1.2782 0.1965

0.0327 0.1965 0.9392




D2
e(A2, B2) = 1.111446, ∇A2

D2
e (A2, B2) =



−0.2117 −0.2883 0.3708

−0.2883 −0.7160 −0.0897

0.3708 −0.0897 0.4695




D2
j (A2, B2) = 0.329119, ∇A2

D2
j (A2, B2) =



−0.2029 −0.2875 0.1765

−0.2875 −0.8811 0.0783

0.1765 0.0783 0.0880




D2
g(A2, B2) = 0.621560, ∇A2

D2
g (A2, B2) =



−0.0648 −0.1598 0.4483

−0.1598 −0.4424 −0.0799

0.4483 −0.0799 0.6295




Now, in order to compare the statistics derived from each distance, we have manually
segmented the genu of the corpus callosum on a DTI data-set used in the last section
of this chapter. This is a well-known region of the brain white matter (figure 8.1)
where fibers are essentially aligned in a right-left fashion, i.e. along the x1 axis on an
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Distance Euclidean J-divergence Geodesic
D2(A,B) tr

(
(A−B)(A−B)T

)
1

4

(
tr
(
A−1B +B−1A

)
− 6
)

1

2
tr
(
log2

(
A−1/2BA−1/2

))

∇AD2(A,B) A−B 1

4
(B−1 −A−1BA−1) A log

(
B−1A

)

Σ 1

N

∑N
i=1

Σi

V −1/2
(
U1/2V U1/2

)1/2
V −1/2

with U = 1

N

∑N
i=1

Σi

and V = 1

N

∑N
i=1

Σ−1
i

Algorithm 1

Table 8.1: Squared distances and their gradient for A,B ∈ S+(3), mean tensor.
axial slice. Consequently, the tensors in this region are very anisotropic with a major
eigenvector close to (1, 0, 0)T . This resulted in a set {Σi} of N = 614 tensors. The
ellipsoids presented in the bottom-right corner of figure 8.1 represent the mean tensor
respectively computed, from left to right, with the Euclidean distance, J-divergence
and geodesic distance (the color encodes their relative fractional anisotropy). Visually,
we can see that the Euclidean mean is somehow more oblate than the other two
ellipsoids. This can be explained by the fact that Euclidean averaging is blind to the
spectral components of the tensors (eigenvalues and eigenvectors) and has a tendency
to mix them. We now present the estimated statistics for each distance (We scaled by
a factor 2 the values obtained for the J-divergence to make the comparisons easier).

Euclidean probability metric:

Σe =




2.6923 −0.1334 0.0347

−0.1334 1.3947 0.0526

0.0347 0.0526 1.1228


 , tr (Λe) = 3.0615

Λe =




2.8685 −0.2261 0.0589 0.6690 0.0892 0.2083

−0.2261 0.0178 −0.0046 −0.0527 −0.0070 −0.0164

0.0589 −0.0046 0.0012 0.0137 0.0018 0.0042

0.6690 −0.0527 0.0137 0.1560 0.0208 0.0485

0.0892 −0.0070 0.0018 0.0208 0.0027 0.0064

0.2083 −0.0164 0.0042 0.0485 0.0064 0.0151




J-divergence probability metric:

Σj =




2.2901 −0.1063 0.0296

−0.1063 1.0833 0.0455

0.0296 0.0455 0.8775


 , tr (Λj) = 1.5161

Λj =




0.0369 0.0075 −0.0015 0.0139 −0.0105 0.0816

0.0075 0.0692 0.0035 0.0137 −0.0051 0.0236

−0.0015 0.0035 0.0413 −0.0135 0.0019 −0.0142

0.0139 0.0137 −0.0135 0.4958 −0.0405 0.5147

−0.0105 −0.0051 0.0019 −0.0405 0.0432 −0.0552

0.0816 0.0236 −0.0142 0.5147 −0.0552 0.8296
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Geodesic probability metric:

Σg =




2.3296 −0.1088 0.0312

−0.1088 1.1102 0.0523

0.0312 0.0523 0.8912


 , tr (Λg) = 2.0370

Λg =




0.7706 −0.0297 0.0207 −0.0003 −0.0267 0.1970

−0.0297 0.3156 0.0431 −0.0461 −0.0016 −0.0041

0.0207 0.0431 0.1332 −0.0113 −0.0086 0.0073

−0.0003 −0.0461 −0.0113 0.4592 0.0094 0.3010

−0.0267 −0.0016 −0.0086 0.0094 0.0276 0.0068

0.1970 −0.0041 0.0073 0.3010 0.0068 0.3306




It is clear that there are important differences between these three approaches.
They are hard to interpret though on such a simple example but their effect on the
segmentation results will be outlined in the section 8.4.

In the next section, we set up a unified Bayesian formulation of the segmenta-
tion problem that will be used throughout this chapter. It relies on the different
possible estimates of the mean Σ and covariance matrix Λ (equation 4.7) to evaluate
the likelihood of a diffusion tensor to belong to a given subset of the DTI data-set.
This will be used in equation 8.16. We recall that we will consider 3 different cases
associated to the Euclidean distance 8.1, the J-divergence 8.6 and the geodesic dis-
tance 8.10. Within these 3 different frameworks, we have shown how to approximate
a Gaussian distribution between diffusion tensors (see equations 8.3, 8.8 and 8.12)
by using the information provided by the gradient of the squared geodesic distance
(see equations 8.2, 8.7 and 8.11). We will also exploit the information provided by the
norm of the tensor field spatial gradient (see equations 8.4, 8.9 and 8.13) to localize
the boundaries between structures of the brain white matter and avoid mixing them
through the boundary term 8.17 in our energy 8.18.

8.3 SEGMENTATION BY SURFACE EVOLUTION
We recall that our goal is to compute the optimal 3D surface separating an

anatomical structure of interest from the rest of a DTI data-set. The statistical sur-
face evolution, as developed in [258], is a well-suited framework for our segmentation
problem. We hereafter summarize the important notions of this technique.

8.3.1 Bayesian formulation for image partitioning

Following general works on image segmentation [175], [325], [17], [228], we seek
the optimal partition of the image domain Ω by maximizing the a posteriori frame
partition probability p(P(Ω) |Σ) for the observed diffusion tensor image Σ. The Bayes
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rule allows to express this probability as:

p(P(Ω) |Σ) ∝ p(Σ | P(Ω))p(P(Ω)) (8.14)

This formulation yields a separation of the image-based cues from the geometric prop-
erties of the boundary given by P(Ω). While being valid for any number of regions, we
restrict this formulation to binary partitions: the structure of interest and the back-
ground. The image partition can be represented as the zero-crossing of a level-set
function φ [88], [89], [223],[59]. Noting B the interface between the two regions Ωin

and Ωout, φ is constructed as the signed distance function to B:




φ(x) = 0, if x ∈ B
φ(x) = D(x,B), if x ∈ Ωin

φ(x) = −D(x,B), if x ∈ Ωout

where D(x,B) stands for the Euclidean distance between x and B. Hence, the optimal
partition is obtained by maximizing: p(φ|Σ) ∝ p(Σ|φ)p(φ). At this stage, these two
terms still need to be defined. For this purpose, several assumptions on the structure
of interest need to be introduced. In the following, a smoothness constraint is imposed
with the term p(φ) while p(Σ|φ) expresses the likelihood of the diffusion tensors to
be inside, outside or on the boundary of the structure. This yields an optimization
criterion similar to the Geodesic Active Regions presented in [228].

8.3.2 Smoothness constraint

The second term of equation 8.14 expresses the probability of the interface to repre-
sent the structure of interest and can be used to introduce prior shape knowledge.
For the segmentation of diffusion tensor images, we have no high level prior infor-
mation but we can use this term to impose shape regularity. Such a constraint can
be obtained by favoring structures with a smaller surface |B| with p(φ) ∝ exp (−ν|B|).
This can be expressed with φ by introducing the Dirac function [324]:

p(φ) ∝ exp

(
−ν
∫

Ω
δ(φ)|∇φ(x)| dx

)
(8.15)

8.3.3 Data term

To further specify the image term p(Σ|φ), we introduce some hypothesis. First, for a
given level-set φ, we can classify the voxels into three classes: inside, outside or on the
boundary. Then, we can define the probability density functions of a diffusion tensor
for each class: pin, pout and pb. Assuming the diffusion tensors to be independent and
identically distributed realizations of the corresponding random process, the data
term is given by:

p(Σ|φ) =
∏

x∈Ωin

pin(Σ(x)) .
∏

x∈Ωout

pout(Σ(x)) .
∏

x∈B

pb(Σ(x)) (8.16)
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This gives two different types of probability distributions: region-based with pin/out

and boundary-based with pb. pin and pout are given by the Gaussian distributions
on tensors introduced in section 8.2.1 pe (equation 8.3) pj , (equation 8.8) and pg

(equation 8.12). The parameters of these laws may be known a priori but in the
absence of such information, they are introduced as unknown parameters.

Regarding pb, the probability should be close to one for high gradients of the
diffusion tensors field and around zero for small variations. This leads to:

pb(Σ(x)) ∝ exp (−gα(|∇Σ(x)|)) (8.17)

with gα(u) = 1/(1 + uα). This type of boundary term is the basis of several works
referred to as active contours [53] and, often, α = 1 or 2 is chosen. For the sake
of readability, we will use the short notation gα(Σ(x)). |∇Σ(x)| will be computed by
using equation 8.4 for the Euclidean case, equation 8.9 for the J-divergence case, or
equation 8.13 for the geodesic case.

8.3.4 Energy formulation

Maximizing the a posteriori segmentation probability is equivalent to minimizing its
negative logarithm. Integrating the regularity constraint 8.15 and the image term
8.16, we end up with the following energy:

E(φ,Σin/out,Λin/out) =

ν

∫

Ω
δ(φ)|∇φ| dx+

∫

Ω
δ(φ)|∇φ|gα(Σ(x)) dx

−
∫

Ωin

log p(Σ(x)|Σin,Λin)dx−
∫

Ωout

log p(Σ(x)|Σout,Λout)dx (8.18)

The boundary term of this energy corresponds to the Geodesic Active Contours [53]
and naturally includes a regularization1 on the interface. Following [162], [259], an
alternate minimization is employed to perform the optimization for the two types of
unknown parameters. For given statistical parameters, the Euler-Lagrange equa-
tions are computed to derive the implicit front evolution:

∂φ

∂t
= δ(φ)

(
(ν + gα(Σ)) div

( ∇φ
|∇φ|

)
+
∇φ
|∇φ| · ∇gα(Σ) + log

p(Σ|Σin,Λin)

p(Σ|Σout,Λout)

)
(8.19)

while the statistics can be updated after each evolution of φ from their empirical esti-
mates, as described in section 8.2.1. More details on this level-set based optimization
can be found in [59], [259], where different applications were considered.
The right-hand side of equation 8.19, between parenthesis, corresponds to the mag-
nitude of the velocity used to deform each point of the evolving surface B along its
normal at that point. The purpose of the next section will be to evaluate the influence

1The regularity term 8.15 could be included in pb by replacing gα by gα,ν = ν + gα.
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of the choice of the density function p, which can be taken in its Euclidean version pe

(equation 8.3), J-divergence version pj (equation 8.8) or geodesic version pg (equation
8.12). We will describe several numerical experiments in order to evaluate the re-
spective performances of each probability metrics for our DTI segmentation task. We
demonstrate that the Riemannian statistical tools presented in section 8.2.1 achieve
the best results.

8.4 RESULTS AND VALIDATION
We begin our numerical experiments with three different synthetic data-

sets of increasing complexity in order to emphasize the respective virtue of the
Euclidean, Kullback-Leibler and geodesic probability metrics. We then apply our
algorithm to a biological rat spinal cord phantom. Finally, we consider real DTI
data-sets on which we perform the segmentation of the corpus callosum.

In practice, there are a few important points that must be carefully addressed
when implementing and running our segmentation algorithm: When dealing with
real DTI data, we use a mask of the brain so that tensors statistics of Ωout are not
corrupted by the signal from the outside of the brain. Regarding the initialization,
we noticed and will demonstrate that our method is very robust. We will show that
the geodesic distance is indeed the only metric capable of representing, through the
associated Gaussian distribution, a smoothly varying tensor field with relatively
high variability. Next, there are two parameters that have to be chosen: The first
one is the value of ν in equation 8.15. It constrains the smoothness of the surface
and is usually set in the range 1 to 10. The second parameter arises from the very
definition of the Gaussian distribution on S+(3) presented in section 8.2.1. The
main hypothesis for this definition to be valid is that the trace of the covariance
matrix Λg should be small and this means that we restrict ourselves to concentrated
distributions. Hence, we set a threshold for the variance which, whenever reached,
induces the end of the update for the statistical parameters. We then let the surface
evolve while using a fixed mean and covariance matrix to model the distributions of
the tensors in Ωin/Ωout. The threshold is chosen in the range [0.01, 0.1] for tensors
with components around 1.0. We noticed that the variance, after a few iterations of
increase at the very beginning of the algorithm, keeps decreasing as the segmen-
tation process converges. Consequently, a careful selection of this parameter is not
critical. Finally, we improved the computational efficiency of the method using the
geodesic distance by noticing and experimentally verifying that, in equation 8.12,
the term involving the 6 × 6 Ricci tensor R/3 can be neglected since we have found,
in our numerical experiments, a difference of at least 2 orders of magnitude between
Λ−1
g and R/3.

Regarding the computational cost of the method, we should point out that it is
fairly efficient since the results presented on figure 8.18 and 8.19 were respectively
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obtained, on 128 × 128 × 64 images, in 5 and 10 minutes on a 1.7 GHz Pentium M
processor with 1 Gb of RAM.

8.4.1 Synthetic examples

Each of the three synthetic data-sets consists of a 40× 40× 40 3D tensor field with a
main pattern and a background. The tensors follow the shape of the pattern so that,
as the shape becomes more twisted, the tensors variability increases and makes it
more difficult for the algorithm to recover the entire shape. The regularity factor ν is
set to 1 for all the experiments. The initialization is done by the means of one or two
spheres (see figures below). Finally, the mean tensor and covariance matrix used for
the generation of noise in all the experiments are the following:

Σ =




1 0 0

0 1 0

0 0 1




Λ =




0.0885 −0.0568 −0.0260 0.0119 −0.0394 0.0035

−0.0568 0.0701 0.0039 −0.0070 0.0122 −0.0112

−0.0260 0.0039 0.0183 −0.0023 0.0218 0.0095

0.0119 −0.0070 −0.0023 0.0078 −0.0113 0.0010

−0.0394 0.0122 0.0218 −0.0113 0.0416 0.0118

0.0035 −0.0112 0.0095 0.0010 0.0118 0.0160




The generation of random tensors, i.e. Gaussian noise in S+(3), is usually addressed
by simply building symmetric matrices with i.i.d. normally distributed components
and then enforcing their positivity. As discussed in section 5.4.1, the main drawback
of this approach is that it leaves no grasp on the actual distribution of tensors. We
proposed in this section and in [186], to use the equation 8.12, to generate random
tensors with a known mean Σ and covariance matrix Λ. We use this method in the fol-
lowing and recall that it is fairly simple since all we need to do is to randomly choose
the initial velocities {βi}, i = 1, ..., N of the geodesics in S+(3) joining the imposed
mean tensor Σ to the random elements Σi. In practice, this operation is performed
in local coordinates so that we only need to draw random samples of the ϕ (βi) ∈ R

6

with zero mean and covariance matrix Λ. The Σi are easily obtained by using the
expression βi = −Σ log

(
Σ−1
i Σ

)
(table 8.1).

The Y tensor field

We start with a simple example composed by a diverging tensor field and a back-
ground of isotropic tensors (figure 8.2). Within the Y shape, tensors fractional
anisotropy decreases as we get away from the center-line. This example is relatively
simple since the tensors variability stays low and the segmentation procedure suc-
ceeds with the three probability metrics. One important difference must be noted
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Figure 8.2: Segmentation of the Y tensor field. From left to right: Axial slice of the
original and noisy data-set, evolution of the segmentation (color map indicates FA)

though: By comparison with the Euclidean distance, which requires 45 iterations to
segment the Y structure, the process converges faster when the J-divergence is used
(30 iterations), and relatively faster with the geodesic distance (28 iterations). This
is easily explained by the fact that the velocity of the evolving surface, at location x

of the image Σ, is directly related to the likelihood of tensor Σ(x) to belong to Ωin or
Ωout. It is hence a first argument in favor of our claim that the geodesic probability
metrics yields more adequate tensor statistics.

The torus tensor field

Next, we consider another example where the tensors follow the tangent of the center-
line of a torus (figure 8.3) and share the same eigenvalues. This yields a higher orien-
tational variability of the tensors. A direct consequence of this increased variability is
the failure of the segmentation process when we use the Euclidean probability metric.
The evolution is presented on figure 8.5. The initial sphere is setup so that it covers
half of the torus and contains the part of the background situated ‘inside’ the torus.
The surface evolution falls into a local minimum and is unable to recover the desired
shape. On the contrary, the J-divergence and geodesic distance behave consistently
and succeed to segment the complete torus (figure 8.6). We notice, as in the previous
example, that the segmentation using the geodesic distance converges faster (20 iter-
ations) than the one relying on the J-divergence (27 iterations). The result presented
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Figure 8.3: Axial slice of the original and noisy torus tensor field

for the Euclidean metric on figure 8.5 is the final state after 600 iterations.

The helix tensor field

Figure 8.4: Axial, coronal and sagittal slices of the original and noisy helix tensor
field

The last synthetic data-set that we consider is the helix tensor field presented on
figure 8.4. It is composed of a background with anisotropic tensors aligned on the
x1 axis of the 3D field and an helix containing tensors oriented along the tangent
of its center-line. The fractional anisotropy of the helix tensors varies around each
spire. Moreover, the tensors orientation spans a broader range of possibilities than
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Figure 8.5: Failure of the torus segmentation with the Euclidean distance (right: final
state after 600 iterations)

Figure 8.6: Successful segmentations of the torus with the J-divergence and geodesic
distances (right: final state after 27 iterations with the J-divergence or 20 iterations
with the geodesic distance. The evolutions are similar.)

Figure 8.7: Failure of the helix segmentation with the Euclidean distance

Figure 8.8: Failure of the helix segmentation with the J-divergence
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Figure 8.9: Successful segmentation of the helix with the geodesic distance

in the torus case since it changes along the x1, x2 and x3 axes. This is certainly
an example on which it is desirable for our segmentation algorithm to succeed
since this tensors variation pattern is fairly realistic and may be found in real DT
images. As a matter of fact, only the statistics computed with the geodesic distance
enable our segmentation framework to achieve a correct extraction of the helix. The
initialization consists of 2 small spheres overlapping the helix and the background.
As we can see on figure 8.7 and 8.8, the surface evolution quickly stops when it
uses the Euclidean distance or the J-divergence, even though the latter propagates
further than the former as we could have expected. The local minima are respectively
reached after 130 and 80 iterations. Using the geodesic distance, the complete helix
is recovered (figure 8.9) after 300 iterations.

This last example undoubtedly demonstrates the superiority of the Rieman-
nian framework over the statistics derived from the Euclidean or Kullback-Leibler
dissimilarity measures.

Figure 8.10: Segmentation of the rat spinal cords phantom - Axial slice of the data-set
(left) and final segmentation using the geodesic distance (right)
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Figure 8.11: Segmentation of the rat spinal cords phantom with the geodesic distance
and a large sphere initialization (1st row), a small sphere initialization (2nd row) and
initialization at one end of a cord (3rd row).

Figure 8.12: Comparison of the rat spinal cords phantom segmentation results with
the 3 distances (colors as on figure 8.17)
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8.4.2 Biological phantom data-set

We tested our algorithm on a biological phantom produced by J. Campbell et al. at
the McConnell Brain Imaging Center and Montreal Neurological Institute [49, 50]
and was created from two excised Sprague-Dawley rat spinal cords embedded in 2%
agar. Diffusion weighted images (DWI) were acquired along 90 gradient directions
with a b factor of 1000 s.mm−2 on a 1.5 Tesla Siemens Sonata scanner using a knee
coil. Diffusion tensors are computed by using the method proposed in section 6.1.2.
An axial slice of the resulting DT image is presented on figure 8.10 together with a
3D surface modeling the spinal cords.

This data-set is well suited to evaluate the robustness to the initialization of
our segmentation framework as well as to demonstrate the importance of the
Riemannian framework to achieve good segmentation results.
Figure 8.11 illustrates the evolution of the segmentation process, using the geodesic
distance, for 3 very different initializations: One large sphere and one small sphere
centered at the cord crossing, and one small sphere placed at one end of a cord.
These three examples yield the same final result, thus experimentally showing the
non-dependence of our method on the initialization. Finally, figure 8.12 displays,
on top of the Apparent Diffusion Coefficient image, the three final segmentation
results obtained by using the Euclidean distance (blue), J-divergence (green) and
geodesic distance (red). We can see that the most accurate result is obtained with
the latter. Especially, it is interesting to note that, in the upper right part of the
image where the two cords are very close to each other, only the geodesic distance is
able to distinguish between the two structures. This is another example of the better
properties of the Riemannian statistics to model the distribution of the diffusion
tensors.
In the next section, we will show that the Riemannian statistical approach also
performs better on human brain diffusion tensor images.

8.4.3 Real DTI data-sets

Method and tensors estimation

Diffusion weighted images were acquired at the Center for Magnetic Resonance Re-
search, University of Minnesota, on a 3 Tesla Siemens Magnetom Trio whole-body
clinical scanner. Measurements were made along 12 gradient directions. Acquisition
parameters were: b factor = 1000 s.mm−2, TE = 92 ms and TR = 1.7 s. The images were
obtained on 64 evenly spaced axial planes with 128 × 128 pixels per slice. The voxel
size is 2 × 2 × 2 mm. As for the biological rat spinal cord phantom, diffusion tensors
are computed by using the method proposed in [184]. An example of the resulting DT
image is presented on figure 8.13. It uses a red-green-blue color scheme to encode the
tracts orientation. Following [300] and [150], we indicate the names of major fiber
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Figure 8.13: Axial (A,B) and coronal (C,D) DT images color maps and major fiber bun-
dles. acr = anterior region of the corona radiata, alic = anterior limb of the internal
capsule, bcc = body of the corpus callosum, ec = external capsule, gcc = genu of the
corpus callosum, ilf = inferior longitudinal fasciculus, ifo = inferior fronto-occipital
fasciculus, pcr = posterior region of the corona radiata, plic = posterior limb of the
internal capsule, scc = splenium of the corpus callosum, scr = superior region of the
corona radiata, sfo = superior fronto-occipital fasciculus, slf = superior longitudinal
fasciculus, tpt = tapetum

bundles.

Performance of the probability metrics

In order to further compare the performance of the three probability metrics, within
our segmentation framework, we have experimented with the extraction of the cor-
pus callosum from a given DTI data-set. This important structure corresponds to the
so-called callosal radiations which connect homologous areas of each hemisphere. It
can be roughly divided into three main parts known as the genu (gcc), body (bcc) and
splenium (scc). The genu radiates into the prefrontal, orbital and inferior premotor
areas to form the forceps minor. The body of the corpus callosum radiates into the
premotor, motor and supplementary motor cortical areas. Finally, the splenium
radiates into the inferior/superior temporal, occipital and posterior parietal regions
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Figure 8.14: Corpus callosum on a midsagittal (left) and sagittal (right) slice from a
T1 MRI

to form the forceps major.
It turns out that, near the midsagittal plane, all the fibers follow the same right-left
orientation pattern making it quite easy to extract this structure from anatomical
MRI (see figure 8.14 [left]). This has been used in group studies [216] to investigate
architectural variability of the corpus callosum in relation with pathologies like
schizophrenia. However, as we can see on figure 8.14 [right], once we get away from
the midsagittal planes the callosal radiations quickly merge within the white matter
and cannot be segmented anymore. We show that our Riemannian segmentation
framework is able to provide more accurate segmentations of the corpus callosum.

The initialization is obtained either by a quick and approximate delineation of
the genu and splenium on only 2 axial slices (figure 8.15) or by a simple sphere of
radius 8 voxels centered in the middle of the body of the corpus callosum. In both
cases, results are identical and presented on figure 8.17 and 8.18. It is obvious
that there is a clear improvement of the segmentation quality (especially in the
region of the splenium, figure 8.17) when moving from the Euclidean distance to
the J-divergence and it is much better when the statistics are computed with the
geodesic distance.

The splenium of the corpus callosum is almost entirely recovered by the Rie-
mannian approach while it is barely visible with the Euclidean method and only
partially extracted when using the J-divergence. We noticed moreover than the
Euclidean approach has a tendency to misclassify some tensors from the ventricles.
This means that the statistics are not enough discriminant and even take over the
boundary term at some locations. The geodesic distance definitely yields the best
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Figure 8.15: Initialization of the corpus
callosum segmentation by an approximate
delineation of the genu and splenium

Figure 8.16: Initialization of the corpus
callosum segmentation with added tensors
from the superior region of the corona ra-
diata

results.

Multiple fiber bundles segmentation

We conclude our numerical experiments on human brain DTI by trying to also recover
fibers from the corona radiata, which is known to merge with the corpus callosum.
The initialization is presented on figure 8.16 and is meant to include some tensors
from the superior part of the corona radiata (scr). To that end we simply added
tensors of the scr on 2 coronal slices. It turns out that, with the Euclidean distance
and J-divergence, these new tensors quickly disappear from the segmentation and
the final results are the same as those presented on figure 8.18. This is not suprising
and proves that the associated statistics do not constitute accurate descriptors of
the tensors distribution. On the other side, the statistics computed with the geodesic
distance make it possible to perform the desired segmentation, as presented on figure
8.19. We believe that this is an interesting result since the superior part of the corona
radiata is partially recovered. But more importantly, fiber tracts which are known to
mingle with the callosal radiations are also segmented. It is indeed well-known that
the corpus callosum merges with association and projection fibers as its gets toward
the cortex. We can see on figure 8.19 that the tapetum, the posterior region of the
corona radiata and a part of the superior longitudinal fasciculus are extracted since
they fuse with the splenium of the corpus callosum. The posterior limb of the internal
capsule (essentially the corticospinal tract) is equally segmented since it intersects
with the corpus callosum and with the superior longitudinal fasciculus in the region
of the centrum semiovale. All these results contribute to clearly validate our claim
that the proposed Riemannian framework achieves the best segmentation results.
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Figure 8.17: Segmentation results in the region of the splenium (blue: Euclidean
distance, green: J-divergence, red: geodesic distance)

Figure 8.18: Segmentation of the corpus callosum using the Euclidean distance (left),
J-divergence (center), and geodesic distance (right)

8.5 CONCLUSION
We have presented a unified statistical surface evolution framework for

the segmentation of diffusion tensor images. Since a diffusion tensor can be un-
derstood as the covariance matrix of a three-dimensional normal distribution with
zero mean, we have introduced various probability metrics (Euclidean distance, J-
divergence and geodesic distances), i.e. dissimilarity measures between probability
density functions, to derive statistics on DT images. These statistical parameters
(mean and covariance matrix) allowed us to define a notion of Gaussian density for
diffusion tensors, depending on the probability metric, which was used to model the
distribution of a set of tensors. Finally, we have shown how to estimate the norm of
the spatial gradient of a DT image, using the three different dissimilarity measures,
in order to detect boundaries between structures of the white matter. By fusing these
statistical and geometrical information within a variational framework, we derived
a powerful level-set based DTI segmentation technique. At this point, our claim was
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Figure 8.19: Segmentation of the corpus callosum and intermingling fiber tracts

that the special properties of the space of 3× 3 diffusion tensors (symmetry and pos-
itivity) were naturally handled by working in the Riemannian framework. It must
consequently yield more adequate tools to deal with tensors than the Euclidean or
J-divergence approaches. The former, by seeing S+(3) as a linear space is completely
blind to its curvature. The latter was shown to be equivalent to the geodesic distance
only for infinitesimally close tensors. The Riemannian framework was proposed to
derive the proper tools to work within the space of 3 × 3 diffusion tensors while tak-
ing into account its special properties.We proved that the choice of the probability
metric, i.e. the dissimilarity measure, has a deep impact on the tensor statistics and,
hence, on the segmentation results.
Through numerical experiments on synthetic data-sets, a biological rat spinal cord
phantom, as well as on human brain DT images, we could demonstrate the superior-
ity of the geodesic probability metric over the J-divergence which, in turn, performed
better than the Euclidean distance. This order was found on synthetic data-sets with
increasing complexity and for which, ground truth being known, it was very easy
to undoubtedly evaluate the quality of the segmentations. The biological phantom
data-set, because of its known and relatively simple geometry, allowed to test the
robustness to the initialization of our algorithm and, again, to demonstrate on a sin-
gle realistic data-set that the best results were obtained with the geodesic distance.
Finally, on human brain DTI data-sets, the Riemannian approach was the only one
capable of correctly segmenting highly variable tensor fields. It achieved better re-
sults than the other metrics (Euclidean distance and J-divergence), by comparison
with neuroanatomical knowledge, for the segmentation of the corpus callosum or the
corticospinal tract.
We now address one last processing technique for DTI before presenting two appli-
cations of the tools developed in this thesis: the non-rigid registration of diffusion
tensor images.

182



CHAPTER 9

NON RIGID REGISTRATION OF
DIFFUSION TENSOR IMAGES
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OVERVIEW
We propose a novel variational framework for the dense non-rigid registration of dif-
fusion tensor images. Our approach relies on the differential geometrical properties
of the Riemannian manifold of multivariate normal distributions endowed with the
metric derived from the Fisher information matrix, as presented in chapter 5. The
availability of closed form expressions for the geodesics and the Christoffel symbols
allows us to define statistical quantities and to perform the parallel transport of tan-
gent vectors in this space. We propose a matching energy that aims to minimize the
difference in the local statistical content (means and covariance matrices) of two DT
images I1 and I2 through a gradient descent procedure. The result of the algorithm is
a dense vector field h that can be used to wrap I2 onto I1. This chapter is essentially
a mathematical study of the registration problem. Some numerical experiments are
provided in section 9.6 as a proof of concept.

Keywords: registration, non rigid registration, partial differential equations, dif-
ferential geometry, parallel transport, statistics, linear elasticity

9.1 INTRODUCTION
We deal with the problem of estimating the geometric deformations be-

tween two diffusion tensor images. This is reminiscent of the problem of estimating
the deformation of two images where the values at each voxel are real numbers
[110]. This is solved by minimizing with respect to the deformation field h an error
criterion that takes into account two sources of a priori knowledge:

1. The properties of the intensities, to define the similarity of the images.
2. The constraints on the possible geometric deformations.

In our case, the ”intensities” are diffusion tensors. The problem of measuring
their similarity is much more complicated and the corresponding gradient descent
scheme becomes significantly more involved.

Previous works on the subject was initiated by Alexander et al. [4] by extend-
ing multiresolution registration techniques to DTI after having introduced various
possible dissimilarity measures for such images [5]. In [263] and [262] the authors
proposed to register three-dimensional scalar, vector and tensor data by matching
areas with a high degree of structure and then interpolating the sparse estimated
displacement field to the complete dataset. Other approaches like [155], [130], [229]
and [255] rely on one or several transformation invariant tensor characteristics like
the eigenvalues, the anisotropy measures, the apparent diffusion coefficient or even
the tensor components to perform the registration. When several characteristics are
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used, which is often the case, multiple input channel registration methods like the
demons algorithm [131] are used. In [321, 319] and then [320], the authors proposed
a piecewise affine registration technique based on the L2 inner product of diffusion
profiles. They also investigate the tensors reorientation issue raised by Alexander et
al. in [6]. Recently, Cao et al. [52] proposed to apply the framework of the Large De-
formations Diffeomorphic Metric Mapping to DTI. Finally, Leemans [177] introduced
an affine multi-channel registration technique based on the mutual information as
well as an original feature based registration method based on the curvature and
torsion of fibers pathways. Although different from the DTI registration problem, we
also want to point out a few recent works [11, 236] that have used the Riemannian or
Log-Euclidean metrics to characterize the properties of deformation fields, obtained
through scalar images registration algorithms.

Contributions of this chapter:
In this chapter, we extend the approach presented in [110] to matrix-valued im-

ages I : Ω → S+(3). To our knowledge, this is the very first work to make use of the
Riemannian structure of S+(3), proved to be relevant for DTI processing for instance
in [238, 116, 14, 186], in a non-rigid DTI registration algorithm. The numerical im-
plementation of the method is very tedious. We will illustrate the feasibility of the
approach on two-dimensional synthetic datasets.

Organization of this chapter:
We first set up the registration problem in section 9.2 and recall some important

notions on S+(3). We then detail the regularization (section 9.3) and the data (section
9.4) terms of the initial value problem 9.3. We detail the computation of the gradient
of the data term in section 9.5. Finally, we present numerical experiments in section
9.6.

9.2 THE REGISTRATION PROBLEM
We consider the problem of estimating the geometric deformations between

two Diffusion Tensor Images (DTI). At a conceptual level, DT images are integrable
bounded functions defined in R

n, n = 2, 3 with values in S+(3) (noted S+ in the
sequel). As briefly recalled below, this space has a natural Riemannian structure.
Bounded means that all observed diffusion tensors are within a ball of center I, the
3 × 3 identity matrix, for the distance defined by equation 9.4. The same equation
shows that the eigenvalues must lie between two strictly positive constants and
therefore that the set of bounded diffusion tensors (for the Riemannian metric) is also
bounded for the 2-norm and therefore for all the usual p-norms and the Frobenius
norm.

These abstract images are not directly observable because of the physics of ac-
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quisition. What we call an image is an element of C∞(Rn, S+), the space of infinitely
differentiable functions. They are bounded and Lipschitz continuous as well as all
their derivatives.

9.2.1 Statement of the problem

Let I1 and I2 be two images and h : Ω → R
n a vector field defined on a bounded

and regular region of interest Ω ⊂ R
n. The registration or matching problem may be

defined as that of finding a vector field h∗ minimizing an error criterion between I1

and I2 ◦ h. The search for this function is done within a set F of admissible functions
so as to minimize an energy functional I : F → R

+ of the form

I(h) = J (h) +R(h).

The term J is designed to measure the ”dissimilarity” between the reference image
I1 and the h-warped image, noted Th(I2). We have the following proposition

Proposition 9.2.1.1. If the relation between the two images I1 and I2 is a change of
coordinates x′ = h(x) then the value I1(x) should be equal to the value Th(I2)(x), where

Th(I2) = Dh−1I2(h)Dh
−T . (9.1)

Proof. I1(x) is a twice contravariant tensor. In the new coordinate system defined by
x′ = h(x) it is equal to

I ′1(x
′) = Dh(x)I1(x)Dh

T (x),

because of the way tensor components change with changes of coordinates. This new
tensor should be equal to I2(x′) and this yields the expression for Th(I2)(x).

Note that other possibilities for Th(I2) have been considered in the literature (see
[6] for instance). R. Sierra [270], has considered the case where one wants to preserve
the determinant of I2; this leads to

Th(I2) = (det(Dh))2/3Dh−1I2(h)Dh
−T

In the following we consider that Th(I2) is defined by equation 9.1. The term R(h)

is designed to penalize fast variations of the function h. It is a regularization term
introducing an a priori preference for smoothly varying functions. Our error criterion
is classically the sum of a data term J and a regularization term R.

The set F is a dense linear subspace of a Hilbert space H whose scalar prod-
uct is denoted by (·, ·)H . If I is sufficiently regular, its first variation (also called the
Gâteaux derivative) at h ∈ F is defined (see, e.g., [81]) as

δkI(h) = lim
ε→0

I(h+ εk)− I(h)
ε

(9.2)
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If the mapping k → δkI(h) is linear and continuous, the Riesz representation theorem
[108] guarantees the existence of a unique vector, denoted by ∇HI(h), and called the
gradient of I, which satisfies the equality

δkI(h) = (∇HI(h), k)H ,

for every k ∈ H. The gradient depends on the choice of the scalar product (·, ·)H
though, a fact which explains our notation. If a minimizer h∗ of I exists, then the set
of equations δkI(h∗) = 0 must hold for every k ∈ H, which is equivalent to ∇HI(h∗) =

0.
These equations are called the Euler-Lagrange equations associated with the energy
functional I. They give necessary conditions for the existence of a minimizer but
they are not sufficient since they only guarantee the existence of a critical point of
the functional I. These critical points can be found in many ways, including methods
for nonlinear equations. Rather than solving them directly the search for a minimizer
of I is done using a gradient descent strategy. Given an initial estimate h0 ∈ F , a
time-dependent differentiable function (also denoted by h) from the interval [0,+∞[

into H is computed as the solution of the following initial value problem:




dh

dt
= −

(
∇HJ (h) +∇HR(h)

)
,

h(0)(·) = h0(·).
(9.3)

The asymptotic state (i.e. when t → ∞) of h(t) is then chosen as the solution of the
matching problem, provided that h(t) ∈ F ∀t > 0.

9.2.2 Precisions on the Riemannian structure of S+(n)

In this section, we remind some basic concepts that will be useful for the following.
We recall that S+(n) denotes the set of n×n real symmetric positive definite matrices,
Σ. It is a subset of Mn(R), the set of n × n real matrices. It is also a mn-dimensional
C∞ submanifold of R

mn (mn = n(n + 1)/2) whose local coordinates can be chosen
as the mn algebraically independent components of the elements of Σ. We note
ϕn : S+(n) → R

mn the natural coordinates mapping of this manifold. We recall that
TΣS

+(n), the tangent space at Σ of S+(n), coincides with the set S(n) of n × n real
symmetric matrices. This is a vector space which can be identified with R

mn through
the mapping ϕn. Elements in that space are contravariant vectors. We finally denote
by T ∗

ΣS
+(n) the cotangent space at Σ of S+(n), the dual space of TΣS

+(n). Elements
in that space are covariant vectors. The basis of TΣS

+(n) and T ∗
ΣS

+(n) were given in
section 5.2 of chapter 5.

We recall the following theorem, see, e.g. [209]:
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Theorem 9.2.2.1. Let E be the set of real n×nmatrices such that all the eigenvalues λi
are such that |Im(λi)| < π. The restriction to E of the exponential is a diffeomorphism
between E and exp E .

There are two consequences of this theorem that are used in the sequel. The first
one is the

Corollary 9.2.2.1. The exponential is a diffeomorphism between S(n) and S+(n).

In other words, the exponential of any symmetric matrix is a positive definite
symmetric matrix and the inverse of the exponential (i.e. the principal logarithm)
of any positive definite symmetric matrix is a symmetric matrix. Moreover, both
the exponential and the logarithm are continuously differentiable in S(n) and S+(n),
respectively.
The second one is the

Corollary 9.2.2.2. The logarithm of a matrix with positive eigenvalues exists, and is
unique and differentiable.

Proof. Any such matrix belongs to exp E defined in theorem 9.2.2.1. Therefore its
logarithm exists, is unique and differentiable.

We introduce two notations

Definition 9.2.2.1. We note exp and log the exponential and its inverse, the logarithm.
Given M ∈ Mn(R), we note dexp (M,X) the derivative of exp at M , applied to the
element X ∈Mn(R). This is also sometimes called the derivative of the function exp at
M in the direction X. In a similar manner, given M ∈ exp E we note dlog (M,X) the
derivative of the function log at M in the direction X.

Details on the directional derivative of the matrix exponential and its computa-
tion can be found in [215]. However, to our knowledge, there is no previous work on
the computation of the directional derivative of the matrix logarithm. As we will see
in section 9.5, this will be a key component of our method. In appendix A, we propose
a novel formulation for the directional derivative of the matrix logarithm dlog (M,X)

based on the spectral decomposition of M . We will show that it is in fact a linear
function of its second argument X.

The geodesic distance between two elements Σ1 and Σ2 of S+(n) was introduced in
chapter 5 and is defined by

D(Σ1,Σ2) =

√
1

2
tr
(
log2

(
Σ
−1/2
1 Σ2Σ

−1/2
1

))
, (9.4)

It is justified by corollary 9.2.2.1. At each point Σ of S+, the metric tensor G acts
on pairs of tangent vectors of TΣS

+ and defines an inner product. Its inverse G−1 is
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twice contravariant. For any real differentiable function f defined on S+, one defines
its differential, noted Df = [ ∂f

∂x1 , · · · , ∂f
∂xmn ], with respect to the coordinates defined

by the chart ϕn, a covariant vector, and its gradient, noted ∇f , which is a vector of
TΣS

+. The relation between Df and ∇f is through the metric tensor:

∇f = G−1Df (9.5)

Equation 9.4 defines a real function on S+(n) × S+(n) which is differentiable. The
gradient of D2 with respect to Σ1, noted ∇Σ1

, at Σ1 and for some fixed Σ2, is equal to
[211]:

∇Σ1
D2(Σ1,Σ2) = Σ1 log

(
Σ−1

2 Σ1

)
. (9.6)

It is a vector of TΣ1
S+(n), hence a symmetric matrix. This can also be seen from the

general relation
log(A−1BA) = A−1(logB)A, (9.7)

by writing

Σ1 log
(
Σ−1

2 Σ1

)
= Σ1 log

(
Σ−1

1 Σ1Σ
−1
2 Σ1

)
= log

(
Σ1Σ

−1
2

)
Σ1 =

(
Σ1 log

(
Σ−1

2 Σ1

))T

It is tangent at Σ1 to the (unique) geodesic between Σ1 and Σ2. In the following, we
use the cases n = 3 and n = 6. To facilitate the reading of the formulas, indexes
running from 1 to 3 are lower case Latin characters, e.g., i = 1, 2, 3, indexes running
from 1 to 6 are upper case Latin characters, e.g., I = 1, . . . , 6, and indexes running
from 1 to 9 are lower case Greek characters, e.g., κ = 1, . . . , 9.

9.3 REGULARIZATION TERM
This section studies the regularization part of the initial value problem 9.3,

i.e. the term ∇HR(h). We choose concrete functional spaces F and H and specify the
domain of the regularization operators.

9.3.1 Function spaces and boundary conditions

We begin by a brief description of the function spaces that will be appropriate for
our purposes. In doing this, we will make reference to Sobolev spaces, denoted by
W k,p(Ω). We refer to the books of Evans [108] and Brezis [40] for formal definitions
and in-depth studies of the properties of these functional spaces.

For the definition of ∇HI, we use the Hilbert space

H = L2(Ω) = L2(Ω)× · · · × L2(Ω)︸ ︷︷ ︸
n terms

= (W 0,2(Ω))
n
.

The regularization functionals that we consider are of the form

R(h) = κ

∫

Ω
ϕ(Dh(x)) dx, (9.8)
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where Dh(x) is the Jacobian of h at x, ϕ is a quadratic form of the elements of the
matrix Dh(x) and κ > 0. Therefore the set of admissible functions F will be contained
in the space

H1(Ω) = (W 1,2(Ω))
n
.

Additionally, the boundary conditions for h will be specified in F . We consider Dirich-
let conditions of the form h = 0 almost everywhere on ∂Ω (in fact, because of the
regularity of h, this condition holds everywhere on ∂Ω), and set

F = H1
0(Ω) = (W 1,2

0 (Ω))
n
.

Because of the special form of R(h), the corresponding regularization operator is a
second order differential one, and we therefore will need the space

H2(Ω) = (W 2,2(Ω))
n

for the definition of its domain.

9.3.2 Linearized elasticity

The family that we consider is inspired from the equilibrium equations of linearized
elasticity (we refer to [69] for a formal study of three-dimensional elasticity) obtained
by defining ϕ in equation 9.8 by

ϕ(Dh) =
1

2

(
ξTr(DhTDh) + (1− ξ)Tr(Dh)2

)
, (9.9)

where 1/2 < ξ ≤ 1. It is straightforward to verify that the Euler-Lagrange equation
corresponding to equation 9.8 in this case is:

∇HR(h) = div (Dϕ(Dh)) = ξ∆h+ (1− ξ)∇(∇ · h)

We thus define the corresponding regularization operator as follows.

Definition 9.3.2.1. The linear operator A : D(A)→ H is defined as




D(A) = H1
0(Ω) ∩H2(Ω),

Ah = ∇HR(h) = ξ∆h+ (1− ξ)∇(∇ · h)

for 1/2 < ξ ≤ 1

9.4 DEFINITION OF THE DATA TERM J
We want to compare the values of the image I1 in a neighborhood of a voxel

x to those of I2 in the corresponding neighborhood transformed by h. We propose a
statistical framework for doing so, in the spirit of block-matching techniques. Local
statistics (mean, covariance matrix) has been found to be very useful for warping
scalar images, i.e. real-valued images. This idea can be generalized to tensor-valued
images as follows.
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9.4.1 Local mean and covariance matrix

Given a voxel x in the volume Ω, the local mean µ̂1(x) is defined as one of the minima
with respect to its first argument of the following function defined on S+ × Ω

C1(µ1, x) =
1

| Ω |

∫

Ω
D2(µ1, I1(y))Gγ(x− y) dy,

where Gγ is a three-dimensional Gaussian with 0-mean and variance γ2

Gγ(x) =
1

(2πγ2)3/2
exp

(
−|x|

2

2γ2

)
.

|x| is the Euclidean norm of the vector x and D is the geodesic distance defined in
equation 9.4 between the two elements µ1 and I1(y) of S+ [186]. C is a weighted
average of the squared geodesic distances between the element µ1 of S+ and the
elements of the image I1. The amount of locality is controlled by the parameter γ2,
the variance of the Gaussian. We call µ̂1(x) the element of S+ that minimizes C1.
It is the weighted Riemannian mean of the family I1(y) of elements of S+, where y
varies in Ω, a notion introduced by Grove, Karcher and Ruh [129]. We have already
explained in section 5 why this mean is unique.

Hence we have

µ̂1(x) = argmin
µ1

1

| Ω |

∫

Ω
D2(µ1, I1(y))Gγ(x− y) dy

Because of equation 9.6 we can write an expression for the gradient of the function C
with respect to µ1, at µ1:

∇µ1
C1(µ1, x) =

µ1

| Ω |

∫

Ω
log
(
I1(y)

−1µ1

)
Gγ(x− y) dy

At the minimum µ̂1(x), this gradient is equal to 0:

µ̂1(x)

| Ω |

∫

Ω
log
(
I1(y)

−1µ̂1(x)
)
Gγ(x− y) dy = 0 (9.10)

An interpretation of this relation is the following. Each of the matrices

β1(x, y)
def
= −µ̂1(x) log

(
I1(y)

−1µ̂1(x)
)
Gγ(x− y)

belongs to the tangent space Tµ̂1(x)S
+, a copy of S, the space of symmetric matrices.

Since Tµ̂1(x)S
+ is identified to R

6 through the chart ϕ3, one can define the covariance
matrix of the vectors ϕ3(β1(x, y)), noted β1(x, y) for simplicity, which have zero-mean
according to equation 9.10:

Λ1(x) =
1

| Ω |

∫

Ω
β1(x, y)β

T
1 (x, y) dy.

This is a twice contravariant tensor defined on Tµ̂1(x)S
+.
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Applying the transformation h to the second image I2, we can define the corre-
sponding quantities. The local mean at the voxel h(x) becomes:

µ̂2(x, h) = argmin
µ2

C2(µ2, x) = argmin
µ2

1

| Ω |

∫

Ω
D2(µ2, Th(I2)(y))Gγ(x− y) dy,

and satisfies

∇µ2
C2(µ̂2(x, h), x) =

µ̂2(x, h)

| Ω |

∫

Ω
log
(
Th(I2)−1(y)µ̂2(x, h)

)
Gγ(x− y) dy = 0. (9.11)

The tangent vectors to S+ at µ̂2(x, h) are

β2(x, y, h)
def
= −µ̂2(x, h) log

(
Th(I2)−1(y)µ̂2(x, h)

)
Gγ(x− y) (9.12)

and their covariance matrix is

Λ2(x, h) =
1

| Ω |

∫

Ω
β2(x, y, h)β

T
2 (x, y, h) dy. (9.13)

We now face a difficulty. We would like to compare the tangent vectors β1(x, y) and
β2(x, y, h) but this cannot be done in a straightforward manner since they live in
two different vector spaces, Tµ̂1(x)S

+ and Tµ̂2(x,h)S
+. In order to compare them, we

must either parallel transport the vectors β1(x, y) to Tµ̂2(x,h)S
+ (obtaining the vectors

β̃1(x, y, h)) or the vectors β2(x, y, h) to Tµ̂1(x)S
+ (obtaining the vectors β̃2(x, y, h)).

We can then define the covariance matrices Λ̃12(x, h) and Λ̃21(x, h) of the paral-
lel transported vectors β̃1(x, y, h) and β̃2(x, y, h), respectively:

Λ̃12(x, h) =
1

| Ω |

∫

Ω
β̃1(x, y, h)β̃

T
1 (x, y, h) dy (9.14)

and
Λ̃21(x, h) =

1

| Ω |

∫

Ω
β̃2(x, y, h)β̃

T
2 (x, y, h) dy (9.15)

9.4.2 Parallel transport

We now detail the process of parallel transport as illustrated on figure 9.1.

The equations

To parallel transport a vector β1(x, y) from Tµ̂1(x)S
+ along the curve G(t) such that

G(0) = µ̂1(x) and G(1) = µ̂2(x, h) one has to solve the first-order linear differential
equation

∇Ġ(t)β(t) = 0 (9.16)

with initial condition β(0) = β1(x, y). ∇Ġ(t) stands for the covariant derivative in the
direction Ġ(t) of TG(t)S

+ and equation 9.16 can be rewritten in local coordinates as:
(
∇Ġ(t)β(t)

)I
=
d βI

dt
+ ΓIJK(G(t))Ġ(t)JβK(t) = 0 (9.17)
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I1 I2

ϕ(0) = µ̂1(x)

G(t)

β2(x, y, h)

ϕ(1) = µ̂2(x, h)

Figure 9.1: Parallel transport of vector β2(x, y, h) along G(t)

where the ΓIJK ’s are the Christoffel symbols of the second kind associated to the met-
ric of S+. This linear differential equation can be written in the form

d β(t)

dt
= −A(t)β(t) (9.18)

with the same initial condition β(0) = β1(x, y). The 6× 6 matrix A(t) is equal to

(A)IK (t) = ΓIJK(G(t))Ġ(t)J . (9.19)

We recall that G(t) is the geodesic between µ̂1(x) and µ̂2(x, h) whose equation is [186]

G(t) = µ̂1(x)
1/2 exp (tX) µ̂1(x)

1/2, (9.20)

where
X = log

(
µ̂1(x)

−1/2µ̂2(x, h)µ̂1(x)
−1/2

)
(9.21)

Similar considerations apply to the problem of the parallel transport of the vector
β2(x, y, h) along the geodesic G(t) from Tµ̂2(x,h)S

+to Tµ̂1(x)S
+ by introducing the matrix

B(t).

The matrices A and B

In the following, we prove that the matrices A(t) and B(t) do not depend on the curve
parameter t. The solution of equation 9.18 is therefore

β̃1(x, y, h) = β(1) = exp (−A)β(0) = exp (−A)β1(x, y) (9.22)

Similarly
β̃2(x, y, h) = exp (−B)β2(x, y, h) (9.23)

We have the following
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Proposition 9.4.2.1. The matrix A(t) is independent of t. It is given by the following
expression

A(x, h) = (9.24)

−




ψ1
1 ψ2

1/2 0 ψ3
1/2 0 0

ψ1
2 (ψ1

1 + ψ2
2)/2 ψ2

1 ψ3
2/2 ψ3

1/2 0

0 ψ1
2/2 ψ2

2 0 ψ3
2/2 0

ψ1
3 ψ2

3/2 0 (ψ1
1 + ψ3

3)/2 ψ2
1/2 ψ3

1

0 ψ1
3/2 ψ2

3 ψ1
2/2 (ψ2

2 + ψ3
3)/2 ψ3

2

0 0 0 ψ1
3/2 ψ2

3/2 ψ3
3




Def
= M(ψ),

where the matrix ψ is equal to log
(
µ̂2(x, h)µ̂1(x)

−1
)
.

The matrix B(t) is also independent of t and its expression is similar to that of
A by replacing the matrix ψ with the matrix θ = log

(
µ̂1(x)

−1µ̂2(x, h)
)
.

Proof. It can be shown [271] that the Christoffel symbols, at G(t) ∈ S+, are given by:

Γ (Epq, Ers;E
∗
uv) = −1

2
tr
(
EpqG(t)−1ErsE

∗
uv

)
− 1

2
tr
(
ErsG(t)−1EpqE

∗
uv

)

∀p, q, r, s, u, v = 1, 2, 3

The indices p, q, r, s, u, v are used to access the components of the basis elements in
matrix form and therefore run from 1 to 3. We introduce the indices I, J,K which run
from 1 to 6 since they correspond to the coordinates of a given matrix expressed in the
associated local coordinate system (see, for example, equations 9.17 or 9.19). Hence
we use the following convention:

K = 3(r − 1) + s if r ≤ s
J = 3(p− 1) + q if p ≤ q
I = 3(u− 1) + v if u ≤ v

(9.25)

We can now express the quantity ΓIJK (G(t)) ĠJ(t) as:

Γ (EJ , EK ;E∗
I ) Ġ(t)J = −1

2
tr
(
Ġ(t)JEJG(t)−1EKE

∗
I

)
− 1

2
tr
(
EKG(t)−1Ġ(t)JEJE∗

I

)

Noting that Ġ(t)JEJ = Ġ(t), this reduces to:

Γ (EJ , EK ;E∗
I ) Ġ(t)J = −1

2
tr
(
Ġ(t)G(t)−1EKE

∗
I

)
− 1

2
tr
(
EKG(t)−1Ġ(t)E∗

I

)

In our case G(t) ∈ S+, and since

Ġ(t) = µ̂1(x)
1/2X exp (tX) µ̂1(x)

1/2 = µ̂1(x)
1/2 exp (tX)Xµ̂1(x)

1/2
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and
G−1(t) = µ̂1(x)

−1/2 exp(−tX)µ̂1(x)
−1/2

we have

Ġ(t)G−1(t)
def
= ψ(x, h) = µ̂1(x)

1/2Xµ̂1(x)
−1/2 = log

(
µ̂2(x, h)µ̂1(x)

−1
)

G−1(t)Ġ(t) def= θ(x, h)T = µ̂1(x)
−1/2Xµ̂1(x)

1/2 = log
(
µ̂1(x)

−1µ̂2(x, h)
)

which do not depend on t. Note that ψ and θ are once contravariant and once
covariant tensors.

The last equality in the previous two equations holds because of equation 9.7.
The matrix A(t) is therefore independent of t but depends on x and h, thus we note
A(x, h). The contraction of the Christoffel symbols then yields the once covariant,
once contravariant tensor:

Γ (EJ , EK ;E∗
I ) Ġ(t)J = AIK(x, h)

= −1

2
tr (ψ(x, h)EKE

∗
I )−

1

2
tr
(
EKψ(x, h)TE∗

I

)

= −1

2
tr
((
ψ(x, h)EK + (ψ(x, h)EK)T

)
E∗
I

)

This provides an expression for A(x, h), as a function of ψ(x, h), in terms of µ̂1(x) and
µ̂2(x, h) (We use the notation ψpq to denote the pqth element of ψ(x, h)).

9.4.3 The data term J

We are now ready to define the data term J in the error criterion for the registration
of two DT images I1 and I2. This data term is the combination of two terms. The first
enforces that the means µ̂1(x) and µ̂2(x, h) at two corresponding voxels x and h(x) are
sufficiently similar. We define the local energy:

JMean(x, h) = D2(µ̂2(x, h), µ̂1(x)), (9.26)

where D2 is the geodesic distance 9.4 in S+.

We also want the covariance matrices Λ1(x) and Λ̃21(x, h) (respectively Λ2(x, h)

and Λ̃12(x, h)) to be as close as possible. We therefore define the local energy

JAC(x, h) =
1

2

(
|Λ1(x)− Λ̃21(x, h)|2F + |Λ2(x, h)− Λ̃12(x, h)|2F

)
(9.27)

where | · |F denotes the Frobenius norm. A more consistent definition of JAC(x, h) can
be obtained by using the geodesic distance instead of the Frobenius norm

JAC(x, h) =
1

2

(
D2
(
Λ1(x), Λ̃21(x, h)

)
+D2

(
Λ2(x, h), Λ̃12(x, h)

))
(9.28)
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This has very little incidence on the final form of the gradient of JAC but may be the
source of numerical problems. Indeed, if the region of interest is homogeneous, the
covariance matrices tend to be degenerate and the geodesic distance is not defined
anymore. In practice, we check if that case happens and only use the Euclidean
distance if this is the case. Otherwise, we use the geodesic distance.

We combine these two local criteria into a local data term

J (x, h) = JMean(x, h) + α1JAC(x, h), (9.29)

where α1 is a positive weight. The global criterion is obtained by integrating the local
one over Ω:

J (h,Dh) =

∫

Ω
J (x, h) dx = JMean(h,Dh) + α1JAC(h,Dh). (9.30)

For the sake of clarity, we usually do not express the dependence in Dh of J (x, h).
However, we have to keep in mind that JMean(x, h) and JAC(x, h) do depend on the
Jacobian of the vector field h because of equation 9.1. Hence the equation 9.30.

9.5 THE GRADIENT OF THE DATA TERM
We show that the gradient of the data term exists in H and can be effec-

tively computed and implemented for numerical experiments. The main ingredient in
the proof is to show that δkJ (h,Dh) can be written as (Jh, k)H+(JDh, Dk)H , where Jh
and JDh are complicated but computable functions of H. We spend the next sections
to prove the following

Theorem 9.5.0.1. For any k ∈ F the quantity

δkJ (h,Dh) = lim
ε→0

J (h+ εk,Dh+ εDk)− J (h,Dh)

ε

exists and is equal to
(Jh, k)H − (JDh, Dk)H ,

where the functions Jh and JDh are defined in the proof.

9.5.1 The first variation of JMean(h,Dh)

Because of equation 9.30 we have

δkJMean(h,Dh) =

∫

Ω
δkJMean(x, h) dx.

Because of equations 9.5, 9.6 and 9.26 we have

δkJMean(x, h) = DJMean(x, h)ϕ3(δkµ̂2(x, h)) =

G
(
ϕ3(µ̂2(x, h) log

(
(µ̂1(x))

−1 µ̂2(x, h)
)
)
)
ϕ3(δkµ̂2(x, h)), (9.31)
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whereDJMean(x, h) is the differential with respect to its first argument of the function
D2(µ̂2(x, h), µ̂1(x)). Note that

G
(
ϕ3(µ̂2(x, h) log

(
(µ̂1(x))

−1 µ̂2(x, h)
)
)
)

is a covariant vector of Tµ̂2(x,h)S
+ while ϕ3(δkµ̂2(x, h)) is a contravariant vector. We

thus need to compute δkµ̂2(x, h).

Computation of δk µ̂2(x, h)

We remember that the minimum of the functional

C2(µ2, x) =
1

| Ω |

∫

Ω
D2(µ2, Th(I2)(y))Gγ(x− y) dy,

is achieved at µ̂2(x, h). It therefore satisfies

∇µ2
C2(µ̂2, x) = 0.

To simplify notation, we note L the vector ∇µ2
C2 of Tµ̂2

S+. This vector is a 3 × 3

symmetric matrix which we identify with its image by ϕ3, a vector of R
6. The previous

equation becomes
L(µ̂2(x, h), x, h) = 0,

where the notation indicates that L depends upon h indirectly through µ̂2 and directly
through its definition. We compute δk of the lefthand side and equal it to zero.

∂L
∂µ2

(µ̂2, x, h)ϕ3(δkµ̂2(x, h)) + δkL(µ̂2, x, h) = 0

We next compute ∂L
∂µ2

, a once contravariant and once covariant tensor, a 6× 6 matrix,
as well as δkL. For the sake of clarity we drop in the sequel the index 2 in µ2.

Computation of ∂L
∂µ : According to equation 9.11 we have

ϕ−1
3

(
∂L
∂µI

)
=
EI
| Ω |

∫

Ω
log
(
Th(I2)−1(y)µ

)
Gγ(x− y) dy+

µ

| Ω |

∫

Ω
dlog

(
Th(I2)−1(y)µ,

∂
(
Th(I2)−1(y)µ

)

∂µI

)
Gγ(x− y) dy, I = 1, · · · , 6,

where the notation EI has been defined in section 9.4.2. We also have

∂Th(I2)−1(y)µ

∂µI
= Th(I2)−1(y)EI .
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Computation of δkL: δkL is the sum of two terms corresponding to the variation
with respect to h and Dh, respectively. We note them (δkL)1 and (δkL)2. We have

ϕ−1
3 ((δkL)1) =

µ

| Ω |

∫

Ω
dlog

(
Th(I2)−1(y)µ,

∂
(
Th(I2)−1(y)µ

)

∂hi(y)
ki(y)

)
Gγ(x− y) dy.

Because of equation 9.1,

∂Th(I2)−1(y)µ

∂hi(y)
= −Dh(y)T I2(h(y))−1 (DI2(h(y)))i I2(h(y))

−1Dh(y)µ,

where DI2 is the twice contravariant once covariant tensor obtained by taking the
derivative of I2 with respect to the space coordinates.

We introduce the thrice covariant tensor ∂Th(I2)−1

∂h such that

∂Th(I2)−1

∂h
(y) = −DhT (y)I2(h(y))

−1DI2(h(y))I2(h(y))
−1Dh(y) (9.32)

Because of the linearity of the function dlog (, ) with respect to its second argument
we obtain

ϕ−1
3 ((δkL)1) = − µ

| Ω |

∫

Ω
dlog

(
Th(I2)−1(y)µ,

∂Th(I2)−1

∂h
(y)µ

)
k(y)Gγ(x−y) dy. (9.33)

Note that for each value of the covariant index i, the matrix

µdlog

(
Th(I2)−1(y)µ,

(
∂Th(I2)−1

∂h

)

i

(y)µ

)

is symmetric. At this point we introduce the corresponding once contravariant and
once covariant tensor, noted ∂L

∂h :
(
∂L
∂h

)·

i

(x, y, h) =

− Gγ(x− y)
| Ω | ϕ3

(
µ̂2(x, h)dlog

(
Th(I2)−1(y)µ̂2(x, h),

∂Th(I2)−1

∂h
(y)µ̂2(x, h)

))
. (9.34)

We write
(δkL)1(x, h) =

∫

Ω

∂L
∂h

(x, y, h)k(y) dy

(δkL)2 is obtained in a similar manner:

ϕ−1
3 ((δkL)2) =

µ

| Ω |

∫

Ω
dlog

(
Th(I2)−1(y)µ,

∂
(
Th(I2)−1(y)µ

)

∂Dhlm(y)
Dklm(y)

)
Gγ(x− y) dy

where, because of equation 9.1,

∂Th(I2)−1(y)µ

∂Dhlm(y)
= 1mlI2(h(y))

−1Dh(y)µ+Dh(y)T I2(h(y))
−11lmµ,
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where 1lmand 1ml are matrices whose only non zero element is located respectively
at line l, row m or line m, row l. We introduce a once contravariant thrice covariant
tensor ∂Th(I2)−1

∂Dh such that
(
∂Th(I2)−1

∂Dh

)m

l

(y) = 1mlI2(h(y))
−1Dh(y) +Dh(y)T I2(h(y))

−11lm (9.35)

and therefore
∂Th(I2)−1

∂Dh
(y)Dk(y) =

(
∂Th(I2)−1

∂Dh

)m

l

(y)Dklm(y),

where l and m vary from 1 to 3. Using again the linearity of the function dlog ( , )

with respect to its second argument we obtain

ϕ−1
3 ((δkL)2) =

µ

| Ω |

∫

Ω
dlog

(
Th(I2)−1(y)µ,

∂Th(I2)−1

∂Dh
(y)µ

)
Dk(y)Gγ(x−y) dy. (9.36)

Note that for each value of the covariant index l and contravariant index m, the
matrix

µdlog

(
Th(I2)−1(y)µ,

(
∂Th(I2)−1

∂Dh

)m

l

(y)µ

)

is symmetric. At this point we introduce the twice contravariant and once covariant
tensor, noted ∂L

∂Dh , such that
(
∂L
∂Dh

)·m

l

(x, y, h) =

Gγ(x− y)
| Ω | ϕ3

(
µ̂2(x, h)dlog

(
Th(I2)−1(y)µ̂2(x, h),

(
∂Th(I2)−1

∂Dh

)m

l

(y)µ̂2(x, h)

))
. (9.37)

We write
(δkL)2(x, h) =

∫

Ω

∂L
∂Dh

(x, y, h)Dk(y) dy

This allows us to compute δkµ̂2(x, h) if the matrix ∂L
∂µ2

is invertible:

ϕ3(δkµ̂2(x, h)) = −
(
∂L
∂µ2

(x, h)

)−1 ∫

Ω

∂L
∂h

(x, y, h)k(y) dy−
(
∂L
∂µ2

(x, h)

)−1 ∫

Ω

∂L
∂Dh

(x, y, h)Dk(y) dy (9.38)

all expressions being evaluated at (µ̂2, x, h).

We define the once contravariant and once covariant tensor

T(x, y, h) = −
(
∂L
∂µ2

(x, h)

)−1 ∂L
∂h

(x, y, h), (9.39)

and the twice contravariant and once covariant tensor

U(x, y, h) =

(
∂L
∂µ2

(x, h)

)−1 ∂L
∂Dh

(x, y, h), (9.40)
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and rewrite equation 9.38 in a more compact manner, namely:

ϕ3(δkµ̂2(x, h)) =

∫

Ω
T(x, y, h)k(y) dy −

∫

Ω
U(x, y, h)Dk(y) dy. (9.41)

Using indexes, this is equivalent to

(ϕ3(δkµ̂2(x, h)))
I =

∫

Ω
TI
l (x, y, h)k

l(y) dy −
∫

Ω
UIm
l (x, y, h)Dklm(y) dy,

I = 1, · · · , 6, l,m = 1, · · · , 3

In the next sections we will also need the twice contravariant and once covariant
tensor ϕ−1

3 (T) and the thrice contravariant and once covariant tensor ϕ−1
3 (U) which

we note t and u. The previous formula can be rewritten as

(δkµ̂2(x, h))
ij = −

∫

Ω
t
ij
l (x, y, h)kl(y) dy −

∫

Ω
u
ijm
l (x, y, h)Dklm(y) dy,

i, j = 1, · · · , 3, l,m = 1, · · · , 3 (9.42)

An expression for δkJMEAN(h,Dh)

We are in a position to prove the following

Proposition 9.5.1.1. δkJMEAN(h,Dh) exists and is of the form of theorem 9.5.0.1.

Proof. We introduce the once covariant tensor

tMean(x, y, h) = DJMean(x, h)T(x, y, h),

the once covariant and once contravariant tensor

uMean(x, y, h) = DJMean(x, h)U(x, y, h),

and write

δkJMean(x, h) =

∫

Ω
tMean(x, y, h)k(y) dy −

∫

Ω
uMean(x)Dk(y) dy,

or, using indexes

δkJMean(x, h) =

∫

Ω
tMean l(x, y, h)k

l(y) dy −
∫

Ω
umMean l(x, y, h)Dk

l
m(y) dy,

where, for example:

tMean l(x, y, h) = DJMean I(x, h)T
I
l (x, y, h)

We finally introduce the once covariant tensor

TMean(x, h) =

∫

Ω
tMean(z, x, h) dz,
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and the once covariant and once contravariant tensor

UMean(x, h) =

∫

Ω
uMean(z, x, h) dz,

From this follows the fact that δkJMean(h,Dh) can be written in the form of theorem
9.5.0.1

δkJMean(h,Dh) =

∫

Ω
TMean(x, h)k(x) dx−

∫

Ω
UMean(x, h)Dk(x) dx

It is then possible to rewrite δkJMean(h,Dh) in the form of a scalar product with
k(x). Indeed, integrating by part, and using the fact that k is zero on ∂Ω, we obtain

(UMean, Dk)H = −
∫

Ω
divUMean(x, h)k(x) dx = −

∫

Ω

∂

∂xm
Um

Mean l(x, h)k
l(x) dx

with xm the mth ∈ [1, 2, 3] coordinate of the position x ∈ R
3. Hence,

δkJMean(h,Dh) =

∫

Ω
(TMean(x, h) + divUMean(x, h)) k(x) dx

and
∇HJMean(x, h) = TMean(x, h) + divUMean(x, h)

This is the first contribution to∇HJ (x, h) (see equation 9.3) to be used in our gradient
descent.

9.5.2 The First Variation of JAC(h)

We would like to compute the second contribution to ∇HJ (x, h), associated to the
matching term for covariance matrices. The calculations are similar to the previous
ones but very much involved so we detail them in appendix B.

9.5.3 Conclusion

We are now ready to give the proof of theorem 9.5.0.1.

Proof. It suffices to combine propositions 9.5.1.1, B.2.0.1, B.3.0.2 and B.4.0.3 to obtain

δkJ (h,Dh) = (TMean+T1
AC+T2

AC+T3
AC, k)H−(UMean+U1

AC+U2
AC+U3

AC, Dk)H (9.43)

This yields the existence of the gradient of the data term:

Proposition 9.5.3.1. The gradient ∇HJ (h) of data term J (h) exists and is given by

∇HJ (h) = TMean + T1
AC + T2

AC + T3
AC + div

(
UMean + U1

AC + U2
AC + U3

AC

)
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Proof. This is a direct consequence of the proof of theorem 9.5.0.1 and of equation
9.43.

We thus know how to compute the gradient of the data and regularization terms.
In the next section, we address some of the many numerical difficulties arising in
the implementation of this registration technique. We also provide examples on two
dimensional synthetic datasets, as a proof of concept.

9.6 NUMERICAL EXPERIMENTS
In this section, we will illustrate our method on three different examples.

An in-depth study of many numerical aspects of this problem is still needed but
we believe that current results, though simple, demonstrate the feasibility of the
approach. The code was written in C++.

Up to now, we concentrated on the implementation of the gradient of the matching
term JMean(x, h). The gradient of the other term JAC(x, h) is much more tricky to
compute and, most importantly, extremely time consuming because of the numerous
numerical integrations to perform. The examples below were thus generated by only
using ∇HJMean(x, h), which makes sense since we definitely want the local means
to match before the local covariance matrices do. Regarding the computation of the
gradient of the linear elasticity regularization term, ∇HR(h) (equation 9.3.2.1), we
refer to [142] where adequate numerical schemes were given.

In order to recover large displacements, we used a multiresolution approach.
The original images I1 and I2 were subsampled such that every level of the multi-
scale pyramid had a resolution equal to half of the resolution at the previous level.
Details on that point can also be found in [142]. In the following experiments,
we used 2 levels in the pyramid in addition to the original images. Subsampling
was performed by computing local Riemannian averages of I1 and I2. Whenever
the algorithm converged at a given level, it is easy to propagate the resulting
diffeomorphism to the next level by bilinear interpolation. This serves as the initial
value of the evolution for the next level. At the lowest resolution, the vector field h is
initialized with the identity.

At each resolution, the evolution 9.3 requires the definition of a few parame-
ters. First of all, we check for convergence by simply looking at the evolution of the
energy 9.30. Whenever it stops decreasing for many iterations, we stop the gradient
descent at the current level and propagate the estimated diffeomorphism to the next
scale. The scale parameter γ, used to smooth the images at each resolution was fixed,
in all our experiments to a small value, typically between 0.5 and 1 pixel.
Finally, the coefficient κ of the regularization term (see equation 9.8) and the time
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step dt can be chosen, as proposed in [110], as follows. In order to control the range
of the regularization term, κ is normalized by the maximum value κ0 = |∇HJ (h)|∞
such that C = κκ0. Using C instead of κ makes the algorithm much more stable and
we used κ = 10. The time step dt is adapted at each level of the pyramid so that Cdt
is less than a specified value. In our experiments, we set Cdt = 0.2.

It also makes sense to favor rigid transformations like translations and rota-
tions at coarse resolutions. Consequently, at the first and second levels of the
pyramid, we fit the estimated non-rigid deformation field with the best rigid trans-
formation, expressed as the combination of a rotation and a translation, and this
rigid transformation is used in place of the estimated non-rigid one. This is easily
achieved by solving, for the 2D case, the following linear system



h(x1)

1 · · · h(xN )1

h(x1)
2 · · · h(xN )2

1 · · · 1




︸ ︷︷ ︸
X̃

=



R11 R12 T 1

R12 R22 T 2

0 0 1




︸ ︷︷ ︸
M



x1

1 · · · x1
N

x2
1 · · · x2

N

1 · · · 1




︸ ︷︷ ︸
X

where, for an image containing N pixels, X̃ is the 3 × N matrix whose columns
contain the components of the estimated diffeomorphism, X is the 3 × N matrix
whose columns contain the coordinates of each pixel and M is the 3 × 3 matrix
containing the rotation matrix R and the translation T . X̃ and X being given, we
simply have M = X̃

(
XTX

)−1
XT . A QR decomposition of the submatrix R of M

should be used to replace R by only its rotational component.

In figure 9.2, we present the very simple example of a translation. It is per-
fectly recovered. In figure 9.3, the more complicated example of a rotation is shown.
We can see that the rotation is well recovered and, most importantly, that the tensor
reorientation is correctly performed. Finally, we considered the case of a non-rigid
transformation taking an ellipse onto a circle (figure 9.4). During the evolution, the
algorithm first estimated a translation that maximized the overlap of the ellipse on
the circle. Afterwards, non-rigid effects took the advantage in order to fully deform
the ellipse into the circle.

9.7 CONCLUSION
We have presented a mathematical study of the non-rigid registration prob-

lem for diffusion tensor images. We setup a variational formulation taking into ac-
count the Riemannian structure of the space of diffusion tensors to derive the match-
ing energy. To our knowledge, this is the first time that the properties of the man-
ifold S+ are exploited for DTI registration. As shown in this chapter, the computa-
tions are a bit tedious and the numerical implementation must be done carefully. We
demonstrated the feasibility of the approach by successfully applying the algorithm
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to three different transformations. We now move into the third and last part of this
manuscript. It is dedicated to the application of the connectivity mapping techniques,
developed in this part, for the investigation of the architecture of the human brain
visual and motor systems.

Figure 9.2: Estimation of the translation (6 pixels) of a square. I2, I1 and Th(I2) on
top, h at bottom.
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Figure 9.3: Estimation of the rotation (π/4) of a square. I2, I1 and Th(I2) on top, h at
bottom.
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Figure 9.4: Estimation of the diffeomorphism taking an ellipse onto a circle. I2, I1
and Th(I2) on top, h at bottom.
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10.1 INTRODUCTION
In this short chapter, we report an application of the connectivity

mapping technique detailed in section 7.3 to investigate the cortico-striatal circuitry
in humans. We recall that this method relies on the use of the diffusion tensor as
a Riemannian metric to measure the geodesic distance from a point of interest to
the rest of the brain white matter. From this distance function, optimal paths (i.e
geodesics) can be computed by back-propagation in the direction of the gradient
of the distance function. Finally, it is possible to evaluate the likelihood of each
estimated curve (i.e. geodesic) to represent a true fiber by looking at the statistics of
some local connectivity index along the curve.

As reported by Lehéricy et al. in [178], it is possible to parcel the anatomical
connections of the human striatum by the means of a deterministic tractography
algorithm based on the method presented in [26]. Invasive animal studies showed
indeed that the white matter fibers projections existing between the cortex and the
striatum are organized in a set of discrete circuits [8]. Each circuit is assumed to
perform distinct behavioral functions, such as movement execution and preparation,
decision making, planning and learning, and thus to convey distinct information
(sensorimotor, associative or limbic). In [178], the authors presented the first human
study of the corticobasal ganglia connectivity and could successfully demonstrate
that the posterior (sensorimotor), anterior (associative) and ventral (limbic) com-
partments of the human striatum had distinct connectivity pattern with the cortical
areas. In this chapter, we try to precise these connectivity patterns by looking at
connectivity maps associated to two different regions of interest of the striatum.
But first, we would like to give a brief overview of the functions related to the
sensorimotor, associative and limbic compartments of the striatum.

The sensorimotor (posterior) compartment of the striatum is involved in move-
ment execution. Most recent PET and fMRI studies have shown that the striatum
is constantly activated for all type of movements, including complex or simple finger
movements [151], [180]. The striatum is probably not a key structure in coding basic
movement parameters, such as frequency [254], amplitude [301] and force [93], as
these parameters were not correlated until now to the amount of activation in this
structure. Preparatory activation was also reported in the striatum, either in the
putamen or the caudate nucleus. Activation in the putamen during preparation was
located anteriorly than during movement execution (see [7] for instance), similarly
to preparatory activity in cortical structures (SMA, motor cortex) suggesting that
corticostriatal projections for preparatory and movement circuits are represented
along distinct circuits, in line with animal studies [152], [256]. This is precisely what
will be shown in the following.
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The associative circuit is expected to be activated for more complex type of mo-
tor acts. Complex movements require additional motor or cognitive demands [86].
Numerous recent studies found that striatal activation depended upon the nature
of the task and have shown activation in the associative (anterior) compartment
during complex movement, including movement selection / decision, mental repre-
sentation including mental simulation of grasping and hand movement simulation,
working memory learning, and planning tasks. The selective involvement of the
anterior striatum when subjects had to prepare a sequential action based on stored
information and not during simple maintenance of information is in line with the
hypothesis that striatal neurons convey information that are useful for behavioral
acts. Contrary to older studies comparing skilled and newly learned movements
[126], more recent studies have found that the caudate nucleus was activated during
new explicit learning [279] by trial and error of a sequence of finger movements or
arbitrary visuomotor associations. On the opposite, implicit learning (e.g. in the
absence of any explicit knowledge) was associated with predominant activation in
the sensorimotor part of the putamen [126]. Whereas putamen activity increased
with learning in some studies [100] but not in others, the caudate nucleus was
activated early in learning and decreased to baseline levels as learning progressed
[279].

The limbic circuit is implicated in the motivational aspects of behavior. Sev-
eral fMRI studies have reported activation in the ventral striatum and orbitomedial
frontal regions during monetary reward or punishment, and expectation of monetary
reward. Signal in the ventral striatum increased in response to novelty even
in the absence of awareness, and when reward was unpredictable. The ventral
striatum may thus function as a structure able to use prediction error signal to
update successive predictions of future reward-associated events whereas the dorsal
striatum encodes stimulus-response-reward associations so that actions associated
with greater reward are chosen more frequently.

In summary, these results suggest that mental processes associated with mo-
tor, cognitive, and motivational aspects of behavior are represented within distinct
cortico–basal ganglia circuits. They suggest that the basal ganglia have not only
motor but also behavioral functions, and that they are particularly involved in the se-
lection and inhibition of action commands, and reward-based learning. These results
motivated our investigation of the 3D functional organization of the sensorimotor
circuits. In particular, Although it is now pretty clear that the basal ganglia play a
predominant role in the acquisition of motor skills [127], this study was motivated
by the fact that the way such skills are built up and stored in the basal ganglia is not
fully understood yet.
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Figure 10.1: Regions of interest in the basal ganglia and the motor cortex. Abbrevi-
ations: ant, anterior; CN, caudate nucleus; L, left; MC, motor cortex; post, posterior;
Pu, putamen; R, right; SMA, supplementary motor area

Keywords: basal ganglia, striatum, putamen, cortico-striatal connections, motor
cortex, motor skills, learning, storage

10.2 FMRI/DTI STUDY OF MOTOR SKILLS LEARNING
As presented in [181] and [179], we tested the hypothesis that activation

is transferred from the premotor / associative territories to the sensorimotor territory
of the basal ganglia during the explicit learning of a motor sequence and that
those territories were respectively connected to the premotor cortex (preSMA on
figure 10.1) and the sensorimotor and posterior promotor cortex (sensory cortex and
posterior SMA on figure 10.1).

Since it is now known that cortical areas project to the striatum in separate
associative, premotor, and sensorimotor circuits [8], Lehéricy et al. postulated
[181] that different cortico-basal ganglia circuits may be involved in the acquisi-
tion process of new motor skills. They showed indeed that anterior (associative)
striatal regions are implicated during the acquisition of new motor skills, whereas
posterior (sensorimotor) regions may be critical for the long-term storage of those
skilled behaviors. The associative cortico–basal ganglia circuit is thus believed to
be engaged at the beginning of learning and to contribute to the acquisition of an
accurate representation of the sequence, whereas the sensorimotor circuit is thought
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to maintain a speedy representation of that skill when it is well learned and has
become automatic.

In [181], 14 right-handed subjects were followed over a period of training of 4
weeks. At 4 weeks of training, automaticity was evaluated to determine whether
subjects could perform the tasks with minimal interference.

10.2.1 Experimental Design

Subjects were asked to practice a trained sequence of eight moves by using fingers
2 to 5 of the non-dominant left hand over a period of 4 weeks. Subjects were asked
to practice this sequence during 10 to 20 minutes daily, during which they were in-
structed to repeatedly tap a sequence in a rapid self-paced and accurate manner. The
subjects’ performance was assessed inside and outside the scanner by using a four
key keyboard. Outside the scanner, control of task performance was performed 5

days of each of the 4 weeks as well as before and after every scanning session. These
test consisted in performing the sequence as fast as possible during 30 seconds. fMRI
acquisitions occurred on day 1, 14 and 28. During each session, subjects performed
one run with the known sequence on which they trained and one run on an unknown
sequence. On day 1, subjects were given two more runs of the known sequence: one
before and one immediately after 30 min of additional practice on the known sequence
while they were still lying on the scanner’s bed, but without scanning.

10.2.2 Data Acquisition

The MR protocol was carried out at the Center for Magnetic Resonance Research,
University of Minnesota, with a 3 Tesla whole-body system (Siemens, Erlangen, Ger-
many). EPI BOLD (TR/TE/angle: 4.5s/40ms/90, voxel size: 1.5x1.5x2.5 mm3, 123
acquisitions) and diffusion-weighted images (TR/TE/angle: 9.2s/92ms/90, voxel size:
2x2x2 mm3, b-value: 1000s/mm2) images were obtained with 12 gradient directions.
The anatomical image was acquired with a 3D MP-RAGE sequence (voxel size: 1x1x1

mm3). Movements were audio-paced at 2Hz and alternated with rest. Sequences
of identical length but different pattern were used for the unpracticed control state.
Random effects group analysis was performed using SPM99.

10.2.3 Results

After 4 weeks of training, subjects made 58% less errors and were 97% faster
(ANOVA, all p < 0.05). There was no significant change for the untrained sequences.
With learning, activation decreased in bilateral anterior premotor, associative
parietal areas, anterolateral thalamus, subthalamic nuclei, red nuclei, pons and
cerebellum (lobules V,VI and crus I) (see figure 10.2).

213



Figure 10.2: Areas with activation decrease during session 1, (before) versus (after 50

min of practice)

Figure 10.3: Observed foci of activation in the putamen

Two main foci of activation were observed in the anterodorsal (Figure 10.3, ar-
row in Day 1, coronal view) and more posteroventral parts of the putamen (arrow
in Day 28, clusters corrected at P < 0.05). Regression analysis on percentage
signal increase showed that activation decreased with practice in the dorsal part
of both putamen (right putamen: R2 = 0.64, P = 0.030, Figure 10.3 right, dark
grey curve), whereas activation increased bilaterally in the posteroventral areas
(R2 = 0.67, P = 0.046, light grey curve). ANOVA showed a significant effect of the
regions (ventral > dorsal, P = 0.011) and an interaction between runs and regions
(P = 0.045).

By applying the DTI connectivity mapping technique presented in section 7.3,
we could show that the anterodorsal putamen (Figure 10.4, left) was connected
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Figure 10.4: DTI connectivity of striatal activation maps before and after learning

with anterior premotor areas while the posteroventral putamen (Figure 10.4, right)
was connected with the sensorimotor and posterior premotor areas. For each of the
14 subjects, diffusion weighted images were corrected for the distortions induced
by eddy currents because of the large diffusion gradients. We used the algorithm
proposed in [202]. Diffusion tensor images were then computed from the 12 diffusion-
weighted images with the method proposed in section 6.1.2. A mask of the white
matter was created by thresholding and applying morphological transformations
(dilation, erosion) to the fractional anisotropy (FA) maps. We restricted those masks
to the right side since we were only interested in corticostriatal connections of this
hemisphere. Moreover, this permitted to reduce the computational time. We then
chose the voxel with the highest activation in the activated anterodorsal and in
the posteroventral putamen as points of interest. In other words, they were the
origin of the computed distance functions (two per subject). Fiber tracking by back-
propagation (equation 7.9) toward the origin of each distance function was performed
and the average value of the connectivity index 7.10 (values in the range [0, 1]) was
computed along each curve starting from each voxel of the mask and ending at
the origin of the distance function. The highest this value at each voxel, the more
confident in the connection originating for the voxel (and linked to the anterodorsal
or posteroventral putamen) we are. Connectivity maps were thresholded to only
display values at voxels with value greater than 0.8.

Figure 10.5 shows, for 4 subjects, the obtained connectivity maps for the an-
terodorsal putamen (top) and the posteroventral putamen (bottom). There were
computed in each subject’s native space, ie. no spatial normalization was performed.
We can see that the anterodorsal putamen (top) is connected to anterior premotor
areas and the posteroventral putamen (bottom) is connected to the sensorimotor and
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Figure 10.5: DTI connectivity of striatal activation before maps (top) and after (bot-
tom) learning for 4 subjects in native space.

posterior premotor areas. In figure 10.6, we show the evolution of the connectivity
index, for one subject, along the inferior-superior direction, before and after learning.
We also present in figure 10.7 the corresponding estimated fibers. They were
computed by the back-propagation method for all the voxels exhibiting a connectivity
index greater than 0.8. They clearly show the shift of the corticostriatal projections.

Finally, we proceeded to the spatial normalization in Talairach space, with
SPM99, of the 28 obtained connectivity maps (2 per subject). This allowed us to
average the 14 normalized maps for the anterodorsal putamen and the other 14

for the posteroventral putamen, thus yielding group connectivity maps for the two
regions of interest. These maps are presented in figure 10.8, after thresholding,
and also clearly highlight the shift from the associative/premotor cortex to the
sensorimotor cortex.

10.3 CONCLUSION
These results demonstrate a shift of motor representations from the as-

sociative/premotor to the sensorimotor territories of the basal ganglia during the
course of explicit learning of motor sequences. The premotor territory of the striato-
pallidal complex was engaged at the beginning of learning. It probably contributes to
the acquisition of an accurate representation of the sequence. The sensorimotor ter-
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Figure 10.6: Evolution of the connectivity index, for one subject, along the inferior-
superior direction, before (top) and after (bottom) learning

Figure 10.7: Estimated corticostriatal connections for subject of figure 10.6, before
(left) and after (right) learning

ritory of the striato-pallidal complex was recruited during the late learning stage. It
would maintain a speedy representation of the motor skill when it is well learned and
has become automatic. By applying the connectivity mapping technique of section 7.3
to the anterodorsal and posteroventral putamen, we could successfully demonstrate
their respective connections with the anterior premotor areas and the sensorimotor
and posterior premotor areas, hence validating the hypothesis of the existence of dis-
tinct cortico–basal ganglia circuits involved in the acquisition and storage of motor
skills. In the next chapter, we investigate the architecture of the human visual cortex
by using the Geodesic Connectivity Mapping algorithm presented in chapter 7.
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Figure 10.8: Average DTI connectivity of striatal activation maps before (left) and
after (right) learning for 14 spatially normalized subjects
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CHAPTER 11

MAPPING THE ANATOMICAL
CONNECTIONS IN THE HUMAN
VISUAL CORTEX
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OVERVIEW
In this chapter, we validate the geometric tractography technique, Geodesic Connec-
tivity Mapping (GCM), introduced in chapter 7 and presented as able to overcome
the main limitations of geometrical approaches. Using the GCM technique, we could
successfully characterize anatomical connections in the human low-level visual cor-
tex. We reproduce previous findings regarding the topology of optic radiations linking
the LGN to V1 and the regular organization of splenium fibers with respect to their
origin in the visual cortex. Moreover, our study brings further insights regarding the
connectivity of the human MT complex (hMT+) and the retinotopic areas.

Keywords: diffusion tensor MRI, Riemannian geometry, anatomical connectivity,
retinotopic areas, hMT/V5+

11.1 INTRODUCTION
Understanding the relationship between anatomical structure and func-

tion is a fundamental issue in neuroscience. In the last decades, neuroimaging ad-
vances have been providing ever more promising means to non-invasively address
this fundamental issue, thus opening the possibility to investigate in vivo normal and
patients cerebral architecture and activity. This is especially true for Magnetic Res-
onance Imaging (MRI), which allows to combine anatomical (structural MRI), func-
tional (functional MRI) and white matter connectivity (diffusion MRI) information at
a spatial resolution of a few millimeters.
High resolution anatomical images are routinely used to segment cerebral tissues
and extract 3D models of different tissues including the cerebral cortex. Various ap-
proaches have been proposed to achieve these computations [82, 77, 295]. Since its
discovery in the early 90’s [220], Blood Oxygen Level Dependent (BOLD) fMRI has
been increasingly used to identify and functionally characterize various cortical ar-
eas. This is especially the case in the visual cortex were retinotopic mapping and
functional localization can successfully be used [128, 302, 291].

Previous work on human visual cortex connectivity mapping: DTI based
connectivity mapping of the human visual cortex has been addressed by various
groups with different protocols and methods. Using a classical streamline tractogra-
phy with smooth interpolation of the tensor field [212], [78] could reconstruct various
bundles including visual pathway fibers. They showed fibers passing through the
splenium, with a specific topology: anterior splenium fibers head to the parietal
lobe while dorsal splenium fibers progress toward the occipital cortex. However,
although the distinction between these two bundles is clear, the fibers they show
fail to reach any precisely defined target on the grey matter and callosal-occipital
fibers seem to rapidly converge to a single path (see figure 1 in [78]). They could,
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more convincingly, show a topology within the geniculo-occipital fibers, where medial
(respectively lateral) LGN fibers terminate in a more superior (resp. inferior) part
of the occipital cortex. Using a similar streamline tractography algorithm, [55] have
identified in a single subject different visual fiber bundles including occipito-frontal
and occipito-temporal fibers. In a subsequent study, [56] have identified different
visual fiber bundles: (i) the optic tract from the chiasm to the LGN; (ii) the optic
radiations from the LGN to the occipital cortex, which can be further divided into a
ventro-temporal bundle ending in the lower lip of the calcarine sulcus and a dorsal
bundle terminating in the upper lip of the calcarine sulcus; (iii) a splenium bundle
connecting both occipital poles; (iv) U-shaped occipito-temporal fibers; (v) the inferior
longitudinal fasciculus (ilf) directly connecting the extrastriate occipital cortex and
temporal lobes. Despite these interesting findings, no functionally defined areas were
used and data were mainly analyzed on a single mean DT image obtained through
the averaging of different subjects, hence diminishing the possible interpretations of
their findings when one considers the strong anatomico-functional variance across
subjects.

The group of Ciccarelli, Toosy et al. used the Fast Marching Tractography
(FMT) technique [231] to investigate 3 fiber bundles: the pyramidal tract, anterior
callosal fibers and, more interestingly for our study, the optic radiations. They first
concentrated on methodological issues, demonstrating the inter-subject reproducibil-
ity [72] as well as the inter-observer reproducibility [70] of the reconstructed tracts.
More recently, they applied this technique to study changes in the optic radiation
of patients affected by a specific optic nerve pathology (optic neuritis) [71]. Note
that the FMT method has been partly validated in a combined study on macaques
and humans, showing a part of the cortico-spinal tract and the optic radiations in
both species [233]. Note however that the authors acknowledge the currently limited
spatial resolution in DTI which prevents reliable tractography in macaques and
therefore a true validation.

As of today, only a few studies, like [164], have combined fMRI and DTI to
study the visual cortex. In the above mentioned study, [78] used fMRI activation
maps to roughly identify the LGN and the occipital visual cortex. [309] demonstrated
that the fractional anisotropy was lower in the activated occipital cortex than in the
optic radiations. This is consistent with the known relative isotropy of grey-matter
voxels as compared with white-matter voxels [243]. Using a probabilistic tractogra-
phy method, [280] completed this work, showing a correlation between the estimated
optic tracts mean FA values and the degree of fMRI activity within the visual cortex
but, like the former, they did not functionally identify the occipital visual areas
they were considering. To our knowledge, the most complete and precise study in
the literature was done by [99] at Stanford. They combined a classical streamline
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tractography method with a functional identification of occipital retinotopic areas
to recover occipital fiber tracts passing through the splenium. They demonstrated
a good spatial matching in the splenium of independently estimated fibers starting
from left and right occipital poles. More specifically, they found a topology in these
tracts in which (i) dorsal (respectively ventral) cortical regions project dorsally (resp.
ventrally) into the splenium, in agreement with a macaque autoradiography study,
(ii) a foveal-periphery gradient can be found in the anterior-posterior direction of the
splenium.

In the present study, we used the Geodesic Connectivity Mapping (GCM) technique,
introduced in chapter 7 to assess the anatomical connectivity across individually
identified areas in the low level visual cortex. Besides its robustness and efficiency,
this approach naturally restricts the estimation within the white matter voxels
and further provides statistics of a local connectivity measure along each estimated
fiber. We first validate this methodology by recovering typically known fiber tracts,
reproducing previous findings [99, 78, 56, 72, 70], before addressing new issues
regarding intra-hemisphere connectivity in the occipital visual cortex.

11.2 METHODS

11.2.1 MR Data Acquisition

3 healthy subjects with normal or corrected to normal vision participated in two
separate scanning sessions, to acquire the functional and diffusion weighted images,
respectively. In each session, a high resolution anatomical scan was acquired and
later used as references to coregister the two sessions. All scans were acquired on a 3
Tesla MEDSPEC 30/80 AVANCE (Bruker) at the Centre IRMf de Marseille, France,
using a quadrature bird-cage head coil.

In the first session, the functional scans, later used to identify the retinotopic
areas and the hMT+ complex, and diffusion weighted images were acquired. How-
ever, due to an acquisition problem, the phase map could not be reconstructed which
is particularly problematic considering the important geometric distorsions of the
echo-planar diffusion weighted images (see below). As soon as this problem was
solved, we acquired in a second session new diffusion weighted images and the
corresponding phase map for the same subjects. As we were not acquiring functional
images, we took advantage of the saved time to increase the number of repetitions for
each direction, thus increasing the diffusion-weighted images signal to noise ratio.
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Structural MRI

High resolution anatomical scans were acquired through a 15 min. 3D-gradient echo
sequence with inversion-recovery (TE=5ms, TR=25ms, IT=800ms, acquisition matrix
size: 256x192x104 and reconstructed to 256x256x128, voxel size 1x0.75x1.22mm3).

fMRI

During each functional scan, 151 Echo Planar Images were acquired over 5 min. 19
sec. using a coronal sequence (TE=35ms, TR=2111ms, Angle=70◦). Each functional
image spans 20 coronal slices 3mm thick and 2x2mm2 in plane resolution, approxi-
mately orthogonal to the calcarine sulcus covering the occipital retinotopic areas and
extending anteriorly to confidently include hMT+ region [103]. The first five images
were systematically discarded to avoid magnetic saturation effects. The 144 following
images correspond to the visual stimulus per se. The last two images were taken to
allow slice-timing correction preprocessing.

Diffusion Tensor Imaging

In a pilot study, we first tried different acquisition parameters to obtain the best dif-
fusion weighted images, having fixed TR=10000ms, TE=86ms, voxel size 2x2x2mm3.
We finally used 12 diffusion directions for a single b-value of 1000 s.mm−2, which is
consistent with other studies [140] and allows to increase the number of repetitions
for each gradient direction to achieve a better SNR. Each gradient directions was
hence repeated 10 times. 8 standard T2 images (i.e. without diffusion sensitization
or b =0 s.mm−2) were also acquired.

11.2.2 Visual Stimuli

Stimuli were generated under Matlab 6.1 using the Image Processing Toolbox (Mat-
lab, The Mathworks), providing an AVI file with eighteen 300x300 pixels frames per
second and lasting 5 min. 04 sec. Visual stimulation was synchronized with the acqui-
sition through a trigger sent by the scanner at the beginning of each scan. Stimuli are
displayed at 72Hz by a SONY video-projector, placed in a custom-designed Faraday
cage inside the scanner room, onto a large adjustable mirror then onto a translucent
screen inside the bore at the back of subjects head and finally reflected by a custom
designed mirror placed at 5cm above subjects eyes. This setup leads to a display sub-
tending a visual angle of 20.9◦x20.9◦. The stimuli are all presented within a circular
aperture of 19.5◦ in diameter. During the first 5 and last 2 scans, a mid grey-level
image with the 0.5◦ red fixation cross was shown to the subjects.
Phase-encoded stimulus for the retinotopic mapping consisted of a 9Hz flickering
black-and-white checkerboard into a 80◦ rotating wedge; 8 complete rotations, ei-
ther clockwise or counter-clockwise, were performed in each scan.
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A classical block design paradigm was used to reveal the human mid-temporal com-
plex, hMT+, supposed to comprise human homologues of at least macaque MT and
MST [102, 145]; the stimulus was a black and white random dot pattern (maximum
contrast) on a mid-grey background with a 10.28 dots.deg−2 density presented in 2
different conditions, each presented during blocks of 8 RT (16.888sec): static (STA),
i.e. the same image for all the block duration and coherent (COH) when dots were
moving at 7.53 deg.sec−1 radially in a 2Hz inward and outward alternation. Dots
leaving the mask were replaced through a radial wrap-around constrained to keep
the dots density constant.

11.2.3 Image Processing Pipeline

Each dataset was analyzed on a subject basis to avoid undesirable effects such as
the strong smoothing implied by standard normalization procedures. [309] showed
it was possible to obtain geometrically matched fMRI and DWI with appropriate ac-
quisition sequences, therefore avoiding various distortions correction steps. However,
these images are not coregistered with the anatomical image and this procedure sup-
poses to acquire data with the same volume prescriptions. In this study, since (i)
we considered complementary information from 3 different MRI modalities (anatom-
ical, functional and diffusion-weighted images), (ii) acquired two distinct sessions for
each subject and (iii) used different slice prescriptions for the different modalities,
a common or reference analysis space was required. We used the mean T2-weighted
image, further corrected for EPI geometric distortions (see below), as reference space.
We note umean T2 this reference image. This choice minimized the deformations and
interpolations of the diffusion-weighted images acquired within the same run using
a similar sequence. Each type of image received specific processing detailed in the
following paragraphs and the extracted useful information was finally coregistered
to the umean T2 reference image. Figure 11.1 summarizes the overall processing
pipeline used in this study.

Anatomical image

High resolution anatomical images acquired in both sessions allowed precise inter-
session coregistration using SPM2 algorithm. We note M1 the estimated transfor-
mation mapping anatomical image from session1 to anatomical image from session2.
The latter was further coregistered with the umean T2 reference image by trans-
formation M2. Structural information was processed from both anatomical scans to
segment grey and white matter tissues and build a 3D model of the cortical surface
using a combination of the BRAINVISA1 package and local methods [109].

1http://brainvisa.info/index.html
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Figure 11.1: The image processing pipeline. Functional, diffusion-weighted and
anatomical images receive specific processing and are realigned on a reference im-
age, umean T2, for the connectivity maps computation (see text for details).

Visual areas functional definition

Statistical Parametric Mapping (SPM22) was used to analyze functional data for the
retinotopic and hMT+ mapping. Images were first realigned with the INRIalign soft-
ware [120] and coregistered with the anatomical image with SPM2, then smoothed
through an appropriate cortical surface based smoothing method described elsewhere
[313], with a 3mm equivalent Gaussian filter FWHM. Temporal high-pass and low-

2www.fil.ion.ucl.ac.uk/spm/
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pass filtering were also performed on the time-courses to respectively remove low-
frequency signal drifts and high frequency noise. Retinotopic mapping and hMT+
localizer data were then analyzed separately with respective general linear models
[123].
Retinotopic stimuli were modeled by cosine and sine functions at the stimulus fre-
quency and a voxelwise F-test thresholded at p < 0.001 was used to identify respond-
ing voxels. The local signal phase, related to the stimulus position, was then given by
the arctangent of the ratio of the parameter estimates for both regressors [314].
Each condition of the hMT+ localizer stimulus was modeled by a classical boxcar func-
tion convoluted with a canonical hemodynamic response function model. A T-contrast
was computed to compare COH and STA conditions and thresholded at p < 0.001. We
considered as hMT+ the activated cluster within or close to the inferior temporal sul-
cus [306, 103].
Subsets of connected voxels were extracted for each area and further used as ROIs
in the connectivity analysis. Since diffusion anisotropy is relatively low in grey mat-
ter voxels [243], such as in the visual cortex [309], we defined white matter ROIs,
considering the white matter voxels closest to the cortical ROIs. Specifically, volumic
ROIs were automatically computed from their identification on the GM/WM interface
by projecting the respective surface-based labels along the surface normal inside the
white matter voxels. Each ROI voxels subset was then coregistered to the umean
T2 reference image by the transformation M1 ◦M2 and further masked to solely lie
within the white-matter mask extracted from the high resolution anatomical image.
Possible intersections between each pair of white matter ROIs were automatically
removed from the analysis.

Diffusion weighted images (DWI)

T2 image: the 8 T2-weighted images were motion corrected using the INRIAlign
software before being averaged. The resulting mean T2 image was then processed to
correct geometric EPI distortions caused by magnetic susceptibility inhomogeneities,
i.e. magnetic field inhomogeneities particularly found at the interfaces between
different tissues [153]. Based on the phase map acquired during the DWI data
recording session, which maps the spatial distribution of field inhomogeneities,
we used the SPM interfaced toolbox “Fieldmap”3 to compute and apply a voxel
displacement map accounting for these susceptibility artifacts. As mentioned above,
the resulting umean T2 image served as reference image for connectivity maps
computation.

DTI: DWI data were first preprocessed to minimize the distortions induced by
eddy-currents and related to the large diffusion-sensitizing gradients [201]. We used

3www.fil.ion.ucl.ac.uk/spm/toolbox/fieldmap
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the algorithm proposed by [201] and implemented within the BrainVisa package.
Briefly, this method uses a 2D image registration technique to realign each DWI slice
with its corresponding standard T2-weighted slice. A scale factor, a translation and a
shearing are the parameters for the slice and image dependent affine transformation
searched. The mutual information is used as a similarity measure to estimate
the transformation parameters. We then applied to the resulting images the EPI
geometric distortions correction algorithm used for the mean T2 image. The diffusion
tensor image (DTI), a field of 3x3 real symmetric positive-definite tensors along the
image domain, was finally computed with the method presented in section 6.1.2.

11.2.4 Seed Voxels Placement

A crucial aspect for any fiber tracking method is the location of the initial seed. The
seeds for the GCM algorithm were selected depending on the considered tracts.

LGN seed voxels identification

Lacking a precise functional localization of the LGN, we first identified LGN seeds
voxels with a classical streamline technique. To do so, we manually selected in each
hemisphere a rough thalamus sub-region which obviously included the expected LGN
location. More specifically, based on both anatomical and diffusion tensor image prior
information, the initial region was identified anterior to the lateral ventricles and
only voxels with a relatively high anisotropy (FA ≥ 0.15) were kept. Diffusion tracts
starting from each selected voxel were estimated with an implementation of a clas-
sical streamline tractography technique [174] and further automatically filtered to
keep the fibers heading to the ipsilateral retinotopically identified area V1. Only
fibers reaching a 3 voxels wide band around the functionally defined V1 region were
kept. This approach is very similar to that of Conturo et al. [78], although we did
not oversample the DTI data, thus getting less fibers than in the latter work. The
starting voxels of the remaining fibers were finally labeled as the LGN voxels. We
typically found a region of 5 connected voxels in each hemisphere, consistent with the
reported LGN size both in previous anatomical [143] and fMRI studies [65]. Beyond
yielding an anatomical connectivity based delineation of the LGN, the reproduction
of the well-known visual pathway as well as the likely extent and location of the LGN
ROIs validates our diffusion-weighted images quality as well as our image processing
pipeline.

Splenium seed voxels

Seed voxels in the splenium were manually traced on a mid-sagittal slice of the
anatomical image as the most posterior and ventral portion of the corpus callosum.
The voxels subset was further masked by the white matter tissue mask.
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Other tracts

For connectivity mapping starting from the functionally identified visual areas, we
simply used the white-matter ROIs defined with the procedure detailed above.

11.2.5 Connectivity Maps and Fiber Tracts Computation

Streamline technique

To date, streamline techniques are very often used since their implementation is quite
straightforward and the basic idea underlying the algorithm is intuitive: at each
voxel, the eigenvector associated to the largest eigenvalue is supposed to reflect the
microstructure of the underlying tissue and parallels the mean fiber orientation in
that voxel. Hence, the major eigenvector field is treated as a flow field and integrated
in order to estimate streamlines, expected to coincide with white matter fibers. In
the implementation we used, the integration is typically performed numerically with
subvoxel precision through a 4th order Runge-Kutta scheme [182].

The Riemannian geometry framework applied to DTI

We used the approach proposed in chapter 7 to compute (i) a distance function to a
given point of interest (or seed point) x0, (ii) the putative fiber path linking any voxel
of a given brain region V to x0 and (iii) a connectivity map, i.e. a confidence mea-
sure associated with each fiber. We refer to this technique as Geodesic Connectivity
Mapping (GCM). Considering the low anisotropy in the grey matter tissue, we will
consider for V the set of white matter voxels obtained from a segmentation of the
anatomical image (see methods). Moreover, we used for the confidence measure, the
statistics along the fibers of the following local quantity:

C(x) = |f∗(x)|E
where |.|E is the Euclidean norm. f ∗(x) corresponds to the so-called optimal dynam-
ics at voxel x (see section 7.5). Since each voxel x ∈ V can be assigned a geodesic
reaching x0, we can compute a pair (µ(x), σ(x)) at each voxel. µ(x) is the mean of
C(x) along the geodesic and σ(x), the standard deviation. In the following, we call
µ-map and σ-map the respective images of µ and σ values.

The results presented below were systematically obtained with the GCM algo-
rithm. Notice however that the level set method of section 7.3 led to qualitatively
similar results, although the computation time was by far higher and the numerical
issues mentioned in chapter 7 could lead to anatomically impossible front propaga-
tion and connections, requiring iterative manual modifications of the white matter
mask.
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Connectivity indices computation

We used the following methods to compute connectivity within the splenium region
and to estimate hMT+ connectivity with retinotopic areas.

To study splenium tracts, we analyzed connectivity maps in the splenium vox-
els, starting from our retinotopically (or functionally for hMT+) defined ROIs. Each
ROI was considered separately. We note X = (xi)i=1,...,n a specific n voxels seed ROI
(e.g. left hemisphere V1) and Y = (yj)j=1,...,m the m splenium voxels identified on a
mid-sagittal slice. For each seed voxel xi, the corresponding µ-map and σ-map were
computed with the GCM method. We therefore have the mean and sigma values
for each optimal path γi,j linking xi to yj . We then filter these maps to remove
the highest variance paths and compute a single mean µ-map in the splenium.
Specifically, for each splenium voxel yj0 , we have n putative paths γi,j0 . We discard
a given proportion p of these n connectivity paths, removing paths with highest
variance σ. The mean connectivity indices of the remaining putative fibers are then
averaged, leading to a single mean value µ at voxel yj0 . The procedure is repeated
for each yj , j = 1, ...,m. The resulting µ map is interpreted as the mean connectivity
between area X and the splenium. p was arbitrarily set to 10%, but the qualitative
results did not differ for 5% ≤ p ≤ 20%.

Regarding hMT+ connectivity with retinotopic areas, the connectivity indices
were computed as follows. Taking as seeds each hMT+ voxel (xi)i=1,...,n, we compute
the µ and σ maps with the GCM method. For each xi, we then discard a given
proportion p of paths with highest σ values among the m paths linking target ROI
voxels (yj)j=1,...,m to xi. The mean µ value of the remaining paths is then computed
and assigned to voxel xi. At each hMT+ voxel, we end up with a mean connectivity
value for each retinotopically defined target ROI. Similarly to splenium fibers, p was
arbitrarily set to 10%, but the qualitative results did not differ for 5% ≤ p ≤ 20%.

11.3 RESULTS
We first validated our protocol and connectivity mapping technique on

the previously characterized optic radiation tracts before investigating callosal con-
nectivity and intra-cortical connectivity across the functionally identified visual ar-
eas.

11.3.1 Optic Radiations

Since the optic radiations were often reconstructed in diffusion tractography studies
[78, 56, 70, 72], we decided to start the validation of our fiber tracking approach by
considering this well characterized fiber bundle, which links the Lateral Geniculate
Nucleus (LGN) to area V1 in the occipital cortex.
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Figure 11.2: Connectivity µ-maps obtained in two subjects estimated separately from
one LGN seed voxel (in black) for each hemisphere. The highest connectivity index
values are found along the putative optic radiations paths, with the maximum value
within area V1.

Starting from each previously identified LGN voxels (see methods), we computed the
connectivity index maps with the GCM method. As we were not concerned here with
inter-hemispheric connections, the GCM computation was restricted to the ipsilat-
eral hemisphere of the seed voxel. To compare our method with a standard approach,
we also reconstructed the fibers leaving the LGN with a classical streamline tech-
nique. Figure 11.2 shows one µ-map per hemisphere in two subjects. As each map is
restricted to its respective hemisphere, we merged them in a single image and over-
laid the result on an axial slice of subjects’ anatomical image. The seed voxel of each
µ-map is shown in black. The highest connectivity index values (dark red) are system-
atically found within the typical path of the optic radiations. Besides, highest values
were found in the retinotopically identified V1 region. These results were found for
each LGN seed voxel in the 6 hemispheres we analyzed. Consequently, for each con-
nectivity maps, the voxel with maximum connectivity mapping index (which lay in
area V1) was identified and the geodesic linking that voxel and the seed point was
traced. Figure 11.3 shows the reconstructed fiber bundles obtained with the stream-
line technique (blue) and the GCM technique (red). Although the thalamo-occipital
fibers estimated with streamline and geodesic methods qualitatively match and are
consistent with known anatomy, we noted some differences between reconstructed
tracts. Most fibers estimated by streamline propagation fail to reach the V1 white
matter ROI, unexpectedly heading in a ventral direction a few millimeters before
reaching the V1 region. We attribute this unexpected trajectory ending to an improb-
able connection with another fiber bundle crossing the thalamo-occipital track. This
observation led us to use a relaxed constraint to filter the fibers passing closely to V1,
as mentioned in the above description of the LGN seed voxel identification procedure
(see methods). Note that [78] also used a 1cm band within the white matter, lat-
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Figure 11.3: Optic radiation tracts estimated with a classical streamline method
(blue) and with our GCM technique (red). The LGN seeds voxels (grey), left V1 (yel-
low), right V1 (purple) and an axial slice of the DTI are also represented. Tracts ob-
tained with the streamline method can fail to reach area V1, as in the left hemisphere
here. On the other hand, tracts estimated with our GCM technique systematically
reach area V1, but they rapidly converge into a single bundle, illustrating the more
global behavior of the method.
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erally located to the activated occipital cortex to filter their thalamo-occipital fibers
(see [78], figure 3). Besides, other DTI tractography works showing this bundle do
not exhibit an actual connection with a accurately defined V1 ROI, letting open the
question of the fibers termination location.
On the other hand, GCM estimated tracts systematically reach our white matter V1
region, which illustrates an important advantage of the geometric front propagation
method over local approaches. However, GCM fibers tend to converge rapidly after
leaving the seed voxels, which denotes the less local characteristic of the method (see
discussion).

11.3.2 Callosal Connections

For each hemisphere, the low-level visual areas represent and analyze only one half
of the visual field, i.e. their respective contralateral hemifield. Nonetheless, homo-
logue areas of both sides, such as left and right V1, have been shown to be connected,
at least for the vertical meridian representations, through the splenium, a portion of
the corpus callosum [74]. Following [99], we studied the GCM estimated connectivity
maps of our functionally defined areas. We were interested in testing the capabil-
ity of our GCM method to replicate the broad connection topology that Dougherty et
al. reported in the region of the splenium. Figure 11.4 shows the resulting mean
µ-maps for visual areas hMT+, V1, V3A and V4 respectively taken as starting ROIs
in a mid-sagittal section of the brain for each subject. We do not represent here the
mean µ-maps for areas V2v, V2d, V3v and V3d, as they do not significantly differ
from their clothest neighboring areas on the cortical surface, i.e. V1v, V1d, V4 and
V3A respectively (see discussion below).
Connectivity values are ordered similarly for each areas, with a smooth gradient from
lowest values in the posterior/dorsal portion of the splenium to highest values in its
anterior/ventral portion. Comparing the different origin areas, lowest connectivity
values in the splenium were systematically found for hMT+. Regarding areas V1,
V3A and V4, values are not consistent enough across subjects to infer a systematic
topology in the occipito-callosal connections. However, V3A connectivity is higher
than for V4 in 4 out of 6 hemispheres, suggesting a stronger callosal connectivity for
dorsal with respect to ventral areas. Finally, we observed a systematic asymmetry
between the maps associated to each hemisphere. The highest values were found for
putative connections originating from the left hemisphere. Figure 11.5 represents
the most probable fibers linking each hMT+ voxel from both hemispheres to the sple-
nium. We employed a similar method to that used to obtain the optic radiations
fibers. More specifically, for each hMT+ voxel considered as a seed, we computed the
related connectivity index maps. We then identified the splenium voxel with highest
connectivity index and constructed the related geodesic. The estimated fiber tracts
from the two hemispheres show a great spatial agreement.
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Figure 11.4: Mean connectivity indices from distinct visual areas to the splenium
voxels. The mean connectivity values show a smooth gradient from posterior/dorsal
to anterior/ventral splenium portions. Lowest connectivity values in the splenium
are systematically found for hMT+.

11.3.3 hMT+ Intra-hemispheric Connectivity

Using a similar approach, we finally studied the GCM of the human MT complex with
the ipsilateral occipital retinotopic areas. Figure 11.6 shows a box plot of the mean
connectivity values distribution for the different seed voxels of hMT+ across retino-
topic areas. The boxes edges depict the values of the first quartile, the median and
the third quartile. Values outside this box are also shown, to completely represent
the distribution dispersion.
V1 and V2 systematically showed the highest connectivity values, suggesting highly
probable connections with hMT+. V1 and V2 can hardly be distinguished, which can
be attributed to their very close anatomical locations given our voxel size (see discus-
sion). On the other hand, V4 systematically showed the lowest connectivity values,
suggesting a weak direct anatomical connection with hMT+. It is more difficult to
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Figure 11.5: Independently estimated most probable fibers linking left and right
hMT+ (green) to the splenium (blue) from two subjects (left: CL and right: JP).

clearly distinguish the remaining areas V3v, V3d and V3A.
Similarly to the splenium data analysis, we clearly found higher connectivity values
for the left hemisphere as compared to the right, regardless of the area considered
(see the values range on the vertical axes).

11.4 DISCUSSION
We could successfully characterize connectivity along projection, callosal

and association tracts in the human visual system with our GCM approach. Although
our analysis is restricted to 3 subjects, we could successfully reproduce known results
about the white matter tissue organization in this region of the brain. This validates
our method. We shall first discuss methodological issues regarding DTI based trac-
tography, with a particular emphasis on our GCM technique, before we address the
results regarding current knowledge on the human visual brain connectivity.

11.4.1 Methodological Issues

DTI Geodesic Connectivity Mapping: validity and limitations

The current study provides a validation of the GCM approach to estimate DTI
based connectivity mapping in the visual system. With its other application to the
human motor system in the previous chapter and [179], this Riemannian geometrical
approach, using the full tensor information, appears very useful to study anatomical
connectivity in various cognitive systems. Geometrical tractography methods, such
as the current GCM used in our study, have three main advantages over other
tractography approaches. First they provide a connectivity measure between any
pair of points within the white matter. This information can be used to build
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Left Hemisphere Right Hemisphere
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RV1 RV2d RV2v RV3d RV3v RV3A RV4 
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0.028 
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LV1 LV2d LV2v LV3d LV3v LV3A LV4 0.022
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RV1 RV2d RV2v RV3d RV3v RV3A RV4 0.022
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0.032

JP

LV1 LV2d LV2v LV3d LV3v LV3A LV4 
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Figure 11.6: Mean connectivity between hMT+ and the retinotopic areas. V1 and V2
systematically shows the highest values while V4 exhibits the lowest values. Note
also the lowest values found in the right hemisphere compared to the left in the 3
subjects.
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connectivity matrices over the whole brain or to rank putative connections pathways
in the white matter. Then, geometrical approaches can deal with locally isotropic
tensors occurring at fibers kissing or crossing. This is not the case with deterministic
or probabilistic approaches where a FA threshold condition is often necessary to
avoid unreliable fibers. Finally, these methods are less sensitive to acquisition noise,
since they take advantage of the complete tensor information and of the less local
behavior of the algorithm by comparison with streamline or stochastic approaches.

There are however limitations both due to DTI by itself and to the geometrical
connectivity mapping framework. First and foremost, the relatively poor spatial
resolution of DTI (typically a few mm3) when compared to actual white matter fibers
diameter (between 0.2 and 20 µm) has important implications:

• Only white matter “highways” may be properly recovered, which hardly rep-
resent every cortico-cortical connections; false negative connections are thus
unavoidable and a precise discrimination between spatially close regions is still
difficult to obtain. Our results on the visual system illustrate these spatial lim-
itations. As mentioned above, we could hardly distinguish mean connectivity
maps for areas V1 and V2. Although surprising at first sight, this result can
actually find a simple explanation when considering together the anatomical
layout of these areas and the current spatial resolution of DTI. Areas V1d and
V2d (and similarly V1v and V2v) respectively lie on the opposite banks of the
same gyrus4. The white matter tissue separating the latter is therefore rela-
tively thin, especially with 2mm isotropic voxels. Thus we cannot expect to eas-
ily distinguish the connectivity maps obtained with two opposite voxels in this
gyrus. Improvement of the spatial resolution appears as the only way to solve
this problem. Although still to be considered for the areas couples V3d/V3A dor-
sally and V3v/V4 ventrally, this gyral proximity is less pronounced since these
areas borders appear less constrained by the sulco-gyral pattern than for V1
and V2 borders. Improvements in image acquisition protocols, such as paral-
lel imaging, may overcome this spatial limitation, but a precise physical lower
bound is still to be estimated.

• The tensor model cannot handle properly fibers crossings or kissings that may
occur within a voxel. Emerging approaches using higher order models based on
High Angular Resolution Diffusion Imaging (HARDI) [118, 287, 225, 50, 90, 92]
may provide an answer to this issue.

An intrinsic problem of the geometrical connectivity mapping approach used here
comes from the absence of absolute threshold to confidently estimate fiber tracts from
the connectivity maps [233]. Depending on the threshold choice (the p proportion),

4Note that Van Essen proposed an interesting mechanical tension-based theory to explain this par-
ticular folding pattern [294].
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false positive or false negative connections may arise. Combination of complemen-
tary connectivity indices associated with each geodesics may prove to minimize this
limitation. Furthermore, most tractography methods to date, including ours, are not
symmetrical in the sense that putative paths reaching a position y while starting from
x may not necessarily coincide with those linking x when starting from y. Besides,
tracking within GM, although theoretically possible with geometrical approaches like
the one we employed, still leads to difficult interpretations of the reconstructed con-
nectivity maps and related tracts as the diffusion signal is poor in the cortical tissue.
Last but not least, a direct validation of DTI based methods is still missing. Although
reconstructed tracts such as the optic radiations in the current study or the motor
pathway found in [179] are consistent with known anatomy, a quantitative valida-
tion could indicate the advantages and weaknesses of DTI based tractography meth-
ods. Ultimately, an animal study comparing the different tractography approaches
with invasively identified connections would be of great interest to demonstrate their
respective advantages and current DTI based tractography limits.

Combined fMRI and DTI

The fMRI areas identification confidently restrained our analysis into known brain
regions. We thus avoided possible operator-dependent bias in seed placement or
rough anatomically based inference. No obvious false-positive connections were found
in our study.

11.4.2 Visual Cortex Connectivity

Thalamo-occipital fibers

We first reproduced tracking of the thalamo-occipital fibers bundle connecting the
LGN and V1. This fiber bundle was identified in various DTI tractography works,
either with a deterministic streamline [78, 56] or a Fast Marching Tractography
[72, 70] method. Although our methodology to identify the LGN seed voxels might
appear biased as it is already based on DTI information, we stress that the estimated
LGN location and extent consistently fits known anatomy [143] and previous imag-
ing reports [65]. Furthermore, this method is not prone to operator dependent seed
selection. The comparison between streamline methods and our GCM technique il-
lustrates the lower local sensitivity of the latter, since spatially close seeds lead to
relatively similar connectivity maps, hence to close fibers tracts (figure 11.3). This
can be an advantage over classical streamline approaches as it is less prone to noise,
but might also obscure local topology across spatially close fibers, such as those shown
by Conturo et al. in the thalamo-occipital fiber bundle [78].
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Splenium fibers

We investigated the topology of callosal fibers with respect to their origin in the low
level visual cortex. We could reproduce with our GCM method the antero-ventral
localization of fibers linking occipital retinotopic areas to the splenium (figure 11.4),
as found by Dougherty et al. [99] using a classical streamline approach. Our results
also suggest higher connectivity values for V3A when compared to V4, which is con-
sistent with [99]. We could not however identify the precise topological organization
of connections within the splenium they observed, neither with our GCM approach
nor with a streamline technique similar to the one they used. A lower quality in our
diffusion-weighted images may be responsible for this discrepancy.
We found the lowest connectivity values in the splenium for hMT+ as compared to
occipital retinotopic areas (figure 11.4). This result should be related to a clinical
study demonstrating that visual motion perception, strongly correlated with hMT+
activity, is not affected by posterior callosal destruction [73]. On the other hand, a
weaker activation during bilateral visual field stimulation was found in the patient
left hemisphere calcarine region compared to 20 normal subjects, correlated with
severely impaired reading and color naming performances. These findings suggested
other, probably parallel, pathways conveying interhemispheric visual motion infor-
mation. Possible candidates for the alternative routes include anterior part of the
corpus callosum, anterior commissure and subcortical (via the superior colliculus, the
intercollicular commissure and the pulvinar) connections. Future work will shortly
assess these alternative interhemispheric connections for hMT+.

hMT+ and occipital areas connectivity

We studied the connectivity between hMT+ and various low-level retinotopic areas.
To the best of our knowledge, this is the first DTI connectivity study considering this
cornerstone of the visual motion pathway. V1 systematically showed the highest con-
nectivity index values with hMT+ (figure 11.6), consistent with the known highly
myelinated white matter fiber bundles linking both areas [296]. Besides, lowest con-
nectivity values between the retinotopic areas and hMT+ were systematically found
for area V4, further supporting the famous distinction between ventral and dorsal
streams [293, 207].
We also found similar hMT+ connectivity values for V3d and V3v, despite their rela-
tively important distance along the cortical sheet. This observation could be an other
evidence to consider V3d and V3v as the two quarterfields representation of a sin-
gle area V3, as also demonstrated with anatomical connectivity studies in various
species of monkeys [196, 197].
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Hemisphere asymmetry

Our results in the visual system suggested a significant asymmetry in our connec-
tivity maps between the two hemispheres. The left hemisphere exhibits higher con-
nectivity values than its right counterpart. A similar result was also reported in
[99], where more occipito-callosal fibers could be reconstructed in the left than in the
right hemisphere by the employed streamline algorithm. The authors suggested a
bias in the hemispheres respective size may account for this difference. Note that
such an asymmetry between both hemispheres was also reported in the motor sys-
tem [133] and could possibly be attributed to handedness. Similarly, [125] reported a
greater asymmetry in the left than in the right hemisphere in most parts of the cingu-
lum, but no significant correlation with handedness could be demonstrated [124]. We
suggest an alternative hypothesis, based on a perhaps more straightforward brain
observation: hemispheric functional specialization. Undoubtedly, the hemispheres
are functionally asymmetric and this should imply a different, asymmetrical wiring
within each hemisphere. This may in particular be the case in the occipital cortex,
the right lobe possibly presenting more fiber crossings than its left counterpart. As
a consequence, the local diffusion tensors would not be equivalently anisotropic in
both sides, leading to more difficult fiber tracking for streamline methods or lower
connectivity values for our GCM algorithm.

11.5 CONCLUSION
We evaluated the ability of our new geometrical DTI analysis frame-

work, GCM, to infer anatomical connectivity in the visual cortex. We could suc-
cessfully reconstruct the well-known optic radiations connecting the LGN and V1
with our fast connectivity mapping method. We also showed a plausible topology of
occipito-callosal connections in the splenium, consistent with previous works. Finally,
we assessed the anatomical connectivity between hMT+ and occipital retinotopic ar-
eas, supporting the view of parallel ventral and dorsal processing streams. With both
image acquisition and methodological improvements, diffusion MRI should provide a
new means to uncover the architecture of the visual system and further relate it to
its functional characterization.
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CHAPTER 12

CONCLUSION

In this thesis, we have proposed new methods for diffusion tensor MR images process-
ing (Part II). This required some preliminary theoretical work in order to define and
understand the proper mathematical concepts that would constitute the core tools of
our work (Part I & Appendix A). Finally, we could successfully apply these results
to investigate the motor and visual anatomo-functional networks of the human brain
(Part III). Our contributions are thus threefold: theoretical, methodological and ap-
plied. All along this thesis, we tried to make the right mathematical choices to model
the problems of interest. We believe this enabled us to propose adequate and efficient
algorithms such that we could finally tackle challenging neuroscience questions. To
summarize,

• We proposed an original information geometric point of view to work with dif-
fusion tensors. The introduction of a Riemannian structure on the “space of
diffusion tensors” yielded intrinsic numerical schemes that naturally preserve
the properties of these mathematical objects. We showed, for instance, how to
draw random tensors following an imposed Gaussian distribution or how to in-
terpolate tensor-valued images.

• We presented new algorithms for the estimation and regularization of diffusion
tensor images which naturally enforce the tensors properties.

• We introduced front propagation techniques that use the full diffusion tensor to
estimate the degree of connectivity of a region of interest with the rest of the
brain and to approximate neural fibers as geodesics.

• We demonstrated that it was possible to use our intrinsic statistics on diffusion
tensors within a surface evolution framework to perform the segmentation of
DTI. The choice of the dissimilarity measure was shown to be crucial since only
the Riemannian metric derived from the Fisher information matrix and used in
chapter 5 recovered the expected results on particularly difficult datasets.

• We proposed a novel approach to the non-rigid registration of DTI. Although
essentially theoretical, our work is the first to resort to intrinsic statistics on
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the manifold S+ and simple numerical examples proved the feasibility of the
approach.

• Finally, we applied our connectivity mapping techniques to the investigation of
the human motor and visual systems. We reproduced previous findings but,
most importantly, we proposed new insights into the anatomo-functional orga-
nization of the human brain.

Although our contributions can undoubtedly still be improved, we believe they
can benefit to a wide range of clinical and neuroscience applications. The proper
estimation and regularization of DTI datasets can have an important impact on the
statistical analysis of large DTI databases. Our connectivity mapping techniques,
since they quantify the degree of connectivity between region of interest, can not
only be of great interest to better understand the wiring of the cerebral white matter
but also to study neurological pathologies like multiple sclerosis, Alzheimer’s or
Parkinson’s disease, schizophrenia ...etc. Christine Delmaire and Stéphane Lehéricy
(La Pitié-Salpêtrière Hospital, Paris, France) are currently studying whether our
tools can be used in the diagnosis of dystonia. By combining our registration and
segmentation methods, it could also be interesting to investigate the variability of
the shape of fiber bundles. Building atlases of those structures would be of great
help to simply incorporate prior knowledge in our segmentation algorithm or to help
detecting abnormal three-dimensional configurations that could indicate ischemia,
MS plaques, tumors ...etc

We are also currently investigating the possibility to extend the various methods pre-
sented in this manuscript to higher order models. It is now indeed well-known that
the diffusion tensor model is only good when there exists one major fiber orientation
within a voxel, which is rarely the case. High Angular Resolution Diffusion Imaging
(HARDI) [118, 287, 225, 50, 90] is more and more frequently used to compute the
so-called Orientation Distribution Functions (ODFs). Those spherical functions may
provide enough information to resolve fibers crossings, branching, kissing ...etc. It
has also been shown that, by working with spherical harmonics, they can be mapped
onto higher order symmetric and positive definite diffusion tensors [91]. It should
thus be possible to generalize at least some of the algorithms proposed in this thesis
to tensor representations of ODFs.
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CHAPTER 13

CONCLUSION (FRANÇAIS)

Dans cette thèse, nous avons proposé de nouvelles méthodes pour le traitement des
IRM du tenseur de diffusion, ou Imagerie du Tenseur de Diffusion (ITD), (Partie II).
Une étude théorique préliminaire a été nécessaire pour mieux comprendre et définir
les notions mathématiques adéquates qui constituent les outils centraux de notre tra-
vail (Partie I & Appendice A). Enfin, nous avons appliqué ces résultats avec succès
à l’investigation des réseaux anatomo-fonctionnels moteurs et visuels du cerveau hu-
main (Partie III). Nos contributions sont donc à la fois théoriques, méthodologiques
et appliquées. Tout au long de cette thèse, nous nous sommes efforcés de faire des
choix mathématiques judicieux afin de modéliser le mieux possible les problèmes
d’intérêt. Nous sommes convaincus que cela nous a permis de proposer des algo-
rithmes pertinents et efficaces pour tenter de répondre à des questions fondamentale
en neurosciences. En résumé,

• Nous avons adopté un point de vue géométrique original pour travailler avec
les entités complexes que sont les tenseurs de diffusion. L’introduction d’une
structure Riemannienne sur “l’espace des tenseurs de diffusion” nous a permis
de proposer des schémas numériques préservant les propriétés de ces objets
mathématiques. Nous avons notamment montré comment générer des tenseurs
aléatoires, distribués selon une loi Gaussienne imposée, ou comment interpoler
des images à valeur matricielle.

• Nous avons présenté de nouveaux algorithmes pour l’estimation et la
régularisation d’ITD. Ceux-ci préservent naturellement les propriétés des
tenseurs.

• Nous avons introduit des techniques de propagation de fronts, faisant usage de
toute l’information contenue par le tenseur de diffusion, afin d’estimer le degré
de connectivité d’une région d’intérêt avec le reste du cerveau et d’approximer
les fibres nerveuses par des géodésiques.

• Nous avons montré comment utiliser les statistiques intrinsèques sur les
tenseurs de diffusion, dans un algorithme d’évolution de surface, pour réaliser
la segmentation d’ITD. Le choix de la mesure de dissimilarité entre tenseurs

243



s’est révélé être crucial. Seule la métrique Riemannienne, dérivée de la matrice
d’information de Fisher et utilisée dans le chapitre 5 a été en mesure de trouver
les résultats attendus sur des données particulièrement difficiles.

• Nous avons proposé une approche originale pour le recalage non-rigide d’ITD.
Bien qu’essentiellement théorique, notre travail est le premier à exploiter les
statistiques intrinsèques sur la variété S+ et des exemples numériques simples
ont prouvé la faisabilité de l’approche.

• Finalement, nous avons appliqué nos techniques d’analyse de la connectivité
anatomique à l’investigation des systèmes moteurs et visuels de l’homme.
Nous avons pu reproduire certains résultats de la littérature et, surtout,
avons présenté de nouveaux éléments de réponse sur l’organisation anatomo-
fonctionnelle du cerveau humain.

Bien que nos contributions puissent encore sans aucun doute être améliorées, nous
sommes convaincus qu’elles peuvent s’avérer très utiles en neuroscience et pour
un grand nombre d’applications cliniques. L’estimation et la régularisation des
IRM du tenseur de diffusion, avec des méthodes appropriées, ont très certainement
un impact important sur l’analyse statistique d’un grand nombre de ces images.
Nos techniques d’analyse de la connectivité, puisqu’elles permettent de quantifier
cette connectivité entre régions d’intérêt, peuvent non seulement être utiles pour
mieux comprendre l’architecture des réseaux de la matière blanche cérébrale mais
aussi pour étudier les pathologies neurologiques telles que la sclérose en plaques, la
maladie d’Alzheimer ou la maladie de Parkinson, la schizophrénie ...etc. Christine
Delmaire et Stéphane Lehéricy (Hôpital La Pitié-Salpêtrière, Paris, France) utilisent
actuellement nos outils afin de mieux comprendre les origines d’une autre pathologie
: la dystonie. En combinant nos méthodes de recalage et de segmentation, il pourrait
également être intéressant d’étudier la variabilité de la forme des faisceaux de fibres.
La construction d’atlas pour ces structures serait une aide précieuse pour incorporer
des connaissances a priori dans notre algorithme de segmentation ou pour aider à
la détection de configurations tridimensionnelles anormales, indiquant la présence
possible d’un accident vasculaire cérébral, d’une tumeur ...etc.

Nous travaillons actuellement sur l’extension des techniques exposées dans ce
manuscrit à des modèles d’ordres supérieurs. Le modèle du tenseur de diffusion
(ordre 2) n’est effet valide que lorsque les fibres présentes dans un voxel sont prin-
cipalement alignées selon une unique direction, ce qui est rarement le cas. L’IRM
de diffusion à haute résolution angulaire [118, 287, 225, 50, 90] est une technique
récente permettant d’estimer des fonctions de distribution angulaire (FDAs). Ces
fonctions sphériques fournissent beaucoup plus d’information et constituent la piste
à suivre pour distinguer les divers types de croisement, convergence, divergence,
contact ...etc. réalisés par les fibres nerveuses. Il a aussi été montré, en utilisant les
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propriétés des harmoniques sphériques, que ces fonctions peuvent être transformées
en tenseurs de diffusion (symétriques et définis positifs) d’ordre supérieur [91].
Il devrait donc être possible de généraliser les algorithmes (ou au moins certains
d’entre eux) proposés dans cette thèse à ces représentations tensorielles des fonctions
de distribution angulaire.
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APPENDIX A

DIRECTIONAL DERIVATIVES OF
MATRIX FUNCTIONS

A.1 DERIVATIVES & SPECTRAL REPRESENTATION
As developed in [84], a matrix function f can be defined in terms of Cauchy

integral formula or by employing a similarity transformation of the form:

Proposition A.1.0.1. Let t → X(t) be a smooth function from a neighborhood of t0
to Mn(R). Let f be a function which domain is D. If X(t) is diagonalizable in a
neighborhood V of t0 with eigenvalues in the domain D, then in this neighborhood
f(X(t)) is defined as:

f(X(t)) = Z(t)f(D(t))Z−1(t) ,

where Z(t) and D(t) are defined in V as one solution of the diagonalization equation:

X(t) = Z(t)D(t)Z−1(t) , (A.1)

where D(t) is a diagonal matrix and f(D(t)) is the diagonal matrix obtained by ap-
plying the function f to the diagonal coefficients of D(t).

When involved in optimization procedure, it is necessary to obtain the derivatives of
these functions of matrices. This is the purpose of the present appendix. We will
prove the following proposition and evaluate its numerical properties.

Proposition A.1.0.2. If furthermore all eigenvalues of X(t) are distinct in a neigh-
borhood V ′ ⊂ V (which makes the decomposition A.1 unique up to a permutation) then
its derivative df(X(t))

dt exists in V ′ and is a function of X(t) and dX
dt , noted df (, )

df(X(t))

dt
= df

(
X(t),

dX

dt

)
(A.2)

An expression for df (, ) can be obtained from the diagonalization equation A.1 as:

df(X)

dt
=
dZ

dt
Z−1f(X)− f(X)

dZ

dt
Z−1 + Z

dD

dt
Z−1X−1 ,
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where time dependence of functions has been dropped for readability.

The derivative dD
dt can be obtained as:

dD

dt
= diag

(
Z−1 dX

dt
Z

)
,

where diag(M) means the matrix obtained by keeping only the diagonal elements of
the matrix M.

The term dZ
dt Z

−1 is equal to ZQZ−1 where

Qi
j =

{ (
Z−1 dX

dt Z− dD
dt

)i
j
/ (λj − λi) if i 6= j

0 otherwise

and where we denote by λi, i = 1, ..., n the elements of the diagonal matrix D.

The first part of the proposition concerning the existence of the derivative is a conse-
quence of corollary 9.2.2.2. The proof of the other assertions occupies the next three
sections.

A.1.1 Spectral representation of the derivative

We recall that λi are the eigenvalues of the matrix X and note Zi the associated eigen-
vectors, e.g. the columns of Z. From proposition A.1.0.1, we have f(X) = Zf(D)Z−1.
Hence,

d

dt
f(X) =

dZ

dt
f(D)Z−1 + Z

df(D)

dt
Z−1 + Zf(D)

dZ−1

dt
.

dZ−1

dt is easily computed as follows:

ZZ−1 = I⇒ dZ

dt
Z−1 + Z

dZ−1

dt
= 0⇒ dZ−1

dt
= −Z−1 dZ

dt
Z−1 .

We can now go back to the expression of df(X)
dt and obtain:

df(X)

dt
=

dZ

dt
Z−1Zf(D)Z−1 + Zf(D)Z−1Z

dZ−1

dt
+ Z

df(D)

dt
Z−1

=
dZ

dt
Z−1f(X)− f(X)

dZ

dt
Z−1 + Z

df

dt
(D)

dD

dt
Z−1

=

[
dZ

dt
Z−1, f(X)

]
+ Z

df

dt
(D)

dD

dt
Z−1 , (A.3)

where [., .] denotes the commutator and df
dt (D) can be easily computed using proposi-

tion A.1.0.1 for the functional df
dt .

Thus, in the previous expression, we only have to evaluate dD
dt and dZ

dt Z
−1. As

we will see in the next two sections, we actually only need to compute dX
dt .
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A.1.2 Computation of dD
dt

Computing dD
dt boils down to computing the derivatives of the eigenvalues

λi, i = 1, ..., n. As shown in the next paragraph (for the case n = 3, although
the calculations could be generalized to any values of n), this can be obtained rather
easily from the characteristic polynomial of X. However, the method proposed just
below is simpler, faster and much more general:

From equation A.3 applied to the identity function, we have:

Z−1 dX

dt
Z = Z−1 dZ

dt
Z−1XZ− Z−1X

dZ

dt
+
dD

dt

= Z−1 dZ

dt
D−DZ−1 dZ

dt
+
dD

dt

=

[
Z−1 dZ

dt
,D

]
+
dD

dt
= [Q,D] +

dD

dt
,

with Q = Z−1 dZ
dt . Because D is a diagonal matrix, the (i, j)th element of [Q,D] is:

Qij (λj − λi) ,

which vanishes when i = j. Thus, the diagonal elements of the commutator [Q,D]

are zero and we have
dD

dt
= diag

(
Z−1 dX

dt
Z

)
.

Alternative computation of dD
dt for n = 3:

The derivative dD
dt can easily be obtained from the following expression of the char-

acteristic polynomial of X, when n = 3:

P(λ, t) = −λ3 + tr(X(t))λ2 −
(

3∑

i=1

Mi
i(X(t))

)
λ+ |X(t)| = 0

whereMi
i (X(t)) are the second-order principal minors of X(t) for i = 1, 2, 3 and |X(t)|

denotes its determinant.

P being a function of λ and t, its total derivative with respect to t is:

dP(λ, t)

dt
=

∂P(λ, t)

∂λ

dλ(t)

dt
+
∂P(λ, t)

∂t
= 0

⇒ dλ(t)

dt
= −∂P(λ, t)

∂t
/
∂P(λ, t)

∂λ
(A.4)

with

∂P(λ, t)

∂t
=
dtr(X)

dt
λ2 −

(
3∑

i=1

dMi
i(X)

dt

)
λ+

d|X|
dt

= tr
(
dX

dt

)
λ2 +

(
tr
(
X
dX

dt

)
− tr(X)tr

(
dX

dt

))
λ+ tr

(
X?dX

dt

)
(A.5)
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and

dP(λ, t)

dλ
= −3λ2 + 2tr(X)λ−

3∑

i=1

Mi
i(X) (A.6)

Let us detail the expressions for the derivative of the determinant (Jacobi’s formula)
and the derivative of the minors.

Denoting by (X?)ij = Cij = (−1)i+jMi
j the cofactors of X, the determinant is

expressed as |X| = ∑n
k=1C

i
kX

k
i . Hence,

∂|X|
∂Xi

j

= Cji

⇒ d|X|
dt

=
n∑

i,j=1

∂|X|
∂Xi

j

dX i
j =

n∑

i,j=1

Cji dX
i
j = 〈X?,

dX

dt
〉 = tr

(
X? dX

dt

)

where 〈., .〉 denotes the canonical inner product.

The derivative of
∑3

i=1Mi
i(X) can be computed at once from the trace of the

adjugate matrix derivative. The proof is given for non-singular X but the result is
true even without this condition (it can be easily deduced by a continuity argument).
Writing X? = |X|X−1, the characteristic polynomial associated to X can be written
as (remember that X is a 3× 3 matrix):

λ3 − tr(X)λ2 + tr(X?)λ− |X| = 0 .

since tr(X?) =
∑3

i=1Mi
i(X).

Using the Cayley-Hamilton theorem, we have:

X3 − tr(X)X2 + tr(X?)X− |X|I = 0

Multiplying this expression by X? and using the identity XX? = |X|I gives:

|X|
(
X2 − tr(X)X + tr(X?)I −X?

)
= 0 .

Simplifying by the determinant |X| (which is assumed to be non-zero), and taking the
trace of the expression yields:

tr(X2)− tr(X)2 + 2tr(X?) = 0 .

Differentiating, this expression with respect to time t and using the fact that
tr(Xd|X|

dt ) = tr(d|X|
dt X) gives:

2tr
(
X
dX

dt

)
− 2tr(X)tr

(
dX

dt

)
+ 2tr

(
dX?

dt

)
= 0 .

Finally:
d
∑3

i=1Mi
i(X)

dt
= tr

(
dX?

dt

)
= tr (X) tr

(
dX

dt

)
− tr

(
X
dX

dt

)
.
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A.1.3 Computation of dZ
dt

Z
−1

Applying again equation A.3 to the identity function, it follows that:

dX

dt
− Z

dD

dt
Z−1 =

[
dZ

dt
Z−1,X

]
. (A.7)

From the previous section, we know how to compute dD
dt . Then, setting P = dZ

dt Z
−1,

equation A.7 should easily be solved for P by seeking the solution of the linear system:

WY = U ,

with U = ϕn
(
dX
dt − ZdD

dt Z
−1
)

and Y = ϕn (P) where ϕn denotes the map associating
to each n× n matrix M = [M1, ...,Mn] the vector ϕn(M) = [MT

1 , ...,M
T
n ]T ∈ R

n2 .

The components of the n2×n2 matrix W can be computed as follows. Considering the
commutator C = [P,X], each of its elements writes:

Cij =
n∑

k=1

P ikX
k
j −X i

kP
k
j (A.8)

This yields:

W κ
ν =

∂Cij

∂P kl
= X l

jδ(i, k)−X i
kδ(l, j) ,

where i, j, k, l,= 1, ..., n, κ = n(i − 1) + j, ν = n(k − 1) + l and δ(i1, i2) denotes the
Kronecker symbol δ(i1, i2) = 1 if i1 = i2 and δ(i1, i2) = 0 otherwise.

However, it turns out that the matrix W is of rank n2 − n = n(n − 1) and thus
singular. This situation actually arises from the structure of the problem and it is
possible to take advantage of that to derive a better method for the computation of P.

Setting F = f(X) and rewriting the commutator in the right hand side of
equation A.3 as:

dZ

dt
Z−1f(X)− f(X)

dZ

dt
Z−1 = ZQZ−1F− FZQZ−1

= Z
(
QZ−1FZ− Z−1FZQ

)
Z−1

= Z[Q,Z−1FZ]Z−1

we can see that the logarithm derivative does not depend on the diagonal elements of
Q = Z−1 dZ

dt . Indeed, we have:

[Q,Z−1FZ] = [Q,Z−1f (X)Z] = [Q, f
(
Z−1XZ

)
] = [Q, f (D)]

But the (i, j)th element of [Q, f (D)] is:

Qij (f (λj)− f (λi)) ,
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which again vanishes when i = j for all Qi
j .

Equation A.7 is thus rewritten as follows to only solve for the off-diagonal components
of Q instead of directly seeking P:

Z−1 dX

dt
Z− dD

dt
= Z−1 dZ

dt
D−DZ−1 dZ

dt
= [Q,D]

Qij is then straightforward to obtain as:

Qij =

{ (
Z−1 dX

dt Z− dD
dt

)i
j
/ (λj − λi) if i 6= j

0 otherwise
(A.9)

dZ
dt Z

−1 is in turn obtained as ZQZ−1 and this completes the proof of proposition
A.1.0.2.

A.2 NUMERICAL EXPERIMENTS: THE log FUNCTION
We recall that the principal logarithm log (X(t)) can be defined by the se-

ries:

log (X(t)) = −
∞∑

k=1

(I−X(t))k

k

whenever ‖I − X(t)‖ < 1 for any norm ‖.‖. We could use a truncated version of
this series expansion to approximate the derivative of the logarithm, however the
hypothesis ‖I−X(t)‖ < 1 does not hold in general and, in particular, for the cases of
interest in chapter 9. Our procedure is much more general.

As pointed out in [211] and detailed in [95], the derivative of the matrix loga-
rithm can be defined through the following integral:

d

dt
log (X(t)) =

∫ 1

0
((X(t)− I) s+ I)−1 d

dt
X(t) ((X(t)− I) s+ I)−1 ds (A.10)

The numerical evaluation of this integral can be a difficult and computationally
time-consuming task. We hereafter show that our method is a fast and accurate
procedure to evaluate the derivative of the matrix logarithm.

We have implemented in C++ equation A.10 by resorting to a Gauss-Kronrod
approximation (with 21 points) of the integral, which is interesting since it yields
an estimate of the error. We have also implemented two versions of our proposed
method in C++. The first version (called version 1) relies on the computation of dD

dt

from the characteristic polynomial. The second version (called version 2) uses the
result of section A.1.2.

254



We first applied theses three methods to the following symmetric case:

X =




9 1 1

1 4 1

1 1 9




dX

dt
=




0.211325 0.543185 0.424983

0.543185 0.665381 0.657061

0.424983 0.657061 0.878216




The quantity d log X(t)
dt was estimated by the Gauss-Kronrod approximation and ver-

sions 1 and 2 of our algorithm. Results were identical with a precision of 10−6 and we
found

d log X(t)

dt
=




0.0105527 0.0694973 0.0320969

0.0694973 0.134841 0.0825508

0.0320969 0.0825508 0.083588




moreover, the error estimate of the Gaussian quadrature was

±




2.41888× 10−6 1.50485× 10−6 3.28319× 10−6

1.50485× 10−6 7.18358× 10−7 1.82484× 10−6

3.28319× 10−6 1.82484× 10−6 4.42678× 10−6




Regarding the timing of the three methods, Gauss-Kronrod approximation took 2.32

seconds for 10, 000 evaluations of d log X(t)
dt while versions 1 and 2 of our algorithm

respectively took 0.45 seconds and 0.37 seconds.

We next applied the three methods to the general (non symmetric) case:

X =




9 1 1

2 4 1

3 7 9




dX

dt
=




0.211325 0.543185 0.424983

0.543185 0.665381 0.657061

0.424983 0.657061 0.878216




Hence again, results were identical with a precision of 10−6 with

d log X(t)

dt
=




0.00668372 0.0574211 0.0362147

0.0608406 0.0805234 0.0896055

0.00321555 0.00143868 0.0507173




and the error estimate of the Gaussian quadrature was

±




5.86227× 10−6 5.20053× 10−6 4.75582× 10−6

4.78581× 10−6 3.85294× 10−6 3.51304× 10−6

1.40296× 10−5 1.23989× 10−5 1.13835× 10−5




Gauss-Kronrod approximation took 2.3 seconds for 10, 000 evaluations of d log X(t)
dt

while versions 1 and 2 of our algorithm respectively took 0.61 seconds and 0.56

seconds.

We can thus conclude that our method is always about 4 to 6 times faster that
Gaussian quadrature even though we should notice that it may depend on the
properties of the matrix X. Versions 1 and 2 are indeed slightly slower in the general
case than in the symmetric one because of the higher computational cost of the
diagonalization.
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APPENDIX B

DETAILS ON THE FIRST
VARIATION OF JAC(h, Dh)

B.1 INTRODUCTION
In this appendix, we compute the first variation of the term JAC(h,Dh)

introduced in section 9.4 and corresponding to the matching term, for the DTI regis-
tration problem, between local covariance matrices of the images I1 and Th(I2).
We identify the covariance matrices, elements of S(6) with their images by the canon-
ical map ϕ6. Because of (9.30) we have

δkJAC(h,Dh) =

∫

Ω
δkJAC(x, h) dx.

Because of (9.27) we have

δkJAC(x, h) =
1

2

(
∂
∂Λ2
‖Λ2(x, h)− Λ̃12(x, h)‖2F δkΛ2(x, h) +

∂
∂Λ̃12

‖Λ2(x, h)− Λ̃12(x, h)‖2F δkΛ̃12(x, h) +

∂
∂Λ̃21

‖Λ1(x)− Λ̃21(x, h)‖2F δkΛ̃21(x, h)
)

In this equation, the partial derivatives are covariant vectors and the variations δk ·
are contravariant vectors. The expression of the partial derivatives follows from the
fact that ‖A−B‖2F = tr

(
(A−B)(A−B)T

)
and ∂

∂A‖A−B‖2F = A−B = − ∂
∂B‖A−B‖2F

1

2

∂

∂Λ2
‖Λ2(x, h)− Λ̃12(x, h)‖2F = Λ2(x, h)− Λ̃12(x, h)

def
= Θ(x)

1

2

∂

∂Λ̃12

‖Λ2(x, h)− Λ̃12(x, h)‖2F = Λ̃12(x, h)− Λ2(x, h) = −Θ(x)

1

2

∂

∂Λ̃21

‖Λ1(x)− Λ̃21(x, h)‖2F = Λ̃21(x, h)− Λ1(x)
def
= Φ(x)

Note that in these formulas, Θ and Φ are 21-dimensional covariant vectors that
we identify for convenience with their images by ϕ−1

9 . Θ and Φ are therefore twice
covariant tensors. Note that, since we know how to compute the gradient of the
geodesic distance function D, it is straightforward to define these quantities when
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they involve D instead of the Frobenius norm.

We have obtained an expression for δkJAC(x, h) and thus, by integration,
δkJAC(h,Dh) as the sum of three terms

δkJ 1
AC(x, h) = Θ(x)δkΛ2(x, h)

δkJ 2
AC(x, h) = −Θ(x)δkΛ̃12(x, h)

δkJ 3
AC(x, h) = Φ(x)δkΛ̃21(x, h)

Let us write the first equation using indexes:

δkJ 1
AC(x, h) = ΘIJδkΛ

IJ
2 (x, h)

We thus need to compute the three quantities δkΛ2(x, h), δkΛ̃12(x, h), δkΛ̃21(x, h). It
involves taking derivatives of logarithms and exponentials of matrices which require
some numerical care. Appendix A detailed how to evaluate the directional derivative
of matrix logarithms and we already referred the reader to [215] for details on the
exponential case. The following computations are not difficult but tend to be a little
bit involved.

B.2 COMPUTATION OF δkΛ2(x, h)

Because of (9.13) we have

δkΛ2(x, h) =
1

| Ω |

∫

Ω

(
(δkβ2(x, y, h))β

T
2 (x, y, h) + β2(x, y, h)(δkβ2(x, y, h))

T
)
dy (B.1)

Because of (9.12) we have

δkβ2(x, y, h) = −Gγ(x− y)ϕ3

(
(δkµ̂2(x, h)) log

(
Th(I2)−1(y)µ̂2(x, h)

)
+

µ̂2(x, h)
(
δk log

(
Th(I2)−1(y)µ̂2(x, h)

)) )
(B.2)

We have computed δkµ̂2(x, h) in section 9.5.1, we now compute
δk log

(
Th(I2)−1(y)µ̂2(x, h)

)
.

Computation of δk log
(
Th(I2)−1(y)µ̂2(x, h)

)
: We note that since the matrix

Th(I2)−1(y)µ̂2(x, h) is similar to µ̂2(x, h)
1/2Th(I2)−1(y)µ̂2(x, h)

1/2 which belongs to S+,
it satisfies the hypotheses of corollary 9.2.2.2 and we can write

δk
(
log
(
Th(I2)−1(y)µ̂2(x, h)

))
= dlog

(
Th(I2)−1(y)µ̂2(x, h), δk

(
Th(I2)−1(y)µ̂2(x, h)

))

We need to compute δk
(
Th(I2)−1(y)µ̂2(x, h)

)
. Using the formula for the derivative of a

product

δk
(
Th(I2)−1(y)µ̂2(x, h)

)
= δk

(
Th(I2)−1(y)

)
µ̂2(x, h) + Th(I2)−1(y)δkµ̂2(x, h)
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We have already computed the second term in the righthand side (equations (9.32)
and (9.35)), hence

δk
(
Th(I2)−1(y)

)
µ̂2(x, h) =

∂Th(I2)−1

∂h
(y)µ̂2(x, h)k(y) +

∂Th(I2)−1

∂Dh
(y)µ̂2(x, h)Dk(y)

Hence we get,

δk
(
Th(I2)−1(y)µ̂2(x, h)

)
= Th(I2)−1(y)δk µ̂2(x, h)

+
∂Th(I2)−1

∂h
(y)µ̂2(x, h)k(y) +

∂Th(I2)−1

∂Dh
(y)µ̂2(x, h)Dk(y),

which we write in tensor form

δk
(
Th(I2)−1(y)µ̂2(x, h)

)
=

∫

Ω
t1(x, y, z)k(z) dz + t2(x, y)k(y)−

∫

Ω
u1(x, y, z)Dk(z) dz − u2(x, y)Dk(y), (B.3)

where t1 is the once contravariant and twice covariant tensor obtained by contracting
the second covariant index of Th(I2)−1(y) with the first contravariant index of t:

t i
1 jl(x, y, z) = −(Th(I2)−1)jm(y)tmil (x, z),

and u1 is the twice covariant and twice contravariant tensor obtained from U in a
similar fashion:

u im
1 jl (x, y, z) = −(Th(I2)−1)jn(y)u

nim
l (x, z).

The tensor t2 = ∂Th(I2)−1

∂h (y)µ̂2 is once contravariant and twice covariant; its coordi-
nates are given by

t i
2 jl =

(
∂Th(I2)−1

∂h

)

jlm

µ̂mi2 .

The tensor u2 = ∂Th(I2)−1

∂Dh (y)µ̂2 is twice contravariant and twice covariant; its coordi-
nates are given by

u im
2 jl =

(
∂Th(I2)−1

∂Dh

)m

jln

µ̂ni2 .

Computation of δkβ2 and δkΛ2: We now do a bit of rewriting in order to get an
expression for δkβ2 and δkΛ2. This is tedious but not difficult. We first prove the
following

Lemma B.2.0.1. δkβ2 can be written as

δkβ2(x, y) =

∫

Ω
T1β2

(x, y, z)k(z) dz + T2β2
(x, y)k(y)−
∫

Ω
U1β2

(x, y, z)Dk(z) dz −U2β2
(x, y)Dk(y),

where the expressions of the tensors T1β2
, T2β2

, U1β2
and U2β2

are given in the proof.
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Proof. We combine equations (9.41) and (B.3). Using equation (B.2) we can then write

δkβ2(x, y) =

− ϕ3(
((∫

Ω
t(x, z)k(z) dz −

∫

Ω
u(x, z)Dk(z) dz

)
log
(
Th(I2)−1(y)µ̂2(x, h)

)
+

µ̂2(x, h)
(∫

Ω
t1(x, y, z)k(z) dz + t2(x, y)k(y)−
∫

Ω
u1(x, y, z)Dk(z)− u2(x, y)Dk(y)

))
G(x− y)),

and obtain

T1β2
(x, y, z) = −ϕ3((t(x, z) log

(
Th(I2)−1(y)µ̂2(x)

)
+ µ̂2(x, h)t1(x, y))G(x− y))

T2β2
(x, y) = −ϕ3(µ̂2(x, h)t2(x, y)G(x− y))

U1β2
(x, y, z) = ϕ3((u(x, z) log

(
Th(I2)−1(y)µ̂2(x, h)

)
+ µ̂2(x, h)u1(x, y))G(x− y))

U2β2
(x, y) = ϕ3(µ̂2(x, h)u2(x, y)G(x− y))

This lemma allows us to prove the following proposition concerning the form of
the first term in the expression of δkJAC .

Proposition B.2.0.1. The first term δkJ 1
AC in the expression of δkJAC is of the form

described in theorem 9.5.0.1.

Proof. The previous manipulations and equation (B.1) yield

(δkΛ2(x))
IJ =

1

| Ω |

∫

Ω

((∫

Ω
TI

1β2 l(x, y, z)k
l(z) dz + TI

2β2 l(x, y)k
l(y)

−
∫

Ω
UIm

2β2 l(x, y, z)Dk
l
m(z) dz −UIm

1β2 l(x, y)Dk
l
m(y)

)
βJ2 (x, y)

+ βI2(x, y)
(∫

Ω
TJ

1β2 l(x, y, z)k
l(z) dz + TJ

2β2 l(x, y)k
l(y)

−
∫

Ω
UJm

1β2 l(x, y, z)Dk
l
m(z) dz −UJm

2β2 l(x, y)Dk
l
m(y)

))
dy

The corresponding term δkJ 1
AC(x, h) = ΘIJ(x)(δkΛ2(x))

IJ in δkJAC(x, h) is

ΘIJ(x)

| Ω |

∫

Ω

((∫

Ω
TI

1β2 l(x, y, z)k
l(z) dz + TI

2β2 l(x, y)k
l(y)

−
∫

Ω
UIm

1β2 l(x, y, z)Dk
l
m(z) dz −UIm

l (x, y)Dk2β2 l
m (y)

)
βJ2 (x, y)

+ βI2(x, y)
(∫

Ω
TJ

1β2 l(x, y, z)k
l(z) dz + TJ

2β2 l(x, y)k
l(y)

−
∫

Ω
UJm

1β2 l(x, y, z)Dk
l
m(z) dz −UJm

2β2 l(x, y)Dk
l
m(y)

))
dy (B.4)
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We define

Hl(x, y) =
ΘIJ(x)

| Ω |

∫

Ω

(
TI

1β2 l(x, z, y)β
J
2 (x, z) + βI2(x, z)TJ

1β2 l(x, z, y)
)
dz+

ΘIJ(x)

2 | Ω |
(
TI

2β2 l(x, y)β
J
2 (x, y) + βI2(x, y)TJ

2β2 l(x, y)
)
,

and

Km
l (x, y) =

ΘIJ(x)

| Ω |

∫

Ω

(
UIm

1β2 l(x, z, y)β
J
2 (x, z) + βI2(x, z)UJm

1β2 l(x, z, y)
)
dz+

ΘIJ(x)

2 | Ω |
(
UIm

2β2 l(x, y)β
J
2 (x, y) + βI2(x, y)UJm

2β2 l(x, y)
)
,

and rewrite (B.4) as

δkJ 1
AC(x, h) =

∫

Ω
Hl(x, y, h)k

l(y) dy −
∫

Ω
Km
l (x, y, h)Dklm(y) dy

The corresponding term in δkJAC(h) is
∫

Ω

(∫

Ω
Hl(x, y, h)k

l(y) dy

)
dx−

∫

Ω

(∫

Ω
Km
l (x, y, h)Dklm(y) dy

)
dx. (B.5)

Now define
Hl(x, h) =

∫

Ω
Hl(z, x, h) dz,

and
K
m
l (x, h) =

∫

Ω
Km
l (z, x, h) dz.

Exchanging the order of summation in the second term of (B.5) and renaming the
variables, we obtain a new form of (B.5):
∫

Ω
Hl(x, h)k

l(x) dx−
∫

Ω
K
m
l (x, h)Dklm(x) dx

Def
=

∫

Ω
T1

AC(x, h)k(x) dx−
∫

Ω
U1

AC(x, h)Dk(x) dx

B.3 COMPUTATION OF δkΛ̃12(x, h)

According to equation (9.14), we have

δkΛ̃12(x, h) =
1

| Ω |

∫

Ω

(
δkβ̃1(x, y, h)β̃

T
1 (x, y, h) + β̃1(x, y, h)

(
δkβ̃1(x, y, h)

)T)
dy

Because of (9.22), we have

δkβ̃1(x, y, h) = δk

(
exp (−A(x, h))β1(x, y)

)
=
(
δk exp (−A(x, h))

)
β1(x, y), (B.6)

since the vectors β1(x, y) are not functions of h. A(x, h) is defined in section 9.4.2. In
order to compute δk exp (−A(x, h)), we use the following result from [215]. Let X be a
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diagonalizable matrix of Mn(R), and V a matrix. We are interested in computing the
directional derivative of the exponential of X in the direction V

dexp (X,V ) = lim
t→0

1

t
(exp(X + tV )− exp(X))

The following theorem (page 41 of [215]) provides an answer and shows that
dexp (X,V ) is, like the matrix logarithm, linear in its second argument V .

Theorem B.3.0.1. If X = ZDZ−1 is the spectral decomposition of the semi-simple
matrix X, its directional derivative in the direction V is given by

dexp (X,V ) = Z
(
V • Ξ

)
Z−1

where V = Z−1V Z and V •Ξ denote the Hadamard (entry-by-entry) product of V with
the matrix Ξ whose entries are given by:

Ξij = Ξji =

{
eλi−eλj

λi−λj
ifλi 6= λj

eλi ifλi = λj

Computation of δk exp (−A(x, h)): According to definition 9.2.2.1 and the chain
rule

δk exp (−A(x, h)) = −dexp (−A(x, h), δkA(x, h)) .

According to equation (9.24), in order to compute δkA(x, h), we need to compute
δkψ(x, h) where

ψ(x, h) = log
(
µ̂2(x, h)µ̂1(x)

−1
)
.

According to corollary 9.2.2.2 and definition 9.2.2.1 we can write

δkψ(x, h) = dlog
(
µ̂2(x, h)µ̂1(x)

−1, (δkµ̂2(x, h)) µ̂1(x)
−1
)
.

Because dlog (, ) is a linear function of its second argument, using equation (9.41), the
previous equation can be rewritten as

δkψ(x, h) =

∫

Ω
tψ(x, z)k(z) dz −

∫

Ω
uψ(x, z)Dk(z) dz,

where

tψ(x, z) = dlog
(
µ̂2(x, h)µ̂1(x)

−1, t(x, z)µ̂1(x)
−1
)

uψ(x, z) = dlog
(
µ̂2(x, h)µ̂1(x)

−1,u(x, z)µ̂1(x)
−1
)
.

Using indexes,

t · ·
ψ l =

3∑

m=1

dlog
(
µ̂2(x, h)µ̂1(x)

−1,T·m
l

(
µ̂1(x)

−1
)
m ·

)
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Since the relation between ψ and A is linear (A = M(ψ), see equation (9.24)), we
have

δkA(x, h) =

∫

Ω
M(tψ(x, z))k(z) dz −

∫

Ω
M(uψ(x, z))Dk(z) dz,

and therefore, using the linearity in the second argument of dexp (·, ·),

δk exp (−A(x, h)) =

−
∫

Ω
dexp (−A(x, h),M(tψ(x, z))) k(z) dz+

∫

Ω
dexp (−A(x, h),M(uψ(x, z)))Dk(z) dz.

We obtain an expression for δkβ̃1

δkβ̃1(x, y) =

∫

Ω
Tβ̃1

(x, y, z)k(z) dz −
∫

Ω
Uβ̃1

(x, y, z)Dk(z) dz,

where

Tβ̃1
(x, y, z) = −dexp (−A(x),M(tψ(x, z)))β1(x, y)

Uβ̃1
(x, y, z) = −dexp (−A(x),M(uψ(x, z)))β1(x, y)

This allows us to prove the following

Proposition B.3.0.2. The second term, δkJ 2
AC , in the expression of δkJAC is of the

form described in theorem 9.5.0.1.

Proof. The previous manipulations yield
(
δkΛ̃12(x)

)IJ
=

1

| Ω |

∫

Ω

((∫

Ω

(
TI
β̃1 l

(x, y, z)kl(z)−UIm
β̃1 l

(x, y, z)Dkml (z)
)
dz
)
β̃J1 (x, y)+

β̃I1(x, y)

∫

Ω

(
TJ
β̃1 l

(x, y, z)kl(z)−UJm
β̃1 l

(x, y, z)Dkml (z)
)
dz
)
dy

The corresponding term, δkJ 2
AC(x, h), in δkJAC(x, h) is

− ΘIJ(x)

| Ω |

∫

Ω

((∫

Ω

(
TI
β̃1 l

(x, y, z)kl(z)−UIm
β̃1 l

(x, y, z)Dkml (z)
)
dz
)
β̃J1 (x, y)+

β̃I1(x, y)

∫

Ω

(
TJ
β̃1 l

(x, y, z)kl(z)−UJm
β̃1 l

(x, y, z)Dkml (z)
)
dz
)
dy

This results in the following expression for δkJ 2
AC(h)

δkJ 2
AC(h) =

∫

Ω
T2

AC(x, h)k(x) dx−
∫

Ω
U2

AC(x, h)Dk(x) dx,

where

T2
AC l(x, h) = − 1

| Ω |

∫

Ω

∫

Ω
ΘIJ(y)

(
TI
β̃1 l

(y, z, x)β̃J1 (y, z)+β̃I1(y, z)TJ
β̃1 l

(y, z, x)
)
dy dz,

and

U2 m
AC l(x, h) = − 1

| Ω |

∫

Ω

∫

Ω
ΘIJ(y)

(
UIm
β̃1 l

(y, z, x)β̃J1 (y, z)+β̃I1(y, z)UJm
β̃1 l

(y, z, x)
)
dy dz
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B.4 COMPUTATION OF δkΛ̃21(x, h)

According to equation (9.15), we have

δkΛ̃21(x, h) =
1

| Ω |

∫

Ω

(
δkβ̃2(x, y, h)β̃

T
2 (x, y, h) + β̃2(x, y, h)

(
δkβ̃2(x, y, h)

)T )
dy (B.7)

Because of (9.23), we have

δkβ̃2(x, y, h) = δk

(
exp (−B(x, h))β2(x, y, h)

)

=
(
δk exp (−B(x, h))

)
β2(x, y, h) + exp (−B(x, h))

(
δkβ2(x, y, h)

)

We have already derived, in the previous sections, all we need to evaluate this deriva-
tive.

Computation of the first term of δkβ̃2(x, y, h): The first term of δkβ̃2(x, y, h),
namely (

δk exp (−B(x, h))
)
β2(x, y, h),

is readily obtained from the derivations carried out in section B.3. Since

δk exp (−B(x, h)) = −dexp (−B(x, h), δkB(x, h)) ,

all the arguments used previously to derive an expression for δk exp (−A(x, h)) are
still valid. Replacing ψ by

θ(x, h) = log
(
µ̂1(x)

−1µ̂2(x, h)
)
,

results in the expressions

δkθ(x, h) =

∫

Ω
tθ(x, z)k(z) dz −

∫

Ω
uθ(x, z)Dk(z),

where

tθ(x, z) = dlog
(
µ̂1(x)

−1µ̂2(x, h), µ̂1(x)
−1t(x, z)

)

uθ(x, z) = dlog
(
µ̂1(x)

−1µ̂2(x, h), µ̂1(x)
−1u(x, z)

)
.

Using indexes,

t · ·
θ l =

3∑

m=1

dlog
(
µ̂1(x)

−1µ̂2(x, h),
(
µ̂1(x)

−1
)
m ·

t·ml
)

Since the relation between θ and B is linear (B =M(θ), see equation (9.24)), we have

δkB(x, h) =

∫

Ω
M(tθ(x, z))k(z) dz −

∫

Ω
M(uθ(x, z))Dk(z) dz,

and therefore, using the linearity of dexp (·, ·) with respect to its second argument:

δk exp (−B(x, h))β2(x, y, h) =

−
∫

Ω
dexp (−B(x, h),M(tθ(x, z)))β2(x, y, h)k(z) dz+

∫

Ω
dexp (−B(x, h),M(uθ(x, z)))β2(x, y, h)Dk(z) dz
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Computation of the second term of δkβ̃2(x, y, h): The second term of δkβ̃2(x, y, h),
namely

exp (−B(x, h))
(
δkβ2(x, y, h)

)

is readily obtained from the derivations lead in section B.2. Indeed the derivative
δkβ2(x, y, h) was proved in lemma B.2.0.1 to be equal to

δkβ2 =

∫

Ω
T1β2

(x, y, z)k(z) dz + T2β2
(x, y)k(y)−

∫

Ω
U1β2

(x, y, z)Dk(z) dz −U2β2
(x, y)Dk(y)

Combining these two results allows us to prove the following lemma, analog to lemma
B.2.0.1

Lemma B.4.0.2. δkβ̃2 can be written as

δkβ2(x, y) =

∫

Ω
T1β̃2

(x, y, z)k(z) dz + T2β̃2
(x, y)k(y)−
∫

Ω
U1β̃2

(x, y, z)Dk(z) dz −U2β̃2
(x, y)Dk(y),

where the expressions of the tensors T1β̃2
, T2β̃2

, U1β̃2
and U2β̃2

are given in the proof.

Proof. We can write immediately

δkβ̃2 =

∫

Ω
T1β̃2

(x, y, z, h)k(z) dz + T2β̃2
(x, y, h)k(y)−

∫

Ω
U1β̃2

(x, y, z, h)Dk(z) dz −U2β̃2
(x, y, h)Dk(y),

where

T1β̃2
(x, y, z) = −dexp (−B(x, h),M(tθ(x, z)))β2(x, y, h) + exp (−B(x, h))T1β2

(x, y, z, h)

T2β̃2
(x, y) = exp (−B(x, h))T2β2

(x, y, h)

U1β̃2
(x, y, z) = −dexp (−B(x, h),M(uθ(x, z)))β2(x, y, h) + exp (−B(x, h))U1β2

(x, y, z, h)

U2β̃2
(x, y) = exp (−B(x, h))U2β2

(x, y, h)

This allows us to prove the following

Proposition B.4.0.3. The third term, δkJ 3
AC, in the expression of δkJAC is of the form

described in theorem 9.5.0.1.

Proof. The proof is completely analog to that of proposition B.2.0.1. We end up with

δkJ 3
AC(h) =

∫

Ω
T3

AC(x, h)k(x) dx−
∫

Ω
U3

AC(x, h)Dk(x) dx,
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where

T3
AC l(x, h) = H̃(x, h) =

∫

Ω
H̃(z, x, h) dz

U3 m
AC l(x, h) = K̃(x, h) =

∫

Ω
K̃(z, x, h) dz,

where the once covariant tensor H̃(z, x, h) is given by the following expression

H̃l(x, y) =
ΦIJ(x)

| Ω |

∫

Ω

(
TI

1β̃2 l
(x, z, y)β̃J2 (x, z) + β̃I2(x, z)TJ

1β̃2 l
(x, z, y)

)
dz+

ΦIJ(x)

2 | Ω |
(
TI

2β̃2 l
(x, y)β̃J2 (x, y) + β̃I2(x, y)TJ

2β̃2 l
(x, y)

)
,

and the once covariant once contravariant tensor K̃(z, x, h) is given by the following
expression

K̃m
l (x, y) =

ΦIJ(x)

| Ω |

∫

Ω

(
UIm

1β̃2 l
(x, z, y)β̃J2 (x, z) + β̃I2(x, z)UJm

1β̃2 l
(x, z, y)

)
dz+

ΦIJ(x)

2 | Ω |
(
UIm

2β̃2 l
(x, y)β̃J2 (x, y) + β̃I2(x, y)UJm

2β̃2 l
(x, y)

)
.
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• C. Lenglet, R. Deriche, O. Faugeras
Inferring White Matter Geometry from Diffusion Tensor MRI: Application to
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