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INTRODUCTION





Chapter 1

Context and preliminary remarks

Context

The purpose of this document is to describe a variational framework to express and

solve various image and video processing tasks handling features efficiently and in

the same way whether they are low or high-dimensional. This introductory chapter

presents some motivations and hints that will be developed in the subsequent parts.

1.1 Low to midlevel image and video processing tasks

This document deals with image and video processing tasks that may represent

building bricks for content analysis or understanding. Mainly three problems will

be studied: segmentation, denoising, and tracking. Image inpainting, optical flow

computation, and content-based indexing and retrieval (which might be considered

a midlevel task since it attempts to answer the fuzzy question “Do these images

look alike?”) will be briefly mentioned.

1.2 Similarity

1.2.1 A central notion

Many image and video processing problems can be solved by optimizing some cost

functions. The notion of similarity is often behind these functions. It can be a “self-

similarity” when a coherence is searched for within an object, or a “cross-similarity”

between two objects, images, or videos. Image restoration and segmentation

typically call upon self-similarity and content-based indexing and retrieval depend

on the definition of a cross-similarity. Intermediately, tasks performed on video

such as restoration, segmentation, tracking, and optical flow computation rely

upon a similarity of an objet or a scene view with itself as observed on another

3



Chapter 1. Context and preliminary remarks 4

frame. This notion can be decomposed into two components: a description and a

comparison function.

1.2.2 Description

An object, image, or video description can result from a modeling of the given

item class. The difficulty is to select a few parameters to represent a class which,

actually, can contain a wide variety of elements. Instead, a description can be

formed by a set of examples or samples of the item class. The potential limitations

are whether the samples are really representative of the class and whether the set

is large enough to be statistically significant. In both cases, model or samples, it is

usually more realistic to restrict the field of application of a task.

1.2.3 Comparison function

Note that the frontier between the descriptive aspect and the comparison aspect

might be subjective. For example, if similarity between two grayscale images is

obtained by the Battacharya coefficient of their respective histogram, the image

description can be its histogram and the comparison function the coefficient ex-

pression. The description can also be the set of image pixels and the comparison

function the combination of histogram estimation and coefficient computation.

1.2.4 Invariance

Invariance is a crucial property [Kad&Bra01, Kad+04, Mik&Sch05, Tuy&Mik07]. It

is the equivalent of the generalization property of a classifier in the context of

similarity. This property is often attached to the description. A well-known example

is the Scale Invariant Feature Transform (SIFT) [Low04, Mor&Yu09]. However, the

comparison function plays also a role in terms of invariance. Indeed, if two images

A and B are described by their ordered set of pixels, their descriptions are not

invariant to any alteration. Comparing them using a sum of squared differences

(SSD), no invariance is introduced. On the contrary, the entropy of the difference

image A − B introduces invariance to many transformations since, due to the

absence of geometrical constraint, many difference images have the same entropy.

To avoid the constraint of a fixed descriptive model, we will focus on example-

based descriptions. In this context, comparison functions involving statistical or

information measures appear as a coherent choice since it allows each example

to be seen as a realization of a random variable. As described above, a similarity

measure refers to a comparison function evaluated for some object, image, or video

descriptions. For simplicity, the expression “similarity measure” will also be used to

denote the comparison function.
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1.3 PDF-based similarity measures

Similarity = F(observations). Let x and y be two discretized images or videos

defined in a domain D. Because there is rarely an exact model for a given problem,

a solution x̂ is usually expressed as the minimizer of a function, or functional, E of

the observed data y and a candidate x

x̂ = arg min
x
E(x, y), (1.1)

the minimization aspect accounting for the mismatch between the model and

reality. Often, the similarity E involves x and y in the form of the norm of a

residual: |y − Mx|, where M is a transformation representing the model. A

classical example is the least square solution

x̂ = arg min
x
|y −Mx|2 . (1.2)

Taking a statistical point of view, one might want to find the image which maximizes

the likelihood of the observed data

x̂ = arg max
x

f(y|x) . (1.3)

If the model mismatch is entirely attributed to some additive noise b, then

y =Mx+ b . (1.4)

Let b be a Gaussian white noise of mean zero and variance σ2 independent of x.

Therefore, given the model (1.4),

g(b) = α exp−|y −Mx|2
2σ2

(1.5)

where α is a normalization constant. Since b and x are independent, g(b) is equal to

g(b|x), which is itself equal to g(y −Mx|x) = g(y|x) := f(y|x). As a consequence,

solving (1.3) is equivalent to maximizing (1.5) with respect to x, whose solution

is clearly equal to (1.2). In conclusion, under some assumptions, the maximum

likelihood solution is identical to the least square solution. Similarly, one can

deduce that the maximum a posteriori solution corresponds to a regularized least

square solution.

Similarity = F(PDF of the observations). Without any assumption on f , the

maximum likelihood solution (1.3) can be rewritten as follows

x̂ = arg min
x
− 1

N
log f(y −Mx|x) (1.6)
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where N is the measure |D| of D. Assuming that the components of r := y −Mx
are independent, then

f(r|x) =
∏

s∈D

f(rs|x) (1.7)

and

x̂ = arg min
x
− 1

N

∑

s∈D

log f(rs|x) (1.8)

which, if f(rs|x) is estimated using the Parzen method, is the Ahmad-Lin approx-

imation of the differential entropy [Ahm&Lin76] of r conditional on x. Thus, it

appears that entropy can be seen as a generalization of some classical energies such

as the least squares. Since the latter is commonly encountered in image and video

processing, it seems that entropy and entropy-based measures can be useful as well.

Actually, it is already known that methods derived from measures of information

theory can be efficient for, e.g., restoration [Awa&Whi06, Ang+08b, Ang+08a], seg-

mentation [Kim+05, Una+05, Bol+08], registration [Vio&Wel97, Plu+03, Cra+08],

and tracking [Elg+03, Fre&Zha04, Bol+09].

1.4 Dealing with high-dimensional features

1.4.1 Features

A feature can be defined as a vector describing an image or a video locally around

a given position and scale, e.g., the pixel color, the ordered set of colors within a

patch [Lee+03, Car+08], local color histograms [Kad&Bra01, Kad+04], a SIFT-based

descriptor [Low04, Mor&Yu09], etc [Mik&Sch05, Tuy&Mik07]. Features combined

together form a description.

1.4.2 Order of magnitude

Unless otherwise noted, the developments presented in this document apply to

feature spaces of arbitrary dimension. In practice, though, the dimension of

the features results from the acquisition process (grayscale, color. . . ) and the

transformation/rearrangement of the observations (patches. . . ) for the purpose

of a specific task. For example, in tracking, the features are of dimension 5 to 13;

in denoising, the feature dimension can exceed 50. Whether these dimensions

can be considered as high is, probably, mostly a matter of context. First, it is

relative to the number of samples available. In tracking, this number can be rather

small since it is given by the size of the (user-selected) region-of-interest (ROI).

Second, it depends on the purpose the samples are to be used for. When it comes
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to estimate statistical measures (entropies, divergences. . . ), the denomination

of high-dimensional features makes sense since classical approaches sometimes

already show their limits when the dimension gets higher than 2 or 3 [Ter&Sco92].

1.5 Organization of this document

This document is composed of the present introduction, three main parts, a short

conclusion, and six appendices. Lists of figures, tables, and bibliographical refer-

ences are also provided at the end. Part I deals with the measures of information

theory, namely entropy and the Kullback-Leibler divergence, that will be used in

the following. Part II presents these measures in the k nearest neighbor frame-

work. The introduction and these first two parts aim at describing the general

approach proposed to study some image and video processing problems. Then,

part III details three applications in this framework: segmentation using the shape

derivative, nonlocal denoising using conditional entropy, and ROI tracking using

the Kullback-Leibler divergence. Finally, inpainting, optical flow computation, and

content-based indexing and retrieval are briefly mentioned as other tasks that

can be investigated with the proposed point of view. Note that bibliographical

references appear as follows:

• [AutYY]: A work published in 19YY or 20YY by a single author;

• [Au1&Au2YY]: A work published by two authors;

• [Aut+YY]: A work published by three authors or more.





Part I

A FRAMEWORK BASED ON INFOR-

MATION THEORY MEASURES





Chapter 2

Entropy: a hypothesis-free data

consistency and regularization

functional

Context

Many problems of image and video processing can be expressed as the minimization

of a data consistency residual and a term of mismatch with respect to a priori

constraints. Traditionally, these functionals are based on penalization functions

such as the ones defined for robust estimation, sometimes referred to as ϕ-functions.

From a statistical point of view, recurring to these functions is equivalent to

implicitly making assumptions on the probability density functions (PDFs) of

the residual and the model mismatch, e.g., Gaussian, Laplacian, or other parametric

laws – for the square function, the absolute value, or other ϕ-functions, respectively.

Alternatively, it is interesting to adapt to (an estimation of) the true PDF. This

nonparametric approach implies to define functionals which take PDFs as input.

Entropy has been proposed in this context since, as a measure of dispersion of a

PDF, its minimization leads the residual or model mismatch values to concentrate

around narrow modes, the highest one normally corresponding to the annihilation

of the residual or mismatch, the others corresponding to inevitable outliers.

2.1 Classical variational approach

2.1.1 Implicit assumption on the PDF

The solution to image and video processing problems can often be formulated as

follows

x̂ = arg min
x
ϕd(y −Mx) + λϕr(∇x) (2.1)

11
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Figure 2.1 – Some functions proposed in robust estimation.

Red • Tikhonov: u2, Blue • L1: |u|, Cyan • Differentiable approximation of L1:
√

u2 + ǫ2 − ǫ,
Dashed green • Green: log(cosh(u)), Dashed magenta • Hebert & Leahy: log(1 + u2), Dotted

black • Geman & McClure: u2/(1 + u2).

where ϕd and ϕr correspond to data consistency and regularization, respectively,

and λ is the regularization parameter. Let ϕd be the Lp-norm operator. Under some

hypotheses (see Section 1.3), one can note that (2.1) corresponds to the Maximum

A Posteriori solution if the noise follows a generalized Gaussian law#1 of shape

parameter p and the a priori on the solution is given by a Gibbs probability density

function (PDF). These laws being defined by a small set of parameters, (2.1) can

only adapt to the data to a limited extent. Moreover, such parametric assumptions

may not be flexible enough to efficiently deal with outliers.

2.1.2 Dealing with outliers

Let ϕ refer to either ϕd or ϕr. As far as optimization is concerned, the simplest

choice is ϕ(u) = u2. Of course, this is known to inefficiently deal with outliers.

Alternatively, one can pick ϕ among the set of functions proposed in robust esti-

mations – see Fig. 2.1. Even though these functions reduce the bias introduced

by outliers, they are sensitive to the values of the outliers nonetheless. Moreover,

they still represent an implicit assumption on the underlying distribution of the

data – see Section 2.1.1. As an illustration, let A be an image defined on a domain

D. Let Â be an estimation of A by some procedure. Figure 2.2 shows the different

norms
∫

D ϕ(A− Â) and the entropy of A− Â in several situations involving outliers.

(The L2 norm has not been plotted since it is known that it performs poorly in the

presence of outliers.) It appears that the entropy is quite insensitive to the mean

value of the outliers – see Fig. 2.2.a. Indeed, if the PDF of the residual has a main

peak around zero and a peak corresponding to outliers, without intersection be-

tween their support, then the entropy does not depend on the outlier peak position.

The entropy also behaves very well when the proportion of outliers increases (see

Fig. 2.2.b), focusing on the main mode. Among the robust functions reminded here,

#1Since at convergence, the residual y −Mx is ideally equal to the noise, any assumption on the

noise also applies to the residual.
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Figure 2.2 – Effect of outliers (u is the residual A− Â).

Blue • L1:
R

D
|u|, Cyan • Differentiable approximation of L1:

R

D

√
(u2 + ǫ2) − ǫ, Dashed

green • Green:
R

D
log(cosh(u)), Dashed magenta • Hebert & Leahy:

R

D
log(1 + u2), Dotted

black • Geman & McClure:
R

D
u2/(1 + u2), Orange • Entropy of u

[a] The residual is composed of 15% of outliers following a Gaussian law of variance 36 and a mean

(displayed on the horizontal axis) growing from zero to 50. The remaining 85% of the residual was

drawn from a Gaussian law of mean zero and variance 1.

[b] The setup is similar to [a] except that the mean is fixed equal to 25 and the proportion of outliers

(displayed on the horizontal axis) grows from 0 to 30.

The entropies and each of the norms have been divided by their respective values when the mean is

equal to zero for [a], and when the proportion of outliers is equal to zero for [b]. The errors are

therefore relative.

the function proposed by Geman & McClure performs nearly as well as the entropy

on these examples. This might be explained by the fact that it has an asymptote (at

one). Yet, as for the other functions, it has a parameter (not mentioned so far) to

tune the transition between residual values small enough to be considered equal to

zero and values large enough to be regarded as outliers – See Fig. 2.3.

It is notoriously difficult to truly cope with outliers. However, entropy seems to

be a good replacement for robust functions, first because it is apparently not too

sensitive to outliers and second because it is parameter-free.#2

2.2 Entropy as a hypothesis-free functional

2.2.1 Working with actual PDFs

The first advantage of working with entropy and other related statistical measures

is to deal with outliers in terms of frequency of occurrence as opposed to value.

As already mentioned, this eliminates the need for a threshold to distinguish

between normal values and outliers. In addition, if the PDF(s) is/are estimated

nonparametrically, then the measure makes no assumption on the data or, otherwise

#2Actually, no estimator is really parameter-free. Yet entropy does not involve any hard or soft

thresholding in dealing with outliers. In this sense, it differs from classical solutions.
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Figure 2.3 – Function ϕ′
G&McC(u/δ)/(2u/δ) which characterizes the transitional behavior of the

Geman & McClure robust function between normal (i.e., close to zero) values of its argument u/δ
(function close to one) and argument values considered as outliers (function close to zero). The

region of transition is tuned by δ. The shades of blue of the curves reflect the value of δ (ranging

from 0.6 to 1.4 times a reference value). The value of this parameter has a significant influence on

the soft thresholding.

stated, adapts to them. This flexibility should limit the estimation bias compared

to approaches resorting to parametric assumptions. More generally, the idea is to

study the potential of another class of functionals which take a PDF or several PDFs

as input, providing a unifying point of view for data consistency and regularization

based on information theory.

2.2.2 Usefulness of image entropy

Entropy is a measure of dispersion of a random variable. The differential entropy

H(fU ), or equivalently H(U), of a continuous random variable U of Rd with PDF

fU writes

H(U) = −
∫

Rd

fU (t) log fU (t)dt. (2.2)

In practice, entropy can be used as a piecewise constant constraint. As an illustra-

tion, let A be an image composed of m regions of n distinct average gray levels,

m ≥ n. Let the pixels corresponding to a given gray level be drawn from a normal

law of the appropriate mean and a variance equal to σ2. Taking for example n = 3,

Fig. 2.4 plots the average entropy of realizations of A as a function of σ2. The

entropy decreasing when the variance gets smaller, one can infer that minimizing

the entropy of A will lead to a piecewise constant image. This is clear if n = 1
since the entropy is then equal to log(σ

√

(2πe)), which tends toward −∞ when σ
tends toward zero, i.e., when the image becomes constant. Therefore, entropy can

be used as a regularization function to enforce a well-known constraint normally



Chapter 2. Entropy: a hypothesis-free functional 15

!!" !#" !$" !%" " %" $" #" !"
"

"&"%

"&"$

"&"#

"&"!

"&'

a

!!" !#" !$" !%" " %" $" #" !"
"

"&"%

"&"$

"&"#

"&"!

"&'

b

Figure 2.5 – The residual PDF [a] has a low entropy because of its small dispersion. To ensure that

the entropy is minimal only when, in addition to the small dispersion, the residual is close to zero, the

entropy can be computed on the symmetrized version of the PDF. Clearly, the symmetrized PDF [b]

does not satisfy a minimal entropy constraint anymore.

related to total variation. However, as opposed to this latter one, there is no issue

concerning the differentiation of entropy.#3
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Figure 2.4 – Average entropy of realizations

of A as a function of σ2. The entropy de-

creases when the variance gets smaller.

Regarding data consistency, entropy can

also play the role of model mismatch as is.

Indeed, the model mismatch, or residual,

should be equal to zero expect for some

outliers. This can efficiently be described

as a piecewise constant image. Naturally,

a minimal entropy constraint cannot guar-

antee that one of the peaks (the main one)

is centered on zero.#4 Yet, with the action

of regularization, if the entropy is minimal,

i.e., the residual is piecewise constant, then

the main peak is certainly centered on zero.

Otherwise, the initialization was probably

chosen too far away from the solution – in

an iterative resolution process. Potential so-

lutions classically include choosing a better

initialization, increasing the weight of the

regularization term, and combining both. Now, if one really needs to enforce that

the entropy be minimal only when the main peak is narrow and centered on zero,

the entropy can be computed on the symmetrized version of the residual PDF – see

Fig. 2.5.

Whether for regularization or for data consistency, the piecewise constancy

as imposed by entropy might not be usual. Indeed, since entropy accounts for

#3In fact, it is more accurate to say that there is a simple answer to the differentiation issue of

entropy – see Section 2.2.4.
#4Note that a residual equal to zero does not imply that the estimated solution is satisfying

anyway – see Section 10.2.2.
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Figure 2.6 – Two images with equal entropy ([b] was obtained by scrambling the pixels of [a]). As is

clear from these images, piecewise constant and minimal (pixel-level) entropy are not synonymous.

Feature ↓ \ Fig. → 2.6.[a] 2.6.[b]

Pixel 2.1 2.1

Pixel+position 7.9 8.6

Patch 3×3 13.7 20.1

Patch 5×5 38.2 134.6

Table 2.1 – Entropies of Figs. 2.6.[a] and 2.6.[b] for several feature spaces. Although at a pixel level

the undesirable image has the same entropy as a potential piecewise constant solution, its entropy

becomes higher for feature spaces that involve contextual information. With these feature spaces, a

minimal entropy constraint seems more coherent with piecewise constancy. Note that these results

were computed using the k nearest neighbor (kNN) entropy estimator presented later in Section 5.2.1.

The entropy of some random variables taken jointly being smaller than or equal to the sum of the

entropies of the variables taken individually, the “Patch 3×3” entropies should be less than or equal to

(3× 3)× 2.1 = 18.9 and the “Patch 5×5” entropies should be less than or equal to (5× 5)× 2.1 = 52.5.

The results of Fig. 2.6.[b] show that the entropy was over-estimated.

frequency of occurrence independently of position, one can be surprised by what

an image of minimal entropy looks like – see Fig. 2.6. A workaround consists in

defining the feature space U as a random vector by enriching the random variable

of pixel color with contextual information. For example, the pixel coordinates

(U = (c, x, y), with c being gray level or color) or the color of neighboring pixels

can be added (U = (c, c1, c2 . . . cn), where ci is the color of the i-th pixel in a chosen

neighborhood mask, this set composed of c and its neighborhood being referred

to as a patch) – see Tab. 2.1. Of course, when using coordinates as in (c, x, y), U
becomes a mix of random and deterministic information. Applying the present

statistical framework to such a feature space is not objectively justifiable. For the

sake of curiosity, Section 3.2 proposes a brief analysis related to the consequence

of doing so. Furthermore, in practice, it proved to be efficient, particularly for

tracking – see Chapter 9.
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2.2.3 Is PDF estimation necessary?

Apparently when looking at (2.2), the computation of entropy requires a PDF

estimation. Section 4.1 reminds several kernel-based methods. The Parzen method

lacks local adaptability and the bandwidth estimation is problematic. Conversely,

the sample point method adapts to the local sample density. Nevertheless, the

k nearest neighbor (kNN) framework (see Section 2.2.4) has the advantage of

allowing to derive PDF-based statistical estimators such as entropy and the Kullback-

Leibler divergence that do not explicitly involve PDFs. Although kNN PDF estima-

tions are usually quite noisy and considered better than Parzen and sample point at

high dimensions only [Ter&Sco92], some derived estimators, in particular entropy,

have good properties even in one dimension – see Section 2.2.4.

2.2.4 Two essential ingredients

The mean shift. Because the entropy is to be minimized and because this mini-

mization will often be performed by gradient descent, the gradient of a PDF over

the PDF (sometimes called normalized density gradient)

∇fU

fU
= ∇ log fU (2.3)

will be needed – see the log-term in (2.2). PDFs have either a finite support or

they tend toward zero at infinities, hence the question of stability or even existence

of (2.3). Fortunately, it has been noted that this term can be approximated at t us-

ing the vector formed by t and the average within an ellipsoid centered at t of some

samples drawn according to fU [Fuk&Hos75, Fuk90]. This vector is referred to as the

mean shift since it represents a shift from a local mean. This type of approximation

was later popularized by a mean shift-based tracking algorithm [Com+00, Col+05]

and by its use for denoising or segmentation [Com&Mee02]. The essential informa-

tion is the normalized gradient direction,#5 which both estimations [Fuk&Hos75]

and [Com+00] share, differing only by a multiplicative constant. For a spherical

neighborhood, the mean shift of [Fuk&Hos75, Fuk90]#6 writes as

∇fU

fU
(t) ≃ d+ 2

r2
(s̄− t) (2.4)

where d is the dimension of the samples, r is the radius of the neighborhood, and s̄
is the mean (or a weighted mean) of the, say n, samples of a sample set {U} that

#5As such, the mean shift clearly allows detection of modes of PDFs [Com&Mee02].
#6In [Fuk90], see page 534.



Chapter 2. Entropy: a hypothesis-free functional 18

fall within the neighborhood. Typically,

s̄ =
1

n

∑

s∈{U}

|s−t|≤r

s . (2.5)

It is easy to check that, if f is a univariate normal distribution with mean µ
and variance σ2, then the normalized density gradient has the following analytical

expression

∇f
f

(t) =
µ− t
σ2

. (2.6)

Compared to (2.4), one can note the analogy between (i) the constant d+ 2/r2 =
3/r2 depending on the neighborhood radius r and 3/3σ2 depending on

√
3σ, which

can be seen as the Gaussian “radius”, and (ii) the mean s̄ and the expected value µ,

although the former is close to the latter only when t is close to µ.

The kNN framework. The intuition is clearly presented in [Fuk90, p. 255&268].

It can be summed up in a few words as follows: (i) the probability mass of a small

region of volume v around t can be approximated by fU (t) v; (ii) if N samples are

drawn from fU , this probability can also be approximated by k/N where k is the

number of samples that fell in the small region; (iii) finally,

fU (t) ≃ k

N v
. (2.7)

If v is independent of t, then k depends on t and (2.7) corresponds to the Parzen

estimator. This raises the problem of estimating fU wherever it is low. Indeed,

unless N is indefinitely large, k may be equal to zero and, even if it is not, it might

not be statistically significant. On the contrary, one can fix k and define v as the

volume of the ball centered on t containing k samples among the N ones – in which

case, v depends on t. This is the idea of the k nearest neighbor framework (kNN).

Actually, in this context, it can be shown that (2.7) is biased [Fuk90, p. 270] and

that k − 1 should be used instead of k.



Chapter 3

Entropy-based measures

Context

Chapter 2 provides some motivations for choosing the entropy as a mismatch

measure in place of classical ϕ-functions. Yet, it might be interesting to have more

freedom in how data consistency or regularization constraints are enforced. This

could be done by comparing the observed probability density function (PDF) and

a PDF model rather than dealing with the PDF of a residual. For example, the

Bhattacharya coefficient could serve this purpose. However, to take advantage of

the mean shift and the k nearest neighbor framework (kNN) framework (see Sec-

tion 2.2.4), divergences such as the Kullback-Leibler divergence seem appropriate.

3.1 The Kullback-Leibler divergence

To fix the notations, let us write the Kullback-Leibler divergence

DKL(f, g)
.
=

∫

Rd

f(t) log
f(t)

g(t)
dt (3.1)

= H×(f, g)−H(f) (3.2)

where H× is the cross-entropy. The non-symmetric nature of this divergence can be

characterized by comparing the Gaussians gza and gzf which minimize DKL(f, g)
and DKL(g, f), respectively, where f is a given probability density function (PDF).

The problem of minimizing DKL(f, g(µ, σ)) with respect to µ and σ can be

easily solved analytically. For simplicity, the following developments are made for

19
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univariate PDFs.

min
µ,σ

DKL(f, g(µ, σ)) (3.3)

⇔ min
µ,σ

H×(f, g(µ, σ)) (3.4)

⇔ min
µ,σ

log(
√

2πσ)

∫

R

f(t) dt

︸ ︷︷ ︸

1

+
1

2σ2

∫

R

f(t) (t− µ)2 dt . (3.5)

Equating to zero the derivative of (3.5) with respect to µ, the first necessary

condition writes

µ = E[f ] (3.6)

where E[f ] is the expected value of f . Accounting for this result and carrying out

the same development with σ, the second necessary condition is

σ2 = σ2
f (3.7)

where σf is the standard deviation of f . It can be checked that the Hessian matrix

of DKL(f, g(·, ·)) is equal to

D
(2)
K−L =

1

σ4

[
σ2 2σ(E[f ]− µ)

2σ(E[f ]− µ) 3
∫

R
f(t)(t− µ)2 dt− σ2

]

. (3.8)

At the unique potential optimum, it is equal to the positive definite matrix

1

σ2
f

[
1 0
0 2

]

(3.9)

which confirms that (E[f ], σf ) is the unique global minimum of DKL(f, g(·, ·)). This

solution attempts to cover the whole support of f .#1 In other words, the solution

avoids to be close to zero wherever f is not, hence its name of zero-avoiding

solution.

On the contrary, the problem of minimizing DKL(g(µ, σ), f) with respect to µ
and σ seems less straightforward to solve

min
µ,σ

DKL(g(µ, σ), f) (3.10)

⇔ min
µ,σ
−
∫

R

g(µ, σ)(t) log f(t) dt

︸ ︷︷ ︸

A

−H(g(µ, σ)) (3.11)

⇔ min
µ,σ
− 1√

2πσ

∫

R

exp

(

−(t− µ)2

2σ2

)

log f(t) dt− log(
√

2πeσ) . (3.12)

#1This is in accordance with the absolute continuity condition ensuring the validity of (3.1).
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Figure 3.1 – Zero-forcing and zero-avoiding behaviors of the Kullback-Leibler divergence used as a

cost function.

Black • Target PDF f , Blue • Gaussian G(µ̂, σ̂) minimizing DKL(f, G(µ, σ)): zero-avoiding

solution, Cyan • Gaussian G(µ̂, σ̂) minimizing DKL(G(µ̂, σ̂), f): zero-forcing solution (obtained

by numerical optimization).

Up to a multiplicative constant, the derivative of (3.12) with respect to µ is equal

to
∫

R

∂

∂µ
exp

(

−(t− µ)2

2σ2

)

log f(t) dt (3.13)

=

∫

R

∂

∂t
exp

(

−(t− µ)2

2σ2

)

log f(t) dt (3.14)

=

[

exp

(

−(t− µ)2

2σ2

) ]+∞

−∞
︸ ︷︷ ︸

0

−
∫

R

exp

(

−(t− µ)2

2σ2

)
f ′(t)

f(t)
dt . (3.15)

Suppose that f has one dominant, radially symmetric mode and that f ′(t)/f(t) is

finite for any t. Centering the Gaussian weighting in (3.15) at the mode maximizer

µdom
f while assigning to σ a value close to this mode standard deviation σdom

f should

both (i) greatly reduce the influence of the other modes in the integral and (ii) cancel

f ′(t)/f(t) out when integrating over the dominant mode. The derivative (3.15)

should therefore be close to zero, giving the intuition that (µdom
f , σdom

f ) is a potential

solution to the minimization of the divergence. The corresponding Gaussian, by

focusing on the dominant mode of f , has a reduced support compared to f .#2

Then, this solution is ensured to be close to zero wherever f is, hence its name of

zero-enforcing solution.

For the purpose of illustration, f was defined as a mixture of two univariate

Gaussians. The zero-forcing and zero-avoiding solutions are presented in Fig. 3.1.

#2Again coherent with the absolute continuity condition.
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3.2 How the Kullback-Leibler divergence and entropy differ

To compare two image descriptions A and B#3 within the present statistical frame-

work, two options have been mentioned: the entropy of the PDF fR of the residual

R = A − B and the Kullback-Leibler divergence (or another similar divergence)

of their respective PDFs fA and fB. In practice, the residual can be computed

only if A and B have the same size whereas computation of the Kullback-Leibler

divergence imposes no such requirements. However, the main difference lies in the

geometric constraint where geometry refers here to the fact that spatial coordinates

are taken into account in some way. Whether the descriptions involve geometry or

not, the residual enforces a one-to-one correspondence between the description

elements of A and B. Therefore, an involuntary geometric constraint is added.#4

Then, some freedom is restored by the entropy measure. On the contrary, the

Kullback-Leibler divergence between fA and fB discard any implicit geometric

information that might have resulted from a special arrangement of the elements

of the descriptions. In consequence, any desired geometric constraint must be

included in the descriptions.

In the discrete domain, a description A is a set {ai, i ∈ [1..|A|]} of features. Let

us assume that the index i is related to geometry. For example, it can represent the

spatial coordinates of a pixel. Let θ be a set of parameters B depends on. A way to

explicitly add geometry when estimating θ by minimization of the Kullback-Leibler

divergence between fA and fB is to replace the features ai with (aT

i i)T, and

similarly for bi. Let us see if this induces a behavior closer to the entropy of the

residual.

min
θ

DKL(fA, fB(θ)) (3.16)

⇔ min
θ
H×(fA, fB(θ)) (3.17)

⇔ min
θ
−
∫

Rd

fA(t) log fB(θ)(t) dt (3.18)

⇔ min
θ
−EfA

[log fB(θ)] . (3.19)

The solution of the minimization problem (3.19) can be approximated by

min
θ
− 1

|A|
∑

i

log fB(θ)((a
T

i i)
T) . (3.20)

Let fB(θ) be estimated with a kernel-based method

fB(θ)(t) ≈
1

|B(θ)|
∑

i

Kσ(t− (bTi i)
T) (3.21)

#3For example, these descriptions can be the images themselves or a set of feature vectors computed

at each pixel.
#4Of course, one might nonetheless take advantage of it.
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where K is the centered Gaussian kernel of standard deviation σ. Then, (3.20) is

equivalent to

min
θ
− 1

|A|
∑

i

log
1

|B(θ)|
∑

j

K((aT

i i)
T − (bTj j)

T) (3.22)

⇔ min
θ
− 1

|A|
∑

i

log
1

|B(θ)|
∑

j

exp−(i− j)2
2σ2

K(ai − bj) . (3.23)

This shows that, given the approximations that were made, adding a strong ge-

ometric constraint to the descriptions only weights the terms involved in the

divergence estimation rather than turning it into a computation closer to the en-

tropy of the residual. For comparison, following steps similar to those done for the

Kullback-Leibler divergence, the entropy of the residual between the geometry-free

descriptions writes#5

− 1

|A|
∑

i

log
1

|B(θ)|
∑

j

K((ai − bi)− (aj − bj)) . (3.24)

In the minimization of DKL(fB(θ), fA), the entropy of fB(θ) cannot be discarded

as the one of fA was in (3.19). However, the conclusion remains the same as above.

3.3 Entropy-based measures

To benefit directly from the results presented in Chapter 5, it is necessary to consider

measures that can be written in terms of entropies. For example, if the symmetry

property is of importance, the Jensen-Shannon divergence

DJS(f, g) =
1

2

(
DKL(f,m) + DKL(g,m)

)
, (3.25)

where m = 0.5(f + g), or the mutual information

I(f, g) = H(f) +H(g)−H(f, g) (3.26)

can be used. In case the triangular inequality is also a requirement, several entropy-

based metrics exist, e.g.,

{
D1(f, g) = H(f, g)− I(f, g)

D2(f, g) =
√

DJS(f, g)
. (3.27)

#5Remember that |A| must be equal to |B(θ)|.
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K NEAREST NEIGHBOR ESTIMATORS





Chapter 4

Basic ideas about kNN

4.1 Kernel-based approaches

4.1.1 PDF estimation

Kernel-based methods for probability density function (PDF) estimation make no

assumption about the actual PDF. Consequently, the estimated PDF cannot be

described in terms of a small set of parameters, as opposed to, e.g., a Gaussian

PDF defined by its mean and variance. Such methods are therefore qualified as

non-parametric. Let U be a set of samples independently drawn with a given law.

These estimators have the following general expression

fU (t) =
1

|U |
∑

s∈U

KU,s,t(t− s) (4.1)

where KU,s,t is a multivariate kernel which bandwidth is a function of U , s, and

t [Ter&Sco92] and |U | is the cardinality of the sample set U . Three cases can be

distinguished.

• KU,s,t = Kσ, σ constant. This is the Parzen approach. For a uniform kernel,

estimator (4.1) approximates the density at t with the relative number of samples

k(t)/|U | falling into the open ball of volume vσ centered on t

fU (t) =
k(t)

vσ |U |
. (4.2)

Unfortunately, the choice of the kernel bandwidth σ is critical [Sil86, Sco92]. If σ is

too large, the estimate will suffer from a lack of resolution; if it is too small, the

estimate will have a high statistical variability. Moreover, as the dimension of the

feature space increases, the space sampling gets sparser – a problem known as the

curse of dimensionality. Therefore, fewer samples fall into the Parzen windows
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centered on each sample, making the PDF estimation less reliable. Dilating the

Parzen window does not solve this problem since it leads to over-smoothing the

PDF. In other words, the Parzen approach cannot adapt to the local sample density

due to the fixed kernel bandwidth.

• KU,s,t = KU,s. This is the sample point approach [Ter&Sco92, Com03]. One

bandwidth is chosen per sample s of U . Although it allows to adapt to the local

sample density, the following k nearest neighbor (kNN) framework was preferred

since it leads to interesting statistical estimators such as the Kullback-Leibler

divergence.

• KU,s,t = KU,t. This is the balloon approach [Lof&Que65, Sai02]. The bandwidth

is determined at each PDF estimation as a function of the location t. In the kNN

framework, it is defined by the distance to the k-th nearest neighbor of t among

the samples of U . For a uniform kernel, estimator (4.1) reads [Fuk90, p. 268]

fU (t) =
k

ρd
k(t) vd |U |

(4.3)

where ρd
k(t) vd is the volume of the open ball centered on t with a radius of ρk(t)

equal to the distance to the k-th nearest neighbor of t in U excluding the sample

located at t if any#1, and vd is the volume of the unit ball in R
d. This approach

appears to be dual to the Parzen approach (with uniform kernel): the kernel

bandwidth adjusts so that the kernel includes k neighbors instead of counting the

samples within a fixed range.

4.1.2 Mean shift

In a fixed-bandwidth context, the local mean in (2.4) writes

s̄ =
1

|Uσ(t)|
∑

s∈U
|s−t|≤σ

s (4.4)

where t is a point of R
d, σ is the bandwidth, and Uσ(t) is the set of summation. As

mentioned in Section 2.2.4, the mean shift is an approximation of the normalized

gradient ∇fU/fU of the PDF fU . As such, it can be used to reach the mode closest

to a starting position t0, unless t0 is located in an area of low density. Indeed, the

set of summation in (4.4) may be reduced to the singleton {t0}. The mean shift is

#1Here, the principle of the kNN PDF estimate is only reported. Note however that, as one can

guess, it suffers from some defects: it can be discontinuous, unbounded, and it does not integrate to

one. Nevertheless, it can be useful by itself in high dimension [Ter&Sco92] and it represents the

fundamental notion of other kNN-based estimators – see Chapter 5.
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then equal to 0. This situation can be avoided by replacing the constant bandwidth

σ with the distance ρk(t) to the k-th nearest neighbor of t among the samples of

U [Fuk&Hos75]

s̄ =
1

|Uσ(t)|
∑

s∈U
|s−t|≤ρk(t)

s . (4.5)

Nonetheless, one might want to limit the influence of faraway neighbors, which

can be done by turning the mean into a weighted average [Ang+08a]

s̄ =
∑

s∈U
|s−t|≤ρk(t)

ws s (4.6)

where ws is the weight of s (typically, a function of |s− t|) and
∑

sws = 1.

4.2 Interests of kNN

As mentioned in Section 4.1, the kNN approach is nonparametric, which ensures

its generality, and locally adaptive, which reduces the effect of the curse of dimen-

sionality. Moreover, the adaptability rule is simple: the local bandwidth selection

amounts to a search for k-th nearest neighbors. Although it might be computation-

ally costly, it is conceptually basic. This framework also allows to derive expressions

of PDF-based measures (such as entropy or the Kullback-Leibler divergence) which

do not explicitly depend on the underlying PDFs. Instead, they directly depend

on samples. Importantly, for some kNN-based estimators, the choice of k does

not seem to be critical. Finally, the principle is valid for any dimension d. Some

experiments are provided in Section 5.4 to illustrate these claims.

Although the kNN framework was described in seminal works on PDF esti-

mation [Fix&Hod51, Lof&Que65] and on the mean shift [Fuk&Hos75] a while ago,

it has rarely been used in image processing so far, except for high-dimensional

clustering [Geo+03].





Chapter 5

kNN entropy-based estimators

5.1 First approximations

The entropy (2.2) can be approximated by the Ahmad-Lin estimator [Ahm&Lin76]

HAL(U) = − 1

|U |
∑

s∈U

log fU (s) (5.1)

where fU is the Parzen estimation (4.1) of the actual probability density function

(PDF).#1 Approximation (5.1) converges in mean to the differential entropy of U .

The k nearest neighbor (kNN) PDF estimation (4.3) is biased and does not re-

spect the fundamental PDF property of integrating to one. Nevertheless, these flaws

get less critical as the dimensionality increases and the estimator has better overall

performances in high dimensions than fixed bandwidth estimators [Ter&Sco92]. Let

plug (4.3) into the Ahmad-Lin entropy estimation (5.1)

HAL(U)
kNN
= − 1

|U |
∑

s∈U

log
k

ρd
k(U, s) vd |U |

(5.2)

= log
vd |U |
k

+
d

|U |
∑

s∈U

log ρk(U, s). (5.3)

Moreover, the cross entropy (3.2) is equal to

H×(fU , fV ) = − EU [log fV ] (5.4)

≃ − 1

|U |
∑

s∈U

log fV (s). (5.5)

#1Note that an entropy estimation following the same spirit has been proposed more re-

cently [Vio&Wel97].
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Again, plugging the kNN PDF expression of fV into (5.5) leads to

H×(U, V )
kNN
= log

vd |V |
k

+
d

|U |
∑

s∈U

log ρk(V, s). (5.6)

Subtracting (5.3) from (5.6), the following Kullback-Leibler approximation is

obtained

DKL(U, V )
kNN
= log

|V |
|U | +

d

|U |
∑

s∈U

log
ρk(V, s)

ρk(U, s)
. (5.7)

Actually, this estimator has a slight bias. Nevertheless, the above development can

help understanding the philosophy of the following, unbiased version.

5.2 Unbiased versions

Since the Kullback-Leibler divergence can be expressed as the difference between

a cross entropy and an entropy, let us first present unbiased estimators of these

quantities in the kNN framework.

5.2.1 Entropy

The following unbiased and consistent (under weak conditions on the underlying

PDF) entropy estimator was proposed [Koz&Leo87, Gor+05, Leo+08]

HkNN(U) = log(vd(|U |−1))− ψ(k) +
d

|U |
∑

s∈U

log ρk(U, s) (5.8)

where vd is the volume of the unit ball in R
d, |U | is the cardinality of the sample set

U , ψ is the digamma function Γ′/Γ, and ρk(U, s) is the distance to the k-th nearest

neighbor of s in U excluding the sample located at s if any. Informally, the main

term in estimate (5.8) is equal to the mean of the log-distances to the k-th nearest

neighbor of each sample. Note that (5.8) does not depend on the PDF fU .

While the kNN PDF estimator is competitive in high dimensions only, the entropy

estimator is accurate even in the univariate case [Gor+05, Leo+08]. Moreover, the

choice of k does not appear to be really crucial (see Section 5.4), as opposed to

the choice of σ in the Parzen method. Actually, when the kNN approach is used for

parameter estimation [Bol+06] (see Eq. (9.1)), k must be greater than the number

of parameters, it must tend toward infinity when |U | tends toward infinity, and

such that k/|U | tends toward zero when |U | tends toward infinity. An admissible

choice is k =
√

|U |.
Note that an estimate of the Rényi entropy using a related graph-based kNN

framework has also been proposed for learning [Cos&Her04].
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5.2.2 Cross entropy

Similarly, the cross entropy (also called relative entropy or likelihood) of two

sample sets U and V can be approximated by [Koz&Leo87]

H×
kNN(U, V ) = log(vd|V |)− ψ(k) +

d

|U |
∑

s∈U

log ρk(V, s) . (5.9)

Note again that estimator (5.9) does not depend on any PDF and that its main term

is the mean of the log-distances to the k-th nearest neighbor among the samples of

V of each sample of U . Since a sample s of U does not belong to V , the search for

the k-th nearest neighbor excluding s itself does not in fact exclude any sample of

V . This is why |V | appears in (5.9) whereas |U | − 1 appears in (5.8).

5.2.3 Divergence

The Kullback-Leibler divergence can then be approximated in the kNN framework,

directly from the sample sets U and V , using the entropy and cross entropy

estimators (5.8) and (5.9), respectively,

DKL(U, V )
kNN
= H×

kNN(U, V )−HkNN(U) (5.10)

= log
|V |
|U |−1

+
d

|U |
∑

s∈U

log
ρk(V, s)

ρk(U, s)
. (5.11)

It was proven that this estimator is consistent and asymptotically unbiased [Koz&Leo87,

Gor+05, Leo+08].

5.3 Remark about the biased versions

Note that (5.11) only differs from (5.7) by log(|U |/|U−1|) in absolute value and

that this difference tends toward zero when the number of target samples |U |
tends toward infinity. Actually, concerning entropy and cross entropy, a similar

remark can be made. Besides the term |U |−1 in (5.8) instead of |U | in (5.3)

(corresponding to the bias just mentioned about the divergence), the entropy

estimators (5.3) and (5.8), and the cross entropy estimators (5.6) and (5.9) only

differ by log(k)−ψ(k) in absolute value. Functions ψ being very close to log, this

difference is also not very significant (see Tab. 5.1).

5.4 Illustrative experiments

5.4.1 PDF estimation

The kNN PDF estimator performs well only at high dimensions [Ter&Sco92]. This

can be seen with some basic examples.
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Value of k 3 4 5 10 20 30 40

log(k) 1.09 1.39 1.61 2.30 2.99 3.40 3.69

log(k)−ψ(k) 0.18 0.13 0.10 0.05 0.03 0.02 0.01

Table 5.1 – Bias of the entropy estimator (5.3) and the cross entropy estimator (5.6) as a function of

k.

Let U = {si} be a set of ordered samples of dimension d = 1. Let k be equal to

1 and suppose that t belongs to the interval [sj , sj+1]. Expression (4.3) becomes

fU (t) =

{
1

2(t−sj) |U | if t ≤ sj+sj+1

2

1
2(sj+1−t) |U | otherwise.

(5.12)

Therefore, fU is U-shaped on [sj , sj+1] and tends toward infinity at the bounds of

this interval. Below the lowest sample and above the highest one (i.e., in the tails

of the PDF), fU is only “half-U”-shaped. If k > m where m is the cardinality of the

largest subset of U containing equal samples, then fU is always finite. However, it

remains piecewise U-shaped, although this gets less obvious as k increases. A similar

behavior also occurs at higher dimensions where Voronoi cells replace intervals.

Let U be a set of |U | = 3000 one-dimensional samples normally distributed.

Figure 5.1 shows the kNN estimation of the PDF of the samples for several values of

k. Besides the irregularity of the estimation for small values of k, the other known

penalizing behavior is the overestimation in the tails.

5.4.2 Entropy estimation

Despite the poor quality of the kNN PDF estimation at low dimension, the kNN

entropy estimator seems accurate starting from d = 1. This might be explained

by the smoothing effect of the log-distance averaging in (5.8). By the way, after

smoothing and normalizing#2 the PDF shown in Fig. 5.1-k = 4, the result of Fig. 5.2

is obtained. This tends to indicate that the estimation, although very noisy, has a

correct average shape.

The kNN entropy estimator also seems reasonably stable with respect to k until

fairly high dimensions as shown in Fig. 5.3. Naturally, these few plots only provide

motivations for using kNN-based estimators. Firm conclusions cannot be drawn

upon such didactic examples.

5.4.3 Kullback-Leibler divergence estimation

Let gref be a Gaussian of dimension d with marginal means chosen uniformly in

the interval µref = [5, 6] and a random diagonal covariance matrix with diagonal

#2The kNN PDF estimator does not guarantee that the estimate integrates to one.



Chapter 5. kNN entropy-based estimators 35

!! !" # " ! $
#

%

"

&

!

'

$

(

)

k = 4

!! !" # " ! $
#

#%&

#%"

#%'

#%!

#%(

k = 80

!! !" # " ! $
#

#%#&

#%'

#%'&

#%"

#%"&

#%(

#%(&

#%!

k = 300

!! !" # " ! $
#

#%#&

#%'

#%'&

#%"

#%"&

#%(

#%(&

#%!

k = 700

Figure 5.1 – kNN PDF estimation (4.3) from 3000 normally distributed samples for several values of

k. Green • Actual Gaussian PDF, Blue • kNN estimation.
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Figure 5.2 – kNN PDF estimation from 3000 normally distributed samples for k = 4 after smoothing

and normalizing the estimate shown in Fig. 5.1. Green • Actual Gaussian PDF, Blue • kNN

estimation.
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Figure 5.3 – kNN entropy estimation (5.8) from 3000 d-dimensional, normally distributed samples

for values of k ranging from 4 to 564 (horizontal axes). For d and k given, 10 random diagonal

covariance matrices Σ were generated. The vertical axes represent the kNN estimation divided by

the corresponding true entropy log(
p

(2πe)d det Σ) averaged over the 10 trials. The variations of

this relative error are plotted as bars extending between ± its standard deviation. The dotted lines,

respectively the dashed lines, indicate the ±1% error range, respectively ±2% error range.
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elements chosen uniformly in the interval σ2
ref = [5, 7]. Let gn, n ∈ [1..10], be

Gaussians of dimension d similarly picked using intervals µ = [3, 4] and σ2 = [2, 4].
Figure 5.4 shows the relative error of the estimation of DKL(gn, gref) by (5.11).

The kNN estimator of the Kullback-Leibler divergence does not seem to show the

same accuracy as the kNN estimator of entropy. Most notably, its performances

deteriorate faster with the dimension. Yet, it appears to be relatively reliable.

The Kullback-Leibler divergence not being symmetric, similar experiments

with exchanged variance intervals should be made. Thus, let the interval σ2
ref be

[2, 4] now, and let the interval σ2 be [5, 7]. Figure 5.5 shows the relative error

of the estimation of DKL(gn, gref) by (5.11). It appears that, in these conditions,

the kNN estimator of the Kullback-Leibler divergence is not very accurate nor

very stable with respect to the neighboring order k, which contrasts even more

with the entropy estimator. Since the Kullback-Leibler divergence estimator was

defined as the difference between the kNN estimator of cross entropy and the kNN

estimator of entropy, this could be an indication that the cross entropy estimator

is not as accurate as the entropy estimator, or this could be an illustration that

combining accurate estimators does not necessarily build an accurate estimator of

the combined underlying quantities. Yet, because the Kullback-Leibler divergence,

or other entropy-based measures, is to be used as a similarity measure, the actual

value of the estimation is of limited importance compared to respecting the relative

order of Kullback-Leibler divergences. As a partial answer to whether this property

is verified (in the current context) by the kNN estimator of the Kullback-Leibler

divergence, the results of Fig. 5.5 were plotted in a different way. For a given

dimension d, 10 Kullback-Leibler divergences were considered. Let us sort the true

values in ascending order. For a given k, let us apply to the estimations (5.11) the

same rearrangement as the one undergone by the true values when sorted. If these

estimations are then in ascending order, the estimator, if not adapted to determine

absolute values, can still be regarded as suitable for comparison purpose. This

alternative presentation of the results previously discussed is shown in Fig. 5.6.

Overall, in these experiments (Fig. 5.6), the Kullback-Leibler divergence estimator

exhibits a fairly good coherence with the true Kullback-Leibler divergence with

globally monotonic estimations. The correlation is better at low dimension and

decreases rapidly with the neighboring order k – see Fig. 5.7.

As a final remark, let us mention that the set of experiments which provided

the best results (see Fig. 5.4) corresponds to DKL(g1, g2) where g2 has a variance

larger than the variance of g1. Although the Gaussians have infinite support, it is

tempting to note that, in general, this situation tends to be in accordance with the

absolute continuity condition.
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Figure 5.4 – kNN Kullback-Leibler divergence estimation (5.11) of DKL(gn, gref) from 3000 d-

dimensional samples following gref and 3000 d-dimensional samples following gn, n ∈ [1..10]. The

estimation was performed for several values of d and for values of k ranging from 4 to 564 (horizontal

axes). The vertical axes represent the kNN estimation divided by the corresponding true divergence

0.5(log(det(Σref)/ det(Σn)) + trace(Σ−1
ref ∗ Σn) + ([µ]ref − [µ]n)T Σ−1

ref ([µ]ref − [µ]n)− d) averaged

over the 10 trials at d and k fixed. The variations of this relative error are plotted as bars extending

between ± its standard deviation.
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Figure 5.5 – kNN Kullback-Leibler divergence estimation (5.11) of DKL(gn, gref) from 3000 d-

dimensional samples following gref and 3000 d-dimensional samples following gn, n ∈ [1..10]. The

estimation was performed for several values of d and for values of k ranging from 4 to 564 (horizontal

axes). The vertical axes represent the kNN estimation divided by the corresponding true divergence

0.5(log(det(Σref)/ det(Σn)) + trace(Σ−1
ref ∗ Σn) + ([µ]ref − [µ]n)T Σ−1

ref ([µ]ref − [µ]n)− d) averaged

over the 10 trials at d and k fixed. The variations of this relative error are plotted as bars extending

between ± its standard deviation.
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Figure 5.6 – kNN Kullback-Leibler divergence estimation (5.11) of DKL(gn, gref) from 3000 d-

dimensional samples following gref and 3000 d-dimensional samples following gn, n ∈ [1..10]. The

estimation was performed for several values of d and for values of k ranging from 4 to 564. The

horizontal axes represent the 10 trials at d and k fixed. The vertical axes represent the Kullback-

Leibler divergence. For practical reasons, the true divergences have been decreased by 1, 3, 7, 15,

and 89 for d equal to 2, 5, 10, 20, and 100, respectively.

Green • True values, Black • Estimations for k = 4, Blue • Estimations for k = 564. The shades

of blue correspond to varying values of k between 4 and 564 with a step of 40.
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Figure 5.7 – Correlation between the kNN Kullback-Leibler divergence estimations shown in Figs. 5.5

and 5.6 and the respective true divergences as a function of k.

Black • Correlation for d = 1, Blue • Correlation for d = 100. The shades of blue correspond to

the intermediate values 2, 5, 10, and 20. Especially for low values of k, the correlations for the 3

lowest dimensions are higher than the ones for the 3 highest.





Chapter 6

Some remarks on kNN

6.1 Link with classical regularization functions

Let u, a two-dimensional grayscale image, be the solution to an ill-posed inverse

problem. A common constraint on u is to require that the gradient norm image

|∇u| be of small norm. This is usually expressed as follows

arg min
v

∫

U
ϕ(|∇v(s)|) ds (6.1)

where U is the image domain and ϕ is a positive function respecting specific

conditions [Cha+97]. Let B1(s) be the circle of radius 1 centered on s. B1(s)
defines a spatial neighborhood of s. Assuming that |∇u(s)| 6= 0, let t be the point of

B1(s) in the direction |∇u(s)| from s. Then, the norm |∇u(s)| can be approximated

with ρB(s) = |u(s)− u(t)|. Therefore, a possible discretization of (6.1) is

arg min
u

∑

s∈U

ϕ(ρB(s)) (6.2)

where, for convenience, U has been reused to denote the set of samples in the

image domain. If u is smooth enough, t is surely the farthest neighbor of s (in the

neighborhood B1(s)) in the feature space defined by gray levels u, and ρB(s) is its

distance to s.
In conclusion, the kNN entropy (5.8) contains mainly a sum of log-distances

to (k-th) nearest neighbors searched for in the feature space among all available

samples while (6.2) is better described as a sum of ϕ-distances to farthest neighbors

searched for in the feature space among spatially close samples. This difference of

viewpoint is comparable to the contrast between classical filtering and nonlocal

filtering [Bua+05b, Bou+07].

43
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6.2 Distance between features

As previously seen, kNN estimators rely on distances ρk between feature samples.

In Section 3.2, the features were enriched with geometric information. This raises

the classical question of the relative weights of heterogeneous feature components.

Since the L2 norm treats each component equally, one usually employs a weighted

version instead or might be tempted to use other metrics tailored specifically for

the features. For example, the Earth mover’s distance [Rub+00] is adapted to

comparing histograms. However, the infinitely many choices of distance lead to as

many different kNN estimators. To get a hint about the consequences of using a

specific metric, let us come back to the PDF estimation.

The principle of the kNN framework is to approximate the PDF value at some

location t with a local sample density (4.3). Thus, this density is assumed constant

within the ball of radius ρk(t) [Fuk&Hos75, Fuk90]. (In discrete terms, all the

samples within this ball are equiprobable.) Yet, this might not be true. Some

locations within the ball might not even be valid features. Then, it is indeed

necessary to find the distance definition that matches the distribution of features.

The actual distribution of features such as image patches has been stud-

ied [Lee+03, Sri+03, Car+08]. Suppose that, according to such a study, a metricM
is designed for a particular feature definition. Following the idea leading to (4.3),

the PDF at t becomes

fU (t) =
k

Vk,d(t) |U |
(6.3)

where Vk,d(t) is the volume of the ball Bk,d(t) centered on t with a radius of ρk(t)
in the metricM

Vk,d(t) =

∫

Bk,d(t)

√

|detM(r)| dr . (6.4)

Let ϕ be the bijection defined by

ϕ : Bd(t) −→ Bk,d(t)
s 7−→ r = ρk(t)(s− t) + t

(6.5)

where Bd(t) is the ball of radius 1 centered on t. The Jacobian of ϕ is equal to

ρd
k(t). Therefore,

Vk,d(t) =

∫

Bd(t)

√

|detM(ϕ(s))| ρd
k(t) ds (6.6)

= ρd
k(t)

∫

Bd(t)

√

|detM(ρk(t)(s− t) + t)| ds (6.7)

:= ρd
k(t) vd(t) . (6.8)
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It must be checked that vd(t) is indeed not a constant function. Assume that

vd(t) is in fact independent of t, equal to ṽd, regardless of the sample distribution.

Let t1 and t2 be two locations in the feature space such that their respective sets

of k nearest neighbors (used to determine ρk(t1) and ρk(t2), respectively) are

disjoint. According to the previous assumption, vd(t1) = vd(t2) = ṽd. Let us

disturb the neighborhood set of t1 (e.g., by moving the farthest neighbor or by

adding a sample closer to t1 than ρk(t1)) in such a way that ρk(t1) changes whereas

the neighborhood set of t2 remains unchanged. This new sample distribution is

plausible. While vd(t2) will still be equal to ṽd, the integral vd(t1) will, in general,

not remain constant. This is in contradiction with the assumption of constancy of

vd(t).
Therefore, using a metric adapted to the features (or to their distribution)

not only straightforwardly modifies the kNN entropy estimation (5.8) through

different values of the ρk ’s but also through local terms vd(t).
#1 By analogy with

the development leading to (5.8), the constant involving vd should be replaced

with a term involving vd(·)

HkNN(M, U) = log

[(

Πs∈Uvd(s)
)1/|U |

(|U |−1)

]

−ψ(k)+
d

|U |
∑

s∈U

log ρk(U, s) .(6.9)

Note, however, that the vd(s)’s may cancel out in some cases such as the Kullback-

Leibler divergence estimator proposed in Section 5.2.3. As a result, expres-

sion (5.11) is valid for any metricM used to compute ρk.

#1For the Euclidean metric, detM = 1 and, as expected, vd(t) is then equal to vd, the volume of

the unit ball.
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Chapter 7

Segmentation

Context

In image or video segmentation, example-based similarity can be defined by com-

paring a local description to the global measure representing synthetically all the

local descriptions within a region. For example, the local description can be the

gray level of a pixel, the corresponding global measure being the mean gray level

of a set of pixels. Then segmentation consists in computing the set of pixels maxi-

mizing this self-similarity. In practice, it is often more natural to write the problem

as the minimization of a self-dissimilarity. Usually, this task has no closed form and

is therefore solved iteratively from an initial guess. Because we are dealing with

object boundaries, active contours represent a method of choice.

This chapter focuses on dissimilarities written as an integral on a domain of a

function which can depend on this domain but deals with their minimization using

active contours. The derivative with respect to the domain of such a dissimilarity,

the so-called shape derivative, is a function of a velocity field applied to the

domain boundary. For a given, non-optimal domain, a velocity such that the shape

derivative is negative indicates a way to deform the domain in order to decrease

its self-dissimilarity. In the continuous framework, assigning to the velocity the

opposite of the gradient associated with the L2 inner product is a common practice.

Nevertheless, it can be noted that the negativity of the shape derivative is not

preserved, in general, when discretizing this velocity. Although this phenomenon is

unlikely to occur in practice if the discretization is fine enough, its study led us to

suggest an alternative approach relying on predefined velocities. It offers a way to

impose constraints on the segmentation.

7.1 Shape derivative

7.1.1 Notations

From now on, a dissimilarity will be referred to as an energy.

49
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In the following, D is a subset of R
2 and the image to segment, f , is a function

from D to R
m. Domain Ω is an open set of D. Γ is the oriented boundary ∂Ω of Ω,

and s is the arc-length parameterization of Γ.#1 For convenience, the notation a(s)
refers to a(Γ(s)). Samples on Γ are denoted by Γi, i ∈ [1, n]. Arc-length si is such

that Γ(si) = Γi. Then, the notations a(si) and a(Γi) are equivalent. Note that s1
is equal to 0 and sn is equal to L − (sn+1 − sn) where L is the length of Γ and

Γ(sn+1) = Γ(s1). The contour segment between Γi and Γi+1 (i.e., a line segment, a

spline segment. . . depending on the contour representation) is denoted by γi.

Let U and V be two functions from Ω to R
2 called velocities. The L2 inner

product on the space of velocities restricted to Γ is defined as

〈U , V 〉 =

∫

Γ
U(s) · V (s) ds (7.1)

where · is the dot product.

7.1.2 General and specific expressions

Some details about active contours and the shape derivative are provided in

Appendices A, B.1, B.2, and C. To fix the ideas, a typical context is reminded below.

Let us consider the energy

E(Γ) =

∫

Ω
φ(Γ, x) dx+

∫

Γ
ϕ(s) ds, (7.2)

a function of a contour Γ. Since the set of simple closed curves is not a vector

space, the derivative of (7.2) with respect to Γ cannot be expressed in the usual

way. Let Ω(τ), τ ≥ 0, be a family of domains such that Ω(τ = 0) = Ω. When τ
increases, Γ(τ) can be considered as a deforming interface in a medium charac-

terized by φ and ϕ. Hence, some results in continuum mechanics [Hau&Cho93]

can be applied to determine the derivative of (7.2) with respect to τ at τ equal

to zero [Deb+01]. The study of such energies and their variations was further

developed in the framework of shape optimization [Sch92, Sok&Zol92, Del&Zol01,

Hin&Rin03, Jeh+03]. In this context, the following expression is known as the

shape derivative of (7.2)

dE(Γ, V ) =

∫

Ω

∂φ(Γ(τ), x)

∂τ

∣
∣
∣
∣
τ=0

dx

−
∫

Γ

(

φ(Γ, s)− ∂ϕ(s)

∂N
+ ϕ(s) κ(s)

)

N(s) · V (s) ds (7.3)

#1Ω is assumed to be such that Γ is a smooth boundary without self-intersection. In case Ω is

composed of several connected components, the problem can be divided into subproblems dealing

each with a given component. Note however that the issue of change of topology is not covered here.
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where V is by definition the restriction to Γ of a velocity field defined on Ω, N is

the inward unit normal of Γ, and κ is the curvature of Γ.

Under weak assumptions, the shape derivative of the domain integral in (7.2)

has an equivalent expression in the form of a boundary integral [Sok&Zol92,

Sol&Ove05]. As is clear from Section 7.2.1, such an expression is convenient

in the active contour framework since it allows to easily deduce an evolution

equation.

In the following, it is assumed that the shape derivative of (7.2) has been

rewritten into a boundary integral

dE(Γ, V ) = −
∫

Γ
Ψ(Γ, s) N(s) · V (s) ds = 〈−Ψ N , V 〉, (7.4)

either because one of the two conditions (C.2) or (C.19) applies (see Appendix C),

or as the result of another development.

7.2 From continuous to discrete formulation

The usual, or direct, approach when having recourse to the shape derivative in the

active contour framework corresponds to choosing the gradient associated with

the L2 inner product as the descent direction (among the velocities that ensure the

negativity of the shape derivative) and to discretizing it. Due to discretization, this

direct approach implies an error possibly responsible for the loss of the negativity

condition. In contrast, a constrained approach relying on predefined velocities can

guarantee that the negativity condition still holds after discretization.

7.2.1 Direct approach

Negativity of the shape derivative. The shape derivative (7.4) is a function of

a velocity field V . Since the energy (7.2) must be minimized, it is necessary to

choose V such that (7.4) is negative. Interpreting (7.4) as a L2 inner product on

the space of velocities, the velocity

G = −Ψ N (7.5)

can be identified with the gradient associated with this inner product. It is called

the shape gradient of (7.2) [Sok&Zol92, Del&Zol01, Hin&Rin03, Cha+05]. Then,

taking a steepest descent approach, it seems natural to choose [Deb+01, Jeh+03]

V (s) = −G(Γ, s) (7.6)

in the following active contour evolution equation

∂Γ

∂τ
= V (τ) . (7.7)



Chapter 7. Segmentation 52

Minimization in the continuous framework. The implementation of the evo-

lution equation (7.7) can be based on a finite difference approximation of the

derivative with respect to τ verifying the CourantFriedrichsLewy (CFL) condition.

Instead, a line search strategy can be used [Hin&Rin03]

{
Γ0

Γ+1 = Γ + α V
(7.8)

where Γ0 is an initial contour, superscript +1 represents the next element of a

sequence,#2 α is a positive constant, and V is given by (7.6). The optimal value

for α can be computed as follows

α = arg min
a≥0

E(Γ + a V ) . (7.9)

Discretization and induced velocity. In practice, the active contour Γ is sam-

pled. For example, it can be represented by a polygon {Γi, i ∈ [1..n]} without

self-intersection [Ger&Ref96]. The corresponding discrete version of evolution

equation (7.8) is

{
Γ0

i

Γ+1
i = Γi + α V (Γi)

(7.10)

where {Γ0
i } is an initial polygon. Note that (7.10) does not make use of V along

the edges γi of the polygon. Instead, it implicitly defines a velocity Ṽ , called

induced velocity, which transforms the edges γi into the edges γ+1
i . However,

except at the polygon vertices, it is unlikely that such a transformation matches

the velocity (7.6)#3 (see Fig. 7.1a). As a consequence, the negativity of the shape

derivative (7.4) at Ṽ is not guaranteed. In other words, the discrete evolution

equation (7.10) might not generate a minimizing sequence of contours.

As illustrated in Fig. 7.1b, this problem is not specific to the polygonal repre-

sentation. It also arises if the contour is represented by a smooth curve since it is

due to the sampling of V . Only the contour samples are translated correctly. The

contour segments in-between the translated samples are defined a posteriori by the

selected interpolation model (polygon, uniform cubic B-spline. . . ).

However, as brought to our attention [Ano07], if the edge length is small

enough, dE(Γ, Ṽ ) remains negative and, consequently, the evolution (7.10) is

guaranteed to generate a minimizing sequence. (In practice, the discretization

error decreases, as illustrated in Fig. 7.2 with a smooth contour representation.) A

global edge length upper bound depending on maximal variations of Ψ over Γ can

#2The sequence x(0) = x0, x(n + 1) = f(x(n)) is denoted by x0, x+1 = f(x).
#3In particular, (7.6) does certainly not transform, in general, a polygon into another polygon.
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Figure 7.1 – Incorrect deformation due to the sampling of V . [a] Disks: polygon vertices; Solid line:

polygon before deformation; Dashed line: polygon defined by the translated vertices; Dotted line:

polygon deformed according to V . [b] Disks: curve samples; Solid line: curve before deformation;

Dashed line: curve interpolating the translated samples; Dotted line: curve deformed according to V .
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Figure 7.2 – The error between the correctly deformed curve (dotted line) and the wrongly estimated

curve (dashed line) decreases when resolution gets higher (to be compared with Fig. 7.1b). Disks:

curve samples; Solid line: curve before deformation; Dashed line: curve interpolating the (correctly)

translated samples; Dotted line: curve correctly deformed.
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be determined [Deb+07]. The edge length could also be adapted locally to be small

in portions of Γ where Ψ varies a lot and larger where Ψ varies slowly [Tat&Lac02].

Finally, note that (7.10) might converge too early since the condition {V (Γi) =
0, i ∈ [1, n]} is less restrictive than {V (s) = 0, s}. But again, the smaller the edge

length, the less critical. Nevertheless, instead of a condition on the edge length,

one can wonder if there is a way to choose V such that Ṽ is equal to V .

7.2.2 Constrained approach

Negativity of the shape gradient. In order to guarantee that, after discretization,

the induced velocity Ṽ matches the original velocity V , the domain transformations

can be restricted, beforehand in the continuous framework, to a linear combination

of a set of predefined transformations [Deb+07]#4

T (τ) =
∑

i

βiTi(τ), βi ∈ R . (7.11)

The differentiation of (7.11) with respect to τ leads to

V =
∑

i

βiVi (7.12)

where Vi is a so-called predefined velocity. In this context, an appropriate veloc-

ity V is defined by a choice of the βi’s that satisfies the negativity of the shape

derivative (7.4).

The shape derivative can be rewritten as

dE(Γ, V ) = dE(Γ,
∑

i

βiVi) (7.13)

=
∑

i

βi dE(Γ, Vi) (7.14)

= β · dEpre(Γ) (7.15)

where · is the dot product, β is the vector of components βi, and dEpre(Γ) is the

vector of components dE(Γ, Vi). Taking a steepest descent approach, β should

be such that dE(Γ, V ) is as negative as possible. The Cauchy-Schwarz inequality

implies that

|dE(Γ, V )| = |β · dEpre(Γ)| ≤ |β| |dEpre(Γ)| (7.16)

with equality when β and dEpre(Γ) are linearly dependent. Therefore, the βi’s

should be set as follows

βi = −γ dE(Γ, Vi) (7.17)

where γ is a positive constant.

#4For definitions and notations, see Appendix B.2.
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Figure 7.3 – A possible choice for the predefined velocity Vi.

Basic examples of predefined velocities. According to the remarks of Sec-

tion 7.2.1, it can be deduced that the predefined velocities must be consistent

with the contour representation: the representation must be preserved when the

contour is deformed by a linear combination of the Vi’s. Moreover, ideally, the Vi’s

should allow the generation of any velocity V by linear combination – at least, if

there is no a priori knowledge about the optimal contour. There is no such basis of

velocities. However, the Vi’s must generate a reasonable variety of velocities. If the

contour is represented by a polygon, the following definitions can be considered.#5

(i) At vertex Γi, a pseudo-normal N(Γi) is defined [Lob&Vie95, Del&Mon01]

and Vi is the velocity collinear to N(Γi) at Γi and transforming (Γi−1,Γi,Γi+1)
into (Γi−1, (Γi + N(Γi)),Γi+1) (see Fig. 7.3). In other words, Vi is a vector field

with support [Γi−1,Γi+1], linear from zero (at Γi−1) to N(Γi) (at Γi), and linear

again back to zero – at Γi+1. This definition involves no a priori knowledge.

(ii) The previous definition can be modified to introduce some a priori knowl-

edge. For example, in tracking, the approximate motion of the object of interest

might be known. In particular, a joint segmentation and motion computation

method [Cre&Soa03] certainly requires computation of the motion for a given, fixed

segmentation (and vice-versa). Therefore, if mi is the estimated motion of Γi, then

Vi can be defined similarly to (i) by replacing N(Γi) with mi or mi/|mi|.
These definitions will be referred to as polygonal predefined (PoPD) velocities.

#5There validity will be checked later on.
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Minimization in the continuous framework and discretization. The minimiz-

ing sequence (7.8) of the direct approach is replaced with







Γ0

Γ+1 = Γ + δ V

= Γ + δ
∑

i βiVi

= Γ− δγ ∑i dE(Γ, Vi) Vi

= Γ− α
∑

i dE(Γ, Vi) Vi

(7.18)

where the optimal value for α can be computed as follows

α = arg min
a≥0

E
(

Γ− a
∑

i

dE(Γ, Vi) Vi

)

. (7.19)

With a polygonal representation, the discretization of (7.18) leads to the following

evolution equation

{
Γ0

i

Γ+1
i = Γi − α

∑

j dE(Γ, Vj) Vj(Γi)
. (7.20)

For the PoPD velocities, the sum over the predefined velocities reduces to a

single term since at Γi, only Vi is different from zero

{
Γ0

i

Γ+1
i = Γi − α dE(Γ, Vi) Vi(Γi)

. (7.21)

Coherence between continuous and discrete evolutions. In order to establish

that (7.18) and (7.21) lead to identical evolutions, it suffices to show that the defor-

mations Ṽ induced by (7.21) on contour segments γi are equal to the deformations

V of the continuous evolution (7.18). This would also prove that the negativity of

the shape derivative is preserved after discretization.

For example with the polygonal representation, let x be a point on the edge γi

(see Fig. 7.4). There exists t ∈ [0, 1] such that

x = γi(t) = (1− t) Γi + t Γi+1 . (7.22)

Let Vi be a PoPD velocity – either of the two definitions. The velocity V (t) at γi(t)
is the combination of two velocities

V (t) = βi Vi(t) + βi+1 Vi+1(t) . (7.23)

Therefore, in the continuous framework, the point γi(t) is translated to

γi(t) + V (t) = (1− t) Γi + βi Vi(t) + t Γi+1 + βi+1 Vi+1(t) . (7.24)
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Figure 7.4 – Transformation of point x on edge γi.

The predefined velocities are such that

{
Vi(t) = (1− t) Vi(Γi)

Vi+1(t) = t Vi+1(Γi+1)
. (7.25)

Combining (7.24) and (7.25) leads to

γi(t) + V (t) = (1− t) (Γi + βi Vi(Γi)) + t (Γi+1 + βi+1 Vi+1(Γi+1)) (7.26)

= (1− t) Γ+1
i + t Γ+1

i+1, (7.27)

which means that the translation of the point γi(t) in the continuous framework

(left-hand side) is a point on the line segment [Γ+1
i ,Γ+1

i+1] obtained by joining

the discrete translations of Γi and Γi+1 (right-hand side). Moreover, when γi(t)
describes the edge γi, then the translation of γi(t) describes this whole line segment.

As a conclusion, the continuous equation (7.18) and the discrete equation (7.21)

lead to identical evolutions.

The previous development is pretty straightforward and serves as an illustration.

Other contour representations can be considered. For example, if the contour

is represented by a uniform cubic B-spline [Uns+93, Bri+00, Jac+01, Pre+05],

then one can think of basing the predefined velocities on the so-called blending

function. It can be shown [Deb+07] that such a spline representation associated

with appropriate predefined velocities also guarantees that the discrete evolution

matches the continuous evolution (7.18).

7.3 Some remarks about predefined velocities

7.3.1 Normalization

The weight of a predefined velocity Vi in (7.18) is equal to −α dE(Γ, Vi). By multi-

plying Vi by a constant, it can be made artificially preponderant in the evolution

process. As a consequence, it seems appropriate to normalize the predefined veloci-
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ties (unless otherwise imposed by some a priori). Actually, it suffices to impose that

they all have the same norm. As a matter of fact, the PoPD velocities are such that

|Vi|2 = 〈Vi, Vi〉 =
2l

3
(7.28)

if the edge length is constant and equal to l.

7.3.2 Interpretation as a projection

Individual projections and redundancy. The shape derivative (7.4) evaluated

at Vi is equal to

dE(Γ, Vi) := 〈−Ψ N , Vi〉 (7.29)

:= 〈G , Vi〉 (7.30)

= − 1

γ
βi (7.31)

where the last equality comes form (7.17). Therefore, the weights βi can be

interpreted as the projections of the opposite of the gradient G onto the Vi’s (up

to a multiplicative constant γ) or, otherwise stated, as the coordinates of −G with

respect to the set of directions formed by the Vi’s. This raises the question of the

orthogonality of the set of the Vi’s.

One can check that the PoPD velocities do not form an orthogonal set relative

to the L2 inner product

〈Vi, Vj〉 =







2l
3 if i = j

l
6 N(Γi) ·N(Γj) if |i− j| = 1

0 otherwise

(7.32)

where, as a reminder, N(Γi) · N(Γj) is equal to the cosine of the angle between

N(Γi) and N(Γj). As a consequence, these predefined velocities are redundant.

Suppose that G is equal to Vi. The velocity V being constrained to a linear

combination of the Vi’s, it should logically have the form −α Vi, α > 0 in this case.

If the predefined velocities form an orthogonal set, V is indeed proportional to −Vi

V =
∑

j

βj Vj (7.33)

= − γ
∑

j

〈G , Vj〉 Vj (7.34)

= − γ
∑

j

〈Vi , Vj〉 Vj (7.35)

= − γ|Vi|2 Vi, (7.36)
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as expected. Instead, the weights of the PoPD velocities Vi−1, Vi, and Vi+1 are equal

to (up to a multiplicative constant) −N(Γi−1) ·N(Γi), −4, and −N(Γi) ·N(Γi+1),
respectively. All three predefined velocities get weights different from zero (in

general) with a higher weight for Vi in absolute value. If the dot products are

positive (i.e., if the (pseudo) curvature is not too high in absolute value), this can

be interpreted as a smoothing of the response obtained in the case of an orthogonal

set of predefined velocities, which could, as suggested in [Cha+05], increase the

spatial coherence of the active contour evolution. Unfortunately, if the dot products

are negative, Vi−1 and Vi+1 get positive weights, leading to an evolution where Γi

is translated in a way that decreases the energy while the other two vertices are

translated in a way that (although slightly) might tend to increase the energy.

As brought to our attention [Ano07], the redundancy could be suppressed

by generating mutually orthogonal predefined velocities V ⊥
i using the Schmidt

orthonormalization process, or else G could be projected onto the space of linear

combinations of the predefined velocities (instead of being projected individually

onto each predefined velocity) as studied below.

Alternative linear combination. Instead of computing the weights βi as individ-

ual projections (7.31), they could be computed such that V is the L2 projection of

−G onto the space of linear combinations of the Vi’s

β = arg min
B

∣
∣−G−

∑

i

Bi Vi

∣
∣2 (7.37)

= arg min
B

∣
∣
∣
∣

∑

i

Bi Vi

∣
∣
∣
∣

2

+ 2
∑

i

Bi 〈G,Vi〉 (7.38)

= arg min
B

∑

i

B2
i |Vi|2 + 2

∑

i<j

BiBj 〈Vi, Vj〉+ 2
∑

i

Bi 〈G,Vi〉 . (7.39)

If the Vi’s form an orthonormal set, then (7.39) is equivalent to

β = arg min
B
|B|2 + 2 B · η (7.40)

where η is the vector of components 〈G,Vi〉. For a given norm of β, the Cauchy-

Schwarz inequality leads to the result based on individual projections βi ∝ −ηi, as

expected.

For the PoPD velocities, if G is equal to Vi, then the projection of −G is

necessarily such that βj is equal to zero if j 6∈ {i − 1, i, i + 1}.#6 Let us fix

the norm of β to one. Using (7.32) and the fact that β2
i−1 + β2

i + β2
i+1 is equal to

#6Otherwise, the support of Vj having no intersection with the support of Vi, the projection

error (7.37) could be decreased by setting βj = 0.
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one, the projection error (7.37) can be developed as follows
∣
∣− Vi −

∑

iBi Vi

∣
∣2 =

∣
∣βi−1Vi−1 + (βi + 1)Vi + βi+1Vi+1

∣
∣2 (7.41)

= α(βi+1)
[

4 +N(Γi) ·
(

βi−1N(Γi−1) + βi+1N(Γi+1)
)]

(7.42)

where α is a positive constant. The projection error is equal to zero if and only

if βi = −1, which implies that βi−1 = βi+1 = 0. Thus, the velocity V is equal to

−Vi. Therefore, adopting this alternative projection approach allows riddance of

redundancy.

7.3.3 Link with parametric approaches

Description. Another way to avoid the discretization flaw mentioned in Sec-

tion 7.2.1 is to parameterize the active contour and rewrite the energy (7.2) as a

function of these parameters [Jac+04, Mar05, Una+05]. Thus restricted to the set of

domains whose boundary can be described by such parameters, the minimization

of (7.2) becomes a classical problem in R
n where n is the number of parameters.

If φ in (7.2) does not depend on Γ, then the partial derivatives of (7.2) with

respect to each parameter can be obtained by a calculus of variations [Jac+04].

However, it can be more complex if φ does depend on Γ, unless noticing that the

partial derivatives can be expressed as shape derivatives [Mar05, Deb+06]. Let Γ
be a curve described by a set of parameters p = {pi, i ∈ [1..n]}, e.g., a spline. The

energy (7.2) can be rewritten as a function of p

E(p) =

∫

Ω(p)
φ(Γ(p), x) dx+

∫

Γ(p)
ϕ(s) ds . (7.43)

It can be shown that the gradient of (7.43) is equal to

∇E(p) =
∑

i

dE

(

Γ,
∂Γ

∂pi

)

ei (7.44)

where ∂Γ/∂pi is a so-called admissible velocity (see Fig. 7.5) and ei is the ith

element of the canonical basis of R
n [Mar05, Deb+06]. The energy (7.43) can be

minimized using the following procedure
{
p0

p+1 = p− α ∇E(p)
(7.45)

where the optimal value for α can be computed as follows

α = arg min
a≥0

E(p− a ∇E(p)) . (7.46)

Intuitively, it seems that the constrained approach (7.18)/(7.20) can be related

to the parametric approach (7.45). The circumstances in which they are equivalent

are detailed below.
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Circle radius Center x-position Center y-position

One control point x-position One control point y-position

Figure 7.5 – Examples of admissible velocities represented discretely with red arrows. (Upper row)

If the active contour is restricted to a circle, then the 3 parameters are the circle radius, and the

horizontal and vertical position of its center, each of which giving rise to an admissible velocity.

(Lower row) If the active contour is restricted to a spline with 6 control points (the red dots), then

each control point gives rise to 2 admissible velocities, one for each coordinate. The 2 depicted

velocities correspond to the upper-right control point.

Establishing a link. If the contour is represented by a polygon with n edges, then

the parameters p involved in the parametric approach are simply the coordinates

(ai, bi) of each vertex Γi

p = {pi, i ∈ [1..2n]}
= {Γi, i ∈ [1..n]}
= {a1, b1, a2, b2 . . . an, bn} .

(7.47)

Therefore, there are 2n admissible velocities such that







∂Γ

∂aj
(Γi) = δij e1

∂Γ

∂bj
(Γi) = δij e2

, i ∈ [1, n] (7.48)
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where δij is equal to 1 if i = j and 0 otherwise, and (e1, e2) is the canonical basis

of R
2. Writing the procedure (7.45) in terms of the vertices leads to

Γ+1
i = Γi − α

[

dE

(

Γ,
∂Γ

∂ai

)

e1 + dE

(

Γ,
∂Γ

∂bi

)

e2

]

(7.49)

= Γi − α
[

dE

(

Γ,
∂Γ

∂ai

)
∂Γ

∂ai
(Γi) + dE

(

Γ,
∂Γ

∂bi

)
∂Γ

∂bi
(Γi)

]

(7.50)

= Γi − α
[
∑

j

dE

(

Γ,
∂Γ

∂aj

)
∂Γ

∂aj
(Γi) +

∑

j

dE

(

Γ,
∂Γ

∂bj

)
∂Γ

∂bj
(Γi)

]

(7.51)

which corresponds to the discrete, constrained evolution (7.20) for the Vj ’s being

the admissible velocities. Noting that ∂Γ/∂ai and ∂Γ/∂bi fit definition (ii) of the

PoPD velocities and according to the equivalence between discrete and continuous

evolutions shown in this case in Section 7.2.2, it can be deduced that the equiva-

lence between (7.20) and (7.45) holds in the continuous framework. In conclusion,

with the polygonal representation, if the predefined velocities are chosen equal

to the admissible velocities, then the constrained approach is equivalent to the

parametric approach.

A similar development with the control points of uniform cubic B-splines leads

to the same conclusion for this smoother contour representation [Deb+07].

About redundancy. The admissible velocities are not necessarily mutually or-

thogonal. In particular, for the polygonal representation, they are not. Yet, these

velocities arise in the computation of the gradient of the energy (7.43), a function

from R
n to R. In this context, the notion of gradient is classical. This might make

think that redundancy (see Section 7.3.2) is not always an undesirable property.

7.4 Illustrative experiment

7.4.1 Direct vs. constrained approach

The different ways of using the shape derivative discussed above are summarized

as basic segmentation algorithms in Tabs. 7.1, 7.2, and 7.3 for the polygonal

representation.#7 These algorithms should be considered as versions designed

for testing. In particular, the contour resolution is fixed, which is not necessarily

optimal. The constant αmin is homogeneous to a number (possibly not an integer)

of pixels. It is related to the achievable accuracy of the segmentation: the lower

αmin, the better the accuracy.

Experimentally, the gain in accuracy of the constrained approaches (Tabs. 7.2

and 7.3) over the direct approach is not decisive. At low contour resolution (l

#7The parametric approach was considered for theoretical comparison only.
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1. Choose an initial polygon Γ = {Γi, i ∈ [1..n]} with an edge length equal to a

given resolution l

2. Choose a threshold αmin

3. Compute Ψ (a function of Γ)

4. Compute the velocity Vi at Γi

Vi = −G(Γi) = Ψ(Γi) N(Γi) (a)

5. Update Γ according to

Γ+1
i = Γi + α Vi (b)

where α is computed as arg mina≥0 E(Γ + a V )

6. If needed, resample Γ to approximately maintain a resolution of l

7. If α was less than αmin, then the algorithm is supposed to have converged;

Otherwise go back to step 3.

Table 7.1 – Minimization of an energy E with the direct approach for the polygonal representation.

1.-3. See Tab. 7.1

4. Compute the PoPD velocities Ui according to definition (i)

5. Compute the shape derivatives dE(Γ, Ui)

6. Compute the velocity Vi at Γi

Vi = −dE(Γ, Ui) Ui(Γi) (a)

7. See step 5 and after of Tab. 7.1.

Table 7.2 – Minimization of an energy E with the constrained approach/“individual projections”

(see Section 7.3.2) for the polygonal representation.
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1.-3. See Tab. 7.1

4. Compute the PoPD velocities Ui according to definition (i)

5. Compute the gradient G = −Ψ N

6. Compute the velocity Vi at Γi

Vi =
∑

j βj Uj(Γi) (a)

where β = arg minB

∣
∣−G−

∑

iBi Ui

∣
∣2

7. See step 5 and after of Tab. 7.1.

Table 7.3 – Minimization of an energy E with the constrained approach/“projection on the set of

linear combinations” (see Section 7.3.2) for the polygonal representation.

large), the segmentation qualities, measured in how low the energy E at con-

vergence is, would rank in the following increasing order: algorithm of Tab. 7.1,

algorithm of Tab. 7.2, and algorithm of Tab. 7.3. However, this potential advantage

of the constrained approaches vanishes at high resolution since the error due

to the discretization of the velocity in the direct approach gets negligible (see

Fig. 7.2) [Deb+07]. Even in terms of computational cost, the benefit of working

at low resolution with the constrained methods compared to working at high

resolution with the direct method is far from obvious since steps 5 in Tab. 7.2 and 6

in Tab. 7.3 are rather demanding.

Yet, the constrained approaches have two interests: (i) for general-purpose

predefined velocities such as the PoPD velocities – definition (i), they provide

coherence between the theory developed in the continuous framework and its

discrete implementation, and (ii) they bring flexibility to the evolution process with

the possibility of selecting application-driven predefined velocities such as the PoPD

velocities – definition (ii), as illustrated in Section 7.4.2.

7.4.2 An example of tracking constraint

An application where the possibility to introduce a priori knowledge in the evo-

lution process can be useful is tracking. Indeed, a usual procedure is to use the

segmentation of the object of interest in a frame as the initialization to segment

the next frame. Then, the required contour deformation is clearly correlated to the
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motion of the object.#8 Consequently, motion-based predefined velocities (PoPD

velocities - definition (ii)) appear appropriate. The standard test sequence “Football”

was chosen to check the validity of this approach, the goal being to segment a

player on several consecutive frames.

The choice of the energy is independent of the choice of the predefined ve-

locities. Nevertheless, it is natural in tracking to use an energy which involves

motion [Cre&Soa03]. Here, considering the complexity of the motion of the object

of interest and the slight motion blur, it seemed more judicious to confine the use

of motion to the predefined velocities and to select a motion-free energy able to

account for the color variability of the object [Aub+03]

E(Γ) =

∫

R2

D
(
h(Γ, a), hprev(a)

)
da (7.52)

#9where h is a smooth, normalized version of the color histogram in Ω of the

frame ft to be segmented

h(Γ, a) =
1

|Ω|

∫

Ω
g(ft(x)− a) dx (7.53)

where |Ω| is a measure of Ω and g is a smoothing kernel, e.g., a 2-dimensional

Gaussian. Similarly, hprev is a smooth, normalized version of the color histogram of

the segmentation in the previously segmented frame ft−1. Note that a and ft(x)
should belong to R

3. However, to limit the computation load, only the two most

significant color components out of the three were considered. The function D is

a positive function from R
2 to R defined as D(x, y) = (x − y)2. A maximal area

constraint [Roy+06] was added to the energy (7.52) since its sensitivity decreases

in the inner neighborhood of the correct segmentation

EA(Γ) = −δ
∫

Ω
dx (7.54)

where δ is a weighting parameter. The shape derivative of the sum of (7.52)

#8Ideally, the motion could even transform the segmentation in a frame directly into the seg-

mentation in the next frame. However, because the sequence is a two-dimensional projection of a

three-dimensional scene and because the available motion is usually an apparent motion, this is not

the case in practice.
#9Note that the energy (7.52) has not the same form as the domain integral in (7.2). As a matter

of fact, integration over a domain appears only indirectly through h(Γ, a) – see (7.53). Consequently,

applying the results on shape derivative does not amount to simply identifying terms between this

specific energy and the general expressions of the framework. On the other hand, it is not more

complicated than combining classical rules of differentiation with these general expressions. However,

the development leading to (7.55) being quite long, it is not presented here.
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and (7.54) is

dE(Γ, V ) = −
∫

Γ

[
1

|Ω|
(

g ⋆ D′
(
h(Γ), href

))

(ft(s))

− 1

|Ω|2
∫

R2

h(Γ, a) D′
(
h(Γ, a), href(a)

)
da

− δ

]

N(s) · V (s) ds (7.55)

where ⋆ is the convolution operator and D′ is the partial derivative of D with

respect to its first variable.

Two segmentations were computed, first by following strictly the algorithm

described in Tab. 7.2 (to serve as a segmentation of reference relying on general-

purpose, normal-based predefined velocities), second by replacing the step 4 with

the PoPD velocities following definition (ii) (mi/|mi|)where the local motion at the

vertices was estimated by a sub-optimal block matching technique [Zhu&Ma00]

with a 1/4-pixel precision. Here, a block was defined as the intersection between a

21×21-pixel square centered on a vertex and the mask of the current active contour.

This prevented the pixels considered to be outside the object from interfering with

the motion estimation. This procedure is given for illustrative purposes only. In

a real-world tracking application, motion estimation should certainly be more

sophisticated [Isa&Bla98, Aru+02, Rob&Mil03]. The resolution l was chosen equal

to 10 pixels (to be compared to a size of frame of 352×288 pixels). The results

are presented in Fig. 7.6. The normal-based segmentation is globally similar to the

motion-based segmentation except for a small region wrongly included above the

player’s helmet. These segmentations correspond to two local minima, one of which

being more relevant. In a way, the motion-based evolution took the shortest path

toward the object of interest and converged toward a more satisfying minimizer.

As a matter of fact, the convergence was reached after 10 iterations while it took

14 iterations for the normal-based evolution. An intuition of the behavior of the

normal-based evolution is given by the normals shown in Fig. 7.6 compared to the

local motions. When a normal has a direction close to the direction or opposite

direction of the local motion,#10 then both evolution processes behave similarly.

However, when these directions are close to be orthogonal, then the normal-based

process could have a tendency to evolve toward a less relevant local minimum

and/or to require more iterations to converge. Indeed, the local motion is likely to

be a better direction to take in a tracking application.

Other constrained evolutions can be designed by defining specific predefined

velocities. For example, axial symmetry can be enforced [Deb+07].

#10If the direction of the normal is opposite to the direction of the local motion, the shape derivative

takes equal values in absolute value for both but with opposite signs, making no difference as far as

evolution is concerned.



Chapter 7. Segmentation 67

Manual 74 href

Initial 75← 74 Normals & motions

Final 75 (normals) Final 75 (motions)

Figure 7.6 – Tracking of a player on frame 75 of the standard test sequence “Football” with the

constrained approach. Top left: manual segmentation of frame 74 (used as the initial contour for

the segmentation of frame 75); Top right: histogram hprev of the manually segmented region (for

display purposes, upper and lower zero-valued regions were cut out); Middle left: initial contour on

frame 75 (copied from frame 74); Middle right: a close-up of the normals (red arrows) and the local

motions (green arrows) computed at the vertices of the polygon at the first iteration; Bottom left:

segmentation of frame 75 using normal-based predefined velocities; Bottom right: segmentation of

frame 75 using motion-based predefined velocities.
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7.5 Summary

The shape derivative is a convenient framework for deriving the evolution equation

of an active contour from the energy to be minimized. Usually, the contour velocity

is taken equal to the opposite of the energy gradient associated with the L2 inner

product and then discretized. It induces an error responsible for a mismatch

between the continuous evolution resulting from the theory and the discrete

evolution implemented in practice. Although this has virtually no consequences

if the contour is discretized finely enough, the constrained approach proposed

to avoid this problem also gives more flexibility to the active contour process by

allowing to introduce some a priori knowledge. This possibility of guiding the

optimization procedure offers a way to compensate for the imperfection of the

similarity (or dissimilarity) measure, as illustrated in Section 7.4.2 for tracking.
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Denoising

Context

As an alternative to pixel-based filtering, some denoising methods manipulate

image patches. Indeed, it has been shown that there exist correlations among the

patches forming natural images. The nonlocal means algorithm (NL-means) and

the UINTA algorithm proved to be very efficient. However, these methods can be

considered global since the filtering is performed identically everywhere in the

image.

In this context, a locally adaptive denoising approach could represent a step

forward (compared to other patch-level methods) similar to the one made in

pixel-level denoising by edge-preserving filtering as opposed to isotropic filtering.

The problem of minimizing the conditional entropy of a pixel color knowing

its neighboring pixels can be revisited to this end. To begin with, a theoretically-

founded motivation can be provided. Then, conveniently estimating the conditional

entropy in the k nearest neighbor (kNN) framework offers the possibility to develop

a locally adaptive kNN filtering method, thus adapting the smoothing to the nature

of the regions. Moreover, with this approach, knowledge of the noise level is not

required.

8.1 Patch-level processing

Justified by some studies on the distribution of patches forming natural im-

ages [Hua&Mum99, Lee+03, Sri+03, Car+08], patch-based processing methods

have been proposed, e.g., for image and video denoising [Bua+05a, Bua+05b,

Awa&Whi06, Ker&Bou06, Ber+07, Bou+07, Dab+07], texture synthesis [Efr&Leu99,

Efr&Fre01], and inpainting [Ber+03, Cri+04]. Indeed, these studies showed that

there exist correlations among patches of natural images. As a consequence, the

probability is high that patches similar to a given image patch are encountered in

the image itself, offering the opportunity to recover unaltered or missing informa-

69
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tion, should said given patch be degraded. As a matter of fact, the nonlocal means

algorithm (NL-means) [Bua+05a, Bua+05b] and UINTA [Awa&Whi06] proved to be

successful in image denoising.

In this context, (i) the problem of minimizing the conditional entropy of a pixel

color knowing its neighboring pixels can be revisited, first by providing a proof of

adequacy of this energy for image denoising. Then, a direct relation between the

energy derivative and the mean shift can be established. As a consequence, it is

possible to provide a variational interpretation of NL-means [Bua+05a, Bua+05b],

thus linking an iterative algorithm such as UINTA [Awa&Whi06] to filtering methods.

(ii) The aforementioned energy derivative can be approximated in the k nearest

neighbor (kNN) framework. From a practical point of view, this allows to adapt to

the local sample density and to reduce the effect of the curse of dimensionality when

dealing with data of high dimension as it is inherently the case with patches. From a

methodological point of view, it gives the opportunity to introduce local adaptability

in the denoising process. For patch-based denoising, this improvement is of the

same order as was, for pixel-based denoising, edge-preserving filtering [Per&Mal90,

Cha+97] over isotropic filtering.

8.2 Neighborhood constrained denoising

8.2.1 Entropy-based energy

The inverse problem of image restoration can be formulated as a minimization

problem. As mentioned in Section 8.1, natural images exhibit correlations among

the patches which compose them. This correlation should be accounted for in

deriving a restoration procedure.

Let h be the conditional entropy of patches, i.e., the uncertainty on the color

of a pixel when its neighborhood is known. Let X be a random variable modeling

the color of the pixels of an image. Let D be the set of pixels of the image domain

and let C be a structure of neighborhood of a pixel in D. The random vector

Y = {X(t), t ∈ C} represents the set of colors of the neighbors of a pixel. The

random vector Z = (X,Y ) denotes the corresponding patch. A denoised version of

a noisy image can be recovered by minimizing the entropy of X conditional on Y

X∗ = arg min
X

h(X|Y ) (8.1)

= arg min
X

∫

y
h(X|Y = y) fy(y) dy (8.2)

= arg min
X

EY [h(X|Y )] (8.3)

where fy is the probability density function (PDF) of Y . This PDF is unknown since

it refers to noiseless neighborhoods. However, a sample ỹs of noisy neighborhood



Chapter 8. Denoising 71

can be extracted from the noisy observation at each pixel s of D. Therefore, the

problem (8.3) is replaced with

X∗ = arg min
X

1

|D|
∑

s∈D

h(X|Y = ỹs), (8.4)

which is, up to the fact that ys is a noisy version of a neighborhood, an approxima-

tion of it. Actually,

1

|D|
∑

s∈D

h(X|Y = ỹs) ≃ h(X|Ỹ ) (8.5)

where Ỹ denotes the random vector of noisy neighborhoods, so that the problem

that will be (approximately) solved is rather

X∗ = arg min
X

h(X|Ỹ ) . (8.6)

First of all, let us check that h(X|Y ) is, in theory, a suitable energy for denoising.

Then, it will be verified that the practical alternative h(X|Ỹ ) is also valid.

8.2.2 Proof of adequacy

The conditional entropy of patches represents the uncertainty on the color X of a

pixel when its neighborhood Y is known. Due to the spatial correlation between

a pixel and its neighborhood, this conditional uncertainty is generally small in

average. When adding noise to the image, some of the information carried by the

neighborhood is lost, so that the uncertainty of a pixel knowing its neighborhood

tends to be higher in average. This is formally stated by the following proposition.

Proposition 8.1. Let X be a random variable and Y a random vector representing

its neighborhood. Let X̃ be the sum of X and a white noise#1 independent of X.

Similarly, let Ỹ be a noisy neighborhood vector. Then,

h(X̃|Ỹ ) ≥ h(X|Y ) . (8.7)

Proof. By definition,

h(X̃|Ỹ ) = H(X̃)− I(X̃; Ỹ ) (8.8)

and

h(X|Y ) = H(X)− I(X;Y ) (8.9)

#1The samples are assumed to be statistically independent.
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where H denotes entropy and I denotes mutual information. The entropy H(X̃) is

greater than H(X) since the sum of two independent random variables increases

the entropy [Cov&Tho91]. Then, it is sufficient to prove that I(X;Y ) ≥ I(X̃; Ỹ ).
Let N and M be such that X̃ = X +N and Ỹ = Y +M , both N and M being

independent of X and Y . Then,

P (Ỹ |X,Y ) = P (Y +M |X,Y ) (8.10)

= P (M |X,Y ) (8.11)

= P (M |Y ) (8.12)

= P (Y +M |Y ) . (8.13)

Therefore, X → Y → Ỹ forms a Markov chain. Thus, according to the data

processing inequality [Cov&Tho91], we have

I(X;Y ) ≥ I(X; Ỹ ) = I(Ỹ ;X) . (8.14)

We can also write

P (X̃|X, Ỹ ) = P (X +N |X, Ỹ ) (8.15)

= P (N |X, Ỹ ) (8.16)

= P (N |X) (8.17)

= P (X +N |X) . (8.18)

Therefore, Ỹ → X → X̃ also forms a Markov chain. It can be concluded that

I(Ỹ ;X) ≥ I(Ỹ ; X̃). (8.19)

Finally, by combining (8.14) and (8.19), we have

I(X;Y ) ≥ I(X̃; Ỹ ) . (8.20)

Proposition 8.1 supports the intuition that the minimization of the conditional

entropy is an appropriate denoising approach. However, in practice, X must be

recovered while the noiseless neighborhood Y is also unknown. Ỹ can be inferred

from realizations of the observation X̃, though. Hence, an inequality involving

h(X|Ỹ ) would better justify an algorithm based on conditional entropy.

Proposition 8.2. The conditions are the same as in Prop. 8.1. Then,

h(X̃|Ỹ ) ≥ h(X|Ỹ ) . (8.21)
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Proof. Inequality (8.19) can be developed as follows

I(Ỹ ;X) ≥ I(Ỹ ; X̃) (8.22)

⇔ H(X)− h(X|Ỹ ) ≥ H(X̃)− h(X̃|Ỹ ) (8.23)

⇔ h(X̃|Ỹ ) ≥ h(X|Ỹ ) +H(X̃)−H(X)
︸ ︷︷ ︸

Positif

(8.24)

⇔ h(X̃|Ỹ ) ≥ h(X|Ỹ ) . (8.25)

As a consequence, the random variable X associated with the noiseless image

is also a minimizer of the conditional entropy when the noisy neighborhood Ỹ is

known.

Figure 8.1 illustrates for several images and noise levels the behavior of the

conditional entropy before and after denoising#2 with respect to the lower bound

h(X|Ỹ ). As expected, the conditional entropy h(X̃|Ỹ ) of the noisy image is greater

than or equal to the conditional entropy h(X∗|Ỹ ) of the denoised image for all

noise levels. However, the conditional entropy of the denoised image is occasionally

lower than the theoretic lower bound. This is explained by the fact that rapidly

varying textures are interpreted as noise and therefore partially degraded by the

denoising process. It is clearly noticeable when no noise is added to the images

“Aerial” and “Baboon”: the denoising algorithm does not leave the image unchanged,

causing the conditional entropy to fall below the lower bound. This is not a caveat

specific to the proposed method but rather an inevitable behavior of denoising

algorithms. Fortunately, such a behavior, when present with the proposed method,

seems to become less pronounced at high noise levels.

8.2.3 Energy derivative

Classically, one can use a gradient descent procedure to solve the minimization

problem (8.6). As a consequence, the derivative of the conditional entropy of the

color of a pixel knowing its neighborhood must be determined.

Considering (8.5), it can be shown that the derivative of h(X|Ỹ ) with respect

to the pixel color xs can be approximated as follows (see Appendix D)

∂h(X|Ỹ )

∂xs
(xs) ≃ −

1

|D|
∇fz

fz
(zs) ·

∂zs
∂xs

(8.26)

where zs is equal to (xs, ỹs) with ỹs being the observed noisy neighborhood of the

observed noisy pixel x̃s. Thus, this derivative can be estimated by a mean shift term

(see Section 2.2.4) in the high dimensional space of Z multiplied by a projection

term.

#2The denoising method is described in the subsequent sections. However, some results are already

used here without further details for illustration.
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Aerial Baboon

Lena

Figure 8.1 – Behavior of the conditional entropy before and after denoising. � — Conditional

entropy h(X̃|Ỹ ) of the noisy image, ▽ — Conditional entropy h(X∗|Ỹ ) after denoising with the

proposed method, ◦— The lower bound h(X|Ỹ ) (see the comments in the body of text concerning

the apparent contradiction). The images “Aerial”, “Baboon”, and “Lena” can be seen in following

figures.

8.3 Toward locally adaptive kNN

The purpose is to develop a locally adaptive kNN-based approach. To this end,

part of the reasoning will be made in the global case and then further extended to

involve adaptability.

8.3.1 Global approach using kNN

Description. Let {z} denote a set of patch samples of R
d drawn according to the

PDF fz. Let z be a point of R
d. In the kNN framework, the mean shift approximation
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at z is given by [Fuk&Hos75]

∇fz

fz
(z) ≃ d+ 2

ρ2
k









1

k

∑

zti
∈{z}

|zti
−z|≤ρk

zti − z









(8.27)

where ρk is a short notation for the distance from z to its k-th nearest neighbor in

{z}. In the expression (8.27), all the neighbors zti , i ∈ [1..k], are equally weighted

by 1/k. In classical pixel-based filtering, the counterpart is a spatial filter of size√
k×
√
k with all the coefficients equal to 1/k. Of course, smoothly decaying filters

are usually preferred to this rectangular function. Such filters assign lower weights

to pixels spatially faraway from the filter center. It seems natural to modify (8.27)

in a similar manner, the spatial pixel distance being replaced with the distance

between patches

∇fz

fz
(z) ≃ d+ 2

ρ2
k









1
∑k

j=1wti

∑

zti
∈{z}

|zti
−z|≤ρk

wtizti − z









. (8.28)

The following weights have been proposed in NL-means [Bua+05a, Bua+05b]

wti = exp

(

−|zti − z|
2

α

)

= exp

(

−ρ
2
i

α

)

(8.29)

where α is a positive constant chosen according to the standard deviation σ of the

noise. When the noise level is not or imprecisely known, the algorithm perfor-

mances are not optimal. Thanks to the kNN point of view, a reasonable estimation

of α can be proposed – see below.

kNN noise estimation. As was pointed out [Bua+05a, Bua+05b], the Euclidean

distance maintains, in expectation, the same order of similarity between patches

before and after addition of noise. Formally, it can be shown that

E
[

|Z̃ti − Z̃tk |2
]

= |Zti − Ztk |2 + 2σ2 (8.30)

where the norm |z| must be understood as (zT m z)0.5, m being a weighting kernel

whose coefficients sum to 1, and σ is the standard deviation of the noise. If we

assume that, for any given patch zti , there exist at least k patches similar enough

to zti in the image, then |zti − zk|2 is negligible. Therefore, the left-hand side
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of (8.30) represents a good estimation of 2σ2. This left-hand side term can then be

approximated in the kNN framework with ρ̄2
k, the average value of ρ2

k for all the

patches of the image. Then,

σ2 ≈ ρ̄2
k

2
. (8.31)

The estimation (8.31) seems accurate enough and the proposed denoising method

appears to be stable with respect to the parameter k: for several noise levels and 3

noise level estimations (the actual standard deviation,
√

(ρ̄2
1), and (8.31)), Fig. 8.2

shows the root mean squared error (RMSE) and the structural similarity index

(SSIM) of image “Lena” after denoising as a function of k. Even though (8.31)

seems reliable, it must be kept in mind that this is certainly an overestimation since

|Zti − Ztk |2 has been neglected. Therefore, the proposed expression for α is

α = β ρ̄2
k (8.32)

where β can be tuned within the interval [0, 1/2] for optimal performances.

The weights wti are a function of the distance between zti and z. They corre-

spond to the sampling of a predefined, continuous, univariate, real-valued weight-

ing function w at abscissa ρi = |zti − z|, i ∈ [1..k]. As long as this function does

not explicitly depend on z or zti , the denoising procedure remains global – see

Section 8.4.3. One might want to introduce local adaptability to better preserve

certain image structures.

8.3.2 Adaptively Weighted kNN (AWkNN)

Let us analyze the behavior of (8.29). Assume z belongs to the sample set {z}. If

the k nearest neighbors of z are not very similar to it, then the distances |zti − z|2
are large and the corresponding wti ’s are low, except for z itself. Then, the weighted

patch average is very close to z and the derivative (8.28) is almost equal to zero,

which is supposed to mean that convergence has been reached. This situation

could mainly arise for two reasons: (i) the image does not contain enough samples

of the texture represented by z or (ii) the noise level is significant. In other words,

the noise might be high and yet denoising will not occur.#3 This sounds counter

intuitive.

On the other hand, if the k nearest neighbors of z are very similar to it, then the

distances |zti − z|2 are small and the corresponding wti ’s are large and close to the

weight of z itself. Therefore, the k neighbors will all have an influence comparable

to the one of z in the weighted patch average. This situation could mainly arise

when most of the noise was gotten rid of. In short, noise is likely to be negligible

#3Naturally, if case (i) is true, then denoising would cause a degradation of the image but, as

already mentioned, this is inevitable.
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Figure 8.2 – RMSE and SSIM index of image “Lena” after denoising as a function of k for several

noise levels. The estimated noise level σ̂ was taken equal to either the actual value σ (curves with

square markers –�–),
p

(ρ̄2
1) (curves with cross markers –×–), or

p

(ρ̄2
k)/
√

2 (curves with diamond

markers –⋄–).
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and yet denoising will occur. This sounds unnecessary and could possibly induce a

slight oversmoothing.

The idea is then to enforce the opposite behavior by involving ρ2
k in the weights

instead of ρ̄2
k, replacing wti in (8.28) with

ati = exp

(

− ρ2
i

β ρ2
k

)

. (8.33)

While the corresponding continuous weighting function a is, just like w, evaluated

at ρi, i ∈ [1..k], it depends on ρk which itself depends (implicitly) on z whereas ρ̄2
k

involved in the expression of w is a pre-computed constant. Hence, (8.33) clearly

brings local adaptability. Let us check precisely how. The weight ati is maximum

for z and minimum equal to exp(−1/β) for the k-th nearest neighbor of z, whether

it is close to or faraway from z in terms of patch distance. Therefore, whenever

the noise level is high, the following happens: ρ2
k is large, the weighting function a

has a large bandwidth, and several neighbors will get involved in the denoising

process with significant weights. Conversely, if the noise is negligible, then ρ2
k is

small, the weighting function a has a reduced bandwidth, and only those neighbors

very close to z will get significantly involved in the averaging, avoiding unnecessary

smoothing.

8.4 Denoising method

8.4.1 Synthesis of the previous developments

The proposed denoising method relies on minimizing an energy defined as the

conditional entropy h of the color of pixels knowing their neighborhood. The

derivative (8.26) combined with (8.28) was determined to solve this problem

with a gradient descent. The weights wti in (8.28) were replaced with (8.33)

to introduce local adaptability. Note that for comparison purposes, the global

weights (8.29) will also be used in some experiments.

The main computations in the implementation of the method are searches for k
nearest neighbors in the space of patches. As this is costly, these searches can be

restricted to a search area centered around the patch of interest. Table 8.1 presents

the steps of the denoising algorithm.

Let us make some remarks about this code. First, the norm in |zs − zt| should

be understood in a broad sense. And indeed, we did not use the L2 norm but

a weighted version |zs − zt| = [(zs − zt)T m (zs − zt)]0.5 where aT denotes the

transpose of a and m is a kernel employed to give relatively less importance to the

pixels close to the edges of a patch.

Second, a discrete gradient descent normally writes as

x∗s ← x∗s + dτ (−∇s) (8.34)
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1. Let x̃ be the noisy image

2. Initialization: x∗ ← x̃

3. Temporary copy: x← x∗

4. For each pixel s of D

• Let zs be the patch of radius r formed by

the pixel color x∗s and

the neighborhood ỹs = {x̃t, t ∈ Cs}
where Cs is the neighborhood of radius r of the pixel s

• Let A(s) be the search area of radius w centered at s

• For each pixel t ∈ A(s)

ρ(s, t)← |zs − zt| (a)

• Select the k nearest patches zt, i.e., the ti’s such that

0 = ρ(s, t1 = s) ≤ ρ(s, t2) ≤ · · · ≤ ρ(s, tk) (b)

• For each patch zti , i ∈ [1..k]

ati ← exp

(

− ρ2(s, ti)

β ρ2(s, tk)

)

(c)

• Perform the following update

x∗s ←
1

∑k
i=1 ati

k∑

i=1

ati xti (d)

5. If x∗ did not change significantly during this procedure, then the algorithm is

supposed to have converged and x∗ is the denoised image.

Otherwise, go back to step 3.

Table 8.1 – Pseudocode of the proposed denoising algorithm.
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where, here, the derivative ∇ is such that

∇s = − 1

|D|
d+ 2

ρ2
k

(

1
∑k

i=1 ati

k∑

i=1

atizti − zs
)

· v (8.35)

= − 1

|D|
d+ 2

ρ2
k

(

1
∑k

i=1 ati

k∑

i=1

atix
∗
ti − x

∗
s

)

(8.36)

where v is a vector of projection whose components are all zeros expect the

component corresponding to the pixel x∗s which has a value of 1. It can be deduced

that Tab. 8.1-(d) corresponds to choosing

dτ = ρ2
k|D| / (d+ 2) . (8.37)

Third, note that Tab. 8.1-(d) explicitly writes as a filtering process. This was

expected given the established relationship between NL-means and neighbor-

hood/bilateral filtering [Tom&Man98, Bua+05b]. Equivalently, one can recognize

the expression of a barycenter, again in accordance with the known interpretation

of bilateral filtering as a (restricted) mean shift procedure [Bar&Com04].

Finally, it has been noted that the weight a1, being always equal to one, gives

too much influence to xt1=s relatively to the other neighbors [Bua+05a, Bua+05b].

Therefore, the common, heuristical solution has been adopted. It consists in

replacing at1 with maxi∈[2..k] ati = at2 after the computations Tab. 8.1-(c).

8.4.2 Some remarks about NL-means and UINTA

Variational interpretation of NL-means. In (8.33), let us replace β ρ2
k with σ2

where σ is the standard deviation of the noise. This modification inhibits local

adaptability. In Tab. 8.1-(d), let us replace the weighted sum over the k nearest

neighbors with the weighted sum over all the patches of the search area A(s).
Finally, in Tab. 8.1, instead of performing iterations until convergence, stop the

algorithm at the end of the first iteration. The resulting algorithm is an implemen-

tation of NL-means [Bua+05a, Bua+05b]. Since the proposed method minimizes

the conditional entropy h of the color of a pixel knowing its neighborhood, this

observation provides a statistically founded, variational interpretation to NL-means

as one step toward the minimization of h without local adaptability.

A deterministic, variational interpretation of NL-means as one step of a fixed-

point iteration has been shown, up to a slight modification of the kernel, in the scope

of optimization of nonlocal functionals [Kin+05]. Following a similar approach,

an analogy can also be made between NL-means and an iteration of the Jacobi

method [Gil&Osh07]. Additionally, a connection between neighborhood filters and

diffusion Partial Differential Equations (PDEs) was established [Bua+06].
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Highlight on some differences with UINTA. The proposed method has the same

starting point as UINTA [Awa&Whi06]: the variational formulation (8.1). From

there, mainly three differences distinguish the two developments and the resulting

methods. First, the kNN framework was preferred here to the classical Parzen

windowing in order to automatically adapt to the local sample density. Second, our

approach introduces local adaptability into patch-based denoising.

The third significant difference, which has crucial consequences, is the inter-

pretation of the energy derivative. In [Awa&Whi06], similarly to (8.26), it involves

a patch-based derivative and a projection term onto a pixel. In implementing the

gradient descent, UINTA alternately updates the pixels x and the neighborhoods

y. Actually, the problem (8.1) would ideally be solved analytically as stated: find

the values of the pixels which minimize the conditional entropy h knowing their

(fixed) neighborhoods. For this reason, an iterative scheme should only update the

pixels according to the projected derivative,#4 working with mixed noisy/denoised

patches z where the pixels are taken in the current estimation x∗ and the neighbor-

hoods are kept equal to the original noisy ones extracted in the noisy image x̃ – see

Tab. 8.1. This has two consequences. First, since the proposed algorithm maintains

a fixed reference, it converges in a few iterations instead of drifting away from the

observation. Second, if one lets the UINTA algorithm iterate, geometrical artifacts

appear in the denoised image. The conditional entropy decreases when more

and more similar patches are encountered. Intuitively, one feels that updating the

neighborhoods will lead to the creation of repeated patterns which exaggerate some

structures of the original image. This phenomenon has been observed [Bro&Cre07].

8.4.3 Introducing local adaptability into feature-based denoising

A simplistic chronology of denoising approaches could be: (i) global pixel-level de-

noising, (ii) locally adaptive pixel-level denoising, (iii) global patch-level denoising,

and (iv) locally adaptive patch-level denoising.

(i) By pixel-level, we refer to classical filtering where the weight of a pixel only

depends on its distance to the pixel of interest. Such a filter can be, e.g., a Gaussian

whose argument is a real number representing a spatial distance between two

pixels. By global, we mean that the Gaussian has a fixed bandwidth. Therefore,

anywhere in the image, the filtering is the same.

(ii) By locally adaptive pixel-level denoising, we refer to edge-preserving meth-

ods [Per&Mal90, Cha+97]. Sticking with the Gaussian example, its bandwidth is

made variable and dependent of the local color information. Typically, if local

color variability is high, the bandwidth is reduced to avoid damaging this abrupt

variation, or edge.

(iii) By patch-level, we refer to the present context with methods such as NL-

means and UINTA. The argument of the Gaussian is still a real number but it now

#4Projection from the space of Z onto the space of X.
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Fabric.0000 Fabric.0009 Fabric.0017

Food.0000 hexholes-1.5.2 raffia-1.2.10

Figure 8.3 – Six of the 40 textures used for denoising tests.

represents a color distance between two patches, wherever they are in the image.

Yet, as long as the Gaussian bandwidth is fixed, the method is considered global.

(iv) The proposed method introduces local adaptability by letting the Gaussian

bandwidth depend on the variability among the k nearest patches. This follows

the same philosophy as (ii) except that the considered patches are visual neighbors

as opposed to spatial neighbors. Of course, patch-based methods can be thought

of as a particular case of feature-based methods. What is valid for patches and

the Euclidean distance should also be valid for other features and their associated

metric.

8.5 Illustrative experiments

The authors of NL-means [Bua+05a, Bua+05b] made public an implementation of

their algorithm. This implementation takes grayscale images as input. Therefore,

in the following (brief) comparison, only grayscale images will be presented. A

result of inpainting of a color image, whose algorithm relies on the same point of

view as the present one, will be shown in Section 10.1.

The performances of NL-means and the proposed method, referred to as AW-

kNN, were compared on a set of 40 textures part of a larger database publicly

available [MIT02]. Six of them are shown in Fig. 8.3. Before processing, the images
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NL-means AWkNN

Texture w r h RMSE RMSE w r k β Its.

Fabric.0000 4 5 0.8 10.26 11.43 4 4 20 0.3 2

Fabric.0004 7 2 0.8 12.08 14.61 10 4 20 0.3 2

Fabric.0007 15 2 0.8 12.32 12.93 15 5 20 0.3 2

Fabric.0009 15 2 0.8 19.99 19.95 4 2 20 0.3 1

Fabric.0015 15 2 0.8 13.40 13.48 15 2 40 0.3 2

Fabric.0017 15 2 0.8 17.26 17.89 15 2 20 0.3 2

Fabric.0018 15 2 0.8 19.06 19.62 15 2 20 0.3 2

Food.0000 4 4 0.8 14.05 14.43 15 2 20 0.3 2

Food.0005 15 2 0.8 17.04 17.08 15 2 20 0.3 2

Leaves.0003 4 5 1 14.15 14.61 15 2 20 0.3 2

Leaves.0012 15 2 1 15.62 15.98 15 2 20 0.3 2

Leaves.0013 15 5 0.8 10.01 9.75 15 5 20 0.3 2

Metal.0000 15 2 0.8 20.92 19.95 4 2 20 0.3 1

Metal.0002 15 2 0.8 19.61 19.95 4 2 20 0.3 1

Misc.0000 15 2 1 12.14 13.37 15 2 20 0.3 2

Misc.0002 4 5 0.8 9.79 10.09 4 5 20 0.3 2

Stone.0005 15 2 0.6 14.76 15.20 15 2 40 0.3 2

Water.0001 7 5 1 6.20 6.29 15 5 60 0.3 3

Water.0006 4 5 0.8 7.83 7.76 15 3 40 0.3 3

Table 8.2 – Comparison of NL-means and AWkNN on a set of textures. The parameter w is the radius

of the search window A, r is the radius of the patches z, h is expressed in fractions of the standard

deviation of the noise σ (the recommended value for h is σ [Bua+05a, Bua+05b]), and Its. is the

optimal number of iterations of AWkNN – Table continued in Tab. 8.3.

were cropped to 64×64. A Gaussian noise with a mean equal to zero and a standard

deviation σ equal to 20 was added. For each image, Tabs. 8.2 and 8.3 present the

best result of NL-means and AWkNN in terms of RMSE among the experiments

performed for all the combinations of parameters (see Tab. 8.2 for the notations)

taken in the sets:

• w ∈ {4, 7, 10, 15},

• r ∈ {2, 3, 4, 5},

• h/σ ∈ {0.6, 0.8, 1.0, 1.2},

• k ∈ {20, 40, 60, 80}, and

• β ∈ {0.3, 0.4, 0.5, 0.6}.

It should be noted that AWkNN usually reaches the lowest RMSE before conver-

gence. The textures are probably degraded when iterating too much. The iteration
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NL-means AWkNN

Texture w r h RMSE RMSE w r k β Its.

beachsand-1.2.7 15 2 0.8 20.71 19.95 4 2 20 0.3 1

calfleath-1.1.6 15 2 0.8 14.64 14.59 15 2 40 0.3 2

calfleath-1.2.6 15 2 1 19.83 19.95 4 2 20 0.3 1

grass-1.1.1 15 2 0.8 17.99 18.82 15 2 20 0.3 2

grass-1.5.7 15 2 0.8 11.89 11.75 4 5 20 0.3 2

gravel-1.5.5 4 5 1 8.09 9.09 4 5 40 0.3 2

hexholes-1.5.2 15 2 1.2 9.16 9.91 15 2 40 0.3 2

image38 15 2 0.8 12.42 12.67 15 2 40 0.4 2

pigskin-1.1.11 7 2 0.8 11.57 11.61 4 5 20 0.3 2

pigskin-1.2.11 15 2 0.8 20.88 19.95 4 2 20 0.3 1

plasticbubs-1.1.13 4 5 0.8 11.18 11.69 7 5 20 0.3 2

raffia-1.1.10 15 5 0.6 11.45 11.45 15 5 20 0.3 2

raffia-1.2.10 15 2 1 16.65 17.76 15 2 20 0.3 2

roughwall-1.5.3 4 5 0.8 10.22 10.85 4 5 20 0.3 2

sand-1.5.4 15 3 0.6 12.36 13.38 15 5 20 0.3 2

water-1.1.8 15 5 0.6 8.99 8.69 15 5 20 0.3 3

water-1.2.8 15 2 1 17.91 18.70 15 2 20 0.3 2

woodgrain-1.1.9 15 5 0.6 9.38 9.33 10 5 40 0.3 2

woodgrain-1.2.9 15 4 0.8 15.07 15.59 15 2 20 0.3 2

woolencloth-1.1.5 15 4 0.6 12.23 12.24 15 3 80 0.3 2

woolencloth-1.2.5 15 2 0.8 21.24 19.95 4 2 20 0.3 1

RMSE: µr ± σr 14 ± 4.2 14.3 ± 4.0

Table 8.3 – Continuation of Tab. 8.2. The last row shows the mean µr and standard deviation σr of

the RMSEs for each method.

numbers in Tabs. 8.2 and 8.3 reflect this condition of optimality rather than the

convergence.

In light of these results, it appears that both methods performed equally well on

these texture images. Therefore, as is, the local adaptability does not bring much.

Some alternatives to (8.33) should be envisioned in order to improve AWkNN.

Another series of experiments was conducted with the images “Aerial”, “Ba-

boon”, and “Lena”. The experimental setup was identical to the one for the textures.

The results are presented in Figs. 8.4, 8.5, and 8.6, and some quantitative measures

are given in Tab. 8.4. Although, NL-means achieved lower optimal RMSEs

with all three images, the difference with AWkNN is truly significant on “Lena”

only. On average over all the parameter combinations, AWkNN performed better

on “Aerial” and “Baboon”. This tendency, that could already be guessed with the

experiments on textures, indicates that AWkNN might be a bit more stable with
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Original Noisy (cropped)

NL-means AWkNN

Figure 8.4 – Denoising of the image “Aerial”. The result produced by AWkNN seems more natural.

respect to the choice of the parameters. Naturally, a deeper study is necessary

before possibly drawing any conclusion. Regarding the parameters, AWkNN has

two more than NL-means: β and the optimal number of iterations. However, in

practice, it appears that both admit generic values for the type of images that were

tested, namely, β = 0.3 and Its. = 2. Finally, when fixing w, r, β, and Its. to the

values corresponding to the optimal result for a given image, the influence of k
beyond a certain value is relatively small in terms of RMSE – the figures were not

included in the document.

Apparently, NL-means produces slightly over-smoothed images while AWkNN

does not fully get rid of the noise. This is particularly noticeable on “Lena”, which

contains many homogeneous or slowly varying areas – see Fig. 8.6. In these
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Original Noisy (cropped)

NL-means AWkNN

Figure 8.5 – Denoising of the image “Baboon”.

regions, NL-means performs very well since oversmoothing has little consequences.

However, the hat feathers are better preserved by AWkNN. The other two images

are more textured. In such a situation, the denoising results of AWkNN seem

somewhat more natural. It is especially visible on “Aerial” – see Fig. 8.4. This

encourages to investigate whether alternative ways to define local adaptability

could still allow the preservation of textures while better recovering homogeneous

areas.
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Original (cropped) Noisy (cropped)

NL-means (cropped) AWkNN (cropped)

Figure 8.6 – Denoising of the image “Lena”. The homogeneous areas are well recovered by NL-means

whereas AWkNN better preserves the textures.
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NL-means AWkNN

w r h RMSE RMSE w r k β Its.

Aerial 10 2 0.8 13.331 13.575 15 4 80 0.4 2

15 2 0.8 13.332 13.575 15 5 60 0.4 2

13.575 15 5 80 0.4 2

RMSE: µr ± σr 14.63 ± 1.09 14.49 ± 1.13

Baboon 10 2 0.8 12.648 13.139 10 5 80 0.4 2

RMSE: µr ± σr 13.93 ± 1.11 13.89 ± 0.72

Lena 4 5 0.8 7.564 8.681 7 5 40 0.4 3

7 5 0.8 7.564

RMSE: µr ± σr 8.41 ± 0.65 9.36 ± 0.47

Table 8.4 – Quantitative denoising results for the images “Aerial”, “Baboon”, and “Lena” – see

Tabs. 8.2 and 8.3 for the notations.

8.6 Summary

The proposed development (cascading conditional entropy, mean shift and a kNN

approximation) provides a new variational interpretation of NL-means. It also

offers the possibility to adapt the denoising process locally. However, further

investigation is needed to better exploit this opportunity.

In practice, it is quite usual for denoising methods to have a parameter (such

as a threshold) whose optimal value depends on the noise level. It is the case of

NL-means. When the noise level can be guessed, it performs very well. However,

the sensitivity of the method with respect to this parameter might not be ideally low.

The proposed method seems to behave well regarding the tuning of its parameter

k. When k exceeds a certain value, the quality of denoising does not change

significantly as a function of k – at least in terms of RMSE.

Referring to the proposed method as an operator on an image, one can note that

this operator is not idempotent. Applying it again and again will produce images

less and less noisy but also, eventually, degraded. In such an iterative scenario,

the denoising operator should therefore be balanced with a data fidelity term,#5

preferably following the same information-theoretic inspiration.

#5As also suggested in [Kin+05].
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Tracking

Context

The goal of region-of-interest (ROI) tracking in a video sequence is to determine in

successive frames the region which best matches, in terms of a similarity measure,

a ROI defined in a reference frame. Some tracking methods define similarity

measures which combine several visual features into a probability density function

(PDF) representation, thus building a descriptive model of the ROI. This approach

implies dealing with PDFs with domains of definition of high dimension. To

overcome this obstacle, a standard solution is to assume independence between

the different features in order to bring out low-dimension marginal laws and/or to

make some parametric assumptions on the PDFs at the cost of generality.

Alternatively, these assumptions can be discarded by having recourse to the

Kullback-Leibler divergence expressed in the k nearest neighbor (kNN) framework.

In consequence, the divergence is estimated directly from the high-dimensional

samples (i.e., without explicit estimation of the underlying PDFs), adapting to

the local sample density. As an application, we defined 5, 7, and 13-dimensional

feature vectors gathering color information (including pixel-based, gradient-based

and patch-based) and spatial layout. The proposed procedure performs tracking

allowing for translation and scaling of the ROI.

9.1 Methodological choices

9.1.1 A statistical approach

Two classical similarity measures are the sum of squared differences (SSD) and

the sum of absolute differences (SAD) between the reference region-of-interest

(ROI) and a candidate region in a target frame. They impose a strict geometric

constraint since the underlying residual is computed with a deterministic pixel-

to-pixel correspondence between the reference ROI and the candidate region.

Therefore, they are not adapted to complex motions. Moreover, they implicitly

89
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correspond to parametric assumptions on the residual probability density function

(PDF) (respectively, Laplacian and Gaussian for the two examples above), which

might not help in efficiently accounting for outliers due, for example, to partial

occlusions.

An alternative is to adopt a statistical point of view by building a PDF from

the ROI and using it as a reference to be compared to a target PDF built from a

candidate region by means of a similarity measure. Such statistical methods account

for randomness and uncertainty in the observations, and therefore for complex

motions. The PDFs can be defined in a radiometric space [Com+00, Per+02], either

in grayscale or color. To improve the tracking accuracy, later developments tend to

show that more information is required. Different features were integrated into the

ROI PDF model, e.g., employing spatial derivative filters [Bro+03, Bro+04, Low04],

Gabor or wavelet filters [Par&Der02], and temporal filters [Bro+03, Bug&Per07].

A review of segmentation methods based on this framework was carried out

in [Cre+07].

While this increase of description features improves accuracy, their combi-

nation leads to high-dimensional PDFs. There exist efficient [Sco92, Ihl03] and

fast [Yan+03] methods to estimate multivariate PDFs using Parzen windowing.

However, due to the fixed cardinality of the data set, a limitation known as the

curse of dimensionality [Sco92] appears: as the dimension of the domain of defi-

nition of the PDFs gets higher, the domain sampling gets sparser. One can think

of dilating the Parzen window [Bug&Per07] so as to ensure that it will enclose

enough samples. However, the resulting PDFs are over-smoothed. Another stan-

dard solution is to assume independence between the different features in order to

bring out low-dimension marginal laws [Bro+03] and/or to make some parametric

assumptions on the PDFs [Elg+03]. While these solutions may be satisfactory in

some cases, they appear inappropriate for tracking – see Section 9.1.2.

9.1.2 High-dimensional feature space

The combination of color and geometry proved to be efficient for tracking. In some

works, spatial information has been added by means of a Gaussian weighting of

the samples according to their distance to the center of the ROI [Com+00, Per+02].

This weighting can be seen as a radial layout constraint. This approach has the

advantage not to add any dimension to the feature space. However, it lacks gen-

erality. Geometry can instead be added directly to the radiometric vector (or any

other feature vector), e.g., in the form of the Cartesian coordinates of the ROI

pixels [Elg+03]. In this case, independence between color and geometry can-

not be assumed in order to avoid to manipulate high-dimensional PDFs. Indeed,

geometry alone, seen as a random variable conditionally on the ROI, follows a

uniform distribution regardless of the ROI and, therefore, brings no information.

While considering color and geometry jointly, simplification can still be achieved
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by approximating the PDFs with parametric laws [Elg+03]. Nevertheless, fully

data-driven, nonparametric PDF estimation was advantageously applied to segmen-

tation [Aub+03, Kim+05, Her+06]. This approach will be followed.

In this context, the color and geometry feature space will be extended with

the gradient of the luminance and patches of the luminance [Bol+07, Bol+09].

The former was motivated by the fact that involving the gradient, besides being

efficient for keypoint matching [Low04, Mor&Yu09], has proved to increase accuracy

in another motion-related task, namely optical flow computation [Bro+04]. The

latter was motivated by works such as [Lee+03, Bua+05a, Car+08]. Finally, the k
nearest neighbor (kNN) framework will help handling the components of these

high-dimensional feature vectors jointly and to work in a locally adaptive manner

in the feature space, thus avoiding under or oversmoothing in processing the data

set [Bol+07, Bol+09].

The following development applies to feature spaces of arbitrary dimension.

In practice, though, the experiments presented in Sections 9.5 and 9.6 involve

features of dimension 5, 7, or 13.

9.1.3 Similarity measure

The kNN PDF estimators were proposed a while ago [Fix&Hod51, Lof&Que65].

Yet, they did not receive much attention since they are biased [Ter&Sco92, Sai02].

Recently though, corrective terms have been derived to cancel the bias, leading to

consistent kNN-based estimators of statistical measures such as entropy [Koz&Leo87,

Gor+05, Leo+08]. Moreover, even if the kNN PDF estimator is only adapted to high

dimensions [Ter&Sco92], the kNN entropy estimator appears to be accurate in both

low and high dimensions – see Section 5.4.2.

On these grounds, the Kullback-Leibler divergence between high-dimensional

PDFs will be suggested as a similarity measure for tracking. Although this measure

has already been proposed for this application [Elg+03, Fre&Zha04], here the

divergence will be expressed nonparametrically, with no assumptions, and directly

from the samples, i.e., without explicit estimation of the underlying PDFs. This

divergence estimator being well-adapted to high dimensions, it can be used with

extended radiometric/geometric feature spaces [Bol+07, Bol+09].

9.1.4 Notations

A statistical measureM function of a PDF fU (e.g., entropy) might appear asM(fU )
orM(U), where U is a set of samples drawn from fU . This notation may be used

whether it refers to the definition of the measure or a sample-based estimation of

it.
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9.2 Similarity measure between ROIs

9.2.1 Definition and motivation

Let Iref be the reference frame in which the ROI domain Ω is (user-)defined and

let Itgt be the target frame in which the region which best matches this reference

ROI (in terms of a given similarity measure) is to be searched for. Assume that Ω
is sampled on, e.g., a Cartesian grid. At each grid node i, a feature vector of R

d

describing the frame locally at i can be built. For convenience, the set of grid nodes

will also be denoted by Ω. Given the statistical approach chosen in Sections 9.1.2

and 9.1.3, the region search mentioned above amounts to finding the geometric

transformation Φ such that

Φ = arg min
ϕ

DKL(fTϕ , fR) (9.1)

where DKL is the Kullback-Leibler divergence (or information gain), and fR, re-

spectively fT , is the PDF of the reference feature samples R = {R(i), i ∈ Ω} in

Iref , respectively the PDF of the target feature samples Tϕ = {Tϕ(i), i ∈ Ω} in Itgt.
Whenever appropriate, U or V will be used as a generic notation for either R or

Tϕ.

The choice of a non-symmetric measure and, further, the choice of the order of

the arguments in (9.1) deserve to be motivated. Various works proposed symmetric

versions of the Kullback-Leibler divergence, e.g., J-divergence and Jensen-Shannon

divergence [Lin91]. Nevertheless, for tracking, DKL(fTϕ , fR) seems to be appro-

priate. Indeed, fTϕ can never be identical to fR due to noise, occlusion, motion

blur, and the fact that a frame is a projection onto a two-dimensional plane of a

three-dimensional scene. However, both should have the same main modes if they

correspond to the same object. Thus, the zero-forcing minimization enforces a

relevant behavior in trying to “align” the main modes of the PDFs – see Section 3.1.

In a way, it follows the same philosophy as the Bhattacharya coefficient,#1 a mea-

sure widely used for tracking since a mean shift-based implementation has been

proposed [Com+00].

9.2.2 Estimation in the kNN framework

The estimation of DKL(fTϕ , fR) in the kNN framework directly from the sample

sets R and Tϕ is described in Section 5.2.3. It is reminded here

DKL(fTϕ , fR) = log
|R|
|Tϕ|−1

+
d

|Tϕ|
∑

s∈Tϕ

log
ρk(R, s)

ρk(Tϕ, s)
. (9.2)

#1The Bhattacharya coefficient is only sensitive to mismatches within the intersection of the

supports of the PDFs while the (supposedly) secondary modes of the ROIs are located outside this

intersection.
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9.3 Feature space: handling geometry and radiometry

As noted earlier, the feature vectors combine radiometry and geometry. Radiometry

allows to check if the reference ROI and a candidate region have similar colors and

geometry allows to check with a given degree of strictness if these colors appear at

the same location in the regions. Sections 9.3.1, 9.3.2, and 9.3.3 describe three

levels of strictness. It is assumed that R and Tϕ contain radiometric information

only.

9.3.1 Geometry-free similarity measures

Classically, the similarity measure between the reference ROI and a candidate region

can be a distance between color histograms or, similarly, PDFs. The knowledge

of where a given color was present within the region is lost. For example, let us

mention the Bhattacharya coefficient [Com+00, Per+02]

DBHA(fTϕ , fR) =

∫

Rd

√

fR(t) fTϕ(t) dt (9.3)

where d is equal to three if all color components are used. The Kullback-Leibler

divergence on geometry-free PDFs will also be tested in Section 9.5.

Not accounting for the knowledge of where a given color is present allows more

flexibility regarding the geometric transformation ϕ between the reference ROI

and a candidate region. However, it increases the number of potential matches

and then the risk for the tracking to fail after a few frames. This can be avoided by

using a geometry-aware similarity measure.

9.3.2 Similarity measures with strict geometry

Geometry can be involved by means of a motion model (i.e., a constraint on ϕ)

used to compute a pointwise residual between the reference ROI and a candidate

region. A function of the residual can serve as a similarity measure: classically,

the SSD or functions used in robust estimation [Bla&Ana96] such as the SAD. The

geometric constraint being strictly defined by the motion model, these measures

might be less efficient if the model is not coherent with the actual motion. Indeed,

this might generate too many outliers in the residual, including in the framework

of robust estimation. Moreover, even if the model is globally coherent with the

actual motion, the choice of the function of the residual is implicitly linked to an

assumption on the PDF of the residual, e.g., Gaussian for SSD or Laplacian for SAD.

This might not be valid in case of occlusion for example.

To fix the ideas, let us assume that |Tϕ| = |R| and let us define the following
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notations

DSSD(Tϕ, R) =
∑

i∈Ω

(Tϕ(i)−R(i))2 (9.4)

and

DSAD(Tϕ, R) =
∑

i∈Ω

φ(Tϕ(i)−R(i)) (9.5)

where φ can be either the absolute value or a smooth approximation of it, e.g.,

φ(x) =
√
x2 + ǫ2 − ǫ [Wei&Sch01].

9.3.3 Similarity measures with soft geometry

The geometric constraint can be soften, e.g., by cascading a strict geometry ap-

proach and a radiometric approach [Bab+07] or, as proposed here, by adding

geometry to the PDF-based approach presented in Section 9.3.1, i.e., by defin-

ing a joint radiometric/geometric PDF [Elg+03, Bol+07]. Formally, the PDF fU

corresponding to the sample set {U(i), i ∈ Ω} is replaced with the PDF fU,i corre-

sponding to the sample set {(U(i), i), i ∈ Ω}. In general, i can be any couple of

independent spatial coordinates. For the ROI tracking application presented here,

normalized Cartesian coordinates (x, y) were chosen, meaning that (x, y) = (0, 0)
at the center of the bounding boxes of the reference ROI or candidate regions

and that max(max(|x|),max(|y|)) = 1 among the points of the bounding boxes.

Because geometry and radiometry are not comparable data, it might be useful or

even necessary to weight one relatively to the other. It was decided to multiply the

normalized coordinates by a spatial weight δ, resulting in max(max(|x|),max(|y|))
being equal to δ. As is clear, the extended feature space is a subset of R

5.

9.3.4 Enrichment of the radiometric features

As mentioned earlier, the proposed kNN framework is valid for any feature space

dimension d. In Section 9.5, it will be clear that color and geometry as combined

in Section 9.3.3 can provide enough information even in challenging situations.

Yet, if this accounts for the correlation between a color and its location, it does

not explicitly account for the correlation between the colors of neighboring pixels.

It could be done by involving, e.g., the color gradient or image patches [Lee+03,

Car+08] – see Section 9.6. The influence of the chosen feature space, involving

geometry and radiometry in several ways, is illustrated in Fig. 9.1. The following

radiometric features will be tested

• U(i) = I(i);

• U(i) =
(
I(i), γ∇IY (i)

)
;
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a b

c d e

Figure 9.1 – Influence of the feature space. The pixels in green are the 500 nearest neighbors of the

pixel marked with the white cross. The feature space is defined as [a] geometry only, [b] color only,

[c] color and geometry, [d] color, geometry, and gradient, and [e] 3×3-patch and geometry. Note

that when the gradient is added to color and geometry, most of the neighboring pixels are located

on edges with a gradient norm and orientation similar to the ones of the pixel of reference (besides

having a similar color and not being to far away in the image plane).

• and U(i) =
(
Patch3×3(IY )(i), IU (i), IV (i)

)
;

where IY is the luminance component of I, (IU , IV ) are the chrominance compo-

nents, Patch3×3(IY )(i) is a 3×3-patch of IY centered at i, and γ is a constant.

9.4 Tracking method

9.4.1 The main steps

The tracking is performed by minimizing the kNN Kullback-Leibler divergence (9.2)

with respect to ϕ, or actually a set of parameters defining ϕ. The chosen motion

model includes translation and scaling

ϕ(i) = i+M(i) p (9.6)

=

[
x
y

]

+

[
x 1 0
y 0 1

]




α− 1
u
v



 (9.7)
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where α is the scaling factor and (u, v) is the translation. The steps of the track-

ing algorithm are presented in Tab. 9.1. Starting from the frame Iref = I1, the

tracking result over T consecutive frames is represented by the set {ϕ(Itgt)} =
{ϕ(I2), ϕ(I3) . . . ϕ(IT )}.

9.4.2 Series of minimizations

The minimization of (9.2) with respect to ϕ = (α, u, v) can be performed by a

series of minimizations in (u, v) at α fixed. This decoupling allows to confine

α to a reasonable interval, e.g., [0.98, 1.02]. The minimizations in (u, v) can be

achieved by a gradient descent, setting the α-component of the gradient (9.8)

to zero. For computational considerations, they can instead be performed using

a suboptimal search procedure such as the diamond search [Zhu&Ma00], thus

following the approach for block matching of standard video coders. Naturally,

more sophisticated search techniques such as particle filters [Per+02],#2 also known

as sequential Monte Carlo methods, can be used.

9.4.3 Mean shift-based gradient descent

The estimator (9.2) being defined in the kNN framework, it is not differentiable.

Nonetheless, falling back on the Parzen formulation of the PDFs and the mean shift

approximation, the derivative of the Kullback-Leibler divergence can be determined

and then evaluated in the kNN framework. The corresponding development is

presented in Appendix E and leads to

∇ϕDKL(Tϕ, R) = − 1

k |Tϕ|
∑

s∈Tϕ

Ds(Tϕ)

(

d+ 2

ρ2
k(R, s)

∑

t∈Wρk(R,s)

(t− s)

− d+ 2

ρ2
k(Tϕ, s)

∑

t∈Wρk(Tϕ,s)

(t− s) −
∑

t∈Tϕ

|t−s|=ρk(Tϕ,t)

t− s
ρk(Tϕ, t)

)

(9.8)

where Ds(Tϕ) is a 3×d-matrix involving frame gradients and Wρk(·,s) is a window

of radius ρk(·, s) centered at sample s. As a consequence, the ROI tracking could

be solved by gradient descent in the space of the parameters (α, u, v) using the

kNN framework. However, the sensitivity of the similarity measure with respect

to the scaling α is much higher than the sensitivity with respect to translation.

In practice, this can lead to undesirable convergence behaviors such as finding a

match in the target frame at a scale different from the scale of the reference ROI

(especially much larger or much smaller). Therefore, a procedure based on a series

of minimizations might be preferable – see Section 9.4.2.

#2These methods are particularly efficient in case of total occlusion of the object of interest on

several frames.
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1. Set the parameters

• Neighboring order: k
e.g.← 3

• Spatial weight: δ
e.g.← 1

• Scaling factors: λ
e.g.← {0.98, 0.99, 1, 1.01, 1.02}

• Radiometric function: U(i)
e.g.
= I(i)

2. Manually select a ROI Ω in the reference frame Iref

(a) Let iR = (xR, yR) be the normalized Cartesian coordinate system relative

to Ω. Perform either 2b or 2c depending on the minimization strategy

(see below)

(b) Either: Set Rα = {(Iref(iR), αδiR), iR ∈ Ω} for all α ∈ λ
(c) Or: Set R = {(Iref(iR), δiR), iR ∈ Ω}

3. Let ϕ be the triplet (α, u, v) equal to (1, 0, 0) initially

4. For each remaining frame Itgt taken sequentially

(a) Let iT = (xT , yT ) be the normalized Cartesian coordinate system relative

to ϕ(Ω). Perform minimization using either strategy 4b or strategy 4c

(b) Either: Perform a series of minimizations (see Section 9.4.2):

i. For each β ∈ λ
• Determine the translation (m,n) such that

(m,n) = arg min
(a,b)

DKL(T(a,b), Rβ)

where T(a,b) = {Itgt(iT + (a, b)), δiT ), iT ∈ ϕ(Ω)}
• Let Dβ be equal to DKL(T(m,n), Rβ)

ii. Determine the triplet (β̃, m̃, ñ) that gave the lowest Dβ among the

|λ| loops of 4(b)i

(c) Or: Perform a gradient descent in (α, u, v) (see Section 9.4.3) to deter-

mine the triplet (β̃, m̃, ñ) that minimizes DKL(T(m,n), Rβ) where Rβ is

obtained by multiplying the geometry stored in R by β

(d) ϕ(Itgt)← ϕ = (α, u, v)← (α β̃, u+ m̃, v + ñ)

Table 9.1 – Pseudocode of the proposed tracking algorithm.
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9.5 Some experimental comparisons

The test sequences of this section were selected for the specific conditions they

exhibit, in particular, partial occlusions, variations of luminance, noise, and complex

motion – non-frontoparallel motion with rotation and motion blur.

9.5.1 Setup

The proposed kNN-based algorithm presented in Section 9.4 will be referred to as

kNN-KL-G where KL stands for Kullback-Leibler and G stands for geometry. It was

compared to four other trackers:

• kNN-KL – a geometry-free version of the proposed method;

• Pz-KL-G – a version of the proposed method where the kNN expression (9.2)

of the divergence was replaced with an estimation based on Parzen window-

ing;#3

• SAD – an SAD version of the algorithm described in Tab. 9.1, i.e., replacing

the Kullback-Leibler divergence in step 4(b)i with the dissimilarity (9.5);

• Mean-Shift – a mean shift-based tracker whose implementation is publicly

available [Col+05].

These comparisons focused on the pros and cons of the different similarity

measures and their approximations. To try to avoid corruption of the results by

other methodological aspects, the tracking algorithm was kept simple, purposely

setting aside improvements such as reference update and motion prediction. More-

over, for a fair comparison between the methods, the experimental setup of the

above-mentioned Mean-Shift implementation was followed, namely, a rectangular

reference ROI Ω (see Figs. 9.2, 9.4, and 9.8 for the dimensions) and a translation

motion model ϕ#4 with a pixel resolution. The chosen radiometric space was YUV

because the standard test sequences used in these experiments are available in this

color space.

For the kNN-based methods, the parameter k in (9.2) was chosen equal to 3,

which satisfies the conditions mentioned after (5.8). The distance ρk(U, s) to the

k-th nearest neighbor of s in U was computed in the classical Euclidean sense and

obtained using a publicly available toolbox [Got97].

The components of the feature vectors were normalized as follows: Y, U, and

V were rescaled into the interval [0, 1] and, as explained in Section 9.3.3, the

coordinates (x, y) were rescaled into [−1, 1], both in the reference ROI and the

#3This implementation is publicly available [Ihl03].
#4In other words, λ was set to {1} in Tab. 9.1.
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candidate regions, the origin being located at the center of the bounding box of the

region. The spatial weighting δ was taken equal to 1.

The minimization in ϕ = (u, v) was implemented using a suboptimal search

procedure known as the diamond search [Zhu&Ma00]. Tracking was performed

with Iref being set to I1 while Itgt was successively equal to It, t = 2, 3, 4 . . . When

searching for the ROI in frame It, the search area was empirically limited to ±12
pixels horizontally and vertically around the position of the center of the ROI

computed in frame It−1.

9.5.2 Partial occlusions

Sequence “Car” is part of the VIVID tracking testbed [Col+05]. It is composed

of 640×480-frames. Tracking was performed on 150 consecutive frames – see

Figs. 9.2 and 9.3. kNN-KL eventually lost the ROI and ended up tracking the

second car which has colors similar to the reference ROI. This is probably due to

the fact that it is based on radiometry only. Pz-KL-G also failed in tracking the

car. Mean-Shift performed quite well although the tracking shifted upward when

occlusion occurred in order to avoid including the green colors of the trees in the

PDF. Concerning SAD, the translation model being fairly well respected within the

ROI, taking the pointwise residual makes sense while the use of the absolute value

is robust to the outliers arising from the occlusion. As a consequence, the car was

accurately tracked. Finally, kNN-KL-G also performed very well.

9.5.3 Variations of luminance

Sequence “Crew” is composed of 352×288-frames. Two faces were tracked on 80

consecutive frames – see Figs. 9.4 and 9.5. kNN-KL-G tracked the faces successfully.

The other methods lost the ROIs sooner or later, apparently due to the variations of

luminance. This is particularly obvious with (i) Mean-Shift whose brutal changes in

tracking shift match the camera flashes in frames 16, 20, and 61 for the face on the

left, and in frames 1, 7, and 61 for the face on the right, and (ii) kNN-KL whose

tracking error seems to follow the curve of average intensity.

9.5.4 Noisy sequence

Sequence “Schnee” is composed of 768×576-frames. Two cars were tracked on

160 consecutive frames – see Figs. 9.6 and 9.7. This sequence can be considered

noisy due to the snowflakes which fall rather densely. Despite this “Salt” noise,

the two cars were accurately tracked by kNN-KL-G. The objects being small and

rather homogeneous, their motion could be considered as a translation. Therefore

the strict geometric constraint of SAD is not violated and it performed quite well.

Clearly, Mean-Shift was disturbed by the noise. The other two methods (kNN-KL

and Pz-KL-G) worked pretty well for one car. For the other car, Pz-KL-G performed
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Frame 1

Frame 30 (cropped)

Frame 60 (cropped)

Frame 90 (cropped)

Frame 120 (cropped) Frame 150

Figure 9.2 – Tracking on sequence “Car” (frame indices are relative to the reference frame).

Green • kNN-KL-G (proposed method), Cyan • kNN-KL, Magenta • Pz-KL-G, Red • Mean-

Shift, Black • SAD (white on the frames and black in the diagram). There are several frame drops

at frame 38 (vertical dashed line in the diagram) and the tracked car is partially occulted by trees

from frame 42 to frame 122 (gray area in the diagram). Ω: 95×47-rectangle – Figure continued in

Fig. 9.3.

reasonably well for almost half of the sequence while kNN-KL, which does not

account for geometry, failed immediately.

9.5.5 Complex motion

Sequence “Football” is composed of 352×288-frames. Tracking was performed on

20 consecutive frames – see Figs. 9.8 and 9.9. Note that part of the public has

colors similar to colors that can be found in the reference ROI. In some frames, this

area of the public is right above the ROI. This is probably the reason why kNN-KL

stayed stuck in this region. Moreover, as the player runs, he turns and almost faces

the camera toward the end of the sequence. Therefore, the translation model is

not appropriate. This can explain why SAD, which relies on a strict translation

model, lost the ROI in the first frames. Mean-Shift succeeded to track the ROI
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Figure 9.3 – Continuation of Fig. 9.2 – The diagram represents the shift (in percent of the ROI

diagonal length in pixel) with respect to a manually defined tracking as a function of the frame index.

approximately. However, it could not avoid being attracted by the public. The

geometric constraint of kNN-KL-G and Pz-KL-G allowed to avoid being attracted by

the public area (where the spatial arrangement of the colors is different from that

of the reference ROI) while being soft enough to deal with the mismatch between

the translation model and the actual motion. The resulting trackings are accurate.

(Nevertheless, kNN-KL-G performed better than Pz-KL-G, arguably because it relies

on variable kernel bandwidth.)

To support these conclusions, the dissimilarity between the reference ROI and

candidate regions in frame 20 was computed as a function of the translation

parameters for SAD, kNN-KL, Pz-KL-G, and kNN-KL-G – see Fig. 9.10. The SAD

minimum is shifted as a result of the inappropriateness of the translation model

between frame 1 and frame 20. kNN-KL has several local minima as there are

several possible matches when accounting for radiometry only. By adding geometry,

Pz-KL-G finds a unique minimum, although not at the right location. This is certainly

due to the reduced accuracy of the Parzen-based estimator of the statistical measure

in R
5. Finally, kNN-KL-G has a minimum that matches the correct motion. Also

note that the kNN-KL-G criterion seems strictly convex within a window around

the minimum. It is not surprising since the Kullback-Leibler divergence is indeed

strictly convex in its first argument. Let tm be defined as αt1 + (1− α)t2 for some
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Frame 1

Frame 20 (cropped)

Frame 40 (cropped)

Frame 60 Frame 80

Figure 9.4 – Tracking on sequence “Crew” (frame indices are relative to the reference frame).

Green • kNN-KL-G (proposed method), Cyan • kNN-KL, Magenta • Pz-KL-G, Red • Mean-

Shift, Black • SAD (white on the frames and black in the diagram). There are two kinds of intensity

changes in the sequence: a slight, continuous intensity increase as the crew walks out of a dark

area, and some strong and brief intensity peaks due to camera flashes (vertical dashed lines in the

diagrams). Ω: 33×52-rectangle – Figure continued in Fig. 9.5.

α in [0, 1]. Then,

DKL(tm, r) = α

[∫

Rd

t1(x) log tm(x) dx−
∫

Rd

t1(x) log r(x) dx

]

+ (1− α)

[∫

Rd

t2(x) log tm(x) dx−
∫

Rd

t2(x) log r(x) dx

]

(9.9)

≤ α
[∫

Rd

t1(x) log t1(x) dx−
∫

Rd

t1(x) log r(x) dx

]

+ (1− α)

[∫

Rd

t2(x) log t2(x) dx−
∫

Rd

t2(x) log r(x) dx

]

(9.10)

≤ αDKL(t1, r) + (1− α)DKL(t2, r) (9.11)

with equality if and only if t1 = tm and t2 = tm, i.e., t1 = t2. (The essential step

in this development is due to the cross-entropy H×(t, tm) being larger than the
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Figure 9.5 – Continuation of Fig. 9.4 – The diagrams represent the shift (in percent of the ROI

diagonal length in pixel) with respect to manually defined trackings as a function of the frame index.

The vertical axis on the right of each diagram corresponds to the blue dashed curves which represent

the evolution of the average intensity (Y component) within the manually defined trackings. The

average intensity in frame 1 is taken as a reference and the scale is in unit of intensity. Both the

continuous intensity increase and the camera flashes are noticeable.
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Frame 1

Frame 40 (cropped)

Frame 80 (cropped)

Frame 120 Frame 160

Figure 9.6 – Tracking on sequence “Schnee” (frame indices are relative to the reference frame).

Green • kNN-KL-G (proposed method), Cyan • kNN-KL, Magenta • Pz-KL-G, Red • Mean-

Shift, Black • SAD (white on the frames and black in the diagram). This sequence can be considered

noisy due to the snowflakes. Ω: a 38×42-square for the car on the left and a 34×42-square for the car

on the right – Figure continued in Fig. 9.7.

entropy of t.) This property of convexity is naturally interesting for the convergence

of optimization algorithms – the diamond search in our case.

9.5.6 Summary

The previous comparisons can be coarsely summarized by selecting the two or

three best and worst methods for each of the four sequences – see Tab. 9.2. The

conclusions that could be made are:

• kNN-KL almost always failed. This is a known effect of not taking geometry

into account (see Section 9.3.1);

• Mean-Shift failed in most of our tests (variation of illuminance and noise)

but can also perform quite well;
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Figure 9.7 – Continuation of Fig. 9.6 – The diagrams represent the shift (in percent of the ROI

diagonal) with respect to manually defined trackings as a function of the frame index.
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Frame 1

Frame 5 (cropped)

Frame 10 (cropped)

Frame 15 Frame 20

Figure 9.8 – Tracking on sequence “Football” (frame indices are relative to the reference frame).

Green • kNN-KL-G (proposed method), Cyan • kNN-KL, Magenta • Pz-KL-G, Red • Mean-

Shift, Black • SAD (white on the frames and black in the diagram). This sequence is characterized

by a non-frontoparallel motion and a fast motion generating motion blur. Moreover, the motion has

a rotational component responsible for the disappearance of some areas and the exposure of others.

Ω: 43×43-square – Figure continued in Fig. 9.9.

• SAD might represent a computationally efficient alternative to kNN-KL-G if

an average accuracy is considered satisfying for some task. Unfortunately, it

can fail completely when the motion is complex (see Fig. 9.8) since it relies

on a strict geometric constraint (see Section 9.3.2);

• The performance of Pz-KL-G ranges from reasonably good to terrible. It relies

on the Parzen approach instead of the proposed kNN framework to estimate

the chosen statistical measure, and therefore allows to illustrate the expected

advantages of kNN (see Chapter 5);

• Finally, kNN-KL-G represents the best option in all cases.
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Figure 9.9 – Continuation of Fig. 9.8 – The diagram represents the shift (in percent of the ROI

diagonal) with respect to a manually defined tracking as a function of the frame index.

Fig. Best results Worst results

9.2 kNN-KL-G, SAD & (to some ex-

tent) Mean-Shift

kNN-KL & Pz-KL-G

9.4a kNN-KL-G kNN-KL & Mean-Shift

9.4b kNN-KL-G & (to some extent)

SAD & Pz-KL-G

kNN-KL & Mean-Shift

9.6a kNN-KL-G & SAD kNN-KL & Mean-Shift

9.6b kNN-KL-G, SAD, kNN-KL & (to

some extent) Pz-KL-G

Mean-Shift

9.8 kNN-KL-G & Pz-KL-G kNN-KL & SAD

Table 9.2 – Summary of the comparisons on the four sequences “Car”, “Crew”, “Schnee”, and

“Football”. The “a” and “b” labels were added to distinguish between the ROIs when two simultaneous

trackings were performed.
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SAD kNN-KL

Pz-KL-G kNN-KL-G

Figure 9.10 – Dissimilarity between the reference ROI of sequence “Football” and candidate regions

in frame 20 as a function of horizontal and vertical translations. The dashed box is a 12×12-square

(the same size as the search window). The red spot at its center represents the correct translation.

The SAD and Pz-KL-G minima are shifted and kNN-KL has two local minima whereas the minimum

of kNN-KL-G seems accurate.

9.5.7 Stability with respect to k

To evaluate the stability of kNN-KL-G with respect to the choice of the parameter

k, tracking was performed on sequence “Football” with various values of k that

comply the conditions mentioned in Chapter 5. The tracking obtained for k equal

to 3 was taken as a reference and the average shifts over the 20 frames resulting

from using other values were measured – see Tab. 9.3. In the ith frame, the shift

si = (xi, yi) between the bounding box obtained for k = 3 and the bounding box

obtained for another value of k was determined. The line “Avg norm” in Tab. 9.3

corresponds to the average of the shift norm over the 20 frames (1/20)
∑

i |si|.
Clearly, as k gets further away from the chosen value of reference, the solution

of the tracking has also a tendency to shift away from the solution of reference.

This is not surprising and, looking at the numbers, this behavior is not excessive.

The following lines of Tab. 9.3 correspond to the norm and the orientation of the

sum of the shifts in the successive frames
∑

i si. These measures allow us to check
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Value of k 3 10 20 43=
√

|Ω|
Avg norm Ref. 0.46 1.69 2.65

Sum norm Ref. 0.60 1.80 1.30

Sum angle Ref. 118 -68 117

Table 9.3 – Stability of kNN-KL-G with respect to k: average norm of the tracking shifts, norm of the

sum of the shifts (both in percent of the ROI diagonal length in pixel), and orientation of the sum of

the shifts (in degree) taking the result obtained with k = 3 as a reference.

whether the shifts correspond to a consistent bias. Apparently, this is not the case

since the norm of the cumulated shifts does not increase consistently with k and the

orientations vary. In conclusion, as k increases, the tracking shift tends to oscillate

more and more around the solution for k = 3, but confined in an acceptable range

and without any obvious coherence. Therefore, the method appears to be quite

stable with respect to k.

9.6 Brief experimental study

9.6.1 Setup

In this section, the proposed method is compared with variants of itself. Conse-

quently, there are no constraints on the experimental setup. Then, scaling was

taken into account by choosing λ = {0.98, 0.99, 1, 1.01, 1.02}, and the gradient of

the luminance and patches of the luminance were optionally used as additional

radiometric features.

An extra sequence [Exc06] was used. It was available in the RGB space but,

to remain consistent with Section 9.5, it was converted to the YUV space before

processing. The components of the feature vectors were normalized as follows:

Y, U, and V, were rescaled into the interval [0, 1], the gradient of the luminance

Y (whenever used) was computed using the filter [−1, 9,−45, 0, 45,−9, 1]/60 and

rescaled using γ = 10, and, as a reminder, the local pixel coordinates (x, y) were

rescaled into [−1, 1]. These coordinates were further modified by applying the

spatial weighting δ for the target and the scaling αδ, α ∈ λ for the reference,

meaning that (xR, yR) actually belongs to the interval [−αδ, αδ]2 and (xT , yT )
belongs to [−δ, δ]2 (see Tab. 9.1).

The minimization in ϕ = (α, u, v) was either performed by a series of mini-

mizations at α fixed (see Section 9.4.2) implemented using a suboptimal search

procedure known as the diamond search [Zhu&Ma00], or by a gradient descent

procedure: for stability, the gradient (9.8) was normalized such that the translation

component has a norm equal to one and the scaling component is either 0.99, 1.00,

or 1.01. The former minimization strategy will be referred to as “Discrete search”

and the latter one as “Gradient search”.

The other aspects of the setup were identical to Section 9.5.1.
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Frame 1 (cropped) Frame 20 (cropped)

Frame 40 (cropped) Frame 60 (cropped)

Figure 9.11 – Tracking on sequence “Crew” (frame indices are relative to the reference frame).

δ = 1: dotted line; δ = 0.6: dashed line. Ω: 33×52-rectangle.

9.6.2 Influence of δ

A tracking was performed on 60 consecutive frames of sequence “Crew” using the

discrete search and two values of δ: 0.6 and 1. The radiometric information was

limited to color – see Fig. 9.11. As expected, the spatial weighting has an influence

on the tracking quality. Nevertheless, it is not dramatic since it seems to play mostly

on the duration the tracking can be considered accurate for rather than acting on

the stability of the processing.

9.6.3 Discrete search vs. gradient search

Sequence “Poltergay” [Exc06] is composed of 720×576-frames. Tracking was

performed on 100 consecutive frames using either the discrete search or the

gradient search, with δ = 0.8 and the feature space defined as (color, gradient of

the luminance, geometry) – see Fig. 9.12 and 9.13. As expected, the discrete

search performed better than the gradient search due to the presence of local

minima which can mislead a gradient descent – the gradient search performed

very decently, though. However, this is at the cost of a computational time 7 times

higher.
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Figure 9.12 – Tracking on sequence “Poltergay” (frame indices are relative to the reference frame).

Discrete search: dashed line; gradient search: plain line. Ω: 63×101-rectangle – Figure continued in

Fig. 9.13.
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Figure 9.13 – Continuation of Fig. 9.12 – The diagram represents the scaling of the ROI (parameter

α times 100) as a function of the frame index for the solution using the discrete search. To deduce

the scaling in terms of area, the values must be divided by 100 and squared. At the highest point, the

ROI is more than 4 times larger in area than Ω.
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Figure 9.14 – Tracking on sequence “Crew” (frame indices are relative to the reference frame).

Green •Without the gradient of the luminance, Yellow •With the gradient. Ω: 33×52-rectangle –

Figure continued in Fig. 9.15.

9.6.4 Gradient as an additional radiometric feature

A tracking was performed on 150 consecutive frames of sequence “Crew” using

the discrete search and δ = 0.6. The feature space was either (color, geometry) or

(color, gradient of the luminance, geometry) – see Figs. 9.14 and 9.15. Clearly, the

addition of the gradient improved the tracking accuracy. As mentioned earlier, any

other feature can be added without algorithm modifications. (It only add terms

to the Euclidean distance computation between the feature vectors during the

kNN search). Nevertheless, more features does not always imply better tracking

performances – see Section 9.6.5.

9.6.5 Adjusting the feature space in the presence of noise

A tracking was performed on 100 consecutive frames of two degraded versions of

sequence “Poltergay” using the discrete search, δ = 0.8 and the feature space being

either (i) (color, geometry), (ii) (color, gradient of the luminance, geometry), or
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Figure 9.15 – Continuation of Fig. 9.14 – The diagram represents the scaling of the ROI (parameter

α times 100) as a function of the frame index for the solution that used the gradient. To deduce the

scaling in terms of area, the values must be divided by 100 and squared. At the highest point, the

ROI is more than 3 times larger in area than Ω.

(iii) (patch 3×3 on Y, U, V, geometry).#5 The first degraded version was obtained by

compressing each frame at a very low rate using a JPEG2000 coder – see Fig. 9.16.

The original frames in JPEG format are around 32 kB in size. The JPEG2000

compression rate was chosen such that the size went down to 4 kB. For the second

degraded version, each color channel of each frame was corrupted by a Gaussian

noise of mean zero and variance equal to 9 (see Fig. 9.16).

The proposed method being independent of the ROI shape, the rectangular

shape used so far for Ω was replaced with an ellipse with a bounding box of 63×101
pixels.

Both feature spaces (i) and (ii) dealt very well with the JPEG2000 artifacts – see

Fig. 9.17. Therefore, the feature space (iii) was not even considered. However, since

the Gaussian noise largely corrupted the gradient of the frames, the object could

not be tracked correctly using the feature space (color, gradient of the luminance,

geometry). Although not satisfying, the (color, geometry) space produced a more

acceptable tracking. (Actually, it is even quite accurate until frame 22 – not shown

in Fig. 9.18.) It is only when considering patches (feature space (iii)) that the

tracking became fully accurate – see Fig. 9.18. This robustness to noise when

having recourse to patches is not surprising since this kind of information is

used for denoising [Bua+05a, Bua+05b, Awa&Whi06, Ker&Bou06, Bou+07, Dab+07,

Ang+08a].

#5Space of dimension 13.
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Original JPEG2000

Gaussian

Figure 9.16 – Detail of frame 1 of sequence “Poltergay” before and after degradation. The JPEG2000

compression rate was around 8 compared to the original JPEG frames. The Gaussian noise had a

mean of zero and a variance of 9.

9.7 Summary

The proposed method can be characterized by such keywords as statistical, non-

parametric, variable kernel bandwidth (kNN), joint radiometry and geometry

processing, and soft geometric constraint. (i) SAD, or similar non-robust and

robust similarity measures, is deterministic in essence although it corresponds

to solving the tracking problem with a parametric assumption on the residual

PDF. The strict geometrical constraint does not allow much tolerance regarding

motion model mismatch and the parametric PDF assumption prevents data fitting.

(ii) kNN-KL can adapt to the data thanks to its non-parametric nature and the use of

a variable kernel bandwidth. Because of its statistical point of view, it can account

for some temporal color variability of the ROI. Unfortunately, as it is well known,

the absence of geometric constraint is a serious penalty. (iii) Pz-KL-G does include a

soft geometrical constraint. However, the approximation of a PDF-based measure

using a fixed kernel bandwidth, i.e., without adjustment to the local density of the
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Figure 9.17 – Tracking on sequence “Poltergay” in the presence of JPEG2000 compression artifacts

(frame indices are relative to the reference frame). Green • Without the gradient of the luminance

(feature space (i)), Yellow •With the gradient (feature space (ii)). Ω: ellipse with a bounding

box of 63×101 pixels.
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Figure 9.18 – Tracking on sequence “Poltergay” in the presence of Gaussian noise (frame indices are

relative to the reference frame). Green •Without the gradient of the luminance (feature space (i)),

Yellow • With the gradient (feature space (ii)), Violet • With the patches (feature space (iii)). Ω:

ellipse with a bounding box of 63×101 pixels.
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samples, is a weakness, as is clear from the experimental results. (iv) The mean

shift-based tracker used in the comparisons [Com+00, Col+05] rely on another

statistical measure: the Bhattacharya coefficient. Whether the differences observed

in the experimental results presented here between this tracker and the proposed

method depend on the measure itself or on the way geometry is involved#6 is

unclear.

To a certain extent, the proposed method seems to provide answers to the

problems (i) to (iii).

#6A Gaussian weighting of the features according to their distance to the center of the ROI (which

can be seen as a radial layout constraint) for the mean shift-based tracker versus a joint radiometry

and geometry processing for kNN-KL-G.
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Other tasks

Context

Expressing image and video processing tasks as a problem of minimization of a

similarity measure, and deriving a practical algorithm in the k nearest neighbor

(kNN) framework is a rather general approach. The chapter on segmentation

focused on a specific minimization aspect. Then, solutions to image denoising and

region-of-interest (ROI) tracking were developed in the above-mentioned context.

Other possible applications will be briefly described in this chapter.

10.1 Inpainting

The nature of the denoising method of Section 8 makes its modification for inpaint-

ing [Ber+00, Ber+03, Cri+04] easily conceivable. Indeed, it recovers the original

color of a damaged pixel x̃ by looking for other pixels x̃ti in the image with sur-

rounding colors similar to the colors surrounding x̃. The recovering procedure

relies on a weighted average involving x̃ and the x̃ti ’s. If x̃ is so damaged that it is

totally undependable, one can imagine to remove it from the weighted average.

This is how denoising can be turned into inpainting. However, note that such

a procedure can only inpaint reliably rather thin regions (e.g., scratches) unless

additional constraints are used [Bar+09].

Assume x̃ is a pixel of an area I to be inpainted. Let y be the colors in

the neighborhood of x̃, excluding the pixels in I, if any. Let xti , i ∈ [1..k], be

the k nearest neighbors of x̃ in the sense that the distances between y and the

neighborhoods yti of xti
#1 are the k smallest ones among all the neighborhoods

of the image. The missing color x̃ can then be replaced with a weighted average

of the colors xti . However, note that the purpose of this weighted average was

to get rid of the noise added to the pixels x̃ and x̃ti . In inpainting, the pixels are

noise-free. As a consequence, a weighted average could induce some blurring. It

#1See Tab. 10.1 concerning how the neighborhoods yti
are built.

117
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1. Let I be the user-defined area to be inpainted

2. Initialization: J ← I

3. For each pixel s of J that has at least one immediate neighbor not in J

• Let ys be the neighborhood of radius r of the pixel s excluding the pixels

belonging to J

• Let A(s) be the search area of radius w centered at s

• For each pixel t ∈ A(s)\J

ρ(s, t)← |ys − yt| (a)

△! The neighborhoods yt are built excluding the pixels that would fall in J
if xt was translated to s. If yt contains pixels in J other than the ones just

mentioned, then it is discarded.

• Select the k nearest neighborhoods yt, i.e., the ti’s such that

ρ(s, t1) ≤ ρ(s, t2) ≤ · · · ≤ ρ(s, tk) (b)

• Perform the following update

xs ← xtj (c)

where j is chosen randomly in [1..k] with equal probabilities

4. Remove from J all the pixels that were updated at (c). If J is not empty, then

go back to step 3.

Table 10.1 – Pseudocode of the proposed inpainting algorithm.

will be replaced with a random pick among the k values xti [Efr&Leu99, Pog08].

The algorithm is presented in Tab. 10.1.

Note that, like in denoising, the norm in Tab. 10.1-(a) is not necessarily L2. In

practice, a radially decreasing weight was applied to the elements of ys and yt. An

inpainting result is presented in Fig. 10.1.
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Scratched picture After inpainting

Figure 10.1 – Inpainting of image “Lincoln”.

10.2 Optical flow

10.2.1 Notations

Let ft and ft+1 be two consecutive frames of a video sequence. Let D be the domain

of these frames. The optical flow v is a vector field such that

ft(s) = ft+1(s+ vs) (10.1)

for all s in D, a condition known as the brightness constancy. The flow v can be

determined by solving the following problem

v = arg min
u

∑

s∈D

(
ft(s)− ft+1(s+ us)

)2
(10.2)

= arg min
u
|r(u)|2 (10.3)

where r is the so-called residual and | · | is the L2 norm.

10.2.2 Apparent inappropriateness of entropy

The norm of the residual is equal to zero if and only if the residual is identically

equal to zero while the Shannon entropy

H(r) = −
∑

x

pr(x) log pr(x), (10.4)
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pr being the probability mass function (PMF) of r, is equal to zero whenever the

residual is constant. Of course, the purpose is to get a residual as close to zero

as possible. Therefore, apparently, the L2 constraint leads to the correct solution

while the entropy constraint has a larger set of admissible solutions. Actually, this

conclusion is valid only if getting a residual equal to zero is a sufficient condition

to guarantee the optical flow problem to be solved. If the colors present in ft

are all unique and if the same colors also appear in ft+1, then there is indeed a

unique optical flow for which the brightness constancy is verified. However, as

soon as some colors are repeated, several solutions exist. Hence, the L2 constraint

is not sufficient. Finding the solution that is coherent with the reality requires

regularization. Similarly, among the solutions with an entropy equal to zero,

certainly only one is coherent with an appropriate regularization and corresponds

to a residual equal to zero.

But is the L2 constraint even necessary? As is well-known, its fulfillment can

only be fortuitous. For example, it is usually broken if some object parts in ft are

occulted in ft+1, if some object parts not visible in ft are exposed in ft+1, or if the

luminance changes locally or globally between ft and ft+1. This surely does not

mean that defining the optical flow as the minimizer of the norm of the residual is

not a correct approach. Many works testify to the contrary [Hor&Sch81, Luc&Kan81,

Wei&Sch01, Bro+04, Bru+05] – to cite just a few. However, it supports attempts to

propose alternatives. Minimizing the entropy of the residual is one of them.

As a final remark on entropy, note that, if for some reason the residual is

expressly required to be as close to zero as possible, the entropy can be computed

on a symmetrized version of the PMF/probability density function (PDF).

10.2.3 Advantages of entropy

In Section 10.2.2, it was reminded that the optical flow problem should be regular-

ized. It was also argued that the entropy of the residual could then be employed.

If a regularized solution relying on an entropy-based fidelity term happens to

correspond to a residual constant but different from zero, it is reasonable to infer

that the flow is correct but that a global change of luminance occurred. Indeed,

the probability that the residual be constant and the optical flow be coherent with

the regularization while not being close to the actual flow is very low, unless the

regularization term is inadequate. Although this kind of robustness can be added

to an L2 approach [Mol&Dub91, Neg&Yu93], it is interesting to have it by nature

with the entropy.

The low sensitivity to outliers is another feature of entropy (see Section 2.1.2)

which is necessary in optical flow. It will be illustrated on a synthetic example.

Assume the frame ft depicts a uniform disk on a textured background. From ft to

ft+1, the disk undergoes a translation. Then, a Gaussian noise with a mean equal

to zero and a variance equal to 5 is added to ft+1. Figure 10.2 shows the evolution
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of the L1 norm, the L2 norm, and the entropy of the residual as a function of the

translation extent when the correct optical flow is known. As expected, the L2

constraint is too strong when there are outliers while the L1 constraint is much

more tolerant. Still, the penalty for the maximum number of outliers is around for

times higher than the penalty when there are none. In contrast, the increase of the

entropy is around 12 %.

As a conclusion, it seems realistic to investigate the use of entropy for optical

flow computation. For example, the entropy of the residual could serve as data

fidelity and the entropy of the flow combined with some spatial constraint (see

Tab. 2.1) could act as a regularization term.

10.3 Content-based indexing and retrieval

10.3.1 Context

The challenge in content-based indexing and retrieval is to summarize an image into

discriminative pieces of information that can be looked for in other images. Given

a query image, the images of a database can then be ordered decreasingly in terms

of how well their summarized description matches the one of the query. There are

at least three points of view to reduce the amount of data represented by the image

pixels into a subset informative for the present task. (i) A global analysis accounting

for the whole image but without much precision can be performed, leading, e.g.,

to color histograms [Szu&Pic98] or histograms of edge direction [Vai+01]. Such

approaches are mostly targeted to image categorization for generic classes such

as indoor vs. outdoor. (ii) A local, detailed analysis of a few selected areas can be

done. For example, salient points or salient regions can be extracted and associated

with local features or segmented areas [Li&Wan03, Laz+06, Mez+06, Zha&Izq06].

By aggregating information about the spatial arrangement of features, a notion of

global description is added [Laz+06, Mez+06] (iii) Finally, instead of attempting

to find sparse, representative elements in the image domain, the key information

can also be derived in a transformed domain chosen for its ability to concentrate

prominent areas into a few points [Do&Vet02]. The transformation corresponds to

a global analysis of the image. Then, it is followed by a detailed interpretation. Let

us take this approach.

10.3.2 Sparse multiscale patches

The wavelet transform provides a sparse representation of images in the sense that

it concentrates the informational content into a few coefficients of large amplitude

while the rest of the coefficients are small. These large coefficients together with

the dependencies that exist between them are characteristic of structures present in

an image and can be exploited, e.g., for image enhancement [Rom+01, Por+03]. In

particular, patches, or neighborhoods, of wavelet coefficients can be used [Por+03].
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Frame ft Residual for v = [vmax0]T
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Figure 10.2 – L1 norm, L2 norm, and entropy of the residual r as a function translation. The disk

was successively translated horizontally by values v ranging from 0 to vmax which is equal to half the

radius of the disk. The background was fixed. The L1 and L2 norms were divided by the number of

pixels of the frame. On the entropy diagram, the entropy of the noise added to ft+1 was plotted in

green. The normalized entropy refers to the entropy of the residual divided by the entropy when the

disk is not translated (i.e., the entropy of the noise). The horizontal axes of the diagrams represent

the translation divided by the radius of the disk.
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Following this philosophy, neighboring coefficients of the Laplacian pyramid of

an image [Bur&Ade83] can be grouped together to form multiscale patches

Wσ,s = (wσ,s, wσ,s±e1 , wσ,s±e2 , wσ−1,s) (10.5)

where wσ,s is the coefficient at scale σ and intrascale location s, the scale σ − 1
is coarser than σ, and (e1, e1) is the canonical basis of R

2. If dealing with color

images, the patches W c
σ,s, c ∈ [1..3], are combined together, resulting in interscale,

intrascale, interchannel patches of dimension 18. By selecting only significant

patches,#2 a sparse subset is obtained [Ant+08, Pir+08a, Pir+08b, Pir+08c]. Such a

description can be completed with 3×3×3-pixel patches#3 z of the low-frequency

approximation of the image at the coarser scale of the decomposition. Then, a

selection of meaningful patches is made according to a strategy similar to the ones

mentioned for the Laplacian coefficients. In conclusion, the image is summarized by

the two sets of so-called Sparse Multiscale Patches (SMPs) {Wσ,s, σ, s} and {zt, t}.
The PDFs of such patches at each scale σ has proved to characterize spatial

structures in images [Por+03, Pie+05].

10.3.3 Similarity measure

Let I1 and I2 be two images visually similar. For example, they may represent

different views of the same scene, they may contain similar objects (potentially

at different locations). . . Despite their similarity, there is in general no strict or

even loose geometric correspondence between the SMPs of each image. As a

consequence, a notion of residual is unlikely to adequately assess whether I1 and I2
are similar. In contrast, accounting for the presence and frequency of occurrence in

I2 of informative local structures detected in I1 appears to be reasonable.#4 Hence,

relying also on the last remark of Section 10.3.2, the similarity between two images

is defined as the closeness between their respective SMP PDFs at corresponding

scales. Actually, the Kullback-Leibler divergence, a measure of dissimilarity, is used

at each scale. This measure already showed good performances in the context of

image retrieval [Puz+99]. Formally, the similarity between I1 and I2 is expressed

as follows

S(I1, I2) =
∑

σ

ασ DKL(f1,σ, f2,σ) + α DKL(g1, g2) (10.6)

#2Different selection strategies are possible: retain only the patches whose central coefficient wσ,s

is higher than a given threshold, retain only the patches whose L2 norm is higher than a given

threshold, fix the threshold of one of the previous strategies so as to retain a given number of

patches. . .
#33×3×3 = patch width× patch height× number of color channels
#4On this aspect, the philosophy is similar to the idea behind the bags of words [Siv&Zis03].

However, no quantization or weighting (e.g., relying on the frequency of occurrence of specific SMPs

among the images of the database) is performed on the SMPs.



Chapter 10. Other tasks 124

where the ασ ’s and α are positive constants, fi,σ is the SMP PDF of the high-

frequency details of Ii at scale σ, and gi is the PDF of the low-frequency patches of

Ii. As was seen in Section 5.2.3, the Kullback-Leibler divergence, and then S, can

be estimated directly from the sets of samples {Wσ,s, σ, s} and {zt, t} using the k
nearest neighbor (kNN) framework [Ant+08, Pir+08a].

The same (dis)similarity measure can be used for image categorization [Pir+08c],

which consists in labeling a query image according to a set of predefined classes or

categories. This process is composed of two steps. First, training aims at determin-

ing one prototype per given image category. Each category is illustrated by a set

of images. The set of all the images for every category is called a labeled training

set. The prototype Pc of the category C can be chosen as the image of C which

minimizes the sum of the dissimilarities to all the other images of C (very much

like the medoid of a cluster)

Pc = arg min
J∈C

∑

I∈C

S(I, J) . (10.7)

Then, classification denotes the process of allowing the database to grow with new,

unlabeled images by assigning to them the label of their closest prototype.
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Chapter 11

Summary and final remarks

11.1 kNN-based variational approach

If the suggestions made in this document were to be turned into a recipe (among

others) to attempt to solve a particular image or video processing task, it could

look like this:

1. Identify key features of the image or video; For example,

• the pixel colors,

• local derivatives,

• coefficients in a transformed domain,

• groups of previously mentioned quantities,

• . . .

2. Search for a statistical/information-theoretic interpretation of the problem;

In particular, the features should be assumed to follow a random law;

3. Express the solution as the optimum of an appropriate (dis)similarity mea-

sure/energy; The rest of the recipe should be applicable if the heart of this

measure is composed of:

• means or expected values,

• variances,

• probability density functions (PDFs),

• entropies,

• relative entropies or divergences,

• mutual information,

• and, more generally but speculatively, measures tightly linked to local

densities of samples – see note below.
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4. Consider the feature instances that can be extracted in the image or video as

samples;

5. Determine a k nearest neighbor (kNN) estimate of the measure, i.e., an

approximation depending directly on the samples with adaptability to their

local density in the feature space;

6. Determine the kNN derivative of the measure; Part of the corresponding

development might be easier or valid only in the continuous framework;

• If this step involves active contours, the notion of shape derivative

should help,

• If the measure involves logarithms of PDFs, the mean shift and its kNN

version should be useful.

7. Perform a gradient descent.

Such a procedure skeleton is neither original nor unusual. What this document

aimed at highlighting was the use of two concepts, the shape gradient (should the

minimization be dependent on deforming interfaces) and the kNN framework, in

order to try to systematize and to simplify the resolution of some image and video

processing tasks.

Note that the general statement made about the kind of measures that can

be dealt with in the kNN framework is purely speculative since no evidence was

provided aside from differential entropy (whether joint, conditional, or cross-

entropy) and the Kullback-Leibler divergence. Yet, the clear relationship between

the notion of k nearest neighbors and the local density of samples leads to the

intuition that a kNN approximation could be found for a measure which, at its

lowest level of interpretation, depends on local densities.

11.2 A note on the metric of the feature space

As mentioned in Section 6.2, the distance between features is a topic of concern.

It may seem appropriate to define this distance, once and for all, based on the

nature of the features. Instead, a suitable definition could follow from the actual

distribution of the samples or from a distribution learned beforehand. For example,

in the kNN framework, the isotropic neighborhood can be replaced with an ellip-

soid [Ter&Sco92]. To illustrate the idea that sample distribution can help define an

adequate distance, a simple clustering experiment is proposed hereafter.

Let the features be represented by points of R
2. Figure 11.1 shows 200 samples

drawn according to two given distributions (corresponding to two classes) and

three clusterings made using different metrics: L2-k-means, L2-k-medoids, and a

local density-based k-means. For all clusterings, the same two seeds were used.

They were conveniently placed within each actual cluster.
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Samples k-means

Density clustering k-medoids

Figure 11.1 – Influence of the metric used for clustering. The purpose of the black&white image

is to show that 2 clusters can be visually distinguished. In the other 3 images, red and blue circles

represent the ground truth clustering, magenta and green crosses represent the corresponding

computed clusters, the black squares represent the clustering seeds, and the magenta and the green

squares represent the final cluster prototypes.

The algorithm of k-medoids is a variant of k-means. In k-means, the prototype

of a cluster is its centroid. In the variant, the centroid is replaced with the medoid,

i.e., the cluster element which minimizes the sum of distances to all other elements

of the cluster. Both versions were implemented using the L2 norm.

Finally, a density clustering is proposed. It relies on a metric defined locally

using distances to nearest neighbors among all the samples, i.e., considering the

samples of all the classes without distinction. The idea was that if the straight path

between two samples crosses a low density area, the samples probably belong to

different clusters. Actually, the notion of straight path is adapted to convex clusters

only. In general, it can be replaced with a path which goes through the shortest

cumulated length of low density areas among all possible paths. Equivalently,

this path can be viewed as a geodesic, i.e., a shortest path in a modified metric.
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For practical reasons, the potential paths were restricted to sequences of edges of

the complete graph of the samples. A consequence of this constraint is that the

prototype of a cluster was defined as the medoid of the cluster in terms of the

specific metric. The metric was defined as a weighted L2 norm. At x, the weight

w(x) was chosen inversely proportional to the local density, which can be inferred

by the distance ρk(x) of x to its k-th nearest neighbor among the samples. To make

the weight a dimensionless quantity, ρk(x) was divided by ρ1(x). To emphasize

the effect of low densities, the exponential was taken. However, to maintain the

condition w(x) = 1 when ρk(x) = ρ1(x),
#1 the final expression was

w(x) = exp

(
ρk(x)

ρ1(x)
− 1

)

. (11.1)

In this metric, the distance between x and y (i.e., the weight of the edge linking x
and y if they are vertices of the complete graph mentioned earlier) is computed by

weighting the L2 norm with w(t), t ∈ [x, y].#2 The presented result was obtained

with k = 2. Apart from the metric, the density clustering algorithm was identical

to k-medoids.

The density clustering performed much better than k-means and k-medoids.

Yet, its modified metric does not account for the nature of the features but only

for their distribution. One might object that a specific distribution might be a

consequence of the nature of the features. In part, this is true. For example,

histograms normalized so that the sum of their elements is equal to one lie on

the subset of the L1-ball of radius 1 with positive coordinates. However, a given

experimental context certainly implies a particular distribution within this subset.

In conclusion, if the samples are unevenly distributed in the feature space, the

actual distribution may have more importance than the nature of the features.

Note that this experiment was made to illustrate an intuition and might be

classical in clustering.

#1Whether this is necessary or not has not been investigated.
#2The use of a weighted graph to perform clustering follows approaches such as the ones proposed

in Isomap [Ten+00], random walk-based clustering [Yen+05], and, more generally, spectral

clustering [Shi&Mal00, Bel&Niy01, Nad+05]. However, there are significant differences between

the weighted graphs in these methods and the one employed here. For example, a complete graph

is built here while the methods cited above build neighborhood graphs. More importantly, in these

methods, the edge weights represent the similarity between vertices, often directly related to the L2

length of the edge. Instead, it is proposed to assign weights linked to the local sample density along

the edges. As a consequence, an edge longer than another one in the L2 sense may get a smaller

weight. In any case, the purpose of this section is not to compare clustering methods but rather to

illustrate the fact that local sample density can be used to define a metric which, when used in place

of the L2 norm (or maybe another feature-adapted norm) in a classical clustering algorithm, can

produce good results. In that respect, the interpretation of the proposed density clustering as a local

density, kNN-based method is straightforward.
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Appendix A

Shape derivative and active

contour

A.1 A variational approach to segmentation

Image or video segmentation can be performed with the following variational

approach: the problem is formulated as the minimization of an energy depending

on assumed characteristics of the objects of interest [Mum&Sha89, Cas+97, Che+99,

Cre&Soa03, Jeh+03, Li+04, Li&Yez05]. For simplicity, it is supposed that there is a

unique object. Typically, the energy is a sum of a domain integral and a boundary

integral [Mum&Sha89, Par&Der99, Gas+04]

E(Γ) =

∫

Ω
φf (Γ, x) dx+

∫

Γ
ϕf (Γ, s) ds (A.1)

where Ω is an open set of R
2, Γ is the oriented boundary ∂Ω of Ω, s is the arc-

length parameterization of Γ, and f is the image or video to be segmented.#1 The

energy (A.1) is designed to have a unique global minimum#2 at Ω⋆, the domain of

the object of interest. The function φ is sometimes referred to as the descriptor of

the object. For example, if φ is equal to

φ(Γ, x) = (f(x)− µ(Γ))2 (A.2)

where µ(Γ) is the average value of f in Ω, then φ is equal to zero on Ω if and only

if f is constant on Ω. Therefore, φ is a descriptor of objects of constant intensity.

Similarly, ϕ is the descriptor of the object boundary.

#1For convenience, φ and ϕ will be used instead of φf and ϕf .
#2A problem of maximization is trivially turned into a problem of minimization.
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If the object background can also be characterized, then the energy can be

symmetrized as follows

E(Γ) =

∫

Ω
φ(Γ, x) dx+

∫

Γ
ϕ(Γ, s) ds+

∫

Ωc

φc(Γc, x) dx (A.3)

where Ωc is the complement D\Ω̄ of Ω in the image or frame domain D. This

combination of an integral on Ω and an integral on Ωc is called region competi-

tion [Yez+99, Deb+01, Cre&Sch02]. Nevertheless, in the following developments,

the last integral of (A.3) will be discarded since its handling is similar to the one of

the first integral.

A.2 Active contour

A possible method to minimize the energy (A.1) is to define an initial contour and

to deform it iteratively in such a way that its energy decreases from one iteration

to the next. The contour eventually converges toward a (possibly local) minimizer.

This process is known as active contour [Kas+88, Cas+93, Cas+97, Cha&Ves01].

When φ and ϕ do not depend on Γ, the minimization procedure can be based on

a local strategy involving energy evaluations only [Ger&Ref96]. Otherwise, the

influences of local deformations are linked together and the contour deformation

should be performed at once. The appropriate deformation can be derived from

the derivative of the energy with respect to the contour [Kas+88, Cas+93, Cas+97].

A.3 Shape derivative and evolution equation

The derivative of energy (A.1) with respect to Γ can be obtained by a calculus of

variations [Cas+97, Aub+03]. However, if the descriptor φ or ϕ depends on Γ, this

can be complex. Some studies on shape gradients [Sch92, Sok&Zol92, Del&Zol01,

Jeh+03] offer a convenient and general basis for this differentiation. The shape

derivative of (A.1) is a function dE(Γ, V ) of Γ and a velocity V defined on Ω but

restricted to Γ. For a given Γ, the velocity should be chosen such that the shape

derivative is negative, thus indicating a way to deform Γ in order to decrease its

energy. As noted by [Cha+05], the straightforward choice is to take the opposite

of the gradient of (A.1) associated with the L2 inner product on Γ. However,

one might want to use other descent directions, for example, to improve the con-

vergence rate [Hin&Rin03], to increase spatial coherence and avoid as much as

possible to converge to irrelevant local minima [Cha+05], to simplify implementa-

tion [Ove&Sol05, Sol&Ove05], or to respect the principles of an underlying physical

model or for improved stability and convergence rate [Doc+05]. These alternatives

may result from (i) designing other inner products or from (ii) directly designing
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descent directions V verifying [Ove&Sol05, Sol&Ove05]

dE(Γ, V ) ≤ 0 . (A.4)

In any case, the active contour evolution equation has the form

∂Γ

∂τ
= V (τ) . (A.5)





Appendix B

General expressions of the shape

derivative

B.1 Boundary energy

Let us consider the following boundary energy

E(Γ) =

∫

Γ
ϕ(s) ds (B.1)

where Γ is the oriented boundary ∂Ω of an open set Ω of R
2 and s is the arc-

length parameterization of Γ. The shape derivative of (B.1) is equal to [Sok&Zol92,

Del&Zol01]

dE(Γ, V ) =

∫

Γ

(
∂ϕ(s)

∂N
− ϕ(s) κ(s)

)

N(s) · V (s) ds (B.2)

where N is the inward unit normal of Γ and κ is the curvature of Γ.

Note that this result can also be obtained by a calculus of variations [Cas+97].

B.2 Domain energy

Let Ω be an open set of R
2 and let T be a transformation of Ω such that







Ω = T (τ = 0,Ω)
ΩT (τ) = T (τ,Ω)
xT (τ) = T (τ, x), x ∈ Ω

. (B.3)

The deformation at x is defined as

VT (x) := lim
τ→0

xT (τ)− x
τ

(B.4)

=
∂T

∂τ
(0, x) . (B.5)
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For clarity, ΩT (τ), xT (τ), and VT (x) are referred to as Ω(τ), x(τ), and V (x), re-

spectively. The vector field V is called the velocity of Ω.

Let us consider the following domain energy

E(Γ) =

∫

Ω
φ(Γ, x) dx (B.6)

where Γ is the oriented boundary ∂Ω of Ω. The energy of the transformed do-

main Ω(τ) is equal to

E(Γ, T, τ) =

∫

Ω(τ)
φ(Γ(τ), x) dx . (B.7)

Then, the shape derivative of (B.6) is defined as

dE(Γ, T ) := lim
τ→0

E(Γ, T, τ)− E(Γ, T, 0)

τ
. (B.8)

It is equal to [Sok&Zol92, Del&Zol01]

dE(Γ, T ) =

∫

Ω

∂φ(Γ(τ), x)

∂τ

∣
∣
∣
∣
τ=0

dx−
∫

Γ
φ(Γ, s) N(s) · V (s) ds (B.9)

where s is the arc-length parameterization of Γ and N is the inward unit normal

of Γ. Since V appears explicitly in the shape derivative expression, dE(Γ, T ) can

be replaced with dE(Γ, V ).
Note that this result can also be obtained by a calculus of variations [Aub+03].



Appendix C

Rewriting the shape derivative as

a boundary integral

Two (sets of) conditions are proposed to allow practical rewriting of the shape

derivative (B.9) into an expression without any domain integral.

C.1 Recursive applications of the shape derivative

Under some conditions on the dependency of φ on Γ, applying recursively (B.9) to

its first integral leads to an expression containing no domain integral [Jeh+03]

dE(Γ, V ) = −
∫

Γ
Ψ(Γ, s) N(s) · V (s) ds . (C.1)

Let us assume that






φi(Γ, x) = φi(gi(Γ), x), i ∈ [1, n− 1]
gi(Γ) =

∫

Ω φi+1(Γ, x) dx, i ∈ [1, n− 1]
φn(Γ, x) = φn(x)

(C.2)
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where φ1 = φ (note that gi has the same form as (B.6)). The first integral

of (B.9) reads
∫

Ω

∂φ1(g1(Γ(τ)), x)

∂τ

∣
∣
∣
∣
τ=0

dx =

∫

Ω

∂φ1(k, x)

∂k

∣
∣
∣
∣
g1(Γ)

∂g1(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

dx (C.3)

=
∂g1(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

∫

Ω

∂φ1(k, x)

∂k

∣
∣
∣
∣
g1(Γ)

dx

(C.4)

:= dg1(Γ, V )
∫

Ω

∂φ1(k, x)

∂k

∣
∣
∣
∣
g1(Γ)

dx

(C.5)

= dg1(Γ, V ) A1(Γ) (C.6)

where dg1(Γ, V ) is equal to

dg1(Γ, V ) =

∫

Ω

∂φ2(Γ(τ), x)

∂τ

∣
∣
∣
∣
τ=0

dx−
∫

Γ
φ2(Γ, s) N(s) · V (s) ds .(C.7)

Then, the development leading to (C.6) can be repeated with the successive domain

integrals present in dgi(Γ, V ), i increasing, until

dgn−1(Γ, V ) = −
∫

Γ
φn(s) N(s) · V (s) ds (C.8)

which does not contain any domain integral since φn is independent of Γ. Gathering

the successive boundary integrals together, the shape derivative is equal to

dE(Γ, V ) = −
∫

Γ
Ψ(Γ, s) N(s) · V (s) ds (C.9)

= −
∫

Γ

( n∑

i=1

φi(gi(Γ), s)

i−1∏

j=1

Aj(Γ)

)

N(s) · V (s) ds (C.10)

where Aj(Γ) is equal to

Aj(Γ) =

∫

Ω

∂φj(x, k)

∂k

∣
∣
∣
∣
gj(Γ)

dx (C.11)
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with the following convention

φn(gn(Γ), s) = φn(s) . (C.12)

For example, φ may involve the variance g1 of f in Ω. The variance involves

the average value g2 of f in Ω. Finally, the average value involves f but no terms

depending on Γ.

C.2 Domain integral equal to zero

Under some conditions, Ψ in (C.1) is simply equal to φ [Roy+06]. In other words,

the first integral of (B.9) is equal to zero. For example, if φ is given by (A.2), i.e.,

(f(x)− µ(Γ))2, the integrand of the first integral of (B.9) is equal to

∂φ(Γ(τ), x)

∂τ

∣
∣
∣
∣
τ=0

=
∂
(
(f(x)− µ(Γ(τ)))2

)

∂τ

∣
∣
∣
∣
τ=0

(C.13)

= − 2 (f(x)− µ(Γ))
∂µ(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

(C.14)

where µ(Γ) can be written as follows

µ(Γ) =

∫

Ω
f(x) dx /

∫

Ω
dx . (C.15)

Then, the first integral of (B.9) is equal to
∫

Ω

∂φ(Γ(τ), x)

∂τ

∣
∣
∣
∣
τ=0

dx = − 2
∂µ(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

∫

Ω
(f(x)− µ(Γ)) dx (C.16)

= − 2
∂µ(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

(∫

Ω
f(x) dx− µ(Γ)

∫

Ω
dx

)

(C.17)

= 0 . (C.18)

In general, a sufficient condition for the first integral of (B.9) to be equal to

zero is
{
φ(Γ, x) = φ(g(Γ), x)
g(Γ) = arg mink

∫

Ω φ(k, x) dx
. (C.19)

In other words, g(Γ) is the minimizer of (B.6) seen as a function of g with Γ fixed.

For convenience, the following notation will be used

g(Γ) = arg min
k
EΓ(k) . (C.20)
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If g is assumed to be differentiable, the development of (C.6) can be continued

using the new condition (C.19)

∫

Ω

∂φ(g(Γ(τ)), x)

∂τ

∣
∣
∣
∣
τ=0

dx = dg(Γ, V )

∫

Ω

∂φ(k, x)

∂k

∣
∣
∣
∣
g(Γ)

dx (C.21)

= dg(Γ, V )
∂

∂k

∫

Ω
φ(k, x) dx

∣
∣
∣
∣
g(Γ)

(C.22)

= dg(Γ, V )
∂EΓ(k)

∂k

∣
∣
∣
∣
g(Γ)

. (C.23)

If g(Γ) is a constraint-free minimizer of EΓ, then it can be concluded immediately

that (C.23) is equal to zero. Otherwise, let us assume that g(Γ) is the minimizer

of EΓ under the constraint

ξ(g(Γ)) = 0 . (C.24)

Then, there exists a Lagrange multiplier λ such that

∂EΓ(k)

∂k

∣
∣
∣
∣
g(Γ)

= λ
∂ξ(k)

∂k

∣
∣
∣
∣
g(Γ)

. (C.25)

Therefore,
∫

Ω

∂φ(g(Γ(τ)), x)

∂τ

∣
∣
∣
∣
τ=0

dx = λ
∂g(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

∂ξ(k)

∂k

∣
∣
∣
∣
g(Γ(τ=0))

(C.26)

= λ
∂ξ(g(Γ(τ)))

∂τ

∣
∣
∣
∣
τ=0

. (C.27)

By definition, for any τ , ξ(g(Γ(τ))) has the same value (equal to zero). It can be

concluded that (C.27) is equal to zero.

As brought to our attention [Ano07], noting that E(Γ) can be written as

F (Γ, g(Γ)) leads to an immediate proof of the result of Section C.2.



Appendix D

Denoising energy derivative

Let ỹi be the set of colors of a noisy neighborhood extracted around the pixel of

index i in a noisy image. Let D be the set of pixel indices within the image domain.

Let Dỹi
be the subset of D of the indices of the pixels whose neighborhood is equal

to ỹi. Let X be the random variable modeling pixel color and let Y be the random

vector modeling neighborhood colors. The entropy of X conditional on Y being

equal to ỹi can be approximated by the Ahmad-Lin estimator [Ahm&Lin76]

h(X|Y = ỹi) ≈ −
1

|Dỹi
|
∑

s∈Dỹi

log fx|y(xs|ỹi) (D.1)

where

fx|y(x|y) =
1

|Dy|
∑

t∈Dy

K(x− xt) . (D.2)

Therefore,

h(X|Y = ỹi) = − 1

|Dỹi
|
∑

s∈Dỹi

log




1

|Dỹi
|
∑

t∈Dỹi

K(xs − xt)



 . (D.3)

The derivative of (D.3) with respect to the pixel color xi is equal to

∂h(X|Y = ỹi)

∂xi
= − 1

|Dỹi
|
∑

s∈Dỹi

1

fx|y(xs|ỹi)

1

|Dỹi
|
∑

t∈Dỹi

∂K(xs − xt)

∂xi
.

(D.4)

The last term in (D.4) has the following expression

∂K(xs − xt)

∂xi
=

{
(1− δt−i)∇K(xi − xt) if s = i
−δt−i∇K(xs − xt) otherwise.

(D.5)

143



Chapter D. Denoising energy derivative 144

Then,

∂h(X|Y = ỹi)

∂xi
= − 1

|Dỹi
|

1

fx|y(xi|ỹi)

1

|Dỹi
|
∑

t∈Dỹi

t6=i

∇K(xi − xt)

︸ ︷︷ ︸

s=i

+ A

︸︷︷︸

s 6=i

(D.6)

= − 1

|Dỹi
|

1

fx|y(xi|ỹi)

1

|Dỹi
|
∑

t∈Dỹi

∇K(xi − xt) +A (D.7)

= − 1

|Dỹi
|

1

fx|y(xi|ỹi)

1

|Dỹi
|∇
∑

t∈Dỹi

K(xi − xt) +A (D.8)

= − 1

|Dỹi
|
∇fx|y(xi|ỹi)

fx|y(xi|ỹi)
+A (D.9)

where

A =
1

|Dỹi
|2
∑

s∈Dỹi

s 6=i

∇K(xs − xi)

fx|y(xs|ỹi)
(D.10)

=
1

|Dỹi
|2
∑

s∈Dỹi

∇K(xs − xi)

fx|y(xs|ỹi)
. (D.11)

By multiplying the numerator and the denominator of the first term in (D.9) with

fY (ỹi), one gets

∇fx|y(xi|ỹi)

fx|y(xi|ỹi)

fY (ỹi)

fY (ỹi)
=
∇fz

fz
(zi) ·

∂zi
∂xi

(D.12)

where zi is the vector obtained by concatenation of xi and ỹi. Finally, we have

∂h(X|Y = ỹi)

∂xi
= − 1

|Dỹi
|
∇fz

fz
(zi) ·

∂zi
∂xi

+A . (D.13)

Note that, in practice, A will be neglected, as suggested by Section E.2 – a k nearest

neighbor (kNN) approximation is also provided in Section F.2.

Let us now study the derivative of (D.3) with respect to the pixel color xj , j 6= i.
If ỹj happens to be equal to ỹi, then j belongs to Dỹi

and a development similar to
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the one above can be made

∂h(X|Y = ỹi)

∂xj
= − 1

|Dỹi
|
∑

s∈Dỹi

1

fx|y(xs|ỹi)

1

|Dỹi
|
∑

t∈Dỹi

∂K(xs − xt)

∂xj
(D.14)

= − 1

|Dỹi
|

1

fx|y(xj |ỹi)

1

|Dỹi
|
∑

t∈Dỹi

t6=j

∇K(xj − xt)

︸ ︷︷ ︸

s=j

+ B

︸︷︷︸

s 6=j

(D.15)

= − 1

|Dỹi
|
∇fx|y(xj |ỹi)

fx|y(xj |ỹi)
+ B (D.16)

where

B =
1

|Dỹi
|2
∑

s∈Dỹi

s 6=j

∇K(xs − xj)

fx|y(xs|ỹi)
(D.17)

=
1

|Dỹi
|2
∑

s∈Dỹi

∇K(xs − xj)

fx|y(xs|ỹi)
. (D.18)

Since, by assumption, ỹi is equal to ỹj , it can be concluded that

∂h(X|Y = ỹi)

∂xj
= − 1

|Dỹi
|
∇fz

fz
(zj) ·

∂zj
∂xj

+ B . (D.19)

Again, B will be neglected.

On the other hand, if ỹj is not equal to ỹi, then j does not belong to Dỹi
and,

therefore,

∂h(X|Y = ỹi)

∂xj
= 0 . (D.20)

In conclusion, when neglecting terms such as A and B, the derivative of (D.3)

is equal to

∂h(X|Y = ỹi)

∂xj
=







− 1

|Dỹi
|
∇fz

fz
(zj) ·

∂zj
∂xj

if j ∈ Dỹi

0 otherwise.

(D.21)

The energy involved in (8.4) is, up to a multiplicative constant,

E =
∑

s∈D

h(X|Y = ỹs) . (D.22)
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The image domain D can be partitioned into n subdomains Dti , i ∈ [1..n], corre-

sponding to distinct noisy neighborhoods ỹti

E =
n∑

i=1

∑

s∈Dti

h(X|Y = ỹs) (D.23)

=

n∑

i=1

∑

s∈Dti

h(X|Y = ỹti) (D.24)

=

n∑

i=1

|Dti | h(X|Y = ỹti) . (D.25)

Combining (D.21) and (D.25), it can be concluded that the derivative of (D.22)

with respect to xj is equal to

∂E
∂xj

(xj) = −∇fz

fz
(zj) ·

∂zj
∂xj

. (D.26)



Appendix E

Derivative of the Kullback-Leibler

divergence

E.1 Expression

The Kullback-Leibler divergence is equal to

DKL(fTϕ , fR) = H×(fTϕ , fR)−H(fTϕ) (E.1)

where the cross entropy H×(fTϕ , fR) can be approximated by

H×(fTϕ , fR) ≃ − 1

|Tϕ|
∑

s∈Tϕ

log fR(s), (E.2)

and the differential entropy H(fTϕ) can be approximated by the Ahmad-Lin esti-

mator [Ahm&Lin76]

HAL(Tϕ) = − 1

|Tϕ|
∑

s∈Tϕ

log fTϕ(s) . (E.3)

In (E.3), the probability density function (PDF) is by definition equal to

fTϕ(s) =
1

|Tϕ|
∑

t∈Tϕ

Kσ(s− t) . (E.4)

The same estimation (replacing Tϕ with R) will be used in (E.2).

Therefore, we have

E(ϕ) :=
∑

s∈Tϕ

log fR(s)− log fTϕ(s) (E.5)

≃ − |Tϕ| DKL(fTϕ , fR). (E.6)
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Note that |Tϕ| is constant for all candidate regions in a given frame. Consequently,

taking the derivative of (E.5) with respect to ϕ does not require to care about the

interval of summation. Let the transformation ϕ be a translation (u, v) combined

with a scaling by α. The sample set Tϕ is equal to

Tϕ = {(Itgt(x+ u, y + v), x/α, y/α), (x, y) ∈ Ω} . (E.7)

The derivative of (E.5) with respect to ϕ = (α, u, v) is equal to

∇E(ϕ) =
∑

s∈Tϕ




1

fR(s)

1

|R|
∑

t∈R

∂

∂ϕ
Kσ(s− t)− 1

fTϕ(s)

1

|Tϕ|
∑

t∈Tϕ

∂

∂ϕ
Kσ(s− t)





(E.8)

=
∑

s∈Tϕ




1

fR(s)

1

|R|
∑

t∈R

Ds(Tϕ) ∇Kσ(s− t)− 1

fTϕ(s)

1

|Tϕ|
∑

t∈Tϕ

∂

∂ϕ
Kσ(s− t)





(E.9)

where

Ds(Tϕ) =





0 0 0 − 1
α2 [sx sy]

∇IY
tgt

(
sx + u
sy + v

)

∇IU
tgt

(
sx + u
sy + v

)

∇IV
tgt

(
sx + u
sy + v

)
[

0
]

[2×2]



 .

(E.10)

Matrix Ds has p lines corresponding to the number of parameters of the motion

model ϕ and d columns corresponding to the dimension of the feature space – here,

(Y, U, V, x, y). After some steps, one gets

∇E(ϕ) =
∑

s∈Tϕ

Ds(Tϕ)




∇fR(s)

fR(s)
− ∇fTϕ(s)

fTϕ(s)
+

1

|Tϕ|
∑

t∈Tϕ

∇Kσ(t− s)
fTϕ(t)



 . (E.11)

E.2 Term interpretation

Let us focus on the following term of (E.11)

A(s) :=
1

|Tϕ|
∑

t∈Tϕ

∇Kσ(t− s)
fTϕ(t)

. (E.12)

When the number of samples |Tϕ| tends toward infinity, A tends toward

A∞(s) =

∫

Rd

fTϕ(t)
∇Kσ(t− s)
fTϕ(t)

dt . (E.13)
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The kernel Kσ is radially symmetric. Therefore, for all x and y such that x = −y,

we have

∇Kσ(x) = −∇Kσ(y). (E.14)

Therefore, (E.13) convergences (at least weakly) toward zero. It will then be

neglected. If, nonetheless, one wants to evaluate it, Section F.2 provides a k nearest

neighbor (kNN) approximation.





Appendix F

Derivative of the Kullback-Leibler

divergence: kNN implementation

F.1 kNN-based expression

The first two terms enclosed in parentheses in (E.11) can be approximated using

the mean shift (2.4). The expression of the mean (2.5) can be replaced with its

kNN equivalent [Fuk&Hos75]

s̄ρk(s) =
1

k

∑

t∈Wρk(s)

t . (F.1)

In the third term enclosed in parentheses in (E.11), the PDF fTϕ can also be

replaced with its kNN expression (4.3). Therefore, using the mean shift approx-

imation, the derivative of the Kullback-Leibler divergence can be written as a

kNN-based expression

k ∇E(ϕ) =
∑

s∈Tϕ

Ds(Tϕ)




d+ 2

ρ2
k(R, s)

∑

t∈Wρk(R,s)

(t− s)− d+ 2

ρ2
k(Tϕ, s)

∑

t∈Wρk(Tϕ,s)

(t− s)

+vd

∑

t∈Tϕ

ρd
k(Tϕ, t) ∇Kρk(Tϕ,t)(t− s)



 (F.2)

where Kρk(Tϕ,t)(· − s) is a window of radius ρk(Tϕ, t) centered at s.
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F.2 Term approximation

Let us now focus on the following term of (F.2) (which corresponds to the kNN

version of (E.12))

AkNN(s) :=
∑

t∈Tϕ

ρd
k(Tϕ, t) ∇Kρk(Tϕ,t)(t− s) . (F.3)

In light of Appendix E.2, this term could be neglected if |Tϕ| is large enough.

Nevertheless, let us propose an approximation of it.

The window Kρk(Tϕ,t)(· − s) at t is equal to [ρd
k(Tϕ, t) vd]

−1 if |t− s| ≤ ρk(Tϕ, t)
and zero otherwise. A finite difference approximation can be used to write

∇Kρk(Tϕ,t)(t− s) =

{
1

ρd
k
(Tϕ,t) vd

s−t
|s−t| if |s− t| = ρk(Tϕ, t)

0 otherwise.
(F.4)

Therefore, the term (F.3) can be approximated by

AkNN(s) ≃ 1

vd

∑

t∈Tϕ

|t−s|=ρk(Tϕ,t)

s− t
ρk(Tϕ, t)

. (F.5)

This approximation leads to the final expression (9.8) of the kNN-based derivative

of (5.11). Note that, in practice, the summation condition |t− s| = ρk(Tϕ, t) should

be understood as |t− s| ∈ ρk(Tϕ, t)± ǫ for a small ǫ.
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[Bol+07] Boltz, S., Debreuve, É., and Barlaud, M. (2007). High-dimensional

statistical distance for region-of-interest tracking: application to combining

a soft geometric constraint with radiometry. In International Conference on

Computer Vision and Pattern Recognition, Minneapolis (MN), USA.
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PDE’s. Nümer. Math., 105:1–34.
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[Cha+97] Charbonnier, P., Blanc-Féraud, L., Aubert, G., and Barlaud, M. (1997).

Deterministic edge-preserving regularization in computed imaging. IEEE Trans.

Image Process., 6:298–311.

[Cha+05] Charpiat, G., Keriven, R., Pons, J.-C., and Faugeras, O. (2005). Designing

spatially coherent minimizing flows for variational problems based on active

contours. In International Conference on Computer Vision, Beijing, China.
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[Wei&Sch01] Weickert, J. and Schnörr, C. (2001). Variational optic flow compu-

tation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis.,

14:245–255.

[Yan+03] Yang, C., Duraiswami, R., Gumerov, N. A., and Davis, L. (2003). Im-

proved fast Gauss transform and efficient kernel density estimation. In Interna-

tional Conference on Computer Vision, Nice, France.

[Yen+05] Yen, L., Vanvyve, D., Wouters, F., Fouss, F., Verleysen, M., and Saerens, M.

(2005). Clustering using a random walk based distance measure. In European

Symposium on Artificial Neural Network, Bruges, Belgium.

[Yez+99] Yezzi, A., Tsai, A., and Willsky, A. (1999). A statistical approach to snakes

for bimodal and trimodal imagery. In International Conference on Computer

Vision, Corfu, Greece.

[Zha&Izq06] Zhang, Q. and Izquierdo, E. (2006). Optimizing metrics combining

low-level visual descriptors for image annotation and retrieval. In International

Conference on Acoustics, Speech, and Signal Processing, Toulouse, France.

[Zhu&Ma00] Zhu, S. and Ma, K.-K. (2000). A new diamond search algorithm for

fast block-matching motion estimation. IEEE Trans. Image Process., 9:287–290.

172



Bibliographical index

A

[Ahm&Lin76] . . . . . . 6, 31, 143, 147

[Ang+08b] . . . . . . . . . . . . . . . . . . . . . . 6

[Ang+08a] . . . . . . . . . . . . . 6, 29, 113

[Ano07] . . . . . . . . . . . . . . . 52, 59, 142

[Ant+08] . . . . . . . . . . . . . . . . 123, 124

[Aru+02] . . . . . . . . . . . . . . . . . . . . . . 66

[Aub+03] . . . . . . . . 65, 91, 134, 138

[Awa&Whi06] . . . 6, 69, 70, 81, 113

B

[Bar&Com04] . . . . . . . . . . . . . . . . . . 80

[Bar+09] . . . . . . . . . . . . . . . . . . . . . 117

[Bel&Niy01] . . . . . . . . . . . . . . . . . . 130

[Ber+00] . . . . . . . . . . . . . . . . . . . . . 117

[Ber+03] . . . . . . . . . . . . . . . . . 69, 117

[Ber+07] . . . . . . . . . . . . . . . . . . . . . . 69

[Bla&Ana96] . . . . . . . . . . . . . . . . . . . 93

[Bol+07] . . . . . . . . . . . . . . . . . . . 91, 94

[Bol+06] . . . . . . . . . . . . . . . . . . . . . . 32

[Bol+08] . . . . . . . . . . . . . . . . . . . . . . . . 6

[Bol+09] . . . . . . . . . . . . . . . . . . . . 6, 91

[Bou+07] . . . . . . . . . . . . . 43, 69, 113

[Bri+00] . . . . . . . . . . . . . . . . . . . . . . . 57

[Bro+03] . . . . . . . . . . . . . . . . . . . . . . 90

[Bro+04] . . . . . . . . . . . . . 90, 91, 120

[Bro&Cre07] . . . . . . . . . . . . . . . . . . . 81

[Bru+05] . . . . . . . . . . . . . . . . . . . . . 120

[Bua+05a]. . 69, 70, 75, 80, 82, 83,

91, 113

[Bua+05b] . 43, 69, 70, 75, 80, 82,

83, 113

[Bua+06] . . . . . . . . . . . . . . . . . . . . . . 80

[Bug&Per07] . . . . . . . . . . . . . . . . . . . 90

[Bur&Ade83]. . . . . . . . . . . . . . . . . . 123

C

[Car+08] . . . . . . . . 6, 44, 69, 91, 94

[Cas+97] . . . . . . . . . . . 133, 134, 137

[Cas+93] . . . . . . . . . . . . . . . . . . . . . 134

[Cha&Ves01] . . . . . . . . . . . . . . . . . . 134

[Cha+97] . . . . . . . . . . . . . . 43, 70, 81

[Cha+05] . . . . . . . . . . . . . 51, 59, 134

[Che+99]. . . . . . . . . . . . . . . . . . . . . 133

[Col+05] . . . . . . . . . . 17, 98, 99, 116

[Com+00] . . . . . 17, 90, 92, 93, 116

[Com&Mee02] . . . . . . . . . . . . . . . . . . 17

[Com03] . . . . . . . . . . . . . . . . . . . . . . . 28

[Cos&Her04] . . . . . . . . . . . . . . . . . . . 32

[Cov&Tho91] . . . . . . . . . . . . . . . . . . . 72

[Cre&Soa03] . . . . . . . . . . 55, 65, 133

[Cre+07] . . . . . . . . . . . . . . . . . . . . . . 90

[Cre&Sch02] . . . . . . . . . . . . . . . . . . 134

[Cri+04] . . . . . . . . . . . . . . . . . . 69, 117

D

[Dab+07] . . . . . . . . . . . . . . . . . 69, 113

[Deb+06] . . . . . . . . . . . . . . . . . . . . . . 60

[Deb+07] . . 54, 57, 62, 64, 66, 161

[Deb+01] . . . . . . . . . . . . . 50, 51, 134

[Cra+08] . . . . . . . . . . . . . . . . . . . . . . . 6

[Del&Zol01] . 50, 51, 134, 137, 138

[Del&Mon01] . . . . . . . . . . . . . . . . . . 55

[Doc+05] . . . . . . . . . . . . . . . . . . . . . 134

[Do&Vet02] . . . . . . . . . . . . . . . . . . . 121

E

173



[Efr&Leu99]. . . . . . . . . . . . . . . 69, 118

[Efr&Fre01] . . . . . . . . . . . . . . . . . . . . 69

[Elg+03] . . . . . . . . . . . . 6, 90, 91, 94

F

[Fix&Hod51] . . . . . . . . . . . . . . . 29, 91

[Fre&Zha04] . . . . . . . . . . . . . . . . . 6, 91

[Fuk90] . . . . . . . . . . . . 17, 18, 28, 44

[Fuk&Hos75] . . 17, 29, 44, 75, 151

G

[Gas+04] . . . . . . . . . . . . . . . . . . . . . 133

[Geo+03] . . . . . . . . . . . . . . . . . . . . . . 29

[Ger&Ref96] . . . . . . . . . . . . . . 52, 134

[Gil&Osh07] . . . . . . . . . . . . . . . . . . . 80

[Gor+05]. . . . . . . . . . . . . . . 32, 33, 91

[Got97] . . . . . . . . . . . . . . . . . . . . . . . . 98

H

[Hau&Cho93] . . . . . . . . . . . . . . . . . . 50

[Her+06] . . . . . . . . . . . . . . . . . . . . . . 91

[Hin&Rin03]. . . . . . . . . . . 50–52, 134

[Hor&Sch81] . . . . . . . . . . . . . . . . . . 120

[Hua&Mum99] . . . . . . . . . . . . . . . . . 69

I

[Ihl03] . . . . . . . . . . . . . . . . . . . . . 90, 98

[Isa&Bla98] . . . . . . . . . . . . . . . . . . . . 66

J

[Jac+01]. . . . . . . . . . . . . . . . . . . . . . . 57

[Jac+04] . . . . . . . . . . . . . . . . . . . . . . 60

[Jeh+03] . . . 50, 51, 133, 134, 139

K

[Kad+04]. . . . . . . . . . . . . . . . . . . . . 4, 6

[Kad&Bra01] . . . . . . . . . . . . . . . . . . 4, 6

[Kas+88] . . . . . . . . . . . . . . . . . . . . . 134

[Ker&Bou06] . . . . . . . . . . . . . . 69, 113

[Kim+05] . . . . . . . . . . . . . . . . . . . 6, 91

[Kin+05] . . . . . . . . . . . . . . . . . . 80, 88

[Koz&Leo87] . . . . . . . . . . . . 32, 33, 91

L

[Laz+06] . . . . . . . . . . . . . . . . . . . . . 121

[Lee+03] . . . . . . . . 6, 44, 69, 91, 94

[Leo+08] . . . . . . . . . . . . . . . 32, 33, 91

[Li&Yez05] . . . . . . . . . . . . . . . . . . . . 133

[Li+04] . . . . . . . . . . . . . . . . . . . . . . 133

[Lin91] . . . . . . . . . . . . . . . . . . . . . . . . 92

[Li&Wan03] . . . . . . . . . . . . . . . . . . . 121

[Lob&Vie95] . . . . . . . . . . . . . . . . . . . 55

[Lof&Que65] . . . . . . . . . . . . 28, 29, 91

[Low04]. . . . . . . . . . . . . . . 4, 6, 90, 91

[Luc&Kan81] . . . . . . . . . . . . . . . . . . 120

M

[Mar05] . . . . . . . . . . . . . . . . . . . . . . . 60

[Mez+06] . . . . . . . . . . . . . . . . . . . . 121

[Mik&Sch05] . . . . . . . . . . . . . . . . . . 4, 6

[Mol&Dub91] . . . . . . . . . . . . . . . . . 120

[Mor&Yu09] . . . . . . . . . . . . . . . 4, 6, 91

[Mum&Sha89] . . . . . . . . . . . . . . . . 133

N

[Nad+05] . . . . . . . . . . . . . . . . . . . . 130

[Neg&Yu93] . . . . . . . . . . . . . . . . . . 120

O

[Ove&Sol05] . . . . . . . . . . . . . 134, 135

P

[Par&Der99] . . . . . . . . . . . . . . . . . . 133

[Par&Der02] . . . . . . . . . . . . . . . . . . . 90

[Per+02] . . . . . . . . . . . . . . . 90, 93, 96

[Per&Mal90] . . . . . . . . . . . . . . . . 70, 81

[Pie+05] . . . . . . . . . . . . . . . . . . . . . 123

[Pir+08a] . . . . . . . . . . . . . . . 123, 124

[Pir+08b] . . . . . . . . . . . . . . . . . . . . 123

[Pir+08c]. . . . . . . . . . . . . . . . 123, 124

[Plu+03] . . . . . . . . . . . . . . . . . . . . . . . . 6

[Pog08]. . . . . . . . . . . . . . . . . . . . . . . 118

[Exc06]. . . . . . . . . . . . . . . . . . 109, 110

[Por+03] . . . . . . . . . . . . . . . . 121, 123

[Pre+05] . . . . . . . . . . . . . . . . . . . . . . 57

[Puz+99] . . . . . . . . . . . . . . . . . . . . . 123

R

174



[Rob&Mil03] . . . . . . . . . . . . . . . . . . . 66

[Rom+01] . . . . . . . . . . . . . . . . . . . . 121

[Roy+06] . . . . . . . . . . . . . . . . . 65, 141

[Rub+00] . . . . . . . . . . . . . . . . . . . . . . 44

S

[Sai02] . . . . . . . . . . . . . . . . . . . . . 28, 91

[Sch92] . . . . . . . . . . . . . . . . . . . 50, 134

[Sco92] . . . . . . . . . . . . . . . . . . . . 27, 90

[Shi&Mal00] . . . . . . . . . . . . . . . . . . 130

[Sil86] . . . . . . . . . . . . . . . . . . . . . . . . . 27

[Siv&Zis03] . . . . . . . . . . . . . . . . . . . 123

[Sok&Zol92] 50, 51, 134, 137, 138

[Sol&Ove05] . . . . . . . . . 51, 134, 135

[Sri+03] . . . . . . . . . . . . . . . . . . . 44, 69

[Szu&Pic98]. . . . . . . . . . . . . . . . . . . 121

T

[Tat&Lac02] . . . . . . . . . . . . . . . . . . . . 54

[Ten+00] . . . . . . . . . . . . . . . . . . . . . 130

[Ter&Sco92]. . 7, 17, 27, 28, 31, 33,

91, 128

[Tom&Man98] . . . . . . . . . . . . . . . . . . 80

[Tuy&Mik07] . . . . . . . . . . . . . . . . . . 4, 6

U

[Una+05] . . . . . . . . . . . . . . . . . . . 6, 60

[Uns+93] . . . . . . . . . . . . . . . . . . . . . . 57

V

[Vai+01] . . . . . . . . . . . . . . . . . . . . . 121

[Bab+07] . . . . . . . . . . . . . . . . . . . . . . 94

[Vio&Wel97] . . . . . . . . . . . . . . . . . 6, 31

[MIT02] . . . . . . . . . . . . . . . . . . . . . . . 82

W

[Wei&Sch01] . . . . . . . . . . . . . . 94, 120

Y

[Yan+03] . . . . . . . . . . . . . . . . . . . . . . 90

[Yen+05] . . . . . . . . . . . . . . . . . . . . . 130

[Yez+99] . . . . . . . . . . . . . . . . . . . . . 134

Z

[Zha&Izq06] . . . . . . . . . . . . . . . . . . 121

[Zhu&Ma00]. . . . . . . 66, 96, 99, 109

175


	Introduction
	Context and preliminary remarks
	Low to midlevel image and video processing tasks
	Similarity
	A central notion
	Description
	Comparison function
	Invariance

	PDF-based similarity measures
	Dealing with high-dimensional features
	Features
	Order of magnitude

	Organization of this document


	I. A Framework based on information theory measures
	Entropy: a hypothesis-free functional
	Classical variational approach
	Implicit assumption on the PDF
	Dealing with outliers

	Entropy as a hypothesis-free functional
	Working with actual PDFs
	Usefulness of image entropy
	Is PDF estimation necessary?
	Two essential ingredients


	Entropy-based measures
	The Kullback-Leibler divergence
	How the Kullback-Leibler divergence and entropy differ
	Entropy-based measures


	II. k Nearest neighbor estimators
	Basic ideas about kNN
	Kernel-based approaches
	PDF estimation
	Mean shift

	Interests of kNN

	kNN entropy-based estimators
	First approximations
	Unbiased versions
	Entropy
	Cross entropy
	Divergence

	Remark about the biased versions
	Illustrative experiments
	PDF estimation
	Entropy estimation
	Kullback-Leibler divergence estimation


	Some remarks on kNN
	Link with classical regularization functions
	Distance between features


	III. Some image and video processing tasks
	Segmentation
	Shape derivative
	Notations
	General and specific expressions

	From continuous to discrete formulation
	Direct approach
	Constrained approach

	Some remarks about predefined velocities
	Normalization
	Interpretation as a projection
	Link with parametric approaches

	Illustrative experiment
	Direct vs. constrained approach
	An example of tracking constraint

	Summary

	Denoising
	Patch-level processing
	Neighborhood constrained denoising
	Entropy-based energy
	Proof of adequacy
	Energy derivative

	Toward locally adaptive kNN
	Global approach using kNN
	Adaptively Weighted kNN (AWkNN)

	Denoising method
	Synthesis of the previous developments
	Some remarks about NL-means and UINTA
	Introducing local adaptability into feature-based denoising

	Illustrative experiments
	Summary

	Tracking
	Methodological choices
	A statistical approach
	High-dimensional feature space
	Similarity measure
	Notations

	Similarity measure between ROIs
	Definition and motivation
	Estimation in the kNN framework

	Feature space: handling geometry and radiometry
	Geometry-free similarity measures
	Similarity measures with strict geometry
	Similarity measures with soft geometry
	Enrichment of the radiometric features

	Tracking method
	The main steps
	Series of minimizations
	Mean shift-based gradient descent

	Some experimental comparisons
	Setup
	Partial occlusions
	Variations of luminance
	Noisy sequence
	Complex motion
	Summary
	Stability with respect to k

	Brief experimental study
	Setup
	Influence of delta
	Discrete search vs. gradient search
	Gradient as an additional radiometric feature
	Adjusting the feature space in the presence of noise

	Summary

	Other tasks
	Inpainting
	Optical flow
	Notations
	Apparent inappropriateness of entropy
	Advantages of entropy

	Content-based indexing and retrieval
	Context
	Sparse multiscale patches
	Similarity measure



	Conclusion
	Summary and final remarks
	kNN-based variational approach
	A note on the metric of the feature space


	Appendices
	Shape derivative and active contour
	A variational approach to segmentation
	Active contour
	Shape derivative and evolution equation

	General expressions of the shape derivative
	Boundary energy
	Domain energy

	Rewriting the shape derivative
	Recursive applications of the shape derivative
	Domain integral equal to zero

	Denoising energy derivative
	Derivative of the Kullback-Leibler divergence
	Expression
	Term interpretation

	kNN Kullback-Leibler divergence derivative
	kNN-based expression
	Term approximation


	List of figures and tables
	List of Figures
	List of Tables

	Bibliography and index
	Bibliography
	Bibliographical index


