Saida Flila¹, « Identification optimale et commande prédictive. Applications en Génie des Procédés», Ph.D Thesis, UCBL1, Lyon, 5 février 2010 Advisors : Hassan Hammouri¹, Pascal Dufour¹

This citation must be used to cite this Ph.D. thesis.

All open archive documents of Pascal Dufour are available at: <u>http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008</u>

The professional web page (Fr/En) of Pascal Dufour is: http://www.lagep.univ-lyon1.fr/signatures/dufour.pascal

1 Université de Lyon, Lyon, F-69003, France; Université Lyon 1; CNRS UMR 5007 LAGEP (Laboratoire d'Automatique et de GEnie des Procédés), 43 bd du 11 novembre, 69100 Villeurbanne, France Tel +33 (0) 4 72 43 18 45 - Fax +33 (0) 4 72 43 16 99 http://www-lagep.univ-lyon1.fr/ http://www.univ-lyon1.fr http://www.cnrs.fr Identification optimale et commande prédictive : applications en génie des procédés

Saida FLILA

LAGEP: Laboratoire d'Automatique et de Génie des Procédés

UMR 5007 CNRS- Université Claude Bernard Lyon 1

Directeurs de thèse : Hassan HAMMOURI Pascal DUFOUR

Soutenance de thèse, 5 février 2010

Plan de la présentation

D Contrôle optimal pour l'identification

- 2 Approche d'identification optimale
 - Observateur
 - Commande prédictive
 - Stratégie de l'approche en boucle fermée
 - Mise en œuvre de l'approche
- Application 1 : Réaction de saponification
 - Modèle
 - Problème d'identification
 - Résultats de simulation

Application 2 : Cuisson radiative des peintures en poudre

- Modèle
- Problème d'identification
- Résultats de simulation

5 Conclusions/Perspectives

Contrôle optimal pour l'identification

Situation de la problématique

Matrice d'Information de Ficher (\mathcal{M}) :

$$\mathcal{M} = \int_0^{t_f} \frac{\partial y_\rho(\tau)^T}{\partial \rho} \ Q^{-1} \frac{\partial y_\rho(\tau)}{\partial \rho} d\tau \tag{1}$$

- Q : matrice de pondération
- p : vecteur des paramètres
- y_p : sortie mesurée

Problématique

Recherche d'une entrée optimale qui maximise la sensibilité $\frac{\partial y_p}{\partial n}$

Contrôle optimal pour l'identification

Situation de la problématique

Matrice d'Information de Ficher (\mathcal{M}) :

$$\mathcal{M} = \int_0^{t_f} \frac{\partial y_\rho(\tau)^T}{\partial \rho} \ Q^{-1} \frac{\partial y_\rho(\tau)}{\partial \rho} d\tau \tag{1}$$

- Q : matrice de pondération
- p : vecteur des paramètres
- y_p : sortie mesurée

Problématique

Recherche d'une entrée optimale qui maximise la sensibilité $\frac{\partial y_p}{\partial n}$.

Peu de travaux existants

Dans le domaine des bioréacteurs :

[Versyck 00], [Keesman 02] [Stigter 01] et [Stigter 03].

Objectif

Estimation en ligne des paramètres inconnus du modèle

Approche

Observateur+ modèle+ modèle de sensibilité \implies approche de commande prédictive.

Peu de travaux existants

Dans le domaine des bioréacteurs :

[Versyck 00], [Keesman 02] [Stigter 01] et [Stigter 03].

Objectif

Estimation en ligne des paramètres inconnus du modèle

Approche

Observateur+ modèle
+ modèle de sensibilité \implies approche de commande prédictive.

Peu de travaux existants

Dans le domaine des bioréacteurs :

[Versyck 00], [Keesman 02] [Stigter 01] et [Stigter 03].

Objectif

Estimation en ligne des paramètres inconnus du modèle

Approche

 $\label{eq:observateur} \begin{array}{l} \mbox{Observateur}+\mbox{ modèle}+\mbox{ modèle de sensibilité} \Longrightarrow \mbox{approche de commande prédictive.} \end{array}$

Plan de la présentation

Contrôle optimal pour l'identification

Approche d'identification optimale

Observateur

- Commande prédictive
- Stratégie de l'approche en boucle fermée
- Mise en œuvre de l'approche

3 Application 1 : Réaction de saponification

- Modèle
- Problème d'identification
- Résultats de simulation

Application 2 : Cuisson radiative des peintures en poudre

- Modèle
- Problème d'identification
- Résultats de simulation

5 Conclusions/Perspectives

Approche d'identification optimale

Observateur : rappels

Principe de l'observateur

Pierre angulaire de l'approche proposée : mesures entrée/sortie + modèle \Rightarrow résolution du problème d'identification du paramètre inconnu θ .

Observateurs à grand gain pour des systèmes uniformément observables

Nous traiterons l'observation de cette large classe :

$$\begin{cases} \dot{z} = A(u)z + F(u, z) \\ y = Cz \end{cases}$$
(2)

Observateurs pour (2) uniformément observable (toute entrée rend le système observable)

• cas mono-sortie les $n_k = 1$:

• [Gauthier, Hammouri, Othman 92, Gauthier, Kupka 94] sans entrée : [V. Andrieu et L. Praly 2006)]

 \implies Observateur pour (2) :

$$\dot{\widehat{z}} = F(u, \widehat{z}) + \Delta_{\theta} K(C\widehat{z} - y)$$
(3)

 $\Delta_{\theta} = diag(\theta, \dots, \theta^k)$, K t.q. (A + KC) est stable.

Hypothèse

 $A_{k,k+1}(u(.))$ est scalaire ne changeant pas de signe et $\exists a > 0$: $|A_{k,k+1}(u(.))| \ge a$.

LAGEP, UMR 5007 CNRS-UCBL1

Observateurs pour (2) uniformément observable (toute entrée rend le système observable)

• cas mono-sortie les $n_k = 1$:

· [Gauthier, Hammouri, Othman 92, Gauthier, Kupka 94] sans entrée : [V. Andrieu et L. Praly 2006)]

 \implies Observateur pour (2) :

$$\dot{\widehat{z}} = F(u,\widehat{z}) + \Delta_{\theta} K(C\widehat{z} - y)$$
(3)

 $\Delta_{\theta} = diag(\theta, \dots, \theta^k)$, K t.q. (A + KC) est stable.

Hypothèse

 $A_{k,k+1}(u(.))$ est scalaire ne changeant pas de signe et $\exists a > 0 : |A_{k,k+1}(u(.))| \ge a.$

LAGEP, UMR 5007 CNRS-UCBL1

• cas multi-sortie (les $n_1 \ge \ldots \ge n_q \ge 1$) :

· [Bornard, Hammouri 01] et [Hammouri, Farza, M'Saad COCV 03], [Liu et al. IFAC WC 08]

 \implies Observateur pour (2) :

$$\dot{\hat{z}} = F(u,\hat{z}) + \Delta_{\theta} K(C\hat{z} - y)$$
(4)

K dependant des $S_{k,k+1}$ t.q. (A + KC) est stable.

Hypothèse de convexité [Hammouri-Farza 03]

 $\exists S_{k,k+1} : S_{k,k+1}^T A_{k,k+1}(u) + A_{k,k+1}^T(u) S_{k,k+1} \leq -\alpha I_{n_k}, I_{n_k} \text{matrice } n_k \times n_k.$

• cas multi-sortie (les $n_1 \ge \ldots \ge n_q \ge 1$) :

· [Bornard, Hammouri 01] et [Hammouri, Farza, M'Saad COCV 03], [Liu et al. IFAC WC 08]

 \implies Observateur pour (2) :

$$\dot{\hat{z}} = F(u,\hat{z}) + \Delta_{\theta} K(C\hat{z} - y)$$
(4)

K dependant des $S_{k,k+1}$ t.q. (A + KC) est stable.

Hypothèse de convexité [Hammouri-Farza 03]

$$\exists S_{k,k+1} : S_{k,k+1}^T A_{k,k+1}(u) + A_{k,k+1}^T(u) S_{k,k+1} \leq -\alpha I_{n_k}, I_{n_k} \text{matrice } n_k \times n_k.$$

Observateurs à grand gain pour des systèmes non uniformément observables

Définition

Une entrée u est dite localement régulière si : $\exists t_0 \ge 0, \theta_0 > 0, \alpha > 0$, t.q. $\forall \theta \ge \theta_0$; $\forall t \ge t_0$ on a :

$$G(u,t-\frac{1}{\theta},t) = \int_{t-\frac{1}{\theta}}^{t} \phi_{u}^{\mathsf{T}}(s,t) C^{\mathsf{T}} C \phi_{u}(s,t) ds \ge \alpha \theta \Delta_{\theta}^{-2}$$
(5)

$$\phi_u(s,t) = \phi_u^{-1}(0,s)\phi_u(0,t), \ \frac{d(\phi_u(0,t))}{dt} = A(u(t))\phi_u(0,t), \ \phi_u(0,0) = I.$$

Théorème |Besançon07|

Si *u* est une entrée locale régulière, alors un observateur pour le système (2) :

$$\begin{pmatrix} \dot{\hat{z}} = A(u)\hat{z} + F(u,\hat{z}) - \Delta_{\theta}S^{-1}C^{T}(C\hat{z} - y) \\ \dot{S} = -\theta(\gamma S + A^{T}(u)S + SA(u) - C^{T}C)$$

$$(6)$$

où $\theta > 0$ et $\gamma > 0$ sont des constantes.

LAGEP, UMR 5007 CNRS-UCBL1

Observateurs à grand gain pour des systèmes non uniformément observables

Définition

Une entrée u est dite localement régulière si : $\exists t_0 \ge 0, \theta_0 > 0, \alpha > 0$, t.q. $\forall \theta \ge \theta_0$; $\forall t \ge t_0$ on a :

$$G(u,t-\frac{1}{\theta},t) = \int_{t-\frac{1}{\theta}}^{t} \phi_{u}^{\mathsf{T}}(s,t) C^{\mathsf{T}} C \phi_{u}(s,t) ds \ge \alpha \theta \Delta_{\theta}^{-2}$$
(5)

$$\phi_u(s,t) = \phi_u^{-1}(0,s)\phi_u(0,t), \ \frac{d(\phi_u(0,t))}{dt} = A(u(t))\phi_u(0,t), \ \phi_u(0,0) = I.$$

Théorème [Besançon07]

Si *u* est une entrée locale régulière, alors un observateur pour le système (2) :

$$\begin{cases} \dot{\hat{z}} = A(u)\hat{z} + F(u,\hat{z}) - \Delta_{\theta}S^{-1}C^{T}(C\hat{z} - y) \\ \dot{S} = -\theta(\gamma S + A^{T}(u)S + SA(u) - C^{T}C) \end{cases}$$
(6)

où $\theta > 0$ et $\gamma > 0$ sont des constantes.

Observateurs à grand gain pour des systèmes non uniformément observables

[Dufour et al., soumis IEEE CCC'10]

Théorème

Si u(.) est localement régulière, alors :

1)
$$n_1 \ge \ldots \ge n_q$$
, de plus :
 $A_{i,i+1}^T(u(t))A_{i,i+1}(u(t)) \ge al_{n_{i+1}}$, a est une constante.

2) Si de plus on a la condition de convexité [Hammouri03], un observateur pour le système (2) :

$$\dot{\hat{z}} = F(u,\hat{z}) - \Delta_{\theta} P^{-1} C^{\mathsf{T}} (C\hat{z} - y)$$
(7)

$$PA(u,z) + A^{T}(u,z)P - \rho C^{T}C \leq -\eta I, \quad \forall (u,z) \in U \times \mathbb{R}^{n}$$
 (8)

 Dans le cas mono-sortie, la condition de convexité est toujours satisfaite.

LAGEP, UMR 5007 CNRS-UCBL1

05/02/2010 11 / 57

Observateurs pour les systèmes (2) n'ayant pas la structure d'observabilité uniforme

 \rightarrow Observateur basé sur une hypothèse plus faible que la régularité locale

$$\dot{S} = -\theta S - A^{T}(u)S - SA(u) + C^{T}C$$
(9)

On a :

$$S(t) = e^{-\theta t} \Phi_{u}^{T}(0,t) S(0) \Phi_{u}(0,t) + \int_{0}^{t} e^{-\theta(t-s)} \Phi_{u}^{T}(s,t) C^{T} C \Phi_{u}(s,t) ds$$

Remarque

• Posons $m = ||A(u(.))||_{\infty}$, pour $\theta > 2m$, $e^{-\theta t} \Phi_u^T(0, t) S(0) \Phi_u(0, t)$ $\longrightarrow 0$ et par conséquent, pour t grand, S(t) se comporte comme :

$$\Psi(t,\theta) = \int_0^t e^{-\theta(t-s)} \Phi_u^{\mathsf{T}}(s,t) C^{\mathsf{T}} C \Phi_u(s,t) ds$$
(10)

\$\Psi_{ij}(t, \theta) = \Psi_{ji}^T(t, \theta)\$ matrice \$n_i \times n_j\$
\$\Gamma(t, \theta)\$ la diagonale de \$\Psi(t, \theta)\$ est symétrique définie positive.

LAGEP, UMR 5007 CNRS-UCBL1

Observateurs pour les systèmes (2) n'ayant pas la structure d'observabilité uniforme

 \rightarrow Observateur basé sur une hypothèse plus faible que la régularité locale

$$\dot{S} = -\theta S - A^{T}(u)S - SA(u) + C^{T}C$$
(9)

On a :

$$S(t) = e^{- heta t} \Phi_u^T(0,t) S(0) \Phi_u(0,t) + \int_0^t e^{- heta(t-s)} \Phi_u^T(s,t) C^T C \Phi_u(s,t) ds$$

Remarque

• Posons $m = ||A(u(.))||_{\infty}$, pour $\theta > 2m$, $e^{-\theta t} \Phi_u^T(0, t) S(0) \Phi_u(0, t)$ $\longrightarrow 0$ et par conséquent, pour t grand, S(t) se comporte comme :

$$\Psi(t,\theta) = \int_0^t e^{-\theta(t-s)} \Phi_u^{\mathsf{T}}(s,t) C^{\mathsf{T}} C \Phi_u(s,t) ds$$
(10)

\$\Psi_{ij}(t, \theta) = \Psi_{ji}^T(t, \theta)\$ matrice \$n_i \times n_j\$
\$\Psi(t, \theta)\$ la diagonale de \$\Psi(t, \theta)\$ est symétrique définie positive.

Synthèse des observateurs pour les systèmes (2) n'ayant pas la structure d'observabilité uniforme

Définition

 $\begin{array}{l} u(.) \text{ est fortement persistante si :} \\ \exists \theta_0 > 0 \, ; \, \exists t_0 \geq 0 \, ; \, \forall \theta > \theta_0 \, ; \, \forall t \geq t_0 \, : \\ \mathrm{i}) \ \Gamma(t,\theta) \leq \alpha(\theta) \Psi(t,\theta), \text{ avec } \lim_{\theta \to \infty} \frac{\alpha(\theta)}{\theta} = 0. \\ \mathrm{ii}) \ \exists \gamma > 0, \, \|\Gamma_{jj}^{-1}(t,\theta)\| \|\Gamma_{ii}(t,\theta)\| \leq \gamma, \text{ pour } 1 \leq j \leq i. \\ \mathrm{L'ensemble \ des \ entrées \ fortement \ persistantes \ contient \ celui \ des \ entrées \ régulièrement \ persistantes. } \end{array}$

Synthèse des observateurs pour les systèmes (2) n'ayant pas la structure d'observabilité uniforme

→ Synthèse d'observateur pour les systèmes (2) :

Théorème

F(u, z) étant globalement Lipschitzienne par rapport à z, alors pour toute entrée fortement persistante u, un observateur exponentiel pour le système (2) est :

$$\begin{cases} \dot{\hat{z}} = A(u)\hat{z} + F(u,\hat{z}) - S^{-1}C^{T}(C\hat{z} - y) \\ \dot{S} = -\theta S - A^{T}(u)S - SA(u) + C^{T}C \end{cases}$$
(11)

Plan de la présentation

Contrôle optimal pour l'identification

Approche d'identification optimale

Observateur

• Commande prédictive

- Stratégie de l'approche en boucle fermée
- Mise en œuvre de l'approche

3 Application 1 : Réaction de saponification

- Modèle
- Problème d'identification
- Résultats de simulation

Application 2 : Cuisson radiative des peintures en poudre

- Modèle
- Problème d'identification
- Résultats de simulation

5 Conclusions/Perspectives

A chaque période d'échantillonnage, le critère de performance est optimisé tout en assurant la vérification des contraintes physiques

• prédiction réalisée sur N_p (horizon de prédiction)

La solution est le projet de commande futures

- argument de commande recherché est paramétré en dimension fini :
 - \cdot soit une série de N_c échelons,
 - · soit une fonction de temps avec n_{pu} paramètres.

A chaque période d'échantillonnage, le critère de performance est optimisé tout en assurant la vérification des contraintes physiques

• prédiction réalisée sur N_p (horizon de prédiction)

La solution est le projet de commande futures

- argument de commande recherché est paramétré en dimension fini :
 - · soit une série de N_c échelons,
 - · soit une fonction de temps avec n_{pu} paramètres.

A chaque période d'échantillonnage, le critère de performance est optimisé tout en assurant la vérification des contraintes physiques

• prédiction réalisée sur N_p (horizon de prédiction)

La solution est le projet de commande futures

- argument de commande recherché est paramétré en dimension fini :
 - · soit une série de N_c échelons,
 - · soit une fonction de temps avec n_{pu} paramètres.

Commande prédictive

Structure de commande par modèle interne : rappels

Dans notre cas d'étude, le modèle de commande est :

- soit non linéaire (NL),
- 2 soit linéaire à temps variant (LTV).

Commande prédictive

Structure de commande par modèle interne : rappels

Dans notre cas d'étude, le modèle de commande est :

soit non linéaire (NL),

e soit linéaire à temps variant (LTV).

Commande prédictive

Structure de commande par modèle interne : rappels

Dans notre cas d'étude, le modèle de commande est :

- soit non linéaire (NL),
- soit linéaire à temps variant (LTV).

Le problème d'optimisation à résoudre :

$$\begin{cases} \mathcal{P}_{N_{p}} : \min_{\tilde{u}} \{J(\tilde{u}) \mid \tilde{u} \in \mathcal{U}_{N_{p}}\} \\ J(\tilde{u}) = \sum_{j=k+1}^{k+N_{p}} F(y_{m}(j), u(j-1)) \\ \tilde{u} = \{p_{u}(1), ..., p_{u}(n_{pu})\} \\ u \in \mathcal{U} \\ c_{i}(y_{m}(j), u(j-1)) \leq 0, \quad i \in \{1, ..., n_{con}\} \\ \text{basé sur la résolution du modèle.} \end{cases}$$
(12)

J : critère de performance à minimiser,

 U_{N_p} : ensemble des profiles de commandes admissibles sur l'horizon N_p , c_i : contraintes de sortie.

Plan de la présentation

Contrôle optimal pour l'identification

Approche d'identification optimale

- Observateur
- Commande prédictive

• Stratégie de l'approche en boucle fermée

Mise en œuvre de l'approche

3 Application 1 : Réaction de saponification

- Modèle
- Problème d'identification
- Résultats de simulation

Application 2 : Cuisson radiative des peintures en poudre

- Modèle
- Problème d'identification
- Résultats de simulation

5 Conclusions/Perspectives

Stratégie de l'approche en boucle fermée Formulation du problème d'identification

Problème d'optimisation contraint pour l'identification (POCI_I) :

$$(POCI_{I}) \begin{cases} \mathcal{P}_{N_{p}} : \max_{\tilde{u}} \{J(\tilde{u}) \mid \tilde{u} \in \mathcal{U}_{N_{p}}\} \\ J(\tilde{u}) = \sum_{j=k+1}^{k+N_{p}} \left(\frac{\partial y_{p}}{\partial \theta}(j)\right)^{2} \\ \left\{ \begin{array}{l} u_{min} \le u(j) \le u_{max} \ , \ \forall \ j \in [k, k+N_{p}-1] \\ \Delta u_{min} \le u(j) - u(j-1) \le \Delta u_{max} \ , \ \forall \ j \in [k, k+N_{p}-1] \\ c_{i}\left(y_{p}(j), x_{p}(j), \alpha, \theta, u(j-1)\right) \le 0, \ \forall \ k \ge 0 \ \forall \ j \in [k+1, k+N_{p}], \\ \forall \ i \in I^{n_{c}+n_{co}} = \{1, ..., n_{c} + n_{co}\} \\ \text{basé sur la résolution des modèles.} \end{cases}$$

 \longrightarrow signaux dans le futur j non disponible \Rightarrow structure de commande par modèle interne

LAGEP, UMR 5007 CNRS-UCBL1

Stratégie de l'approche en boucle fermée Formulation du problème d'identification

Problème d'optimisation contraint pour l'identification (POCI_I) :

$$(POCI_{I}) \begin{cases} \mathcal{P}_{N_{p}} : \max_{\tilde{u}} \{J(\tilde{u}) \mid \tilde{u} \in \mathcal{U}_{N_{p}}\} \\ J(\tilde{u}) = \sum_{j=k+1}^{k+N_{p}} \left(\frac{\partial y_{p}}{\partial \theta}(j)\right)^{2} \\ \left\{ \begin{array}{l} u_{min} \le u(j) \le u_{max} \ , \ \forall \ j \in [k, k+N_{p}-1] \\ \Delta u_{min} \le u(j) - u(j-1) \le \Delta u_{max} \ , \ \forall \ j \in [k, k+N_{p}-1] \\ c_{i} \left(y_{p}(j), x_{p}(j), \alpha, \theta, u(j-1)\right) \le 0, \ \forall \ k \ge 0 \ \forall \ j \in [k+1, k+N_{p}], \\ \forall \ i \in I^{n_{c}+n_{co}} = \{1, ..., n_{c}+n_{co}\} \\ \text{basé sur la résolution des modèles.} \end{cases}$$

 \rightarrow signaux dans le futur *j* non disponible \Rightarrow structure de commande par modèle interne

Stratégie de l'approche en boucle fermée Formulation du problème d'identification

Problème d'optimisation contraint pour l'identification (POCI_I) :

$$(POCI_{I}) \begin{cases} \mathcal{P}_{N_{p}} : \max_{\tilde{u}} \{J(\tilde{u}) \mid \tilde{u} \in \mathcal{U}_{N_{p}}\} \\ J(\tilde{u}) = \sum_{j=k+1}^{k+N_{p}} \left(\frac{\partial y_{p}}{\partial \theta}(j)\right)^{2} \\ \left\{ \begin{array}{l} u_{min} \le u(j) \le u_{max} \ , \ \forall \ j \in [k, k+N_{p}-1] \\ \Delta u_{min} \le u(j) - u(j-1) \le \Delta u_{max} \ , \ \forall \ j \in [k, k+N_{p}-1] \\ c_{i}\left(y_{p}(j), x_{p}(j), \alpha, \theta, u(j-1)\right) \le 0, \ \forall \ k \ge 0 \ \forall \ j \in [k+1, k+N_{p}], \\ \forall \ i \in I^{n_{c}+n_{co}} = \{1, ..., n_{c} + n_{co}\} \\ \text{basé sur la résolution des modèles.} \end{cases}$$

 \longrightarrow signaux dans le futur j non disponible \Rightarrow structure de commande par modèle interne

LAGEP, UMR 5007 CNRS-UCBL1

Modèle de commande (modèle de prédiction) :

$$(M) \begin{cases} \dot{x}_m(t) = f(x_m(t), \alpha, \theta, u(t)), & t \in \mathbb{R} \\ y_m(t) = h(x_m(t), \alpha, \theta, u(t)), & t \in \mathbb{R} \\ x_m(0) = x_m^0 \end{cases}$$

où α et θ des paramètres du modèle.

Hypothèse

Le système (M) a une solution unique et continue pour tout état initial et pour toute fonction d'entrée continue par morceaux $u(.) : \mathbb{R} \longrightarrow U$.

Modèle de sensibilité de la sortie du procédé y_p par rapport au paramètre θ :

$$(M_{x_{p\theta}}) \begin{cases} \dot{x}_{p\theta}(t) = \frac{d}{dt} \frac{\partial f}{\partial x_p} \frac{\partial x_p}{\partial \theta} = f_{x_p\theta}(x_{p\theta}(t), x_p(t), \alpha, \theta, u(t)) \\ y_{p\theta}(t) = \frac{\partial h}{\partial x_p} x_{p\theta}(t) = h_{x_p\theta}(x_{p\theta}(t), x_p(t), \alpha, \theta, u(t)) \\ x_{p\theta}(0) = x_{p\theta}^0 \end{cases}$$

où $x_{p\theta} = \frac{\partial x_p}{\partial \theta} \in \mathbb{R}^n$ et $y_{p\theta} = \frac{\partial y_p}{\partial \theta} \in \mathbb{R}$ sont respectivement la sensibilité de l'état et de la sortie du procédé par rapport au paramètre θ .
Modèle de sensibilité de la sortie du modèle y_m par rapport au paramètre θ :

$$(M_{x_{m\theta}}) \begin{cases} \dot{x}_{m\theta}(t) = \frac{d}{dt} \frac{\partial f}{\partial x_m} \frac{\partial x_m}{\partial \theta} = f_{x_m\theta}(x_{m\theta}(t), x_m(t), \alpha, \theta, u(t)) \\ y_{m\theta}(t) = \frac{\partial h}{\partial x_m} x_{m\theta}(t) = h_{x_m\theta}(x_{m\theta}(t), x_m(t), \alpha, \theta, u(t)) \\ x_{m\theta}(0) = x_{m\theta}^0 \end{cases}$$

où $x_{m\theta} = \frac{\partial x_m}{\partial \theta} \in \mathbb{R}^n$ et $y_{m\theta} = \frac{\partial y_m}{\partial \theta} \in \mathbb{R}$ sont respectivement la sensibilité de l'état et de la sortie du modèle (*M*) par rapport au paramètre θ .

Sorties des divers modèles \rightarrow prédiction du comportement du signal réel équivalent :

Hypothèse

Sur l'horizon de prédiction N_p , un écart existant entre une sortie du procédé et celle équivalente du modèle est pris constant et égal à la dernière valeur disponible. A chaque période d'échantillonnage, cet écart est mise à jour par les nouvelles mesures ou estimation actualisées du procédé.

 \Rightarrow Approximation des signaux dans (*POCI*₁) :

 $\begin{array}{l} y_p(j) = y_m(j) + (y_p(k) - y_m(k)), & \forall k \ge 0, \ \forall \ j \in [k+1, k+N_p] \\ x_p(j) = x_m(j) + (\hat{x}_p(k) - x_m(k)), & \forall k \ge 0, \ \forall \ j \in [k+1, k+N_p] \\ \frac{\partial y_p}{\partial \theta}(j) = \frac{\partial y_m}{\partial \theta}(j) + (\frac{\partial y_p}{\partial \theta}(k) - \frac{\partial y_m}{\partial \theta}(k)), \ \forall k \ge 0, \ \forall \ j \in [k+1, k+N_p] \\ \theta = \hat{\theta}(k), & \forall k \ge 0 \end{array}$

Sorties des divers modèles \rightarrow prédiction du comportement du signal réel équivalent :

Hypothèse

Sur l'horizon de prédiction N_p , un écart existant entre une sortie du procédé et celle équivalente du modèle est pris constant et égal à la dernière valeur disponible. A chaque période d'échantillonnage, cet écart est mise à jour par les nouvelles mesures ou estimation actualisées du procédé.

 \implies Approximation des signaux dans (*POCl*_I) :

$$\begin{cases} y_{p}(j) = y_{m}(j) + (y_{p}(k) - y_{m}(k)), & \forall k \geq 0, \forall j \in [k+1, k+N_{p}] \\ x_{p}(j) = x_{m}(j) + (\hat{x}_{p}(k) - x_{m}(k)), & \forall k \geq 0, \forall j \in [k+1, k+N_{p}] \\ \frac{\partial y_{p}}{\partial \theta}(j) = \frac{\partial y_{m}}{\partial \theta}(j) + (\frac{\partial y_{p}}{\partial \theta}(k) - \frac{\partial y_{m}}{\partial \theta}(k)), \forall k \geq 0, \forall j \in [k+1, k+N_{p}] \\ \theta = \hat{\theta}(k), & \forall k \geq 0 \end{cases}$$

$$(POCI_{I}) \implies (POCI_{NL}):$$

$$\left\{\begin{array}{l} \mathcal{P}_{N_{p}} : \max_{\tilde{u}} \{J(\tilde{u}) \mid \tilde{u} \in \mathcal{U}_{N_{p}}\} \\ J(\tilde{u}) = \sum_{j=k+1}^{k+N_{p}} \left(\frac{\partial y_{m}}{\partial \theta}(j) + \left(\frac{\partial y_{p}}{\partial \theta}(k) - \frac{\partial y_{m}}{\partial \theta}(k)\right)\right)^{2} \\ \text{soumis aux contraintes de commande et de sortie :} \\ \left\{\begin{array}{l} c_{i} \left(y_{m}(j) + \left(y_{p}(k) - y_{m}(k)\right), x_{m}(j) + \left(\hat{x}_{p}(k) - x_{m}(k)\right), \alpha, \\ \hat{\theta}(k), u(j) \leq 0, \forall k \geq 0 \forall j \in [k+1, k+N_{p}], \forall i \in I^{n_{c}+n_{co}} \\ \text{basé sur la résolution des modèles } (M), \left(M_{x_{m}\theta}\right) \text{ et } \left(M_{x_{p}\theta}\right). \end{array}\right.$$

Inconvénient : résolution en temps réel peut être compliquée.

• *Solution :* version linéarisée de l'approche.

$$(POCI_{I}) \implies (POCI_{NL}):$$

$$\left\{\begin{array}{l} \mathcal{P}_{N_{p}} : \max_{\tilde{u}} \{J(\tilde{u}) \mid \tilde{u} \in \mathcal{U}_{N_{p}}\} \\ J(\tilde{u}) = \sum_{j=k+1}^{k+N_{p}} \left(\frac{\partial y_{m}}{\partial \theta}(j) + \left(\frac{\partial y_{p}}{\partial \theta}(k) - \frac{\partial y_{m}}{\partial \theta}(k)\right)\right)^{2} \\ \text{soumis aux contraintes de commande et de sortie :} \\ \left\{\begin{array}{l} c_{i} (y_{m}(j) + (y_{p}(k) - y_{m}(k)), x_{m}(j) + (\hat{x}_{p}(k) - x_{m}(k)), \alpha, \\ \hat{\theta}(k), u(j) \leq 0, \forall k \geq 0 \forall j \in [k+1, k+N_{p}], \forall i \in I^{n_{c}+n_{co}} \\ \text{basé sur la résolution des modèles } (M), (M_{x_{m}\theta}) \text{ et } (M_{x_{p}\theta}). \end{array}\right.$$

• Inconvénient : résolution en temps réel peut être compliquée.

• *Solution :* version linéarisée de l'approche.

$$(POCI_{I}) \implies (POCI_{NL}):$$

$$\left\{\begin{array}{l} \mathcal{P}_{N_{p}} : \max_{\tilde{u}} \{J(\tilde{u}) \mid \tilde{u} \in \mathcal{U}_{N_{p}}\} \\ J(\tilde{u}) = \sum_{j=k+1}^{k+N_{p}} \left(\frac{\partial y_{m}}{\partial \theta}(j) + \left(\frac{\partial y_{p}}{\partial \theta}(k) - \frac{\partial y_{m}}{\partial \theta}(k)\right)\right)^{2} \\ \text{soumis aux contraintes de commande et de sortie :} \\ \left\{\begin{array}{l} c_{i} \left(y_{m}(j) + \left(y_{p}(k) - y_{m}(k)\right), x_{m}(j) + \left(\hat{x}_{p}(k) - x_{m}(k)\right), \alpha, \\ \hat{\theta}(k), u(j) \leq 0, \forall k \geq 0 \forall j \in [k+1, k+N_{p}], \forall i \in I^{n_{c}+n_{co}} \\ \text{basé sur la résolution des modèles } (M), \left(M_{x_{m}\theta}\right) \text{ et } \left(M_{x_{p}\theta}\right). \end{array}\right.$$

- Inconvénient : résolution en temps réel peut être compliquée.
- *Solution :* version linéarisée de l'approche.

Commande prédictive [Dufour et al.2003].

 \longrightarrow réduire le temps de calcul nécessaire pour résoudre le problème d'optimisation sous contraintes

 \longrightarrow linéarisation du modèle de procédé et du modèle de sensibilité paramétrique autour du fonctionnent nominal $(u_0, x_0, \theta_0, x_{\theta 0}, y_0)$.

- Modèles non linéaires : résolus hors ligne,
- Modèles linéaires à temps variants : résolus en ligne et sont utilisés par l'algorithme d'identification.

$$\begin{array}{l} \left\{ \begin{array}{l} \mathcal{POCl}_{NL} \right) \Longrightarrow & \left(\mathcal{POCl}_{LTV} \right) : \\ \left\{ \begin{array}{l} \mathcal{P}_{N_{p}} : \max\{J(\Delta \tilde{u}) \mid \Delta \tilde{u} \in \mathcal{U}_{N_{p}}\} \\ J(\Delta \tilde{u}) = \sum\limits_{j=k+1}^{k+N_{p}} \left(\left(\frac{\partial y_{0}}{\partial \theta_{0}}(j) + \frac{\partial \Delta y_{m}}{\partial \Delta \theta}(j) \right) + \left(\frac{\partial y_{p}}{d\theta}(k) - \ldots \right) \\ & \left(\frac{\partial y_{0}}{\partial \theta_{0}}(k) + \frac{\partial \Delta y_{m}}{\partial \Delta \theta}(k) \right) \right)^{2} \\ \left\{ \begin{array}{l} u_{min} \leq u_{0}(j) + \Delta u(j) \leq u_{max}, \forall j \in [k, k+N_{p}-1] \\ \Delta u_{min} \leq u_{0}(j) + \Delta u(j) - (u_{0}(j-1) + \Delta u(j-1)) \leq \Delta u_{max}, \\ \forall j \in [k, k+N_{p}-1] \end{array} \right. \\ \left\{ \begin{array}{l} c_{i} \left(y_{0}(j) + \Delta y_{m}(j) + \left(y_{p}(k) - \left(y_{0}(k) + \Delta y_{m}(k) \right) \right), \\ x_{0}(j) + \Delta x_{m}(j) + \left(\hat{x}_{p}(k) - \left(x_{0}(k) + \Delta x_{m}(k) \right) \right), \\ \alpha, \theta_{0} + \Delta \theta, \Delta u(j) \leq 0, \\ \forall k \geq 0 \ \forall j \in [k+1, k+N_{p}], \ \forall i \in I^{n_{c}+n_{co}} \\ \text{basé sur la résolution des modèles} \left(M_{LTV} \right) et \left(M_{xm}\theta LTV \right). \end{array} \right\}$$

Plan de la présentation

Contrôle optimal pour l'identification

Approche d'identification optimale

- Observateur
- Commande prédictive
- Stratégie de l'approche en boucle fermée
- Mise en œuvre de l'approche
- Application 1 : Réaction de saponification
 - Modèle
 - Problème d'identification
 - Résultats de simulation

Application 2 : Cuisson radiative des peintures en poudre

- Modèle
- Problème d'identification
- Résultats de simulation

5 Conclusions/Perspectives

Ces problèmes d'optimisation sont résolvables par tout type d'algorithme de commande prédictive.

Notre approche d'identification :

- contraintes sur les entrées : transformation hyperbolique,
- contraintes sur les sorties : pénalités externes,
- recherche d'un échelon ($N_c = 1$),
- résolution par un algorithme d'optimisation non contraint du type gradient.

→ Problème non contraint pénalisé basé sur un modèle soit non linéaire, soit linéaire à temps variant. Ces problèmes d'optimisation sont résolvables par tout type d'algorithme de commande prédictive.

Notre approche d'identification :

- contraintes sur les entrées : transformation hyperbolique,
- contraintes sur les sorties : pénalités externes,
- recherche d'un échelon ($N_c = 1$),
- résolution par un algorithme d'optimisation non contraint du type gradient.

 \rightarrow Problème non contraint pénalisé basé sur un modèle soit non linéaire, soit linéaire à temps variant.

Plan de la présentation

1 Contrôle optimal pour l'identification

2 Approche d'identification optimale

- Observateur
- Commande prédictive
- Stratégie de l'approche en boucle fermée
- Mise en œuvre de l'approche

3 Application 1 : Réaction de saponification

- Modèle
- Problème d'identification
- Résultats de simulation

Application 2 : Cuisson radiative des peintures en poudre

- Modèle
- Problème d'identification
- Résultats de simulation

5 Conclusions/Perspectives

Saponifier l'acétate d'éthyle (A) par la soude (B) en un produit (C). La réaction est de type :

$$A + B \longrightarrow C$$
 (14)

Modèle : bilan de matière+ bilan d'énergie \Rightarrow système EDO non linéaire.

Modèle simplifié

Hypothèses :

 \rightarrow concentration d'entrée en soude= concentration d'entrée en acétate d'éthyle,

Hypothèses (suite) :

 \rightarrow initialement, les concentrations en soude et d'acétate d'éthyle sont les mêmes dans le réacteur.

 \Rightarrow Modèle simplifié considéré :

$$\begin{cases} \dot{C}_{a}(t) = -k_{v}C_{a}^{2} + \frac{D_{in}(t)}{V}(C_{a_{in}} - C_{a}) \\ C_{a}(0) = C_{a}^{0} \end{cases}$$
(15)

 C_a = concentration d'acétate d'éthyle mesurée en ligne, D_{in} = débit manipulable, k_v = paramètre à déterminer par l'approche.

Plan de la présentation

1 Contrôle optimal pour l'identification

2 Approche d'identification optimale

- Observateur
- Commande prédictive
- Stratégie de l'approche en boucle fermée
- Mise en œuvre de l'approche

3 Application 1 : Réaction de saponification

- Modèle
- Problème d'identification
- Résultats de simulation

Application 2 : Cuisson radiative des peintures en poudre

- Modèle
- Problème d'identification
- Résultats de simulation

5 Conclusions/Perspectives

Observateur

ightarrow Augmentation du vecteur d'état du modèle (15) par le paramètre $k_{
m v}$ à estimer.

 \rightarrow Observateur donné par [Hammouri 90] :

$$\begin{cases} \dot{\hat{x}}(t) = A(y(t))\hat{x}(t) + B(u(t), y(t)) - S_{\theta_o}^{-1}C^{\mathsf{T}}(C\hat{x} - y) \\ \dot{S}_{\theta_o} = -\theta_o S_{\theta_o} - A^{\mathsf{T}}(y(t))S_{\theta_o} - S_{\theta_o}A(y(t)) + C^{\mathsf{T}}C \end{cases}$$
(16)

où :

$$A(y(t)) = \begin{pmatrix} 0 & -C_a(t)^2 \\ 0 & 0 \end{pmatrix}, B(u(t), y(t)) = \begin{pmatrix} D_{in}(t) \frac{C_{a_{in}} - C_a(t)}{C_{a_{in}}} \\ 0 \end{pmatrix},$$
$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Application 1 : Réaction de saponification Problème d'identification

(*POCI*₁) :

$$\begin{cases} \max_{\tilde{D}_{in}} J(\tilde{D}_{in}) = \sum_{j=k+1}^{k+N_{p}} \left(\frac{\partial C_{a}}{\partial k_{v}}(j)\right)^{2} \\ \tilde{D}_{in} = D_{in}(k) \end{cases}$$
(17)

• contraintes sur la commande :

$$\begin{cases} D_{min} \le D_{in}(.) \le D_{max} \\ \Delta D_{min} \le \Delta D_{in}(.) \le \Delta D_{max} \end{cases}$$
(18)

• contrainte de sortie :

$$C_a(.) \le C_a^{max} \tag{19}$$

Application 1 : Réaction de saponification Problème d'identification

(*POCI*₁) :

$$\begin{cases} \max_{\tilde{D}_{in}} J(\tilde{D}_{in}) = \sum_{j=k+1}^{k+N_p} \left(\frac{\partial C_a}{\partial k_v}(j)\right)^2 \\ \tilde{D}_{in} = D_{in}(k) \end{cases}$$
(17)

• contraintes sur la commande :

$$\begin{cases} D_{min} \leq D_{in}(.) \leq D_{max} \\ \Delta D_{min} \leq \Delta D_{in}(.) \leq \Delta D_{max} \end{cases}$$
(18)

• contrainte de sortie :

$$C_a(.) \le C_a^{max}$$
 (19)

Application 1 : Réaction de saponification Problème d'identification

(*POCI*₁) :

$$\begin{cases} \max_{\tilde{D}_{in}} J(\tilde{D}_{in}) = \sum_{j=k+1}^{k+N_{p}} \left(\frac{\partial C_{a}}{\partial k_{v}}(j)\right)^{2} \\ \tilde{D}_{in} = D_{in}(k) \end{cases}$$
(17)

• contraintes sur la commande :

$$\begin{cases} D_{min} \leq D_{in}(.) \leq D_{max} \\ \Delta D_{min} \leq \Delta D_{in}(.) \leq \Delta D_{max} \end{cases}$$
(18)

• contrainte de sortie :

$$C_a(.) \le C_a^{max} \tag{19}$$

Plan de la présentation

1 Contrôle optimal pour l'identification

2 Approche d'identification optimale

- Observateur
- Commande prédictive
- Stratégie de l'approche en boucle fermée
- Mise en œuvre de l'approche

3 Application 1 : Réaction de saponification

- Modèle
- Problème d'identification
- Résultats de simulation

Application 2 : Cuisson radiative des peintures en poudre

- Modèle
- Problème d'identification
- Résultats de simulation

5 Conclusions/Perspectives

Application 1 : Réaction de saponification Identification optimale : modèle non linéaire

a) Mesure non bruitée [Flila et al., soumis CIFA 10] [Flila et al., soumis IEEE CCC 10] [Flila et al., ICL 2009]

Figure: Entrée (à gauche) et sortie (à droite). $C_a^{max} = 15 \times 10^{-2} \text{mol.} \text{l}^{-1}$. $N_p = 10$.

A B A A B A

Application 1 : Réaction de saponification Identification optimale : modèle non linéaire

a) Mesure non bruitée [Flila et al., soumis CIFA 10] [Flila et al., soumis IEEE CCC 10] [Flila et al., ICL 2009]

Figure: Sensibilité maximisée (à gauche) et identification du paramètre (à droite). $N_p = 10.$

Application 1 : Réaction de saponification

Identification optimale : modèle non linéaire

b) Mesure bruitée

Figure: Estimation paramètre (à gauche) et sortie (à droite), $\theta_o = 0.02$. Bruit= 5 % d'amplitude de la sortie. $C_a^{max} = 15 \times 10^{-3} \text{mol.l}^{-1}$. $N_p = 10$.

Application 1 : Réaction de saponification Identification optimale : modèle non linéaire

b) Mesure bruitée

Figure: Entrée (à gauche) et sensibilité maximisée (à droite), $\theta_o = 0.02$. Bruit= 5 % d'amplitude de la sortie.

• Avantage : convergence du paramètre+ vérification des contraintes,

• Inconvénient : cas bruité a changé le comportement des estimés.

Application 1 : Réaction de saponification Identification optimale : modèle non linéaire

b) Mesure bruitée

Figure: Entrée (à gauche) et sensibilité maximisée (à droite), $\theta_o = 0.02$. Bruit= 5 % d'amplitude de la sortie.

- Avantage : convergence du paramètre+ vérification des contraintes,
- Inconvénient : cas bruité a changé le comportement des estimés.

Approche linéarisée : utilisation du logiciel MPC@CB.

Comparaison des deux approches de commande ($T_e = 60s$)

Loi de commande	Temps de calcul moyen (s)	Temps de calcul maximum (s)
Non linéaire	5.38	7,52
Linéaire temps variant	1.27	2.45

 Table: Comparaison des résultats obtenus pour la réaction de saponification avec les deux lois de commande

 \Rightarrow Ces deux lois de commande sont implémentables en ligne.

Plan de la présentation

Observateur Commande prédictive Stratégie de l'approche en boucle fermée Mise en œuvre de l'approche Modèle Problème d'identification Résultats de simulation Application 2 : Cuisson radiative des peintures en poudre Modèle Problème d'identification Résultats de simulation

Application 2 : Cuisson radiative des peintures en poudre $_{\mathsf{Modèle}}$

Description du procédé de cuisson

Figure: Echanges thermiques dans le système peinture+support [Bombard 07]

Application 2 : Cuisson radiative des peintures en poudre $_{\mathsf{Modèle}}$

Modèle de cuisson de peinture sous infrarouge [Bombard 07]

Cinétique de réticulation= modèle de Sestak - Berggren :

$$\frac{dX}{dt} = k(T)f(X) \tag{20}$$

avec :

$$\begin{cases} k(T) = A \exp(-\frac{E}{RT}) \\ f(X) = X^m (1-X)^n \end{cases}$$
(21)

05/02/2010

44 / 57

Bilan thermique= équation de la chaleur dans support + peinture :

$$\nabla(\lambda_{c,s}\nabla T_s) = \rho_s C_{\rho_s} \frac{\partial T_s}{\partial t}, \qquad \text{support} \qquad (22)$$

$$\nabla(\lambda_{c,p}\nabla T_p) = \rho_p C_{p_p} \frac{\partial T_p}{\partial t} + \phi_{reaction}, \qquad \text{peinture} \qquad (23)$$

Cinétique de réticulation+ bilan thermique+ conditions aux limites et initiales \Rightarrow système non linéaire EDP :

$$\begin{cases} \frac{\partial T_{p}(z,t)}{\partial t} = f_{1}(\nabla^{2}(T_{p}(z,t)), X(z,t)), & \forall z \in [0, e_{p}], & \forall t > 0\\ \frac{\partial T_{s}(z,t)}{\partial t} = f_{2}(\nabla^{2}(T_{s}(z,t)), & \forall z \in [0, e_{p}], & \forall t > 0\\ \text{avec les conditions aux limites :} & \forall z \in]e_{p}, e_{p} + e_{s}[, & \forall t > 0\\ \frac{\partial T_{p}(z,t)}{\partial z} = f_{3}(T_{p}(z,t), \alpha_{p}\phi_{ir}(t)), & z = 0, & \forall t > 0\\ -\lambda_{c,p}\frac{\partial T_{p}(z,t)}{\partial z} = -\lambda_{c,s}\frac{\partial T_{s}(z,t)}{\partial z}, & z = e_{p}, & \forall t > 0\\ \frac{\partial T_{s}(z,t)}{\partial z} = f_{4}((T_{s}(z,t)), & z = e_{p}, & \forall t > 0\\ \text{avec les conditions initiales :} & T_{p}(z,t) = T_{1}, & T_{s}(z,t) = T_{2} & \forall z \in [e_{p} + e_{s}], & t = 0\\ X(z,t) = 0^{+} & \forall z \in [0, e_{p}], & t = 0 \end{cases}$$

Résolution numérique par la méthode de différences finies [Bombard 07] \Rightarrow

$$\begin{cases} \frac{dT_{\rho_{i}}}{dt} = \frac{\lambda_{\rho}}{\rho_{\rho}C_{\rho}\Delta z_{1}^{2}}(T_{\rho_{i-1}} - 2T_{\rho_{i}} + T_{\rho_{i+1}}), & \forall i \in]1, N_{\rho}[, \quad \forall t > 0\\ \frac{dT_{s_{i}}}{dt} = \frac{\lambda_{s}}{\rho_{s}C_{s}\Delta z_{2}^{2}}(T_{s_{i-1}} - 2T_{s_{i}} + T_{s_{i+1}}), & \forall i \in]1, N_{s}[, \quad \forall t > 0 \end{cases}$$

$$(25)$$

Application 2 : Cuisson radiative des peintures en poudre $_{\mathsf{Modèle}}$

Conditions aux limites :

$$\begin{cases} \frac{dT_{p_{1}}}{dt} = \frac{\lambda_{p}}{\rho_{p}C_{p}\Delta z_{1}^{2}}(T_{p_{1}} + 2T_{p_{2}}) + \frac{2h_{1}}{\lambda_{p}}[\alpha_{p}\phi_{ir} - \sigma\varepsilon_{p}(T_{p_{1}}^{4} - T_{1}^{4}) \\ -h_{a_{p}}(T_{p_{1}} - T_{1})], & \forall t > 0 \end{cases} \\ \frac{dT_{p_{Np}}}{dt} = \frac{\lambda_{p}}{\rho_{p}C_{p}\Delta z_{1}^{2}}[T_{p_{Np-1}} - (1 + \frac{\lambda_{s}h_{1}}{\lambda_{p}h_{2}})T_{p_{Np}} + \frac{\lambda_{s}h_{1}}{\lambda_{p}h_{2}}T_{s+1}] \\ -\rho_{p}\Delta H_{0}\frac{dX_{1}}{dt}, & \forall t > 0 \end{cases} \\ \frac{dT_{s_{Ns}}}{dt} = \frac{\lambda_{s}}{\rho_{s}C_{s}\Delta z_{2}^{2}}[(T_{s_{Ns-1}} - 2T_{s_{Ns}}) - \frac{2h_{2}}{\lambda_{s}}(\sigma\varepsilon_{s}(T_{s_{Ns}}^{4} - T_{2}^{4}) \\ +h_{a_{s}}(T_{s_{Ns}} - T_{2}))], & \forall t > 0 \end{cases}$$

$$(26)$$

Conditions initiales :

$$\begin{cases} T_p(z,t) = T_1, \quad T_s(z,t) = T_2 \\ X(z,t) = 0^+ \\ \end{cases} \quad \forall z \in [0,e_p], \quad t = 0 \\ \forall z \in [0,e_p], \quad t = 0 \\ \forall z \in [0,e_p], \quad t = 0 \end{cases}$$

Plan de la présentation

- Observateur Commande prédictive Stratégie de l'approche en boucle fermée Mise en œuvre de l'approche Modèle Problème d'identification Résultats de simulation Application 2 : Cuisson radiative des peintures en poudre Modèle Problème d'identification Résultats de simulation
 - 5 Conclusions/Perspectives

Application 2 : Cuisson radiative des peintures en poudre Problème d'identification

Observateur

 \rightarrow Augmentation du vecteur d'état du modèle par le paramètre $\alpha_{\rm p}$ à estimer.

 \rightarrow Observateur donné par [Hammouri 90] :

$$\begin{cases}
\dot{\hat{x}}(t) = A(u)\hat{x}(t) + \varphi(y, \hat{x}) - S_{\theta_o}^{-1}C^T(C\hat{x} - y) \\
\dot{S}_{\theta_o} = -\theta_o S_{\theta_o} - A^T(u)S_{\theta_o} - S_{\theta_o}A(u) + C^TC \\
\vdots & 0 & \frac{\lambda_s}{\rho_s C_s h_2^2} & 0 & \cdots & 0 \\
\vdots & 0 & \frac{\lambda_s}{\rho_s C_s h_2^2} & 0 & \cdots & \vdots \\
\vdots & \cdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \cdots & \ddots & \ddots & \ddots & 0 \\
\vdots & \cdots & \cdots & \ddots & \ddots & 0 \\
\vdots & \cdots & \cdots & \ddots & \ddots & 0 \\
\vdots & \cdots & \cdots & \cdots & 0 & 1 \\
0 & \cdots & \cdots & \cdots & 0 & 1
\end{cases}$$
(28)

Application 2 : Cuisson radiative des peintures en poudre Problème d'identification

$$\varphi(y, \hat{x}) = \begin{pmatrix} -2\frac{\lambda_s}{\rho_s C_s h_2^2} \frac{2\Delta z_2}{\lambda_s} \sigma_s (y^4 - T_2^4) \\ \frac{\lambda_s}{\rho_s C_s h_2^2} (-2\hat{T}_{sN_s-1} + y) \\ \vdots \\ -(1 + \frac{\lambda_s h_1}{\lambda_p h_2}) \hat{T}_{pN_p} + \frac{\lambda_s h_1}{\lambda_p h_2} \hat{T}_{sN_{p+1}} \\ \vdots \\ \frac{\lambda_p}{\rho_p C_p h_1^2} (-2\hat{T}_{p2} + \hat{T}_{p3}) \\ \vdots \\ \frac{\lambda_p}{\rho_p C_p h_1^2} (-2\hat{T}_{p1} + 2\hat{T}_{p2} - 2\frac{2\Delta z_1}{\lambda_p} \sigma_p \varepsilon_p (\hat{T}_{p1}^4 - T_1^4) + h_{ap} (\hat{T}_{p_1} - T_1)) \end{pmatrix}$$

 $C = (1 \ 0 \ \dots \ 0)$

Application 2 : Cuisson radiative des peintures en poudre Problème d'identification

(*POCI*₁) :

$$\begin{cases} \max_{\tilde{\phi}_{ir}} J(\tilde{\phi}_{ir}) = \sum_{j=k+1}^{k+N_p} \left(\frac{\partial T_s(e_p + e_s)}{\partial \alpha_p} (j) \right)^2 \\ \tilde{\phi}_{ir} = \phi_{ir}(k) \end{cases}$$
(29)

• contraintes sur l'amplitude de la commande :

$$\phi_{ir\,min} \le \phi_{ir}(.) \le \phi_{ir\,max} \tag{30}$$

• température de support $T_s(e_p + e_s)$ limitée :

$$\mathcal{T}_s(e_p+e_s)(.) \leq \mathcal{T}_s(e_p+e_s)^{max}$$
Application 2 : Cuisson radiative des peintures en poudre Problème d'identification

(*POCI*₁) :

$$\begin{cases} \max_{\tilde{\phi}_{ir}} J(\tilde{\phi}_{ir}) = \sum_{j=k+1}^{k+N_p} \left(\frac{\partial T_s(e_p + e_s)}{\partial \alpha_p}(j) \right)^2 \\ \tilde{\phi}_{ir} = \phi_{ir}(k) \end{cases}$$
(29)

• contraintes sur l'amplitude de la commande :

$$\phi_{ir\,min} \le \phi_{ir}(.) \le \phi_{ir\,max} \tag{30}$$

• température de support $T_s(e_p + e_s)$ limitée :

$$T_s(e_p+e_s)(.) \leq T_s(e_p+e_s)^{max}$$

Application 2 : Cuisson radiative des peintures en poudre Problème d'identification

(*POCI*₁) :

$$\begin{cases} \max_{\tilde{\phi}_{ir}} J(\tilde{\phi}_{ir}) = \sum_{j=k+1}^{k+N_p} \left(\frac{\partial T_s(e_p + e_s)}{\partial \alpha_p}(j) \right)^2 \\ \tilde{\phi}_{ir} = \phi_{ir}(k) \end{cases}$$
(29)

• contraintes sur l'amplitude de la commande :

$$\phi_{ir\,min} \le \phi_{ir}(.) \le \phi_{ir\,max} \tag{30}$$

• température de support $T_s(e_p + e_s)$ limitée :

$$T_s(e_p + e_s)(.) \le T_s(e_p + e_s)^{max}$$
(31)

Plan de la présentation

- Observateur Commande prédictive Stratégie de l'approche en boucle fermée Mise en œuvre de l'approche Modèle Problème d'identification Résultats de simulation Application 2 : Cuisson radiative des peintures en poudre Modèle Problème d'identification Résultats de simulation
 - 5 Conclusions/Perspectives

Application 2 : Cuisson radiative des peintures en poudre Identification optimale : modèle non linéaire

Figure: Entrée (à gauche) et sortie (à droite). $T_s(e_p + e_s)^{max} = 420 \text{ K}. N_p = 10.$

05/02/2010 53 / 57

< ∃ > <

Application 2 : Cuisson radiative des peintures en poudre Identification optimale : modèle non linéaire

Figure: Sensibilité maximisée (à gauche) et paramètre (à droite). $N_p = 10$.

- Avantage : convergence du paramètre + contraintes vérifiées,
- Inconvénient : cas bruité non testé.

Application 2 : Cuisson radiative des peintures en poudre Identification optimale : modèle non linéaire

Figure: Sensibilité maximisée (à gauche) et paramètre (à droite). $N_p = 10$.

- Avantage : convergence du paramètre + contraintes vérifiées,
- Inconvénient : cas bruité non testé.

Application 2 : Cuisson radiative des peintures en poudre Comparaison des deux approches : non linéaire et linéaire à temps variant

Approche linéarisée : utilisation du logiciel MPC@CB [Flila et al., IFAC WC 08].

Comparaison des deux approches de commande $(T_e = 1s)$

Loi de commande	Temps de calcul moyen (s)	Temps de calcul maximum (s)
Non linéaire	38,29	250,83
Linéaire temps variant	0,60	0,93

 Table: Comparaison des résultats obtenus pour le procédé de cuisson des peintures avec les deux lois de commande

⇒ approche de commande linéaire à temps variant est implémentable en ligne, mais pas l'approche non linéaire.

LAGEP, UMR 5007 CNRS-UCBL1

05/02/2010 55 / 57

• Conclusions

- approche d'identification optimale en ligne= contrôleur prédictif + observateur,
- conduite de systèmes sous contraintes physiques,
- deux algorithmes : non linéaire + linéaire temps variant,
- efficacité + faisabilité sur deux exemples du Génie des Procédés.

• Perspectives

- amélioration pour le cas bruité,
- étude multi-entrées, multi-sorties et multi-paramètres,
- étude théorique de la stabilité,
- applications pour les systèmes non uniformément observables,
- applications pratiques.

Conclusions

- approche d'identification optimale en ligne= contrôleur prédictif + observateur,
- conduite de systèmes sous contraintes physiques,
- deux algorithmes : non linéaire + linéaire temps variant,
- efficacité + faisabilité sur deux exemples du Génie des Procédés.

• Perspectives

- amélioration pour le cas bruité,
- étude multi-entrées, multi-sorties et multi-paramètres,
- étude théorique de la stabilité,
- applications pour les systèmes non uniformément observables,
- applications pratiques.

Merci de votre attention