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SUMMARY

The Brain Controlled Wheelchair (BCW) is a simple robotic system designed for

people, such as locked-in people, who are not able to use physical interfaces like

joysticks or buttons. Our goal is to develop a system usable in hospitals and homes

with minimal infrastructure modifications, which can help these people regain some

mobility.

The main challenge is to provide continuous and precise 2D control of the wheelchair

from a Brain Computer Interface, which is typically characterized by a a very low

information transfer rate. Besides, as design constraints, we want our BCW to be

safe, ergonomic and relatively low cost. The strategy we propose relies on 1) con-

straining the motion of the wheelchair along predefined guiding paths, and 2) a slow

but accurate P300 EEG brain interface to select the destination in a menu.

This strategy reduces control to the selection of the appropriate destination, thus

requires little concentration effort from the user. Besides, the trajectory is predictable,

which contributes to reduce stress, and eliminates frustration that may be associated

with trajectories generated by an artificial agent. Two fast BCIs are proposed to allow

stopping the wheelchair while in motion. A hybrid BCI was developed to combine

the slow P300 BCI used for destination selection with a faster modality to stop the

wheelchair while in motion.
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Experiments with healthy users were conducted to evaluate performances of the

BCIs. We found that after a short calibration phase, the destination selection BCI

allowed the choice of a destination within 15 seconds on average, with an error rate

below 1%. The faster BCI used for stopping the wheelchair allowed a stop com-

mand to be issued within 5 seconds on average. Moreover, we investigated whether

performance in the STOP interface would be affected during motion, and found no

alteration relative to the static performance.

Finally, the overall strategy was evaluated and compared to other brain controlled

wheelchair projects. Despite the overhead required to select the destination on the

interface, our wheelchair is faster than others (36% faster than MAIA): thanks to

the motion guidance strategy, the wheelchair always follows the shortest path and a

greater speed is possible. Comparison was also performed using a cost function that

takes into account traveling time and concentration effort; our strategy yields by far

the smallest cost (the best other score is 72% larger).

This work resulted in a novel brain controlled wheelchair working prototype. It al-

lows to navigate in a familiar indoor environment within a reasonable time. Emphasis

was put on user’s safety and comfort: the motion guidance strategy ensures smooth,

safe and predictable navigation, while mental effort and fatigue are minimized by

reducing control to destination selection.
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CHAPTER 1

Introduction

1.1 Motivation

Amyotrophic Lateral Sclerosis (ALS), brainstem stroke, brain or spinal cord injury,

cerebral palsy, muscular dystrophies, multiple sclerosis, and numerous other diseases

impair the neural pathways that control muscles or impair the muscles themselves.

They affect nearly two million people in the United States alone [1, 2]. Those most

severely affected may lose all voluntary muscle control and may be completely locked-

in to their bodies.

Although there are no statistics available on the number of patients with locked-in

syndrome, the locked-in population is growing due to advances in artificial respiration.

One estimation based on National Institute of Health statistics on brain-stem strokes

and survival information, puts the number at as many as 50,000 individuals in the

United States alone.

In order to help physically challenged people control a computer, a communication

device or a wheelchair, various input devices are available. This includes a simple stick

held between the teeth, buttons and joysticks of various sizes that can be activated

by various parts of the body, gaze tracking systems or head movement based systems
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to enable control of a cursor on a screen. However, all those input devices are of no

use to locked-in people.

The only alternative for locked-in people is to establish communication and control

channels directly from the brain, bypassing the disfunctioning brain’s normal output

channels of peripheral nerves and muscles. In a Brain Computer Interface (BCI),

signals from the brain are acquired and processed to extract specific features that

reflect the user’s intent. These features are then translated into commands to operate

a device.

The Brain Controlled Wheelchair (see Figure 1.1) described in this thesis was

designed to provide some motion capability to locked-in people.

1.2 Objectives and Scope

A common feature between all BCIs is that, since the recorded brain signal is very

noisy and has a large variability, either the uncertainty on the command will be high,

or the time between consecutive commands will be long, in the order of seconds. Can

such a poor signal be used to safely and efficiently control a wheelchair that requires

a real-time specification of its position within the three dimensional space of planar

motion? This is the challenge we address in this thesis.

Numerous applications of BCIs are reported in the literature, mostly for commu-

nication or computer control. However, a brain controlled wheelchair implies more

considerations:

• Safety: especially since it transports a particularly vulnerable person.

• Ergonomy: the wheelchair should provide intuitive and efficient navigation with

a minimum of effort.

2



Figure 1.1: Photograph of the prototype Brain Controlled Wheelchair (BCW). The
BCW is built on top of a standard powered wheelchair. An EEG cap is used to record
the brain signal.
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• Low cost: so that people who need it can afford it.

Our goal in this work is to propose a strategy to control a wheelchair from a BCI.

This requires a robotic wheelchair able to assist the user with the navigation task, and

a BCI together with a control scheme adapted to the task. All of these requirements

should be achieved while respecting the above constraints.

While the signal processing part of the BCI was based on previous developments

at the Institute for Infocom Research (I2R) in Singapore, it was adapted here to the

purpose of controlling a wheelchair safely and comfortably. Its specific properties were

evaluated experimentally and analyzed, and the overall control integrated different

modalities to yield an efficient solution for controlling the wheelchair.

1.3 Design Constraints

As mentioned above, to be successful, a robotic wheelchair has to fulfill the fol-

lowing constraints: safety, ergonomy and low cost.

Safety is a critical factor for any device operating near or with humans. A

wheelchair, although usually operating at low speed, has to comply to many safety

requirements before being allowed on the market, for it transports a particularly

vulnerable person. Robotic wheelchairs [3–10] generally rely on multiple sensors which

provide information about the surrounding area to the navigation module which then

decides what is the best course of action to safely reach destination. The question is

to which extent can a user trust a robot, which perception and inference capacities

remain low to this date? Although avoiding collision with walls, furniture and other

obstacles is a relatively easy task for modern robots, avoiding stairs, bumps and

unstable grounds, zones with low ceilings, proximity to dangerous areas (a fireplace

4



for instance), etc., is a complex problem. Some of these situations might be very

difficult to detect by general sensors, or many specialized sensors would be needed

to detect each of them. The question is even more relevant for a brain controlled

wheelchair since it is designed to transport a locked-in person who may not have the

ability to press an emergency stop button.

By ergonomy we mean that the wheelchair should allow the subject to reach

destination with as little effort as possible. The later point is particularly impor-

tant for a brain controlled wheelchair since using a BCI requires concentration and

may prove exhausting. The control burden must be as light as possible, yet allow

certain freedom to the user, such as stopping at any time during motion or change

course. Besides, as for any robot designed to transport people, the trajectory should

be smooth and correspond to the user’s understanding of a trajectory as much as pos-

sible. Since human interpretation of the environment often differs from the robot’s

interpretation, the decision taken by the system might seem awkward to a human

observer [11]. Moreover, autonomous vehicles have been observed to refuse to move

forward due to some obstacles, while a human driver would easily be able to move its

way through [8]. This undesirable behaviors may prove irritating and with time lead

to the user stopping using the system.

Finally, the system should be available at a low cost so that people who need

it can afford it. The BCI is already an expensive equipment; a powered wheelchair

with the required amount of straps and cushions to support the user’s body is also an

expensive device. Therefore, the additional equipment, as well as the modifications

required to mount the sensors, should not cost more than a fraction of the price of

the wheelchair.
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1.4 Overview of Our Strategy

Providing a robot that would respect all constraints mentioned above is the goal

of many researchers in robotics. The biggest challenge is that the robot has to react

appropriately to a wide variety of situations that occur while exposed to unconstrained

environments. While improvements are made each year, solutions remain expensive,

complex and unsatisfying.

However, the problem can be simplified by limiting the usage of the wheelchair

to a few environments only: the user’s home, office, care center, etc. By doing so,

the environment can be learned in collaboration with a healthy human operator, thus

eliminating the problem of detecting complex obstacles. Following that simplification,

we decided to represent the environment by a network of paths connecting a finite

but unlimited number of locations of interest for the user. These paths are human

defined and stored in the system memory, and serve as guides for all subsequent

motions. The trajectory is thus safe and natural, while no complex and expensive

sensors are required.

To navigate with the wheelchair, the user simply selects the desired location while

the wheelchair takes care of the whole trajectory by following the appropriate guiding

path. The user can stop the wheelchair along the way, in case an unexpected obstacle

appears on the path, or simply if he/she desires so. The control is thus limited

to the initial selection of the destination and rarely issuing stop commands, hence

minimizing the control effort.

This strategy therefore fulfils all constraints mentioned above. Safety is insured

by the use of human designed paths, plus the supervision by the driver for unexpected

situations. And since we are using only a few simple sensors the low cost constaint
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is also respected. The ergonomy constraint is fulfilled by the use of human designed

paths which provide smooth and natural trajectories, plus the destination selection

control strategy that minimizes the control effort.

However, the usage of the wheelchair is limited to pre-defined trajectories and

locations, and although new locations can be added at any time, the wheelchair does

not offer the possibility to go everywhere the user would like to. Besides, it is assumed

that the environment does not change, and especially that guide-paths are kept ob-

stacle free, as the robot is not equipped with sensors that would allow it to detect

obstacles. We think that this constraint is easily fulfilled since the wheelchair’s motion

is constrained to familiar environments: other person evolving in this environment

will be aware of that constraint and voluntarily keep the guide-paths clear.

1.5 Organization of the Thesis

Chapter 2 reviews existing technology to record the brain activity and construct

a BCI. We will then present other brain-controlled wheelchair projects.

The BCW hardware, the localization system we use, and the software architecture

for real time control are described in Chapter 3.

Chapter 4 explains in detail the path following navigation system. After a brief

mathematical description of the path following controller, we will detail the Elastic

Path Controller, which was developed during this project to allow temporary escape

of the guiding path upon user’s instruction. We will present experiments that prove

that motion guidance effectively simplifies motion control. Then we will see how to

create and edit maps of guiding paths.
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Chapter 5 describes the BCI we use in this project for destination selection and

presents experimental results with able subjects using the interface.

Chapter 6 presents two fast BCIs to allow stopping the wheelchair in a decent

time while in movement. A novel hybrid BCI, developed to combine the destination

selection BCI and the fast BCI for stopping, is introduced. Off-line and on-line

evaluation results are presented.

Chapter 7 evaluates the developed system and compares it to other brain con-

trolled wheelchair projects.

1.6 Contributions

The major contributions of this thesis are:

• The control strategy itself, which provides a way for controlling a wheelchair

from a low information transfer input device such as a BCI, safely and efficiently

while requiring minimum effort from the user and a minimal amount of sensors.

• The development of a robotic wheelchair and its integration with a BCI, which

demonstrated the first brain controlled wheelchair able to move in a building

environment.

• The elastic path controller (EPC) which allows temporary escape from the

guiding path, and used for on-line path editing.

• The evaluation of the existing P300 interface for item selection.

• The modification of the existing P300 BCI for stopping, and its evaluation.

This work resulted in many peer-reviewed publications. The list can be found in

Appendix C.
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CHAPTER 2

Literature Review

In this chapter we will see what are the different technologies available to record

(Section 2.1) the brain activity. Then, in Section 2.2 we will review some EEG-

based BCIs. Finally - in Section 2.3 - we will review other brain-controller wheelchair

projects.

2.1 Recording the Brain Activity

The first step toward a BCI is recording the activity of the living brain. This can

be done invasively by surgically implanting electrodes in the brain, or non-invasively.

In this section we will review various brain imaging technologies.

2.1.1 Invasive Methods

Biologists can measure the potential at different parts of a single neuron in a

culture. Recording neuron activity in a living brain is possible using surgically im-

planted micro-electrodes arrays, although it is no longer a single neuron recording

but the activity of groups of neurons.

Monkeys with brain implants have been reported [12–14] to brain-control the

displacement of a cursor on a screen or to control the motion of a robotic arm.

Surgical implantation of electrodes is still consider too risky to be performed on
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humans. However, some teams have had successful results with them: Kennedy [15]

and Donoghue [16] reported successful brain-control of a mouse pointer on a computer

screen with patients who had been implanted an electrode in the outer layer of the

neocortex.

2.1.2 Blood Flow Based Methods

The typical blood flow based methods include Functional Magnetic Resonance

Imaging (fMRI) and Near-Infrared Imaging.

Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) [17] is a relatively recent imag-

ing technique that aims to determine the neuro-biological correlate of behavior by

identifying the brain regions that become “active” during the performance of specific

tasks in vivo.

The technique is based upon the different magnetic susceptibilities of the iron

in oxygenated and deoxygenated hemoglobin. Oxygenated blood is diamagnetic and

possesses a small magnetic susceptibility, while deoxygenation of hemoglobin produces

deoxyhemoglobin, which is a significantly more paramagnetic species of iron. Blood

Oxygenation Level Dependent (BOLD) measurements measure local variation in the

relaxation time caused by variations in the local concentration of deoxygenated blood.

It has become the diagnostic method of choice for investigating how a normal,

diseased or injured brain is working. The spatial resolution can be sub-millimeter

with temporal resolutions on the order of seconds. The ability to measure solitary

neural events is not yet possible but improvements in sensitivity have been made

steadily over the past 10 years. Figure 2.1-b shows a typical fMRI machine.
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Functional Near-Infrared Imaging (fNIR)

Functional Near-Infrared Imaging (fNIR) is a relatively novel technology based

upon the notion that the optical properties of tissue (including absorption and scat-

tering) change when the tissue is active. Two types of signals can be recorded:

fast scattering signals, presumably due to neuronal activity [18] and slow absorption

signals, related to changes in the concentration of oxy- and deoxy-hemoglobin [19].

However, fNIR lacks the spatial resolution of fMRI and cannot accurately measure

deep brain activity.

The fast fNIR signal is measured as an “event-related optical signal” (EROS). The

spatial localization of fast and slow fNIR measurements both correspond to the BOLD

fMRI signal [20]. The latency in the slow (hemodynamic) signal roughly corresponds

to that for the BOLD fMRI response [21].

The major limitation of optical methods (both fast and slow signals) is their pen-

etration (max: approximately 3 cm from head to surface), which makes it impossible

to measure brain structures such as the hippocampus or the thalamus, especially if

they are surrounded by light-reflecting white matter. However, the vast majority of

the cortical surface is accessible to the measurements. The technology is relatively

simple and portable, and may serve a sort of portable, very rough equivalent of fMRI,

which may supplement or substitute for some EEG measures.

Figure 2.1-a shows the setup typically used for NIR imaging.

2.1.3 Electromagnetic Based Methods

The currents generated by an individual neuron are too tiny to be recorded non-

invasively, however excitatory neurons in the cortex all have their axon parallel one to
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another and grouped in redundant populations called macro-columns [22] which act

as macroscopic sources of electromagnetic waves that can be recorded non-invasively.

Magnetoencephalography (MEG)

Magnetoencephalography (MEG) [23–25] is an imaging technique used to measure

the magnetic fields produced by electrical activity in the brain. Because of the low

strength of these signals and the high level of interference in the atmosphere, MEG

has traditionally been performed inside rooms designed to shield against all electrical

signals and magnetic field fluctuations. Figure 2.1-c shows a typical MEG equipment.

Electroencephalography (EEG)

Electroencephalography (EEG) is the recording of electrical activity along the

scalp produced by the firing of neurons within the brain [26, 27]. The recording is

obtained by placing electrodes on the scalp with a conductive gel or paste. The

number of electrodes depends on the application, from a few to 128, and they can

be mounted on a cap for convenience of use (see Figure 2.1-d). The electric signal

recorded is of the order of few microvolt, hence must be amplified and filtered before

acquisition by a computer. The electronic hardware used to amplify, filter and digitize

the EEG signal is of the size and weight of a book; it is easily transportable and

relatively affordable. Spatial resolution is on the order of centimeters while the time

of response to a stimulus is on the order of 100s of milliseconds.

2.1.4 Summary

Table 2.1 shows a comparison of the six methods presented above. Only NIR

imaging and EEG can be used for a BCI: MEG and fMRI equipment is too expensive
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Table 2.1: Comparison of brain recording technologies
Spatial Temporal

Resolution Resolution Other
Technology (millimeters) (seconds) Size Constraints

invasive 0.1 0.001 small surgical risk
fMRI 1 5 large high magnetic field
fNIR 1 5 small -
EROS 1 0.05 small -
MEG 10 0.01 large shielding required
EEG 10 0.01 small -

and cumbersome, and invasive methods are not safe enough yet. However, as NIR is

a relatively new method, it is not as popular as EEG in BCI studies.

2.2 EEG-based BCIs

A Brain Computer Interface (BCI) is any system which can derive meaningful

information directly from the user’s brain activity in real time [28]. The most impor-

tant applications of the technology are mainly meant for the paralyzed people who are

suffering from severe neuromuscular disorders. Most BCIs use information obtained

from the user’s encephalogram (EEG), though BCIs based on other brain imaging

methods are possible. This section briefly describes several EEG-based BCIs. The

P300 BCI is described in detail in next section.

2.2.1 Slow Cortical Potential (SCP)

The Slow Cortical Potential (SCP) signal is the modulation of the global EEG

potential (very low frequency). It is recorded by a single electrode at the top of the

head. Because SCPs indicate the overall preparatory excitation level of a cortical

network, they are universally present in the human brain, and therefore make them a

13



Figure 2.1: Equipment to record the brain activity: a)NIRS, b)FMRI, c)MEG,
d)EEG.
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good signal for BCIs. Healthy subjects as well as severely paralyzed patients can learn

to self-control their SCPs when they are provided with visual or auditory feedback

of their brain potentials and when potential changes in the desired direction are

positively reinforced.

Birbaumer’s team [29] in Tübingen University developed a brain computer in-

terface device called the Thought Translation Device (TTD), in which the vertical

position of a feedback cursor reflects the amplitude of an SCP shift. After a patient

has achieved reliable control over his or her SCP shifts, the responses can be used

to select items presented on a computer screen. A spelling program included in the

TTD allows patients to select single letters by sequential selection of blocks of letters

presented in a dichotomic structure with five levels (Figure 2.2): the left to right

movement of the cursor is constant; the vertical movement is controlled by the user’s

brain activity. To improve speed of communication, this program has been supple-

mented by a dictionary offering word completion after only a few letters have been

selected.

2.2.2 P300

The P300 evoked potential is a well studied and stable brain signal [30, 31] be-

longing to the Event Related Potential (ERP) group. It is a natural and involuntary

response of the brain to rare or infrequent stimuli, which can provide a BCI through

an oddball paradigm. In this paradigm a random sequence of stimuli is presented,

only one of which is of interest to the subject. Around 300 milliseconds after the

target is presented, a positive potential peak is recorded in the EEG signal. Upon
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Figure 2.2: The Thought Translation Device [29]. The left to right movement of the
cursor is constant; the vertical movement is controlled by the user’s brain activity. A
letter is selected by sequential selection of blocks of letters presented in a dichotomic
structure.

detection of this P300 signal (P for positive, 300 for the 300ms delay), the target can

be determined as the stimulus that occurred 300 ms earlier.

In 1988, Farwell and Donchin [32] developed the first P300 based BCI to select

letters from a virtual keyboard (see Figure 2.3). Items are presented on a 6 by 6

matrix; rows and columns are flashed in a random sequence, eliciting a P300 signal

300 ms after the key the user wants to select has been flashed.

P300 Signal Detection

Given the importance of the P300 signal in this thesis, we will present here a short

review of methods to detect it. The main difficulty with the P300 signal is that the

signal to noise ratio is very low. The top panel of Figure 2.4 shows the raw EEG

signal from ten electrodes. The vertical lines mark the times of stimuli, the red/thick
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Figure 2.3: In the P300 speller by Farwell and Donchin [32], items are presented on a
6 by 6 matrix. Rows and columns are flashed in a random sequence, eliciting a P300
signal 300 ms after the key the user wants to select has been flashed.

line corresponding to a target stimulus. The P300 signal cannot be seen with the

naked eye in the EEG.

Traditionally, ERPs are synchronously averaged to enhance the evoked signal and

suppress the background brain activity [33]. This way uncorrelated noise is canceled

out and the P300 signal appears more clearly as can be seen on bottom panel of

Figure 2.4. Once the signal to noise ratio has been enhanced, the P300 signal can be

detected. For instance, Farwell and Donchin [32] used step-wise discriminant analysis

(SWDA) followed by peak picking and evaluation of the covariance. Alternatively,

the discrete wavelet transform can also be added to the SWDA to localize efficiently

the ERP components in both time and frequency [34].

Independant component analysis (ICA) was first applied to ERP analysis by

Makeig et al. [35]. Infomax ICA [36] was used by Xu et al. [37] to detect the ERPs for
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Figure 2.4: The P300 signal in an EEG. Top panel: raw EEG signal from ten elec-
trodes; the vertical lines mark the times of stimuli, the red/thick line corresponding
to a target stimulus. Note that the P300 signal is not visible as the signal to noise
ratio is very low. After averaging however, uncorrelated noise is canceled out and the
P300 appears clearly (bottom panel).
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the P300-based speller. In their approach, those idependent components with rela-

tively larger amplitudes in the latency range of P300 were kept, while the others were

set to zero. Also, they exploited a priori knowledge about the spatial information of

the ERPs and decided whether a component should be retained or wiped out.

ICA has also been used for the detection of P300 signals by Serby et al. [38].

Their work involved the application of a matched filter together with averaging and

using a threshold technique for detecting the existence of the P300 signals. The

IC corresponding to the P300 source is selected and segmented to form overlapping

segments from 100 to 600 ms. Each segment is passed through a matched filter to

give one feature that represents the maximum correlation between the segment and

the average P300 template.

The detection of ERPs from only a single-trial EEG is very favourable since on-

line processing of the signals can be performed. Unlike the averaging (multiple-

trial) [39] scheme, in this approach the shape of the ERPs is first approximated and

then used to recover the actual signals. A decomposition technique that relies on the

statistical nature of neural activity is one that efficiently separates the EEGs into

their constituent components, including ERPs. A neural activity may be delayed

when passing through a number of synaptic nodes, each introducing a delay. Thus,

the firing instants of many synchronized neurons may be assumed to be governed by

Gaussian probability distributions [33].

Adaptive filtering is also a popular approach. With the assumption that the ERP

signals are dynamically slowly varying processes, the future realization are predictable

from the past realizations. These changes can be studied using a state-space model.
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Kalman filtering and generic observation models have been used to denoise the ERP

signals [40].

2.2.3 µ and β Rhythms

Oscillatory activity in the brain is generated by feedback loops in complex neural

networks. For example, synchronization of neuron assemblies gives rise to lower fre-

quency of oscillations [41]. In EEG, µ (8-12Hz ) and β (18-26Hz ) rhythms measured

on sensorimotor cortices are of particular interest.

The µ and β regulation is considered as an “operant conditioning” approach,

i.e. it is of voluntary nature. Therefore the subject is free to think about anything

or nothing until he or she decides to achieve control/communication through the

interface.

Kuhlman showed in 1978 that people can learn to regulate the EEG power in the

µ and β bands [42]. Recently, Wolpaw & McFarland designed a µβ-BCI for 2D cursor

control [43–45]. Using this BCI, four disabled subjects were allowed to move a cursor

from the center of the screen to one of eight targets on the borders. Figure 2.5 shows

the cursor’s trajectories and times to target.

2.2.4 Steady-States Visually Evoked Potentials (SSVEP)

Steady-states visually evoked potentials (SSVEP) correspond to the response of

the visual cortex to stimulation of the retina by a blinking light source. Figure 2.6

shows the amplitude spectrum of SSVEP in response to 7 Hz stimulation [46]. Three

peaks at 7 Hz, 14 Hz, and 21 Hz can be found clearly. Panel (a) shows the single trial

amplitude spectrum, while panel (b) shows the mean amplitude spectrum averaged

over 40 trials. Vertical lines give standard deviation.
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Figure 2.5: 2D control of a cursor using a µβ-BCI by 4 disabled people (from Wolpaw
et al. [45]). The subjects were instructed to move the cursor to one of eight targets:
the figures show cursor’s trajectories and times to target.
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In a typical SSVEP-based BCI setup, an array of LEDs (or buttons on a computer

screen), blinking at different frequencies and associated with commands, are disposed

in the visual field of the subject. To select a command the user simply has to focus his

attention to the desired button. As with the P300 signal, SSVEP is a natural response

of the brain, which therefore does not require any training. Typical response time is

in the order of a few seconds [47].

Figure 2.6: EEG spectrum corresponding to a 7 Hz stimulation in a SSVEP BCI
(from [46]). Three peaks at 7 Hz, 14 Hz, and 21 Hz can be found clearly. Panel (a)
shows the single trial amplitude spectrum, and panel (b) shows the mean amplitude
spectrum averaged over 40 trials. Vertical lines give standard deviation.
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2.2.5 Mental State Recognition

Millán & Mourino [48] designed the Adaptive Brain Interface (ABI) based on

asynchronous recognition of three mental states. After a short evaluation, every user

selects the three mental tasks that he/she finds easier out of the following choices:

“relax”, imagination of “left” and “right” hand (or arm) movements, “cube rotation”,

“substraction”, or “word association”. More specifically, the tasks consist of getting

relaxed, imagining repetitive self-paced movements of the limb, visualizing a spinning

cube, performing successive elementary subtractions by a fixed number (e.g., 64 0 3 =

61, 61 0 3 = 58, etc.), and concatenating related words. A neural network is trained

to recognize the EEG pattern associated with each task.

ABI also recognizes an “idle” state when the user is not involved in any particular

mental task, by using a statistical rejection criteria. In an asynchronous protocol,

idle states appear during the operation of a brain-actuated device, while the subject

does not want the BCI to carry out any action. Although the neural classifier is not

explicitly trained to recognize those idle states, the BCI can process them adequately

by giving no response.

ABI achieves error rates below 5% for three mental tasks, while correct recognition

is 70% (or higher), producing an output every half second. In the remaining cases

(around 20%-25%), the classifier does not respond, since it considers the EEG samples

as uncertain (“idle” state).

2.2.6 EEG-BCIs for the Severely Disabled

Brain-Computer Interfaces are generally developed as a rehabilitation tool for

locked-in people. Yet research is often conducted with healthy subjects, mostly for
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practical reasons. In this section we will review the few papers that cover tests with

severely disabled people.

One of the earliest study is by Birbaumer in year 2000, which showed that five pa-

tients suffering from end-stage ALS could use the TTD (introduced in Section 2.2.1).

In 2003 six other patients confirmed those results [29].

Motor imagery based BCIs were also shown to work with severely disabled pa-

tients. Pfurtscheller and Neuper showed in 2001 that a C4/C5 tetraplegic patient

could control the opening and closing of a hand orthosis [49]. In 2003, a patient with

Severe Cerebral Palsy (SCP) could spell letters at a rate of one letter per minute [50].

And in 2005, four people severely disabled by ALS learned to operate such a BCI [51].

Recently, Sellers and colleagues evaluated a P300 BCI with ALS patients. In [52,

53] six ALS patients were trained and tested. They obtained similar classification

results as non-ALS patients. Moreover, the study shows that those performances can

sustain over several months without degradation.

2.3 Review of Other Brain Controlled Wheelchairs

In this section we will review four brain controlled wheelchairs developed by other

groups.

2.3.1 Tanaka et al.

Tanaka et al. in [54] (2005) come with a discrete approach to the navigation

problem: the environment is discretized in squares of 1m (see Figure 2.7) and the user

is prompted where to move next. They use an EEG BCI based on motor imagery:

by imagining left or right limb movements, thus activating the corresponding motor

cortex, the user selects where to move next.
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Figure 2.7: Tanaka’s brain controlled wheelchair. By imagining left or right limb
movements, the user decides the next move of the wheelchair (from [54]).

Although simple and safe, the system requires series of decisions to complete

even a simple movement and may thus exhaust the subject. Therefore this strategy

clearly breaks the ergonomy constraint, although it respects the safety and low cost

constraints.

2.3.2 Minguez et al.

A similar principle was used in the sophisticated wheelchair system recently (2009)

developed by Minguez et al. [55], where a virtual reconstruction of the surrounding

environment (as inferred from laser range scanner data) is displayed with a set of

points in the free space that can be selected using a P300 EEG BCI (see Figure 2.8),

and these short term goals are reached automatically. As with Tanaka, the system

requires a large number of steps to reach a destination, which might exhaust the
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subject. For instance, Minguez reports that it took 11 minutes and 9 decision steps

to realize a 40 meters long path with this system.

2.3.3 MAIA

In the MAIA (Mental Augmentation through Determination of Intented Action)

project [56] (2007) the asynchronous IDIAP BCI [57,58] has been integrated with the

intelligent wheelchair Sharioto of the KU Leuven [5].

The BCI continuously analyzes the user’s EEG to detect a pattern associated with

one of three learned mental states. After a short evaluation, the user selects the three

mental tasks that he/she finds easier out of the following choices: “relax”, imagination

of “left” and “right” hand (or arm) movements, “cube rotation”, “substraction”, or

“word association”. More specifically, the tasks consist of getting relaxed, imagining

repetitive self-paced movements of the limb, visualizing a spinning cube, performing

successive elementary subtractions by a fixed number (e.g., 64-3=61, 61-3=58, etc.),

and concatenating related words. This BCI achieves error rates below 5% for three

mental tasks, while correct recognition is 70%. When the pattern in the EEG is not

found to correspond to any learned pattern the BCI does not respond, thus artificially

creating an idle state. The three mental states are associated with three commands

for the wheelchair: forward, left and right. Every 500ms the BCI sends a probability

distribution over the three commands to the wheelchair’s shared control system, which

translates it to a joystick-like command, i.e. a translational and rotational velocity.

Instead of executing the user’s command immediately, this distribution is merged

with the autonomous decision of the robot, based on sensors readings and activated
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Figure 2.8: Minguez’s brain controlled wheelchair (from [55]). (a) A snapshot of a
participant navigating along a corridor. (b) Information represented in the visual
display, which is an environment abstraction displayed from the users point of view.
The user can select which goal to reach using a P300 BCI.
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Figure 2.9: With the MAIA’s brain controlled wheelchair the user continuously in-
teracts with autonomous behaviors of the wheelchair (from [56]).
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behaviors. Three autonomous behaviors are built-in: a collision prevention mecha-

nism that keeps a safety distance with surrounding obstacles, an obstacle avoidance

module that computes the best trajectory to avoid obstacles, and a goal tracking

behavior that globally keeps the wheelchair in the direction of the goal, thus avoiding

getting lost. All assisting behaviors have an appropriateness level computed accord-

ing to the environmental information. The shared control system then activates the

assisting behavior with the highest appropriateness level.

Figure 2.9 illustrates that strategy: the user’s mental task corresponds to moving

the wheelchair left. In this case, obstacle avoidance is the winning behavior and

adjusts the velocity to prevent collision.

This approach proved very successful with non-disabled subjects. However, it

requires the user to be constantly alert, which is likely to cause stress and fatigue.

The ergonomy constraint is therefore only half fulfilled: the strategy provides an

efficient way of navigating toward the goal, however it imposes a heavy burden on the

subject. The safety constraint is fully respected: the sensor-based navigator provides

a layer to avoid most obvious dangers (obstacles) and the operator provides for all

others. However the low cost constraint is clearly broken due to the large amount of

sensors used and modifications required to mount them on the wheelchair.

2.3.4 Toyota/Riken

With the brain controlled wheelchair from the Toyota-Riken lab [59] (2008) –

shown on Figure 2.10 – the user continuously controls the velocity of the wheelchair

by imagining left hand, right hand or both feet movements.
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Although impressive demonstration videos were published on the internet, only

one article in a peer-reviewed publication could be found, hence no much information

can be reported about this project. Besides, it seems that these results were obtained

with only one (able) subject, suggesting that their success is based on the exceptional

performance of a single gifted subject rather than on a particular technique for EEG

signal analysis that could transfer to more subjects. This assumption is reinforced by

the mismatch with results in [45] obtained with a similar method (see Figure 2.2.3).

Figure 2.10: With the Toyota/Riken’s brain controlled wheelchair, the user contin-
uously controls the velocity of the wheelchair by imagining left hand, right hand or
both feet movements (from [59]).
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CHAPTER 3

Hardware and Software Description

The control strategy described in this thesis is generic and does not depend on

specific hardware. The only requirement is a wheelchair with a localization system and

some way of controlling it from a computer. Although more complex implementations

are possible, ours was kept simple on purpose: as stated in introduction (Section 1.3),

we believe that cost is a decisive factor for the success of a robotic wheelchair.

3.1 Hardware Description

The BCW/CWA prototype is based on a standard powered wheelchair (Yamaha

JW-I, see Figure 3.1). Two glide wheels with rotary encoders attached were mounted

on the wheelchair’s frame below the seat. A mechanical structure with a pivoting

arm and a spring was designed to ensure constant contact between the floor and the

glide wheels even if the floor is uneven. The glide wheels are made from in-line roller

skating wheels, since they offer a good grip and a sharp edge (hence a low sliding

ratio during rotation), are made of a robust material, and are available at low cost

almost everywhere.

For more flexibility in the development of the first prototype, the control is done

from a standard laptop rather from an embedded system with a micro-controller. The

laptop is equipped with a PCMCIA digital acquisition card (NI-6024E). It measures
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Figure 3.1: BCW prototype with the different components. The EEG system is not
represented.

the joystick voltage on both axis and records encoder counts for the two glide wheels.

At the output, it simulates the joystick: two voltages (one for each axis) in the same

range as the joystick.

Ultrasonic sensors (Devantech SRF-08) are mounted on the front part of the

wheelchair to provide a safety mechanism against collision. If the measured distance

is smaller than 50cm the wheelchair stops.
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3.2 Bar Code Based Global Positioning System

An important issue with our motion guidance strategy is localization. The position

of the wheelchair must be known with a precision in the order of a few centimeters in

order to be able to pass through narrow ways such as doors. Since odometry alone is

subject to an incremental error, a global position information is needed from time to

time to reset the odometry error.

There are two ways of obtaining a global position information. The first is to

localize the robot with respect to distinctive features of the environment. This is

known as the Simultaneous Localization And Mapping (SLAM) [60,61] problem, and

solving it has been one of the major objectives of robotic research over the past decade.

To work properly, accurate measurement of the environment is required, thus a laser

range finder is often used as the main sensor for SLAM. While widely used on modern

autonomous robots, it remains a complex and expensive localization system.

The other way of obtaining a global position is to use beacons which position is

known accurately. By measuring the position of a couple of beacons with respect

to itself the robot can determine its position by triangulation. Beacons can be pas-

sive or active; active beacons usually emit radio beams. For indoor navigation, some

problems occur due to (i) reflection of radio beams on walls, (ii) occlusion of bea-

cons. Therefore it is difficult to find localization systems that meet our accuracy

requirements.

The solution we propose is to place some bar code beacons on the floor and to read

them using a simple bar code reader mounted below the chair. Each bar code encodes

a unique code that is matched to a position in the computer’s memory. When the

vehicle passes over a bar code, global position is provided to the system. An extended
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Kalman Filter (EKF) is used to combine the position information from odometry and

the bar codes. Bar codes are placed at key positions, such as before zones that require

precise navigation (i.e. doors or narrow corridors).

The problem with this system is that the position information is only available

when the wheelchair passes over a bar code, which means that if the wheelchair misses

a bar code then it will have no way of localizing itself. However the wheelchair follows

guiding paths, therefore, by placing the bar codes along the paths, we make sure that

the wheelchair will pass over it. The only constraint is to maintain the inter bar codes

distance small enough so that the odometry drift remains smaller than the size of the

bar code.

This system has proven to be simple to set up and sufficiently accurate for our

purposes. The maximum positioning error is always less than 10cm when bar codes

are placed about every 10m [62]. The position error is less than 2cm just after reading

a bar code.

3.3 Software Description

3.3.1 Computing Platforms

For our first prototype, we decided to control the wheelchair from a laptop since it

allows easier integration of new features, is cheaper than an embedded platform such

as the PC104, and offers a visual display. The low level control is realized by a PD

velocity feedback loop. Velocity is obtained by differentiating the reading from the

rotary encoders. A hard real time system is required for the velocity measurement

and PD control. We used the RTAI (Real Time Application Interface) operating

system, as it is a reliable, open source, and based on the familiar Linux environment.
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In a nutshell, RTAI modifies the Linux kernel to make it preemptible and allow

real time tasks to run with strict timing constraints. We use RTAI in conjunction

with Ubuntu 6.06, which offers good community support due to its popularity. Com-

munication with the DAQ card is done using Comedi which is an open source project

that develops drivers, tools, and libraries for data acquisition. RTAI offers a real time

Comedi module which ensures real time access to DAQ cards supported by Comedi.

All code was written in C.

For the BCI we collaborated with the Neuro Signal Processing (NSP) laboratory

at I2R, Singapore. They developed a C++/C# engines for stimulation and signal

processing. EEG acquisition is done with the application provided by the manufac-

turer of the EEG acquisition device. The BCI runs under Microsoft Windows only

(XP in our system).

Therefore two laptops are required to operate the BCW: one to control the

wheelchair, the other one to run the BCI. The two of them communicate via an

Ethernet link.

The connection between the different elements is shown on Figure 3.2.

3.3.2 Control Software Description

In this section we will describe the architecture of the system running on the con-

trol laptop. This system has to handle a real time module for localization and velocity

control, non real time modules for the path following controller and interaction with

the BCI system. Related code can be found in Appendix B. Figure 3.3 shows the

interaction between the different components.
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Figure 3.2: Functional diagram of the BCW. Two laptops are used: one to handle
the BCI, the other to control the wheelchair. The control command simulates the
output of the joystick.
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Figure 3.3: Functional diagram of the BCW software system. The main process
spawns a real time process and a user process, which in turns launches five threads.
A shared memory is used for communication between the two processes.
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The main function simply forks off a child process which will be responsible of the

real time tasks. The parent process handles all other tasks. Communication between

the two processes is realized through a RTAI shared memory. The hardware_loop

function is called periodically. It does the following:

1. read the counters associated with the glide wheels rotary encoders, from which

it computes the current position and velocity.

2. perform PD velocity control.

The computed position and velocity, as well as the desired velocity, are stored

in the shared memory. The real time process writes the position and velocity, the

user process writes the desired velocity. Thanks to this unilateral writing, the data is

naturally protected against corruption and no mutex or other protections mechanism

is required. The hardware_loop function is called periodically by RTAI, hence with

a small jitter. Therefore, the velocity is derived from the counter reading with good

precision. This is also important for the D term of the PD controller which required

good timing.

The user process main function starts by connecting to the shared memory. Then

it launches a couple of utility threads to:

• display a visual feedback (OpenGL) of the wheelchair and the paths,

• data logging (for debugging purpose),

• monitor the ultrasonic proximeter,

• monitor the bar code scanner,

• handle the Ethernet communication with the BCI system.
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The user process then enters a periodic loop (100ms) on the controlWheelchair

function. This function realizes a state machine: at each iteration it will execute the

control corresponding to the current state (for instance follow a guiding path), and

check for the relevant events (i.e. a message from the BCI, or end of path reached).

Data between the different threads is shared as global variables. Thread synchro-

nization is organised as follow:

• The visual display thread and data logging thread only read the global data.

Minor inconsistency can occur if the thread in charge of writing is interrupted

halfway, for instance after having updated the x position but before updating

the y position. This type of inconsistency is totally harmless has it only results

in an error of a few millimeters on the display or in the log file.

• The two sensor monitoring threads only write data. The Ethernet thread

continuously monitors the connection for an incoming message and saves it.

The data is time-stamped and protected by mutexes. At each iteration of the

controlWheelchair function, it will check for the time stamp and take appro-

priate action if new data is available.

Thanks to the simple design and limited interaction between different threads, no

dead lock can occur within the system.
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CHAPTER 4

Motion Guidance

According to our strategy, we propose to represent the environment by a geometric

graph of virtual paths connecting locations of interests. A path following controller is

then used to navigate along those guides. The controller we use is based on the work

by Claude Samson and Alain Micaelli [63–65], which mathematical development is

summarized in Section 4.1. In Section 4.2 we give experimental proof that motion

guidance facilitates motion control. Equations of the path following controller were

modified to add an elastic deformation capability (Section 4.3), which is useful for

path editing (Section 4.4).

4.1 Path Following Controller

We will here briefly summarize the mathematical development of the original

path following controller by Samson & Micaelli since some of the control equations

are necessary to understand our own elastic path controller. Mathematical details

can be found in [63–65] and in appendix A.

4.1.1 Kinematics

We will first look at the kinematic model of a moving point. Consider a moving

point M and the associated Frenet frame (T ) defined on the curve (C) as indicated in
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Figure 4.1: Frames and notations for the controller.

Figure 4.1. The point P is the orthogonal projection of the point M onto the curve

C. Basic mathematics leads to:







ṡ = (cos θc sin θc) ·
(

Ẋ

Ẏ

)

/[1 − cc(s)y]

ẏ = (− sin θc cos θc) ·
(

Ẋ

Ẏ

) (4.1)

where:
s is the curvilinear abscissae of the origin P of the Frenet frame (T )
y is the distance between the mobile M and the path
θc is the angle between the reference frame (R) and the Frenet frame (T )

Ẋ, Ẏ are the components of the velocity of the point M in the reference frame (R)
cc is the curvature of the path: cc = dθc/ds

Our wheelchair platform has two actuated wheels on a common axis and the refer-

ence point M at mid-distance of these two wheels (see Figure 4.2), so the kinematic

equations of this unicycle-type vehicle are as follows:

(

Ẋ

Ẏ

)

= v ·

(

cos θm

sin θm

)

(4.2)

From the above two functions, we have the following expression of unicycle expressed

in coordinates {s, y}:
{

ṡ = v cos(θm − θc)/(1 − ccy)
ẏ = v sin(θm − θc)

(4.3)
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Figure 4.2: Wheelchair’s kinematics.

For simplicity, we make θ = θm − θc, so we have the kinematics function of the

wheelchair expressed as (using cc = dθc/ds = θ̇c/ṡ):







ṡ = v cos θ/(1 − ccy)
ẏ = v sin θ

θ̇ = ˙θm − ccṡ
(4.4)

4.1.2 Path Controller

The control variable chosen for this system is the angular velocity w = ˙θm. To

derive the control variable w, we modify the kinematics model of unicycle-type vehicle

in terms of the distance traveled by the vehicle along the desired path instead of the

time index t. After trivial calculation, we get the expression below (Please refer to

appendix A for details):







s′ = sign(v cos θ
1−ccy

)

y′ = tan θ(1 − ccy)sign(v cos θ
1−ccy

)

θ′ = w|1−ccy|
|v cos θ|

− ccsign(v cos θ
1−ccy

)

(4.5)
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The control objective is to stabilize the output y to zero. To fall upon a stable

closed-loop system, we choose the following PD control law:

y′′ + kvyy
′ + kpyy = 0; kpy > 0, kvy > 0 (4.6)

y′′ is obtained after lengthy but straightforward calculation as:

y′′ =
w

v cos3 θ
(1 − ccy)2 − cc(1 − ccy)

1 + sin2 θ

cos2 θ
− gcy tan θ (4.7)

where gc = dcc

ds
is the variation of the curvature.

From Equation ( 4.4), ( 4.5), ( 4.6) and ( 4.7), the resulting control is:







s′ = sign(v cos θ
1−ccy

)

y′ = tan θ (1 − ccy) sign
(

v cos θ
1−ccy

)

θ′ = w
∣
∣
∣
1−ccy

v cos θ

∣
∣
∣− cc sign

(
v cos θ
1−ccy

)
(4.8)

Equation ( 4.8) is the final equation implemented in the control code. Samson

and Micaelli in [63–65] demonstrated that this controller is stable provided that a set

of simple initial conditions is satisfied.

4.2 Evaluation of the Motion Guidance Controller

The path following controller was implemented and evaluated on two robots, the

Scooter COBOT and the CWA.

4.2.1 The Scooter COBOT

The scooter COBOT [66,67] (COllaborative roBOT) is a haptic device developed

at the Laboratory of Intelligent Mechanical Systems (LIMS), Northwestern Univer-

sity (Illinois, USA). It is a triangular vehicle with a steerable wheel at each corner

(Figure 4.3). The orientation of each wheel is controlled by the computer, however
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the rotation speed of the wheels is free: the scooter is set into motion by pushing

it, hence it is a passive device. A 6-DOF force sensor is mounted below the handle

to detect user’s input. Velocity and position are measured by odometry using three

glide wheels with encoders.

The motion guidance strategy evolved in the following context: the COBOT was

designed to be an assistive device for workers at General Motors whose task is to

assemble doors in the car frame. This repetitive task requires good precision while

manipulating heavy objects. The objective was to reduce manipulation effort while

at the same time keeping a human in the loop for safety and control. Since the

trajectory from the doors stock to the car construction line was always the same, it

made sense to trace a guiding path once and subsequently repeat it without having

to control the trajectory anymore.

4.2.2 The Collaborative Wheelchair Assistant (CWA)

The CWA [62, 68] is closely related to the BCW: they use the same wheelchair

prototype and are both based on the motion guidance strategy. However, the CWA is

targeted at users who can use continuous input devices, such as a joystick, although

with difficulties using it accurately due to poor motor control. With the CWA, the

wheelchair’s motion is constrained on guiding paths as with the BCW, however the

user has full control over the speed.

4.2.3 Motion Guidance Reduces Control Effort

Boy [69, 70] performed experiments to prove that using motion guidance reduces

the control effort and therefore facilitates the navigation task. Experiments were

carried with the scooter COBOT: young and healthy subjects were asked to push it
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Figure 4.3: The scooter COBOT [66, 67] on which the Elastic Path Controller was
tested.
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through an environment that forced them to continuously steer it, and at the end

insert a pin on the tip of the COBOT inside a small hole. In Free Mode (FM),

the path following controller is deactivated and the COBOT behaves as a platform

mounted on caster wheels. In Guided Mode (GM) it is constrained along a guiding

path. The results show that the speed in GM is typically higher than in FM and that

the high-frequency content of the torque is significantly larger in FM than in GM.

Similar experiments were conducted on the CWA [71]. Healthy subjects were

asked to navigate the wheelchair on a complex trajectory. The published results

show that in GM the joystick control is reduced to selecting forward or backward

motion, and that almost no steering is required. Besides, travel time in GM is shorter

than in FM.

These experiments prove that motion guidance efficiently simplifies navigation by

reducing the control effort to the control of the forward velocity.

4.3 Elastic Path Controller

The idea of the Elastic Path Controller (EPC) is to deform the actual path by

applying an input perpendicular to the guiding path. One can think of the actual

path as a rubber string. The shape of rubber band will be changed when the user give

a force perpendicular to it. When the user releases the force, the rubber band will

recover to its original shape. This behavior is implemented by modifying the control

law of Equation ( 4.6) as follows:

y′′ + (1 − α)(kpyy + kvyy
′

︸ ︷︷ ︸

restoring force

) + αF⊥ = 0; kpy > 0, kvy > 0 (4.9)

where F⊥ is the deforming input (i.e. the lateral component of the joystick) and α is

the elastic factor (0 <= α <= 1).

46



When α = 0, Equation ( 4.9) is the same as Equation ( 4.8), i.e. the elastic mode

is disabled. When α = 1, the restoring force term kpyy + kvyy
′ disappears from the

control, i.e. the wheelchair behaves as in Free Mode. For intermediate values of α

(0 < α < 1), the larger the value, the less the user will feel the attraction from the

path, i.e. the controller is more elastic.

The resulting control is:







ṡ = v cos θ/(1 − ccy)
ẏ = v sin θ

θ̇ = v cos θ
1−ccy

{

y cos θ
1−ccy

(gc sin θ − (1 − α)kpy cos θ) + sin θ
[

cc sin θ − · · ·

−(1 − α)kvy cos θsign(v cos θ
1−ccy

)
]

− αF⊥
cos

2 θ
1−ccy

}

(4.10)

Equation ( 4.10) is the final equation implemented in the elastic controller’s code.

A more detailed description of this elastic controller can be found in [68,72–76].

4.4 Designing Paths

The motion guidance strategy relies on a collection of guiding paths – a map –

for navigating between locations of interest in the environment. Figure 4.4 shows an

example of such a map for a home environment.

Guiding paths can be built up automatically if a reliable plan of the building

is available. Alternatively and preferably, guiding paths can be created by Walk

Through Programming (WTP): the on-board computer records the trajectory while

a helper is pushing the wheelchair between two locations along the desired trajectory.

The trajectory is recorded as a sequence of points. Points are placed 5cm apart which

corresponds to the localization accuracy of the system as shown in [62].

Figure 4.5 shows an example of a path obtained by WTP. A hook can be seen

at the end of the path. Such a hook frequently appears on paths designed by WTP
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Figure 4.4: Example of a map with guiding paths in a home environment.
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Figure 4.5: A 8m long path obtained from WTP. A hook can be seen at the end of
the path.
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because the wheelchair usually moves backward a little bit after the user has stopped

driving or pushing it. It has to be removed from the path otherwise the path following

controller cannot reach the end of the path. This can be done manually by removing

the last few points from the path file. Alternatively, a small utility program can be

used.

Once a path has been traced, a cubic B-spline is least-squared fit to the recorded

trajectory and serves as guiding path for subsequent movements. A B-Spline is a

piecewise polynomial function which is locally simple, yet smooth and globally flexi-

ble. Each segment is defined by few control points (4 for a cubic B-Spline) that act as

attraction points to the curve. Modeling the trajectory by a B-Spline smoothes the

cure (low-pass filtering). Moreover, it reduces the number of points required to de-

scribe the path from hundreds to a couple, and since control points have an intuitive

geometrical meaning as attraction points, it facilitates path editing.

The number of control points used is chosen by the user while splining. The more

control points, the closer the spline fits the original path. The fewer control points,

the smoother the spline, and the easier to edit. To that extent, the splining programs

starts with one control point per 1.5 meter of curve and displays the resulting spline

together with the original path. The user can then change the number of control

points and immediately see the result. The user can also add, remove or move control

points with the mouse. Figure 4.6 shows the same path as in Figure 4.5 splined with

5, 6 and 10 control points respectively.

Three tools are available to adapt the paths to permanent modifications in the

environment such as changes in the furniture locations:

1. Using WTP the user can retrace the whole path.
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Figure 4.6: Fitting a B-Spline to a path using 5, 6 and 10 control points respectively.
The more control points, the closer the spline fits the original path; the fewer control
points, the smoother the spline, and the easier to edit.
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2. Using the elastic mode the user can deform a small portion of the path.

3. Using a dedicated software the user can modify the paths by adding, removing

or dragging control points on the graphical user interface (GUI).

One major advantage of these tools is their great simplicity: they require no environ-

ment model and no complex operator procedures.

Boy [70] investigated how humans use the WTP and the GUI tool to design a

good guiding path for the scooter COBOT. Subjects were asked to trace a guiding

path with (i) WTP, (ii) the GUI, and (iii) WTP together with the GUI for minor

improvements. They were then asked to grade each of these paths. It was found that

paths designed by WTP then improved with the GUI were the best paths.

In [77, 78] we evaluated on the CWA how humans use the GUI and the EPC to

modify an existing guiding path. It was found that the best strategy is to first modify

the path with the EPC in order to set the general shape, then improve it with the

GUI.

Overall, these experiments gave us an insight at the strengths and weaknesses of

each of these three tools:

1. WTP is best used to trace a new path (or retrace an existing path that requires

too many modifications). However, the resulting path may require some minor

improvements: straight lines may not be perfectly straight, and some curves

may be smoothened.

2. The major problem of the GUI is that the surrounding environment is not

displayed along with the path. However, after tracing a path by WTP, one can

easily and quickly improve it in the GUI.
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3. The EPC is best used to modify a small section of a path to adapt it to some

modifications in the environment. However, due to the difficulty of using the

EPC, the resulting path is usually a bit jerky, and requires some improvements,

which are easily and quickly done with the GUI.

When building a network of paths it is possible to reduce the amount of WTP

tracing by concatenating chunks of paths using our GUI, which is especially useful

for large environments. Also, paths can be organized hierarchically in maps and sub-

maps, and maps can be connected together. For instance at a lift several maps, one

for each level, are connected together. This hierarchical organization allows to reduce

the number of options displayed at one time on the destination selection interface,

which facilitates selection.
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CHAPTER 5

BCI For Destination Selection

According to our strategy, locations of interest to the user are connected by virtual

guiding paths. To navigate with the BCW, the user simply selects with the BCI,

among all possible location, which one he or she wants to go to. In Section 2.2 we

reviewed a variety of existing BCIs and all of them could be adapted to serve our

purpose. For instance, possible locations could be displayed on screen and the µ/β

BCI (Section 2.2.3) could be used to control a pointer over the desired item.

The destination selection problem is similar to the spelling problem: it consists

in selecting an item of interest in a possibly long list. The best BCIs for spelling

are those based on the P300 signal. P300 spellers have proved very successful since

introduced in 1988 by Farwell and Donchin [32], and were shown to work well with

severely disabled subjects [52, 53]. Besides they require almost no training. Hence,

for this work we naturally chose to use a P300 BCI for destination selection.

5.1 Details of the P300 BCI

To elicit P300 signals, we are using a visual oddball paradigm. Items to be selected

are displayed in a 3x3 matrix on a screen and flashed one by one in a random order

(see Figure 5.1), at a rate of approximately one every 100ms. To select one item (the
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target), the user focuses his or her attention on it; a simple way for focusing is to

count the number of times the target is flashed.

Around 300ms after the target is presented, a positive potential peak appears in

the EEG signal (Figure 2.4). Upon detection of this P300 signal, the target can be

determined as the stimulus that occurred 300 ms earlier. One does not need to gaze

at the target on the screen, but only to concentrate on it: the P300 is a measure of

surprise, and not a direct visual signal.

The P300-based BCI has the advantage of requiring no training from the user

and only a few minutes to calibrate the parameters of the detection algorithm. This

is noteworthy since some BCI techniques require a very long training phase, up to

several months in the case of slow cortical potential devices [79].

For the BCW we are using the asynchronous P300 BCI described in [80]. The sig-

nals from 15 electrodes recorded on the top of the head are first amplified and filtered,

then cleaned from artifacts (ECG and signal resulting from eye blinks). These are

then segmented to associate each button with a sample corresponding to data between

150ms and 500ms after this button has been flashed (see Figure 5.2). Downsampling

and principal component analysis are applied to reduce data dimension.

A Support Vector Machine (SVM) is trained to discriminate samples that con-

tains a P300 signal from the others. A collection of labeled samples for training can

be obtained by telling the subject which item to look at. Once trained, the SVM

classifies samples as containing / not containing a P300 signal. The SVM output

also contains the sample’s distance margin (the score) which expresses the likelihood

that the sample contains a P300 or not. Finally scores are averaged over the last

few epochs (all the buttons flashed). When one or several scores are higher than a
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Figure 5.1: Items are flashed one by one in a random order. To select one item the
user focuses his or her attention on it. Around 300ms after the target is presented, a
positive potential peak appears in the EEG signal.
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Figure 5.2: Segmentation of the EEG signal in labeled samples. Each button is
associated with a sample corresponding to data between 150ms and 500ms after this
button has been flashed.
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decision threshold, the button with the maximum score is designated as the target.

This is summarized on Figure 5.3.

5.2 Experimental Procedure

We devised a few machine-guided tasks so as to conduct analysis of our P300

interface when the subject does not move. Note that the interface used for presenting

the stimuli was a 3x3 matrix as illustrated in Fig. 5.1. Buttons were flashed indi-

vidually in a random order. Stimulation duration was 100ms with an interstimulus

interval of 10ms. Thus, one round of button flashing took 990ms. We recorded data

corresponding to the control and noncontrol condition.

The control task was divided in 4 sections. In sections 1 to 3, the subject attended

to one button for eight rounds, paused 2s, and moved on to the next button until

he/she had gone through all the nine buttons. Hence, each of the three sections

contained 72 rounds of EEG, corresponding to 72 epochs of target P300 and 576

epochs of nontarget P300 data. The three sections were used to train the support

vector machine to discriminate between target and nontarget P300 data. The setting

of the fourth section was the same as that of the first three, except that the subject

had to attend to the targets for fifty rounds. Hence the fourth section contained

450 rounds of EEG, corresponding to 450 epochs of target P300 and 3600 epochs of

non-target P300 data. This data was used to evaluate the trained support vector

machine.

The noncontrol task was divided in 3 sections, during which the subject stayed in

noncontrol state, paying no attention to any button nor the computer display. Each

section contained 50 rounds of EEG for each of the nine buttons, corresponding to

58



Figure 5.3: Detection of P300 signals in the EEG. EEG samples are fed to a SVM
which returns a score that expresses the likelihood that the sample contains a P300
or not. Scores are averaged over the last eight epochs to avoid exceptions affecting
the selection. When one or several scores are higher than a decision threshold, the
button with the maximum score is designated as the target.
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450 epochs of noncontrol EEG data. In the first section, the subject was reading a

newspaper. In the second section, the subject was relaxed with closed eyes. In the

third section, the subject was given a question sheet including a few arithmetic tasks,

and needed to finish the tasks quickly. No significant difference was found in the

behaviour with these three conditions, which were thus combined in the subsequent

analysis.

Data collection was performed in a single session. Control and noncontrol tasks

were interleaved, with a break of two minutes in between two tasks. According to the

timing scheme mentioned before, the 8 rounds tasks took approximately 1′ and the

50 rounds tasks 8′. So the data collection on each subject ran for approximately 30

minutes, excluding the EEG preparation time.

Five healthy subjects (Subjects 1 to 5), all males, between 22 to 36 years, partic-

ipated in our study. Note that no subject screening was conducted, and we used all

the five volunteer subjects throughout the study.

5.3 Score Distributions

Figure 5.4 shows the distribution of scores in the three data sets mentioned above

for one of the five subjects. We can see that scores are approximately normally

distributed. Besides, scores in the noncontrol and nontarget sets are very similar,

which is not surprising given that these EEG samples are all supposed to not contain

a P300 signal.

We can also see on Figure 5.4 that the average value of the scores in the target set

is higher than the average value of the scores in the noncontrol and nontarget sets.

However, the two distributions are not clearly separated: for a given score value, we
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cannot decide with a high confidence whether the EEG sample contains a P300 signal

or not.
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Figure 5.4: Distribution of scores for the target, nontarget and noncontrol sets for
subject 1.

5.4 Performance Study

In this section we will evaluate the P300 BCI using the EEG data collected on

our five subjects (see Section 5.3). Analysis will be done off-line with Matlab. Our

performance evaluators will be the following three:

• Response time (RT). This tells us how long it takes on average to select an item.

With our detection algorithm, this is the time before the (averaged) score of
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a button reaches the decision threshold. Note that this measures also includes

wrongly selected items (substitutions).

• Error rate (Err). This tells us how confident we can be that a selected item

corresponds to the item the user intended to choose. It is defined as the ratio of

wrongly selected targets by the total number of selections during an experiment,

expressed in percentage.

• False acceptance rate (FA). This tells us how frequently items are selected when

the subject is not intending to select any. This is an important factor since in

a typical usage it is likely that the user will spend most of the time actually

not using the wheelchair, i.e. doing something else. It is expressed in number

of occurrences per hundred seconds.

For the remaining of this thesis, whenever we will use the word performance we will

refer to a point in the three-dimensional space (RT x FA x Err).

To solve this multi-objective problem, we combine our three performance evalua-

tors in one cost function:

C =
RT

[RT ]
+

FA

[FA]
+

Err

[Err]
(5.1)

where [RT ], [FA] and [Err] are normalizing factors.

We restrict the region of interest to RT < 30, FA < 10 and Err < 10%: for

values beyond those thresholds we set C = ∞, corresponding to an unacceptable

performance. From preliminary experience with the interface, we know that RT will

be in the order of 10 seconds, FA in the order of 1 occurrence per 100 seconds, and

Err in the order of 0.1%. Hence, in order to balance order of magnitude of each term,

we choose the following normalizing factors: [RT ] = 10s, [FA] = 1 and [Err] = 0.1%.
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For each subject we first compute a threshold vector of 100 points that spans

the range of scores in the three data sets. Then for each threshold point, and for

values of depth from 1 to 16, we compute with Matlab the response time, false

acceptance rate, error rate and cost. We then search the depth and threshold values

that yield the smallest cost. Table 5.1 shows the obtained performances at that point

for each subject. Figure 5.5 shows the distribution of response times obtained across

all subjects at the optimal point (average response time is 15.4 seconds).

Table 5.1: Performances at lowest cost point.
Subject depth threshold RT (s) FA Err (%)

1 8 0.003665 12.3 1.1 0.15
2 7 0.001055 17.3 1.6 0.11
3 8 0.004170 13.9 1.1 0.09
4 8 0.000402 18.4 1.2 0.14
5 9 0.000391 21.7 1.8 0.13

avg - - 15.4 1.2 0.12

Figure 5.6 shows the response time (RT) in seconds, the false alarm rate (FA)

in number of occurrences per hundred seconds, and the error rate (Err) in percent,

as a function of the threshold for subject 1 and for a value of depth D = 8 (which

is the optimal value for this subject, as shown in Table 5.1). RT is bound by a

minimum of eight corresponding to the averaging window’s width. RT increases with

the threshold: there are less samples with a high score therefore it takes a longer time

until one of the scores reaches the threshold. Conversely, FA is high for low values of

the threshold and tends to zero for high values. Err is below 10% and decreases for

large values of the threshold.
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Figure 5.5: RT distribution for the P300 BCI. Times obtained across all subjects at
the optimal point.
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Figure 5.6: Influence of the threshold on performances of the P300 interface. RT (in
seconds), Err (in percent) and FA (in number of occurrences per hundred seconds)
for different values of the decision threshold (x axis). Results obtained for subject 1
with a depth value of 8.
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Figure 5.7 shows the response time (RT) in seconds, the false alarm rate (FA) in

number of occurrences per hundred seconds, and the error rate (Err) in percent, as a

function of the threshold for subject 1 and for a value of the threshold T = 0.003665

(which is the optimal value for subject 1, as shown in Table 5.1). Again, RT increases

as depth increases, while FA and Err decrease. For low depth values (D ≤ 4), the

error rate and false acceptance rate are very high.

5.5 Calibration

Automatic selection of the depth and threshold values can be performed though

calibration. Data is first collected by asking the subject to select a few buttons on

the interface as well as to relax. Then the classifier engine is trained using half of this

data. The other half is used to compute RT, FA, Err and the cost, from which the

optimal depth and threshold can be found.

These values vary from subject to subject and even from day to day. Therefore,

re-calibrating may be necessary when performances decrease.

The depth and threshold values obtained from calibration are optimal in the

sense that they minimize both the response time and the false alarm rate. However,

optimality of obtained performances also depends on the application and on the user’s

preferences.

For instance, for a P300 based speller, we would give priority to speed and choose

values that yield a small response time, at the cost of the higher false alarm rate. For

the wheelchair’s destination selection interface, we consider that it is more important

to reduce the false alarm rate rather than the response time. Indeed, it is likely that

the user will spend most of the time not using the interface than actually using it.
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Figure 5.7: Influence of the depth on performances of the P300 interface for the 5
subjects. RT (in seconds), Err (in percent) and FA (in number of occurrences per
hundred seconds) for different values of the depth (x axis). Results obtained for
subject 1 with optimal threshold value.
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Similarly, a particular user might prefer a low response time, while another would

favor a low false alarm rate.

Hence, it is desirable that the user (or an aid) has the possibility to tune the

performances of the interface. This can be done either off-line by observing RT and

FA curves for different threshold and depth values, or on-line by adjusting the depth

and threshold values until desired performances are obtained.

5.6 Evaluation of the P300 BCW

We conducted various navigation experiments in our lab building with healthy

subjects. This environment included several floors connected by a lift. We assumed a

smart environment where the lift could communicate with the wheelchair. Here the

environment was simulated by manually operating the lift as well as the entrance and

exit of the wheelchair in the lift.

At each floor, four destinations were interrelated by six guiding paths. These

guide-paths were designed prior to the experiment using the walk through program-

ming method, i.e. by tracing the paths with the wheelchair and coding the resulting

data using B-splines.

Five subjects were asked to move between pairs of locations placed on different

floors. All subjects succeeded at their first trial to reach all of the desired locations,

taking in mean fifteen seconds (median = 12 s) to issue a command and no wrong

command was selected. The subjects reported that it was “very easy” to activate the

commands for selecting destinations and change the floor.
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5.7 Locking the Interface

Due to the non-null value of FA, the interface is expected to generate random

commands while the user is not using it. However, in a daily usage, the user would

normally spend large amount of time not using the interface, for instance when rest-

ing, or performing another activity. To prevent a falsely detected P300 signal from

accidentally setting the wheelchair in motion, we implemented an interface locking

scheme similar to the keyboard locking facility on cellular phones.

The interface is locked using the menu’s lock button. Once locked, no command

can be issued before a sequence of keys is entered. Assuming N keys in the unlocking

sequence, the number of false unlocking rate is FA · (1

9
)N . Using a key sequence of

three characters (N = 3) and assuming FA = 1.2 per hundred seconds (averaged

value reported in Table 5.1), the false unlocking rate is 0.00164 per hundred seconds,

or one every 17 hours.
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CHAPTER 6

Faster BCI for Stopping

Our experiments proved that selecting destinations with the P300-BCI is an effi-

cient strategy to control a wheelchair: it is safe and predictable, and does not require

the user to be constantly focused on the driving task. However, in our design con-

straints (Section 1.3) we established that the control burden must be as light as

possible, yet allow certain freedom to the user, such as stopping at any time during

motion or change course.

The off-line evaluation of the P300 interface (Section 5.4) showed that by changing

the value of the decision threshold we modify the performances of the interface. Low

thresholds lead to short response times (RT) and high false acceptance (FA) rate,

while higher thresholds lengthen RT and reduce FA. This trade-off of FA and RT is

due to the noisy nature of the EEG.

As a consequence it is not possible to use this interface to quickly issue a stop

command, as a low RT would be accompanied by a high FA, and the wheelchair would

stop too frequently along the way. Hence a faster BCI is needed for stopping, and it

can be designed as this decision requires less information than a selection amongst

many possible targets. In the course of this thesis we have evaluated two possible fast

BCIs that we will present in this chapter.
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In Section 6.1 we will present a fast P300 algorithm that works when there is only

one item to choose from, and in Section 6.2 we will present a BCI based on motor

imagery.

Note that other BCIs may be used for this task, and the two presented here do

not form an exhaustive list of solutions.

6.1 Stopping with a P300-BCI

While in movement, the most relevant action is to stop, hence the P300 interface

displays only a stop button. In this configuration if an EEG sample is falsely classified

as containing a P300 signal, the result of a random phenomena because unrelated to

the user’s intention, there is only a probability of 1/9 for it to be the sample associated

with the stop button. Therefore, the resulting FA should be 9 times smaller, which

should allow us to reduce the decision threshold, hence RT, while maintaining FA

low.

We will here present and compare six algorithms that were evaluated off-line. Each

algorithm is based on the same pattern: it relies on a function that receives scores

associated with the stop button and scores associated with the eight other buttons

and decides whether the stop button was selected or not. A history of scores over the

last D round is kept. The difference between the six algorithms lies in how the scores

are processed and how the decision is taken.

The data used are the three data sets introduced in Section 5.2: the target, non-

target and noncontrol sets. The response time is evaluated by using the target and

nontarget sets: the stop button scores are the scores in the target set, and is compared

to the eight other buttons scores, the scores of the nontarget set. The false acceptance
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rate is evaluated using the garbage set. Since for this data set the user is not trying

to select any button, all buttons are considered as no target. In that condition, we

process the data set nine times, using each button is turn as the stop button. This

eliminates the bias that could be induced by choosing one button at random.

Similarly to the study conducted for the destination selection interface (Sec-

tion 5.4), we will consider a cost function to compare those algorithms. In this

case, we expect RT to be in the order of 5 seconds, and FA to be in the order of 2

occurrences per 100 seconds, hence we will choose the following normalization fac-

tors: [RT ] = 5s and [FA] = 2 (see Equation 5.1). Note that there is no possible error

(Err = 0) since only the stop button can trigger a response.

6.1.1 Threshold-Based Algorithm

The four variants of the algorithm presented in this section follow the same prin-

ciple: for each button, scores are averaged over the last D rounds. The stop button

is selected if its averaged score is higher than the threshold and higher than the eight

other buttons’ averaged scores.

In the first variant (algorithm 1a), the scores are directly stored in the history

array. The main problem with this algorithm is that it is very sensitive to threshold

variations: tiny variations lead to large differences in performances. A proposed

method to reduce the sensitivity is to normalize scores before comparing to threshold.

We propose here three normalization methods:

• algorithm 1b: after each round the 9 scores are normalized between -1 and 1

with respect to the round’s minimum and maximum values before going to the

history array.
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• algorithm 1c: scores are normalized between -1 and 1 with respects to the

history’s minimum and maximum values before comparing to threshold.

• algorithm 1d: scores are normalized with respects to the history’s mean and

standard deviation values before comparing to threshold.

Figure 6.1 shows the resulting performances for those 4 algorithms for one of the

subjects. For each algorithm, using depth values between 1 and 8, we plotted the

(FA,RT) points obtained for a range of threshold values.

We computed the cost for all subjects, all algorithms, all depth values and all

threshold values. Table 6.1 gives for each subject which algorithm, which depth and

which threshold value yields the smallest cost. We can see that for all five subjects,

Algorithm 1d is the algorithm that yields the smallest cost.

Table 6.1: Cost analysis for algorithms 1a-d.
Subject Algo Depth Threshold RT FA cost

1 1d 2 1.9 4.0 1.4 1.50
2 1d 2 1.5 5.3 0.8 1.46
3 1d 3 0.5 6.1 1.6 2.02
4 1d 2 1.3 5.2 0.9 1.49
5 1d 3 1.8 4.3 1.2 1.46

6.1.2 Threshold-Less Algorithm

The previous algorithms all have the inconvenient of requiring a threshold, hence

a calibration stage is required. We devised two algorithms to get rid of the threshold.
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Figure 6.1: Evaluation of the threshold-based P300 stop algorithms. Results corre-
sponding to subject 1. Different variants are proposed: a) no normalization, b), c)
and d) scores are normalized following 3 different methods.

74



In the first variant (algorithm 2a), the stop button is selected if its score is higher

than the eight other scores for N consecutive rounds. Figure 6.2-a shows the results

for different values of N for subject 1.

In the second variant (algorithm 2b), the stop button is selected if its score is

higher than the eight other scores for at least N of the last D rounds. Figure 6.2-b

shows the results for different values of N and D for subject 1.
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Figure 6.2: Evaluation of threshold-less P300 stop algorithm. Results corresponding
to subject 1. Two variants are proposed: a) N consecutive hits, b) N hits over the
last D rounds.

We computed the cost for all subjects, both algorithms and all depth values.

Table 6.2 gives for each subject which algorithm and which depth yields the smallest

cost, and compares with costs obtained for algorithm 1 (cost1). The last column

shows the gain in cost (gain = cost−cost1
cost1

).
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Table 6.2: Cost analysis for algorithms 2a and 2b.
Subject Algo Depth RT FA cost cost1 gain

1 2b 2/3 5.7 2.0 2.14 1.50 42%
2 2b 2/3 6.3 1.2 1.86 1.46 27%
3 2b 2/4 6.9 2.1 2.43 2.02 20%
4 2b 2/3 6.1 1.3 1.87 1.49 25%
5 2b 3/4 4.7 2.1 1.99 1.46 36%

6.1.3 Conclusion

Of all threshold-based algorithms, Algorithm 1d gives the best performances. Al-

gorithms 2a&b get rid of the threshold, hence of the need for calibration. Algo-

rithm 2b yields a smaller cost than Algorithm 2a, yet costs remain higher than with

Algorithm 1d.

For the following of this thesis, Algorithm 1d will be used. Corresponding RT and

FA distributions are shown on Figure 6.3 (obtained using for each subject the best

depth and threshold value).

As with the P300 BCI for destination selection, automatic calibration can be

performed to select the best threshold value. Once EEG data has been collected (as

in Section 5.5) and the P300 detection engine trained, remaining EEG data can be

processed to compute RT, FA and the cost function, from which the optimal depth

and threshold can be found.

6.2 Stopping with a µ/β-BCI

In Section 2.2.3, we saw that people can learn to regulate the EEG power in the µ

(8-12Hz ) and β (18-26Hz ) bands, and that this can be used to continuously control

76



2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

t: time in seconds

Distribution of response times

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

number of false stops per 100 seconds

Distribution of false stops

Figure 6.3: Distribution of RT and FA for P300 stop BCI. Best algorithm (Algo-
rithm 1d), all subjects, best depth and best threshold.

a cursor in one or two dimensions. In this section we will describe a BCI based on

µ/β analysis to stop the wheelchair.

EEG is recorded over the sensorimotor cortices (electrodes FC3, FC4, C3, C4,

CP3, CP4, which are a subset of the electrodes used for the P300 BCI). Before a

user starts using the system, the baseline µ and β powers for each channel must be

computed, which will be used as reference. To obtain the baseline, the user is asked

to stay in “idle” state, in which the user does not move or try to regulate his EEG

power, during three minutes. The collected baseline EEG signal is then divided into

segments of 250 millisecond, and the µ and β powers in each segment are calculated

by using the Fast-Fourier-Transform (FFT). The system computes the average µ and

β powers.

In the control stage, the computer calculates the EEG powers in µ and β bands in

each 250 millisecond EEG and form a joint feature vector consisting of 12 variables (6

77



channels and 2 frequency bands): ~x = {x1, . . . , x12}. The control output y is given by

y = ~w · (~x − ~x0), where ~x0 denotes the vector of baseline powers. The vector ~w can

be learned using empirical data [81]. Visual feedback in the form of a cursor which

position is proportional to the value of the control output y can be presented to the

user.

We evaluated this BCI with two young healthy subjects. They were selected for

their rare ability to use the µ/β BCI almost without training, hence avoiding the need

for a lengthy training program. The first subject reported that he does not know how

he is controlling the cursor or at least he could not explain it. The second subject

reported that he was imagining himself walking in a straight line and turning to the

left or to the right to control the cursor.

Figure 6.4: Distribution of response times for the µ/β stop BCI with our two healthy
subjects.
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We then recorded the time needed to move the cursor beyond a threshold, fixed at

30% of maximal power on each side, upon presentation of an audio clue. Figure 6.4

shows the distributions of response times for the two subjects. Table 6.3 gives the

parameters of these distributions.

Table 6.3: RT statistics (in seconds) with the µ/β stop BCI.
Subject min max mean std

A 2.2 8.7 5.4 1.7
B 1.1 9.8 4.3 2.6

To evaluate the false acceptance rate, i.e. the number of times the cursor moves

beyond the threshold while the user is not intending to, the subjects were asked to

relax and to not try to control the cursor for 5 minutes. For none of them the cursor

moved beyond the threshold, leading to an estimated false acceptance rate of 0.

These initial results were obtained with healthy subjects that were only briefly

trained. Wolpaw & McFarland [45] obtained better results with 4 disabled subjects

that were extensively trained: the subjects managed to move a cursor from the center

of the screen to one of eight targets in less than 3 seconds (see Figure 2.5). Therefore,

it can be expected that with appropriate training, disabled subjects could obtain

similar response times using our µ/β-BCI.

6.3 Hybrid Interface

We propose to combine two modalities in an hybrid BCI: the P300-BCI for desti-

nation selection, and a faster modality for stopping. The BCI switches between these

two modalities depending on the state of the wheelchair: we use the P300 modality
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to allow the user to select a destination and start motion when the wheelchair is

stopped, and when the wheelchair is moving we use the faster modality to give the

user the ability to stop it. This control strategy is illustrated on Figure 6.5.

Figure 6.5: Control diagram with the hybrid BCI. When stopped, the BCI shows
the list of destinations. Upon selection, the wheelchair starts moving and the BCI
switches to the fast BCI for stopping (fast P300 or µ/β).

We presented two fast BCIs that can be used for stopping. Both have a response

time of about 5 seconds. The fast P300 BCI has a relatively high false acceptance

rate (1 every 30 seconds) whereas the µ/β BCI’s FA is null. On the other hand, the

P300 paradigm is easy to use and does not require training, whereas the µ/β BCI

requires a lot of training and concentration to use it. Therefore we decided to offer
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both BCIs and let the user decide which is more satisfying according to his or her

abilities.

6.4 On-line Evaluation

We conducted on-line experiments with healthy subjects (5 for P300, and 2 for

µ/β) seating on the wheelchair and moving on a circular guiding path.

In a first experiment [82] the wheelchair was launched and the subject was required

to issue a stop command as fast as possible after the apparition of a clue. Top panel

of Figure 6.6 shows the CDF of P300 response times for all five subjects. Figure 6.7

shows the CDF of µ/β RTs for both subjects. The subjects managed to stop the

wheelchair in all trials both for P300 and µ/β.

A second experiment examined the occurrence of false acceptance FA, i.e. when a

STOP command was issued involuntarily. For this purpose, the subjects were required

to not activate the STOP command and were observed during 2 minutes. Bottom

panel of Figure 6.6 shows the CDF of P300 false stop times (i.e. time without false

stops) for all five subjects. With the µ/β interface there was no false stop.

6.5 Comparison of Off-line and On-line Results

The perception of motion by the brain and the stress induced by seating on a

moving robot are factors that might prevent the usage of our BCI to issue a stop

command. Generally, we do not know of any study proving that EEG patterns would

remain similar during motion as at static position, such that the same model can be

used in the two conditions. To investigate this we compared the on-line and off-line

data collected.
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Figure 6.6: On-line evaluation of response time and false acceptance rate for the P300
stop BCI for the 5 subjects.
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Figure 6.7: Off-line vs on-line comparison for the µ/β stop BCI.

Figure 6.8 shows the RT CDF (top) and the FA CDF (bottom) averaged over the

five subjects, off-line and on-line. Figure 6.7 shows the µ/β RT distributions for our

2 subjects. These curves are very close one another and thus suggest that there is no

much difference between on-line and off-line conditions.

To verify that point we conducted statistical comparison between the 2 conditions.

We also ran a t-test between each pair of distribution. Table 6.4 shows the result of

this comparison. It can be seen that mean times and standard deviations are close

one to another and that p-values are well above 5%.

This analysis thus confirms the similarity between on-line and off-line results,

hence showing that motion does not induce significant modification of the EEG that

could prevent using a BCI to issue a stop.
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Figure 6.8: RT and FA for the P300 stop BCI, comparison of on-line and off-line data
averaged on the 5 subjects.
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Table 6.4: Off-line and on-line performances for the P300 and µ/β stop BCIs.
RT (in seconds) FA (in number of

occurrences per 100
seconds)

off-line on-line p-value off-line on-line p-value
µ ± σ µ ± σ µ ± σ µ ± σ

P300

subject 1 4.3 ± 1.7 4.7 ± 1.1 0.21 2.0 ± 1.5 2.4 ± 1.3 0.34
subject 2 5.3 ± 2.0 5.8 ± 1.9 0.27 2.5 ± 1.5 2.6 ± 1.5 0.77
subject 3 7.4 ± 4.3 7.0 ± 2.3 0.60 1.6 ± 1.2 2.1 ± 1.2 0.13
subject 4 6.1 ± 2.8 6.6 ± 2.3 0.32 2.1 ± 1.2 2.5 ± 1.6 0.30
subject 5 6.7 ± 4.5 5.6 ± 2.4 0.19 2.1 ± 1.4 2.0 ± 1.1 0.80
averaged 6.0 ± 3.4 5.9 ± 2.2 0.93 2.1 ± 1.4 2.3 ± 1.4 0.13

µ/β
subject A 4.3 ± 2.6 4.9 ± 2.7 0.330 0.0 ± 0.0 0.0 ± 0.0 1.00
subject B 5.4 ± 1.7 7.9 ± 2.2 0.224 0.0 ± 0.0 0.0 ± 0.0 1.00
averaged 4.9 ± 2.2 5.5 ± 3.0 0.159 0.0 ± 0.0 0.0 ± 0.0 1.00

6.6 Comparison of the µ/β and P300 BCIs for Stopping

Finally, we would like to compare the P300 interface with the µ/β interface. On

Figure 6.9 we plot the RT CDF with both interfaces. These curves combine the data

from all subjects, on-line and off-line. We can see that the responses are quite similar.

However, a t-test between these 2 distributions returns a p value of 2% only.

Hence in term of response time, the µ/β and fast P300 BCIs are equivalent. There

are two main differences however:

• The fast P300 BCI suffers from a non null false alarm rate which will cause the

wheelchair to stop involuntarily. The µ/β does not have this problem (FA = 0).

• The µ/β BCI is difficult to use and requires long training, whereas the P300

BCI relies on a natural mechanism on the brain and as such requires almost no

training.
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Figure 6.9: Comparison of µ/β and P300. RTs are averaged over all subjects, on-line
and off-line together.
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As a conclusion, the choice between the µ/β BCI and the fast P300 one will be

based on user preference and ability.
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CHAPTER 7

Overall Strategy Evaluation

The aim of this chapter is to evaluate our strategy and compare it with the brain

controlled wheelchair projects presented in Section 2.3.

7.1 Experimental Setup

Depending on the option chosen for the stopping the wheelchair, we have the two

possible scenarios. In the first one (Scenario A), we consider that there is no false

stop. This corresponds to either using the µ/β interface (FA = 0), or to disabling

the stop feature. In the other one (Scenario B), the P300 stop interface is active,

hence we will have some false stops from time to time. If a false stop occurs before

the wheelchair has completed the navigation, the user has to reselect the destination

again.

We will run simulations based on measured performances of our BCIs (selection

times and false stop rates):

• results from off-line evaluation of the P300 selection interface for the 5 subjects

(Figure 5.5).

• results from off-line evaluation of the P300 stop interface (Section 6.1), algo-

rithm 1d with a depth of 2 (Figure 6.3).
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• results from on-line evaluation of the P300 stop BCI (Section 6.4)

The benchmark task is to navigate between locations connected by 50m long

paths, i.e. approximately the length of a smooth and direct trajectory in MAIA’s

evaluation tests (see Figure 7.2). The wheelchair’s nominal velocity is 0.5m.s−1,

hence the nominal travel time is 100 seconds.

7.2 Evaluation Metrics

Our first metric will be the mission time, i.e. the total traveling time, which is

computed as follows. First, a selection time is picked randomly according to the RT

distribution. For scenario A, the mission time is simply the selection time plus the

nominal time (100s).

For scenario B, we choose randomly a false stop rate from the FA distribution, and

compute the corresponding time to stop T = 100/FA as well as the distance traveled

by the wheelchair in this time D = V ∗ T , with V = 0.5m.s−1. If this distance

is greater than 50m, the wheelchair has reached the destination without stopping.

If the distance is smaller than 50m, the wheelchair has stopped before reaching its

destination and has to be restarted, so we again pick a selection time. The simulation

is completed when the total distance reaches 50m.

In an attempt to measure the mental workload required to control the wheelchair,

we choose our second metric to be the concentration time, i.e. the time spent con-

trolling the BCI.

Finally, in order to compare the different projects independently of the used sce-

nario, we introduce the following ratios, which added together form a cost function.

mission time ratio : ratio of mission time to nominal time (100s).
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concentration time ratio : ratio of the concentration time (i.e. time spent con-

trolling the BCI) to nominal time.

Other important factors mentioned in the introduction, such as the comfort and

safety factors could be added to this cost function, however their measurement would

be somehow arbitrary, thus we decided to not consider them in this evaluation.

7.3 Results

Figure 7.1a shows the CDF of the mission time over 500 trials. In scenario A,

the mission time is 112 seconds on average; in scenario B, it is 128 seconds with an

average of 1.2 false stops. Table 7.1 shows the value of our two metrics and the cost

function for our two scenarios.

100 110 120 130 140 150 160 170 180
0

0.2

0.4

0.6

0.8

1

t: time in seconds

(a) P(mission time<t)

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

number of false stops

(b) distribution of number
of false stops

Figure 7.1: a) Mission time CDF in scenario A (no false stop, solid line) and B (with
false stops, dashed line). b) Distribution of number of false stops per run in scenario
B.
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Table 7.1: Metrics to evaluate the overall strategy.
Scenario A Scenario B

min max mean std min max mean std
mission time 107 129 112 5.0 107 177 128 13.2

miss. time ratio 1.07 1.29 1.13 0.05 1.07 1.77 1.28 0.13
concentration time 7 29 12.6 5.0 7 77 28.3 13.2
conc. time ratio 0.07 0.29 0.13 0.05 0.07 0.77 0.28 0.13

total cost 1.14 1.58 1.25 0.10 1.14 2.54 1.57 0.26

7.4 Comparison

Results from the MAIA project [56] are shown on Figure 7.2. Due to the nature

of their strategy (exposed in [56] and in Section 2.3.3), trajectories are far from being

optimal. Average trajectory times range from 130 to 270 seconds (bottom panel of

Figure 7.2) depending on subject and active behaviors. We will take 200s as their

mean mission time, which yields a mission time ratio of 2. Since the control of

the wheelchair requires continuous concentration, we will take 200 seconds for the

concentration time, yielding a concentration time ratio of 2. Finally, the total cost is

4.

It is possible to evaluate the cost of the Toyota/Riken strategy (see [59] and

Section 2.3.4). Their subject managed to drive the wheelchair on an eight-shaped

course in 22.88s on average (standard deviation ±0.16s). While driving on the same

course with a joystick, the average time was 16.96s (standard deviation ±0.086s),

hence the mission time ratio is 1.35. Since the control of the wheelchair requires

continuous concentration, we will take 22.88s for the concentration time, yielding a

concentration time ratio of 1.35. Finally, the total cost is 2.70.
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Figure 7.2: Results from MAIA project for 2 able subjects (from [56]). Top:
wheelchair trajectories. Bottom: averaged elapsed time.
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Data for the Minguez brain controlled wheelchair (see [55] and Section 2.3.2)

is also available. They evaluated their system on two different circuits. The first

circuit was designed to accomplish complex maneuverability tasks and avoidance of

obstacles in constrained spaces (length of optimal path: 12m). The second circuit

involved navigation in open spaces (length of optimal path: 32m). The respective

mean mission times were 571 and 659 seconds, and the respective concentration time

were 447 and 439 seconds. From this data, the mission time ratios can be computed

as 25 and 10.3, and the concentration time ratios as 18.6 and 6.8. Finally, the total

costs are 43.6 and 17.1.

Table 7.2 summarizes for each of those strategy the evaluated cost, and compares

with our strategy. In this table, the third (respectively fourth) column is relative cost

difference with Scenario A (respectively B):

GainA =
C − CA

CA

GainB =
C − CB

CB

Table 7.2: Comparison of strategy costs.
cost gain w.r.t A gain w.r.t. B

Scenario A 1.25 0% -20%
Scenario B 1.57 25% 0%

MAIA 4 220% 155%
Toyota 2.7 116% 72%

Minguez (1) 43.6 3388% 2677%
Minguez (2) 17.1 1268% 989%
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7.5 Discussion

We compared mission times between our project and the MAIA project to put

the two projects in perspective. We showed that, in term of mission time, the two

projects are equivalent (although we are slightly faster). However, the difference

between the two strategies is more fundamental: MAIA’s wheelchair allows more

freedom of movement but requires constant concentration, whereas in our strategy

emphasis was put on minimizing the control input hence user fatigue.

Using a cost function that takes into account mission time and mental effort

we showed that our project is the most efficient one. Again, this is only a partial

comparison, and it would be absurd to compare those projects based only on that

measure. Other factors should be taken into consideration, such as the freedom

of movement allowed by the strategy (in our case, the wheelchair can only go to

predefined locations), comfort and safety factors, financial cost of the equipment,

amount of training required to use the BCI, etc.

Finally, we acknowledge that we are comparing simulation results with results

obtained from real experiments. However, we believe that our simulation is fair for

two reasons. First, to compute the operation time, we draw selection times and false

acceptance rates from experimental data. Second, our wheelchair follows pre-defined

guiding paths, ruling out the presence of obstacles on the way (same as with the other

projects).
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CHAPTER 8

Conclusion

8.1 Summary

This work developed a brain controlled wheelchair for navigation in familiar en-

vironments. It is intended as a realistic mobility recovery tool for locked-in people

for whom a BCI is the only way to communicate or control a device. Since using a

BCI requires a concentration effort that may exhaust the user, emphasis was put on

minimizing the control input. To provide security the navigation is based on following

guiding paths that were designed by a human helper, hence hazard free.

Locations of interest are first defined in the familiar environment of the user. A

helper traces the guiding paths between them by pushing the wheelchair along the

desired trajectories while the on board computer records them. The guiding paths

are virtual, which allows easier maintenance and avoids modifying the environment.

Using the BCW is straightforward. The wheelchair offers a list of locations to

the user. The selection process is simplified by reducing the amount of choices: only

the locations connected to the current one, together with few relevant commands, are

displayed. The user selects the desired destination using the BCI, and the wheelchair

autonomously follows the appropriate guiding path to its end.
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For the BCW, destination selection is done with a P300 EEG BCI. An electrode

cap records the electrical activity of the brain while a small and portable acquisition

device amplifies and digitalizes the signal for computer analysis. The items to be

selected are displayed on screen in a table and flashed one by one in a random order.

To select an item, the user simply counts the number of times this item is flashed while

ignoring other items. A peak appears in the EEG approximately 300 milliseconds

after the item of interest has been flashed while it remains unchanged for other items.

This peak, the P300 signal, can be detected by a trained support vector machine

algorithm, and the corresponding item is traced back as the one that was flashed 300

ms earlier.

This P300 based selection process takes 15 seconds on average (median = 12 s),

which makes it impossible to use it to stop the wheelchair. For that purpose two

faster BCIs were proposed: a fast single item P300 algorithm and a binary µβ BCI.

Both allow to stop in 5 seconds on average, but vary in their false positive rate and

their ease of use. A user chooses one of them according to his or her ability and

preferences.

Finally, the overall strategy was evaluated using a cost function and results were

compared to data from other brain controlled wheelchair projects. The cost function

takes into account the total time of the motion and the time spent controlling the

BCI was used. We saw, in terms of that cost function only, our strategy is clearly

superior. However, this is only a partial comparison: other factors should be taken

into consideration, such as the freedom of movement allowed by the strategy, comfort

and safety factors, financial cost of the equipment, amount of training required to use

the BCI, etc.
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8.2 Discussion

In Section 1.3 we stated that in our opinion, a robotic wheelchair, to be successful,

had to comply with the following constraints:

• Safety: especially since it transports a particularly vulnerable person.

• Ergonomy: the wheelchair should provide intuitive and efficient navigation with

a minimum of efforts.

• Low cost: so that people who need it can afford it.

Safety is insured by the use of human designed paths. We believe that following

human designed guiding path is much safer and more reliable than relying on artificial

sensing and reasoning. Due to the large variety of traps and hazards in a home

environment, there could always be a case when the AI would fail, no matter how

many sensors used. However, if an unexpected situation occurs, such as an obstacle

on the guiding path, the safety depends on the ability of the user to issue a stop

command in time.

The ergonomy constraint is also fulfilled by the use of human designed paths which

provide smooth and natural trajectories. Moreover, since navigating with the BCW is

reduced to destination selection, the strategy minimizes the control effort. However,

the user is constrained to a finite number of locations, which may prove frustrating

at times.

The overall cost of the equipments required by the BCW, excluding the BCI and

the wheelchair itself, is very low. One only needs a laptop, a DAQ card, two rotary

encoders and a bar-code scanner. Only few modifications need to be done on the

wheelchair.
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Experiments in this thesis were conducted solely with young healthy subjects.

Experiments with locked-in patients could not be conducted, due to the extreme

difficulty of finding suitable volunteers. Nevertheless, we argue that our results should

transfer, possibly with a minor performance decrease, to locked-in subjects. Indeed,

we saw in Section 2.2.6 that various studies show that P300- and µβ-based BCIs are

usable by severely disabled patients and that their performances are similar to those

of able subjects.

8.3 Recommended Directions

A few sensors could be added on the wheelchair to prevent colliding with obstacles

when the user fails to issue a stop command in time. Bumpers could be a good start.

Using proximity sensors might cause more problems that it solves: it may prevent

going under a desk or close to a wall while the user desires so.

The real time part of the control and communication with the hardware could be

ported to a small micro chip board with a serial link. This would allow control from

any laptop, and would probably facilitate integration of the BCW with other BCI

related applications (web surfing, games, ...).

On the BCI side, new technology is available every year, which should lead to

interesting improvements. A much awaited one is the apparition soon on the market

of new sensors for EEG acquisition, such as Emotiv’s EPOC (Figure 8.1), designed for

the video game market. These devices do not require conductive gel, hence should be

easier to use and more comfortable. Besides they should be smaller and cheaper than

current devices. However, the quality of the measurement will have to be assessed

first.
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Figure 8.1: Emotiv EPOC sensor for brain control of video games (to be released
soon).

Recently the market saw the apparition of micro computers such as Beagleboard

or Gumstix (see Figure 8.2). These take advantage of cell phone technology to deliver

laptop-like computing power from a tiny chip, at a very low price and with a very

low power consumption. It could be possible to use such computers to control the

wheelchair and process the EEG data. This would allow to produce a simpler, neater

and cheaper system.

Finally, we have been considering for quite some time the possibility of creating a

mobility platform to transform a manual wheelchair into a powered wheelchair. The

starting point of the discussion is that locked in people may already have a wheelchair,

expensively customized to their morphology and needs, but most probably a manual

one, pushed by a relative or care giver, since they do not have the ability to drive
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Figure 8.2: The Beagleboard (www.beagleboard.org) and Gumstix
(www.gumstix.com) mico-computers could be used to replace the laptops on a
future version of the prototype.

it themselves. In that situation, we would like to provide some minimally invasive

way of powering their wheelchair. One idea would be to use a mountable power

module such as the one on Figure 8.3 developed at Ngee Ann Polytechnic, Singapore.

This module includes two motorized wheels, a battery and a controller, and provides

enough power to drive the wheelchair indoor and on flat ground. It is easily mounted

on a wheelchair and is quite inexpensive.
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Figure 8.3: A wheelchair powering module by Ngee Ann Polytechnic, Singapore.
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APPENDIX A

Mathematics of the Path Following Controller

We will here detail the mathematical derivation of the path following controller.

The first step is to express the kinematic of the wheelchair in path coordinates. The

second step is to obtain time-independent equations.

A.1 Coordinates Transformation

We will first study the kinematic of a point, then of the wheelchair.

Kinematic of a point

Figure A.1: Frames and notations for the controller.
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Consider a moving point M and the associated Frenet frame (T ) defined on the

curve (C) as indicated in Figure A.1. The point P is the orthogonal projection of the

point M onto the curve C. And O is the origin of the global frame R.



d
−−→
OM

dt





R

=




d
−→
OP

dt





R

+




d
−−→
PM

dt





T

+
−→
Ω ×

−−→
PM (A.1)

We express this equation in frame (T ) by multiplying by the rotation matrix RR
T :

RR
T =






cos θc sin θc 0
− sin θc cos θc 0

0 0 1






Besides we have the following equalities:

RR
T




d
−→
OP

dt





R

=




d
−→
OP

dt





T

=
−→
0 ,

since P is the origin of frame (T ),




d
−−→
PM

dt





T

=






ṡ
ẏ
0




 ,

−→
Ω ×

−−→
PM =






0
y
0




×






0
0

θ̇c




 =






−yθ̇c

0
0




 ,

θ̇c =
dθc

dt
=

dθc

ds
·
ds

dt
= ccṡ,

where cc is the curvature.

Equation A.1 becomes:

RR
T






Ẋ

Ẏ
0




 =






ṡ
ẏ
0




+






−ccyṡ
0
0






Expanding and rearranging we obtain the expression of ṡ and ẏ:






ṡ = (cos θc sin θc) ·
(

Ẋ

Ẏ

)

/[1 − cc(s)y]

ẏ = (− sin θc cos θc) ·
(

Ẋ

Ẏ

)
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Figure A.2: Wheelchair’s kinematics.

Kinematic of the wheelchair

Our wheelchair platform has two actuated wheels on a common axis and the refer-

ence point M at mid-distance of these two wheels (see Figure A.2), so the kinematic

equations of this unicycle-type vehicle are as follows:

(

Ẋ

Ẏ

)

= v ·

(

cos θm

sin θm

)

(A.2)

From the above two functions, we have the following expression of unicycle expressed

in coordinates {s, y}:
{

ṡ = v cos(θm − θc)/(1 − ccy)
ẏ = v sin(θm − θc)

(A.3)

For simplicity, we make θ = θm − θc, so we have the kinematics function of the

wheelchair expressed as (using cc = dθc/ds = θ̇c/ṡ):







ṡ = v cos θ/(1 − ccy)
ẏ = v sin θ

θ̇ = ˙θm − ccṡ
(A.4)
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A.2 Time independent equations

To derive the control variable, we express the equations of motion with respect to

the new variables η =
∫ t
0
|ṡ| dτ instead of the time-index t. This new variable has the

physical meaning of the distance travelled by the vehicle along the path. From now

on we will denote
d

dη
as ( )′.

s′ is computed as follow:

s′ =
ds

dη
=

ds

dt

dt

dη
=

ṡ

dη/dt
.

Since:

dη

dt
=

d

dt

(∫ t

0

|ṡ| dτ
)

= |ṡ| ,

we have:

s′ = sign(ṡ) = sign

(

v cos θ

1 − ccy

)

.

y′ is computed as follow:

y′ =
dy

dη

=
dy

dt

dt

ds

ds

dη

=
ẏ

ṡ
s′

=
v sin θ

v cos θ/ (1 − ccy)
s′

= tan θ (1 − ccy) sign

(

v cos θ

1 − ccy

)

Similarly, we have:

θ′ =
θ̇

ṡ
s′

=

(

w (1 − ccy)

v cos θ
− cc

)

sign

(

v cos θ

1 − ccy

)

= w

∣
∣
∣
∣

1 − ccy

v cos θ

∣
∣
∣
∣− cc sign

(

v cos θ

1 − ccy

)
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Finally, the kinematic model of the wheelchair can be expressed as below in term of

the distance traveled:






s′ = sign(v cos θ
1−ccy

)

y′ = tan θ (1 − ccy) sign
(

v cos θ
1−ccy

)

θ′ = w
∣
∣
∣
1−ccy

v cos θ

∣
∣
∣− cc sign

(
v cos θ
1−ccy

)
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APPENDIX B

Code for Setting Up the Real Time Architecture

We will give here an overview of the code used for the setting up the RTAI system

and creating the various components of the system, as described in Section 3.3.2.

The main function (see Listing B.1) forks off a child process which will be responsi-

ble of the real time tasks. The parent process handles all other tasks. Communication

between the two processes is realized through a RTAI shared memory.

Listing B.2 shows the function realized by the real time process. The structure

struct wheelchairDataRT contains all the data to be shared between the real time

process and the non real time process (user process). It is allocated as a shared

memory by the call to rtai_malloc which creates a shared memory referenced by

the key WCHDRT. The function setupRTAI (see Listing B.3) creates a real time task

Listing B.1: The main function

1 int main ( ){
2 p id t pid = fo rk ( ) ;
3 i f ( pid>0 ) mainUser ( ) ;
4 else mainRTAI ( ) ;
5 return 0 ;
6 }
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Listing B.2: Main function of the real time process

1 struct wheelchairDataRT ∗wchDRT = NULL;
2 void mainRTAI( ){
3 // r e g i s t e r a handler f o r CTRL−C
4 s i g n a l (SIGINT , k i l l p r o g ) ;
5
6 setupRTAI ( ) ; // see below
7
8 // c r e a t e a shared memory with key ’WCHDRT’
9 wchDRT = r t a i ma l l o c (nam2num(”WCHDRT” ) ,

10 s izeof ( struct wheelchairDataRT ) ) ;
11
12 // i n i t i a l i z e the DAQ card and the Comedi API
13 initHardware ( ) ;
14
15 // s t a r t the c on t r o l loop ( see below )
16 wchDRT−>RTAItime = 0 ;
17 while ( wchDRT−>RTAItime >= 0 ){
18 i f ( ! hardware loop ( ) ) break ;
19 r t t a s k wa i t p e r i o d ( ) ;
20 wchDRT−>RTAItime += 0.005
21 }
22 k i l l p r o g ( 0 ) ;
23
24 // f r e e the shared memory
25 r t shm f r e e (nam2num(”WCHDRT” ) ;
26
27 // terminate the r e a l time s t u f f s p roper ly
28 r t mak e s o f t r e a l t ime ( ) ;
29 s t op r t t ime r ( ) ;
30 r t t a s k d e l e t e (mytask ) ;
31 }
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Listing B.3: The code to set up a real time task in RTAI

1 unsigned long mytask name ;
2 RT TASK ∗mytask = NULL;
3 RTIME per iod ;
4 struct sched param mysched ;
5
6 void setupRTAI ( ){
7 mytask name = nam2num(”MASTER” ) ;
8 mysched . s c h e d p r i o r i t y
9 = sched ge t p r i o r i t y max (SCHED FIFO)−1;

10 s ch ed s e t s ch edu l e r (0 ,SCHED FIFO,&mysched ) ;
11 mlocka l l (MCL CURRENT | MCL FUTURE) ;
12 mytask = r t t a s k i n i t (mytask name , 1 , 0 , 0 ) ;
13 r t s e t p e r i o d i c mode ( ) ;
14 per iod = nano2count (5E6 ) ;
15 s t a r t r t t im e r ( per iod ) ;
16 r t make ha rd r ea l t ime ( ) ;
17 r t t a s k make pe r i od i c (mytask ,
18 r t g e t t ime ()+ period , per iod ) ;
19 }

set with the highest priority on a FIFO scheduler. It is configured as a periodic task,

and the period is set as 5ms.

Once the real time task is set up properly and hardware initialized, the code enters

the control loop. At each iteration the code

1. calls the rt_task_wait_period function which causes the process to sleep until

the real time period has elapsed.

2. It then calls the hardware_loop function which reads the counters associated

with the glide wheels rotary encoders, from which it computes the current po-

sition and velocity, and performs PD velocity control.
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3. Finally it increments the value of wchDRT->RTAItime by the period, hence it

holds the time elapsed since the loop started.

The computed position and velocity, as well as the desired velocity, are stored

in wchDRT (the structure in the shared memory). The real time process writes the

position and velocity, the user process writes the desired velocity.

Since the hardware_loop function is called periodically by RTAI, hence with a

small jitter, the velocity is derived from the counter reading with good precision. This

is also important for the D term of the PD controller which required good timing.

Listing B.4 shows the main function of the user process. Like the RT main function

it starts by declaring an interrupt signal handler, connect to the shared memory,

and do some initializations. Then it launches a couple of utility threads: one for an

OpenGL visual feedback, one for logging data to a a file, one for handling the Ethernet

communication with the BCI computer, and two to monitor the ultrasonic proximeter

and the bar code scanner. Then it enters the main loop, which calls periodically

the main control function controlWheelchair. Synchronization is realized with the

usleep function, which suspends the thread for approximately 100ms. This function

realizes a state machine which will execute at each iteration the control corresponding

to the current state (for instance follow a guiding path), and check for the relevant

events (i.e. a message from the BCI, or end of path reached).
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Listing B.4: Main function of the user process

1 void mainUser ( ){
2 // r e g i s t e r a handler f o r CTRL−C
3 s i g n a l (SIGINT , k i l l p r o g ) ;
4
5 // c r e a t e and connect to shared memory
6 wchDRT = r t a i ma l l o c (nam2num(”WCHDRT” ) ,
7 s izeof ( struct wheelchairDataRT ) ) ;
8
9 // do some system i n i t i a l i z a t i o n

10 i n i t S y s t ( ) ;
11
12 // launch some threads f o r v i s u a l feedback (OpenGL)
13 // and monitor ing o f non−RT sen so r s
14 p th r ead c r ea t e (&id ,NULL, glThreadFunc ,NULL) ;
15 p th r ead c r ea t e (&id ,NULL, sensorThreadFunc ,NULL) ;
16 p th r ead c r ea t e (&id ,NULL, scannerThreadFunc ,NULL) ;
17 p th r ead c r ea t e (&id ,NULL, dataLoggingThreadFunc ,NULL) ;
18 p th r ead c r ea t e (&id ,NULL, ethernetThreadFunc ,NULL) ;
19
20 while ( wchDRT−>userProcessLoop ){
21 i f ( ! contro lWhee lcha i r ( ) ) break ;
22 us l e ep ( . 1E6 ) ; // s l e e p f o r 100ms
23 }
24
25 k i l l p r o g ( 0 ) ;
26 // f r e e the shared memory
27 r t shm f r e e (nam2num(”WCHDRT” ) ) ;
28 }
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