Composition of services: algorithms and complexity

Fahima Cheikh

IRIT-Université de Toulouse

June 19, 2009

Composition of services: algorithms and complexity

Building complex software systems

- Hierarchic systems
- Subsystems are able to realize a functionality
- Subsystems communicate to achieve parent functionality

Building complex software systems

- Hierarchic systems
- Subsystems are able to realize a functionality
- Subsystems communicate to achieve parent functionality

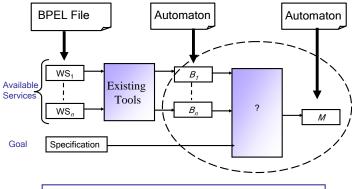
Coalition formation for composition of agents (MAS)

- Set of autonomous agents
- Each agent can realize a partial goal
- Coalitions of agent allow the realization of a common complex goal

Robotic supervision

- A robot is composed by several modules
- Each module realizes a specific task
- Supervisor interacts with modules in order to realize a complex task

Robotic supervision


- A robot is composed by several modules
- Each module realizes a specific task
- Supervisor interacts with modules in order to realize a complex task

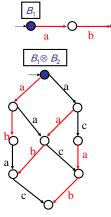
Composition of services

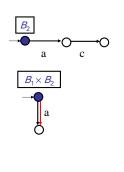
- A set of available services
- Each service realizes a functionality
- Composing services in order to realize a complex functionality

Conclusion and future works

Orchestration of services

M orchestrates the available services in order to satisfy the goal



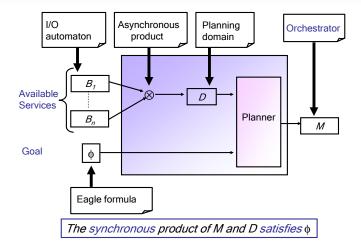


Existing approaches: choice of the model

- Kind of automata considered? With precondition and effects/ with communication/...
- Formalization of the specification? Formula/ automata/...
- Satisfaction of the goal? Formula satisfiability/ automata equivalence /...
- Orchestration method? Synchronous product/ asynchronous product/...

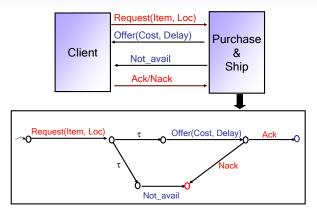
Some definitions: asynchronous and synchronous product

Asynchronous product


Synchronous product

Conclusion and future works

Planning based approach: M. Pistore, P. Traverso and P. Bertoli


- Kind of automata considered? Input/output automata
- Formalization of the specification? Eagle formula
- Satisfaction of the goal? Satisfiability of the Eagle formula
- Orchestration method? Synchronous product

Planning based approach: overview

Planning based approach: service example

Note: the state Success (resp. Failure) is represented by **O** (resp. **O**)

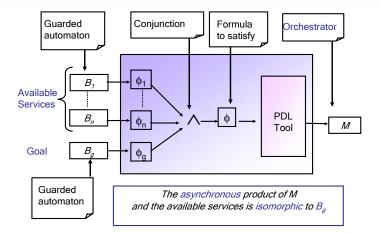
Conclusion and future works

Planning based approach: Eagle formula

TryReach

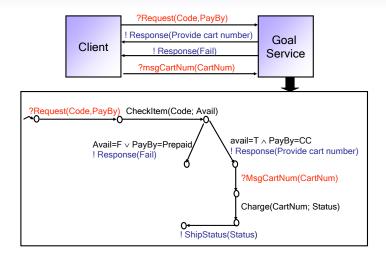
(*Client.pc* = Success \land Shipper.pc = Success \land Production.pc = Success) Fail (*Client.pc* = Failure \land Shipper.pc = Failure \land Production.pc = Failure)

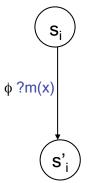
Conclusion and future works


PDL based approach: D. Berardi, D. Calvanese, G. De

Giacomo, R. Hull and M. Mecella

- Kind of automata considered? Guarded automata
- Formalization of the specification? Guarded automata
- Satisfaction of the goal? Isomorphism
- Orchestration method? Asynchronous product


PDL based approach: overview


Conclusion and future works

PDL based approach: service example

Conclusion and future works

PDL based approach: PDL formula

Service B_i receives a message mexec_i \land $s_i \land \alpha \rightarrow (\langle ?m \rangle \top \land [?m]s'_i \land [?m]\alpha')$

where

 ϕ evaluates true with respect to α α' is obtained from α by updating the value of x

Comparison of the existing approaches

Approaches	Automata	Orchestration	Specification	Computational results
Planning based	I/O automata	Synchronous product	Eagle formula (satisfiability)	Experimental
PDL based	Guarded automata	Asynchronous product	Guarded automaton (isomorphism)	Complexity upper bound (EXPTIME)

Conclusion and future works

Conclusion and future works

Our approach: general model

- Kind of automata considered? Conditional communicating automata (CCA)
- Formalization of the specification? CCA
- Satisfaction of the goal? Trace inclusion, trace equivalence, simulation and bisimulation
- Orchestration method? Asynchronous product

Outline

Existing approaches

Conclusion and future works

Composition problem

Instance: Finite set of actions Σ , a finite set of unbounded channels Π , a finite set of atomic formulas At and finite CCA B_1, \ldots, B_n and B_g over Σ , Π and AtQuestion: Does there exist a CCA M over Π and At such that $B_g \approx B_1 \otimes \ldots \otimes B_n \otimes M$?

Introduction	Outline	Existing approaches	Our approach

Relation	Decidable
Trace inclusion	Yes
Trace equivalence	No
Simulation	Yes
Bisimulation	No

Outline

Existing approaches

Conclusion and future works

Considered variants

First variant: pure comparison

Instance: Finite set of actions Σ , a finite set of atomic formulas At and finite Conditional Automata (CA) B_1, \ldots, B_n and B_g over Σ and AtQuestion: $B_g \approx B_1 \otimes \ldots \otimes B_n$?

Conclusion and future works

Results for the pure comparison variant

Relation	Complexity
Trace inclusion	EXPSPACE-complete
Trace equivalence	EXPSPACE-complete
Simulation	EXPTIME-complete
Bisimulation	EXPTIME-complete

Existing approaches

Conclusion and future works

Considered variants

Second variant: formula synthesis

Instance: Finite set of actions Σ , a finite set of channels Π , a finite set of atomic formulas At and finite CCA B_1, \ldots, B_n and B_g over Σ , Π and AtQuestion: Synthesize ϕ such that for all valuations V of atomic

formulas: $B_g \approx B_1 \boxtimes \ldots \boxtimes B_n$ iff $V(\phi) = 1$

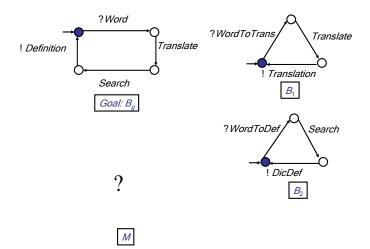
Conclusion and future works

Results for the formula synthesis variant

Relation	Complexity
Trace inclusion	EXPSPACE-complete
Trace equivalence	EXPSPACE-complete
Simulation	EXPTIME-complete
Bisimulation	PSPACE-hard
	is in EXPTIME

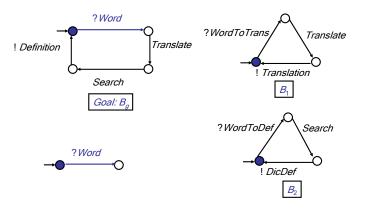
Existing approaches

Conclusion and future works


Considered variants

Third variant: orchestrator synthesis

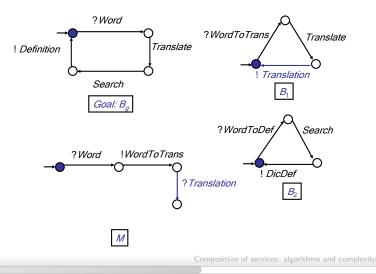
Instance: Finite set of actions Σ , a finite set of bounded channels Π , a finite set of atomic formulas At and finite CCA B_1, \ldots, B_n and B_g over Σ , Π and AtQuestion: Does there exist a CCA M over Π and At such that $B_g \approx B_1 \otimes \ldots \otimes B_n \otimes M$?

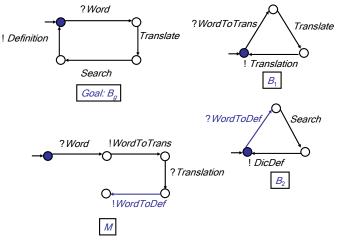


Composition of services: algorithms and complexity

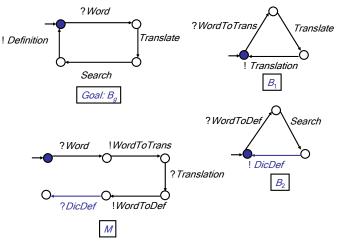


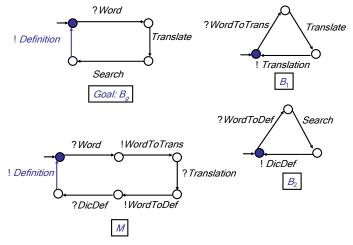
М

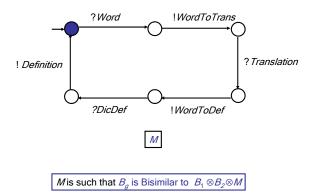

Composition of services: algorithms and complexity



Composition of services: algorithms and complexity







Composition of services: algorithms and complexity

Conclusion and future works

Orchestrator synthesis variant: composition problem

Instance: Finite set of actions Σ , a finite set of bounded channels Π , a finite set of atomic formulas At and finite CCA B_1, \ldots, B_n and B_g over Σ , Π and AtQuestion: Does there exist a CCA M over Π and At such that B_g is bisimilar to $B_1 \otimes \ldots \otimes B_n \otimes M$?

Orchestrator synthesis variant: upper bound

Theorem

The composition problem can be solved in 2-EXPTIME for bisimulation

Proof

Reduction of the composition problem to the control problem

Conclusion and future works

Control problem: observability and controllability constraints

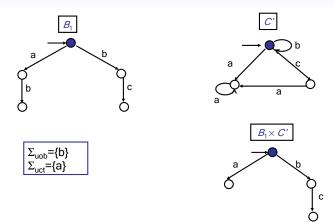
 Σ is partitioned into the set Σ_{ob} of observable events and the set Σ_{uob} of unobservable events.

 Σ is also partitioned into the set Σ_{ct} of controllable events and the set Σ_{uct} uncontrollable events.

Control problem: observability and controllability constraints

Controllability constraints

For any state q of C and for any uncontrollable event $a \in \Sigma_{uct}$, there is a transition from q labelled by a.


Observability constraints

For any state q of C and for any unobservable event $a \in \Sigma_{uob}$, if there is a transition from q labelled by a then this transition is a loop over q.

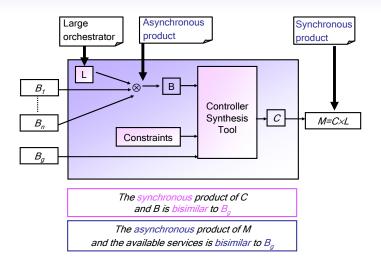
Conclusion and future works

Control problem: example

Outline

Existing approaches

Conclusion and future works


Control problem

Instance: Finite set of actions Σ' , finite automata A and B over Σ' and observability and controllability constraints ? Question: Does there exist a finite automaton C over Σ' that satisfies the constraints and such that A is bisimilar to $B \times C$?

- This problem can be solved in EXPTIME
- Arnold, Vincent and Walukiewicz 2003
- Pinchinat and Raclet 2005.
- Basu and Kumar 2006.

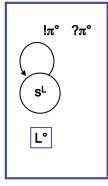
Orchestrator synthesis variant: overview

Conclusion and future works

From the orchestrator synthesis problem to the control problem

Orchestrator synthesis problem

Does there exist a finite automaton M over Π such that A is bisimilar to $B \otimes M$?


Control problem

If $\Sigma_{ob} = \Sigma_{ct} = \{!, ?\} \times \Pi^{\circ}$, does there exist a finite automaton C over Σ and $\Pi \cup \Pi^{\circ}$ that satisfies observability and controllability constraints and such that A is bisimilar to $(B \otimes L^{\circ}) \times C$?

Conclusion and future works

From the orchestrator synthesis problem to the control problem

Orchestrator synthesis problem

Does there exist a finite automaton M over Π such that A is bisimilar to $B \otimes M$?

Control problem

If $\Sigma_{ob} = \Sigma_{ct} = \{!, ?\} \times \Pi^{\circ}$, does there exist a finite automaton C over Σ and $\Pi \cup \Pi^{\circ}$ that satisfies observability and controllability constraints and such that A is bisimilar to $(B \otimes L^{\circ}) \times C$?

Conclusion and future works

Orchestrator synthesis variant: algorithm

Solve($\Sigma, \Pi, B_g, B_1, \dots, B_n$) $\Pi^\circ := Copy(\Pi);$ $L^\circ := LargMed(\Pi^\circ);$ $\Sigma' := \Sigma \cup \{!, ?\} \times (\Pi \cup \Pi^\circ);$ $B := B_1 \otimes \dots \otimes B_n \otimes L^\circ;$ $\Sigma_{ob} := \{!, ?\} \times \Pi^\circ;$ $\Sigma_{ct} := \{!, ?\} \times \Pi^\circ;$ return $Control(\Sigma', \Sigma_{ob}, \Sigma_{ct}, B_g, B)$

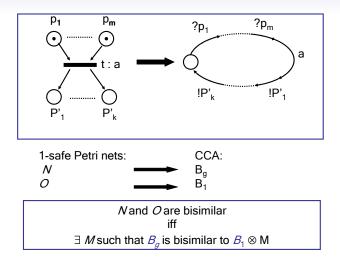
Composition of services: algorithms and complexity

42 / 48

Orchestrator synthesis variant: lower bound

Theorem

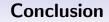
The composition problem for bisimulation is EXPTIME-hard


Proof

A reduction of the equivalence problem of 1-safe Petri nets to our problem

Conclusion and future works

From 1-safe Petri nets to CCA



Results for the orchestrator synthesis variant

Relation	Complexity		
Trace inclusion	EXPSPACE-complete		
Trace equivalence	EXPSPACE-hard		
Simulation	EXPTIME-complete		
Bisimulation	EXPTIME-hard		
	2-EXPTIME		

Conclusion and future works

- Formal model of services
- Study of the composition problem decidability when the channels are unbounded
- Study of the composition problem complexity for three variants with four relations

Conclusion and future works

Future works

- Open problems
- Consider messages as terms of first order logic
- Consider temporal conditions
- Consider failures during the composition
- Consider trust, argumentation and negotiation between agents

Introduction	Outline	Existing approaches	Our approach	Conclusion and future works

Thank you

