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de Bart Van Tiggelen son directeur. Un grand merci à Françoise Berthoud et Jean-
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Chambéry. Je remercie tout particulièrement Guillaume et Julien, mes amis d’enfance,
mais aussi Manu, Micka, Martin et Julie.
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Introduction

T
he behavior of physical systems at the atomic scale is governed by Quantum Mechanics,
giving rise to surprising phenomena. At very low temperature, notably, the energy of the
system is reduced and only a few number of quantum states are involved in the dynamics.
As physicists understood the magic of electrons and photons in the beginning of last cen-
tury, they wondered if their exciting characteristics could appear at a macroscopic scale.
With the progress of both theoretical and experimental research, physicists realized that
quantum physics can be seen with the naked eye in superconductors, superfluids, or
Bose-Einstein condensates, where the quantum states stretch on large distances. About
sixteen Nobel prizes rewarded these breakthroughs, among the dozens of awarded physi-
cists we can cite John Bardeen, Leon Neil Cooper, and John Robert Schrieffer in 1972,
Ivar Giaever and Brian David Josephson in 1973 for the understanding of superconduc-
tivity and the Josephson effect; Steven Chu, Claude Cohen-Tannoudji, and William D.
Phillips in 1997, Eric A. Cornell, Wolfgang Ketterle, and Carl E. Wieman in 2001 for the
manipulation of cold atoms and the realization of Bose-Einstein condensates. Richard P.
Feynman was the first to foresee the development of nanotechnology and the practical
application of systems which involve strictly the Schrödinger equation. With the tech-
nical advances of nanofabrication and laser cooling of the last decade, superconducting
circuits as well as Bose Einstein condensates are now commonly created, manipulated
and measured in research laboratories.

The possibility to build a quantum computer has attracted a lot of attention since
the discovery of macroscopically coherent systems. Among the most promising build-
ing blocks of such computers, the equivalent to transistors in classical computers, is
the Josephson junction-based quantum bit (qubit). They are composed of two or more
Josephson junctions with a dynamics reduced to two states, the ground state and the
first excited state, which serve as a bit to treat the information. Coupling many qubits
and using quantum entanglement would exponentially speed up data processing. Charge
qubits, flux qubits and phase qubits have been realized and coupled but the finaliza-
tion of a quantum computer remains highly challenging. The limitation comes mainly
from the decoherence and dissipation of the superconducting nanocircuits due to their
unavoidable coupling with the environment, which decreases the lifetime of the quantum
states. The attempts to fight against noise remain intense and the coherence time of
superconducting qubit is continuously increasing. The experimental progress in the fab-
rication of nanocircuits happened basically at the time of advances in laser cooling and
trapping of alkali atoms. Since cold atoms are highly tunable and quasi-isolated from
the environment, they constitute excellent quantum simulators of solid states systems.
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The possibility to integrate Bose Einstein condensates and couple them to superconduct-
ing systems, for instance with the on-chip technique, is an active field of research. The
exchange of ideas between these two communities is very profitable and rich physics is
expected to follow from this collaboration.

The aim of this Ph.D. thesis is to study theoretically a few mesoscopic systems which
exhibit interesting quantum phenomena with potentially new applications. In close col-
laboration with experimentalists we explore the quantum, playing with electrons and
atoms to observe appealing features. We focus on one of the most outstanding exclusive
peculiarities of the quantum world, namely the tunneling effect. When the tunneling
occurs between two macroscopically coherent systems, it is often called the Josephson
effect. The manuscript comprises one general chapter on the Josephson effect followed
by four chapters, each one being dedicated to a specific system and completed by an
appendix which details the calculations.
The first chapter presents the Josephson effect between two general coherent systems.
The specificities of superconductors and cold atoms are then described.
In the second chapter we study a single underdamped Josephson junction that was re-
alized experimentally by Wiebke Guichard in the group of David Haviland at the KTH
royal institute of technology in Stockholm. Within the Keldysh formalism, we obtain
the current-voltage characteristics in the classical and zero temperature regime as well
as the quantum Smoluchowski equation that describes the first quantum corrections to
the quasicharge dynamics.
In the third chapter we use the instanton formalism to calculate the escape rate from
a metastable state of a quartic potential, which we call the camel back potential. This
barrier shape was realized experimentally with a dc SQUID by Emile Hoskinson in the
group of Olivier Buisson at the Néel institute in Grenoble. Beforehand, simulations were
analyzed to find an optimal line where the SQUID is weakly sensitive to current noise.
Our results fit well the experimental data concerning the escape probability histograms
and the critical diagram. The optimization of the SQUID parameters as well as the
working points enabled us to manipulate the circuit as a phase qubit. This work was
part of the “European Superconducting Quantum Information Processor” (EuroSQIP)
European integrated project (for a review, see Ref. [1]).
In the fourth chapter we study the lasing effect for a qubit coupled to cavities. We use
the Lindblad master equations to describe quantum mechanically the system and derive
the output spectrum. We concentrate first on the pioneer experiment of the group of
Jaw-Shen Tsai at Riken laboratory in Tokyo. We then analyze the configuration where a
transmon is coupled to two cavities, one cavity were the lasing effect occurs and another
one which controls the relaxation rate of the upper transition according to the Purcell
effect. This experiment of cavity QED will be realized in the Quantronics group of Daniel
Estève at CEA Saclay. This work is part of the “Quantum Physics with Josephson Cir-
cuits” (QUANTJO) French National Research Agency project.
The fifth chapter is devoted to the Josephson effect in cold atoms. We consider a one
dimensional ring comprising a localized barrier potential that creates a Bose Josephson
junction. We use the Luttinger liquid formalism to characterize the long range order
through the one-body density matrix and various spatial correlation functions. The
subleading corrections to the one-body density matrix in the thermodynamic limit for
arbitrary interaction strength are also found. Compared to the exact result in the Tonks
Girardeau gas, our treatment turns out to generate the complete series of the leading
corrections. The realization of such one-dimensional systems with cold atoms, known in
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the condensed matter community, is currently investigated in several groups in Europe
and America. This work is part of the “Macroscopic Interference Devices for Atomic and
Solid-State Systems: Quantum Control of Supercurrents” (MIDAS) European project.

All along the manuscript, we study the Josephson effect in more and more sophis-
ticated systems. We start with a single Josephson junction in a an unusual domain of
parameters. We then combine two Josephson junctions to create a dc SQUID phase
qubit in the “camel back” regime. Next, a qubit is coupled to one or two cavities to
give rise to the lasing phenomenon. Finally a Bose Josephson junction, created with a
quantum gas confined to a ring shape potential with a localized barrier, is investigated.
The chapters are independent and have their own notations, as a consequence the mean-
ing of a given symbol may change from chapter to chapter.

The manuscript ends with a general conclusion together with a presentation of the
projects that stem from this thesis. This work fits into our present exciting times where
physicists profit more and more from the beauty of quantum mechanics.

Figure 1: Scheme of the border between the classical and quantum worlds, from [2].
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Introduction

I
n this first chapter we introduce the Josephson effect and present the physical conse-
quences of this phenomenon. We start from a phenomenological approach to describe
the general case of two coupled macroscopically phase-coherent systems and then illus-
trate how the Josephson effects manifest themselves in two different physical systems:
BCS superconductors and atomic quantum gases. The study is completed with a quan-
tum treatment of the Josephson effect using a model tunnel Hamiltonian. Finally, we
highlight the differences and similarities among these two systems by comparing their
characteristic physical scales.

1.1 Semiclassical Josephson effect

Let us consider two quantum coherent systems, labelled by Sj=1,2, characterized each by
a macroscopic wavefunction Ψj=1,2(~r, t). We focus on the case where the two systems are
weakly connected, namely when Ψ1(~r, t) can leak into S2 and vice versa. To study the
dynamics of the coupling between the two systems, the spatial degrees of freedom of the
wavefunctions can be integrated out. Then the time-dependent Schrödinger equation for

1
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the resulting wavefunctions ψj(t) corresponds to (see [3, 4] and Sec. 1.3)

i~
∂ψ1

∂t
= E1ψ1 − T ψ2, (1.1a)

i~
∂ψ2

∂t
= E2ψ2 − T ψ1, (1.1b)

where E1,2 is the energy of each isolated system and where the parameter T characterizes
the leakage. One may think of two systems separated by a barrier. In this specific case, T
corresponds to the tunneling strength and depends on the shape of the barrier potential.
Writing the wave function in terms of the number of particles nj = |ψj |2 and the phase ϕj ,
we have ψj =

√
nj eiϕj . The Schrödinger equations (1.1) give

∂n2

∂t
= −∂n1

∂t
=

2T
~

√
n1n2 sin(ϕ2 − ϕ1), (1.2a)

∂ (ϕ2 − ϕ1)

∂t
=

E2 − E1

~
+

T
~

n1 − n2√
n1n2

cos(ϕ2 − ϕ1). (1.2b)

In the case of small particle number imbalance, |n1−n2|/(n1+n2) ≪ 1, the dynamical
equations for the particle current J = (ṅ1−ṅ2)/2 and for the phase difference ϕ = ϕ2−ϕ1

are

J = J0 sinϕ, (1.3a)

ϕ̇ = V, (1.3b)

where J0 = 2T √
n1n2/~ and V = (E2 − E1)/~. These are the constitutive equations

for the Josephson effect, predicted in 1962 by Brian David Josephson in the case of
two coupled superconductors (see [5, 6] and Sec. 1.2). Eqs. (1.3) show that a particle
current flows through the Josephson junction with a maximal value J0 proportional to
the tunneling strength. The Josephson current being proportional to sinϕ, it is essential
that the phase difference ϕ be well established.

The Josephson junction displays surprising effects when the energy imbalance V can
be controlled and eventually modulated in time. From Eqs. (1.3), the Josephson current
has the general expression

J(t) = J0 sin

(
ϕ0 +

∫ t

dτV(τ)

)
. (1.4)

When the energies are the same on the two electrodes, V = 0, due to the phase coherence
a constant current J = J0 sinϕ0 flows through the junction. This phenomenon is known
as the dc Josephson effect.
When a constant energy difference V0 is imposed, the phase grows linearly and the
current oscillates with the frequency V0 and the amplitude J0: J(t) = J0 sin(ϕ0 + V0t).
This phenomenon is known as the ac Josephson effect. The time-averaged current 〈J(t)〉
vanishes except for V0 = 0 and the resulting graph 〈J〉(V0) has a finite central peak of
height J0. This defines the particle supercurrent branch.
When the applied energy imbalance oscillates with a frequency ω, i.e. V(t) = V0+v cosωt,
then the current reads

J = J0

∑

k∈Z

Jk(v/ω) sin(ϕ0 + V0t+ kωt), (1.5)
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Figure 1.1: Time-averaged particle current through the junction as a function of the
energy imbalance (in units of the frequency) for v = ω/2. Insets: Maximum current for
V0 = 0 (red), V0 = ω (green) and V0 = 2ω (blue) as a function of the amplitude of the
oscillations (in units of the frequency). The right inset is a zoom of the left one for small
values of the oscillation amplitude. When the energy imbalance is constant (v = 0),
there is only the supercurrent peak.

where Jk is a Bessel function and the relation e
z
2(t− 1

t ) =
∑

k∈Z
Jk(z)t

k has been used.
The time-averaged current vanishes except for values of V0 which are multiples of the
frequency: V0 = k0ω. At this value, the current is J = J0 sinϕ0 J−k0(v/ω). As a
consequence, for the special values V0 = k0ω the inequality

|J/J0| ≤ |Jk0(v/ω)| (1.6)

holds, and the time- and configuration-averaged current shows steps of width 2|Jk0(v/ω)|
(see Fig. 1.1). They are called Shapiro steps after their discovery in superconductors
by Sidney Shapiro [7]. The use of the Josephson effects gives rise to a rich variety of
applications.

1.2 The superconducting Josephson junction

Until now we have treated the general case of two coupled macroscopically phase-coherent
systems. In the following we will look at the Josephson effects in specific physical systems,
starting with the BCS superconductors in which these phenomena were first discovered.

In such metals, in addition to the repulsive Coulomb force, electrons are coupled to
phonons originating from lattice vibrations [8, 9]. Below a critical temperature Tc, the
electron-electron interaction via phonons is attractive and a two-electron bound state
becomes energetically favorable. The attractive interaction renders the Fermi sea unsta-
ble and electrons group themselves in pairs to form Cooper pairs [10]. The Cooper pairs
behave in many senses like bosons and condense at temperature lower than Tc, giving
rise to a macroscopically occupied coherent state. This is the so-called BCS state, named
after the microscopic theory of superconductivity by John Bardeen, Leon Neil Cooper
and John Robert Schrieffer in 1957 [11, 12]. The condensation energy is found to be
equal to −g(EF )∆2/2 where g(E) is the electronic density of states, EF is the Fermi
energy and ∆ is the BCS order parameter, which vanishes at the critical temperature as



4 The Josephson effects §1.2

∆
(T

)

∆(0) = 1.76 kBTc

∆(T ) ∼ 3.2 kBTc (1 − T/Tc)
1/2

1T/Tc
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Figure 1.3: Density of states of quasi-
particles of a superconductor. Cooper
pairs condense at the energy EF − ∆.

depicted in Fig. 1.2 (in metals ∆ ≪ EF and EF − g(EF )∆2/2 ≃ EF ). The first excited
states correspond to breaking a pair, which at least needs an energy of 2∆. These exci-
tations are called (Bogoliubov) quasiparticles [13]. At the level of the density of states,
the paring opens a gap of width 2∆ around the Fermi energy, as depicted in Fig. 1.3.

In 1962, Brian David Josephson predicted that if two superconducting samples are
put into contact, a supercurrent

IS = Ic sinϕ, (1.7)

can flow across them, even in the absence of a voltage difference (dc Josephson effect,
as presented in the previous section) [5]. Here Ic is the critical current of the junction.
Moreover, he predicted that if a voltage difference V is applied between the two samples,
this will result in an alternating current (ac Josephson effect) [6] according to the phase
dynamics

ϕ̇ =
2e

~
V. (1.8)

Josephson obtained Eqs. (1.7) and (1.8) from the BCS theory. His microscopic deriva-
tion (which I do not detail here) gives the same results Eqs. (1.3) as the phenomeno-
logical description of Sec. 1.1. The system composed of two superconducting samples
in weak electrical contact constitutes the superconducting Josephson junction (SJJ) (see
Fig. 1.4). The two Josephson effects have been experimentally observed for the first time
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Figure 1.4: A schematic representation of a superconducting Josephson junction. Two
superconducting electrodes are connected to each other via an insulating layer.
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Figure 1.5: RCSJ model of a Josephson
junction.
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Figure 1.6: The washboard potential in
the two limits I ≶ Ic.

in 1961 [14, 15]. Since then, SJJs have been extensively studied, both theoretically and
experimentally [16]. The Josephson equations lead to the Josephson Hamiltonian

HJ = −EJ cosϕ, (1.9)

where the Josephson energy EJ is proportional to the critical current Ic: EJ = ~Ic/2e.

The two superconducting electrodes are separated by an insulating layer which con-
stitutes a capacitance C. With the progress of nanofabrication in the last decade, it is
possible to build ultra-small junctions. For such SJJs, the charging energy of one electron
on the capacitance

Ec =
e2

2C
, (1.10)

has a non-negligible effect. Indeed, for a typical capacitance of one femtofarad, the
charging energy is equal to one Kelvin. Consequently, the total Hamiltonian is

H =
Q2

2C
− EJ cosϕ, (1.11)

where Q = 2en = CV is the charge on the junction.

Cooper pairs are charged particles (twice the electron charge) and compensate the
background of positive ions that make up the lattice of the metal. As a result, the
electrostatic forces across the barrier and the tendency towards charge neutrality in the
metal lead to a small Cooper pair imbalance compared to the total number of charges.
Actually, in experiments electrodes are connected to a current or voltage source that
keep the charge imbalance small even when a current flows through the junction. This
observation explains why in superconductors we obtain directly Eqs. (1.3) instead of
Eqs. (1.2).

Moreover, to describe a real SJJ that is used in experiments, it is necessary to take
into account the dissipation of the junction due to the presence of quasiparticles and to
the unavoidable coupling with the environment. There are two sources of damping.
Quasiparticles are present near the critical temperature or when a voltage above 2∆/e
is applied on the junction. The quasiparticle current is ohmic, with a resistance corre-
sponding to the resistance RN in the normal state. The complete model of a real junction
is thus an ideal junction in parallel with a capacitance and a resistance, called the Re-
sistively and Capacitively Shunted Junction (RCSJ) model [17] (see Fig. 1.5). From the
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Kirchhoff law I = Ic sinϕ+ CV̇ + V/RN , we derive the dynamic equation for the phase

C

(
~

2e

)2

ϕ̈ =
~

2e
I − EJ sinϕ− 1

RN

(
~

2e

)2

ϕ̇, (1.12)

which is the equation of motion of a fictitious particle of mass (~/2e)2C moving in the
washboard potential

U(ϕ) = − ~

2e
Iϕ− EJ cosϕ, (1.13)

with the friction force −R−1
N (~/2e)2 ϕ̇. The presence of quasiparticles results in the

damping of the phase dynamics. For small bias currents I < Ic, the phase oscillates
around a minimum ϕ0 of the potential U(ϕ) with the plasma frequency ωp =

√
8EcEJ .

Because 〈ϕ〉 = ϕ0 and 〈ϕ̇〉 = 0, a finite current at zero voltage appears, it is the super-
current branch. For high bias currents I > Ic, the potential does not have any minimum
and the particle runs down the washboard potential (see Fig. 1.6). The quasiparticles
are excited and the current voltage characteristic is an ohmic law at voltages higher than
the gap, i.e. V > 2∆/e (see Fig. 1.7, left curve).
Another source of dissipation comes from the the environment, namely the resistive ex-
ternal circuit and the thermal fluctuations. The general impedance is complicated but
it can be modeled by a resistance as a first approximation. Let us consider for instance
the case of voltage biased junction, that is to say a real junction in series with a voltage
source VB and a resistance R. The total current I in the first term of the right-hand side
of Eq. (1.12) is equal to

I =
VB

R
− ~ϕ̇

2eR
. (1.14)

The effect of the temperature and the resistive environment can be accounted for with a
fluctuating part in the bias voltage with a white noise. The treatment can be performed
with a Fokker-Planck equation for the phase and the resulting current is [18]

I(VB) = Ic Im

[
I1−2iβeVB/~R(βEJ)

I−2iβeVB/~R(βEJ)

]
, (1.15)

where Iν(z) is the modified Bessel function and β = 1/kBT is the inverse temperature.
The corresponding experimental current-voltage characteristics are presented on the right
graph of Fig. 1.7. The effect of the environment is to smear the supercurrent branch.
This is the phenomenon of phase diffusion due to thermal fluctuations. The Josephson
effects are thus affected by the environment. The quantum treatment of dissipation will
be presented in Chap. 2.

Finally, it is important to mention that the Shapiro steps in SJJs are commonly used
in quantum metrology to connect the definition of the voltage to the one of the frequency
in the quantum metrological triangle [20].

1.3 Quantum Josephson effect

In this section we give a quantum derivation of the phenomenological equations presented
in Sec. 1.1. We will focus on the specific case of two bosonic superfluids, having in mind
that it applies as well to paired Fermi systems [21–23]. Indeed, the size of the pair does
not enter in the Josephson equations of motion, but it affects the value of the critical
current.
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Figure 1.7: Current-Voltage characteristics of an overdamped Josephson junction, from
experiment [19] where the gap is equal to ∆/e = 200µV and the critical current to Ic =
45 nA. Left : Transition between the supercurrent branch and the ohmic branch at a
voltage equal to 2∆/e. Right : Smearing of the supercurrent branch due to the resistive
external circuit and the temperature. From top to bottom: T = 0, 34, 157, and 400mK.

For the sake of simplicity, we will restrict to the simplest quantum model which
takes into account the physics of the Josephson effect. This is the so-called two-mode
approximation, which describes the bosons in system 1 and 2 by a single operator âj=1,2

for each system. The corresponding tunneling Hamiltonian reads

HJ = −T
(
â†1â2 + â1â

†
2

)
, (1.16)

where T is the tunneling strength of the barrier. The operators âj and â†j respectively
annihilate and create a boson in the system j, satisfying the commutation rule

[
âi, â

†
j

]
= δi,j . (1.17)

At a truly quantum level, we express the operators âj and â†j in the density-phase rep-
resentation [24]

âj =
√
n̂j + 1 eiϕ̂j , â†j = e−iϕ̂j

√
n̂j + 1, (1.18)

where n̂j and ϕ̂j are respectively the number operator and the phase operator of the
corresponding system. The variables n̂j and ϕ̂j are conjugate variables which satisfy the
commutation rule [

n̂j , e
±iϕ̂j

]
= ∓e±iϕ̂j . (1.19)

The bosonic particle number is related to the number imbalance operator n̂ = 1
2 (n̂1 − n̂2),

and the corresponding conjugate phase difference operator1 ϕ̂ = ϕ̂2− ϕ̂1. The total num-
ber of bosons is denoted by N . In terms of these operators the tunneling Hamiltonian
reads

HJ = − T
[ (√

N/2 + n̂
√
N/2 − n̂+ 1 +

√
N/2 + n̂+ 1

√
N/2 − n̂

)
cos ϕ̂

+
(√

N/2 + n̂
√
N/2 − n̂+ 1 −

√
N/2 + n̂+ 1

√
N/2 − n̂

)
i sin ϕ̂

]
, (1.20)

1The rigorous definition of ϕ̂ should be taken with care since the operator eiϕ̂ is not unitary at the
boundary of the Fock basis.
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where the relation e±iϕ̂
√
N/2 ± n̂+ 1 =

√
N/2 ± n̂ e±iϕ̂ has been used.

The Josephson Hamiltonian HJ plays the role of a potential in the phase representa-
tion. In addition, let us add an on-site Hamiltonian quadratic in the number imbalance n̂
which will act as a kinetic Hamiltonian

H = U (n̂− n0)
2 − T

(
â†1â2 + â1â

†
2

)
, (1.21)

where U is the characteristic on-site energy. The physical origin of this term comes from
the interaction between bosons [see Secs. 1.2 and 1.4 for a microscopic derivation in the
case of a Bose Josephson junction (BJJ)]. The quantum dynamics of the number and the
phase, in the Heisenberg picture with respect to the total Hamiltonian (1.21), can then
be derived

˙̂n =
1

i~
[n̂,H] = i

T
~

[√
N/2 + n̂

√
N/2 − n̂+ 1 eiϕ̂ −

√
N/2 + n̂+ 1

√
N/2 − n̂ e−iϕ̂

]
,

(1.22)

˙̂ϕ =
1

i~
[ϕ̂,H] =

2U
~

(n̂− n0) (1.23)

+
T
2~

[
2n̂− 1√

N/2 + n̂
√
N/2 − n̂+ 1

eiϕ̂ +
2n̂+ 1√

N/2 + n̂+ 1
√
N/2 − n̂

e−iϕ̂

]
,

where the commutator
[
ϕ̂,
√
N/2 + n̂

]
= i/(2

√
N/2 + n̂) has been used. This generalizes

the usual Josephson equations (1.3).
When the particle imbalance is small compared to the total number 〈n̂〉 ≪ N , the

Josephson Hamiltonian (1.20) reduces to

HJ ≃ −EJ

√

1 −
(

2n̂

N

)2

cos ϕ̂, (1.24)

where EJ = NT is the so-called Josephson energy. The particle current operator reads

˙̂n ≃ −EJ

~

√

1 −
(

2n̂

N

)2

sin ϕ̂, (1.25)

where EJ/~ corresponds the maximal particle current that can flow through the junction.
The phase dynamics is mainly governed by U

˙̂ϕ ≃ 2U
~

(n̂− n0) + 4
EJ

~N2

n̂√
1 −

(
2n̂
N

)2 cos ϕ̂. (1.26)

This derivation shows that in the mean-field limit 〈âj〉 = ψj the Hamiltonian (1.16)
yields Eqs. (1.1) discussed in Sec. 1.1.

We will now briefly recall the various dynamical behaviors expected for the BJJ.
In the mean-field regime, where n = 〈n̂〉 and e±iϕ =

〈
e±iϕ̂

〉
, the classical equations

corresponding to Eqs. (1.25) and (1.26) can be solved in terms of Weierstrass elliptic
functions [25, 26]. To find the stationary points in the weak link limit, we linearize these
two equations of motion in n. The calculation of ϕ̈ shows that the system is equivalent
to a fictitious particle of mass M = ~

2/2U moving in the potential

U(ϕ) = −EJ

[
cosϕ+

1

4Υ
cos 2ϕ

]
, (1.27)
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Figure 1.8: Effective potential (1.27) for a BJJ in the classical limit for Υ/Υc = 0.25 in
red, 0.5 in green, 1 in blue, 2 in magenta and Υ ≫ Υc in black, showing the possibility of
stable π-oscillations for Υ < 1.

where Υ = N2U/2EJ . The quantity EJ/N
2U represents the ratio between the Josephson

energy and the total on-site energy. In bulk superconductors N ≫ 1 and the last term
of Eq. (1.27) does not exist. There are two types of local minima, namely at ϕ ≡ 0 and
ϕ ≡ π (see Fig. 1.8).
The dynamics around the position ϕ = 0 is governed by the differential equations

n̈+ ω2
pn = 0, (1.28a)

ϕ̈+ ω2
pϕ = 0. (1.28b)

The particle oscillates around the position ϕ = 0 with the plasma frequency ωp of the
junction

ωp =
√

2EJU
√

1 + Υ−1/~. (1.29)

When Υ < 1, the other local minimum ϕ = π appears in the potential, and π-oscillations
occur with the frequency ωπ = 2EJ

√
1 − Υ/N~.

Finally, there can be oscillations with a macroscopically self-trapping. Indeed, if
the interaction between bosons is larger than the tunneling strength, tunnel events are
strongly suppressed and a non-zero boson number imbalance remains across the junction
(see Fig. 1.13, right panel).

Eqs. (1.25)–(1.26) are equivalent to the equations of motion of a non-rigid pendulum
located with the angle ϕ and the length

√
1 − z

2, with angular momentum z and with
moment of inertia Υ−1. These different regime are illustrated in the various phase-space
trajectories z(ϕ) of Fig. 1.9, where z = (n1 − n2)/(n1 + n2) = 2n/N . The different
trajectories correspond to different values of Υ expressed in units of the critical value

Υc = 2
[
1 +

√
1 − z(0)2 cosϕ(0)

]
/z(0)2 above which macroscopic quantum self trapping

is possible [26].

1.4 The Bose Josephson junction

In 1925, Satyendra Nath Bose [27] and Albert Einstein [28] predicted that a gas of ideal
bosons would undergo a phase transition below a critical temperature to a state cor-
responding to a macroscopic occupation of the lowest energy level (actually Einstein
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Figure 1.9: Left panel : phase-space trajectories z(ϕ) of Eqs. (1.25)–(1.26). Right panel :
the corresponding motions of the non-rigid pendulum. The different trajectories corre-
sponds to Υ/Υc = 0 in black and cyan, 0.8 in red, 0.99 in magenta, 1 in green, 1.01
in yellow, 1.5 in blue, 2 in orange and 2.7 in violet. Initial values are z(0) = ±0.6
and ϕ(0) = 0 except for orbits around π for which ϕ(0) = π. The macroscopic quantum
self-trapped states are the trajectories with nonzero 〈z〉 (curves with Υ > Υc). For a
rigid pendulum (which simulates SJJs), only phase-space trajectories in black, red, green,
and blue are possible (the last one is however not observed in SJJs). Non-rigidity is also
necessary to reach the orbits around π.

generalized the result of Bose from photons to massive bosons). Bose Einstein condensa-
tion was first observed seventy years later in 1995, in ultracold vapors of alkali atoms such
as Rubidium [29], Sodium [30] or Lithium [31] (see Fig. 1.10). The whole gas forming
a giant matter wave [33], Bose Einstein condensates constitute a novel class of physical
systems that display macroscopic phase coherence. In experiments, atoms are cooled
using laser or evaporative cooling and trapped in magnetic or optical traps (see Sec. 5.1
and Ref. [34] for more details). Atoms are cooled down to T ∼ 10–100 nK; at such
ultralow temperatures the thermodynamically stable state of alkali atoms is the solid
phase and the gas phase is metastable. Experimental conditions (ultra high vacuum. . . )
allow this metastable state to have a sufficiently long lifetime (several minutes) to per-
form various manipulation and measurements. The phase coherence is experimentally
demonstrated on Fig. 1.11 where the interference pattern between two Bose Einstein
condensates clearly shows interference fringes [32]. Another way to highlight the phase
coherence of a Bose Einstein condensate is to perform a double-slit experiment, as was
first done in Ref. [35].

The initial prediction for Bose Einstein condensation was done for noninteracting
bosons but this phenomenon is also possible in the presence of interaction. A criterion
to observe Bose Einstein condensation in interacting bosons was given by Oliver Penrose
and Lars Onsager in the case of liquid Helium [36]. In the specific case of quantum gases,
interactions are due to two-body collisions. Although the resulting interaction potential
has a complex form, in the case of dilute gases it can be replaced by an effective potential
giving rise to the same scattering length. The simplest pseudo-potential is the hard-core



§1.4 The Bose Josephson junction 11

Figure 1.10: Bose Einstein condensation of
87Rb atoms, as observed by absorption of
laser light [29]. At T ≃ 200 nK a macro-
scopic fraction of atoms condenses, corre-
sponding to the central peak.

Figure 1.11: Interference patterns result-
ing from the expansion and overlapping
of two Bose Einstein condensates, from
Ref. [32].

repulsive potential
Vint(~r) = gδ(~r), (1.30)

where the interaction strength g is related to the scattering length aS through g =
4π~

2aS/m [37]. In the following, we consider a dilute ultracold gas of interacting bosons
trapped in an external potential. Using the experimental parameters for typical densities
and scattering lengths, in the zero-temperature limit we can safely suppose that the
number of non-condensed atoms is negligible as compared to the total number and thus
treat the gas as full condensate.

In the following we give a microscopic derivation of the Hamiltonian (1.21) and of the
microscopic parameters T and U entering it, for the case of Bose-Einstein condensates
realized with ultracold atomic gases.
The general Hamiltonian of a system of interacting bosons in an external potential Vtrap

reads

Ĥ =

∫
d3rΨ̂†(~r)

(
− ~

2

2m
∆ + Vtrap(~r, t)

)
Ψ̂(~r)

+
1

2

∫
d3r

∫
d3r′Ψ̂†(~r)Ψ̂†(~r′)Vint(|~r − ~r′|)Ψ̂(~r)Ψ̂(~r′), (1.31)

where Ψ̂(~r) (Ψ̂†(~r)) is the bosonic field operator annihilating (creating) a particle at
position ~r satisfying the commutation relations

[Ψ(~r),Ψ†(~r′)] = δ(~r − ~r′), [Ψ(~r),Ψ(~r′)] = 0. (1.32)

With the hard core pseudopotential (1.30), the Hamiltonian becomes

Ĥ =

∫
d3rΨ̂†(~r)

(
− ~

2

2m
∆ + Vext(~r, t) +

g

2
Ψ̂†(~r)Ψ̂(~r)

)
Ψ̂(~r). (1.33)

The Heisenberg equation for the time evolution of Ψ related to this Hamiltonian gives
rise to the equation

i~
∂

∂t
Ψ̂(~r, t) =

(
− ~

2

2m
∆ + Vext(~r, t) + gΨ̂†(~r, t)Ψ̂(~r, t)

)
Ψ̂(~r, t). (1.34)
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ϕ1

ϕ

ϕ2

Vext(r)

r

Figure 1.12: Typical double well poten-
tial considered for the Bose Josephson
junction.

Figure 1.13: Direct observation of tunnel-
ing in a single Bose Josephson junction [40].
Left: time-resolved Josephson oscillations.
Right: macroscopic quantum self-trapping.

In the mean field approximation, Eq. (1.34) yields the so-called time-dependent Gross-
Pitaevskii equation [38, 39], leading to the time evolution of the condensate wavefunction.

Now we focus on a double well potential with a barrier higher than the zero-point
energies in each well as depicted in Fig. 1.12. This potential is obtained experimentally
by superposing a periodic potential on the harmonic confinement. The initial condensate
is split into two parts by the barrier of this effective double-well potential, realizing a
single weak link (see Fig. 1.13). In this case the field operator can be, in a variational
approach, split into two parts

Ψ̂(~r, t) = φ1(~r)â1(t) + φ2(~r)â2(t), (1.35)

where âj (â†j) annihilates (creates) a boson in the well j and satisfies the commutation rule[
â†i , âj

]
= δi,j . This yields the two-mode approximation where φj(~r) is the wave function

of the condensate in each well. Substituting the ansatz (1.35) into the Hamiltonian (1.33),
we obtain the Hamiltonian

H = E1â
†
1â1 + E2â

†
2â2 +

1

2
U1â

†
1â

†
1â1â1 +

1

2
U2â

†
2â

†
2â2â2 − T

(
â†1â2 + â1â

†
2

)
, (1.36)

with [26]

Ej =

∫
d3r

[
~

2

2m
|~∇φj(~r)|2 + Vext(~r)|φj(~r)|2

]
, (1.37)

Uj = g

∫
d3r|φj(~r)|4, (1.38)

T =

∫
d3r

[
~

2

2m
~∇φ∗1(~r)~∇φ2(~r) + Vext(~r)φ

∗
1(~r)φ2(~r)

]
. (1.39)
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In Eq. (1.39) we clearly see the correspondence between the tunneling strength of the
tunnel Hamiltonian T and the external potential which produces the barrier. In terms
of the imbalance number operator n̂ = â†1â1 − â†2â2, we recover the Hamiltonian (1.21)
with

U =
U1 + U2

2
, (1.40)

n0 =
E2 − E1

U1 + U2
+
N − 1

2

U2 − U1

U1 + U2
. (1.41)

This microscopic derivation of the Josephson Hamiltonian enabled us to express the
parameters of the general Hamiltonian (1.21) in terms of the interaction strength g
between atoms, the trapping potential Vext and the wavefunctions of the condensate in
each trap.

In the mean-field limit 〈âj〉 = ψj , Eqs. (1.1) are recovered with Ej = Ej + njUj . In
BJJs there is no restriction on the particle number imbalance (except of course −N/2 <
n < N/2). Consequently, contrary to SJJs, we need to keep the terms

√
1 − (2n/N)2 in

Eqs. (1.25) and (1.26). As we have seen in the previous section, the possibility to reach
large particle number imbalance gives rise to new configurations like the macroscopic
quantum self trapping or the π-oscillations.

A complete description of BJJs must take into account the presence of non-condensed
atoms. Indeed, for an ideal Bose gas, the fraction of non-condensed atoms goes like
fnc = (T/Tc)

γ where γ depends on the confinement (γ = 3/2 for a homogeneous gas
and γ = 3 in the case of a harmonic trapping potential). At finite temperatures a
substantial fraction of atoms is out of the condensate [e.g. fnc(Tc/2) = 13–35 %]. The
non-condensed atoms act as a thermal reservoir and the incoherent exchange of these
thermal atoms induce damping which is for instance responsible for the decay of the
macroscopic quantum self trapping state [41]. A simple way to model damping is to add
an ohmic contribution to the particle flow [42]

JR = −G∆µ, (1.42)

where ∆µ is the chemical potential defined as

∆µ = −~ϕ̇. (1.43)

This contribution is transposed in the dynamical equation of n as follows

ṅ = −EJ

~

√

1 −
(

2n

N

)2

sinϕ− ηϕ̇, (1.44)

where η = ~G is the dimensionless damping constant. This ohmic contribution is equiv-
alent to the quasiparticle current of SJJs in the RCSJ model.

The Josephson effect has been observed in several groups, both on single junctions [40,
43] and on arrays [44, 45]. The population imbalance as a function of time is measured
by a sequence of in situ images (see Fig. 1.13 for small oscillations and self trapping) and
both the dc and ac aspects have been explored (see Fig. 1.14). The ground state and
dynamical evolution for a Bose Josephson junction realized by an ultracold Bose gas in
a double-well trap has been studied in Ref. [46].
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Figure 1.14: Josephson effects in a Bose Josephson junction [43]. Left : dc Josephson
effect. The chemical potential is measured as a function of ż proportional to the particle
current. The population imbalance is achieved by an adiabatic shift of the harmonic
trap with respect to the barrier. While tilting the potential, a supercurrent branch and
then an ohmic branch are observed. Center : ac Josephson effect. The frequency of the
current oscillations ω is plotted as a function of the chemical potential. A current bias
is achieved by a non-adiabatic shift. The measured frequency ω is proportional to the
chemical potential. Right : decay of the macroscopic quantum self trapping state for two
different fractions of non-condensed atoms: fnc ≃ 5 % in blue and fnc ≃ 20 % in red. The
decay of the MQST shows that the thermal cloud significantly modifies the behaviour of
the two condensates.

1.5 The Josephson effect at two different physical scales

The Josephson effect has been predicted and observed in two very different physical
systems, superconducting nanocircuits and quantum gases. We discuss here (some of)
the most striking differences and their physical origin.

• The physical origin of the one-site energy is the interaction between particles but,
due to the fact that Cooper pairs are charged particle and alkali atoms are neutral,
the forces coming into play are not the same. It comes from the electrostatic force
of the capacitance of the barrier on the Cooper pairs in superconductors and from
the two-body interaction between atoms in cold gases.

• The particle number imbalance remains small in SJJs due to electrostatic forces
and tendency towards neutrality. In BJJs large population imbalances are reachable
and the macroscopic quantum self-trapping regime is accessible.

• From the comparison between experimental results on Figs. 1.7 and 1.13, we notice
that dissipation plays an important role in SJJs. Damping is due to non-condensed
atoms in BJJs and to the electromagnetic environment in SJJs (at low currents).

• The observation of time-resolved Josephson oscillations in Bosonic junctions high-
lights the difference on the temporal scales. Indeed, typical frequencies for super-
conductors are above the gigahertz whereas it takes 50 ms for a Bose Josephson
junction to perform one oscillation. This is directly linked to the coherence time of
this systems. While the “lifetime” of a SJJ reaches hundreds of nanoseconds, the
lifetime of a atomic cloud is counted in seconds.

• A low temperature is needed in both systems but, due to different critical temper-
ature scales, it goes down to tenths of millikelvins for superconductors and tenths
of nanokelvins for cold atoms.
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The comparison is presented in Tab. 1.1.

Josephson junction Superconducting Bosonic

Boson Cooper pair (charged) alkali atom (neutral)

Interaction force Coulomb short-range, repulsive

On-site energy U capacitance C interaction g

Josephson energy EJ ~Ic/2e NT
Plasma frequency ωp 1–103 GHz ∼ 10 Hz

Temperature 10 mK–1K 10–100 nK

Damping external circuit non-condensed atoms

Table 1.1: Comparison of the physical scales between a superconducting Josephson junc-
tion and a Bose Josephson junction.

Conclusion and perspectives

This chapter presented the Josephson effect from a phenomenological starting point,
completed by a rigorous derivation of the quantum Josephson Hamiltonian. The im-
plementation to superconductors and Bose Einstein condensates enables us to show the
characteristics of each system.

The Josephson effect will be exploited in various applications in the following chap-
ters.
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Introduction

A
small-capacitance Josephson junction is a quantum system with rich dynamics. The

two conjugate variables are the superconducting phase difference ϕ across the junction
and the charge Q on its electrodes. Correspondingly, at low temperatures the behavior
of the junction is determined by the competition between the Josephson energy EJ

and the charging energy EC = e2/2C, where C is the junction capacitance [16]. If
EJ ≫ EC , ϕ is well-defined and a phase-coherent Cooper-pair current can flow through
the junction in the absence of an external voltage V . In the opposite limit EJ ≪ EC

an insulating state with a well-defined charge Q on the electrodes is possible. At the
same time, the dynamics of ϕ and Q is crucially influenced by dissipation caused by the
electromagnetic environment surrounding the junction. Because of the mutual interplay
of quantum mechanics, nonlinearity and dissipation, the consistent theoretical description
of Josephson junctions still remains far from being complete.

17
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The dc current-voltage (I-V ) characteristics of a Josephson junction embedded in a
circuit of resistance R have been well studied in the so-called overdamped [16] case corre-
sponding to small values of R/RQ (RQ = h/4e2 is the resistance quantum) and the ratio
EJ/EC [18, 47–52]. For small R < RQ, the supercurrent peak at zero voltage acquires
a finite width. With increasing R, quantum fluctuations of the phase become more im-
portant and the supercurrent peak gradually moves to higher voltages. This corresponds
to the transition (driven by the environment) from superconducting behavior found for
small R to a complete Coulomb blockade when R > RQ. Meanwhile, the opposite un-
derdamped regime, which has been extremely difficult to achieve experimentally, has
attracted less attention. However, recently experiments were performed [53–55] on junc-
tions with EJ/EC > 1, embedded in a tunable, highly resistive environment, R ≫ RQ,
enabling the study of the same junction in different environments. In particular, a voltage
peak near zero current followed by a back-bending to lower voltages at higher currents
was observed (see Fig. 2.1). This is the so-called Bloch nose [56, 57] which, in accordance
with a duality property [47, 58–60], resembles the I-V characteristic of an overdamped
junction but with the role of voltage and current interchanged (see Sec. 2.8 and Fig. 2.9
therein). A quantitative comparison between theory and experiment has been made in
the classical limit where thermal fluctuations dominate [55, 61].

In this chapter we study for the first time the influence of quantum fluctuations on
the I-V characteristics of an underdamped Josephson junction. Our treatment, based on
the Keldysh formalism, enables us to obtain the quantum Smoluchowski equation which
describes the first quantum corrections to the quasicharge dynamics, as well as the I-V
characteristics in the zero temperature limit [62].

Figure 2.1: Left : SEM picture of the experimental circuit of Ref. [55]. The Josephson
junction (central white square) is surrounded by two Josephson junction arrays that
create the resistive environment.Right : Experimental current-voltage characteristics for
different temperatures. From left to right the temperatures are T = 50mK, 250 mK,
300 mK. The critical voltage and the resistance are fitted to be, respectively, Vc = 30µV
and R = 150 kΩ with a ratio between the Josephson and the charging energy being equal
to EJ/EC = 3. The solid lines correspond to the classical I-V characteristics of Ref. [61].
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2.1 Model

2.1.1 Current-biased Josephson junction

We start our analysis by considering a current-biased Josephson junction (see Fig. 2.2).
The junction is shunted by a resistance R and biased by an external dc current Ib. The

Ib

EC ,
EJ

R

L

I

V

Figure 2.2: Scheme of the circuit. The Josephson junction is characterized by its critical
voltage Ic and its capacitance C. The environment is modeled by the R-L circuit, defining
the cutoff frequency ωc = R/L.

resistor R in series with the inductance L constitutes the admittance Y of the circuit,
which models the dissipation of the system (see next section). The current flowing
through the resistor is noted Ix, and the current through the junction is then I = Ib−Ix.
The Lagrangian of the circuit reads

L =
C

2
φ2

0ϕ̇
2 + EJ cosϕ+

~

2e
(Ib − Ix)ϕ, (2.1)

where φ0 = ~/2e is the reduced flux quantum (Φ0 = h/2e is the flux quantum). The
equation of motion of this Lagrangian leads to the Kirchhoff law Ib−Ix = Ic sinϕ+Cφ0ϕ̈.

2.1.2 Environment

The environment is treated in the framework of the Caldeira-Leggett model, where the
system is coupled to a bath of harmonic oscillators [63]. The number of oscillators is
sufficiently large to render the energy exchange irreversible during the experiment. In
the case of superconducting nanocircuits, the oscillators can be seen as a set of L-C
circuits in parallel characterized by a capacitance Cα and an inductance Lα with the
eigenfrequency ωα = 1/

√
LαCα. The voltage is written in the form of Vα = φ0ϕ̇α and

the current through the circuit is Iα = Q̇α with the charge Qα = Cαωαφ0ϕα. The
current through the resistor is then Ix = Q̇x with the fluctuating charge Qx =

∑
αQα.

The Lagrangian of the bath is then Lbath =
∑

α

Cα

2
φ2

0ϕ̇
2
α − 1

2Lα
φ2

0ϕ
2
α.

The total Lagrangian is equal to the Lagrangian (2.1) plus the Lagrangian of the
bath Lbath. It gives rise to the Hamiltonian

H =
Q2

2C
− EJ cosϕ− φ0ϕIb +

∑

α

(
1

2Cα
(qα + ωαCαφ0ϕ)2 +

1

2Lα
φ2

0ϕ
2
α

)
, (2.2)
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where the conjugate momenta are the quasicharges

q = Cφ0ϕ̇, (2.3)

qα = Cαφ0ϕ̇α − ωαCαφ0ϕ, (2.4)

and satisfy [ϕ,Q] = i2e, [ϕα, qα] = i2e. The canonical transformation




qα → −Cαωαφ0ϕα,

φ0ϕα → 1

Cαωα
qα,

(2.5)

leads to the form

H =
Q2

2C
− EJ cosϕ− φ0ϕIb +

∑

α

(
q2α

2Cα
+

1

2Lα
φ2

0(ϕ− ϕα)2
)
. (2.6)

We will now turn to the Bloch band description of the underdamped Josephson junction.

2.1.3 Bloch band description

In the case of interest here, EJ ≫ EC , it is advantageous to switch to the Bloch-band
description of the Josephson junction [56, 57] (see Fig. 2.3). Assuming that the junction

E
/E

C

q/2e

EJ < EC

EJ > EC U0

0
0 0.5

2

1−0.5−1

Figure 2.3: Energy spectra as a function of the quasicharge in the case EJ ≪ EC where
the bands are close to hyperbola and the opposite one EJ ≪ EC where the bands are
sinusoidal.

dynamics is confined to the lowest energy band, we can replace the Josephson potential
by U0 cos(πq/e) where

U0 =
8√
π
EC

(
2EJ

EC

)3/4

exp

(
−2

√
2EJ

EC

)
, (2.7)

is the Bloch bandwidth. The expression of the bandwidth U0 can be obtained directly
from the instanton formalism described in appendix B.

In terms of the reduced bath variables xα =

(
Lα

~2Cα

)1/4

qα and pα = −
(

Cα

~2Lα

)1/4

φ0ϕα,

the reduced fluctuating charge ξ = πQx/e obeys

ξ = 2π
∑

α

ςαxα, (2.8)
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where ςα = (~2Cα/Lα)1/4. After performing the canonical transformation e
i

2π
ξϕ H e−

i
2π

ξϕ,
we arrive at the tight-binding (TB) model of our system with the Hamiltonian:

HTB = −U0 cos(πq/e− ξ) − (~/2e)Ibϕ+
∑

α

ωα

2

(
p2

α + x2
α

)
. (2.9)

The influence of the bath on the junction dynamics is entirely determined by the
weighted spectral function, calculated in appendix A.2, K(ω) = (π/2)

∑
α ς

2
αδ(|ω| −

ωα). As follows from the equations of motion generated by HTB, the choice K(ω) =
RQReY (ω)/2πω with Y (0) = 1/R reproduces the linear response (Ohm’s law) of current
Ix to the voltage drop V = (~/2e)ϕ̇ on the resistor, Ix(ω) = Y (ω)V (ω) (for Fourier
transforms).

The reduced fluctuating charge gives rise to the bath correlation function J(τ) =
〈(ξ(τ) − ξ(0)) ξ(0)〉, which explicitly reads (see appendix A.3)

J(τ) = 2RQ

∫ +∞

−∞
dω

ReY (ω)

ω

e−iωτ − 1

1 − e−β~ω
, (2.10)

where β = 1/kBT is the inverse temperature.

2.1.4 Cutoff

We now turn to the effect of fluctuations and introduce a cutoff of the bath spectrum
at frequency ωc, chosen to be smaller than the gap ωp =

√
8EJEC/~ between the low-

est Bloch bands but larger than the Bloch bandwidth. Furthermore, the competition
between the cutoff energy and the temperature determines the nature, rather classical
or quantum, of the environment. Indeed, starting from a classical thermal bath when
kBT ∼ ~ωc, quantum fluctuations appear in the quasiclassical region kBT . ~ωc and be-
come dominant at low temperatures kBT ≪ ~ωc. Assuming that the effective impedance
seen by the junction is given by a resistance R in series with an inductance L, we can
set Y (ω) = 1/(R− iωL), leading to ωc = R/L. Then, from evaluating the integral (2.10)
one obtains (see appendix A.3):

J(τ) = −i sgn(τ)A(τ) −M(τ), (2.11)

with

A(τ) = πg
(
1 − e−ωc|τ |

)
, (2.12)

M(τ) = 2g

[
π|τ |
β~

− π

2
cot

(
β~ωc

2

){
1 − e−ωc|τ |

} +∞∑

k=1

1 − e−ωk|τ |

k
(
1 − ω2

k/ω
2
c

)
]
, (2.13)

where g = RQ/R is the dimensionless conductance, and ωk = 2πk/~β is a Matsubara
frequency.

Before proceeding, we want to comment on the magnitude of the effective inductance
L which has been associated with the cutoff ωc. The restriction ωc < ωp imposes a lower
bound on the values of L to be consistent with our assumption of single–band charge
dynamics:

L >
2πg−1

√
2EC/EJ

LJ , (2.14)
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where LJ = φ2
0/EJ is the Josephson inductance. For relatively large g > 1, the condi-

tion (2.14) can be satisfied even for an autonomous Josephson junction, where L ∼ LJ

corresponds to the Bloch inductance [64]. In the opposite limit of small g ≪ 1, an
experimental realization of this model would be the use of an environment composed
of Josephson junction SQUID arrays, whose effective inductance can be tuned to rela-
tively large values by magnetic flux [65]. Another option includes the use of a quantum
phase–slip junction where there is no limitation on ωc, as discussed at the end of the
chapter.

2.2 Current-voltage characteristics

2.2.1 Voltage operator

The voltage operator V = φ0ϕ̇ is the group velocity associated with the quasicharge
V = ∂qH

V = Vc sin Θ(t), Θ = πq/e− ξ, (2.15)

where Vc = πU0/e is the maximal (critical) voltage the junction can sustain. To deter-
mine the I-V characteristics, we calculate the average of the operator for the voltage
across the junction 〈V (t)〉.

2.2.2 Evolution operator

We construct a perturbation theory to all orders in the Bloch bandwidth U0. The
Hamiltonian is divided into two parts, H0 and H1, as follows

H = H0 + H1, H0 = −φ0Ibφ+ Hbath, H1 = −U0 cos Θ(t). (2.16)

In the interaction picture, the charge operator becomes

q(t) = q +
i

~
t [H0, q]︸ ︷︷ ︸

=−i~Ib

= q + Ibt. (2.17)

The average value of the voltage operator is calculated via the density matrix ρ and the
evolution operator U

〈V (t)〉 = Tr{ρ(t)V } = Tr
{
ρ(t0)U†(t, t0)V U(t, t0)

}
. (2.18)

The evolution operator satisfies the differential equation

i~
∂U(t, t0)

∂t
= H1(t)U(t, t0). (2.19)

The time integration, detailed for instance in Refs. [66, 67], leads to

U(t, t0) =
∞∑

n=0

(−i
~

)n 1

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtnT H1(t1) . . .H1(tn), (2.20)

or formally

U(t, t0) = T e
−i
~

R t
t0

dt′H1(t′)
, (2.21)
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where T is the time-ordering operator which orders the Hamiltonians H1(tk) in decreasing
time from left to right. Equivalently, we have

U†(t, t0) = T̃ e
+i
~

R t
t0

dt′H1(t′)
, (2.22)

where T̃ is the anti-time ordering operator. We choose t0 = 0, and write sinx in the
form

∑
η=± ηe

iηx/2i. We obtain

U(t, 0) =
∞∑

n=0

(
iU0

2~

)n ∫ t

0
dt1 . . .

∫ tn−1

0
dtnT

∑

{η}
ei π

e

P

k ηk(q+Ibtk)e−i
P

k ηkξ(tk). (2.23)

This expression as well as its adjoint have to be substituted into Eq. (2.18) to calculate
the average voltage. This formulation is however cumbersome. A way to simplify the
calculations is to use the Keldysh formalism.

2.2.3 Keldysh formalism

To calculate integrals involving time-ordering operators, we use the Keldysh formal-
ism [68, 69]. The Keldysh technique is based on the Keldysh contour, depicted in
Fig. 2.4. It is composed of two branches, [0, t] and [t, 0], differentiated with the Keldysh
indices s = +/−, respectively. We introduce two operators, the global evolution operator
UC(t, 0) = U†(t, 0)U(t, 0) and the global time-ordering operator TC . The interest remains
in the global character of these operators: in opposition with the time (anti) ordering
operator which acts on the two branches separately, they act on the entire contour.

In terms of these operators, Eq. (2.18) becomes

〈V (t)〉 = 〈TC (UC(t, 0)V (t))〉, (2.24)

with

UC = TC exp

(
iU0

~

∫ ∞

0
dτ
∑

s=±
s cos Θs(τ)

)
. (2.25)

We then calculate TC (UC(t, 0)V (t)), which leads to

〈V (t)〉 =
πU0

i2e

∞∑

n=0

(
iU0

2~

)n ∫ t

0
dt1 . . .

∫ tn−1

0
dtn

×
∑

s1...sn=±

∑

η0...ηn=±
η0

n∏

k=1

sk exp

(
i
π

e

n∑

k=0

ηk(q + Ibtk)

)
〈TC e−iX〉, (2.26)

where we note

X =
n∑

k=0

ηkξ
sk(tk). (2.27)

We thus understand the advantage of the Keldysh formalism, which reduces the average
of Eq. (2.18) over the bath degrees of freedom with the evolution operator (2.23) to the
average of an exponential. The latter is performed using Wick’s theorem with Keldysh
operators, derived in appendix A.1. The result is

〈TC e−iX〉 = e−
1
2
XX , (2.28)
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s = +

s = −

τ = 0

τ = 0
τ = t

Figure 2.4: Keldysh contour and its two branches denoted by the Keldysh index s.

with
XX = 〈TC X2〉. (2.29)

The sum yields

XX = 2
n∑

k=1

k−1∑

k′=0

ηkηk′

(
ξkξk′ − ξ(0)ξ(0)

)
+ ξ(0)ξ(0)

n∑

k=0

ηk

n∑

k′=0

ηk′ , (2.30)

where we note ξkξk′ = 〈TC ξsk(tk)ξ
sk′ (tk′)〉. Double sums are of the type

∑n
k=1

∑k−1
k′=0,

implying k′ < k. The order of multiple integrals gives then tk′ > tk. From this we obtain

ξkξk′ =





〈ξ(tk′ − tk)ξ(0)〉 if sk = + and sk′ = +,

〈ξ(tk′ − tk)ξ(0)〉 if sk = + and sk′ = −,
〈ξ(tk − tk′)ξ(0)〉 if sk = − and sk′ = +,

〈ξ(tk − tk′)ξ(0)〉 if sk = − and sk′ = −,

(2.31)

which is equivalent to

〈TC ξsk(tk)ξ
sk′ (tk′)〉 = 〈ξ(sk(tk′ − tk))ξ(0)〉. (2.32)

Therefore, the evolution operation is replaced by the Keldysh index, much easier to
manipulate.

The average ξkξk′ can be expressed in terms of the bath autocorrelation function

ξkξk′ − ξ(0)ξ(0) = J(sk(tk′ − tk)). (2.33)

The term ξ(0)ξ(0)
∑n

k=0 ηk
∑n

k′=0 ηk′ leads to a divergence. It imposes the constraint∑n
k=0 ηk = 0, i.e. n odd since ηk = ±1. This condition is used for instance in plasma

physics, where it imposes the neutrality condition for a gas of charges ±1 [58]. Replacing
n by 2n+ 1, we have

〈V (t)〉 =
πU0

i2e

∞∑

n=0

(
iU0

2~

)2n+1 ∫ t

0
dt1 . . .

∫ t2n

0
dt2n+1

∑

{s}

∑

{η}
η0

2n+1∏

k=1

sk eΓn , (2.34)

Γn = i
π

e
Ib

2n+1∑

k=0

ηktk −
2n+1∑

k=1

k−1∑

k′=0

ηkηk′J(sk(tk′ − tk)). (2.35)

The last task is to perform the sum over Keldysh indices. Noting gk =

k−1∑

k′=0

ηk′A(τk′ −

τk), we find

∑

{s}
s1 . . . snei

P2n+1
k=1 skηkgk =

2n+1∏

k=1

∑

sk=±
ske

iskηkgk = −i22n+1η0

2n+1∏

k=1

sin(gk), (2.36)



§2.2 Current-voltage characteristics 25

because
∏2n+1

k=1 ηk = η0
∏2n+1

k=0 ηk = η0(−1)n+1. This yields

V (t) =
Vc

2i

+∞∑

n=0

(−1)n

(
U0

~

)2n+1 ∫ t

0
dτ1 . . .

∫ τ2n

0
dτ2n+1

∑

{fk}

(
2n+1∏

k=1

sin gk

)
eΓn . (2.37)

For a given integer n the discrete variables fk satisfy

|fk+1 − fk| = 1, (2.38)

with the constraint f0 = f2n+2 = 0 [49, 70]. A set of such integers represents a graph
which links the two extremal points (0, 0) and (2n + 2, 0) by steps of unit length (see
Fig. 2.5). The elements gk and Γn are defined as follows
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Figure 2.5: Example of graphs fk for n = 3.

gk = Ak,k−1fk +

k−1∑

k′=1

δAkk′fk−k′ , (2.39)

Γn = −i(π/e)Ib
2n+1∑

k=1

(τk − τk−1) fk −
2n+1∑

k=1

Mk,k−1f
2
k +

2n+1∑

k=2

k−1∑

k′=1

δMkk′fkfk′ . (2.40)

Here δMkk′ = Mkk′ +Mk−1,k′−1 −Mk−1,k′ −Mk,k′−1, δAkk′ = Ak,k−k′−1 −Ak,k−k′ , with
the shorthand notation Akk′ = A(τk − τk′), and similar for Mkk′ . The above equations
are in a form suitable to apply the “nearest-neighbor approximation” (NNA), where one
assumes that δMkk′ ≈ 0 and δAkk′ ≈ 0 [49] on the relevant time scale τ > 1/ωc. Then,
in the limit t → ∞, the expression (2.37) can be evaluated exactly, and one obtains for
the dc voltage V across the junction:

V = Vc Im(W1/W0) , (2.41)

where Wn obey the following recurrence relation (n ≥ 1)

ian (Wn−1 −Wn+1) = Wn , (2.42)

with

an =
U0

i~

∫ +∞

0
dτ sin (nA(τ)) ei(π/e)Ibnτ−n2M(τ) . (2.43)
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The quantities Wn should be identified with the Fourier transform of the quasicharge
distribution function W (q) in the steady state,

W (q) =
+∞∑

n=−∞
e−inπq/eWn , (2.44)

with the property W−n = W ∗
n . This becomes obvious by noticing that Eq. (2.41) can

be viewed as a result of averaging the voltage operator with the quasicharge distribu-
tion W (q),

V/Vc = W−1
0

∫ +e

−e
dqW (q) sin (πq/e) . (2.45)

From the recurrence relation of the coefficients an, the steady state voltage V can be
expressed in the form of a continued fraction (see appendix A.4)

V = Vc Re
a1

1 − a1a2

1−a2a3
1−...

. (2.46)

This formulation has analytical and numerical advantages.

2.3 Classical limit

Classically, the problem is equivalent to the equation of motion [56, 57],

q̇ = Ib − (Vc/R) sin(πq/e) , (2.47)

describing overdamped quasicharge diffusion with damping rate πVc/eR. A stationary
solution q̇ = 0 exists if Ib < Vc/R: all the current flows through the resistor, while the
junction stays in a zero-current Coulomb blockade state with a voltage drop V = RIb. If
Ib > Vc/R, q̇ 6= 0 and a dynamical state exists at finite current with Bloch oscillations of
the voltage. From Eq. (2.47) one finds the frequency of the oscillations to be fB = I/2e,
which was observed in the experiment of Ref. [71]. By direct integration of Eq. (2.47)
over one period one obtains the dc voltage [56, 57]

V = RIb −
√

(RIb)
2 − V 2

c . (2.48)

The resulting I-V characteristic corresponds to the aforementioned Bloch nose and is
depicted in Fig. 2.6.

The classical behavior is found in the limit where the temperature equals the cutoff
frequency. Indeed, in this limit the environment loses its quantum properties and is
characterized only by the temperature. When g ≪ 1, the coefficients an are reduced to

an =
1

2

z

in+ η
, (2.49)

where z = βU0 and η = (e/π)βRIb. The recurrences (2.42) can then be solved analyti-
cally in terms of modified Bessel functions, Wn = In−iη(z) (see appendix A.5), resulting
in the I-V characteristics obtained in Ref. [61] from a Fokker-Planck approach

V = RIb −
sinh (πη)

eβ |Iiη(z)|2
. (2.50)



§2.5 Quasiclassical limit 27

Generally speaking, all the results of Ref. [61], obtained in the classical regime, can be
derived from our treatment. The classical I-V characteristic are in good agreement with
the experimental results of Ref. [55], as can be seen in Fig. 2.1. This I-V characteristic
is also the dual expression of Ref. [18], obtained in the overdamped regime.

2.4 Quasiclassical limit

To shed light on the range of applicability of the NNA for our system, we first study the
quasiclassical limit where the typical time scale of the quasicharge dynamics, determined
by the damping rate gU0/~ and the frequency of Bloch oscillations fB [see Eq. (2.47)],
is slow. Indeed, if

gU0/~, fB ≪ 1/~β, ωc , (2.51)

one can neglect the termsO(e−ωkτ , e−ωcτ ) in Eqs. (2.12) and (2.13). We thus approximate
[Ξ(τ) is the unit step function]

A(τ) = πg Ξ(|τ | − 1/ωc) , (2.52)

and

M(τ) = (gω1|τ | + λ) Ξ(|τ | − 1/ωc) , (2.53)

with

λ = 2g

[
γ +

π

β~ωc
+ Ψ

(
β~ωc

2π

)]
, (2.54)

where γ = 0.577 . . . is the Euler constant and Ψ(x) is the digamma function. Introducing
the short–time cutoff for the approximated A(τ) and M(τ) is the simplest way to provide
that they vanish at τ = 0 [see the exact expressions (2.12) and (2.13)], which is necessary
for the consistency of the applied NNA. Assuming also g ≪ 1, one obtains for an entering
the recurrence relation (2.42),

an =
z

2i

e−Λn2

n− iη
, (2.55)

where [72, 73]

Λ = 2g

[
γ +

2π

β~ωc
+ Ψ

(
β~ωc

2π

)]
. (2.56)

Inspection of the terms dropped in the NNA reveals that in the range (2.51), where A(τ)
and M(τ) can be simplified by their asymptotic expressions, the NNA becomes exact
in the quasiclassical region where λ is small. Note that for small g, the NNA can be
applicable even at low temperature.

2.5 Quantum Smoluchowski equation

The crossover between the classical and quantum limit is controlled by the parameter λ
which is related to quantum corrections to the position dispersion of a fictitious Brownian
particle in the harmonic potential [74].

• The classical limit corresponds to ~ωc ∼ kBT and g ≪ 1, or equivalently λ, Λ → 0
(β~ωc ≃ 4.2).
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• The quantum regime corresponds to a large cutoff compared to the temperature,
~ωc ≫ kBT , so that the environment becomes fully quantum.

• The “quasi-isolated” regime corresponds to the limit ~ωc ≪ kBT . Indeed, in this
regime, the exchanges with the environment are reduced and in the limit β~ωc → 0
the junction is isolated.

Expanding an in Eq. (2.55) to the first order in Λ to include quantum corrections, one
can go to the continuum limit, using the properties of the Fourier coefficients FCn

FCn

{
∂mW (q)

∂qm

}
=
(
−iπ

e

)m
nmWn (2.57)

FCn

{
cos(πq/e)

∂2mW (q)

∂q2m

}
=

(−1)m

2

(π
e

)2m
((n+ 1)2mWn+1 + (n− 1)2mWn−1)

(2.58)

FCn

{
sin(πq/e)

∂2m+1W (q)

∂q2m+1

}
=

(−1)m+1

2

(π
e

)2m+1

× ((n+ 1)2m+1Wn+1 − (n− 1)2m+1Wn−1) (2.59)

One can then derive from Eq. (2.42) a differential equation for the quasicharge distribu-
tion W (q),

∂q

[
Ŝ (q, ∂q) − Λ (e/π)4 U ′′′(q) ∂2

q

]
W (q) = 0 , (2.60)

where U(q) = −U0 cos(πq/e) − RIbq is a washboard potential in the charge variable,
U ′(q) ≡ ∂qU . The corresponding Smoluchowski differential operator,

Ŝ (q, ∂q) = U ′
eff(q) + β−1D(q) ∂q , (2.61)

is renormalized by quantum fluctuations through both the effective potential

Ueff(q) = U(q) + Λ(e/π)2 U ′′(q) (2.62)

and the q-dependent diffusion coefficient

D(q) = 1 + 2βΛ(e/π)2 U ′′(q) . (2.63)

Eq. (2.60) is the so-called Quantum Smoluchowski Equation (QSE) which describes the
leading quantum corrections to the charge dynamics which originate from the quantum
nature of the bath. It was named after Marian Smoluchowski, who described the Brown-
ian motion in 1906 independently of Albert Einstein with an equation which became an
important basis of the theory of stochastic processes [75]. According to Eq. (2.56), the
influence of quantum fluctuations becomes more substantial with increasing parameter
β~ωc. The I-V characteristics, parametrically dependent on the bias Ib and calculated
for different β~ωc, are shown in Fig. 2.7. For β~ωc ≫ 1, quantum fluctuations reduce
the blockade voltage and facilitate a crossover to the Bloch oscillations. Interestingly, for
small β~ωc < 1, the influence of thermal fluctuations becomes suppressed by the inertia
effect of the “heavy” Brownian particle with an effective mass scaled as ω−1

c . For a wide
range of Ib, the junction is locked in the insulating state because of the lack of energy
exchange with the environment, which results in a sharp crossover to the Bloch oscilla-
tions. In other words, reducing the cutoff energy below the temperature is equivalent to
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Figure 2.6: (from right to left) the classi-
cal limit without fluctuations (2.48), the
result (2.50), and the solution from (2.41)
for g=0.1, βU0=0.5, and β~ωc=50.
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Figure 2.7: I-V characteristics for g=0.1
and βU0=0.1. The red line corresponds to
the classical expression (2.50). Blue lines
depict the result from (2.41) with, from
right to left, β~ωc=0.5, 5, and 50.

decoupling the junction from the environment (see Fig. 2.7).
We note in passing that the structure of the QSE obtained here from the series expan-

sion (2.41) is different from the one derived in Ref. [74] for a Brownian particle in a slightly
anharmonic potential and later applied to an overdamped junction [72, 73]. Therefore we
cannot exploit the duality property (see below) to treat the Smoluchowski range for un-
derdamped junctions using the results of Ref. [72, 73]. Another approximation consists of
evaluating expression (2.37) using the asymptotes for long times (2.52) and (2.53) [60].
Such an approach leads to coefficients an = βU0 e−λ/2 exp(−2πgn2/β~ωc)/2i(n − iη),
which tend towards the result (2.55) in the quasiclassical region. As a consequence, a
QSE equivalent to the solution (2.60) is also recovered.

2.6 Low temperatures

We proceed by studying Eqs. (2.41)–(2.43) in the low temperature limit, beyond the
quasiclassical region (2.51). At very low temperature, β~ωc ≫ 1, the I-V characteristics
are entirely determined by the first coefficient a1, Eq. (2.43), consistent with the fact
that the NNA is exact to the lowest order in U2

0 . Closed-form analytical expressions can
be obtained in several cases. For instance, at finite temperatures and for small values of
g, the I-V characteristic can be written as

V/Vc = u
|Γ(g + i~βIb/2e)|2

Γ(2g)
sinh (π~βIb/2e) , (2.64)

where u = (βU0/4π) (β~ωc eγ/2π)−2g and Γ(x) is the Gamma function (see appendix A.6).
The resulting linear resistance R varies as a power law with temperature, R ∝ T 2(g−1),
in agreement with the asymptotic analysis of Ref. [47]. At zero-temperature one recovers

V/Vc = (πU0/2)P (hIb/2e) , (2.65)

where P (E) = 1/h
∫

dt exp [J(t) + iEt/~], dual to the well-known result for the I-V
characteristic for incoherent Cooper pair tunneling in an overdamped junction [48]. In
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Fig. 2.8, we plot I-V characteristics for different g, both at zero and at finite tempera-
tures. As g increases, the voltage peak shifts to finite values of the supercurrent. This
behavior can be interpreted in terms of incoherent tunneling of the phase [76]. Indeed,
for small values of g, few environmental modes are available. Consequently, only elastic
tunneling is allowed and a flat Bloch nose is recovered. When g is large, the equivalent
circuit consists of a loop containing the junction closed by the inductance L. A phase-slip
event occurs when the energy to be released Φ0Ib corresponds to the energy Φ2

0/2L to
add one flux quantum Φ0 in the loop, i.e., when Ib = Φ0/2L. At this finite current,
phase tunneling disrupts the Bloch oscillations and gives rise to a voltage peak.

I
Φ

0
/E

L

(EL/U0) V/Vc

0
0 4 6

0.5

1

1.5

2
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U(ϕ)

ϕIb

2π
ϕ

Figure 2.8: Left panel : I-V characteristics at T = 0 for ~ωc = 100U0. From top to bot-
tom, solid lines represent (2.41) for βU0=0.5 and with g=100, 5, 1, 0.5 and 0.1. Dashed
lines are the corresponding curves for the solution from (2.65). While decreasing R the
Bloch nose is shifted to the finite current I = Φ0/2L, where the tunneling of a flux
quantum in the washboard potential U(ϕ) requires an energy exchange with the bath,
sketched on the right panel.

2.7 Quasi-isolated limit

When the cutoff frequency of the bath is small (β~ωc ≪ 1), the coupling with the
environment is weak and the junction is quasi-isolated from the thermal bath. In this
limit

an =
z

2in
, z = 2βU0

∞∫

0

dx sin(πgβ~ωcx) ei π
e
β~Ibx−πgβ~ωcx2

, (2.66)

and the voltage reads
V

Vc
= Im

{
I1(z)

I0(z)

}
. (2.67)

The I-V characteristic tends to the supercurrent peak of an isolated junction, as repre-
sented in Fig. 2.7.

2.8 Overdamped Josephson junctions

A similar analysis within the Keldysh formalism can be achieved in the case of a voltage-
biased overdamped Josephson junction in series with a resistance R. This circuit is con-
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ventionally described by the Hamiltonian H = (Q+Qx)2 /2C−EJ cosϕ−VbQx +Hbath,
where Qx is a fluctuating charge on the junction capacitor and Vb is the bias voltage.
Using an analysis of the equations of motion similar to the one preceding Eq. (2.9) and
performing canonical transformations, one can show that the model description of the
junction is equivalently given by the weak-binding (WB) Hamiltonian

HWB = −EJ cos (ϕ− ξ/2π) + VbQ+ Hbath , (2.68)

with ξ the bath variable defined as before, Eq. (2.8). In this representation, the junction
capacitance C is encoded in terms of the bath parameters, C−1 = (RQ/2π)

∑
α ς

2
αωα,

while the weighted spectral function of the bath is given by KWB(ω) = 2πReZ(ω)/RQ ω,
with Z−1(ω) = 1/R − iωC. The operator for the current flowing through the junc-
tion is given by I = Ic sin (ϕ− ξ/2π), where Ic = 2eEJ/~ is the critical current. The
Hamiltonians HTB and HWB are related by the following transformation:

(πq/e, ϕ ) ↔ (ϕ, −πQ/e ) ,

U0 ↔ EJ , Ib ↔ Vb/RQ , ξ ↔ ξ/2π .
(2.69)

Consequently, the series expansions for V/Vc in the TB model and for I/Ic in the WB
model are dual: we can transpose our results obtained for the quasicharge dynamics in
an underdamped junction onto the dual case of the phase dynamics in an overdamped
junction. A unified approach is thus provided, as well as new results such as the series
expansion for I/Ic

1) and the quantum Smoluchowski equation.
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Figure 2.9: The overdamped regime EC ≫ EJ , R ≪ RQ and the underdamped regime
EJ ≫ EC , R≫ RQ are dual.

2.9 Superconducting nanowires

We conclude by considering quantum phase-slip (QPS) dynamics in superconducting
nanowires. Based on a duality argument, Ref. [77] suggests the following model Hamil-
tonian to describe QPS events:

HQPS(ϕ,Q) = EL (ϕ/2π)2 − ES cos (πQ/e) , (2.70)

1The WB expansion for I/Ic, which is dual to (2.37), is similar but not identical to the one obtained
in Ref. [51] using a different kind of approximation (not the NNA).
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where ES is an energy associated with the phase-slip process which changes the phase
difference ϕ over the nanowire by 2π, and EL = Φ2

0/2L is an inductive energy of the wire
with a kinetic inductance L. Correspondingly, the Hamiltonian of a current-biased QPS
junction (see Fig. 2.10) can be written as

H = HQPS(ϕ+ ϕx, Q) + (~/2e) Ib ϕx + Hbath , (2.71)

where a fluctuating phase across the junction ϕx is related to the voltage drop VR =
R(Q̇ − Ib) on the resistor, ϕ̇x = (2e/~)VR. It is straightforward to see that the Hamil-
tonian (2.71) is exactly dual to the Hamiltonian of a voltage–biased Josephson junc-
tion, and can correspondingly be mapped onto the Hamiltonian (2.9) with U0 replaced
by ES , while the inductance L of nanowire is encoded in terms of the bath parameters,
L−1 = (2π/RQ)

∑
α ς

2
αωα. With this device, the frequency ωc = R/L results from the

physical resistance and inductance of the wire, providing a natural cutoff of the bath.
Our previous analysis for an underdamped Josephson junction, and thus the I-V char-
acteristics, can be directly applied to a superconducting nanowire (not being restricted
by the TB limit). A typical case of nanowire inductance L ∼ 1 nH corresponds to
ωc/2π ∼ g−1 × 1 THz. Assuming ES/h & 10 GHz [77] and T ∼ 1 K, as follows from
Eq. (2.51), we estimate that the QSE range for nanowires is relevant for g . 0.1. Note
from the parameters used in Fig. 2.7 that the quantum fluctuations in QPS junctions
should be substantial.

Ib R

L

QPS

Figure 2.10: Equivalent circuit of Fig. 2.2
with a quantum phase slip junction repre-
sented by the diamond symbol.

Figure 2.11: Quantum phase slip junction
realized with a nanowire [77].

2.10 Towards a Josephson current standard

When the bias current has a time-oscillating term, for instance induced by a microwave, it
is possible to create phase-locking [78]. If we note Ω the frequency of the sinusoidal part of
the bias current, Shapiro current steps are obtained at currents that are multiple of eΩ/π
(if the junction is voltage biased, we obtain Shapiro voltage steps). The proportionality
between a current and a frequency can be used to define a Josephson-based current
standard. This is the dual to the Josephson voltage standard [79].

Let us note

Ib(t) = I0
b + I1

b sin Ωt, (2.72)

the time-dependent bias current and q̇ = i0 − i1 cos(Ωt+ θ) the resulting current. Once
put into Eq. (2.47), and following the method presented in Sec. 1.1, we obtain current
Shapiro steps at i0 = enΩ/π (see Fig. 2.12).
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The width of the steps is given, approximately, by

∣∣i0 − I0
b

∣∣ ≤ Vc

R

∣∣Jn

(
πI1

b /eΩ
)∣∣ , (2.73)

where Jn is the modified Bessel function.
In quantum metrology, units are defined from the Hertz, the Volt and the Ampere.

These three units form the so-called metrological triangle and are connected with each
other. The link between Volt and Ampere is performed with the quantum Hall effect
and the connection between Hertz and Volt with the Josephson effect. With the relation
I ∝ Ω on the Shapiro steps it is possible to close the quantum metrological triangle [20].
This would permit to redefine the international system of units with the Josephson effects
and the quantum Hall effect.

Conclusion and perspectives

To summarize, we have studied the influence of quantum fluctuations on the I-V char-
acteristics of an underdamped Josephson junction. We have applied a unifying approach
based on the Keldysh formalism that enables us to obtain quantitative results for a
wide range of parameters. Using the NNA approximation, we show the significant role of
quantum fluctuations revealed both in the quasiclassical Smoluchowski regime and in the
low-temperature quantum regime. In the Smoluchowski regime, compared to the case
of thermal fluctuations, quantum fluctuations mainly lead to a renormalization of the
parameters describing the quasicharge dynamics of the junction [60]. The NNA becomes
exact in the case of incoherent phase-slip events at low temperatures. In this limit, phase
tunneling disrupts the Bloch oscillations, leading to a voltage peak at finite current. The
quantum effects are sensitive to both the dissipation strength and cutoff frequency, and
could be observed in experiments as in Refs. [53–55] with a tunable environment. Besides
Josephson junctions, our results are also relevant for superconducting nanowires modeled
as quantum phase-slip junctions at low temperature.

The treatment presented in this chapter can be extended to access interesting prop-
erties and applications of Josephson junction based nanocircuits. The formalism can be
generalized to calculate two-point correlation functions such as the voltage noise. The

〈I
〉R

/V
c

〈Ib〉R/Vc

0

0

2

2

4

4

−2

−2

−4

−4

Figure 2.12: Current-voltage characteristics of an underdamped Josephson junction bi-
ased with an oscillating current. Current Shapiro steps appear at 〈I〉 = n eΩ/π. Param-
eters are R = RQ/5, I1

b = 3Vc/R, and Ω = 5Vc/φ0.
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full counting statistics [80] can also be calculated, at least in the classical regime or with
an extended NNA. The nonlinear behavior of the Josephson junction can be exploited to
amplify the moments (many-points correlation functions) of a mesoscopic device [81–83].
Finally, the possibility to realize a Josephson current standard is currently investigated
experimentally in the group of Wiebke Guichard at the Néel institute in Grenoble [78].



La jonction Josephson sous-amortie

Résumé du chapitre

N
ous étudions la dynamique quantique d’une jonction Josephson polarisée en courant

dans le régime sous-amorti. Ce régime, où l’énergie Josephson domine l’énergie de charge

et où l’environnement est hautement résistif, a été peu étudié mais récemment atteint

expérimentalement à l’Institut Royal de Technologie de Stockholm. Notre traitement

s’appuie sur le formalisme de Keldysh et permet d’obtenir les caractéristiques courant-

tension du régime classique à la limite de température nulle. Les fluctuations quantiques

induisent une transition entre une branche de blocage de Coulomb et une branche supra-

conductrice. La forme du nez de Bloch dépend de la température mais aussi de la

résistance de l’environnement. Dans le régime semi-classique, nous obtenons l’équation

de Smoluchowski quantique qui décrit les corrections dues aux fluctuations quantiques

à la dynamique de la quasi-charge. L’effet majeur des fluctuations quantiques est de

renormaliser la largeur de la bande de Bloch. Nos résultats peuvent être directement

appliqués au régime sur-amorti en utilisant la dualité entre ces deux limites. Notre étude

peut également être étendue aux nano-fils supraconducteurs, jouant le rôle de jonction à

saut de phase.

35
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Chapter 3
Superconducting phase qubit in a
camel-back potential
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Introduction

W
e study the tunneling effect from a metastable state of a quartic potential 1

2Mω2
0z

2(1 −
u3z−u4z

2), with a double escape path. The escape rate is calculated in the framework of
the instanton formalism. This novel potential shape is realized with a superconducting
circuit comprised of a loop interrupted by two Josephson junctions (dc SQUID), with
near-zero current bias and flux bias near half a flux quantum [84]. The dynamics is
restricted to the ground state and the first excited state of the well, giving rise to a
phase qubit. A new experimental technique has been developed to measure the state of
the qubit as well as the critical lines. A good agreement is found between our result and
the experimental data. We also demonstrate that this system exhibits an “optimal line”
in current and flux bias space along which the oscillator is insensitive to decoherence due
to low-frequency current fluctuations.

3.1 Quantum dynamics of the dc-SQUID phase qubit

3.1.1 Circuit and Hamiltonian

The SQUID (Superconducting Quantum Interference Device) is a superconducting loop
interrupted by two Josephson junctions [16]. The Josephson junctions are characterized

37
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by their critical currents Ic1,2 , their capacitances C1,2, and the phase differences ϕ1,2

across them. Each arm of the loop has a self-inductance L1,2 and carries a partial
current I1,2. The SQUID is biased by the current bias Ib = I1 + I2 and the flux bias Φb.
The electric circuit of the SQUID is represented in Fig. 3.1. Applying Faraday’s law for

Figure 3.1: Electric circuit of the dc-SQUID.

magnetic flux conservation and Kirchhoff’s law for current conservation, we get
{
I1 = Ic1 sinϕ1 + φ0C1ϕ̈1,

I2 = Ic2 sinϕ2 + φ0C2ϕ̈2,
(3.1)

and
Φb = φ0(ϕ1 − ϕ2) + L1I1 − L2I2, (3.2)

where φ0 = ~/2e is the reduced flux quantum. Eqs. (3.1) correspond to the equations of

motion
∂L
∂ϕi

=
d

dt

∂L
∂ϕ̇i

of the Lagrangian

L =
φ2

0

2

(
C1ϕ̇

2
1 + C2ϕ̇

2
2

)
+ EJ1 cosϕ1 + EJ2 cosϕ2

+
φ0Ib

L1 + L2
(L2ϕ1 + L1ϕ2) −

φ2
0

2(L1 + L2)
(ϕ1 − ϕ2 − Φb/φ0)

2 . (3.3)

The momentum conjugate to φ0ϕi is the charge Qi = Ciφ0ϕi. The corresponding Hamil-
tonian reads

H =
Q2

1

2C1
+

Q2
2

2C2
− EJ1 cosϕ1 − EJ2 cosϕ2

− φ0Ib
L1 + L2

(L2ϕ1 + L1ϕ2) +
φ2

0

2(L1 + L2)
(ϕ1 − ϕ2 − Φb/φ0)

2 . (3.4)

The potential energy U(ϕ1, ϕ2) of the SQUID is defined in the plane (ϕ1, ϕ2). In the
following, we consider a SQUID with almost the same capacitances in each arm, i.e.
C1 ≃ C2. In this limit we introduce the reduced variables

x =
ϕ1 + ϕ2

2
, y =

ϕ1 − ϕ2

2
, (3.5)
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with the corresponding charges Qx and Qy, the reduced biases

s = Ib/Ic, yb =
Φb

2φ0
, (3.6)

and the following dimensionless parameters

• the critical current asymmetry α = (Ic2 − Ic1)/Ic, with Ic = Ic2 + Ic1 ,

• the loop inductance asymmetry η = (L2 − L1)/L, with L = L2 + L1,

• the junction to loop inductance ratio b = 2φ0/LIc.

The Hamiltonian in the (x, y) space reads

H =
Q2

x +Q2
y

2C
+ EJu(x, y), (3.7)

where C−1 = C−1
1 +C−1

2 and EJ = EJ1 +EJ2 . In the limit C1 ≃ C2, the coupling terms
between Qx and Qy are neglected. The reduced potential energy u(x, y) is

u(x, y) = − cosx cos y − α sinx sin y − sx− sηy + b(y − yB)2. (3.8)

The dynamics is then equivalent to a free fictitious particle of mass M = φ2
0C and

coordinates (x, y) moving in the potential u(x, y).
The characteristic energy scale of the SQUID is given by its plasma frequency ωp. We

define ωp as the frequency of the phase fluctuations in a local minimum of a symmetric
SQUID at zero bias current and bias flux

~ωp =
√

8EJEC , (3.9)

where EC =
e2

2C
= EC1 + EC2 is the charging energy of the SQUID. The effective

frequency of the phase oscillations depends on the working points and is lower than ωp.
The plasma frequency is about one half of the mean plasma frequency of the junctions.

3.1.2 The SQUID potential

3.1.2.a Topography of the potential

The presence of the cosine and sine terms in the potential u(x, y) of Eq. (3.8) gives rise to
local minima connected by saddle points, as plotted on Fig. 3.2. The extremum points are
determined with the spatial derivatives of the potential ∂xu(x, y), ∂yu(x, y), ∂

2
xxu(x, y),

∂2
xyu(x, y), ∂

2
yyu(x, y). In the following, we notice the derivatives ux(x, y) = ∂xu(x, y) and

so on for the others. The location of the extremum points of the potential are obtained
by solving the set of equations ux(x, y) = uy(x, y) = 0, i.e.

{
sinx cos y − α cosx sin y = s,

cosx sin y − α sinx cos y + 2b(y − yB) = ηs.
(3.10)

This is performed numerically. The position of the extremum points is 2π-periodic in the
x direction and, due to the quadratic confinement in the y direction, the coordinate y is
constrained to the region

yB +
ηs+ |s+ α| − 1

2b
< y < yB +

ηs− |s− α| + 1

2b
. (3.11)
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Figure 3.2: Potential u(x, y) of the SQUID at the bias fields Ib = −70 nA and Φb =
0.531φ0.

The classification of extremum points is obtained with the Hessian matrix

F (x, y) =

(
uxx(x, y) uxy(x, y)
uyx(x, y) uyy(x, y)

)
, (3.12)

• minimum: detF > 0 and TrF > 0,
• maximum: detF > 0 and TrF < 0,
• saddle point: detF < 0.

In practice, |α| ≪ 1 and b > 1, as a consequence TrF > 0 and there are only minima
and saddle points.

3.1.2.b Fluxoid states

If the fictitious particle is trapped in a minimum, the phases ϕ1 and ϕ2 oscillate with a
constant mean value depending in particular on the bias current. According to the dc
Josephson equation there is no voltage across the junction, the SQUID is therefore in a
superconducting state. The characteristics of the superconducting state depend on the
local minima. The extremum points being 2π-periodic in the x direction, the minimum
at a given value of the coordinate y are locally equivalent. They constitute a fluxoid
state family, characterized by the number f of flux quanta trapped in the loop.

Starting from the state [f ], the path that minimizes the potential energy passes
through a saddle point and then reaches the minimum corresponding to the state [f ±1].
This is the path that would take a thermally excited classical particle to go from the
minimum [f ] to the minimum [f ± 1]. As we are dealing with very low temperatures,
thermal excitations are suppressed and the fictitious particle has quantum properties. In
particular, the particle can tunnel through the potential barrier that separates it from the
other minima. As we will see in the following, the tunneling rate decreases exponentially
with the barrier height. This ensures that the tunneling events occur along the path
that minimizes the potential energy. The quantum dynamics between the states [f ] and
[f ± 1] can thus be treated using the one-dimensional potential that corresponds to the
two-dimensional potential along the path of minimum potential energy. The reduction
of dimension is treated in Sec. 3.1.3.
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3.1.2.c Critical diagram

The presence of extremum points is governed by the bias fields. Indeed, if s is larger
than unity for example, there are no minima. For a given value of the flux, we define the
critical current as the value sc at which the critical extremum points satisfy detF = 0.
At this value of the bias current, the minima merge with the saddle points and there are
no minima nor saddle points for bias current s above sc. The diagram sc(yB) is called
the critical diagram (see Fig. 3.12).

The critical diagram is obtained from the numerical solutions of ux = uy = detF = 0
for a given value of the flux bias. This set of equations reads





sinxc cos yc − α cosxc sin yc = sc,

cosxc sin yc − α sinxc cos yc + 2b(yc − yB) = ηsc,

(cosxc cos yc + α sinxc sin yc)(cosxc cos yc + α sinxc sin yc + 2b)

= (sinxc sin yc + α cosxc cos yc)
2.

(3.13)

The whole diagram can be obtained from the solution in the range s > 0 and −π/2 <
yB ≤ π/2 using the symmetries





yB → yB + πf,

sc → sc,

xc → xc + πf,

yc → yc + πf,

(3.14)





yB → 2πf − yB,

sc → −sc,

xc → 2πf − xc,

yc → 2πf − yc.

(3.15)

For the particular flux bias yB = π/2− (1+ ηα)/2b the solution is xc = π, yc = π/2, and
sc = α. The critical diagram is used to determine the region of existence of the states
[f ] in the plane (yB, s).

3.1.3 Reduction to one dimension

3.1.3.a Average over the transverse motion

The typical shape of the potential u(x, y) is composed of local minima and saddle points
connected by narrow valleys. To study the phase dynamics from minima to minima in
this potential, we will suppose that the fictitious particle follows the path of minimal
curvature. We can then describe the dynamics with one variable, since the path in the
plane (x, y) is determined by x and y = ζ(x). We call z(x) the curvilinear abscissa along
the path of minimum potential, defined by

z(x) = z0 +

∫ x

x0

dx′
√

1 + ζ ′2(x′). (3.16)

Now let us consider a point (x0, y0) at abscissa z0 on this path and call θ the angle
between the x axis and the direction of minimal curvature (θ ∈ [−π, π])

θ(x0) =
1

2
arctan

(
2∂2

xyu(x0, y0)

∂2
xxu(x0, y0) − ∂2

yyu(x0, y0)

)
. (3.17)

The direction of minimal curvature is denoted by X// and the perpendicular direction,
given by the angle θ + π/2, is denoted by X⊥. The correspondence between (x, y) and
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(X//, X⊥) is given by the rotation matrix

(
X//

X⊥

)
=

(
cos θ0 sin θ0
− sin θ0 cos θ0

)
·
(
x− x0

y − y0

)
. (3.18)

We can then express the Hamiltonian in terms of X//, X⊥, P// = MẊ//, and P⊥ = MẊ⊥.

In the transverse direction, the transverse frequency is much larger than the plasma
frequency ωp =

√
8ECEJ . The transverse potential is thus safely approximated by a

harmonic potential of bottom well frequency ω⊥. The fictitious particle can then be
treated as a harmonic oscillator in the ground state in the transverse direction. To show
that the transverse dynamics is frozen in the ground state, we can evaluate the overlap of
the transverse wavefunctions ψz(x⊥) at two points z1 and z2 along the path of minimal
curvature. The overlap R(z1, z2) of the ground state wavefunctions

Ψ1,2(x) =

[
mω⊥(z1,2)

π~

]1/4

exp

{
−mω⊥(z1,2)

2~
x2

}
, (3.19)

reads

R(z1, z2) =

∫ +∞

−∞
dxΨ1(x)Ψ2(x) =

√
2 [ω⊥(z1)ω⊥(z2)]

1/4

[ω⊥(z1) + ω⊥(z2)]
1/2

. (3.20)

If we choose z2 = z + δz close to z1 ≡ z, we have

R(z, z + δz) ≃ 1 −
(
ω′
⊥(z) δz

4ω⊥(z)

)2

. (3.21)

In order to obtain an adiabatic evolution in the ground state, the condition is thus
ω⊥(z)

ω′
⊥(z)

≫ δz, where the characteristical distance δz is of the order of unity (δz < 2π).

The numerical evaluation of these quantities shows that the adiabaticity condition is
satisfied (ω⊥(z)/ω′

⊥(z) ≫ 1 and R(z1, z2) . 1, see Fig. 3.3)

The transverse oscillations being much faster than the plasma frequency, the trans-
verse motion can be averaged out. The dynamics in the longitudinal direction is then
governed by the effective Hamiltonian H// = 〈H〉⊥ obtained after averaging H over the
transverse degree of freedom. The kinetic part of the Hamiltonian is obtained using
P 2

x +P 2
y = P 2

// +P 2
⊥. At second order in the transverse motion, the dynamics is governed

by the Hamiltonian

H⊥ =
P 2
⊥

2M
+
Mω2

⊥
2

(X⊥ −X0)
2 − Mω2

⊥
2

X2
0 , (3.22)

where the parameter X0 comes from the slope of the potential in the transverse direction.
Defining ∂⊥ as the derivative in the transverse direction ∂

∂X⊥
, the transverse frequency

and X0 read

ω⊥ =
√
∂2
⊥u(x, y)ωp, (3.23)

X0 =
∂⊥u(x, y)

∂2
⊥⊥u(x, y)

, (3.24)
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Figure 3.3: Overlap R(z1, z2) of the
wavefunctions Ψ1(x) and Ψ2(x) of the
harmonic oscillator ground state at two
points z1 and z2 with different curvatures
along the path of minimal curvature.
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Figure 3.4: Corrections 〈H⊥〉⊥ to the po-
tential due to the transverse motion, in
units of the barrier height ∆U . The po-
tential is shifted to satisfy 〈H⊥〉⊥(z =
0) = 0.

where the derivatives satisfy

∂⊥u(x, y) = − sin θux(x, y) + cos θuy(x, y), (3.25)

∂2
⊥⊥u(x, y) = uxx(x, y) − sin 2θ uxy(x, y) + 2b cos2 θ. (3.26)

As a consequence, averaging on the transverse direction gives rise to two contributions
to the potential of H//

〈H⊥〉⊥ = 1
2~ω⊥ − 1

2Mω2
⊥X

2
0 . (3.27)

We notice in passing that the value 〈X2
⊥〉 =

ωp

ω⊥

√
2EC

EJ
≪ 1 corroborates the validity of

the hamonic approximation.
The effective Hamiltonian reads

H// =
P 2

//

2M
+ U(x), (3.28)

where U(x) = EJ [u(x, ζ(x)) + µ(x)], with µ(x) = 〈H⊥〉⊥/EJ . In practice, however, the
additional potential µ is a small correction to u (see Fig. 3.4).

3.1.3.b One-dimensional potential

We choose the origin of the curvilinear abscissa at a particular minimum MinC with co-
ordinates (xm, ym) and fluxoid state [f ]. Along the path of minimum potential (x, ζ(x)),
this minimum is connected to two saddle points SaddleR,L, which are both connected to
another minimum MinR,L according to the one-dimensional potential U(z) = EJ [u(z) +
µ(z)]. The convention is to call MinR the peripheral minimum with the lowest potential
energy and to orient z towards MinR.

If we focus on the dynamics around the minimum, this potential is well approximated
by its Taylor expansion up to fourth order, i.e. U(z) = U(0) + U(z) +O(z5) with

U(z) ≃ 1

2
Mω2

0z
2
(
1 − u3z − u4z

2
)
, (3.29)
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where the bottom well frequency ω0 and the coefficients u3 ≥ 0, u4 ≥ 0 are obtained
numerically or with approximate expressions in specific cases (see Fig. 3.14). The abscissa
qR,L = z(SaddleR,L) of the saddle points are

qR,L =
−3u3 ±

√
9u4

3 + 32u4

8u4
. (3.30)

We also define the escape points at abscissa σR,L where U(σR,L) = 0

σR,L =
−u3 ±

√
u4

3 + 4u4

2u4
. (3.31)

The point at σR is always defined whereas σL has a physical meaning only when U(MinL) ≤
U(MinC).

When the coefficient u4 is larger than u3, the potential is composed of two barriers.
Because of these two “humps”, we decide to call this potential the “camel-back” potential.

3.1.4 Anharmonic quantum oscillator

The dynamics in a given minimum is governed by the Hamiltonian

Haho = ~ω0

(
P 2

z + Z2
)
− a~ω0Z

3 − b~ω0Z
4, (3.32)

where Z =
√
Mω0/~z is the reduced position operator, Pz is the corresponding momen-

tum operator, a = u3

√
~/Mω0/2, and b = u4~/2Mω0. At sufficiently low temperatures

below the plasma frequency, the energy spectrum of the particle is quantized in the min-
imum. A second order perturbation theory [85] in a and b leads to a transition frequency
between the levels n and n− 1

hνn,n−1 = ~ω0 (1 − nλn) , (3.33)

where λn is the anharmonicity of the oscillator

λn = 3b+
15

4
a2 +

3

4
b2
(

7

n
+ 17n

)
. (3.34)

The anharmonicity depends on the working point (Ib,Φb). A sufficiently large anhar-
monicity is necessary to reach the two-level limit. Indeed, the manipulation of the states
is performed with a microwave in resonance with the energy difference between the
ground state and the first excited state. For a harmonic oscillator, where the anhar-
monicity is zero by definition, this microwave would excite all the levels. The two states
|0〉 and |1〉 constitute a qubit. The confining potential depending on the phases, this two
level system is called a phase qubit [86–89].

3.2 Macroscopic quantum tunneling in a general quartic

potential

The quantum dynamics of the dc-SQUID phase qubit is governed by the tunneling
through the quartic potential (3.29). The expression of the corresponding escape rate,
with a double escape path, is not explicitly given in the literature of macroscopic quan-
tum tunneling (see e.g. Refs. [90–92]) and has to be calculated. We use the instanton
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σL σR

U(z)

ω0

ΓL
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qL qR

ΓR
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Figure 3.5: Scheme of the general quartic
potential with a metastable state and two
escape paths.

−U(z)

σL Ω σR

Figure 3.6: Inverted potential correspond-
ing to Fig. 3.5.

technique [93, 94], detailed with further explanations in appendix B, to derive the escape
rate from the metastable state of the potential sketched on Fig. 3.5.

The escape rate Γ is obtained from the imaginary part of the energy E of the fictitious
particle in the local minimum. Indeed, in the well, the norm of the particle wave-function
Ψ(z, t) satisfies the temporal evolution

∫
dz |Ψ(z, t)|2 = e−2Im Et/~, (3.35)

which decays exponentially with the decay rate

Γ = −2

~
ImE. (3.36)

The lifetime of the state is equal to Γ−1.

To find the energy E, we start from the general Hamiltonian

H =
P 2

2M
+ U(z), (3.37)

where P = M dz
dt is the momentum of the particle. The classical version of this system

possesses a stable equilibrium state in which the particle is at rest at z = 0. However,
quantum corrections render this state unstable: it is a false ground state. The probability
amplitude for the particle to go from a point zi at time ti to the point zf at time tf is
then given by the propagator

K(zi, ti; zf , tf ) = 〈zf |e−iH(tf−ti)/~|zi〉, (3.38)

where |zi,f 〉 are position eigenstates. To calculate this probability amplitude we sum the
contributions of all possible trajectories satisfying the boundary conditions. For a given
path, the phase of the contribution is the corresponding action S in units of the quantum
action ~ [95]. To calculate this integration, let us perform first a Wick rotation: time t is
replace by the imaginary time τ = it. Then the action S becomes the Euclidean action
S

S =

∫ T
2

−T
2

dτ

[
M

2
ż2 + U(z)

]
, (3.39)
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where the dot means time derivative with respect to τ and iti = −T/2, itf = T/2. In
terms of path integrals the propagator reads

〈zf |e−HT/~|zi〉 = N
∫ zf

zi

Dz e−S/~. (3.40)

The parameter N is a normalization factor and Dz denotes the integration over all
functions z(t) obeying the boundary conditions z(ti) = zi and z(tf ) = zf . The effect of
the Wick rotation on the action is thus to invert the potential. In other words, in the
part of space between z = 0 and z = σL,R, the momentum of the particle is imaginary:
P 2 = −2MU < 0. But if we choose the time variable t as an imaginary variable τ = it,
then the motion is possible in the sense of classical dynamics in the inverted potential
−U(q) (see fig. 3.6). The propagator (3.40) can be evaluated in the semiclassical limit,
where the functional integral is dominated by the stationary point z̄ of S. The stationary
point satisfies

δS
δz

∣∣∣∣
z̄

= 0, with
δS
δz

= − d

dτ

(
∂L
∂ż

)
+
∂L
∂z

= −Mz̈ + U ′(z). (3.41)

The corresponding action is

S0 =

∫ T/2

−T/2
dτ

[
M

2
˙̄z2 + U(z̄)

]
. (3.42)

To determine the prefactor N , we express N in terms of the functional determinant
of a solvable equivalent system. The expression of the propagator of a particle in a
smooth potential (B.46) can be applied to the case of a harmonic oscillator. If we focus
on the case zi = zf = 0 and define the bottom well frequency ω0 by Mω2

0 = U ′′(0), the
propagator becomes

〈0|e−HT/~|0〉 =

√
Mω0

π~
e−ω0T/2−S0/~

(
det
[
−M∂2

t + U ′′(z̄)
]

det
[
−M∂2

t +Mω2
0

]
)− 1

2

. (3.43)

Now we consider the case σL,R finite (see Figs. 3.5 and 3.6). There are nontrivial
solutions of Eq. (3.41): the particle can start at the top of the hill, bounces off the
potential on the right at z = σR or on the left at z = σL and returns on the top of the
hill. For T → ∞, we call this trajectory the right, and respectively the left, “bounce”.

The bounce has an energy E0 = 0, thus dz̄
dτ =

√
2
M U(z̄). The bounce actions read

SR
0 = 2

∫ σR

0
dz
√

2MU(z) and SL
0 = 2

∫ σL

0
dz
√

2MU(z). (3.44)

We define “the center of the bounce” the time when ˙̄z = 0 or equivalently z̄ = σL,R.
For large T , a bounce centered anywhere in the interval of integration is an approx-
imated stationary point of the functional integrand. The multibounce configurations
consist of nR right bounces and nL left bounces with centers at t1, . . . , tnR+nL where
T/2 > t1 > · · · > tnR+nL > −T/2. From now on, we apply the so-called dilute instanton
gas approximation. Within this approximation we consider that the bounces are inde-
pendent, which is valid when the time between two successive attempts is smaller than
the tunneling time. The resulting propagator reads

〈0|e− 1
~
HT |0〉 =

√
Mω0

π~
exp
(
−ω0T/2 + KR e−SR

0 /~T + KL e−SL
0 /~T

)
. (3.45)
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This leads to the total decay rate

Γ = ΓR + ΓL, ΓR,L = 2 e−SR,L
0 /~ImKR,L. (3.46)

As a conclusion, in the limit of a dilute gas of instantons, the total escape rate is simply
the sum of the tunneling rates in each barrier.

Using a steepest-descent method to perform the integrations over the paths in the
semiclassical limit, it is possible to determine the coefficients KR,L. After some algebra
we get

ImKL,R =
1

2

√
SL,R

0

2Mπ~

∣∣∣∣∣
det′

[
−M∂2

τ + U ′′(z̄)
]

det
[
−M∂2

τ +Mω2
0)
]
∣∣∣∣∣

− 1
2

. (3.47)

This ratio of functional determinants can be calculated with the Gelfand-Yaglom formula
(see Sec. B.1.4) using the bounce orbit z̄(τ).

As a result, the tunneling rate of a particle of mass M from an unstable state through
the barrier potential U(z) with a double escape path reads

Γ = ΓL + ΓR, (3.48)

ΓL,R = AL,R e−BL,R/~, (3.49)

AL,R = ω0

√
Mω0

π~
σL,R eIL,R , (3.50)

BL,R = 2

∫ σL,R

0
dz
√

2MU(z), (3.51)

IL,R =

∫ σL,R

0
dz

[√
Mω2

0

2U(z)
− 1

z

]
. (3.52)

Applied to the potential of Eq. (3.29), this general result gives rise to the total
tunneling rate Γ = ΓL + ΓR

ΓL,R = 4ω0

√
Mω0

π~

∓σL,R

2 − u3σL,R

× exp

(
−2mω0

u4~

[
1

3
+

u2
3

8u4
± u3

u2
3 + 4u4

16u
3/2
4

arccos

(
∓ u3√

u2
3 + 4u4

)])
. (3.53)

Applied to a cubic potential (u4 = 0), the standard MQT tunneling rate is recovered [90]

Γcubic = 12
ω0

2π

√
6πV
~ω0

exp

[
−36

5

V
~ω0

]
. (3.54)

In the case of the symmetric camel-back potential (u3 = 0), we get the new tunneling
rate

Γcamel
sym.

= 16
ω0

2π

√
2πV
~ω0

exp

[
−16

3

V
~ω0

]
. (3.55)

In this case, the bounce orbit is equal to z̄(τ) =
σL,R

cosh(ω0τ)
(see Fig. 3.7). The tunneling

time is of the order of ω−1
0 .
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Ω Ω

imaginary time

Figure 3.7: Bounce orbit. Points Ω and σL,R are the same as in Fig. 3.6.

3.3 Manipulation of the qubit

3.3.1 Properties of the sample

A schematic of the experimental setup is shown on Fig. 3.8. The SQUID was fabricated at
the Physikalisch-Technische Bundesanstalt in Braunschweig using a Nb/AlOx/Nb trilayer
process with SiO2 dielectric. The two 5µm2 junctions are embedded in a 10 × 10µm2

square loop. The circuit is cooled down to 30 mK.
The experimental parameters are

C1 = C2 = 250.3 fF,

{
Ic1 = 5.65µA,

Ic2 = 5.57µA,

{
L1 = 2.69 pH,

L2 = 16.5 pH.
(3.56)

The corresponding values of the reduced parameters are

α = 0.0072, η = 0.72, b = 3.05. (3.57)

The plasma frequency of the sample is

ωp = 2π × 83 GHz, (3.58)

with also
EJ

EC
= 36 × 103,

Mωp

2~
= 33.5. (3.59)

The typical bottom well frequency of a minimum is ω0 = 2π × 15 GHz with a high
transverse frequency ω⊥ = 2π × 100 GHz. The property of coherence of the qubit is
determined with

• The relaxation time of the excited state |1〉: T1 ≃ 100 ns. A π-pulse (i.e. a
microwave excitation of duration calibrated to swap the states) is applied and the
state is measured after a delay varying between 0 and 300 ns (see Fig. 3.9).

• The decay rate of the coherent oscillations between the states |0〉 and |1〉 under a
microwave excitation, i.e. Rabi oscillations: TRabi

2 ≃ 67 ns. The state is measured
after a varying time of excitation, from 0 to 200 ns (see Fig. 3.10).

• The decoherence time between two π/2-pulses, i.e. Ramsey oscillations: TRamsey
2 ≃

20 ns. The state is measured after two π/2-pulses with a varying delay between the
pulses, from 0 to 40 ns (see Fig. 3.11).
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Figure 3.8: Circuit layout. The two small white squares in the central loop are the
SQUID Josephson junctions. Connected on the right are current bias and voltage leads.
These are heavily filtered at various stages of the cryostat, including the on-chip low-
pass filter formed by Loc = 10nH and Coc = 200 pF. Fast flux pulses δΦ inductively
couple via the on-chip loop to the left of the SQUID. Microwave excitation is applied
via an on-chip loop which couples inductively to the current bias leads. An off-chip coil
provides a dc flux bias Φdc. The total externally applied flux is Φext = Φdc + δΦ. The
SQUID chip is enclosed in a copper box thermally anchored to the mixing chamber of
a dilution refrigerator with a 30 mK base temperature. The cryostat is surrounded by
superconducting Pb, µ-metal, and soft iron shielding.
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Figure 3.9: Energy relaxation of the first excited state.
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Figure 3.10: Rabi oscillations.
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Figure 3.11: Ramsey oscillations.
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Figure 3.12: Experimental measurement
of the critical diagram of the dc SQUID
(s50%(yB)). The theory fits very well with
the experimental points.
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Figure 3.13: Experimental measurement of
the escape probability as a function of the
bias current. This histogram is used to de-
termine the current s50% that ensures the
escape with a probability of 50 %.

3.3.2 Determination of the critical lines

The current and flux biases set the shape of the two-dimensional potential and hence
the one-dimensional confining potential and the energy spectrum of the fluxoid state.
The manipulation at low temperature as well as the external filters and shieldings ensure
that the qubit is in the ground state |0〉. However, the ground state has a finite lifetime
due to the possibility of tunneling through the barrier to a neighboring minimum. The
tunneling rate decreasing exponentially with the barrier height, phase tunneling of the
ground state occurs only close to the critical lines. According to the dc Josephson effect,
a phase tunneling event is accompanied with a voltage peak.

To measure the critical diagram, the SQUID is initialized in a fluxoid state at a fixed
flux bias and small current bias. Then the current bias is increased many times to sc.
For each run the voltage is measured to detect a phase tunneling event. This leads to the
escape probability as a function of the bias current, which has a sharp transition from 0
to 1 at the value s50%, corresponding to a probability of tunneling of 50 %. The graph
s50%(yB) is the critical diagram at 50% (see Fig. 3.12). The typical escape probability
as a function of the applied bias current is presented in Fig. 3.13.

By comparison with the numerical solutions, the critical diagram is used to find the
parameters α, η and b of the SQUID.

3.3.3 Readout of the state

The experimental setup decreases the external noises and excitations so that the SQUID
remains in the ground state |0〉. To excite the state |1〉 a microwave radiation in resonance
with the transition ν10 is applied on the SQUID. The properties of the microwave signal
can be determined using optimal control theory to reach a desired final state [96]. To
measure the state of the qubit, we exploit the energy dependence of the tunneling rate of
the anharmonic oscillator through the barrier. It is then possible to find another working
point closer to the critical line where the excited state tunnels with high probability and
the ground state stays in the minimum. Once the microwave manipulation is finished, a
flux pulse is applied to approach the critical line and a voltage peak appears if the qubit
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was in the state |1〉. The measurement of the quantum state is performed within a few
nanoseconds using adiabatic dc flux pulses [97].

3.3.4 One-dimensional motion close to the critical lines

For non-zero bias current, or for flux bias far from half a flux quantum, we look at the
shape of the potential around the critical points (in the half plane sc > 0). In this region,
the one-dimensional potential has a washboard shape and the barrier between a local
minimum and the following is close to a cubic potential. We do not take into account
the correction µ(x) here for the sake of simplicity. We Taylor expand the potential in
x, y and s at third order around xc, yc, and sc in the direction of vanishing curvature,
given by the angle

tan θc = −uxx(xc, yc)

uxy(xc, yc)
= −uxy(xc, yc)

uyy(xc, yc)
, with s = sc. (3.60)

In terms of the curvilinear abscissa z starting from the minimum, the one-dimensional
potential then reads

u(z) =c0 +
1

2
c2z

2 − 1

6
c3z

3 (3.61)

c0 =u(xm, ym), (3.62)

c2 =
√

2c1c3, (3.63)

c3 = cos θc(1 + 2 sin2 θc)(sinxc cos yc − α cosxc sin yc)

+ sin θc(1 + 2 cos2 θc)(cosxc sin yc − α sinxc cos yc), (3.64)

where c1 = (sc − s)(cos θc + η sin θc) is the slope at the critical point zc =
√

2c1/c3.
The potential µ(x) slightly changes the coefficient c3

1. The coordinates of the minimum
(xm, ym) at zm = 0 and the saddle point (xs, ys) at zs = 2zc are

{
xm = xc − zc cos θc,

ym = yc − zc sin θc,
(3.66)

{
xs = xc + zc cos θc,

ys = yc + zc sin θc,
(3.67)

The expansion of the potential gives also access to the bottom well frequency ω0 at the
minimum and the reduced barrier height ∆u

ω0 =
√
c2ωp, and ∆u =

2

3

(
c2
c3

)2

. (3.68)

1The potential µ(x) ≃
p

bEC/EJuxy/4b2 induces the coefficient

c⊥3 =
3

b3/2

r

EC

EJ
[uxxx sin θc(3 sin 2θcuxx + (5 + cos 2θc)uxy)

+ uxxy cos θc(3 sin 2θcuxx + (5 − sin 2θc)uxy)] . (3.65)

in addition to c3.
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The potential can be expressed in terms of the barrier height ∆U and the bottom well
frequency ω0 as follows

U(z) =U(xm, ym) +
1

2
Mω2

0z
2 − 1

6

(
Mω2

0

)3/2

√
2

3∆U
z3, (3.69)

∆U =
4

3

(
2sc

c3

)1/2

(cos θc + η sin θc)
3/2

(
1 − Ib

Ic

)3/2

EJ , (3.70)

ω0 =

(
c3
2sc

)1/4

(cos θc + η sin θc)
1/4

(
1 − Ib

Ic

)1/4

ωp. (3.71)

These results generalize the known results for a symmetric SQUID [98]. These two
parameters are sufficient to calculate the tunneling rate through the barrier. The main
problem of this kind of working point is its dependence on bias current. The average
slope of the potential being nonzero, the barrier height is sensitive to current fluctuations.

3.4 The camel-back potential

3.4.1 Potential around the working point (Ib = 0,Φb = 1

2
φ0)

We focus on the domain of bias fields around the working point

(
Ib = 0,Φb = (2k + 1)

φ0

2

)
.

In this region, two fluxoid states [k] and [k+ 1] coexist. The extremal critical points are




yBc = (2k + 1)

π

2
+

1 + ηα

2b
(−1)f−k,

sc = −(−1)f−kα,




xc = (2n+ f)π,

yc = (2k + 1)
π

2
.

(3.72)

Every minimum is connected to two equivalent minima by two saddle points. For a given
couple of bias fields, let us denote [f0] the fluxoid state which has the highest spot height,
or equivalently the smallest barrier height, and [f1] the other one. For k = 0 for instance,
[f0] = [0] and [f1] = [1] when yB > π/2. In the following, we study the tunneling effect
from a minimum of the fluxoid state [f0] to the two neighboring minima of the fluxoid
state [f1]. The position of the minima and the saddle points are, at second order in s,





xm = (2n+ f)π +
p

ỹ
− αp2

2ỹ3
,

ym = yB − (−1)f−k

2b
,

(3.73)

and 


xs = (2n+ f)π ± arccos

[
2b(−1)f−k(yB − kπ − π/2)

]
,

ys = (2k + 1)
π

2
,

(3.74)

where we note p = α + (−1)f−ks and ỹ = π/2 + kπ − ym. Starting from a minimum
(xm0 , ym0) of the state [f0], the path of minimum potential of curvilinear abscissa z
follows the trajectory

(
x(z) = xm0 + z, y(z) = yB − (−1)k

2b
cos(xm0 + z)

)
. (3.75)
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Figure 3.14: Path y = ζ(x) (left panel) and the corresponding one-dimensional potential
u(x, ζ(x) (right panel) at the bias fields Ib = −70 nA and Φb = 0.531φ0. The minima
are on the red crosses of the path and the saddle points on the green ones. The quartic
approximation of the potential is the red part of the curve.

The Tailor expansion of the one-dimensional potential up to fourth order in z reads

u(z) =u(0) +
(−1)f−k

2

[
ỹ +

p(2α− p)

2ỹ
− 3(−1)f−k

4

p2

bỹ2
− α2p2

2ỹ3

]
z2

+
1

6

[
(−1)f−k(α− p) − 3

2

p

bỹ
+

3

4

αp2

bỹ3

]
z3

+
(−1)f−k

24

[
−ỹ − 3(−1)f−k

2b
+
p(p− 2α)

2ỹ
+

15(−1)f−k

4

p2

bỹ2
+
α2p2

2ỹ3

]
z4. (3.76)

The potential µ due to the transverse motion can also be calculated along the path

µ(z) =
1

2b

√
EC

bEJ

[
p

ỹ
z +

z2

2
− 2p

3ỹ
z3 − z4

6

]
. (3.77)

The total one-dimensional potential U(z) leads to the bottom well frequency of the
minimum

ω0 = ωp

[
(−1)f−kỹ +

p(−1)f−k(2α− p)

2ỹ
− 3

4

p2

bỹ2
− (−1)f−kα2p2

2ỹ3
+

1

2b

√
EC

bEJ

]1/2

.

(3.78)
The dependence on the bias current of the bottom well frequency, and hence the energy
difference between the two levels of the qubit, permits to define the optimal line.

3.4.2 Optimal line

The manipulation of the qubit is done with a microwave in resonance with the transition
frequency ν10 between the two levels of the qubit. However, current fluctuations “shake”
the potential inducing fluctuations of ν10. The detuning between the microwave frequency
and the transition frequency decreases the coherence times of the qubit. To improve
the lifetime of the qubit it is necessary to find optimal lines in the critical diagram
where the bottom well frequency does not depend on the bias current at first order, i.e.
∂sω0(sopt) = 0 from Eq. (3.78). The optimal lines are then found to be

sopt = −(−1)f−kα+
2αbỹ2

2bỹ2 + 2bα2 + 3(−1)f−kỹ
, (3.79)
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which is quasi-constant, equal to sopt ≃ −(−1)f−kα. The optimal lines correspond
to a very weak bias current, equal to Ib ≈ ±80 nA. Although the optimal lines are
designed to minimize the current noise, the sensibility to flux noise is of the order of
∂yBω0/ω0 = −(−1)f−k (ωp/ω0)

2, which is also low.

Figure 3.16 shows the experimental measurement of the sensitivity to current noise.
The measurement proves that on the optimal line the current noise is strongly reduced.
The manipulation is limited by flux noise.
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Figure 3.15: Spectroscopic measurement of the energy difference ~ν01 between the two
states for Ib = −73 nA and Φb = −0.472φ0. The energy difference is found to be
ν01 = 10.17 GHz an the linewidth, due to low frequency noises, to be equal to 18MHz.

3.4.3 Measurement of the critical diagram

To measure the four arcs of the critical diagram (see Fig. 3.18) around the optimal line,
where two fluxoid states coexist, a novel experimental technique has been developed.
The technique is reported here around the working point Ib = 0 and Φb = −φ0/2 where
the two fluxoid states [0] and [−1] coexist. The measurement procedure is composed of
three parts, represented on Fig. 3.17

1. Initialization in the fluxoid state [0], at Φb ≃ −φ0/2.

2. Fast flux pulse (100 ns) in the direction Φb < −φ0/2.

3. After the flux pulse, at Φb ≃ −φ0/2, the state depends on the amplitude of the
pulse compared to the critical flux. If the pulse amplitude is smaller than the
critical flux, the state stays in the fluxoid state [0] and tunnels to the state [−1]
otherwise.

4. The resulting state is measured with a current pulse (60µs). The amplitude is
designed so that the fluxoid state [0] is stable and the fluxoid state [−1] has no
minimum. With this technique, a voltage peak is measured if the final state is [−1].

After many measurements, the typical escape probability as a function of the flux bias
is represented on Fig. 3.19. The value Φb50% is then reported on the critical diagram.



§3.4 The camel-back potential 55

ν 0
1

(G
H

z)

−400 −200 0 200 400 600

14

15

16

F
W

H
M

(M
H

z)

Ib (nA)

experiment
theory

−400 −200 0 200 400 600

101

102

103

Figure 3.16: Energy difference ~ν01 between the two levels of the qubit as a function of the
bias current (top panel). The experimental points are in blue and the fit from our model
in red. The current noise contribution is in dashed line and the flux noise contribution
in dotted line. Width of the spectroscopy ν01(ω) (see Fig. 3.15) as a function of the bias
current, in logarithmic scale (bottom panel). On the optimal line, where Ib ≃ 80 nA,
the energy difference is maximum and, as predicted, the current noise in minimal. The
width is limited by the flux noise (40µφ0 RMS).

3.4.4 Experimental versus theoretical results for the double-escape camel-

back potential.

Along the optimal line, the one-dimensional potential around a minimum of the fluxoid
state [f0] is quartic with a double escape path to the neighboring minima of the state
[f1]. To understand the quantum dynamics in this potential, it is necessary to study the
tunneling effect in a general quartic potential. The theory developed in Sec. 3.2 using
the instanton formalism can be compared to the known MQT results in the case of a
cubic potential, valid far from the optimal lines.
Figure 3.20 represents the experimental critical diagram on the optimal line, the MQT
result Eq. (3.53) for the general quartic potential and for the cubic one. The rounding
of the cusp is possible only if the symmetric quartic potential is taken into account.

The new treatment is also needed to explain the strong reduction of the linewidth on
the optimal line observed on Fig. 3.21. This is directly due to the presence of a symmetric
double escape path on the critical line.

The manipulation of the qubit in the camel-back region permits to multiply by a
factor two the coherence time T2, the main limitation for qubit operations.
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Figure 3.17: Different steps of the new method of measurement. A voltage appears if
the qubit was initially in the state |1〉.
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Figure 3.20: Comparison of the critical diagram close to the optimal lines between the
experimental measurement (blue points) and the theoretical results for a general quartic
potential (red line) and a cubic one (green line).

Figure 3.21: Linewidth as a function of the current bias. The experimental points are in
blue and the black line corresponds to the general quartic model with a low frequency
current noise. The symmetry of the double escape path strongly reduces the linewidth
on the optimal line.
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Conclusion and perspectives

In conclusion, we have studied theoretically the quantum dynamics of a novel quartic
camel back potential. Our new results are obtained from a generalized double-path MQT
escape theory based on the instanton formalism. Ground state escape exhibits critical
line cusps and a dip in the escape width versus bias current. Because of symmetry,
quantum dynamics are insensitive in first order to current fluctuations along an optimal
line sopt. Along this line, the dc SQUID can be used as a phase qubit whose main
decoherence source is residual flux noise.

Future optimization and exploitation of the unique properties of this system will
aid in the understanding of decoherence mechanisms in quantum circuits and has the
potential to yield a competitive phase qubit. The investigation of the transverse motion
with different confining strengths would be an interesting way to study the transition
from two to one dimension.



Qubit de phase dans un potentiel
quartique

Résumé du chapitre

D
eux jonctions Josephson insérées dans une boucle supraconductrice forment un SQUID,

un objet quantique qui peut être contrôlé par un courant et un champ magnétique.

Il se comporte comme une particule quantique dans un relief montagneux, constitué

de cuvettes reliées par des cols. À basse température, la quantification des niveaux

d’énergie dans un minimum permet d’utiliser un SQUID dc comme un qubit de phase

lorsque seuls l’état fondamental et le premier état excité sont impliqués. Nos simulations

ont abouti à un point de fonctionnement, optimal vis-à-vis des bruits de courant et

de flux, où le courant de polarisation est faible et le flux proche d’un demi quantum.

Sur cette ligne optimale le potentiel présente deux familles de minima, associées à deux

états de flux dans la boucle. Le qubit de phase est réalisé dans un type de minima

et l’autre état de flux sert à la lecture du qubit. La nouvelle méthode expérimentale

de mesure de l’état du qubit est basée sur le transfert par effet tunnel d’un minimum

à l’autre. Cette dynamique peut être raisonnablement supposée unidimensionnelle, car

la fréquence transverse le long du chemin de courbure minimale est très grande par

rapport à la fréquence longitudinale et à la température. Le potentiel unidimensionnel

effectif résultant a une forme de dos de chameau, et la particule peut tunneller à travers

deux barrières quartiques. Nous avons calculé le taux d’échappement tunnel dans ce

nouveau potentiel quartique à double échappement avec la technique des instantons.

Nos résultats décrivent bien les mesures expérimentales réalisées à l’Institut Néel et

permettent notamment de prouver le caractère optimal du point de fonctionnement.
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Chapter 4
Josephson atom lasing

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 The Lindblad master equation . . . . . . . . . . . . . . . . . . . 62

4.2 Lasing effect in the JQP cycle of a charge qubit . . . . . . . . 71

4.3 Circuit QED: transmon coupled to two cavities . . . . . . . . 81

Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . 90
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Introduction

M
otivated by a recent experiment where a single artificial atom has been realized [99],
we analyze in this chapter the coupling between a three-level quantum system, based on
a superconducting qubit, and cavities. The qubit acts as an artificial atom and with the
appropriate parameters, a lasing effect can occur. Photons are created in the cavity at
the plasma frequency of the qubit, in the microwave domain (10 GHz–1 cm). The level
quantization of the qubit being due to the Josephson effect, this phenomenon is called
Josephson atom lasing. This coherent coupling between the qubit and the cavity gives
rise to the field of circuit quantum electrodynamics, equivalent in many senses to cavity
QED in atomic physics and quantum optics. Circuit QED can also be exploited for
quantum information processing and quantum communication.

The chapter is composed of three parts. In the first part we present the derivation of
the Lindblad master equation that governs the dynamics of the density matrix and the
method to calculate the output spectrum of the system, which enables us to characterize
the laser field. This formalism is then applied to two different experiments. In the
first one, a charge qubit is coupled to a superconducting resonator. This experiment
constitutes the first observation of the Josephson lasing effect. Our quantum-mechanical
treatment gives access to the time evolution of the photon number in the cavity and
allows us to compare the output spectrum with the semiclassical approximation. The
second experiment exploits the interesting properties of the transmon, a Cooper pair
box with a large Josephson energy which is weakly sensitive to charge fluctuations. The
transmon is coupled to two cavities, one of high quality factor where the lasing effect
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takes place and another one with a low quality factor which uses the Purcell effect to
control the relaxation rate of non-lasing transition.

4.1 The Lindblad master equation

This section is devoted to the derivation of the Lindblad master equation that governs
the dynamics of the density matrix of the system. For the sake of simplicity, we consider
the case of a three-level quantum system {|0〉, |1〉, |2〉} where the transition |1〉 → |0〉 is
coupled to a cavity of high quality factor. The quality factor Q is the ratio between the

mode frequency ω0/2π of the cavity and its loss κ: Q =
ω0

κ
. The three-level system is

pumped incoherently from the level |0〉 the level |2〉 at a rate Γ and the third level can
relax spontaneously to the second one at a rate γ21. The general case where a coherent
pumping is taken into account as well as the presence of a second cavity is derived with
further details in appendix C.

γ21

ω0

ε1

ε0

|2〉ε2

κ
Γ |1〉

g

|0〉

Figure 4.1: Scheme of the artificial atom coupled to the cavity.

4.1.1 Tracing out the external baths

The incoherent processes are modeled by a coupling of the system to external baths
composed of a large number of harmonic oscillators [100, 101]. The bath coupled to
the cavity mimics the losses of photons, the bath coupled to the transition |2〉 → |1〉
enables the spontaneous emission of a photon necessary for the relaxation of the level
|2〉, and the bath coupled to the transition |0〉 → |2〉 is responsible for the incoherent
pumping of the qubit. The dynamics of the density matrix ρtot of the total system
{qubit ⊕ cavity ⊕ baths} depends only on the total Hamiltonian Htot as follows

i~
dρtot

dt
= [Htot, ρtot] , (4.1)

in the Schrödinger picture. The total Hamiltonian is composed of the Hamiltonian HS

of the system S = {qubit ⊕ cavity}, the Hamiltonian HB of the baths and the coupling
Hamiltonian HS−B between the system S and the baths

Htot = HS + HB + HS−B. (4.2)

We note σij = |i〉〈j| the operators of the qubit (σi ≡ σii), εi the energy of the level
i, a and a† the annihilation and creation operators of the cavity. Then

HQB =
2∑

i=0

εiσi, (4.3) HC = ~ω0a
†a. (4.4)

We note ~g the coupling energy between the transition |1〉 − |0〉 and the cavity

HQB−C = i~g(σ10 + σ01)(a
† − a). (4.5)
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The evolution equation for the density matrix ρ(t) of the system S can be derived
from the evolution of ρtot(t) by tracing out the degrees of freedom of the environment
ρ(t) = TrB{ρtot(t)}. The trace on the commutator of Eq. (4.1) is not trivial for terms that
contain operators of the bath, i.e. HB and HS−B. To trace out the bath in Eq. (4.1),
we can use the general result of the coupling between a free field and the baths derived
in appendix C.1.

The resulting time evolution of the reduced density matrix ρ has two contributions,
the coherent evolution is governed by the commutator [H, ρ] and the incoherent processes
are described by the Lindbladian L

dρ

dt
=

1

i~
[H, ρ] + Lρ, (4.6)

where the Lindblad operator has three contributions L = LQB + LC + LΓ

• The relaxation of the qubit from the level |i〉 to the level |j〉 due to spontaneous
emission is characterized by the rates γij

LQB =
∑

i>j

γij

2
(2σjiρσij − σiρ− ρσi). (4.7)

• The loss in the cavity is characterized by the damping rate κ and the thermal
temperature of the photons nth

LC =

2∑

α=1

κ

2
(1 + nth)(2aρa† − a†aρ− ρa†a) +

κ

2
nth(2a†ρa− aa†ρ− ρaa†), (4.8)

where nth satisfies the Bose Einstein statistics nth =
1

exp(~ω/kBT ) − 1
at temper-

atures T , which vanishes at zero temperature.

• The incoherent pumping in resonance with the transition |0〉 − |2〉 at the rate Γ

LΓ =
Γ

2
(2σ20ρσ02 − σ0ρ− ρσ0). (4.9)

The coherent evolution can be simplified with the rotating wave approximation, as ex-
plained in the following section.

4.1.2 The rotating wave approximation

The Hamiltonian of the system can be separated in two parts, first the Hamiltonian of
the isolated qubit and the isolated cavity and second the coupling Hamiltonian

H = H0 + H1,





H0 =
2∑

j=0

εjσjj + ~ωa†a,

H1 =i~g(σ10 + σ01)(a
† − a).

(4.10)

We turn to the interaction picture with respect to the Hamiltonian H0: for a general
operator O in the Schrödinger picture, the expression in the interaction picture is Õ(t) =
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exp(iH0t/~)O exp(−iH0t/~). In this representation, the different operators have the
expression

σ̃kl(t) = σkl e
i(εk−εl)t/~, σ̃i(t) = σi, (4.11)

ã(t) = a e−iω0t, ã†(t) = a† eiω0t. (4.12)

From now on we will consider that the effect of the Hamiltonian H1 is a small per-
turbation compared to the Hamiltonian H0, that is to say that the coupling energy
is small compared to the energy difference between the levels of the qubit and to the
energy of the cavity modes. In this limit, the dynamics of the operators σij and a is
mainly governed by the free Hamiltonian H0 and their expectation values oscillate at
the frequencies |εi − εj |/h or ω0/2π, which is of the order of 10 GHz for superconducting
systems. This dynamics cannot be time-resolved experimentally, and the corresponding
expectation values are averaged to zero. Consequently, we will keep only the slowly
varying terms compared to ω0 in the coupling Hamiltonian. The selection of the leading
terms is performed using the expression of H̃1

H̃1(t) =i~g
(
σ01a

† e−i(ω10−ω0)t − σ10a
† e−i(ω10+ω0)t

)
+H.c., (4.13)

where ωij = |εi − εj |/~ are the transition frequencies. The transition |1〉− |0〉 is in (close
to) resonance with the cavity. As a result, we will keep only oscillating terms at ω10−ω0

and remove those at ω10+ω0. This constitutes the Rotating Wave Approximation (RWA).
The evolution equation of the density matrix in the interaction picture is then given by

˙̃ρ(t) =
1

i~

[
H̃1, ρ̃(t)

]
+ Lρ̃(t), (4.14)

with

H̃1 = i~g
(
σ01a

† e−iδt − σ10a eiδt
)
, (4.15)

where we define the detuning between the qubit transition and the cavity mode δ =
ω10 − ω0.

The general Lindblad master equation Eq. (4.14) can be used to calculate the tempo-
ral evolution of the density matrix, and hence the temporal evolution of all the observ-
ables of the system such as the level populations, the photon number or the correlations
between the qubit and the cavities. This calculation cannot be done analytically and
needs a numerical treatment. To obtain approximate expressions for the observables,
one can use a semiclassical approach that neglects the correlations between the qubit
and the cavity.

4.1.3 Dynamics of the qubit levels and resonator populations

4.1.3.a From the density matrix

The expectation value 〈O〉 of an observable O (e.g. σij or a(†)) is obtained from the
density matrix

〈O〉 = Tr{ρO} =

2∑

i=0

∞∑

n=0

〈i, n|ρO|i, n〉, (4.16)
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where {|i, n〉} is the basis where |i〉 is the level of the qubit and |n〉 is the state with n
photons in the cavity. The dynamical equation for the expectation value is

d〈O〉
dt

=
1

i~
〈[O,H]〉 + Tr{OLρ} . (4.17)

The dynamics is simpler in the rotating frame of the expectation value, i.e. when we
consider only the oscillations around the main frequency given by H0. We define

〈
Ō
〉

=
〈
e−iH0t/~O eiH0t/~

〉
= Tr{ρ̃O} , (4.18)

and then
d
〈
Ō
〉

dt
= Tr

{
˙̃ρO
}
, (4.19)

therefore it is sufficient to know the time evolution of the density matrix in the interaction
picture to find the time evolution of the observables in the rotating frame.

The time evolution of the qubit levels 〈σi〉(t) and the resonator populations Pn(t) =∑2
i=0〈i, n|ρ(t)|i, n〉 is determined by the matrix elements 〈i, n|ρ(t)|i, n〉 of the density

matrix. The Hilbert space of the qubit is reduced to the levels {|0〉, |1〉, |2〉} while the
one of the cavity is infinite. We need to truncate the latter at a state M sufficiently large
so that PM (t) remains small compared to unity (in practice M is fixed according to the
desired precision). The time-derivatives of these elements satisfy

〈i, n|ρ̇(t)|i, n〉 = κ [(n+ 1)〈i, n+ 1|ρ(t)|i, n+ 1〉 − n〈i, n|ρ(t)|i, n〉]
+ Γ〈0, n|ρ(t)|0, n〉(δi,2 − δi,0) + γ21〈2, n|ρ(t)|2, n〉(δi,1 − δi,2)

+ 2g
[√
n〈0, n|ρ(t)|1, n− 1〉δi,0 −

√
n+ 1〈0, n+ 1|ρ(t)|1, n〉δi,1

]
, (4.20)

where we used the property 〈1, n|ρ|0, n+ 1〉 = 〈0, n+ 1|ρ|1, n〉 when the qubit is in reso-
nance with the cavity. To obtain a closed set of equations for {〈i, n|ρ(t)|i, n〉}i∈{0,1,2},n∈{0,...,M},
we need the additional matrix elements {〈0, n|ρ(t)|1, n− 1〉}n∈{1,...,M}. Their time-derivative
reads

〈0, n|ρ̇(t)|1, n− 1〉 = κ
[√

n(n+ 1)〈0, n+ 1|ρ(t)|1, n〉 − (n− 1/2)〈0, n|ρ(t)|1, n− 1〉
]

− Γ

2
〈0, n|ρ(t)|1, n− 1〉 + g

√
n [〈1, n− 1|ρ(t)|1, n− 1〉 − 〈0, n|ρ(t)|0, n〉] . (4.21)

This set of equations leads to the time-evolution of the different populations but also to
their steady state values. This is achieved by setting the time derivatives to zero and
using the relation Trρ = 1, i.e.

∑2
i=0

∑M
n=0〈i, n|ρ(t)|i, n〉 = 1. The method to solve a

more general case is presented in appendix C.2.1.

4.1.3.b Semiclassical treatment

The average number of photons N(t) = 〈a†a〉(t) in the cavity in the steady state can
be found in the semiclassical approximation, valid for a large number of photons. To
find the stationary solution of the photon number, we start with the differential equation
satisfied by N(t) for an incoherent pumping,

Ṅ(t) = −κN(t) + gC1r(t), (4.22)
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where C1r(t) = 〈ā†(t)σ̄01(t) + ā(t)σ̄10(t)〉. The temporal evolutions for the additional
fields read

Ċ1r(t) = −(Γ + κ)C1r(t)/2 − δC1i(t) + 2g〈σ1〉(t) + 2g〈σz〉(t)N(t), (4.23)

Ċ1i(t) = −(Γ + κ)C1i(t)/2 + δC1r(t), (4.24)

〈σ̇1(t)〉 = γ21(1 − 2〈σ1〉(t) + 〈σz〉(t)) − gC1r(t), (4.25)

〈σ̇z(t)〉 = γ21(1 − 2〈σ1〉(t) + 〈σz〉(t)) + Γ(〈σ1〉(t) − 〈σz〉(t)) − 2gC1r(t). (4.26)

where C1i(t) = i〈ā†(t)σ̄01(t)−ā(t)σ̄10(t)〉 and 〈σz〉(t) = 〈σ1(t)−σ0(t)〉. In the semiclassical
limit, i.e. for a large photon number, we can factorize 〈〈σz〉(t)N(t)〉 = 〈〈σz〉(t)〉〈N(t)〉.
The stationary solution is then

N =
1 − κ

(
1
Γ + 1

γ21

)
− κ

4g2 (Γ + κ)
(
1 + 4δ2

(Γ+κ)2

)

2κ
(

2
Γ + 1

γ21

)

+

√[
1 − κ

(
1
Γ + 1

γ21

)
− κ

4g2 (Γ + κ)
(
1 + 4δ2

(Γ+κ)2

)]2
+ 4κ

(
2
Γ + 1

γ21

)

2κ
(

2
Γ + 1

γ21

) (4.27)

≃ γ21

2κg2

2g2(Γ + κ) − κ(Γ2/2 + 2δ2)

Γ + 2γ21
, (4.28)

for κ≪ Γ and

〈σ0〉 =
κ

Γ
N, (4.29)

〈σ1〉 = 1 − κ

(
1

Γ
+

1

γ21

)
N, (4.30)

C1r =
κ

g
N, (4.31)

C1i =
2κδ

g(Γ + κ)
N. (4.32)

These expressions can be used to find a good estimation of the photon number, the qubit
populations and the correlation σ10a

†. The comparison with the results from the density
matrix will be presented in Sec. 4.2.

4.1.4 Output spectrum

4.1.4.a Relation to the steady state density matrix

The output spectrum Ŝ(ω) is defined as the Fourier transform of the correlator S(τ) =
〈a†(τ)a(0)〉. We calculate the output spectrum once the steady state is reached. If we
call tSS the time beyond which the physical observables are time-independent (according
to a given precision), the time τ is equal to τ = t− tSS . This average being independent
of the representation, we choose the Heisenberg one [102]:

S(ω) =

∫ +∞

−∞
dτ e−iωτ 〈a†H(τ)aH(0)〉 (4.33)

= 2Re

∫ ∞

0
dτ eiωτ 〈a†H(0)aH(τ)〉.

The density matrix ρI(τ = 0) is obtained after a sufficiently long time to reach the
steady state. The different pictures used in this section (Schrödinger picture, subscript
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S; Heisenberg, H; interaction, I) are defined with respect to the time τ . In the following,
we will use the convention TL{f(τ)}(ω) =

∫∞
0 dτ eiωτf(τ) and the notation S(τ) =

〈a†H(0)aH(τ)〉. The integral over all frequencies of the spectrum is equal to

∫ +∞

−∞
dωS(ω) = 2πN (4.34)

To go back to the interaction representation we use the superoperator, i.e. an operator
which acts on operators, U(τ)

U(τ)[O] = eiH0τ/~ e−iHτ/~OU †(τ)eiHτ/~ e−iH0τ/~, (4.35)

OI(τ) = U(τ)[OH(τ)] . (4.36)

In particular, for the density matrix we have

ρI(τ) = U(τ)[ρI(0)] , (4.37)

where ρI(0) = ρH is the steady state density matrix. Then, it is possible to express the
temporal spectral function

S(τ) = Tr
{
a†H(0)aH(τ)ρH

}
(4.38)

= Tr{aI(τ)AI(τ)} , (4.39)

where AI(τ) = U(τ)
[
ρI(0)a†I(0)

]
. The temporal dependence of aI(τ) reads

aI(τ) = eiH0τ/~ aS e−iH0τ/~ = e−iω0τ aS , (4.40)

and then
〈n, i|aI(τ) = e−iω0τ

√
n+ 1 〈n+ 1, i|. (4.41)

The resulting trace is

Tr{aI(τ)AI(τ)} = e−iω0τ
2∑

i=0

∞∑

n=0

√
n+ 1〈n+ 1, i|AI(τ)|n, i〉. (4.42)

Fourier transforming yields

Ŝ(ω) = 2Re
2∑

i=0

∞∑

n=0

√
n+ 1〈n+ 1, i|Â(∆ω)|n, i〉, (4.43)

where Â(∆ω) = TL{AI(τ)}(ω0 + ∆ω) and ∆ω = ω − ω0. In the preceding relation we
used TL

{
e−iω0τ f(τ)

}
(ω) = TL{f(τ)}(ω − ω0).

Concerning the density matrix, we know that the formal solution of the master equation
is the equation (4.37) with suitable initial conditions. The temporal evolution of the
density matrix ρI(τ) = U(τ)[ρI(0)] is governed by the superoperator L (τ)

L (τ)[O] =
1

i~
[H1I(τ),O] + LO, (4.44)

according to the relation
ρ̇I(τ) = L (τ)[ρI(τ)] . (4.45)
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The definition of the operator AI(τ) = U(τ)
[
ρI(0)a†I(0)

]
reveals that AI(τ) has a dy-

namics equivalent to the time evolution of the density matrix but with a different initial
value. This property of the operator A leads to its time derivative

ȦI(τ) = L (τ)[AI(τ)] , (4.46)

AI(0) = ρI(0)a†I(0). (4.47)

These relations can be directly derived using the quantum regression theorem, also called
the Lax-Onsager regression theorem due to the work of Lars Onsager [103] and Melvin
Lax [104].

4.1.4.b Use of the quantum regression theorem

Let us suppose that the expectation value of an operator O at a time t0 + τ can be
expressed in terms of a set of operators {Oi} at time t0, namely

〈O(t0 + τ)〉 =
∑

i

fi(τ)〈Oi(t0)〉. (4.48)

Then, if we want to calculate the correlation between O at time t0+τ and Ol or Or at time
t0, i.e. the quantity 〈Ol(t0)O(t0 + τ)Or(t0)〉, the quantum regression theorem [105, 106]
states that O(t0 + τ) can be replaced by the set {Oi(t0)}. The resulting correlator
contains all operators at the initial time t0:

〈Ol(t0)O(t0 + τ)Or(t0)〉 =
∑

i

fi(τ)〈Ol(t0)Oi(t0)Or(t0)〉. (4.49)

The quantum regression theorem is valid in the Born-Markov approximation that we
used to derive the Lindbladian. Applied to the spectral function, this theorem leads
directly to Eq. (4.46) for AI(τ).

To calculate the spectral function, we need the 3(M−1) elements 〈i, n+1|AI(τ)|i, n〉
for n ∈ {0, . . . ,M − 1}:

〈i, n+ 1|ȦI(τ)|i, n〉
= κ

[√
(n+ 1)(n+ 2)〈i, n+ 2|AI(τ)|i, n+ 1〉 − (n+ 1/2)〈i, n+ 1|AI(τ)|i, n〉

]

+ Γ〈0, n+ 1|AI(τ)|0, n〉(δi,2 − δi,0) + γ21〈2, n+ 1|AI(τ)|2, n〉(δi,1 − δi,2)

+ g
[√
n+ 1〈1, n|AI(τ)|0, n〉 +

√
n〈0, n+ 1|AI(τ)|1, n− 1〉

]
δi,0

− g
[√
n+ 1〈1, n+ 1|AI(τ)|0, n+ 1〉 +

√
n+ 2〈0, n+ 2|AI(τ)|1, n〉

]
δi,1.

(4.50)

This set of equations induces two additional matrix elements, namely 〈0, n+2|AI(τ)|1, n〉
and 〈1, n|AI(τ)|0, n〉. This leads us to define the column matrixB(τ) =

(
b0(τ), . . . , bM−1(τ)

)t

of dimension 5M − 1 as follows

bn<M−1(τ) =




〈n+ 1, 0|AI(τ)|n, 0〉
〈n+ 1, 1|AI(τ)|n, 1〉
〈n+ 1, 2|AI(τ)|n, 2〉
〈n+ 2, 0|AI(τ)|n, 1〉
〈n, 1|AI(τ)|n, 0〉



, bM−1(τ) =




〈M, 0|AI(τ)|M − 1, 0〉
〈M, 1|AI(τ)|M − 1, 1〉
〈M, 2|AI(τ)|M − 1, 2〉

〈M − 1, 1|AI(τ)|M − 1, 0〉


 .

(4.51)
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The temporal derivative of AI(τ) is equivalent to a matrix equation involving B(τ) and
Ḃ(τ) connected with the matrix W by Ḃ(τ) = W ·B(τ). The expression for the matrix
W is given in the appendix C.2.2. The temporal spectral function then reads

S(τ) = e−iω0τ
M−1∑

n=0

2∑

j=0

√
n+ 1B5n+j(τ). (4.52)

Next, noting the Fourier transform B̂(ω) = TL{B(τ)}(ω), and using the property
TL{f ′(τ)}(ω) = −iωTL{f(τ)}(ω) − f(0), we get

iωÂ(ω) + L

[
Â(ω)

]
= −AI(0), (4.53)

or equivalently
B̂(ω) = − (W + iωI)−1 ·B(0), (4.54)

where

bn(0) =
√
n+ 1




〈n+ 1, 0|ρH |n+ 1, 0〉
〈n+ 1, 1|ρH |n+ 1, 1〉
〈n+ 1, 2|ρH |n+ 1, 2〉
〈n+ 2, 0|ρH |n+ 1, 1〉
〈n, 1|ρH |n+ 1, 0〉



, bM−1(0) =

√
M




〈M, 0|ρH |M, 0〉
〈M, 1|ρH |M, 1〉
〈M, 2|ρH |M, 2〉

〈M − 1, 1|ρH |M, 0〉


 .

(4.55)
The density matrix in the steady state can be found using the method of Sec. 4.1.3.a.
The use of the quantum regression theorem reduces the time integration of the Fourier
transform to a matrix inversion, and is a powerful tool for numerical calculations.

4.1.4.c Semiclassical derivation

The temporal derivative of S(τ) depends on the function F (τ) = 〈σ10I(τ)aI(0)〉. The

derivative of F (τ) generates the correlator 〈[σ1(τ) − σ0(τ)] a
†
I(τ)aI(0)〉 which is factor-

ized according to 〈σz(0)〉S(τ) in the semiclassical approximation. The dynamics is then
reduced to the matrix equation

∂τ

(
S(τ)
F (τ)

)
=

(
iω0 − κ

2 g

g〈σz〉 i(ω0 + δ) − Γ
2

)
·
(
S(τ)
F (τ)

)
. (4.56)

Fourier transforming yields

(
Ŝ(ω)

F̂ (ω)

)
=

(
i∆ω + κ/2 −g
−g〈σz〉 i(∆ω − δ) + Γ/2

)−1

·
(
S(0)
F (0)

)
, (4.57)

where S(0) = N and F (0) = (C1 + iC2)/2 found in Sec. 4.1.3.b. This leads to

Ŝ(ω0 + ∆ω) = 2N Re




Γ
2 + κ

2 + i
(
∆ω − Γ

Γ+κδ
)

(Γ/2 + i(∆ω − δ)) (κ/2 + i∆ω) − g2〈σz〉


 . (4.58)

The spectral function Ŝ(ω) can be approximated by a Lorentzian

Ŝ(ω0 + ∆ω) ≃ 2Nkd

(∆ω − δω0)2 + k2
d

(4.59)
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with the width and the dephasing given by

kd =
κ

2
− 2g2 Γ

Γ2 + 4δ2
〈σz〉, δω0 = 4g2 δ

Γ2 + 4δ2
〈σz〉. (4.60)

The coupling to the cavity reduces the width of the output spectrum with respect to the
case of an isolated cavity where kd = κ/2.

It is worth mentioning that the semiclassical approximation constitutes a perturbative
treatment in the coupling between the qubit and the cavity. This approach needs to be
handled with care close to the resonance where the coupling is maximum. We will see in
Sec. 4.2.3.b a method to improve the factorization.
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4.2 Lasing effect in the JQP cycle of a charge qubit

In this section we apply the general formalism of the previous one to the first experi-
ment where the lasing effect of a superconducting qubit coupled to a cavity has been
observed [99]. We use the parameters of their three-level artificial atom to compare our
treatment to the experimental results and to obtain the temporal dynamics, not mea-
sured experimentally. We also analyse the validity of the semiclassical approximation.
The truncation of the correlations is inspired from Ref. [107], where the lasing effect of
a two-level artificial atom is studied.

4.2.1 The JQP cycle

In the experiment of Ref. [99], a charge qubit is coupled to a superconducting waveguide
resonator. To achieve the population inversion necessary to induce lasing, the Josephson
quasiparticle (JQP) cycle [108, 109] has been used. The two states |0〉 and |1〉 of the
qubit correspond to 1 and 0 Cooper pair, respectively, and the third state |2〉, with
an energy higher than both qubit states, describes an unpaired electron. To extract
one electron by breaking a Cooper pair, an energy equal to twice the superconducting
gap ∆ is needed in addition to the charging energy EC = e2/2C of the junction. The
JQP cycle provides incoherent pumping between the states |0〉 and |2〉 with the rate
Γ̃ = (eVb+EC)/e2Rb and a relaxation rate γ̃21 = (eVb−EC)/e2Rb from |2〉 to |1〉, obtained
using the Fermi golden rule. As a result, the state |0〉 decays to |1〉 with two sequential
single-electron tunneling events. In the experiment, a voltage equal to Vb = 0.65 mV
larger than (2∆ + EC)/e = 0.54 mV (the superconducting gap energy of aluminum is
∆/h = 55 GHz) is applied. The resulting rates are Γ̃ = 4.6 GHz and γ̃21 = 3.5 GHz.
The cavity is described with the bosonic annihilation and creation operators a and a†,
satisfying

[
a, a†

]
= 1. The resonator has a bare resonance frequency ω0/2π = 9.899 GHz

and a quality factor equal to 7600, corresponding to a damping rate κ = 8.2 MHz. The
Hamiltonian of the charge qubit coupled to the cavity reads [99]

H =
ǫ

2
(|1〉〈1| − |0〉〈0|)−EJ

2
(|1〉〈0| + |0〉〈1|)+~ω0

(
a†a+

1

2

)
+~g0(a

†+a)(|0〉〈0|−|1〉〈1|),
(4.61)

where the electrostatic energy difference ǫ = 4EC(ng − 1) between the two states is con-
trolled by the normalized gate charge ng = CgVg/e where Cg is the gate capacitance and
Vg the gate voltage (see Fig. 4.2). The qubit is characterized by the charging energy

Figure 4.2: Schematic representation of the experimental circuit of Ref. [99] studied in
this section.

EC/h = 20 GHz and the Josephson energy EJ/h = 5.4 GHz (EJ < EC). The bare cou-
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pling energy is equal to g0/2π = 80MHz. The eigenvalues ±~ω10/2 of the Hamiltonian

of the qubit HQB =
1

2

(
−ǫ −EJ

−EJ ǫ

)
are given by

~ω10 =
√
E2

J + ǫ2. (4.62)

The corresponding eigenvectors {|ψ0〉, |ψ1〉} are obtained after a rotation of the basis
{|0〉, |1〉} around the state |ψ2〉 ≡ |2〉 of the angle θ satisfying

tan 2θ = EJ/ε. (4.63)

We note σij = |ψi〉〈ψj | the operators of the qubit in the eigenbasis, in which the Hamil-
tonian is reduced to the usual form

H =
~ω10

2
(σ1 − σ0) + ~ω0

(
a†a+

1

2

)
+ i~g(σ01a

† − σ10a). (4.64)

This Hamiltonian is obtained after applying the RWA and the unitary transformation
a→ ia. The effective coupling energy depends on the gate voltage according to

g = sin 2θ g0. (4.65)

The resonance is achieved at ǫ/h = 8.3 GHz where g/2π = 44MHz.

4.2.2 Lindblad operator

The pumping and relaxation rates Γ̃ and γ̃21 concern the charge states {|0〉, |1〉, |2〉} of
the qubit. In the eigenbasis {|ψ0〉, |ψ1〉, |ψ2〉}, where |ψ2〉 = |2〉, the rates are modified
and the reverse processes are induced:

• Pumping |ψ0〉 → |ψ2〉 at the rate Γ = cos2 θ Γ̃.

• Relaxation |ψ2〉 → |ψ1〉 at the rate γ21 = cos2 θ γ̃21.

• Relaxation |ψ2〉 → |ψ0〉 at the rate γ20 = sin2 θ γ̃21.

• Pumping |ψ1〉 → |ψ2〉 at the rate γ12 = sin2 θ Γ̃.

The total Lindblad operator is then L = LC + LΓ + Lγ21 + Lγ20 + Lγ12 , where

Lγij =
γij

2
(2σjiρσij − σiρ− ρσi). (4.66)

At the resonance, the pumping rate in the eigenbasis is reduced to Γ = 4.2 GHz with
also γ21 = 3.3 GHz while the additional transitions occur at rates γ20 = 0.29 GHz and
γ12 = 0.37 GHz.

Using the method explained in Secs. 4.1.3.a and 4.1.4, the Hamiltonian (4.64) together
with the Lindblad operator L give access to the qubit and level populations as well as the
output spectrum. The time evolution of the photon number and the qubit populations are
showed on Fig. 4.3. The time to reach the steady state is of the order of the microsecond.
A population imbalance 〈sz〉 = 〈σ1 − σ0〉 = 12 % and a photon number 〈n〉 = 122.5 is
achieved. The experimentally estimated number of photons in the cavity is Nexp ≃ 30
but it can be underestimated, as the resonator internal loss is not accounted for. The
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Figure 4.3: Temporal dynamics obtained for the experiment of Ref. [99]. Left : Time
evolution of the photon number in the cavity. Time is expressed in microseconds. Right :
Time evolution of the level populations, 〈σ0〉(t) in blue, 〈σ1〉(t) in green and 〈σ2〉(t) in
red. The inset represents the qubit populations during the first nanoseconds.

stationary distribution of the photon number P(n) is compared to the Gaussian PG(n)
and Poissonian PP (n) distributions

PG(n) =
1√
2πσ

exp

(
−(n−N)2

2σ2

)
, (4.67)

PP (n) =
Nn e−N

n!
. (4.68)

where the variance σ2 is given by σ2 =
∑

n

(n − N)2 P(n). The photon number being

large, the Poissonian tends to the Gaussian distribution.

4.2.3 Semiclassical treatment

4.2.3.a Photon number

The steady state value of the photon number is obtained from a set of equations involving
〈σz〉, 〈σ1〉, and 〈σ10a〉. This set depends on the parameter 〈σzn〉, which can be factorized
in the semiclassical limit. The corresponding result, similar to Eq. (4.27), is in excellent
agreement with the solution from the steady state density matrix plotted in Fig. 4.4. In
the limit κ≪ Γ, γ21, and for ǫ > 0, one finds

N =
γ21

2g2κ

2g2
(
Γ − γ12 +

2ǫ2+E2
J

2ǫ~ω10
κ
)
− κ

2

(
Γ2 + γ2

12 + 2
2ǫ2+E2

J

ǫ2+E2
J
δ2
)

Γ + 2γ21

+
γ12

4g2

E2
J

ǫ~ω10
g2 +

E2
J

ǫ2+E2
J
δ2 − Γγ12

γ12 + 2γ20
. (4.69)

The solution at resonance is found to be N = 122.8, which is in good agreement with
the numerical solution (0.2 % relative difference). The steady state photon number as a
function of the gate voltage is plotted in Fig. 4.4.



74 Josephson atom lasing §4.2

P
h
o
to

n
n
u
m

b
er

ǫ/h (GHz)

0
0

50

100

5 10 15 20

Figure 4.4: Steady state photon number obtained for the experiment of Ref. [99] as a
function of the gate voltage. The photon number is maximal at the resonance.

4.2.3.b Output spectrum

The semiclassical result obtained for the spectrum in Sec. 4.1.4.c used the factorization
〈σz(τ)a

†(τ)a(0)〉 ≃ 〈σz(0)〉〈a†(τ)a(0)〉 between the qubit and the cavity. This decoupling
can be improved as demonstrated in Ref. [107], where the correlator is factorized as
follows

〈σz(τ)a
†(τ)a(0)〉 ≃ 〈√nσz〉

〈√n〉 〈a†(τ)a(0)〉

≃ 1

2

(
〈σz〉 +

〈σzn〉
〈n〉

)
〈a†(τ)a(0)〉. (4.70)

This result is obtained from the amplitude-phase representation of the operator a and
assuming that the correlation time of the phase fluctuations is much longer than that of
the amplitude fluctuations. In the following, we use this relation to truncate correlations
and then to compare the semiclassical approximation with the numerical result using the
regression theorem. We note 〈Sz〉 = 1

2 (〈σz〉 + 〈σzn〉/〈n〉). The improved semiclassical
approximation leads to the result

Ŝ(ω0 + ∆ω) = 2NRe




1
2 (Γ + γ12 + κ) + i

(
∆ω − Γ+γ12

Γ+γ21+κδ
)

(κ/2 + i∆ω) ((Γ + γ21)/2 + i(∆ω − δ)) − g2〈Sz〉


 . (4.71)

This output spectrum is well approximated with the Lorentzian

Ŝ(ω0 + ∆ω) =
2Nkd

(∆ω − δω0)2 + k2
d

, (4.72)

where

kd =
κ

2
− 2g2 Γ + γ21

(Γ + γ21)2 + 4δ2
〈Sz〉, δω0 = 4g2 δ

(Γ + γ21)2 + 4δ2
〈Sz〉. (4.73)

The parameter 〈Sz〉 can be determined from the numerical result for the photon number.
Figure 4.5 shows the output spectrum as a function of ǫ and the probing frequency

ω. This simulation is compared to the experimental result. We find a maximum of
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Figure 4.5: Left : Density plot of the spectrum from our fully-quantum model as a
function of the probing frequency (ω − ω0)/2π and the gate voltage related to ǫ. Right :
measurement of the spectrum in the experiment of Ref. [99].

the spectrum close to the resonance at ǫ = 8.3 GHz. The second “hot spot” at ǫ =
19 GHz is not observed in our simulation. In Fig. 4.6 the maximum value of the output
spectrum is plotted as a function of ǫ, for both the numerical result from the quantum
regression theorem and the semiclassical result Eq. (4.71). This comparison reveals that
the semiclassical treatment is not correct in the region close to the resonance. The two
maxima of the semiclassical spectra, obtained first in Ref. [107], are thus artifacts of
the approximation and cannot explain the second hot spot. The presence of two-photon
resonance seems to be a good explanation for this second peak. A deeper analysis of
two-photon processes need to be carried out. On Fig. 4.7, we see that the linewidth of
the theoretical spectra is much more narrow than the experimental ones, found to be
larger than 500 kHz. This is mainly due to charge fluctuations in the Cooper pair box.
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Figure 4.6: Maximum value of the spectrum
as a function of ǫ. The quantum solution is
plotted in red and the semiclassical one in
blue.
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Figure 4.7: Spectrum at the resonance. The
linewidth is found to be about 90 kHz.
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4.2.4 Injection locking

4.2.4.a Pumping on the cavity

We investigate the behavior of the system when it is driven by an external field V0 cos((ω0+
̟)t). The radiation is coupled to the cavity operators through the Hamiltonian H2 =
V0 cos((ω0 + ̟)t)(a† − a). In the RWA and the interaction picture, this Hamiltonian
reduces to

H̃2 = i~v0

(
e−i̟t a† − ei̟t a

)
, (4.74)

where v0 = V0/2~ and ̟ is the detuning from the cavity frequency ω0. This pumping
on the cavity allows to measure the coherence property of the field in the cavity. Indeed,
if the cavity field is coherent, the injection locking effect occurs and the cavity field
oscillates at the same frequency as the driving field.

The presence of the driving field modifies the temporal dynamics of the density
matrix. The additional elements can be implemented in the numerical calculation of the
density matrix. We are then able to get the time evolution and the steady state value
of any observable as well as the spectrum. This results are plotted in Figs. 4.8, 4.9, and
4.10. However, to understand the effect of the pumping on the cavity, we develop in the
following a semiclassical treatment based on a rough factorization between the qubit and
the cavity.

4.2.4.b Photon number

The pumping on the cavity changes the time evolution of the density matrix by the term

〈i, n| 1

i~

[
H̃2, ρ̃(t)

]
|j,m〉 =v0

(√
n〈i, n− 1|ρ̃|j,m〉 ei̟t −

√
n+ 1〈i, n+ 1|ρ̃|j,m〉 e−i̟t

)

−
√
m+ 1〈i, n|ρ̃|j,m+ 1〉 e−i̟t +

√
m〈i, n|ρ̃|j,m− 1〉 ei̟t

)
.

(4.75)

This additional term affects all the elements of the density matrix, which is no longer
block diagonal.

Starting from the qubit in the ground state and no photon in the cavity, the qubit is
pumped at a rate Γ and the cavity is pumped at a frequency ω0 +̟ once the stationary
state is reached at time tSS. We have verified that the results are the same if the
pumping starts from the beginning and do not depend on the initially occupied qubit
level. The parameters are the same as before, except for the damping rate. To reduce
the computation time we multiply κ by ten: κ̃ = 10κ. This change reduces the photon
number but does not change the qualitative behavior. The time evolution of the photon
number and the qubit populations are plotted in Fig. 4.8 at the resonance ω10 = ω0 = ̟.
The pumping is switched on 0.2µs after the beginning of the experiment with a strength
v0 = κ̃.

Analytical results can be obtained in the semiclassical approach. The dynamical
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equations read

∂t〈N〉(t) = −κ〈N〉(t) + gC1r(t) + v0C2r(t), (4.76)

∂t〈σ0〉(t) = −Γ〈σ0〉(t) + C1rb(t), (4.77)

∂t〈σ1〉(t) = γ21〈σ2〉(t) − C1rb(t), (4.78)

∂t〈σ2〉(t) = −γ21〈σ2〉(t) + Γ〈σ0〉(t), (4.79)

∂tC1r(t) = −(κ+ Γ)C1r(t)/2 + 2g〈σ1〉(t) + 2g(〈σ1〉(t) − 〈σ0〉(t))〈N〉(t) + v0C3r(t),
(4.80)

and

Ċ2r(t) = −κ
2
C2r(t) + gC3r(t) + i̟C2i(t) + v0, (4.81)

Ċ3r(t) = −Γ

2
C3r(t) + g(〈σ1(t)〉 − 〈σ0(t)〉)C2r(t) + i̟C3i(t), (4.82)

Ċ2i(t) = −κ
2
C2i(t) + gC3i(t) + i̟C2r(t), (4.83)

Ċ3i(t) = −Γ

2
C3i(t) + g(〈σ1(t)〉 − 〈σ0(t)〉)C2i(t) + i̟C3r(t), (4.84)

where we define

C2r(t) = 〈ei̟t ã(t) + e−i̟t ã†(t)〉, C2i(t) = 〈ei̟t ã(t) − e−i̟t ã†(t)〉, (4.85)

C3r(t) = 〈ei̟t σ̃01(t) + e−i̟t σ̃10(t)〉, C3i(t) = 〈ei̟t σ̃01(t) − e−i̟t σ̃10(t)〉. (4.86)

The model can be simplified to calculate the photon number in the cavity in presence
of pumping. We consider that the effect of the qubit is to maintain a constant photon
number in the cavity N0 ≃ 122.5 and treat the pumping as if the cavity were isolated.
The total number of photons is then N0+NP where NP is the number of photons created
due to the pumping. The solution of this simplified problem reads

NP (t) = N0 e−κt + v0 Re

[
a†(0)

e−(κ/2+i̟)t

κ/2 − i̟

]
+

v2
0

̟2 + (κ/2)2
, (4.87)

which steady state solution is NP =
v2
0

̟2+(κ/2)2
, a Lorentzian of width κ. Finally, the

total photon number reads

N = N0 +
v2
0

̟2 + (κ/2)2
. (4.88)

The first effect of the additional pumping on the cavity is to increase the photon number
in the cavity. This tendency to amplify the lasing effect is more apparent on the spectrum.

4.2.4.c Spectral function

To understand the effect of the driving field on the spectral function we evaluate S(t, t′) =
〈a†(t)a(t′)〉 is the semiclassical limit. We define the center of mass and the difference of
the times t, t′ as follows: tm = (t+ t′)/2 and τ = t− t′. We focus on

S̃(tm, τ) = e−iω0(t−t′)S(t, t′) = e−iω0τ 〈ã†(tm + τ/2)〉〈ã(tm − τ/2)〉. (4.89)
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Figure 4.8: Time evolution of the photon number in the presence of a driving field on
the cavity, obtained from the time evolution of the density matrix for the experiment of
Ref. [99]. The driving is switched on after 200 ns with an amplitude v0 = κ̃.

Then, in the RWA, S̃ satisfies the differential equation

(
1

4

∂2

∂t2m
− ∂2

∂τ2

)
S̃(tm, τ) = −

(κ
2

)2
S̃(tm, τ) −

κ

2

∂

∂tm
S̃(tm, τ) + v2

0e
i̟τ + g2F̃ (tm, τ),

(4.90)
where F (t, t′) is the spectral function of the qubit

F (t, t′) = 〈σ10(t)σ01(t
′)〉, F̃ (tm, τ) = 〈σ̃10(tm + τ/2)σ̃01(tm − τ/2)〉. (4.91)

At first order in the coupling constant g, F̃ (tm, τ) satisfies the differential equation

(
1

4

∂2

∂t2m
− ∂2

∂τ2

)
F̃ (tm, τ) = −

(
Γ

2

)2

F̃ (tm, τ) −
Γ

2

∂

∂tm
F̃ (tm, τ). (4.92)

Without pumping, the spectral function depends only on the time difference τ . If v0 6= 0,
we see with Eqs. (4.90) and (4.92) that in the RWA the perturbation depends only on τ .
Therefore we can neglect the tm dependence. This is also motivated by the fact that we
are interested in the steady state solution tm large, where derivatives with respect to tm
vanish. Defining S̄(τ) = S̃(τ, tm ≫ 1) and F̄ (τ) = F̃ (τ, tm ≫ 1), we get the coupled
differential equations

S̄ ′′(τ) −
(κ

2

)2
S̄(τ) = −g2F̄ (τ) − v2

0e
i̟τ , (4.93)

F̄ ′′(τ) −
(

Γ

2

)2

F̄ (τ) = 0, (4.94)

the solution of which is

S̄(τ) =

(
〈N〉(tSS) −

v2
0

̟2 + (κ/2)2
+

4g2〈σ1〉(tSS)

Γ2 − κ2

)
e−κ|τ |/2

+
v2
0

̟2 + κ2
ei̟τ − 4g2〈σ1〉(tSS)

Γ2 − κ2
e−Γ|τ |/2. (4.95)
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The Fourier transform finally reads

S̃(ω0 + ω) =

(
〈N〉(tSS) −

v2
0

̟2 + (κ/2)2
+

4g2〈σ1〉(tSS)

Γ2 − κ2

)
κ

ω2 + (κ/2)2

+ 2π
v2
0

̟2 + (κ/2)2
δ(ω −̟) − 4g2〈σ1〉(tSS)

Γ2 − κ2

Γ

ω2 + (Γ/2)2
. (4.96)

The integral is equal to the photon number in the steady state: 1
2π

∫
R

dωS(ω0 + ω) =
〈N〉(tSS).
Let us consider the case of very low coupling, setting g to zero:

S(ω0 + ω) ≃ N0
κ

ω2 + (κ/2)2
+ 2πNP δ(ω −̟). (4.97)

• If v0 = 0, the spectral function is a Lorentzian centered around ω0.

• If v0 6= 0, the Lorentzian is reduced and a Dirac peak appears at the driving
frequency. This transformation conserves the area.

The Dirac peak becomes a Lorentzian if the sinusoidal pumping has a small exponential
decay. The experimental linewidth is equal to 100 kHz.

On Fig. 4.9 we plot the output spectrum resulting from our quantum treatment as a
function of the pumping strength v0. As v0 increases from zero, the spectrum becomes
more and more peaked around the driving frequency. The experimental measurement of
the spectral function shows a sharp reduction of the width. This is due to the presence
of charge noise which widens a lot the Lorentzian in the absence of driving. Fig. 4.10
represents the spectrum for a weak driving v0 = κ̃/10 and another one for a strong
driving v0 = κ̃/2 to point out the shrinking of the Lorentzian. This is the signature of
phase locking, as observed in experiment [99].

Figure 4.9: Output spectrum in the presence of a driving field on the cavity as a function
of the driving strength v0. Our numerical simulation, on the left with κ̃, is compared to
the result of Ref. [99], on the right.
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Figure 4.10: Spectra (logarithmic scale) in the presence of a driving field on the cavity
obtained from the steady-state density matrix for a driving strength v0 = κ̃/10 in red and
v0 = κ̃/2 in blue. The dashed line represents the spectrum without driving. The presence
of the driving field induces phase locking which reduces the width of the spectrum.
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4.3 Circuit QED: transmon coupled to two cavities

The recent developments in the field of circuit quantum electrodynamics (circuit QED)
are based on the transmon (transmission-line shunted plasma oscillation qubit), a Cooper
pair box with a large Josephson energy compared to the charging energy [110–113].
The most interesting characteristic of the transmon is to be almost insensitive to charge
fluctuations in the island, conferring it long coherence times. In this section we study the
lasing effect of a transmon coupled to two cavities. The transmon is pumped coherently
with a microwave and the first cavity has a high quality factor. The second cavity is
coupled to the transition |2〉 → |1〉 and has a low quality factor. This cavity contains a
very small photon number compare to unity and, according to the Purcell effect, induces
an effective relaxation rate γ21. With this configuration the relaxation rate is controlled
by the parameters of the cavity. The goal of this project is to find a configuration that
optimize the lasing effect.

4.3.1 Circuit theory

We consider the voltage-biased circuit shown in Fig. 4.11 composed of a qubit and two
cavities. The qubit is a transmon. It contains a large capacitor C0 with a large charge Q0

such that the ratio Q0/C0 ≡ V0 is fixed. This constitutes the voltage bias. The trans-
mon is modeled with a Josephson junction (flux-tunable Josephson energy EJ , critical
current IJ = 2eEJ/~) in parallel with a capacitance CB. This junction is surrounded
in parallel by two L-C circuits (L1-C1 and L2-C2) with coupling capacitances Cg1 and
Cg2 , respectively. The two L-C circuits play the role of the resonant cavities. These
three elements are linked to the voltage bias through the gate capacitance Cg. Accord-
ing to Devoret’s circuit theory [114], we choose a ground node (bottom) and four active
nodes with phases ϕ0, ϕ1, ϕ2 and ϕB. Phases are expressed in terms of the reduced flux
quantum φ0 = ~/2e. These nodes are connected by the spanning tree (in red on the
figure), which we choose to contain the capacitances. Notations for positive orientation
are drawn on the circuit. Applying first Faraday’s law for magnetic flux conservation and

Figure 4.11: Circuit of a transmon coupled to two cavities
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then Kirchhoff’s law for current conservation we get two sets of equations, respectively





φ0ϕ0 = Φ0

φ0ϕ1 = ΦL1 = ΦC1

φ0ϕ2 = ΦL2 = ΦC2

φ0ϕB = ΦB = ΦJ

ΦB = ΦC1 + Φg1 = ΦC2 + Φg2 = Φ0 + Φg

, (4.98)

and,





C0Φ̈0 = CgΦ̈g

Cg1Φ̈g1 = C1Φ̈C1 + ΦL1/L1

Cg2Φ̈g2 = C2Φ̈C2 + ΦL2/L2

CgΦ̈g + Cg1Φ̈g1 + Cg2Φ̈g2 + CBΦ̈B + IJ sin ΦJ = 0

. (4.99)

This leads to four dynamical equations for the four variables ϕ0, ϕ1, ϕ2 and ϕB

C̃0ϕ̈0 − Cgϕ̈B = 0,

C̃1ϕ̈1 − Cg1ϕ̈B = −ϕ1/L1,

C̃2ϕ̈2 − Cg2ϕ̈B = −ϕ2/L2,

C̃Bϕ̈B − Cgϕ̈0 − Cg1ϕ̈1 − Cg2ϕ̈2 = −φ−1
0 IJ sinϕB.

(4.100)

where we define C̃0 = C0 + Cg, C̃1 = C1 + Cg1 , C̃2 = C2 + Cg2 and, C̃B = CB + Cg +
Cg1 + Cg2 .

This set of equations corresponds to the equations of motion
∂L
ϕi

=
d

dt

(
∂L
∂ϕ̇i

)
of the

Lagrangian

φ−2
0 L =

1

2
C̃0ϕ̇

2
0 +

1

2
C̃1ϕ̇

2
1 +

1

2
C̃2ϕ̇

2
2 +

1

2
C̃Bϕ̇

2
B − Cgϕ̇0ϕ̇B − Cg1ϕ̇1ϕ̇B − Cg2ϕ̇2ϕ̇B

−
(
ϕ2

1

2L1
+

ϕ2
2

2L2
− φ−2

0 EJ cosϕB

)
. (4.101)

It is then possible to find the conjugate charges Q0, Q1, Q2 and QB using the relation
Qi = φ−1

0
∂L
∂ϕ̇i

: φ0Q0 = C̃0ϕ̇0−Cgϕ̇B, φ0Q1 = C̃1ϕ̇1−Cg1ϕ̇B, φ0Q2 = C̃2ϕ̇2−Cg2ϕ̇B and,

φ0QB = C̃Bϕ̇B − Cgϕ̇0 − Cg1ϕ̇1 − Cg2ϕ̇2.
Taking the limit C0 → ∞ and Q0 → ∞ with Q0/C0 → V0, we get

φ0ϕ̇0 = V0, (4.102)

φ0ϕ̇1 =
Cg1

C̃1

1

C̃B − C2
g1

C̃1
− C2

g2

C̃2


QB + CgV0 +

Cg2

C̃2

Q2 +
C̃B − C2

g2

C̃2

Cg1

Q1


 , (4.103)

φ0ϕ̇2 =
Cg2

C̃2

1

C̃B − C2
g1

C̃1
− C2

g2

C̃2


QB + CgV0 +

Cg1

C̃1

Q1 +
C̃B − C2

g1

C̃1

Cg2

Q2


 , (4.104)

φ0ϕ̇B =
1

C̃B − C2
g1

C̃1
− C2

g2

C̃2

(
QB + CgV0 +

Cg1

C̃1

Q1 +
Cg2

C̃2

Q2

)
. (4.105)
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The resulting Hamiltonian H = φ0ϕ̇0Q0 + φ0ϕ̇1Q1 + φ0ϕ̇2Q2 + φ0ϕ̇BQB − L can be
written in terms of the Hamiltonian of the qubit HQB, the Hamiltonian HCα of the
cavity α = 1, 2, the coupling Hamiltonian between the qubit and the cavities HQB−Cα

and the coupling Hamiltonian between the two cavities HC1−C2 as follows

H = HQB + HC1 + HC2 + HQB−C1 + HQB−C2 + HC1−C2 , (4.106)

HQB =
(QB + CgV0)

2

2C̄B
− EJ cosϕB,

(4.107)

HCα =
Q2

α

2C̄α
+

ϕ2
α

2Lα
, (4.108)

HQB−Cα =
(QB + CgV0)Qα

CQα
, (4.109)

HC1−C2 =
Q1Q2

C12
, (4.110)

where C̄B = C̃B − C2
g1
/C̃1 − C2

g2
/C̃2, C̄

−1
α = C̃−1

α + C2
gα
/(C̃2

α(C̃B − C2
g1
/C̃1 − C2

g2
/C̃2)),

CQα = Cgα/(C̃α(C̃B − C2
g1
/C̃1 − C2

g2
/C̃2)) and, C12 = Cg1Cg2/(C̃1C̃2(C̃B − C2

g1
/C̃1 −

C2
g2
/C̃2)).

4.3.2 Quantization

We turn now to the second quantization form of the Hamiltonian (4.106) of the circuit.

4.3.2.a Transmon

The Hamiltonian of the qubit is the Cooper pair box Hamiltonian

HQB = 4EC(N + ng)
2 − EJ cosϕB, (4.111)

where we define the reduced charge N = QB/2e, the charge offset ng = CgV0/2e and
the charging energy EC = e2/2C̄B. To reduce the charge noise, the qubit is tuned
in the transmon configuration, that is to say in the regime EJ ≫ EC [110–112]. The
charge dispersion reducing exponentially in EJ/EC , while the anharmonicity decreases
algebraically, it is possible to decrease the charge noise sensitivity while sacrifying a small
amount of anharmonicity. In practice, the qubit can become insensitive to charge. Due
to these interesting properties, the transmon qubit is currently used as the main building
block in circuit QED [113].

The energy spectrum can be obtained exactly in terms of Mathieu’s functions. Indeed,
the stationary Schrödinger equation corresponding to the qubit Hamiltonian HQB

[
4EC (−i∂ϕ − ng)

2 − EJ cosϕ
]
ψ(ϕ) = εψ(ϕ), (4.112)

can be solved exactly in terms of Mathieu’s characteristic value

εk(ng) = EC a2(ng+k)(−1/4λ2), (4.113)

where λ = EC/~ωp.

In the limit EJ ≫ EC , the energy levels and the eigenfunctions can be well approxi-
mated with a first order perturbation theory in λ. In this limit, the phase is well defined
at a minimum of the potential energy. The potential term can then be Taylor expanded,
up to fourth order, around ϕB = 0. The transmon behaves like a perturbed harmonic
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Figure 4.12: Exact spectrum ε(ng) (green) compared to the first order perturbation
theory result (red) in units of the transition energy ε1(0.5)− ε0(0.5). From left to right,
EJ/EC = 1, 5, 10, 50.

oscillator in a quartic potential with a plasma frequency ωp =
√

8ECEJ/~. Defining the
bosonic canonical annihilation operator b =

√
λ
(
ϕB + i

√
2N
)
, we get

HQB = ~ωp

(
b†b+ 1/2

)
− EC

12

(
b+ b†

)4
. (4.114)

Using a first order perturbation theory in λ we find the energy levels

εn = ~ωp(n+ 1/2) − EC

2
(n2 + n+ 1/2). (4.115)

The parameter λ corresponds to the anharmonicity of the qubit:

εn − εn−1 = ~ωp(1 − nλ/2). (4.116)

The comparison between the first order result Eq. (4.115) and the exact one Eq. (4.113) is
plotted in Fig. 4.12. When the Josephson energy is much larger than the charging energy
the spectrum of the lowest levels is ng-independent, rendering the transmon insensitive
to charge fluctuations.

Next we express the charge QB on the basis of the the eigenstates of the qubit |ψn〉
(corresponding to the level εn)

|ψn〉 = |n〉 +
λ

24

(
(2n+ 3)

√
(n+ 1)(n+ 2) |n+ 2〉 − (2n− 1)

√
n(n− 1) |n− 2〉

+
1

4

√
(n+ 1)(n+ 2)(n+ 3)(n+ 4) |n+ 4〉 − 1

4

√
n(n− 1)(n− 2)(n− 3) |n− 4〉

)
,

(4.117)

where |n〉 are the eigenstates of the unperturbed harmonic oscillator. In the momentum
representation, the eigenvectors read

〈ψn|N〉 =
in√
2nn!

(
4λ

π

) 1
4

e−2λN2
(
Hn(2

√
λN)

− λ

48
(2n+ 3) Hn+2(2

√
λN) +

λ

12
n(n− 1)(2n− 1) Hn−2(2

√
λN)

+
λ

384
Hn+4(2

√
λN) − λ

24
n(n− 1)(n− 2)(n− 3) Hn−4(2

√
λN)

)
. (4.118)

The charge can then be expressed in terms of the raising and lowering operators of the
qubit eigenstates

σij = |ψi〉〈ψj |, (4.119)
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as follows

N =
∞∑

i,j=0

ηij σij , ηij =

∫ +∞

−∞
dN N 〈ψi|N〉 〈N |ψj〉. (4.120)

Now we focus only on the first three levels. As a result, only η01 = −i(1−λ/4)/
√

8λ =
−η10 and η12 = −i(1 − λ/4)/2

√
λ = −η21 are taken into account:

QB

2e
= − i√

8λ

[
(1 − λ/4)(σ01 − σ10) +

√
2 (1 − λ/2)(σ12 − σ21)

]
. (4.121)

At lowest order η12 =
√

2 η01.

4.3.2.b Cavities

Introducing the two energies ECα = e2/2C̄α and ELα = φ2
0/2Lα, the Hamiltonian of the

cavities reads

HCα = 4ECα

(
Qα

2e

)2

+ ELαϕ
2
α. (4.122)

Defining the characteristic frequency ωα = 1/
√
LαC̄α = 4

√
ECαELα/~, and using the

creation and annihilation operators aα and a†α of the cavities

ϕα = 2i

√
ECα

~ωα
(a†α − aα), Qα = −2e

√
ELα

~ωα
(a†α + aα),

[
aα, a

†
α

]
= 1, (4.123)

the Hamiltonian reads

HCα = ~ωα

(
a†αaα +

1

2

)
. (4.124)

4.3.2.c Coupling terms

The coupling Hamiltonian between the qubit and the cavity is proportional to QBQα,

which gives rise to couplings between operators σij and a
(†)
α . In the RWA, we keep only

couplings between a qubit lowering operator and a cavity creation operator or a qubit
raising operator with a cavity annihilation operator. This leads to four coupling energies

HQB−Cα = i~g1α(σ01b
†
α − σ10bα) + i~g2α(σ12b

†
α − σ21bα), (4.125)

where

~g1α =
√

2
1 − λ/4√

λ

e2

CQα

√
ELα

~ωα
, (4.126)

~g2α = 2
1 − λ/2√

λ

e2

CQα

√
ELα

~ωα
. (4.127)

If the qubit is sufficiently anharmonic (λ not too small) and if the cavity α is in resonance
with the transition |α〉 − |α − 1〉, the detuning will reduce the effective couplings g12
and g21.

The coupling Hamiltonian between the cavities reads

HC1−C2 = ~g1−2(a
†
1 + a1)(a

†
2 + a2), ~g1−2 =

4e2

C12

√
EL1

~ω1

EL2

~ω2
. (4.128)

This coupling term being small, it will not be taken into account in the following.
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4.3.2.d Pumping

The qubit is pumped coherently from the state |0〉 to the state |2〉 with a microwave of
amplitude V and frequency Ω in resonance with the transition |0〉 − |2〉

HP = V sin(Ωt)(σ02 + σ20). (4.129)

In the RWA, this Hamiltonian is reduced to

HP = i~E(σ02 eiΩt − σ20 e−iΩt), (4.130)

where E = −V/2~.

4.3.2.e Lindbladian

The Hamiltonian H of the system can be separated in two parts, first the Hamiltonian
of the isolated qubit and the isolated cavities H0 and second the coupling Hamiltonian
and the coherent pumping Hamiltonian H1,

H0 =
2∑

j=0

εjσj +
2∑

α=1

~ωαa
†
αaα, (4.131)

H1 =

2∑

j=1

2∑

α=1

i~gjα(σj−1,ja
†
α − σj,j−1aα) + i~E(σ02 eiΩt − σ20 e−iΩt). (4.132)

In the interaction picture relative to H0, the Hamiltonian H̃1 reads

H̃1 =

2∑

j=1

2∑

α=1

i~gjα

(
σj−1,ja

†
α e−i∆jα − σj,j−1aα ei∆jα

)
+ i~E(σ02 e−i∆P − σ20 ei∆P ),

(4.133)
where we define the detunings between the qubit levels and the cavity modes

∀(j, α) ∈ {1, 2}2 ∆jα = ωj,j−1 − ωα. (4.134)

as well as between the qubit transition |0〉 − |2〉 and the pumping ∆P = ω20 − Ω (the
latter will be set to zero in the following).

The dynamics of the system is also affected by the incoherent processes of the qubit
level relaxation and the losses in the cavity. We take into account the non-radiative
relaxation γ10 from the level |1〉 to the level |0〉, and the damping κα in the cavities. The
corresponding Lindbladian reads

Lρ =

2∑

α=1

κα

2

(
2aαρa

†
α − a†αaαρ− ρa†αaα

)
+
γ10

2
(2σ01ρσ10 − σ1ρ− ρσ1) . (4.135)

The second cavity will be eliminated in the next subsection.
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4.3.3 The Purcell effect

The second cavity has a low quality factor and plays the role of controllable relaxation
rate γeff

21 for the transition |2〉 − |1〉 (and also a relaxation rate γeff
10 for the detuned

transition |1〉− |0〉). The photon number in this cavity remains small compared to unity.
It is possible to express the effective relaxation rate in terms of the frequency ω2 of the
cavity and its damping rate κ2 within the approach of Ref. [115].

We consider first the situation where the transition |2〉 − |1〉 is coupled resonantly
to the second cavity in the absence of pumping. The photon number N2 being small,
we take into account the states |2, n1, 0〉 and |1, n1, 1〉. For integers (k, l) ∈ {0, 1}2, we
note ̺kl(t) = TrC1{〈2 − k, n1, k|ρ̃(t)|2 − l, n1, l〉}. The evolution equation for the matrix

elements R(t) =




̺00(t)
̺10(t) + ̺01(t)

̺11(t)


 is then

Ṙ(t) =




0 −g22 0
2g22 −κ2/2 −2g22
0 g22 −κ2


 · R(t). (4.136)

If κ2 > 4g22, the eigenvalues of this system are real and negative. The effective relaxation
time corresponds to the minimum of their absolute value, namely

γeff
21 =

κ2

2
− 1

2

√
κ2

2 − 16g2
22 ≃ 4g2

22

κ2
2

if k2 ≫ g22. (4.137)

The result γeff
21 ≃ 4g2

22/κ
2
2 constitutes the Purcell effect: a cavity of low quality coupled

to a two-level system is equivalent to a relaxation rate for the two-level transition.

The transition |1〉 − |0〉 is also coupled to the cavity C2 through the coupling en-
ergy ~g12 and the detuning ∆12. The cavity C2 induce also a non-radiative relaxation for
this transition. To calculate this relaxation rate γeff

10 , we proceed as before with the states
|1, n1, 0〉 and |0, n1, 1〉 and the matrix elements ̺kl(t) = TrC1{〈1 − k, n1, k|ρ̃(t)|1 − l, n1, l〉}
((k, l) ∈ {0, 1}2). The matrix elements involved in the dynamics are

R(t) =




̺00(t)
̺10(t) ei∆12t + ̺01(t) e−i∆12t

i
(
̺10(t) ei∆12t − ̺01(t) e−i∆12t

)

̺11(t)


 and the system becomes

Ṙ(t) =




0 −g12 0 0
2g12 −κ2

2 ∆12 −2g12
0 −∆12 −κ2

2 − ∆12 0
0 g12 0 −κ2


 · R(t). (4.138)

The effective rate then reads

γeff
10 ≃ g2

12κ2

∆2
12 + (κ2/2)2

. (4.139)

The second cavity can now be replaced by the effective relaxation rates γeff
21 and γeff

10 .
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Figure 4.13: Photon number as a function of the coupling g11. The maximum is found
around g11 = 10MHz.

4.3.4 Effective system

4.3.4.a Experimental parameters

The effective system resulting from removing the second cavity is a coherently-pumped
three-level system {|ψ0〉, |ψ1〉, |ψ2〉} with a coupling between a high quality cavity and
the transitions |ψ1〉 → |ψ0〉 and |ψ2〉 → |ψ1〉 (coupling g11 and g21) and with spontaneous
relaxations (rates γeff

21 and γeff
10 ).

Experimentally speaking, the typical transition energies of the transmon are ε1−ε0 =
h×7 GHz and ε2−ε1 = h×6.5 GHz with quality factors equal to Q1 = 60000 for the high
quality cavity (damping rate κ1 = 0.73 MHz) and Q2 = 100 for the second cavity. The
coupling between the transmon and the second cavity is of the order of g22 = 10MHz
and the transmon can be pumped with an amplitude E/2π = 50MHz. These parameters
give rise to the relaxation rate γeff

21 = 43MHz and a negligible rate γeff
10 . The maximum

photon number is then found at g11 ≃ 10 MHz from Fig. 4.13.

4.3.4.b Temporal dynamics

When the three-level system is “coherently closed”, that is to say when all transitions can
occur with a coherent pumping or a coherent coupling with the cavity, every elements of
the density matrix are perturbed. In opposition with the case of an incoherently pumped
qubit, the density matrix is not block diagonal. It is then not possible to find a small
closed set of matrix elements that generates the dynamics and the output spectrum.
Numerical calculations are thus slower in this configuration. The temporal evolution of
the photon number is shown in Fig. 4.14 for g11 = 10MHz.

4.3.4.c Toy model

To evaluate the photon numbers and qubit populations with a simple model we consider
an incoherent pumping Γ = E/2π. The resulting dynamical equation for the matrix
elements 〈i, n1, n2|ρ(t)|j,m1,m2〉 can be simplified by taking into account only elements
with zero or one photon imbalance between the bra and the ket. After tracing, the
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Figure 4.14: Time evolution of the photon number in the lasing cavity.

following equations for the qubit populations and photon numbers are found

∂t〈σ0〉 = − Γ〈σ0〉 +G11(〈n1〉 + 1)〈σ1〉 −G11〈n1〉〈σ0〉 + γ10〈σ1〉, (4.140)

∂t〈σ1〉 =γeff
21 (〈n2〉 + 1)〈σ2〉 − γeff

21 〈n2〉〈σ1〉
−G11(〈n1〉 + 1)〈σ1〉 +G11〈n1〉〈σ0〉 +G21(〈n1〉 + 1)〈σ2〉 − γ10〈σ1〉, (4.141)

∂t〈σ2〉 =Γ〈σ0〉 − γeff
21 (〈n2〉 + 1)〈σ2〉 + γeff

21 〈n2〉〈σ1〉 −G21(〈n1〉 + 1)〈σ2〉, (4.142)

∂t〈n1〉 = − κ1〈n1〉 +G11(〈n1〉 + 1)〈σ1〉 −G11〈n1〉〈σ0〉 +G21(〈n1〉 + 1)〈σ2〉, (4.143)

∂t〈n2〉 = − κ2〈n2〉 + γeff
21 (〈n2〉 + 1)〈σ2〉 − γeff

21 〈n2〉〈σ1〉, (4.144)

where the parameters G11 and G21 are equal to

G11 =
4g2

11(Γ + γ10)

(Γ + γ10)2 + 4∆2
11

, G21 =
4g2

11(γ
eff
21 + γ10)

(γeff
21 + γ10)2 + 4∆2

21

. (4.145)

This nonlinear set of differential equations can be solved numerically. The solution for
the parameters of the previous subsection leads to G11 = 304MHz and G21 = 0.277 MHz.
The temporal evolution of the photon number in each cavity are plotted in Fig. 4.15.
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Figure 4.15: Temporal evolution of the photon number 〈n1〉 in the cavity C1 (left) and
the photon number 〈n2〉 cavity C2 (right).

The steady state photon number in the cavity C1 is equal to 〈n1〉 = 22, in good
agreement with the solution from the density matrix. The photon number in the cavity
C2 is equal to 〈n2〉 = 0.036 much less than unity.
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Conclusion and perspectives

The Lindblad master equations and the quantum regression theorem are powerful tools
to calculate quantum mechanically the time-evolution of the photon number and the
output spectrum of the cavity. The comparison with the experimental results of Ref. [99]
gives access to the typical time-scales of the system. The fully quantum treatment for
a three level artificial atom, based on the density matrix of the whole system, enables
us to understand the validity of the quasiclassical approximations, which do not take
into account all the correlations between the qubit and the cavity. The analysis of two-
photon process will help us to conclude on the nature of the double hot spots observed
experimentally.

The study of the transmon coupled to two cavities ends up with a set of optimal
parameters to observe the lasing effect. The Quantronics group of CEA Saclay will
use them to set up a new experiment. We will carry on collaborating to analyse the
experimental results.



Effet laser avec un atome Josephson

Résumé du chapitre

L
orsqu’un qutrit est couplé à une cavité résonnante, il se produit un phénomène d’émission

amplifiée et stimulée de photons, c’est-à-dire un effet laser. La fréquence étant de l’ordre

du gigahertz, on parle de maser. Le qutrit se comporte comme un atome artificiel à trois

niveaux, ce qui rend la description formellement analogue aux expériences d’optique

quantique et a donné naissance au domaine de l’électrodynamique quantique des cir-

cuits. Nous avons considéré deux systèmes : l’un constitue la première observation de

l’effet laser pour un qubit de charge, réalisé au laboratoire Riken de Tokyo, et est basé sur

le cycle de quasiparticule Josephson. Le second tire partie des propriétés du transmon,

lequel est utilisé comme qutrit et est couplé à deux cavités : une de facteur de qualité

élevé qui lase et l’autre avec un temps de vie court qui permet de contrôler le taux de re-

laxation spontanée par l’effet Purcell. Ce circuit sera réalisé dans le groupe Quantronics

du CEA Saclay. Nous utilisons l’équation mâıtresse de Lindblad pour obtenir l’évolution

de la matrice densité du système. Cette approche quantique donne accès à l’évolution

temporelle des populations du qutrit et de la cavité ainsi que des corrélations entre les

deux sous-systèmes. À l’aide du théorème de régression quantique nous dérivons aussi le

spectre du champ laser généré. Ces résultats numériques sont aussi utilisés pour vérifier

la validité des expressions analytiques obtenues dans l’approximation semi-classique.
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Chapter 5
The Josephson effect in a one-dimensional
bosonic gas
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Introduction

T
his chapter is devoted to the study of a bosonic Josephson junction in a quasi-one-
dimensional (quasi-1D) ring trap [116, 117]. This is one of the direction of the current
experiments with ultracold atomic gases. To introduce the system, in a first part we
present the experimental techniques to trap, cool down and probe Bose gases with laser
beams and electromagnetic fields. We then focus more specifically on the quasi-1D
geometry, and review the experimental advances. In the second part of the chapter, we
present the theoretical approaches to deal with 1D bosons, namely the Luttinger liquid
formalism for low energy properties and the exact Bose-Fermi mapping for the Tonks-
Girardeau limit of infinitely repulsive contact interaction. In the last part of the chapter
we concentrate on a 1D ring trap potential. The final aim is to study a Bose Josephson
junction realized by superimposing a localized barrier on the ring. To this purpose,
we study the equilibrium properties of the ring with the barrier and in particular the
one- and two-body correlation functions and the momentum distribution. As the tunnel
among the two sides of the barrier will be introduced as a perturbation, we consider first
the case of an infinite barrier. We find a reduction in the effective Josephson coupling
energy due to quantum fluctuations which depends on the length of the ring and on the
interaction strength.
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5.1 Trapping, cooling and probing atoms

With the rapid progress in producing Bose Einstein condensates in the last decade, it is
possible to employ ultra-cold atoms in a large variety of setups (Bose Josephson junctions,
boson-fermion mixtures, atoms in lattices, rotating condensates, effect of disorder. . . ).
However, in all experiments, the first step is to trap and cool atoms. Extremely clean
alkali atoms may be produced by a chemical reaction at high temperature in an oven.
Starting from a thermal gas (∼ 800 K, 700 m.s−1), alkali atoms are usually pre-cooled to ∼
10µK (10 cm.s−1) with a laser, trapped by magnetic fields, and cooled down to ∼ 10 −
100 nK (5mm.s−1) with evaporative cooling. Probes are then necessary to observe the
Bose gas and measure its properties. In this section we briefly present these experimental
techniques in the case of a vapor of alkali atoms in three dimensions. A more detailed
treatment can be found in Refs. [33, 34]. The application to one-dimensional quantum
gases will be discussed in Sec. 5.3.

5.1.1 Influence of laser light on an atom

5.1.1.a Radiation pressure

Let us consider two different electronic levels in an atom, namely |1〉 with energy E1

and |2〉 with energy E2 > E1. The atom of mass M is moving with the speed ~v in
the reference frame of the laboratory. If the electron is initially in the excited state |2〉,
it relaxes to the level |1〉 and emits a photon of frequency hνe and momentum ~ke. The
lifetime of the excited state is 1−100 ns and the photon is emitted in a random direction.
The energy and momentum conservation leads to [118]

hνe = ~ω0 − Erec + ~~ke · ~v, (5.1)

with ~ω0 = E2 − E1 and where

Erec =
~

2k2
e

2M
, (5.2)

is the recoil energy due to the emission of the photon. The term ~~ke · ~v has its origin in
the Doppler effect. Indeed, if one looks at the moving atom, the frequency of the emitted
photon is higher when the atom comes in one’s direction than when it moves away.
Symmetrically, if the electron is initially in the ground state |1〉, it can absorb a photon
of frequency hνa and momentum ~ka, and jump to the level |2〉. To be absorbed, the
photon frequency needs to satisfy

hνa = ~ω0 + Erec + ~~ka · ~v. (5.3)

Now we irradiate the atom with a laser beam at the frequency νa above. The atom
will absorb a photon ~ka, relax from the excited state and emit a photon ~ke, then ab-
sorb another photon ~ka, emit a photon ~k′e and so on. . . The atom performs the cycle of
absorption-emission at a high frequency, basically at τ−1 ∼ 100 MHz. Because photons
are generated by a laser, they all have the same momentum ~ka. In particular, they all
have the same direction whereas the emitted photons have the same probability to have
the momentum ~ke and the opposite one −~ke. During a time t, t/τ cycles occur and the
atoms gain the momentum tτ−1

~~k, equivalent to the so-called radiation pressure

Prad =
hν

τc
. (5.4)
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In the case of Sodium atoms, this pressure is equivalent to an acceleration equal to 106 m.s−2,
which is 105 times the gravitational acceleration on Earth.

The radiation force is therefore very strong and can be used to slow down atoms. If a
laser beam is placed in front of the exit of the oven in which the alkali vapor is produced,
the radiation pressure is in the direction opposite to the one of the atoms. While the
atoms are slowed down, the frequency νa rises and the frequency of the laser needs to be
increased (another method is presented in Sec. 5.1.2.e). With this technique, a thermal
vapor of Sodium atoms at the temperature of 900 K (1 km.s−1) can be “stopped” (actually
slowed down to ∼ 30 ≪ 103 m.s−1, i.e. 1 K) in 1 ms on a distance of 50 cm. At these low
velocities, atoms are slow enough to be trapped in a magnetic field.

5.1.1.b Dipole force

In addition to the radiation pressure due to absorption-emission cycles, there is a dipole
force originating from the Stark effect. Indeed, the coupling between the electric field
and the electron-nucleus dipole of the atom induces shifts in the energy levels. In the
dipole approximation and with a second order perturbation theory one can show that a
spatially varying electric field gives rise to a force on an atom

~Fdip =
1

2
α(ω) ~∇〈 ~E2(~r, t)〉, (5.5)

where α is the polarizability of the atom and the time average is taken because the
frequency ω of the laser is much higher than the inverse typical time of the atomic motion.
The force is parallel to the gradient of luminous intensity. In a classical approach, the
polarizability turns out to be

α(ω) =
e2

me(ω2
0 − ω2)

. (5.6)

Consequently, there are two different behaviors

• If ω > ω0 (blue detuning) the atom is repelled from high luminous intensity regions.

• If ω < ω0 (red detuning) the atom is attracted in high luminous intensity regions.

5.1.1.c Optical traps

By focusing a laser beam it is possible to create a radiation field whose intensity has
a maximum in space. If the frequency of the light is detuned to the red, the dipole
force pushes all atoms at this point. This constitutes the optical trap. Compared to
the magnetic traps described in the following section, optical traps have the advantage
not to depend on the magnetic state of the atom. Optical traps are also used when a
constant magnetic field is needed, because in this situation the magnetic field cannot
trap the atoms. It is particularly important in the context of Feshbach resonances [119].
These resonances have become an important tool in investigations of the basic atomic
physics of cold atoms, and, because they allow to tune the scattering length by adjusting
an external parameter such as the magnetic field [120].
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5.1.2 Influence of magnetic fields on an atom

5.1.2.a Zeeman effect

Alkali atoms have a simple electronic configuration, characterized by closed shells except
for the outermost, occupied by a single electron. The coupling between the spin of this
electron and the one of the nucleus gives rise to the hyperfine structure of the atom.
When a magnetic field is applied, it couples to the angular momentum of the atom and
breaks the degeneracy of the hyperfine levels. This lift of degeneracy under the influence
of a magnetic field is the Zeeman effect. At first approximation, the levels depend linearly
on the magnetic field B

Ei = E0
i − µiB, (5.7)

where µi is the magnetic moment of the state. The magnetic field thus induces a po-
tential energy −µiB where µi can be positive or negative depending on the state. If
the magnetic field in inhomogeneous, the atoms are spatially trapped in a minimum
of B(~r) for states with µi < 0. Because in a region devoid of charges and currents,
the strength of a quasistatic electric or magnetic field can have local minima but not
local maxima [121], the states with a positive magnetic moment cannot be trapped by
a magnetic field. Moreover, an atom moving in a spatially-dependent magnetic field
experience a time-dependent magnetic field that can induce transitions between Zeeman
levels (called Majorana transitions). If a transition from a state with µi < 0 to a state
with µj > 0 occurs, for instance in the case of a spin-flip, the atom is lost. However, the
frequency of the Majorana transitions being of order µBB (µB is the Bohr magneton),
the trap losses are appreciable in the vicinity of a zero-field point and hence, a node in
the field produces a hole in the trap. A magnetic trap is thus obtained with a magnetic
field having a non-zero minimum.

5.1.2.b Magnetic traps

Most of the magnetic traps used in experiments are based on the quadrupole trap, where
the magnetic field increases linearly in all directions from a zero minimum. It can be
produced by a pair of opposed Helmholtz coils with identical current circulating in the
opposite direction. To plug the hole at the center, one can apply a laser field in the
region of the node in the magnetic field [30]. Indeed, as remarked in the previous section,
the radiation force repels atoms from regions of high electric field at frequencies above
resonance. A blue-detuned laser beam passing through the quadrupole trap centre thus
prevent atoms from approaching the hole.

An alternative way to plug the hole is to superimpose on the quadrupole field a
rotating, spatially-uniform, magnetic field. This is the time-averaged orbiting potential
(TOP) trap [29]. The effect of the oscillating bias field is to move the instantaneous
position of the node in the magnetic field. If the frequency of the bias field is larger than
that of the atomic motions, an atom moves in an effective potential given by the time
average of the instantaneous potential. The important result is that the time-averaged
magnetic field is converted from a linear dependence with zero minimum to a quadratic
dependence with a shifted minimum, and consequently there is no longer a hole in the
trap.

An inhomogeneous magnetic field with a minimum at a non-zero value may be gen-
erated by a configuration based on two Helmholtz coils with additional currents carried
by conductors parallel to the symmetry axis. This trap is commonly referred to as the
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Ioffe-Pritchard trap [122, 123] and has the shape of a “magnetic bottle”. A convenient
feature of this trap is that in the bars it is possible to make field configurations with
different degrees of curvature in the axial and radial directions.

5.1.2.c Magneto-optical trap

In the magneto-optical trap (MOT), trapping is done with a combination of laser beams
and a spatially-varying magnetic field. The basic physical effect is that, because atomic
energy levels depend on the magnetic field, the radiation pressure depends on the po-
sition. With six correctly polarized lasers beam (two counter-propagating beams along
each axis), the radiative force on an atom escaping from the center of the trap is always
towards the origin, where the total radiation pressure vanishes. This schematic model is
however too simple to describe correctly MOTs. Indeed, because of the existence of sev-
eral hyperfine states in alkali atoms, off-resonant transitions occur. It is then necessary
to perform an optical repumping to populate the levels in resonance with the laser field.

Once trapped in the MOT, atoms can be cooled down using the laser cooling technique
based on the Doppler process (described in Sec. 5.1.3.a) or employing the evaporative
cooling technique (described in Sec. 5.1.3.b and implemented in Ref. [124] in the so-called
dark-spot MOT configuration).

5.1.2.d Piercing magnetic traps

Once atoms are trapped, one may want to extract some of them in a controlled way.
For example, in evaporative cooling the hottest atoms are chased away (Sec. 5.1.3.b),
in interference measurements atoms are released from two different parts of the trap
(Sec. 5.1.4.b) and a coherent beam of particle is extracted in an atom laser [125]. We
have seen in Sec. 5.1.2.b that only states with a positive magnetic momentum can be
trapped in a magnetic field. A way to release atoms is thus to change the sign of their
magnetic momentum, for instance with a Majorana transition which produces a spin
flip. Due to the Zeeman effect and to the inhomogeneous magnetic field in the trap,
these transitions depend on the position of the atoms. Let us consider a place where we
want to pierce the trap. This position corresponds to a value of the magnetic field B0.
Taking into account the Zeeman effect, one can calculate the energy spectrum of the
atom at B0 and find a transition that changes the sign of the magnetic moment. Then,
if a radio frequency radiation is sent on the cloud in resonance with this transition, all
atoms subjected to the magnetic field B0 will escape from the trap. With this technique,
the position of the hole is determined by the radiation frequency.

5.1.2.e Zeeman slower

In Sec. 5.1.1.a we showed that it is possible to slow down an atomic cloud with a laser
beam. Since the Doppler shift of the atomic frequency changes when the atoms are
slowing down, it is necessary to adjust the laser frequency to keep it in resonance. Al-
ternatively, it is possible to use the Zeeman energy shift to compensate the variation of
the Doppler shift so that the atomic frequency does not change. The external magnetic
field is generated from a Zeeman slower, a solenoid with a varying coil thickness. Once
the specific geometry of the Zeeman slower is designed it is possible to slow down atoms
without changing the laser beam frequency.
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5.1.3 Techniques to cool down atoms

5.1.3.a Laser cooling

The laser cooling technique uses the radiation pressure combined with the Doppler effect
to reduce the atoms speed and hence their temperature. Let us consider a gas of trapped
alkali atoms. We shine the cloud with two laser beams having the same frequency ω
and the same intensity with opposite directions (we denote them by left and right). The
lasers are tuned to be red-detuned, i.e. ω . ω0. Suppose now that an atom start moving
to the right. In its reference frame, due to the Doppler effect, the photons coming from
the right have a frequency higher than ω (approaching resonance) and the ones coming
from the left have a frequency lower than ω (moving away from resonance). The atom
thus absorbs more photons from the right than from the left and the mean momentum
transferred to the atom after many absorption-emission cycles points to the left. As a
consequence, the atom is slowed down. The situation is the same in the opposite direction
and also the same in all the directions if we use six lasers instead of two. The radiation
pressure of the laser beams thus acts as a strong frictional (or viscous) force ~f ∝ −~v
which prevents atoms from moving, like a spoon in a honey pot. The atom gas sticky
with photons is referred to as optical molasses. With laser cooling it is possible to cool
atoms down to 100µK.

To reach lower temperatures more subtle techniques can be used, such as the Sisyphus
cooling [126] or the sub-recoil cooling [127]. The evaporative cooling remains the more
commonly used in experiments, and can cool down atoms below the nanoKelvin.

5.1.3.b Evaporative cooling

The temperature reached by laser cooling are impressively low, but they are not low
enough to produce Bose Einstein condensation in gases at densities that are realizable
experimentally. In the experiments performed to date, Bose Einstein condensation of
alkali gases is achieved by using evaporative cooling after laser cooling. The basic physical
effect in evaporative cooling is that, if particles escaping from a system have an energy
higher than the average energy of the particle in the system, the remaining particles
thermalize to a lower energy through two-body collisions, and hence are cooled [128].
This technique appropriates the natural reaction to blow on the soup to cool it down.
Evaporative cooling starts by piercing a hole in a magnetic trap away from the centre,
at an energy Eevap. Experimentally, one can make a hole in a magnetic trap by applying
a radio-frequency radiation that changes the sign of the magnetic momentum, thereby
expelling the atom from the trap, as described in Sec. 5.1.2.d. To go out of the trap,
atoms need to have a kinetic energy higher than Eevap to reach the hole. After many
scattering events, most of the atoms with a temperature T > Eevap/kB are out. As atoms
are lost from the trap and cooling proceeds, the frequency is steadily adjusted to allow
loss of atoms with lower and lower energy [129]. With the evaporative cooling technique
it is possible to cool atoms below 500 pK [130].

5.1.4 Probes for cold atoms

Cold gases of alkali atoms are dilute, neutral and metastable. With these peculiarities,
usual techniques of low temperature physics cannot be used and new methods have to
be developed to probe these systems. Here we present some of the techniques commonly
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Figure 5.1: Left panel : Time-of-flight expansion of a Bose condensate. Absorption im-
ages were taken after a variable delay time from the release. The earliest images show
the pencil-like shape of the initial cloud. When the cloud has expanded to many times
its original size, such time-of-flight images represent the velocity distribution of the re-
leased cloud, from Ref. [132]. Right panel : Direct observation of the formation of a
Bose-Einstein condensate using dispersive light scattering (phase contrast images). The
intensity of the scattered light is a measure of the density of atoms (integrated along the
line-of-sight), from Ref. [131].

used in experiments.

5.1.4.a Laser light absorption, time-of-flight technique and in-situ imaging

A first possibility to measure the density profile is absorption imaging. The cold gas is
shone with a laser beam in resonance with an atomic transition. The higher the density,
the more the photons are absorbed. The examination of the absorption profile thus
gives direct information on the density distribution of the atomic cloud. More precisely,
one obtains the integrated density over the direction of the beam light. The major
disadvantage of this technique is that it is destructive.

If the Bose gas is released from the trap before imaging, the cloud freely expands and
after a sufficiently long time the density profile becomes proportional to the momentum
distribution of the cloud before the expansion [37]. This exact correspondence between
velocity and coordinate-space distributions is true for an ideal gas, which is a good
approximation for experimental clouds after expansion. The expansion also improves the
spatial resolution of the measurement. Experimental density profile results are presented
on Figs. 1.10 and 5.1.

A second imaging technique is the in situ imaging. It exploits the fact that the
refractive index of the gas depends on its density, and hence the optical path length is
changed by the medium. These changes in optical path can be converted into intensity
variations if an off-resonance light beam passes through the cloud and then interferes
with a reference beam [131]. This method is almost non-destructive and can be used to
observe the time evolution of a cloud (see Fig. 5.1).
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Figure 5.2: Interference pattern of matter-
wave beams emitted from two spatially sep-
arated regions of a trapped Bose gas, from
Ref. [133]. For a temperature well be-
low Tc, the spatially uniform phase of the
condensate results in a high-contrast inter-
ference pattern (c). When the tempera-
ture is increased to just below Tc, the con-
trast of the interference pattern is reduced
(b), and it vanishes completely for temper-
atures above Tc (a).

Figure 5.3: Shown is the visibility of a mat-
ter wave interference pattern originating
from two regions separated by ∆z inside a
trapped cloud. By shock cooling the gas is
prepared in a highly nonequilibrium state
and then relaxes towards thermal equilib-
rium. Initially the correlations are short
ranged and thermal-like. The onset of
Bose-Einstein condensation is marked by
the appearance of long-range order, from
Ref. [134].

5.1.4.b Interference methods

The phase coherence of a cold gas can be measured with an interference experiment. The
cloud is initially trapped with a magnetic field and two holes are performed in the trap.
The two holes are created with two radiofrequency radiations, as described in Sec. 5.1.2.d.
Once released, the two matter waves originating from two different locations in the atom
trap interfere with each other. The resulting interference pattern can be measured with
a single atom counter. The visibility being proportional to the one-body density matrix,
it gives a direct access to the phase-phase correlations of the cloud and its temporal
evolution uncovers the formation of long-range order [133, 134] (see Figs. 5.2 and 5.3).

5.1.4.c Scattering methods

The inelastic scattering method gives access to the dynamic structure factor, which char-
acterizes the dynamic behavior of quantum many-body systems. The dynamic structure
factor is the Fourier transform of the density-density correlation function (see Sec. 5.4.6).
In a two-photon Bragg scattering experiment, the atomic cloud is exposed to two de-
tuned laser beams. Atoms can undergo a stimulated light scattering event by absorbing
a photon from one of the beams and emitting a photon into the other. After exposure
to these laser beam, the response of the system can be measure using a time-of-flight
experiment by determining the net momentum transferred to the gas [37]. This method
was used e.g. in the experiments of Refs. [135, 136].
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Figure 5.4: Dispersion relation of a free particle in the longitudinal direction of an
elongated confining potential with L// = 10L⊥. Transverse motion is frozen in the
transverse ground state ny = nz = 1 if the temperature is smaller than ∆E⊥.

5.2 Quantum systems in one-dimension

5.2.1 Confinement to 1D

The real world being three-dimensional, to obtain a one-dimensional system one needs to
freeze two spatial degrees of freedom. In the case of quantum particles, this is achieved
with confining potentials. Let us take the simple example of a free particle confined to
a parallelepipedic box (lengths Lx, Ly and Lz). Due to the boundary conditions, the
energy levels are quantized and characterized by three quantum numbers nx, ny and nz:

Enx,ny ,nz =
~

2π2

2M

[
n2

x

L2
x

+
n2

y

L2
y

+
n2

z

L2
z

]
, (5.8)

whereM is the mass of the particle and ni is a non-zero integer. Suppose now that the box
is elongated in the x direction (Lx = L// ≫ Ly = Lz = L⊥). Starting from the ground

state energy E1,1,1, the particle needs to gain the energy ∆E⊥ =
3π2

~
2

2ML2
⊥

to reach the

first transverse excited state and the energy ∆E// =
3π2

~
2

2ML2
//

to gain the first longitudinal

excited state. The confining potential of this elongated box yields ∆E⊥ ≫ ∆E//. It is
then straightforward to see that if the maximal available energy for the particle (e.g.
from thermal agitation) is less than ∆E⊥, the transverse degrees of freedom are frozen
in the transverse ground state and the particle is constraint to a one-dimensional motion
in the longitudinal direction, as depicted in Fig. 5.4. In the case of a Bose gas, one-
dimensionality is achieved if the temperature and the chemical potential are smaller
than ∆E⊥. In experiments, Bose gases are usually confined to the minima of a 2D
optical lattice [137–139]. In condensed-matter systems, one-dimensionality is obtained
e.g. in quantum wires [140] and carbon nanotubes [141].

The possibility to create one-dimensional quantum systems offers the possibility to
explore a novel physics [142]. Indeed, in a one-dimensional system, any individual motion
is converted into a collective one because a moving particle cannot spare its neighbors.
This peculiarity enhances the effect of interactions between particles and also strengthens



102 The Josephson effect in a one-dimensional bosonic gas §5.2

Ideal
Bose gas

quasi-
condensate

Tonks-Girardeau
gas

Effective interaction strength g0 ∞

Luttinger parameter K∞ 1

Figure 5.5: A Bose gas behaves as a quasi-condensate in the case of nearly free bosons
(small interaction strength g) and as a Tonks-Girardeau gas in the case of impenetrable
bosons (infinite hard-core repulsion). The low energy physics between these two limiting
cases can be described within the Luttinger liquid formalism where the compressibility
of the fluid K goes from K = 1 for the Tonks gas to K = ∞ for the ideal Bose gas.

the role of quantum fluctuations. As a consequence, from the limit of free bosons to that
of impenetrable bosons, there exists a rich variety of interesting behaviors.

5.2.2 Interaction strength: from quasi-condensates to Tonks-Girardeau

gases

As we have seen in Sec. 1.4, two-body collisions in a dilute Bose gas are modeled with
a hard-core pseudopotential Vint(~r) = g3D δ(~r) where g3D = 4π~

2aS/m is the interaction
strength in a three dimensional gas. The presence of a transverse external confinement
changes the interaction strength between bosons. Indeed, for a harmonic confining po-
tential with the transverse “frequency” ω⊥ the size of the ground state of the transverse
Hamiltonian is a⊥ =

√
2~/mω⊥. The one-dimensional scattering length is given by [143]

a1D =
a2
⊥

2aS

(
C aS

a⊥
− 1

)
, (5.9)

where C ≃ 1.460 . . . , and the effective interaction strength of the confined bosons is

g = g3D
1

πa2
⊥

(
1 − C aS

a⊥

)−1

. (5.10)

Let us consider the state of the system as the one-dimensional interaction strength g
goes from g = 0 for free bosons to g = ∞ in the case of impenetrable bosons (see Fig. 5.5).
The regime of weak interactions induces phase fluctuations and the gas enters the regime
of quasi-condensates [144]. The physical picture of this regime consists of many conden-
sates with slightly different phases [145]. In the opposite limit of strong interactions, the
so-called Tonks-Girardeau regime, the interaction mimics Pauli’s exclusion principle and
bosons behave in many senses like fermions [146]. In a quasi-1D geometry, the phase
coherence properties of the gas are therefore drastically changed with respect to their 3D
counterparts.

To describe one-dimensional systems there are various methods. The Tonks-Girardeau
gas is integrable and can be solved exactly through a mapping onto a gas of free fermions
(see Sec. 5.2.5). In the case of homogeneous systems, one can solve the 1D Bose gas with
arbitrary contact interaction strength exactly with the Bethe ansatz [147]. The thermo-
dynamic limit was solved by Elliott H. Lieb and Werner Liniger [148, 149]. The case of
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arbitrary interaction and external confinement can be treated only by numerical meth-
ods. Finally, if one is interested in the low-energy properties of a one-dimensional Bose
gas, the Luttinger liquid approach is a powerful method to calculate correlators. In the
following, we will introduce the Luttinger liquid formalism and use it to describe a Bose
Josephson junction in a one-dimensional ring trap.

5.2.3 Luttinger-liquid description for bosonic field operators

In this section we consider a one-dimensional system of length L containing N particles
with arbitrary boundary conditions and construct the field operators of the gas. We start
with the density operator

ρ(x) =
N∑

j=1

δ(x− xj), (5.11)

where xj is the position of the jth particle and introduce a “labeling” field Θ(x) which
takes the value Θ(xj) = jπ at the position xj . Using the properties of the delta function
and Poisson’s formula, we get

ρ(x) =
1

π
∂xΘ(x)

+∞∑

m=−∞
e2miΘ(x). (5.12)

The leading contribution ∂xΘ(x)/π of ρ(x) describes long wavelength fluctuations around
the mean density ρ0 = N/L. We introduce the long wavelength density fluctuations
operator

Π(x) =
1

π
∂xΘ(x) − ρ0, (5.13)

and the final form of the density operator then reads

ρ(x) = (ρ0 + Π(x))
+∞∑

m=−∞
e2miΘ(x). (5.14)

We can then write the single-particle creation operator Ψ†(x) in terms of the density
operator ρ(x) = Ψ†(x)Ψ(x) and a phase operator φ(x)

Ψ†(x) =
√
ρ(x) e−iφ(x). (5.15)

Although the bosonic or fermionic nature of the particles does not enter into account
in the definition of the density operator, their fundamental differences show up in the
commutation rule satisfied by Ψ(x). In the following we focus on the case of bosons, for
which the commutation relation reads

[
Ψ(x),Ψ†(x′)

]
= δ(x− x′). (5.16)

At the level of the fields φ(x) and Π(x), a sufficient condition to satisfy the previous rule
is [

Π(x), φ(x′)
]

= iδ(x− x′). (5.17)

Next, using Fermi’s trick

√
δ(Θ(x) − nπ) = A δ(Θ(x) − nπ), (5.18)
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where A is a constant that depends on the way the high energy fluctuations are cut off,
we can rewrite the square of the density operator. The bosonic creation field operators
finally reads

Ψ†(x) = A
√
ρ0 + Π(x)

+∞∑

m=−∞
e2miΘ(x) e−iφ(x). (5.19)

The derivation of the bosonic field operators shows that the bosonic gas can be described
with two fields, namely the field Θ(x) that reflects the density fluctuations and the
field φ(x) that conveys the phase fluctuations1.

5.2.4 Low-energy Hamiltonian

The general Hamiltonian of bosons interacting with a hard core potential reads

H =
~

2

2m

∫ L

0
dx∇Ψ†(x)∇Ψ(x) +

g

2

∫ L

0
dx ρ2(x). (5.21)

We are interested in the low energy description of the system. In this perspective we
will keep only the leading terms in the two parts of the general Hamiltonian (5.21) in
terms of the fields φ(x) and

θ(x) = Θ(x) − πρ0x. (5.22)

At lowest order, ∇Ψ†(x)∇Ψ(x) ≃ ρ0(∇φ(x))2 and ρ2(x) ≃ (ρ0 + Π(x))2. We obtain the
Luttinger liquid Hamiltonian [150, 151]

H =
~vs

2π

∫ L

0
dx

[
K (∇φ(x))2 +

1

K
(∇θ(x))2

]
, (5.23)

where K is the Luttinger parameter and vs the sound velocity. The parameters K and vS

can be extracted from the Bethe-ansatz solution and expressed in terms of the reduced
interaction strength κ = mg/~2ρ0 and the Fermi velocity vF = ~πρ0/m. The asymptotic
results in the weak coupling regime κ ≪ 1 are

K =
π√
κ

(
1 −

√
κ

2π

)−1/2

, (5.24)
vs = vF

√
κ

π

(
1 −

√
κ

2π

)1/2

, (5.25)

and in the strong coupling regime κ ≫ 1 they read

K = 1 +
4

κ
, (5.26) vs = vF

(
1 − 4

κ

)
. (5.27)

The various regimes are presented on Fig. 5.6. To obtain the Hamiltonian (5.23) we
have kept only the leading contribution from the field operators. The higher order terms
will not change the form of the Hamiltonian but only renormalize the coefficients vS

and K (see Ref. [142] for more details). The low-energy physics of the Bose gas is thus
governed by a quadratic Hamiltonian with a linear excitation spectrum ω(k) = vSk and
is described with the two parameters vS and K which depend on g and ρ0.

1When the particle obeys the fermionic statistics, the commutation rule (5.16) reads
h

ΨF (x), Ψ†
F (x′)

i

+
= δ(x − x′), where [ , ]+ is an anticommutator ([A, B]+ = AB + BA). The cor-

responding fermionic creation operator can be expressed in terms of the fields Π(x), Θ(x) and φ(x) as
follows

Ψ†
F (x) = A

p

ρ0 + Π(x)

+∞
X

m=−∞

e(2m+1)iΘ(x) e−iφ(x). (5.20)
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Figure 5.6: Luttinger parameter K and sound velocity vS (in units of the Fermi velocity
vF ) as a function of the dimensionless coupling strength κ = mg/~2ρ0. The dashed and
dotted lines correspond to the asymptotic results for small and large coupling respectively.
In the Tonks-Girardeau gas, the infinitely strong repulsive interaction between bosons
mimics the Pauli exclusion principle and the sound velocity is close to the Fermi velocity.
In the quasi-condensate limit, phase fluctuations are small and the sound velocity is
strongly suppressed.

5.2.5 Exact description in the Tonks-Girardeau limit

In the limit of infinitely strong repulsion between the bosons, which corresponds to the
value K = 1 for the Luttinger liquid parameter, an exact solution exists for the bosonic
many-body wavefunction ψ(x1, ...xN ) (in first quantization).

The solution, due to Marvin D. Girardeau [146], is obtained by mapping the bosons
onto a gas of noninteracting, spin-polarized fermions subject to the same external po-
tential. The bosonic many-body wavefunction ψ(x1, ...xN ) is then obtained in terms of
the fermionic one as

ψ(x1, ...xN ) = A(x1, ...xN )ψF (x1...xN ), (5.28)

where the mapping function A(x1, ...xN ) = Π1≤j≤ℓ≤N sgn(xj − xℓ) ensures the proper
symmetry under exchange of two bosons. The fermionic wavefunction is given by

ψF (x1, ...xN ) = (1/
√
N !) det{ψj(xk)}j,k=1...N , (5.29)

ψj(x) being the single particle orbitals for the given external potential. Note that ψF van-
ishes every time two particles meet as required by Pauli’s principle, and hence describes
well the impenetrability condition g → ∞ for the bosons.

As a consequence of the Bose-Fermi mapping, all the bosonic properties which do not
depend on the sign of the many-body wavefunction coincide with the corresponding ones
of the mapped Fermi gas. This is the case e.g. for the particle density profile and for the
density-density correlation function. Other properties like the one-body density matrix
and the momentum distribution are instead markedly different for bosons as compared
to fermions. In particular, the calculation of the one-body density matrix requires in
principle the calculation of a (N -1)-dimensional integral, which is known to simplify in
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some cases. Examples are the homogeneous gas with periodic boundary conditions [152]
or the case of a harmonic confinement [153].

In the following, we will use the exact results for the Tonks-Girardeau gas to compare
them with our results and also to fix the non universal parameters of the theory.

5.3 One-dimensional trapping potentials for bosons

There are two kinds of trap to confine a Bose gas to one dimension: the cigar shape
potential and the ring shape potential.

5.3.1 Cigar-shape potential

The cigar shape potential is an elongated potential in a particular direction. This one-
dimensional trap can be obtained from a three dimensional magnetic harmonic trap
with a transverse trapping frequency higher than the temperature and if necessary the
characteristic energy of interactions. A common way to generate these magnetic fields
is to use atom chips, where electric and magnetic fields are created by microscopic wires
and electrodes micro-fabricated on a carrier substrate [154]. The precision and robust
alignment of the fabricated structures allow well controlled quantum manipulations of
ultracold neutral atoms (see Fig 5.7).

In the limit of weak interactions, the phase fluctuations [155] as well as the density
fluctuations [156] are measured using time-of-flight and in-situ absorption imaging. Finite
temperature experiments are performed to study the thermodynamics [157] and the
thermalization of the gas [158]. It is possible to superimpose a periodic optical lattice
onto the harmonic confinement and then study the resulting dynamics for bosons in
the Tonks-Girardeau regime. With this setup, one can observe the damping of dipole
oscillations [159] and the transition from a superfluid to a Mott insulator [137]. A random
magnetic potential can also be added to analyse the effect of disorder [160].

The one-dimensional gas can be cut into two with a radiofrequency field. Phase
fluctuations are then measured with absorption imaging [161]. With this geometry, it is
possible to study the relative phase fluctuations [162], the Josephson oscillations between
the two systems [163], the excitation spectrum of the coupled condensates [164] and the
loss of coherence between the two separated gases [165].

Cigar-shaped trapping potentials can also be obtained with optical lattices, by su-
perimposing two orthogonal standing waves (see Fig 5.8 and Ref. [166]). In this config-
uration, one can obtain an array of one dimensional tubes. By varying the tunneling
strength between the tubes, it is possible to study the transition between one and two
dimensional systems [167].

5.3.2 Ring-shape potential

The possibility to study Bose-Einstein condensates confined to ring traps constitutes one
of the frontiers of the experimental progress with ultracold atomic gases [138, 139]. The
nontrivial topology of these traps together with the uniformity of the potential along
the ring circumference makes them an ideal system for investigating persistent currents
and superfluid properties of the gas. There are various techniques to generate ring shape
potentials, namely with coaxial circular electromagnets [168], using the superposition of
a magnetic trapping field with a standing wave [169], or with a blue-detuned laser beam
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Figure 5.7: A single 1D quasi-condensate is
phase coherently split into two parts sepa-
rated using radiofrequency potentials on an
atom chip. After the separation, the sys-
tem is released from the trap and the re-
sulting interference pattern is imaged onto
a CCD camera, from Ref. [161].

Figure 5.8: Optical lattice potentials
formed by superimposing two orthogonal
standing waves. Atoms are confined to
an array of tightly confining 1D potential
tubes, from Ref. [166]

to make a repulsive potential barrier in the middle of a harmonic magnetic trap [170].
The resulting size of the ring is of the order of the millimeter (0.5 − 3 mm). Atoms are
cooled down to ∼ 10µK with evaporative cooling. Measurements of the density profile
and the momentum distribution are performed with the time-of-flight technique (see
Figs. 5.9 and 5.10). Interference methods to measure the two points phase correlations
have not been implemented on such traps yet.

5.4 Bosons in a quasi-one-dimensional ring trap with a lo-

calized infinite barrier

In this section we use the Luttinger-liquid approach to study the static properties of a
Bose gas confined to a quasi one-dimensional ring trap which contains an infinite localized
repulsive potential barrier. For the one-body density-matrix we obtain different power-
law decays depending on the location of the probe points with respect to the position of
the barrier. Using a regularized harmonic-fluid approach we also calculate the subleading
corrections due to the density fluctuations in the thermodynamic limit. We evaluate the
particle density profile as well as the density-density correlation function and show that
the presence of the barrier induces Friedel oscillations of the density. This section is
based on our papers [116, 117].

5.4.1 Mode expansion of the Luttinger fields with open boundary con-

ditions

We consider a Bose gas confined to a quasi-one-dimensional ring trap containing a lo-
calized repulsive potential which creates a “weak link” connecting the two ends of the
loop (see Fig. 5.11), a situation that may be viewed as a realization of a Bose-Josephson
junction [116]. We start by considering the case of an infinitely high barrier, which cor-
responds to a ring with open boundary conditions. In Sec. 5.5 we will treat the case of
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Figure 5.9: Atoms in a ring-shaped mag-
netic trap. Shown are top (a)-(f) and
side (g)-(i) absorption images of ultracold
clouds for different magnetic fields, from
Ref. [168].

Figure 5.10: (b) In situ image of a BEC in
the toroidal trap. (c) Time-of-flight image
of a noncirculating BEC released from the
toroidal trap. (d) Time-of-flight image of a
circulating BEC, from Ref. [170]

a large, finite barrier by considering the tunneling among the two sides of the barrier as
a perturbation.

In order to evaluate the first- and second-order correlation functions for the bosons
on the ring junction, we derive here the expansion of the fields Π(x) = ∇θ(x)/π and φ(x)

in terms of the canonical bosonic annihilation and creation operators bk and b†k satisfying

the commutation relations [bk, b
†
k′ ] = δk,k′ . Specifically, we expand the operators φ(x)

and Π(x) in Fourier modes for x ∈ [0, L]:

φ(x) =

+∞∑

j=−∞

[
φj eikjxbkj

+ φ∗j e−ikjxb†kj

]
, (5.30)

Π(x) =
+∞∑

j=−∞

[
Πj eikjxbkj

+ Π∗
j e−ikjxb†kj

]
, (5.31)

where we have set kj = 2π
L pj. The constant p and the complex coefficients φj and Πj

are determined by imposing three constraints:

i. Commutation rule [Π(x), φ(x′)] = i δ(x− x′).

ii. Reduction of the Hamiltonian to the diagonal form

H =
∑

kj

~ωkj

[
b†kj
bkj

+
1

2

]
. (5.32)

iii. Boundary conditions. The open boundary conditions imply vanishing current den-
sity, i.e. ∇φ(0) = ∇φ(L) = 0, ∇Π(0) = ∇Π(L) = 0.

In order to take into account that we are using an approximate, long wavelength theory,
we introduce a short distance cutoff a ∼ ρ0

−1 in the sum over the modes. The final result
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L0

x
′

x

Figure 5.11: Sketch of the Bose-Josephson junction on a ring studied in this work and
the corresponding trap.

reads

φ(x) = φ0 +
1√
K

∞∑

j=1

1√
j

cos(πjx/L) e−
πja
2L

[
bkj

+ b†kj

]
, (5.33)

Π(x) = Π0 + i

√
K

L

∞∑

j=1

√
j cos(πjx/L) e−

πja
2L

[
bkj

− b†kj

]
, (5.34)

the latter implying

θ(x) = πΠ0x+ i
√
K

∞∑

j=1

1√
j

sin(πjx/L) e−
πja
2L

[
bkj

− b†kj

]
, (5.35)

where kj = πj/L (p = 1/2). The zero mode Π0 is directly related to the particle number
operator through normalization: Π0 = (N − N0)/L where N0 = 〈N〉 = ρ0L. It is
conjugate to the zero-mode phase operator φ0 such that [Π0, φ0] = i. Using this fact,
one can explicitly check the commutation rule between θ(x) and φ(x′) from the mode
expansions (5.33) and (5.35); it turns out to be [θ(x), φ(x′)] = iπ Ξ(x − x′), where Ξ is
the unit step function, consistent with Eq. (5.17). Finally, inspection of the resulting
diagonalized form of the Hamiltonian yields the linear dispersion relation

ωkj
= vSkj = jπvS/L, (5.36)

for the modes.

5.4.2 One-body density matrix for a finite ring

In this section we focus on the contribution from phase fluctuations of the one-body
density matrix with the aim of analyzing the differences with respect to the case of an
infinite system, as well as to the case of a ring in the absence of the barrier.

The one-body density matrix, defined as

G(x, x′) =
〈
Ψ†(x)Ψ(x′)

〉
, (5.37)

yields a measure of the coherence along the ring. It is possible to measure the one-
body density matrix and off-diagonal long range order experimentally by measuring the
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interference pattern of atomic matter waves coming from two holes in the trap (see e.g.
Ref. [134] for the case of a cigar-shaped 3D Bose gas). According to Eq. (5.19) the
bosonic field operator has three contributions:

i. The phase φ(x).

ii. The density fluctuation Π(x).

iii. The higher harmonics of order 2mθ(x) of the density.

The most important contribution to the one-body density matrix at large distances is
the one due to the phase fluctuations which correspond to the lowest-energy modes of
the bosonic fluid in the ring (see e.g. Refs. [142, 145]), while the two latter contributions
give rise to subleading corrections which will be analyzed further in the next subsections.

To lowest order we approximate the bosonic field operator (5.19) as Ψ(x) ≃ A√
ρ0 eiφ(x);

the problem then reduces to the computation of the quantum average

G0(x, x
′) = |A|2ρ0〈e−iφ(x)eiφ(x′)〉. (5.38)

Since the Luttinger-liquid Hamiltonian (5.23) is quadratic in the field φ(x) we immedi-

ately obtain G0(x, x
′) = |A|2ρ0 exp

(
−1

2

〈
[φ(x) − φ(x′)]2

〉)
. The phase-phase correlation

function is evaluated with the help of the mode expansion (5.33)

〈φ(x)φ(x′)〉 = − 1

4K
ln
[
(π/L)4

(
a2 + d2(x− x′|2L)

) (
a2 + d2(x+ x′|2L)

)]
, (5.39)

d(x|L) = L| sin(πx/L)|/π being the cord function. This leads to

G0(x, x
′) = ρ0b0,0

[
ρ−2
0

√
[a2 + d2(2x|2L)] [a2 + d2(2x′|2L)]

[a2 + d2(x− x′|2L)] [a2 + d2(x+ x′|2L)]

] 1
4K

, (5.40)

where we have introduced the nonuniversal constant b0,0 = |A|2(ρ0a)
1

2K . The above
expression (5.40) yields the leading-order term for the one-body density matrix at large
distances. By taking the limit a → 0 we recover the result obtained in Ref. [171] using
the methods of conformal field theory.

If the distance among x and x′ is large compared to the cutoff length a, the one-body
density matrix displays a power-law decay of the form G0(x, x

′) ∝ |x− x′|−γ , where the
exponent γ can be derived from the expression (5.40), and in particular depends on the
location of the probed points [171]. Indeed, if the two points are away from the edges one

finds γ =
1

2K
, which corresponds to the result obtained in the thermodynamic limit [150]

whereas if they approach the edges (i.e. x . a and L−x′ . a) the exponent is γ =
1

K
, a

result known in the context of quantum phase fluctuations in a 1D superconducting wire
of length L [172]. In the case where one point is at one edge and the other in the bulk

we obtain γ =
3

4K
. These three different behaviors are illustrated in Fig. 5.12, where we

plot the one-body density matrix G0(x, x
′) as a function of x′ for various choices of the

probe point x. In the same figure we display also the behavior for a homogeneous ring
in absence of the barrier, obtained by a procedure analogous to the one outlined above,

Gpbc
0 (x, x′) = ρ0b0,0

[
ρ−2
0

a2 + d2(x− x′|L)

] 1
4K

. (5.41)
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Figure 5.12: Leftmost and middle panels: one-body density matrix in logarithmic scale
(arbitrary units) as a function of the coordinate x′ (in units of the ring circumference
L) for various choices of the coordinate x with respect to the position of the barrier,
located at x = 0: top panel x ≃ 0, middle panel x = L/2. Rightmost panel: one-body
density matrix in logarithmic scale (arbitrary units) taken at x ≃ 0 and x′ ≃ L as a
function of the length L of the ring (in units of the average interparticle distance a). In
each panel we plot three values of the parameter K (from bottom to top K = 1, K = 2
and K = 4); the solid lines correspond to the results from Eq. (5.40) and the dashed
lines are the solution (5.41) for a homogeneous ring (periodic boundary conditions). The
dotted line in the leftmost panel is the exact solution for a Tonks-Girardeau gas in the
thermodynamic limit. The linear behavior of G0 in logarithmic scale corresponds to the
predicted power law decays with various exponents γ (leftmost panel, γ = 1/2K, middle
panel γ = 3/4K and rightmost panel γ = 1/K).

Note that, as the coordinate x′ runs along the ring, in the presence of the barrier the
coherence decreases monotonically, while if the barrier is absent coherence is recovered
as x′ approaches L− x.

The different power-law behaviors are in principle observable for a quasi-1D Bose gas
in a ring trap geometry; it is required to have a high barrier well localized on a length
scale a.

5.4.3 Regularized harmonic fluid approach in the thermodynamic limit

The contribution from the phase fluctuations to the one-body density matrix gives rise
to a power-law decay which depends only on the Luttinger parameter. In this section
we take into account the contribution from density fluctuations to the one-body density
matrix in the thermodynamic limit, that is to say for an infinitely long ring containing
an infinite number of bosons but with a finite mean density: N → ∞, L → ∞ and
ρ0 = N/L finite.

The full calculation of the one-body density matrix for the 1D interacting Bose gas
has a long history, and we start by mentioning the known results. In the Tonks-Girardeau
limit where the exact many-body wavefunction is known by means of a mapping onto a
gas of spinless fermions [146, 173], the problem reduces to the evaluation of a (N − 1)-
dimensional integral. This mathematical challenge has been addressed first by Andrew
Lenard [174], and by several subsequent works (see e.g. Refs. [175–178]). The main
result is the evaluation of the large-distance behavior of the one-body density matrix in
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the form of a series expansion (from Ref. [178]),

GTG(z) =
ρ0ρ∞
|z|1/2

[
1 − 1

32

1

z2
− 1

8

cos(2z)

z2
− 3

16

sin(2z)

z3
+

33

2048

1

z4
+

93

256

cos(2z)

z4
+ . . .

]
,

(5.42)
where the constant ρ∞ and the coefficients have been calculated exactly. In Eq. (5.42)
and in the following we express the one-body density matrix as a function of the scaled
relative coordinate z = πρ0(x− x′).
For the case of arbitrary interaction strength, the calculation of the correlation functions
remains a challenge (see e.g. Ref. [179]), although the model of bosons with contact
repulsive interactions is integrable by the Bethe-Ansatz technique [148, 149]. The power-
law decay at large distances can be inferred using a harmonic-fluid approach [150, 151,
180–183]. The resulting structure for the large-distance series of the one-body density
matrix reads (from Refs. [150, 151])

GLL(z) ∝ ρ0

|z|1/2K

∞∑

m=0

Bm
cos(2mz)

z2m2K
, (5.43)

where the coefficients Bm are nonuniversal and cannot be obtained by the harmonic-
fluid approach. By noticing that the harmonic-fluid approach is valid also in the Tonks-
Girardeau regime and corresponds to the case of Luttinger parameter K = 1, one can
directly compare the predictions of the two methods. Specifically, this comparison shows
that the structure of Eq. (5.42) is richer than that of Eq. (5.43) obtained by the standard
harmonic-fluid approach.

The one-body density matrix is obtained from averaging the bosonic field opera-
tor (5.19) with respect to the quadratic low-energy Hamiltonian (5.23). We will keep to
full dependence of the space cutoff a and take into account the presence of the long-range
density fluctuations ρ(x). This constitutes the generalized harmonic-fluid approach. The
general expression of the one-body density matrix is then

G(x, x′) = |A|2
∑

(m,m′)∈Z2

〈[ρ0 + Π(x)]1/2 ei2mΘ(x)e−iφ(x)eiφ(x′)e−i2m′Θ(x′)[ρ0 + Π(x′)]1/2〉,

(5.44)
where the only nonvanishing leading terms satisfy m = m′ [142].

In order to display its dependence only on differences between fields, we re-write the
central term as

ei2mΘ(x)e−iφ(x)eiφ(x′)e−i2mΘ(x′) = ei2m(Θ(x)−Θ(x′))−i(φ(x)−φ(x′))

× em[θ(x)+θ(x′),φ(x)−φ(x′)], (5.45)

where the commutator between the θ and φ fields is computed in Eq. (5.51) below. We
then perform a series expansion of the square root terms [1 + Π/ρ0]

1/2 in the one-body
density matrix. We define X = Π(x)/ρ0, Y = Π(x′)/ρ0, and Z = i2m(θ(x) − θ(x′)) −
i(φ(x)−φ(x′)). Using the fact that the fields X, Y and Z are Gaussian with zero average,
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we obtain from Wick’s theorem

〈√
1 +X eZ

√
1 + Y

〉
= e

1
2
〈Z2〉

∞∑

k,l=0

min(k,l)∑

j=0

(2k)!(2l)!

k!l!(2k − 1)(2l − 1)

× 〈X2〉 k−j
2 〈Y 2〉 l−j

2 〈XY 〉j
(i
√

2)5(k+l)−2jj!(k − j)!(l − j)!
Hk−j

(
〈XZ〉

i
√

2〈X2〉

)
Hl−j

(
〈ZY 〉

i
√

2〈Y 2〉

)
, (5.46)

where Hn(x) are the Hermite polynomials. To second order in X and Y Eq. (5.46) reads

〈√
1 +X eZ

√
1 + Y

〉
≃ e

1
2
〈Z2〉

[
1 +

1

2
(〈XZ〉 + 〈ZY 〉)

− 1

8

(
〈X2〉 + 〈Y 2〉 − 2〈XY 〉

)
− 1

8
(〈XZ〉 − 〈ZY 〉)2

]
. (5.47)

Main expression (5.46), detailed in appendix D, requires then the calculation of the
various two-point correlation functions involving the three fields X, Y , and Z. All of
them can be obtained from the following correlators in the thermodynamic limit

〈ϕ(x)ϕ(x′)〉 = (π/L)2〈J2
0 〉xx′ −

1

4K
lnC(x− x′), (5.48)

〈θ(x)θ(x′)〉 = π2〈Π2
0〉xx′ −

K

4
lnC(x− x′), (5.49)

〈θ(x)ϕ(x′)〉 =
1

4
ln

[
1 − e−2πa/L−i2π(x−x′)/L

1 − e−2πa/L+i2π(x−x′)/L

]
, (5.50)

[
θ(x), ϕ(x′)

]
= i

π

L
(x− x′) + 2〈θ(x)ϕ(x′)〉, (5.51)

where C(x) = 1−2 cos(2πx/L) e−2πa
L +e−4πa

L . In the thermodynamic limit, the boundary
conditions do not enter into account and for convenience we have used the case of periodic
boundary conditions to derive the preceding correlators. Notice that the effect of the
zero-modes Π0 and J0 is absent in the thermodynamic limit, because it scales as 1/L.
We are now in a position to calculate the correlators between the fields X, Y , and Z in
the thermodynamic limit. Using Eqs. (5.48)–(5.50) we have

exp(〈Z2〉/2) ≃
(

α2

z2 + α2

) 1
4K

+Km2

(5.52)

〈XZ〉 = 〈ZY 〉 ≃ z

2α

z + i2Kmα

z2 + α2
(5.53)

〈XY 〉 ≃ K

2

α2 − z2

(z2 + α2)2
(5.54)

〈X2〉 = 〈Y 2〉 ≃ K

2α2
. (5.55)

where α = πρ0a. Similarly, the commutator in Eq. (5.45) is obtained from Eq. (5.51) as

exp
(
m
[
θ(x) + θ(x′), ϕ(x) − ϕ(x′)

])
≃
(
α− iz

α+ iz

)m

(5.56)



114 The Josephson effect in a one-dimensional bosonic gas §5.4

G(
z
)

√
z
G(
z
)

z

10

10−1

10−3

0.5 1 10

0.5

1

1 10

Figure 5.13: One-body density matrix in the Tonks-Girardeau limit K = 1 in units
of ρ0ρ∞ as a function of the scaled relative coordinate z = πρ0(x− x′) (dimensionless).
The result of the generalized harmonic-fluid approximation Eq. (5.58) obtained without
taking into account the effect of the field Π(x) (solid line) is compared to the exact
result Eq. (5.42) (dashed line) and to the usual harmonic-fluid approximation Eq. (5.43)
(dotted line), with B0 = 1, B1 = −1/2 and Bm>1 = 0. The value chosen for the cutoff
parameter is α = 1/2. The inset shows the subleading behavior z1/2G(z) of the one-body
density matrix in the same notations and units as in the main graph.

The series expansion in Π/ρ0 is valid for small fluctuations of the field Π(x) compared
to the average density ρ0,

√
〈X2〉 . 1 i.e. for α &

√
K/2. By combining the previous

equations we obtain the final result for the one-body density matrix, finding the structure:

G(z) =
ρ0ρ∞
|z|1/2K

[
1 +

∞∑

n=1

a′n
z2n

+

∞∑

m=1

bm
cos(2mz)

z2m2K

( ∞∑

n=0

b′n
z2n

)

+
∞∑

m=1

cm
sin(2mz)

z2m2K+1

( ∞∑

n=0

c′n
z2n

)]
, (5.57)

≃ ρ0ρ∞
|z|1/2K

[
1 +

d0,2

z2
+
d0,4

z4
+ d1,2

cos(2z)

z2K
+ d1,4

cos(2z)

z2K+2
+ d1,3

sin(2z)

z2K+1
+ ...

]
,

(5.58)

with ρ∞ = |A|2α1/2Kd0,0. Therefore, by defining a properly regularized harmonic-fluid
model the general structure of the one-body density matrix can be obtained for arbitrary
values of the Luttinger parameter K. All the coefficients a′n, bm, b′n, cm, c′n and dn,m

are nonuniversal and need to be calculated by a fully microscopic theory (for possible
methods see e.g. Refs. [184, 185]). We note that Eq. (5.57)

i. generalizes Eq. (5.43).

ii. has the full structure of the exact result (5.42) in the Tonks-Girardeau limit.

As a direct consequence of the series structure (5.57) the momentum distribution will
display singularities in its derivatives for k = ±2mπρ0.

A few comments are in order at this point. First, by taking the limit a → 0 in
Eqs. (5.48)–(5.51) we recover the results of the standard harmonic-fluid approach, i.e.
Eq. (5.43). Moreover, the generalized harmonic-fluid method produces also the corre-
sponding coefficients of the series, namely to the order of approximation derived in this
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work, we have

d0,0 ≃ 1

[
1 +

1

2α
− K

8α2
+

K

16α3

]
, d0,2 ≃ − α2

4K d0,0

[
d0,0 +

2K

α
+
K2

2α2

]
, (5.59)

d0,4 ≃ (1 + 4K)α4

32K2 d0,0

[
d0,0 +

4K

α
+
K2

α2

12K + 1

4K + 1
− K3

α3

6

4K + 1

]
, (5.60)

d1,2 ≃ −2α2K , d1,3 ≃ 4α2K+1

d0,0

[
d0,0 +

K

2α
+

K2

16α3

]
, (5.61)

d1,4 ≃ (1 + 8K + 4K2)α2K+2

2K d0,0

[
d0,0 +

2K

α

1 + 4K

1 + 8K + 4K2

+
K2

2α2

1

1 + 8K + 4K2
+
K3

α3

1

1 + 8K + 4K2

]
. (5.62)

However, it should be noted that these coefficients do not necessarily coincide e.g. in the
limit K = 1 with the exact ones in Eq. (5.42). Our approach is still effective, as it suffers
from some limitations: first of all, we have just used a single-parameter regularization
which neglects the details of the spectrum of the Bose fluid. Second, our approach relies
on a hydrodynamic-like expression for the field operator (5.19) which implicitly assumes
that the fluctuations of the field Π(x) are “small”, which is not always the case. On the
other hand, we see from our derivation that the corrections due to the Π(x) fluctuations
renormalize the coefficients of the series to all orders, giving rise to the contributions in
square brackets to the dij above, but do not change the series structure.

Figure 5.13 shows our results for the one-body density matrix (Eq. (5.58), solid lines)
for K = 1 and a specific choice of the cutoff parameter α = 1/2 as suggested by the
analysis of other correlation functions [116]. The comparison with the exact result for
the Tonks-Girardeau gas (Eq. (5.42), dashed lines) yields a reasonable agreement, the
difference being due to the fact that we have used for the sake of illustration the explicit
expression for the coefficients di,j derived in the current work. It should be noted in
particular that our generalized harmonic-fluid approach restores the correct trend at
short distances as compared to the usual harmonic-fluid approach (Eq. (5.43), dotted
lines).

5.4.4 Momentum distribution

We proceed by studying the momentum distribution n(q), obtained by Fourier transfor-
mation of the one-body density matrix with respect to the relative variable,

n(q) =

∫ L

0
dx

∫ L

0
dx′ e−iq(x−x′)G(x, x′). (5.63)

Here we take into account the effect of the fields φ(x) and θ(x) on the one-body density
matrix. Including the field θ leads to the following extension of Eq. (5.40)

G(x, x′) = ρ0|A|2
∑

(m,m′)∈Z2

ei2πρ0(mx−m′x′) ei2θB(m−m′) e[mθ(x)+m′θ(x′),φ(x)−φ(x′)]/2

× exp

[
−1

2

〈(
2mθ(x) − 2m′θ(x′) − φ(x) + φ(x′)

)2〉
]
. (5.64)
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The new terms of G(x, x′) involve the correlators 〈θ(x)φ(x′)〉 = [θ(x), φ(x′)]/2 and

〈θ(x)θ(x′)〉 = π2〈Π2
0〉xx′ −

K

4
ln

[
α2 + d2(x− x′|2L)

α2 + d2(x+ x′|2L)

]
. (5.65)

The resulting one-body density matrix reads

G(x, x′) = ρ0

[
ρ−2
0

√
[a2 + d2(2x|2L)] [a2 + d2(2x′|2L)]

[a2 + d2(x− x′|2L)] [a2 + d2(x+ x′|2L)]

] 1
4K

×
∑

m,m′

bm,m′ ei2πρ0(mx−m′x′)

[
α2 + d2(x+ x′|2L)

α2 − d2(x− x′|2L)

]mm′K

× e−iπsgn(x−x′)/2 e−2π2〈Π2
0〉(mx−m′x′)2

[
ρ2
0 (α2 + d2(2x|2L))

]m2K/2 [
ρ2
0 (α2 + d2(2x′|2L))

]m′2K/2
, (5.66)

with the nonuniversal coefficients bm,m′ = |A|2(ρ0a)
1/2+(m2+m′2)K ei2θB(m−m′).

We have resorted to a numerical calculation for the evaluation of the momentum
distribution taking as input the one-body density matrix obtained in Eq. (5.66). This
allows us to estimate the main features of the momentum distribution at wavevectors
q smaller than the cutoff wavevector qc ∼ 1/α. The behavior at large wavevectors
q ≫ qc needs an accurate treatment of the short-distance behavior of the many-body
wavefunction [186, 187] and is beyond the regime of validity of the Luttinger-liquid
method. The result for the momentum distribution is illustrated in Fig. 5.14 for two
values of the boson number in the ring, and at varying interaction strength. As a general
feature (see the inset of Fig. 5.14), we observe that at intermediate values of q the
momentum distribution displays a power-law behavior n(q) ∼ q1/(2K)−1 with the same
power predicted for a homogeneous ring in the thermodynamic limit (see e.g. Refs. [142]
and [188] for a finite-size scaling analysis). This result is readily understood as the
different power laws described in Sec. 5.4.2 only occur at the edge of the integration region
with a negligible weight with respect to the bulk contribution. Still, by comparing the
details of the momentum distribution of the ring with the barrier with the momentum
distribution of a uniform ring, (see the main panel of Fig. 5.14), we find that in the
presence of the barrier the momentum distribution is decreased at small momenta. This
is in agreement with the fact that the barrier reduces the coherence along the ring. The
result is reminiscent of the one obtained for a 1D gas in presence of disorder [189], where
the reduction of the momentum distribution at small momenta is also observed.

5.4.5 Friedel oscillations in the particle density profile

Extending the quantum average techniques outlined in Sec. 5.4.2 to the limit of an in-
finitely high barrier, it is possible to evaluate also the inhomogeneous particle-density
profile and the density-density correlation functions. Interference between particles inci-
dent on and reflected by the barrier leads to the occurrence of Friedel-like oscillations in
the density profile and in its correlator, which are typical of strongly correlated 1D fluids.
We describe here these oscillations within the Luttinger liquid approach, for any value
of the coupling strength, finding that they are more and more marked as the coupling
strength increases. In the Tonks-Girardeau limit of infinite boson-boson repulsion we
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Figure 5.14: Momentum distribution n(q) in units of 2π|A|2α as a function of the
wavevector q in units of the cutoff momentum qc = 1/α for N = 10 bosons on a ring
with an infinite barrier (solid lines) and for a homogeneous ring in absence of the bar-
rier (dashed lines) for various values of the Luttinger parameter K (from top to bottom
K = 4, 2, 1). The inset shows the same quantity (in logarithmic scale, arbitrary units,
same line conventions as the main figure) evaluated for N = 103 bosons. The dotted
lines indicate the predicted power law decays q1/(2K)−1 in the thermodynamic limit.

compare the predictions of the Luttinger-liquid approach with the exact results, which
enables us to fix the nonuniversal parameters of the latter.

We compute the particle-density profile by taking the quantum average 〈ρ(x)〉 of the
density operator (5.69) on the ground state, namely

〈ρ(x)〉/ρ0 =
+∞∑

m=−∞
〈(1 + Π(x)/ρ0)e

2miθ(x)〉 ei2πmρ0x+2imθB . (5.67)

To evaluate the quantum averages we exploit the fact that the Hamiltonian (5.23) is
quadratic in the field θ(x) (and recall that Π(x) = ∇θ(x)/π). We use the property

that if X and Z are Gaussian variables then
〈
X eZ

〉
= 〈XZ〉 e

1
2
〈Z2〉. Hence, we are left

with the evaluation of the 〈θ(x)θ(x′)〉 correlation function, to be taken at equal points
x = x′; the 〈Π(x)θ(x′)〉 correlation function is obtained from the previous one by taking
the derivative with respect to the variable x. Using the mode expansion (5.35) and a
procedure similar to the one outlined in Sec. 5.4.2 we obtain

〈Π(x)θ(x′)〉 = π〈Π2
0〉x′ +

K

2π

d(x+ x′|L)

α2 + d2(x+ x′|2L)
− K

2π

d(x− x′|L)

α2 + d2(x− x′|2L)
sgn(x− x′).

(5.68)
The final expression for the density profile reads

〈ρ(x)〉
ρ0

= 1 + 2

∞∑

m=1

(
α2

α2 + d2(2x|2L)

)m2K/2 [
cos(2mπρ0x+ 2mθB)

−mK
πρ0

sin(2mπρ0x+ 2mθB)
d(2x|L)

α2 + d2(2x|2L)

]
. (5.69)

The density profile is modulated by oscillations with wavevector multiples of 2πρ0. No-
tice that in the case K = 1, where the system can be mapped onto a noninteracting
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spin-polarized Fermi gas, the wavevectors of the oscillation are multiples of 2kF , where
kF = πρ0 is the Fermi wavevector, and hence correspond to the well-known Friedel os-
cillations [190]. For the case of generic K the m = 1 oscillations decay with the power
law x−K (see e.g. Ref. [191]).

Let us now concentrate on the case K = 1. In the thermodynamic limit (L → ∞,
N → ∞, at fixed ρ0 = N/L) the expression (5.69) for the density profile at short distances
(to O(1/x)) reduces to

〈ρ(x)〉
ρ0

≃ 1 + α
cos(2πρ0x+ 2θB)

x
. (5.70)

This can be compared with the thermodynamic limit of the exact expression derived
using the Bose-Fermi mapping [153, 192]

〈ρ(x)〉
ρ0

≃ 1 − sin(2πρ0x)

2πρ0x
, (5.71)

allowing us to fix the coefficients α and θB to the values

α =
1

2πρ0
, (5.72)

and

θB =
π

4
. (5.73)

Note that the latter choice for θB is in agreement with the condition θB 6= 0,±π,±2π . . .
obtained by imposing that the particle density profile should vanish at x = 0 and x =
L [171]. Once the constants α and θB are chosen, the constant A in Eq. (5.19) can
be fixed by comparing the expression for the coefficient b00 entering Eq. (5.40) for the
one-body density matrix with the exact value bexact

00 = 2−1/3√πeA−6
G ∼ 0.521 [152, 153]

where AG = 1.282 . . . is Glaisher’s constant. The result is

|A|2 = 21/6π e1/2A−6
G ≃ 1.307 . . . . (5.74)

This value has been used in plotting Fig. 5.12.

In Figure 5.15 we illustrate the density profiles for various values of K, obtained by
the Luttinger-liquid expression (5.69) using the above choice for α and θB. In absence
of known results for the case of arbitrary K, we have adopted the same choice of param-
eters A, α and θB for any value of K. The figure displays also the exact result for the
density profile obtained from the Bose-Fermi mapping, ρexact(x) =

∑N
j=1 |ψj(x)|2. In our

specific case, the orbitals are

ψj(x) =

√
2

L
sin(πjx/L), (5.75)

with j = 1, ...,∞. The comparison shows how our choice of parameters α and θB re-
produces extremely well the density profile oscillations even on a finite ring. The figure
also illustrates how the Friedel oscillations display maximal amplitude in the strongly
interacting limit K = 1.
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Figure 5.15: Particle density profile 〈ρ(x)〉 in units of the average particle density ρ0 as
a function of the spatial coordinate x along the ring (in units of the ring circumference
L) for various values of the parameter K. Main figure, K = 1 (solid line: result from the
Luttinger-liquid model, dotted line, exact result from the Bose-Fermi mapping); Inset,
K = 2 (top green line) and K = 4 (bottom blue line).

5.4.6 Density-density correlation function from Luttinger-liquid theory

We turn now to the density-density correlation function S(x, x′) = 〈ρ(x)ρ(x′)〉−〈ρ(x)〉〈ρ(x′)〉.
This quantity encodes the information on the structure of the fluid, i.e. on the correla-
tions between density modulations at different parts of the fluid, while it vanishes for an
ideal Bose gas. The Fourier transform of the density-density correlation function with
respect to the relative variable is directly accessible experimentally by light-scattering
methods (see e.g. [193] and references therein).

The density-density correlation function is obtained with the quantum average method
described in Sec. 5.4.2 and 5.4.5. One has to compute

〈ρ(x)ρ(x′)〉 =
+∞∑

m,m′=−∞
e2i(m−m′)θB ei2πρ0(mx−m′x′)

×
〈[
ρ0

2 + ρ0(Π(x) + Π(x′)) + Π(x)Π(x′)
]
e2i(mθ(x)−m′θ(x′))

〉
. (5.76)

The average can be performed using the general result for Gaussian variables
〈
XY eZ

〉
=

(〈XY 〉 + 〈XZ〉〈Y Z〉) e
1
2
〈Z2〉. The novel correlator needed for the calculation in addition

to Eqs. (5.65) and (5.68) is

〈Π(x)Π(x′)〉 = 〈Π2
0〉 −

K

2π2

[
d2(x− x′|2L) − α2 cos(π(x− x′)/L)

(α2 + d2(x− x′|2L))2

+
d2(x+ x′|2L) − α2 cos(π(x+ x′)/L)

(α2 + d2(x+ x′|2L))2

]
. (5.77)
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Figure 5.16: Density-density correlation function S(x, x′) (in units of ρ2
0) from the

Luttinger-liquid model as a function of the coordinate x′ (in units of the ring circumfer-
ence L), with x = L/2 and for various values of the Luttinger parameter K (K = 1, top
red line, K = 2, middle green line, K = 4 bottom blue line). The dotted line corresponds
to the exact solution obtained from the Bose-Fermi mapping in the case K = 1.

The final result reads

〈ρ(x)ρ(x′)〉 =
+∞∑

m,m′=−∞
(ρ0α)(m

2+m′2)K e2i(m−m′)θBei2πρ0(mx−m′x′)

×
[
ρ2
0 + 〈Π(x)Π(x′)〉 + 2iρ0〈(Π(x) + Π(x′))(mθ(x) −m′θ(x′))〉

− 4〈Π(x)(mθ(x) −m′θ(x′))〉〈Π(x′)(mθ(x) −m′θ(x′))〉
]

×
(
α2 + d2(x+ x′|2L)

α2 + d2(x− x′|2L)

)mm′K (
ρ−2
0

α2 + d2(2x|2L)

)m2K/2(
ρ−2
0

α2 + d2(2x′|2L)

)m′2K/2

.

(5.78)

This equation displays the general structure of the density-density correlations to all
orders inm andm′, and by considering only the first terms of the expansionm,m′ = 0,±1
we recover the known results [142, 171].

We proceed by comparing the density-density correlation function S(x, x′) with the
exact result for K = 1. The latter is obtained from the Bose-Fermi mapping as [193]:

Sexact(x, x′) = −




N∑

j=1

ψj
∗(x)ψj(x

′)




2

, (5.79)

where the single-particle orbitals ψj(x) are defined in Eq. (5.75).
Figure 5.16 displays the results obtained from the Luttinger-liquid method at various

values of the Luttinger parameter K, using the choice of parameters α and θB determined
from the density profile in Sec. 5.4.5 and compares to the exact ones in the case K = 1.
The agreement found is very good, even for the Friedel-like oscillations at wave vector
k ∼ 2πρ0; this is at the boundary of the expected regime of validity of the Luttinger-
liquid theory and illustrates how a reasonable choice of the non-universal parameters in
the effective model allows for surprisingly accurate predictions.
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5.5 Bose Josephson junction in a ring trap

5.5.1 Josephson Hamiltonian

In this section we consider the effect of a large but finite barrier on the ring. Quantum
fluctuations tend to destroy the phase coherence along the ring, while the tunneling of
bosons between the ends of the loop favors a well-defined phase difference across the
barrier. We will study the interplay between these competing effects in the framework
of the Luttinger liquid formalism.

The barrier is realized with a localized magnetic or optical potential Vbar(x) which
is non-zero only on a width a around x = 0 ≡ L. We describe the tunneling of bosons
through the barrier with the following tunnel Hamiltonian

HJ = −T Ψ†(L)Ψ(0) + h.c. , (5.80)

where T is the tunneling strength that characterizes Vbar. Hamiltonian (5.80) takes into
account the possibility for a boson to tunnel through the barrier potential from x = 0+

to x = L−, and h.c. refers to the Hermitian conjugate corresponding to tunneling events
in the opposite direction. In the hydrodynamic formulation for Ψ†(x), the transfer of
one boson is ensured by the operator exp(−iϕ) where ϕ = φ(L) − φ(0). By neglecting
the density fluctuations in the field operator (5.19) we then recover the usual Josephson
Hamiltonian

HJ = −EJ cosϕ, (5.81)

where EJ = 2ρ0T is the Josephson energy of the junction.

5.5.2 Renormalization of the Josephson energy by quantum fluctua-

tions

Quantum fluctuations of the bosons in the ring on both sides of the barrier tend to
smear the phase ϕ and hence suppress the tunneling strength. Indeed, from the diagonal
Hamiltonian (5.32), the ring constitutes an oscillator bath for the junction with linear
spectrum ~ωkj

= π~vSj/L; the resulting model is very similar to the one describing a
superconducting Josephson junction coupled to a resistive environment [47]. The path
integral renormalization group approach is presented in appendix D.2. Tunneling events
thus induce excitations of the modes of the ring with energy between ~ω0 = π~vS/L and
the high energy cutoff ~ωh = π~vS/a.

When the Josephson energy is smaller than the lowest mode ~ω0, corresponding to
small rings L < L∗ ∼ ~vS/EJ , the junction can be treated as a perturbation and every
mode modifies EJ (see Fig. 5.17, left panel). The effective Josephson energy results
from averaging HJ , Eq. (5.81), with respect to the ground state of the unperturbed
Hamiltonian (5.23): Eeff

J = 〈HJ〉 with 〈HJ〉/EJ = G0(L, a)/ρ0. Then

Eeff
J = EJ

(πa
2L

)1/K
for L < L∗. (5.82)

The Josephson energy decreases with the power law L−1/K of the one-body density for
probe points at the edges of the ring. This case includes the limit of an infinitely high
barrier, where EJ → 0, L∗ → ∞, and which is illustrated in Fig. 5.12, rightmost panel.

When EJ is larger than ~ω0 (with EJ < ~ωh), only the modes with energies larger
than EJ contribute to the renormalization (see Fig. 5.17, right panel). Consequently,
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L < L∗

EJ

h̄vS

L

h̄ωh

L > L∗

EJ

h̄vS

L

h̄ωh

Figure 5.17: Renormalization schemes of the Josephson energy by quantum fluctuations
for a small ring (L < L∗, left panel) and for a large ring (L > L∗, right panel).
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Figure 5.18: Renormalized Josephson energy as a function of the length of the ring. From
top to bottom K = 4, 2, 1 with ~ωh = 10EJ . Eeff

J decreases as 1/L1/K and reaches a
constant value at L = L∗.

to obtain the effective Josephson energy we need to average over wavelengths between a
and the characteristic length ℓ ≡ π~vS/E

eff
J : Eeff

J = 〈〈HJ〉〉 with

Eeff
J /EJ = G0(L, a)/G0(ℓ, a) ∼ (a/ℓ)1/K (5.83)

The effective Josephson energy in this case is obtained by solving the above self-consistent
equation with respect to ℓ, with the result

Eeff
J = EJ

(
aEJ

π~vS

)1/(K−1)

for L > L∗. (5.84)

In this case Eeff
J is independent on the ring circumference L. Our results (5.82) and (5.84)

are summarized in Fig. 5.18. Quantum fluctuations dramatically reduce the tunnel am-
plitude with respect to its bare value entering the Hamiltonian (5.80), especially in the
case K = 1. Note however that the reduction saturates at a nonzero level for rings
larger than the so-called healing length L∗. The continuity between the two regimes
L < L∗ and L > L∗ defines the healing length of the ring L∗ = πa/2(π~vS/aEJ)K/(K−1).
As a final remark, we mention that our approach is equivalent to the renormalization
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group formalism [194] or the self-consistent harmonic approximation [47]. Eqs. (5.82)
and (5.84) can be obtained from the flow equation Eq. (D.24), derived in appendix D.2
and also in Ref. [195].

Conclusion and perspectives

As a main conclusion, by taking into account the effect of quantum fluctuations we
find that the effective Josephson energy is reduced with respect to its bare value, in a
way which depends on the length of the ring with respect to a typical healing length, a
maximal reduction occurring for long rings.

The effect of the renormalization of the tunnel amplitude is expected to have strong
consequences on the dynamical evolution of the ring-trapped Bose gas with a Josephson
junction, especially for the study of quantum revivals resulting from a localized excitation
in the density distribution.
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L’effet Josephson dans un gaz bosonique
unidimensionnel

Résumé du chapitre

L
’effet Josephson apparâıt lorsque deux objets cohérents en phase sont approchés suff-

isamment près l’un de l’autre pour que l’échange tunnel y soit effectif. C’est le cas

pour les métaux supraconducteurs mais aussi pour les gaz quantiques. Nous étudions

un gaz d’atomes ultra-froids piégé dans un potentiel circulaire comportant une barrière,

créant ainsi une jonction de Bose Josephson. Bien que les premières expériences dans

cette géométrie restent dans la limite bidimensionnelle, nous considérons le cas unidi-

mensionnel. L’utilisation du formalisme du liquide de Luttinger nous permet de décrire

la physique à basse énergie du système à travers les fonctions de corrélation spatiale

pour une force d’interaction arbitraire. Ces propagateurs sont comparés aux résultats

exacts disponibles dans le régime des très fortes interactions de Tonks Girardeau. Nous

obtenons des oscillations de Friedel dues à la barrière dans le profil de densité et les

corrélations densité-densité sont en bon accord avec les résultats exacts même sur des

distances de l’ordre de la longueur inter-atomique moyenne. La cohérence de phase

du système est donnée par la matrice densité à un corps, qui décrôıt selon des lois de

puissance dépendant de la position des points de mesure vis-à-vis de la barrière, signa-

ture d’un quasi-ordre à longue distance. La distribution des impulsions, transformée de

Fourier de la matrice densité, présente en conséquence une décroissance en loi de puis-

sance dépendant de la force des interactions. Notre régularisation de la théorie effective

génère la série complète des corrections dans la limite thermodynamique et tient compte

des fluctuations de longue longueur d’onde. Enfin, nous montrons que les fluctuations

quantiques dans l’anneau induisent une renormalisation de la transparence tunnel de

la jonction, entrâınant une réduction de l’énergie Josephson effective. Cette réduction

dépend de la longueur de la boucle et de la force des interactions, l’effet étant maximal

pour un gaz de Tonks Girardeau.
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Chapter 6
Conclusions and Perspectives

Conclusions

A
s a conclusion, we have studied four quantum mechanical systems with the appropriate
theoretical tools and, as far as possible, worked in collaboration with experimentalists to
compare our results with the measurements or design new setups. Our main results in
these different projects are the following

1st chapter: Presentation of the quantum-mechanical Josephson Hamiltonian.

2nd chapter: Current-voltage characteristics of an underdamped Josephson junction,
from the classical to the low temperature regime; Quantum Smoluchowski equation
for the quasicharge dynamics.

3rd chapter: Optimal line of the dc SQUID phase qubit for current noise; Escape rate
in the camel-back potential.

4th chapter: Temporal dynamics and output spectrum from the Lindbladian of a charge
qubit coupled to a cavity; Optimal parameters to observe the lasing effect for a
transmon coupled to two cavities.

5th chapter: Power law decays, Friedel oscillations and renormalization of the Joseph-
son energy by quantum fluctuations for a Bose Josephson junction realized with a
one-dimensional ring of cold atoms closed by a localized barrier; Subleading cor-
rections to the one-body density matrix of bosons in a homogeneous cigar shape
potential in the thermodynamic limit.

Research in the field of quantum mesoscopic systems is rich and prolific, and many
promising (not necessarily successful, unfortunately) ideas cross our mind. Some of
these perspectives are presented in the following section.

Perspectives

α Quantum spectral function of an underdamped Josephson junction

The steady-state voltage is not sufficient to describe the measured signal of a Josephson
junction. A useful quantity is the voltage noise, i.e. the two point correlation function of
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the voltage operator. The voltage spectral function may be of particular interest in the
use of a Josephson junction as a current standard. The formalism used to calculate the
current-voltage characteristics of underdamped Josephson junctions can be extended to

obtain the voltage spectrum S(ω) =

∫ +∞

−∞
dτ0 e−2iωτ0〈V s0(τ0)V

s-1(−τ0)〉. An Extended

Nearest Neighbor Approximation is needed for analytical results. Primary results are
encouraging (see Fig. 6.1). The formalism can then be applied to the case of overdamped
Josephson junctions using the duality transformations.

S(
ω

)

βh̄ω
0 2 4−2−4

Figure 6.1: Real part of the symmetrized voltage spectrum S(β~ω) from an extended
analysis of Chap. 2 with βU0 = 0.1, β~ωc = 10, g = 0.1, Ib = Vc/R and s−1 = −s0.

β Possible amplification of the moments of a mesoscopic device

All the moments of a measured quantity, i.e. its many-point correlation functions, are
necessary to fully describe the observable. This idea was well summarized by Rolf Lan-
dauer in his famous expression “the noise is the signal” [196]. The amplitude of the third
and higher moments is tiny, as a consequence it is hardly possible to measure them. They
need to be amplified. We can take advantage of the nonlinear character of the Josephson
junction to amplify them. The basic idea comes from the analysis of Ref. [17], where
the spectral function of the voltage of an overdamped Josephson junction is found to be
SV (ω) =

∑
k |Zk(ω− kωJ)|2SI(ω− kωJ) in the classical limit. The terms |Zk(ω− kωJ)|2

amplify and downconvert the current spectral function SI(ω) of a tunneling device (see
Fig. 6.2). This result can be generalized to the full counting statistics to understand if it
is possible to use the Josephson junction in experiments as an amplifier of the cumulants
of a tunneling device [80, 197].

γ Phase dynamics of a closed one-dimensional Josephson junction array

Josephson junction arrays are used for instance to generate highly resistive environ-
ments, but their dynamics is complex and not fully understood [198, 199]. In this
project, we study the dynamics of the phases in a flux biased superconducting loop
interrupted by several Josephson junctions. The minimization of the Lagrangian L =
N∑

i=1

[
Ciϕ̇

2
i /2 + EJ i cos(ϕi)

]
+ CN+1

(∑
ϕ̇i

)2
/2 + EJN+1 cos

(
φ−

∑
ϕi

)
, gives rise to
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S(
ω

)

h̄ω/2eVc

0 1 2 3 4 5

Figure 6.2: The shot noise [81] SI(ω) (blue line) of a tunneling device is amplified and
downconverted in the voltage spectral function SV (ω) (red line) of a Josephson junction.

different solutions differing by the number of phase-slips along the ring (see Fig. 6.3).
So as to understand the physics of this system, we analyse some of its features, includ-
ing the energy spectrum, the effective action, the Zener transitions and the continuum
limit. We use a group theory approach [200] to determine the energy level degeneracy.
This analysis may show how this chain could be used as an inductance and how it could
describe a superconducting nanowire. The study of this system has also applications in
the field of cold atoms in optical lattices, it can be seen as the discrete version of the
ring shape potential.

b

ϕi

i

φ = π

Figure 6.3: Phase distribution along the ring in the absence of phase-slip and in the
presence of one phase-slip. For a flux bias equal to π, these two configurations are
degenerated.

δ Quantum revivals of a Bose Josephson junction on a ring trap

The analysis of Chap. 5 deals with the static properties of the Bose Josephson junction
on a ring shape potential. The next step is the study of its temporal evolution. The
response to a local excitation in the density, for instance a population imbalance, is an
interesting project. Indeed it would explain if quantum revivals appear, as it is seen in
other similar systems [201]. The answer involves the calculation of two-time correlation
functions, which can be performed from our study in the stationary regime.
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Appendix A
Josephson junction coupled to a strongly
dissipative environment

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1 Wick’s theorem in Keldysh formalism . . . . . . . . . . . . . . 131

A.2 Bath spectral function . . . . . . . . . . . . . . . . . . . . . . . 132

A.3 Bath correlation function . . . . . . . . . . . . . . . . . . . . . . 133

A.4 Continued fraction representation of the steady state voltage 136

A.5 Classical limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.6 Limit of very low temperatures . . . . . . . . . . . . . . . . . . 139

Introduction

I
n this appendix we detail the derivation of various results for the underdamped Josephson
junction studied in Chap. 2, such as the average over the bath and the I-V characteris-
tics.

A.1 Wick’s theorem in Keldysh formalism

To prove that 〈TC e−iX〉 = e−
1
2
XX with XX = 〈TC XX〉, we expand the exponential

function in power series

〈TC e−iX〉 =
∞∑

n=0

(−i)n

n!
〈TC Xn〉 =

∞∑

n=0

(−1)n

(2n)!
〈TC X2n〉. (A.1)

The sum runs only on even exponents because the average value of an odd number of
bath operators vanishes. We then prove by mathematical induction that

∀n ∈ N 〈TC X2n〉 =
(2n)!

2nn!
XX

n
(Pn) (A.2)
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• P0 is true.

• Let us suppose Pn true at the order n. Then, according to Wick’s theorem,

〈TC X2n+2X2n+1X2nX2n−1 . . . X2X1〉
=〈TC X2n+2X2n+1〉〈TC X2nX2n−1 . . . X2X1〉

+ 〈TC X2n+2X2n〉〈TC X2n+1X2n−1 . . . X2X1〉
+ . . .

+ 〈TC X2n+2X1〉〈TC X2n+1X2n . . . X3X2〉
=(2n+ 1)〈TC X2n+1X2n+2〉〈TC X1X2 . . . X2n〉

=(2n+ 1)XX
(2n)!

2nn!
XX

n

=
(2(n+ 1))!

2n+1(n+ 1)!
XX

n+1
(A.3)

Therefore Pn ⇒ Pn+1.

The proposition Pn is thus true on N.
We finally obtain

〈TC e−iX〉 =

∞∑

n=0

(−1)n

(2n)!

(2n)!

2nn!
XX

n
=

∞∑

n=0

1

n!

(
−XX

2

)n

= e−
1
2
XX , (A.4)

Actually, this simple demonstration does not depend on the representation for the Green’s
functions. One only needs to define the time ordering operator properly.

A.2 Bath spectral function

The equations of motion relative to the Hamiltonian

H = −U0 cos(πq/e− ξ) − φ0Ibφ+
∑

α

~ωα

2
(p2

α + x2
α), (A.5)

give the following relations

∂H
∂pα

= ~ẋα = ~ωαpα, (A.6)

∂H
∂xα

= −~ṗα = ~ωαxα − 2eςαV, (A.7)

which lead to the differential equation

ẍα + ω2
αxα = ςαωα

2e

~
V. (A.8)

To express the admittance Y in terms of the bath parameters, we connect the voltage V
to the current Ix = 2e

∑
α ςαẋα through the relation V = Y Ix.

We define the differential operator D as follows

D =
d2

dt2
+ ω2

α, (A.9)



§A.3 Bath correlation function 133

which Fourier transform reads

TFD = −ω2 + ω2
α. (A.10)

The Fourier transform of the retarded Green’s function of the linear differential equation
DgR

α (t) = δ(t) is then equal to gR
α (ω) = −1

(ω+iν)2−ω2
α
. We obtain

xα(t) =
2e

~
ςαωα(gR

α ⊗ V )(t), (A.11)

and then

Ix(t) =
2π

RQ

∑

α

ς2αωα(ġR
α ⊗ V )(t). (A.12)

The current Ix is the convolution product of the voltage by the first temporal derivative
of the retarded Green’s function. Taking the Fourier transform gives the product of V (ω)
by the admittance of the circuit

Yω = lim
ν→0

2π

RQ

∑

α

ς2αωα
iω

(ω + iν)2 − ω2
α

, (A.13)

the real part ReYω = 1/R of which reads

1

R
=

π2

RQ

∑

α

ς2αωαδ(|ω| − |ωα|). (A.14)

Eq. (A.13) constitutes the link between the environment and the circuit through the
admittance.

A.3 Bath correlation function

The Hamiltonian of the bath is

Hbath =
∑

α

~ωα

2
(p2

α + x2
α) =

∑

α

~ωα

(
aαa

†
α +

1

2

)
, (A.15)

with the bath annihilation operators

aα =
xα + ipα√

2
, (A.16)

which satisfy the commutation rule [aα, a
†
α] = 1, and have the average 〈a†αaα〉 = nα =

1/(eβ~ωα − 1), the Bose-Einstein distribution. Their temporal evolution reads

i~
∂aα(t)

∂t
= [aα,Hα] = ~ωαaα(t) ⇒ aα(t) = aα(0)e−iωαt. (A.17)

We have
ξ(t) = 2π

∑

α

ςαxα(t) =
√

2π
∑

α

ςα(aα + a†α), (A.18)

then

(ξ(t) − ξ(0))ξ(0) = −2π2
∑

α

∑

α′

ςαςα′ (aα(t) + a†α(t) − aα(0) − a†α(0))(aα′(0) + a†α′(0))︸ ︷︷ ︸
=χα,α′ (t)

(A.19)



134 Josephson junction coupled to a strongly dissipative environment §A.3

We expand χα,α′(t) in products of aα(t)

〈χα,α′(t)〉 = 〈aα(0)aα′(0)〉︸ ︷︷ ︸
=0

e−iωαt + 〈aα(0)a†α′(0)〉︸ ︷︷ ︸
=(1+nα)δα,α′

e−iωαt

+ 〈a†α(0)aα′(0)〉︸ ︷︷ ︸
=nαδα,α′

eiωαt + 〈a†α(0)a†α′(0)〉︸ ︷︷ ︸
=0

eiωαt

− 〈aα(0)aα′(0)〉︸ ︷︷ ︸
=0

− 〈aα(0)a†α′(0)〉︸ ︷︷ ︸
=(1+nα)δα,α′

− 〈a†α(0)aα′(0)〉︸ ︷︷ ︸
=nαδα,α′

− 〈a†α(0)a†α′(0)〉︸ ︷︷ ︸
=0

= (cosωαt− 1) coth β~ωα

2 − i sinωαt,

(A.20)

which leads to

J(t) = 〈(ξ(t) − ξ(0))ξ(0)〉 = 2π2
∑

α

ς2α((cosωαt− 1) coth
β~ωα

2
− i sinωαt) (A.21)

We define

f(ωα) =
1

ωα
((cosωαt− 1) coth

β~ωα

2
− i sinωαt), (A.22)

an even function, and calculate f(ωα) in terms of f(ω)

f(ωα) =

∫ ∞

−∞
dω δ(ω − ωα)f(ω) =

1

2

∫ ∞

−∞
dω δ(|ω| − |ωα|)f(ω). (A.23)

We can introduce the expression of the admittance

J(t) = π2
∑

α

ς2αωα

∫ ∞

−∞
dω δ(|ω| − ωα)

1

ω
((cosωt− 1) coth

β~ω

2
− i sinωt)

=

∫ ∞

−∞

dω

ω
π2
∑

α

ς2αωα δ(|ω| − |ωα|)
︸ ︷︷ ︸

=RQReYω

((cosωt− 1) coth
β~ω

2
− i sinωt)

= RQ

∫ ∞

−∞

dω

ω
ReYω((cosωt− 1) coth

β~ω

2
− i sinωt). (A.24)

The admittance is a R-L circuit, characterized by the cutoff frequency ωc = R/L. Its
real part reads

ReYω =
1

R

1

1 + (ω/ωc)2
, (A.25)

and we arrive at

J(t) = g

∫ ∞

−∞

dω

ω

1

1 + ( ω
ωc

)2
((cosωt− 1) coth

β~ω

2
− i sinωt). (A.26)

This integral can be calculated using the residue theorem. The integrand can be
rewritten

(cosωt− 1) coth
β~ω

2
− i sinωt =

e−iωt − 1

1 − e−β~ω
︸ ︷︷ ︸

=u(ω)

+
1 − eiωt

1 − eβ~ω
︸ ︷︷ ︸

=v(ω)

. (A.27)
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Using v(−ω) = −u(ω), we get

J(t) = 2g

∫ ∞

−∞
dω

1

ω

ωc
2

ω2 + ωc
2

e−iωt − 1

1 − e−β~ω
︸ ︷︷ ︸

=f(ω)

. (A.28)

The function f(ω) has three kinds of pole

• Pole ω = 0 : Res(0) = lim
ω→0

ωf(ω) = − it

β~
.

• Poles ω = ±iωc : Res(±iωc) =
1

2

1 − e±ωct

1 − e∓iβ~ωc
.

• Poles ω = iωk : Res(iωk) =
i

2πk

ωc
2

ωc
2 − ωk

2
(1 − eωkt).

Depending on the sign of t, J(t) satisfies

J(t) =





− i2π 2g

(
1

2
Res(0) + Res(−iωc) +

∞∑

k=1

Res(iω−k)

)
if t > 0

+ i2π 2g

(
1

2
Res(0) + Res(+iωc) +

∞∑

k=1

Res(iω+k)

)
if t < 0

=2g


−π|t|

β~
− iπ




1 − e−ωct

1 − e+iβ~ωc
Ξ(t) − 1 − e+ωct

1 − e−iβ~ωc
Ξ(−t)

︸ ︷︷ ︸
= 1

2
j(t)


−

∞∑

k=1

1

k

1 − e−ωk|t|

1 −
(

ωk
ωc

)2


 ,

(A.29)

where Ξ(t) is the unit step function. We use the relation

1

1 − e±iβ~ωc
=

1

2

(
1 ± i cot

β~ωc

2

)
, (A.30)

to obtain the expression of the function j(t)

j(t) = sgn(t)
(
1 − e−ωc|t|

)
+ i cot

β~ωc

2

(
1 − e−ωc|t|

)
. (A.31)

Finally

J(t) = −2g

(
π|t|
β~

− π

2

(
1 − e−ωc|t|

)
cot

β~ωc

2

+

∞∑

k=1

1

k

1 − e−ωk|t|

1 − (ωk
ωc

)2
+ i

π

2

(
1 − e−ωc|t|

)
sgn(t)

)
. (A.32)

The time independent terms can be rewritten in terms of the cotangent and digamma
(noted Ψ)functions

J(t) = −2g

(
λ+

π|t|
β~

+
π

2
e−ωc|t| cot

β~ωc

2
−

∞∑

k=1

1

k

e−ωk|t|

1 − (ωk
ωc

)2
+ i

π

2

(
1 − e−ωc|t|

)
sgn(t)

)
,

(A.33)
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where we note

λ = −π
2

cot
β~ωc

2
+

∞∑

k=1

1

k

1

1 − (ωk
ωc

)2
. (A.34)

Use the power series of the cot(z) and Ψ(z) [202] we reformulate λ

λ = γ +
π

β~ωc
+ Ψ

(
β~ωc

2π

)
. (A.35)

A.4 Continued fraction representation of the steady state

voltage

The steady state voltage reads

V

Vc
=

1

2

∞∑

n=0

∑

{f}

2n+1∏

k=1

a(fk), (A.36)

with Vc = πU0/e and

a(fk) =
U0

i~

∫ ∞

0
dτ sin(fk A(τ))ei π

e
Ifkτ−fk

2M(τ), (A.37)

where we note

J(τ) = −i sgn(τ)A(τ) −M(τ) (A.38)

A(τ) = π g
(
1 − e−ωc|t|

)
(A.39)

M(τ) = 2g


π|t|
β~

− π

2

(
1 − e−ωc|t|

)
cot

β~ωc

2
+

∞∑

n=1

1 − e−ωn|t|

n
(
1 − (ωn

ωc
)2
)


 . (A.40)

and a(n) ≡ an. This formulation involves the integers fk which have interesting proper-
ties



a(fk = 0) = 0 ⇒ ∀k ∈ [1, 2n+ 1] fk 6= 0

f0 = f2n+2 = 0

|fk+1 − fk| = 1

=⇒





∀k ∈ [1, 2n+ 1] fk > 0,

or

∀k ∈ [1, 2n+ 1] fk < 0.
(A.41)

Moreover, a(−fk) = a∗(fk). Then

V

Vc
=

1

2

∞∑

n=0

∑

{f>0}

2n+1∏

k=1

a(fk) +
1

2

∞∑

n=0

∑

{f<0}

2n+1∏

k=1

a(fk) = Re




∞∑

n=0

∑

{f>0}

2n+1∏

k=1

a(fk)


 .

(A.42)
We define Gr

n and Gr as follows

∀r ∈ N
∗ Gr

n =
∑

{f>r}
f1=f2n+1=r

2n+1∏

k=1

a(fk)

Gr =
∞∑

n=0

Gr
n =

∞∑

n=0

∑

{f>r}
f1=f2n+1=r

2n+1∏

k=1

a(fk). (A.43)
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The voltage V can then be expressed in terms of G1

V/Vc = ReG1. (A.44)

To calculate G1, the idea is to subdivide the graph Gr
n in subgraphs Gr+1

n . To proceed,
it is convenient to define some ensembles

Er
n =

{
F = (f1, . . . , f2n+1) ∈ N

2n+1 | fk > r f1 = f2n+1 = r |fk+1 − fk| = 1
}
,

(A.45)

∀F ∈ Er
n A = {k ∈ [1, 2n+ 1] | fk = r}, (A.46)

q = CardA− 1, q ∈ [1, n], (A.47)

Rj = jth element of A (R1 = 1, Rq+1 = 2n+ 1). (A.48)

The integer q represents the number of subgraphs Gr+1
n contained in the graph Gr

n and
Rj are the points which delimit two successive subgraphs Gr+1

n . We then define

Er
n(q) =

{
F = (r, F1, r, . . . , r, Fq, r) | Fk ∈ Er+1

mk

q∑

k=1

mk = n− q

}
, (A.49)

Ẽr
n(q) =

{
F = (F1, . . . , Fq) | Fk ∈ Er+1

mk

q∑

k=1

mk = n− q

}
. (A.50)

One obtains Er
n =

n⋃

q=1

Er
n(q). We can then perform first the calculation of Gr

n

Gr
n =

∑

F∈Er
n

2n+1∏

k=1

a(fk)

=
n∑

q=1

∑

F∈Er
n(q)

a(r)q+1
2n+1∏

k=1
fk 6=r

a(fk)

=

n∑

q=1

a(r)q+1
∑

F∈Ẽr
n(q)

q∏

k=1

Rk+1−1∏

l=Rk+1

a(fl)

=
n∑

q=1

a(r)q+1
n−1∑

m1... mq=0
Pq

i=1 mi=n−q

∑

F∈Er+1
m1

· · ·
∑

F∈Er+1
mq

q∏

k=1

Rk+1−1∏

l=Rk+1

a(fl)

=

n∑

q=1

a(r)q+1
∑

{m}
Pq

i=1 mi=n−q

q∏

k=1

∑

F∈Er+1
mk

Rk+1−1∏

l=Rk+1

a(fl)

︸ ︷︷ ︸
=Gr+1

mk

=

n∑

q=1

a(r)q+1
∑

m1...mq

Gr+1
m1

. . . Gr+1
mq

δm1+···+mq ,n−q, (A.51)
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and second Gr

Gr =
∞∑

n=0

Gr
n =a(r) + a(r)

∞∑

q=1

∞∑

n=q

∑

{m}

q∏

k=1

(
a(r)Gr+1

mk

)
δm1+···+mq ,n−q

=a(r)


1 +

∞∑

q=1

q∏

k=1

∑

mk

a(r)Gr+1
mk




=a(r)


1 +

∞∑

q=1

(
a(r)Gr+1

)q



=
a(r)

1 − a(r)Gr+1
. (A.52)

This result can then be applied to the case r = 1

G1 =
a(1)

1 − a(1) a(2)

1− a(2) a(3)

1−
a(3) a(4)

1−
a(4) a(5)

1−
a(5) a(6)

1−...

. (A.53)

This finally yields the continued fraction formulation of the voltage

V

Vc
= Re

a(1)

1 + b1
1+

b2
1+...

, (A.54)

where bn = −a(n) a(n+ 1).

A.5 Classical limit

In the classical limit λ = 0, and the coefficients an become

an =
U0

i~
sin(nπg) e−2πn2λ

∫ ∞

0
dt e

i π
e
Ibtn−2gn2 π

β~
|t|
, (A.55)

i.e.

an =
z

in+ η

sin(nπg)

nπg
e−2gn2λ, (A.56)

with z = βU0, and η = β~

2eg Ib. In the low-g limit, we have an =
1

2

z

in+ η
. The coefficients

Gn satisfy Gn =
an

1 + anGn+1
. We write Gn in the form Gn = dn

Dn

Dn−1
. From what

precedes, we deduce,

1

dn
Dn−1 + dn+1Dn+1 =

1

an
Dn = i

2

z
(n− iη)Dn. (A.57)

We choose dn = −i, which induces

Dn−1 −Dn+1 =
2

z
(n− iη)Dn. (A.58)
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This equation is the characteristic relation of modified Bessel functions In(z)

Dn = In−iη(z), (A.59)

and thus

Gn = −i In−iη(z)

In−1−iη(z)
. (A.60)

Then we have
V

Vc
= Im

(
I1−iη(z)

I−iη(z)

)
. (A.61)

We use the following property of Bessel functions (Iλ(z))∗ = Iλ∗(z), implying |Iλ(z)|2 =
Iλ(z) Iλ∗(z). Then

Im

(
I1−iη(z)

I−iη(z)

)
=

I1−iη(z)Iiη(z) − I−1+iη(z)I−iη(z)

2i|Iiη(z)|2
+
η

2
(A.62)

We can use the Wronskian of Bessel functions [202] to obtain

I1−iη(z)Iiη(z) − I−1+iη(z)I−iη(z) = − 2i

πz
sinh(πη), (A.63)

and hence
V

Vc
=
η

z

(
1 − sinhπη

πη

1

|Iiη(z)|2
)
. (A.64)

Finally, the voltage in the classical regime reads

V = RIb −
kBT

e

sinhπη

|Iiη(z)|2
. (A.65)

A.6 Limit of very low temperatures

We consider first the low temperatures limit β~ωc → ∞ where the functions A and M
can be approximated with

A(t) = πg, (A.66)

λ = γ + ln

(
β~ωc

2π

)
, (A.67)

M(t) = 2g

(
γ + ln

(
β~ωc

π
sh(πt/β~)

))
. (A.68)

The coefficients an become

an = −iβU0

2π
e−2gγn2

(
β~ωc

2π

)−2gn2

sin(nπg) sin(nπg(n+ iη))

sin(2n2πg)

|Γ(ng(n+ iη))|2
Γ(2n2g)

(A.69)

To first order in (β~ωc)
−1, we obtain the expression of the voltage at very low tempera-

tures
V

Vc
=

1

2

U0

~ωc
e−2gγ

(
β~ωc

2π

)1−2g

sinh(πgη)
|Γ(g(1 + iη))|2

Γ(2g)
. (A.70)
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Second, in the zero-temperature limit, we rewrite the time-independent terms of the
autocorrelation function J(t)

J(t) = −2g

(
λ+

π|t|
β~

+
π

2
e−ωc|t| cot

β~ωc

2
−

∞∑

k=1

1

k

e−ωk|t|

1 − (ωk
ωc

)2
+ i

π

2

(
1 − e−ωc|t|

)
sgn(t)

)
,

(A.71)
where

λ = γ +
π

β~ωc
+ Ψ

(
β~ωc

2π

)
. (A.72)

The zero-temperature limit corresponds to β → ∞. We use the asymptotic expression
of the digamma function for large arguments [202]

Ψ(z)
z→∞∼ ln z − 1

2z
, (A.73)

to obtain

λ
β→∞∼ γ + ln

β~ωc

2π
, (A.74)

and then to

J(t)
β→∞∼ −2g

(
γ + lnωc|t| +

π

2
e−ωc|t| cot

β~ωc

2
+ i

π

2

(
1 − e−ωc|t|

)
sgn(t)

)
, (A.75)

which can be approximated for long times compared to ω−1
c by

J(t)
T→0∼ −2g

(
γ + lnωc|t| + i

π

2
sgn(t)

)
. (A.76)

We use the expression for the voltage reduced to the first coefficient a1

V =
πU0

e
Re
U0

i~

∫ ∞

0
sin(A(t)) ei π

e
Ibt−M(t). (A.77)

This equation can be rewritten in the form

V =
π2U2

0

2e

1

h

∫ ∞

−∞
dt e−i sgn(t) A(t)−M(t)+ i

~

hI
2e

t, (A.78)

which is precisely the dual expression of the current calculated within the P (E) theory
in the overdamped regime. Indeed, let us place in the case dual to the system studied
in details in Ref. [48]. The function P (E) is the probability for the system to exchange
the energy E with the environment. In the regime EJ ≪ EC and R ≪ RQ, the energy
exchange E corresponds to the tunneling of one Cooper pair. In the underdamped limit,
the energy E can be interpreted as the the energy exchanged for a phase slip event in the
washboard potential: ϕ, initially well defined around the minimum 2πn, is transferred
to the minimum 2π(n+ 1).

P (E) =
1

h

∫ +∞

−∞
dt exp

(
J(t) +

i

~
Et

)
. (A.79)

Moreover, the normalization relation for P (E) is

∫ +∞

−∞
dE P (E) = 1. It is possible to

express the law V (I) as follows

V =
π2U2

0

2e
(P (Φ0Ib) − P (−Φ0Ib)) . (A.80)
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For negative values of the energy E, P (E) is the probability that the system receives
the energy |E| from the environment. At zero temperature, the environment cannot give
energy to the system and the I-V characteristic takes the form

V =
π2U2

0

2e
P (Φ0Ib). (A.81)

The P (E) law has two interesting properties that can be exploited to plot the I-V
characteristics

• Power law for small values of the current:

V =
π2U2

0

h

1

Γ(2g)

1

Ib

(
π2g

eγ

~Ib
eEL

)2g

. (A.82)

• Recurrence relation:

V (Ib) =
2g

Ib

∫ Ib

0
dI

1

1 +
(

πgh
2eEL

(Ib − I)
)2V (I). (A.83)

To plot the I-V characteristic, we start with very low bias currents and use the asymptotic
expansion (A.82). These points are then used as initial conditions for the recurrence
relation (A.83) to obtain the full I-V characteristic.
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The instantons formalism
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Introduction

W
e use the instantons technique of Ref. [94] to calculate the escape rate from the metastable
state of a general quartic potential.

B.1 Tunneling rate through a potential barrier

B.1.1 Path integral formulation

We consider a particle of mass M moving in a one-dimensional potential U(x) with
momentum p = M dx

dt according to the Hamiltonian:

H =
p2

2M
+ U(x). (B.1)

The probability amplitude for the particle to go from a point xi at time ti to the point
xf at time tf corresponds to the propagator

K(xi, ti;xf , tf ) = 〈xf | e−
i
~
H(tf−ti) |xi〉 , (B.2)

where |xi,f 〉 are position eigenstates.

In order to obtain this probability amplitude, we can sum the contributions of all
possible trajectories from xi to xf . The phase of the contribution from a given path is
the action S in the unit of the quantum action ~ [95]

S =

∫ tf

ti

dt

[
M

2

(
dx

dt

)2

− U(x)

]
. (B.3)

143
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We cut the interval [ti, tf ] into N ≫ 1 infinitesimal domains of length δt. The
propagator is then the product of propagators on these smaller domains

K(xi, ti;xf , tf ) = 〈xf |e−
i
~
H(tf−ti)|xi〉

=

∫
dx1 . . .dxN−1K(xi, ti;x1, ti + δt) . . .K(xN−1, tf − δt;xf , tf ), (B.4)

For each infinitesimal time δt, at first order,

e−
i
~

δtH = e−
i
~

δtT (p)e−
i
~

δtU(x)e−
δt2

~2 [T ,U ] ≃ e−
i
~

δtT (p)e−
i
~

δtU(x). (B.5)

At infinitesimally short times, physics becomes classical. Then,

K(xj+1, t;xj , t+ δt) =

∫
dx〈xj+1|e−

i
~

δtU(x)|x〉〈x|e− i
~

δtT (p)|xj〉

= e−
i
~

δtU(xj+1)

∫
dpj+1

2π~
〈xj+1|pj+1〉e−

i
~

δtT (pj+1)〈pj+1|xj〉

= e−
i
~

δtU(xj+1)

∫
dpj+1

2π~
e−

i
~

δtT (pj+1)e
i
~

pj+1(xj+1−xj)

= e−
i
~

δtU(xj+1)

∫
dpj+1

2π~
e−

i
~

δtp2
j+1/2M+ i

~
δtẋj+1pj+1

=

√
M

i2π~δt
e

i
~

τ(T (ẋj+1)−U(xj+1)). (B.6)

This leads to the total propagator

K(xi, ti;xf , tf ) =

(
M

i2π~δt

)N/2 ∫
dx1 . . .dxN−1 e

i
~

δt
PN

n=1(T (ẋ)−U(x))

=

(
M

i2π~δt

)N/2 ∫
dx1 . . .dxN−1 e

i
~

R T
0 dt′(T (ẋ)−U(x)). (B.7)

The path integral formulation of the propagator is then

K(xi, ti;xf , tf ) = N
∫ x(tf )=xf

x(ti)=xi

Dx e
i
~

S , (B.8)

where N is a normalization factor and Dx denotes the integration over all functions x(t)
obeying the boundary conditions x(ti) = xi and x(tf ) = xf .

If x̄ is any function satisfying the boundary conditions, then a general function x can
be written as

x(t) = x̄(t) + y(τ), y(τ) =
∑

n

cnxn(t), (B.9)

were {xn} is a complete set of orthonormal functions vanishing at the boundaries:

∫ T
2

−T
2

dτxn(τ)xm(τ) = δn,m, (B.10)

xn

(
±T

2

)
= 0. (B.11)

We define the measure Dx by

Dx =
∏

n

1√
2π~

dcn. (B.12)
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B.1.2 Escape rate

Let us consider the temporal behavior of a wave-function with energy E = ER − iEI

which is given by Ψ(x, t) = φ(x) e−iEt~ = φ(x) e−iERt~ e−EI t~. The norm of the state

∫
dx |Ψ(x, t)|2 = e−2EI t/~ (B.13)

decays exponentially with a decay rate Γ = 2EI/~, i.e.

Γ = −2

~
ImE. (B.14)

The lifetime of the state is Γ−1.

B.1.3 Euclidean action in terms of functional determinants

We focus on potentials containing an unstable quantum state like the one sketched on
Fig. B.1. The classical version of this system possesses a stable equilibrium state in
which the particle is at rest at x = 0. However, quantum corrections render this state
unstable: it is a false ground state. Let’s perform a Wick rotation: time t is replace by

Figure B.1: Potential containing an un-
stable state at x = 0.

Figure B.2: Inverted potential.

the imaginary time τ = it. Then the action S becomes the Euclidean action S

S =

∫ T
2

−T
2

dτ

[
M

2
ẋ2 + U(x)

]
, (B.15)

where ˙ = d
dτ and we define iti = −T/2, itf = T/2. We see that the effect of the Wick

rotation on the action is to invert the potential.
In other words, in the part of space between x = 0 and x = σ, the momentum of the
particle is imaginary: p2 = −2MU < 0. But if we choose the time variable t as an
imaginary variable τ = it, then the motion is possible in the sense of classical dynamics
in the inverted potential −U(q) (see Fig. B.2).

Using the method of the previous section, the Euclidean version of Feynman’s sum
over histories reads

〈xf | e−
1
~
HT |xi〉 = N

∫ xf

xi

Dx e−S/~. (B.16)

On the one hand, the left-hand side of Eq. (B.16) can be expanded on a complete set
of energy eigenstates {|n〉}:

〈xf | e−
1
~
HT |xi〉 =

∑

n

e−
1
~

EnT 〈xf |n〉〈n|xi〉. (B.17)



146 The instantons formalism §B.1

Thus, the leading term in this expression for large T tells us the energy and wave-function
of the lowest-lying energy eigenstates. This shows the interest of the Wick rotation to
study the “ground state” properties.

On the other hand, the left-hand side of Eq. (B.16) can be evaluated in the semiclas-
sical limit. In this case, the functional integral is dominated by the stationary point x̄ of

S. If S =
∫ T/2
−T/2 dτL(ẋ, x, τ), then its functional derivative with respect to x(τ) is

δS
δx(τ)

= − d

dτ

(
∂L
∂ẋ

)
+
∂L
∂x

. (B.18)

Thus, x̄ satisfies
δS
δx

∣∣∣∣
x̄

= −M ¨̄x+ U ′(x̄) = 0, (B.19)

which is the equation of motion of a particle of mass M moving in the potential −U(x).
The corresponding energy is

E0 =
1

2

(
dx̄

dτ

)2

− U(x̄). (B.20)

Let us {xn} be the eigenfunctions of the second variational derivative of S at x̄,
δ2S
δx2

= −M d2

dτ2
+ U ′′(x̄),

−Mẍn + U ′′(x̄)xn = λnxn. (B.21)

Then, in the small-~ limit, we calculate the integral with the method of steepest descent
where the integral is evaluated around the stationary point x̄

S ≃
∫ T

2

−T
2

dτ

[
M

2
˙̄x2 + U(x̄)

]
+

∫ T
2

−T
2

dτ

[
M

2
ẏ2 +

1

2
U(x̄)y2

]

=S0 +
1

2

∫ T
2

−T
2

dτy

[
−M d2

dτ2
+ U(x̄)

]
y

=S0 +
1

2

∑

n

λnc
2
n, (B.22)

where linear terms in y in the Taylor expansion gives vanishing integrals and S0 is the
action related to the path x̄

S0 =

∫ T
2

−T
2

dτ

[
M

2
˙̄x2 + U(x̄)

]
. (B.23)

The functional integral becomes a product of Gaussian integrals
∫ xf

xi

Dx e−
1
~
S = e−

1
~
S0
∏

n

1√
2π~

∫

R

dcn e−
1
2~

λnc2n

︸ ︷︷ ︸
=

q

2π~

λn

= e−
1
~
S0
∏

n

1√
λn
, (B.24)

and we find

〈xf | e−
1
~
HT |xi〉 = N e−

1
~
S0
(
det
[
−M∂2

t + U ′′(x̄)
])− 1

2 , (B.25)

because the determinant of the product of all eigenvalues.
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B.1.4 Calculation of functional determinants: the Gelfand-Yaglom for-

mula

In this subsection we present the Gelfand-Yaglom formula, used to calculate the func-
tional determinants with the wavefunctions. We start from the eigenvalue equation of a
particle of mass M in the potential W

[
−M d2

dτ2
+W

]
ψ = λψ. (B.26)

Let us define ψλ(τ) as a solution of this equation with the boundary conditions

ψλ(−T/2) = 0, ∂tψλ(−T/2) = 1. (B.27)

The operator −M d2

dτ2 + W , acting on the space of functions vanishing at ±T
2 , has an

eigenvalue λn if and only if

ψλn(T/2) = 0. (B.28)

We define the determinant as the product of all eigenvalues

det
[
−M∂2

t +W
]
≡
∏

n

λn. (B.29)

Now let ψ
(1)
λ and ψ

(2)
λ be the wavefunctions solution of Eq. (B.26) for the potentials W (1)

and W (2) respectively. Then [94]

det
[
−M∂2

t +W (1) − λ
]

det
[
−M∂2

t +W (2) − λ
] =

ψ
(1)
λ (T/2)

ψ
(2)
λ (T/2)

. (B.30)

This result reveals that the ratio of two determinants of the same particle with the
same energy in two different potentials is equal to the ration of the corresponding wave-
functions. In practice, it is sufficient to know the asymptotic expression of the wavefunc-
tions for long times.

B.1.5 Determination of the prefactor N
2.1.5.a Free particle

We calculate the propagator in the case of a free particle (U = 0) and in real time t:

H = T (p) =
p2

2M
. (B.31)

Then, from calculation (B.7),

Kfp(xi, ti;xf , tf ) =

[
N−1∏

n=2

√
M

2iπ~δt

∫
dxnei M

2~δt
(xn+1−xn)2

]

×
√

m

2iπ~δt

2 ∫
dx1e

i M
2~δt((x2−x1)2+(x1−x0)2). (B.32)
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Using the initial identity

√
M

2iπ~δt

2 ∫
dx1e

i M
2~δt((x2−x1)2+(x1−x0)2) =

√
M

2iπ~(2δt)
e
i M
2~(2δt)

(x2−x0)2
, (B.33)

and the recursive property

√
M

2iπ~δt

∫
dxnei M

2~δt
(xn+1−xn)2 ×

√
M

2iπ~(nδt
) e

i M
2~(nδt)

(xn−x0)2

=

√
M

2iπ~((n+ 1)δt
) e

i M
2~((n+1)δt)

(xn+1−x0)2
, (B.34)

we finally obtain

Kfp(xi, ti;xf , tf ) =

√
M

2iπ~(tf − ti)
e
i

M(x−x′)2

2~(tf−ti) . (B.35)

The propagator in this simple case permits to calculate directly the prefactor.

2.1.5.b Particle in a smooth potential

We consider now a particle of mass M moving in a smooth potential U(x). A path
starting at x(ti) = xi and ending at x(tf ) = xf can be decomposed as follows:

x(t) = x̄+ y

(
t− ti
tf − ti

+
1

2

)
+

∞∑

k=1

ak sin(kπ(t− ti)/(tf − ti)) = x̄+ δx(t), (B.36)

where

x̄ =
xi + xf

2
, y = xi − xf . (B.37)

We expand the smooth potential at the second order in δx :

U(x(t)) = Ū + Ū ′δx(t) +
M

2
Ω2δx(t)2, (B.38)

where we note

Ū = U(x̄), Ū ′ = ∂xU(x̄), Ω =
√
∂2

xU(x̄)/M. (B.39)

Using the relations

cot z =
1

z
+ 2z

∞∑

k=1

1

z2 − k2π2
,

∞∑

k=1

1

k2π2
=

1

6
, (B.40)

1

sin z
=

1

z
+ 2z

∞∑

k=1

(−1)k

z2 − k2π2
,

∞∑

k=1

(−1)k

k2π2
= − 1

12
, (B.41)
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one finds

S =
My2

2T
− ŪT − MΩ2y2T

24

+
M

4T

∞∑

k=1

(k2π2 − Ω2T 2)

(
ak − T 2

M

2Ū ′(1 − (−1)k) +MΩ2y(1 + (−1)k)

kπ(k2π2 − Ω2T 2)

)2

+
MΩ

2

((
y2

2
+

2Ū ′2

M2Ω4

)
cot ΩT +

(
y2

2
− 2Ū ′2

M2Ω4

)
1

sin ΩT

)

− My2

2T

(
1 − Ω2T 2

12

)
+

Ū ′2T
2MΩ2

. (B.42)

The propagator reads

K(xi, ti;xf , tf ) =

∫ x(tf )=xf

x(ti)=xi

Dx e
i
~
S

=C e
i
~

My2

2T
− i

~
ŪT− i

~

MΩ2T
24

× e
i
~

MΩ
2

„„

y2

2
+ 2Ū′2

M2Ω4

«

cotΩT+

„

y2

2
− 2Ū′2

M2Ω4

«

1
sin ΩT

«

− i
~

My2

2T

“

1−Ω2T2

12

”

+ i
~

Ū′2T
2MΩ2

×
∞∏

k=1

∫ ∞

−∞
dak e

i
~

M
4T

(k2π2−Ω2T 2)

„

ak−T2

M
2Ū′(1−(−1)k)+MΩ2y(1+(−1)k)

kπ(k2π2−Ω2T2)

«2

=C
∞∏

k=1

√
i4π~T

M(k2π2 − Ω2T 2)
e
− i

~
T

“

Ū− Ū′2

2MΩ2

”

+ i
~

MΩ
2 sin ωT

„„

y2

2
+ 2Ū′2

M2Ω4

«

cos ΩT+

„

y2

2
− 2Ū′2

M2Ω4

««

.

(B.43)

The propagator of a free particle (U=0) being (Eq. (B.35))

Kfp(xi, ti;xf , tf ) =

√
M

i2π~T
e

i
~

My2

2T , (B.44)

and using
∞∏

k=1

k2π2

k2π2 − Ω2T 2
=

ΩT

sin ΩT
, (B.45)

we obtain

K(xi, ti;xf , tf ) =

√
MΩ

i2π~ sin ΩT

×exp

[
− i

~
T

(
Ū − Ū ′2

2MΩ2

)
+
i

~

MΩ

2 sinωT

((
y2

2
+

2Ū ′2

M2Ω4

)
cos ΩT +

(
y2

2
− 2Ū ′2

M2Ω4

))]
.

(B.46)

The propagator for a smooth potential can then be applied to the case of a harmonic
oscillator.

2.1.5.c Harmonic oscillator

We focus on the case xi = xf = 0. As a simple example, we can consider the case
σ → ∞. We define the bottom well pulsation ω0 by Mω2

0 = U ′′(0). It is obvious that
the only solution obeying the boundary condition is x̄ = 0. For this solution S0 = 0.
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If we define the prefactor N by det
[
−M∂2

t +W
]

= 2π~

M N 2ψ0(T/2), where ψ0 is the
eigenfunction of Sec. B.1.4, then

N
(
det
[
−M∂2

t +W
])− 1

2 =

(
2π~

M
ψ0(T/2)

)− 1
2

. (B.47)

If W = Mω2
0, the eigenfunction of Eq. (B.21) is

ψ0(t) =
1

ω0
sinhω0(t+ T/2), ψ0(T/2)

T→∞∼ eω0T

2ω0
. (B.48)

Therefore

N
(
det
[
−M∂2

t +Mω2
0

])− 1
2 =

√
Mω0

π~
e−ω0T/2, (B.49)

which gives the correct semiclassical shift in the ground-state energy E0 = 1
2~ω0.

Actually, this definition of N is equivalent to the definition of Dx from Feynman
path integrals. Indeed, if we apply the general result (B.46) to a harmonic oscillator in
imaginary time, we find

〈0| e− i
~
HT |0〉 =

√
Mω0

2π~ sinhω0T

T→∞∼
√
Mω0

π~
e−ω0T/2, (B.50)

with 〈0| e− i
~
HT |0〉 = N

(
det
[
−M∂2

t +Mω2
0

])− 1
2 .

Finally,

〈0| e− 1
~
HT |0〉 =

√
Mω0

π~
e−ω0T/2−S0/~

(
det
[
−M∂2

t + U ′′(x̄)
]

det
[
−M∂2

t +Mω2
0

]
)− 1

2

(B.51)

We will see in the following that it is easier to calculate the ratio of such determinants.

B.1.6 Multibounce configurations

Now we consider the case σ finite (see Fig. B.1). There are nontrivial solutions of
Eq. (B.19): the particle can begin on the top of the hill, bounce off the potential wall on
the right at x = σ, and return to the top of the hill. For T → ∞, we call this form “the

bounce”. The bounce has an energy E0 = 0, thus dx̄
dτ =

√
2
M U(x̄). The bounce action

reads

S0 = M

∫ +∞

−∞
dτ

(
dx̄

dτ

)2

= 2M

∫ σ

0
dx̄

dx̄

dτ
= 2

∫ σ

0
dx
√

2MU(x). (B.52)

We define “the center of the bounce” the time when ˙̄x = 0 or equivalently x̄ = σ. For
large T , a bounce centered anywhere in the interval of integration is an approximated
stationary point of the functional integrand. So also are n separated bounces, with
centers at t1, . . . , tn where T/2 > t1 > · · · > tn > −T/2. We propose to evaluate the
functional integral by summing over all these configurations.

1. The action for n bounces is nS0.

2. We obtain
√

Mω0
π~

e−ω0T/2Kn where K is determined by demanding that this ex-

pression gives the right answer for one bounce.
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3. We must integrate over the location of the centers:

∫ +T
2

−T
2

dt1

∫ t1

−T
2

dt2 . . .

∫ tn−1

−T
2

dtn =
Tn

n!
. (B.53)

We can perform the summation:

〈0| e− 1
~
HT |0〉 =

∞∑

n=0

√
Mω0

π~
e−ω0T/2Kne−nS0/~

Tn

n!
=

√
Mω0

π~
e−ω0T/2+K e−S0/~T . (B.54)

Thus the inclusion of the multibounce configuration has modified the ground-state en-
ergy:

E0 =
1

2
~ω0 − ~K e−S0/~. (B.55)

Hence, from Eq. (B.14),the decay probability per unit time of the unstable state is given
by

Γ = 2 e−S0/~ImK. (B.56)

From Eq. (B.51) and Eq. (B.54) with n = 1 it yields

K =
1

T

(
det
[
−M∂2

t + U ′′(x̄)
]

det
[
−M∂2

t +Mω2
0

]
)− 1

2

, (B.57)

when there is no vanishing eigenvalues. But we will see that it is not the case in our
situation.

B.1.7 Multibounce configurations with a double escape path

We perform the calculations of the previous section in the case where the potential has
two escape paths as represented on Fig. B.3. In this configuration, there are two types

−U(z)

σL Ω σR

Figure B.3: Inverted potential with double escape path.

of bounce: the
∣∣∣ right bounce

left bounce

∣∣∣ where the particle starts at the top of the hill, bounces off

the potential
∣∣∣on the right at x=σR

on the left at x=σL

∣∣∣ and returns on the top of the hill. The bounce actions

read

SR
0 = 2

∫ σR

0
dx
√

2MU(x) and SL
0 = 2

∫ σL

0
dx
√

2MU(x). (B.58)
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The multibounce configurations consist of n right bounces and m left bounces. The
corresponding action writes nSR

0 + mSL
0 . The resulting element of the propagator is√

Mω0
π~

e−ω0T/2Kn
RKm

L , where

KR,L =
1

T

(
det
[
−M∂2

t + U ′′(x̄R,L)
]

det
[
−M∂2

t +Mω2
0

]
)− 1

2

. (B.59)

Now we sum over all possible positions of the bounce centers in two steps.

1. We enumerate the number of configurations of n right bounces and m left bounces:

n+1∑

k1=1

k1∑

k2=1

· · ·
km−2∑

km−1=1

km−1 =

(
n+m

m

)
=

(n+m)!

n!m!
. (B.60)

2. For a given order between right and left bounces, we integrate over the location of
the centers: ∫ +T

2

−T
2

dt1

∫ t1

−T
2

dt2 . . .

∫ tn+m−1

−T
2

dtn+m =
Tn+m

(n+m)!
. (B.61)

Then we sum over the number of right and left bounces:

〈0| e− 1
~
HT |0〉 =

∞∑

n=0

∞∑

m=0

√
Mω0

π~
e−ω0T/2Kn

RKm
L e−(nSR

0 +mSL
0 )/~

Tn+m

(n+m)!

=

√
Mω0

π~
exp
(
−ω0T/2 + KR e−SR

0 /~T + KL e−SL
0 /~T

)
. (B.62)

The ground-state energy of the double-multibounce configuration then reads

E0 =
1

2
~ω0 − ~KR e−SR

0 /~ − ~KL e−SL
0 /~. (B.63)

This leads to the total decay rate

Γ = ΓR + ΓL, ΓR,L = 2 e−SR,L
0 /~ImKR,L. (B.64)

As a conclusion, in the limit of a dilute gas of instantons, the total escape rate is simply
the sum of the tunneling rates in each barrier. In the following subsections we treat on
of the two escape paths for simplicity.

B.1.8 Propagator of one bounce

To determine K, we study Eq. (B.21) for one bounce x̄. Using

˙̄x =

√
2

M
U(x̄), ¨̄x =

1

M
U ′(x̄),

...
x̄ =

1

M
U ′′(x̄) ˙̄x, (B.65)

we find that x1 ∝ ˙̄x is an eigenvector of Eq. (B.21) with a vanishing eigenvalue. Using
the definition of S0 and the normalization condition, we obtain

x1 =

√
M

S0

˙̄x. (B.66)
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The corresponding integration over c1 in the determinant gives rise to a disaster. How-
ever, noting that dx =

√
S0/Mx1dτ and x1 = dx

dc1
, we have (2π~)−1/2dc1 =

√
S0/2Mπ~ dτ .

The integration over c1 corresponds actually to the integration over t1, which has already
been done in Eq. (B.53). Therefore, in evaluating the determinant, we should not include
the zero eigenvalue, but we should include in K a factor of

√
S0/2Mπ~T .

We note that x̄ has a maximum at the center of the bounce. Thus x1 has a node.
Consequently, it does not correspond to the lowest eigenvalue. In other words, there
is a negative eigenvalue, λ0. The resulting determinant, and hence K, is imaginary. It
guarantees a finite lifetime or equivalently a non-zero escape rate. This eigenvalue thus
characterizes the possibility for the particle to tunnel.

The eigenvalue λ0 being negative, the integration over c0, (2π~)−
1
2

∫
dc0 exp

[
−λ0

2~
c20

]
,

has to be performed separately. In the semiclassical limit (the high- 1
~

limit) we can use
the steepest-descent method. It consists of evaluating the integral on a modified contour
which goes across a saddle point from the two neighboring valleys1. Here, the saddle
point is located in c0 = 0 and the direction of the two valleys is ϕ = ±π/2. When
c0 reaches the saddle point, the contour then goes to +i∞. The integration is thus
performed on one half of the Gaussian peak:

(2π~)−
1
2

∫

R

dc0 exp

[
−λ0

2~
c20

]
=

1

2
i

1√
|λ0|

=
1

2

1√
λ0
. (B.67)

Therefore, the determinant has to be divided by two:

Im

(
N
∫ 0

0
Dx e−

1
~
S
)

1 bounce

=
1

2
N e−S0/~

√
S0

2Mπ~
T |det′

[
−M∂2

τ + U ′′(x̄)
]
|− 1

2 , (B.68)

where det′ indicates that the zero eigenvalue is to be omitted. Actually, this is the
result (B.25) with a primed determinant and multiplied by the factor 1

2 ×
√
S0/2Mπ~T .

The presence of the coefficient 1
2 can be interpreted in two different ways.

The first one is to consider that, to escape, the particle needs to go beyond the point
x = σ. Only one half of all the possible paths satisfies this condition.
From the second point of view we note that, due to c0, the path x acquires an imaginary
part c0 = ic0,I . Focusing on the distance |x| =

√
(Re(x))2 + c0,I

2, we see that all possi-
bilities are taken into account if c0,I travels on R

+ or R
−. Consequently, the integration

is performed only on one half of the Gaussian peak.
Comparing this to the definition of K (Eq. (B.54) with the term n = 1), we find

ImK =
1

2

√
S0

2Mπ~

∣∣∣∣∣
det′

[
−M∂2

τ + U ′′(x̄)
]

det
[
−M∂2

τ +Mω2
0)
]
∣∣∣∣∣

− 1
2

. (B.69)

Hence, the tunneling rate is given by

Γ =

√
S0

2Mπ~
e−S0/~

∣∣∣∣∣
det′

[
−M∂2

τ + U ′′(x̄)
]

det
[
−M∂2

τ +Mω2
0)
]
∣∣∣∣∣

− 1
2

. (B.70)

1To calculate the integral I =

Z

C

dz eαf(z), where α is positive and large, it is possible to use the

saddle-point method. The approximate result reads I =

r

2π

αρ
eαf(z0) eiϕ, where z0 is the position of the

saddle-point (supposed to be unique) of the function f(z), f ′′(z0) = ρ eiθ and ϕ = −θ/2 ± π/2 is the
direction of the valley.
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B.1.9 Explicit expression using the bounce orbit

So as to calculate the ratio of the two determinants, we use the result of section B.1.4. We

noteW (1) = U ′′(x̄) andW (2) = Mω2
0. We already know the solution ψ

(2)
0 (T/2)

T→∞∼ eω0T

2ω0
.

We define the constant α through the relation x1(τ)
τ→∞∼ α e−ω0τ or equivalently

with x̄(τ)
τ→∞∼ α

√
S0/M/ω0 e−ω0τ . To construct the solution ψ

(2)
0 (τ) we need another

independent solution, y1(τ)

y1(τ) ∝ x1(τ)

∫ τ

dτ ′
1

x1(τ ′)
2

T→±∞∼ ±α e−ω0τ . (B.71)

Then,

ψ
(2)
0 (τ) =

1

2ω0

(
eω0T/2x1(τ) + e−ω0T/2y1(τ)

)
, (B.72)

and ψ
(2)
0 (T/2) = ω0

−1. To find the lowest eigenvalue, we must find ψλ(τ) for small λ.
At first order in λ, this can be obtained with the formula

ψλ(τ) = ψ
(2)
0 (τ) − λ

2Mω0α2

∫ τ

−T
2

dτ ′
[
y1(τ)x1(τ

′) − x1(τ)y1(τ
′)
]
ψ

(2)
0 (τ ′), (B.73)

which becomes, for large T ,

ψλ(T/2) =
1

2ω0

(
1 − λ

4Mω0α2
eω0T

)
. (B.74)

Then the condition ψλ0(T/2) = 0 gives

λ0 = 4Mω0α
2 e−ω0T , (B.75)

which tends to zero for large time T . This yields,

det′
[
−M∂2

τ + U ′′(x̄)
]

det
[
−M∂2

τ +Mω2
0)
] =

1

2Mω0α2
. (B.76)

Finally, if we define C0 =
√

2/ω0α, i.e.

x̄(τ)
τ→±∞−→ C0

√
S0

2Mω0
e−ω0|τ |, (B.77)

the escape rate reads

Γ = ω0C0

√
S0

2π~
e−S0/~. (B.78)

The coefficient C0 is a real number depending on the shape of the potential between
x = 0 and x = σ. It can be determined from the asymptotic behavior of x̄:

x̄
τ→±∞∼ σγe−ω0τ =⇒ τ

τ→±∞∼ − 1

ω0
ln x̄+

ln(σγ)

ω0
, (B.79)

| ˙̄x| =

√
2

M
U(x̄) =⇒ |τ | =

∫ σ

x̄
dx

[√
M

2U(x)
− 1

ω0x

]
− 1

ω0
ln
( x̄
σ

)
. (B.80)
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We get

γ = eI , I =

∫ σ

0
dx

[√
Mω2

0

2U(x)
− 1

x

]
. (B.81)

As a conclusion, the tunneling rate of a particle of mass M from an unstable state at
x = 0 to the exit point at x = σ through the barrier potential U(x) with the bottom-well
frequency ω0 reads

Γ = A e−B/~ (B.82)

A = ω0

√
Mω0

π~
σ eI (B.83)

B = 2

∫ σ

0
dx
√

2MU(x) (B.84)

I =

∫ σ

0
dx

[√
Mω2

0

2U(x)
− 1

x

]
(B.85)

This general result can be applied to the case of a quartic potential, as we will see in
Sec. B.2.

B.1.10 Decay rate of metastable excited states

We consider the escape rate of the nth excited state with energy En. Noting ξn = 2En
~ω0

,
from Ref. [203] we have

Γn = An e−B0/~, An =
T0

Tn

(√
2π

T0

)1−ξn

(
ξn−1

2

)
!

A0
ξn , (B.86)

where Tn is the period of oscillation in the well of the nth state.

• In the case of an harmonic potential we have ξn = 2n+ 1 and Tn = 2π
ω0

. This leads
to

Γn = An e−B0/~, An =
1

n!

(
2π

ω0
2

)n

A0
2n+1. (B.87)

• In the case of an anharmonic potential with level spacing depending on the anhar-
monicity Λ according to En−En−1 = ~ω0(1−nΛ) we have ξn = 2n+1−n(n+1)Λ
and, at zeroth order, Tn = 2π

ω0
. This leads to

An =
1

(n− n(n+ 1)Λ/2)!

(
2π

ω0
2

)n−n(n+1)Λ
2

A0
2n+1−n(n+1)Λ. (B.88)

B.2 Application to a polynomial potential

B.2.1 General quartic potential

We consider a particle of mass M tunneling through the potential

Ub(x) =
1

2
Mω2

0x
2
(
1 − bx− ax2

)
, (B.89)
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σL σR

U(z)

ω0

ΓL

VR

qL qR

ΓR

VL

Figure B.4: The total tunneling rate is the sum of the tunneling rate in each barrier.

where a > 0 (see Fig. B.4). This potential has a minimum at x = 0, two barriers VR

and VL located respectively at x = qR > 0 and qL < 0 and two exit points at x = σR < 0
and σL < 0. The total tunneling rate of a particle in the ground state of the minimum is
the sum of the tunneling rate through the right and the left barrier: Γ = ΓR + ΓL. We
define

σb =

√
b2

4a2
+

1

a
− b

2a
, (B.90)

qb =

√
9b2

64a2
+

1

2a
− 3b

8a
, (B.91)

Vb = Ub(qb), (B.92)

and

Γb = Ab e−Bb/~, (B.93)

Ab = ω0

√
Mω0

π~
σb eIb , (B.94)

Bb = 2

∫ σb

0
dx
√

2MUb(x), (B.95)

Ib =

∫ σb

0
dx

[√
Mω2

0

2Ub(x)
− 1

x

]
, (B.96)

such that σR = σb, σL = −σ−b, qR = qb, qL = −q−b, Vb = VR, V−b = VL, ΓR = Γb,
ΓL = Γ−b and Γ = Γb + Γ−b.

We note R(x) = 1 − bx− ax2 and use the results

∫ x

dxxR(x) = −
√
R(x)3

3a
− b

b+ 2ax

8a2

√
R(x) − b

b2 + 4a

16a2
√
a

arcsin

(
b+ 2ax√
b2 + 4a

)
, (B.97)

∫ x

dx

[
1

xR(x)
− 1

x

]
= − ln

(
2 − bx+ 2

√
R(x)

)
, (B.98)
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together with R(0) = 1 and R(σb) = 0 to find

Ib = − ln

(
2 − bσb

4

)
, (B.99)

Ab = 4ω0

√
Mω0

π~

σb

2 − bσb
, (B.100)

Bb =
2Mω0

a

(
1

3
+
b2

8a
− b

b2 + 4a

16a3/2
arccos

(
b√

b2 + 4a

))
. (B.101)

The total escape rate from the potential Eq. (B.89) is finally

Γ = Γb + Γ−b, (B.102)

with the tunneling rate for each barrier

Γb = 4ω0

√
Mω0

π~

σb

2 − bσb
exp

(
−2Mω0

a~

[
1

3
+
b2

8a
− b

b2 + 4a

16a3/2
arccos

(
b√

b2 + 4a

)])
.

(B.103)
Parameters a and b can be expressed in terms of the barrier height Vb and its position
qb:

a =
1

q2b

(
6Vb

Mω2
0q

2
b

− 1

)
, (B.104)

b =
2

qb

(
1 − 4Vb

Mω2
0q

2
b

)
. (B.105)

The general result for the escape rate can be applied to the symmetric camel back
potential and the cubic potential.

B.2.2 Symmetric camel-back potential

In the limit b→ 0, from Eq. (B.103), the tunneling rate reads

Γ = ΓR + ΓL, ΓR,L = 8
ω0

2π

√
2πVR,L

~ω0
e
− 16

3

VR,L
~ω0 . (B.106)

Actually, in the case b = 0 it is possible to determine the bounce orbit from Eq. (B.19).
Indeed, when b = 0 we have σ = a−1/2, V = Mω2

0σ
2/8 and the potential becomes

U(x) = 4V
σ4 x

2(σ2 − x2). The bounce orbit x̄ satisfies the differential equation

¨̄x = ω2
0x̄

(
1 − 2

x̄2

σ2

)
, (B.107)

which solution is proportional to the Jacobi elliptic function dn(ω0τ, 1) = cosh(ω0τ)
−1

(see Fig. 3.7):

x̄(τ) =
σ

cosh(ω0τ)
. (B.108)

The asymptotic behavior x̄(τ)
τ→±∞∼ 2σ e−ω0|τ | gives the correct prefactor C0 =

√
12. If

the potential is symmetric, the tunneling rate reads

Γ = 16
ω0

2π

√
2πV
~ω0

exp

[
−16

3

V
~ω0

]
. (B.109)
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B.2.3 Cubic potential

In the limit a→ 0, depending on the sign of b, one of the barrier disappears: its position
is shifted to ±∞ and its height becomes infinite. Therefore, only one direction of escape
is allowed.

Indeed,

σb =
1

|b| +
|b|
2a

(1 − sgn(b)) , (B.110)

qb =
4

3|b| +
3|b|
8a

(1 − sgn(b)) . (B.111)

Moreover, using the Taylor series

arccos

(
1√

1 + ǫ

)
≃ √

ǫ

(
1 − x

3
+
x2

5

)
, (B.112)

coefficients Ab and Bb become

Ab ≃
√
Mω0

π~

4ω0

|b| , (B.113)

Bb ≃
8Mω0

15b2
sgn(b) +

(
1

3a
+

b2

8a2

)
(1 − sgn(b)) . (B.114)

Therefore

If b > 0





σR = 1
|b|

qR = 4
3|b|

σL, qL → +∞

AR =
√

Mω0
π~

4ω0
|b|

BR = 8Mω0
15b2

ΓL → 0

(B.115)

If b < 0





σL = 1
|b|

qL = 4
3|b|

σR, qR → −∞

AL =
√

Mω0
π~

4ω0
|b|

BL = 8Mω0
15b2

ΓR → 0

(B.116)

Finally, let us note V the barrier height. Then

Γ = 12
ω0

2π

√
6πV
~ω0

exp

[
−36

5

V
~ω0

]
. (B.117)

This result is well-know in MQT studies.

B.2.4 Effect of the periodicity of the camel-back potential on the tun-

neling rate

2.2.4.a Periodic configuration

We consider the case of the symmetric and periodic camel-back potential and build a
simple model to understand its dynamics. Each period is composed of two different wells
(see Fig. B.5):

• A small well with a quartic shape corresponding to the well between the two humps
of the camel. It is characterized by the bottom well frequency ω0, the total escape
rate 2Γout and the total entrance rate 2Γin.
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γnγn

|0〉k−1 |0〉k

|n〉k−1 |n〉k|c〉k |c〉k+1ΓinΓinΓin

ΓoutΓoutΓout

Figure B.5: Scheme of the symmetric periodic camel-back potential with the correspond-
ing levels and rates.

• A large well supposed here to be quadratic which corresponds to the well of the
neck or the tail of the camel. This harmonic potential, characterized by the bottom
well frequency ωp, contains a lot of states. We assume that one of these states, the

nth state |n〉, is in resonance with the state in the quartic well |c〉
(
n =

E|c〉− 1
2

~ωp

~ωp

)
.

Due to dissipation, this state has a finite lifetime. Indeed, if we note γ the relaxation
rate of a state |m〉 to the state |m − 1〉 of the harmonic oscillator, one can show
that the lifetime of the state |n〉 is (nγ)−1. This state will finally relax to the lowest
energy level |0〉.

From the preceding sections, we know the escape rate Γout. Then we can evaluate
roughly the entrance rate Γin. Let us call T the transparency of the quartic barrier
(T do not depend on the tunneling direction). The escape rate from the quartic well,
with the bottom well frequency ω0, is equal to the transparency of the barrier times the
attempting rate: Γout = ω0T . Similarly, Γin = ωpT . This gives Γin =

ωp

ω0
Γout.

We consider that this relaxation rate γ is huge compared to Γout. Therefore we look
at the effect of double tunneling only, which is equivalent to the first order correction in
1/γ of the escape rate.

Let us focus now on the kth period starting with a quartic well and look at the
evolution of the population of the different states:

• The population of the state |c〉k
– decreases with the rate 2Γout due to the escape towards the state |n〉k or |n〉k−1,

– increases with the rate 2Γin due to the entrance from the state |n〉k or |n〉k−1.

• The population of the state |n〉k
– decreases with the rate nγ due to the relaxation towards the state |0〉k,
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– decreases with the rate 2Γin due to the escape towards the state |c〉k or |c〉k+1,

– increases with the rate 2Γout due to the entrance from the state |c〉k or |c〉k+1.

We start at t = 0 with the particle in one of the quartic well. We want to determine
the escape rate of the particle taking into account that it can jump to another quartic
well via the states |n〉k. If the lifetime nγ of the state |n〉 was zero (γ → ∞), this
rate would be simply 2Γout. We call Pc,k(t), Pn,k(t) and P0,k(t) the probability of the
particle to be in the state |c〉k, |n〉k and |0〉k, respectively. The preceding discussion can
be traduced into the following set of differential equations:

Ṗc,k(t) = −2ΓoutPc,k(t) + ΓinPn,k(t) + ΓinPn,k−1(t), (B.118)

Ṗn,k(t) = −nγPn,k(t) − 2ΓinPn,k(t) + ΓoutPc,k(t) + ΓoutPc,k+1(t), (B.119)

Ṗ0,k(t) = nγPn,k(t). (B.120)

Because of the periodicity, we are interested in the probability for the particle to be
in one of the states |c〉 or |n〉. Defining Pc(t) =

∑
k Pc,k(t), Pn(t) =

∑
k Pn,k(t), and

summing all the differential equations we get

∂t

(
Pc(t)
Pn(t)

)
= M

(
Pc(t)
Pn(t)

)
, M =

(
−2Γout 2Γin

2Γout −nγ − 2Γin

)
. (B.121)

The eigenvalues of the matrix M give rise to the escape rates. One of them is dominated
by the rate nγ ≫ Γout and, consequently, won’t participate. At first order in 1/γ, the
other one reads

Γ̃ = 2Γout −
4ΓoutΓin

nγ
. (B.122)

Due to the non-zero lifetime of the state |n〉, the escape probability 2Γout is reduced by
4 Γout

1
nγ Γin. This result corresponds to the four possibilities of double tunneling: the

particle escapes with rate Γout, stays at the state |n〉 with lifetime 1/nγ and enters with
rate Γin.

Explicitly,

Γ̃ = 16ω0

√
V

2π~ω0
e
− 16

3
V
ω0 − 162ω0ωp

nγ

V
2π~ω0

e
− 32

3
V
ω0 . (B.123)

Due to retrapping, the escape rate is decreased.

2.2.4.b Quasi-periodic configuration

We consider the case of the quasi-periodic camel-back potential and calculate the re-
trapping rate. In this situation, the right and left tunneling rates are different (ΓR

out,
ΓL

out, ΓR
in, ΓL

in). A state |c〉k is coupled in resonance to the nth state |n〉k on its right and
to the mth state |m〉k on its left. At zero temperature, the double tunneling from the
state |c〉k to the state |c〉k−1 is forbidden. The lifetime of the state |n〉 is (nγ)−1 because
it is the higher level of the harmonic well. The occupation probability of a state |m < n〉
decreases exponentially with all rates mγ, (m− 1)γ . . . nγ. If γ is large, we can keep the
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leading rate mγ. The system of differential equations reads

Ṗc,k(t) = −(ΓR
out + ΓL

out)Pc,k(t) + ΓR
inPn,k(t) + ΓL

inPm,k−1(t), (B.124)

Ṗn,k(t) = −(nγ + ΓR
in)Pn,k(t) + ΓR

outPc,k(t), (B.125)

Ṗm,k(t) = −(mγ + ΓL
in)Pm,k(t) + ΓL

outPc,k+1(t) + nγPn,k(t), (B.126)

Ṗ0,k(t) = mγPm,k(t). (B.127)

To get the escape rate from one of the states |c〉, we sum up all the differential equations
to get

∂t




Pc(t)
Pn(t)
Pm(t)


 = M




Pc(t)
Pn(t)
Pm(t)


 , M =




−ΓR
out − ΓL

out ΓR
in ΓL

in

ΓR
out −nγ − ΓR

in 0
ΓL

out nγ −mγ − ΓL
in


 .

(B.128)
At first order in 1/γ, the effective rate reads

Γ̃ = ΓR
out + ΓL

out −
(

ΓR
outΓ

R
in

nγ
+

ΓL
outΓ

L
in

mγ
+

ΓR
outΓ

L
in

mγ

)
. (B.129)

The correcting rate corresponds to the three possibilities of double tunneling.
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Introduction

I
n this appendix we detail the calculations used in Chap. 4. We derive first the Lindblad
equation of the reduced density matrix for a free field that leads to Eq. (4.14). Then we
give the general result for the evolution equation of the density matrix elements. Finally
we detail how we construct the semiclassical dynamical equations.

C.1 Lindblad master equation for a free field

C.1.1 General free field

We consider the interaction of a free field (e.g. photons spontaneously emitted from
the relaxation of the qubit or the light mode in the cavity) with a heatbath at the
temperature T [100, 101]. The Hamiltonian H of the system is composed of

• The Hamiltonian of the free field HF = ~ωc†c. The operator c corresponds to σij

in the case of a qubit transition |j〉 − |i〉 with ω = (εj − εi)/~ or to aα in the case
of the mode of the cavity α with ω = ωα.

• The Hamiltonian of the bath is composed of an infinite number of harmonic oscil-
lators HB =

∑
l ~ωlb

†
l bl where the operators bl and b†l are the annihilation and the

creation operator, respectively, in the mode l of the bath.

163
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• The coupling Hamiltonian HF−B = i~
∑

l gl(c + c†)(bl − b†l ) where gl is the cou-
pling strength between the free field and the mode l of the bath. To simplify the
calculations we define the operator C1 = c, C2 = c† and B1 = B2 = i

∑
l gl(bl − b†l ).

The density matrix of the total system obeys the equation

dρtot

dt
=

1

i~
[H, ρtot] . (C.1)

It is convenient to proceed in the interaction picture with respect to the Hamiltonian
H0 = HF +HB: Õ(t) = exp[iH0t/~]O exp[−iH0t/~] for an operator O in the Schrödinger
picture. The interaction Hamiltonian has the form H̃F−B(t) = ~

∑
k C̃k(t)B̃k(t) with

C̃1,2(t) = Ck e∓i∆ωt. (C.2)

In the interaction picture, the evolution equation for the density matrix reads

˙̃ρtot(t) =
1

i~

[
H̃F−B(t), ρ̃tot(t)

]
. (C.3)

Noting ρ0 = ρ̃tot(0), we get from the first derivative

ρ̃tot(t) = ρ0 +
∞∑

m=1

1

(i~)m

∫ t

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τm−1

0
dτm

×
[
H̃F−B(τ1),

[
H̃F−B(τ2),

[
. . . ,

[
H̃F−B(τm), ρ0

]
. . .
]]]

. (C.4)

At second order (m = 2) it yields

ρ̃tot(t) = ρ0 +
1

i~

∫ t

0
dτ
[
H̃F−B(τ), ρ0

]

− 1

~2

∫ t

0
dτ1

∫ τ1

0
dτ2

{
H̃F−B(τ1)H̃F−B(τ2)ρ0 − H̃F−B(τ1)ρ0H̃F−B(τ2)

−H̃F−B(τ2)ρ0H̃F−B(τ1) + ρ0H̃F−B(τ2)H̃F−B(τ1)
}
.

(C.5)

We eliminate the heatbath variables by tracing over the heatbath

ρ̃ = TrB ρ̃tot. (C.6)

To proceed, we use four approximations

i. Born approximation. We assume that at time t = 0 the total density matrix factor-
izes in that of the free field ρ(0) and that of the heatbath ρB, which also factorizes
into the density matrices of the individual baths:

ρ0 = ρ(0)ρB. (C.7)

The bath is at thermal equilibrium at the temperature T ,

ρB = Z−1 exp(−βHB) , (C.8)

Z = TrB exp(−βHB) , (C.9)
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where β = 1/kBT . The first order term being linear in the bath operators, its average
vanishes. Concerning the second order term, we find

ρ̃(t) = ρ(0) −
∫ t

0
dτ1

∫ τ2

0
dτ2

∑

k1,k2

[
C̃k1(τ1)C̃k2(τ2)ρ(0)TrB

(
B̃k1(τ1)B̃k2(τ2)ρB

)

− C̃k1(τ1)ρ(0)C̃k2(τ2)TrB

(
B̃k1(τ1)ρBB̃k2(τ2)

)

− C̃k1(τ2)ρ(0)C̃k2(τ1)TrB

(
B̃k1(τ2)ρBB̃k2(τ1)

)

+ ρ(0)C̃k1(τ2)C̃k2(τ1)TrB

(
ρBB̃k1(τ2)B̃k2(τ1)

)]
.

(C.10)

We define

Kk1,k2(τ1, τ2) = TrB

[
B̃k1(τ1)B̃k2(τ2)ρB

]
= Kk1,k2(τ1 − τ2), (C.11)

for a stationary interaction. Let us focus, for example, on the first of the four terms.
With the time transformation τ = τ2 − τ1 we get

∫ t

0
dτ1

∫ τ2

0
dτ2C̃k1(τ1)C̃k2(τ2)ρ(0)TrB

(
B̃k1(τ1)B̃k2(τ2)ρB

)

= Ck1Ck2ρ(0)

∫ t

0
dτ1 ei(∆ωk1

+∆ωk2
)τ1

∫ τ1

0
dτ e−i∆ωk2

τKk1,k2(τ). (C.12)

We now make three further essential assumptions

ii. Markov approximation. We assume that the heatbath has a short memory so that
Kk1,k2(τ) is only nonvanishing for τ < τ0. In the following we consider times t which
are large compared to the correlation time τ0. Then we may replace the upper limit
τ1 by ∞.

iii. We assume that the interaction with the heatbath is so small that during the time t
the density matrix has changed very little. This allows us to make the replacement

ρ̃(t) − ρ̃(0)

t
=

dρ̃(t)

dt
. (C.13)

iv. We consider only terms satisfying the condition ∆ωk1 +∆ωk2 = 0 because otherwise
the temporal integration in Eq. (C.12) vanishes. Consequently the integral becomes∫ t

0
dτ1 ei(∆ωk1

+∆ωk2
)τ1 = t.
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Using the cyclic property of traces, we obtain

dρ̃(t)

dt
=
∑

k1,k2

[
−Ck1Ck2ρ(0)

∫ ∞

0
dτ e−i∆ωk2

τTrB

(
B̃k1(τ)B̃k2(0)ρB

)
(C.14)

+ Ck1ρ(0)Ck2

∫ ∞

0
dτ e−i∆ωk2

τTrB

(
B̃k2(0)B̃k1(τ)ρB

)
(C.15)

+ Ck1ρ(0)Ck2

∫ ∞

0
dτ e−i∆ωk1

τTrB

(
B̃k2(τ)B̃k1(0)ρB

)
(C.16)

−ρ(0)Ck1Ck2

∫ ∞

0
dτ e−i∆ωk1

τTrB

(
B̃k1(0)B̃k2(τ)ρB

)]
. (C.17)

If we note k = k1 and k′ = k2 in Eqs. (C.14) and (C.17) and vice versa in Eqs. (C.15)
and (C.16) we obtain

dρ̃(t)

dt
=
∑

k,k′

(
[Ck′ ρ̃(t), Ck]Ak,k′ + [Ck′ , ρ̃(t)Ck]A

′
k,k′

)
, (C.18)

where A and A′ are defined by

Ak,k′ =

∫ ∞

0
dτ e−i∆ωk′τTrB

(
B̃k(τ)B̃k′(0)ρB

)
, (C.19)

A′
k,k′ =

∫ ∞

0
dτ e−i∆ωkτTrB

(
B̃k(0)B̃k′(τ)ρB

)
. (C.20)

Under the assumption that B†
k = Bk′ , which is needed to ensure that the coupling

Hamiltonian is Hermitian, we have

A′
k,k′ = A∗

k,k′ . (C.21)

Then we evaluate the trace over the heatbath in the energy representation of the heatbath
alone. We denote the energy of the state n by ~Ωn. Using 〈n|ρB|m〉 = e−β~Ωnδn,m and
〈n|B̃k(τ)|m〉 = ei(Ωn−Ωm)τ 〈n|Bk|m〉, this yields

Ak,k′ = Z−1

∫ ∞

0
dτ e−i∆ωk′τ

∑

n,m

〈n|Bk|m〉〈m|B†
k|n〉 ei(Ωn−Ωm)τ−β~Ωn (C.22)

= Z−1
∑

n,m

|〈n|Bk|m〉|2 e−β~Ωn

(
πδ(Ωn − Ωm − ∆ωk′) + iP

1

Ωn − Ωm − ∆ωk′

)
,

(C.23)

where P is the principal value operator and

Ak′,k = Z−1
∑

n,m

|〈n|Bk|m〉|2 e−β~Ωm

(
πδ(Ωn − Ωm + ∆ωk) + iP

1

Ωm − Ωn − ∆ωk

)
.

(C.24)
From these equations we get the detailed balance relation (see Ref. [204])

ReAk,k′ = ReAk′,k eβ~∆ωk′ . (C.25)
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Finally, we may transform ρ̃ (interaction representation) into ρ (Schrödinger repre-
sentation). We obtain

dρ(t)

dt
=

1

i~
[HF , ρ] +

∑

k,k′

([
C̄k′ρ, C̄k

]
Ak,k′ +

[
C̄k′ , ρC̄k

]
A∗

k,k′

)
, (C.26)

where

C̄k = e−iHF τ/~Ck eiHF τ/~ = Ck e±i∆ωt. (C.27)

The time evolution of ρ is now explicitly determined by two different terms: the com-
mutator between HF and ρ describes the coherent evolution of the system whereas the
other terms under the sum describe the incoherent processes.

C.1.2 Application to qubit transitions

In the case of a qubit transition, the Hamiltonian of the field is HF =
∑

i εiσii. This
implies that C1 = σij , C2 = σji and also ∆ω1 = −(εj − εi)/~ = −∆ω2. Eq. (C.26) leads
to

dρ(t)

dt
= −i

∑

j

εj
~

[σjj , ρ] +
∑

i,j

(
[σjiρ, σij ]Aij,ji + [σji, ρσij ]A

∗
ij,ji

)
. (C.28)

To understand the physical meaning of the coefficientsA, we derive the evolution equation
for the average of the operator σkl:

d〈σkl〉
dt

= − i
∑

j

εj
~

(〈σklσjj〉 − 〈σjjσkl〉)

+
∑

i,j

Aij,ji (〈σijσklσji〉 − 〈σklσijσji〉)

+
∑

i,j

A∗
ij,ji (〈σijσklσji〉 − 〈σijσjiσkl〉) . (C.29)

This expression can be simplified

d〈σkl〉
dt

= 〈σkl〉 (iωkl + i∆ωkl − φkl) if k 6= l, (C.30)

d〈σkk〉
dt

=
∑

j

(〈σjj〉γjk − 〈σkk〉γkj) , (C.31)

where

γjk = Ajk,kj +A∗
jk,kj , (C.32)

φkl =
∑

i

Re
(
Aki,ik +A∗

li,il

)
=

1

2

∑

i

(γki + γli) , (C.33)

∆ωkl =
∑

i

Im
(
Aki,ik +A∗

li,il

)
. (C.34)

The parameter γij is straightforwardly identified with the transition rate between the
state |i〉 and the state |j〉, while φij is the phase halfwidth. From now on we consider
the coefficient A to be real and equal to the transition rate Aij,ji = γij/2.
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The Lindbladian equation in the interaction picture is thus

˙̃ρ(t) =
∑

ij

Lγij ρ̃(t), (C.35)

where Lγij is the Lindblad operator associated to the transition |i〉 → |j〉 with the rate
γij

Lγijρ =
γij

2
(2σjiρσij − σiiρ− ρσii) . (C.36)

There are two kinds of transition

• i > j Spontaneous emission: The photon generated by the transition from |i〉 to
|j〉 is lost in the environment with a rate γij and is not kept by the cavity. In a
three-level qubit there are three types of spontaneous emissions

Lγ21ρ =
γ21

2
(2σ12ρσ21 − σ22ρ− ρσ22) , (C.37)

Lγ10ρ =
γ10

2
(2σ01ρσ10 − σ11ρ− ρσ11) , (C.38)

Lγ20ρ =
γ20

2
(2σ02ρσ20 − σ22ρ− ρσ22) . (C.39)

• i < j Incoherent pumping : The qubit is incoherently pumped from the state |i〉 to
the state |j〉 with the pumping rate γij . In practice the pumping occurs from the
state |0〉 to the state |2〉 at a rate Γ ≡ γ02 to ensure the population imbalance. The
corresponding Lindblad operator LP = Lγ02 reads

LPρ =
Γ

2
(2σ20ρσ02 − σ00ρ− ρσ00) . (C.40)

C.1.3 Application to a cavity mode

In the case of the coupling between a transition in the qubit and the bath, HF = ~ωa†αaα.
We make the following identifications C1 = aα, C2 = a†α and ∆ω1 = −ωα, ∆ω2 = ωα.
Eq. (C.18) then takes the form

dρ̃(t)

dt
=
[
aαρ̃(t), a

†
α

]
A21+

[
a†αρ̃(t), aα

]
A12+

[
aα, ρ̃(t)a

†
α

]
A∗

21+
[
a†α, ρ̃(t)aα

]
A∗

12. (C.41)

Since the imaginary parts of A give rise to mere frequency shift which can be absorbed
into the frequency of the actual oscillator we keep only the real part and put

A21 = ξ, A12 = δ = ξ e−β~ω. (C.42)

In the Schrödinger representation we have

dρ(t)

dt
= − iω

[
a†αaα, ρ

]
+ ξ

([
aαρ, a

†
α

]
+
[
aα, ρa

†
α

])
+ δ

([
a†αρ, aα

]
+
[
a†α, ρaα

])

= − iω
(
a†αaαρ− ρa†αaα

)

+ ξ
(
2aαρa

†
α − a†αaαρ− ρa†αaα

)
+ δ

(
2a†αρaα − aαa

†
αρ− ρaαa

†
α

)
. (C.43)
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To get some insight into the meaning of the constants δ and ξ, we derive an equation

for the average value 〈a†αaα〉: ∂t〈a†αaα〉 = Tr
{
ρ̇a†αaα

}
. We obtain

d〈a†αaα〉
dt

= 2δ − 2(ξ − δ)〈a†αaα〉, (C.44)

this allows us to identify 2(ξ − δ) with the decay rate κα. Finally, noting nth
α the Bose-

Einstein distribution, we obtain 2δ = καn
th
α and 2ξ = κα(1 + nth

α ). As a consequence

dρ(t)

dt
= −iω

(
a†αaαρ− ρa†αaα

)

+
κα

2
(1 + nth

α )
(
2aαρa

†
α − a†αaαρ− ρa†αaα

)
+
κα

2
nth

α

(
2a†αρaα − aαa

†
αρ− ρaαa

†
α

)
.

(C.45)

In the interaction picture and at very low temperature (kBT ≪ ~ω =⇒ nth
α = 0) the

Lindblad equation reads
dρ̃(t)

dt
=
∑

α

LCα ρ̃(t), (C.46)

with the Lindblad operator of the cavities

LCαρ =
κα

2

(
2aαρa

†
α − a†αaαρ− ρa†αaα

)
. (C.47)

This general result can be applied to the calculation of the steady state density matrix
and the output spectrum.

C.2 Incoherently pumped qubit coupled to one cavity

C.2.1 Temporal evolution and steady state of the density matrix

We study the population dynamics of a three-level qubit coupled to one cavity using the
density matrix time-evolution. We consider the case of an incoherent pumping (rate Γ)
with the presence of non-radiative relaxations |i〉 → |j〉 (rate γij). We take also into
account the presence of a detuning δ = ω10 − ω0 between the lasing transition and the
cavity mode. The temporal derivative of a general matrix element reads

〈i, n| ˙̃ρ(t)|j,m〉 = κ
√
n+ 1

√
m+ 1〈i, n+ 1|ρ̃(t)|j,m+ 1〉 − κ

2
(n+m)〈i, n|ρ̃(t)|j,m〉

+ Γ〈0, n|ρ̃(t)|0,m〉 δi,j,2 −
Γ

2
〈i, n|ρ̃(t)|j,m〉 (δi,0 + δj,0)

+
∑

k,l

γkl

[
〈k, n|ρ̃(t)|k,m〉 δi,j,l −

1

2
〈i, n|ρ̃(t)|j,m〉 (δi,k + δj,k)

]

+ g
√
n〈1, n− 1|ρ̃(t)|j,m〉 e−iδt δi,0 + g

√
m〈i, n|ρ̃(t)|1,m− 1〉 eiδt δj,0

− g
√
n+ 1〈0, n+ 1|ρ̃(t)|j,m〉 eiδt δi,1 − g

√
m+ 1〈i, n|ρ̃(t)|0,m+ 1〉 e−iδt δj,1.

(C.48)

We restrict the cavity states to |0〉 → |M〉. To determine the diagonal elements 〈i, n|ρ̃(t)|i, n〉
we need six auxiliary matrix elements. We build the column matrixB(t) =

(
bi(t)

)
i∈{1,...,M}
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with

bn>0(t) =




〈0, n|ρ̃(t)|0, n〉
〈1, n|ρ̃(t)|1, n〉
〈2, n|ρ̃(t)|2, n〉

Re
{
〈0, n|ρ̃(t)|1, n− 1〉 eiδt

}

Im
{
〈0, n|ρ̃(t)|1, n− 1〉 eiδt

}



, b0(t) =



〈0, 0|ρ̃(t)|0, 0〉
〈1, 0|ρ̃(t)|1, 0〉
〈2, 0|ρ̃(t)|2, 0〉


 . (C.49)

The time-derivative Ḃ(t) is linked to B(t) through the matrix M

Ḃ(t) = M ·B(t), (C.50)

with

M =




MC
0 MR

0

ML
1 MC

1 MR
1

. . .
. . .

. . .

ML
M−1 MC

M−1 MR
M−1

ML
M MC

M



. (C.51)

The submatrices of M are equal to

MC
n = − diag{κn+ Γ + γ01, κn+ γ10 + γ12, κn+ γ21 + γ20,

κ(n− 1/2) + (Γ + γ10)/2, κ(n− 1/2) + (Γ + γ10)/2,

+




0 γ10 γ20 2g
√
n 0

γ01 0 γ21 0 0
Γ γ12 0 0 0

−g√n 0 0 0 −δ
0 0 0 δ 0



, (C.52)

where diag{. . . } represents the element of a diagonal matrix,

ML
n =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 g

√
n 0 0 0

0 0 0 0 0



, (C.53)

and

MR
n =




κ(n+ 1) 0 0 0 0
0 κ(n+ 1) 0 −2g

√
n+ 1 0

0 0 κ(n+ 1) 0 0

0 0 0 κ
√
n(n+ 1) 0

0 0 0 0 κ
√
n(n+ 1)



. (C.54)

The top left hand side MC
0 , MR

0 and ML
1 have to be adapted in accordance with the

elements of b0(t). The time evolution is then obtained using a Runge Kutta method to
integrate the system from the initial condition corresponding to the qubit in the ground
state and an empty cavity.
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To find the steady state, we set the time derivatives to zero and solve the system
using the property of the trace of the density matrix

2∑

i=0

M∑

n=0

〈i, n|ρ̃(t)|i, n〉 = 1. (C.55)

To include the closure condition in the system we express the element 〈0, 0|ρ̃(t)|0, 0〉 in
terms of the other diagonal elements. As a consequence,

b0(t) =

(
〈1, 0|ρ̃(t)|1, 0〉
〈2, 0|ρ̃(t)|2, 0〉

)
, and M =




MC
0 MR

0 MRR . . . MRR

ML
1 MC

1 MR
1

. . .
. . .

. . .

ML
M−1 MC

M−1 MR
M−1

ML
M MC

M



,

(C.56)
where the submatrices corresponding to n = 0 are modified as follows

MC
0 =

(
γ01 + γ10 + γ12 γ01 − γ21

Γ − γ12 Γ + γ21 + γ20

)
, ML

1 =




0 0
0 0
0 0
g 0
0 0



, (C.57)

MR
0 =

(
γ01 γ01 − κ γ01 2g 0
Γ Γ Γ − κ 0 0

)
, (C.58)

with the new submatrix

MRR =

(
γ01 γ01 γ01 0 0
Γ Γ Γ 0 0

)
. (C.59)

The solution is then simply

B(tSS) = M−1 ·




γ01

Γ
0
...
0



, (C.60)

and,

〈0, 0|ρ̃(SS)|0, 0〉 =
1

Γ + γ01
(γ10〈1, 0|ρ̃(tSS)|1, 0〉 + γ20〈2, 0|ρ̃(tSS)|2, 0〉 + κ〈0, 1|ρ̃(tSS)|0, 1〉) .

(C.61)
In this specific configuration of incoherent pumping a small number of matrix elements
is non-zero.

C.2.2 Output spectrum

The output spectrum S(ω) = 2Re

∫ ∞

0
dτ eiωτ 〈a†H(0)aH(τ)〉, where τ = t− tSS , is equal

to

S(ω) = 2Re
2∑

i=0

∞∑

n=0

√
n+ 1〈i, n+ 1|Â(ω − ω0)|i, n〉, (C.62)
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where

ȦI(τ) = L(τ)[AI(τ)] , (C.63)

AI(0) = ρI(0)a†I(0). (C.64)

From Eq. C.48, six auxiliary matrix elements are necessary to find 〈i, n + 1|AI(τ)|i, n〉,
contained in the matrix B(t) =

(
b0(t), . . . , bn(t), . . . , bM (t)

)t
where

bn(τ) =




〈0, n+ 1|AI(τ)|0, n〉
〈1, n+ 1|AI(τ)|1, n〉
〈2, n+ 1|AI(τ)|2, n〉

〈0, n+ 2|AI(τ) eiδτ |1, n〉
〈1, n|AI(τ) e−iδτ |0, n〉



, bM−1(τ) =




〈0,M |AI(τ)|0,M − 1〉
〈1,M |AI(τ)|1,M − 1〉
〈2,M |AI(τ)|2,M − 1〉

〈1,M − 1|AI(τ) e−iδτ |0,M − 1〉


 .

(C.65)
Then, the derivatives 〈i, n+1|AI(τ)|i, n〉 are linked linearly to 〈i, n+1|AI(τ)|i, n〉 through
the matrix W: Ḃ(τ) = W ·B(τ) with

W =




C0 DR
0

DL
1 C1 DR

1
. . .

. . .
. . .

DL
M−2 CM−2 DR

M−2

DL
M−1 CM−1



, (C.66)

where the submatrices read

WC
n = − diag{κ(n+ 1/2) + Γ + γ01, κ(n+ 1/2) + γ10 + γ12, κ(n+ 1/2) + γ21 + γ20,

κ(n+ 1) + (Γ + γ10)/2 − iδ, κn+ (Γ + γ10)/2 + iδ}

+




0 γ10 γ20 0 g
√
n+ 1

γ01 γ12 γ21 −g
√
n+ 2 0

Γ 0 0 0 0
0 g

√
n+ 2 0 0 0

−g
√
n+ 1 0 0 0 0



, (C.67)

and

WL
n =




0 0 0 g
√
n 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 g

√
n 0 0 0



, (C.68)

and with

WR
n =diag

{
κ
√

(n+ 1)(n+ 2), κ
√

(n+ 1)(n+ 2), κ
√

(n+ 1)(n+ 2),

κ
√

(n+ 1)(n+ 3), κ(n+ 1)
}

+




0 0 0 0 0
0 0 0 0 −g

√
n+ 1

0 0 0 0 0
−g

√
n+ 1 0 0 0 0
0 0 0 0 0



. (C.69)
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The matrices WC
M−1, WL

M−1 and WR
M−2 have to be resized in accordance with bM−1(τ).

The temporal spectral function reads

S(τ) = e−iω0τ
M−1∑

n=0

2∑

j=0

√
n+ 1B5n+j(τ). (C.70)

Next, noting B̂(ω) = TL{B(τ)}(ω), and using the property TL{f ′(τ)}(ω) = −iωTL{f(τ)}(ω)−
f(0), we get

iωÂ(ω) + L
[
Â(ω)

]
= −AI(0), (C.71)

or equivalently

B̂(ω) = − (W + iωI)−1 ·B(0), (C.72)

where the elements of B(0) read

bn(0) =
√
n+ 1




〈0, n+ 1|ρ̃(tSS)|0, n+ 1〉
〈1, n+ 1|ρ̃(tSS)|1, n+ 1〉
〈2, n+ 1|ρ̃(tSS)|2, n+ 1〉

〈0, n+ 2|ρ̃(tSS) eiδtSS |1, n+ 1〉
〈1, n|ρ̃(tSS) e−iδtSS |0, n+ 1〉



. (C.73)

These matrix elements can be obtained directly by the procedure of the previous section.
Finally, the relation

S(ω0 + ∆ω) = 2 Re
M−1∑

n=0

2∑

j=0

√
n+ 1 B̂5n+i(∆ω), (C.74)

leads directly to the spectrum.

The case of a coherent pumping can be easily obtained with the same method. In
this case, 9 elements are needed in bn.

C.3 Semiclassical model

We consider the general case of two cavities and try to find a simplified description to
calculate the photon number nα = a†αaα in each cavity. We note ∆i,α the frequency
difference between the transition |i+ 1〉 − |i〉 and the cavity modes ωα. To proceed, we
consider the dynamical equation of nα

d〈nα〉
dt

=
1

i~

〈[
nα, H̃1

]〉
+ Tr{nαLρ̃} (C.75)

= − κα〈nα〉
+ g1α

〈
σ01a

†
α ei∆1αt + σ10aα e−i∆1αt

〉
+ g2α

〈
σ12a

†
α ei∆2αt + σ21aα e−i∆2αt

〉
.

(C.76)
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The differential equations for the photon numbers give rise to auxiliary correlators. Their
derivative can be obtained with

d〈σj−1,ja
†
α〉

dt
= − 1

2

[
κα + Γ δj,1 +

∑

k>l

γkl(δk,j + δk,j−1)

]
〈σj−1,ja

†
α〉

+ E
[
〈σ21a

†
α〉 δj,1 − 〈σ10a

†
α〉 δj,2

]

+

2∑

β=1

[(
g2β ei∆2,βt δj,1 − g1β ei∆1,βt δj,2

)
〈σ02a

†
αa

†
β〉

+gjβ e−i∆j,βt
(
〈(σjj − σj−1,j−1)a

†
αaβ〉 + 〈σjj〉 δα,β

)]
. (C.77)

Among the new auxiliary fields, some are of the same kind

d〈σj,j−1a
†
α〉

dt
= − 1

2

[
κα + Γ δj,1 +

∑

k>l

γkl(δk,j + δk,j−1)

]
〈σj,j−1a

†
α〉

+ E
[
〈σ12a

†
α〉 δj,1 − 〈σ01a

†
α〉 δj,2

]

+

2∑

β=1

[
gjβ ei∆j,βt 〈(σjj − σj−1,j−1)a

†
αa

†
β〉

+
(
g2β e−i∆2,βt δj,1 − g1β e−i∆1,βt δj,2

)
〈σ20a

†
αaβ〉

+g2β e−i∆2,βt〈σ20〉 δj,1δα,β

]
. (C.78)

The time-evolution of the qubit operators is needed

d〈σk,l〉
dt

= − 1

2


Γ(δk,0 + δl,0) +

∑

i>j

γij(δi,k + δi,l)


 〈σk,l〉 + Γ〈σ00〉 δk,l,2 +

∑

i>j

γij〈σii〉 δk,l,j

+ E [〈σk2〉 δl,0 − 〈σ0l〉 δk,2 − 〈σk0〉 δl,2 + 〈σ2l〉 δk,0]

+
2∑

α=1

[
gl+1,α〈σk,l+1a

†
α〉 ei∆l+1,αt − gk,α〈σk−1,la

†
α〉 ei∆k,αt

+gk+1,α〈σk+1,laα〉 e−i∆k+1,αt − gl,α〈σk,l−1aα〉 e−i∆l,αt
]
. (C.79)
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Correlators with three operators are also generated

d〈σkla
†
αa

(†)
β 〉

dt
= − 1

2
[κα + κβ + Γ (δk,0 + δl,0) + γ21 (δk,2 + δl,2)] 〈σkla

†
αa

(†)
β 〉

+ Γ〈σ00a
†
αa

(†)
β 〉 δk,l,2 + γ21〈σ22a

†
αa

(†)
β 〉 δk,l,0

+ E
[
〈σk2a

†
αa

(†)
β 〉 δl,0 − 〈σ0la

†
αa

(†)
β 〉 δk,2 − 〈σk0a

†
αa

(†)
β 〉 δl,2 + 〈σ2la

†
αa

(†)
β 〉 δk,0

]

+

2∑

γ=1

[
gl+1,γ〈σk,l+1a

†
αa

(†)
β a†γ〉 ei∆l+1,γt − gk,γ〈σk−1,la

†
γa

†
αa

(†)
β 〉 ei∆k,γt

−gl,γ〈σk,l−1a
†
αa

(†)
β aγ〉 e−i∆l,γt + gk+1,γ〈σk+1,laγa

†
αa

(†)
β 〉 e−i∆k+1,γt

]
.

(C.80)

Up to now the calculations are exact but every time we calculate the time evolution
of an auxiliary correlator, correlators with one more cavity operator are generated by
the coupling Hamiltonian. The expectation value of these operators corresponds to the
coherence between states more and more far from the diagonal terms. In the following, we
will consider only off-diagonal terms with differing by maximum two cavity states in each
cavity: 〈i, n1, n2|ρ|j, n1±2, n2〉, 〈i, n1, n2|ρ|j, n1, n2±2〉, and 〈i, n1, n2|ρ|j, n1±1, n2±1〉.
Consequently terms such as 〈σkla

†
αa

†
αa

†
β〉 and 〈σkla

†
αa

†
αaβ 6=α〉 will be ignores and set to

zero. The others terms will be factorized to express them in terms of known correlators

〈σkla
†
αaαa

(†)
β 〉 ≃〈nα〉〈σkla

(†)
β 〉, (C.81)

and,

〈σkla
†
αaβaβ 6=α〉 ≃〈a†αaβ〉〈σklaβ〉. (C.82)

The last derivative necessary to complete the set of equations is

d〈a†1a2〉
dt

= − [κ1 + κ2] 〈a†1a2〉

+
2∑

j=1

[
gj,1〈σj,j−1a2〉 e−i∆j,1t + gj,2〈σj−1,ja

†
1〉 ei∆j,2t

]
. (C.83)

This semiclassical model can be improved to take into account more multi-transition
processes.
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Appendix D
Quantum fluctuations of a Bose gas in a
ring trap
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Introduction

W
e detail the derivation of two main results presented in Chap. 5. First, we show our
method to take into account the long range density fluctuations in the one-body density
matrix. Second, we treat the renormalization of the Josephson energy with a functional
integral approach.

D.1 Effect of the field Π on the one-body density matrix

In the expression of the bosonic field operator Eq. (5.19), the field Π(x) is present. In
the Luttinger liquid literature however, this field is not usually taken into account in
the calculation of the one-body density matrix. In this section we propose a method
to include the effect of the long range density fluctuations in G(x, x′). We note θ̄(x) =
〈Θ(x)〉, θ(x) = Θ(x) − θ̄(x), φ̄(x) = 〈φ(x)〉, and ϕ(x) = φ(x) − φ̄(x). We also define
X = Π(x)/ρ0, Y = Π(x′)/ρ0, and Z = 2imθ(x) − 2im′θ(x′) − iϕ(x) + iϕ(x′). In these
notations, it follows

G(x, x′) = ρ0

∑

m,m′

Dm,m′(x, x′)
〈√

1 +XeZ
√

1 + Y
〉
, (D.1)

where Dm,m′(x, x′) = |A|2e2imθ̄(x)−2im′θ̄(x′)−iφ̄(x)+iφ̄(x′) e[mθ(x)+m′θ(x′),ϕ(x)−ϕ(x′)]. Suppos-
ing that the density fluctuations Π(x) are much smaller than the average density ρ0, we
expand the square root in power series of Π(x)/ρ0. This expansion generates correlators
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of the type 〈XkeZY l〉, where k and l are two integers. This average can be performed
using the generating function

Φ(χ1, χ2) =
〈
eχ1X eZ eχ2Y

〉
, (D.2)

which gives
∂k

∂χk
1

∂l

∂χl
2

Φ(χ1 = 0, χ2 = 0) =
〈
XkeZY l

〉
. (D.3)

The generating function can be reformulated as follows

Φ(χ1, χ2) = exp

[
1

2
〈X2〉χ1

2 +
1

2
〈Y 2〉χ2

2 + χ1〈XZ〉 + χ2〈ZY 〉 + χ1χ2〈XY 〉 +
1

2
〈Z2〉

]
.

(D.4)
The derivatives of Φ can then be expressed in terms of Hermite polynomials Hn(x)

∂k

∂χk
1

∂l

∂χl
2

Φ(χ1, χ2) = Φ(χ1, χ2)

(
i

√
〈X2〉

2

)k(
i

√
〈Y 2〉

2

)l

×
Min(k,l)∑

j=0

k!l!

(k − j)!(l − j)!j!

(
−2〈XY 〉√
〈X2〉〈Y 2〉

)j

× Hk−j

(
〈X2〉χ1 + 〈XY 〉χ2 + 〈XZ〉

i
√

2〈X2〉

)
Hl−j

(
〈XY 〉χ1 + 〈Y 2〉χ2 + 〈ZY 〉

i
√

2〈X2〉

)
. (D.5)

The noise being Gaussian, the expression of Ψ(0, 0) = 〈eZ〉 is derived with Wick’s the-
orem, which leads to 〈eZ〉 = e〈Z

2〉/2. From the series expansion of the square root

function, ∀x ∈ ] − 1, 1[
√

1 + x =
∞∑

n=0

(−1)n+1(2n)!

n!2(2n− 1)22n
xn, it is then straightforward to

obtain Eq. (5.46).

D.2 Renormalization of the Josephson energy

We study the effect of quantum fluctuations on the Josephson junction with a different
viewpoint from the one presented in Sec. 5.5. Here we make use of the path integral
method to obtain the flow equation of the renormalization (see, e.g., Ref. [195]).

D.2.1 Effective action

Instead of using the Hamiltonian to describe the Luttinger liquid, we adopt the Euclidean
action alternative. This description involve the time dependence of the fluctuations of
the various fields. We concentrate on the symmetric phase difference across the barrier,
which defines the new field

ϕ̃(x, t) = φ(L− x, t) − φ(x, t). (D.6)

The total action S is composed of the Luttinger liquid action

S0 =
~KvS

8π

∫ β~

0
dt

∫ L

0
dx

[
(∂xϕ̃(x, t))2 +

1

v2
S

(∂tϕ̃(x, t))2
]

(D.7)
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and the tunneling part −EJ

∫ β~

0
dt cos ϕ̃(0, t). The goal is to find an effective action

in terms of the phase difference at the barrier ϕ(t) = ϕ̃(0, t) by averaging out all the
fluctuations in the ring. It is more convenient to switch to the double Fourier transform

ϕ̃(x, t) =
1

~β

∑

ων

(
1

2
ϕ̃0(ων) +

∑

n>0

ϕ̃n(ων) cos(2πnx/L)

)
eiωνt, (D.8)

where ων = 2πν/β~ are the Matsubara frequencies. In terms of ϕ̃n(ων), the action reads

S0 =
πvSK

4Lβ

∑

ων

[
1

2

(
Lων

2πvS

)2

ϕ̃0(ων)ϕ̃0(−ων) +
∑

n>0

(
n2 +

L2ω2
ν

4π2v2
S

)
ϕ̃n(ων)ϕ̃n(−ων)

]
.

(D.9)
The definition of the phase difference at the barrier ϕ(t) becomes

1

2
ϕ̃0(ω) +

∑

n>0

ϕ̃n(ω) = ϕ(ω). (D.10)

We now turn to the calculation of the effective action Seff
0 . We use the path integral

formulation to integrate out the fluctuations ϕ̃n(ων). To express the resulting effective
action in terms of the field ϕ(ω) we introduce Lagrange multipliers γων

e−Seff
0 =

{
lim

ν→∞

∏

ων

∏

n

∫
Dϕ̃n(ων)

}
e−S0 ×

{
lim

ν→∞

∏

ων

∫
Dγων

}
ei

P

ων
γων [

P

n eϕn(ων)−ϕ(ων)].

(D.11)

The result for the Gaussian integral is

∫
Dx e−xMx+xJ =

πn/2

√
|detM |

e
1
4
JM−1J . In our

case M−1 = M and |detM | = 1. We get

e−Seff
0 ∝ exp


−πvSK

4Lβ

∑

ων

(
1

2

1

(Lων/2πvS)2
+
∑

n>0

1

n2 + (Lων/2πvS)2

)−1

ϕ(ων)ϕ(−ων)


 .

(D.12)
Upon performing the sums, one gets

Seff
0 =

~

2

K

2π

∫ +∞

−∞

dω

2π

ω|ϕ(ω)|2
coth(Lω/2vS)

. (D.13)

In the limit of a large ring Lω/vS ≫ 1, we finally have

Seff
0 =

~

2

∫ +∞

−∞

dω

2π
σ(ω)|ϕ(ω)|2, where σ(ω) =

K

2π
|ω|. (D.14)

The effective action will be used to find the two-point correlation function of the field ϕ.

D.2.2 Coarse-graining

Now we average the action Seff
0 over the fast modes of the field ϕ. We introduce a running

cut-off energy λ≪ Λ, Λ being the initial cut-off energy of the system. In the case of the
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ring, the high energy cutoff is Λ = π~vS/a. We then divide the field into slow and fast
modes relative to λ

ϕ(ω) = ϕs(ω)︸ ︷︷ ︸
6=0 for ~ω<λ

+ ϕf(ω)︸ ︷︷ ︸
6=0 for ~ω>λ

. (D.15)

Then, averaging the tunneling action over ϕf(ω) yields
〈
EJ

∫
~β

0
dt cos(ϕs(t) + ϕf(t))

〉
= EJ 〈cosϕf(t)〉

∫
~β

0
dt cosϕs(t). (D.16)

The average of the cosine is

〈cosϕf(t)〉 = e−
1
2
〈ϕ2

f (t)〉 = e−
1
2
G(0), (D.17)

where G(t) is the two-point correlation function [195]

G(t) = 〈ϕf(t)ϕf(0)〉 =

∫ Λ

−Λ

dω

2π
σ−1(ω) eiωtW

(∣∣∣
ω

λ

∣∣∣
)

=
2

K

∫ Λ

0

dω

2π

cos(ωt)

ω
W (ω/λ),

(D.18)
where W (x) is a function which separates the slow from the fast modes. For instance,
we can use W (x) = xη

1+xη ,
xη√

1+x2η
, Ξ(x) . . . and, in the case Λ ≫ λ, we get

G(0) =
2

K
ln(Λ/λ). (D.19)

Consequently

〈cosϕf(t)〉 =

(
λ

Λ

)1/K

. (D.20)

This is the power-law decay that we obtained with a direct use of the one-body density
matrix in Sec. 5.5. Finally the total effective action reads,

Seff =
~

2

K

2π

∫ +∞

−∞

dω

2π
|ω||ϕs(ω)|2 − EJ(Λ)

(
λ

Λ

)1/K ∫ ~β

0
dt cosϕs(t). (D.21)

This effective action gives rise to the renormalization group flow equation of the Joseph-
son energy.

D.2.3 Flow equation

If we match the two tunneling actions

EJ(Λ)

(
λ

Λ

)1/K ∫ ~β

0
dt cosϕs(t) = EJ(λ)

∫
~β

0
dt cosϕ(t), (D.22)

where EJ(λ) is the renormalized Josephson energy. We find the relation

EJ(λ) =

(
λ

Λ

)1/K

EJ(Λ). (D.23)

This renormalization group approach leads to the flow equation of the system [195]

∂ĒJ

∂ℓ
=

(
1 − 1

K

)
ĒJ(λ), (D.24)

where ĒJ(λ) = EJ(λ)/λ is the reduced Josephson energy and dℓ = −dµ/µ. This flow
equation can be integrated and, depending on the length of the ring compared to the
healing length L∗, the renormalization reaches two different fixed points, as explained in
Sec. 5.5.
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Introduction. – A small-capacitance Josephson
junction is a quantum system with rich dynamics. The
two conjugate variables are the superconducting phase
difference φ across the junction and the charge Q on
its electrodes. Correspondingly, at low temperatures the
behavior of the junction is determined by the competition
between the Josephson energy EJ and the charging energy
EC = (2e)

2/2C, where C is the junction capacitance [1].
If EJ ≫EC , φ is well defined and a phase-coherent
Cooper-pair current can flow through the junction in
the absence of an external voltage V . In the opposite
limit EJ ≪EC an insulating state with a well-defined
charge Q on the electrodes is possible. At the same
time, the dynamics of φ and Q is crucially influenced by
dissipation caused by the electromagnetic environment
surrounding the junction. Because of the mutual interplay
of quantum mechanics, nonlinearity and dissipation, the
consistent theoretical description of Josephson junctions
still remains far from being complete.
The dc current-voltage (I-V ) characteristics of a

Josephson junction embedded in a circuit of resistance R
have been well studied in the so-called overdamped [1] case
corresponding to small values of R/RQ (RQ = h/4e

2 is the
resistance quantum) and the ratio EJ/EC [2–8]. For small
R<RQ, the supercurrent peak at zero voltage acquires
a finite width. With increasing R, quantum fluctuations
of the phase become more important and the super-
current peak gradually moves to higher voltages. This
corresponds to the transition (driven by the environment)

from superconducting behavior found for small R to
a complete Coulomb blockade when R>RQ. Mean-
while, the opposite underdamped regime, which has
been extremely difficult to achieve experimentally, has
attracted less attention. However, recently experiments
were performed [9,10] on junctions with EJ/EC > 1,
embedded in a tunable, highly resistive environment,
R≫RQ, enabling the study of the same junction in
different environments. In particular, a voltage peak near
zero current followed by a back-bending to lower voltages
at higher currents was observed. This is the so-called
Bloch nose [11] which, in accordance with a duality
property [4,12–14], resembles the I-V characteristic of
an overdamped junction but with the role of voltage and
current interchanged. A quantitative comparison between
theory and experiment has been made in the classical
limit where thermal fluctuations dominate [10,15].
In this letter we study for the first time the influence

of quantum fluctuations on the I-V characteristics of
an underdamped Josephson junction. We show that
the quantum-mechanical nature of the electromagnetic
environment can strongly modify the crossover from
Coulomb blockade to superconducting behavior. Without
fluctuations the I-V characteristic contains a sharp cusp
that connects two distinct branches: a zero-current finite-
voltage branch corresponding to Coulomb blockade and a
supercurrent branch corresponding to Bloch oscillations
of the voltage. Thermal fluctuations induce transitions
between these branches thereby smearing the cusp. This
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Fig. 1: I-V characteristics for g= 0.1 and βU0 = 0.1. The
dashed line corresponds to the classical expression (28) while
the dotted line gives the quasiclassical solution from (29) for
β�ωc = 1. Solid lines depict the result from (17) with β�ωc = 10
for the rounded I-V characteristic and β�ωc = 0.1 for the
sharp one. Inset: (from right to left) the classical limit without
fluctuations (6), the result (28), and the solution from (17) for
g= 0.1, βU0 = 0.5, and β�ωc = 50.

thermal smearing can be described using a Fokker-Planck
approach [15]. Quantum effects show up at temperatures
comparable with the characteristic cutoff frequency ωc
of the environmental modes. As we will detail below, at
intermediate temperatures kBT � �ωc, a quasiclassical
regime exists. In this regime small quantum corrections
to the thermal smearing are found, described by the
so-called quantum Smoluchowski equation. In the limit of
low temperatures kBT ≪ �ωc, quantum fluctuations not
only smear the cusp but also shift its position. Specifically,
with increasing dissipation strength the voltage peak shifts
to nonzero current: quantum fluctuations induce tunneling
events of flux quanta that disrupt the Bloch oscillations.
Due to the duality symmetry, our results can be directly

mapped to the case of an overdamped junction, where
we have found that the role of quantum fluctuations
has not been adequately studied, for instance, in the
quantum Smoluchowski regime (see eq. (29) and discussion
below). Finally, we demonstrate that all our results also
apply to the case of the recently proposed quantum
phase-slip junctions which are realized in superconducting
nanowires [16].

Model. – We start our analysis by considering a
current-biased Josephson junction (see inset a) of fig. 2).
The junction is shunted by a resistance R and biased by an
external dc current Ib. As long as quasiparticle excitations
are neglected, the system is described by the following
Hamiltonian:

H =
(Q−Qx)2
2C

−EJ cosφ−
�

2e
Ib φ+Hbath, (1)

0 2 4 6
(E

L
/ U

0
) V / V

c
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Fig. 2: I-V characteristics at T = 0 for �ωc = 100U0. From
top to bottom, solid lines represent (34) with g= 100, 5, 1,
0.5 and 0.1. Dashed lines are the corresponding curves for
the solution from (17) with βU0 = 0.5 and β�ωc = 50. While
decreasing R the Bloch nose is shifted to the finite current
I =Φ0/2L, where the tunneling of a flux quantum requires
an energy exchange with the bath. Insets: equivalent circuits
of current-biased Josephson junction (a) and nanowire-based
QPS (b) with the diamond symbol representing the phase-slip
process.

where the operators Q and φ obey the commutation rela-
tion [φ,Q] = 2ei. The fluctuating charge Qx is associated
with the current Ix = Q̇x flowing through the shunting
resistor. The latter is modeled by a bath of harmonic
oscillators with frequencies {ωα}, which is described by
Hbath =

∑

α �ωα
(

p2α+x
2
α

)

/2. In this model, Qx is repre-
sented by a weighted sum of oscillator coordinates {xα},
Qx = 2e

∑

α λαxα, while the influence of the bath on the
junction dynamics is entirely determined by the weigh-
ted spectral function, K(ω) = (π/2)

∑

α λ
2
αδ(|ω| −ωα).

As follows from the equations of motion generated by
H, the choice K(ω) =RQReY (ω)/2πω with Y (0) = 1/R
reproduces the linear response (Ohm’s law) of current
Ix to the voltage drop V = (�/2e)φ̇ on the resistor,
Ix(ω) = Y (ω)V (ω) (for Fourier transforms). In the case
of interest here, EJ ≫EC , it is advantageous to switch to
the Bloch-band description of the Josephson junction [11].
Assuming that the junction dynamics is confined to the
lowest energy band ǫ0(q) =−U0cos(πq/e), we arrive at
the tight-binding (TB) model of our system with the
Hamiltonian:

HTB =−U0 cos(πq/e−χ)− (�/2e)Ibφ+Hbath, (2)

where q is the operator corresponding to the quasicharge
and U0 = 4

√

2/πEC(2EJ/EC)
3/4 exp(−4

√

2EJ/EC) is
the Bloch bandwidth. The reduced fluctuating charge

χ= 2π
∑

α

λαxα (3)
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gives rise to the bath correlation function J(τ) = 〈(χ(τ)−
χ(0))χ(0)〉, or explicitly,

J(τ) = 2RQ

∫ +∞

−∞

dω
ReY (ω)

ω

e−iωτ − 1
1− e−β�ω , (4)

where β = 1/kBT is the inverse temperature.
Hamiltonian (2) describes the quasicharge dynamics

in the lowest Bloch band under the influence of the
current I = Ib− Ix. The group velocity associated with
the quasicharge, dǫ0/dq= (πU0/e)sin(πq/e), corresponds
to the voltage across the junction. Hence for a resistive
environment Ohm’s law yields Ix = (Vc/R)sin(πq/e),
where Vc = πU0/e is the maximal (critical) voltage the
junction can sustain. Classically, the problem is equivalent
to the equation of motion [11],

q̇= Ib− (Vc/R) sin(πq/e), (5)

describing overdamped quasicharge diffusion with
damping rate πVc/eR. A stationary solution q̇= 0 exists
if Ib <Vc/R: all the current flows through the resistor,
while the junction stays in a zero-current Coulomb
blockade state with a voltage drop V =RIb. If Ib >Vc/R,
q̇ �= 0 and a dynamical state exists at finite current with
Bloch oscillations of the voltage. From eq. (5) one finds
the frequency of the oscillations to be fB = I/2e; by
direct integration of eq. (5) over one period one obtains
the dc voltage [11]

V =RIb−
√

(RIb)
2−V 2c . (6)

The resulting I-V characteristic corresponds to the afore-
mentioned Bloch nose and is depicted in fig. 1, inset.
We now turn to the effect of fluctuations and intro-

duce a cutoff of the bath spectrum at frequency ωc, chosen
to be smaller than the gap ωg =

√
2EJEC/� between the

lowest Bloch bands but higher than the Bloch bandwidth.
Furthermore, the competition between the cutoff energy
and the temperature determines the nature, rather clas-
sical or quantum, of the environment. Indeed, starting
from a classical thermal bath when kBT ∼ �ωc, quantum
fluctuations appear in the quasiclassical region kBT � �ωc
and become dominant at low temperatures kBT ≪ �ωc.
Assuming that the effective impedance seen by the junc-
tion is given by a resistance R in series with an inductance
L, we can set Y (ω) = 1/(R− iωL), leading to ωc =R/L.
Then, from evaluating the integral (4) one obtains

J(τ) =−i sign(τ) A(τ)−M(τ), (7)

with
A(τ) = πg(1− e−ωc|τ |), (8)

M(τ) = 2g

[

π|τ |
β�
− π
2
cot

(

β�ωc
2

)

{

1− e−ωc|τ |
}

+

+∞
∑

k=1

1− e−νk|τ |
k (1− ν2k/ω2c )

]

, (9)

where g=RQ/R is the dimensionless conductance, and
νk = 2πk/�β is a Matsubara frequency.
Before proceeding, we want to comment on the

magnitude of the effective inductance L which has been
associated with the cutoff ωc. The restriction ωc <ωg
imposes a lower boundary on the values of L to be
consistent with our assumption of single-band charge
dynamics:

L>
2πg−1

√

2EC/EJ
LJ , (10)

where LJ = (Φ0/2π)
2/EJ is the Josephson inductance and

Φ0 = h/2e is the flux quantum. For relatively large g > 1,
the condition (10) can be satisfied even for an autonomous
Josephson junction, where L∼LJ corresponds to the
Bloch inductance [17]. In the opposite limit of small g≪ 1,
an experimental realization of this model would be the
use of an environment composed of Josephson junction
SQUID arrays, whose effective inductance can be tuned
to relatively large values by magnetic flux [18]. Another
option includes the use of a quantum phase-slip junction
where there is no limitation on ωc, as discussed at the end
of the paper.

Current-voltage characteristics. – To determine
the I-V characteristics, we calculate the average of the
operator for the voltage across the junction

V (t) = Vc 〈 UC(t, 0) sin θ(t)〉, (11)

where θ= (π/e) q−χ. The time evolution operator (in the
interaction picture),

UC(t, 0) = TC exp
{

(iU0/�)

∫ t

0

dτ
∑

s=±

s cos θs(τ)

}

, (12)

is defined along the Keldysh contour with the Keldysh
index s=+/− refering to the forward/backward branch
of the contour, and TC denotes the Keldysh time-ordering.
Expanding UC in U0, averaging over the bath and perform-
ing summation over the Keldysh indices yield

V (t) = (Vc/2i)

+∞
∑

n=0

(−1)n (U0/�)2n+1

×
∫ t

0

dτ1 . . .

∫ τ2n

0

dτ2n+1
∑

{fk}

(

2n+1
∏

k=1

sinGk

)

eΓn ,

(13)

where for given n the discrete variables fk satisfy

|fk+1− fk|= 1 (14)

with the constraint f0 = f2n+2 = 0 [5,19], and

Gk =Ak,k−1fk +

k−1
∑

k′=1

δAkk′fk−k′ , (15)
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Γn = −i(π/e)Ib
2n+1
∑

k=1

(τk − τk−1) fk

−
2n+1
∑

k=1

Mk,k−1f
2
k +

2n+1
∑

k=2

k−1
∑

k′=1

δMkk′fkfk′ . (16)

Here δMkk′ =Mkk′ +Mk−1,k′−1−Mk−1,k′ −Mk,k′−1,
δAkk′ =Ak,k−k′−1−Ak,k−k′ , with the shorthand notation
Akk′ =A(τk − τk′), and similar for Mkk′ . The above
equations are in a form suitable to apply the “nearest-
neighbor approximation” (NNA), where one assumes
that δMkk′ ≈ 0 and δAkk′ ≈ 0 [5] on the relevant time
scale τ > 1/ωc. Then, in the limit t→∞, the expres-
sion (13) can be evaluated exactly, and one obtains for
the dc voltage V across the junction:

V = Vc Im (W1/W0) , (17)

where Wn obey the following recurrent relation (n� 1 ):

ian (Wn−1−Wn+1) =Wn, (18)

an =
U0
i�

∫ +∞

0

dτ sin (nA(τ)) ei(π/e)Ibnτ−n
2M(τ). (19)

Equations (17)–(19) constitute the central result of this
letter. The quantities Wn should be identified with the
Fourier transform of the quasicharge distribution function
W (q) in the steady state,

W (q) =

+∞
∑

n=−∞

e−inπq/e Wn, (20)

with the property W−n =W
∗
n . This becomes obvious by

noticing that eq. (17) can be viewed as a result of averaging
the voltage operator with the quasicharge distribution
W (q),

V/Vc =W
−1
0

∫ +e

−e

dq W (q) sin (πq/e) . (21)

Quasiclassical limit. – To shed light on the range of
applicability of the NNA for our system, we first study
the quasiclassical limit where the typical time scale of the
quasicharge dynamics, determined by the damping rate
gU0/� and the frequency of Bloch oscillations fB (see
eq. (5)), is slow. Indeed, if

gU0/�, fB≪ 1/�β, ωc, (22)

one can neglect the terms O(e−νkτ , e−ωcτ ) in eqs. (8)
and (9). We thus approximate (Θ(τ) is the unit step
function)

A(τ) = πgΘ(|τ | − 1/ωc), (23)

and
M(τ) = (gν1|τ |+λ)Θ(|τ | − 1/ωc), (24)

with

λ= 2g

[

γ+
π

β�ωc
+ψ

(

β�ωc
2π

)]

, (25)

where γ = 0.577 . . . is the Euler constant and ψ(x) is
the digamma function. Introducing the short-time cutoff
for the approximated A(τ) and M(τ) is the simplest
way to provide that they vanish at τ = 0 (see the exact
expressions (8) and (9)), which is necessary for the
consistency of the applied NNA. Assuming also g≪ 1, one
obtains for an entering the recurrent relation (18),

an =
z

2i

e−Λn
2

n− iη , (26)

where z = βU0, η= (e/π)βRIb, and [20]

Λ= 2g

[

γ+
2π

β�ωc
+ψ

(

β�ωc
2π

)]

. (27)

Inspection of the terms dropped in the NNA reveals that
in the range (22), where A(τ) and M(τ) can be simplified
by their asymptotic expressions, the NNA becomes exact
in the quasiclassical region where λ is small. Note that
for small g, the NNA can be applicable even at low
temperature.

Quantum Smoluchowski equation. – The crossover
between the classical and quantum limit is controlled by
the parameter λ which is related to quantum corrections
to the position dispersion of a fictitious Brownian particle
in the harmonic potential [21]. The classical limit corre-
sponds to β�ωc ∼ 1 and g≪ 1, or equivalently λ, Λ→ 0.
The recurrences (18) can then be solved analytically in
terms of the modified Bessel functions, Wn = In−iη(z),
resulting in the I-V characteristics obtained in ref. [15]:

V =RIb−
sinh (πη)

eβ |Iiη(z)|2
. (28)

Now expanding an in eq. (26) to the first order in Λ to
include quantum corrections, one can derive from eq. (18)
a differential equation for the quasicharge distribution
W (q),

∂q

[

L̂(q, ∂q)−Λ (e/π)4 U ′′′(q) ∂2q
]

W (q) = 0, (29)

where U(q) =−U0 cos(πq/e)−RIbq is a washboard poten-
tial in the charge variable, U ′(q)≡ ∂qU . The corresponding
Smoluchowski differential operator,

L̂(q, ∂q) =U ′eff(q)+β−1D(q) ∂q, (30)

is renormalized by quantum fluctuations through both the
effective potential

Ueff(q) =U(q)+Λ(e/π)
2 U ′′(q) (31)

and the q-dependent diffusion coefficient

D(q) = 1+2βΛ(e/π)2 U ′′(q). (32)

Equation (29) is the so-called Quantum Smoluchowski
Equation (QSE) [20,21] and constitutes the other main
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result of this letter. Equation (29) describes the leading
quantum corrections to the charge dynamics which origi-
nate from the quantum nature of the bath. According to
eq. (27), the influence of quantum fluctuations becomes
more substantial with increasing parameter β�ωc. The
I-V characteristics, parametrically dependent on the bias
Ib and calculated for different β�ωc, are shown in fig. 1.
For β�ωc≫ 1, quantum fluctuations reduce the blockade
voltage and facilitate a crossover to the Bloch oscillations.
Interestingly, for small β�ωc < 1, the influence of thermal
fluctuations becomes suppressed by the inertia effect of the
“heavy” Brownian particle with an effective mass scaled
as ω−1c . For a wide range of Ib, the junction is locked in
the insulating state because of the lack of energy exchange
with the environment, which results in a sharp crossover to
the Bloch oscillations. In other words, reducing the cutoff
energy below the temperature is equivalent to decoupling
the junction from the environment (see fig. 1).
We note in passing that the structure of the QSE

obtained here from the series expansion (17) is different
from the one derived in ref. [21] for a Brownian particle
in a slightly anharmonic potential and later applied to an
overdamped junction [20]. Therefore we cannot exploit the
duality property (see below) to treat the Smoluchowski
range for underdamped junctions using the results of
ref. [20]. Another approximation consists of evaluating
expression (13) using the asymptotes for long times (23)
and (24) [12]. Such an approach leads to coefficients
an = βU0 e

−λ/2 exp(−2πgn2/β�ωc)/2i(n− iη), which tend
towards the result (26) in the quasiclassical region. As a
consequence, a QSE equivalent to the solution (29) is also
recovered.

Low temperatures. – We proceed by studying
eqs. (17)–(19) in the low-temperature limit, beyond
the quasiclassical region (22). At very low temperature,
β�ωc≫ 1, the I-V characteristics are entirely determined
by the first coefficient a1, eq. (19), consistent with the
fact that the NNA is exact to the lowest order in U20 .
Closed-form analytical expressions can be obtained in
several cases. For instance, at finite temperatures and for
small values of g, the I-V characteristic can be written as

V/Vc = u
|Γ(g+ i�βIb/2e)|2

Γ(2g)
sinh (π�βIb/2e), (33)

where u= (βU0/4π) (β�ωc e
γ/2π)

−2g
and Γ(x) is the

Gamma-function. The resulting linear resistance R
varies as a power law with temperature, R∝ T 2(g−1), in
agreement with the asymptotic analysis of ref. [4]. At
zero-temperature one recovers

V/Vc = (πU0/2)P (hIb/2e), (34)

where P (E) = 1/h
∫

dt exp [J(t)+ iEt/�], dual to the well-
known result for the I-V characteristic for incoherent
Cooper pair tunneling in an overdamped junction [2]. In
fig. 2, we plot I-V characteristics for different g, both

at zero and at finite temperatures. As g increases, the
voltage peak shifts to finite values of the supercurrent.
This behavior can be interpreted in terms of incoherent
tunneling of the phase [22]. Indeed, for small values of
g, few environmental modes are available. Consequently,
only elastic tunneling is allowed and a flat Bloch nose is
recovered. When g is large, the equivalent circuit consists
of a loop containing the junction closed by the inductance
L. A phase-slip event occurs when the energy to be
released Φ0Ib corresponds to the energy Φ

2
0/2L to add

one flux quantum Φ0 in the loop, i.e., when Ib =Φ0/2L.
At this finite current, phase tunneling disrupts the Bloch
oscillations and gives rise to a voltage peak.

Overdamped Josephson junctions. – A similar
analysis within the Keldysh formalism can be achieved
in the case of a voltage-biased overdamped Josephson
junction in series with a resistance R. This circuit is
conventionally described by the Hamiltonian H = (Q+
Qx)

2/2C −EJ cosφ−VbQx+Hbath, where Qx is a fluctu-
ating charge on the junction capacitor and Vb is the bias
voltage. Using an analysis of the equations of motion simi-
lar to the one preceding eq. (2) and performing canonical
transformations, one can show that the model description
of the junction is equivalently given by the weak-binding
(WB) Hamiltonian

HWB =−EJ cos (φ−χ/2π)+VbQ+Hbath, (35)

with χ the bath variable defined as before, eq. (3). In this
representation, the junction capacitance C is encoded in
terms of the bath parameters, C−1 = (RQ/2π)

∑

α λ
2
αωα,

while the weighted spectral function of the bath is given by
KWB(ω) = 2πReZ(ω)/RQ ω, with Z

−1(ω) = 1/R− iωC.
The operator for the current flowing through the junction
is given by I = Ic sin(φ−χ/2π), where Ic = 2eEJ/� is the
critical current. The Hamiltonians HTB and HWB are
related by the following transformation:

(πq/e, φ)↔ (φ, −πQ/e) ,

U0↔EJ , Ib↔ Vb/RQ, χ↔ χ/2π.
(36)

Consequently, the series expansions for V/Vc in the TB
model and for I/Ic in the WB model are dual: we
can transpose our results obtained for the quasicharge
dynamics in an underdamped junction onto the dual
case of the phase dynamics in an overdamped junction.
A unified approach is thus provided, as well as new results
such as the series expansion for I/Ic (see footnote

1) and
the quantum Smoluchowski equation.

Superconducting nanowires. – We conclude by
considering quantum phase-slip (QPS) dynamics in super-
conducting nanowires. Based on a duality argument,

1The WB expansion for I/Ic, which is dual to (13), is similar but
not identical to the one obtained in ref. [7] using a different kind of
approximation (not the NNA).
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ref. [16] suggests the following model Hamiltonian to
describe QPS events:

HQPS(φ,Q) =EL (φ/2π)
2−ES cos (πQ/e) , (37)

where ES is an energy associated with the phase-slip
process which changes the phase difference φ over the
nanowire by 2π, and EL =Φ

2
0/2L is an inductive energy of

the wire with a kinetic inductance L. Correspondingly, the
Hamiltonian of a current-biased QPS junction (see inset b)
of fig. 2) can be written as

H =HQPS(φ+φx, Q)+ (�/2e)Ibφx+Hbath, (38)

where a fluctuating phase across the junction φx is
related to the voltage drop VR =R(Q̇− Ib) on the resistor,
φ̇x = (2e/�)VR. It is straightforward to see that the Hamil-
tonian (38) is exactly dual to the Hamiltonian of a voltage-
biased Josephson junction, and can correspondingly be
mapped onto the Hamiltonian (2) with U0 replaced by
ES , while the inductance L of nanowire is encoded in
terms of the bath parameters, L−1 = (2π/RQ)

∑

α λ
2
αωα.

With this device, the frequency ωc =R/L results from the
physical resistance and inductance of the wire, providing
a natural cutoff of the bath. Our previous analysis for an
underdamped Josephson junction, and thus the I-V char-
acteristics, can be directly applied to a superconducting
nanowire (not being restricted by the TB limit). A typi-
cal case of nanowire inductance L∼ 1 nH corresponds to
ωc/2π∼ g−1× 1THz. Assuming ES/h� 10GHz [16] and
T ∼ 1K, as follows from eq. (21), we estimate that the QSE
range for nanowires is relevant for g� 0.1. Note from the
parameters used in fig. 1 that the quantum fluctuations in
QPS junctions should be substantial.

Summary. – To summarize, we have studied the influ-
ence of quantum fluctuations on the I-V characteristics of
an underdamped Josephson junction. We have applied a
unifying approach based on the Keldysh formalism that
enables us to obtain quantitative results for a wide range
of parameters. Using the NNA approximation, we show
the significant role of quantum fluctuations revealed both
in the quasiclassical Smoluchowski regime and in the
low-temperature quantum regime. In the Smoluchowski
regime, compared to the case of thermal fluctuations,
quantum fluctuations mainly lead to a renormalization of
the parameters describing the quasicharge dynamics of the
junction [12]. The NNA becomes exact in the case of inco-
herent phase-slip events at low temperatures. In this limit,
phase tunneling disrupts the Bloch oscillations, leading
to a voltage peak at finite current. The quantum effects
are sensitive to both the dissipation strength and cutoff
frequency, and could be observed in experiments as in
refs. [9,10] with a tunable environment. Besides Josephson

junctions, our results are also relevant for superconduct-
ing nanowires modeled as quantum phase-slip junctions at
low temperature.
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We investigate a quadratic-quartic anharmonic oscillator formed by a potential well between two

potential barriers. We realize this novel potential with a dc SQUID at near-zero current bias and flux bias

near half a flux quantum. Escape out of the central well can occur via tunneling through either of the two

barriers. We find good agreement with a generalized double-path macroscopic quantum tunneling theory.

We also demonstrate an ‘‘optimal line’’ in current and flux bias along which the oscillator, which can be

operated as a phase qubit, is insensitive to decoherence due to low-frequency current fluctuations.

DOI: 10.1103/PhysRevLett.102.097004 PACS numbers: 85.25.Cp, 03.67.Lx, 85.25.Dq

Superconducting devices, based on the nonlinearity of

the Josephson junction (JJ), exhibit a wide variety quantum

phenomena. During the last decade, inspired by macro-

scopic quantum tunneling (MQT) studies [1], quantum

dynamics of the current biased JJ, dc SQUID and the

rf SQUID phase qubit have been extensively studied [2–

6]. In each of these devices, dynamics are analogous to

those of a quantum particle in a quadratic-cubic potential.

The flux qubit [7], realized by three or four JJs in a loop, is

described by a double well potential.

We study a new potential shape called hereafter a ‘‘cam-

elback’’ double barrier potential, shown in Fig. 1(c). This

potential is obtained using the dc SQUID circuit shown in

Fig. 1(a) in a new way. Characteristics including depth and

relative barrier height are controlled by the SQUID current

bias Ib and flux bias�ext. There is an ‘‘optimal line’’ in the

plane (Ib, �ext) along which the barrier heights are equal

and anharmonicity is quartic. We investigate the dynamics

of the quantum system formed from the two lowest energy

levels of the central well.

A dc SQUID circuit has 2 degrees of freedom corre-

sponding to the phase differences �1 and�2 across its two

JJs. Dynamics are analogous to those of a particle of mass

m ¼ 2Cð�0=2�Þ
2 in the 2D potential [8,9]

Uðx; yÞ ¼ U0½� cosx cosy� sxþ bðy� ybÞ
2

� � sinx siny� �sy�: (1)

Here x ¼ ð�1 þ�2Þ=2, y ¼ ð�1 ��2Þ=2, U0 ¼
Ic�0=2�, b ¼ �0=�LIc, � ¼ ðIc2 � Ic1Þ=Ic, � ¼ ðL2 �
L1Þ=L, Ic ¼ Ic1 þ Ic2, Ic1, and Ic2 are the critical currents
of the two junctions, L1 and L2 are the geometric induc-

tances of the arms of the SQUID loop, L ¼ L1 þ L2, C is

the capacitance of each junction, and �0 ¼ h=2e is the

quantum of flux. The external control parameters enter

through yb ¼ ��ext=�0 and s ¼ Ib=Ic. For our sample,

Ic ¼ 11:22 �A, C ¼ 250:3 fF, b ¼ 3:05, � ¼ 0:72, and
� ¼ 0:0072.
Stable, stationary states correspond to minima of

Uðx; yÞ. There can exist one or more minima families

corresponding to distinct fluxoid states ½n�0�. For

each, when s exceeds a flux dependent critical value

sc½n�0�ðybÞ, the related minima disappear. For small b,
the parabolic term in Uðx; yÞ is shallow, and there can be

many fluxoid states. For b � 1=�, as in our case, the para-
bolic term is steep and there is only one stable fluxoid state

except in a small region around �ext=�0 � 0:5 (mod 1)

where there are two states with opposite circulating cur-

rents. Hereafter we focus on this region.

In general, dynamics is described by 2D motion in the

potential. In our device, motion is well approximated as 1D

along the minimum energy path which connects minima

and saddle points [black line in Fig. 1(b)]. A large cur-

vature in the orthogonal direction confines the system to

this path. For example, at the ½0�0� minima in Fig. 1(b),

the oscillation frequency along the path is !px �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð@2U=@x2Þ=m
p

¼ 2�� 15:4 GHz, whereas !py ¼ 2��

104 GHz. We parametrize the path with the phase length z.
UðzÞ in Fig. 1(c) depicts the camelback potential shape we

are investigating. In a typical experiment, the system is

initialized in the central well (½0�0� state). The system can

escape via tunneling through the barriers in either of the

two physically distinct directions to the ½�1�0� state.
In the symmetric case, the potential near the central

minimum will be harmonic with a quartic perturbation.

More generally, the Hamiltonian for small oscillations in

UðzÞ is Ĥ ¼ @!pðP̂
2 þ Ẑ2Þ=2� �@!pẐ

3 � �@!pẐ
4.

Here !p is the zero amplitude oscillation frequency in

the direction of minimum curvature, and Ẑ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m!p=@
q

and P̂ ¼ p=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

@!pm
p

are the reduced position and corre-

sponding momentum operators. Treating the anharmonic
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terms as perturbations, to second order the transition en-

ergy between levels n� 1 and n is h�n�1;n ¼ @!pð1�

n�Þ, where the anharmonicity is � ¼ 15
2
�2 þ 3�.

We have calculated the escape probability for the camel-

back potential with a double escape path in the quantum

limit using the instanton formalism [10]. For a duration�t,

it reads PescðIb;�extÞ ¼ 1� e�ð�Rþ�LÞ�t, where �R;L ¼

AR;L!p

ffiffiffiffiffiffiffiffiffiffi

NR;L

p

exp½�BR;LNR;L�. Here R and L refer to the

right and left barriers. NR;L ¼ �UR;L=@!p are the normal-

ized barrier heights. The general expressions for AR;L, and

BR;L depend on the potential shape. In the symmetric case

where �ðIb;�extÞ ¼ 0, the potential is quadratic quartic,

AR;L ¼ 25=2��1=2, and BR;L ¼ 16=3. Far from this sym-

metric line the potential is quadratic cubic, the escape rate

through one barrier is dominant (e.g., �L ¼ 0), and we

retrieve the standard MQT situation (� ¼ 0): AR ¼

63=2��1=2 and BR ¼ 36=5 [1].

A schematic of our experimental setup is shown in

Fig. 1(a). Our sample was fabricated at Physikalisch-

Technische Bundesanstalt using a Nb=AlOx=Nb trilayer

process with SiO2 dielectric [11]. The two 5 �m2 junc-

tions are embedded in a 10� 10 �m2 square loop.

Figure 2(a) shows the escape lines, I50% versus �ext.

These data were obtained with a standard technique in

which Ib pulses of varying amplitude are applied and a

dc voltage detected across the SQUID when it switches to

its voltage state. With this scheme there is no direct in-

dication of multiply stable flux states. In Fig. 2(b) we use a

novel technique to measure the overlapping escape lines of
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FIG. 2 (color online). Ground-state escape. (a) Escape lines of

three fluxoid states as measured by I50%, the amplitude of a

60 �s Ib pulse that yields Pesc ¼ 50% to the voltage state of the

SQUID. Data (symbols), and standard MQT theory fit (solid

lines). Here �� ¼ 0, �ext ¼ �dc. The calculated optimal line

I
op
b ð�extÞ for the ½0�0� state is indicated by the dash-dotted line.

(b) Overlapping escape lines in the region �ext ’ ��0=2. Data
(symbols), and generalized MQT theory fit (solid lines), as

measured by �50%, where �	% is the total applied flux �ext ¼

�dc þ �� that yields Pesc ¼ 	% from the ½�1�0� to the ½0�0�
state (right cusp) or vice versa (left cusp). �� is the amplitude of

a 100 ns flux pulse. The cusps occur at a nonzero current bias

I
cusp
b ’ ��Ic ¼ �81 nA due to the critical current asymmetry

�. The horizontal separation of the cusps scales precisely with

1=b. The upper (lower) dash-dotted line indicates the calculated

I
op
b ð�extÞ for the ½0�0� ð½�1�0�Þ state. The points S, W, M, and

R indicate the starting, working, quantum measurement, and

readout points for a typical camelback phase qubit experiment.

(c) Width �� ¼ j�80% ��20%j of the ½0�0� ! ½�1�0�
ground-state escape, measurements (pointsþ lines), and gener-

alized MQT theory with (solid line) and without (dash-dotted

line) 9 nA rms low-frequency current noise. The location of the

dip near the maximum �� (see inset) corresponds to the point

where symmetry leads to a reduction in sensitivity to noise.
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FIG. 1 (color online). Experimental setup. (a) Circuit layout.

The two small white squares in the central loop are the SQUID

JJs. Connected on the right are current bias and voltage leads.

These are heavily filtered at various stages of the cryostat,

including the on-chip low-pass filter formed by Loc ¼ 10 nH
and Coc ¼ 200 pF [14]. Fast flux pulses �� inductively couple

via the on-chip loop to the left of the SQUID. Microwave

excitation is applied via an on-chip loop which couples induc-

tively to the current bias leads [15]. An off-chip coil provides a

dc flux bias �dc. The total externally applied flux is �ext ¼
�dc þ ��. The SQUID chip is enclosed in a copper box

thermally anchored to the mixing chamber of a dilution refrig-

erator with a 30 mK base temperature. The cryostat is sur-

rounded by superconducting Pb, � metal, and soft iron

shielding. (b) Full 2D potential for b ¼ 3:05, � ¼ 0:72, � ¼
0, �ext ¼ �0:508�0, Ib ¼ 0, showing the families of minima

associated with the ½0�0� and ½�1�0� fluxoid states. The black

line follows the minimum energy path. Note the difference in the

x and y scales. (c) Potential along the minimum energy path,

parametrized by the path length.
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the ½0�0� and ½�1�0� flux states close to �ext=�0 ¼
�0:5. For jIbj less than about 0:5 �A, these two interior

escape lines represent transitions between the two flux

states, rather than transitions to the voltage state.

We illustrate our escape measurement method by de-

scribing a sequence used to measure Pesc at a point, noted

M, near the left cusp of Fig. 2(b). The sequence starts at

point S, with current bias Ib and �ext ¼ �dc. Here the

system is initialized in the ½0�0� fluxoid state, if necessary
with an adiabatic pulse on the fast flux line. A flux pulse

�� is then applied via the fast line for a fixed nanosecond-

scale duration, bringing the total externally applied flux

�ext ¼ �dc þ �� to pointM close to the critical line. This

has the effect of reducing the heights �UR;L of the two

potential barriers, greatly enhancing Pesc, and the system

may escape to the ½�1�0� fluxoid state.�ext drops back to

�dc (point S), where both fluxoid states are stable. The

fluxoid state is then read out via a slow (�10 �s) Ib pulse
which brings the system to point R outside the critical line

of fluxoid state ½�1�0� but well within that of ½0�0�. If the
system is in state ½�1�0�, the SQUID will switch, pro-

ducing a voltage which is detected [12]. If it is in state

½0�0�, it will not switch. We achieve a one-shot discrimi-

nation between flux states of 100%. The process is com-

pleted by bringing Ib to zero for 100 �s where retrapping
occurs and heat generated by a switching event dissipates.

Multiple repetitions, at a rate of 5 kHz, yield Pesc at point

M. By varying points S, M, R, and the initial fluxoid state,

we are able to measure Pesc for each of the two fluxoid

states at any (Ib, �ext) point in this region. For jIbj>
0:5 �A, the system escapes directly to the voltage state

at point M, rendering point R unnecessary.

As shown by the fit in Fig. 2(b), our generalized MQT

theory is accurately able to reproduce the data. Of the

parameters that go into this theory, b and � are treated as

free parameters in this fit, Ic, �, and the�dc calibration are

determined by the fit in Fig. 2(a), the fast flux pulse

calibration is determined by matching Pescð�extÞ curves

obtained with different values of �dc, and C is determined

by a fit to spectroscopic data.

Along the escape line of a given fluxoid state, for Ib
above or below the value I

cusp
b , the potential [Fig. 1(c)] is

tilted to the right or to the left, and escape occurs prefer-

entially in that direction. At I
cusp
b , the camelback potential

is symmetric around the minimum (� ¼ 0), the two po-

tential barrier heights are equal, and escape occurs with

equal probability in either direction. The cusps in Fig. 2(b)

correspond therefore to a double-path escape.

The width of the escape process contains additional in-

formation about the dependence of the potential on the bias

parameters, and on fluctuations in the bias parameters [13].

In Fig. 2(c), we plot the width as a function of Ib. This plot
peaks around I

cusp
b , except that at this point there is a sharp

dip (see inset). This behavior is explained by double-path

MQT if we include low-frequency current fluctuations. In

this circuit thermal fluctuations are expected in Ib, which
we estimate to be on the order of 10 nA rms by the equi-

partition theorem 1
2
kT¼ 1

2
LocI

2
RMS, where k is Boltzmann’s

constant, T ’ 40 mK is the circuit temperature, and Loc ¼
10 nH is the series isolating inductance. Because of this

noise, PescðIb;�extÞ is convolved with the probability dis-

tribution of Ib, which we assume to be Gaussian with

standard deviation IRMS. As shown in Fig. 2(c), IRMS ¼
9 nA is accurately able to explain both the increase in the

overall width, and the presence of a distinctive dip at I
cusp
b ,

a result of symmetry in escape direction. The presence of

the dip and our ability to reproduce it with MQT theory is a

striking confirmation of double-path escape and low-

frequency Ib fluctuations in our sample.

In Fig. 3 we investigate the operation of a phase qubit

composed of the j0i and j1i levels of the anharmonic

central well of the camelback potential. We use the same

procedure as for the ground-state escape measurements,

except �� is split into two steps. The first takes the system

from point S to W, where the qubit is manipulated by

microwave (MW) pulses applied to the fast current line.

The system is then taken to pointM for 5 ns, which projects

the qubit state onto the flux state of the SQUID. This is

possible because Pesc depends exponentially on the exci-

tation level of the qubit. The flux coordinate of M is tuned

such that escape will occur with high probability if the

qubit is excited, and low probability if it is not. This

measurement step thus projects the quantum states j0i
and j1i of the qubit onto the classical fluxoid states

ν 
(G

H
z
)

14

15

16

−400 −200 0 200 400 600
10

0

10
1

10
2

I
b
 (nA)

∆
ν 0

1
 (

M
H

z
)

40 80 120
0

0.3

0.6

MW duration (ns)

P
e
s
c

(a)

(b)

FIG. 3. Camelback phase qubit dynamics. (a) Spectroscopy

PescðIb; �Þ at �ext ¼ �0:503�0 in the ½0�0� fluxoid state.

Dark and bright gray scale correspond to high and small Pesc.

Pesc is enhanced when � matches �01. Inset: Rabi oscillations on

the optimal line. (b) Width of the �01 resonance on a semilog

scale. The dashed line is the predicted contribution due to 9 nA

rms low-frequency current noise. The dotted line is for 40��0

rms low-frequency flux noise. The sum of these two contribu-

tions, the solid line, accurately reproduces the data (symbols).
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½0�0� and ½�1�0� of the SQUID, which are stable at point
S. Readout of the fluxoid state at point R reveals the

projected qubit state. Repetition yields Pesc, giving the

probability of finding the qubit in its excited state, with a

contrast of about 50%.

Pesc was measured as a function of Ib and the frequency
� of a single 800 ns duration MW pulse applied to the

qubit. Because the duration is much longer that the relaxa-

tion time T1 ’ 100 ns, the qubit reaches a steady state. Pesc

is enhanced when �matches the qubit transition frequency

�01 [Fig. 3(a)]. The maximum in �01 occurs at I
op
b ð�extÞ,

which corresponds to the camelback potential symmetric

point. Apparent in this spectroscopic image are avoided

level crossings with what are likely microscopic two-level

fluctuators, as first observed in Ref. [3]. We observe on

average 20 crossings per GHz. In Fig. 3(b), the spectro-

scopic width ��01 of the �01 transition, obtained from

Fig. 3(a), is plotted as a function of Ib. A sharp minimum

is observed at Ib ¼ 108 nA, corresponding to the flat

maximum in �01.

We can accurately model ��01ðIbÞ with a combina-

tion of low-frequency current and flux fluctuations.

Because �01 depends on the bias parameters, fluctuations

cause �01 to vary from repetition to repetition, smearing

out the observed resonance. Assuming a Gaussian fluc-

tuation distribution, the predicted variance in �01 is

ð��I=2Þ
2 ¼ ð@Ib�Þ

2I2RMS þ ð@2Ib�Þ
2I4RMS=2, for current

fluctuations alone, and ð���=2Þ
2 ¼ ð@�ext

�Þ2�2
RMS for

flux fluctuations alone. Here @x� � @�01=@x. ��I has

been expanded to second order in IRMS since @Ib� is zero

at the optimal line. In Fig. 3(b), the predicted��I is plotted

as a dashed line for IRMS ¼ 9 nA, precisely the same value

used in Fig. 2(c). The dotted line plots ��� for �RMS ¼
40��0. The solid line is the combined prediction �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��2
I þ ��2

�

q

. The dashed line is obscured behind the

solid line except in a small region around the optimal

current. This plot vividly demonstrates the idea of the

optimal line: the effects of current bias fluctuations, which

accurately account for the spectral width away from the

optimal line, are rendered negligible on the optimal line.

The residual width, about 15 MHz, can be explained by a

flux noise of 40��0 rms.

Since the decoherence time T2 scales inversely with

��01, I
op
b ð�extÞ is optimal for qubit operations. We mea-

sured Rabi oscillations on this line by varying the duration

of a resonant MWexcitation pulse, as shown in the inset to

Fig. 3(a). We find a typical Rabi decay time of TRabi ¼
67 ns for this sample. The anharmonicity is large enough

and the applied power small enough that excitation beyond

the first excited state is negligible, as we have verified by

the linearity of Rabi frequency versus power. The system is

confined to its lowest two levels and can therefore be

considered a qubit.

In conclusion, we have studied the quantum dynamics of

a novel quadratic-quartic camelback potential. Ground-

state escape exhibits critical line cusps and a dip in the

escape width versus bias current. We explain these two

effects with a generalized double-path MQTescape theory.

Because of symmetry, quantum dynamics are insensitive in

first order to current fluctuations along an optimal line

I
op
b ð�extÞ. Along this line, the dc SQUID can be used as a

phase qubit whose main decoherence source is residual

flux noise. Future optimization and exploitation of the

unique properties of this system will aid in the understand-

ing of decoherence mechanisms in quantum circuits and

has the potential to yield a competitive phase qubit.
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qubits coupled circuit based on a dc SQUID in parallel with an asymmetric Cooper

pair transistor (ACPT). The ACPT behaves as a charge qubit. Its asymmetry pro-

duces a strong tunable coupling with the dc SQUID which is used to realize entangled

states between the two qubits and new read-out of the charge qubit based on adiabatic

quantum transfer. We have measured the current–phase relations of different rhombi

chains in the presence or absence of quantum fluctuations which confirm theoretical

predictions.
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1 Introduction

This review paper summarizes the results of a series of experiments on Josephson

junction-based superconducting nanocircuits performed in Grenoble during the past

six years. Our first experiments have mainly focused on the dynamics of a current-

biased dc SQUID, in the limit where it behaves as a quantum mechanical anharmonic

oscillator. We will discuss the quantum measurement procedure we have developed

[2,3,7], and present results for the dynamics of the SQUID in the presence of coherent

microwave (µw) field [6]. The number of quantum states involved in the dynamics

depends on the µw amplitude and we will discuss the transition from quantum two-

level behavior (phase qubit) at low amplitudes to classical multi-level behavior at

larger amplitude [9]. We will also present results for a more complicated circuit in

which a charge qubit is coupled to a phase qubit [15]. The charge qubit is realized

by an asymmetric Cooper pair transistor (ACTP) which ensures a new optimal point

where the coupling is very strong. The phase qubit is obtained by a SQUID in its two-

level limit. We demonstrate tunability of the coupling over a large frequency range.

Whenever appropriate, we will comment on various sources of decoherence [8,20].

Our more recent work [31] deals with Josephson junction (JJ) chains that are made

out of rhombi with each rhombus containing four Josephson junctions. The rhombi

are threaded by a magnetic flux. Arrays possessing this distinct topology have been

discussed in the context of fault-tolerant quantum computation as they can produce

quantum states that are relatively insensitive to local noise. Here we will focus on the

ground-state properties of rhombi chains, presenting measurements of the current–

phase relation at various flux frustrations. Our experimental findings concerning the

periodicity and the amplitude of the current–phase relation reveal various features that

are characteristic for the complex ground state of rhombi chains, in agreement with

theoretical predictions.

This paper is organized as follows. In Sect. 2, we will discuss the results of the

dc SQUID operating as a multilevel system and as a phase qubit. In Sect. 3, we will

present the asymmetric Cooper pair transistor and will concentrate on the properties

of a new optimal point. In Sect. 4, we will discuss the coupling between the ACPT and

the dc SQUID. In Sect. 5, recent results on rhombi chains will be described. Section 6

will describe briefly the set-up used for the quantum experiments.

2 DC SQUID as a driven quantum anharmonic oscillator

The current-biased dc SQUID is a basic quantum circuit, the dynamics of which can be

described in terms of the quantum anharmonic oscillator driven by an external mono-

chromatic force. In the past years we have studied some properties of its quantum

dynamics which reveals very rich and complex physics. These efforts were motivated

by the need to be able to control and manipulate the quantum states either in its two-

level limit as a phase qubit or in its multilevel limit. In the same period, a variety

of phase qubits were realized using a single current-biased Josephson junction [40],

rf-SQUID [34], large inductance rf-SQUID [27] and dc SQUID [13]. Below we will

discuss different quantum properties of a dc SQUID: the two-dimensional effect of
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Fig. 1 a SEM image of an aluminum dc SQUID with the µw control line at the left. b Electrical schematic

of the dc SQUID. c The quantum states under study are oscillator states within the potential well

MQT escape [2], the quantum measurement procedure and its performance [3,7] and

also the coherent oscillations in a multilevel system [6]. We will consider the decoher-

ence processes in this quantum circuit [8] and mention recent results obtained at zero

bias current where the half-flux-quantum biased SQUID behaves as a phase qubit [20].

2.1 Device and model

The dc SQUID (Fig. 1a) consists of two nominally identical Josephson junctions (JJ),

each with a critical current I0 and a capacitance C0. The junctions are embedded in

a superconducting loop of total inductance Ls which is unequally distributed among

the two arms. The inductance asymmetry is characterized by the parameter η = (L1 −
L2)/Ls , where L1 and L2 are the inductance of the first and second arm, respectively.

In our circuit, the Josephson energy E J = (�0/2π)I0 is more than three orders of

magnitude larger than the Cooper pair Coulomb energy Ec = (2e)2/2C0 (�0 = h/2e

is the superconducting flux quantum). In this limit, the two superconducting phase

differences ϕ1 and ϕ2 across the two Josephson junctions are the natural variables to

describe the dynamics of the system.

The corresponding two-dimensional phase dynamics can be treated as that of a

fictitious particle of mass m = 2C0(�0/2π)2 moving in a two-dimensional potential

[24,36]

U (x, y) = 2E J

[
−

(
Ib

2I0

)
(x + ηy) − cos x cos y + b

(
y − π

�b

�0

)2
]

, (1)
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where x = 1
2
(ϕ1 +ϕ2) and y = 1

2
(ϕ1 −ϕ2). The shape of the potential, which contains

valleys and mountains, is experimentally controlled through the bias current Ib and

the bias flux �b threading the superconducting loop. Here, the inductance coupling

parameter b = �0/(2π Ls I0) is of order unity. With the values of Ib and �b used in

our experiments, the potential surface displays only one type of local minimum. They

are separated from each other by saddle points, where the particle can escape [24].

Along the escape direction, which makes an angle θ with the x-axis, the potential is

cubic and is completely characterized by the frequency νp at the bottom of the well and

barrier height �U (Fig. 1c). These two quantities depend on the magnetic flux and van-

ish at the SQUID’s critical current Ic(�b). When small oscillations are considered,

we assume complete separation of the variables along the escape direction and the

transverse one by neglecting the coupling terms between these two directions. In this

approximation, the phase dynamics of the SQUID along the escape direction is similar

to that of a current-biased single Josephson junction. The parameters �U and νp are

renormalized, thereby taking into account the two-dimensional nature of the potential.

For bias currents Ib < Ic, the particle is trapped in a local minimum and its quantum

dynamics is described by the Hamiltonian

Ĥ0 = 1

2
hνp

[
P̂2 + X̂2

]
− σhνp X̂3. (2)

Here, X̂ = (2π
√

mνp/h)φ̂ represents the reduced phase operator, associated with the

phase φ̂ = cos θ x̂+sin θ ŷ along the escape direction. P̂ is the reduced momentum con-

jugate to X̂ . The relative magnitude σ of the cubic term compared to the harmonic term

is related to the barrier height �U = hνp/54σ 2. For Ib below Ic, several low-lying

quantum states are found near the local minimum. These states, describing the oscilla-

tory motion within the anharmonic potential, are denoted |n〉 for the nth level, with n =
0, 1, 2, . . . The corresponding energies En were calculated in Refs. [22,23]. The tran-

sition frequency associated with the transition n → k is denoted νnk in the following.

A microwave flux pulse characterized by its frequency ν and amplitude �µw can be

used to manipulate the quantum state of the system. It induces a time-dependent per-

turbation term −h̄
1

√
2 cos(2πνt)X̂ in the Hamiltonian, which couples neighboring

levels. In this expression, 
1 is proportional to �µw and corresponds to the frequency

of the Rabi oscillation between |0〉 and |1〉 for an excitation tuned to ν01.

Since energy levels are trapped in a finite-height potential barrier, the states are

metastable. Escape out of the potential well is possible both by tunneling and by

thermal activation. For temperatures well below T ∗ = hνp/(2πkB), the so-called

cross-over temperature, the thermal process can be neglected [2,25]. On the timescale

of the experiment, only the three highest energy levels, closest to the top of the barrier,

undergo a significant tunneling effect. The lower energy levels are stable.

2.2 MQT in a dc SQUID

When Ib is slightly lower than the critical current of the SQUID, we have measured

the escape probability of the SQUID from the superconducting state to the resistive
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Fig. 2 Escape probability

versus bias current at different

temperatures for a SQUID at

zero flux bias

Fig. 3 Measured critical current

and width of the probability

distribution versus flux at 40 mK

(dots). Solid lines correspond to

the fit using the 2D MQT

prediction, dashed line to the

usual 1D MQT model

state as function of the current bias (Fig. 2), the magnetic flux and the temperature.

This escape to the resistive state is described by the escape of the fictitious particle

in the two-dimensional potential discussed above. At high temperature (above 90 mK),

the thermal activated regime is observed. At low temperature, the escape current and

the width of the probability distribution are temperature independent but they do vary

with flux (Fig. 3). As seen from this figure, the experimental results do not fit the usual

one-dimensional (1D) Macroscopic Quantum Tunneling (MQT) law but are perfectly

accounted by using the two-dimensional (2D) model of Sect. 2.1.

2.3 Quantum measurement procedure

Our procedure to perform quantum experiments consists of the repetition of an elemen-

tary sequence, which is decomposed into four successive steps. First, the bias current

Ib through the SQUID is switched on at a fixed magnetic flux �b. The working point

(Ib,�b) defines the geometry of the potential well. The Ib rise time is short enough to

induce an adiabatic modification of the potential, leaving the circuit in its initial state

|0〉. Then a microwave flux pulse is applied to manipulate the quantum state of the

system. At the end of the µw pulse, a dc flux pulse of amplitude �m is applied which

brings the system to the measuring point (Ib,�b +�m). This flux pulse adiabatically
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Fig. 4 a Schematic of the electrical circuit. In our experiments, Ib is first switched on through the SQUID

at fixed magnetic flux �b , defining the shape of the potential well. A high frequency flux signal is then

applied to the superconducting loop with a microwave antenna. b A digital sampling oscilloscope record

of the signal is presented. It is composed of a microwave pulse which induces transitions between adjacent

energy levels, followed by a measuring dc pulse which adiabatically reduces the barrier height and induces

a selective tunneling escape of excited states. This escape is detected by a voltage Vs across the circuit,

amplified at room temperature. At the end of the sequence, Ib is switched off and the circuit is reset to the

superconducting ground state

reduces the barrier height and allows tunneling escape of the localized states to a finite

voltage state during a time �t of the order of a few nanoseconds (Fig. 4). With precise

adjustment of �m it is theoretically possible to induce a selective escape of excited

states. Because the SQUID is hysteretic, the zero and finite voltage states are stable

and the result of the measurement can be read out by monitoring the voltage Vs across

the dc SQUID. Escape out of the well corresponds to the detection of a voltage which

is twice the superconducting gap of the circuit material. The current bias Ib must

be switched off to reset the circuit in the ground state. This elementary sequence is

repeated to extract with sufficient accuracy the occupancies of the excited states.

We have measured the escape probability of the ground state which is governed by

standard MQT theory, with a small correction due to residual noise in the bias current

(Fig. 5). In the two-level limit, where the SQUID constitutes a phase qubit, a contrast

of 0.54 has been measured. It indicates a significant loss in contrast compared to the

MQT prediction. This loss is attributed to spurious depolarization (loss of excited state

occupancy) during the rise of the adiabatic flux measurement pulse. We have developed

a simple phenomenological model [7] which introduces a relaxation time during the

rise of the measurement pulse. This model explains both the measured contrast in the

two level limit (Fig. 5) as well as the escape probability in the multilevel limit (Fig. 6).
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Fig. 5 Probability of escape of

the ground state |0〉 fitted by

MQT theory assuming the

presence of low frequency

current noise (continuous line).

Detection of level |1〉 partially

populated with a

aµw = 16.4 MHz amplitude

microwave pulse (square

symbol). The solid line is a fit

assuming a level |1〉 occupation

probability of p1 =18%. The

experimental detection

probability of the ground state

(circle), and the calculated

detection probability of |1〉
(dashed line) are also plotted

Fig. 6 Detection of multilevel excited states populated by a Rabi pulse with duration tµw =3.8 ns. The solid

line is a theoretical adjustment of experimental data (square). For comparison, the experimental detection

probability of |0〉 is plotted (circle). The calculated detection efficiencies of pure states |0〉 to |2〉 are also

plotted as dashed lines. Inset: The dashed bars are the experimental populations extracted from the fit. The

diamonds correspond to the calculated population distribution assuming relaxation during the flux ramping

2.4 Coherent oscillations in a multilevel quantum system

The transient nonlinear dynamics of the SQUID is probed using a fast µw flux pulse

followed by a measuring dc pulse. The µw excitation is tuned to the resonance fre-

quency obtained from low power spectroscopy and the µw pulse duration is increased

from 2 to 80 ns. The measurement delay, as well as the other measurement pulse set-

tings, remain unchanged. During the transient regime, Rabi-like oscillations (RLO)

are observed, as shown in Fig. 7a. From a fit of the first oscillations to a damped

sine function, the RLO frequency νR and the damping characteristic time T2,Rabi are

extracted. The dependence of νR on the µw amplitude is plotted in Fig. 8.

The interpretation of the experimental data relies on a full quantum treatment taking

into account multilevel processes. Since moderate decoherence has a minor impact

on the Rabi-like frequency, we have developed a purely Hamiltonian theory [5,6]
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Fig. 7 a Rabi-like oscillation observed in the transient regime for high power µw driving (Vµw = 631 mV).

The oscillation frequency and the damping time T2,Rabi are extracted from a fit to an exponentially damped

sine function. b Energy relaxation as a function of the measurement delay Tm , fitted to an exponential law

with the damping time T1. c Width of the resonance peak versus 
1. The 115 MHz finite width will be

strongly reduced by working at zero current bias (see next section)

Fig. 8 Rabi like oscillation

frequency versus microwave

amplitude 
1 (experimental

data: points). Dashed line shows

the linear dependence expected

for a two-level system.

Continuous line is the quantum

prediction taking into account

the multilevel process, dotted

line the classical model [17].

The vertical dotted line indicates

the anharmonicity strength:

ν01 − ν12

(see also Ref. [35]). The particle is assumed to be initially in the ground state. At

t = 0, the µw flux is instantaneously switched on, and the particle’s quantum state

|�(t)〉 evolves into a superposition of the eigenstates |n〉 according to the Schrödinger

equation with the Hamiltonian:
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Ĥ(t) = Ĥ0 +
√

2h̄
1 cos(2πνt)X̂ . (3)

The expression Eq. 3 contains all the characteristic frequencies of the problem: (i)

the bottom well frequency νp, (ii) the detuning δ = ν01 − ν12 linked to the potential

anharmonicity and (iii) 
1, the Rabi frequency in the two-level limit for a microwave

excitation frequency ν = ν01.

To solve this time-dependent problem, we introduce a new picture in which the

evolution of the particle’s state |�RO(t)〉 is driven by the Hamiltonian ĤRO(t). This

new picture is related to the Schrödinger one by:

〈n|�RO(t)〉 = ei2πnνt 〈n|�(t)〉. (4)

In the two-level limit, this transformation corresponds to the introduction of the

well-known rotating frame at frequency ν. To proceed, we apply the rotating wave

approximation (RWA) to simplify the Hamiltonian ĤRO(t). Considering a poten-

tial well with N trapped energy levels, the resulting Hamiltonian ĤRO,RW A can be

expressed in the {|n〉} basis as follows:

ĤRO,RW A = h

⎛
⎜⎜⎜⎜⎝

0 ν1
2

0 0

ν1
2

�1(ν)
. . . 0

0
. . .

. . .
√

N−1 ν1
2

0 0
√

N−1 ν1
2
�N−1(ν)

⎞
⎟⎟⎟⎟⎠

. (5)

Here, �n(ν) = ν0n − nν and the ground state energy E0 has been set equal to 0.

Starting from the initial state |0〉 which is the ground state in the absence of µw, the

time evolution of this quantum state can be deduced using the eigenstates |en RO〉 of

ĤRO,RW A. This model predicts coherent oscillations of the populations of the levels.

Moreover the frequency versus µw amplitude dependence predicted by this quantum

theory fits very well the experimental data (Fig. 8). Note that our experimental data

cover the cross-over from two-level to multilevel dynamics. Indeed, when the µw

amplitude is small compared to the anharmonicity (
1 ≪ δ), the dynamics only con-

cerns the first two levels and one retrieves the familiar result νR = 
1/2π . This is

nearly the case for the first measured point, which corresponds to 
1/2π = 65 MHz

and presents an occupation of level |2〉 below 10%. When 
1/2π ∼ δ, the cou-

pling between neighboring levels starts to distort the energy spectrum of the lowest

energy levels of ĤRO,RW A. In this regime, the νR dependence on 
1 starts to deviate

from a linear behavior, indicating the onset of two-photon processes [13,35]. When


1/2π > δ, an increasing number of levels is involved. As an example, the exper-

imental oscillations presented in Fig. 7a involve four states. At larger µw amplitude,

a large number of levels is involved. The multilevel dynamics is characterized by a

clear saturation of the νR(t) dependence, compared to the low power linear behavior

(Ref. [6]).
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2.5 Decoherence processes

We describe here the experiments performed in the two-level limit involving the low-

est energy states |0〉 and |1〉. In Fig. 7b we show the measured characteristic time for

energy relaxation (T1 ≈ 100 ns). We performed low power microwave spectroscopy

for different bias current and flux. The dephasing times are extracted from the widths

of the measured resonant peaks at low µw amplitude (Fig. 7c). The main source of

decoherence of the current-biased dc SQUID are the thermal current fluctuations of the

environment. Because of the large magnitude of the current noise
〈
δ I 2

noise

〉1/2 = 6 nA,

the dephasing time during the Rabi oscillations was short (T2,Rabi = 25 ns) and the

spectroscopy width large (about 115 MHz). Recently this limitation was overcome by

inducing the quantum dynamics at zero current bias. In this particular working point

the SQUID is insensitive to current noise in first order. Some preliminary results are

presented in the next section.

2.6 Two-level dynamics

To be able to perform quantum experiments at zero current bias where escape to volt-

age state is impossible, a new experimental procedure was implemented. In a small

region close to half a flux quantum, two stable fluxoid states [−1�0] and [0�0] coexist.

Fig. 9 a Schematic circuit to study a Nb dc SQUID at the particular working point: zero-current bias and

half a flux quantum bias. b New potential shape called “camel back potential”. The phase qubit with states

|0〉 and |1〉 is realized in the shallow central potential related to the flux quanta [0�0]. c Typical spectroscopy

of the phase qubit along the optimal line
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Fig. 10 Probablity of escape versus �b and µw frequency along the optimal line of the dc SQUID phase

qubit. Dark and bright regions correspond to small and high Pesc . The density of fluctuators inside the

circuit observed in this figure is about 50 MHz−1. Inset: anticrossing of levels due coupling of the phase

qubit and microscopic fluctuators

Along the escape direction, the potential presents two different wells related to the two

different fluxoid state as indicated in Fig. 9b. In the central well related to the [0�0]
fluxoid states, the anharmonicity is quartic and the two low-lying oscillator states are

used to realize a phase qubit. Our quantum measurement procedure is based on escape

to the [−1�0] fluxoid state. The sample used for this study was fabricated using a

Nb/AlOx /Nb trilayer process with SiO2 insulating layer [11]. Along the zero-current

bias line, the dephasing time is improved, as was demonstrated by spectroscopy mea-

surements (Fig. 10), yielding a linewidth of about 15 MHz. Rabi and Ramsey oscilla-

tions were observed giving respectively T2,Rabi = 67 ns and T2,Ramsey = 18 ns. This

finite dephasing time is explained by a rms 40µ�0 low frequency flux noise and by

coupling with microscopic two-level fluctuators (as observed in Fig. 10 and also in

Ref. [34]). The relaxation time T1 is on the order of 100 ns.

3 Asymmetric Cooper pair transistor

A symmetric Cooper pair transistor in parallel with a classical switching Josephson

junction [10,38] was extensively studied as a two-level system in the last years. Here

we consider an asymmetric Cooper pair transistor (ACPT). This device (Fig. 11a),

which is analyzed as a charge qubit [29], presents a new optimal point compared

to the quantronium [10,38]. Its asymmetry also produces a strong coupling with a

dc SQUID which will be used to realize entangled state and new read out based on

adiabatic quantum transfer.
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Fig. 11 a SEM image of the

coupled circuit. Central part: the

SQUID; on the left: the

transistor with gate-voltage.

b SEM image of the ACPT

circuit with the gate. The

asymmetry is obtained using a

different surface size of the two

Josephson junctions. c Electric

schematic of the ACPT which

can be controlled by the gate

voltage or the phase difference

δ(Ib, �b)

3.1 The device

The ACPT consists of a superconducting island connected by two Josephson junctions

of different area (0.02 and 0.05 µm2) to the superconducting electrodes (see Fig. 11b).

The ACPT is connected in parallel to a dc SQUID. The dynamics related to the cou-

pling between the transistor and the SQUID will be discussed in the next section. In

the present section we will consider the ACPT alone. We will neglect the coupling

between the ACPT and the SQUID which is valid when the two quantum circuits are

far from the resonance condition.

3.2 Theory

In the charge representation, the Hamiltonian of the ACPT is given as a function of the

control parameters ng ≡ CgVg/2e (the gate-induced charge) and δ (the phase drop

over the transistor) by:

ĤAC PT = ET
C (n̂ − ng)

2 − ρ j (δ)

2

×
[∑

n

e−i(δ/2+χ)|n〉〈n + 1| +
∑

n

ei(δ/2+χ)|n + 1〉〈n|
]

(6)
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Fig. 12 The measured ACPT

energy (points) versus δ at

ng = 0.5 fitted by the ACPT

Hamiltonian using four different

charge states (line). In the inset,

probability of escape versus µw

frequency at ng, δ)=(1/2,0.47π )

fitted by a model taking into

account flux and charge noise

with Gaussian distribution (line).

The dashed arrows indicate the

two sattelite peaks produced by

the 115 MHz resonant

environment mode

where ET
C = (2e)2/2CT is the transistor charging energy, ET

J ≡ ET
J2 + ET

J1 the

total Josephson energy and µ ≡ (ET
J2 − ET

J1)/ET
J the Josephson energy asymmetry.

Furthermore, tan χ = µ tan(δ/2) and ρ j (δ)
2 = ET

J

2
(cos2(δ/2) + µ2 sin2(δ/2)).

At ng = 0.5, the degeneracy of the charge states |02e〉 and |12e〉 is lifted by the

Josephson coupling. Then, the ACPT can be described as a two-level system (a charge

qubit) characterized by the states |−〉 and |+〉 with an energy level splitting close to

ρ j (δ). In this two-level description, the Hamiltonian can be written in terms of the

Pauli matrices,

ĤAC PT = hνT

2
σ̂ T

z , (7)

where the energy hνT is defined as the energy difference between the states |−〉 and

|+〉.

3.3 Energy spectrum

The excited level of the ACPT is detected using an adiabatic quantum transfer between

the ACPT and the SQUID. This new read-out will be discussed in Sect. 4.4. The spec-

troscopy measurements are performed by a flux or a gate-voltage microwave pulse just

followed by the quantum measurement nanosecond flux pulse. The energy spectrum

versus the phase difference across the transistor is plotted in Fig. 12 at ng = 1/2. The

qubit resonant frequency νT versus δ can be fitted within 1% error by considering that

the |+〉 and |−〉 states are superpositions of the four charge states (|−12e〉, |02e〉, |12e〉
and |22e〉). The ACPT has two optimal working points for qubit manipulations: one at

(ng, δ)=(1/2,0) [10,38] and an additional one at (ng, δ)=(1/2,π ) due to the transistor

asymmetry.
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Fig. 13 a Escape probability

versus µw pulse duration for

−3 dB m room temperature µw

power. b Escape probability

versus delay time between µw

and measurement pulses, fitted

by an exponential decay

(continuous line) giving

T1 = 810 ns

3.4 Decoherence times

In the inset of Fig. 12, we show a typical resonance peak. The width of the resonance

peak far from the optimal points is around 20 MHz but on the both sides small res-

onant peaks emerge. They are separated by 115 MHz from the central peak. Such

spectroscopy features can be explained by thermal current noise related to a resonant

environment mode observed at 115 MHz [8,14]. At the new optimal points δ = π , the

two satellite peaks disappear and the width of the central peak remains about 20 MHz.

The finite width at this second optimal point can be explained by second order effects

associated with charge noise. Indeed the second order charge noise sensitivity in this

ACPT is large (∂2νT /∂2ng) = 329 GHz/h. This sensitivity can be strongly reduced

by increasing the ET
J /ET

C ratio.

Figure 13a presents Rabi oscillations in the ACPT at the new optimal point (ng, δ)=

(1/2,π ). The Rabi frequency follows a linear dependance on the µw amplitude as

expected for a two-level quantum system. The observed relaxation time is rather long:

about 800 ns (Fig. 13b).
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Fig. 14 Electrical schematic of

the coupled circuit. The working

point is controlled by the dc

gate-voltage Vg , the bias current

Ib and the fluxes �T and �S .

The current Icoil and Ih f

produce a flux through the loops

containing the SQUID and

transistor via the mutual

inductances MS , MT and M
h f
S

,

M
h f
T

. The high-frequency (hf)

line is also used to produce µw

and nanosecond flux pulses for

the escape measurement of the

SQUID

4 Coupled circuit

In this section we will study a quantum circuit coupling the charge qubit (ACPT)

and the phase qubit (current-biased dc SQUID) whose schematic electrical circuit is

shown in Fig. 14. This experimental work was motivated by a previous theoretical

study considering a two-level system coupled to a quantum resonator [3,4,18]. This

coupled circuit can be also presented as an alternative device of a qubit coupled to a

cavity resonator [39]. In our device, the dc SQUID plays the role of an anharmonic

microcavity which is highly tunable.

These new results present, to the best of our knowledge for the first time, the cou-

pling between two different kinds of qubits and clearly show the entangled states

between these two circuits. Moreover the coupling strength is tunable over a large

scale, between 60 and 1200 MHz which can be compared to results obtained between

two flux qubits [19,30]. In the following the two charge qubit states are denoted |+〉
and |−〉 and the two phase qubit states |0〉 and |1〉. The working points are controlled

by the gate-voltage, the bias current and the dc flux. The qubits are excited either by

µw gate-voltage or flux.

4.1 Hamiltonian of the coupled circuit

Here we will focus on the low-energy properties of the coupled circuit in the case when

both qubits are close to resonance. It then suffices to consider the lowest two excited

levels of the SQUID and the ACPT. When the coupling effect can be neglected, they are

described by the respective two-level Hamiltonians HS = hνSσ z
S and HT = hνT σ z

T

where σ denotes a Pauli matrix. When determining the theoretical coupling Hamilto-

nian, we consider that the ACPT states |−〉 and |+〉 are superpositions of two charge

states only; moreover we neglect anharmonicity effects of the SQUID potential on the

frequency νS . We then obtain the following Jaynes–Cummings type Hamiltonian for

the coupling at ng = 1/2:
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Hcoupling = 1

2
hg

(
σ+

S σ−
T + σ−

S σ+
T

)
, (8)

where the coupling strength g =
(
Ec,c/2 − Ec, j cos(δ/2 − χ)

)
/h and σ

+/−
S/T creates

or annihilates an excitation in the SQUID or the ACPT. The strength g is due to a

simultaneous capacitive coupling Ec,c = (1 − λ)

√
E S

C/hνphνp and a δ-dependent

Josephson coupling Ec, j = (1 − µ)

√
E S

C/hνp ET
j /2. Here E S

C = e2/C S is the charg-

ing energy of the SQUID and λ = (CT
1 − CT

2 )/(CT
1 + CT

2 ) the transistor capacitance

asymmetry.

4.2 Coupling strength

When the two qubits are in resonance, νT = νS , the states |0,+〉 and |1,−〉 are degen-

erate in the absence of coupling. In Fig. 15, the energy spectrum of the two qubits

is plotted versus bias flux. Far from the resonance condition the value can be well

estimated assuming two uncoupled qubits. In the vicinity of the resonance condition,

an anti-level crossing occurs modifying the resonance frequency of each qubit. Anti-

level crossing is clearly observed with a splitting which depends on the working points.

When the resonance condition is satisfied, the quantum states are maximally entangled

Fig. 15 Spectroscopy of the coupled circuit versus flux for three different bias currents at ng = 1/2 (filled

points) and ng = 1 (empty points). The dashed lines correspond to νT and νS obtained by the uncoupled

theory. The continuous line is the fit taking into account a coupling strength
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Fig. 16 a Pesc versus ng and

µw frequency at the working

point Ib = 1647 nA,

�S = 0.03 �0 and δ = 0.26π .

b Pesc versus ng and µw

frequency at the working point

Ib = 1647 nA, �S = 0.02 �0

and δ = 0.28π . Dark color

corresponds to small. Dashed

and continuous lines correspond

to uncoupled and coupled cases,

respectively

(|0,+〉±|1,−〉)/
√

2. We also observed anti-crossing phenomena when we measured

the escape probability versus ng . At ng = 1/2 we observe either the resonant regime

(Fig. 16a) or the dispersive regime (Fig. 16b).

4.3 Tunable coupling

The qubit-qubit coupling strength is measured at ng = 1/2 for working points where

the resonance condition νT = νS is satisfied. The frequency splitting is plotted ver-

sus the resonant frequency in Fig. 17. The coupling is minimal at νT = 20.3 GHz

and strongly increases with decreasing resonant frequency up to a maximum value of

1.2 GHz. Note that when the resonance frequency changes from 20.3 down to 8.8 GHz

the absolute value of the phase over the ACPT changes from δ = 0 to |δ| = π .

We find therefore nearly zero coupling at δ = 0 and a very strong coupling of 1.2 GHz

at |δ| = π .

By taking the asymmetry parameters deduced from the ACPT energy spectrum

fit (µ = λ = 41.9%) the coupling strength can be very well fitted without any free
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Fig. 17 Experimental coupling

strength versus frequency at the

resonance condition between the

two qubits for ng = 1/2

(points). The two dashed lines

correspond to the theoretical

coupling strength due to

capacitive and Josephson

coupling; the continuous line is

the total coupling without free

parameters

parameters as can be seen in Fig. 17. The capacitance and the Josephson coupling are

also plotted showing a very weak δ-dependence on the capacitance coupling and a

strong one on the Josephson coupling.

We stress that the coupling strength at ng = 1/2 depends only on the δ parameter.

If we replace one of the transistor junctions by a pure capacitance (ET
J,2 = 0) we

obtain Ec, j = 0 and we retrieve the capacitive coupling calculated for a Cooper pair

box coupled to a quantum resonator [4] or a SQUID [18]. For a symmetric transistor

(λ = µ = 0) the charge and the Josephson coupling compensate each other, giving

zero coupling for any value of the parameter δ. It is the asymmetry of the transistor

which enables nonzero coupling at the optimum point of the charge qubit. In particular,

for the case that λ = µ—which is realized for a transistor containing two junctions

having the same plasma frequency—the total coupling vanishes at δ = 0 but becomes

non zero at the second optimum point at δ = π . This enables to manipulate the ACPT

at zero coupling, and exchange information with the SQUID at nonzero coupling, both

at minimum decoherence.

4.4 Adiabatic quantum transfer

The coupling at the resonance between the charge qubit and the SQUID can explain

the quantum measurement process on the ACPT. Indeed the energy levels of the

ACPT can be determined by escape probability measurements on the SQUID via a

new read-out based on adiabatic quantum transfer. We apply a µw signal of 1 µs on

the gate line at fixed frequency when the ACPT and the SQUID are off resonance.

If the applied µw frequency matches the ACPT frequency the |+〉 level is populated.

For the measurement a nanosecond flux pulse with a rise time of 2 ns drives the

two systems adiabatically across the resonance where the coupling is about 1 GHz.

The initial state |+, 0〉 is thereby transferred into the state |−, 1〉 [3]. Afterwards an
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Fig. 18 Quantum measurements at (Ib = 1957 nA, �b = −0.064�0). a Escape probability versus fre-

quency at ng=1/2 shows resonance peak of the transistor and no peak for the SQUID. b Escape probability

versus frequency at ng ≈ 1 shows resonance peak of the SQUID. These measurements were obtained with

a large negative flux nanosecond pulse �pulse = −0.265�0 indicated by the long arrow in (c). c Energy

level evolution during the flux pulse at ng=1/2. The two vertical dotted lines indicate the flux value at the

working point �PT and at the escape point �M . The inset shows details of the crossing point. The crossing

dashed and continuous lines correspond to the uncoupled energy levels of the SQUID and ACPT and the

anti-crossing lines correspond to the energy when coupling is taken into account

escape measurement is performed on the SQUID, revealing its quantum state (inset

of Fig. 18c).

5 Josephson junction chains

In this section, we will summarize measurements performed on phase-biased

Josephson junction chains composed of elementary cells consisting of one rhombus

(for details see [31]). Each rhombus contains four Josephson junctions, and can be

threaded by a magnetic flux. Such chains have been studied theoretically in the con-

text of fault-tolerant quantum computation [12,16,21,32,33,37]. Indeed, their distinct

topology gives rise to specific symmetries leading to the appearance of quantum states

that are protected against local perturbations.

We will focus on the ground-state properties of rhombi chains in the classical and

quantum regime. The ground-state energy E0(γ ) of the chain, as a function of the bias

phase γ , can be determined by the measurement of the chain’s current–phase relation

I (γ ): the supercurrent is given by the derivative of E0(γ ) as a function of γ .

The magnetic flux threading the rhombus loop leads to the occurrence of inter-

ference phenomena specific for the rhombus geometry. At full flux frustration, for

instance, destructive interference is predicted to lead to a suppression of the 2e

supercurrent in favor of the appearance of a 4e supercurrent, carried by correlated

Cooper pairs [32].
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Below we will present measurements of the current–phase relation at various flux

frustrations, focussing on the periodicity and the amplitude of the supercurrent oscil-

lations. Close to full flux frustration, the period changes from 2π to π . The oscillation

amplitude decreases when the charging energy of the junctions is increased, due to

quantum fluctuations.

5.1 Measurement set-up

In order to measure the current–phase relation of a rhombi chain, we implemented

an escape measurement using a large JJ which is connected in parallel to the chain

(Fig. 19). The critical current of this JJ (IcL ≈ 1−2 µA) is much larger than that of the

chain (Ic ≈ 1 − 100 nA). Therefore, near the switching event of the whole device the

phase difference over the large JJ is close to π/2 independent of the magnetic flux �c

within the large loop containing the chain and the JJ. As a consequence the flux �c

controls directly the phase-difference γ over the chain and the measurement of the γ

Fig. 19 a SEM image of a rhombi chain (N = 8, sample C) in the closed superconducting circuit. The

shunt junction is visible on the left vertical line; b an enlarged image of this JJ. c An enlarged image of one

rhombi is also presented. For small magnetic field variations, the flux inside the rhombi practically remains

constant, while the total phase on the array varies
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dependence of the switching current of the shunted rhombi chain yields the current–

phase relation of the rhombi chain. The flux frustration f of the chain is controlled

by the flux �R through the small loop formed by each rhombus. The area of the large

loop is about hundred times larger than the one of a single rhombus, which enables us

to tune the frustration f of the rhombus independently of the phase-difference γ over

the chain.

5.2 Classical chains

We first discuss the ground-state properties of a chain with E J /Ec ≈ 20 (sample A)

when quantum fluctuations can be neglected. Such chains are called hereafter classi-

cal chains. The measured current–phase relation is plotted in Fig. 20a and b for two

different frustration parameters f = 0 and f = 0.5. In both cases they follow a saw-

tooth dependence as expected, since in the classical regime E0(γ ) is a series of shifted

parabolas as a function of γ (see Fig. 21a, d). Interestingly, the period of the supercur-

rent oscillations as a function of the phase difference changes abruptly from 2π to π

as the rhombi are tuned to the vicinity of full frustration. This double periodicity can

be explained by the existence of two different persistent current configuration states

(circulating clockwise and counterclockwise) in each rhombus for frustration close to

1/2. For convenience we associate a pseudospin up (down) to each rhombus carrying

a clockwise (counterclockwise) circular supercurrent.

Away from full flux frustration, these two spin states have very different energy.

The configuration yielding the lowest energy of the chain therefore corresponds

to a fully spin polarized spin chain, regardless of the phase difference γ (see

Fig. 20 Sample A: classical chain. Measured current–phase relation deduced from the switching current

versus external magnetic field at T = 26 mK. a Dependence near rhombus frustration f = 0. b Dependence

near full rhombi frustration f = 0.5
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Fig. 21 Identification of the lowest energy states of a classical rhombi chain as a function of the phase γ

for different frustrations (here the number of rhombi is N = 8). The supercurrent flowing through the chain

is given by the derivative of the energy as a function of γ and consists of a series of unequal sawtooth in

the vicinity of f = 0.5. The up and down arrows indicate the spin states of the eight rhombi. Near full

frustration ( f = 0.5) note the change in the parity for the number of switched rhombi between successive

minima

Fig. 21a). In fact, for f = 0, each rhombus of the chain behaves as a single junc-

tion, characterized by an effective Josephson and charging energy E J,e f f , EC,e f f .

The rhombi chain then behaves as a linear array of effective Josephson junctions.

In the classical limit E J,e f f ≫ EC,e f f , the current–phase relation is a 2π -peri-

odic sawtooth, with amplitude E J,e f f /N , N being the number of rhombi in the

chain.

However, upon approaching full frustration f = 0.5, the two spin states for a sin-

gle rhombus become more and more degenerate. For the whole chain this means that

for a phase difference near π , the system can lower its energy by flipping the spin

of one of the rhombi. This leads to an additional feature in the energy-phase depen-

dence of the chain that in turn gives rise to the appearance of an additional sawtooth

branch on the level of the current–phase relation (see Fig. 21b). Very close to f = 1/2

(Fig. 21c), for odd values of γ /π , the chain states with an odd number of rhombi in the

state |↑〉 (so-called odd states) correspond to a minimum of energy. At full frustration

f = 0.5 all chain states with an even and odd number of flipped rhombi become,
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Fig. 22 Sample C: quantum chain. The experimental plot (dots) of the switching current versus external

magnetic field in the zero frustration region for sample C at T = 280 mK. The line represents the theoretical

fit which gives an effective value for the Josephson energy E∗
J

= 0.5E J

respectively, degenerate (Fig. 21d). The high degeneracy of these chain states will be

essential for the construction of a topologically protected qubit. At full frustration the

energy as a function of the bias phase γ becomes π periodic and so does the resulting

current–phase relation. In terms of the supercurrent this implies a suppression of the

2e supercurrent in favor of the appearance of a 4e supercurrent, carried by correlated

Cooper pairs.

5.3 Quantum chains

Here we present results obtained in a chain with E J /EC ≈ 2 (sample C) close to

zero frustration. The current–phase relation measured at zero frustration is plotted in

Fig. 22 and shows again a 2π periodicity. The main feature here is the smearing of

the sawtooth dependence to a smooth sinusoidal one. The abrupt jumps observed at

(2n+1)π phase value in the classical chains are now strongly softened. This measured

current–phase relation can be explained by the presence of quantum fluctuations, that

grow with decreasing ratio E J /Ec and increasing number of JJ rhombi. Quantum

fluctuations lift the degeneracy at the crossing points of the parabola in the classical

energy spectrum (see Fig. 21a). They produce therefore phase slip events on individual

rhombi that smear the sawtooth function obtained in the classical regime. Moreover,

quantum fluctuations decrease the amplitude of the maximum supercurrent flowing

through the chain. The measured current–phase relation could be fitted by a tight

binding model initially proposed by Matveev et al. [28] for single junction chains and

extended to rhombi chains in Ref. [31].

6 Experimental setup

The three different aluminum circuits which are presented in this review were real-

ized using e-beam lithography and shadow evaporation of aluminium on an oxidized

silicon chip. SEM pictures of the different circuits are presented in Figs. 1, 11 and 19.

The experimental set-up is schematically illustrated in Fig. 23 for the coupled cir-

cuit. But a similar set-up was used for the SQUID experiments or the JJ chains mea-

surements.
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Fig. 23 Schematics of the experimental setup with temperatures indicated on the right. RLC stands for a

second order low-pass rlc filter, Th-1 is a 1 m lossy thermocoax and Th-π is composed of two cascaded

π filters and two meters of lossy thermocoax. x dB is a 50 
 attenuator

To avoid spurious microwave resonances, the chip is mounted in a shielded copper

cavity whose cut-off frequency is above 20 GHz. The four probe dc lines are designed

to decouple the circuit from the external room temperature classical electrical appara-

tus. It consists of cascaded filters. The first and most important filter includes a 9-nH

on-chip inductance, Loc, introduced by long on-chip superconducting thin wires, and a

thin film 150 pF parallel capacitor, C p. As illustrated in Fig. 23, additional filters based

on thermocoax [41] and π -filters are used at the different stages of the dilution fridge.

Bias flux is applied with a copper coil cooled down to 30 mK. External low frequency
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flux fluctuations are screened with soft iron and mu-metal at room temperature and a

superconducting lead shield at 1.5 K. The room temperature high frequency flux and

gate voltage signals are guided by two different 50 
 coax lines and attenuated twice

by 20 dB at 1.5 K and 30 mK, before reaching the circuit. The high frequency flux line

for the SQUID and the coupled circuit are terminated by an on-chip short circuit. The

high frequency gate voltage for the ACPT circuit is terminated by an on-chip gate

capacitance. The antenna which produces the µw flux signal is located 10 µm from the

SQUID, leading to a 1.5 pH mutual inductance coupling. The µw line is terminated by

an inductance estimated to be 2 nH which introduces an additional 6 dB attenuation at

10 GHz. Special care was taken to minimize the coupling between the high frequency

antenna and the bonding wire loops in the direct electrical environment of the SQUID.

The high frequency signal used in our experiments results from the combination of

a microwave excitation pulse and a measurement dc pulse (Fig. 4b). The µw pulse is

generated by mixing continuous microwaves with a shaping dc pulse. We define the

risetime as the duration to reach 95% of the peak amplitude starting from 5%. The

duration is defined as the time interval where the pulse amplitude is at least 95% of

the maximal amplitude. With this convention, the shaping pulse has a 0.8 ns risetime

and a duration tuneable from 1 ns to several milliseconds. The measurement pulse

has a 1.6 ns risetime and a minimum duration of 1.6 ns. Both microwave shaping and

measurement pulse are produced by two outputs of one dc pulse generator, allowing

precise control of timing. In Fig. 4b, a digital sampling oscilloscope record of the sig-

nal is presented. As a demonstration of signal generation performance, the duration

of the microwave and measurement pulse have been reduced to the minimum: the

whole sequence is then finished in less than 7 ns. Except the specific measurements,

the delay between microwave and measurement is kept as short as 1 ns to minimize

depolarization due to population relaxation.

To limit heating in the SQUID voltage state, a specific electronic circuit cuts the

bias current to zero as soon as a finite voltage across the SQUID is detected. The

voltage readout time, about 10 µs, is determined by the bandwidth of the strongly

filtered voltage lines. With a wait of 1 ms after each voltage measurement to allow

the sample to cool back down to base temperature, the overall repetition rate is about

1 kHz. The experiment sequence is repeated up to 5,000 times such that the statistical

noise on Pe has a theoretical standard deviation lower than 4 × 10−3. More details on

the experiments can be found in the different thesis realised in Grenoble [1,5,14].

7 Conclusion

We have studied the quantum dynamics of a dc SQUID in different situations. We have

demonstrated that it behaves as a phase qubit when the working point is chosen on

an optimal line, insensitive to current fluctuations. At these points Rabi and Ramsey

oscillations have been observed in the two-level limit. The measured T2,Rabi = 67 ns

and T2,Ramsey = 18 ns can be significantly improved by reducing the 40µ�0 rms flux

noise and the density of micro-resonators observed in our sample. At large µw ampli-

tude the circuit develops very rich and complex dynamics in the transient regime just

123



180 O. Buisson et al.

after application of the µw field. A cross-over from two-level to multilevel behavior

has been observed.

We have fabricated an asymmetric Cooper pair transistor that behaves as a charge

qubit. It has the advantage to contain two optimal points: one similar to the “quantro-

nium optimal point [10,38]” at (ng, δ)=(1/2,0) and a new one at (ng, δ)=(1/2,π ). At

this working point the decoherence times were T1 = 800 ns, T2,Rabi = 110 ns and

T2,spectroscopy ≈ 20 ns. The decoherence time can be strongly improved by increasing

slightly the E J /EC ratio.

We have shown for the first time a strong coupling between two different kinds of

superconducting qubits: a charge and a phase qubit. The coupling strength is tunable

and varies in our experiment from 60 MHz up to 1.1 GHz. The strong coupling close to

the escape line of the dc SQUID produces a new read-out based on adiabatic quantum

transfer. We have analyzed theoretically the quantum dynamics of the coupled circuit.

This analysis is able to explain the tunable coupling strength by a combination of a

capacitive and a Josephson coupling between the two qubits. In the future, it might be

possible to manipulate independently the two qubits when they are out of resonance

(single qubit operation). By changing the working point, the two qubits can be put in

resonance with a strong coupling in order to realize two-qubit operations. All these

manipulations can be performed by keeping the charge qubit in its optimal point.

We have analyzed the ground-state of a rhombi chain by measuring its current-phase

relation. We confirmed for the first time the tight binding model proposed intially by

Matveev et al. [28] for the ground state of a JJ chain in the presence of quantum

fluctuations. In the future we would like to do spectroscopy measurements on rhombi

chains and give experimental evidence for the macroscopic quantum state established

over the chain.
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Using a Luttinger-liquid approach we study the quantum fluctuations of a Bose-Josephson junction, consist-

ing of a Bose gas confined to a quasi-one-dimensional ring trap which contains a localized repulsive potential

barrier. For an infinite barrier we study the one-particle and two-particle static correlation functions. For the

one-body density-matrix we obtain different power-law decays depending on the location of the probe points

with respect to the position of the barrier. This quasi-long-range order can be experimentally probed in

principle using an interference measurement. The corresponding momentum distribution at small momenta is

also shown to be affected by the presence of the barrier and to display the universal power-law behavior

expected for an interacting one-dimensional fluid. We also evaluate the particle-density profile, and by com-

paring with the exact results in the Tonks-Girardeau limit we fix the nonuniversal parameters of the Luttinger-

liquid theory. Once the parameters are determined from one-body properties, we evaluate the density-density

correlation function, finding a remarkable agreement between the Luttinger-liquid predictions and the exact

result in the Tonks-Girardeau limit, even at the length scale of the Friedel-like oscillations which characterize

the behavior of the density-density correlation function at intermediate distance. Finally, for a large but finite

barrier we use the one-body correlation function to estimate the effect of quantum fluctuations on the renor-

malization of the barrier height, finding a reduction in the effective Josephson coupling energy, which depends

on the length of the ring and on the interaction strength.

DOI: 10.1103/PhysRevA.79.063633 PACS number�s�: 03.75.Lm, 67.85.�d, 05.30.Jp

I. INTRODUCTION

The possibility to study Bose-Einstein condensates con-

fined to ring traps constitutes one of the frontiers of the ex-

perimental progress with ultracold atomic gases �1�. The

nontrivial topology of these traps together with the unifor-

mity of the potential along the ring circumference makes

them an ideal system for investigating persistent currents and

superfluid properties of the gas.

While current experimental setups display relatively weak

transverse �i.e., radial� confinements, we analyze in this work

the case where the transverse confinement is so strong that

only longitudinal �i.e., tangential� quasi-one-dimensional

�quasi-1D� motion is allowed along the ring. In a quasi-1D

geometry, the phase coherence properties of the gas are dras-

tically changed with respect to their three-dimensional �3D�
counterparts. Phase fluctuations destroy true long-range or-

der, and by increasing the interaction strength the gas

changes from a quasicondensate, i.e., a condensate with fluc-

tuating phase �2,3� to a Tonks-Girardeau gas �4�, where re-

pulsions are so strong that they mimic the effect of Pauli

pressure in a Fermi gas and the condensate is strongly de-

pleted. Here we consider such a one-dimensional ring trap

containing a localized repulsive potential which creates a

“weak link” connecting the two ends of the loop �see Fig. 1�,
a situation that may be viewed as a realization of a Bose-

Josephson junction. Bose-Josephson junctions have been al-

ready experimentally realized using double-well geometry

and arrays �5�. In the configuration considered here, quantum

fluctuations tend to destroy the phase coherence along the

ring, while the tunneling of bosons between the ends of the

loop favors a well-defined phase difference across the bar-

rier. We will study the interplay between these competing

effects.

We start by investigating how the presence of the barrier

affects the quantum fluctuations and hence the coherence

properties of a Bose-Josephson junction in a quasi-1D ring at

arbitrary values of the interaction strength. In the absence of

the barrier, these properties have been extensively studied,

employing a variety of techniques, from low-energy

Luttinger-liquid approaches and conformal field theory �6,7�,
to exact methods in the Tonks-Girardeau regime �8,9�. In the

presence of an infinitely high barrier, using the Luttinger-

liquid approach for a finite ring, we evaluate here the first-

order correlation function, which describes the decay of

phase coherence along the ring, and recover a previous result

from conformal field theory �6�. We then compare the results

for the one-body density matrix and for the particle-density

profile along the ring with the corresponding exact results in

the Tonks-Girardeau limit of impenetrable bosons obtained

through a Bose-Fermi mapping method �4�. This enables us

to determine the numerical values of the nonuniversal pa-

rameters of the Luttinger-liquid theory. Knowing these pa-

rameters we estimate two-particle properties such as the

density-density correlation function. Finally, we turn to the

case of a large but finite barrier, treating the tunneling across

the barrier as a perturbation. We use the results for the first-

order correlation function in the infinite-barrier limit to esti-

mate the effect of the quantum fluctuations on the effective

height of the barrier, i.e., on the Josephson coupling energy.

As a result, we predict how the renormalization of the Jo-

*nicolas.didier@grenoble.cnrs.fr
†
anna.minguzzi@grenoble.cnrs.fr

‡
frank.hekking@grenoble.cnrs.fr

PHYSICAL REVIEW A 79, 063633 �2009�

1050-2947/2009/79�6�/063633�8� ©2009 The American Physical Society063633-1



sephson energy depends on the ring length and on the inter-

action strength.

II. LUTTINGER-LIQUID DESCRIPTION FOR A RING

WITH A LOCALIZED BARRIER

We consider N bosons confined to a uniform, quasi-1D

ring-shaped trap of circumference L to which a localized

repulsive potential Vbarr�x�, located at x=0�L, has been su-

perimposed. The bosons interact with each other through a

repulsive contact potential v�x−x��=g��x−x��. The corre-

sponding Hamiltonian in terms of the bosonic field operators

��x�, �†�x� reads

H =� dx�†�x��−
�2

2m
�

2 + Vbarr�x����x�

+
g

2
� dx�†�x��†�x���x���x� . �1�

The presence on the ring of the �very large� barrier potential

will be taken into account below by imposing open boundary

conditions at x=0�L �see Sec. II B� and by adding a tunnel

term �see Sec. VI�.

A. Low-energy theory

In order to evaluate the equilibrium correlation functions

at large and intermediate distances we adopt the Luttinger-

liquid approach, i.e., we approximate the system Hamil-

tonian �1� by the following effective low-energy Hamiltonian

in terms of the fields ��x� and ��x� which describe the den-

sity and phase fluctuations on the ring �10�,

HLL =
�vs

2�
�

0

L

dx	K����x��2 +
1

K
����x��2
 . �2�

The parameters K and vs are related to the microscopic in-

teraction parameter of the original Hamiltonian �1� �6�, the

phase field ��x� is related to the velocity of the fluid v�x�
=����x� /m and the field ��x� defines the fluctuations in the

density profile ��x� according to

��x� = ��0 + 	�x�� �
m=−


+


e2mi��x�+i2�m�0x+2im�B, �3�

where �0=N /L is the average density of the fluid, 	�x�
=���x� /� and �B is a constant fixing the position of the first

particle with respect to the origin of the x axis. The fields 	
and � satisfy the commutation relation �6,10�,

�	�x�,��x��� = i��x − x�� . �4�

Note that this approach includes not only the lowest-order

hydrodynamic expression for the density fluctuation at long

wavelength: the higher order terms in the sum �3� enable the

description of the discrete nature of the particles up to dis-

tances ��1 /�0. Our approach does not allow however to

probe shorter distance scales because of the assumption of

linear phonon-dispersion modes in the effective Hamiltonian

�2�. The bosonic field operator is obtained from the hydro-

dynamic expression �†�x�=
��x�e−i��x� and reads

�†�x� = A
�0 + 	�x� � �
m=−


+


e2mi��x�+2im��0x+2im�Be−i��x�,

�5�

where A is a nonuniversal constant, the value of which de-

pends on the way the Luttinger-liquid approach is regular-

ized in the short-wavelength limit. This issue will be dis-

cussed in Sec. V A below, where the value of the constants

A and �B will be fixed. The field operators � and �† as

defined through Eq. �5� satisfy the standard bosonic commu-

tation relations as a consequence of the commutation relation

�4� among the field operators 	 and �.

B. Mode expansion of the Luttinger fields � and � with open

boundary conditions

We start by considering the case of an infinitely high bar-

rier, which corresponds to a ring with open boundary condi-

tions. In Sec. VI we will treat the case of a large, finite

barrier by considering the tunneling among the two sides of

the barrier as a perturbation.

In order to evaluate the first- and second-order correlation

functions for the bosons on the ring junction, we derive here

the expansion of the fields 	�x�=���x� /� and ��x� in terms

of the canonical bosonic annihilation and creation operators

bk and bk
† satisfying the commutation relations �bk ,b

k�

† �
=�k,k�

. Specifically, we expand the operators ��x� and 	�x�
in Fourier modes for x� �0,L�,

��x� = �
j=−


+


��1,jbkj
+ �2,jbkj

† �eikjx, �6�

	�x� = �
j=−


+


�	1,jbkj
+ 	2,jbkj

† �eikjx, �7�

where we have set k j =
2�

L
pj. The constant p and the complex

coefficients �1,j, �2,j, 	1,j, and 	2,j are determined by im-

posing three constraints: �i� the commutations rules

L0

x
�

x

FIG. 1. �Color online� Sketch of the Bose-Josephson junction on

a ring trap studied in this work.
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�	�x� ,��x���= i��x−x��; �ii� the open boundary conditions,

which imply vanishing current density, i.e., ���0�=���L�
=0, �	�0�=�	�L�=0; �iii� reduction in the Hamiltonian to

the diagonal form H=�kj
�
kj

�bkj

† bkj
+

1

2
�. In order to take

into account that we are using an approximate, long-

wavelength theory, we introduce a short-distance cutoff �
��0

−1 in the sum over the modes. The final result reads

��x� = �0 +
1


K
�
j=1



1


j
cos��jx/L�e−�j�/2L�bkj

+ bkj

† � , �8�

	�x� = 	0 + i

K

L
�
j=1





j cos��jx/L�e−�j�/2L�bkj
− bkj

† � , �9�

the latter implying

��x� = �	0x + i
K�
j=1



1


j
sin��jx/L�e−�j�/2L�bkj

− bkj

† � ,

�10�

where k j =�j /L �p=1 /2�. The zero mode 	0 is directly re-

lated to the particle number operator through normalization:

	0= �N−N0� /L where N0= �N�=�0L. It is conjugate to the

zero-mode phase operator �0 such that �	0 ,�0�= i. Using

this fact, one can explicitly check the commutation rule be-

tween ��x� and ��x�� from the mode expansions �8� and

�10�; it turns out to be ���x� ,��x���= i�u�x−x��, where u is

the unit step function, consistent with Eq. �4�. Finally, in-

spection of the diagonalized form of the Hamiltonian yields

the linear dispersion relation 
kj
=vSk j for the modes.

III. EXACT DESCRIPTION IN THE TONKS-GIRARDEAU

LIMIT K=1

In the limit of infinitely strong repulsion between the

bosons, which corresponds to the value K=1 for the

Luttinger-liquid parameter, an exact solution exists for the

bosonic many-body wave function ��x1 , . . . ,xN� �in first

quantization�. We shall use it throughout this paper in order

to test the results of the Luttinger-liquid theory in the limit

K=1, thereby fixing the values of its nonuniversal param-

eters.

The solution, due to Girardeau �4�, is obtained by map-

ping the bosons onto a gas of noninteracting, spin-polarized

fermions subject to the same external potential. The bosonic

many-body wave function ��x1 , . . . ,xN� is then obtained in

terms of the fermionic one as

��x1, . . . ,xN� = A�x1, . . . ,xN��F�x1, . . . ,xN� , �11�

where the mapping function A�x1 , . . . ,xN�
=	1�j���N sgn�x j −x�� ensures the proper symmetry under

exchange of two bosons. The fermionic wave function is

given by �F�x1 , . . . ,xN�= �1 /
N!�det�� j�xk�� j,k=1. . .N, � j�x�
being the single-particle orbitals for the given external po-

tential. Note that �F vanishes every time two particles meet

as required by Pauli’s principle, and hence describes well the

impenetrability condition g→
 for the bosons. In our spe-

cific case, the orbitals for a ring of circumference L in the

presence of an infinitely high barrier at x=0�L are

� j�x� = 
�2/L�sin��jx/L� , �12�

with j=1, . . . ,
. This expression is consistent with the open

boundary conditions discussed in Sec. II B.

As a consequence of the Bose-Fermi mapping, all the

bosonic properties which do not depend on the sign of the

many-body wave function coincide with the corresponding

ones of the mapped Fermi gas. This is the case, e.g., for the

particle-density profile and for the density-density correla-

tion function. Other properties such as the one-body density

matrix and the momentum distribution are instead markedly

different for bosons as compared to fermions. In particular,

the calculation of the one-body density matrix requires in

principle the calculation of a �N-1�-dimensional integral,

which is known to simplify in some cases. Examples are the

homogeneous gas with periodic boundary conditions �8� or

the case of a harmonic confinement �9�.

IV. ONE-BODY DENSITY MATRIX AND MOMENTUM

DISTRIBUTION IN THE INFINITE-BARRIER

LIMIT

In this section we focus on the one-body density matrix

and on the momentum distribution for the case of a bosonic

ring of circumference L with an infinite barrier, with the aim

of analyzing the differences with respect to the case of an

infinite system, as well as to the case of a ring in the absence

of the barrier.

A. Contribution from phase fluctuations to the one-body

density matrix

The one-body density matrix, defined as G�x ,x��
= ��†�x���x��� yields a measure of the coherence along the

ring. It is possible to measure the one-body density matrix

and off-diagonal long-range order experimentally by measur-

ing the interference pattern of atomic matter waves coming

from two holes in the trap �see e.g., �11� for the case of a

cigar-shaped 3D Bose gas�. According to Eq. �5� the bosonic

field operator has three contributions: �i� the phase ��x� �ii�
the density fluctuation 	�x�, and �iii� the higher harmonics of

order 2m��x� of the density. The most important contribution

to the one-body density matrix at large distances is the one

due to the phase fluctuations which correspond to the lowest-

energy modes of the bosonic fluid in the ring �see, e.g.,

�2,7��, while the two latter contributions give rise to sublead-

ing corrections which we do not analyze further here.

To lowest order we approximate the bosonic field

operator �5� as ��x��A
�0ei��x�; the problem then reduces

to the computation of the quantum average G0�x ,x��
= �A�2�0�e−i��x�ei��x���. Since the Luttinger-liquid Hamil-

tonian �2� is quadratic in the field ��x� we immediately ob-

tain G0�x ,x��= �A�2�0 exp�− 1

2
����x�−��x���2��. The phase-

phase correlation function is evaluated with the help of the

mode expansion �8�; using the fact that the ground-state av-

erage over the bosonic modes is ��bk+bk
†��bl+bl

†��=�kl and
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the property � j=1

 1

j
e−�j cos��j�=−

1

2
ln�1−2 cos �e−�+e−2��

one readily obtains

���x���x��� = −
1

4K
ln���/L�4��2 + d2�x − x��2L�� � ��2

+ d2�x + x��2L��� , �13�

d�x �L�=L�sin��x /L�� /� being the cord function. This leads

to

G0�x,x�� = �0b0,0

� � �0
−2
��2 + d2�2x�2L����2 + d2�2x��2L��

��2 + d2�x − x��2L����2 + d2�x + x��2L��
�1/4K

,

�14�

where we have introduced the nonuniversal constant b0,0

= �A�2��0��1/2K. The above expression �Eq. �14�� yields the

leading-order term for the one-body density matrix at large

distances. By taking the limit �→0 we recover the result

obtained in �6� using the methods of conformal field theory.

If the distance among x and x� is large compared to the

cutoff length �, the one-body density matrix displays a

power-law decay of the form G0�x ,x��� �x−x��−�, where the

exponent � can be derived from the expression �14�, and in

particular depends on the location of the probed points �6�.
Indeed, if the two points are away from the edges one finds

�=
1

2K
, which corresponds to the result obtained in the ther-

modynamic limit �10� whereas if they approach the edges

�i.e., x�� and L−x���� the exponent is �=
1

K
, a result

known in the context of quantum phase fluctuations in a 1D

superconducting wire of length L �12�. In the case where one

point is at one edge and the other in the bulk we obtain �

=
3

4K
. These three different behaviors are illustrated in Fig. 2,

where we plot the one-body density matrix G0�x ,x�� as a

function of x� for various choices of the probe point x. In the

same figure we display also the behavior for a homogeneous

ring in absence of the barrier, obtained by a procedure analo-

gous to the one outlined above,

G0
hom�x,x�� = �0b0,0� �0

−2

�2 + d2�x − x��L�
�1/4K

. �15�

Note that, as the coordinate x� runs along the ring, in the

presence of the barrier the coherence decreases monotoni-

cally, while if the barrier is absent coherence is recovered as

x� approaches L−x.

The different power-law behaviors are in principle ob-

servable for a quasi-1D Bose gas in a ring trap geometry; it is

required to have a high barrier well localized on a length

scale �.

B. Momentum distribution

We proceed by studying the momentum distribution n�q�,
obtained by Fourier transformation of the one-body density

matrix with respect to the relative variable,

n�q� = �
0

L

dx�
0

L

dx�e−iq�x−x��G�x,x�� . �16�

We have resorted to a numerical calculation for the evalua-

tion of the momentum distribution taking as input the one-

body density matrix obtained in Eq. �14�. This allows to

estimate the main features of the momentum distribution at

wave vectors q smaller than the cutoff wave vector qc

�1 /�. The behavior at large wave vectors q�qc needs an

accurate treatment of the short-distance behavior of the

many-body wave function �13,14� and is beyond the regime

of validity of the Luttinger-liquid method. The result for the

momentum distribution is illustrated in Fig. 3 for two values

of the boson number in the ring, and at varying interaction

strength. As a general feature �see the inset of Fig. 3�, we

observe that at intermediate values of q the momentum dis-

tribution displays a power-law behavior n�q��q1/�2K�−1 with

the same power predicted for a homogeneous ring in the

thermodynamic limit �see, e.g., �7,15� for a finite-size scaling

analysis�. This result is readily understood as the different

power laws described in Sec. IV A only occur at the edge of

the integration region with a negligible weight with respect

G
0
(x

,x
�
)

|x − x�|/L0.01 0.5

G
0
(x

,x
�
)

|x − x�|/L0.01 1

G
0
(x

,x
�
)

L/α1 100(b)(a) (c)

FIG. 2. �Color online� �a� and �b�: one-body density matrix in logarithmic scale �arbitrary units� as a function of the coordinate x� �in
units of the ring circumference L� for various choices of the coordinate x with respect to the position of the barrier; x�0 in �a� and x

=L /2 in �b�. �c� One-body density matrix in logarithmic scale �arbitrary units� taken at x�0 and x��L as a function of the length L of the

ring �in units of the cutoff length ��. In each panel we plot three values of the parameter K �from bottom to top K=1, K=2, and K=4�; the

solid lines correspond to the results from Eq. �14� and the dashed lines are the solution �15� for a homogeneous ring �periodic boundary

conditions�. The dotted line in �a� is the exact solution for a Tonks-Girardeau gas in the thermodynamic limit. The linear behavior of G0 in

logarithmic scale corresponds to the predicted power law decays with various exponents �; �a� �=1 /2K, �b� �=3 /4K, and �c� �=1 /K.
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to the bulk contribution. Still, by comparing the details of the

momentum distribution of the ring with the barrier with the

momentum distribution of a uniform ring, �see the main

panel of Fig. 3�, we find that in the presence of the barrier the

momentum distribution is decreased at small momenta. This

is in agreement with the fact that the barrier reduces the

coherence along the ring. The result is reminiscent of the one

obtained for a 1D gas in presence of disorder �16�, where the

reduction in the momentum distribution at small momenta is

also observed.

V. PARTICLE-DENSITY PROFILE AND DENSITY-

DENSITY CORRELATION FUNCTION

IN THE INFINITE-BARRIER LIMIT

Extending the quantum average techniques outlined in

Sec. IV to the limit of an infinitely high barrier it is possible

to evaluate also the inhomogeneous particle-density profile

and the density-density correlation functions. Interference

between particles incident on and reflected by the barrier

leads to the occurrence of Friedel-like oscillations in the den-

sity profile and in its correlator, which are typical of strongly

correlated 1D fluids. We describe here these oscillations

within the Luttinger-liquid approach, for any value of the

coupling strength, finding that they are more and more

marked as the coupling strength increases. In the Tonks-

Girardeau limit of infinite boson-boson repulsion we com-

pare the predictions of the Luttinger-liquid approach with the

exact results, which enables us to fix the nonuniversal pa-

rameters of the latter.

A. Friedel oscillations in the particle-density profile

We compute the particle-density profile by taking the

quantum average ���x�� of the density operator �3� on the

ground state, namely,

���x��/�0 = �
m=−


+


��1 + 	�x�/�0�e2mi��x��ei2�m�0x+2im�B.

�17�

To evaluate the quantum averages we exploit the fact that the

Hamiltonian �2� is quadratic in the field ��x� �and recall that

	�x�=���x� /��. We use the property that if X and Z are

Gaussian variables then �XeZ�= �XZ�e1/2�Z2�. Hence, we are

left with the evaluation of the ���x���x��� correlation func-

tion, to be taken at equal points x=x�; the �	�x���x��� cor-

relation function is obtained from the previous one by taking

the derivative with respect to the variable x. Using the mode

expansion �10� and a procedure similar to the one outlined in

Sec. IV we obtain

���x���x��� = �2�	0
2�xx� −

K

4
ln��2 + d2�x − x��2L�

�2 + d2�x + x��2L�
� ,

�18�

and

�	�x���x��� = ��	0
2�x� +

K

2�

d�x + x��L�

�2 + d2�x + x��2L�

−
K

2�

d�x − x��L�

�2 + d2�x − x��2L�
sgn�x − x�� . �19�

The final expression for the density profile reads

���x��

�0

= 1 + 2�
m=1


 � �2

�2 + d2�2x�2L�
�m2K/2

� �cos�2m��0x + 2m�B� −
mK

��0

sin�2m��0x

+ 2m�B�
d�2x�L�

�2 + d2�2x�2L�
� . �20�

The density profile is modulated by oscillations with wave-

vector multiples of 2��0. Notice that in the case K=1, where

the system can be mapped onto a noninteracting spin-

polarized Fermi gas, the wave vectors of the oscillation are

multiples of 2kF, where kF=��0 is the Fermi wave vector,

and hence correspond to the well-known Friedel oscillations

�17�. For the case of generic K the m=1 oscillations decay

with the power law x−K �see, e.g., �18��.
Let us now concentrate on the case K=1. In the thermo-

dynamic limit �L→
, N→
, at fixed �0=N /L� the expres-

sion �20� for the density profile at short distances �to O�1 /x��
reduces to

���x��

�0

� 1 +
� cos�2��0x + 2�B�

x
. �21�

This can be compared with the thermodynamic limit of the

exact expression derived using the Bose-Fermi mapping

�9,19�

n
(q

)

q/qc

0
0 1

1

75

10
−2

10
2

10
4

FIG. 3. �Color online� Momentum distribution n�q� in units of

2��A�2� as a function of the wave vector q in units of the cutoff

momentum qc=1 /� for N=10 bosons on a ring with an infinite

barrier �solid lines� and for a homogeneous ring in absence of the

barrier �dashed lines� for various values of the Luttinger parameter

K �from top to bottom K=4,2 ,1�. The inset shows the same quan-

tity �in logarithmic scale, arbitrary units, same line conventions as

the main figure� evaluated for N=103 bosons. The dotted lines in-

dicate the predicted power law decays q1/�2K�−1 in the thermody-

namic limit.
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���x��

�0

� 1 −
sin�2��0x�

2��0x
, �22�

allowing us to fix the coefficients � and �B to the values �
=1 / �2��0� and �B=� /4. Note that the latter choice for �B is

in agreement with the condition �B�0, �� , �2� , . . . ob-

tained by imposing that the particle-density profile should

vanish at x=0 and x=L �6�. Once the constants � and �B are

chosen, the constant A in Eq. �5� can be fixed by comparing

the expression for the coefficient b00 entering Eq. �14� for the

one-body density matrix with the exact value b00
exact

=2−1/3
�eAG
−6�0.521 �8,9� where AG=1.282. . . is Glaisher’s

constant. The result is �A�2=21/6�e1/2AG
−6�1.307. This value

has been used in plotting Fig. 2.

In Fig. 4 we illustrate the density profiles for various val-

ues of K, obtained by the Luttinger-liquid expression �20�
using the above choice for � and �B �20�. The figure displays

also the exact result for the density profile obtained from the

Bose-Fermi mapping, �exact�x�=� j=1
N �� j�x��2, where the

single-particle orbitals � j�x� are defined in Eq. �12�. The

comparison shows how our choice of parameters � and �B

reproduces extremely well the density profile oscillations

even on a finite ring. The figure also illustrates how the Frie-

del oscillations display maximal amplitude in the strongly

interacting limit K=1.

B. Density-density correlation function

from Luttinger-liquid theory

We turn now to the density-density correlation function

S�x ,x��= ���x���x���− ���x�����x���. This quantity encodes

the information on the structure of the fluid, i.e., on the cor-

relations between density modulations at different parts of

the fluid, while it vanishes for an ideal Bose gas. The Fourier

transform of the density-density correlation function with re-

spect to the relative variable is directly accessible experimen-

tally by light-scattering methods �see e.g., �21� and refer-

ences therein�.
The density-density correlation function is obtained with

the quantum average method described in Secs. IV and V.

One has to compute

���x���x��� = �
m,m�=−


+


e2i�m−m���Bei2��0�mx−m�x��

� ���0
2 + �0�	�x� + 	�x��� + 	�x�	�x���

� e2i�m��x�−m���x���� . �23�

The average can be performed using the general result for

Gaussian variables �XYeZ�= ��XY�+ �XZ��YZ��e1/2�Z2�. The

novel correlator needed for the calculation in addition to Eqs.

�18� and �19� is

�	�x�	�x��� = −
K

2�2	d2�x − x��2L� − �2cos���x − x��/L�

��2 + d2�x − x��2L��2

+
d2�x + x��2L� − �2 cos���x + x��/L�

��2 + d2�x + x��2L��2 

+ �	0

2� . �24�

The final result reads

���x���x��� = �
m,m�=−


+


��0���m2+m�
2�Ke2i�m−m���Bei2��0�mx−m�x��

� ��0
2 + �	�x�	�x��� + 2i�0��	�x� + 	�x���

��m��x� − m���x���� − 4�	�x��m��x�

− m���x�����	�x���m��x� − m���x�����

� ��2 + d2�x + x��2L�

�2 + d2�x − x��2L�
�mm�K

�� �0
−2

�2 + d2�2x�2L�
�m2K/2

�� �0
−2

�2 + d2�2x��2L�
�m�

2K/2

. �25�

This equation displays the general structure of the density-

density correlations to all orders in m and m�, and by con-

sidering only the first terms of the expansion m ,m�=0, �1

we recover the known results �6,7�.
We proceed by comparing the density-density correlation

function S�x ,x�� with the exact result for K=1. The latter is

obtained from the Bose-Fermi mapping as �21�

Sexact�x,x�� = − ��
j=1

N

� j
��x�� j�x���2

, �26�

where the single-particle orbitals � j�x� are defined in Eq.

�12�.
Figure 5 displays the results obtained from the Luttinger-

liquid method at various values of the Luttinger parameter K,

using the choice of parameters � and �B determined from the

density profile in Sec. V A and compares to the exact ones in

�ρ
(x

)�
/
ρ
0

x/L0 0.1

1

1.2

0 0.05

1

0.95

1.05

FIG. 4. �Color online� Particle-density profile ���x�� in units of

the average particle density �0 as a function of the spatial coordi-

nate x along the ring �in units of the ring circumference L� for

various values of the parameter K. Main figure, K=1 �solid line:

result from the Luttinger-liquid model, dotted line, exact result from

the Bose-Fermi mapping�; inset, K=2 �top line� and K=4 �bottom

line�.
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the case K=1. The agreement found is very good, even for

the Friedel-like oscillations at wave vector k�2��0; this is

at the boundary of the expected regime of validity of the

Luttinger-liquid theory and illustrates how a reasonable

choice of the nonuniversal parameters in the effective model

allows for surprisingly accurate predictions.

VI. RENORMALIZATION OF THE JOSEPHSON ENERGY

BY QUANTUM FLUCTUATIONS

In this section we consider the effect of a finite barrier on

the ring located at x=0�L and characterized by the tunnel-

ing strength T. The barrier potential yields the following tun-

neling term in the Hamiltonian �1�:

HJ = − T�†�L���0� + H.c. �27�

The above equation takes into account the possibility for a

boson to tunnel through the barrier potential, and H.c. refers

to the Hermitian conjugate corresponding to tunneling events

in the opposite direction. In the hydrodynamic formulation

for �†�x�, the transfer of one boson is ensured by the opera-

tor exp�−i�� where �=��L�−��0�. By neglecting the den-

sity fluctuations in the field operator �5� we then recover the

usual Josephson Hamiltonian

HJ = − EJ cos � , �28�

where EJ=2�0T is the Josephson energy of the junction.

Quantum fluctuations of the bosons in the ring on both

sides of the barrier tend to smear the phase � and hence

suppress the tunneling strength. Indeed, from the diagonal

Hamiltonian of Sec. II B, the ring constitutes an oscillator

bath for the junction with linear spectrum �
kj
=��vSj /L;

the resulting model is very similar to the one describing a

superconducting Josephson junction coupled to a resistive

environment �22�. Tunneling events thus induce excitations

of the modes of the ring with energy between �
0

=��vS /L and the high energy cutoff �
h=��vS /�.

When the Josephson energy is smaller than the lowest

mode �
0, corresponding to small rings L�L���vS /EJ, the

junction can be treated as a perturbation and every mode

modifies EJ. The effective Josephson energy results from av-

eraging HJ, Eq. �28�, with respect to the ground state of the

unperturbed Hamiltonian �2�: EJ
eff= �HJ� with �HJ� /EJ

=G0�L ,�� /�0. Then

EJ
eff = EJ���

2L
�1/K

for L � L�. �29�

The Josephson energy decreases with the power law L−1/K of

the one-body density for probe points at the edges of the

ring. This case includes the limit of an infinitely high barrier,

where EJ→0, L�→
, and which is illustrated in Fig. 2,

bottom panel.

When EJ is larger than �
0 �with EJ��
h�, only the

modes with energies larger than EJ contribute to the renor-

malization. Consequently, to obtain the effective Josephson

energy we need to average over wavelengths between � and

the characteristic length ����vS /EJ
eff: EJ

eff= ��HJ�� with

EJ
eff

/EJ = G0�L,��/G0��,�� � ��/��1/K. �30�

The effective Josephson energy in this case is obtained by

solving the above self-consistent equation with respect to �,

with the result

EJ
eff = EJ� �EJ

��vS

�1/�K−1�

for L � L�. �31�

In this case EJ
eff is independent of the ring circumference L.

Our results �29� and �31� are summarized in Fig. 6. As a

main conclusion, we find that quantum fluctuations dramati-

cally reduce the tunnel amplitude with respect to its bare

value entering the Hamiltonian �27�, especially in the case

K=1. Note however that the reduction saturates at a nonzero

level for rings larger than the so-called healing length L�.

The continuity between the two regimes L�L� and L�L�

�ρ
(x

)ρ
(x

�
)�
−
�ρ

(x
)�
�ρ

(x
�
)�

|x − x�|/L

0

0

−0.05

0.1

FIG. 5. �Color online� Density-density correlation function

S�x ,x�� �in units of �0
2� from the Luttinger-liquid model as a func-

tion of the coordinate x� �in units of the ring circumference L�, with

x=L /2 and for various values of the Luttinger parameter K �K=1,

top red line, K=2, middle green line, K=4 bottom blue line�. The

dotted line corresponds to the exact solution obtained from the

Bose-Fermi mapping in the case K=1.
E

e
ff

J
/
E

J

L/α 200
0

0

1

L
∗

K=2L
∗

K=4

FIG. 6. �Color online� Renormalized Josephson energy as a

function of the length of the ring. From top to bottom K=4,2 ,1

with �
h=10EJ. EJ
eff decreases as 1 /L1/K and reaches a constant

value at L=L�.
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defines the healing length of the ring L�

=�� /2���vS /�EJ�
K/�K−1�.

As a final remark, we would like to mention that our

approach is equivalent to the renormalization-group formal-

ism �23� or the self-consistent harmonic approximation �22�.

VII. SUMMARY AND CONCLUDING REMARKS

In summary, in this paper we have studied the equilibrium

properties of a quasi-1D interacting Bose gas confined in a

ring trap with a localized barrier. In the limit of infinite bar-

rier we have studied the coherence, density profiles and

density-density correlations of the gas using a Luttinger-

liquid approach and the quantum average method. Our re-

sults recover and extend those previously known by the use

of conformal field theory methods. As physical consequences

of our analysis, we find that the one-body density matrix,

when probed at various points with respect to the barrier

position, is expected to display universal power-law behav-

iors with different exponents which depend only on the Lut-

tinger parameter K. We also find that our method permits to

describe accurately the Friedel oscillations �due to the pres-

ence of the barrier� occurring in the particle-density profile

and in the density-density correlation function. Once the

nonuniversal parameters entering the effective model are

fixed by comparing the density profile to the exact one in the

Tonks-Girardeau case K=1, we find that the Luttinger-liquid

model well agrees with the exact result for the density-

density correlation function at a length scale which is at the

boundary of the validity of the Luttinger-liquid model.

The analysis performed in the limit of infinite barrier is

then use to study perturbatively the presence of a large, finite

barrier. By taking into account the effect of quantum fluctua-

tions we find that the effective Josephson energy �i.e., the

tunnel amplitude across the barrier� is reduced with respect

to its bare value, in a way which depends on the length of the

ring with respect to a typical healing length, a maximal re-

duction occurring for long rings. The effect of the renormal-

ization of the tunnel amplitude is expected to have strong

consequences on the dynamical evolution of the ring-trapped

Bose gas with a Josephson junction.
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We use a regularized harmonic-fluid approach, based on the effective low-energy Luttinger-liquid Hamil-
tonian, for a one-dimensional Bose gas with repulsive contact interactions to compute the complete series
corresponding to the large-distance off-diagonal behavior of the one-body density matrix for any value of the
Luttinger parameter K. We compare our results with the exact ones known in the Tonks-Girardeau limit of
infinitely large interactions �corresponding to K=1�, and different from the usual harmonic-fluid approach, we
recover the full structure of the series. The structure is conserved for arbitrary values of the interaction strength
with power laws fixed by the universal parameter K and a sequence of subleading corrections.
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I. INTRODUCTION

Quasi-one-dimensional �1D� quantum fluids display
unique properties due to the major role played by quantum
fluctuations in reduced dimensionality �see, e.g., �1��. For
example, in an interacting 1D Bose fluid quantum fluctua-
tions destroy the off-diagonal long-range order of the one-
body density matrix �or first-order coherence function�, de-
fined as �1�x1 ,x2�= ��†�x1���x2��, where ��x� is the bosonic
field annihilation operator at position x. In contrast to its
three-dimensional �3D� counterpart, where the one-body
density matrix at large distances tends to a constant which
corresponds to the fraction of Bose-condensed atoms �2�, in
1D the one-body density matrix at zero temperature decays
as a power law �3,4�, the coefficient of the power law being
fixed by the interaction strength: the decay is faster as the
interaction strength increases from the quasicondensate re-
gime with a fluctuating phase �5� to the Tonks-Girardeau
regime �6� of impenetrable bosons.

The one-body density matrix is not only a fundamental
quantity as it measures the macroscopic coherence properties
of a quantum fluid with bosonic statistics but also because it
is directly related �by Fourier transformation� to the momen-
tum distribution of the fluid. While the momentum distribu-
tion for a Bose fluid is typically narrow and peaked around
wave vector k=0, its specific form, its broadening due to
interactions, and its possible singularities give a wealth of
information about the nature of the correlated fluid under
study.

Quasi-one-dimensional Bose fluids find an experimental
realization in experiments with ultracold atomic gases con-
fined to the minima of a two-dimensional �2D� optical lattice
�7�. For those systems, the momentum distribution is one of
the most common observables and the one-body density ma-
trix has been measured as well �8� although not yet in the
quasi-1D geometry.

From a theoretical point of view, the calculation of the
one-body density matrix for the 1D interacting Bose gas has

a long history. In the Tonks-Girardeau limit where the exact
many-body wave function is known by means of a mapping
onto a gas of spinless fermions �6�, the problem reduces to
the evaluation of a �N−1�-dimensional integral. This math-
ematical challenge was addressed first by Lenard �9� and by
several subsequent works �see, e.g., �10–13��. The main re-
sult is the evaluation of the large-distance behavior of the
one-body density matrix in the form of a series expansion
�from �13��,

�1
TG�z� =

�0��

�z�1/2�1 −
1

32

1

z2 −
1

8

cos�2z�

z2 −
3

16

sin�2z�

z3 +
33

2048

1

z4

+
93

256

cos�2z�

z4 + ¯	 , �1�

where the constant �� and the coefficients have been calcu-
lated exactly. In Eq. �1� and in the following we express the
one-body density matrix as a function of the scaled relative
coordinate z=��0�x1−x2�, where �0 is the average particle
density.

For the case of arbitrary interaction strength, the calcula-
tion of the correlation functions remains a challenge �see,
e.g., �14�� although the model of bosons with contact repul-
sive interactions is integrable by the Bethe-ansatz technique
�15�. The power-law decay at large distances can be inferred
using a harmonic-fluid approach �3,4,16–18�. The latter is
based on an effective low-energy Hamiltonian describing the
long-wavelength collective excitations of the fluid having a
linear excitation spectrum ��k�=vsk. The resulting structure
for the large-distance series of the one-body density matrix
reads �from �4�� as

�1
LL�z� 


�0

�z�1/2K �
m=0

�

Bm

cos�2mz�

z2m2K
, �2�

where K=���0 /Mvs is the universal Luttinger-liquid param-
eter and the coefficients Bm are nonuniversal and cannot be
obtained by the harmonic-fluid approach. By noticing that
the harmonic-fluid approach is valid also in the Tonks-
Girardeau regime and corresponds to the case of Luttinger
parameter K=1, one can directly compare the predictions of
the two methods. Specifically, this comparison shows that the
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structure of Eq. �1� is richer than that of Eq. �2� obtained by
the standard harmonic-fluid approach.

The central result of this work is that by defining a prop-
erly regularized harmonic-fluid model �to be detailed below�
the following general structure of the one-body density ma-
trix can be obtained for arbitrary values of the Luttinger

parameter K:

�1�z� 

�0

�z�1/2K�1 + �
n=1

�
an�

z2n
+ �

m=1

�

bm

cos�2mz�

z2m2K
��

n=0

�
bn�

z2n

+ �

m=1

�

cm

sin�2mz�

z2m2K+1
��

n=0

�
cn�

z2n
	 , �3�

where all the coefficients an�, bm, bn�, cm, and cn� are nonuni-
versal and need to be calculated by a fully microscopic
theory �for possible methods see, e.g., �19,20��. We note that
Eq. �3� �i� generalizes Eq. �2� and �ii� has the full structure of
the exact result �1� in the Tonks-Girardeau limit. As a direct
consequence of the series structure �Eq. �3�� the momentum
distribution will display singularities in its derivatives for k

= �2m��0.

II. REGULARIZED HARMONIC-FLUID APPROACH

FOR BOSONS

We proceed by outlining the method used. We describe
the Bose gas with contact interactions �Lieb-Liniger model
�15�� by a harmonic-fluid Hamiltonian expressed in terms of
the fields 	�x� and 
�x� which describe the density and phase
fluctuations of the fluid �4�:

HLL =
�vs

2�
�

0

L

dx�K��
�x��2 +
1

K
��	�x��2� . �4�

The parameters K and vs entering Eq. �4� above are related to
the microscopic interaction parameters �21�, the phase field

�x� is related to the velocity of the fluid v�x�=��
�x� /M,
and the field 	�x� defines the fluctuations in the density pro-
file. We have adopted here an effective low-energy descrip-
tion, which assumes that the collective excitations in the
fluid are noninteracting and phononlike. The description
breaks down at a length scale a of the order of the typical
interparticle distance �0

−1 as it neglects the broadening and
curvature of the Bose gas spectrum at finite momentum
�15,22�. Within the harmonic-fluid approximation, the
bosonic field operator is expressed as �†�x�=���x�e−i
�x�.
Specifically, its expression in terms of the fields 	�x� and

�x� reads as �4,21�

�†�x� = A��0 + ��x��1/2 �
m=−�

+�

e2mi��x�e−i
�x�, �5�

where A is a nonuniversal constant, ��x�=�	�x� /�, and for
compactness of notation we have introduced the field ��x�
=	B+��0x+	�x�, where 	B is chosen in order to ensure that
the average of 	�x� vanish.

In order to calculate the one-body density matrix, we ex-
pand the fields 	�x� and 
�x� in terms of the normal modes

�bosonic� operators b j, b j
† which diagonalize Hamiltonian �4�

such that HLL=� j�� jb j
†b j, with � j =vsk j. As we are inter-

ested in the thermodynamic limit, we have chosen for sim-
plicity the periodic boundary conditions for a Bose gas in a
uniform box of length L, where k j =2�j /L. In this case the
mode expansion reads as


�x� =� �

2KL
�
j�0

sgn�k j�e
−a�kj�/2

��k j�
�eikjxb j + e−ikjxb j

†� + 
0

+
�x

L
J , �6�

��x� =��K

2L
�
j�0

e−a�kj�/2

��k j�
�eikjxb j + e−ikjxb j

†� + 	0 +
�x

L
N ,

�7�

with N and J being the particle number and angular momen-
tum operators, and 
0 ,	0 being their conjugate fields in the
phase-number representation �4�. The zero-mode fields 
0

and 	0 do not enter the calculation of the one-body density
matrix as it turns out to depend only on the differences
	�x1�−	�x2� and 
�x1�−
�x2�. In expressions �6� and �7�
above we have introduced the short-distance cutoff a
�0

−1,
thus regularizing the effective theory. The one-body density
matrix �1�x1 ,x2�= ��†�x1���x2�� is obtained in the regular-
ized harmonic-fluid approach from Eq. �5� as

�1�x1,x2� = �A�2 �
�m,m���Z

2

���0 + ��x1��1/2ei2m��x1�e−i
�x1�


 ei
�x2�e−i2m���x2���0 + ��x2��1/2� , �8�

where the only nonvanishing leading terms satisfy m=m�

�1�.
We detail now the calculation of the quantum average

appearing in Eq. �8�. In order to display its dependence only
on differences between fields, we rewrite the central term as

ei2m��x1�e−i
�x1�ei
�x2�e−i2m��x2� = ei2m���x1�−��x2��−i�
�x1�−
�x2��


 em�	�x1�+	�x2�,��x1�−��x2��,

�9�

where ��x�=
�x�−�x�J� /L and the commutator between the
	 and 
 fields is computed in Eq. �15� below.1 We then
perform a series expansion of the square-root terms �1
+� /�0�1/2 in the one-body density matrix. We define X

=��x1� /�0, Y =��x2� /�0, and Z= i2m�	�x1�−	�x2��− i���x1�
−��x2��. Using the fact that the fields X, Y, and Z are Gauss-
ian with zero average, we obtain from Wick’s theorem

1In the following we will not consider the case of a macroscopic
vorticity in the system, i.e., we assume �J��N.
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��1 + XeZ�1 + Y� = e�Z2�/2 �
k,l=0

�

�
j=0

min�k,l�
�2k� ! �2l�!

k ! l ! �2k − 1��2l − 1�



�X2��k−j�/2�Y2��l−j�/2�XY� j

�i�2�5�k+l�−2jj ! �k − j� ! �l − j�!


 Hk−j� �XZ�

i�2�X2�

Hl−j� �ZY�

i�2�Y2�

 , �10�

where Hn�x� are the Hermite polynomials. To second order in
X and Y Eq. �10� reads

��1 + XeZ�1 + Y� � e�Z2�/2�1 +
1

2
��XZ� + �ZY�� −

1

8
��X2�

+ �Y2� − 2�XY�� −
1

8
��XZ� − �ZY��2	 .

�11�

Main expression �10� requires then the calculation of the
various two-point correlation functions involving the three
fields X, Y, and Z. All of them can be obtained from

���x1���x2�� =
�2

L2 �J0
2�x1x2 −

1

4K
ln C�x1 − x2� , �12�

�	�x1�	�x2�� = �2��0
2�x1x2 −

K

4
ln C�x1 − x2� , �13�

�	�x1���x2�� =
1

4
ln�1 − e−2�a/L−i2��x1−x2�/L

1 − e−2�a/L+i2��x1−x2�/L	 , �14�

�	�x1�,��x2�� = i
�

L
�x1 − x2� + 2�	�x1���x2�� , �15�

where C�x�=1−2 cos�2�x /L�e−2�a/L+e−4�a/L, �0= �N
− �N�� /L, and J0=J− �J�. We are now in a position to calcu-
late the correlators between the fields X, Y, and Z in the
thermodynamic limit �L→�, N→� at fixed N /L=�0�. Us-
ing Eqs. �12�–�14� we have

exp��Z2�/2� � � �2

z2 + �2
1/4K+Km2

, �16�

�XZ� = �ZY� �
z

2�

z + i2Km�

z2 + �2 , �17�

�XY� �
K

2

�2 − z2

�z2 + �2�2 , �18�

�X2� = �Y2� �
K

2�2 , �19�

where �=��0a. Similarly, the commutator in Eq. �9� is ob-
tained from Eq. �15� as

em�	�x1�+	�x2�,��x1�−��x2�� � �� − iz

� + iz

m

. �20�

Notice that the effect of the zero modes �0 and J0 is absent
in the thermodynamic limit because it scales as 1 /L. The
series expansion in � /�0 is valid for small fluctuations of the
field ��x� compared to the average density �0, ��X2��1, i.e.,
for ���K /2. By combining the previous equations we ob-
tain the final result for the one-body density matrix in res-
caled units, finding the structure displayed in Eq. �3�:

�1�z� =
�0��

�z�1/2K�1 +
c0,2

z2 +
c0,4

z4 + c1,2

cos�2z�

z2K
+ c1,4

cos�2z�

z2K+2

+ c1,3

sin�2z�

z2K+1 + ¯	 , �21�

with ��= �A�2�1/2Kc0,0.
A few comments are in order at this point. First, by taking

the limit a→0 in Eqs. �12�–�15� we recover the results of the
standard harmonic-fluid approach, i.e., Eq. �2�. Moreover,
the regularized harmonic-fluid method produces also the
corresponding coefficients of the series, namely, to the
order of approximation derived in this work, we have
c0,0�1�1+ �1 /2��− �K /8�2�+ �K /16�3��; c0,2�−��2

/4K�

�c0,0+ �2K /��+ �K2

/2�2�� /c0,0; c0,4���1+4K��4
/32K2�


�c0,0 + �4K /�� + ��K2
/�2��12K + 1� / �4K + 1�� − �K3

/�3�6 /

�4K+1�� /c0,0; c1,2�−2�2K; c1,3�4�2K+1�c0,0+ �K /2��
+ �K2

/16�3�� /c0,0; c1,4���1+8K+4K2��2K+2
/2K��c0,0

+ ��2K /���1+4K�+ �K2
/2�2�+ �K3

/�3�� / �1+8K+4K2�� /c0,0.
However, it should be noted that these coefficients do not
necessarily coincide, e.g., in the limit K=1 with the exact
ones in Eq. �1�. Our approach is still effective as it suffers
from some limitations: first of all, we have just used a single-
parameter regularization which neglects the details of the
spectrum of the Bose fluid. Second, our approach relies on a
hydrodynamiclike expression for the field operator �Eq. �5��
which implicitly assumes that the fluctuations of the field
��x� are “small,” which is not always the case. On the other
hand, we see from our derivation that the corrections due to
the ��x� fluctuations renormalize the coefficients of the se-
ries to all orders, giving rise to the contributions in curly
brackets to the cij above but do not change the series struc-
ture.

Figure 1 shows our results for the one-body density ma-
trix �Eq. �21�, solid lines� for K=1 and a specific choice of
the cut-off parameter �=1 /2 as suggested by the analysis of
other correlation functions �23�. The comparison with the
exact result for the Tonks-Girardeau gas �Eq. �1�, dashed
lines� yields a reasonable agreement, the difference being
due to the fact that we have used for the sake of illustration
the explicit expression for the coefficients ci,j derived in the
current work. It should be noted in particular that our regu-
larized harmonic-fluid approach restores the correct trend at
short distances as compared to the usual harmonic-fluid ap-
proach �Eq. �2�, dotted lines�.

III. APPLICATION TO FERMIONS

It is possible to apply the above approach to the case of a
1D spinless Fermi gas with odd-wave interparticle interac-
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tion �24�, i.e., the 1D analog of p-wave interactions. For any
value of the coupling strength the �attractive� Fermi gas can
be mapped onto a �repulsive� Bose gas described by the
Lieb-Liniger model with dimensionless coupling strength
given by �B=−1 /�F �24,25�, the spectrum of collective ex-
citations being the same for the two models. Hence, it is
possible to describe the interacting Fermi gas by the
Luttinger-liquid Hamiltonian �4� as well, except for the so-
called Fermi-Tonks-Girardeau limit �F=−� mapped onto the
noninteracting Bose gas limit where the collective excitation
spectrum is quadratic. This allows us to estimate the fermi-
onic one-body density matrix with a method similar to the
one described above for the bosons, the fermionic nature of
the particles being taken into account by a Jordan-Wigner
transformation �4� on the bosonic field operator �5�. In par-
ticular, we generalize the series expansion known from the
usual harmonic-fluid approach, which in rescaled units reads
�from �4�� as

�1F
LL�z� 


�0

�z�1/2K �
m=0

�

Cm

sin��2m + 1�z�

z2�m + 1/2�2K
�22�

to the following series structure:

�1F�z� 

�0

�z�1/2K��
m=0

�

dm

sin��2m + 1�z�

z2�m + 1/2�2K
��

n=0

�
dn�

z2n

+ �

m=0

�

em

cos��2m + 1�z�

z2�m + 1/2�2K+1
��

n=0

�
en�

z2n
	 . �23�

The coefficients in Eq. �23� are nonuniversal and need a
separate treatment. The limit K=1 is an exception though. It
corresponds to the case of noninteracting fermions where the
exact result for the one-body density matrix �1F

�0��x1 ,x2�
=��k��kF

�k
��x1��k�x2�, with �k�x� being the single-particle or-

bitals, in the thermodynamic limit and in rescaled units reads

�1F
�0��z� = ��0

sin�z�

z
. �24�

Hence, it turns out that for noninteracting fermions all the
coefficients of series expression �23� vanish except the lead-
ing one.

IV. CONCLUSION

In conclusion, we have used a regularized harmonic-fluid
approximation to evaluate the large-distance behavior of the
one-body density matrix both for one-dimensional interact-
ing bosons and fermions at arbitrary values of the interaction
strength—the latter expressed in terms of the Luttinger pa-
rameter K. In the case of bosons in the Tonks-Girardeau limit
K=1 we recover the full structure of the series expansion
known for the exact result. In the case of noninteracting fer-
mions, the exact result shows that the series has only one
nonvanishing term. In perspective, it could be interesting to
estimate the coefficients of the series expansion at arbitrary
interaction strength.

Our results could be especially relevant for the experi-
ments on ultracold atomic gases in the case of a strongly
correlated Bose gas �K�1� or a Bose gas with dipolar inter-
actions �K�1� �26�, where the subleading corrections of the
series become more important. It would be also interesting to
take into account the effects of finite size and inhomogeneity
of the confinement to compare with experimental observ-
ables such as the momentum distribution.
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Hänsch, and Immanuel Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice,
Nature 429, 277 (2004).

[140] M. P. A. Fisher and L. I. Glazman. Transport in a one-dimensional luttinger liquid. In L. L.
Sohn, L. P. Kowenhoven, and G. Schön, editors, Mesoscopic Electron Transport. Kluwer,
Dordrecht, 1996.

[141] R. Saito, G. Dresselhaus, and M. S. Dresselhaus. Physical Properties of Carbon Nanotubes.
World scientific, 1998.

[142] T. Giamarchi. Quantum Physics in One Dimension. Oxford University Press, 2003.

[143] M. Olshanii, Atomic Scattering in the Presence of an External Confinement and a Gas of
Impenetrable Bosons, Phys. Rev. Lett. 81, 938 (1998).

[144] D.S. Petrov, G.V. Shlyapnikov, and J.T.M. Walraven, Regimes of Quantum Degeneracy in
Trapped 1D Gases, Phys. Rev. Lett. 85, 3745 (2000).

[145] V.N. Popov. Functional integrals in Quantum Field Theory and Statistical Physics. Reidel,
Dordrecht, 1983.

[146] M. Girardeau, Relationship between Systems of Impenetrable Bosons and Fermions in One
Dimension, J. Math. Phys. 1, 516 (1960).

[147] H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atom-
kette, Z. Phys. A 71, 205 (1931).

[148] E.H. Lieb and W. Liniger, Exact Analysis of an Interacting Bose Gas. I. The General
Solution and the Ground State, Phys. Rev. 130, 1605 (1963).

[149] E.H. Lieb and W. Liniger, Exact Analysis of an Interacting Bose Gas. II. The Excitation
Spectrum, Phys. Rev. 130, 1616 (1963).



BIBLIOGRAPHY 243

[150] F.D.M. Haldane, Effective Harmonic-Fluid Approach to Low-Energy Properties of One-
Dimensional Quantum Fluids, Phys. Rev. Lett. 47, 1840 (1981).

[151] F.D.M. Haldane, ’Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties
of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas,
J. Phys. C 14, 2585 (1981).

[152] A. Lenard, Some Remarks on Large Toeplitz Matrices, Pacific J. Math. 42, 137 (1972).

[153] P.J. Forrester, N.E. Frankel, T.M. Garoni, and N.S. Witte, Finite one-dimensional impen-
etrable Bose systems: Occupation numbers, Phys. Rev. A 67, 043607 (2003).
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L’EFFET JOSEPHSON DANS LES SUPRACONDUCTEURS ET LES GAZ QUANTIQUES

G
râce aux avancées techniques récentes, les physiciens jouent pleinement avec la beauté de la
mécanique quantique. Dans ce travail de théorie sur l’effet Josephson mésoscopique, nous ex-
ploitons les collaborations avec les expérimentateurs ainsi que les échanges entre les communautés
des atomes froids et de la matière condensée. Nous considérons différents systèmes basés sur la
jonction Josephson, en commençant par sa description quantique dans le régime sous-amorti. En
utilisant le formalisme de Keldysh, nous obtenons les caractéristiques courant-tension du régime
classique à la limite de température nulle et l’équation de Smoluchowski quantique dans la limite
semi-classique. Nous étudions ensuite la dynamique quantique d’un qubit de phase réalisé avec
un SQUID dans une configuration inédite où l’échappement se produit à travers deux barrières
quartiques. Le taux d’échappement tunnel dans ce nouveau potentiel, calculé avec la technique
des instantons, nous permet de décrire les expériences. L’électrodynamique quantique des cir-
cuits prévoit qu’un effet laser apparâıt lorsqu’un qubit est couplé à une cavité résonnante. Nous
considérons le cas d’un qubit de charge et celui d’un transmon qui exploite l’effet Purcell. Avec
le Lindbladien nous obtenons la matrice densité dont nous dérivons le spectre du champ créé.
Enfin, nous étudions un gaz d’atomes froids dans un piège circulaire comportant une barrière,
créant une jonction de Bose Josephson. La physique à basse énergie est décrite à travers les fonc-
tions de corrélation avec la théorie du liquide de Luttinger. Nous montrons que les fluctuations
quantiques dans l’anneau induisent une renormalisation de l’énergie Josephson.

THE JOSEPHSON EFFECT IN SUPERCONDUCTORS AND QUANTUM GASES

W
ith the recent technical breakthroughs, physicists fully play with the beauty of quantum me-
chanics. In this theoretical work on the mesoscopic Josephson effect, we take advantage of
the collaborations with experimentalists as well as the exchanges between the cold atoms and
condensed matter communities. We consider various systems based on the Josephson junction,
beginning with its quantum description in the underdamped regime. Using the Keldysh for-
malism, we obtain the current-voltage characteristics from the classical to the zero temperature
regime and the quantum Smoluchowski equation in the quasi-classical limit. We then study
the quantum dynamics of a phase qubit realized with a SQUID in a novel configuration where
tunneling events occur through two quartic barriers. The escape rate in this camel-back poten-
tial, calculated with the instantons technique, allows us to describe the experiments. Circuit
quantum electrodynamics predicts that a lasing effect appears when a qubit is coupled to a
resonant cavity. We consider the case of a charge qubit and also that of a transmon which
exploits the Purcell effect. With the Lindbladian we obtain the density matrix from which we
derive the spectrum of the output field. Finally, we study a gas of cold atoms in a ring shape
trap comprising a barrier, thus creating a Bose Josephson junction. The low energy physics is
described through the correlation functions with the Luttinger liquid theory. We show that the
quantum fluctuations in the ring induce a renormalization of the Josephson energy.


